gas TC_PARSE_CONS_EXPRESSION communication with TC_CONS_FIX_NEW
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2014 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 #endif /* OBJ_ELF */
79
80 /* Results from operand parsing worker functions. */
81
82 typedef enum
83 {
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87 } parse_operand_result;
88
89 enum arm_float_abi
90 {
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94 };
95
96 /* Types of processor to assemble for. */
97 #ifndef CPU_DEFAULT
98 /* The code that was here used to select a default CPU depending on compiler
99 pre-defines which were only present when doing native builds, thus
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
104 #endif
105
106 #ifndef FPU_DEFAULT
107 # ifdef TE_LINUX
108 # define FPU_DEFAULT FPU_ARCH_FPA
109 # elif defined (TE_NetBSD)
110 # ifdef OBJ_ELF
111 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112 # else
113 /* Legacy a.out format. */
114 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115 # endif
116 # elif defined (TE_VXWORKS)
117 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
118 # else
119 /* For backwards compatibility, default to FPA. */
120 # define FPU_DEFAULT FPU_ARCH_FPA
121 # endif
122 #endif /* ifndef FPU_DEFAULT */
123
124 #define streq(a, b) (strcmp (a, b) == 0)
125
126 static arm_feature_set cpu_variant;
127 static arm_feature_set arm_arch_used;
128 static arm_feature_set thumb_arch_used;
129
130 /* Flags stored in private area of BFD structure. */
131 static int uses_apcs_26 = FALSE;
132 static int atpcs = FALSE;
133 static int support_interwork = FALSE;
134 static int uses_apcs_float = FALSE;
135 static int pic_code = FALSE;
136 static int fix_v4bx = FALSE;
137 /* Warn on using deprecated features. */
138 static int warn_on_deprecated = TRUE;
139
140 /* Understand CodeComposer Studio assembly syntax. */
141 bfd_boolean codecomposer_syntax = FALSE;
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241 static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
243 static const arm_feature_set crc_ext_armv8 =
244 ARM_FEATURE (0, CRC_EXT_ARMV8);
245
246 static int mfloat_abi_opt = -1;
247 /* Record user cpu selection for object attributes. */
248 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
249 /* Must be long enough to hold any of the names in arm_cpus. */
250 static char selected_cpu_name[16];
251
252 /* Return if no cpu was selected on command-line. */
253 static bfd_boolean
254 no_cpu_selected (void)
255 {
256 return selected_cpu.core == arm_arch_none.core
257 && selected_cpu.coproc == arm_arch_none.coproc;
258 }
259
260 #ifdef OBJ_ELF
261 # ifdef EABI_DEFAULT
262 static int meabi_flags = EABI_DEFAULT;
263 # else
264 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
265 # endif
266
267 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
268
269 bfd_boolean
270 arm_is_eabi (void)
271 {
272 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
273 }
274 #endif
275
276 #ifdef OBJ_ELF
277 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
278 symbolS * GOT_symbol;
279 #endif
280
281 /* 0: assemble for ARM,
282 1: assemble for Thumb,
283 2: assemble for Thumb even though target CPU does not support thumb
284 instructions. */
285 static int thumb_mode = 0;
286 /* A value distinct from the possible values for thumb_mode that we
287 can use to record whether thumb_mode has been copied into the
288 tc_frag_data field of a frag. */
289 #define MODE_RECORDED (1 << 4)
290
291 /* Specifies the intrinsic IT insn behavior mode. */
292 enum implicit_it_mode
293 {
294 IMPLICIT_IT_MODE_NEVER = 0x00,
295 IMPLICIT_IT_MODE_ARM = 0x01,
296 IMPLICIT_IT_MODE_THUMB = 0x02,
297 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
298 };
299 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
300
301 /* If unified_syntax is true, we are processing the new unified
302 ARM/Thumb syntax. Important differences from the old ARM mode:
303
304 - Immediate operands do not require a # prefix.
305 - Conditional affixes always appear at the end of the
306 instruction. (For backward compatibility, those instructions
307 that formerly had them in the middle, continue to accept them
308 there.)
309 - The IT instruction may appear, and if it does is validated
310 against subsequent conditional affixes. It does not generate
311 machine code.
312
313 Important differences from the old Thumb mode:
314
315 - Immediate operands do not require a # prefix.
316 - Most of the V6T2 instructions are only available in unified mode.
317 - The .N and .W suffixes are recognized and honored (it is an error
318 if they cannot be honored).
319 - All instructions set the flags if and only if they have an 's' affix.
320 - Conditional affixes may be used. They are validated against
321 preceding IT instructions. Unlike ARM mode, you cannot use a
322 conditional affix except in the scope of an IT instruction. */
323
324 static bfd_boolean unified_syntax = FALSE;
325
326 /* An immediate operand can start with #, and ld*, st*, pld operands
327 can contain [ and ]. We need to tell APP not to elide whitespace
328 before a [, which can appear as the first operand for pld.
329 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
330 const char arm_symbol_chars[] = "#[]{}";
331
332 enum neon_el_type
333 {
334 NT_invtype,
335 NT_untyped,
336 NT_integer,
337 NT_float,
338 NT_poly,
339 NT_signed,
340 NT_unsigned
341 };
342
343 struct neon_type_el
344 {
345 enum neon_el_type type;
346 unsigned size;
347 };
348
349 #define NEON_MAX_TYPE_ELS 4
350
351 struct neon_type
352 {
353 struct neon_type_el el[NEON_MAX_TYPE_ELS];
354 unsigned elems;
355 };
356
357 enum it_instruction_type
358 {
359 OUTSIDE_IT_INSN,
360 INSIDE_IT_INSN,
361 INSIDE_IT_LAST_INSN,
362 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
363 if inside, should be the last one. */
364 NEUTRAL_IT_INSN, /* This could be either inside or outside,
365 i.e. BKPT and NOP. */
366 IT_INSN /* The IT insn has been parsed. */
367 };
368
369 /* The maximum number of operands we need. */
370 #define ARM_IT_MAX_OPERANDS 6
371
372 struct arm_it
373 {
374 const char * error;
375 unsigned long instruction;
376 int size;
377 int size_req;
378 int cond;
379 /* "uncond_value" is set to the value in place of the conditional field in
380 unconditional versions of the instruction, or -1 if nothing is
381 appropriate. */
382 int uncond_value;
383 struct neon_type vectype;
384 /* This does not indicate an actual NEON instruction, only that
385 the mnemonic accepts neon-style type suffixes. */
386 int is_neon;
387 /* Set to the opcode if the instruction needs relaxation.
388 Zero if the instruction is not relaxed. */
389 unsigned long relax;
390 struct
391 {
392 bfd_reloc_code_real_type type;
393 expressionS exp;
394 int pc_rel;
395 } reloc;
396
397 enum it_instruction_type it_insn_type;
398
399 struct
400 {
401 unsigned reg;
402 signed int imm;
403 struct neon_type_el vectype;
404 unsigned present : 1; /* Operand present. */
405 unsigned isreg : 1; /* Operand was a register. */
406 unsigned immisreg : 1; /* .imm field is a second register. */
407 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
408 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
409 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
410 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
411 instructions. This allows us to disambiguate ARM <-> vector insns. */
412 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
413 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
414 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
415 unsigned issingle : 1; /* Operand is VFP single-precision register. */
416 unsigned hasreloc : 1; /* Operand has relocation suffix. */
417 unsigned writeback : 1; /* Operand has trailing ! */
418 unsigned preind : 1; /* Preindexed address. */
419 unsigned postind : 1; /* Postindexed address. */
420 unsigned negative : 1; /* Index register was negated. */
421 unsigned shifted : 1; /* Shift applied to operation. */
422 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
423 } operands[ARM_IT_MAX_OPERANDS];
424 };
425
426 static struct arm_it inst;
427
428 #define NUM_FLOAT_VALS 8
429
430 const char * fp_const[] =
431 {
432 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
433 };
434
435 /* Number of littlenums required to hold an extended precision number. */
436 #define MAX_LITTLENUMS 6
437
438 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
439
440 #define FAIL (-1)
441 #define SUCCESS (0)
442
443 #define SUFF_S 1
444 #define SUFF_D 2
445 #define SUFF_E 3
446 #define SUFF_P 4
447
448 #define CP_T_X 0x00008000
449 #define CP_T_Y 0x00400000
450
451 #define CONDS_BIT 0x00100000
452 #define LOAD_BIT 0x00100000
453
454 #define DOUBLE_LOAD_FLAG 0x00000001
455
456 struct asm_cond
457 {
458 const char * template_name;
459 unsigned long value;
460 };
461
462 #define COND_ALWAYS 0xE
463
464 struct asm_psr
465 {
466 const char * template_name;
467 unsigned long field;
468 };
469
470 struct asm_barrier_opt
471 {
472 const char * template_name;
473 unsigned long value;
474 const arm_feature_set arch;
475 };
476
477 /* The bit that distinguishes CPSR and SPSR. */
478 #define SPSR_BIT (1 << 22)
479
480 /* The individual PSR flag bits. */
481 #define PSR_c (1 << 16)
482 #define PSR_x (1 << 17)
483 #define PSR_s (1 << 18)
484 #define PSR_f (1 << 19)
485
486 struct reloc_entry
487 {
488 char * name;
489 bfd_reloc_code_real_type reloc;
490 };
491
492 enum vfp_reg_pos
493 {
494 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
495 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
496 };
497
498 enum vfp_ldstm_type
499 {
500 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
501 };
502
503 /* Bits for DEFINED field in neon_typed_alias. */
504 #define NTA_HASTYPE 1
505 #define NTA_HASINDEX 2
506
507 struct neon_typed_alias
508 {
509 unsigned char defined;
510 unsigned char index;
511 struct neon_type_el eltype;
512 };
513
514 /* ARM register categories. This includes coprocessor numbers and various
515 architecture extensions' registers. */
516 enum arm_reg_type
517 {
518 REG_TYPE_RN,
519 REG_TYPE_CP,
520 REG_TYPE_CN,
521 REG_TYPE_FN,
522 REG_TYPE_VFS,
523 REG_TYPE_VFD,
524 REG_TYPE_NQ,
525 REG_TYPE_VFSD,
526 REG_TYPE_NDQ,
527 REG_TYPE_NSDQ,
528 REG_TYPE_VFC,
529 REG_TYPE_MVF,
530 REG_TYPE_MVD,
531 REG_TYPE_MVFX,
532 REG_TYPE_MVDX,
533 REG_TYPE_MVAX,
534 REG_TYPE_DSPSC,
535 REG_TYPE_MMXWR,
536 REG_TYPE_MMXWC,
537 REG_TYPE_MMXWCG,
538 REG_TYPE_XSCALE,
539 REG_TYPE_RNB
540 };
541
542 /* Structure for a hash table entry for a register.
543 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
544 information which states whether a vector type or index is specified (for a
545 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
546 struct reg_entry
547 {
548 const char * name;
549 unsigned int number;
550 unsigned char type;
551 unsigned char builtin;
552 struct neon_typed_alias * neon;
553 };
554
555 /* Diagnostics used when we don't get a register of the expected type. */
556 const char * const reg_expected_msgs[] =
557 {
558 N_("ARM register expected"),
559 N_("bad or missing co-processor number"),
560 N_("co-processor register expected"),
561 N_("FPA register expected"),
562 N_("VFP single precision register expected"),
563 N_("VFP/Neon double precision register expected"),
564 N_("Neon quad precision register expected"),
565 N_("VFP single or double precision register expected"),
566 N_("Neon double or quad precision register expected"),
567 N_("VFP single, double or Neon quad precision register expected"),
568 N_("VFP system register expected"),
569 N_("Maverick MVF register expected"),
570 N_("Maverick MVD register expected"),
571 N_("Maverick MVFX register expected"),
572 N_("Maverick MVDX register expected"),
573 N_("Maverick MVAX register expected"),
574 N_("Maverick DSPSC register expected"),
575 N_("iWMMXt data register expected"),
576 N_("iWMMXt control register expected"),
577 N_("iWMMXt scalar register expected"),
578 N_("XScale accumulator register expected"),
579 };
580
581 /* Some well known registers that we refer to directly elsewhere. */
582 #define REG_R12 12
583 #define REG_SP 13
584 #define REG_LR 14
585 #define REG_PC 15
586
587 /* ARM instructions take 4bytes in the object file, Thumb instructions
588 take 2: */
589 #define INSN_SIZE 4
590
591 struct asm_opcode
592 {
593 /* Basic string to match. */
594 const char * template_name;
595
596 /* Parameters to instruction. */
597 unsigned int operands[8];
598
599 /* Conditional tag - see opcode_lookup. */
600 unsigned int tag : 4;
601
602 /* Basic instruction code. */
603 unsigned int avalue : 28;
604
605 /* Thumb-format instruction code. */
606 unsigned int tvalue;
607
608 /* Which architecture variant provides this instruction. */
609 const arm_feature_set * avariant;
610 const arm_feature_set * tvariant;
611
612 /* Function to call to encode instruction in ARM format. */
613 void (* aencode) (void);
614
615 /* Function to call to encode instruction in Thumb format. */
616 void (* tencode) (void);
617 };
618
619 /* Defines for various bits that we will want to toggle. */
620 #define INST_IMMEDIATE 0x02000000
621 #define OFFSET_REG 0x02000000
622 #define HWOFFSET_IMM 0x00400000
623 #define SHIFT_BY_REG 0x00000010
624 #define PRE_INDEX 0x01000000
625 #define INDEX_UP 0x00800000
626 #define WRITE_BACK 0x00200000
627 #define LDM_TYPE_2_OR_3 0x00400000
628 #define CPSI_MMOD 0x00020000
629
630 #define LITERAL_MASK 0xf000f000
631 #define OPCODE_MASK 0xfe1fffff
632 #define V4_STR_BIT 0x00000020
633
634 #define T2_SUBS_PC_LR 0xf3de8f00
635
636 #define DATA_OP_SHIFT 21
637
638 #define T2_OPCODE_MASK 0xfe1fffff
639 #define T2_DATA_OP_SHIFT 21
640
641 #define A_COND_MASK 0xf0000000
642 #define A_PUSH_POP_OP_MASK 0x0fff0000
643
644 /* Opcodes for pushing/poping registers to/from the stack. */
645 #define A1_OPCODE_PUSH 0x092d0000
646 #define A2_OPCODE_PUSH 0x052d0004
647 #define A2_OPCODE_POP 0x049d0004
648
649 /* Codes to distinguish the arithmetic instructions. */
650 #define OPCODE_AND 0
651 #define OPCODE_EOR 1
652 #define OPCODE_SUB 2
653 #define OPCODE_RSB 3
654 #define OPCODE_ADD 4
655 #define OPCODE_ADC 5
656 #define OPCODE_SBC 6
657 #define OPCODE_RSC 7
658 #define OPCODE_TST 8
659 #define OPCODE_TEQ 9
660 #define OPCODE_CMP 10
661 #define OPCODE_CMN 11
662 #define OPCODE_ORR 12
663 #define OPCODE_MOV 13
664 #define OPCODE_BIC 14
665 #define OPCODE_MVN 15
666
667 #define T2_OPCODE_AND 0
668 #define T2_OPCODE_BIC 1
669 #define T2_OPCODE_ORR 2
670 #define T2_OPCODE_ORN 3
671 #define T2_OPCODE_EOR 4
672 #define T2_OPCODE_ADD 8
673 #define T2_OPCODE_ADC 10
674 #define T2_OPCODE_SBC 11
675 #define T2_OPCODE_SUB 13
676 #define T2_OPCODE_RSB 14
677
678 #define T_OPCODE_MUL 0x4340
679 #define T_OPCODE_TST 0x4200
680 #define T_OPCODE_CMN 0x42c0
681 #define T_OPCODE_NEG 0x4240
682 #define T_OPCODE_MVN 0x43c0
683
684 #define T_OPCODE_ADD_R3 0x1800
685 #define T_OPCODE_SUB_R3 0x1a00
686 #define T_OPCODE_ADD_HI 0x4400
687 #define T_OPCODE_ADD_ST 0xb000
688 #define T_OPCODE_SUB_ST 0xb080
689 #define T_OPCODE_ADD_SP 0xa800
690 #define T_OPCODE_ADD_PC 0xa000
691 #define T_OPCODE_ADD_I8 0x3000
692 #define T_OPCODE_SUB_I8 0x3800
693 #define T_OPCODE_ADD_I3 0x1c00
694 #define T_OPCODE_SUB_I3 0x1e00
695
696 #define T_OPCODE_ASR_R 0x4100
697 #define T_OPCODE_LSL_R 0x4080
698 #define T_OPCODE_LSR_R 0x40c0
699 #define T_OPCODE_ROR_R 0x41c0
700 #define T_OPCODE_ASR_I 0x1000
701 #define T_OPCODE_LSL_I 0x0000
702 #define T_OPCODE_LSR_I 0x0800
703
704 #define T_OPCODE_MOV_I8 0x2000
705 #define T_OPCODE_CMP_I8 0x2800
706 #define T_OPCODE_CMP_LR 0x4280
707 #define T_OPCODE_MOV_HR 0x4600
708 #define T_OPCODE_CMP_HR 0x4500
709
710 #define T_OPCODE_LDR_PC 0x4800
711 #define T_OPCODE_LDR_SP 0x9800
712 #define T_OPCODE_STR_SP 0x9000
713 #define T_OPCODE_LDR_IW 0x6800
714 #define T_OPCODE_STR_IW 0x6000
715 #define T_OPCODE_LDR_IH 0x8800
716 #define T_OPCODE_STR_IH 0x8000
717 #define T_OPCODE_LDR_IB 0x7800
718 #define T_OPCODE_STR_IB 0x7000
719 #define T_OPCODE_LDR_RW 0x5800
720 #define T_OPCODE_STR_RW 0x5000
721 #define T_OPCODE_LDR_RH 0x5a00
722 #define T_OPCODE_STR_RH 0x5200
723 #define T_OPCODE_LDR_RB 0x5c00
724 #define T_OPCODE_STR_RB 0x5400
725
726 #define T_OPCODE_PUSH 0xb400
727 #define T_OPCODE_POP 0xbc00
728
729 #define T_OPCODE_BRANCH 0xe000
730
731 #define THUMB_SIZE 2 /* Size of thumb instruction. */
732 #define THUMB_PP_PC_LR 0x0100
733 #define THUMB_LOAD_BIT 0x0800
734 #define THUMB2_LOAD_BIT 0x00100000
735
736 #define BAD_ARGS _("bad arguments to instruction")
737 #define BAD_SP _("r13 not allowed here")
738 #define BAD_PC _("r15 not allowed here")
739 #define BAD_COND _("instruction cannot be conditional")
740 #define BAD_OVERLAP _("registers may not be the same")
741 #define BAD_HIREG _("lo register required")
742 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
743 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
744 #define BAD_BRANCH _("branch must be last instruction in IT block")
745 #define BAD_NOT_IT _("instruction not allowed in IT block")
746 #define BAD_FPU _("selected FPU does not support instruction")
747 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
748 #define BAD_IT_COND _("incorrect condition in IT block")
749 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
750 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
751 #define BAD_PC_ADDRESSING \
752 _("cannot use register index with PC-relative addressing")
753 #define BAD_PC_WRITEBACK \
754 _("cannot use writeback with PC-relative addressing")
755 #define BAD_RANGE _("branch out of range")
756 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
757
758 static struct hash_control * arm_ops_hsh;
759 static struct hash_control * arm_cond_hsh;
760 static struct hash_control * arm_shift_hsh;
761 static struct hash_control * arm_psr_hsh;
762 static struct hash_control * arm_v7m_psr_hsh;
763 static struct hash_control * arm_reg_hsh;
764 static struct hash_control * arm_reloc_hsh;
765 static struct hash_control * arm_barrier_opt_hsh;
766
767 /* Stuff needed to resolve the label ambiguity
768 As:
769 ...
770 label: <insn>
771 may differ from:
772 ...
773 label:
774 <insn> */
775
776 symbolS * last_label_seen;
777 static int label_is_thumb_function_name = FALSE;
778
779 /* Literal pool structure. Held on a per-section
780 and per-sub-section basis. */
781
782 #define MAX_LITERAL_POOL_SIZE 1024
783 typedef struct literal_pool
784 {
785 expressionS literals [MAX_LITERAL_POOL_SIZE];
786 unsigned int next_free_entry;
787 unsigned int id;
788 symbolS * symbol;
789 segT section;
790 subsegT sub_section;
791 #ifdef OBJ_ELF
792 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
793 #endif
794 struct literal_pool * next;
795 } literal_pool;
796
797 /* Pointer to a linked list of literal pools. */
798 literal_pool * list_of_pools = NULL;
799
800 typedef enum asmfunc_states
801 {
802 OUTSIDE_ASMFUNC,
803 WAITING_ASMFUNC_NAME,
804 WAITING_ENDASMFUNC
805 } asmfunc_states;
806
807 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
808
809 #ifdef OBJ_ELF
810 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
811 #else
812 static struct current_it now_it;
813 #endif
814
815 static inline int
816 now_it_compatible (int cond)
817 {
818 return (cond & ~1) == (now_it.cc & ~1);
819 }
820
821 static inline int
822 conditional_insn (void)
823 {
824 return inst.cond != COND_ALWAYS;
825 }
826
827 static int in_it_block (void);
828
829 static int handle_it_state (void);
830
831 static void force_automatic_it_block_close (void);
832
833 static void it_fsm_post_encode (void);
834
835 #define set_it_insn_type(type) \
836 do \
837 { \
838 inst.it_insn_type = type; \
839 if (handle_it_state () == FAIL) \
840 return; \
841 } \
842 while (0)
843
844 #define set_it_insn_type_nonvoid(type, failret) \
845 do \
846 { \
847 inst.it_insn_type = type; \
848 if (handle_it_state () == FAIL) \
849 return failret; \
850 } \
851 while(0)
852
853 #define set_it_insn_type_last() \
854 do \
855 { \
856 if (inst.cond == COND_ALWAYS) \
857 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
858 else \
859 set_it_insn_type (INSIDE_IT_LAST_INSN); \
860 } \
861 while (0)
862
863 /* Pure syntax. */
864
865 /* This array holds the chars that always start a comment. If the
866 pre-processor is disabled, these aren't very useful. */
867 char arm_comment_chars[] = "@";
868
869 /* This array holds the chars that only start a comment at the beginning of
870 a line. If the line seems to have the form '# 123 filename'
871 .line and .file directives will appear in the pre-processed output. */
872 /* Note that input_file.c hand checks for '#' at the beginning of the
873 first line of the input file. This is because the compiler outputs
874 #NO_APP at the beginning of its output. */
875 /* Also note that comments like this one will always work. */
876 const char line_comment_chars[] = "#";
877
878 char arm_line_separator_chars[] = ";";
879
880 /* Chars that can be used to separate mant
881 from exp in floating point numbers. */
882 const char EXP_CHARS[] = "eE";
883
884 /* Chars that mean this number is a floating point constant. */
885 /* As in 0f12.456 */
886 /* or 0d1.2345e12 */
887
888 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
889
890 /* Prefix characters that indicate the start of an immediate
891 value. */
892 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
893
894 /* Separator character handling. */
895
896 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
897
898 static inline int
899 skip_past_char (char ** str, char c)
900 {
901 /* PR gas/14987: Allow for whitespace before the expected character. */
902 skip_whitespace (*str);
903
904 if (**str == c)
905 {
906 (*str)++;
907 return SUCCESS;
908 }
909 else
910 return FAIL;
911 }
912
913 #define skip_past_comma(str) skip_past_char (str, ',')
914
915 /* Arithmetic expressions (possibly involving symbols). */
916
917 /* Return TRUE if anything in the expression is a bignum. */
918
919 static int
920 walk_no_bignums (symbolS * sp)
921 {
922 if (symbol_get_value_expression (sp)->X_op == O_big)
923 return 1;
924
925 if (symbol_get_value_expression (sp)->X_add_symbol)
926 {
927 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
928 || (symbol_get_value_expression (sp)->X_op_symbol
929 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
930 }
931
932 return 0;
933 }
934
935 static int in_my_get_expression = 0;
936
937 /* Third argument to my_get_expression. */
938 #define GE_NO_PREFIX 0
939 #define GE_IMM_PREFIX 1
940 #define GE_OPT_PREFIX 2
941 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
942 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
943 #define GE_OPT_PREFIX_BIG 3
944
945 static int
946 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
947 {
948 char * save_in;
949 segT seg;
950
951 /* In unified syntax, all prefixes are optional. */
952 if (unified_syntax)
953 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
954 : GE_OPT_PREFIX;
955
956 switch (prefix_mode)
957 {
958 case GE_NO_PREFIX: break;
959 case GE_IMM_PREFIX:
960 if (!is_immediate_prefix (**str))
961 {
962 inst.error = _("immediate expression requires a # prefix");
963 return FAIL;
964 }
965 (*str)++;
966 break;
967 case GE_OPT_PREFIX:
968 case GE_OPT_PREFIX_BIG:
969 if (is_immediate_prefix (**str))
970 (*str)++;
971 break;
972 default: abort ();
973 }
974
975 memset (ep, 0, sizeof (expressionS));
976
977 save_in = input_line_pointer;
978 input_line_pointer = *str;
979 in_my_get_expression = 1;
980 seg = expression (ep);
981 in_my_get_expression = 0;
982
983 if (ep->X_op == O_illegal || ep->X_op == O_absent)
984 {
985 /* We found a bad or missing expression in md_operand(). */
986 *str = input_line_pointer;
987 input_line_pointer = save_in;
988 if (inst.error == NULL)
989 inst.error = (ep->X_op == O_absent
990 ? _("missing expression") :_("bad expression"));
991 return 1;
992 }
993
994 #ifdef OBJ_AOUT
995 if (seg != absolute_section
996 && seg != text_section
997 && seg != data_section
998 && seg != bss_section
999 && seg != undefined_section)
1000 {
1001 inst.error = _("bad segment");
1002 *str = input_line_pointer;
1003 input_line_pointer = save_in;
1004 return 1;
1005 }
1006 #else
1007 (void) seg;
1008 #endif
1009
1010 /* Get rid of any bignums now, so that we don't generate an error for which
1011 we can't establish a line number later on. Big numbers are never valid
1012 in instructions, which is where this routine is always called. */
1013 if (prefix_mode != GE_OPT_PREFIX_BIG
1014 && (ep->X_op == O_big
1015 || (ep->X_add_symbol
1016 && (walk_no_bignums (ep->X_add_symbol)
1017 || (ep->X_op_symbol
1018 && walk_no_bignums (ep->X_op_symbol))))))
1019 {
1020 inst.error = _("invalid constant");
1021 *str = input_line_pointer;
1022 input_line_pointer = save_in;
1023 return 1;
1024 }
1025
1026 *str = input_line_pointer;
1027 input_line_pointer = save_in;
1028 return 0;
1029 }
1030
1031 /* Turn a string in input_line_pointer into a floating point constant
1032 of type TYPE, and store the appropriate bytes in *LITP. The number
1033 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1034 returned, or NULL on OK.
1035
1036 Note that fp constants aren't represent in the normal way on the ARM.
1037 In big endian mode, things are as expected. However, in little endian
1038 mode fp constants are big-endian word-wise, and little-endian byte-wise
1039 within the words. For example, (double) 1.1 in big endian mode is
1040 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1041 the byte sequence 99 99 f1 3f 9a 99 99 99.
1042
1043 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1044
1045 char *
1046 md_atof (int type, char * litP, int * sizeP)
1047 {
1048 int prec;
1049 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1050 char *t;
1051 int i;
1052
1053 switch (type)
1054 {
1055 case 'f':
1056 case 'F':
1057 case 's':
1058 case 'S':
1059 prec = 2;
1060 break;
1061
1062 case 'd':
1063 case 'D':
1064 case 'r':
1065 case 'R':
1066 prec = 4;
1067 break;
1068
1069 case 'x':
1070 case 'X':
1071 prec = 5;
1072 break;
1073
1074 case 'p':
1075 case 'P':
1076 prec = 5;
1077 break;
1078
1079 default:
1080 *sizeP = 0;
1081 return _("Unrecognized or unsupported floating point constant");
1082 }
1083
1084 t = atof_ieee (input_line_pointer, type, words);
1085 if (t)
1086 input_line_pointer = t;
1087 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1088
1089 if (target_big_endian)
1090 {
1091 for (i = 0; i < prec; i++)
1092 {
1093 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1094 litP += sizeof (LITTLENUM_TYPE);
1095 }
1096 }
1097 else
1098 {
1099 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1100 for (i = prec - 1; i >= 0; i--)
1101 {
1102 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1103 litP += sizeof (LITTLENUM_TYPE);
1104 }
1105 else
1106 /* For a 4 byte float the order of elements in `words' is 1 0.
1107 For an 8 byte float the order is 1 0 3 2. */
1108 for (i = 0; i < prec; i += 2)
1109 {
1110 md_number_to_chars (litP, (valueT) words[i + 1],
1111 sizeof (LITTLENUM_TYPE));
1112 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1113 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1114 litP += 2 * sizeof (LITTLENUM_TYPE);
1115 }
1116 }
1117
1118 return NULL;
1119 }
1120
1121 /* We handle all bad expressions here, so that we can report the faulty
1122 instruction in the error message. */
1123 void
1124 md_operand (expressionS * exp)
1125 {
1126 if (in_my_get_expression)
1127 exp->X_op = O_illegal;
1128 }
1129
1130 /* Immediate values. */
1131
1132 /* Generic immediate-value read function for use in directives.
1133 Accepts anything that 'expression' can fold to a constant.
1134 *val receives the number. */
1135 #ifdef OBJ_ELF
1136 static int
1137 immediate_for_directive (int *val)
1138 {
1139 expressionS exp;
1140 exp.X_op = O_illegal;
1141
1142 if (is_immediate_prefix (*input_line_pointer))
1143 {
1144 input_line_pointer++;
1145 expression (&exp);
1146 }
1147
1148 if (exp.X_op != O_constant)
1149 {
1150 as_bad (_("expected #constant"));
1151 ignore_rest_of_line ();
1152 return FAIL;
1153 }
1154 *val = exp.X_add_number;
1155 return SUCCESS;
1156 }
1157 #endif
1158
1159 /* Register parsing. */
1160
1161 /* Generic register parser. CCP points to what should be the
1162 beginning of a register name. If it is indeed a valid register
1163 name, advance CCP over it and return the reg_entry structure;
1164 otherwise return NULL. Does not issue diagnostics. */
1165
1166 static struct reg_entry *
1167 arm_reg_parse_multi (char **ccp)
1168 {
1169 char *start = *ccp;
1170 char *p;
1171 struct reg_entry *reg;
1172
1173 skip_whitespace (start);
1174
1175 #ifdef REGISTER_PREFIX
1176 if (*start != REGISTER_PREFIX)
1177 return NULL;
1178 start++;
1179 #endif
1180 #ifdef OPTIONAL_REGISTER_PREFIX
1181 if (*start == OPTIONAL_REGISTER_PREFIX)
1182 start++;
1183 #endif
1184
1185 p = start;
1186 if (!ISALPHA (*p) || !is_name_beginner (*p))
1187 return NULL;
1188
1189 do
1190 p++;
1191 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1192
1193 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1194
1195 if (!reg)
1196 return NULL;
1197
1198 *ccp = p;
1199 return reg;
1200 }
1201
1202 static int
1203 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1204 enum arm_reg_type type)
1205 {
1206 /* Alternative syntaxes are accepted for a few register classes. */
1207 switch (type)
1208 {
1209 case REG_TYPE_MVF:
1210 case REG_TYPE_MVD:
1211 case REG_TYPE_MVFX:
1212 case REG_TYPE_MVDX:
1213 /* Generic coprocessor register names are allowed for these. */
1214 if (reg && reg->type == REG_TYPE_CN)
1215 return reg->number;
1216 break;
1217
1218 case REG_TYPE_CP:
1219 /* For backward compatibility, a bare number is valid here. */
1220 {
1221 unsigned long processor = strtoul (start, ccp, 10);
1222 if (*ccp != start && processor <= 15)
1223 return processor;
1224 }
1225
1226 case REG_TYPE_MMXWC:
1227 /* WC includes WCG. ??? I'm not sure this is true for all
1228 instructions that take WC registers. */
1229 if (reg && reg->type == REG_TYPE_MMXWCG)
1230 return reg->number;
1231 break;
1232
1233 default:
1234 break;
1235 }
1236
1237 return FAIL;
1238 }
1239
1240 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1241 return value is the register number or FAIL. */
1242
1243 static int
1244 arm_reg_parse (char **ccp, enum arm_reg_type type)
1245 {
1246 char *start = *ccp;
1247 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1248 int ret;
1249
1250 /* Do not allow a scalar (reg+index) to parse as a register. */
1251 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1252 return FAIL;
1253
1254 if (reg && reg->type == type)
1255 return reg->number;
1256
1257 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1258 return ret;
1259
1260 *ccp = start;
1261 return FAIL;
1262 }
1263
1264 /* Parse a Neon type specifier. *STR should point at the leading '.'
1265 character. Does no verification at this stage that the type fits the opcode
1266 properly. E.g.,
1267
1268 .i32.i32.s16
1269 .s32.f32
1270 .u16
1271
1272 Can all be legally parsed by this function.
1273
1274 Fills in neon_type struct pointer with parsed information, and updates STR
1275 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1276 type, FAIL if not. */
1277
1278 static int
1279 parse_neon_type (struct neon_type *type, char **str)
1280 {
1281 char *ptr = *str;
1282
1283 if (type)
1284 type->elems = 0;
1285
1286 while (type->elems < NEON_MAX_TYPE_ELS)
1287 {
1288 enum neon_el_type thistype = NT_untyped;
1289 unsigned thissize = -1u;
1290
1291 if (*ptr != '.')
1292 break;
1293
1294 ptr++;
1295
1296 /* Just a size without an explicit type. */
1297 if (ISDIGIT (*ptr))
1298 goto parsesize;
1299
1300 switch (TOLOWER (*ptr))
1301 {
1302 case 'i': thistype = NT_integer; break;
1303 case 'f': thistype = NT_float; break;
1304 case 'p': thistype = NT_poly; break;
1305 case 's': thistype = NT_signed; break;
1306 case 'u': thistype = NT_unsigned; break;
1307 case 'd':
1308 thistype = NT_float;
1309 thissize = 64;
1310 ptr++;
1311 goto done;
1312 default:
1313 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1314 return FAIL;
1315 }
1316
1317 ptr++;
1318
1319 /* .f is an abbreviation for .f32. */
1320 if (thistype == NT_float && !ISDIGIT (*ptr))
1321 thissize = 32;
1322 else
1323 {
1324 parsesize:
1325 thissize = strtoul (ptr, &ptr, 10);
1326
1327 if (thissize != 8 && thissize != 16 && thissize != 32
1328 && thissize != 64)
1329 {
1330 as_bad (_("bad size %d in type specifier"), thissize);
1331 return FAIL;
1332 }
1333 }
1334
1335 done:
1336 if (type)
1337 {
1338 type->el[type->elems].type = thistype;
1339 type->el[type->elems].size = thissize;
1340 type->elems++;
1341 }
1342 }
1343
1344 /* Empty/missing type is not a successful parse. */
1345 if (type->elems == 0)
1346 return FAIL;
1347
1348 *str = ptr;
1349
1350 return SUCCESS;
1351 }
1352
1353 /* Errors may be set multiple times during parsing or bit encoding
1354 (particularly in the Neon bits), but usually the earliest error which is set
1355 will be the most meaningful. Avoid overwriting it with later (cascading)
1356 errors by calling this function. */
1357
1358 static void
1359 first_error (const char *err)
1360 {
1361 if (!inst.error)
1362 inst.error = err;
1363 }
1364
1365 /* Parse a single type, e.g. ".s32", leading period included. */
1366 static int
1367 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1368 {
1369 char *str = *ccp;
1370 struct neon_type optype;
1371
1372 if (*str == '.')
1373 {
1374 if (parse_neon_type (&optype, &str) == SUCCESS)
1375 {
1376 if (optype.elems == 1)
1377 *vectype = optype.el[0];
1378 else
1379 {
1380 first_error (_("only one type should be specified for operand"));
1381 return FAIL;
1382 }
1383 }
1384 else
1385 {
1386 first_error (_("vector type expected"));
1387 return FAIL;
1388 }
1389 }
1390 else
1391 return FAIL;
1392
1393 *ccp = str;
1394
1395 return SUCCESS;
1396 }
1397
1398 /* Special meanings for indices (which have a range of 0-7), which will fit into
1399 a 4-bit integer. */
1400
1401 #define NEON_ALL_LANES 15
1402 #define NEON_INTERLEAVE_LANES 14
1403
1404 /* Parse either a register or a scalar, with an optional type. Return the
1405 register number, and optionally fill in the actual type of the register
1406 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1407 type/index information in *TYPEINFO. */
1408
1409 static int
1410 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1411 enum arm_reg_type *rtype,
1412 struct neon_typed_alias *typeinfo)
1413 {
1414 char *str = *ccp;
1415 struct reg_entry *reg = arm_reg_parse_multi (&str);
1416 struct neon_typed_alias atype;
1417 struct neon_type_el parsetype;
1418
1419 atype.defined = 0;
1420 atype.index = -1;
1421 atype.eltype.type = NT_invtype;
1422 atype.eltype.size = -1;
1423
1424 /* Try alternate syntax for some types of register. Note these are mutually
1425 exclusive with the Neon syntax extensions. */
1426 if (reg == NULL)
1427 {
1428 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1429 if (altreg != FAIL)
1430 *ccp = str;
1431 if (typeinfo)
1432 *typeinfo = atype;
1433 return altreg;
1434 }
1435
1436 /* Undo polymorphism when a set of register types may be accepted. */
1437 if ((type == REG_TYPE_NDQ
1438 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1439 || (type == REG_TYPE_VFSD
1440 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1441 || (type == REG_TYPE_NSDQ
1442 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1443 || reg->type == REG_TYPE_NQ))
1444 || (type == REG_TYPE_MMXWC
1445 && (reg->type == REG_TYPE_MMXWCG)))
1446 type = (enum arm_reg_type) reg->type;
1447
1448 if (type != reg->type)
1449 return FAIL;
1450
1451 if (reg->neon)
1452 atype = *reg->neon;
1453
1454 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1455 {
1456 if ((atype.defined & NTA_HASTYPE) != 0)
1457 {
1458 first_error (_("can't redefine type for operand"));
1459 return FAIL;
1460 }
1461 atype.defined |= NTA_HASTYPE;
1462 atype.eltype = parsetype;
1463 }
1464
1465 if (skip_past_char (&str, '[') == SUCCESS)
1466 {
1467 if (type != REG_TYPE_VFD)
1468 {
1469 first_error (_("only D registers may be indexed"));
1470 return FAIL;
1471 }
1472
1473 if ((atype.defined & NTA_HASINDEX) != 0)
1474 {
1475 first_error (_("can't change index for operand"));
1476 return FAIL;
1477 }
1478
1479 atype.defined |= NTA_HASINDEX;
1480
1481 if (skip_past_char (&str, ']') == SUCCESS)
1482 atype.index = NEON_ALL_LANES;
1483 else
1484 {
1485 expressionS exp;
1486
1487 my_get_expression (&exp, &str, GE_NO_PREFIX);
1488
1489 if (exp.X_op != O_constant)
1490 {
1491 first_error (_("constant expression required"));
1492 return FAIL;
1493 }
1494
1495 if (skip_past_char (&str, ']') == FAIL)
1496 return FAIL;
1497
1498 atype.index = exp.X_add_number;
1499 }
1500 }
1501
1502 if (typeinfo)
1503 *typeinfo = atype;
1504
1505 if (rtype)
1506 *rtype = type;
1507
1508 *ccp = str;
1509
1510 return reg->number;
1511 }
1512
1513 /* Like arm_reg_parse, but allow allow the following extra features:
1514 - If RTYPE is non-zero, return the (possibly restricted) type of the
1515 register (e.g. Neon double or quad reg when either has been requested).
1516 - If this is a Neon vector type with additional type information, fill
1517 in the struct pointed to by VECTYPE (if non-NULL).
1518 This function will fault on encountering a scalar. */
1519
1520 static int
1521 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1522 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1523 {
1524 struct neon_typed_alias atype;
1525 char *str = *ccp;
1526 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1527
1528 if (reg == FAIL)
1529 return FAIL;
1530
1531 /* Do not allow regname(... to parse as a register. */
1532 if (*str == '(')
1533 return FAIL;
1534
1535 /* Do not allow a scalar (reg+index) to parse as a register. */
1536 if ((atype.defined & NTA_HASINDEX) != 0)
1537 {
1538 first_error (_("register operand expected, but got scalar"));
1539 return FAIL;
1540 }
1541
1542 if (vectype)
1543 *vectype = atype.eltype;
1544
1545 *ccp = str;
1546
1547 return reg;
1548 }
1549
1550 #define NEON_SCALAR_REG(X) ((X) >> 4)
1551 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1552
1553 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1554 have enough information to be able to do a good job bounds-checking. So, we
1555 just do easy checks here, and do further checks later. */
1556
1557 static int
1558 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1559 {
1560 int reg;
1561 char *str = *ccp;
1562 struct neon_typed_alias atype;
1563
1564 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1565
1566 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1567 return FAIL;
1568
1569 if (atype.index == NEON_ALL_LANES)
1570 {
1571 first_error (_("scalar must have an index"));
1572 return FAIL;
1573 }
1574 else if (atype.index >= 64 / elsize)
1575 {
1576 first_error (_("scalar index out of range"));
1577 return FAIL;
1578 }
1579
1580 if (type)
1581 *type = atype.eltype;
1582
1583 *ccp = str;
1584
1585 return reg * 16 + atype.index;
1586 }
1587
1588 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1589
1590 static long
1591 parse_reg_list (char ** strp)
1592 {
1593 char * str = * strp;
1594 long range = 0;
1595 int another_range;
1596
1597 /* We come back here if we get ranges concatenated by '+' or '|'. */
1598 do
1599 {
1600 skip_whitespace (str);
1601
1602 another_range = 0;
1603
1604 if (*str == '{')
1605 {
1606 int in_range = 0;
1607 int cur_reg = -1;
1608
1609 str++;
1610 do
1611 {
1612 int reg;
1613
1614 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1615 {
1616 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1617 return FAIL;
1618 }
1619
1620 if (in_range)
1621 {
1622 int i;
1623
1624 if (reg <= cur_reg)
1625 {
1626 first_error (_("bad range in register list"));
1627 return FAIL;
1628 }
1629
1630 for (i = cur_reg + 1; i < reg; i++)
1631 {
1632 if (range & (1 << i))
1633 as_tsktsk
1634 (_("Warning: duplicated register (r%d) in register list"),
1635 i);
1636 else
1637 range |= 1 << i;
1638 }
1639 in_range = 0;
1640 }
1641
1642 if (range & (1 << reg))
1643 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1644 reg);
1645 else if (reg <= cur_reg)
1646 as_tsktsk (_("Warning: register range not in ascending order"));
1647
1648 range |= 1 << reg;
1649 cur_reg = reg;
1650 }
1651 while (skip_past_comma (&str) != FAIL
1652 || (in_range = 1, *str++ == '-'));
1653 str--;
1654
1655 if (skip_past_char (&str, '}') == FAIL)
1656 {
1657 first_error (_("missing `}'"));
1658 return FAIL;
1659 }
1660 }
1661 else
1662 {
1663 expressionS exp;
1664
1665 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1666 return FAIL;
1667
1668 if (exp.X_op == O_constant)
1669 {
1670 if (exp.X_add_number
1671 != (exp.X_add_number & 0x0000ffff))
1672 {
1673 inst.error = _("invalid register mask");
1674 return FAIL;
1675 }
1676
1677 if ((range & exp.X_add_number) != 0)
1678 {
1679 int regno = range & exp.X_add_number;
1680
1681 regno &= -regno;
1682 regno = (1 << regno) - 1;
1683 as_tsktsk
1684 (_("Warning: duplicated register (r%d) in register list"),
1685 regno);
1686 }
1687
1688 range |= exp.X_add_number;
1689 }
1690 else
1691 {
1692 if (inst.reloc.type != 0)
1693 {
1694 inst.error = _("expression too complex");
1695 return FAIL;
1696 }
1697
1698 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1699 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1700 inst.reloc.pc_rel = 0;
1701 }
1702 }
1703
1704 if (*str == '|' || *str == '+')
1705 {
1706 str++;
1707 another_range = 1;
1708 }
1709 }
1710 while (another_range);
1711
1712 *strp = str;
1713 return range;
1714 }
1715
1716 /* Types of registers in a list. */
1717
1718 enum reg_list_els
1719 {
1720 REGLIST_VFP_S,
1721 REGLIST_VFP_D,
1722 REGLIST_NEON_D
1723 };
1724
1725 /* Parse a VFP register list. If the string is invalid return FAIL.
1726 Otherwise return the number of registers, and set PBASE to the first
1727 register. Parses registers of type ETYPE.
1728 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1729 - Q registers can be used to specify pairs of D registers
1730 - { } can be omitted from around a singleton register list
1731 FIXME: This is not implemented, as it would require backtracking in
1732 some cases, e.g.:
1733 vtbl.8 d3,d4,d5
1734 This could be done (the meaning isn't really ambiguous), but doesn't
1735 fit in well with the current parsing framework.
1736 - 32 D registers may be used (also true for VFPv3).
1737 FIXME: Types are ignored in these register lists, which is probably a
1738 bug. */
1739
1740 static int
1741 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1742 {
1743 char *str = *ccp;
1744 int base_reg;
1745 int new_base;
1746 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1747 int max_regs = 0;
1748 int count = 0;
1749 int warned = 0;
1750 unsigned long mask = 0;
1751 int i;
1752
1753 if (skip_past_char (&str, '{') == FAIL)
1754 {
1755 inst.error = _("expecting {");
1756 return FAIL;
1757 }
1758
1759 switch (etype)
1760 {
1761 case REGLIST_VFP_S:
1762 regtype = REG_TYPE_VFS;
1763 max_regs = 32;
1764 break;
1765
1766 case REGLIST_VFP_D:
1767 regtype = REG_TYPE_VFD;
1768 break;
1769
1770 case REGLIST_NEON_D:
1771 regtype = REG_TYPE_NDQ;
1772 break;
1773 }
1774
1775 if (etype != REGLIST_VFP_S)
1776 {
1777 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1778 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1779 {
1780 max_regs = 32;
1781 if (thumb_mode)
1782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1783 fpu_vfp_ext_d32);
1784 else
1785 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1786 fpu_vfp_ext_d32);
1787 }
1788 else
1789 max_regs = 16;
1790 }
1791
1792 base_reg = max_regs;
1793
1794 do
1795 {
1796 int setmask = 1, addregs = 1;
1797
1798 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1799
1800 if (new_base == FAIL)
1801 {
1802 first_error (_(reg_expected_msgs[regtype]));
1803 return FAIL;
1804 }
1805
1806 if (new_base >= max_regs)
1807 {
1808 first_error (_("register out of range in list"));
1809 return FAIL;
1810 }
1811
1812 /* Note: a value of 2 * n is returned for the register Q<n>. */
1813 if (regtype == REG_TYPE_NQ)
1814 {
1815 setmask = 3;
1816 addregs = 2;
1817 }
1818
1819 if (new_base < base_reg)
1820 base_reg = new_base;
1821
1822 if (mask & (setmask << new_base))
1823 {
1824 first_error (_("invalid register list"));
1825 return FAIL;
1826 }
1827
1828 if ((mask >> new_base) != 0 && ! warned)
1829 {
1830 as_tsktsk (_("register list not in ascending order"));
1831 warned = 1;
1832 }
1833
1834 mask |= setmask << new_base;
1835 count += addregs;
1836
1837 if (*str == '-') /* We have the start of a range expression */
1838 {
1839 int high_range;
1840
1841 str++;
1842
1843 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1844 == FAIL)
1845 {
1846 inst.error = gettext (reg_expected_msgs[regtype]);
1847 return FAIL;
1848 }
1849
1850 if (high_range >= max_regs)
1851 {
1852 first_error (_("register out of range in list"));
1853 return FAIL;
1854 }
1855
1856 if (regtype == REG_TYPE_NQ)
1857 high_range = high_range + 1;
1858
1859 if (high_range <= new_base)
1860 {
1861 inst.error = _("register range not in ascending order");
1862 return FAIL;
1863 }
1864
1865 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1866 {
1867 if (mask & (setmask << new_base))
1868 {
1869 inst.error = _("invalid register list");
1870 return FAIL;
1871 }
1872
1873 mask |= setmask << new_base;
1874 count += addregs;
1875 }
1876 }
1877 }
1878 while (skip_past_comma (&str) != FAIL);
1879
1880 str++;
1881
1882 /* Sanity check -- should have raised a parse error above. */
1883 if (count == 0 || count > max_regs)
1884 abort ();
1885
1886 *pbase = base_reg;
1887
1888 /* Final test -- the registers must be consecutive. */
1889 mask >>= base_reg;
1890 for (i = 0; i < count; i++)
1891 {
1892 if ((mask & (1u << i)) == 0)
1893 {
1894 inst.error = _("non-contiguous register range");
1895 return FAIL;
1896 }
1897 }
1898
1899 *ccp = str;
1900
1901 return count;
1902 }
1903
1904 /* True if two alias types are the same. */
1905
1906 static bfd_boolean
1907 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1908 {
1909 if (!a && !b)
1910 return TRUE;
1911
1912 if (!a || !b)
1913 return FALSE;
1914
1915 if (a->defined != b->defined)
1916 return FALSE;
1917
1918 if ((a->defined & NTA_HASTYPE) != 0
1919 && (a->eltype.type != b->eltype.type
1920 || a->eltype.size != b->eltype.size))
1921 return FALSE;
1922
1923 if ((a->defined & NTA_HASINDEX) != 0
1924 && (a->index != b->index))
1925 return FALSE;
1926
1927 return TRUE;
1928 }
1929
1930 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1931 The base register is put in *PBASE.
1932 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1933 the return value.
1934 The register stride (minus one) is put in bit 4 of the return value.
1935 Bits [6:5] encode the list length (minus one).
1936 The type of the list elements is put in *ELTYPE, if non-NULL. */
1937
1938 #define NEON_LANE(X) ((X) & 0xf)
1939 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1940 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1941
1942 static int
1943 parse_neon_el_struct_list (char **str, unsigned *pbase,
1944 struct neon_type_el *eltype)
1945 {
1946 char *ptr = *str;
1947 int base_reg = -1;
1948 int reg_incr = -1;
1949 int count = 0;
1950 int lane = -1;
1951 int leading_brace = 0;
1952 enum arm_reg_type rtype = REG_TYPE_NDQ;
1953 const char *const incr_error = _("register stride must be 1 or 2");
1954 const char *const type_error = _("mismatched element/structure types in list");
1955 struct neon_typed_alias firsttype;
1956
1957 if (skip_past_char (&ptr, '{') == SUCCESS)
1958 leading_brace = 1;
1959
1960 do
1961 {
1962 struct neon_typed_alias atype;
1963 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1964
1965 if (getreg == FAIL)
1966 {
1967 first_error (_(reg_expected_msgs[rtype]));
1968 return FAIL;
1969 }
1970
1971 if (base_reg == -1)
1972 {
1973 base_reg = getreg;
1974 if (rtype == REG_TYPE_NQ)
1975 {
1976 reg_incr = 1;
1977 }
1978 firsttype = atype;
1979 }
1980 else if (reg_incr == -1)
1981 {
1982 reg_incr = getreg - base_reg;
1983 if (reg_incr < 1 || reg_incr > 2)
1984 {
1985 first_error (_(incr_error));
1986 return FAIL;
1987 }
1988 }
1989 else if (getreg != base_reg + reg_incr * count)
1990 {
1991 first_error (_(incr_error));
1992 return FAIL;
1993 }
1994
1995 if (! neon_alias_types_same (&atype, &firsttype))
1996 {
1997 first_error (_(type_error));
1998 return FAIL;
1999 }
2000
2001 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2002 modes. */
2003 if (ptr[0] == '-')
2004 {
2005 struct neon_typed_alias htype;
2006 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2007 if (lane == -1)
2008 lane = NEON_INTERLEAVE_LANES;
2009 else if (lane != NEON_INTERLEAVE_LANES)
2010 {
2011 first_error (_(type_error));
2012 return FAIL;
2013 }
2014 if (reg_incr == -1)
2015 reg_incr = 1;
2016 else if (reg_incr != 1)
2017 {
2018 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2019 return FAIL;
2020 }
2021 ptr++;
2022 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2023 if (hireg == FAIL)
2024 {
2025 first_error (_(reg_expected_msgs[rtype]));
2026 return FAIL;
2027 }
2028 if (! neon_alias_types_same (&htype, &firsttype))
2029 {
2030 first_error (_(type_error));
2031 return FAIL;
2032 }
2033 count += hireg + dregs - getreg;
2034 continue;
2035 }
2036
2037 /* If we're using Q registers, we can't use [] or [n] syntax. */
2038 if (rtype == REG_TYPE_NQ)
2039 {
2040 count += 2;
2041 continue;
2042 }
2043
2044 if ((atype.defined & NTA_HASINDEX) != 0)
2045 {
2046 if (lane == -1)
2047 lane = atype.index;
2048 else if (lane != atype.index)
2049 {
2050 first_error (_(type_error));
2051 return FAIL;
2052 }
2053 }
2054 else if (lane == -1)
2055 lane = NEON_INTERLEAVE_LANES;
2056 else if (lane != NEON_INTERLEAVE_LANES)
2057 {
2058 first_error (_(type_error));
2059 return FAIL;
2060 }
2061 count++;
2062 }
2063 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2064
2065 /* No lane set by [x]. We must be interleaving structures. */
2066 if (lane == -1)
2067 lane = NEON_INTERLEAVE_LANES;
2068
2069 /* Sanity check. */
2070 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2071 || (count > 1 && reg_incr == -1))
2072 {
2073 first_error (_("error parsing element/structure list"));
2074 return FAIL;
2075 }
2076
2077 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2078 {
2079 first_error (_("expected }"));
2080 return FAIL;
2081 }
2082
2083 if (reg_incr == -1)
2084 reg_incr = 1;
2085
2086 if (eltype)
2087 *eltype = firsttype.eltype;
2088
2089 *pbase = base_reg;
2090 *str = ptr;
2091
2092 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2093 }
2094
2095 /* Parse an explicit relocation suffix on an expression. This is
2096 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2097 arm_reloc_hsh contains no entries, so this function can only
2098 succeed if there is no () after the word. Returns -1 on error,
2099 BFD_RELOC_UNUSED if there wasn't any suffix. */
2100
2101 static int
2102 parse_reloc (char **str)
2103 {
2104 struct reloc_entry *r;
2105 char *p, *q;
2106
2107 if (**str != '(')
2108 return BFD_RELOC_UNUSED;
2109
2110 p = *str + 1;
2111 q = p;
2112
2113 while (*q && *q != ')' && *q != ',')
2114 q++;
2115 if (*q != ')')
2116 return -1;
2117
2118 if ((r = (struct reloc_entry *)
2119 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2120 return -1;
2121
2122 *str = q + 1;
2123 return r->reloc;
2124 }
2125
2126 /* Directives: register aliases. */
2127
2128 static struct reg_entry *
2129 insert_reg_alias (char *str, unsigned number, int type)
2130 {
2131 struct reg_entry *new_reg;
2132 const char *name;
2133
2134 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2135 {
2136 if (new_reg->builtin)
2137 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2138
2139 /* Only warn about a redefinition if it's not defined as the
2140 same register. */
2141 else if (new_reg->number != number || new_reg->type != type)
2142 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2143
2144 return NULL;
2145 }
2146
2147 name = xstrdup (str);
2148 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2149
2150 new_reg->name = name;
2151 new_reg->number = number;
2152 new_reg->type = type;
2153 new_reg->builtin = FALSE;
2154 new_reg->neon = NULL;
2155
2156 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2157 abort ();
2158
2159 return new_reg;
2160 }
2161
2162 static void
2163 insert_neon_reg_alias (char *str, int number, int type,
2164 struct neon_typed_alias *atype)
2165 {
2166 struct reg_entry *reg = insert_reg_alias (str, number, type);
2167
2168 if (!reg)
2169 {
2170 first_error (_("attempt to redefine typed alias"));
2171 return;
2172 }
2173
2174 if (atype)
2175 {
2176 reg->neon = (struct neon_typed_alias *)
2177 xmalloc (sizeof (struct neon_typed_alias));
2178 *reg->neon = *atype;
2179 }
2180 }
2181
2182 /* Look for the .req directive. This is of the form:
2183
2184 new_register_name .req existing_register_name
2185
2186 If we find one, or if it looks sufficiently like one that we want to
2187 handle any error here, return TRUE. Otherwise return FALSE. */
2188
2189 static bfd_boolean
2190 create_register_alias (char * newname, char *p)
2191 {
2192 struct reg_entry *old;
2193 char *oldname, *nbuf;
2194 size_t nlen;
2195
2196 /* The input scrubber ensures that whitespace after the mnemonic is
2197 collapsed to single spaces. */
2198 oldname = p;
2199 if (strncmp (oldname, " .req ", 6) != 0)
2200 return FALSE;
2201
2202 oldname += 6;
2203 if (*oldname == '\0')
2204 return FALSE;
2205
2206 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2207 if (!old)
2208 {
2209 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2210 return TRUE;
2211 }
2212
2213 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2214 the desired alias name, and p points to its end. If not, then
2215 the desired alias name is in the global original_case_string. */
2216 #ifdef TC_CASE_SENSITIVE
2217 nlen = p - newname;
2218 #else
2219 newname = original_case_string;
2220 nlen = strlen (newname);
2221 #endif
2222
2223 nbuf = (char *) alloca (nlen + 1);
2224 memcpy (nbuf, newname, nlen);
2225 nbuf[nlen] = '\0';
2226
2227 /* Create aliases under the new name as stated; an all-lowercase
2228 version of the new name; and an all-uppercase version of the new
2229 name. */
2230 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2231 {
2232 for (p = nbuf; *p; p++)
2233 *p = TOUPPER (*p);
2234
2235 if (strncmp (nbuf, newname, nlen))
2236 {
2237 /* If this attempt to create an additional alias fails, do not bother
2238 trying to create the all-lower case alias. We will fail and issue
2239 a second, duplicate error message. This situation arises when the
2240 programmer does something like:
2241 foo .req r0
2242 Foo .req r1
2243 The second .req creates the "Foo" alias but then fails to create
2244 the artificial FOO alias because it has already been created by the
2245 first .req. */
2246 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2247 return TRUE;
2248 }
2249
2250 for (p = nbuf; *p; p++)
2251 *p = TOLOWER (*p);
2252
2253 if (strncmp (nbuf, newname, nlen))
2254 insert_reg_alias (nbuf, old->number, old->type);
2255 }
2256
2257 return TRUE;
2258 }
2259
2260 /* Create a Neon typed/indexed register alias using directives, e.g.:
2261 X .dn d5.s32[1]
2262 Y .qn 6.s16
2263 Z .dn d7
2264 T .dn Z[0]
2265 These typed registers can be used instead of the types specified after the
2266 Neon mnemonic, so long as all operands given have types. Types can also be
2267 specified directly, e.g.:
2268 vadd d0.s32, d1.s32, d2.s32 */
2269
2270 static bfd_boolean
2271 create_neon_reg_alias (char *newname, char *p)
2272 {
2273 enum arm_reg_type basetype;
2274 struct reg_entry *basereg;
2275 struct reg_entry mybasereg;
2276 struct neon_type ntype;
2277 struct neon_typed_alias typeinfo;
2278 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2279 int namelen;
2280
2281 typeinfo.defined = 0;
2282 typeinfo.eltype.type = NT_invtype;
2283 typeinfo.eltype.size = -1;
2284 typeinfo.index = -1;
2285
2286 nameend = p;
2287
2288 if (strncmp (p, " .dn ", 5) == 0)
2289 basetype = REG_TYPE_VFD;
2290 else if (strncmp (p, " .qn ", 5) == 0)
2291 basetype = REG_TYPE_NQ;
2292 else
2293 return FALSE;
2294
2295 p += 5;
2296
2297 if (*p == '\0')
2298 return FALSE;
2299
2300 basereg = arm_reg_parse_multi (&p);
2301
2302 if (basereg && basereg->type != basetype)
2303 {
2304 as_bad (_("bad type for register"));
2305 return FALSE;
2306 }
2307
2308 if (basereg == NULL)
2309 {
2310 expressionS exp;
2311 /* Try parsing as an integer. */
2312 my_get_expression (&exp, &p, GE_NO_PREFIX);
2313 if (exp.X_op != O_constant)
2314 {
2315 as_bad (_("expression must be constant"));
2316 return FALSE;
2317 }
2318 basereg = &mybasereg;
2319 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2320 : exp.X_add_number;
2321 basereg->neon = 0;
2322 }
2323
2324 if (basereg->neon)
2325 typeinfo = *basereg->neon;
2326
2327 if (parse_neon_type (&ntype, &p) == SUCCESS)
2328 {
2329 /* We got a type. */
2330 if (typeinfo.defined & NTA_HASTYPE)
2331 {
2332 as_bad (_("can't redefine the type of a register alias"));
2333 return FALSE;
2334 }
2335
2336 typeinfo.defined |= NTA_HASTYPE;
2337 if (ntype.elems != 1)
2338 {
2339 as_bad (_("you must specify a single type only"));
2340 return FALSE;
2341 }
2342 typeinfo.eltype = ntype.el[0];
2343 }
2344
2345 if (skip_past_char (&p, '[') == SUCCESS)
2346 {
2347 expressionS exp;
2348 /* We got a scalar index. */
2349
2350 if (typeinfo.defined & NTA_HASINDEX)
2351 {
2352 as_bad (_("can't redefine the index of a scalar alias"));
2353 return FALSE;
2354 }
2355
2356 my_get_expression (&exp, &p, GE_NO_PREFIX);
2357
2358 if (exp.X_op != O_constant)
2359 {
2360 as_bad (_("scalar index must be constant"));
2361 return FALSE;
2362 }
2363
2364 typeinfo.defined |= NTA_HASINDEX;
2365 typeinfo.index = exp.X_add_number;
2366
2367 if (skip_past_char (&p, ']') == FAIL)
2368 {
2369 as_bad (_("expecting ]"));
2370 return FALSE;
2371 }
2372 }
2373
2374 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2375 the desired alias name, and p points to its end. If not, then
2376 the desired alias name is in the global original_case_string. */
2377 #ifdef TC_CASE_SENSITIVE
2378 namelen = nameend - newname;
2379 #else
2380 newname = original_case_string;
2381 namelen = strlen (newname);
2382 #endif
2383
2384 namebuf = (char *) alloca (namelen + 1);
2385 strncpy (namebuf, newname, namelen);
2386 namebuf[namelen] = '\0';
2387
2388 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2389 typeinfo.defined != 0 ? &typeinfo : NULL);
2390
2391 /* Insert name in all uppercase. */
2392 for (p = namebuf; *p; p++)
2393 *p = TOUPPER (*p);
2394
2395 if (strncmp (namebuf, newname, namelen))
2396 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2397 typeinfo.defined != 0 ? &typeinfo : NULL);
2398
2399 /* Insert name in all lowercase. */
2400 for (p = namebuf; *p; p++)
2401 *p = TOLOWER (*p);
2402
2403 if (strncmp (namebuf, newname, namelen))
2404 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2405 typeinfo.defined != 0 ? &typeinfo : NULL);
2406
2407 return TRUE;
2408 }
2409
2410 /* Should never be called, as .req goes between the alias and the
2411 register name, not at the beginning of the line. */
2412
2413 static void
2414 s_req (int a ATTRIBUTE_UNUSED)
2415 {
2416 as_bad (_("invalid syntax for .req directive"));
2417 }
2418
2419 static void
2420 s_dn (int a ATTRIBUTE_UNUSED)
2421 {
2422 as_bad (_("invalid syntax for .dn directive"));
2423 }
2424
2425 static void
2426 s_qn (int a ATTRIBUTE_UNUSED)
2427 {
2428 as_bad (_("invalid syntax for .qn directive"));
2429 }
2430
2431 /* The .unreq directive deletes an alias which was previously defined
2432 by .req. For example:
2433
2434 my_alias .req r11
2435 .unreq my_alias */
2436
2437 static void
2438 s_unreq (int a ATTRIBUTE_UNUSED)
2439 {
2440 char * name;
2441 char saved_char;
2442
2443 name = input_line_pointer;
2444
2445 while (*input_line_pointer != 0
2446 && *input_line_pointer != ' '
2447 && *input_line_pointer != '\n')
2448 ++input_line_pointer;
2449
2450 saved_char = *input_line_pointer;
2451 *input_line_pointer = 0;
2452
2453 if (!*name)
2454 as_bad (_("invalid syntax for .unreq directive"));
2455 else
2456 {
2457 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2458 name);
2459
2460 if (!reg)
2461 as_bad (_("unknown register alias '%s'"), name);
2462 else if (reg->builtin)
2463 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2464 name);
2465 else
2466 {
2467 char * p;
2468 char * nbuf;
2469
2470 hash_delete (arm_reg_hsh, name, FALSE);
2471 free ((char *) reg->name);
2472 if (reg->neon)
2473 free (reg->neon);
2474 free (reg);
2475
2476 /* Also locate the all upper case and all lower case versions.
2477 Do not complain if we cannot find one or the other as it
2478 was probably deleted above. */
2479
2480 nbuf = strdup (name);
2481 for (p = nbuf; *p; p++)
2482 *p = TOUPPER (*p);
2483 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2484 if (reg)
2485 {
2486 hash_delete (arm_reg_hsh, nbuf, FALSE);
2487 free ((char *) reg->name);
2488 if (reg->neon)
2489 free (reg->neon);
2490 free (reg);
2491 }
2492
2493 for (p = nbuf; *p; p++)
2494 *p = TOLOWER (*p);
2495 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2496 if (reg)
2497 {
2498 hash_delete (arm_reg_hsh, nbuf, FALSE);
2499 free ((char *) reg->name);
2500 if (reg->neon)
2501 free (reg->neon);
2502 free (reg);
2503 }
2504
2505 free (nbuf);
2506 }
2507 }
2508
2509 *input_line_pointer = saved_char;
2510 demand_empty_rest_of_line ();
2511 }
2512
2513 /* Directives: Instruction set selection. */
2514
2515 #ifdef OBJ_ELF
2516 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2517 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2518 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2519 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2520
2521 /* Create a new mapping symbol for the transition to STATE. */
2522
2523 static void
2524 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2525 {
2526 symbolS * symbolP;
2527 const char * symname;
2528 int type;
2529
2530 switch (state)
2531 {
2532 case MAP_DATA:
2533 symname = "$d";
2534 type = BSF_NO_FLAGS;
2535 break;
2536 case MAP_ARM:
2537 symname = "$a";
2538 type = BSF_NO_FLAGS;
2539 break;
2540 case MAP_THUMB:
2541 symname = "$t";
2542 type = BSF_NO_FLAGS;
2543 break;
2544 default:
2545 abort ();
2546 }
2547
2548 symbolP = symbol_new (symname, now_seg, value, frag);
2549 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2550
2551 switch (state)
2552 {
2553 case MAP_ARM:
2554 THUMB_SET_FUNC (symbolP, 0);
2555 ARM_SET_THUMB (symbolP, 0);
2556 ARM_SET_INTERWORK (symbolP, support_interwork);
2557 break;
2558
2559 case MAP_THUMB:
2560 THUMB_SET_FUNC (symbolP, 1);
2561 ARM_SET_THUMB (symbolP, 1);
2562 ARM_SET_INTERWORK (symbolP, support_interwork);
2563 break;
2564
2565 case MAP_DATA:
2566 default:
2567 break;
2568 }
2569
2570 /* Save the mapping symbols for future reference. Also check that
2571 we do not place two mapping symbols at the same offset within a
2572 frag. We'll handle overlap between frags in
2573 check_mapping_symbols.
2574
2575 If .fill or other data filling directive generates zero sized data,
2576 the mapping symbol for the following code will have the same value
2577 as the one generated for the data filling directive. In this case,
2578 we replace the old symbol with the new one at the same address. */
2579 if (value == 0)
2580 {
2581 if (frag->tc_frag_data.first_map != NULL)
2582 {
2583 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2584 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2585 }
2586 frag->tc_frag_data.first_map = symbolP;
2587 }
2588 if (frag->tc_frag_data.last_map != NULL)
2589 {
2590 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2591 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2592 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2593 }
2594 frag->tc_frag_data.last_map = symbolP;
2595 }
2596
2597 /* We must sometimes convert a region marked as code to data during
2598 code alignment, if an odd number of bytes have to be padded. The
2599 code mapping symbol is pushed to an aligned address. */
2600
2601 static void
2602 insert_data_mapping_symbol (enum mstate state,
2603 valueT value, fragS *frag, offsetT bytes)
2604 {
2605 /* If there was already a mapping symbol, remove it. */
2606 if (frag->tc_frag_data.last_map != NULL
2607 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2608 {
2609 symbolS *symp = frag->tc_frag_data.last_map;
2610
2611 if (value == 0)
2612 {
2613 know (frag->tc_frag_data.first_map == symp);
2614 frag->tc_frag_data.first_map = NULL;
2615 }
2616 frag->tc_frag_data.last_map = NULL;
2617 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2618 }
2619
2620 make_mapping_symbol (MAP_DATA, value, frag);
2621 make_mapping_symbol (state, value + bytes, frag);
2622 }
2623
2624 static void mapping_state_2 (enum mstate state, int max_chars);
2625
2626 /* Set the mapping state to STATE. Only call this when about to
2627 emit some STATE bytes to the file. */
2628
2629 void
2630 mapping_state (enum mstate state)
2631 {
2632 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2633
2634 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2635
2636 if (mapstate == state)
2637 /* The mapping symbol has already been emitted.
2638 There is nothing else to do. */
2639 return;
2640
2641 if (state == MAP_ARM || state == MAP_THUMB)
2642 /* PR gas/12931
2643 All ARM instructions require 4-byte alignment.
2644 (Almost) all Thumb instructions require 2-byte alignment.
2645
2646 When emitting instructions into any section, mark the section
2647 appropriately.
2648
2649 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2650 but themselves require 2-byte alignment; this applies to some
2651 PC- relative forms. However, these cases will invovle implicit
2652 literal pool generation or an explicit .align >=2, both of
2653 which will cause the section to me marked with sufficient
2654 alignment. Thus, we don't handle those cases here. */
2655 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2656
2657 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2658 /* This case will be evaluated later in the next else. */
2659 return;
2660 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2661 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2662 {
2663 /* Only add the symbol if the offset is > 0:
2664 if we're at the first frag, check it's size > 0;
2665 if we're not at the first frag, then for sure
2666 the offset is > 0. */
2667 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2668 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2669
2670 if (add_symbol)
2671 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2672 }
2673
2674 mapping_state_2 (state, 0);
2675 #undef TRANSITION
2676 }
2677
2678 /* Same as mapping_state, but MAX_CHARS bytes have already been
2679 allocated. Put the mapping symbol that far back. */
2680
2681 static void
2682 mapping_state_2 (enum mstate state, int max_chars)
2683 {
2684 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2685
2686 if (!SEG_NORMAL (now_seg))
2687 return;
2688
2689 if (mapstate == state)
2690 /* The mapping symbol has already been emitted.
2691 There is nothing else to do. */
2692 return;
2693
2694 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2695 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2696 }
2697 #else
2698 #define mapping_state(x) ((void)0)
2699 #define mapping_state_2(x, y) ((void)0)
2700 #endif
2701
2702 /* Find the real, Thumb encoded start of a Thumb function. */
2703
2704 #ifdef OBJ_COFF
2705 static symbolS *
2706 find_real_start (symbolS * symbolP)
2707 {
2708 char * real_start;
2709 const char * name = S_GET_NAME (symbolP);
2710 symbolS * new_target;
2711
2712 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2713 #define STUB_NAME ".real_start_of"
2714
2715 if (name == NULL)
2716 abort ();
2717
2718 /* The compiler may generate BL instructions to local labels because
2719 it needs to perform a branch to a far away location. These labels
2720 do not have a corresponding ".real_start_of" label. We check
2721 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2722 the ".real_start_of" convention for nonlocal branches. */
2723 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2724 return symbolP;
2725
2726 real_start = ACONCAT ((STUB_NAME, name, NULL));
2727 new_target = symbol_find (real_start);
2728
2729 if (new_target == NULL)
2730 {
2731 as_warn (_("Failed to find real start of function: %s\n"), name);
2732 new_target = symbolP;
2733 }
2734
2735 return new_target;
2736 }
2737 #endif
2738
2739 static void
2740 opcode_select (int width)
2741 {
2742 switch (width)
2743 {
2744 case 16:
2745 if (! thumb_mode)
2746 {
2747 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2748 as_bad (_("selected processor does not support THUMB opcodes"));
2749
2750 thumb_mode = 1;
2751 /* No need to force the alignment, since we will have been
2752 coming from ARM mode, which is word-aligned. */
2753 record_alignment (now_seg, 1);
2754 }
2755 break;
2756
2757 case 32:
2758 if (thumb_mode)
2759 {
2760 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2761 as_bad (_("selected processor does not support ARM opcodes"));
2762
2763 thumb_mode = 0;
2764
2765 if (!need_pass_2)
2766 frag_align (2, 0, 0);
2767
2768 record_alignment (now_seg, 1);
2769 }
2770 break;
2771
2772 default:
2773 as_bad (_("invalid instruction size selected (%d)"), width);
2774 }
2775 }
2776
2777 static void
2778 s_arm (int ignore ATTRIBUTE_UNUSED)
2779 {
2780 opcode_select (32);
2781 demand_empty_rest_of_line ();
2782 }
2783
2784 static void
2785 s_thumb (int ignore ATTRIBUTE_UNUSED)
2786 {
2787 opcode_select (16);
2788 demand_empty_rest_of_line ();
2789 }
2790
2791 static void
2792 s_code (int unused ATTRIBUTE_UNUSED)
2793 {
2794 int temp;
2795
2796 temp = get_absolute_expression ();
2797 switch (temp)
2798 {
2799 case 16:
2800 case 32:
2801 opcode_select (temp);
2802 break;
2803
2804 default:
2805 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2806 }
2807 }
2808
2809 static void
2810 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2811 {
2812 /* If we are not already in thumb mode go into it, EVEN if
2813 the target processor does not support thumb instructions.
2814 This is used by gcc/config/arm/lib1funcs.asm for example
2815 to compile interworking support functions even if the
2816 target processor should not support interworking. */
2817 if (! thumb_mode)
2818 {
2819 thumb_mode = 2;
2820 record_alignment (now_seg, 1);
2821 }
2822
2823 demand_empty_rest_of_line ();
2824 }
2825
2826 static void
2827 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2828 {
2829 s_thumb (0);
2830
2831 /* The following label is the name/address of the start of a Thumb function.
2832 We need to know this for the interworking support. */
2833 label_is_thumb_function_name = TRUE;
2834 }
2835
2836 /* Perform a .set directive, but also mark the alias as
2837 being a thumb function. */
2838
2839 static void
2840 s_thumb_set (int equiv)
2841 {
2842 /* XXX the following is a duplicate of the code for s_set() in read.c
2843 We cannot just call that code as we need to get at the symbol that
2844 is created. */
2845 char * name;
2846 char delim;
2847 char * end_name;
2848 symbolS * symbolP;
2849
2850 /* Especial apologies for the random logic:
2851 This just grew, and could be parsed much more simply!
2852 Dean - in haste. */
2853 name = input_line_pointer;
2854 delim = get_symbol_end ();
2855 end_name = input_line_pointer;
2856 *end_name = delim;
2857
2858 if (*input_line_pointer != ',')
2859 {
2860 *end_name = 0;
2861 as_bad (_("expected comma after name \"%s\""), name);
2862 *end_name = delim;
2863 ignore_rest_of_line ();
2864 return;
2865 }
2866
2867 input_line_pointer++;
2868 *end_name = 0;
2869
2870 if (name[0] == '.' && name[1] == '\0')
2871 {
2872 /* XXX - this should not happen to .thumb_set. */
2873 abort ();
2874 }
2875
2876 if ((symbolP = symbol_find (name)) == NULL
2877 && (symbolP = md_undefined_symbol (name)) == NULL)
2878 {
2879 #ifndef NO_LISTING
2880 /* When doing symbol listings, play games with dummy fragments living
2881 outside the normal fragment chain to record the file and line info
2882 for this symbol. */
2883 if (listing & LISTING_SYMBOLS)
2884 {
2885 extern struct list_info_struct * listing_tail;
2886 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2887
2888 memset (dummy_frag, 0, sizeof (fragS));
2889 dummy_frag->fr_type = rs_fill;
2890 dummy_frag->line = listing_tail;
2891 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2892 dummy_frag->fr_symbol = symbolP;
2893 }
2894 else
2895 #endif
2896 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2897
2898 #ifdef OBJ_COFF
2899 /* "set" symbols are local unless otherwise specified. */
2900 SF_SET_LOCAL (symbolP);
2901 #endif /* OBJ_COFF */
2902 } /* Make a new symbol. */
2903
2904 symbol_table_insert (symbolP);
2905
2906 * end_name = delim;
2907
2908 if (equiv
2909 && S_IS_DEFINED (symbolP)
2910 && S_GET_SEGMENT (symbolP) != reg_section)
2911 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2912
2913 pseudo_set (symbolP);
2914
2915 demand_empty_rest_of_line ();
2916
2917 /* XXX Now we come to the Thumb specific bit of code. */
2918
2919 THUMB_SET_FUNC (symbolP, 1);
2920 ARM_SET_THUMB (symbolP, 1);
2921 #if defined OBJ_ELF || defined OBJ_COFF
2922 ARM_SET_INTERWORK (symbolP, support_interwork);
2923 #endif
2924 }
2925
2926 /* Directives: Mode selection. */
2927
2928 /* .syntax [unified|divided] - choose the new unified syntax
2929 (same for Arm and Thumb encoding, modulo slight differences in what
2930 can be represented) or the old divergent syntax for each mode. */
2931 static void
2932 s_syntax (int unused ATTRIBUTE_UNUSED)
2933 {
2934 char *name, delim;
2935
2936 name = input_line_pointer;
2937 delim = get_symbol_end ();
2938
2939 if (!strcasecmp (name, "unified"))
2940 unified_syntax = TRUE;
2941 else if (!strcasecmp (name, "divided"))
2942 unified_syntax = FALSE;
2943 else
2944 {
2945 as_bad (_("unrecognized syntax mode \"%s\""), name);
2946 return;
2947 }
2948 *input_line_pointer = delim;
2949 demand_empty_rest_of_line ();
2950 }
2951
2952 /* Directives: sectioning and alignment. */
2953
2954 /* Same as s_align_ptwo but align 0 => align 2. */
2955
2956 static void
2957 s_align (int unused ATTRIBUTE_UNUSED)
2958 {
2959 int temp;
2960 bfd_boolean fill_p;
2961 long temp_fill;
2962 long max_alignment = 15;
2963
2964 temp = get_absolute_expression ();
2965 if (temp > max_alignment)
2966 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2967 else if (temp < 0)
2968 {
2969 as_bad (_("alignment negative. 0 assumed."));
2970 temp = 0;
2971 }
2972
2973 if (*input_line_pointer == ',')
2974 {
2975 input_line_pointer++;
2976 temp_fill = get_absolute_expression ();
2977 fill_p = TRUE;
2978 }
2979 else
2980 {
2981 fill_p = FALSE;
2982 temp_fill = 0;
2983 }
2984
2985 if (!temp)
2986 temp = 2;
2987
2988 /* Only make a frag if we HAVE to. */
2989 if (temp && !need_pass_2)
2990 {
2991 if (!fill_p && subseg_text_p (now_seg))
2992 frag_align_code (temp, 0);
2993 else
2994 frag_align (temp, (int) temp_fill, 0);
2995 }
2996 demand_empty_rest_of_line ();
2997
2998 record_alignment (now_seg, temp);
2999 }
3000
3001 static void
3002 s_bss (int ignore ATTRIBUTE_UNUSED)
3003 {
3004 /* We don't support putting frags in the BSS segment, we fake it by
3005 marking in_bss, then looking at s_skip for clues. */
3006 subseg_set (bss_section, 0);
3007 demand_empty_rest_of_line ();
3008
3009 #ifdef md_elf_section_change_hook
3010 md_elf_section_change_hook ();
3011 #endif
3012 }
3013
3014 static void
3015 s_even (int ignore ATTRIBUTE_UNUSED)
3016 {
3017 /* Never make frag if expect extra pass. */
3018 if (!need_pass_2)
3019 frag_align (1, 0, 0);
3020
3021 record_alignment (now_seg, 1);
3022
3023 demand_empty_rest_of_line ();
3024 }
3025
3026 /* Directives: CodeComposer Studio. */
3027
3028 /* .ref (for CodeComposer Studio syntax only). */
3029 static void
3030 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3031 {
3032 if (codecomposer_syntax)
3033 ignore_rest_of_line ();
3034 else
3035 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3036 }
3037
3038 /* If name is not NULL, then it is used for marking the beginning of a
3039 function, wherease if it is NULL then it means the function end. */
3040 static void
3041 asmfunc_debug (const char * name)
3042 {
3043 static const char * last_name = NULL;
3044
3045 if (name != NULL)
3046 {
3047 gas_assert (last_name == NULL);
3048 last_name = name;
3049
3050 if (debug_type == DEBUG_STABS)
3051 stabs_generate_asm_func (name, name);
3052 }
3053 else
3054 {
3055 gas_assert (last_name != NULL);
3056
3057 if (debug_type == DEBUG_STABS)
3058 stabs_generate_asm_endfunc (last_name, last_name);
3059
3060 last_name = NULL;
3061 }
3062 }
3063
3064 static void
3065 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3066 {
3067 if (codecomposer_syntax)
3068 {
3069 switch (asmfunc_state)
3070 {
3071 case OUTSIDE_ASMFUNC:
3072 asmfunc_state = WAITING_ASMFUNC_NAME;
3073 break;
3074
3075 case WAITING_ASMFUNC_NAME:
3076 as_bad (_(".asmfunc repeated."));
3077 break;
3078
3079 case WAITING_ENDASMFUNC:
3080 as_bad (_(".asmfunc without function."));
3081 break;
3082 }
3083 demand_empty_rest_of_line ();
3084 }
3085 else
3086 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3087 }
3088
3089 static void
3090 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3091 {
3092 if (codecomposer_syntax)
3093 {
3094 switch (asmfunc_state)
3095 {
3096 case OUTSIDE_ASMFUNC:
3097 as_bad (_(".endasmfunc without a .asmfunc."));
3098 break;
3099
3100 case WAITING_ASMFUNC_NAME:
3101 as_bad (_(".endasmfunc without function."));
3102 break;
3103
3104 case WAITING_ENDASMFUNC:
3105 asmfunc_state = OUTSIDE_ASMFUNC;
3106 asmfunc_debug (NULL);
3107 break;
3108 }
3109 demand_empty_rest_of_line ();
3110 }
3111 else
3112 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3113 }
3114
3115 static void
3116 s_ccs_def (int name)
3117 {
3118 if (codecomposer_syntax)
3119 s_globl (name);
3120 else
3121 as_bad (_(".def pseudo-op only available with -mccs flag."));
3122 }
3123
3124 /* Directives: Literal pools. */
3125
3126 static literal_pool *
3127 find_literal_pool (void)
3128 {
3129 literal_pool * pool;
3130
3131 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3132 {
3133 if (pool->section == now_seg
3134 && pool->sub_section == now_subseg)
3135 break;
3136 }
3137
3138 return pool;
3139 }
3140
3141 static literal_pool *
3142 find_or_make_literal_pool (void)
3143 {
3144 /* Next literal pool ID number. */
3145 static unsigned int latest_pool_num = 1;
3146 literal_pool * pool;
3147
3148 pool = find_literal_pool ();
3149
3150 if (pool == NULL)
3151 {
3152 /* Create a new pool. */
3153 pool = (literal_pool *) xmalloc (sizeof (* pool));
3154 if (! pool)
3155 return NULL;
3156
3157 pool->next_free_entry = 0;
3158 pool->section = now_seg;
3159 pool->sub_section = now_subseg;
3160 pool->next = list_of_pools;
3161 pool->symbol = NULL;
3162
3163 /* Add it to the list. */
3164 list_of_pools = pool;
3165 }
3166
3167 /* New pools, and emptied pools, will have a NULL symbol. */
3168 if (pool->symbol == NULL)
3169 {
3170 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3171 (valueT) 0, &zero_address_frag);
3172 pool->id = latest_pool_num ++;
3173 }
3174
3175 /* Done. */
3176 return pool;
3177 }
3178
3179 /* Add the literal in the global 'inst'
3180 structure to the relevant literal pool. */
3181
3182 static int
3183 add_to_lit_pool (void)
3184 {
3185 literal_pool * pool;
3186 unsigned int entry;
3187
3188 pool = find_or_make_literal_pool ();
3189
3190 /* Check if this literal value is already in the pool. */
3191 for (entry = 0; entry < pool->next_free_entry; entry ++)
3192 {
3193 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3194 && (inst.reloc.exp.X_op == O_constant)
3195 && (pool->literals[entry].X_add_number
3196 == inst.reloc.exp.X_add_number)
3197 && (pool->literals[entry].X_unsigned
3198 == inst.reloc.exp.X_unsigned))
3199 break;
3200
3201 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3202 && (inst.reloc.exp.X_op == O_symbol)
3203 && (pool->literals[entry].X_add_number
3204 == inst.reloc.exp.X_add_number)
3205 && (pool->literals[entry].X_add_symbol
3206 == inst.reloc.exp.X_add_symbol)
3207 && (pool->literals[entry].X_op_symbol
3208 == inst.reloc.exp.X_op_symbol))
3209 break;
3210 }
3211
3212 /* Do we need to create a new entry? */
3213 if (entry == pool->next_free_entry)
3214 {
3215 if (entry >= MAX_LITERAL_POOL_SIZE)
3216 {
3217 inst.error = _("literal pool overflow");
3218 return FAIL;
3219 }
3220
3221 pool->literals[entry] = inst.reloc.exp;
3222 #ifdef OBJ_ELF
3223 /* PR ld/12974: Record the location of the first source line to reference
3224 this entry in the literal pool. If it turns out during linking that the
3225 symbol does not exist we will be able to give an accurate line number for
3226 the (first use of the) missing reference. */
3227 if (debug_type == DEBUG_DWARF2)
3228 dwarf2_where (pool->locs + entry);
3229 #endif
3230 pool->next_free_entry += 1;
3231 }
3232
3233 inst.reloc.exp.X_op = O_symbol;
3234 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3235 inst.reloc.exp.X_add_symbol = pool->symbol;
3236
3237 return SUCCESS;
3238 }
3239
3240 bfd_boolean
3241 tc_start_label_without_colon (char unused1 ATTRIBUTE_UNUSED, const char * rest)
3242 {
3243 bfd_boolean ret = TRUE;
3244
3245 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3246 {
3247 const char *label = rest;
3248
3249 while (!is_end_of_line[(int) label[-1]])
3250 --label;
3251
3252 if (*label == '.')
3253 {
3254 as_bad (_("Invalid label '%s'"), label);
3255 ret = FALSE;
3256 }
3257
3258 asmfunc_debug (label);
3259
3260 asmfunc_state = WAITING_ENDASMFUNC;
3261 }
3262
3263 return ret;
3264 }
3265
3266 /* Can't use symbol_new here, so have to create a symbol and then at
3267 a later date assign it a value. Thats what these functions do. */
3268
3269 static void
3270 symbol_locate (symbolS * symbolP,
3271 const char * name, /* It is copied, the caller can modify. */
3272 segT segment, /* Segment identifier (SEG_<something>). */
3273 valueT valu, /* Symbol value. */
3274 fragS * frag) /* Associated fragment. */
3275 {
3276 unsigned int name_length;
3277 char * preserved_copy_of_name;
3278
3279 name_length = strlen (name) + 1; /* +1 for \0. */
3280 obstack_grow (&notes, name, name_length);
3281 preserved_copy_of_name = (char *) obstack_finish (&notes);
3282
3283 #ifdef tc_canonicalize_symbol_name
3284 preserved_copy_of_name =
3285 tc_canonicalize_symbol_name (preserved_copy_of_name);
3286 #endif
3287
3288 S_SET_NAME (symbolP, preserved_copy_of_name);
3289
3290 S_SET_SEGMENT (symbolP, segment);
3291 S_SET_VALUE (symbolP, valu);
3292 symbol_clear_list_pointers (symbolP);
3293
3294 symbol_set_frag (symbolP, frag);
3295
3296 /* Link to end of symbol chain. */
3297 {
3298 extern int symbol_table_frozen;
3299
3300 if (symbol_table_frozen)
3301 abort ();
3302 }
3303
3304 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3305
3306 obj_symbol_new_hook (symbolP);
3307
3308 #ifdef tc_symbol_new_hook
3309 tc_symbol_new_hook (symbolP);
3310 #endif
3311
3312 #ifdef DEBUG_SYMS
3313 verify_symbol_chain (symbol_rootP, symbol_lastP);
3314 #endif /* DEBUG_SYMS */
3315 }
3316
3317
3318 static void
3319 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3320 {
3321 unsigned int entry;
3322 literal_pool * pool;
3323 char sym_name[20];
3324
3325 pool = find_literal_pool ();
3326 if (pool == NULL
3327 || pool->symbol == NULL
3328 || pool->next_free_entry == 0)
3329 return;
3330
3331 mapping_state (MAP_DATA);
3332
3333 /* Align pool as you have word accesses.
3334 Only make a frag if we have to. */
3335 if (!need_pass_2)
3336 frag_align (2, 0, 0);
3337
3338 record_alignment (now_seg, 2);
3339
3340 sprintf (sym_name, "$$lit_\002%x", pool->id);
3341
3342 symbol_locate (pool->symbol, sym_name, now_seg,
3343 (valueT) frag_now_fix (), frag_now);
3344 symbol_table_insert (pool->symbol);
3345
3346 ARM_SET_THUMB (pool->symbol, thumb_mode);
3347
3348 #if defined OBJ_COFF || defined OBJ_ELF
3349 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3350 #endif
3351
3352 for (entry = 0; entry < pool->next_free_entry; entry ++)
3353 {
3354 #ifdef OBJ_ELF
3355 if (debug_type == DEBUG_DWARF2)
3356 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3357 #endif
3358 /* First output the expression in the instruction to the pool. */
3359 emit_expr (&(pool->literals[entry]), 4); /* .word */
3360 }
3361
3362 /* Mark the pool as empty. */
3363 pool->next_free_entry = 0;
3364 pool->symbol = NULL;
3365 }
3366
3367 #ifdef OBJ_ELF
3368 /* Forward declarations for functions below, in the MD interface
3369 section. */
3370 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3371 static valueT create_unwind_entry (int);
3372 static void start_unwind_section (const segT, int);
3373 static void add_unwind_opcode (valueT, int);
3374 static void flush_pending_unwind (void);
3375
3376 /* Directives: Data. */
3377
3378 static void
3379 s_arm_elf_cons (int nbytes)
3380 {
3381 expressionS exp;
3382
3383 #ifdef md_flush_pending_output
3384 md_flush_pending_output ();
3385 #endif
3386
3387 if (is_it_end_of_statement ())
3388 {
3389 demand_empty_rest_of_line ();
3390 return;
3391 }
3392
3393 #ifdef md_cons_align
3394 md_cons_align (nbytes);
3395 #endif
3396
3397 mapping_state (MAP_DATA);
3398 do
3399 {
3400 int reloc;
3401 char *base = input_line_pointer;
3402
3403 expression (& exp);
3404
3405 if (exp.X_op != O_symbol)
3406 emit_expr (&exp, (unsigned int) nbytes);
3407 else
3408 {
3409 char *before_reloc = input_line_pointer;
3410 reloc = parse_reloc (&input_line_pointer);
3411 if (reloc == -1)
3412 {
3413 as_bad (_("unrecognized relocation suffix"));
3414 ignore_rest_of_line ();
3415 return;
3416 }
3417 else if (reloc == BFD_RELOC_UNUSED)
3418 emit_expr (&exp, (unsigned int) nbytes);
3419 else
3420 {
3421 reloc_howto_type *howto = (reloc_howto_type *)
3422 bfd_reloc_type_lookup (stdoutput,
3423 (bfd_reloc_code_real_type) reloc);
3424 int size = bfd_get_reloc_size (howto);
3425
3426 if (reloc == BFD_RELOC_ARM_PLT32)
3427 {
3428 as_bad (_("(plt) is only valid on branch targets"));
3429 reloc = BFD_RELOC_UNUSED;
3430 size = 0;
3431 }
3432
3433 if (size > nbytes)
3434 as_bad (_("%s relocations do not fit in %d bytes"),
3435 howto->name, nbytes);
3436 else
3437 {
3438 /* We've parsed an expression stopping at O_symbol.
3439 But there may be more expression left now that we
3440 have parsed the relocation marker. Parse it again.
3441 XXX Surely there is a cleaner way to do this. */
3442 char *p = input_line_pointer;
3443 int offset;
3444 char *save_buf = (char *) alloca (input_line_pointer - base);
3445 memcpy (save_buf, base, input_line_pointer - base);
3446 memmove (base + (input_line_pointer - before_reloc),
3447 base, before_reloc - base);
3448
3449 input_line_pointer = base + (input_line_pointer-before_reloc);
3450 expression (&exp);
3451 memcpy (base, save_buf, p - base);
3452
3453 offset = nbytes - size;
3454 p = frag_more ((int) nbytes);
3455 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3456 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3457 }
3458 }
3459 }
3460 }
3461 while (*input_line_pointer++ == ',');
3462
3463 /* Put terminator back into stream. */
3464 input_line_pointer --;
3465 demand_empty_rest_of_line ();
3466 }
3467
3468 /* Emit an expression containing a 32-bit thumb instruction.
3469 Implementation based on put_thumb32_insn. */
3470
3471 static void
3472 emit_thumb32_expr (expressionS * exp)
3473 {
3474 expressionS exp_high = *exp;
3475
3476 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3477 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3478 exp->X_add_number &= 0xffff;
3479 emit_expr (exp, (unsigned int) THUMB_SIZE);
3480 }
3481
3482 /* Guess the instruction size based on the opcode. */
3483
3484 static int
3485 thumb_insn_size (int opcode)
3486 {
3487 if ((unsigned int) opcode < 0xe800u)
3488 return 2;
3489 else if ((unsigned int) opcode >= 0xe8000000u)
3490 return 4;
3491 else
3492 return 0;
3493 }
3494
3495 static bfd_boolean
3496 emit_insn (expressionS *exp, int nbytes)
3497 {
3498 int size = 0;
3499
3500 if (exp->X_op == O_constant)
3501 {
3502 size = nbytes;
3503
3504 if (size == 0)
3505 size = thumb_insn_size (exp->X_add_number);
3506
3507 if (size != 0)
3508 {
3509 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3510 {
3511 as_bad (_(".inst.n operand too big. "\
3512 "Use .inst.w instead"));
3513 size = 0;
3514 }
3515 else
3516 {
3517 if (now_it.state == AUTOMATIC_IT_BLOCK)
3518 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3519 else
3520 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3521
3522 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3523 emit_thumb32_expr (exp);
3524 else
3525 emit_expr (exp, (unsigned int) size);
3526
3527 it_fsm_post_encode ();
3528 }
3529 }
3530 else
3531 as_bad (_("cannot determine Thumb instruction size. " \
3532 "Use .inst.n/.inst.w instead"));
3533 }
3534 else
3535 as_bad (_("constant expression required"));
3536
3537 return (size != 0);
3538 }
3539
3540 /* Like s_arm_elf_cons but do not use md_cons_align and
3541 set the mapping state to MAP_ARM/MAP_THUMB. */
3542
3543 static void
3544 s_arm_elf_inst (int nbytes)
3545 {
3546 if (is_it_end_of_statement ())
3547 {
3548 demand_empty_rest_of_line ();
3549 return;
3550 }
3551
3552 /* Calling mapping_state () here will not change ARM/THUMB,
3553 but will ensure not to be in DATA state. */
3554
3555 if (thumb_mode)
3556 mapping_state (MAP_THUMB);
3557 else
3558 {
3559 if (nbytes != 0)
3560 {
3561 as_bad (_("width suffixes are invalid in ARM mode"));
3562 ignore_rest_of_line ();
3563 return;
3564 }
3565
3566 nbytes = 4;
3567
3568 mapping_state (MAP_ARM);
3569 }
3570
3571 do
3572 {
3573 expressionS exp;
3574
3575 expression (& exp);
3576
3577 if (! emit_insn (& exp, nbytes))
3578 {
3579 ignore_rest_of_line ();
3580 return;
3581 }
3582 }
3583 while (*input_line_pointer++ == ',');
3584
3585 /* Put terminator back into stream. */
3586 input_line_pointer --;
3587 demand_empty_rest_of_line ();
3588 }
3589
3590 /* Parse a .rel31 directive. */
3591
3592 static void
3593 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3594 {
3595 expressionS exp;
3596 char *p;
3597 valueT highbit;
3598
3599 highbit = 0;
3600 if (*input_line_pointer == '1')
3601 highbit = 0x80000000;
3602 else if (*input_line_pointer != '0')
3603 as_bad (_("expected 0 or 1"));
3604
3605 input_line_pointer++;
3606 if (*input_line_pointer != ',')
3607 as_bad (_("missing comma"));
3608 input_line_pointer++;
3609
3610 #ifdef md_flush_pending_output
3611 md_flush_pending_output ();
3612 #endif
3613
3614 #ifdef md_cons_align
3615 md_cons_align (4);
3616 #endif
3617
3618 mapping_state (MAP_DATA);
3619
3620 expression (&exp);
3621
3622 p = frag_more (4);
3623 md_number_to_chars (p, highbit, 4);
3624 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3625 BFD_RELOC_ARM_PREL31);
3626
3627 demand_empty_rest_of_line ();
3628 }
3629
3630 /* Directives: AEABI stack-unwind tables. */
3631
3632 /* Parse an unwind_fnstart directive. Simply records the current location. */
3633
3634 static void
3635 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3636 {
3637 demand_empty_rest_of_line ();
3638 if (unwind.proc_start)
3639 {
3640 as_bad (_("duplicate .fnstart directive"));
3641 return;
3642 }
3643
3644 /* Mark the start of the function. */
3645 unwind.proc_start = expr_build_dot ();
3646
3647 /* Reset the rest of the unwind info. */
3648 unwind.opcode_count = 0;
3649 unwind.table_entry = NULL;
3650 unwind.personality_routine = NULL;
3651 unwind.personality_index = -1;
3652 unwind.frame_size = 0;
3653 unwind.fp_offset = 0;
3654 unwind.fp_reg = REG_SP;
3655 unwind.fp_used = 0;
3656 unwind.sp_restored = 0;
3657 }
3658
3659
3660 /* Parse a handlerdata directive. Creates the exception handling table entry
3661 for the function. */
3662
3663 static void
3664 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3665 {
3666 demand_empty_rest_of_line ();
3667 if (!unwind.proc_start)
3668 as_bad (MISSING_FNSTART);
3669
3670 if (unwind.table_entry)
3671 as_bad (_("duplicate .handlerdata directive"));
3672
3673 create_unwind_entry (1);
3674 }
3675
3676 /* Parse an unwind_fnend directive. Generates the index table entry. */
3677
3678 static void
3679 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3680 {
3681 long where;
3682 char *ptr;
3683 valueT val;
3684 unsigned int marked_pr_dependency;
3685
3686 demand_empty_rest_of_line ();
3687
3688 if (!unwind.proc_start)
3689 {
3690 as_bad (_(".fnend directive without .fnstart"));
3691 return;
3692 }
3693
3694 /* Add eh table entry. */
3695 if (unwind.table_entry == NULL)
3696 val = create_unwind_entry (0);
3697 else
3698 val = 0;
3699
3700 /* Add index table entry. This is two words. */
3701 start_unwind_section (unwind.saved_seg, 1);
3702 frag_align (2, 0, 0);
3703 record_alignment (now_seg, 2);
3704
3705 ptr = frag_more (8);
3706 memset (ptr, 0, 8);
3707 where = frag_now_fix () - 8;
3708
3709 /* Self relative offset of the function start. */
3710 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3711 BFD_RELOC_ARM_PREL31);
3712
3713 /* Indicate dependency on EHABI-defined personality routines to the
3714 linker, if it hasn't been done already. */
3715 marked_pr_dependency
3716 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3717 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3718 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3719 {
3720 static const char *const name[] =
3721 {
3722 "__aeabi_unwind_cpp_pr0",
3723 "__aeabi_unwind_cpp_pr1",
3724 "__aeabi_unwind_cpp_pr2"
3725 };
3726 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3727 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3728 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3729 |= 1 << unwind.personality_index;
3730 }
3731
3732 if (val)
3733 /* Inline exception table entry. */
3734 md_number_to_chars (ptr + 4, val, 4);
3735 else
3736 /* Self relative offset of the table entry. */
3737 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3738 BFD_RELOC_ARM_PREL31);
3739
3740 /* Restore the original section. */
3741 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3742
3743 unwind.proc_start = NULL;
3744 }
3745
3746
3747 /* Parse an unwind_cantunwind directive. */
3748
3749 static void
3750 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3751 {
3752 demand_empty_rest_of_line ();
3753 if (!unwind.proc_start)
3754 as_bad (MISSING_FNSTART);
3755
3756 if (unwind.personality_routine || unwind.personality_index != -1)
3757 as_bad (_("personality routine specified for cantunwind frame"));
3758
3759 unwind.personality_index = -2;
3760 }
3761
3762
3763 /* Parse a personalityindex directive. */
3764
3765 static void
3766 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3767 {
3768 expressionS exp;
3769
3770 if (!unwind.proc_start)
3771 as_bad (MISSING_FNSTART);
3772
3773 if (unwind.personality_routine || unwind.personality_index != -1)
3774 as_bad (_("duplicate .personalityindex directive"));
3775
3776 expression (&exp);
3777
3778 if (exp.X_op != O_constant
3779 || exp.X_add_number < 0 || exp.X_add_number > 15)
3780 {
3781 as_bad (_("bad personality routine number"));
3782 ignore_rest_of_line ();
3783 return;
3784 }
3785
3786 unwind.personality_index = exp.X_add_number;
3787
3788 demand_empty_rest_of_line ();
3789 }
3790
3791
3792 /* Parse a personality directive. */
3793
3794 static void
3795 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3796 {
3797 char *name, *p, c;
3798
3799 if (!unwind.proc_start)
3800 as_bad (MISSING_FNSTART);
3801
3802 if (unwind.personality_routine || unwind.personality_index != -1)
3803 as_bad (_("duplicate .personality directive"));
3804
3805 name = input_line_pointer;
3806 c = get_symbol_end ();
3807 p = input_line_pointer;
3808 unwind.personality_routine = symbol_find_or_make (name);
3809 *p = c;
3810 demand_empty_rest_of_line ();
3811 }
3812
3813
3814 /* Parse a directive saving core registers. */
3815
3816 static void
3817 s_arm_unwind_save_core (void)
3818 {
3819 valueT op;
3820 long range;
3821 int n;
3822
3823 range = parse_reg_list (&input_line_pointer);
3824 if (range == FAIL)
3825 {
3826 as_bad (_("expected register list"));
3827 ignore_rest_of_line ();
3828 return;
3829 }
3830
3831 demand_empty_rest_of_line ();
3832
3833 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3834 into .unwind_save {..., sp...}. We aren't bothered about the value of
3835 ip because it is clobbered by calls. */
3836 if (unwind.sp_restored && unwind.fp_reg == 12
3837 && (range & 0x3000) == 0x1000)
3838 {
3839 unwind.opcode_count--;
3840 unwind.sp_restored = 0;
3841 range = (range | 0x2000) & ~0x1000;
3842 unwind.pending_offset = 0;
3843 }
3844
3845 /* Pop r4-r15. */
3846 if (range & 0xfff0)
3847 {
3848 /* See if we can use the short opcodes. These pop a block of up to 8
3849 registers starting with r4, plus maybe r14. */
3850 for (n = 0; n < 8; n++)
3851 {
3852 /* Break at the first non-saved register. */
3853 if ((range & (1 << (n + 4))) == 0)
3854 break;
3855 }
3856 /* See if there are any other bits set. */
3857 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3858 {
3859 /* Use the long form. */
3860 op = 0x8000 | ((range >> 4) & 0xfff);
3861 add_unwind_opcode (op, 2);
3862 }
3863 else
3864 {
3865 /* Use the short form. */
3866 if (range & 0x4000)
3867 op = 0xa8; /* Pop r14. */
3868 else
3869 op = 0xa0; /* Do not pop r14. */
3870 op |= (n - 1);
3871 add_unwind_opcode (op, 1);
3872 }
3873 }
3874
3875 /* Pop r0-r3. */
3876 if (range & 0xf)
3877 {
3878 op = 0xb100 | (range & 0xf);
3879 add_unwind_opcode (op, 2);
3880 }
3881
3882 /* Record the number of bytes pushed. */
3883 for (n = 0; n < 16; n++)
3884 {
3885 if (range & (1 << n))
3886 unwind.frame_size += 4;
3887 }
3888 }
3889
3890
3891 /* Parse a directive saving FPA registers. */
3892
3893 static void
3894 s_arm_unwind_save_fpa (int reg)
3895 {
3896 expressionS exp;
3897 int num_regs;
3898 valueT op;
3899
3900 /* Get Number of registers to transfer. */
3901 if (skip_past_comma (&input_line_pointer) != FAIL)
3902 expression (&exp);
3903 else
3904 exp.X_op = O_illegal;
3905
3906 if (exp.X_op != O_constant)
3907 {
3908 as_bad (_("expected , <constant>"));
3909 ignore_rest_of_line ();
3910 return;
3911 }
3912
3913 num_regs = exp.X_add_number;
3914
3915 if (num_regs < 1 || num_regs > 4)
3916 {
3917 as_bad (_("number of registers must be in the range [1:4]"));
3918 ignore_rest_of_line ();
3919 return;
3920 }
3921
3922 demand_empty_rest_of_line ();
3923
3924 if (reg == 4)
3925 {
3926 /* Short form. */
3927 op = 0xb4 | (num_regs - 1);
3928 add_unwind_opcode (op, 1);
3929 }
3930 else
3931 {
3932 /* Long form. */
3933 op = 0xc800 | (reg << 4) | (num_regs - 1);
3934 add_unwind_opcode (op, 2);
3935 }
3936 unwind.frame_size += num_regs * 12;
3937 }
3938
3939
3940 /* Parse a directive saving VFP registers for ARMv6 and above. */
3941
3942 static void
3943 s_arm_unwind_save_vfp_armv6 (void)
3944 {
3945 int count;
3946 unsigned int start;
3947 valueT op;
3948 int num_vfpv3_regs = 0;
3949 int num_regs_below_16;
3950
3951 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3952 if (count == FAIL)
3953 {
3954 as_bad (_("expected register list"));
3955 ignore_rest_of_line ();
3956 return;
3957 }
3958
3959 demand_empty_rest_of_line ();
3960
3961 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3962 than FSTMX/FLDMX-style ones). */
3963
3964 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3965 if (start >= 16)
3966 num_vfpv3_regs = count;
3967 else if (start + count > 16)
3968 num_vfpv3_regs = start + count - 16;
3969
3970 if (num_vfpv3_regs > 0)
3971 {
3972 int start_offset = start > 16 ? start - 16 : 0;
3973 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3974 add_unwind_opcode (op, 2);
3975 }
3976
3977 /* Generate opcode for registers numbered in the range 0 .. 15. */
3978 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3979 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3980 if (num_regs_below_16 > 0)
3981 {
3982 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3983 add_unwind_opcode (op, 2);
3984 }
3985
3986 unwind.frame_size += count * 8;
3987 }
3988
3989
3990 /* Parse a directive saving VFP registers for pre-ARMv6. */
3991
3992 static void
3993 s_arm_unwind_save_vfp (void)
3994 {
3995 int count;
3996 unsigned int reg;
3997 valueT op;
3998
3999 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4000 if (count == FAIL)
4001 {
4002 as_bad (_("expected register list"));
4003 ignore_rest_of_line ();
4004 return;
4005 }
4006
4007 demand_empty_rest_of_line ();
4008
4009 if (reg == 8)
4010 {
4011 /* Short form. */
4012 op = 0xb8 | (count - 1);
4013 add_unwind_opcode (op, 1);
4014 }
4015 else
4016 {
4017 /* Long form. */
4018 op = 0xb300 | (reg << 4) | (count - 1);
4019 add_unwind_opcode (op, 2);
4020 }
4021 unwind.frame_size += count * 8 + 4;
4022 }
4023
4024
4025 /* Parse a directive saving iWMMXt data registers. */
4026
4027 static void
4028 s_arm_unwind_save_mmxwr (void)
4029 {
4030 int reg;
4031 int hi_reg;
4032 int i;
4033 unsigned mask = 0;
4034 valueT op;
4035
4036 if (*input_line_pointer == '{')
4037 input_line_pointer++;
4038
4039 do
4040 {
4041 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4042
4043 if (reg == FAIL)
4044 {
4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4046 goto error;
4047 }
4048
4049 if (mask >> reg)
4050 as_tsktsk (_("register list not in ascending order"));
4051 mask |= 1 << reg;
4052
4053 if (*input_line_pointer == '-')
4054 {
4055 input_line_pointer++;
4056 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4057 if (hi_reg == FAIL)
4058 {
4059 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4060 goto error;
4061 }
4062 else if (reg >= hi_reg)
4063 {
4064 as_bad (_("bad register range"));
4065 goto error;
4066 }
4067 for (; reg < hi_reg; reg++)
4068 mask |= 1 << reg;
4069 }
4070 }
4071 while (skip_past_comma (&input_line_pointer) != FAIL);
4072
4073 skip_past_char (&input_line_pointer, '}');
4074
4075 demand_empty_rest_of_line ();
4076
4077 /* Generate any deferred opcodes because we're going to be looking at
4078 the list. */
4079 flush_pending_unwind ();
4080
4081 for (i = 0; i < 16; i++)
4082 {
4083 if (mask & (1 << i))
4084 unwind.frame_size += 8;
4085 }
4086
4087 /* Attempt to combine with a previous opcode. We do this because gcc
4088 likes to output separate unwind directives for a single block of
4089 registers. */
4090 if (unwind.opcode_count > 0)
4091 {
4092 i = unwind.opcodes[unwind.opcode_count - 1];
4093 if ((i & 0xf8) == 0xc0)
4094 {
4095 i &= 7;
4096 /* Only merge if the blocks are contiguous. */
4097 if (i < 6)
4098 {
4099 if ((mask & 0xfe00) == (1 << 9))
4100 {
4101 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4102 unwind.opcode_count--;
4103 }
4104 }
4105 else if (i == 6 && unwind.opcode_count >= 2)
4106 {
4107 i = unwind.opcodes[unwind.opcode_count - 2];
4108 reg = i >> 4;
4109 i &= 0xf;
4110
4111 op = 0xffff << (reg - 1);
4112 if (reg > 0
4113 && ((mask & op) == (1u << (reg - 1))))
4114 {
4115 op = (1 << (reg + i + 1)) - 1;
4116 op &= ~((1 << reg) - 1);
4117 mask |= op;
4118 unwind.opcode_count -= 2;
4119 }
4120 }
4121 }
4122 }
4123
4124 hi_reg = 15;
4125 /* We want to generate opcodes in the order the registers have been
4126 saved, ie. descending order. */
4127 for (reg = 15; reg >= -1; reg--)
4128 {
4129 /* Save registers in blocks. */
4130 if (reg < 0
4131 || !(mask & (1 << reg)))
4132 {
4133 /* We found an unsaved reg. Generate opcodes to save the
4134 preceding block. */
4135 if (reg != hi_reg)
4136 {
4137 if (reg == 9)
4138 {
4139 /* Short form. */
4140 op = 0xc0 | (hi_reg - 10);
4141 add_unwind_opcode (op, 1);
4142 }
4143 else
4144 {
4145 /* Long form. */
4146 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4147 add_unwind_opcode (op, 2);
4148 }
4149 }
4150 hi_reg = reg - 1;
4151 }
4152 }
4153
4154 return;
4155 error:
4156 ignore_rest_of_line ();
4157 }
4158
4159 static void
4160 s_arm_unwind_save_mmxwcg (void)
4161 {
4162 int reg;
4163 int hi_reg;
4164 unsigned mask = 0;
4165 valueT op;
4166
4167 if (*input_line_pointer == '{')
4168 input_line_pointer++;
4169
4170 skip_whitespace (input_line_pointer);
4171
4172 do
4173 {
4174 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4175
4176 if (reg == FAIL)
4177 {
4178 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4179 goto error;
4180 }
4181
4182 reg -= 8;
4183 if (mask >> reg)
4184 as_tsktsk (_("register list not in ascending order"));
4185 mask |= 1 << reg;
4186
4187 if (*input_line_pointer == '-')
4188 {
4189 input_line_pointer++;
4190 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4191 if (hi_reg == FAIL)
4192 {
4193 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4194 goto error;
4195 }
4196 else if (reg >= hi_reg)
4197 {
4198 as_bad (_("bad register range"));
4199 goto error;
4200 }
4201 for (; reg < hi_reg; reg++)
4202 mask |= 1 << reg;
4203 }
4204 }
4205 while (skip_past_comma (&input_line_pointer) != FAIL);
4206
4207 skip_past_char (&input_line_pointer, '}');
4208
4209 demand_empty_rest_of_line ();
4210
4211 /* Generate any deferred opcodes because we're going to be looking at
4212 the list. */
4213 flush_pending_unwind ();
4214
4215 for (reg = 0; reg < 16; reg++)
4216 {
4217 if (mask & (1 << reg))
4218 unwind.frame_size += 4;
4219 }
4220 op = 0xc700 | mask;
4221 add_unwind_opcode (op, 2);
4222 return;
4223 error:
4224 ignore_rest_of_line ();
4225 }
4226
4227
4228 /* Parse an unwind_save directive.
4229 If the argument is non-zero, this is a .vsave directive. */
4230
4231 static void
4232 s_arm_unwind_save (int arch_v6)
4233 {
4234 char *peek;
4235 struct reg_entry *reg;
4236 bfd_boolean had_brace = FALSE;
4237
4238 if (!unwind.proc_start)
4239 as_bad (MISSING_FNSTART);
4240
4241 /* Figure out what sort of save we have. */
4242 peek = input_line_pointer;
4243
4244 if (*peek == '{')
4245 {
4246 had_brace = TRUE;
4247 peek++;
4248 }
4249
4250 reg = arm_reg_parse_multi (&peek);
4251
4252 if (!reg)
4253 {
4254 as_bad (_("register expected"));
4255 ignore_rest_of_line ();
4256 return;
4257 }
4258
4259 switch (reg->type)
4260 {
4261 case REG_TYPE_FN:
4262 if (had_brace)
4263 {
4264 as_bad (_("FPA .unwind_save does not take a register list"));
4265 ignore_rest_of_line ();
4266 return;
4267 }
4268 input_line_pointer = peek;
4269 s_arm_unwind_save_fpa (reg->number);
4270 return;
4271
4272 case REG_TYPE_RN:
4273 s_arm_unwind_save_core ();
4274 return;
4275
4276 case REG_TYPE_VFD:
4277 if (arch_v6)
4278 s_arm_unwind_save_vfp_armv6 ();
4279 else
4280 s_arm_unwind_save_vfp ();
4281 return;
4282
4283 case REG_TYPE_MMXWR:
4284 s_arm_unwind_save_mmxwr ();
4285 return;
4286
4287 case REG_TYPE_MMXWCG:
4288 s_arm_unwind_save_mmxwcg ();
4289 return;
4290
4291 default:
4292 as_bad (_(".unwind_save does not support this kind of register"));
4293 ignore_rest_of_line ();
4294 }
4295 }
4296
4297
4298 /* Parse an unwind_movsp directive. */
4299
4300 static void
4301 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4302 {
4303 int reg;
4304 valueT op;
4305 int offset;
4306
4307 if (!unwind.proc_start)
4308 as_bad (MISSING_FNSTART);
4309
4310 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4311 if (reg == FAIL)
4312 {
4313 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4314 ignore_rest_of_line ();
4315 return;
4316 }
4317
4318 /* Optional constant. */
4319 if (skip_past_comma (&input_line_pointer) != FAIL)
4320 {
4321 if (immediate_for_directive (&offset) == FAIL)
4322 return;
4323 }
4324 else
4325 offset = 0;
4326
4327 demand_empty_rest_of_line ();
4328
4329 if (reg == REG_SP || reg == REG_PC)
4330 {
4331 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4332 return;
4333 }
4334
4335 if (unwind.fp_reg != REG_SP)
4336 as_bad (_("unexpected .unwind_movsp directive"));
4337
4338 /* Generate opcode to restore the value. */
4339 op = 0x90 | reg;
4340 add_unwind_opcode (op, 1);
4341
4342 /* Record the information for later. */
4343 unwind.fp_reg = reg;
4344 unwind.fp_offset = unwind.frame_size - offset;
4345 unwind.sp_restored = 1;
4346 }
4347
4348 /* Parse an unwind_pad directive. */
4349
4350 static void
4351 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4352 {
4353 int offset;
4354
4355 if (!unwind.proc_start)
4356 as_bad (MISSING_FNSTART);
4357
4358 if (immediate_for_directive (&offset) == FAIL)
4359 return;
4360
4361 if (offset & 3)
4362 {
4363 as_bad (_("stack increment must be multiple of 4"));
4364 ignore_rest_of_line ();
4365 return;
4366 }
4367
4368 /* Don't generate any opcodes, just record the details for later. */
4369 unwind.frame_size += offset;
4370 unwind.pending_offset += offset;
4371
4372 demand_empty_rest_of_line ();
4373 }
4374
4375 /* Parse an unwind_setfp directive. */
4376
4377 static void
4378 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4379 {
4380 int sp_reg;
4381 int fp_reg;
4382 int offset;
4383
4384 if (!unwind.proc_start)
4385 as_bad (MISSING_FNSTART);
4386
4387 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4388 if (skip_past_comma (&input_line_pointer) == FAIL)
4389 sp_reg = FAIL;
4390 else
4391 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4392
4393 if (fp_reg == FAIL || sp_reg == FAIL)
4394 {
4395 as_bad (_("expected <reg>, <reg>"));
4396 ignore_rest_of_line ();
4397 return;
4398 }
4399
4400 /* Optional constant. */
4401 if (skip_past_comma (&input_line_pointer) != FAIL)
4402 {
4403 if (immediate_for_directive (&offset) == FAIL)
4404 return;
4405 }
4406 else
4407 offset = 0;
4408
4409 demand_empty_rest_of_line ();
4410
4411 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4412 {
4413 as_bad (_("register must be either sp or set by a previous"
4414 "unwind_movsp directive"));
4415 return;
4416 }
4417
4418 /* Don't generate any opcodes, just record the information for later. */
4419 unwind.fp_reg = fp_reg;
4420 unwind.fp_used = 1;
4421 if (sp_reg == REG_SP)
4422 unwind.fp_offset = unwind.frame_size - offset;
4423 else
4424 unwind.fp_offset -= offset;
4425 }
4426
4427 /* Parse an unwind_raw directive. */
4428
4429 static void
4430 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4431 {
4432 expressionS exp;
4433 /* This is an arbitrary limit. */
4434 unsigned char op[16];
4435 int count;
4436
4437 if (!unwind.proc_start)
4438 as_bad (MISSING_FNSTART);
4439
4440 expression (&exp);
4441 if (exp.X_op == O_constant
4442 && skip_past_comma (&input_line_pointer) != FAIL)
4443 {
4444 unwind.frame_size += exp.X_add_number;
4445 expression (&exp);
4446 }
4447 else
4448 exp.X_op = O_illegal;
4449
4450 if (exp.X_op != O_constant)
4451 {
4452 as_bad (_("expected <offset>, <opcode>"));
4453 ignore_rest_of_line ();
4454 return;
4455 }
4456
4457 count = 0;
4458
4459 /* Parse the opcode. */
4460 for (;;)
4461 {
4462 if (count >= 16)
4463 {
4464 as_bad (_("unwind opcode too long"));
4465 ignore_rest_of_line ();
4466 }
4467 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4468 {
4469 as_bad (_("invalid unwind opcode"));
4470 ignore_rest_of_line ();
4471 return;
4472 }
4473 op[count++] = exp.X_add_number;
4474
4475 /* Parse the next byte. */
4476 if (skip_past_comma (&input_line_pointer) == FAIL)
4477 break;
4478
4479 expression (&exp);
4480 }
4481
4482 /* Add the opcode bytes in reverse order. */
4483 while (count--)
4484 add_unwind_opcode (op[count], 1);
4485
4486 demand_empty_rest_of_line ();
4487 }
4488
4489
4490 /* Parse a .eabi_attribute directive. */
4491
4492 static void
4493 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4494 {
4495 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4496
4497 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4498 attributes_set_explicitly[tag] = 1;
4499 }
4500
4501 /* Emit a tls fix for the symbol. */
4502
4503 static void
4504 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4505 {
4506 char *p;
4507 expressionS exp;
4508 #ifdef md_flush_pending_output
4509 md_flush_pending_output ();
4510 #endif
4511
4512 #ifdef md_cons_align
4513 md_cons_align (4);
4514 #endif
4515
4516 /* Since we're just labelling the code, there's no need to define a
4517 mapping symbol. */
4518 expression (&exp);
4519 p = obstack_next_free (&frchain_now->frch_obstack);
4520 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4521 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4522 : BFD_RELOC_ARM_TLS_DESCSEQ);
4523 }
4524 #endif /* OBJ_ELF */
4525
4526 static void s_arm_arch (int);
4527 static void s_arm_object_arch (int);
4528 static void s_arm_cpu (int);
4529 static void s_arm_fpu (int);
4530 static void s_arm_arch_extension (int);
4531
4532 #ifdef TE_PE
4533
4534 static void
4535 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4536 {
4537 expressionS exp;
4538
4539 do
4540 {
4541 expression (&exp);
4542 if (exp.X_op == O_symbol)
4543 exp.X_op = O_secrel;
4544
4545 emit_expr (&exp, 4);
4546 }
4547 while (*input_line_pointer++ == ',');
4548
4549 input_line_pointer--;
4550 demand_empty_rest_of_line ();
4551 }
4552 #endif /* TE_PE */
4553
4554 /* This table describes all the machine specific pseudo-ops the assembler
4555 has to support. The fields are:
4556 pseudo-op name without dot
4557 function to call to execute this pseudo-op
4558 Integer arg to pass to the function. */
4559
4560 const pseudo_typeS md_pseudo_table[] =
4561 {
4562 /* Never called because '.req' does not start a line. */
4563 { "req", s_req, 0 },
4564 /* Following two are likewise never called. */
4565 { "dn", s_dn, 0 },
4566 { "qn", s_qn, 0 },
4567 { "unreq", s_unreq, 0 },
4568 { "bss", s_bss, 0 },
4569 { "align", s_align, 0 },
4570 { "arm", s_arm, 0 },
4571 { "thumb", s_thumb, 0 },
4572 { "code", s_code, 0 },
4573 { "force_thumb", s_force_thumb, 0 },
4574 { "thumb_func", s_thumb_func, 0 },
4575 { "thumb_set", s_thumb_set, 0 },
4576 { "even", s_even, 0 },
4577 { "ltorg", s_ltorg, 0 },
4578 { "pool", s_ltorg, 0 },
4579 { "syntax", s_syntax, 0 },
4580 { "cpu", s_arm_cpu, 0 },
4581 { "arch", s_arm_arch, 0 },
4582 { "object_arch", s_arm_object_arch, 0 },
4583 { "fpu", s_arm_fpu, 0 },
4584 { "arch_extension", s_arm_arch_extension, 0 },
4585 #ifdef OBJ_ELF
4586 { "word", s_arm_elf_cons, 4 },
4587 { "long", s_arm_elf_cons, 4 },
4588 { "inst.n", s_arm_elf_inst, 2 },
4589 { "inst.w", s_arm_elf_inst, 4 },
4590 { "inst", s_arm_elf_inst, 0 },
4591 { "rel31", s_arm_rel31, 0 },
4592 { "fnstart", s_arm_unwind_fnstart, 0 },
4593 { "fnend", s_arm_unwind_fnend, 0 },
4594 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4595 { "personality", s_arm_unwind_personality, 0 },
4596 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4597 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4598 { "save", s_arm_unwind_save, 0 },
4599 { "vsave", s_arm_unwind_save, 1 },
4600 { "movsp", s_arm_unwind_movsp, 0 },
4601 { "pad", s_arm_unwind_pad, 0 },
4602 { "setfp", s_arm_unwind_setfp, 0 },
4603 { "unwind_raw", s_arm_unwind_raw, 0 },
4604 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4605 { "tlsdescseq", s_arm_tls_descseq, 0 },
4606 #else
4607 { "word", cons, 4},
4608
4609 /* These are used for dwarf. */
4610 {"2byte", cons, 2},
4611 {"4byte", cons, 4},
4612 {"8byte", cons, 8},
4613 /* These are used for dwarf2. */
4614 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4615 { "loc", dwarf2_directive_loc, 0 },
4616 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4617 #endif
4618 { "extend", float_cons, 'x' },
4619 { "ldouble", float_cons, 'x' },
4620 { "packed", float_cons, 'p' },
4621 #ifdef TE_PE
4622 {"secrel32", pe_directive_secrel, 0},
4623 #endif
4624
4625 /* These are for compatibility with CodeComposer Studio. */
4626 {"ref", s_ccs_ref, 0},
4627 {"def", s_ccs_def, 0},
4628 {"asmfunc", s_ccs_asmfunc, 0},
4629 {"endasmfunc", s_ccs_endasmfunc, 0},
4630
4631 { 0, 0, 0 }
4632 };
4633 \f
4634 /* Parser functions used exclusively in instruction operands. */
4635
4636 /* Generic immediate-value read function for use in insn parsing.
4637 STR points to the beginning of the immediate (the leading #);
4638 VAL receives the value; if the value is outside [MIN, MAX]
4639 issue an error. PREFIX_OPT is true if the immediate prefix is
4640 optional. */
4641
4642 static int
4643 parse_immediate (char **str, int *val, int min, int max,
4644 bfd_boolean prefix_opt)
4645 {
4646 expressionS exp;
4647 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4648 if (exp.X_op != O_constant)
4649 {
4650 inst.error = _("constant expression required");
4651 return FAIL;
4652 }
4653
4654 if (exp.X_add_number < min || exp.X_add_number > max)
4655 {
4656 inst.error = _("immediate value out of range");
4657 return FAIL;
4658 }
4659
4660 *val = exp.X_add_number;
4661 return SUCCESS;
4662 }
4663
4664 /* Less-generic immediate-value read function with the possibility of loading a
4665 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4666 instructions. Puts the result directly in inst.operands[i]. */
4667
4668 static int
4669 parse_big_immediate (char **str, int i)
4670 {
4671 expressionS exp;
4672 char *ptr = *str;
4673
4674 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4675
4676 if (exp.X_op == O_constant)
4677 {
4678 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4679 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4680 O_constant. We have to be careful not to break compilation for
4681 32-bit X_add_number, though. */
4682 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4683 {
4684 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4685 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4686 inst.operands[i].regisimm = 1;
4687 }
4688 }
4689 else if (exp.X_op == O_big
4690 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4691 {
4692 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4693
4694 /* Bignums have their least significant bits in
4695 generic_bignum[0]. Make sure we put 32 bits in imm and
4696 32 bits in reg, in a (hopefully) portable way. */
4697 gas_assert (parts != 0);
4698
4699 /* Make sure that the number is not too big.
4700 PR 11972: Bignums can now be sign-extended to the
4701 size of a .octa so check that the out of range bits
4702 are all zero or all one. */
4703 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4704 {
4705 LITTLENUM_TYPE m = -1;
4706
4707 if (generic_bignum[parts * 2] != 0
4708 && generic_bignum[parts * 2] != m)
4709 return FAIL;
4710
4711 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4712 if (generic_bignum[j] != generic_bignum[j-1])
4713 return FAIL;
4714 }
4715
4716 inst.operands[i].imm = 0;
4717 for (j = 0; j < parts; j++, idx++)
4718 inst.operands[i].imm |= generic_bignum[idx]
4719 << (LITTLENUM_NUMBER_OF_BITS * j);
4720 inst.operands[i].reg = 0;
4721 for (j = 0; j < parts; j++, idx++)
4722 inst.operands[i].reg |= generic_bignum[idx]
4723 << (LITTLENUM_NUMBER_OF_BITS * j);
4724 inst.operands[i].regisimm = 1;
4725 }
4726 else
4727 return FAIL;
4728
4729 *str = ptr;
4730
4731 return SUCCESS;
4732 }
4733
4734 /* Returns the pseudo-register number of an FPA immediate constant,
4735 or FAIL if there isn't a valid constant here. */
4736
4737 static int
4738 parse_fpa_immediate (char ** str)
4739 {
4740 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4741 char * save_in;
4742 expressionS exp;
4743 int i;
4744 int j;
4745
4746 /* First try and match exact strings, this is to guarantee
4747 that some formats will work even for cross assembly. */
4748
4749 for (i = 0; fp_const[i]; i++)
4750 {
4751 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4752 {
4753 char *start = *str;
4754
4755 *str += strlen (fp_const[i]);
4756 if (is_end_of_line[(unsigned char) **str])
4757 return i + 8;
4758 *str = start;
4759 }
4760 }
4761
4762 /* Just because we didn't get a match doesn't mean that the constant
4763 isn't valid, just that it is in a format that we don't
4764 automatically recognize. Try parsing it with the standard
4765 expression routines. */
4766
4767 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4768
4769 /* Look for a raw floating point number. */
4770 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4771 && is_end_of_line[(unsigned char) *save_in])
4772 {
4773 for (i = 0; i < NUM_FLOAT_VALS; i++)
4774 {
4775 for (j = 0; j < MAX_LITTLENUMS; j++)
4776 {
4777 if (words[j] != fp_values[i][j])
4778 break;
4779 }
4780
4781 if (j == MAX_LITTLENUMS)
4782 {
4783 *str = save_in;
4784 return i + 8;
4785 }
4786 }
4787 }
4788
4789 /* Try and parse a more complex expression, this will probably fail
4790 unless the code uses a floating point prefix (eg "0f"). */
4791 save_in = input_line_pointer;
4792 input_line_pointer = *str;
4793 if (expression (&exp) == absolute_section
4794 && exp.X_op == O_big
4795 && exp.X_add_number < 0)
4796 {
4797 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4798 Ditto for 15. */
4799 if (gen_to_words (words, 5, (long) 15) == 0)
4800 {
4801 for (i = 0; i < NUM_FLOAT_VALS; i++)
4802 {
4803 for (j = 0; j < MAX_LITTLENUMS; j++)
4804 {
4805 if (words[j] != fp_values[i][j])
4806 break;
4807 }
4808
4809 if (j == MAX_LITTLENUMS)
4810 {
4811 *str = input_line_pointer;
4812 input_line_pointer = save_in;
4813 return i + 8;
4814 }
4815 }
4816 }
4817 }
4818
4819 *str = input_line_pointer;
4820 input_line_pointer = save_in;
4821 inst.error = _("invalid FPA immediate expression");
4822 return FAIL;
4823 }
4824
4825 /* Returns 1 if a number has "quarter-precision" float format
4826 0baBbbbbbc defgh000 00000000 00000000. */
4827
4828 static int
4829 is_quarter_float (unsigned imm)
4830 {
4831 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4832 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4833 }
4834
4835 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4836 0baBbbbbbc defgh000 00000000 00000000.
4837 The zero and minus-zero cases need special handling, since they can't be
4838 encoded in the "quarter-precision" float format, but can nonetheless be
4839 loaded as integer constants. */
4840
4841 static unsigned
4842 parse_qfloat_immediate (char **ccp, int *immed)
4843 {
4844 char *str = *ccp;
4845 char *fpnum;
4846 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4847 int found_fpchar = 0;
4848
4849 skip_past_char (&str, '#');
4850
4851 /* We must not accidentally parse an integer as a floating-point number. Make
4852 sure that the value we parse is not an integer by checking for special
4853 characters '.' or 'e'.
4854 FIXME: This is a horrible hack, but doing better is tricky because type
4855 information isn't in a very usable state at parse time. */
4856 fpnum = str;
4857 skip_whitespace (fpnum);
4858
4859 if (strncmp (fpnum, "0x", 2) == 0)
4860 return FAIL;
4861 else
4862 {
4863 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4864 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4865 {
4866 found_fpchar = 1;
4867 break;
4868 }
4869
4870 if (!found_fpchar)
4871 return FAIL;
4872 }
4873
4874 if ((str = atof_ieee (str, 's', words)) != NULL)
4875 {
4876 unsigned fpword = 0;
4877 int i;
4878
4879 /* Our FP word must be 32 bits (single-precision FP). */
4880 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4881 {
4882 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4883 fpword |= words[i];
4884 }
4885
4886 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4887 *immed = fpword;
4888 else
4889 return FAIL;
4890
4891 *ccp = str;
4892
4893 return SUCCESS;
4894 }
4895
4896 return FAIL;
4897 }
4898
4899 /* Shift operands. */
4900 enum shift_kind
4901 {
4902 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4903 };
4904
4905 struct asm_shift_name
4906 {
4907 const char *name;
4908 enum shift_kind kind;
4909 };
4910
4911 /* Third argument to parse_shift. */
4912 enum parse_shift_mode
4913 {
4914 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4915 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4916 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4917 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4918 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4919 };
4920
4921 /* Parse a <shift> specifier on an ARM data processing instruction.
4922 This has three forms:
4923
4924 (LSL|LSR|ASL|ASR|ROR) Rs
4925 (LSL|LSR|ASL|ASR|ROR) #imm
4926 RRX
4927
4928 Note that ASL is assimilated to LSL in the instruction encoding, and
4929 RRX to ROR #0 (which cannot be written as such). */
4930
4931 static int
4932 parse_shift (char **str, int i, enum parse_shift_mode mode)
4933 {
4934 const struct asm_shift_name *shift_name;
4935 enum shift_kind shift;
4936 char *s = *str;
4937 char *p = s;
4938 int reg;
4939
4940 for (p = *str; ISALPHA (*p); p++)
4941 ;
4942
4943 if (p == *str)
4944 {
4945 inst.error = _("shift expression expected");
4946 return FAIL;
4947 }
4948
4949 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4950 p - *str);
4951
4952 if (shift_name == NULL)
4953 {
4954 inst.error = _("shift expression expected");
4955 return FAIL;
4956 }
4957
4958 shift = shift_name->kind;
4959
4960 switch (mode)
4961 {
4962 case NO_SHIFT_RESTRICT:
4963 case SHIFT_IMMEDIATE: break;
4964
4965 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4966 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4967 {
4968 inst.error = _("'LSL' or 'ASR' required");
4969 return FAIL;
4970 }
4971 break;
4972
4973 case SHIFT_LSL_IMMEDIATE:
4974 if (shift != SHIFT_LSL)
4975 {
4976 inst.error = _("'LSL' required");
4977 return FAIL;
4978 }
4979 break;
4980
4981 case SHIFT_ASR_IMMEDIATE:
4982 if (shift != SHIFT_ASR)
4983 {
4984 inst.error = _("'ASR' required");
4985 return FAIL;
4986 }
4987 break;
4988
4989 default: abort ();
4990 }
4991
4992 if (shift != SHIFT_RRX)
4993 {
4994 /* Whitespace can appear here if the next thing is a bare digit. */
4995 skip_whitespace (p);
4996
4997 if (mode == NO_SHIFT_RESTRICT
4998 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4999 {
5000 inst.operands[i].imm = reg;
5001 inst.operands[i].immisreg = 1;
5002 }
5003 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5004 return FAIL;
5005 }
5006 inst.operands[i].shift_kind = shift;
5007 inst.operands[i].shifted = 1;
5008 *str = p;
5009 return SUCCESS;
5010 }
5011
5012 /* Parse a <shifter_operand> for an ARM data processing instruction:
5013
5014 #<immediate>
5015 #<immediate>, <rotate>
5016 <Rm>
5017 <Rm>, <shift>
5018
5019 where <shift> is defined by parse_shift above, and <rotate> is a
5020 multiple of 2 between 0 and 30. Validation of immediate operands
5021 is deferred to md_apply_fix. */
5022
5023 static int
5024 parse_shifter_operand (char **str, int i)
5025 {
5026 int value;
5027 expressionS exp;
5028
5029 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5030 {
5031 inst.operands[i].reg = value;
5032 inst.operands[i].isreg = 1;
5033
5034 /* parse_shift will override this if appropriate */
5035 inst.reloc.exp.X_op = O_constant;
5036 inst.reloc.exp.X_add_number = 0;
5037
5038 if (skip_past_comma (str) == FAIL)
5039 return SUCCESS;
5040
5041 /* Shift operation on register. */
5042 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5043 }
5044
5045 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5046 return FAIL;
5047
5048 if (skip_past_comma (str) == SUCCESS)
5049 {
5050 /* #x, y -- ie explicit rotation by Y. */
5051 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5052 return FAIL;
5053
5054 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
5055 {
5056 inst.error = _("constant expression expected");
5057 return FAIL;
5058 }
5059
5060 value = exp.X_add_number;
5061 if (value < 0 || value > 30 || value % 2 != 0)
5062 {
5063 inst.error = _("invalid rotation");
5064 return FAIL;
5065 }
5066 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5067 {
5068 inst.error = _("invalid constant");
5069 return FAIL;
5070 }
5071
5072 /* Encode as specified. */
5073 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5074 return SUCCESS;
5075 }
5076
5077 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5078 inst.reloc.pc_rel = 0;
5079 return SUCCESS;
5080 }
5081
5082 /* Group relocation information. Each entry in the table contains the
5083 textual name of the relocation as may appear in assembler source
5084 and must end with a colon.
5085 Along with this textual name are the relocation codes to be used if
5086 the corresponding instruction is an ALU instruction (ADD or SUB only),
5087 an LDR, an LDRS, or an LDC. */
5088
5089 struct group_reloc_table_entry
5090 {
5091 const char *name;
5092 int alu_code;
5093 int ldr_code;
5094 int ldrs_code;
5095 int ldc_code;
5096 };
5097
5098 typedef enum
5099 {
5100 /* Varieties of non-ALU group relocation. */
5101
5102 GROUP_LDR,
5103 GROUP_LDRS,
5104 GROUP_LDC
5105 } group_reloc_type;
5106
5107 static struct group_reloc_table_entry group_reloc_table[] =
5108 { /* Program counter relative: */
5109 { "pc_g0_nc",
5110 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5111 0, /* LDR */
5112 0, /* LDRS */
5113 0 }, /* LDC */
5114 { "pc_g0",
5115 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5116 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5117 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5118 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5119 { "pc_g1_nc",
5120 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5121 0, /* LDR */
5122 0, /* LDRS */
5123 0 }, /* LDC */
5124 { "pc_g1",
5125 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5126 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5127 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5128 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5129 { "pc_g2",
5130 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5131 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5132 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5133 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5134 /* Section base relative */
5135 { "sb_g0_nc",
5136 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5137 0, /* LDR */
5138 0, /* LDRS */
5139 0 }, /* LDC */
5140 { "sb_g0",
5141 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5142 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5143 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5144 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5145 { "sb_g1_nc",
5146 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5147 0, /* LDR */
5148 0, /* LDRS */
5149 0 }, /* LDC */
5150 { "sb_g1",
5151 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5152 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5153 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5154 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5155 { "sb_g2",
5156 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5157 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5158 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5159 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
5160
5161 /* Given the address of a pointer pointing to the textual name of a group
5162 relocation as may appear in assembler source, attempt to find its details
5163 in group_reloc_table. The pointer will be updated to the character after
5164 the trailing colon. On failure, FAIL will be returned; SUCCESS
5165 otherwise. On success, *entry will be updated to point at the relevant
5166 group_reloc_table entry. */
5167
5168 static int
5169 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5170 {
5171 unsigned int i;
5172 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5173 {
5174 int length = strlen (group_reloc_table[i].name);
5175
5176 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5177 && (*str)[length] == ':')
5178 {
5179 *out = &group_reloc_table[i];
5180 *str += (length + 1);
5181 return SUCCESS;
5182 }
5183 }
5184
5185 return FAIL;
5186 }
5187
5188 /* Parse a <shifter_operand> for an ARM data processing instruction
5189 (as for parse_shifter_operand) where group relocations are allowed:
5190
5191 #<immediate>
5192 #<immediate>, <rotate>
5193 #:<group_reloc>:<expression>
5194 <Rm>
5195 <Rm>, <shift>
5196
5197 where <group_reloc> is one of the strings defined in group_reloc_table.
5198 The hashes are optional.
5199
5200 Everything else is as for parse_shifter_operand. */
5201
5202 static parse_operand_result
5203 parse_shifter_operand_group_reloc (char **str, int i)
5204 {
5205 /* Determine if we have the sequence of characters #: or just :
5206 coming next. If we do, then we check for a group relocation.
5207 If we don't, punt the whole lot to parse_shifter_operand. */
5208
5209 if (((*str)[0] == '#' && (*str)[1] == ':')
5210 || (*str)[0] == ':')
5211 {
5212 struct group_reloc_table_entry *entry;
5213
5214 if ((*str)[0] == '#')
5215 (*str) += 2;
5216 else
5217 (*str)++;
5218
5219 /* Try to parse a group relocation. Anything else is an error. */
5220 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5221 {
5222 inst.error = _("unknown group relocation");
5223 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5224 }
5225
5226 /* We now have the group relocation table entry corresponding to
5227 the name in the assembler source. Next, we parse the expression. */
5228 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5229 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5230
5231 /* Record the relocation type (always the ALU variant here). */
5232 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5233 gas_assert (inst.reloc.type != 0);
5234
5235 return PARSE_OPERAND_SUCCESS;
5236 }
5237 else
5238 return parse_shifter_operand (str, i) == SUCCESS
5239 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5240
5241 /* Never reached. */
5242 }
5243
5244 /* Parse a Neon alignment expression. Information is written to
5245 inst.operands[i]. We assume the initial ':' has been skipped.
5246
5247 align .imm = align << 8, .immisalign=1, .preind=0 */
5248 static parse_operand_result
5249 parse_neon_alignment (char **str, int i)
5250 {
5251 char *p = *str;
5252 expressionS exp;
5253
5254 my_get_expression (&exp, &p, GE_NO_PREFIX);
5255
5256 if (exp.X_op != O_constant)
5257 {
5258 inst.error = _("alignment must be constant");
5259 return PARSE_OPERAND_FAIL;
5260 }
5261
5262 inst.operands[i].imm = exp.X_add_number << 8;
5263 inst.operands[i].immisalign = 1;
5264 /* Alignments are not pre-indexes. */
5265 inst.operands[i].preind = 0;
5266
5267 *str = p;
5268 return PARSE_OPERAND_SUCCESS;
5269 }
5270
5271 /* Parse all forms of an ARM address expression. Information is written
5272 to inst.operands[i] and/or inst.reloc.
5273
5274 Preindexed addressing (.preind=1):
5275
5276 [Rn, #offset] .reg=Rn .reloc.exp=offset
5277 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5278 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5279 .shift_kind=shift .reloc.exp=shift_imm
5280
5281 These three may have a trailing ! which causes .writeback to be set also.
5282
5283 Postindexed addressing (.postind=1, .writeback=1):
5284
5285 [Rn], #offset .reg=Rn .reloc.exp=offset
5286 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5287 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5288 .shift_kind=shift .reloc.exp=shift_imm
5289
5290 Unindexed addressing (.preind=0, .postind=0):
5291
5292 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5293
5294 Other:
5295
5296 [Rn]{!} shorthand for [Rn,#0]{!}
5297 =immediate .isreg=0 .reloc.exp=immediate
5298 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5299
5300 It is the caller's responsibility to check for addressing modes not
5301 supported by the instruction, and to set inst.reloc.type. */
5302
5303 static parse_operand_result
5304 parse_address_main (char **str, int i, int group_relocations,
5305 group_reloc_type group_type)
5306 {
5307 char *p = *str;
5308 int reg;
5309
5310 if (skip_past_char (&p, '[') == FAIL)
5311 {
5312 if (skip_past_char (&p, '=') == FAIL)
5313 {
5314 /* Bare address - translate to PC-relative offset. */
5315 inst.reloc.pc_rel = 1;
5316 inst.operands[i].reg = REG_PC;
5317 inst.operands[i].isreg = 1;
5318 inst.operands[i].preind = 1;
5319 }
5320 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5321
5322 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5323 return PARSE_OPERAND_FAIL;
5324
5325 *str = p;
5326 return PARSE_OPERAND_SUCCESS;
5327 }
5328
5329 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5330 skip_whitespace (p);
5331
5332 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5333 {
5334 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5335 return PARSE_OPERAND_FAIL;
5336 }
5337 inst.operands[i].reg = reg;
5338 inst.operands[i].isreg = 1;
5339
5340 if (skip_past_comma (&p) == SUCCESS)
5341 {
5342 inst.operands[i].preind = 1;
5343
5344 if (*p == '+') p++;
5345 else if (*p == '-') p++, inst.operands[i].negative = 1;
5346
5347 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5348 {
5349 inst.operands[i].imm = reg;
5350 inst.operands[i].immisreg = 1;
5351
5352 if (skip_past_comma (&p) == SUCCESS)
5353 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5354 return PARSE_OPERAND_FAIL;
5355 }
5356 else if (skip_past_char (&p, ':') == SUCCESS)
5357 {
5358 /* FIXME: '@' should be used here, but it's filtered out by generic
5359 code before we get to see it here. This may be subject to
5360 change. */
5361 parse_operand_result result = parse_neon_alignment (&p, i);
5362
5363 if (result != PARSE_OPERAND_SUCCESS)
5364 return result;
5365 }
5366 else
5367 {
5368 if (inst.operands[i].negative)
5369 {
5370 inst.operands[i].negative = 0;
5371 p--;
5372 }
5373
5374 if (group_relocations
5375 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5376 {
5377 struct group_reloc_table_entry *entry;
5378
5379 /* Skip over the #: or : sequence. */
5380 if (*p == '#')
5381 p += 2;
5382 else
5383 p++;
5384
5385 /* Try to parse a group relocation. Anything else is an
5386 error. */
5387 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5388 {
5389 inst.error = _("unknown group relocation");
5390 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5391 }
5392
5393 /* We now have the group relocation table entry corresponding to
5394 the name in the assembler source. Next, we parse the
5395 expression. */
5396 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5397 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5398
5399 /* Record the relocation type. */
5400 switch (group_type)
5401 {
5402 case GROUP_LDR:
5403 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5404 break;
5405
5406 case GROUP_LDRS:
5407 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5408 break;
5409
5410 case GROUP_LDC:
5411 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5412 break;
5413
5414 default:
5415 gas_assert (0);
5416 }
5417
5418 if (inst.reloc.type == 0)
5419 {
5420 inst.error = _("this group relocation is not allowed on this instruction");
5421 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5422 }
5423 }
5424 else
5425 {
5426 char *q = p;
5427 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5428 return PARSE_OPERAND_FAIL;
5429 /* If the offset is 0, find out if it's a +0 or -0. */
5430 if (inst.reloc.exp.X_op == O_constant
5431 && inst.reloc.exp.X_add_number == 0)
5432 {
5433 skip_whitespace (q);
5434 if (*q == '#')
5435 {
5436 q++;
5437 skip_whitespace (q);
5438 }
5439 if (*q == '-')
5440 inst.operands[i].negative = 1;
5441 }
5442 }
5443 }
5444 }
5445 else if (skip_past_char (&p, ':') == SUCCESS)
5446 {
5447 /* FIXME: '@' should be used here, but it's filtered out by generic code
5448 before we get to see it here. This may be subject to change. */
5449 parse_operand_result result = parse_neon_alignment (&p, i);
5450
5451 if (result != PARSE_OPERAND_SUCCESS)
5452 return result;
5453 }
5454
5455 if (skip_past_char (&p, ']') == FAIL)
5456 {
5457 inst.error = _("']' expected");
5458 return PARSE_OPERAND_FAIL;
5459 }
5460
5461 if (skip_past_char (&p, '!') == SUCCESS)
5462 inst.operands[i].writeback = 1;
5463
5464 else if (skip_past_comma (&p) == SUCCESS)
5465 {
5466 if (skip_past_char (&p, '{') == SUCCESS)
5467 {
5468 /* [Rn], {expr} - unindexed, with option */
5469 if (parse_immediate (&p, &inst.operands[i].imm,
5470 0, 255, TRUE) == FAIL)
5471 return PARSE_OPERAND_FAIL;
5472
5473 if (skip_past_char (&p, '}') == FAIL)
5474 {
5475 inst.error = _("'}' expected at end of 'option' field");
5476 return PARSE_OPERAND_FAIL;
5477 }
5478 if (inst.operands[i].preind)
5479 {
5480 inst.error = _("cannot combine index with option");
5481 return PARSE_OPERAND_FAIL;
5482 }
5483 *str = p;
5484 return PARSE_OPERAND_SUCCESS;
5485 }
5486 else
5487 {
5488 inst.operands[i].postind = 1;
5489 inst.operands[i].writeback = 1;
5490
5491 if (inst.operands[i].preind)
5492 {
5493 inst.error = _("cannot combine pre- and post-indexing");
5494 return PARSE_OPERAND_FAIL;
5495 }
5496
5497 if (*p == '+') p++;
5498 else if (*p == '-') p++, inst.operands[i].negative = 1;
5499
5500 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5501 {
5502 /* We might be using the immediate for alignment already. If we
5503 are, OR the register number into the low-order bits. */
5504 if (inst.operands[i].immisalign)
5505 inst.operands[i].imm |= reg;
5506 else
5507 inst.operands[i].imm = reg;
5508 inst.operands[i].immisreg = 1;
5509
5510 if (skip_past_comma (&p) == SUCCESS)
5511 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5512 return PARSE_OPERAND_FAIL;
5513 }
5514 else
5515 {
5516 char *q = p;
5517 if (inst.operands[i].negative)
5518 {
5519 inst.operands[i].negative = 0;
5520 p--;
5521 }
5522 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5523 return PARSE_OPERAND_FAIL;
5524 /* If the offset is 0, find out if it's a +0 or -0. */
5525 if (inst.reloc.exp.X_op == O_constant
5526 && inst.reloc.exp.X_add_number == 0)
5527 {
5528 skip_whitespace (q);
5529 if (*q == '#')
5530 {
5531 q++;
5532 skip_whitespace (q);
5533 }
5534 if (*q == '-')
5535 inst.operands[i].negative = 1;
5536 }
5537 }
5538 }
5539 }
5540
5541 /* If at this point neither .preind nor .postind is set, we have a
5542 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5543 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5544 {
5545 inst.operands[i].preind = 1;
5546 inst.reloc.exp.X_op = O_constant;
5547 inst.reloc.exp.X_add_number = 0;
5548 }
5549 *str = p;
5550 return PARSE_OPERAND_SUCCESS;
5551 }
5552
5553 static int
5554 parse_address (char **str, int i)
5555 {
5556 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5557 ? SUCCESS : FAIL;
5558 }
5559
5560 static parse_operand_result
5561 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5562 {
5563 return parse_address_main (str, i, 1, type);
5564 }
5565
5566 /* Parse an operand for a MOVW or MOVT instruction. */
5567 static int
5568 parse_half (char **str)
5569 {
5570 char * p;
5571
5572 p = *str;
5573 skip_past_char (&p, '#');
5574 if (strncasecmp (p, ":lower16:", 9) == 0)
5575 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5576 else if (strncasecmp (p, ":upper16:", 9) == 0)
5577 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5578
5579 if (inst.reloc.type != BFD_RELOC_UNUSED)
5580 {
5581 p += 9;
5582 skip_whitespace (p);
5583 }
5584
5585 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5586 return FAIL;
5587
5588 if (inst.reloc.type == BFD_RELOC_UNUSED)
5589 {
5590 if (inst.reloc.exp.X_op != O_constant)
5591 {
5592 inst.error = _("constant expression expected");
5593 return FAIL;
5594 }
5595 if (inst.reloc.exp.X_add_number < 0
5596 || inst.reloc.exp.X_add_number > 0xffff)
5597 {
5598 inst.error = _("immediate value out of range");
5599 return FAIL;
5600 }
5601 }
5602 *str = p;
5603 return SUCCESS;
5604 }
5605
5606 /* Miscellaneous. */
5607
5608 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5609 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5610 static int
5611 parse_psr (char **str, bfd_boolean lhs)
5612 {
5613 char *p;
5614 unsigned long psr_field;
5615 const struct asm_psr *psr;
5616 char *start;
5617 bfd_boolean is_apsr = FALSE;
5618 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5619
5620 /* PR gas/12698: If the user has specified -march=all then m_profile will
5621 be TRUE, but we want to ignore it in this case as we are building for any
5622 CPU type, including non-m variants. */
5623 if (selected_cpu.core == arm_arch_any.core)
5624 m_profile = FALSE;
5625
5626 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5627 feature for ease of use and backwards compatibility. */
5628 p = *str;
5629 if (strncasecmp (p, "SPSR", 4) == 0)
5630 {
5631 if (m_profile)
5632 goto unsupported_psr;
5633
5634 psr_field = SPSR_BIT;
5635 }
5636 else if (strncasecmp (p, "CPSR", 4) == 0)
5637 {
5638 if (m_profile)
5639 goto unsupported_psr;
5640
5641 psr_field = 0;
5642 }
5643 else if (strncasecmp (p, "APSR", 4) == 0)
5644 {
5645 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5646 and ARMv7-R architecture CPUs. */
5647 is_apsr = TRUE;
5648 psr_field = 0;
5649 }
5650 else if (m_profile)
5651 {
5652 start = p;
5653 do
5654 p++;
5655 while (ISALNUM (*p) || *p == '_');
5656
5657 if (strncasecmp (start, "iapsr", 5) == 0
5658 || strncasecmp (start, "eapsr", 5) == 0
5659 || strncasecmp (start, "xpsr", 4) == 0
5660 || strncasecmp (start, "psr", 3) == 0)
5661 p = start + strcspn (start, "rR") + 1;
5662
5663 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5664 p - start);
5665
5666 if (!psr)
5667 return FAIL;
5668
5669 /* If APSR is being written, a bitfield may be specified. Note that
5670 APSR itself is handled above. */
5671 if (psr->field <= 3)
5672 {
5673 psr_field = psr->field;
5674 is_apsr = TRUE;
5675 goto check_suffix;
5676 }
5677
5678 *str = p;
5679 /* M-profile MSR instructions have the mask field set to "10", except
5680 *PSR variants which modify APSR, which may use a different mask (and
5681 have been handled already). Do that by setting the PSR_f field
5682 here. */
5683 return psr->field | (lhs ? PSR_f : 0);
5684 }
5685 else
5686 goto unsupported_psr;
5687
5688 p += 4;
5689 check_suffix:
5690 if (*p == '_')
5691 {
5692 /* A suffix follows. */
5693 p++;
5694 start = p;
5695
5696 do
5697 p++;
5698 while (ISALNUM (*p) || *p == '_');
5699
5700 if (is_apsr)
5701 {
5702 /* APSR uses a notation for bits, rather than fields. */
5703 unsigned int nzcvq_bits = 0;
5704 unsigned int g_bit = 0;
5705 char *bit;
5706
5707 for (bit = start; bit != p; bit++)
5708 {
5709 switch (TOLOWER (*bit))
5710 {
5711 case 'n':
5712 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5713 break;
5714
5715 case 'z':
5716 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5717 break;
5718
5719 case 'c':
5720 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5721 break;
5722
5723 case 'v':
5724 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5725 break;
5726
5727 case 'q':
5728 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5729 break;
5730
5731 case 'g':
5732 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5733 break;
5734
5735 default:
5736 inst.error = _("unexpected bit specified after APSR");
5737 return FAIL;
5738 }
5739 }
5740
5741 if (nzcvq_bits == 0x1f)
5742 psr_field |= PSR_f;
5743
5744 if (g_bit == 0x1)
5745 {
5746 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5747 {
5748 inst.error = _("selected processor does not "
5749 "support DSP extension");
5750 return FAIL;
5751 }
5752
5753 psr_field |= PSR_s;
5754 }
5755
5756 if ((nzcvq_bits & 0x20) != 0
5757 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5758 || (g_bit & 0x2) != 0)
5759 {
5760 inst.error = _("bad bitmask specified after APSR");
5761 return FAIL;
5762 }
5763 }
5764 else
5765 {
5766 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5767 p - start);
5768 if (!psr)
5769 goto error;
5770
5771 psr_field |= psr->field;
5772 }
5773 }
5774 else
5775 {
5776 if (ISALNUM (*p))
5777 goto error; /* Garbage after "[CS]PSR". */
5778
5779 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5780 is deprecated, but allow it anyway. */
5781 if (is_apsr && lhs)
5782 {
5783 psr_field |= PSR_f;
5784 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5785 "deprecated"));
5786 }
5787 else if (!m_profile)
5788 /* These bits are never right for M-profile devices: don't set them
5789 (only code paths which read/write APSR reach here). */
5790 psr_field |= (PSR_c | PSR_f);
5791 }
5792 *str = p;
5793 return psr_field;
5794
5795 unsupported_psr:
5796 inst.error = _("selected processor does not support requested special "
5797 "purpose register");
5798 return FAIL;
5799
5800 error:
5801 inst.error = _("flag for {c}psr instruction expected");
5802 return FAIL;
5803 }
5804
5805 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5806 value suitable for splatting into the AIF field of the instruction. */
5807
5808 static int
5809 parse_cps_flags (char **str)
5810 {
5811 int val = 0;
5812 int saw_a_flag = 0;
5813 char *s = *str;
5814
5815 for (;;)
5816 switch (*s++)
5817 {
5818 case '\0': case ',':
5819 goto done;
5820
5821 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5822 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5823 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5824
5825 default:
5826 inst.error = _("unrecognized CPS flag");
5827 return FAIL;
5828 }
5829
5830 done:
5831 if (saw_a_flag == 0)
5832 {
5833 inst.error = _("missing CPS flags");
5834 return FAIL;
5835 }
5836
5837 *str = s - 1;
5838 return val;
5839 }
5840
5841 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5842 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5843
5844 static int
5845 parse_endian_specifier (char **str)
5846 {
5847 int little_endian;
5848 char *s = *str;
5849
5850 if (strncasecmp (s, "BE", 2))
5851 little_endian = 0;
5852 else if (strncasecmp (s, "LE", 2))
5853 little_endian = 1;
5854 else
5855 {
5856 inst.error = _("valid endian specifiers are be or le");
5857 return FAIL;
5858 }
5859
5860 if (ISALNUM (s[2]) || s[2] == '_')
5861 {
5862 inst.error = _("valid endian specifiers are be or le");
5863 return FAIL;
5864 }
5865
5866 *str = s + 2;
5867 return little_endian;
5868 }
5869
5870 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5871 value suitable for poking into the rotate field of an sxt or sxta
5872 instruction, or FAIL on error. */
5873
5874 static int
5875 parse_ror (char **str)
5876 {
5877 int rot;
5878 char *s = *str;
5879
5880 if (strncasecmp (s, "ROR", 3) == 0)
5881 s += 3;
5882 else
5883 {
5884 inst.error = _("missing rotation field after comma");
5885 return FAIL;
5886 }
5887
5888 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5889 return FAIL;
5890
5891 switch (rot)
5892 {
5893 case 0: *str = s; return 0x0;
5894 case 8: *str = s; return 0x1;
5895 case 16: *str = s; return 0x2;
5896 case 24: *str = s; return 0x3;
5897
5898 default:
5899 inst.error = _("rotation can only be 0, 8, 16, or 24");
5900 return FAIL;
5901 }
5902 }
5903
5904 /* Parse a conditional code (from conds[] below). The value returned is in the
5905 range 0 .. 14, or FAIL. */
5906 static int
5907 parse_cond (char **str)
5908 {
5909 char *q;
5910 const struct asm_cond *c;
5911 int n;
5912 /* Condition codes are always 2 characters, so matching up to
5913 3 characters is sufficient. */
5914 char cond[3];
5915
5916 q = *str;
5917 n = 0;
5918 while (ISALPHA (*q) && n < 3)
5919 {
5920 cond[n] = TOLOWER (*q);
5921 q++;
5922 n++;
5923 }
5924
5925 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5926 if (!c)
5927 {
5928 inst.error = _("condition required");
5929 return FAIL;
5930 }
5931
5932 *str = q;
5933 return c->value;
5934 }
5935
5936 /* If the given feature available in the selected CPU, mark it as used.
5937 Returns TRUE iff feature is available. */
5938 static bfd_boolean
5939 mark_feature_used (const arm_feature_set *feature)
5940 {
5941 /* Ensure the option is valid on the current architecture. */
5942 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5943 return FALSE;
5944
5945 /* Add the appropriate architecture feature for the barrier option used.
5946 */
5947 if (thumb_mode)
5948 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5949 else
5950 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5951
5952 return TRUE;
5953 }
5954
5955 /* Parse an option for a barrier instruction. Returns the encoding for the
5956 option, or FAIL. */
5957 static int
5958 parse_barrier (char **str)
5959 {
5960 char *p, *q;
5961 const struct asm_barrier_opt *o;
5962
5963 p = q = *str;
5964 while (ISALPHA (*q))
5965 q++;
5966
5967 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5968 q - p);
5969 if (!o)
5970 return FAIL;
5971
5972 if (!mark_feature_used (&o->arch))
5973 return FAIL;
5974
5975 *str = q;
5976 return o->value;
5977 }
5978
5979 /* Parse the operands of a table branch instruction. Similar to a memory
5980 operand. */
5981 static int
5982 parse_tb (char **str)
5983 {
5984 char * p = *str;
5985 int reg;
5986
5987 if (skip_past_char (&p, '[') == FAIL)
5988 {
5989 inst.error = _("'[' expected");
5990 return FAIL;
5991 }
5992
5993 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5994 {
5995 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5996 return FAIL;
5997 }
5998 inst.operands[0].reg = reg;
5999
6000 if (skip_past_comma (&p) == FAIL)
6001 {
6002 inst.error = _("',' expected");
6003 return FAIL;
6004 }
6005
6006 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6007 {
6008 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6009 return FAIL;
6010 }
6011 inst.operands[0].imm = reg;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 {
6015 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6016 return FAIL;
6017 if (inst.reloc.exp.X_add_number != 1)
6018 {
6019 inst.error = _("invalid shift");
6020 return FAIL;
6021 }
6022 inst.operands[0].shifted = 1;
6023 }
6024
6025 if (skip_past_char (&p, ']') == FAIL)
6026 {
6027 inst.error = _("']' expected");
6028 return FAIL;
6029 }
6030 *str = p;
6031 return SUCCESS;
6032 }
6033
6034 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6035 information on the types the operands can take and how they are encoded.
6036 Up to four operands may be read; this function handles setting the
6037 ".present" field for each read operand itself.
6038 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6039 else returns FAIL. */
6040
6041 static int
6042 parse_neon_mov (char **str, int *which_operand)
6043 {
6044 int i = *which_operand, val;
6045 enum arm_reg_type rtype;
6046 char *ptr = *str;
6047 struct neon_type_el optype;
6048
6049 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6050 {
6051 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6052 inst.operands[i].reg = val;
6053 inst.operands[i].isscalar = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i++].present = 1;
6056
6057 if (skip_past_comma (&ptr) == FAIL)
6058 goto wanted_comma;
6059
6060 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6061 goto wanted_arm;
6062
6063 inst.operands[i].reg = val;
6064 inst.operands[i].isreg = 1;
6065 inst.operands[i].present = 1;
6066 }
6067 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6068 != FAIL)
6069 {
6070 /* Cases 0, 1, 2, 3, 5 (D only). */
6071 if (skip_past_comma (&ptr) == FAIL)
6072 goto wanted_comma;
6073
6074 inst.operands[i].reg = val;
6075 inst.operands[i].isreg = 1;
6076 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6077 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6078 inst.operands[i].isvec = 1;
6079 inst.operands[i].vectype = optype;
6080 inst.operands[i++].present = 1;
6081
6082 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6083 {
6084 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6085 Case 13: VMOV <Sd>, <Rm> */
6086 inst.operands[i].reg = val;
6087 inst.operands[i].isreg = 1;
6088 inst.operands[i].present = 1;
6089
6090 if (rtype == REG_TYPE_NQ)
6091 {
6092 first_error (_("can't use Neon quad register here"));
6093 return FAIL;
6094 }
6095 else if (rtype != REG_TYPE_VFS)
6096 {
6097 i++;
6098 if (skip_past_comma (&ptr) == FAIL)
6099 goto wanted_comma;
6100 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6101 goto wanted_arm;
6102 inst.operands[i].reg = val;
6103 inst.operands[i].isreg = 1;
6104 inst.operands[i].present = 1;
6105 }
6106 }
6107 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6108 &optype)) != FAIL)
6109 {
6110 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6111 Case 1: VMOV<c><q> <Dd>, <Dm>
6112 Case 8: VMOV.F32 <Sd>, <Sm>
6113 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6114
6115 inst.operands[i].reg = val;
6116 inst.operands[i].isreg = 1;
6117 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6118 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6119 inst.operands[i].isvec = 1;
6120 inst.operands[i].vectype = optype;
6121 inst.operands[i].present = 1;
6122
6123 if (skip_past_comma (&ptr) == SUCCESS)
6124 {
6125 /* Case 15. */
6126 i++;
6127
6128 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6129 goto wanted_arm;
6130
6131 inst.operands[i].reg = val;
6132 inst.operands[i].isreg = 1;
6133 inst.operands[i++].present = 1;
6134
6135 if (skip_past_comma (&ptr) == FAIL)
6136 goto wanted_comma;
6137
6138 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6139 goto wanted_arm;
6140
6141 inst.operands[i].reg = val;
6142 inst.operands[i].isreg = 1;
6143 inst.operands[i].present = 1;
6144 }
6145 }
6146 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6147 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6148 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6149 Case 10: VMOV.F32 <Sd>, #<imm>
6150 Case 11: VMOV.F64 <Dd>, #<imm> */
6151 inst.operands[i].immisfloat = 1;
6152 else if (parse_big_immediate (&ptr, i) == SUCCESS)
6153 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6154 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6155 ;
6156 else
6157 {
6158 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6159 return FAIL;
6160 }
6161 }
6162 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6163 {
6164 /* Cases 6, 7. */
6165 inst.operands[i].reg = val;
6166 inst.operands[i].isreg = 1;
6167 inst.operands[i++].present = 1;
6168
6169 if (skip_past_comma (&ptr) == FAIL)
6170 goto wanted_comma;
6171
6172 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6173 {
6174 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6175 inst.operands[i].reg = val;
6176 inst.operands[i].isscalar = 1;
6177 inst.operands[i].present = 1;
6178 inst.operands[i].vectype = optype;
6179 }
6180 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6181 {
6182 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6183 inst.operands[i].reg = val;
6184 inst.operands[i].isreg = 1;
6185 inst.operands[i++].present = 1;
6186
6187 if (skip_past_comma (&ptr) == FAIL)
6188 goto wanted_comma;
6189
6190 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6191 == FAIL)
6192 {
6193 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6194 return FAIL;
6195 }
6196
6197 inst.operands[i].reg = val;
6198 inst.operands[i].isreg = 1;
6199 inst.operands[i].isvec = 1;
6200 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6201 inst.operands[i].vectype = optype;
6202 inst.operands[i].present = 1;
6203
6204 if (rtype == REG_TYPE_VFS)
6205 {
6206 /* Case 14. */
6207 i++;
6208 if (skip_past_comma (&ptr) == FAIL)
6209 goto wanted_comma;
6210 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6211 &optype)) == FAIL)
6212 {
6213 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6214 return FAIL;
6215 }
6216 inst.operands[i].reg = val;
6217 inst.operands[i].isreg = 1;
6218 inst.operands[i].isvec = 1;
6219 inst.operands[i].issingle = 1;
6220 inst.operands[i].vectype = optype;
6221 inst.operands[i].present = 1;
6222 }
6223 }
6224 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6225 != FAIL)
6226 {
6227 /* Case 13. */
6228 inst.operands[i].reg = val;
6229 inst.operands[i].isreg = 1;
6230 inst.operands[i].isvec = 1;
6231 inst.operands[i].issingle = 1;
6232 inst.operands[i].vectype = optype;
6233 inst.operands[i].present = 1;
6234 }
6235 }
6236 else
6237 {
6238 first_error (_("parse error"));
6239 return FAIL;
6240 }
6241
6242 /* Successfully parsed the operands. Update args. */
6243 *which_operand = i;
6244 *str = ptr;
6245 return SUCCESS;
6246
6247 wanted_comma:
6248 first_error (_("expected comma"));
6249 return FAIL;
6250
6251 wanted_arm:
6252 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6253 return FAIL;
6254 }
6255
6256 /* Use this macro when the operand constraints are different
6257 for ARM and THUMB (e.g. ldrd). */
6258 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6259 ((arm_operand) | ((thumb_operand) << 16))
6260
6261 /* Matcher codes for parse_operands. */
6262 enum operand_parse_code
6263 {
6264 OP_stop, /* end of line */
6265
6266 OP_RR, /* ARM register */
6267 OP_RRnpc, /* ARM register, not r15 */
6268 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6269 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6270 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6271 optional trailing ! */
6272 OP_RRw, /* ARM register, not r15, optional trailing ! */
6273 OP_RCP, /* Coprocessor number */
6274 OP_RCN, /* Coprocessor register */
6275 OP_RF, /* FPA register */
6276 OP_RVS, /* VFP single precision register */
6277 OP_RVD, /* VFP double precision register (0..15) */
6278 OP_RND, /* Neon double precision register (0..31) */
6279 OP_RNQ, /* Neon quad precision register */
6280 OP_RVSD, /* VFP single or double precision register */
6281 OP_RNDQ, /* Neon double or quad precision register */
6282 OP_RNSDQ, /* Neon single, double or quad precision register */
6283 OP_RNSC, /* Neon scalar D[X] */
6284 OP_RVC, /* VFP control register */
6285 OP_RMF, /* Maverick F register */
6286 OP_RMD, /* Maverick D register */
6287 OP_RMFX, /* Maverick FX register */
6288 OP_RMDX, /* Maverick DX register */
6289 OP_RMAX, /* Maverick AX register */
6290 OP_RMDS, /* Maverick DSPSC register */
6291 OP_RIWR, /* iWMMXt wR register */
6292 OP_RIWC, /* iWMMXt wC register */
6293 OP_RIWG, /* iWMMXt wCG register */
6294 OP_RXA, /* XScale accumulator register */
6295
6296 OP_REGLST, /* ARM register list */
6297 OP_VRSLST, /* VFP single-precision register list */
6298 OP_VRDLST, /* VFP double-precision register list */
6299 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6300 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6301 OP_NSTRLST, /* Neon element/structure list */
6302
6303 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6304 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6305 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6306 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6307 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6308 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6309 OP_VMOV, /* Neon VMOV operands. */
6310 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6311 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6312 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6313
6314 OP_I0, /* immediate zero */
6315 OP_I7, /* immediate value 0 .. 7 */
6316 OP_I15, /* 0 .. 15 */
6317 OP_I16, /* 1 .. 16 */
6318 OP_I16z, /* 0 .. 16 */
6319 OP_I31, /* 0 .. 31 */
6320 OP_I31w, /* 0 .. 31, optional trailing ! */
6321 OP_I32, /* 1 .. 32 */
6322 OP_I32z, /* 0 .. 32 */
6323 OP_I63, /* 0 .. 63 */
6324 OP_I63s, /* -64 .. 63 */
6325 OP_I64, /* 1 .. 64 */
6326 OP_I64z, /* 0 .. 64 */
6327 OP_I255, /* 0 .. 255 */
6328
6329 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6330 OP_I7b, /* 0 .. 7 */
6331 OP_I15b, /* 0 .. 15 */
6332 OP_I31b, /* 0 .. 31 */
6333
6334 OP_SH, /* shifter operand */
6335 OP_SHG, /* shifter operand with possible group relocation */
6336 OP_ADDR, /* Memory address expression (any mode) */
6337 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6338 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6339 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6340 OP_EXP, /* arbitrary expression */
6341 OP_EXPi, /* same, with optional immediate prefix */
6342 OP_EXPr, /* same, with optional relocation suffix */
6343 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6344
6345 OP_CPSF, /* CPS flags */
6346 OP_ENDI, /* Endianness specifier */
6347 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6348 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6349 OP_COND, /* conditional code */
6350 OP_TB, /* Table branch. */
6351
6352 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6353
6354 OP_RRnpc_I0, /* ARM register or literal 0 */
6355 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6356 OP_RR_EXi, /* ARM register or expression with imm prefix */
6357 OP_RF_IF, /* FPA register or immediate */
6358 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6359 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6360
6361 /* Optional operands. */
6362 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6363 OP_oI31b, /* 0 .. 31 */
6364 OP_oI32b, /* 1 .. 32 */
6365 OP_oI32z, /* 0 .. 32 */
6366 OP_oIffffb, /* 0 .. 65535 */
6367 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6368
6369 OP_oRR, /* ARM register */
6370 OP_oRRnpc, /* ARM register, not the PC */
6371 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6372 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6373 OP_oRND, /* Optional Neon double precision register */
6374 OP_oRNQ, /* Optional Neon quad precision register */
6375 OP_oRNDQ, /* Optional Neon double or quad precision register */
6376 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6377 OP_oSHll, /* LSL immediate */
6378 OP_oSHar, /* ASR immediate */
6379 OP_oSHllar, /* LSL or ASR immediate */
6380 OP_oROR, /* ROR 0/8/16/24 */
6381 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6382
6383 /* Some pre-defined mixed (ARM/THUMB) operands. */
6384 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6385 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6386 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6387
6388 OP_FIRST_OPTIONAL = OP_oI7b
6389 };
6390
6391 /* Generic instruction operand parser. This does no encoding and no
6392 semantic validation; it merely squirrels values away in the inst
6393 structure. Returns SUCCESS or FAIL depending on whether the
6394 specified grammar matched. */
6395 static int
6396 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6397 {
6398 unsigned const int *upat = pattern;
6399 char *backtrack_pos = 0;
6400 const char *backtrack_error = 0;
6401 int i, val = 0, backtrack_index = 0;
6402 enum arm_reg_type rtype;
6403 parse_operand_result result;
6404 unsigned int op_parse_code;
6405
6406 #define po_char_or_fail(chr) \
6407 do \
6408 { \
6409 if (skip_past_char (&str, chr) == FAIL) \
6410 goto bad_args; \
6411 } \
6412 while (0)
6413
6414 #define po_reg_or_fail(regtype) \
6415 do \
6416 { \
6417 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6418 & inst.operands[i].vectype); \
6419 if (val == FAIL) \
6420 { \
6421 first_error (_(reg_expected_msgs[regtype])); \
6422 goto failure; \
6423 } \
6424 inst.operands[i].reg = val; \
6425 inst.operands[i].isreg = 1; \
6426 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6427 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6428 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6429 || rtype == REG_TYPE_VFD \
6430 || rtype == REG_TYPE_NQ); \
6431 } \
6432 while (0)
6433
6434 #define po_reg_or_goto(regtype, label) \
6435 do \
6436 { \
6437 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6438 & inst.operands[i].vectype); \
6439 if (val == FAIL) \
6440 goto label; \
6441 \
6442 inst.operands[i].reg = val; \
6443 inst.operands[i].isreg = 1; \
6444 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6445 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6446 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6447 || rtype == REG_TYPE_VFD \
6448 || rtype == REG_TYPE_NQ); \
6449 } \
6450 while (0)
6451
6452 #define po_imm_or_fail(min, max, popt) \
6453 do \
6454 { \
6455 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6456 goto failure; \
6457 inst.operands[i].imm = val; \
6458 } \
6459 while (0)
6460
6461 #define po_scalar_or_goto(elsz, label) \
6462 do \
6463 { \
6464 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6465 if (val == FAIL) \
6466 goto label; \
6467 inst.operands[i].reg = val; \
6468 inst.operands[i].isscalar = 1; \
6469 } \
6470 while (0)
6471
6472 #define po_misc_or_fail(expr) \
6473 do \
6474 { \
6475 if (expr) \
6476 goto failure; \
6477 } \
6478 while (0)
6479
6480 #define po_misc_or_fail_no_backtrack(expr) \
6481 do \
6482 { \
6483 result = expr; \
6484 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6485 backtrack_pos = 0; \
6486 if (result != PARSE_OPERAND_SUCCESS) \
6487 goto failure; \
6488 } \
6489 while (0)
6490
6491 #define po_barrier_or_imm(str) \
6492 do \
6493 { \
6494 val = parse_barrier (&str); \
6495 if (val == FAIL && ! ISALPHA (*str)) \
6496 goto immediate; \
6497 if (val == FAIL \
6498 /* ISB can only take SY as an option. */ \
6499 || ((inst.instruction & 0xf0) == 0x60 \
6500 && val != 0xf)) \
6501 { \
6502 inst.error = _("invalid barrier type"); \
6503 backtrack_pos = 0; \
6504 goto failure; \
6505 } \
6506 } \
6507 while (0)
6508
6509 skip_whitespace (str);
6510
6511 for (i = 0; upat[i] != OP_stop; i++)
6512 {
6513 op_parse_code = upat[i];
6514 if (op_parse_code >= 1<<16)
6515 op_parse_code = thumb ? (op_parse_code >> 16)
6516 : (op_parse_code & ((1<<16)-1));
6517
6518 if (op_parse_code >= OP_FIRST_OPTIONAL)
6519 {
6520 /* Remember where we are in case we need to backtrack. */
6521 gas_assert (!backtrack_pos);
6522 backtrack_pos = str;
6523 backtrack_error = inst.error;
6524 backtrack_index = i;
6525 }
6526
6527 if (i > 0 && (i > 1 || inst.operands[0].present))
6528 po_char_or_fail (',');
6529
6530 switch (op_parse_code)
6531 {
6532 /* Registers */
6533 case OP_oRRnpc:
6534 case OP_oRRnpcsp:
6535 case OP_RRnpc:
6536 case OP_RRnpcsp:
6537 case OP_oRR:
6538 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6539 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6540 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6541 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6542 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6543 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6544 case OP_oRND:
6545 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6546 case OP_RVC:
6547 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6548 break;
6549 /* Also accept generic coprocessor regs for unknown registers. */
6550 coproc_reg:
6551 po_reg_or_fail (REG_TYPE_CN);
6552 break;
6553 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6554 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6555 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6556 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6557 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6558 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6559 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6560 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6561 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6562 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6563 case OP_oRNQ:
6564 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6565 case OP_oRNDQ:
6566 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6567 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6568 case OP_oRNSDQ:
6569 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6570
6571 /* Neon scalar. Using an element size of 8 means that some invalid
6572 scalars are accepted here, so deal with those in later code. */
6573 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6574
6575 case OP_RNDQ_I0:
6576 {
6577 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6578 break;
6579 try_imm0:
6580 po_imm_or_fail (0, 0, TRUE);
6581 }
6582 break;
6583
6584 case OP_RVSD_I0:
6585 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6586 break;
6587
6588 case OP_RR_RNSC:
6589 {
6590 po_scalar_or_goto (8, try_rr);
6591 break;
6592 try_rr:
6593 po_reg_or_fail (REG_TYPE_RN);
6594 }
6595 break;
6596
6597 case OP_RNSDQ_RNSC:
6598 {
6599 po_scalar_or_goto (8, try_nsdq);
6600 break;
6601 try_nsdq:
6602 po_reg_or_fail (REG_TYPE_NSDQ);
6603 }
6604 break;
6605
6606 case OP_RNDQ_RNSC:
6607 {
6608 po_scalar_or_goto (8, try_ndq);
6609 break;
6610 try_ndq:
6611 po_reg_or_fail (REG_TYPE_NDQ);
6612 }
6613 break;
6614
6615 case OP_RND_RNSC:
6616 {
6617 po_scalar_or_goto (8, try_vfd);
6618 break;
6619 try_vfd:
6620 po_reg_or_fail (REG_TYPE_VFD);
6621 }
6622 break;
6623
6624 case OP_VMOV:
6625 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6626 not careful then bad things might happen. */
6627 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6628 break;
6629
6630 case OP_RNDQ_Ibig:
6631 {
6632 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6633 break;
6634 try_immbig:
6635 /* There's a possibility of getting a 64-bit immediate here, so
6636 we need special handling. */
6637 if (parse_big_immediate (&str, i) == FAIL)
6638 {
6639 inst.error = _("immediate value is out of range");
6640 goto failure;
6641 }
6642 }
6643 break;
6644
6645 case OP_RNDQ_I63b:
6646 {
6647 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6648 break;
6649 try_shimm:
6650 po_imm_or_fail (0, 63, TRUE);
6651 }
6652 break;
6653
6654 case OP_RRnpcb:
6655 po_char_or_fail ('[');
6656 po_reg_or_fail (REG_TYPE_RN);
6657 po_char_or_fail (']');
6658 break;
6659
6660 case OP_RRnpctw:
6661 case OP_RRw:
6662 case OP_oRRw:
6663 po_reg_or_fail (REG_TYPE_RN);
6664 if (skip_past_char (&str, '!') == SUCCESS)
6665 inst.operands[i].writeback = 1;
6666 break;
6667
6668 /* Immediates */
6669 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6670 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6671 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6672 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6673 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6674 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6675 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6676 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6677 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6678 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6679 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6680 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6681
6682 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6683 case OP_oI7b:
6684 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6685 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6686 case OP_oI31b:
6687 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6688 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6689 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6690 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6691
6692 /* Immediate variants */
6693 case OP_oI255c:
6694 po_char_or_fail ('{');
6695 po_imm_or_fail (0, 255, TRUE);
6696 po_char_or_fail ('}');
6697 break;
6698
6699 case OP_I31w:
6700 /* The expression parser chokes on a trailing !, so we have
6701 to find it first and zap it. */
6702 {
6703 char *s = str;
6704 while (*s && *s != ',')
6705 s++;
6706 if (s[-1] == '!')
6707 {
6708 s[-1] = '\0';
6709 inst.operands[i].writeback = 1;
6710 }
6711 po_imm_or_fail (0, 31, TRUE);
6712 if (str == s - 1)
6713 str = s;
6714 }
6715 break;
6716
6717 /* Expressions */
6718 case OP_EXPi: EXPi:
6719 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6720 GE_OPT_PREFIX));
6721 break;
6722
6723 case OP_EXP:
6724 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6725 GE_NO_PREFIX));
6726 break;
6727
6728 case OP_EXPr: EXPr:
6729 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6730 GE_NO_PREFIX));
6731 if (inst.reloc.exp.X_op == O_symbol)
6732 {
6733 val = parse_reloc (&str);
6734 if (val == -1)
6735 {
6736 inst.error = _("unrecognized relocation suffix");
6737 goto failure;
6738 }
6739 else if (val != BFD_RELOC_UNUSED)
6740 {
6741 inst.operands[i].imm = val;
6742 inst.operands[i].hasreloc = 1;
6743 }
6744 }
6745 break;
6746
6747 /* Operand for MOVW or MOVT. */
6748 case OP_HALF:
6749 po_misc_or_fail (parse_half (&str));
6750 break;
6751
6752 /* Register or expression. */
6753 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6754 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6755
6756 /* Register or immediate. */
6757 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6758 I0: po_imm_or_fail (0, 0, FALSE); break;
6759
6760 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6761 IF:
6762 if (!is_immediate_prefix (*str))
6763 goto bad_args;
6764 str++;
6765 val = parse_fpa_immediate (&str);
6766 if (val == FAIL)
6767 goto failure;
6768 /* FPA immediates are encoded as registers 8-15.
6769 parse_fpa_immediate has already applied the offset. */
6770 inst.operands[i].reg = val;
6771 inst.operands[i].isreg = 1;
6772 break;
6773
6774 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6775 I32z: po_imm_or_fail (0, 32, FALSE); break;
6776
6777 /* Two kinds of register. */
6778 case OP_RIWR_RIWC:
6779 {
6780 struct reg_entry *rege = arm_reg_parse_multi (&str);
6781 if (!rege
6782 || (rege->type != REG_TYPE_MMXWR
6783 && rege->type != REG_TYPE_MMXWC
6784 && rege->type != REG_TYPE_MMXWCG))
6785 {
6786 inst.error = _("iWMMXt data or control register expected");
6787 goto failure;
6788 }
6789 inst.operands[i].reg = rege->number;
6790 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6791 }
6792 break;
6793
6794 case OP_RIWC_RIWG:
6795 {
6796 struct reg_entry *rege = arm_reg_parse_multi (&str);
6797 if (!rege
6798 || (rege->type != REG_TYPE_MMXWC
6799 && rege->type != REG_TYPE_MMXWCG))
6800 {
6801 inst.error = _("iWMMXt control register expected");
6802 goto failure;
6803 }
6804 inst.operands[i].reg = rege->number;
6805 inst.operands[i].isreg = 1;
6806 }
6807 break;
6808
6809 /* Misc */
6810 case OP_CPSF: val = parse_cps_flags (&str); break;
6811 case OP_ENDI: val = parse_endian_specifier (&str); break;
6812 case OP_oROR: val = parse_ror (&str); break;
6813 case OP_COND: val = parse_cond (&str); break;
6814 case OP_oBARRIER_I15:
6815 po_barrier_or_imm (str); break;
6816 immediate:
6817 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6818 goto failure;
6819 break;
6820
6821 case OP_wPSR:
6822 case OP_rPSR:
6823 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6824 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6825 {
6826 inst.error = _("Banked registers are not available with this "
6827 "architecture.");
6828 goto failure;
6829 }
6830 break;
6831 try_psr:
6832 val = parse_psr (&str, op_parse_code == OP_wPSR);
6833 break;
6834
6835 case OP_APSR_RR:
6836 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6837 break;
6838 try_apsr:
6839 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6840 instruction). */
6841 if (strncasecmp (str, "APSR_", 5) == 0)
6842 {
6843 unsigned found = 0;
6844 str += 5;
6845 while (found < 15)
6846 switch (*str++)
6847 {
6848 case 'c': found = (found & 1) ? 16 : found | 1; break;
6849 case 'n': found = (found & 2) ? 16 : found | 2; break;
6850 case 'z': found = (found & 4) ? 16 : found | 4; break;
6851 case 'v': found = (found & 8) ? 16 : found | 8; break;
6852 default: found = 16;
6853 }
6854 if (found != 15)
6855 goto failure;
6856 inst.operands[i].isvec = 1;
6857 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6858 inst.operands[i].reg = REG_PC;
6859 }
6860 else
6861 goto failure;
6862 break;
6863
6864 case OP_TB:
6865 po_misc_or_fail (parse_tb (&str));
6866 break;
6867
6868 /* Register lists. */
6869 case OP_REGLST:
6870 val = parse_reg_list (&str);
6871 if (*str == '^')
6872 {
6873 inst.operands[1].writeback = 1;
6874 str++;
6875 }
6876 break;
6877
6878 case OP_VRSLST:
6879 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6880 break;
6881
6882 case OP_VRDLST:
6883 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6884 break;
6885
6886 case OP_VRSDLST:
6887 /* Allow Q registers too. */
6888 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6889 REGLIST_NEON_D);
6890 if (val == FAIL)
6891 {
6892 inst.error = NULL;
6893 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6894 REGLIST_VFP_S);
6895 inst.operands[i].issingle = 1;
6896 }
6897 break;
6898
6899 case OP_NRDLST:
6900 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6901 REGLIST_NEON_D);
6902 break;
6903
6904 case OP_NSTRLST:
6905 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6906 &inst.operands[i].vectype);
6907 break;
6908
6909 /* Addressing modes */
6910 case OP_ADDR:
6911 po_misc_or_fail (parse_address (&str, i));
6912 break;
6913
6914 case OP_ADDRGLDR:
6915 po_misc_or_fail_no_backtrack (
6916 parse_address_group_reloc (&str, i, GROUP_LDR));
6917 break;
6918
6919 case OP_ADDRGLDRS:
6920 po_misc_or_fail_no_backtrack (
6921 parse_address_group_reloc (&str, i, GROUP_LDRS));
6922 break;
6923
6924 case OP_ADDRGLDC:
6925 po_misc_or_fail_no_backtrack (
6926 parse_address_group_reloc (&str, i, GROUP_LDC));
6927 break;
6928
6929 case OP_SH:
6930 po_misc_or_fail (parse_shifter_operand (&str, i));
6931 break;
6932
6933 case OP_SHG:
6934 po_misc_or_fail_no_backtrack (
6935 parse_shifter_operand_group_reloc (&str, i));
6936 break;
6937
6938 case OP_oSHll:
6939 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6940 break;
6941
6942 case OP_oSHar:
6943 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6944 break;
6945
6946 case OP_oSHllar:
6947 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6948 break;
6949
6950 default:
6951 as_fatal (_("unhandled operand code %d"), op_parse_code);
6952 }
6953
6954 /* Various value-based sanity checks and shared operations. We
6955 do not signal immediate failures for the register constraints;
6956 this allows a syntax error to take precedence. */
6957 switch (op_parse_code)
6958 {
6959 case OP_oRRnpc:
6960 case OP_RRnpc:
6961 case OP_RRnpcb:
6962 case OP_RRw:
6963 case OP_oRRw:
6964 case OP_RRnpc_I0:
6965 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6966 inst.error = BAD_PC;
6967 break;
6968
6969 case OP_oRRnpcsp:
6970 case OP_RRnpcsp:
6971 if (inst.operands[i].isreg)
6972 {
6973 if (inst.operands[i].reg == REG_PC)
6974 inst.error = BAD_PC;
6975 else if (inst.operands[i].reg == REG_SP)
6976 inst.error = BAD_SP;
6977 }
6978 break;
6979
6980 case OP_RRnpctw:
6981 if (inst.operands[i].isreg
6982 && inst.operands[i].reg == REG_PC
6983 && (inst.operands[i].writeback || thumb))
6984 inst.error = BAD_PC;
6985 break;
6986
6987 case OP_CPSF:
6988 case OP_ENDI:
6989 case OP_oROR:
6990 case OP_wPSR:
6991 case OP_rPSR:
6992 case OP_COND:
6993 case OP_oBARRIER_I15:
6994 case OP_REGLST:
6995 case OP_VRSLST:
6996 case OP_VRDLST:
6997 case OP_VRSDLST:
6998 case OP_NRDLST:
6999 case OP_NSTRLST:
7000 if (val == FAIL)
7001 goto failure;
7002 inst.operands[i].imm = val;
7003 break;
7004
7005 default:
7006 break;
7007 }
7008
7009 /* If we get here, this operand was successfully parsed. */
7010 inst.operands[i].present = 1;
7011 continue;
7012
7013 bad_args:
7014 inst.error = BAD_ARGS;
7015
7016 failure:
7017 if (!backtrack_pos)
7018 {
7019 /* The parse routine should already have set inst.error, but set a
7020 default here just in case. */
7021 if (!inst.error)
7022 inst.error = _("syntax error");
7023 return FAIL;
7024 }
7025
7026 /* Do not backtrack over a trailing optional argument that
7027 absorbed some text. We will only fail again, with the
7028 'garbage following instruction' error message, which is
7029 probably less helpful than the current one. */
7030 if (backtrack_index == i && backtrack_pos != str
7031 && upat[i+1] == OP_stop)
7032 {
7033 if (!inst.error)
7034 inst.error = _("syntax error");
7035 return FAIL;
7036 }
7037
7038 /* Try again, skipping the optional argument at backtrack_pos. */
7039 str = backtrack_pos;
7040 inst.error = backtrack_error;
7041 inst.operands[backtrack_index].present = 0;
7042 i = backtrack_index;
7043 backtrack_pos = 0;
7044 }
7045
7046 /* Check that we have parsed all the arguments. */
7047 if (*str != '\0' && !inst.error)
7048 inst.error = _("garbage following instruction");
7049
7050 return inst.error ? FAIL : SUCCESS;
7051 }
7052
7053 #undef po_char_or_fail
7054 #undef po_reg_or_fail
7055 #undef po_reg_or_goto
7056 #undef po_imm_or_fail
7057 #undef po_scalar_or_fail
7058 #undef po_barrier_or_imm
7059
7060 /* Shorthand macro for instruction encoding functions issuing errors. */
7061 #define constraint(expr, err) \
7062 do \
7063 { \
7064 if (expr) \
7065 { \
7066 inst.error = err; \
7067 return; \
7068 } \
7069 } \
7070 while (0)
7071
7072 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7073 instructions are unpredictable if these registers are used. This
7074 is the BadReg predicate in ARM's Thumb-2 documentation. */
7075 #define reject_bad_reg(reg) \
7076 do \
7077 if (reg == REG_SP || reg == REG_PC) \
7078 { \
7079 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
7080 return; \
7081 } \
7082 while (0)
7083
7084 /* If REG is R13 (the stack pointer), warn that its use is
7085 deprecated. */
7086 #define warn_deprecated_sp(reg) \
7087 do \
7088 if (warn_on_deprecated && reg == REG_SP) \
7089 as_warn (_("use of r13 is deprecated")); \
7090 while (0)
7091
7092 /* Functions for operand encoding. ARM, then Thumb. */
7093
7094 #define rotate_left(v, n) (v << n | v >> (32 - n))
7095
7096 /* If VAL can be encoded in the immediate field of an ARM instruction,
7097 return the encoded form. Otherwise, return FAIL. */
7098
7099 static unsigned int
7100 encode_arm_immediate (unsigned int val)
7101 {
7102 unsigned int a, i;
7103
7104 for (i = 0; i < 32; i += 2)
7105 if ((a = rotate_left (val, i)) <= 0xff)
7106 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7107
7108 return FAIL;
7109 }
7110
7111 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7112 return the encoded form. Otherwise, return FAIL. */
7113 static unsigned int
7114 encode_thumb32_immediate (unsigned int val)
7115 {
7116 unsigned int a, i;
7117
7118 if (val <= 0xff)
7119 return val;
7120
7121 for (i = 1; i <= 24; i++)
7122 {
7123 a = val >> i;
7124 if ((val & ~(0xff << i)) == 0)
7125 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7126 }
7127
7128 a = val & 0xff;
7129 if (val == ((a << 16) | a))
7130 return 0x100 | a;
7131 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7132 return 0x300 | a;
7133
7134 a = val & 0xff00;
7135 if (val == ((a << 16) | a))
7136 return 0x200 | (a >> 8);
7137
7138 return FAIL;
7139 }
7140 /* Encode a VFP SP or DP register number into inst.instruction. */
7141
7142 static void
7143 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7144 {
7145 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7146 && reg > 15)
7147 {
7148 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7149 {
7150 if (thumb_mode)
7151 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7152 fpu_vfp_ext_d32);
7153 else
7154 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7155 fpu_vfp_ext_d32);
7156 }
7157 else
7158 {
7159 first_error (_("D register out of range for selected VFP version"));
7160 return;
7161 }
7162 }
7163
7164 switch (pos)
7165 {
7166 case VFP_REG_Sd:
7167 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7168 break;
7169
7170 case VFP_REG_Sn:
7171 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7172 break;
7173
7174 case VFP_REG_Sm:
7175 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7176 break;
7177
7178 case VFP_REG_Dd:
7179 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7180 break;
7181
7182 case VFP_REG_Dn:
7183 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7184 break;
7185
7186 case VFP_REG_Dm:
7187 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7188 break;
7189
7190 default:
7191 abort ();
7192 }
7193 }
7194
7195 /* Encode a <shift> in an ARM-format instruction. The immediate,
7196 if any, is handled by md_apply_fix. */
7197 static void
7198 encode_arm_shift (int i)
7199 {
7200 if (inst.operands[i].shift_kind == SHIFT_RRX)
7201 inst.instruction |= SHIFT_ROR << 5;
7202 else
7203 {
7204 inst.instruction |= inst.operands[i].shift_kind << 5;
7205 if (inst.operands[i].immisreg)
7206 {
7207 inst.instruction |= SHIFT_BY_REG;
7208 inst.instruction |= inst.operands[i].imm << 8;
7209 }
7210 else
7211 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7212 }
7213 }
7214
7215 static void
7216 encode_arm_shifter_operand (int i)
7217 {
7218 if (inst.operands[i].isreg)
7219 {
7220 inst.instruction |= inst.operands[i].reg;
7221 encode_arm_shift (i);
7222 }
7223 else
7224 {
7225 inst.instruction |= INST_IMMEDIATE;
7226 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7227 inst.instruction |= inst.operands[i].imm;
7228 }
7229 }
7230
7231 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7232 static void
7233 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7234 {
7235 /* PR 14260:
7236 Generate an error if the operand is not a register. */
7237 constraint (!inst.operands[i].isreg,
7238 _("Instruction does not support =N addresses"));
7239
7240 inst.instruction |= inst.operands[i].reg << 16;
7241
7242 if (inst.operands[i].preind)
7243 {
7244 if (is_t)
7245 {
7246 inst.error = _("instruction does not accept preindexed addressing");
7247 return;
7248 }
7249 inst.instruction |= PRE_INDEX;
7250 if (inst.operands[i].writeback)
7251 inst.instruction |= WRITE_BACK;
7252
7253 }
7254 else if (inst.operands[i].postind)
7255 {
7256 gas_assert (inst.operands[i].writeback);
7257 if (is_t)
7258 inst.instruction |= WRITE_BACK;
7259 }
7260 else /* unindexed - only for coprocessor */
7261 {
7262 inst.error = _("instruction does not accept unindexed addressing");
7263 return;
7264 }
7265
7266 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7267 && (((inst.instruction & 0x000f0000) >> 16)
7268 == ((inst.instruction & 0x0000f000) >> 12)))
7269 as_warn ((inst.instruction & LOAD_BIT)
7270 ? _("destination register same as write-back base")
7271 : _("source register same as write-back base"));
7272 }
7273
7274 /* inst.operands[i] was set up by parse_address. Encode it into an
7275 ARM-format mode 2 load or store instruction. If is_t is true,
7276 reject forms that cannot be used with a T instruction (i.e. not
7277 post-indexed). */
7278 static void
7279 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7280 {
7281 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7282
7283 encode_arm_addr_mode_common (i, is_t);
7284
7285 if (inst.operands[i].immisreg)
7286 {
7287 constraint ((inst.operands[i].imm == REG_PC
7288 || (is_pc && inst.operands[i].writeback)),
7289 BAD_PC_ADDRESSING);
7290 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7291 inst.instruction |= inst.operands[i].imm;
7292 if (!inst.operands[i].negative)
7293 inst.instruction |= INDEX_UP;
7294 if (inst.operands[i].shifted)
7295 {
7296 if (inst.operands[i].shift_kind == SHIFT_RRX)
7297 inst.instruction |= SHIFT_ROR << 5;
7298 else
7299 {
7300 inst.instruction |= inst.operands[i].shift_kind << 5;
7301 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7302 }
7303 }
7304 }
7305 else /* immediate offset in inst.reloc */
7306 {
7307 if (is_pc && !inst.reloc.pc_rel)
7308 {
7309 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7310
7311 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7312 cannot use PC in addressing.
7313 PC cannot be used in writeback addressing, either. */
7314 constraint ((is_t || inst.operands[i].writeback),
7315 BAD_PC_ADDRESSING);
7316
7317 /* Use of PC in str is deprecated for ARMv7. */
7318 if (warn_on_deprecated
7319 && !is_load
7320 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7321 as_warn (_("use of PC in this instruction is deprecated"));
7322 }
7323
7324 if (inst.reloc.type == BFD_RELOC_UNUSED)
7325 {
7326 /* Prefer + for zero encoded value. */
7327 if (!inst.operands[i].negative)
7328 inst.instruction |= INDEX_UP;
7329 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7330 }
7331 }
7332 }
7333
7334 /* inst.operands[i] was set up by parse_address. Encode it into an
7335 ARM-format mode 3 load or store instruction. Reject forms that
7336 cannot be used with such instructions. If is_t is true, reject
7337 forms that cannot be used with a T instruction (i.e. not
7338 post-indexed). */
7339 static void
7340 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7341 {
7342 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7343 {
7344 inst.error = _("instruction does not accept scaled register index");
7345 return;
7346 }
7347
7348 encode_arm_addr_mode_common (i, is_t);
7349
7350 if (inst.operands[i].immisreg)
7351 {
7352 constraint ((inst.operands[i].imm == REG_PC
7353 || (is_t && inst.operands[i].reg == REG_PC)),
7354 BAD_PC_ADDRESSING);
7355 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7356 BAD_PC_WRITEBACK);
7357 inst.instruction |= inst.operands[i].imm;
7358 if (!inst.operands[i].negative)
7359 inst.instruction |= INDEX_UP;
7360 }
7361 else /* immediate offset in inst.reloc */
7362 {
7363 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7364 && inst.operands[i].writeback),
7365 BAD_PC_WRITEBACK);
7366 inst.instruction |= HWOFFSET_IMM;
7367 if (inst.reloc.type == BFD_RELOC_UNUSED)
7368 {
7369 /* Prefer + for zero encoded value. */
7370 if (!inst.operands[i].negative)
7371 inst.instruction |= INDEX_UP;
7372
7373 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7374 }
7375 }
7376 }
7377
7378 /* inst.operands[i] was set up by parse_address. Encode it into an
7379 ARM-format instruction. Reject all forms which cannot be encoded
7380 into a coprocessor load/store instruction. If wb_ok is false,
7381 reject use of writeback; if unind_ok is false, reject use of
7382 unindexed addressing. If reloc_override is not 0, use it instead
7383 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7384 (in which case it is preserved). */
7385
7386 static int
7387 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7388 {
7389 inst.instruction |= inst.operands[i].reg << 16;
7390
7391 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7392
7393 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7394 {
7395 gas_assert (!inst.operands[i].writeback);
7396 if (!unind_ok)
7397 {
7398 inst.error = _("instruction does not support unindexed addressing");
7399 return FAIL;
7400 }
7401 inst.instruction |= inst.operands[i].imm;
7402 inst.instruction |= INDEX_UP;
7403 return SUCCESS;
7404 }
7405
7406 if (inst.operands[i].preind)
7407 inst.instruction |= PRE_INDEX;
7408
7409 if (inst.operands[i].writeback)
7410 {
7411 if (inst.operands[i].reg == REG_PC)
7412 {
7413 inst.error = _("pc may not be used with write-back");
7414 return FAIL;
7415 }
7416 if (!wb_ok)
7417 {
7418 inst.error = _("instruction does not support writeback");
7419 return FAIL;
7420 }
7421 inst.instruction |= WRITE_BACK;
7422 }
7423
7424 if (reloc_override)
7425 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7426 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7427 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7428 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7429 {
7430 if (thumb_mode)
7431 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7432 else
7433 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7434 }
7435
7436 /* Prefer + for zero encoded value. */
7437 if (!inst.operands[i].negative)
7438 inst.instruction |= INDEX_UP;
7439
7440 return SUCCESS;
7441 }
7442
7443 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7444 Determine whether it can be performed with a move instruction; if
7445 it can, convert inst.instruction to that move instruction and
7446 return TRUE; if it can't, convert inst.instruction to a literal-pool
7447 load and return FALSE. If this is not a valid thing to do in the
7448 current context, set inst.error and return TRUE.
7449
7450 inst.operands[i] describes the destination register. */
7451
7452 static bfd_boolean
7453 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7454 {
7455 unsigned long tbit;
7456
7457 if (thumb_p)
7458 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7459 else
7460 tbit = LOAD_BIT;
7461
7462 if ((inst.instruction & tbit) == 0)
7463 {
7464 inst.error = _("invalid pseudo operation");
7465 return TRUE;
7466 }
7467 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7468 {
7469 inst.error = _("constant expression expected");
7470 return TRUE;
7471 }
7472 if (inst.reloc.exp.X_op == O_constant)
7473 {
7474 if (thumb_p)
7475 {
7476 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7477 {
7478 /* This can be done with a mov(1) instruction. */
7479 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7480 inst.instruction |= inst.reloc.exp.X_add_number;
7481 return TRUE;
7482 }
7483 }
7484 else
7485 {
7486 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7487 if (value != FAIL)
7488 {
7489 /* This can be done with a mov instruction. */
7490 inst.instruction &= LITERAL_MASK;
7491 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7492 inst.instruction |= value & 0xfff;
7493 return TRUE;
7494 }
7495
7496 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7497 if (value != FAIL)
7498 {
7499 /* This can be done with a mvn instruction. */
7500 inst.instruction &= LITERAL_MASK;
7501 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7502 inst.instruction |= value & 0xfff;
7503 return TRUE;
7504 }
7505 }
7506 }
7507
7508 if (add_to_lit_pool () == FAIL)
7509 {
7510 inst.error = _("literal pool insertion failed");
7511 return TRUE;
7512 }
7513 inst.operands[1].reg = REG_PC;
7514 inst.operands[1].isreg = 1;
7515 inst.operands[1].preind = 1;
7516 inst.reloc.pc_rel = 1;
7517 inst.reloc.type = (thumb_p
7518 ? BFD_RELOC_ARM_THUMB_OFFSET
7519 : (mode_3
7520 ? BFD_RELOC_ARM_HWLITERAL
7521 : BFD_RELOC_ARM_LITERAL));
7522 return FALSE;
7523 }
7524
7525 /* Functions for instruction encoding, sorted by sub-architecture.
7526 First some generics; their names are taken from the conventional
7527 bit positions for register arguments in ARM format instructions. */
7528
7529 static void
7530 do_noargs (void)
7531 {
7532 }
7533
7534 static void
7535 do_rd (void)
7536 {
7537 inst.instruction |= inst.operands[0].reg << 12;
7538 }
7539
7540 static void
7541 do_rd_rm (void)
7542 {
7543 inst.instruction |= inst.operands[0].reg << 12;
7544 inst.instruction |= inst.operands[1].reg;
7545 }
7546
7547 static void
7548 do_rm_rn (void)
7549 {
7550 inst.instruction |= inst.operands[0].reg;
7551 inst.instruction |= inst.operands[1].reg << 16;
7552 }
7553
7554 static void
7555 do_rd_rn (void)
7556 {
7557 inst.instruction |= inst.operands[0].reg << 12;
7558 inst.instruction |= inst.operands[1].reg << 16;
7559 }
7560
7561 static void
7562 do_rn_rd (void)
7563 {
7564 inst.instruction |= inst.operands[0].reg << 16;
7565 inst.instruction |= inst.operands[1].reg << 12;
7566 }
7567
7568 static bfd_boolean
7569 check_obsolete (const arm_feature_set *feature, const char *msg)
7570 {
7571 if (ARM_CPU_IS_ANY (cpu_variant))
7572 {
7573 as_warn ("%s", msg);
7574 return TRUE;
7575 }
7576 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7577 {
7578 as_bad ("%s", msg);
7579 return TRUE;
7580 }
7581
7582 return FALSE;
7583 }
7584
7585 static void
7586 do_rd_rm_rn (void)
7587 {
7588 unsigned Rn = inst.operands[2].reg;
7589 /* Enforce restrictions on SWP instruction. */
7590 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7591 {
7592 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7593 _("Rn must not overlap other operands"));
7594
7595 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7596 */
7597 if (!check_obsolete (&arm_ext_v8,
7598 _("swp{b} use is obsoleted for ARMv8 and later"))
7599 && warn_on_deprecated
7600 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7601 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7602 }
7603
7604 inst.instruction |= inst.operands[0].reg << 12;
7605 inst.instruction |= inst.operands[1].reg;
7606 inst.instruction |= Rn << 16;
7607 }
7608
7609 static void
7610 do_rd_rn_rm (void)
7611 {
7612 inst.instruction |= inst.operands[0].reg << 12;
7613 inst.instruction |= inst.operands[1].reg << 16;
7614 inst.instruction |= inst.operands[2].reg;
7615 }
7616
7617 static void
7618 do_rm_rd_rn (void)
7619 {
7620 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7621 constraint (((inst.reloc.exp.X_op != O_constant
7622 && inst.reloc.exp.X_op != O_illegal)
7623 || inst.reloc.exp.X_add_number != 0),
7624 BAD_ADDR_MODE);
7625 inst.instruction |= inst.operands[0].reg;
7626 inst.instruction |= inst.operands[1].reg << 12;
7627 inst.instruction |= inst.operands[2].reg << 16;
7628 }
7629
7630 static void
7631 do_imm0 (void)
7632 {
7633 inst.instruction |= inst.operands[0].imm;
7634 }
7635
7636 static void
7637 do_rd_cpaddr (void)
7638 {
7639 inst.instruction |= inst.operands[0].reg << 12;
7640 encode_arm_cp_address (1, TRUE, TRUE, 0);
7641 }
7642
7643 /* ARM instructions, in alphabetical order by function name (except
7644 that wrapper functions appear immediately after the function they
7645 wrap). */
7646
7647 /* This is a pseudo-op of the form "adr rd, label" to be converted
7648 into a relative address of the form "add rd, pc, #label-.-8". */
7649
7650 static void
7651 do_adr (void)
7652 {
7653 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7654
7655 /* Frag hacking will turn this into a sub instruction if the offset turns
7656 out to be negative. */
7657 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7658 inst.reloc.pc_rel = 1;
7659 inst.reloc.exp.X_add_number -= 8;
7660 }
7661
7662 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7663 into a relative address of the form:
7664 add rd, pc, #low(label-.-8)"
7665 add rd, rd, #high(label-.-8)" */
7666
7667 static void
7668 do_adrl (void)
7669 {
7670 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7671
7672 /* Frag hacking will turn this into a sub instruction if the offset turns
7673 out to be negative. */
7674 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7675 inst.reloc.pc_rel = 1;
7676 inst.size = INSN_SIZE * 2;
7677 inst.reloc.exp.X_add_number -= 8;
7678 }
7679
7680 static void
7681 do_arit (void)
7682 {
7683 if (!inst.operands[1].present)
7684 inst.operands[1].reg = inst.operands[0].reg;
7685 inst.instruction |= inst.operands[0].reg << 12;
7686 inst.instruction |= inst.operands[1].reg << 16;
7687 encode_arm_shifter_operand (2);
7688 }
7689
7690 static void
7691 do_barrier (void)
7692 {
7693 if (inst.operands[0].present)
7694 inst.instruction |= inst.operands[0].imm;
7695 else
7696 inst.instruction |= 0xf;
7697 }
7698
7699 static void
7700 do_bfc (void)
7701 {
7702 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7703 constraint (msb > 32, _("bit-field extends past end of register"));
7704 /* The instruction encoding stores the LSB and MSB,
7705 not the LSB and width. */
7706 inst.instruction |= inst.operands[0].reg << 12;
7707 inst.instruction |= inst.operands[1].imm << 7;
7708 inst.instruction |= (msb - 1) << 16;
7709 }
7710
7711 static void
7712 do_bfi (void)
7713 {
7714 unsigned int msb;
7715
7716 /* #0 in second position is alternative syntax for bfc, which is
7717 the same instruction but with REG_PC in the Rm field. */
7718 if (!inst.operands[1].isreg)
7719 inst.operands[1].reg = REG_PC;
7720
7721 msb = inst.operands[2].imm + inst.operands[3].imm;
7722 constraint (msb > 32, _("bit-field extends past end of register"));
7723 /* The instruction encoding stores the LSB and MSB,
7724 not the LSB and width. */
7725 inst.instruction |= inst.operands[0].reg << 12;
7726 inst.instruction |= inst.operands[1].reg;
7727 inst.instruction |= inst.operands[2].imm << 7;
7728 inst.instruction |= (msb - 1) << 16;
7729 }
7730
7731 static void
7732 do_bfx (void)
7733 {
7734 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7735 _("bit-field extends past end of register"));
7736 inst.instruction |= inst.operands[0].reg << 12;
7737 inst.instruction |= inst.operands[1].reg;
7738 inst.instruction |= inst.operands[2].imm << 7;
7739 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7740 }
7741
7742 /* ARM V5 breakpoint instruction (argument parse)
7743 BKPT <16 bit unsigned immediate>
7744 Instruction is not conditional.
7745 The bit pattern given in insns[] has the COND_ALWAYS condition,
7746 and it is an error if the caller tried to override that. */
7747
7748 static void
7749 do_bkpt (void)
7750 {
7751 /* Top 12 of 16 bits to bits 19:8. */
7752 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7753
7754 /* Bottom 4 of 16 bits to bits 3:0. */
7755 inst.instruction |= inst.operands[0].imm & 0xf;
7756 }
7757
7758 static void
7759 encode_branch (int default_reloc)
7760 {
7761 if (inst.operands[0].hasreloc)
7762 {
7763 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7764 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7765 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7766 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7767 ? BFD_RELOC_ARM_PLT32
7768 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7769 }
7770 else
7771 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7772 inst.reloc.pc_rel = 1;
7773 }
7774
7775 static void
7776 do_branch (void)
7777 {
7778 #ifdef OBJ_ELF
7779 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7780 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7781 else
7782 #endif
7783 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7784 }
7785
7786 static void
7787 do_bl (void)
7788 {
7789 #ifdef OBJ_ELF
7790 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7791 {
7792 if (inst.cond == COND_ALWAYS)
7793 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7794 else
7795 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7796 }
7797 else
7798 #endif
7799 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7800 }
7801
7802 /* ARM V5 branch-link-exchange instruction (argument parse)
7803 BLX <target_addr> ie BLX(1)
7804 BLX{<condition>} <Rm> ie BLX(2)
7805 Unfortunately, there are two different opcodes for this mnemonic.
7806 So, the insns[].value is not used, and the code here zaps values
7807 into inst.instruction.
7808 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7809
7810 static void
7811 do_blx (void)
7812 {
7813 if (inst.operands[0].isreg)
7814 {
7815 /* Arg is a register; the opcode provided by insns[] is correct.
7816 It is not illegal to do "blx pc", just useless. */
7817 if (inst.operands[0].reg == REG_PC)
7818 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7819
7820 inst.instruction |= inst.operands[0].reg;
7821 }
7822 else
7823 {
7824 /* Arg is an address; this instruction cannot be executed
7825 conditionally, and the opcode must be adjusted.
7826 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7827 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7828 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7829 inst.instruction = 0xfa000000;
7830 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7831 }
7832 }
7833
7834 static void
7835 do_bx (void)
7836 {
7837 bfd_boolean want_reloc;
7838
7839 if (inst.operands[0].reg == REG_PC)
7840 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7841
7842 inst.instruction |= inst.operands[0].reg;
7843 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7844 it is for ARMv4t or earlier. */
7845 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7846 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7847 want_reloc = TRUE;
7848
7849 #ifdef OBJ_ELF
7850 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7851 #endif
7852 want_reloc = FALSE;
7853
7854 if (want_reloc)
7855 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7856 }
7857
7858
7859 /* ARM v5TEJ. Jump to Jazelle code. */
7860
7861 static void
7862 do_bxj (void)
7863 {
7864 if (inst.operands[0].reg == REG_PC)
7865 as_tsktsk (_("use of r15 in bxj is not really useful"));
7866
7867 inst.instruction |= inst.operands[0].reg;
7868 }
7869
7870 /* Co-processor data operation:
7871 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7872 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7873 static void
7874 do_cdp (void)
7875 {
7876 inst.instruction |= inst.operands[0].reg << 8;
7877 inst.instruction |= inst.operands[1].imm << 20;
7878 inst.instruction |= inst.operands[2].reg << 12;
7879 inst.instruction |= inst.operands[3].reg << 16;
7880 inst.instruction |= inst.operands[4].reg;
7881 inst.instruction |= inst.operands[5].imm << 5;
7882 }
7883
7884 static void
7885 do_cmp (void)
7886 {
7887 inst.instruction |= inst.operands[0].reg << 16;
7888 encode_arm_shifter_operand (1);
7889 }
7890
7891 /* Transfer between coprocessor and ARM registers.
7892 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7893 MRC2
7894 MCR{cond}
7895 MCR2
7896
7897 No special properties. */
7898
7899 struct deprecated_coproc_regs_s
7900 {
7901 unsigned cp;
7902 int opc1;
7903 unsigned crn;
7904 unsigned crm;
7905 int opc2;
7906 arm_feature_set deprecated;
7907 arm_feature_set obsoleted;
7908 const char *dep_msg;
7909 const char *obs_msg;
7910 };
7911
7912 #define DEPR_ACCESS_V8 \
7913 N_("This coprocessor register access is deprecated in ARMv8")
7914
7915 /* Table of all deprecated coprocessor registers. */
7916 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7917 {
7918 {15, 0, 7, 10, 5, /* CP15DMB. */
7919 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7920 DEPR_ACCESS_V8, NULL},
7921 {15, 0, 7, 10, 4, /* CP15DSB. */
7922 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7923 DEPR_ACCESS_V8, NULL},
7924 {15, 0, 7, 5, 4, /* CP15ISB. */
7925 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7926 DEPR_ACCESS_V8, NULL},
7927 {14, 6, 1, 0, 0, /* TEEHBR. */
7928 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7929 DEPR_ACCESS_V8, NULL},
7930 {14, 6, 0, 0, 0, /* TEECR. */
7931 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7932 DEPR_ACCESS_V8, NULL},
7933 };
7934
7935 #undef DEPR_ACCESS_V8
7936
7937 static const size_t deprecated_coproc_reg_count =
7938 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7939
7940 static void
7941 do_co_reg (void)
7942 {
7943 unsigned Rd;
7944 size_t i;
7945
7946 Rd = inst.operands[2].reg;
7947 if (thumb_mode)
7948 {
7949 if (inst.instruction == 0xee000010
7950 || inst.instruction == 0xfe000010)
7951 /* MCR, MCR2 */
7952 reject_bad_reg (Rd);
7953 else
7954 /* MRC, MRC2 */
7955 constraint (Rd == REG_SP, BAD_SP);
7956 }
7957 else
7958 {
7959 /* MCR */
7960 if (inst.instruction == 0xe000010)
7961 constraint (Rd == REG_PC, BAD_PC);
7962 }
7963
7964 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7965 {
7966 const struct deprecated_coproc_regs_s *r =
7967 deprecated_coproc_regs + i;
7968
7969 if (inst.operands[0].reg == r->cp
7970 && inst.operands[1].imm == r->opc1
7971 && inst.operands[3].reg == r->crn
7972 && inst.operands[4].reg == r->crm
7973 && inst.operands[5].imm == r->opc2)
7974 {
7975 if (! ARM_CPU_IS_ANY (cpu_variant)
7976 && warn_on_deprecated
7977 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7978 as_warn ("%s", r->dep_msg);
7979 }
7980 }
7981
7982 inst.instruction |= inst.operands[0].reg << 8;
7983 inst.instruction |= inst.operands[1].imm << 21;
7984 inst.instruction |= Rd << 12;
7985 inst.instruction |= inst.operands[3].reg << 16;
7986 inst.instruction |= inst.operands[4].reg;
7987 inst.instruction |= inst.operands[5].imm << 5;
7988 }
7989
7990 /* Transfer between coprocessor register and pair of ARM registers.
7991 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7992 MCRR2
7993 MRRC{cond}
7994 MRRC2
7995
7996 Two XScale instructions are special cases of these:
7997
7998 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7999 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8000
8001 Result unpredictable if Rd or Rn is R15. */
8002
8003 static void
8004 do_co_reg2c (void)
8005 {
8006 unsigned Rd, Rn;
8007
8008 Rd = inst.operands[2].reg;
8009 Rn = inst.operands[3].reg;
8010
8011 if (thumb_mode)
8012 {
8013 reject_bad_reg (Rd);
8014 reject_bad_reg (Rn);
8015 }
8016 else
8017 {
8018 constraint (Rd == REG_PC, BAD_PC);
8019 constraint (Rn == REG_PC, BAD_PC);
8020 }
8021
8022 inst.instruction |= inst.operands[0].reg << 8;
8023 inst.instruction |= inst.operands[1].imm << 4;
8024 inst.instruction |= Rd << 12;
8025 inst.instruction |= Rn << 16;
8026 inst.instruction |= inst.operands[4].reg;
8027 }
8028
8029 static void
8030 do_cpsi (void)
8031 {
8032 inst.instruction |= inst.operands[0].imm << 6;
8033 if (inst.operands[1].present)
8034 {
8035 inst.instruction |= CPSI_MMOD;
8036 inst.instruction |= inst.operands[1].imm;
8037 }
8038 }
8039
8040 static void
8041 do_dbg (void)
8042 {
8043 inst.instruction |= inst.operands[0].imm;
8044 }
8045
8046 static void
8047 do_div (void)
8048 {
8049 unsigned Rd, Rn, Rm;
8050
8051 Rd = inst.operands[0].reg;
8052 Rn = (inst.operands[1].present
8053 ? inst.operands[1].reg : Rd);
8054 Rm = inst.operands[2].reg;
8055
8056 constraint ((Rd == REG_PC), BAD_PC);
8057 constraint ((Rn == REG_PC), BAD_PC);
8058 constraint ((Rm == REG_PC), BAD_PC);
8059
8060 inst.instruction |= Rd << 16;
8061 inst.instruction |= Rn << 0;
8062 inst.instruction |= Rm << 8;
8063 }
8064
8065 static void
8066 do_it (void)
8067 {
8068 /* There is no IT instruction in ARM mode. We
8069 process it to do the validation as if in
8070 thumb mode, just in case the code gets
8071 assembled for thumb using the unified syntax. */
8072
8073 inst.size = 0;
8074 if (unified_syntax)
8075 {
8076 set_it_insn_type (IT_INSN);
8077 now_it.mask = (inst.instruction & 0xf) | 0x10;
8078 now_it.cc = inst.operands[0].imm;
8079 }
8080 }
8081
8082 /* If there is only one register in the register list,
8083 then return its register number. Otherwise return -1. */
8084 static int
8085 only_one_reg_in_list (int range)
8086 {
8087 int i = ffs (range) - 1;
8088 return (i > 15 || range != (1 << i)) ? -1 : i;
8089 }
8090
8091 static void
8092 encode_ldmstm(int from_push_pop_mnem)
8093 {
8094 int base_reg = inst.operands[0].reg;
8095 int range = inst.operands[1].imm;
8096 int one_reg;
8097
8098 inst.instruction |= base_reg << 16;
8099 inst.instruction |= range;
8100
8101 if (inst.operands[1].writeback)
8102 inst.instruction |= LDM_TYPE_2_OR_3;
8103
8104 if (inst.operands[0].writeback)
8105 {
8106 inst.instruction |= WRITE_BACK;
8107 /* Check for unpredictable uses of writeback. */
8108 if (inst.instruction & LOAD_BIT)
8109 {
8110 /* Not allowed in LDM type 2. */
8111 if ((inst.instruction & LDM_TYPE_2_OR_3)
8112 && ((range & (1 << REG_PC)) == 0))
8113 as_warn (_("writeback of base register is UNPREDICTABLE"));
8114 /* Only allowed if base reg not in list for other types. */
8115 else if (range & (1 << base_reg))
8116 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8117 }
8118 else /* STM. */
8119 {
8120 /* Not allowed for type 2. */
8121 if (inst.instruction & LDM_TYPE_2_OR_3)
8122 as_warn (_("writeback of base register is UNPREDICTABLE"));
8123 /* Only allowed if base reg not in list, or first in list. */
8124 else if ((range & (1 << base_reg))
8125 && (range & ((1 << base_reg) - 1)))
8126 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8127 }
8128 }
8129
8130 /* If PUSH/POP has only one register, then use the A2 encoding. */
8131 one_reg = only_one_reg_in_list (range);
8132 if (from_push_pop_mnem && one_reg >= 0)
8133 {
8134 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8135
8136 inst.instruction &= A_COND_MASK;
8137 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8138 inst.instruction |= one_reg << 12;
8139 }
8140 }
8141
8142 static void
8143 do_ldmstm (void)
8144 {
8145 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8146 }
8147
8148 /* ARMv5TE load-consecutive (argument parse)
8149 Mode is like LDRH.
8150
8151 LDRccD R, mode
8152 STRccD R, mode. */
8153
8154 static void
8155 do_ldrd (void)
8156 {
8157 constraint (inst.operands[0].reg % 2 != 0,
8158 _("first transfer register must be even"));
8159 constraint (inst.operands[1].present
8160 && inst.operands[1].reg != inst.operands[0].reg + 1,
8161 _("can only transfer two consecutive registers"));
8162 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8163 constraint (!inst.operands[2].isreg, _("'[' expected"));
8164
8165 if (!inst.operands[1].present)
8166 inst.operands[1].reg = inst.operands[0].reg + 1;
8167
8168 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8169 register and the first register written; we have to diagnose
8170 overlap between the base and the second register written here. */
8171
8172 if (inst.operands[2].reg == inst.operands[1].reg
8173 && (inst.operands[2].writeback || inst.operands[2].postind))
8174 as_warn (_("base register written back, and overlaps "
8175 "second transfer register"));
8176
8177 if (!(inst.instruction & V4_STR_BIT))
8178 {
8179 /* For an index-register load, the index register must not overlap the
8180 destination (even if not write-back). */
8181 if (inst.operands[2].immisreg
8182 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8183 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8184 as_warn (_("index register overlaps transfer register"));
8185 }
8186 inst.instruction |= inst.operands[0].reg << 12;
8187 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8188 }
8189
8190 static void
8191 do_ldrex (void)
8192 {
8193 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8194 || inst.operands[1].postind || inst.operands[1].writeback
8195 || inst.operands[1].immisreg || inst.operands[1].shifted
8196 || inst.operands[1].negative
8197 /* This can arise if the programmer has written
8198 strex rN, rM, foo
8199 or if they have mistakenly used a register name as the last
8200 operand, eg:
8201 strex rN, rM, rX
8202 It is very difficult to distinguish between these two cases
8203 because "rX" might actually be a label. ie the register
8204 name has been occluded by a symbol of the same name. So we
8205 just generate a general 'bad addressing mode' type error
8206 message and leave it up to the programmer to discover the
8207 true cause and fix their mistake. */
8208 || (inst.operands[1].reg == REG_PC),
8209 BAD_ADDR_MODE);
8210
8211 constraint (inst.reloc.exp.X_op != O_constant
8212 || inst.reloc.exp.X_add_number != 0,
8213 _("offset must be zero in ARM encoding"));
8214
8215 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8216
8217 inst.instruction |= inst.operands[0].reg << 12;
8218 inst.instruction |= inst.operands[1].reg << 16;
8219 inst.reloc.type = BFD_RELOC_UNUSED;
8220 }
8221
8222 static void
8223 do_ldrexd (void)
8224 {
8225 constraint (inst.operands[0].reg % 2 != 0,
8226 _("even register required"));
8227 constraint (inst.operands[1].present
8228 && inst.operands[1].reg != inst.operands[0].reg + 1,
8229 _("can only load two consecutive registers"));
8230 /* If op 1 were present and equal to PC, this function wouldn't
8231 have been called in the first place. */
8232 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8233
8234 inst.instruction |= inst.operands[0].reg << 12;
8235 inst.instruction |= inst.operands[2].reg << 16;
8236 }
8237
8238 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8239 which is not a multiple of four is UNPREDICTABLE. */
8240 static void
8241 check_ldr_r15_aligned (void)
8242 {
8243 constraint (!(inst.operands[1].immisreg)
8244 && (inst.operands[0].reg == REG_PC
8245 && inst.operands[1].reg == REG_PC
8246 && (inst.reloc.exp.X_add_number & 0x3)),
8247 _("ldr to register 15 must be 4-byte alligned"));
8248 }
8249
8250 static void
8251 do_ldst (void)
8252 {
8253 inst.instruction |= inst.operands[0].reg << 12;
8254 if (!inst.operands[1].isreg)
8255 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8256 return;
8257 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8258 check_ldr_r15_aligned ();
8259 }
8260
8261 static void
8262 do_ldstt (void)
8263 {
8264 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8265 reject [Rn,...]. */
8266 if (inst.operands[1].preind)
8267 {
8268 constraint (inst.reloc.exp.X_op != O_constant
8269 || inst.reloc.exp.X_add_number != 0,
8270 _("this instruction requires a post-indexed address"));
8271
8272 inst.operands[1].preind = 0;
8273 inst.operands[1].postind = 1;
8274 inst.operands[1].writeback = 1;
8275 }
8276 inst.instruction |= inst.operands[0].reg << 12;
8277 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8278 }
8279
8280 /* Halfword and signed-byte load/store operations. */
8281
8282 static void
8283 do_ldstv4 (void)
8284 {
8285 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8286 inst.instruction |= inst.operands[0].reg << 12;
8287 if (!inst.operands[1].isreg)
8288 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8289 return;
8290 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8291 }
8292
8293 static void
8294 do_ldsttv4 (void)
8295 {
8296 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8297 reject [Rn,...]. */
8298 if (inst.operands[1].preind)
8299 {
8300 constraint (inst.reloc.exp.X_op != O_constant
8301 || inst.reloc.exp.X_add_number != 0,
8302 _("this instruction requires a post-indexed address"));
8303
8304 inst.operands[1].preind = 0;
8305 inst.operands[1].postind = 1;
8306 inst.operands[1].writeback = 1;
8307 }
8308 inst.instruction |= inst.operands[0].reg << 12;
8309 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8310 }
8311
8312 /* Co-processor register load/store.
8313 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8314 static void
8315 do_lstc (void)
8316 {
8317 inst.instruction |= inst.operands[0].reg << 8;
8318 inst.instruction |= inst.operands[1].reg << 12;
8319 encode_arm_cp_address (2, TRUE, TRUE, 0);
8320 }
8321
8322 static void
8323 do_mlas (void)
8324 {
8325 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8326 if (inst.operands[0].reg == inst.operands[1].reg
8327 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8328 && !(inst.instruction & 0x00400000))
8329 as_tsktsk (_("Rd and Rm should be different in mla"));
8330
8331 inst.instruction |= inst.operands[0].reg << 16;
8332 inst.instruction |= inst.operands[1].reg;
8333 inst.instruction |= inst.operands[2].reg << 8;
8334 inst.instruction |= inst.operands[3].reg << 12;
8335 }
8336
8337 static void
8338 do_mov (void)
8339 {
8340 inst.instruction |= inst.operands[0].reg << 12;
8341 encode_arm_shifter_operand (1);
8342 }
8343
8344 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8345 static void
8346 do_mov16 (void)
8347 {
8348 bfd_vma imm;
8349 bfd_boolean top;
8350
8351 top = (inst.instruction & 0x00400000) != 0;
8352 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8353 _(":lower16: not allowed this instruction"));
8354 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8355 _(":upper16: not allowed instruction"));
8356 inst.instruction |= inst.operands[0].reg << 12;
8357 if (inst.reloc.type == BFD_RELOC_UNUSED)
8358 {
8359 imm = inst.reloc.exp.X_add_number;
8360 /* The value is in two pieces: 0:11, 16:19. */
8361 inst.instruction |= (imm & 0x00000fff);
8362 inst.instruction |= (imm & 0x0000f000) << 4;
8363 }
8364 }
8365
8366 static void do_vfp_nsyn_opcode (const char *);
8367
8368 static int
8369 do_vfp_nsyn_mrs (void)
8370 {
8371 if (inst.operands[0].isvec)
8372 {
8373 if (inst.operands[1].reg != 1)
8374 first_error (_("operand 1 must be FPSCR"));
8375 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8376 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8377 do_vfp_nsyn_opcode ("fmstat");
8378 }
8379 else if (inst.operands[1].isvec)
8380 do_vfp_nsyn_opcode ("fmrx");
8381 else
8382 return FAIL;
8383
8384 return SUCCESS;
8385 }
8386
8387 static int
8388 do_vfp_nsyn_msr (void)
8389 {
8390 if (inst.operands[0].isvec)
8391 do_vfp_nsyn_opcode ("fmxr");
8392 else
8393 return FAIL;
8394
8395 return SUCCESS;
8396 }
8397
8398 static void
8399 do_vmrs (void)
8400 {
8401 unsigned Rt = inst.operands[0].reg;
8402
8403 if (thumb_mode && Rt == REG_SP)
8404 {
8405 inst.error = BAD_SP;
8406 return;
8407 }
8408
8409 /* APSR_ sets isvec. All other refs to PC are illegal. */
8410 if (!inst.operands[0].isvec && Rt == REG_PC)
8411 {
8412 inst.error = BAD_PC;
8413 return;
8414 }
8415
8416 /* If we get through parsing the register name, we just insert the number
8417 generated into the instruction without further validation. */
8418 inst.instruction |= (inst.operands[1].reg << 16);
8419 inst.instruction |= (Rt << 12);
8420 }
8421
8422 static void
8423 do_vmsr (void)
8424 {
8425 unsigned Rt = inst.operands[1].reg;
8426
8427 if (thumb_mode)
8428 reject_bad_reg (Rt);
8429 else if (Rt == REG_PC)
8430 {
8431 inst.error = BAD_PC;
8432 return;
8433 }
8434
8435 /* If we get through parsing the register name, we just insert the number
8436 generated into the instruction without further validation. */
8437 inst.instruction |= (inst.operands[0].reg << 16);
8438 inst.instruction |= (Rt << 12);
8439 }
8440
8441 static void
8442 do_mrs (void)
8443 {
8444 unsigned br;
8445
8446 if (do_vfp_nsyn_mrs () == SUCCESS)
8447 return;
8448
8449 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8450 inst.instruction |= inst.operands[0].reg << 12;
8451
8452 if (inst.operands[1].isreg)
8453 {
8454 br = inst.operands[1].reg;
8455 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8456 as_bad (_("bad register for mrs"));
8457 }
8458 else
8459 {
8460 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8461 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8462 != (PSR_c|PSR_f),
8463 _("'APSR', 'CPSR' or 'SPSR' expected"));
8464 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8465 }
8466
8467 inst.instruction |= br;
8468 }
8469
8470 /* Two possible forms:
8471 "{C|S}PSR_<field>, Rm",
8472 "{C|S}PSR_f, #expression". */
8473
8474 static void
8475 do_msr (void)
8476 {
8477 if (do_vfp_nsyn_msr () == SUCCESS)
8478 return;
8479
8480 inst.instruction |= inst.operands[0].imm;
8481 if (inst.operands[1].isreg)
8482 inst.instruction |= inst.operands[1].reg;
8483 else
8484 {
8485 inst.instruction |= INST_IMMEDIATE;
8486 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8487 inst.reloc.pc_rel = 0;
8488 }
8489 }
8490
8491 static void
8492 do_mul (void)
8493 {
8494 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8495
8496 if (!inst.operands[2].present)
8497 inst.operands[2].reg = inst.operands[0].reg;
8498 inst.instruction |= inst.operands[0].reg << 16;
8499 inst.instruction |= inst.operands[1].reg;
8500 inst.instruction |= inst.operands[2].reg << 8;
8501
8502 if (inst.operands[0].reg == inst.operands[1].reg
8503 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8504 as_tsktsk (_("Rd and Rm should be different in mul"));
8505 }
8506
8507 /* Long Multiply Parser
8508 UMULL RdLo, RdHi, Rm, Rs
8509 SMULL RdLo, RdHi, Rm, Rs
8510 UMLAL RdLo, RdHi, Rm, Rs
8511 SMLAL RdLo, RdHi, Rm, Rs. */
8512
8513 static void
8514 do_mull (void)
8515 {
8516 inst.instruction |= inst.operands[0].reg << 12;
8517 inst.instruction |= inst.operands[1].reg << 16;
8518 inst.instruction |= inst.operands[2].reg;
8519 inst.instruction |= inst.operands[3].reg << 8;
8520
8521 /* rdhi and rdlo must be different. */
8522 if (inst.operands[0].reg == inst.operands[1].reg)
8523 as_tsktsk (_("rdhi and rdlo must be different"));
8524
8525 /* rdhi, rdlo and rm must all be different before armv6. */
8526 if ((inst.operands[0].reg == inst.operands[2].reg
8527 || inst.operands[1].reg == inst.operands[2].reg)
8528 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8529 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8530 }
8531
8532 static void
8533 do_nop (void)
8534 {
8535 if (inst.operands[0].present
8536 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8537 {
8538 /* Architectural NOP hints are CPSR sets with no bits selected. */
8539 inst.instruction &= 0xf0000000;
8540 inst.instruction |= 0x0320f000;
8541 if (inst.operands[0].present)
8542 inst.instruction |= inst.operands[0].imm;
8543 }
8544 }
8545
8546 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8547 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8548 Condition defaults to COND_ALWAYS.
8549 Error if Rd, Rn or Rm are R15. */
8550
8551 static void
8552 do_pkhbt (void)
8553 {
8554 inst.instruction |= inst.operands[0].reg << 12;
8555 inst.instruction |= inst.operands[1].reg << 16;
8556 inst.instruction |= inst.operands[2].reg;
8557 if (inst.operands[3].present)
8558 encode_arm_shift (3);
8559 }
8560
8561 /* ARM V6 PKHTB (Argument Parse). */
8562
8563 static void
8564 do_pkhtb (void)
8565 {
8566 if (!inst.operands[3].present)
8567 {
8568 /* If the shift specifier is omitted, turn the instruction
8569 into pkhbt rd, rm, rn. */
8570 inst.instruction &= 0xfff00010;
8571 inst.instruction |= inst.operands[0].reg << 12;
8572 inst.instruction |= inst.operands[1].reg;
8573 inst.instruction |= inst.operands[2].reg << 16;
8574 }
8575 else
8576 {
8577 inst.instruction |= inst.operands[0].reg << 12;
8578 inst.instruction |= inst.operands[1].reg << 16;
8579 inst.instruction |= inst.operands[2].reg;
8580 encode_arm_shift (3);
8581 }
8582 }
8583
8584 /* ARMv5TE: Preload-Cache
8585 MP Extensions: Preload for write
8586
8587 PLD(W) <addr_mode>
8588
8589 Syntactically, like LDR with B=1, W=0, L=1. */
8590
8591 static void
8592 do_pld (void)
8593 {
8594 constraint (!inst.operands[0].isreg,
8595 _("'[' expected after PLD mnemonic"));
8596 constraint (inst.operands[0].postind,
8597 _("post-indexed expression used in preload instruction"));
8598 constraint (inst.operands[0].writeback,
8599 _("writeback used in preload instruction"));
8600 constraint (!inst.operands[0].preind,
8601 _("unindexed addressing used in preload instruction"));
8602 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8603 }
8604
8605 /* ARMv7: PLI <addr_mode> */
8606 static void
8607 do_pli (void)
8608 {
8609 constraint (!inst.operands[0].isreg,
8610 _("'[' expected after PLI mnemonic"));
8611 constraint (inst.operands[0].postind,
8612 _("post-indexed expression used in preload instruction"));
8613 constraint (inst.operands[0].writeback,
8614 _("writeback used in preload instruction"));
8615 constraint (!inst.operands[0].preind,
8616 _("unindexed addressing used in preload instruction"));
8617 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8618 inst.instruction &= ~PRE_INDEX;
8619 }
8620
8621 static void
8622 do_push_pop (void)
8623 {
8624 inst.operands[1] = inst.operands[0];
8625 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8626 inst.operands[0].isreg = 1;
8627 inst.operands[0].writeback = 1;
8628 inst.operands[0].reg = REG_SP;
8629 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8630 }
8631
8632 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8633 word at the specified address and the following word
8634 respectively.
8635 Unconditionally executed.
8636 Error if Rn is R15. */
8637
8638 static void
8639 do_rfe (void)
8640 {
8641 inst.instruction |= inst.operands[0].reg << 16;
8642 if (inst.operands[0].writeback)
8643 inst.instruction |= WRITE_BACK;
8644 }
8645
8646 /* ARM V6 ssat (argument parse). */
8647
8648 static void
8649 do_ssat (void)
8650 {
8651 inst.instruction |= inst.operands[0].reg << 12;
8652 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8653 inst.instruction |= inst.operands[2].reg;
8654
8655 if (inst.operands[3].present)
8656 encode_arm_shift (3);
8657 }
8658
8659 /* ARM V6 usat (argument parse). */
8660
8661 static void
8662 do_usat (void)
8663 {
8664 inst.instruction |= inst.operands[0].reg << 12;
8665 inst.instruction |= inst.operands[1].imm << 16;
8666 inst.instruction |= inst.operands[2].reg;
8667
8668 if (inst.operands[3].present)
8669 encode_arm_shift (3);
8670 }
8671
8672 /* ARM V6 ssat16 (argument parse). */
8673
8674 static void
8675 do_ssat16 (void)
8676 {
8677 inst.instruction |= inst.operands[0].reg << 12;
8678 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8679 inst.instruction |= inst.operands[2].reg;
8680 }
8681
8682 static void
8683 do_usat16 (void)
8684 {
8685 inst.instruction |= inst.operands[0].reg << 12;
8686 inst.instruction |= inst.operands[1].imm << 16;
8687 inst.instruction |= inst.operands[2].reg;
8688 }
8689
8690 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8691 preserving the other bits.
8692
8693 setend <endian_specifier>, where <endian_specifier> is either
8694 BE or LE. */
8695
8696 static void
8697 do_setend (void)
8698 {
8699 if (warn_on_deprecated
8700 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8701 as_warn (_("setend use is deprecated for ARMv8"));
8702
8703 if (inst.operands[0].imm)
8704 inst.instruction |= 0x200;
8705 }
8706
8707 static void
8708 do_shift (void)
8709 {
8710 unsigned int Rm = (inst.operands[1].present
8711 ? inst.operands[1].reg
8712 : inst.operands[0].reg);
8713
8714 inst.instruction |= inst.operands[0].reg << 12;
8715 inst.instruction |= Rm;
8716 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8717 {
8718 inst.instruction |= inst.operands[2].reg << 8;
8719 inst.instruction |= SHIFT_BY_REG;
8720 /* PR 12854: Error on extraneous shifts. */
8721 constraint (inst.operands[2].shifted,
8722 _("extraneous shift as part of operand to shift insn"));
8723 }
8724 else
8725 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8726 }
8727
8728 static void
8729 do_smc (void)
8730 {
8731 inst.reloc.type = BFD_RELOC_ARM_SMC;
8732 inst.reloc.pc_rel = 0;
8733 }
8734
8735 static void
8736 do_hvc (void)
8737 {
8738 inst.reloc.type = BFD_RELOC_ARM_HVC;
8739 inst.reloc.pc_rel = 0;
8740 }
8741
8742 static void
8743 do_swi (void)
8744 {
8745 inst.reloc.type = BFD_RELOC_ARM_SWI;
8746 inst.reloc.pc_rel = 0;
8747 }
8748
8749 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8750 SMLAxy{cond} Rd,Rm,Rs,Rn
8751 SMLAWy{cond} Rd,Rm,Rs,Rn
8752 Error if any register is R15. */
8753
8754 static void
8755 do_smla (void)
8756 {
8757 inst.instruction |= inst.operands[0].reg << 16;
8758 inst.instruction |= inst.operands[1].reg;
8759 inst.instruction |= inst.operands[2].reg << 8;
8760 inst.instruction |= inst.operands[3].reg << 12;
8761 }
8762
8763 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8764 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8765 Error if any register is R15.
8766 Warning if Rdlo == Rdhi. */
8767
8768 static void
8769 do_smlal (void)
8770 {
8771 inst.instruction |= inst.operands[0].reg << 12;
8772 inst.instruction |= inst.operands[1].reg << 16;
8773 inst.instruction |= inst.operands[2].reg;
8774 inst.instruction |= inst.operands[3].reg << 8;
8775
8776 if (inst.operands[0].reg == inst.operands[1].reg)
8777 as_tsktsk (_("rdhi and rdlo must be different"));
8778 }
8779
8780 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8781 SMULxy{cond} Rd,Rm,Rs
8782 Error if any register is R15. */
8783
8784 static void
8785 do_smul (void)
8786 {
8787 inst.instruction |= inst.operands[0].reg << 16;
8788 inst.instruction |= inst.operands[1].reg;
8789 inst.instruction |= inst.operands[2].reg << 8;
8790 }
8791
8792 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8793 the same for both ARM and Thumb-2. */
8794
8795 static void
8796 do_srs (void)
8797 {
8798 int reg;
8799
8800 if (inst.operands[0].present)
8801 {
8802 reg = inst.operands[0].reg;
8803 constraint (reg != REG_SP, _("SRS base register must be r13"));
8804 }
8805 else
8806 reg = REG_SP;
8807
8808 inst.instruction |= reg << 16;
8809 inst.instruction |= inst.operands[1].imm;
8810 if (inst.operands[0].writeback || inst.operands[1].writeback)
8811 inst.instruction |= WRITE_BACK;
8812 }
8813
8814 /* ARM V6 strex (argument parse). */
8815
8816 static void
8817 do_strex (void)
8818 {
8819 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8820 || inst.operands[2].postind || inst.operands[2].writeback
8821 || inst.operands[2].immisreg || inst.operands[2].shifted
8822 || inst.operands[2].negative
8823 /* See comment in do_ldrex(). */
8824 || (inst.operands[2].reg == REG_PC),
8825 BAD_ADDR_MODE);
8826
8827 constraint (inst.operands[0].reg == inst.operands[1].reg
8828 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8829
8830 constraint (inst.reloc.exp.X_op != O_constant
8831 || inst.reloc.exp.X_add_number != 0,
8832 _("offset must be zero in ARM encoding"));
8833
8834 inst.instruction |= inst.operands[0].reg << 12;
8835 inst.instruction |= inst.operands[1].reg;
8836 inst.instruction |= inst.operands[2].reg << 16;
8837 inst.reloc.type = BFD_RELOC_UNUSED;
8838 }
8839
8840 static void
8841 do_t_strexbh (void)
8842 {
8843 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8844 || inst.operands[2].postind || inst.operands[2].writeback
8845 || inst.operands[2].immisreg || inst.operands[2].shifted
8846 || inst.operands[2].negative,
8847 BAD_ADDR_MODE);
8848
8849 constraint (inst.operands[0].reg == inst.operands[1].reg
8850 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8851
8852 do_rm_rd_rn ();
8853 }
8854
8855 static void
8856 do_strexd (void)
8857 {
8858 constraint (inst.operands[1].reg % 2 != 0,
8859 _("even register required"));
8860 constraint (inst.operands[2].present
8861 && inst.operands[2].reg != inst.operands[1].reg + 1,
8862 _("can only store two consecutive registers"));
8863 /* If op 2 were present and equal to PC, this function wouldn't
8864 have been called in the first place. */
8865 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8866
8867 constraint (inst.operands[0].reg == inst.operands[1].reg
8868 || inst.operands[0].reg == inst.operands[1].reg + 1
8869 || inst.operands[0].reg == inst.operands[3].reg,
8870 BAD_OVERLAP);
8871
8872 inst.instruction |= inst.operands[0].reg << 12;
8873 inst.instruction |= inst.operands[1].reg;
8874 inst.instruction |= inst.operands[3].reg << 16;
8875 }
8876
8877 /* ARM V8 STRL. */
8878 static void
8879 do_stlex (void)
8880 {
8881 constraint (inst.operands[0].reg == inst.operands[1].reg
8882 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8883
8884 do_rd_rm_rn ();
8885 }
8886
8887 static void
8888 do_t_stlex (void)
8889 {
8890 constraint (inst.operands[0].reg == inst.operands[1].reg
8891 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8892
8893 do_rm_rd_rn ();
8894 }
8895
8896 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8897 extends it to 32-bits, and adds the result to a value in another
8898 register. You can specify a rotation by 0, 8, 16, or 24 bits
8899 before extracting the 16-bit value.
8900 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8901 Condition defaults to COND_ALWAYS.
8902 Error if any register uses R15. */
8903
8904 static void
8905 do_sxtah (void)
8906 {
8907 inst.instruction |= inst.operands[0].reg << 12;
8908 inst.instruction |= inst.operands[1].reg << 16;
8909 inst.instruction |= inst.operands[2].reg;
8910 inst.instruction |= inst.operands[3].imm << 10;
8911 }
8912
8913 /* ARM V6 SXTH.
8914
8915 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8916 Condition defaults to COND_ALWAYS.
8917 Error if any register uses R15. */
8918
8919 static void
8920 do_sxth (void)
8921 {
8922 inst.instruction |= inst.operands[0].reg << 12;
8923 inst.instruction |= inst.operands[1].reg;
8924 inst.instruction |= inst.operands[2].imm << 10;
8925 }
8926 \f
8927 /* VFP instructions. In a logical order: SP variant first, monad
8928 before dyad, arithmetic then move then load/store. */
8929
8930 static void
8931 do_vfp_sp_monadic (void)
8932 {
8933 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8934 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8935 }
8936
8937 static void
8938 do_vfp_sp_dyadic (void)
8939 {
8940 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8941 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8942 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8943 }
8944
8945 static void
8946 do_vfp_sp_compare_z (void)
8947 {
8948 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8949 }
8950
8951 static void
8952 do_vfp_dp_sp_cvt (void)
8953 {
8954 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8955 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8956 }
8957
8958 static void
8959 do_vfp_sp_dp_cvt (void)
8960 {
8961 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8962 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8963 }
8964
8965 static void
8966 do_vfp_reg_from_sp (void)
8967 {
8968 inst.instruction |= inst.operands[0].reg << 12;
8969 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8970 }
8971
8972 static void
8973 do_vfp_reg2_from_sp2 (void)
8974 {
8975 constraint (inst.operands[2].imm != 2,
8976 _("only two consecutive VFP SP registers allowed here"));
8977 inst.instruction |= inst.operands[0].reg << 12;
8978 inst.instruction |= inst.operands[1].reg << 16;
8979 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8980 }
8981
8982 static void
8983 do_vfp_sp_from_reg (void)
8984 {
8985 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8986 inst.instruction |= inst.operands[1].reg << 12;
8987 }
8988
8989 static void
8990 do_vfp_sp2_from_reg2 (void)
8991 {
8992 constraint (inst.operands[0].imm != 2,
8993 _("only two consecutive VFP SP registers allowed here"));
8994 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8995 inst.instruction |= inst.operands[1].reg << 12;
8996 inst.instruction |= inst.operands[2].reg << 16;
8997 }
8998
8999 static void
9000 do_vfp_sp_ldst (void)
9001 {
9002 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9003 encode_arm_cp_address (1, FALSE, TRUE, 0);
9004 }
9005
9006 static void
9007 do_vfp_dp_ldst (void)
9008 {
9009 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9010 encode_arm_cp_address (1, FALSE, TRUE, 0);
9011 }
9012
9013
9014 static void
9015 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9016 {
9017 if (inst.operands[0].writeback)
9018 inst.instruction |= WRITE_BACK;
9019 else
9020 constraint (ldstm_type != VFP_LDSTMIA,
9021 _("this addressing mode requires base-register writeback"));
9022 inst.instruction |= inst.operands[0].reg << 16;
9023 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9024 inst.instruction |= inst.operands[1].imm;
9025 }
9026
9027 static void
9028 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9029 {
9030 int count;
9031
9032 if (inst.operands[0].writeback)
9033 inst.instruction |= WRITE_BACK;
9034 else
9035 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9036 _("this addressing mode requires base-register writeback"));
9037
9038 inst.instruction |= inst.operands[0].reg << 16;
9039 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9040
9041 count = inst.operands[1].imm << 1;
9042 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9043 count += 1;
9044
9045 inst.instruction |= count;
9046 }
9047
9048 static void
9049 do_vfp_sp_ldstmia (void)
9050 {
9051 vfp_sp_ldstm (VFP_LDSTMIA);
9052 }
9053
9054 static void
9055 do_vfp_sp_ldstmdb (void)
9056 {
9057 vfp_sp_ldstm (VFP_LDSTMDB);
9058 }
9059
9060 static void
9061 do_vfp_dp_ldstmia (void)
9062 {
9063 vfp_dp_ldstm (VFP_LDSTMIA);
9064 }
9065
9066 static void
9067 do_vfp_dp_ldstmdb (void)
9068 {
9069 vfp_dp_ldstm (VFP_LDSTMDB);
9070 }
9071
9072 static void
9073 do_vfp_xp_ldstmia (void)
9074 {
9075 vfp_dp_ldstm (VFP_LDSTMIAX);
9076 }
9077
9078 static void
9079 do_vfp_xp_ldstmdb (void)
9080 {
9081 vfp_dp_ldstm (VFP_LDSTMDBX);
9082 }
9083
9084 static void
9085 do_vfp_dp_rd_rm (void)
9086 {
9087 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9088 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9089 }
9090
9091 static void
9092 do_vfp_dp_rn_rd (void)
9093 {
9094 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9095 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9096 }
9097
9098 static void
9099 do_vfp_dp_rd_rn (void)
9100 {
9101 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9102 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9103 }
9104
9105 static void
9106 do_vfp_dp_rd_rn_rm (void)
9107 {
9108 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9109 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9110 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9111 }
9112
9113 static void
9114 do_vfp_dp_rd (void)
9115 {
9116 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9117 }
9118
9119 static void
9120 do_vfp_dp_rm_rd_rn (void)
9121 {
9122 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9123 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9124 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9125 }
9126
9127 /* VFPv3 instructions. */
9128 static void
9129 do_vfp_sp_const (void)
9130 {
9131 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9132 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9133 inst.instruction |= (inst.operands[1].imm & 0x0f);
9134 }
9135
9136 static void
9137 do_vfp_dp_const (void)
9138 {
9139 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9140 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9141 inst.instruction |= (inst.operands[1].imm & 0x0f);
9142 }
9143
9144 static void
9145 vfp_conv (int srcsize)
9146 {
9147 int immbits = srcsize - inst.operands[1].imm;
9148
9149 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9150 {
9151 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9152 i.e. immbits must be in range 0 - 16. */
9153 inst.error = _("immediate value out of range, expected range [0, 16]");
9154 return;
9155 }
9156 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9157 {
9158 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9159 i.e. immbits must be in range 0 - 31. */
9160 inst.error = _("immediate value out of range, expected range [1, 32]");
9161 return;
9162 }
9163
9164 inst.instruction |= (immbits & 1) << 5;
9165 inst.instruction |= (immbits >> 1);
9166 }
9167
9168 static void
9169 do_vfp_sp_conv_16 (void)
9170 {
9171 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9172 vfp_conv (16);
9173 }
9174
9175 static void
9176 do_vfp_dp_conv_16 (void)
9177 {
9178 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9179 vfp_conv (16);
9180 }
9181
9182 static void
9183 do_vfp_sp_conv_32 (void)
9184 {
9185 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9186 vfp_conv (32);
9187 }
9188
9189 static void
9190 do_vfp_dp_conv_32 (void)
9191 {
9192 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9193 vfp_conv (32);
9194 }
9195 \f
9196 /* FPA instructions. Also in a logical order. */
9197
9198 static void
9199 do_fpa_cmp (void)
9200 {
9201 inst.instruction |= inst.operands[0].reg << 16;
9202 inst.instruction |= inst.operands[1].reg;
9203 }
9204
9205 static void
9206 do_fpa_ldmstm (void)
9207 {
9208 inst.instruction |= inst.operands[0].reg << 12;
9209 switch (inst.operands[1].imm)
9210 {
9211 case 1: inst.instruction |= CP_T_X; break;
9212 case 2: inst.instruction |= CP_T_Y; break;
9213 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9214 case 4: break;
9215 default: abort ();
9216 }
9217
9218 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9219 {
9220 /* The instruction specified "ea" or "fd", so we can only accept
9221 [Rn]{!}. The instruction does not really support stacking or
9222 unstacking, so we have to emulate these by setting appropriate
9223 bits and offsets. */
9224 constraint (inst.reloc.exp.X_op != O_constant
9225 || inst.reloc.exp.X_add_number != 0,
9226 _("this instruction does not support indexing"));
9227
9228 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9229 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9230
9231 if (!(inst.instruction & INDEX_UP))
9232 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9233
9234 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9235 {
9236 inst.operands[2].preind = 0;
9237 inst.operands[2].postind = 1;
9238 }
9239 }
9240
9241 encode_arm_cp_address (2, TRUE, TRUE, 0);
9242 }
9243 \f
9244 /* iWMMXt instructions: strictly in alphabetical order. */
9245
9246 static void
9247 do_iwmmxt_tandorc (void)
9248 {
9249 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9250 }
9251
9252 static void
9253 do_iwmmxt_textrc (void)
9254 {
9255 inst.instruction |= inst.operands[0].reg << 12;
9256 inst.instruction |= inst.operands[1].imm;
9257 }
9258
9259 static void
9260 do_iwmmxt_textrm (void)
9261 {
9262 inst.instruction |= inst.operands[0].reg << 12;
9263 inst.instruction |= inst.operands[1].reg << 16;
9264 inst.instruction |= inst.operands[2].imm;
9265 }
9266
9267 static void
9268 do_iwmmxt_tinsr (void)
9269 {
9270 inst.instruction |= inst.operands[0].reg << 16;
9271 inst.instruction |= inst.operands[1].reg << 12;
9272 inst.instruction |= inst.operands[2].imm;
9273 }
9274
9275 static void
9276 do_iwmmxt_tmia (void)
9277 {
9278 inst.instruction |= inst.operands[0].reg << 5;
9279 inst.instruction |= inst.operands[1].reg;
9280 inst.instruction |= inst.operands[2].reg << 12;
9281 }
9282
9283 static void
9284 do_iwmmxt_waligni (void)
9285 {
9286 inst.instruction |= inst.operands[0].reg << 12;
9287 inst.instruction |= inst.operands[1].reg << 16;
9288 inst.instruction |= inst.operands[2].reg;
9289 inst.instruction |= inst.operands[3].imm << 20;
9290 }
9291
9292 static void
9293 do_iwmmxt_wmerge (void)
9294 {
9295 inst.instruction |= inst.operands[0].reg << 12;
9296 inst.instruction |= inst.operands[1].reg << 16;
9297 inst.instruction |= inst.operands[2].reg;
9298 inst.instruction |= inst.operands[3].imm << 21;
9299 }
9300
9301 static void
9302 do_iwmmxt_wmov (void)
9303 {
9304 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9305 inst.instruction |= inst.operands[0].reg << 12;
9306 inst.instruction |= inst.operands[1].reg << 16;
9307 inst.instruction |= inst.operands[1].reg;
9308 }
9309
9310 static void
9311 do_iwmmxt_wldstbh (void)
9312 {
9313 int reloc;
9314 inst.instruction |= inst.operands[0].reg << 12;
9315 if (thumb_mode)
9316 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9317 else
9318 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9319 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9320 }
9321
9322 static void
9323 do_iwmmxt_wldstw (void)
9324 {
9325 /* RIWR_RIWC clears .isreg for a control register. */
9326 if (!inst.operands[0].isreg)
9327 {
9328 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9329 inst.instruction |= 0xf0000000;
9330 }
9331
9332 inst.instruction |= inst.operands[0].reg << 12;
9333 encode_arm_cp_address (1, TRUE, TRUE, 0);
9334 }
9335
9336 static void
9337 do_iwmmxt_wldstd (void)
9338 {
9339 inst.instruction |= inst.operands[0].reg << 12;
9340 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9341 && inst.operands[1].immisreg)
9342 {
9343 inst.instruction &= ~0x1a000ff;
9344 inst.instruction |= (0xf << 28);
9345 if (inst.operands[1].preind)
9346 inst.instruction |= PRE_INDEX;
9347 if (!inst.operands[1].negative)
9348 inst.instruction |= INDEX_UP;
9349 if (inst.operands[1].writeback)
9350 inst.instruction |= WRITE_BACK;
9351 inst.instruction |= inst.operands[1].reg << 16;
9352 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9353 inst.instruction |= inst.operands[1].imm;
9354 }
9355 else
9356 encode_arm_cp_address (1, TRUE, FALSE, 0);
9357 }
9358
9359 static void
9360 do_iwmmxt_wshufh (void)
9361 {
9362 inst.instruction |= inst.operands[0].reg << 12;
9363 inst.instruction |= inst.operands[1].reg << 16;
9364 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9365 inst.instruction |= (inst.operands[2].imm & 0x0f);
9366 }
9367
9368 static void
9369 do_iwmmxt_wzero (void)
9370 {
9371 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9372 inst.instruction |= inst.operands[0].reg;
9373 inst.instruction |= inst.operands[0].reg << 12;
9374 inst.instruction |= inst.operands[0].reg << 16;
9375 }
9376
9377 static void
9378 do_iwmmxt_wrwrwr_or_imm5 (void)
9379 {
9380 if (inst.operands[2].isreg)
9381 do_rd_rn_rm ();
9382 else {
9383 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9384 _("immediate operand requires iWMMXt2"));
9385 do_rd_rn ();
9386 if (inst.operands[2].imm == 0)
9387 {
9388 switch ((inst.instruction >> 20) & 0xf)
9389 {
9390 case 4:
9391 case 5:
9392 case 6:
9393 case 7:
9394 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9395 inst.operands[2].imm = 16;
9396 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9397 break;
9398 case 8:
9399 case 9:
9400 case 10:
9401 case 11:
9402 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9403 inst.operands[2].imm = 32;
9404 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9405 break;
9406 case 12:
9407 case 13:
9408 case 14:
9409 case 15:
9410 {
9411 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9412 unsigned long wrn;
9413 wrn = (inst.instruction >> 16) & 0xf;
9414 inst.instruction &= 0xff0fff0f;
9415 inst.instruction |= wrn;
9416 /* Bail out here; the instruction is now assembled. */
9417 return;
9418 }
9419 }
9420 }
9421 /* Map 32 -> 0, etc. */
9422 inst.operands[2].imm &= 0x1f;
9423 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9424 }
9425 }
9426 \f
9427 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9428 operations first, then control, shift, and load/store. */
9429
9430 /* Insns like "foo X,Y,Z". */
9431
9432 static void
9433 do_mav_triple (void)
9434 {
9435 inst.instruction |= inst.operands[0].reg << 16;
9436 inst.instruction |= inst.operands[1].reg;
9437 inst.instruction |= inst.operands[2].reg << 12;
9438 }
9439
9440 /* Insns like "foo W,X,Y,Z".
9441 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9442
9443 static void
9444 do_mav_quad (void)
9445 {
9446 inst.instruction |= inst.operands[0].reg << 5;
9447 inst.instruction |= inst.operands[1].reg << 12;
9448 inst.instruction |= inst.operands[2].reg << 16;
9449 inst.instruction |= inst.operands[3].reg;
9450 }
9451
9452 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9453 static void
9454 do_mav_dspsc (void)
9455 {
9456 inst.instruction |= inst.operands[1].reg << 12;
9457 }
9458
9459 /* Maverick shift immediate instructions.
9460 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9461 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9462
9463 static void
9464 do_mav_shift (void)
9465 {
9466 int imm = inst.operands[2].imm;
9467
9468 inst.instruction |= inst.operands[0].reg << 12;
9469 inst.instruction |= inst.operands[1].reg << 16;
9470
9471 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9472 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9473 Bit 4 should be 0. */
9474 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9475
9476 inst.instruction |= imm;
9477 }
9478 \f
9479 /* XScale instructions. Also sorted arithmetic before move. */
9480
9481 /* Xscale multiply-accumulate (argument parse)
9482 MIAcc acc0,Rm,Rs
9483 MIAPHcc acc0,Rm,Rs
9484 MIAxycc acc0,Rm,Rs. */
9485
9486 static void
9487 do_xsc_mia (void)
9488 {
9489 inst.instruction |= inst.operands[1].reg;
9490 inst.instruction |= inst.operands[2].reg << 12;
9491 }
9492
9493 /* Xscale move-accumulator-register (argument parse)
9494
9495 MARcc acc0,RdLo,RdHi. */
9496
9497 static void
9498 do_xsc_mar (void)
9499 {
9500 inst.instruction |= inst.operands[1].reg << 12;
9501 inst.instruction |= inst.operands[2].reg << 16;
9502 }
9503
9504 /* Xscale move-register-accumulator (argument parse)
9505
9506 MRAcc RdLo,RdHi,acc0. */
9507
9508 static void
9509 do_xsc_mra (void)
9510 {
9511 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9512 inst.instruction |= inst.operands[0].reg << 12;
9513 inst.instruction |= inst.operands[1].reg << 16;
9514 }
9515 \f
9516 /* Encoding functions relevant only to Thumb. */
9517
9518 /* inst.operands[i] is a shifted-register operand; encode
9519 it into inst.instruction in the format used by Thumb32. */
9520
9521 static void
9522 encode_thumb32_shifted_operand (int i)
9523 {
9524 unsigned int value = inst.reloc.exp.X_add_number;
9525 unsigned int shift = inst.operands[i].shift_kind;
9526
9527 constraint (inst.operands[i].immisreg,
9528 _("shift by register not allowed in thumb mode"));
9529 inst.instruction |= inst.operands[i].reg;
9530 if (shift == SHIFT_RRX)
9531 inst.instruction |= SHIFT_ROR << 4;
9532 else
9533 {
9534 constraint (inst.reloc.exp.X_op != O_constant,
9535 _("expression too complex"));
9536
9537 constraint (value > 32
9538 || (value == 32 && (shift == SHIFT_LSL
9539 || shift == SHIFT_ROR)),
9540 _("shift expression is too large"));
9541
9542 if (value == 0)
9543 shift = SHIFT_LSL;
9544 else if (value == 32)
9545 value = 0;
9546
9547 inst.instruction |= shift << 4;
9548 inst.instruction |= (value & 0x1c) << 10;
9549 inst.instruction |= (value & 0x03) << 6;
9550 }
9551 }
9552
9553
9554 /* inst.operands[i] was set up by parse_address. Encode it into a
9555 Thumb32 format load or store instruction. Reject forms that cannot
9556 be used with such instructions. If is_t is true, reject forms that
9557 cannot be used with a T instruction; if is_d is true, reject forms
9558 that cannot be used with a D instruction. If it is a store insn,
9559 reject PC in Rn. */
9560
9561 static void
9562 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9563 {
9564 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9565
9566 constraint (!inst.operands[i].isreg,
9567 _("Instruction does not support =N addresses"));
9568
9569 inst.instruction |= inst.operands[i].reg << 16;
9570 if (inst.operands[i].immisreg)
9571 {
9572 constraint (is_pc, BAD_PC_ADDRESSING);
9573 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9574 constraint (inst.operands[i].negative,
9575 _("Thumb does not support negative register indexing"));
9576 constraint (inst.operands[i].postind,
9577 _("Thumb does not support register post-indexing"));
9578 constraint (inst.operands[i].writeback,
9579 _("Thumb does not support register indexing with writeback"));
9580 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9581 _("Thumb supports only LSL in shifted register indexing"));
9582
9583 inst.instruction |= inst.operands[i].imm;
9584 if (inst.operands[i].shifted)
9585 {
9586 constraint (inst.reloc.exp.X_op != O_constant,
9587 _("expression too complex"));
9588 constraint (inst.reloc.exp.X_add_number < 0
9589 || inst.reloc.exp.X_add_number > 3,
9590 _("shift out of range"));
9591 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9592 }
9593 inst.reloc.type = BFD_RELOC_UNUSED;
9594 }
9595 else if (inst.operands[i].preind)
9596 {
9597 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9598 constraint (is_t && inst.operands[i].writeback,
9599 _("cannot use writeback with this instruction"));
9600 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
9601 BAD_PC_ADDRESSING);
9602
9603 if (is_d)
9604 {
9605 inst.instruction |= 0x01000000;
9606 if (inst.operands[i].writeback)
9607 inst.instruction |= 0x00200000;
9608 }
9609 else
9610 {
9611 inst.instruction |= 0x00000c00;
9612 if (inst.operands[i].writeback)
9613 inst.instruction |= 0x00000100;
9614 }
9615 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9616 }
9617 else if (inst.operands[i].postind)
9618 {
9619 gas_assert (inst.operands[i].writeback);
9620 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9621 constraint (is_t, _("cannot use post-indexing with this instruction"));
9622
9623 if (is_d)
9624 inst.instruction |= 0x00200000;
9625 else
9626 inst.instruction |= 0x00000900;
9627 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9628 }
9629 else /* unindexed - only for coprocessor */
9630 inst.error = _("instruction does not accept unindexed addressing");
9631 }
9632
9633 /* Table of Thumb instructions which exist in both 16- and 32-bit
9634 encodings (the latter only in post-V6T2 cores). The index is the
9635 value used in the insns table below. When there is more than one
9636 possible 16-bit encoding for the instruction, this table always
9637 holds variant (1).
9638 Also contains several pseudo-instructions used during relaxation. */
9639 #define T16_32_TAB \
9640 X(_adc, 4140, eb400000), \
9641 X(_adcs, 4140, eb500000), \
9642 X(_add, 1c00, eb000000), \
9643 X(_adds, 1c00, eb100000), \
9644 X(_addi, 0000, f1000000), \
9645 X(_addis, 0000, f1100000), \
9646 X(_add_pc,000f, f20f0000), \
9647 X(_add_sp,000d, f10d0000), \
9648 X(_adr, 000f, f20f0000), \
9649 X(_and, 4000, ea000000), \
9650 X(_ands, 4000, ea100000), \
9651 X(_asr, 1000, fa40f000), \
9652 X(_asrs, 1000, fa50f000), \
9653 X(_b, e000, f000b000), \
9654 X(_bcond, d000, f0008000), \
9655 X(_bic, 4380, ea200000), \
9656 X(_bics, 4380, ea300000), \
9657 X(_cmn, 42c0, eb100f00), \
9658 X(_cmp, 2800, ebb00f00), \
9659 X(_cpsie, b660, f3af8400), \
9660 X(_cpsid, b670, f3af8600), \
9661 X(_cpy, 4600, ea4f0000), \
9662 X(_dec_sp,80dd, f1ad0d00), \
9663 X(_eor, 4040, ea800000), \
9664 X(_eors, 4040, ea900000), \
9665 X(_inc_sp,00dd, f10d0d00), \
9666 X(_ldmia, c800, e8900000), \
9667 X(_ldr, 6800, f8500000), \
9668 X(_ldrb, 7800, f8100000), \
9669 X(_ldrh, 8800, f8300000), \
9670 X(_ldrsb, 5600, f9100000), \
9671 X(_ldrsh, 5e00, f9300000), \
9672 X(_ldr_pc,4800, f85f0000), \
9673 X(_ldr_pc2,4800, f85f0000), \
9674 X(_ldr_sp,9800, f85d0000), \
9675 X(_lsl, 0000, fa00f000), \
9676 X(_lsls, 0000, fa10f000), \
9677 X(_lsr, 0800, fa20f000), \
9678 X(_lsrs, 0800, fa30f000), \
9679 X(_mov, 2000, ea4f0000), \
9680 X(_movs, 2000, ea5f0000), \
9681 X(_mul, 4340, fb00f000), \
9682 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9683 X(_mvn, 43c0, ea6f0000), \
9684 X(_mvns, 43c0, ea7f0000), \
9685 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9686 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9687 X(_orr, 4300, ea400000), \
9688 X(_orrs, 4300, ea500000), \
9689 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9690 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9691 X(_rev, ba00, fa90f080), \
9692 X(_rev16, ba40, fa90f090), \
9693 X(_revsh, bac0, fa90f0b0), \
9694 X(_ror, 41c0, fa60f000), \
9695 X(_rors, 41c0, fa70f000), \
9696 X(_sbc, 4180, eb600000), \
9697 X(_sbcs, 4180, eb700000), \
9698 X(_stmia, c000, e8800000), \
9699 X(_str, 6000, f8400000), \
9700 X(_strb, 7000, f8000000), \
9701 X(_strh, 8000, f8200000), \
9702 X(_str_sp,9000, f84d0000), \
9703 X(_sub, 1e00, eba00000), \
9704 X(_subs, 1e00, ebb00000), \
9705 X(_subi, 8000, f1a00000), \
9706 X(_subis, 8000, f1b00000), \
9707 X(_sxtb, b240, fa4ff080), \
9708 X(_sxth, b200, fa0ff080), \
9709 X(_tst, 4200, ea100f00), \
9710 X(_uxtb, b2c0, fa5ff080), \
9711 X(_uxth, b280, fa1ff080), \
9712 X(_nop, bf00, f3af8000), \
9713 X(_yield, bf10, f3af8001), \
9714 X(_wfe, bf20, f3af8002), \
9715 X(_wfi, bf30, f3af8003), \
9716 X(_sev, bf40, f3af8004), \
9717 X(_sevl, bf50, f3af8005), \
9718 X(_udf, de00, f7f0a000)
9719
9720 /* To catch errors in encoding functions, the codes are all offset by
9721 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9722 as 16-bit instructions. */
9723 #define X(a,b,c) T_MNEM##a
9724 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9725 #undef X
9726
9727 #define X(a,b,c) 0x##b
9728 static const unsigned short thumb_op16[] = { T16_32_TAB };
9729 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9730 #undef X
9731
9732 #define X(a,b,c) 0x##c
9733 static const unsigned int thumb_op32[] = { T16_32_TAB };
9734 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9735 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9736 #undef X
9737 #undef T16_32_TAB
9738
9739 /* Thumb instruction encoders, in alphabetical order. */
9740
9741 /* ADDW or SUBW. */
9742
9743 static void
9744 do_t_add_sub_w (void)
9745 {
9746 int Rd, Rn;
9747
9748 Rd = inst.operands[0].reg;
9749 Rn = inst.operands[1].reg;
9750
9751 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9752 is the SP-{plus,minus}-immediate form of the instruction. */
9753 if (Rn == REG_SP)
9754 constraint (Rd == REG_PC, BAD_PC);
9755 else
9756 reject_bad_reg (Rd);
9757
9758 inst.instruction |= (Rn << 16) | (Rd << 8);
9759 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9760 }
9761
9762 /* Parse an add or subtract instruction. We get here with inst.instruction
9763 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9764
9765 static void
9766 do_t_add_sub (void)
9767 {
9768 int Rd, Rs, Rn;
9769
9770 Rd = inst.operands[0].reg;
9771 Rs = (inst.operands[1].present
9772 ? inst.operands[1].reg /* Rd, Rs, foo */
9773 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9774
9775 if (Rd == REG_PC)
9776 set_it_insn_type_last ();
9777
9778 if (unified_syntax)
9779 {
9780 bfd_boolean flags;
9781 bfd_boolean narrow;
9782 int opcode;
9783
9784 flags = (inst.instruction == T_MNEM_adds
9785 || inst.instruction == T_MNEM_subs);
9786 if (flags)
9787 narrow = !in_it_block ();
9788 else
9789 narrow = in_it_block ();
9790 if (!inst.operands[2].isreg)
9791 {
9792 int add;
9793
9794 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9795
9796 add = (inst.instruction == T_MNEM_add
9797 || inst.instruction == T_MNEM_adds);
9798 opcode = 0;
9799 if (inst.size_req != 4)
9800 {
9801 /* Attempt to use a narrow opcode, with relaxation if
9802 appropriate. */
9803 if (Rd == REG_SP && Rs == REG_SP && !flags)
9804 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9805 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9806 opcode = T_MNEM_add_sp;
9807 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9808 opcode = T_MNEM_add_pc;
9809 else if (Rd <= 7 && Rs <= 7 && narrow)
9810 {
9811 if (flags)
9812 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9813 else
9814 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9815 }
9816 if (opcode)
9817 {
9818 inst.instruction = THUMB_OP16(opcode);
9819 inst.instruction |= (Rd << 4) | Rs;
9820 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9821 if (inst.size_req != 2)
9822 inst.relax = opcode;
9823 }
9824 else
9825 constraint (inst.size_req == 2, BAD_HIREG);
9826 }
9827 if (inst.size_req == 4
9828 || (inst.size_req != 2 && !opcode))
9829 {
9830 if (Rd == REG_PC)
9831 {
9832 constraint (add, BAD_PC);
9833 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9834 _("only SUBS PC, LR, #const allowed"));
9835 constraint (inst.reloc.exp.X_op != O_constant,
9836 _("expression too complex"));
9837 constraint (inst.reloc.exp.X_add_number < 0
9838 || inst.reloc.exp.X_add_number > 0xff,
9839 _("immediate value out of range"));
9840 inst.instruction = T2_SUBS_PC_LR
9841 | inst.reloc.exp.X_add_number;
9842 inst.reloc.type = BFD_RELOC_UNUSED;
9843 return;
9844 }
9845 else if (Rs == REG_PC)
9846 {
9847 /* Always use addw/subw. */
9848 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9849 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9850 }
9851 else
9852 {
9853 inst.instruction = THUMB_OP32 (inst.instruction);
9854 inst.instruction = (inst.instruction & 0xe1ffffff)
9855 | 0x10000000;
9856 if (flags)
9857 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9858 else
9859 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9860 }
9861 inst.instruction |= Rd << 8;
9862 inst.instruction |= Rs << 16;
9863 }
9864 }
9865 else
9866 {
9867 unsigned int value = inst.reloc.exp.X_add_number;
9868 unsigned int shift = inst.operands[2].shift_kind;
9869
9870 Rn = inst.operands[2].reg;
9871 /* See if we can do this with a 16-bit instruction. */
9872 if (!inst.operands[2].shifted && inst.size_req != 4)
9873 {
9874 if (Rd > 7 || Rs > 7 || Rn > 7)
9875 narrow = FALSE;
9876
9877 if (narrow)
9878 {
9879 inst.instruction = ((inst.instruction == T_MNEM_adds
9880 || inst.instruction == T_MNEM_add)
9881 ? T_OPCODE_ADD_R3
9882 : T_OPCODE_SUB_R3);
9883 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9884 return;
9885 }
9886
9887 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9888 {
9889 /* Thumb-1 cores (except v6-M) require at least one high
9890 register in a narrow non flag setting add. */
9891 if (Rd > 7 || Rn > 7
9892 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9893 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9894 {
9895 if (Rd == Rn)
9896 {
9897 Rn = Rs;
9898 Rs = Rd;
9899 }
9900 inst.instruction = T_OPCODE_ADD_HI;
9901 inst.instruction |= (Rd & 8) << 4;
9902 inst.instruction |= (Rd & 7);
9903 inst.instruction |= Rn << 3;
9904 return;
9905 }
9906 }
9907 }
9908
9909 constraint (Rd == REG_PC, BAD_PC);
9910 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9911 constraint (Rs == REG_PC, BAD_PC);
9912 reject_bad_reg (Rn);
9913
9914 /* If we get here, it can't be done in 16 bits. */
9915 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9916 _("shift must be constant"));
9917 inst.instruction = THUMB_OP32 (inst.instruction);
9918 inst.instruction |= Rd << 8;
9919 inst.instruction |= Rs << 16;
9920 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9921 _("shift value over 3 not allowed in thumb mode"));
9922 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9923 _("only LSL shift allowed in thumb mode"));
9924 encode_thumb32_shifted_operand (2);
9925 }
9926 }
9927 else
9928 {
9929 constraint (inst.instruction == T_MNEM_adds
9930 || inst.instruction == T_MNEM_subs,
9931 BAD_THUMB32);
9932
9933 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9934 {
9935 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9936 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9937 BAD_HIREG);
9938
9939 inst.instruction = (inst.instruction == T_MNEM_add
9940 ? 0x0000 : 0x8000);
9941 inst.instruction |= (Rd << 4) | Rs;
9942 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9943 return;
9944 }
9945
9946 Rn = inst.operands[2].reg;
9947 constraint (inst.operands[2].shifted, _("unshifted register required"));
9948
9949 /* We now have Rd, Rs, and Rn set to registers. */
9950 if (Rd > 7 || Rs > 7 || Rn > 7)
9951 {
9952 /* Can't do this for SUB. */
9953 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9954 inst.instruction = T_OPCODE_ADD_HI;
9955 inst.instruction |= (Rd & 8) << 4;
9956 inst.instruction |= (Rd & 7);
9957 if (Rs == Rd)
9958 inst.instruction |= Rn << 3;
9959 else if (Rn == Rd)
9960 inst.instruction |= Rs << 3;
9961 else
9962 constraint (1, _("dest must overlap one source register"));
9963 }
9964 else
9965 {
9966 inst.instruction = (inst.instruction == T_MNEM_add
9967 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9968 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9969 }
9970 }
9971 }
9972
9973 static void
9974 do_t_adr (void)
9975 {
9976 unsigned Rd;
9977
9978 Rd = inst.operands[0].reg;
9979 reject_bad_reg (Rd);
9980
9981 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9982 {
9983 /* Defer to section relaxation. */
9984 inst.relax = inst.instruction;
9985 inst.instruction = THUMB_OP16 (inst.instruction);
9986 inst.instruction |= Rd << 4;
9987 }
9988 else if (unified_syntax && inst.size_req != 2)
9989 {
9990 /* Generate a 32-bit opcode. */
9991 inst.instruction = THUMB_OP32 (inst.instruction);
9992 inst.instruction |= Rd << 8;
9993 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9994 inst.reloc.pc_rel = 1;
9995 }
9996 else
9997 {
9998 /* Generate a 16-bit opcode. */
9999 inst.instruction = THUMB_OP16 (inst.instruction);
10000 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10001 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10002 inst.reloc.pc_rel = 1;
10003
10004 inst.instruction |= Rd << 4;
10005 }
10006 }
10007
10008 /* Arithmetic instructions for which there is just one 16-bit
10009 instruction encoding, and it allows only two low registers.
10010 For maximal compatibility with ARM syntax, we allow three register
10011 operands even when Thumb-32 instructions are not available, as long
10012 as the first two are identical. For instance, both "sbc r0,r1" and
10013 "sbc r0,r0,r1" are allowed. */
10014 static void
10015 do_t_arit3 (void)
10016 {
10017 int Rd, Rs, Rn;
10018
10019 Rd = inst.operands[0].reg;
10020 Rs = (inst.operands[1].present
10021 ? inst.operands[1].reg /* Rd, Rs, foo */
10022 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10023 Rn = inst.operands[2].reg;
10024
10025 reject_bad_reg (Rd);
10026 reject_bad_reg (Rs);
10027 if (inst.operands[2].isreg)
10028 reject_bad_reg (Rn);
10029
10030 if (unified_syntax)
10031 {
10032 if (!inst.operands[2].isreg)
10033 {
10034 /* For an immediate, we always generate a 32-bit opcode;
10035 section relaxation will shrink it later if possible. */
10036 inst.instruction = THUMB_OP32 (inst.instruction);
10037 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10038 inst.instruction |= Rd << 8;
10039 inst.instruction |= Rs << 16;
10040 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10041 }
10042 else
10043 {
10044 bfd_boolean narrow;
10045
10046 /* See if we can do this with a 16-bit instruction. */
10047 if (THUMB_SETS_FLAGS (inst.instruction))
10048 narrow = !in_it_block ();
10049 else
10050 narrow = in_it_block ();
10051
10052 if (Rd > 7 || Rn > 7 || Rs > 7)
10053 narrow = FALSE;
10054 if (inst.operands[2].shifted)
10055 narrow = FALSE;
10056 if (inst.size_req == 4)
10057 narrow = FALSE;
10058
10059 if (narrow
10060 && Rd == Rs)
10061 {
10062 inst.instruction = THUMB_OP16 (inst.instruction);
10063 inst.instruction |= Rd;
10064 inst.instruction |= Rn << 3;
10065 return;
10066 }
10067
10068 /* If we get here, it can't be done in 16 bits. */
10069 constraint (inst.operands[2].shifted
10070 && inst.operands[2].immisreg,
10071 _("shift must be constant"));
10072 inst.instruction = THUMB_OP32 (inst.instruction);
10073 inst.instruction |= Rd << 8;
10074 inst.instruction |= Rs << 16;
10075 encode_thumb32_shifted_operand (2);
10076 }
10077 }
10078 else
10079 {
10080 /* On its face this is a lie - the instruction does set the
10081 flags. However, the only supported mnemonic in this mode
10082 says it doesn't. */
10083 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10084
10085 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10086 _("unshifted register required"));
10087 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10088 constraint (Rd != Rs,
10089 _("dest and source1 must be the same register"));
10090
10091 inst.instruction = THUMB_OP16 (inst.instruction);
10092 inst.instruction |= Rd;
10093 inst.instruction |= Rn << 3;
10094 }
10095 }
10096
10097 /* Similarly, but for instructions where the arithmetic operation is
10098 commutative, so we can allow either of them to be different from
10099 the destination operand in a 16-bit instruction. For instance, all
10100 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10101 accepted. */
10102 static void
10103 do_t_arit3c (void)
10104 {
10105 int Rd, Rs, Rn;
10106
10107 Rd = inst.operands[0].reg;
10108 Rs = (inst.operands[1].present
10109 ? inst.operands[1].reg /* Rd, Rs, foo */
10110 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10111 Rn = inst.operands[2].reg;
10112
10113 reject_bad_reg (Rd);
10114 reject_bad_reg (Rs);
10115 if (inst.operands[2].isreg)
10116 reject_bad_reg (Rn);
10117
10118 if (unified_syntax)
10119 {
10120 if (!inst.operands[2].isreg)
10121 {
10122 /* For an immediate, we always generate a 32-bit opcode;
10123 section relaxation will shrink it later if possible. */
10124 inst.instruction = THUMB_OP32 (inst.instruction);
10125 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10126 inst.instruction |= Rd << 8;
10127 inst.instruction |= Rs << 16;
10128 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10129 }
10130 else
10131 {
10132 bfd_boolean narrow;
10133
10134 /* See if we can do this with a 16-bit instruction. */
10135 if (THUMB_SETS_FLAGS (inst.instruction))
10136 narrow = !in_it_block ();
10137 else
10138 narrow = in_it_block ();
10139
10140 if (Rd > 7 || Rn > 7 || Rs > 7)
10141 narrow = FALSE;
10142 if (inst.operands[2].shifted)
10143 narrow = FALSE;
10144 if (inst.size_req == 4)
10145 narrow = FALSE;
10146
10147 if (narrow)
10148 {
10149 if (Rd == Rs)
10150 {
10151 inst.instruction = THUMB_OP16 (inst.instruction);
10152 inst.instruction |= Rd;
10153 inst.instruction |= Rn << 3;
10154 return;
10155 }
10156 if (Rd == Rn)
10157 {
10158 inst.instruction = THUMB_OP16 (inst.instruction);
10159 inst.instruction |= Rd;
10160 inst.instruction |= Rs << 3;
10161 return;
10162 }
10163 }
10164
10165 /* If we get here, it can't be done in 16 bits. */
10166 constraint (inst.operands[2].shifted
10167 && inst.operands[2].immisreg,
10168 _("shift must be constant"));
10169 inst.instruction = THUMB_OP32 (inst.instruction);
10170 inst.instruction |= Rd << 8;
10171 inst.instruction |= Rs << 16;
10172 encode_thumb32_shifted_operand (2);
10173 }
10174 }
10175 else
10176 {
10177 /* On its face this is a lie - the instruction does set the
10178 flags. However, the only supported mnemonic in this mode
10179 says it doesn't. */
10180 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10181
10182 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10183 _("unshifted register required"));
10184 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10185
10186 inst.instruction = THUMB_OP16 (inst.instruction);
10187 inst.instruction |= Rd;
10188
10189 if (Rd == Rs)
10190 inst.instruction |= Rn << 3;
10191 else if (Rd == Rn)
10192 inst.instruction |= Rs << 3;
10193 else
10194 constraint (1, _("dest must overlap one source register"));
10195 }
10196 }
10197
10198 static void
10199 do_t_bfc (void)
10200 {
10201 unsigned Rd;
10202 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10203 constraint (msb > 32, _("bit-field extends past end of register"));
10204 /* The instruction encoding stores the LSB and MSB,
10205 not the LSB and width. */
10206 Rd = inst.operands[0].reg;
10207 reject_bad_reg (Rd);
10208 inst.instruction |= Rd << 8;
10209 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10210 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10211 inst.instruction |= msb - 1;
10212 }
10213
10214 static void
10215 do_t_bfi (void)
10216 {
10217 int Rd, Rn;
10218 unsigned int msb;
10219
10220 Rd = inst.operands[0].reg;
10221 reject_bad_reg (Rd);
10222
10223 /* #0 in second position is alternative syntax for bfc, which is
10224 the same instruction but with REG_PC in the Rm field. */
10225 if (!inst.operands[1].isreg)
10226 Rn = REG_PC;
10227 else
10228 {
10229 Rn = inst.operands[1].reg;
10230 reject_bad_reg (Rn);
10231 }
10232
10233 msb = inst.operands[2].imm + inst.operands[3].imm;
10234 constraint (msb > 32, _("bit-field extends past end of register"));
10235 /* The instruction encoding stores the LSB and MSB,
10236 not the LSB and width. */
10237 inst.instruction |= Rd << 8;
10238 inst.instruction |= Rn << 16;
10239 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10240 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10241 inst.instruction |= msb - 1;
10242 }
10243
10244 static void
10245 do_t_bfx (void)
10246 {
10247 unsigned Rd, Rn;
10248
10249 Rd = inst.operands[0].reg;
10250 Rn = inst.operands[1].reg;
10251
10252 reject_bad_reg (Rd);
10253 reject_bad_reg (Rn);
10254
10255 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10256 _("bit-field extends past end of register"));
10257 inst.instruction |= Rd << 8;
10258 inst.instruction |= Rn << 16;
10259 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10260 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10261 inst.instruction |= inst.operands[3].imm - 1;
10262 }
10263
10264 /* ARM V5 Thumb BLX (argument parse)
10265 BLX <target_addr> which is BLX(1)
10266 BLX <Rm> which is BLX(2)
10267 Unfortunately, there are two different opcodes for this mnemonic.
10268 So, the insns[].value is not used, and the code here zaps values
10269 into inst.instruction.
10270
10271 ??? How to take advantage of the additional two bits of displacement
10272 available in Thumb32 mode? Need new relocation? */
10273
10274 static void
10275 do_t_blx (void)
10276 {
10277 set_it_insn_type_last ();
10278
10279 if (inst.operands[0].isreg)
10280 {
10281 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10282 /* We have a register, so this is BLX(2). */
10283 inst.instruction |= inst.operands[0].reg << 3;
10284 }
10285 else
10286 {
10287 /* No register. This must be BLX(1). */
10288 inst.instruction = 0xf000e800;
10289 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10290 }
10291 }
10292
10293 static void
10294 do_t_branch (void)
10295 {
10296 int opcode;
10297 int cond;
10298 int reloc;
10299
10300 cond = inst.cond;
10301 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10302
10303 if (in_it_block ())
10304 {
10305 /* Conditional branches inside IT blocks are encoded as unconditional
10306 branches. */
10307 cond = COND_ALWAYS;
10308 }
10309 else
10310 cond = inst.cond;
10311
10312 if (cond != COND_ALWAYS)
10313 opcode = T_MNEM_bcond;
10314 else
10315 opcode = inst.instruction;
10316
10317 if (unified_syntax
10318 && (inst.size_req == 4
10319 || (inst.size_req != 2
10320 && (inst.operands[0].hasreloc
10321 || inst.reloc.exp.X_op == O_constant))))
10322 {
10323 inst.instruction = THUMB_OP32(opcode);
10324 if (cond == COND_ALWAYS)
10325 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10326 else
10327 {
10328 gas_assert (cond != 0xF);
10329 inst.instruction |= cond << 22;
10330 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10331 }
10332 }
10333 else
10334 {
10335 inst.instruction = THUMB_OP16(opcode);
10336 if (cond == COND_ALWAYS)
10337 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10338 else
10339 {
10340 inst.instruction |= cond << 8;
10341 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10342 }
10343 /* Allow section relaxation. */
10344 if (unified_syntax && inst.size_req != 2)
10345 inst.relax = opcode;
10346 }
10347 inst.reloc.type = reloc;
10348 inst.reloc.pc_rel = 1;
10349 }
10350
10351 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10352 between the two is the maximum immediate allowed - which is passed in
10353 RANGE. */
10354 static void
10355 do_t_bkpt_hlt1 (int range)
10356 {
10357 constraint (inst.cond != COND_ALWAYS,
10358 _("instruction is always unconditional"));
10359 if (inst.operands[0].present)
10360 {
10361 constraint (inst.operands[0].imm > range,
10362 _("immediate value out of range"));
10363 inst.instruction |= inst.operands[0].imm;
10364 }
10365
10366 set_it_insn_type (NEUTRAL_IT_INSN);
10367 }
10368
10369 static void
10370 do_t_hlt (void)
10371 {
10372 do_t_bkpt_hlt1 (63);
10373 }
10374
10375 static void
10376 do_t_bkpt (void)
10377 {
10378 do_t_bkpt_hlt1 (255);
10379 }
10380
10381 static void
10382 do_t_branch23 (void)
10383 {
10384 set_it_insn_type_last ();
10385 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10386
10387 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10388 this file. We used to simply ignore the PLT reloc type here --
10389 the branch encoding is now needed to deal with TLSCALL relocs.
10390 So if we see a PLT reloc now, put it back to how it used to be to
10391 keep the preexisting behaviour. */
10392 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10393 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10394
10395 #if defined(OBJ_COFF)
10396 /* If the destination of the branch is a defined symbol which does not have
10397 the THUMB_FUNC attribute, then we must be calling a function which has
10398 the (interfacearm) attribute. We look for the Thumb entry point to that
10399 function and change the branch to refer to that function instead. */
10400 if ( inst.reloc.exp.X_op == O_symbol
10401 && inst.reloc.exp.X_add_symbol != NULL
10402 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10403 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10404 inst.reloc.exp.X_add_symbol =
10405 find_real_start (inst.reloc.exp.X_add_symbol);
10406 #endif
10407 }
10408
10409 static void
10410 do_t_bx (void)
10411 {
10412 set_it_insn_type_last ();
10413 inst.instruction |= inst.operands[0].reg << 3;
10414 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10415 should cause the alignment to be checked once it is known. This is
10416 because BX PC only works if the instruction is word aligned. */
10417 }
10418
10419 static void
10420 do_t_bxj (void)
10421 {
10422 int Rm;
10423
10424 set_it_insn_type_last ();
10425 Rm = inst.operands[0].reg;
10426 reject_bad_reg (Rm);
10427 inst.instruction |= Rm << 16;
10428 }
10429
10430 static void
10431 do_t_clz (void)
10432 {
10433 unsigned Rd;
10434 unsigned Rm;
10435
10436 Rd = inst.operands[0].reg;
10437 Rm = inst.operands[1].reg;
10438
10439 reject_bad_reg (Rd);
10440 reject_bad_reg (Rm);
10441
10442 inst.instruction |= Rd << 8;
10443 inst.instruction |= Rm << 16;
10444 inst.instruction |= Rm;
10445 }
10446
10447 static void
10448 do_t_cps (void)
10449 {
10450 set_it_insn_type (OUTSIDE_IT_INSN);
10451 inst.instruction |= inst.operands[0].imm;
10452 }
10453
10454 static void
10455 do_t_cpsi (void)
10456 {
10457 set_it_insn_type (OUTSIDE_IT_INSN);
10458 if (unified_syntax
10459 && (inst.operands[1].present || inst.size_req == 4)
10460 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10461 {
10462 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10463 inst.instruction = 0xf3af8000;
10464 inst.instruction |= imod << 9;
10465 inst.instruction |= inst.operands[0].imm << 5;
10466 if (inst.operands[1].present)
10467 inst.instruction |= 0x100 | inst.operands[1].imm;
10468 }
10469 else
10470 {
10471 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10472 && (inst.operands[0].imm & 4),
10473 _("selected processor does not support 'A' form "
10474 "of this instruction"));
10475 constraint (inst.operands[1].present || inst.size_req == 4,
10476 _("Thumb does not support the 2-argument "
10477 "form of this instruction"));
10478 inst.instruction |= inst.operands[0].imm;
10479 }
10480 }
10481
10482 /* THUMB CPY instruction (argument parse). */
10483
10484 static void
10485 do_t_cpy (void)
10486 {
10487 if (inst.size_req == 4)
10488 {
10489 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10490 inst.instruction |= inst.operands[0].reg << 8;
10491 inst.instruction |= inst.operands[1].reg;
10492 }
10493 else
10494 {
10495 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10496 inst.instruction |= (inst.operands[0].reg & 0x7);
10497 inst.instruction |= inst.operands[1].reg << 3;
10498 }
10499 }
10500
10501 static void
10502 do_t_cbz (void)
10503 {
10504 set_it_insn_type (OUTSIDE_IT_INSN);
10505 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10506 inst.instruction |= inst.operands[0].reg;
10507 inst.reloc.pc_rel = 1;
10508 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10509 }
10510
10511 static void
10512 do_t_dbg (void)
10513 {
10514 inst.instruction |= inst.operands[0].imm;
10515 }
10516
10517 static void
10518 do_t_div (void)
10519 {
10520 unsigned Rd, Rn, Rm;
10521
10522 Rd = inst.operands[0].reg;
10523 Rn = (inst.operands[1].present
10524 ? inst.operands[1].reg : Rd);
10525 Rm = inst.operands[2].reg;
10526
10527 reject_bad_reg (Rd);
10528 reject_bad_reg (Rn);
10529 reject_bad_reg (Rm);
10530
10531 inst.instruction |= Rd << 8;
10532 inst.instruction |= Rn << 16;
10533 inst.instruction |= Rm;
10534 }
10535
10536 static void
10537 do_t_hint (void)
10538 {
10539 if (unified_syntax && inst.size_req == 4)
10540 inst.instruction = THUMB_OP32 (inst.instruction);
10541 else
10542 inst.instruction = THUMB_OP16 (inst.instruction);
10543 }
10544
10545 static void
10546 do_t_it (void)
10547 {
10548 unsigned int cond = inst.operands[0].imm;
10549
10550 set_it_insn_type (IT_INSN);
10551 now_it.mask = (inst.instruction & 0xf) | 0x10;
10552 now_it.cc = cond;
10553 now_it.warn_deprecated = FALSE;
10554
10555 /* If the condition is a negative condition, invert the mask. */
10556 if ((cond & 0x1) == 0x0)
10557 {
10558 unsigned int mask = inst.instruction & 0x000f;
10559
10560 if ((mask & 0x7) == 0)
10561 {
10562 /* No conversion needed. */
10563 now_it.block_length = 1;
10564 }
10565 else if ((mask & 0x3) == 0)
10566 {
10567 mask ^= 0x8;
10568 now_it.block_length = 2;
10569 }
10570 else if ((mask & 0x1) == 0)
10571 {
10572 mask ^= 0xC;
10573 now_it.block_length = 3;
10574 }
10575 else
10576 {
10577 mask ^= 0xE;
10578 now_it.block_length = 4;
10579 }
10580
10581 inst.instruction &= 0xfff0;
10582 inst.instruction |= mask;
10583 }
10584
10585 inst.instruction |= cond << 4;
10586 }
10587
10588 /* Helper function used for both push/pop and ldm/stm. */
10589 static void
10590 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10591 {
10592 bfd_boolean load;
10593
10594 load = (inst.instruction & (1 << 20)) != 0;
10595
10596 if (mask & (1 << 13))
10597 inst.error = _("SP not allowed in register list");
10598
10599 if ((mask & (1 << base)) != 0
10600 && writeback)
10601 inst.error = _("having the base register in the register list when "
10602 "using write back is UNPREDICTABLE");
10603
10604 if (load)
10605 {
10606 if (mask & (1 << 15))
10607 {
10608 if (mask & (1 << 14))
10609 inst.error = _("LR and PC should not both be in register list");
10610 else
10611 set_it_insn_type_last ();
10612 }
10613 }
10614 else
10615 {
10616 if (mask & (1 << 15))
10617 inst.error = _("PC not allowed in register list");
10618 }
10619
10620 if ((mask & (mask - 1)) == 0)
10621 {
10622 /* Single register transfers implemented as str/ldr. */
10623 if (writeback)
10624 {
10625 if (inst.instruction & (1 << 23))
10626 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10627 else
10628 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10629 }
10630 else
10631 {
10632 if (inst.instruction & (1 << 23))
10633 inst.instruction = 0x00800000; /* ia -> [base] */
10634 else
10635 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10636 }
10637
10638 inst.instruction |= 0xf8400000;
10639 if (load)
10640 inst.instruction |= 0x00100000;
10641
10642 mask = ffs (mask) - 1;
10643 mask <<= 12;
10644 }
10645 else if (writeback)
10646 inst.instruction |= WRITE_BACK;
10647
10648 inst.instruction |= mask;
10649 inst.instruction |= base << 16;
10650 }
10651
10652 static void
10653 do_t_ldmstm (void)
10654 {
10655 /* This really doesn't seem worth it. */
10656 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10657 _("expression too complex"));
10658 constraint (inst.operands[1].writeback,
10659 _("Thumb load/store multiple does not support {reglist}^"));
10660
10661 if (unified_syntax)
10662 {
10663 bfd_boolean narrow;
10664 unsigned mask;
10665
10666 narrow = FALSE;
10667 /* See if we can use a 16-bit instruction. */
10668 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10669 && inst.size_req != 4
10670 && !(inst.operands[1].imm & ~0xff))
10671 {
10672 mask = 1 << inst.operands[0].reg;
10673
10674 if (inst.operands[0].reg <= 7)
10675 {
10676 if (inst.instruction == T_MNEM_stmia
10677 ? inst.operands[0].writeback
10678 : (inst.operands[0].writeback
10679 == !(inst.operands[1].imm & mask)))
10680 {
10681 if (inst.instruction == T_MNEM_stmia
10682 && (inst.operands[1].imm & mask)
10683 && (inst.operands[1].imm & (mask - 1)))
10684 as_warn (_("value stored for r%d is UNKNOWN"),
10685 inst.operands[0].reg);
10686
10687 inst.instruction = THUMB_OP16 (inst.instruction);
10688 inst.instruction |= inst.operands[0].reg << 8;
10689 inst.instruction |= inst.operands[1].imm;
10690 narrow = TRUE;
10691 }
10692 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10693 {
10694 /* This means 1 register in reg list one of 3 situations:
10695 1. Instruction is stmia, but without writeback.
10696 2. lmdia without writeback, but with Rn not in
10697 reglist.
10698 3. ldmia with writeback, but with Rn in reglist.
10699 Case 3 is UNPREDICTABLE behaviour, so we handle
10700 case 1 and 2 which can be converted into a 16-bit
10701 str or ldr. The SP cases are handled below. */
10702 unsigned long opcode;
10703 /* First, record an error for Case 3. */
10704 if (inst.operands[1].imm & mask
10705 && inst.operands[0].writeback)
10706 inst.error =
10707 _("having the base register in the register list when "
10708 "using write back is UNPREDICTABLE");
10709
10710 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10711 : T_MNEM_ldr);
10712 inst.instruction = THUMB_OP16 (opcode);
10713 inst.instruction |= inst.operands[0].reg << 3;
10714 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10715 narrow = TRUE;
10716 }
10717 }
10718 else if (inst.operands[0] .reg == REG_SP)
10719 {
10720 if (inst.operands[0].writeback)
10721 {
10722 inst.instruction =
10723 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10724 ? T_MNEM_push : T_MNEM_pop);
10725 inst.instruction |= inst.operands[1].imm;
10726 narrow = TRUE;
10727 }
10728 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10729 {
10730 inst.instruction =
10731 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10732 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10733 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10734 narrow = TRUE;
10735 }
10736 }
10737 }
10738
10739 if (!narrow)
10740 {
10741 if (inst.instruction < 0xffff)
10742 inst.instruction = THUMB_OP32 (inst.instruction);
10743
10744 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10745 inst.operands[0].writeback);
10746 }
10747 }
10748 else
10749 {
10750 constraint (inst.operands[0].reg > 7
10751 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10752 constraint (inst.instruction != T_MNEM_ldmia
10753 && inst.instruction != T_MNEM_stmia,
10754 _("Thumb-2 instruction only valid in unified syntax"));
10755 if (inst.instruction == T_MNEM_stmia)
10756 {
10757 if (!inst.operands[0].writeback)
10758 as_warn (_("this instruction will write back the base register"));
10759 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10760 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10761 as_warn (_("value stored for r%d is UNKNOWN"),
10762 inst.operands[0].reg);
10763 }
10764 else
10765 {
10766 if (!inst.operands[0].writeback
10767 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10768 as_warn (_("this instruction will write back the base register"));
10769 else if (inst.operands[0].writeback
10770 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10771 as_warn (_("this instruction will not write back the base register"));
10772 }
10773
10774 inst.instruction = THUMB_OP16 (inst.instruction);
10775 inst.instruction |= inst.operands[0].reg << 8;
10776 inst.instruction |= inst.operands[1].imm;
10777 }
10778 }
10779
10780 static void
10781 do_t_ldrex (void)
10782 {
10783 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10784 || inst.operands[1].postind || inst.operands[1].writeback
10785 || inst.operands[1].immisreg || inst.operands[1].shifted
10786 || inst.operands[1].negative,
10787 BAD_ADDR_MODE);
10788
10789 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10790
10791 inst.instruction |= inst.operands[0].reg << 12;
10792 inst.instruction |= inst.operands[1].reg << 16;
10793 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10794 }
10795
10796 static void
10797 do_t_ldrexd (void)
10798 {
10799 if (!inst.operands[1].present)
10800 {
10801 constraint (inst.operands[0].reg == REG_LR,
10802 _("r14 not allowed as first register "
10803 "when second register is omitted"));
10804 inst.operands[1].reg = inst.operands[0].reg + 1;
10805 }
10806 constraint (inst.operands[0].reg == inst.operands[1].reg,
10807 BAD_OVERLAP);
10808
10809 inst.instruction |= inst.operands[0].reg << 12;
10810 inst.instruction |= inst.operands[1].reg << 8;
10811 inst.instruction |= inst.operands[2].reg << 16;
10812 }
10813
10814 static void
10815 do_t_ldst (void)
10816 {
10817 unsigned long opcode;
10818 int Rn;
10819
10820 if (inst.operands[0].isreg
10821 && !inst.operands[0].preind
10822 && inst.operands[0].reg == REG_PC)
10823 set_it_insn_type_last ();
10824
10825 opcode = inst.instruction;
10826 if (unified_syntax)
10827 {
10828 if (!inst.operands[1].isreg)
10829 {
10830 if (opcode <= 0xffff)
10831 inst.instruction = THUMB_OP32 (opcode);
10832 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10833 return;
10834 }
10835 if (inst.operands[1].isreg
10836 && !inst.operands[1].writeback
10837 && !inst.operands[1].shifted && !inst.operands[1].postind
10838 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10839 && opcode <= 0xffff
10840 && inst.size_req != 4)
10841 {
10842 /* Insn may have a 16-bit form. */
10843 Rn = inst.operands[1].reg;
10844 if (inst.operands[1].immisreg)
10845 {
10846 inst.instruction = THUMB_OP16 (opcode);
10847 /* [Rn, Rik] */
10848 if (Rn <= 7 && inst.operands[1].imm <= 7)
10849 goto op16;
10850 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10851 reject_bad_reg (inst.operands[1].imm);
10852 }
10853 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10854 && opcode != T_MNEM_ldrsb)
10855 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10856 || (Rn == REG_SP && opcode == T_MNEM_str))
10857 {
10858 /* [Rn, #const] */
10859 if (Rn > 7)
10860 {
10861 if (Rn == REG_PC)
10862 {
10863 if (inst.reloc.pc_rel)
10864 opcode = T_MNEM_ldr_pc2;
10865 else
10866 opcode = T_MNEM_ldr_pc;
10867 }
10868 else
10869 {
10870 if (opcode == T_MNEM_ldr)
10871 opcode = T_MNEM_ldr_sp;
10872 else
10873 opcode = T_MNEM_str_sp;
10874 }
10875 inst.instruction = inst.operands[0].reg << 8;
10876 }
10877 else
10878 {
10879 inst.instruction = inst.operands[0].reg;
10880 inst.instruction |= inst.operands[1].reg << 3;
10881 }
10882 inst.instruction |= THUMB_OP16 (opcode);
10883 if (inst.size_req == 2)
10884 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10885 else
10886 inst.relax = opcode;
10887 return;
10888 }
10889 }
10890 /* Definitely a 32-bit variant. */
10891
10892 /* Warning for Erratum 752419. */
10893 if (opcode == T_MNEM_ldr
10894 && inst.operands[0].reg == REG_SP
10895 && inst.operands[1].writeback == 1
10896 && !inst.operands[1].immisreg)
10897 {
10898 if (no_cpu_selected ()
10899 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10900 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10901 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10902 as_warn (_("This instruction may be unpredictable "
10903 "if executed on M-profile cores "
10904 "with interrupts enabled."));
10905 }
10906
10907 /* Do some validations regarding addressing modes. */
10908 if (inst.operands[1].immisreg)
10909 reject_bad_reg (inst.operands[1].imm);
10910
10911 constraint (inst.operands[1].writeback == 1
10912 && inst.operands[0].reg == inst.operands[1].reg,
10913 BAD_OVERLAP);
10914
10915 inst.instruction = THUMB_OP32 (opcode);
10916 inst.instruction |= inst.operands[0].reg << 12;
10917 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10918 check_ldr_r15_aligned ();
10919 return;
10920 }
10921
10922 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10923
10924 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10925 {
10926 /* Only [Rn,Rm] is acceptable. */
10927 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10928 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10929 || inst.operands[1].postind || inst.operands[1].shifted
10930 || inst.operands[1].negative,
10931 _("Thumb does not support this addressing mode"));
10932 inst.instruction = THUMB_OP16 (inst.instruction);
10933 goto op16;
10934 }
10935
10936 inst.instruction = THUMB_OP16 (inst.instruction);
10937 if (!inst.operands[1].isreg)
10938 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10939 return;
10940
10941 constraint (!inst.operands[1].preind
10942 || inst.operands[1].shifted
10943 || inst.operands[1].writeback,
10944 _("Thumb does not support this addressing mode"));
10945 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10946 {
10947 constraint (inst.instruction & 0x0600,
10948 _("byte or halfword not valid for base register"));
10949 constraint (inst.operands[1].reg == REG_PC
10950 && !(inst.instruction & THUMB_LOAD_BIT),
10951 _("r15 based store not allowed"));
10952 constraint (inst.operands[1].immisreg,
10953 _("invalid base register for register offset"));
10954
10955 if (inst.operands[1].reg == REG_PC)
10956 inst.instruction = T_OPCODE_LDR_PC;
10957 else if (inst.instruction & THUMB_LOAD_BIT)
10958 inst.instruction = T_OPCODE_LDR_SP;
10959 else
10960 inst.instruction = T_OPCODE_STR_SP;
10961
10962 inst.instruction |= inst.operands[0].reg << 8;
10963 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10964 return;
10965 }
10966
10967 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10968 if (!inst.operands[1].immisreg)
10969 {
10970 /* Immediate offset. */
10971 inst.instruction |= inst.operands[0].reg;
10972 inst.instruction |= inst.operands[1].reg << 3;
10973 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10974 return;
10975 }
10976
10977 /* Register offset. */
10978 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10979 constraint (inst.operands[1].negative,
10980 _("Thumb does not support this addressing mode"));
10981
10982 op16:
10983 switch (inst.instruction)
10984 {
10985 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10986 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10987 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10988 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10989 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10990 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10991 case 0x5600 /* ldrsb */:
10992 case 0x5e00 /* ldrsh */: break;
10993 default: abort ();
10994 }
10995
10996 inst.instruction |= inst.operands[0].reg;
10997 inst.instruction |= inst.operands[1].reg << 3;
10998 inst.instruction |= inst.operands[1].imm << 6;
10999 }
11000
11001 static void
11002 do_t_ldstd (void)
11003 {
11004 if (!inst.operands[1].present)
11005 {
11006 inst.operands[1].reg = inst.operands[0].reg + 1;
11007 constraint (inst.operands[0].reg == REG_LR,
11008 _("r14 not allowed here"));
11009 constraint (inst.operands[0].reg == REG_R12,
11010 _("r12 not allowed here"));
11011 }
11012
11013 if (inst.operands[2].writeback
11014 && (inst.operands[0].reg == inst.operands[2].reg
11015 || inst.operands[1].reg == inst.operands[2].reg))
11016 as_warn (_("base register written back, and overlaps "
11017 "one of transfer registers"));
11018
11019 inst.instruction |= inst.operands[0].reg << 12;
11020 inst.instruction |= inst.operands[1].reg << 8;
11021 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11022 }
11023
11024 static void
11025 do_t_ldstt (void)
11026 {
11027 inst.instruction |= inst.operands[0].reg << 12;
11028 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11029 }
11030
11031 static void
11032 do_t_mla (void)
11033 {
11034 unsigned Rd, Rn, Rm, Ra;
11035
11036 Rd = inst.operands[0].reg;
11037 Rn = inst.operands[1].reg;
11038 Rm = inst.operands[2].reg;
11039 Ra = inst.operands[3].reg;
11040
11041 reject_bad_reg (Rd);
11042 reject_bad_reg (Rn);
11043 reject_bad_reg (Rm);
11044 reject_bad_reg (Ra);
11045
11046 inst.instruction |= Rd << 8;
11047 inst.instruction |= Rn << 16;
11048 inst.instruction |= Rm;
11049 inst.instruction |= Ra << 12;
11050 }
11051
11052 static void
11053 do_t_mlal (void)
11054 {
11055 unsigned RdLo, RdHi, Rn, Rm;
11056
11057 RdLo = inst.operands[0].reg;
11058 RdHi = inst.operands[1].reg;
11059 Rn = inst.operands[2].reg;
11060 Rm = inst.operands[3].reg;
11061
11062 reject_bad_reg (RdLo);
11063 reject_bad_reg (RdHi);
11064 reject_bad_reg (Rn);
11065 reject_bad_reg (Rm);
11066
11067 inst.instruction |= RdLo << 12;
11068 inst.instruction |= RdHi << 8;
11069 inst.instruction |= Rn << 16;
11070 inst.instruction |= Rm;
11071 }
11072
11073 static void
11074 do_t_mov_cmp (void)
11075 {
11076 unsigned Rn, Rm;
11077
11078 Rn = inst.operands[0].reg;
11079 Rm = inst.operands[1].reg;
11080
11081 if (Rn == REG_PC)
11082 set_it_insn_type_last ();
11083
11084 if (unified_syntax)
11085 {
11086 int r0off = (inst.instruction == T_MNEM_mov
11087 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11088 unsigned long opcode;
11089 bfd_boolean narrow;
11090 bfd_boolean low_regs;
11091
11092 low_regs = (Rn <= 7 && Rm <= 7);
11093 opcode = inst.instruction;
11094 if (in_it_block ())
11095 narrow = opcode != T_MNEM_movs;
11096 else
11097 narrow = opcode != T_MNEM_movs || low_regs;
11098 if (inst.size_req == 4
11099 || inst.operands[1].shifted)
11100 narrow = FALSE;
11101
11102 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11103 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11104 && !inst.operands[1].shifted
11105 && Rn == REG_PC
11106 && Rm == REG_LR)
11107 {
11108 inst.instruction = T2_SUBS_PC_LR;
11109 return;
11110 }
11111
11112 if (opcode == T_MNEM_cmp)
11113 {
11114 constraint (Rn == REG_PC, BAD_PC);
11115 if (narrow)
11116 {
11117 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11118 but valid. */
11119 warn_deprecated_sp (Rm);
11120 /* R15 was documented as a valid choice for Rm in ARMv6,
11121 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11122 tools reject R15, so we do too. */
11123 constraint (Rm == REG_PC, BAD_PC);
11124 }
11125 else
11126 reject_bad_reg (Rm);
11127 }
11128 else if (opcode == T_MNEM_mov
11129 || opcode == T_MNEM_movs)
11130 {
11131 if (inst.operands[1].isreg)
11132 {
11133 if (opcode == T_MNEM_movs)
11134 {
11135 reject_bad_reg (Rn);
11136 reject_bad_reg (Rm);
11137 }
11138 else if (narrow)
11139 {
11140 /* This is mov.n. */
11141 if ((Rn == REG_SP || Rn == REG_PC)
11142 && (Rm == REG_SP || Rm == REG_PC))
11143 {
11144 as_warn (_("Use of r%u as a source register is "
11145 "deprecated when r%u is the destination "
11146 "register."), Rm, Rn);
11147 }
11148 }
11149 else
11150 {
11151 /* This is mov.w. */
11152 constraint (Rn == REG_PC, BAD_PC);
11153 constraint (Rm == REG_PC, BAD_PC);
11154 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11155 }
11156 }
11157 else
11158 reject_bad_reg (Rn);
11159 }
11160
11161 if (!inst.operands[1].isreg)
11162 {
11163 /* Immediate operand. */
11164 if (!in_it_block () && opcode == T_MNEM_mov)
11165 narrow = 0;
11166 if (low_regs && narrow)
11167 {
11168 inst.instruction = THUMB_OP16 (opcode);
11169 inst.instruction |= Rn << 8;
11170 if (inst.size_req == 2)
11171 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11172 else
11173 inst.relax = opcode;
11174 }
11175 else
11176 {
11177 inst.instruction = THUMB_OP32 (inst.instruction);
11178 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11179 inst.instruction |= Rn << r0off;
11180 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11181 }
11182 }
11183 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11184 && (inst.instruction == T_MNEM_mov
11185 || inst.instruction == T_MNEM_movs))
11186 {
11187 /* Register shifts are encoded as separate shift instructions. */
11188 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11189
11190 if (in_it_block ())
11191 narrow = !flags;
11192 else
11193 narrow = flags;
11194
11195 if (inst.size_req == 4)
11196 narrow = FALSE;
11197
11198 if (!low_regs || inst.operands[1].imm > 7)
11199 narrow = FALSE;
11200
11201 if (Rn != Rm)
11202 narrow = FALSE;
11203
11204 switch (inst.operands[1].shift_kind)
11205 {
11206 case SHIFT_LSL:
11207 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11208 break;
11209 case SHIFT_ASR:
11210 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11211 break;
11212 case SHIFT_LSR:
11213 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11214 break;
11215 case SHIFT_ROR:
11216 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11217 break;
11218 default:
11219 abort ();
11220 }
11221
11222 inst.instruction = opcode;
11223 if (narrow)
11224 {
11225 inst.instruction |= Rn;
11226 inst.instruction |= inst.operands[1].imm << 3;
11227 }
11228 else
11229 {
11230 if (flags)
11231 inst.instruction |= CONDS_BIT;
11232
11233 inst.instruction |= Rn << 8;
11234 inst.instruction |= Rm << 16;
11235 inst.instruction |= inst.operands[1].imm;
11236 }
11237 }
11238 else if (!narrow)
11239 {
11240 /* Some mov with immediate shift have narrow variants.
11241 Register shifts are handled above. */
11242 if (low_regs && inst.operands[1].shifted
11243 && (inst.instruction == T_MNEM_mov
11244 || inst.instruction == T_MNEM_movs))
11245 {
11246 if (in_it_block ())
11247 narrow = (inst.instruction == T_MNEM_mov);
11248 else
11249 narrow = (inst.instruction == T_MNEM_movs);
11250 }
11251
11252 if (narrow)
11253 {
11254 switch (inst.operands[1].shift_kind)
11255 {
11256 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11257 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11258 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11259 default: narrow = FALSE; break;
11260 }
11261 }
11262
11263 if (narrow)
11264 {
11265 inst.instruction |= Rn;
11266 inst.instruction |= Rm << 3;
11267 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11268 }
11269 else
11270 {
11271 inst.instruction = THUMB_OP32 (inst.instruction);
11272 inst.instruction |= Rn << r0off;
11273 encode_thumb32_shifted_operand (1);
11274 }
11275 }
11276 else
11277 switch (inst.instruction)
11278 {
11279 case T_MNEM_mov:
11280 /* In v4t or v5t a move of two lowregs produces unpredictable
11281 results. Don't allow this. */
11282 if (low_regs)
11283 {
11284 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11285 "MOV Rd, Rs with two low registers is not "
11286 "permitted on this architecture");
11287 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11288 arm_ext_v6);
11289 }
11290
11291 inst.instruction = T_OPCODE_MOV_HR;
11292 inst.instruction |= (Rn & 0x8) << 4;
11293 inst.instruction |= (Rn & 0x7);
11294 inst.instruction |= Rm << 3;
11295 break;
11296
11297 case T_MNEM_movs:
11298 /* We know we have low registers at this point.
11299 Generate LSLS Rd, Rs, #0. */
11300 inst.instruction = T_OPCODE_LSL_I;
11301 inst.instruction |= Rn;
11302 inst.instruction |= Rm << 3;
11303 break;
11304
11305 case T_MNEM_cmp:
11306 if (low_regs)
11307 {
11308 inst.instruction = T_OPCODE_CMP_LR;
11309 inst.instruction |= Rn;
11310 inst.instruction |= Rm << 3;
11311 }
11312 else
11313 {
11314 inst.instruction = T_OPCODE_CMP_HR;
11315 inst.instruction |= (Rn & 0x8) << 4;
11316 inst.instruction |= (Rn & 0x7);
11317 inst.instruction |= Rm << 3;
11318 }
11319 break;
11320 }
11321 return;
11322 }
11323
11324 inst.instruction = THUMB_OP16 (inst.instruction);
11325
11326 /* PR 10443: Do not silently ignore shifted operands. */
11327 constraint (inst.operands[1].shifted,
11328 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11329
11330 if (inst.operands[1].isreg)
11331 {
11332 if (Rn < 8 && Rm < 8)
11333 {
11334 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11335 since a MOV instruction produces unpredictable results. */
11336 if (inst.instruction == T_OPCODE_MOV_I8)
11337 inst.instruction = T_OPCODE_ADD_I3;
11338 else
11339 inst.instruction = T_OPCODE_CMP_LR;
11340
11341 inst.instruction |= Rn;
11342 inst.instruction |= Rm << 3;
11343 }
11344 else
11345 {
11346 if (inst.instruction == T_OPCODE_MOV_I8)
11347 inst.instruction = T_OPCODE_MOV_HR;
11348 else
11349 inst.instruction = T_OPCODE_CMP_HR;
11350 do_t_cpy ();
11351 }
11352 }
11353 else
11354 {
11355 constraint (Rn > 7,
11356 _("only lo regs allowed with immediate"));
11357 inst.instruction |= Rn << 8;
11358 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11359 }
11360 }
11361
11362 static void
11363 do_t_mov16 (void)
11364 {
11365 unsigned Rd;
11366 bfd_vma imm;
11367 bfd_boolean top;
11368
11369 top = (inst.instruction & 0x00800000) != 0;
11370 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11371 {
11372 constraint (top, _(":lower16: not allowed this instruction"));
11373 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11374 }
11375 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11376 {
11377 constraint (!top, _(":upper16: not allowed this instruction"));
11378 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11379 }
11380
11381 Rd = inst.operands[0].reg;
11382 reject_bad_reg (Rd);
11383
11384 inst.instruction |= Rd << 8;
11385 if (inst.reloc.type == BFD_RELOC_UNUSED)
11386 {
11387 imm = inst.reloc.exp.X_add_number;
11388 inst.instruction |= (imm & 0xf000) << 4;
11389 inst.instruction |= (imm & 0x0800) << 15;
11390 inst.instruction |= (imm & 0x0700) << 4;
11391 inst.instruction |= (imm & 0x00ff);
11392 }
11393 }
11394
11395 static void
11396 do_t_mvn_tst (void)
11397 {
11398 unsigned Rn, Rm;
11399
11400 Rn = inst.operands[0].reg;
11401 Rm = inst.operands[1].reg;
11402
11403 if (inst.instruction == T_MNEM_cmp
11404 || inst.instruction == T_MNEM_cmn)
11405 constraint (Rn == REG_PC, BAD_PC);
11406 else
11407 reject_bad_reg (Rn);
11408 reject_bad_reg (Rm);
11409
11410 if (unified_syntax)
11411 {
11412 int r0off = (inst.instruction == T_MNEM_mvn
11413 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11414 bfd_boolean narrow;
11415
11416 if (inst.size_req == 4
11417 || inst.instruction > 0xffff
11418 || inst.operands[1].shifted
11419 || Rn > 7 || Rm > 7)
11420 narrow = FALSE;
11421 else if (inst.instruction == T_MNEM_cmn
11422 || inst.instruction == T_MNEM_tst)
11423 narrow = TRUE;
11424 else if (THUMB_SETS_FLAGS (inst.instruction))
11425 narrow = !in_it_block ();
11426 else
11427 narrow = in_it_block ();
11428
11429 if (!inst.operands[1].isreg)
11430 {
11431 /* For an immediate, we always generate a 32-bit opcode;
11432 section relaxation will shrink it later if possible. */
11433 if (inst.instruction < 0xffff)
11434 inst.instruction = THUMB_OP32 (inst.instruction);
11435 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11436 inst.instruction |= Rn << r0off;
11437 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11438 }
11439 else
11440 {
11441 /* See if we can do this with a 16-bit instruction. */
11442 if (narrow)
11443 {
11444 inst.instruction = THUMB_OP16 (inst.instruction);
11445 inst.instruction |= Rn;
11446 inst.instruction |= Rm << 3;
11447 }
11448 else
11449 {
11450 constraint (inst.operands[1].shifted
11451 && inst.operands[1].immisreg,
11452 _("shift must be constant"));
11453 if (inst.instruction < 0xffff)
11454 inst.instruction = THUMB_OP32 (inst.instruction);
11455 inst.instruction |= Rn << r0off;
11456 encode_thumb32_shifted_operand (1);
11457 }
11458 }
11459 }
11460 else
11461 {
11462 constraint (inst.instruction > 0xffff
11463 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11464 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11465 _("unshifted register required"));
11466 constraint (Rn > 7 || Rm > 7,
11467 BAD_HIREG);
11468
11469 inst.instruction = THUMB_OP16 (inst.instruction);
11470 inst.instruction |= Rn;
11471 inst.instruction |= Rm << 3;
11472 }
11473 }
11474
11475 static void
11476 do_t_mrs (void)
11477 {
11478 unsigned Rd;
11479
11480 if (do_vfp_nsyn_mrs () == SUCCESS)
11481 return;
11482
11483 Rd = inst.operands[0].reg;
11484 reject_bad_reg (Rd);
11485 inst.instruction |= Rd << 8;
11486
11487 if (inst.operands[1].isreg)
11488 {
11489 unsigned br = inst.operands[1].reg;
11490 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11491 as_bad (_("bad register for mrs"));
11492
11493 inst.instruction |= br & (0xf << 16);
11494 inst.instruction |= (br & 0x300) >> 4;
11495 inst.instruction |= (br & SPSR_BIT) >> 2;
11496 }
11497 else
11498 {
11499 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11500
11501 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11502 {
11503 /* PR gas/12698: The constraint is only applied for m_profile.
11504 If the user has specified -march=all, we want to ignore it as
11505 we are building for any CPU type, including non-m variants. */
11506 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11507 constraint ((flags != 0) && m_profile, _("selected processor does "
11508 "not support requested special purpose register"));
11509 }
11510 else
11511 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11512 devices). */
11513 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11514 _("'APSR', 'CPSR' or 'SPSR' expected"));
11515
11516 inst.instruction |= (flags & SPSR_BIT) >> 2;
11517 inst.instruction |= inst.operands[1].imm & 0xff;
11518 inst.instruction |= 0xf0000;
11519 }
11520 }
11521
11522 static void
11523 do_t_msr (void)
11524 {
11525 int flags;
11526 unsigned Rn;
11527
11528 if (do_vfp_nsyn_msr () == SUCCESS)
11529 return;
11530
11531 constraint (!inst.operands[1].isreg,
11532 _("Thumb encoding does not support an immediate here"));
11533
11534 if (inst.operands[0].isreg)
11535 flags = (int)(inst.operands[0].reg);
11536 else
11537 flags = inst.operands[0].imm;
11538
11539 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11540 {
11541 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11542
11543 /* PR gas/12698: The constraint is only applied for m_profile.
11544 If the user has specified -march=all, we want to ignore it as
11545 we are building for any CPU type, including non-m variants. */
11546 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11547 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11548 && (bits & ~(PSR_s | PSR_f)) != 0)
11549 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11550 && bits != PSR_f)) && m_profile,
11551 _("selected processor does not support requested special "
11552 "purpose register"));
11553 }
11554 else
11555 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11556 "requested special purpose register"));
11557
11558 Rn = inst.operands[1].reg;
11559 reject_bad_reg (Rn);
11560
11561 inst.instruction |= (flags & SPSR_BIT) >> 2;
11562 inst.instruction |= (flags & 0xf0000) >> 8;
11563 inst.instruction |= (flags & 0x300) >> 4;
11564 inst.instruction |= (flags & 0xff);
11565 inst.instruction |= Rn << 16;
11566 }
11567
11568 static void
11569 do_t_mul (void)
11570 {
11571 bfd_boolean narrow;
11572 unsigned Rd, Rn, Rm;
11573
11574 if (!inst.operands[2].present)
11575 inst.operands[2].reg = inst.operands[0].reg;
11576
11577 Rd = inst.operands[0].reg;
11578 Rn = inst.operands[1].reg;
11579 Rm = inst.operands[2].reg;
11580
11581 if (unified_syntax)
11582 {
11583 if (inst.size_req == 4
11584 || (Rd != Rn
11585 && Rd != Rm)
11586 || Rn > 7
11587 || Rm > 7)
11588 narrow = FALSE;
11589 else if (inst.instruction == T_MNEM_muls)
11590 narrow = !in_it_block ();
11591 else
11592 narrow = in_it_block ();
11593 }
11594 else
11595 {
11596 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11597 constraint (Rn > 7 || Rm > 7,
11598 BAD_HIREG);
11599 narrow = TRUE;
11600 }
11601
11602 if (narrow)
11603 {
11604 /* 16-bit MULS/Conditional MUL. */
11605 inst.instruction = THUMB_OP16 (inst.instruction);
11606 inst.instruction |= Rd;
11607
11608 if (Rd == Rn)
11609 inst.instruction |= Rm << 3;
11610 else if (Rd == Rm)
11611 inst.instruction |= Rn << 3;
11612 else
11613 constraint (1, _("dest must overlap one source register"));
11614 }
11615 else
11616 {
11617 constraint (inst.instruction != T_MNEM_mul,
11618 _("Thumb-2 MUL must not set flags"));
11619 /* 32-bit MUL. */
11620 inst.instruction = THUMB_OP32 (inst.instruction);
11621 inst.instruction |= Rd << 8;
11622 inst.instruction |= Rn << 16;
11623 inst.instruction |= Rm << 0;
11624
11625 reject_bad_reg (Rd);
11626 reject_bad_reg (Rn);
11627 reject_bad_reg (Rm);
11628 }
11629 }
11630
11631 static void
11632 do_t_mull (void)
11633 {
11634 unsigned RdLo, RdHi, Rn, Rm;
11635
11636 RdLo = inst.operands[0].reg;
11637 RdHi = inst.operands[1].reg;
11638 Rn = inst.operands[2].reg;
11639 Rm = inst.operands[3].reg;
11640
11641 reject_bad_reg (RdLo);
11642 reject_bad_reg (RdHi);
11643 reject_bad_reg (Rn);
11644 reject_bad_reg (Rm);
11645
11646 inst.instruction |= RdLo << 12;
11647 inst.instruction |= RdHi << 8;
11648 inst.instruction |= Rn << 16;
11649 inst.instruction |= Rm;
11650
11651 if (RdLo == RdHi)
11652 as_tsktsk (_("rdhi and rdlo must be different"));
11653 }
11654
11655 static void
11656 do_t_nop (void)
11657 {
11658 set_it_insn_type (NEUTRAL_IT_INSN);
11659
11660 if (unified_syntax)
11661 {
11662 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11663 {
11664 inst.instruction = THUMB_OP32 (inst.instruction);
11665 inst.instruction |= inst.operands[0].imm;
11666 }
11667 else
11668 {
11669 /* PR9722: Check for Thumb2 availability before
11670 generating a thumb2 nop instruction. */
11671 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11672 {
11673 inst.instruction = THUMB_OP16 (inst.instruction);
11674 inst.instruction |= inst.operands[0].imm << 4;
11675 }
11676 else
11677 inst.instruction = 0x46c0;
11678 }
11679 }
11680 else
11681 {
11682 constraint (inst.operands[0].present,
11683 _("Thumb does not support NOP with hints"));
11684 inst.instruction = 0x46c0;
11685 }
11686 }
11687
11688 static void
11689 do_t_neg (void)
11690 {
11691 if (unified_syntax)
11692 {
11693 bfd_boolean narrow;
11694
11695 if (THUMB_SETS_FLAGS (inst.instruction))
11696 narrow = !in_it_block ();
11697 else
11698 narrow = in_it_block ();
11699 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11700 narrow = FALSE;
11701 if (inst.size_req == 4)
11702 narrow = FALSE;
11703
11704 if (!narrow)
11705 {
11706 inst.instruction = THUMB_OP32 (inst.instruction);
11707 inst.instruction |= inst.operands[0].reg << 8;
11708 inst.instruction |= inst.operands[1].reg << 16;
11709 }
11710 else
11711 {
11712 inst.instruction = THUMB_OP16 (inst.instruction);
11713 inst.instruction |= inst.operands[0].reg;
11714 inst.instruction |= inst.operands[1].reg << 3;
11715 }
11716 }
11717 else
11718 {
11719 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11720 BAD_HIREG);
11721 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11722
11723 inst.instruction = THUMB_OP16 (inst.instruction);
11724 inst.instruction |= inst.operands[0].reg;
11725 inst.instruction |= inst.operands[1].reg << 3;
11726 }
11727 }
11728
11729 static void
11730 do_t_orn (void)
11731 {
11732 unsigned Rd, Rn;
11733
11734 Rd = inst.operands[0].reg;
11735 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11736
11737 reject_bad_reg (Rd);
11738 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11739 reject_bad_reg (Rn);
11740
11741 inst.instruction |= Rd << 8;
11742 inst.instruction |= Rn << 16;
11743
11744 if (!inst.operands[2].isreg)
11745 {
11746 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11747 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11748 }
11749 else
11750 {
11751 unsigned Rm;
11752
11753 Rm = inst.operands[2].reg;
11754 reject_bad_reg (Rm);
11755
11756 constraint (inst.operands[2].shifted
11757 && inst.operands[2].immisreg,
11758 _("shift must be constant"));
11759 encode_thumb32_shifted_operand (2);
11760 }
11761 }
11762
11763 static void
11764 do_t_pkhbt (void)
11765 {
11766 unsigned Rd, Rn, Rm;
11767
11768 Rd = inst.operands[0].reg;
11769 Rn = inst.operands[1].reg;
11770 Rm = inst.operands[2].reg;
11771
11772 reject_bad_reg (Rd);
11773 reject_bad_reg (Rn);
11774 reject_bad_reg (Rm);
11775
11776 inst.instruction |= Rd << 8;
11777 inst.instruction |= Rn << 16;
11778 inst.instruction |= Rm;
11779 if (inst.operands[3].present)
11780 {
11781 unsigned int val = inst.reloc.exp.X_add_number;
11782 constraint (inst.reloc.exp.X_op != O_constant,
11783 _("expression too complex"));
11784 inst.instruction |= (val & 0x1c) << 10;
11785 inst.instruction |= (val & 0x03) << 6;
11786 }
11787 }
11788
11789 static void
11790 do_t_pkhtb (void)
11791 {
11792 if (!inst.operands[3].present)
11793 {
11794 unsigned Rtmp;
11795
11796 inst.instruction &= ~0x00000020;
11797
11798 /* PR 10168. Swap the Rm and Rn registers. */
11799 Rtmp = inst.operands[1].reg;
11800 inst.operands[1].reg = inst.operands[2].reg;
11801 inst.operands[2].reg = Rtmp;
11802 }
11803 do_t_pkhbt ();
11804 }
11805
11806 static void
11807 do_t_pld (void)
11808 {
11809 if (inst.operands[0].immisreg)
11810 reject_bad_reg (inst.operands[0].imm);
11811
11812 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11813 }
11814
11815 static void
11816 do_t_push_pop (void)
11817 {
11818 unsigned mask;
11819
11820 constraint (inst.operands[0].writeback,
11821 _("push/pop do not support {reglist}^"));
11822 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11823 _("expression too complex"));
11824
11825 mask = inst.operands[0].imm;
11826 if (inst.size_req != 4 && (mask & ~0xff) == 0)
11827 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11828 else if (inst.size_req != 4
11829 && (mask & ~0xff) == (1 << (inst.instruction == T_MNEM_push
11830 ? REG_LR : REG_PC)))
11831 {
11832 inst.instruction = THUMB_OP16 (inst.instruction);
11833 inst.instruction |= THUMB_PP_PC_LR;
11834 inst.instruction |= mask & 0xff;
11835 }
11836 else if (unified_syntax)
11837 {
11838 inst.instruction = THUMB_OP32 (inst.instruction);
11839 encode_thumb2_ldmstm (13, mask, TRUE);
11840 }
11841 else
11842 {
11843 inst.error = _("invalid register list to push/pop instruction");
11844 return;
11845 }
11846 }
11847
11848 static void
11849 do_t_rbit (void)
11850 {
11851 unsigned Rd, Rm;
11852
11853 Rd = inst.operands[0].reg;
11854 Rm = inst.operands[1].reg;
11855
11856 reject_bad_reg (Rd);
11857 reject_bad_reg (Rm);
11858
11859 inst.instruction |= Rd << 8;
11860 inst.instruction |= Rm << 16;
11861 inst.instruction |= Rm;
11862 }
11863
11864 static void
11865 do_t_rev (void)
11866 {
11867 unsigned Rd, Rm;
11868
11869 Rd = inst.operands[0].reg;
11870 Rm = inst.operands[1].reg;
11871
11872 reject_bad_reg (Rd);
11873 reject_bad_reg (Rm);
11874
11875 if (Rd <= 7 && Rm <= 7
11876 && inst.size_req != 4)
11877 {
11878 inst.instruction = THUMB_OP16 (inst.instruction);
11879 inst.instruction |= Rd;
11880 inst.instruction |= Rm << 3;
11881 }
11882 else if (unified_syntax)
11883 {
11884 inst.instruction = THUMB_OP32 (inst.instruction);
11885 inst.instruction |= Rd << 8;
11886 inst.instruction |= Rm << 16;
11887 inst.instruction |= Rm;
11888 }
11889 else
11890 inst.error = BAD_HIREG;
11891 }
11892
11893 static void
11894 do_t_rrx (void)
11895 {
11896 unsigned Rd, Rm;
11897
11898 Rd = inst.operands[0].reg;
11899 Rm = inst.operands[1].reg;
11900
11901 reject_bad_reg (Rd);
11902 reject_bad_reg (Rm);
11903
11904 inst.instruction |= Rd << 8;
11905 inst.instruction |= Rm;
11906 }
11907
11908 static void
11909 do_t_rsb (void)
11910 {
11911 unsigned Rd, Rs;
11912
11913 Rd = inst.operands[0].reg;
11914 Rs = (inst.operands[1].present
11915 ? inst.operands[1].reg /* Rd, Rs, foo */
11916 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11917
11918 reject_bad_reg (Rd);
11919 reject_bad_reg (Rs);
11920 if (inst.operands[2].isreg)
11921 reject_bad_reg (inst.operands[2].reg);
11922
11923 inst.instruction |= Rd << 8;
11924 inst.instruction |= Rs << 16;
11925 if (!inst.operands[2].isreg)
11926 {
11927 bfd_boolean narrow;
11928
11929 if ((inst.instruction & 0x00100000) != 0)
11930 narrow = !in_it_block ();
11931 else
11932 narrow = in_it_block ();
11933
11934 if (Rd > 7 || Rs > 7)
11935 narrow = FALSE;
11936
11937 if (inst.size_req == 4 || !unified_syntax)
11938 narrow = FALSE;
11939
11940 if (inst.reloc.exp.X_op != O_constant
11941 || inst.reloc.exp.X_add_number != 0)
11942 narrow = FALSE;
11943
11944 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11945 relaxation, but it doesn't seem worth the hassle. */
11946 if (narrow)
11947 {
11948 inst.reloc.type = BFD_RELOC_UNUSED;
11949 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11950 inst.instruction |= Rs << 3;
11951 inst.instruction |= Rd;
11952 }
11953 else
11954 {
11955 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11956 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11957 }
11958 }
11959 else
11960 encode_thumb32_shifted_operand (2);
11961 }
11962
11963 static void
11964 do_t_setend (void)
11965 {
11966 if (warn_on_deprecated
11967 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11968 as_warn (_("setend use is deprecated for ARMv8"));
11969
11970 set_it_insn_type (OUTSIDE_IT_INSN);
11971 if (inst.operands[0].imm)
11972 inst.instruction |= 0x8;
11973 }
11974
11975 static void
11976 do_t_shift (void)
11977 {
11978 if (!inst.operands[1].present)
11979 inst.operands[1].reg = inst.operands[0].reg;
11980
11981 if (unified_syntax)
11982 {
11983 bfd_boolean narrow;
11984 int shift_kind;
11985
11986 switch (inst.instruction)
11987 {
11988 case T_MNEM_asr:
11989 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11990 case T_MNEM_lsl:
11991 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11992 case T_MNEM_lsr:
11993 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11994 case T_MNEM_ror:
11995 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11996 default: abort ();
11997 }
11998
11999 if (THUMB_SETS_FLAGS (inst.instruction))
12000 narrow = !in_it_block ();
12001 else
12002 narrow = in_it_block ();
12003 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12004 narrow = FALSE;
12005 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12006 narrow = FALSE;
12007 if (inst.operands[2].isreg
12008 && (inst.operands[1].reg != inst.operands[0].reg
12009 || inst.operands[2].reg > 7))
12010 narrow = FALSE;
12011 if (inst.size_req == 4)
12012 narrow = FALSE;
12013
12014 reject_bad_reg (inst.operands[0].reg);
12015 reject_bad_reg (inst.operands[1].reg);
12016
12017 if (!narrow)
12018 {
12019 if (inst.operands[2].isreg)
12020 {
12021 reject_bad_reg (inst.operands[2].reg);
12022 inst.instruction = THUMB_OP32 (inst.instruction);
12023 inst.instruction |= inst.operands[0].reg << 8;
12024 inst.instruction |= inst.operands[1].reg << 16;
12025 inst.instruction |= inst.operands[2].reg;
12026
12027 /* PR 12854: Error on extraneous shifts. */
12028 constraint (inst.operands[2].shifted,
12029 _("extraneous shift as part of operand to shift insn"));
12030 }
12031 else
12032 {
12033 inst.operands[1].shifted = 1;
12034 inst.operands[1].shift_kind = shift_kind;
12035 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12036 ? T_MNEM_movs : T_MNEM_mov);
12037 inst.instruction |= inst.operands[0].reg << 8;
12038 encode_thumb32_shifted_operand (1);
12039 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12040 inst.reloc.type = BFD_RELOC_UNUSED;
12041 }
12042 }
12043 else
12044 {
12045 if (inst.operands[2].isreg)
12046 {
12047 switch (shift_kind)
12048 {
12049 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12050 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12051 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12052 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12053 default: abort ();
12054 }
12055
12056 inst.instruction |= inst.operands[0].reg;
12057 inst.instruction |= inst.operands[2].reg << 3;
12058
12059 /* PR 12854: Error on extraneous shifts. */
12060 constraint (inst.operands[2].shifted,
12061 _("extraneous shift as part of operand to shift insn"));
12062 }
12063 else
12064 {
12065 switch (shift_kind)
12066 {
12067 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12068 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12069 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12070 default: abort ();
12071 }
12072 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12073 inst.instruction |= inst.operands[0].reg;
12074 inst.instruction |= inst.operands[1].reg << 3;
12075 }
12076 }
12077 }
12078 else
12079 {
12080 constraint (inst.operands[0].reg > 7
12081 || inst.operands[1].reg > 7, BAD_HIREG);
12082 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12083
12084 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12085 {
12086 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12087 constraint (inst.operands[0].reg != inst.operands[1].reg,
12088 _("source1 and dest must be same register"));
12089
12090 switch (inst.instruction)
12091 {
12092 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12093 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12094 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12095 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12096 default: abort ();
12097 }
12098
12099 inst.instruction |= inst.operands[0].reg;
12100 inst.instruction |= inst.operands[2].reg << 3;
12101
12102 /* PR 12854: Error on extraneous shifts. */
12103 constraint (inst.operands[2].shifted,
12104 _("extraneous shift as part of operand to shift insn"));
12105 }
12106 else
12107 {
12108 switch (inst.instruction)
12109 {
12110 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12111 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12112 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12113 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12114 default: abort ();
12115 }
12116 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12117 inst.instruction |= inst.operands[0].reg;
12118 inst.instruction |= inst.operands[1].reg << 3;
12119 }
12120 }
12121 }
12122
12123 static void
12124 do_t_simd (void)
12125 {
12126 unsigned Rd, Rn, Rm;
12127
12128 Rd = inst.operands[0].reg;
12129 Rn = inst.operands[1].reg;
12130 Rm = inst.operands[2].reg;
12131
12132 reject_bad_reg (Rd);
12133 reject_bad_reg (Rn);
12134 reject_bad_reg (Rm);
12135
12136 inst.instruction |= Rd << 8;
12137 inst.instruction |= Rn << 16;
12138 inst.instruction |= Rm;
12139 }
12140
12141 static void
12142 do_t_simd2 (void)
12143 {
12144 unsigned Rd, Rn, Rm;
12145
12146 Rd = inst.operands[0].reg;
12147 Rm = inst.operands[1].reg;
12148 Rn = inst.operands[2].reg;
12149
12150 reject_bad_reg (Rd);
12151 reject_bad_reg (Rn);
12152 reject_bad_reg (Rm);
12153
12154 inst.instruction |= Rd << 8;
12155 inst.instruction |= Rn << 16;
12156 inst.instruction |= Rm;
12157 }
12158
12159 static void
12160 do_t_smc (void)
12161 {
12162 unsigned int value = inst.reloc.exp.X_add_number;
12163 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12164 _("SMC is not permitted on this architecture"));
12165 constraint (inst.reloc.exp.X_op != O_constant,
12166 _("expression too complex"));
12167 inst.reloc.type = BFD_RELOC_UNUSED;
12168 inst.instruction |= (value & 0xf000) >> 12;
12169 inst.instruction |= (value & 0x0ff0);
12170 inst.instruction |= (value & 0x000f) << 16;
12171 /* PR gas/15623: SMC instructions must be last in an IT block. */
12172 set_it_insn_type_last ();
12173 }
12174
12175 static void
12176 do_t_hvc (void)
12177 {
12178 unsigned int value = inst.reloc.exp.X_add_number;
12179
12180 inst.reloc.type = BFD_RELOC_UNUSED;
12181 inst.instruction |= (value & 0x0fff);
12182 inst.instruction |= (value & 0xf000) << 4;
12183 }
12184
12185 static void
12186 do_t_ssat_usat (int bias)
12187 {
12188 unsigned Rd, Rn;
12189
12190 Rd = inst.operands[0].reg;
12191 Rn = inst.operands[2].reg;
12192
12193 reject_bad_reg (Rd);
12194 reject_bad_reg (Rn);
12195
12196 inst.instruction |= Rd << 8;
12197 inst.instruction |= inst.operands[1].imm - bias;
12198 inst.instruction |= Rn << 16;
12199
12200 if (inst.operands[3].present)
12201 {
12202 offsetT shift_amount = inst.reloc.exp.X_add_number;
12203
12204 inst.reloc.type = BFD_RELOC_UNUSED;
12205
12206 constraint (inst.reloc.exp.X_op != O_constant,
12207 _("expression too complex"));
12208
12209 if (shift_amount != 0)
12210 {
12211 constraint (shift_amount > 31,
12212 _("shift expression is too large"));
12213
12214 if (inst.operands[3].shift_kind == SHIFT_ASR)
12215 inst.instruction |= 0x00200000; /* sh bit. */
12216
12217 inst.instruction |= (shift_amount & 0x1c) << 10;
12218 inst.instruction |= (shift_amount & 0x03) << 6;
12219 }
12220 }
12221 }
12222
12223 static void
12224 do_t_ssat (void)
12225 {
12226 do_t_ssat_usat (1);
12227 }
12228
12229 static void
12230 do_t_ssat16 (void)
12231 {
12232 unsigned Rd, Rn;
12233
12234 Rd = inst.operands[0].reg;
12235 Rn = inst.operands[2].reg;
12236
12237 reject_bad_reg (Rd);
12238 reject_bad_reg (Rn);
12239
12240 inst.instruction |= Rd << 8;
12241 inst.instruction |= inst.operands[1].imm - 1;
12242 inst.instruction |= Rn << 16;
12243 }
12244
12245 static void
12246 do_t_strex (void)
12247 {
12248 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12249 || inst.operands[2].postind || inst.operands[2].writeback
12250 || inst.operands[2].immisreg || inst.operands[2].shifted
12251 || inst.operands[2].negative,
12252 BAD_ADDR_MODE);
12253
12254 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12255
12256 inst.instruction |= inst.operands[0].reg << 8;
12257 inst.instruction |= inst.operands[1].reg << 12;
12258 inst.instruction |= inst.operands[2].reg << 16;
12259 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12260 }
12261
12262 static void
12263 do_t_strexd (void)
12264 {
12265 if (!inst.operands[2].present)
12266 inst.operands[2].reg = inst.operands[1].reg + 1;
12267
12268 constraint (inst.operands[0].reg == inst.operands[1].reg
12269 || inst.operands[0].reg == inst.operands[2].reg
12270 || inst.operands[0].reg == inst.operands[3].reg,
12271 BAD_OVERLAP);
12272
12273 inst.instruction |= inst.operands[0].reg;
12274 inst.instruction |= inst.operands[1].reg << 12;
12275 inst.instruction |= inst.operands[2].reg << 8;
12276 inst.instruction |= inst.operands[3].reg << 16;
12277 }
12278
12279 static void
12280 do_t_sxtah (void)
12281 {
12282 unsigned Rd, Rn, Rm;
12283
12284 Rd = inst.operands[0].reg;
12285 Rn = inst.operands[1].reg;
12286 Rm = inst.operands[2].reg;
12287
12288 reject_bad_reg (Rd);
12289 reject_bad_reg (Rn);
12290 reject_bad_reg (Rm);
12291
12292 inst.instruction |= Rd << 8;
12293 inst.instruction |= Rn << 16;
12294 inst.instruction |= Rm;
12295 inst.instruction |= inst.operands[3].imm << 4;
12296 }
12297
12298 static void
12299 do_t_sxth (void)
12300 {
12301 unsigned Rd, Rm;
12302
12303 Rd = inst.operands[0].reg;
12304 Rm = inst.operands[1].reg;
12305
12306 reject_bad_reg (Rd);
12307 reject_bad_reg (Rm);
12308
12309 if (inst.instruction <= 0xffff
12310 && inst.size_req != 4
12311 && Rd <= 7 && Rm <= 7
12312 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12313 {
12314 inst.instruction = THUMB_OP16 (inst.instruction);
12315 inst.instruction |= Rd;
12316 inst.instruction |= Rm << 3;
12317 }
12318 else if (unified_syntax)
12319 {
12320 if (inst.instruction <= 0xffff)
12321 inst.instruction = THUMB_OP32 (inst.instruction);
12322 inst.instruction |= Rd << 8;
12323 inst.instruction |= Rm;
12324 inst.instruction |= inst.operands[2].imm << 4;
12325 }
12326 else
12327 {
12328 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12329 _("Thumb encoding does not support rotation"));
12330 constraint (1, BAD_HIREG);
12331 }
12332 }
12333
12334 static void
12335 do_t_swi (void)
12336 {
12337 /* We have to do the following check manually as ARM_EXT_OS only applies
12338 to ARM_EXT_V6M. */
12339 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12340 {
12341 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12342 /* This only applies to the v6m howver, not later architectures. */
12343 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12344 as_bad (_("SVC is not permitted on this architecture"));
12345 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12346 }
12347
12348 inst.reloc.type = BFD_RELOC_ARM_SWI;
12349 }
12350
12351 static void
12352 do_t_tb (void)
12353 {
12354 unsigned Rn, Rm;
12355 int half;
12356
12357 half = (inst.instruction & 0x10) != 0;
12358 set_it_insn_type_last ();
12359 constraint (inst.operands[0].immisreg,
12360 _("instruction requires register index"));
12361
12362 Rn = inst.operands[0].reg;
12363 Rm = inst.operands[0].imm;
12364
12365 constraint (Rn == REG_SP, BAD_SP);
12366 reject_bad_reg (Rm);
12367
12368 constraint (!half && inst.operands[0].shifted,
12369 _("instruction does not allow shifted index"));
12370 inst.instruction |= (Rn << 16) | Rm;
12371 }
12372
12373 static void
12374 do_t_udf (void)
12375 {
12376 if (!inst.operands[0].present)
12377 inst.operands[0].imm = 0;
12378
12379 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
12380 {
12381 constraint (inst.size_req == 2,
12382 _("immediate value out of range"));
12383 inst.instruction = THUMB_OP32 (inst.instruction);
12384 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
12385 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
12386 }
12387 else
12388 {
12389 inst.instruction = THUMB_OP16 (inst.instruction);
12390 inst.instruction |= inst.operands[0].imm;
12391 }
12392
12393 set_it_insn_type (NEUTRAL_IT_INSN);
12394 }
12395
12396
12397 static void
12398 do_t_usat (void)
12399 {
12400 do_t_ssat_usat (0);
12401 }
12402
12403 static void
12404 do_t_usat16 (void)
12405 {
12406 unsigned Rd, Rn;
12407
12408 Rd = inst.operands[0].reg;
12409 Rn = inst.operands[2].reg;
12410
12411 reject_bad_reg (Rd);
12412 reject_bad_reg (Rn);
12413
12414 inst.instruction |= Rd << 8;
12415 inst.instruction |= inst.operands[1].imm;
12416 inst.instruction |= Rn << 16;
12417 }
12418
12419 /* Neon instruction encoder helpers. */
12420
12421 /* Encodings for the different types for various Neon opcodes. */
12422
12423 /* An "invalid" code for the following tables. */
12424 #define N_INV -1u
12425
12426 struct neon_tab_entry
12427 {
12428 unsigned integer;
12429 unsigned float_or_poly;
12430 unsigned scalar_or_imm;
12431 };
12432
12433 /* Map overloaded Neon opcodes to their respective encodings. */
12434 #define NEON_ENC_TAB \
12435 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12436 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12437 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12438 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12439 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12440 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12441 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12442 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12443 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12444 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12445 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12446 /* Register variants of the following two instructions are encoded as
12447 vcge / vcgt with the operands reversed. */ \
12448 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12449 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12450 X(vfma, N_INV, 0x0000c10, N_INV), \
12451 X(vfms, N_INV, 0x0200c10, N_INV), \
12452 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12453 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12454 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12455 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12456 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12457 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12458 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12459 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12460 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12461 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12462 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12463 X(vshl, 0x0000400, N_INV, 0x0800510), \
12464 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12465 X(vand, 0x0000110, N_INV, 0x0800030), \
12466 X(vbic, 0x0100110, N_INV, 0x0800030), \
12467 X(veor, 0x1000110, N_INV, N_INV), \
12468 X(vorn, 0x0300110, N_INV, 0x0800010), \
12469 X(vorr, 0x0200110, N_INV, 0x0800010), \
12470 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12471 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12472 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12473 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12474 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12475 X(vst1, 0x0000000, 0x0800000, N_INV), \
12476 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12477 X(vst2, 0x0000100, 0x0800100, N_INV), \
12478 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12479 X(vst3, 0x0000200, 0x0800200, N_INV), \
12480 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12481 X(vst4, 0x0000300, 0x0800300, N_INV), \
12482 X(vmovn, 0x1b20200, N_INV, N_INV), \
12483 X(vtrn, 0x1b20080, N_INV, N_INV), \
12484 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12485 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12486 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12487 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12488 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12489 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12490 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12491 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12492 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12493 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12494 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12495 X(vseleq, 0xe000a00, N_INV, N_INV), \
12496 X(vselvs, 0xe100a00, N_INV, N_INV), \
12497 X(vselge, 0xe200a00, N_INV, N_INV), \
12498 X(vselgt, 0xe300a00, N_INV, N_INV), \
12499 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
12500 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
12501 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
12502 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
12503 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
12504 X(aes, 0x3b00300, N_INV, N_INV), \
12505 X(sha3op, 0x2000c00, N_INV, N_INV), \
12506 X(sha1h, 0x3b902c0, N_INV, N_INV), \
12507 X(sha2op, 0x3ba0380, N_INV, N_INV)
12508
12509 enum neon_opc
12510 {
12511 #define X(OPC,I,F,S) N_MNEM_##OPC
12512 NEON_ENC_TAB
12513 #undef X
12514 };
12515
12516 static const struct neon_tab_entry neon_enc_tab[] =
12517 {
12518 #define X(OPC,I,F,S) { (I), (F), (S) }
12519 NEON_ENC_TAB
12520 #undef X
12521 };
12522
12523 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12524 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12525 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12526 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12527 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12528 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12529 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12530 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12531 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12532 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12533 #define NEON_ENC_SINGLE_(X) \
12534 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12535 #define NEON_ENC_DOUBLE_(X) \
12536 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12537 #define NEON_ENC_FPV8_(X) \
12538 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
12539
12540 #define NEON_ENCODE(type, inst) \
12541 do \
12542 { \
12543 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12544 inst.is_neon = 1; \
12545 } \
12546 while (0)
12547
12548 #define check_neon_suffixes \
12549 do \
12550 { \
12551 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12552 { \
12553 as_bad (_("invalid neon suffix for non neon instruction")); \
12554 return; \
12555 } \
12556 } \
12557 while (0)
12558
12559 /* Define shapes for instruction operands. The following mnemonic characters
12560 are used in this table:
12561
12562 F - VFP S<n> register
12563 D - Neon D<n> register
12564 Q - Neon Q<n> register
12565 I - Immediate
12566 S - Scalar
12567 R - ARM register
12568 L - D<n> register list
12569
12570 This table is used to generate various data:
12571 - enumerations of the form NS_DDR to be used as arguments to
12572 neon_select_shape.
12573 - a table classifying shapes into single, double, quad, mixed.
12574 - a table used to drive neon_select_shape. */
12575
12576 #define NEON_SHAPE_DEF \
12577 X(3, (D, D, D), DOUBLE), \
12578 X(3, (Q, Q, Q), QUAD), \
12579 X(3, (D, D, I), DOUBLE), \
12580 X(3, (Q, Q, I), QUAD), \
12581 X(3, (D, D, S), DOUBLE), \
12582 X(3, (Q, Q, S), QUAD), \
12583 X(2, (D, D), DOUBLE), \
12584 X(2, (Q, Q), QUAD), \
12585 X(2, (D, S), DOUBLE), \
12586 X(2, (Q, S), QUAD), \
12587 X(2, (D, R), DOUBLE), \
12588 X(2, (Q, R), QUAD), \
12589 X(2, (D, I), DOUBLE), \
12590 X(2, (Q, I), QUAD), \
12591 X(3, (D, L, D), DOUBLE), \
12592 X(2, (D, Q), MIXED), \
12593 X(2, (Q, D), MIXED), \
12594 X(3, (D, Q, I), MIXED), \
12595 X(3, (Q, D, I), MIXED), \
12596 X(3, (Q, D, D), MIXED), \
12597 X(3, (D, Q, Q), MIXED), \
12598 X(3, (Q, Q, D), MIXED), \
12599 X(3, (Q, D, S), MIXED), \
12600 X(3, (D, Q, S), MIXED), \
12601 X(4, (D, D, D, I), DOUBLE), \
12602 X(4, (Q, Q, Q, I), QUAD), \
12603 X(2, (F, F), SINGLE), \
12604 X(3, (F, F, F), SINGLE), \
12605 X(2, (F, I), SINGLE), \
12606 X(2, (F, D), MIXED), \
12607 X(2, (D, F), MIXED), \
12608 X(3, (F, F, I), MIXED), \
12609 X(4, (R, R, F, F), SINGLE), \
12610 X(4, (F, F, R, R), SINGLE), \
12611 X(3, (D, R, R), DOUBLE), \
12612 X(3, (R, R, D), DOUBLE), \
12613 X(2, (S, R), SINGLE), \
12614 X(2, (R, S), SINGLE), \
12615 X(2, (F, R), SINGLE), \
12616 X(2, (R, F), SINGLE)
12617
12618 #define S2(A,B) NS_##A##B
12619 #define S3(A,B,C) NS_##A##B##C
12620 #define S4(A,B,C,D) NS_##A##B##C##D
12621
12622 #define X(N, L, C) S##N L
12623
12624 enum neon_shape
12625 {
12626 NEON_SHAPE_DEF,
12627 NS_NULL
12628 };
12629
12630 #undef X
12631 #undef S2
12632 #undef S3
12633 #undef S4
12634
12635 enum neon_shape_class
12636 {
12637 SC_SINGLE,
12638 SC_DOUBLE,
12639 SC_QUAD,
12640 SC_MIXED
12641 };
12642
12643 #define X(N, L, C) SC_##C
12644
12645 static enum neon_shape_class neon_shape_class[] =
12646 {
12647 NEON_SHAPE_DEF
12648 };
12649
12650 #undef X
12651
12652 enum neon_shape_el
12653 {
12654 SE_F,
12655 SE_D,
12656 SE_Q,
12657 SE_I,
12658 SE_S,
12659 SE_R,
12660 SE_L
12661 };
12662
12663 /* Register widths of above. */
12664 static unsigned neon_shape_el_size[] =
12665 {
12666 32,
12667 64,
12668 128,
12669 0,
12670 32,
12671 32,
12672 0
12673 };
12674
12675 struct neon_shape_info
12676 {
12677 unsigned els;
12678 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12679 };
12680
12681 #define S2(A,B) { SE_##A, SE_##B }
12682 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12683 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12684
12685 #define X(N, L, C) { N, S##N L }
12686
12687 static struct neon_shape_info neon_shape_tab[] =
12688 {
12689 NEON_SHAPE_DEF
12690 };
12691
12692 #undef X
12693 #undef S2
12694 #undef S3
12695 #undef S4
12696
12697 /* Bit masks used in type checking given instructions.
12698 'N_EQK' means the type must be the same as (or based on in some way) the key
12699 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12700 set, various other bits can be set as well in order to modify the meaning of
12701 the type constraint. */
12702
12703 enum neon_type_mask
12704 {
12705 N_S8 = 0x0000001,
12706 N_S16 = 0x0000002,
12707 N_S32 = 0x0000004,
12708 N_S64 = 0x0000008,
12709 N_U8 = 0x0000010,
12710 N_U16 = 0x0000020,
12711 N_U32 = 0x0000040,
12712 N_U64 = 0x0000080,
12713 N_I8 = 0x0000100,
12714 N_I16 = 0x0000200,
12715 N_I32 = 0x0000400,
12716 N_I64 = 0x0000800,
12717 N_8 = 0x0001000,
12718 N_16 = 0x0002000,
12719 N_32 = 0x0004000,
12720 N_64 = 0x0008000,
12721 N_P8 = 0x0010000,
12722 N_P16 = 0x0020000,
12723 N_F16 = 0x0040000,
12724 N_F32 = 0x0080000,
12725 N_F64 = 0x0100000,
12726 N_P64 = 0x0200000,
12727 N_KEY = 0x1000000, /* Key element (main type specifier). */
12728 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12729 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12730 N_UNT = 0x8000000, /* Must be explicitly untyped. */
12731 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12732 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12733 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12734 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12735 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12736 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12737 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12738 N_UTYP = 0,
12739 N_MAX_NONSPECIAL = N_P64
12740 };
12741
12742 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12743
12744 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12745 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12746 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12747 #define N_SUF_32 (N_SU_32 | N_F32)
12748 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12749 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12750
12751 /* Pass this as the first type argument to neon_check_type to ignore types
12752 altogether. */
12753 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12754
12755 /* Select a "shape" for the current instruction (describing register types or
12756 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12757 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12758 function of operand parsing, so this function doesn't need to be called.
12759 Shapes should be listed in order of decreasing length. */
12760
12761 static enum neon_shape
12762 neon_select_shape (enum neon_shape shape, ...)
12763 {
12764 va_list ap;
12765 enum neon_shape first_shape = shape;
12766
12767 /* Fix missing optional operands. FIXME: we don't know at this point how
12768 many arguments we should have, so this makes the assumption that we have
12769 > 1. This is true of all current Neon opcodes, I think, but may not be
12770 true in the future. */
12771 if (!inst.operands[1].present)
12772 inst.operands[1] = inst.operands[0];
12773
12774 va_start (ap, shape);
12775
12776 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12777 {
12778 unsigned j;
12779 int matches = 1;
12780
12781 for (j = 0; j < neon_shape_tab[shape].els; j++)
12782 {
12783 if (!inst.operands[j].present)
12784 {
12785 matches = 0;
12786 break;
12787 }
12788
12789 switch (neon_shape_tab[shape].el[j])
12790 {
12791 case SE_F:
12792 if (!(inst.operands[j].isreg
12793 && inst.operands[j].isvec
12794 && inst.operands[j].issingle
12795 && !inst.operands[j].isquad))
12796 matches = 0;
12797 break;
12798
12799 case SE_D:
12800 if (!(inst.operands[j].isreg
12801 && inst.operands[j].isvec
12802 && !inst.operands[j].isquad
12803 && !inst.operands[j].issingle))
12804 matches = 0;
12805 break;
12806
12807 case SE_R:
12808 if (!(inst.operands[j].isreg
12809 && !inst.operands[j].isvec))
12810 matches = 0;
12811 break;
12812
12813 case SE_Q:
12814 if (!(inst.operands[j].isreg
12815 && inst.operands[j].isvec
12816 && inst.operands[j].isquad
12817 && !inst.operands[j].issingle))
12818 matches = 0;
12819 break;
12820
12821 case SE_I:
12822 if (!(!inst.operands[j].isreg
12823 && !inst.operands[j].isscalar))
12824 matches = 0;
12825 break;
12826
12827 case SE_S:
12828 if (!(!inst.operands[j].isreg
12829 && inst.operands[j].isscalar))
12830 matches = 0;
12831 break;
12832
12833 case SE_L:
12834 break;
12835 }
12836 if (!matches)
12837 break;
12838 }
12839 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12840 /* We've matched all the entries in the shape table, and we don't
12841 have any left over operands which have not been matched. */
12842 break;
12843 }
12844
12845 va_end (ap);
12846
12847 if (shape == NS_NULL && first_shape != NS_NULL)
12848 first_error (_("invalid instruction shape"));
12849
12850 return shape;
12851 }
12852
12853 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12854 means the Q bit should be set). */
12855
12856 static int
12857 neon_quad (enum neon_shape shape)
12858 {
12859 return neon_shape_class[shape] == SC_QUAD;
12860 }
12861
12862 static void
12863 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12864 unsigned *g_size)
12865 {
12866 /* Allow modification to be made to types which are constrained to be
12867 based on the key element, based on bits set alongside N_EQK. */
12868 if ((typebits & N_EQK) != 0)
12869 {
12870 if ((typebits & N_HLF) != 0)
12871 *g_size /= 2;
12872 else if ((typebits & N_DBL) != 0)
12873 *g_size *= 2;
12874 if ((typebits & N_SGN) != 0)
12875 *g_type = NT_signed;
12876 else if ((typebits & N_UNS) != 0)
12877 *g_type = NT_unsigned;
12878 else if ((typebits & N_INT) != 0)
12879 *g_type = NT_integer;
12880 else if ((typebits & N_FLT) != 0)
12881 *g_type = NT_float;
12882 else if ((typebits & N_SIZ) != 0)
12883 *g_type = NT_untyped;
12884 }
12885 }
12886
12887 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12888 operand type, i.e. the single type specified in a Neon instruction when it
12889 is the only one given. */
12890
12891 static struct neon_type_el
12892 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12893 {
12894 struct neon_type_el dest = *key;
12895
12896 gas_assert ((thisarg & N_EQK) != 0);
12897
12898 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12899
12900 return dest;
12901 }
12902
12903 /* Convert Neon type and size into compact bitmask representation. */
12904
12905 static enum neon_type_mask
12906 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12907 {
12908 switch (type)
12909 {
12910 case NT_untyped:
12911 switch (size)
12912 {
12913 case 8: return N_8;
12914 case 16: return N_16;
12915 case 32: return N_32;
12916 case 64: return N_64;
12917 default: ;
12918 }
12919 break;
12920
12921 case NT_integer:
12922 switch (size)
12923 {
12924 case 8: return N_I8;
12925 case 16: return N_I16;
12926 case 32: return N_I32;
12927 case 64: return N_I64;
12928 default: ;
12929 }
12930 break;
12931
12932 case NT_float:
12933 switch (size)
12934 {
12935 case 16: return N_F16;
12936 case 32: return N_F32;
12937 case 64: return N_F64;
12938 default: ;
12939 }
12940 break;
12941
12942 case NT_poly:
12943 switch (size)
12944 {
12945 case 8: return N_P8;
12946 case 16: return N_P16;
12947 case 64: return N_P64;
12948 default: ;
12949 }
12950 break;
12951
12952 case NT_signed:
12953 switch (size)
12954 {
12955 case 8: return N_S8;
12956 case 16: return N_S16;
12957 case 32: return N_S32;
12958 case 64: return N_S64;
12959 default: ;
12960 }
12961 break;
12962
12963 case NT_unsigned:
12964 switch (size)
12965 {
12966 case 8: return N_U8;
12967 case 16: return N_U16;
12968 case 32: return N_U32;
12969 case 64: return N_U64;
12970 default: ;
12971 }
12972 break;
12973
12974 default: ;
12975 }
12976
12977 return N_UTYP;
12978 }
12979
12980 /* Convert compact Neon bitmask type representation to a type and size. Only
12981 handles the case where a single bit is set in the mask. */
12982
12983 static int
12984 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12985 enum neon_type_mask mask)
12986 {
12987 if ((mask & N_EQK) != 0)
12988 return FAIL;
12989
12990 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12991 *size = 8;
12992 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
12993 *size = 16;
12994 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12995 *size = 32;
12996 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
12997 *size = 64;
12998 else
12999 return FAIL;
13000
13001 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13002 *type = NT_signed;
13003 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
13004 *type = NT_unsigned;
13005 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
13006 *type = NT_integer;
13007 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
13008 *type = NT_untyped;
13009 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
13010 *type = NT_poly;
13011 else if ((mask & (N_F16 | N_F32 | N_F64)) != 0)
13012 *type = NT_float;
13013 else
13014 return FAIL;
13015
13016 return SUCCESS;
13017 }
13018
13019 /* Modify a bitmask of allowed types. This is only needed for type
13020 relaxation. */
13021
13022 static unsigned
13023 modify_types_allowed (unsigned allowed, unsigned mods)
13024 {
13025 unsigned size;
13026 enum neon_el_type type;
13027 unsigned destmask;
13028 int i;
13029
13030 destmask = 0;
13031
13032 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13033 {
13034 if (el_type_of_type_chk (&type, &size,
13035 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13036 {
13037 neon_modify_type_size (mods, &type, &size);
13038 destmask |= type_chk_of_el_type (type, size);
13039 }
13040 }
13041
13042 return destmask;
13043 }
13044
13045 /* Check type and return type classification.
13046 The manual states (paraphrase): If one datatype is given, it indicates the
13047 type given in:
13048 - the second operand, if there is one
13049 - the operand, if there is no second operand
13050 - the result, if there are no operands.
13051 This isn't quite good enough though, so we use a concept of a "key" datatype
13052 which is set on a per-instruction basis, which is the one which matters when
13053 only one data type is written.
13054 Note: this function has side-effects (e.g. filling in missing operands). All
13055 Neon instructions should call it before performing bit encoding. */
13056
13057 static struct neon_type_el
13058 neon_check_type (unsigned els, enum neon_shape ns, ...)
13059 {
13060 va_list ap;
13061 unsigned i, pass, key_el = 0;
13062 unsigned types[NEON_MAX_TYPE_ELS];
13063 enum neon_el_type k_type = NT_invtype;
13064 unsigned k_size = -1u;
13065 struct neon_type_el badtype = {NT_invtype, -1};
13066 unsigned key_allowed = 0;
13067
13068 /* Optional registers in Neon instructions are always (not) in operand 1.
13069 Fill in the missing operand here, if it was omitted. */
13070 if (els > 1 && !inst.operands[1].present)
13071 inst.operands[1] = inst.operands[0];
13072
13073 /* Suck up all the varargs. */
13074 va_start (ap, ns);
13075 for (i = 0; i < els; i++)
13076 {
13077 unsigned thisarg = va_arg (ap, unsigned);
13078 if (thisarg == N_IGNORE_TYPE)
13079 {
13080 va_end (ap);
13081 return badtype;
13082 }
13083 types[i] = thisarg;
13084 if ((thisarg & N_KEY) != 0)
13085 key_el = i;
13086 }
13087 va_end (ap);
13088
13089 if (inst.vectype.elems > 0)
13090 for (i = 0; i < els; i++)
13091 if (inst.operands[i].vectype.type != NT_invtype)
13092 {
13093 first_error (_("types specified in both the mnemonic and operands"));
13094 return badtype;
13095 }
13096
13097 /* Duplicate inst.vectype elements here as necessary.
13098 FIXME: No idea if this is exactly the same as the ARM assembler,
13099 particularly when an insn takes one register and one non-register
13100 operand. */
13101 if (inst.vectype.elems == 1 && els > 1)
13102 {
13103 unsigned j;
13104 inst.vectype.elems = els;
13105 inst.vectype.el[key_el] = inst.vectype.el[0];
13106 for (j = 0; j < els; j++)
13107 if (j != key_el)
13108 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13109 types[j]);
13110 }
13111 else if (inst.vectype.elems == 0 && els > 0)
13112 {
13113 unsigned j;
13114 /* No types were given after the mnemonic, so look for types specified
13115 after each operand. We allow some flexibility here; as long as the
13116 "key" operand has a type, we can infer the others. */
13117 for (j = 0; j < els; j++)
13118 if (inst.operands[j].vectype.type != NT_invtype)
13119 inst.vectype.el[j] = inst.operands[j].vectype;
13120
13121 if (inst.operands[key_el].vectype.type != NT_invtype)
13122 {
13123 for (j = 0; j < els; j++)
13124 if (inst.operands[j].vectype.type == NT_invtype)
13125 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13126 types[j]);
13127 }
13128 else
13129 {
13130 first_error (_("operand types can't be inferred"));
13131 return badtype;
13132 }
13133 }
13134 else if (inst.vectype.elems != els)
13135 {
13136 first_error (_("type specifier has the wrong number of parts"));
13137 return badtype;
13138 }
13139
13140 for (pass = 0; pass < 2; pass++)
13141 {
13142 for (i = 0; i < els; i++)
13143 {
13144 unsigned thisarg = types[i];
13145 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
13146 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
13147 enum neon_el_type g_type = inst.vectype.el[i].type;
13148 unsigned g_size = inst.vectype.el[i].size;
13149
13150 /* Decay more-specific signed & unsigned types to sign-insensitive
13151 integer types if sign-specific variants are unavailable. */
13152 if ((g_type == NT_signed || g_type == NT_unsigned)
13153 && (types_allowed & N_SU_ALL) == 0)
13154 g_type = NT_integer;
13155
13156 /* If only untyped args are allowed, decay any more specific types to
13157 them. Some instructions only care about signs for some element
13158 sizes, so handle that properly. */
13159 if (((types_allowed & N_UNT) == 0)
13160 && ((g_size == 8 && (types_allowed & N_8) != 0)
13161 || (g_size == 16 && (types_allowed & N_16) != 0)
13162 || (g_size == 32 && (types_allowed & N_32) != 0)
13163 || (g_size == 64 && (types_allowed & N_64) != 0)))
13164 g_type = NT_untyped;
13165
13166 if (pass == 0)
13167 {
13168 if ((thisarg & N_KEY) != 0)
13169 {
13170 k_type = g_type;
13171 k_size = g_size;
13172 key_allowed = thisarg & ~N_KEY;
13173 }
13174 }
13175 else
13176 {
13177 if ((thisarg & N_VFP) != 0)
13178 {
13179 enum neon_shape_el regshape;
13180 unsigned regwidth, match;
13181
13182 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13183 if (ns == NS_NULL)
13184 {
13185 first_error (_("invalid instruction shape"));
13186 return badtype;
13187 }
13188 regshape = neon_shape_tab[ns].el[i];
13189 regwidth = neon_shape_el_size[regshape];
13190
13191 /* In VFP mode, operands must match register widths. If we
13192 have a key operand, use its width, else use the width of
13193 the current operand. */
13194 if (k_size != -1u)
13195 match = k_size;
13196 else
13197 match = g_size;
13198
13199 if (regwidth != match)
13200 {
13201 first_error (_("operand size must match register width"));
13202 return badtype;
13203 }
13204 }
13205
13206 if ((thisarg & N_EQK) == 0)
13207 {
13208 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13209
13210 if ((given_type & types_allowed) == 0)
13211 {
13212 first_error (_("bad type in Neon instruction"));
13213 return badtype;
13214 }
13215 }
13216 else
13217 {
13218 enum neon_el_type mod_k_type = k_type;
13219 unsigned mod_k_size = k_size;
13220 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13221 if (g_type != mod_k_type || g_size != mod_k_size)
13222 {
13223 first_error (_("inconsistent types in Neon instruction"));
13224 return badtype;
13225 }
13226 }
13227 }
13228 }
13229 }
13230
13231 return inst.vectype.el[key_el];
13232 }
13233
13234 /* Neon-style VFP instruction forwarding. */
13235
13236 /* Thumb VFP instructions have 0xE in the condition field. */
13237
13238 static void
13239 do_vfp_cond_or_thumb (void)
13240 {
13241 inst.is_neon = 1;
13242
13243 if (thumb_mode)
13244 inst.instruction |= 0xe0000000;
13245 else
13246 inst.instruction |= inst.cond << 28;
13247 }
13248
13249 /* Look up and encode a simple mnemonic, for use as a helper function for the
13250 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13251 etc. It is assumed that operand parsing has already been done, and that the
13252 operands are in the form expected by the given opcode (this isn't necessarily
13253 the same as the form in which they were parsed, hence some massaging must
13254 take place before this function is called).
13255 Checks current arch version against that in the looked-up opcode. */
13256
13257 static void
13258 do_vfp_nsyn_opcode (const char *opname)
13259 {
13260 const struct asm_opcode *opcode;
13261
13262 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13263
13264 if (!opcode)
13265 abort ();
13266
13267 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13268 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13269 _(BAD_FPU));
13270
13271 inst.is_neon = 1;
13272
13273 if (thumb_mode)
13274 {
13275 inst.instruction = opcode->tvalue;
13276 opcode->tencode ();
13277 }
13278 else
13279 {
13280 inst.instruction = (inst.cond << 28) | opcode->avalue;
13281 opcode->aencode ();
13282 }
13283 }
13284
13285 static void
13286 do_vfp_nsyn_add_sub (enum neon_shape rs)
13287 {
13288 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13289
13290 if (rs == NS_FFF)
13291 {
13292 if (is_add)
13293 do_vfp_nsyn_opcode ("fadds");
13294 else
13295 do_vfp_nsyn_opcode ("fsubs");
13296 }
13297 else
13298 {
13299 if (is_add)
13300 do_vfp_nsyn_opcode ("faddd");
13301 else
13302 do_vfp_nsyn_opcode ("fsubd");
13303 }
13304 }
13305
13306 /* Check operand types to see if this is a VFP instruction, and if so call
13307 PFN (). */
13308
13309 static int
13310 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13311 {
13312 enum neon_shape rs;
13313 struct neon_type_el et;
13314
13315 switch (args)
13316 {
13317 case 2:
13318 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13319 et = neon_check_type (2, rs,
13320 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13321 break;
13322
13323 case 3:
13324 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13325 et = neon_check_type (3, rs,
13326 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13327 break;
13328
13329 default:
13330 abort ();
13331 }
13332
13333 if (et.type != NT_invtype)
13334 {
13335 pfn (rs);
13336 return SUCCESS;
13337 }
13338
13339 inst.error = NULL;
13340 return FAIL;
13341 }
13342
13343 static void
13344 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13345 {
13346 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13347
13348 if (rs == NS_FFF)
13349 {
13350 if (is_mla)
13351 do_vfp_nsyn_opcode ("fmacs");
13352 else
13353 do_vfp_nsyn_opcode ("fnmacs");
13354 }
13355 else
13356 {
13357 if (is_mla)
13358 do_vfp_nsyn_opcode ("fmacd");
13359 else
13360 do_vfp_nsyn_opcode ("fnmacd");
13361 }
13362 }
13363
13364 static void
13365 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13366 {
13367 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13368
13369 if (rs == NS_FFF)
13370 {
13371 if (is_fma)
13372 do_vfp_nsyn_opcode ("ffmas");
13373 else
13374 do_vfp_nsyn_opcode ("ffnmas");
13375 }
13376 else
13377 {
13378 if (is_fma)
13379 do_vfp_nsyn_opcode ("ffmad");
13380 else
13381 do_vfp_nsyn_opcode ("ffnmad");
13382 }
13383 }
13384
13385 static void
13386 do_vfp_nsyn_mul (enum neon_shape rs)
13387 {
13388 if (rs == NS_FFF)
13389 do_vfp_nsyn_opcode ("fmuls");
13390 else
13391 do_vfp_nsyn_opcode ("fmuld");
13392 }
13393
13394 static void
13395 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13396 {
13397 int is_neg = (inst.instruction & 0x80) != 0;
13398 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13399
13400 if (rs == NS_FF)
13401 {
13402 if (is_neg)
13403 do_vfp_nsyn_opcode ("fnegs");
13404 else
13405 do_vfp_nsyn_opcode ("fabss");
13406 }
13407 else
13408 {
13409 if (is_neg)
13410 do_vfp_nsyn_opcode ("fnegd");
13411 else
13412 do_vfp_nsyn_opcode ("fabsd");
13413 }
13414 }
13415
13416 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13417 insns belong to Neon, and are handled elsewhere. */
13418
13419 static void
13420 do_vfp_nsyn_ldm_stm (int is_dbmode)
13421 {
13422 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13423 if (is_ldm)
13424 {
13425 if (is_dbmode)
13426 do_vfp_nsyn_opcode ("fldmdbs");
13427 else
13428 do_vfp_nsyn_opcode ("fldmias");
13429 }
13430 else
13431 {
13432 if (is_dbmode)
13433 do_vfp_nsyn_opcode ("fstmdbs");
13434 else
13435 do_vfp_nsyn_opcode ("fstmias");
13436 }
13437 }
13438
13439 static void
13440 do_vfp_nsyn_sqrt (void)
13441 {
13442 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13443 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13444
13445 if (rs == NS_FF)
13446 do_vfp_nsyn_opcode ("fsqrts");
13447 else
13448 do_vfp_nsyn_opcode ("fsqrtd");
13449 }
13450
13451 static void
13452 do_vfp_nsyn_div (void)
13453 {
13454 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13455 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13456 N_F32 | N_F64 | N_KEY | N_VFP);
13457
13458 if (rs == NS_FFF)
13459 do_vfp_nsyn_opcode ("fdivs");
13460 else
13461 do_vfp_nsyn_opcode ("fdivd");
13462 }
13463
13464 static void
13465 do_vfp_nsyn_nmul (void)
13466 {
13467 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13468 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13469 N_F32 | N_F64 | N_KEY | N_VFP);
13470
13471 if (rs == NS_FFF)
13472 {
13473 NEON_ENCODE (SINGLE, inst);
13474 do_vfp_sp_dyadic ();
13475 }
13476 else
13477 {
13478 NEON_ENCODE (DOUBLE, inst);
13479 do_vfp_dp_rd_rn_rm ();
13480 }
13481 do_vfp_cond_or_thumb ();
13482 }
13483
13484 static void
13485 do_vfp_nsyn_cmp (void)
13486 {
13487 if (inst.operands[1].isreg)
13488 {
13489 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13490 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13491
13492 if (rs == NS_FF)
13493 {
13494 NEON_ENCODE (SINGLE, inst);
13495 do_vfp_sp_monadic ();
13496 }
13497 else
13498 {
13499 NEON_ENCODE (DOUBLE, inst);
13500 do_vfp_dp_rd_rm ();
13501 }
13502 }
13503 else
13504 {
13505 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13506 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13507
13508 switch (inst.instruction & 0x0fffffff)
13509 {
13510 case N_MNEM_vcmp:
13511 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13512 break;
13513 case N_MNEM_vcmpe:
13514 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13515 break;
13516 default:
13517 abort ();
13518 }
13519
13520 if (rs == NS_FI)
13521 {
13522 NEON_ENCODE (SINGLE, inst);
13523 do_vfp_sp_compare_z ();
13524 }
13525 else
13526 {
13527 NEON_ENCODE (DOUBLE, inst);
13528 do_vfp_dp_rd ();
13529 }
13530 }
13531 do_vfp_cond_or_thumb ();
13532 }
13533
13534 static void
13535 nsyn_insert_sp (void)
13536 {
13537 inst.operands[1] = inst.operands[0];
13538 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13539 inst.operands[0].reg = REG_SP;
13540 inst.operands[0].isreg = 1;
13541 inst.operands[0].writeback = 1;
13542 inst.operands[0].present = 1;
13543 }
13544
13545 static void
13546 do_vfp_nsyn_push (void)
13547 {
13548 nsyn_insert_sp ();
13549 if (inst.operands[1].issingle)
13550 do_vfp_nsyn_opcode ("fstmdbs");
13551 else
13552 do_vfp_nsyn_opcode ("fstmdbd");
13553 }
13554
13555 static void
13556 do_vfp_nsyn_pop (void)
13557 {
13558 nsyn_insert_sp ();
13559 if (inst.operands[1].issingle)
13560 do_vfp_nsyn_opcode ("fldmias");
13561 else
13562 do_vfp_nsyn_opcode ("fldmiad");
13563 }
13564
13565 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13566 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13567
13568 static void
13569 neon_dp_fixup (struct arm_it* insn)
13570 {
13571 unsigned int i = insn->instruction;
13572 insn->is_neon = 1;
13573
13574 if (thumb_mode)
13575 {
13576 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13577 if (i & (1 << 24))
13578 i |= 1 << 28;
13579
13580 i &= ~(1 << 24);
13581
13582 i |= 0xef000000;
13583 }
13584 else
13585 i |= 0xf2000000;
13586
13587 insn->instruction = i;
13588 }
13589
13590 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13591 (0, 1, 2, 3). */
13592
13593 static unsigned
13594 neon_logbits (unsigned x)
13595 {
13596 return ffs (x) - 4;
13597 }
13598
13599 #define LOW4(R) ((R) & 0xf)
13600 #define HI1(R) (((R) >> 4) & 1)
13601
13602 /* Encode insns with bit pattern:
13603
13604 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13605 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13606
13607 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13608 different meaning for some instruction. */
13609
13610 static void
13611 neon_three_same (int isquad, int ubit, int size)
13612 {
13613 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13614 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13615 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13616 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13617 inst.instruction |= LOW4 (inst.operands[2].reg);
13618 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13619 inst.instruction |= (isquad != 0) << 6;
13620 inst.instruction |= (ubit != 0) << 24;
13621 if (size != -1)
13622 inst.instruction |= neon_logbits (size) << 20;
13623
13624 neon_dp_fixup (&inst);
13625 }
13626
13627 /* Encode instructions of the form:
13628
13629 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13630 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13631
13632 Don't write size if SIZE == -1. */
13633
13634 static void
13635 neon_two_same (int qbit, int ubit, int size)
13636 {
13637 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13638 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13639 inst.instruction |= LOW4 (inst.operands[1].reg);
13640 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13641 inst.instruction |= (qbit != 0) << 6;
13642 inst.instruction |= (ubit != 0) << 24;
13643
13644 if (size != -1)
13645 inst.instruction |= neon_logbits (size) << 18;
13646
13647 neon_dp_fixup (&inst);
13648 }
13649
13650 /* Neon instruction encoders, in approximate order of appearance. */
13651
13652 static void
13653 do_neon_dyadic_i_su (void)
13654 {
13655 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13656 struct neon_type_el et = neon_check_type (3, rs,
13657 N_EQK, N_EQK, N_SU_32 | N_KEY);
13658 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13659 }
13660
13661 static void
13662 do_neon_dyadic_i64_su (void)
13663 {
13664 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13665 struct neon_type_el et = neon_check_type (3, rs,
13666 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13667 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13668 }
13669
13670 static void
13671 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13672 unsigned immbits)
13673 {
13674 unsigned size = et.size >> 3;
13675 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13676 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13677 inst.instruction |= LOW4 (inst.operands[1].reg);
13678 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13679 inst.instruction |= (isquad != 0) << 6;
13680 inst.instruction |= immbits << 16;
13681 inst.instruction |= (size >> 3) << 7;
13682 inst.instruction |= (size & 0x7) << 19;
13683 if (write_ubit)
13684 inst.instruction |= (uval != 0) << 24;
13685
13686 neon_dp_fixup (&inst);
13687 }
13688
13689 static void
13690 do_neon_shl_imm (void)
13691 {
13692 if (!inst.operands[2].isreg)
13693 {
13694 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13695 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13696 NEON_ENCODE (IMMED, inst);
13697 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13698 }
13699 else
13700 {
13701 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13702 struct neon_type_el et = neon_check_type (3, rs,
13703 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13704 unsigned int tmp;
13705
13706 /* VSHL/VQSHL 3-register variants have syntax such as:
13707 vshl.xx Dd, Dm, Dn
13708 whereas other 3-register operations encoded by neon_three_same have
13709 syntax like:
13710 vadd.xx Dd, Dn, Dm
13711 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13712 here. */
13713 tmp = inst.operands[2].reg;
13714 inst.operands[2].reg = inst.operands[1].reg;
13715 inst.operands[1].reg = tmp;
13716 NEON_ENCODE (INTEGER, inst);
13717 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13718 }
13719 }
13720
13721 static void
13722 do_neon_qshl_imm (void)
13723 {
13724 if (!inst.operands[2].isreg)
13725 {
13726 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13727 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13728
13729 NEON_ENCODE (IMMED, inst);
13730 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13731 inst.operands[2].imm);
13732 }
13733 else
13734 {
13735 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13736 struct neon_type_el et = neon_check_type (3, rs,
13737 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13738 unsigned int tmp;
13739
13740 /* See note in do_neon_shl_imm. */
13741 tmp = inst.operands[2].reg;
13742 inst.operands[2].reg = inst.operands[1].reg;
13743 inst.operands[1].reg = tmp;
13744 NEON_ENCODE (INTEGER, inst);
13745 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13746 }
13747 }
13748
13749 static void
13750 do_neon_rshl (void)
13751 {
13752 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13753 struct neon_type_el et = neon_check_type (3, rs,
13754 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13755 unsigned int tmp;
13756
13757 tmp = inst.operands[2].reg;
13758 inst.operands[2].reg = inst.operands[1].reg;
13759 inst.operands[1].reg = tmp;
13760 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13761 }
13762
13763 static int
13764 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13765 {
13766 /* Handle .I8 pseudo-instructions. */
13767 if (size == 8)
13768 {
13769 /* Unfortunately, this will make everything apart from zero out-of-range.
13770 FIXME is this the intended semantics? There doesn't seem much point in
13771 accepting .I8 if so. */
13772 immediate |= immediate << 8;
13773 size = 16;
13774 }
13775
13776 if (size >= 32)
13777 {
13778 if (immediate == (immediate & 0x000000ff))
13779 {
13780 *immbits = immediate;
13781 return 0x1;
13782 }
13783 else if (immediate == (immediate & 0x0000ff00))
13784 {
13785 *immbits = immediate >> 8;
13786 return 0x3;
13787 }
13788 else if (immediate == (immediate & 0x00ff0000))
13789 {
13790 *immbits = immediate >> 16;
13791 return 0x5;
13792 }
13793 else if (immediate == (immediate & 0xff000000))
13794 {
13795 *immbits = immediate >> 24;
13796 return 0x7;
13797 }
13798 if ((immediate & 0xffff) != (immediate >> 16))
13799 goto bad_immediate;
13800 immediate &= 0xffff;
13801 }
13802
13803 if (immediate == (immediate & 0x000000ff))
13804 {
13805 *immbits = immediate;
13806 return 0x9;
13807 }
13808 else if (immediate == (immediate & 0x0000ff00))
13809 {
13810 *immbits = immediate >> 8;
13811 return 0xb;
13812 }
13813
13814 bad_immediate:
13815 first_error (_("immediate value out of range"));
13816 return FAIL;
13817 }
13818
13819 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13820 A, B, C, D. */
13821
13822 static int
13823 neon_bits_same_in_bytes (unsigned imm)
13824 {
13825 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13826 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13827 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13828 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13829 }
13830
13831 /* For immediate of above form, return 0bABCD. */
13832
13833 static unsigned
13834 neon_squash_bits (unsigned imm)
13835 {
13836 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13837 | ((imm & 0x01000000) >> 21);
13838 }
13839
13840 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13841
13842 static unsigned
13843 neon_qfloat_bits (unsigned imm)
13844 {
13845 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13846 }
13847
13848 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13849 the instruction. *OP is passed as the initial value of the op field, and
13850 may be set to a different value depending on the constant (i.e.
13851 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13852 MVN). If the immediate looks like a repeated pattern then also
13853 try smaller element sizes. */
13854
13855 static int
13856 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13857 unsigned *immbits, int *op, int size,
13858 enum neon_el_type type)
13859 {
13860 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13861 float. */
13862 if (type == NT_float && !float_p)
13863 return FAIL;
13864
13865 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13866 {
13867 if (size != 32 || *op == 1)
13868 return FAIL;
13869 *immbits = neon_qfloat_bits (immlo);
13870 return 0xf;
13871 }
13872
13873 if (size == 64)
13874 {
13875 if (neon_bits_same_in_bytes (immhi)
13876 && neon_bits_same_in_bytes (immlo))
13877 {
13878 if (*op == 1)
13879 return FAIL;
13880 *immbits = (neon_squash_bits (immhi) << 4)
13881 | neon_squash_bits (immlo);
13882 *op = 1;
13883 return 0xe;
13884 }
13885
13886 if (immhi != immlo)
13887 return FAIL;
13888 }
13889
13890 if (size >= 32)
13891 {
13892 if (immlo == (immlo & 0x000000ff))
13893 {
13894 *immbits = immlo;
13895 return 0x0;
13896 }
13897 else if (immlo == (immlo & 0x0000ff00))
13898 {
13899 *immbits = immlo >> 8;
13900 return 0x2;
13901 }
13902 else if (immlo == (immlo & 0x00ff0000))
13903 {
13904 *immbits = immlo >> 16;
13905 return 0x4;
13906 }
13907 else if (immlo == (immlo & 0xff000000))
13908 {
13909 *immbits = immlo >> 24;
13910 return 0x6;
13911 }
13912 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13913 {
13914 *immbits = (immlo >> 8) & 0xff;
13915 return 0xc;
13916 }
13917 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13918 {
13919 *immbits = (immlo >> 16) & 0xff;
13920 return 0xd;
13921 }
13922
13923 if ((immlo & 0xffff) != (immlo >> 16))
13924 return FAIL;
13925 immlo &= 0xffff;
13926 }
13927
13928 if (size >= 16)
13929 {
13930 if (immlo == (immlo & 0x000000ff))
13931 {
13932 *immbits = immlo;
13933 return 0x8;
13934 }
13935 else if (immlo == (immlo & 0x0000ff00))
13936 {
13937 *immbits = immlo >> 8;
13938 return 0xa;
13939 }
13940
13941 if ((immlo & 0xff) != (immlo >> 8))
13942 return FAIL;
13943 immlo &= 0xff;
13944 }
13945
13946 if (immlo == (immlo & 0x000000ff))
13947 {
13948 /* Don't allow MVN with 8-bit immediate. */
13949 if (*op == 1)
13950 return FAIL;
13951 *immbits = immlo;
13952 return 0xe;
13953 }
13954
13955 return FAIL;
13956 }
13957
13958 /* Write immediate bits [7:0] to the following locations:
13959
13960 |28/24|23 19|18 16|15 4|3 0|
13961 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13962
13963 This function is used by VMOV/VMVN/VORR/VBIC. */
13964
13965 static void
13966 neon_write_immbits (unsigned immbits)
13967 {
13968 inst.instruction |= immbits & 0xf;
13969 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13970 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13971 }
13972
13973 /* Invert low-order SIZE bits of XHI:XLO. */
13974
13975 static void
13976 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13977 {
13978 unsigned immlo = xlo ? *xlo : 0;
13979 unsigned immhi = xhi ? *xhi : 0;
13980
13981 switch (size)
13982 {
13983 case 8:
13984 immlo = (~immlo) & 0xff;
13985 break;
13986
13987 case 16:
13988 immlo = (~immlo) & 0xffff;
13989 break;
13990
13991 case 64:
13992 immhi = (~immhi) & 0xffffffff;
13993 /* fall through. */
13994
13995 case 32:
13996 immlo = (~immlo) & 0xffffffff;
13997 break;
13998
13999 default:
14000 abort ();
14001 }
14002
14003 if (xlo)
14004 *xlo = immlo;
14005
14006 if (xhi)
14007 *xhi = immhi;
14008 }
14009
14010 static void
14011 do_neon_logic (void)
14012 {
14013 if (inst.operands[2].present && inst.operands[2].isreg)
14014 {
14015 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14016 neon_check_type (3, rs, N_IGNORE_TYPE);
14017 /* U bit and size field were set as part of the bitmask. */
14018 NEON_ENCODE (INTEGER, inst);
14019 neon_three_same (neon_quad (rs), 0, -1);
14020 }
14021 else
14022 {
14023 const int three_ops_form = (inst.operands[2].present
14024 && !inst.operands[2].isreg);
14025 const int immoperand = (three_ops_form ? 2 : 1);
14026 enum neon_shape rs = (three_ops_form
14027 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14028 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
14029 struct neon_type_el et = neon_check_type (2, rs,
14030 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14031 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
14032 unsigned immbits;
14033 int cmode;
14034
14035 if (et.type == NT_invtype)
14036 return;
14037
14038 if (three_ops_form)
14039 constraint (inst.operands[0].reg != inst.operands[1].reg,
14040 _("first and second operands shall be the same register"));
14041
14042 NEON_ENCODE (IMMED, inst);
14043
14044 immbits = inst.operands[immoperand].imm;
14045 if (et.size == 64)
14046 {
14047 /* .i64 is a pseudo-op, so the immediate must be a repeating
14048 pattern. */
14049 if (immbits != (inst.operands[immoperand].regisimm ?
14050 inst.operands[immoperand].reg : 0))
14051 {
14052 /* Set immbits to an invalid constant. */
14053 immbits = 0xdeadbeef;
14054 }
14055 }
14056
14057 switch (opcode)
14058 {
14059 case N_MNEM_vbic:
14060 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14061 break;
14062
14063 case N_MNEM_vorr:
14064 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14065 break;
14066
14067 case N_MNEM_vand:
14068 /* Pseudo-instruction for VBIC. */
14069 neon_invert_size (&immbits, 0, et.size);
14070 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14071 break;
14072
14073 case N_MNEM_vorn:
14074 /* Pseudo-instruction for VORR. */
14075 neon_invert_size (&immbits, 0, et.size);
14076 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14077 break;
14078
14079 default:
14080 abort ();
14081 }
14082
14083 if (cmode == FAIL)
14084 return;
14085
14086 inst.instruction |= neon_quad (rs) << 6;
14087 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14088 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14089 inst.instruction |= cmode << 8;
14090 neon_write_immbits (immbits);
14091
14092 neon_dp_fixup (&inst);
14093 }
14094 }
14095
14096 static void
14097 do_neon_bitfield (void)
14098 {
14099 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14100 neon_check_type (3, rs, N_IGNORE_TYPE);
14101 neon_three_same (neon_quad (rs), 0, -1);
14102 }
14103
14104 static void
14105 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
14106 unsigned destbits)
14107 {
14108 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14109 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
14110 types | N_KEY);
14111 if (et.type == NT_float)
14112 {
14113 NEON_ENCODE (FLOAT, inst);
14114 neon_three_same (neon_quad (rs), 0, -1);
14115 }
14116 else
14117 {
14118 NEON_ENCODE (INTEGER, inst);
14119 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
14120 }
14121 }
14122
14123 static void
14124 do_neon_dyadic_if_su (void)
14125 {
14126 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14127 }
14128
14129 static void
14130 do_neon_dyadic_if_su_d (void)
14131 {
14132 /* This version only allow D registers, but that constraint is enforced during
14133 operand parsing so we don't need to do anything extra here. */
14134 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14135 }
14136
14137 static void
14138 do_neon_dyadic_if_i_d (void)
14139 {
14140 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14141 affected if we specify unsigned args. */
14142 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14143 }
14144
14145 enum vfp_or_neon_is_neon_bits
14146 {
14147 NEON_CHECK_CC = 1,
14148 NEON_CHECK_ARCH = 2,
14149 NEON_CHECK_ARCH8 = 4
14150 };
14151
14152 /* Call this function if an instruction which may have belonged to the VFP or
14153 Neon instruction sets, but turned out to be a Neon instruction (due to the
14154 operand types involved, etc.). We have to check and/or fix-up a couple of
14155 things:
14156
14157 - Make sure the user hasn't attempted to make a Neon instruction
14158 conditional.
14159 - Alter the value in the condition code field if necessary.
14160 - Make sure that the arch supports Neon instructions.
14161
14162 Which of these operations take place depends on bits from enum
14163 vfp_or_neon_is_neon_bits.
14164
14165 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14166 current instruction's condition is COND_ALWAYS, the condition field is
14167 changed to inst.uncond_value. This is necessary because instructions shared
14168 between VFP and Neon may be conditional for the VFP variants only, and the
14169 unconditional Neon version must have, e.g., 0xF in the condition field. */
14170
14171 static int
14172 vfp_or_neon_is_neon (unsigned check)
14173 {
14174 /* Conditions are always legal in Thumb mode (IT blocks). */
14175 if (!thumb_mode && (check & NEON_CHECK_CC))
14176 {
14177 if (inst.cond != COND_ALWAYS)
14178 {
14179 first_error (_(BAD_COND));
14180 return FAIL;
14181 }
14182 if (inst.uncond_value != -1)
14183 inst.instruction |= inst.uncond_value << 28;
14184 }
14185
14186 if ((check & NEON_CHECK_ARCH)
14187 && !mark_feature_used (&fpu_neon_ext_v1))
14188 {
14189 first_error (_(BAD_FPU));
14190 return FAIL;
14191 }
14192
14193 if ((check & NEON_CHECK_ARCH8)
14194 && !mark_feature_used (&fpu_neon_ext_armv8))
14195 {
14196 first_error (_(BAD_FPU));
14197 return FAIL;
14198 }
14199
14200 return SUCCESS;
14201 }
14202
14203 static void
14204 do_neon_addsub_if_i (void)
14205 {
14206 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14207 return;
14208
14209 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14210 return;
14211
14212 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14213 affected if we specify unsigned args. */
14214 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14215 }
14216
14217 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14218 result to be:
14219 V<op> A,B (A is operand 0, B is operand 2)
14220 to mean:
14221 V<op> A,B,A
14222 not:
14223 V<op> A,B,B
14224 so handle that case specially. */
14225
14226 static void
14227 neon_exchange_operands (void)
14228 {
14229 void *scratch = alloca (sizeof (inst.operands[0]));
14230 if (inst.operands[1].present)
14231 {
14232 /* Swap operands[1] and operands[2]. */
14233 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14234 inst.operands[1] = inst.operands[2];
14235 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14236 }
14237 else
14238 {
14239 inst.operands[1] = inst.operands[2];
14240 inst.operands[2] = inst.operands[0];
14241 }
14242 }
14243
14244 static void
14245 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14246 {
14247 if (inst.operands[2].isreg)
14248 {
14249 if (invert)
14250 neon_exchange_operands ();
14251 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14252 }
14253 else
14254 {
14255 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14256 struct neon_type_el et = neon_check_type (2, rs,
14257 N_EQK | N_SIZ, immtypes | N_KEY);
14258
14259 NEON_ENCODE (IMMED, inst);
14260 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14261 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14262 inst.instruction |= LOW4 (inst.operands[1].reg);
14263 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14264 inst.instruction |= neon_quad (rs) << 6;
14265 inst.instruction |= (et.type == NT_float) << 10;
14266 inst.instruction |= neon_logbits (et.size) << 18;
14267
14268 neon_dp_fixup (&inst);
14269 }
14270 }
14271
14272 static void
14273 do_neon_cmp (void)
14274 {
14275 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14276 }
14277
14278 static void
14279 do_neon_cmp_inv (void)
14280 {
14281 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14282 }
14283
14284 static void
14285 do_neon_ceq (void)
14286 {
14287 neon_compare (N_IF_32, N_IF_32, FALSE);
14288 }
14289
14290 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14291 scalars, which are encoded in 5 bits, M : Rm.
14292 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14293 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14294 index in M. */
14295
14296 static unsigned
14297 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14298 {
14299 unsigned regno = NEON_SCALAR_REG (scalar);
14300 unsigned elno = NEON_SCALAR_INDEX (scalar);
14301
14302 switch (elsize)
14303 {
14304 case 16:
14305 if (regno > 7 || elno > 3)
14306 goto bad_scalar;
14307 return regno | (elno << 3);
14308
14309 case 32:
14310 if (regno > 15 || elno > 1)
14311 goto bad_scalar;
14312 return regno | (elno << 4);
14313
14314 default:
14315 bad_scalar:
14316 first_error (_("scalar out of range for multiply instruction"));
14317 }
14318
14319 return 0;
14320 }
14321
14322 /* Encode multiply / multiply-accumulate scalar instructions. */
14323
14324 static void
14325 neon_mul_mac (struct neon_type_el et, int ubit)
14326 {
14327 unsigned scalar;
14328
14329 /* Give a more helpful error message if we have an invalid type. */
14330 if (et.type == NT_invtype)
14331 return;
14332
14333 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14334 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14335 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14336 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14337 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14338 inst.instruction |= LOW4 (scalar);
14339 inst.instruction |= HI1 (scalar) << 5;
14340 inst.instruction |= (et.type == NT_float) << 8;
14341 inst.instruction |= neon_logbits (et.size) << 20;
14342 inst.instruction |= (ubit != 0) << 24;
14343
14344 neon_dp_fixup (&inst);
14345 }
14346
14347 static void
14348 do_neon_mac_maybe_scalar (void)
14349 {
14350 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14351 return;
14352
14353 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14354 return;
14355
14356 if (inst.operands[2].isscalar)
14357 {
14358 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14359 struct neon_type_el et = neon_check_type (3, rs,
14360 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14361 NEON_ENCODE (SCALAR, inst);
14362 neon_mul_mac (et, neon_quad (rs));
14363 }
14364 else
14365 {
14366 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14367 affected if we specify unsigned args. */
14368 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14369 }
14370 }
14371
14372 static void
14373 do_neon_fmac (void)
14374 {
14375 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14376 return;
14377
14378 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14379 return;
14380
14381 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14382 }
14383
14384 static void
14385 do_neon_tst (void)
14386 {
14387 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14388 struct neon_type_el et = neon_check_type (3, rs,
14389 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14390 neon_three_same (neon_quad (rs), 0, et.size);
14391 }
14392
14393 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14394 same types as the MAC equivalents. The polynomial type for this instruction
14395 is encoded the same as the integer type. */
14396
14397 static void
14398 do_neon_mul (void)
14399 {
14400 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14401 return;
14402
14403 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14404 return;
14405
14406 if (inst.operands[2].isscalar)
14407 do_neon_mac_maybe_scalar ();
14408 else
14409 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14410 }
14411
14412 static void
14413 do_neon_qdmulh (void)
14414 {
14415 if (inst.operands[2].isscalar)
14416 {
14417 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14418 struct neon_type_el et = neon_check_type (3, rs,
14419 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14420 NEON_ENCODE (SCALAR, inst);
14421 neon_mul_mac (et, neon_quad (rs));
14422 }
14423 else
14424 {
14425 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14426 struct neon_type_el et = neon_check_type (3, rs,
14427 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14428 NEON_ENCODE (INTEGER, inst);
14429 /* The U bit (rounding) comes from bit mask. */
14430 neon_three_same (neon_quad (rs), 0, et.size);
14431 }
14432 }
14433
14434 static void
14435 do_neon_fcmp_absolute (void)
14436 {
14437 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14438 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14439 /* Size field comes from bit mask. */
14440 neon_three_same (neon_quad (rs), 1, -1);
14441 }
14442
14443 static void
14444 do_neon_fcmp_absolute_inv (void)
14445 {
14446 neon_exchange_operands ();
14447 do_neon_fcmp_absolute ();
14448 }
14449
14450 static void
14451 do_neon_step (void)
14452 {
14453 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14454 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14455 neon_three_same (neon_quad (rs), 0, -1);
14456 }
14457
14458 static void
14459 do_neon_abs_neg (void)
14460 {
14461 enum neon_shape rs;
14462 struct neon_type_el et;
14463
14464 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14465 return;
14466
14467 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14468 return;
14469
14470 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14471 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14472
14473 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14474 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14475 inst.instruction |= LOW4 (inst.operands[1].reg);
14476 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14477 inst.instruction |= neon_quad (rs) << 6;
14478 inst.instruction |= (et.type == NT_float) << 10;
14479 inst.instruction |= neon_logbits (et.size) << 18;
14480
14481 neon_dp_fixup (&inst);
14482 }
14483
14484 static void
14485 do_neon_sli (void)
14486 {
14487 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14488 struct neon_type_el et = neon_check_type (2, rs,
14489 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14490 int imm = inst.operands[2].imm;
14491 constraint (imm < 0 || (unsigned)imm >= et.size,
14492 _("immediate out of range for insert"));
14493 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14494 }
14495
14496 static void
14497 do_neon_sri (void)
14498 {
14499 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14500 struct neon_type_el et = neon_check_type (2, rs,
14501 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14502 int imm = inst.operands[2].imm;
14503 constraint (imm < 1 || (unsigned)imm > et.size,
14504 _("immediate out of range for insert"));
14505 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14506 }
14507
14508 static void
14509 do_neon_qshlu_imm (void)
14510 {
14511 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14512 struct neon_type_el et = neon_check_type (2, rs,
14513 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14514 int imm = inst.operands[2].imm;
14515 constraint (imm < 0 || (unsigned)imm >= et.size,
14516 _("immediate out of range for shift"));
14517 /* Only encodes the 'U present' variant of the instruction.
14518 In this case, signed types have OP (bit 8) set to 0.
14519 Unsigned types have OP set to 1. */
14520 inst.instruction |= (et.type == NT_unsigned) << 8;
14521 /* The rest of the bits are the same as other immediate shifts. */
14522 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14523 }
14524
14525 static void
14526 do_neon_qmovn (void)
14527 {
14528 struct neon_type_el et = neon_check_type (2, NS_DQ,
14529 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14530 /* Saturating move where operands can be signed or unsigned, and the
14531 destination has the same signedness. */
14532 NEON_ENCODE (INTEGER, inst);
14533 if (et.type == NT_unsigned)
14534 inst.instruction |= 0xc0;
14535 else
14536 inst.instruction |= 0x80;
14537 neon_two_same (0, 1, et.size / 2);
14538 }
14539
14540 static void
14541 do_neon_qmovun (void)
14542 {
14543 struct neon_type_el et = neon_check_type (2, NS_DQ,
14544 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14545 /* Saturating move with unsigned results. Operands must be signed. */
14546 NEON_ENCODE (INTEGER, inst);
14547 neon_two_same (0, 1, et.size / 2);
14548 }
14549
14550 static void
14551 do_neon_rshift_sat_narrow (void)
14552 {
14553 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14554 or unsigned. If operands are unsigned, results must also be unsigned. */
14555 struct neon_type_el et = neon_check_type (2, NS_DQI,
14556 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14557 int imm = inst.operands[2].imm;
14558 /* This gets the bounds check, size encoding and immediate bits calculation
14559 right. */
14560 et.size /= 2;
14561
14562 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14563 VQMOVN.I<size> <Dd>, <Qm>. */
14564 if (imm == 0)
14565 {
14566 inst.operands[2].present = 0;
14567 inst.instruction = N_MNEM_vqmovn;
14568 do_neon_qmovn ();
14569 return;
14570 }
14571
14572 constraint (imm < 1 || (unsigned)imm > et.size,
14573 _("immediate out of range"));
14574 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14575 }
14576
14577 static void
14578 do_neon_rshift_sat_narrow_u (void)
14579 {
14580 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14581 or unsigned. If operands are unsigned, results must also be unsigned. */
14582 struct neon_type_el et = neon_check_type (2, NS_DQI,
14583 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14584 int imm = inst.operands[2].imm;
14585 /* This gets the bounds check, size encoding and immediate bits calculation
14586 right. */
14587 et.size /= 2;
14588
14589 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14590 VQMOVUN.I<size> <Dd>, <Qm>. */
14591 if (imm == 0)
14592 {
14593 inst.operands[2].present = 0;
14594 inst.instruction = N_MNEM_vqmovun;
14595 do_neon_qmovun ();
14596 return;
14597 }
14598
14599 constraint (imm < 1 || (unsigned)imm > et.size,
14600 _("immediate out of range"));
14601 /* FIXME: The manual is kind of unclear about what value U should have in
14602 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14603 must be 1. */
14604 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14605 }
14606
14607 static void
14608 do_neon_movn (void)
14609 {
14610 struct neon_type_el et = neon_check_type (2, NS_DQ,
14611 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14612 NEON_ENCODE (INTEGER, inst);
14613 neon_two_same (0, 1, et.size / 2);
14614 }
14615
14616 static void
14617 do_neon_rshift_narrow (void)
14618 {
14619 struct neon_type_el et = neon_check_type (2, NS_DQI,
14620 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14621 int imm = inst.operands[2].imm;
14622 /* This gets the bounds check, size encoding and immediate bits calculation
14623 right. */
14624 et.size /= 2;
14625
14626 /* If immediate is zero then we are a pseudo-instruction for
14627 VMOVN.I<size> <Dd>, <Qm> */
14628 if (imm == 0)
14629 {
14630 inst.operands[2].present = 0;
14631 inst.instruction = N_MNEM_vmovn;
14632 do_neon_movn ();
14633 return;
14634 }
14635
14636 constraint (imm < 1 || (unsigned)imm > et.size,
14637 _("immediate out of range for narrowing operation"));
14638 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14639 }
14640
14641 static void
14642 do_neon_shll (void)
14643 {
14644 /* FIXME: Type checking when lengthening. */
14645 struct neon_type_el et = neon_check_type (2, NS_QDI,
14646 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14647 unsigned imm = inst.operands[2].imm;
14648
14649 if (imm == et.size)
14650 {
14651 /* Maximum shift variant. */
14652 NEON_ENCODE (INTEGER, inst);
14653 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14654 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14655 inst.instruction |= LOW4 (inst.operands[1].reg);
14656 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14657 inst.instruction |= neon_logbits (et.size) << 18;
14658
14659 neon_dp_fixup (&inst);
14660 }
14661 else
14662 {
14663 /* A more-specific type check for non-max versions. */
14664 et = neon_check_type (2, NS_QDI,
14665 N_EQK | N_DBL, N_SU_32 | N_KEY);
14666 NEON_ENCODE (IMMED, inst);
14667 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14668 }
14669 }
14670
14671 /* Check the various types for the VCVT instruction, and return which version
14672 the current instruction is. */
14673
14674 #define CVT_FLAVOUR_VAR \
14675 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
14676 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
14677 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
14678 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
14679 /* Half-precision conversions. */ \
14680 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
14681 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
14682 /* VFP instructions. */ \
14683 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
14684 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
14685 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
14686 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
14687 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
14688 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
14689 /* VFP instructions with bitshift. */ \
14690 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
14691 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
14692 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
14693 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
14694 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
14695 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
14696 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
14697 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
14698
14699 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
14700 neon_cvt_flavour_##C,
14701
14702 /* The different types of conversions we can do. */
14703 enum neon_cvt_flavour
14704 {
14705 CVT_FLAVOUR_VAR
14706 neon_cvt_flavour_invalid,
14707 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
14708 };
14709
14710 #undef CVT_VAR
14711
14712 static enum neon_cvt_flavour
14713 get_neon_cvt_flavour (enum neon_shape rs)
14714 {
14715 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
14716 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
14717 if (et.type != NT_invtype) \
14718 { \
14719 inst.error = NULL; \
14720 return (neon_cvt_flavour_##C); \
14721 }
14722
14723 struct neon_type_el et;
14724 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14725 || rs == NS_FF) ? N_VFP : 0;
14726 /* The instruction versions which take an immediate take one register
14727 argument, which is extended to the width of the full register. Thus the
14728 "source" and "destination" registers must have the same width. Hack that
14729 here by making the size equal to the key (wider, in this case) operand. */
14730 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14731
14732 CVT_FLAVOUR_VAR;
14733
14734 return neon_cvt_flavour_invalid;
14735 #undef CVT_VAR
14736 }
14737
14738 enum neon_cvt_mode
14739 {
14740 neon_cvt_mode_a,
14741 neon_cvt_mode_n,
14742 neon_cvt_mode_p,
14743 neon_cvt_mode_m,
14744 neon_cvt_mode_z,
14745 neon_cvt_mode_x,
14746 neon_cvt_mode_r
14747 };
14748
14749 /* Neon-syntax VFP conversions. */
14750
14751 static void
14752 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
14753 {
14754 const char *opname = 0;
14755
14756 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14757 {
14758 /* Conversions with immediate bitshift. */
14759 const char *enc[] =
14760 {
14761 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
14762 CVT_FLAVOUR_VAR
14763 NULL
14764 #undef CVT_VAR
14765 };
14766
14767 if (flavour < (int) ARRAY_SIZE (enc))
14768 {
14769 opname = enc[flavour];
14770 constraint (inst.operands[0].reg != inst.operands[1].reg,
14771 _("operands 0 and 1 must be the same register"));
14772 inst.operands[1] = inst.operands[2];
14773 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14774 }
14775 }
14776 else
14777 {
14778 /* Conversions without bitshift. */
14779 const char *enc[] =
14780 {
14781 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
14782 CVT_FLAVOUR_VAR
14783 NULL
14784 #undef CVT_VAR
14785 };
14786
14787 if (flavour < (int) ARRAY_SIZE (enc))
14788 opname = enc[flavour];
14789 }
14790
14791 if (opname)
14792 do_vfp_nsyn_opcode (opname);
14793 }
14794
14795 static void
14796 do_vfp_nsyn_cvtz (void)
14797 {
14798 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14799 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
14800 const char *enc[] =
14801 {
14802 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
14803 CVT_FLAVOUR_VAR
14804 NULL
14805 #undef CVT_VAR
14806 };
14807
14808 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14809 do_vfp_nsyn_opcode (enc[flavour]);
14810 }
14811
14812 static void
14813 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
14814 enum neon_cvt_mode mode)
14815 {
14816 int sz, op;
14817 int rm;
14818
14819 set_it_insn_type (OUTSIDE_IT_INSN);
14820
14821 switch (flavour)
14822 {
14823 case neon_cvt_flavour_s32_f64:
14824 sz = 1;
14825 op = 1;
14826 break;
14827 case neon_cvt_flavour_s32_f32:
14828 sz = 0;
14829 op = 1;
14830 break;
14831 case neon_cvt_flavour_u32_f64:
14832 sz = 1;
14833 op = 0;
14834 break;
14835 case neon_cvt_flavour_u32_f32:
14836 sz = 0;
14837 op = 0;
14838 break;
14839 default:
14840 first_error (_("invalid instruction shape"));
14841 return;
14842 }
14843
14844 switch (mode)
14845 {
14846 case neon_cvt_mode_a: rm = 0; break;
14847 case neon_cvt_mode_n: rm = 1; break;
14848 case neon_cvt_mode_p: rm = 2; break;
14849 case neon_cvt_mode_m: rm = 3; break;
14850 default: first_error (_("invalid rounding mode")); return;
14851 }
14852
14853 NEON_ENCODE (FPV8, inst);
14854 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14855 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
14856 inst.instruction |= sz << 8;
14857 inst.instruction |= op << 7;
14858 inst.instruction |= rm << 16;
14859 inst.instruction |= 0xf0000000;
14860 inst.is_neon = TRUE;
14861 }
14862
14863 static void
14864 do_neon_cvt_1 (enum neon_cvt_mode mode)
14865 {
14866 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14867 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14868 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
14869
14870 /* PR11109: Handle round-to-zero for VCVT conversions. */
14871 if (mode == neon_cvt_mode_z
14872 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14873 && (flavour == neon_cvt_flavour_s32_f32
14874 || flavour == neon_cvt_flavour_u32_f32
14875 || flavour == neon_cvt_flavour_s32_f64
14876 || flavour == neon_cvt_flavour_u32_f64)
14877 && (rs == NS_FD || rs == NS_FF))
14878 {
14879 do_vfp_nsyn_cvtz ();
14880 return;
14881 }
14882
14883 /* VFP rather than Neon conversions. */
14884 if (flavour >= neon_cvt_flavour_first_fp)
14885 {
14886 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14887 do_vfp_nsyn_cvt (rs, flavour);
14888 else
14889 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14890
14891 return;
14892 }
14893
14894 switch (rs)
14895 {
14896 case NS_DDI:
14897 case NS_QQI:
14898 {
14899 unsigned immbits;
14900 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14901
14902 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14903 return;
14904
14905 /* Fixed-point conversion with #0 immediate is encoded as an
14906 integer conversion. */
14907 if (inst.operands[2].present && inst.operands[2].imm == 0)
14908 goto int_encode;
14909 immbits = 32 - inst.operands[2].imm;
14910 NEON_ENCODE (IMMED, inst);
14911 if (flavour != neon_cvt_flavour_invalid)
14912 inst.instruction |= enctab[flavour];
14913 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14914 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14915 inst.instruction |= LOW4 (inst.operands[1].reg);
14916 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14917 inst.instruction |= neon_quad (rs) << 6;
14918 inst.instruction |= 1 << 21;
14919 inst.instruction |= immbits << 16;
14920
14921 neon_dp_fixup (&inst);
14922 }
14923 break;
14924
14925 case NS_DD:
14926 case NS_QQ:
14927 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
14928 {
14929 NEON_ENCODE (FLOAT, inst);
14930 set_it_insn_type (OUTSIDE_IT_INSN);
14931
14932 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
14933 return;
14934
14935 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14936 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14937 inst.instruction |= LOW4 (inst.operands[1].reg);
14938 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14939 inst.instruction |= neon_quad (rs) << 6;
14940 inst.instruction |= (flavour == neon_cvt_flavour_u32_f32) << 7;
14941 inst.instruction |= mode << 8;
14942 if (thumb_mode)
14943 inst.instruction |= 0xfc000000;
14944 else
14945 inst.instruction |= 0xf0000000;
14946 }
14947 else
14948 {
14949 int_encode:
14950 {
14951 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14952
14953 NEON_ENCODE (INTEGER, inst);
14954
14955 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14956 return;
14957
14958 if (flavour != neon_cvt_flavour_invalid)
14959 inst.instruction |= enctab[flavour];
14960
14961 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14962 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14963 inst.instruction |= LOW4 (inst.operands[1].reg);
14964 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14965 inst.instruction |= neon_quad (rs) << 6;
14966 inst.instruction |= 2 << 18;
14967
14968 neon_dp_fixup (&inst);
14969 }
14970 }
14971 break;
14972
14973 /* Half-precision conversions for Advanced SIMD -- neon. */
14974 case NS_QD:
14975 case NS_DQ:
14976
14977 if ((rs == NS_DQ)
14978 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14979 {
14980 as_bad (_("operand size must match register width"));
14981 break;
14982 }
14983
14984 if ((rs == NS_QD)
14985 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14986 {
14987 as_bad (_("operand size must match register width"));
14988 break;
14989 }
14990
14991 if (rs == NS_DQ)
14992 inst.instruction = 0x3b60600;
14993 else
14994 inst.instruction = 0x3b60700;
14995
14996 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14997 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14998 inst.instruction |= LOW4 (inst.operands[1].reg);
14999 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15000 neon_dp_fixup (&inst);
15001 break;
15002
15003 default:
15004 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
15005 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15006 do_vfp_nsyn_cvt (rs, flavour);
15007 else
15008 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15009 }
15010 }
15011
15012 static void
15013 do_neon_cvtr (void)
15014 {
15015 do_neon_cvt_1 (neon_cvt_mode_x);
15016 }
15017
15018 static void
15019 do_neon_cvt (void)
15020 {
15021 do_neon_cvt_1 (neon_cvt_mode_z);
15022 }
15023
15024 static void
15025 do_neon_cvta (void)
15026 {
15027 do_neon_cvt_1 (neon_cvt_mode_a);
15028 }
15029
15030 static void
15031 do_neon_cvtn (void)
15032 {
15033 do_neon_cvt_1 (neon_cvt_mode_n);
15034 }
15035
15036 static void
15037 do_neon_cvtp (void)
15038 {
15039 do_neon_cvt_1 (neon_cvt_mode_p);
15040 }
15041
15042 static void
15043 do_neon_cvtm (void)
15044 {
15045 do_neon_cvt_1 (neon_cvt_mode_m);
15046 }
15047
15048 static void
15049 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
15050 {
15051 if (is_double)
15052 mark_feature_used (&fpu_vfp_ext_armv8);
15053
15054 encode_arm_vfp_reg (inst.operands[0].reg,
15055 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15056 encode_arm_vfp_reg (inst.operands[1].reg,
15057 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15058 inst.instruction |= to ? 0x10000 : 0;
15059 inst.instruction |= t ? 0x80 : 0;
15060 inst.instruction |= is_double ? 0x100 : 0;
15061 do_vfp_cond_or_thumb ();
15062 }
15063
15064 static void
15065 do_neon_cvttb_1 (bfd_boolean t)
15066 {
15067 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_DF, NS_NULL);
15068
15069 if (rs == NS_NULL)
15070 return;
15071 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
15072 {
15073 inst.error = NULL;
15074 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
15075 }
15076 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
15077 {
15078 inst.error = NULL;
15079 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
15080 }
15081 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
15082 {
15083 inst.error = NULL;
15084 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
15085 }
15086 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
15087 {
15088 inst.error = NULL;
15089 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
15090 }
15091 else
15092 return;
15093 }
15094
15095 static void
15096 do_neon_cvtb (void)
15097 {
15098 do_neon_cvttb_1 (FALSE);
15099 }
15100
15101
15102 static void
15103 do_neon_cvtt (void)
15104 {
15105 do_neon_cvttb_1 (TRUE);
15106 }
15107
15108 static void
15109 neon_move_immediate (void)
15110 {
15111 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
15112 struct neon_type_el et = neon_check_type (2, rs,
15113 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
15114 unsigned immlo, immhi = 0, immbits;
15115 int op, cmode, float_p;
15116
15117 constraint (et.type == NT_invtype,
15118 _("operand size must be specified for immediate VMOV"));
15119
15120 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
15121 op = (inst.instruction & (1 << 5)) != 0;
15122
15123 immlo = inst.operands[1].imm;
15124 if (inst.operands[1].regisimm)
15125 immhi = inst.operands[1].reg;
15126
15127 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
15128 _("immediate has bits set outside the operand size"));
15129
15130 float_p = inst.operands[1].immisfloat;
15131
15132 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
15133 et.size, et.type)) == FAIL)
15134 {
15135 /* Invert relevant bits only. */
15136 neon_invert_size (&immlo, &immhi, et.size);
15137 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
15138 with one or the other; those cases are caught by
15139 neon_cmode_for_move_imm. */
15140 op = !op;
15141 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
15142 &op, et.size, et.type)) == FAIL)
15143 {
15144 first_error (_("immediate out of range"));
15145 return;
15146 }
15147 }
15148
15149 inst.instruction &= ~(1 << 5);
15150 inst.instruction |= op << 5;
15151
15152 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15153 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15154 inst.instruction |= neon_quad (rs) << 6;
15155 inst.instruction |= cmode << 8;
15156
15157 neon_write_immbits (immbits);
15158 }
15159
15160 static void
15161 do_neon_mvn (void)
15162 {
15163 if (inst.operands[1].isreg)
15164 {
15165 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15166
15167 NEON_ENCODE (INTEGER, inst);
15168 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15169 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15170 inst.instruction |= LOW4 (inst.operands[1].reg);
15171 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15172 inst.instruction |= neon_quad (rs) << 6;
15173 }
15174 else
15175 {
15176 NEON_ENCODE (IMMED, inst);
15177 neon_move_immediate ();
15178 }
15179
15180 neon_dp_fixup (&inst);
15181 }
15182
15183 /* Encode instructions of form:
15184
15185 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15186 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
15187
15188 static void
15189 neon_mixed_length (struct neon_type_el et, unsigned size)
15190 {
15191 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15192 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15193 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15194 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15195 inst.instruction |= LOW4 (inst.operands[2].reg);
15196 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15197 inst.instruction |= (et.type == NT_unsigned) << 24;
15198 inst.instruction |= neon_logbits (size) << 20;
15199
15200 neon_dp_fixup (&inst);
15201 }
15202
15203 static void
15204 do_neon_dyadic_long (void)
15205 {
15206 /* FIXME: Type checking for lengthening op. */
15207 struct neon_type_el et = neon_check_type (3, NS_QDD,
15208 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15209 neon_mixed_length (et, et.size);
15210 }
15211
15212 static void
15213 do_neon_abal (void)
15214 {
15215 struct neon_type_el et = neon_check_type (3, NS_QDD,
15216 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15217 neon_mixed_length (et, et.size);
15218 }
15219
15220 static void
15221 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15222 {
15223 if (inst.operands[2].isscalar)
15224 {
15225 struct neon_type_el et = neon_check_type (3, NS_QDS,
15226 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
15227 NEON_ENCODE (SCALAR, inst);
15228 neon_mul_mac (et, et.type == NT_unsigned);
15229 }
15230 else
15231 {
15232 struct neon_type_el et = neon_check_type (3, NS_QDD,
15233 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
15234 NEON_ENCODE (INTEGER, inst);
15235 neon_mixed_length (et, et.size);
15236 }
15237 }
15238
15239 static void
15240 do_neon_mac_maybe_scalar_long (void)
15241 {
15242 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
15243 }
15244
15245 static void
15246 do_neon_dyadic_wide (void)
15247 {
15248 struct neon_type_el et = neon_check_type (3, NS_QQD,
15249 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
15250 neon_mixed_length (et, et.size);
15251 }
15252
15253 static void
15254 do_neon_dyadic_narrow (void)
15255 {
15256 struct neon_type_el et = neon_check_type (3, NS_QDD,
15257 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
15258 /* Operand sign is unimportant, and the U bit is part of the opcode,
15259 so force the operand type to integer. */
15260 et.type = NT_integer;
15261 neon_mixed_length (et, et.size / 2);
15262 }
15263
15264 static void
15265 do_neon_mul_sat_scalar_long (void)
15266 {
15267 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
15268 }
15269
15270 static void
15271 do_neon_vmull (void)
15272 {
15273 if (inst.operands[2].isscalar)
15274 do_neon_mac_maybe_scalar_long ();
15275 else
15276 {
15277 struct neon_type_el et = neon_check_type (3, NS_QDD,
15278 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
15279
15280 if (et.type == NT_poly)
15281 NEON_ENCODE (POLY, inst);
15282 else
15283 NEON_ENCODE (INTEGER, inst);
15284
15285 /* For polynomial encoding the U bit must be zero, and the size must
15286 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
15287 obviously, as 0b10). */
15288 if (et.size == 64)
15289 {
15290 /* Check we're on the correct architecture. */
15291 if (!mark_feature_used (&fpu_crypto_ext_armv8))
15292 inst.error =
15293 _("Instruction form not available on this architecture.");
15294
15295 et.size = 32;
15296 }
15297
15298 neon_mixed_length (et, et.size);
15299 }
15300 }
15301
15302 static void
15303 do_neon_ext (void)
15304 {
15305 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
15306 struct neon_type_el et = neon_check_type (3, rs,
15307 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15308 unsigned imm = (inst.operands[3].imm * et.size) / 8;
15309
15310 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
15311 _("shift out of range"));
15312 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15313 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15314 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15315 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15316 inst.instruction |= LOW4 (inst.operands[2].reg);
15317 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15318 inst.instruction |= neon_quad (rs) << 6;
15319 inst.instruction |= imm << 8;
15320
15321 neon_dp_fixup (&inst);
15322 }
15323
15324 static void
15325 do_neon_rev (void)
15326 {
15327 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15328 struct neon_type_el et = neon_check_type (2, rs,
15329 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15330 unsigned op = (inst.instruction >> 7) & 3;
15331 /* N (width of reversed regions) is encoded as part of the bitmask. We
15332 extract it here to check the elements to be reversed are smaller.
15333 Otherwise we'd get a reserved instruction. */
15334 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
15335 gas_assert (elsize != 0);
15336 constraint (et.size >= elsize,
15337 _("elements must be smaller than reversal region"));
15338 neon_two_same (neon_quad (rs), 1, et.size);
15339 }
15340
15341 static void
15342 do_neon_dup (void)
15343 {
15344 if (inst.operands[1].isscalar)
15345 {
15346 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
15347 struct neon_type_el et = neon_check_type (2, rs,
15348 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15349 unsigned sizebits = et.size >> 3;
15350 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15351 int logsize = neon_logbits (et.size);
15352 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15353
15354 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15355 return;
15356
15357 NEON_ENCODE (SCALAR, inst);
15358 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15359 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15360 inst.instruction |= LOW4 (dm);
15361 inst.instruction |= HI1 (dm) << 5;
15362 inst.instruction |= neon_quad (rs) << 6;
15363 inst.instruction |= x << 17;
15364 inst.instruction |= sizebits << 16;
15365
15366 neon_dp_fixup (&inst);
15367 }
15368 else
15369 {
15370 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15371 struct neon_type_el et = neon_check_type (2, rs,
15372 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15373 /* Duplicate ARM register to lanes of vector. */
15374 NEON_ENCODE (ARMREG, inst);
15375 switch (et.size)
15376 {
15377 case 8: inst.instruction |= 0x400000; break;
15378 case 16: inst.instruction |= 0x000020; break;
15379 case 32: inst.instruction |= 0x000000; break;
15380 default: break;
15381 }
15382 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15383 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15384 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15385 inst.instruction |= neon_quad (rs) << 21;
15386 /* The encoding for this instruction is identical for the ARM and Thumb
15387 variants, except for the condition field. */
15388 do_vfp_cond_or_thumb ();
15389 }
15390 }
15391
15392 /* VMOV has particularly many variations. It can be one of:
15393 0. VMOV<c><q> <Qd>, <Qm>
15394 1. VMOV<c><q> <Dd>, <Dm>
15395 (Register operations, which are VORR with Rm = Rn.)
15396 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15397 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15398 (Immediate loads.)
15399 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15400 (ARM register to scalar.)
15401 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15402 (Two ARM registers to vector.)
15403 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15404 (Scalar to ARM register.)
15405 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15406 (Vector to two ARM registers.)
15407 8. VMOV.F32 <Sd>, <Sm>
15408 9. VMOV.F64 <Dd>, <Dm>
15409 (VFP register moves.)
15410 10. VMOV.F32 <Sd>, #imm
15411 11. VMOV.F64 <Dd>, #imm
15412 (VFP float immediate load.)
15413 12. VMOV <Rd>, <Sm>
15414 (VFP single to ARM reg.)
15415 13. VMOV <Sd>, <Rm>
15416 (ARM reg to VFP single.)
15417 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15418 (Two ARM regs to two VFP singles.)
15419 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15420 (Two VFP singles to two ARM regs.)
15421
15422 These cases can be disambiguated using neon_select_shape, except cases 1/9
15423 and 3/11 which depend on the operand type too.
15424
15425 All the encoded bits are hardcoded by this function.
15426
15427 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15428 Cases 5, 7 may be used with VFPv2 and above.
15429
15430 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15431 can specify a type where it doesn't make sense to, and is ignored). */
15432
15433 static void
15434 do_neon_mov (void)
15435 {
15436 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15437 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15438 NS_NULL);
15439 struct neon_type_el et;
15440 const char *ldconst = 0;
15441
15442 switch (rs)
15443 {
15444 case NS_DD: /* case 1/9. */
15445 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15446 /* It is not an error here if no type is given. */
15447 inst.error = NULL;
15448 if (et.type == NT_float && et.size == 64)
15449 {
15450 do_vfp_nsyn_opcode ("fcpyd");
15451 break;
15452 }
15453 /* fall through. */
15454
15455 case NS_QQ: /* case 0/1. */
15456 {
15457 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15458 return;
15459 /* The architecture manual I have doesn't explicitly state which
15460 value the U bit should have for register->register moves, but
15461 the equivalent VORR instruction has U = 0, so do that. */
15462 inst.instruction = 0x0200110;
15463 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15464 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15465 inst.instruction |= LOW4 (inst.operands[1].reg);
15466 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15467 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15468 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15469 inst.instruction |= neon_quad (rs) << 6;
15470
15471 neon_dp_fixup (&inst);
15472 }
15473 break;
15474
15475 case NS_DI: /* case 3/11. */
15476 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15477 inst.error = NULL;
15478 if (et.type == NT_float && et.size == 64)
15479 {
15480 /* case 11 (fconstd). */
15481 ldconst = "fconstd";
15482 goto encode_fconstd;
15483 }
15484 /* fall through. */
15485
15486 case NS_QI: /* case 2/3. */
15487 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15488 return;
15489 inst.instruction = 0x0800010;
15490 neon_move_immediate ();
15491 neon_dp_fixup (&inst);
15492 break;
15493
15494 case NS_SR: /* case 4. */
15495 {
15496 unsigned bcdebits = 0;
15497 int logsize;
15498 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15499 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15500
15501 /* .<size> is optional here, defaulting to .32. */
15502 if (inst.vectype.elems == 0
15503 && inst.operands[0].vectype.type == NT_invtype
15504 && inst.operands[1].vectype.type == NT_invtype)
15505 {
15506 inst.vectype.el[0].type = NT_untyped;
15507 inst.vectype.el[0].size = 32;
15508 inst.vectype.elems = 1;
15509 }
15510
15511 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15512 logsize = neon_logbits (et.size);
15513
15514 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15515 _(BAD_FPU));
15516 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15517 && et.size != 32, _(BAD_FPU));
15518 constraint (et.type == NT_invtype, _("bad type for scalar"));
15519 constraint (x >= 64 / et.size, _("scalar index out of range"));
15520
15521 switch (et.size)
15522 {
15523 case 8: bcdebits = 0x8; break;
15524 case 16: bcdebits = 0x1; break;
15525 case 32: bcdebits = 0x0; break;
15526 default: ;
15527 }
15528
15529 bcdebits |= x << logsize;
15530
15531 inst.instruction = 0xe000b10;
15532 do_vfp_cond_or_thumb ();
15533 inst.instruction |= LOW4 (dn) << 16;
15534 inst.instruction |= HI1 (dn) << 7;
15535 inst.instruction |= inst.operands[1].reg << 12;
15536 inst.instruction |= (bcdebits & 3) << 5;
15537 inst.instruction |= (bcdebits >> 2) << 21;
15538 }
15539 break;
15540
15541 case NS_DRR: /* case 5 (fmdrr). */
15542 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15543 _(BAD_FPU));
15544
15545 inst.instruction = 0xc400b10;
15546 do_vfp_cond_or_thumb ();
15547 inst.instruction |= LOW4 (inst.operands[0].reg);
15548 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15549 inst.instruction |= inst.operands[1].reg << 12;
15550 inst.instruction |= inst.operands[2].reg << 16;
15551 break;
15552
15553 case NS_RS: /* case 6. */
15554 {
15555 unsigned logsize;
15556 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15557 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15558 unsigned abcdebits = 0;
15559
15560 /* .<dt> is optional here, defaulting to .32. */
15561 if (inst.vectype.elems == 0
15562 && inst.operands[0].vectype.type == NT_invtype
15563 && inst.operands[1].vectype.type == NT_invtype)
15564 {
15565 inst.vectype.el[0].type = NT_untyped;
15566 inst.vectype.el[0].size = 32;
15567 inst.vectype.elems = 1;
15568 }
15569
15570 et = neon_check_type (2, NS_NULL,
15571 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15572 logsize = neon_logbits (et.size);
15573
15574 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15575 _(BAD_FPU));
15576 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15577 && et.size != 32, _(BAD_FPU));
15578 constraint (et.type == NT_invtype, _("bad type for scalar"));
15579 constraint (x >= 64 / et.size, _("scalar index out of range"));
15580
15581 switch (et.size)
15582 {
15583 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15584 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15585 case 32: abcdebits = 0x00; break;
15586 default: ;
15587 }
15588
15589 abcdebits |= x << logsize;
15590 inst.instruction = 0xe100b10;
15591 do_vfp_cond_or_thumb ();
15592 inst.instruction |= LOW4 (dn) << 16;
15593 inst.instruction |= HI1 (dn) << 7;
15594 inst.instruction |= inst.operands[0].reg << 12;
15595 inst.instruction |= (abcdebits & 3) << 5;
15596 inst.instruction |= (abcdebits >> 2) << 21;
15597 }
15598 break;
15599
15600 case NS_RRD: /* case 7 (fmrrd). */
15601 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15602 _(BAD_FPU));
15603
15604 inst.instruction = 0xc500b10;
15605 do_vfp_cond_or_thumb ();
15606 inst.instruction |= inst.operands[0].reg << 12;
15607 inst.instruction |= inst.operands[1].reg << 16;
15608 inst.instruction |= LOW4 (inst.operands[2].reg);
15609 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15610 break;
15611
15612 case NS_FF: /* case 8 (fcpys). */
15613 do_vfp_nsyn_opcode ("fcpys");
15614 break;
15615
15616 case NS_FI: /* case 10 (fconsts). */
15617 ldconst = "fconsts";
15618 encode_fconstd:
15619 if (is_quarter_float (inst.operands[1].imm))
15620 {
15621 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15622 do_vfp_nsyn_opcode (ldconst);
15623 }
15624 else
15625 first_error (_("immediate out of range"));
15626 break;
15627
15628 case NS_RF: /* case 12 (fmrs). */
15629 do_vfp_nsyn_opcode ("fmrs");
15630 break;
15631
15632 case NS_FR: /* case 13 (fmsr). */
15633 do_vfp_nsyn_opcode ("fmsr");
15634 break;
15635
15636 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15637 (one of which is a list), but we have parsed four. Do some fiddling to
15638 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15639 expect. */
15640 case NS_RRFF: /* case 14 (fmrrs). */
15641 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15642 _("VFP registers must be adjacent"));
15643 inst.operands[2].imm = 2;
15644 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15645 do_vfp_nsyn_opcode ("fmrrs");
15646 break;
15647
15648 case NS_FFRR: /* case 15 (fmsrr). */
15649 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15650 _("VFP registers must be adjacent"));
15651 inst.operands[1] = inst.operands[2];
15652 inst.operands[2] = inst.operands[3];
15653 inst.operands[0].imm = 2;
15654 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15655 do_vfp_nsyn_opcode ("fmsrr");
15656 break;
15657
15658 case NS_NULL:
15659 /* neon_select_shape has determined that the instruction
15660 shape is wrong and has already set the error message. */
15661 break;
15662
15663 default:
15664 abort ();
15665 }
15666 }
15667
15668 static void
15669 do_neon_rshift_round_imm (void)
15670 {
15671 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15672 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15673 int imm = inst.operands[2].imm;
15674
15675 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15676 if (imm == 0)
15677 {
15678 inst.operands[2].present = 0;
15679 do_neon_mov ();
15680 return;
15681 }
15682
15683 constraint (imm < 1 || (unsigned)imm > et.size,
15684 _("immediate out of range for shift"));
15685 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15686 et.size - imm);
15687 }
15688
15689 static void
15690 do_neon_movl (void)
15691 {
15692 struct neon_type_el et = neon_check_type (2, NS_QD,
15693 N_EQK | N_DBL, N_SU_32 | N_KEY);
15694 unsigned sizebits = et.size >> 3;
15695 inst.instruction |= sizebits << 19;
15696 neon_two_same (0, et.type == NT_unsigned, -1);
15697 }
15698
15699 static void
15700 do_neon_trn (void)
15701 {
15702 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15703 struct neon_type_el et = neon_check_type (2, rs,
15704 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15705 NEON_ENCODE (INTEGER, inst);
15706 neon_two_same (neon_quad (rs), 1, et.size);
15707 }
15708
15709 static void
15710 do_neon_zip_uzp (void)
15711 {
15712 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15713 struct neon_type_el et = neon_check_type (2, rs,
15714 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15715 if (rs == NS_DD && et.size == 32)
15716 {
15717 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15718 inst.instruction = N_MNEM_vtrn;
15719 do_neon_trn ();
15720 return;
15721 }
15722 neon_two_same (neon_quad (rs), 1, et.size);
15723 }
15724
15725 static void
15726 do_neon_sat_abs_neg (void)
15727 {
15728 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15729 struct neon_type_el et = neon_check_type (2, rs,
15730 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15731 neon_two_same (neon_quad (rs), 1, et.size);
15732 }
15733
15734 static void
15735 do_neon_pair_long (void)
15736 {
15737 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15738 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15739 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15740 inst.instruction |= (et.type == NT_unsigned) << 7;
15741 neon_two_same (neon_quad (rs), 1, et.size);
15742 }
15743
15744 static void
15745 do_neon_recip_est (void)
15746 {
15747 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15748 struct neon_type_el et = neon_check_type (2, rs,
15749 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15750 inst.instruction |= (et.type == NT_float) << 8;
15751 neon_two_same (neon_quad (rs), 1, et.size);
15752 }
15753
15754 static void
15755 do_neon_cls (void)
15756 {
15757 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15758 struct neon_type_el et = neon_check_type (2, rs,
15759 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15760 neon_two_same (neon_quad (rs), 1, et.size);
15761 }
15762
15763 static void
15764 do_neon_clz (void)
15765 {
15766 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15767 struct neon_type_el et = neon_check_type (2, rs,
15768 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15769 neon_two_same (neon_quad (rs), 1, et.size);
15770 }
15771
15772 static void
15773 do_neon_cnt (void)
15774 {
15775 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15776 struct neon_type_el et = neon_check_type (2, rs,
15777 N_EQK | N_INT, N_8 | N_KEY);
15778 neon_two_same (neon_quad (rs), 1, et.size);
15779 }
15780
15781 static void
15782 do_neon_swp (void)
15783 {
15784 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15785 neon_two_same (neon_quad (rs), 1, -1);
15786 }
15787
15788 static void
15789 do_neon_tbl_tbx (void)
15790 {
15791 unsigned listlenbits;
15792 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15793
15794 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15795 {
15796 first_error (_("bad list length for table lookup"));
15797 return;
15798 }
15799
15800 listlenbits = inst.operands[1].imm - 1;
15801 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15802 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15803 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15804 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15805 inst.instruction |= LOW4 (inst.operands[2].reg);
15806 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15807 inst.instruction |= listlenbits << 8;
15808
15809 neon_dp_fixup (&inst);
15810 }
15811
15812 static void
15813 do_neon_ldm_stm (void)
15814 {
15815 /* P, U and L bits are part of bitmask. */
15816 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15817 unsigned offsetbits = inst.operands[1].imm * 2;
15818
15819 if (inst.operands[1].issingle)
15820 {
15821 do_vfp_nsyn_ldm_stm (is_dbmode);
15822 return;
15823 }
15824
15825 constraint (is_dbmode && !inst.operands[0].writeback,
15826 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15827
15828 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15829 _("register list must contain at least 1 and at most 16 "
15830 "registers"));
15831
15832 inst.instruction |= inst.operands[0].reg << 16;
15833 inst.instruction |= inst.operands[0].writeback << 21;
15834 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15835 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15836
15837 inst.instruction |= offsetbits;
15838
15839 do_vfp_cond_or_thumb ();
15840 }
15841
15842 static void
15843 do_neon_ldr_str (void)
15844 {
15845 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15846
15847 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15848 And is UNPREDICTABLE in thumb mode. */
15849 if (!is_ldr
15850 && inst.operands[1].reg == REG_PC
15851 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
15852 {
15853 if (thumb_mode)
15854 inst.error = _("Use of PC here is UNPREDICTABLE");
15855 else if (warn_on_deprecated)
15856 as_warn (_("Use of PC here is deprecated"));
15857 }
15858
15859 if (inst.operands[0].issingle)
15860 {
15861 if (is_ldr)
15862 do_vfp_nsyn_opcode ("flds");
15863 else
15864 do_vfp_nsyn_opcode ("fsts");
15865 }
15866 else
15867 {
15868 if (is_ldr)
15869 do_vfp_nsyn_opcode ("fldd");
15870 else
15871 do_vfp_nsyn_opcode ("fstd");
15872 }
15873 }
15874
15875 /* "interleave" version also handles non-interleaving register VLD1/VST1
15876 instructions. */
15877
15878 static void
15879 do_neon_ld_st_interleave (void)
15880 {
15881 struct neon_type_el et = neon_check_type (1, NS_NULL,
15882 N_8 | N_16 | N_32 | N_64);
15883 unsigned alignbits = 0;
15884 unsigned idx;
15885 /* The bits in this table go:
15886 0: register stride of one (0) or two (1)
15887 1,2: register list length, minus one (1, 2, 3, 4).
15888 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15889 We use -1 for invalid entries. */
15890 const int typetable[] =
15891 {
15892 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15893 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15894 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15895 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15896 };
15897 int typebits;
15898
15899 if (et.type == NT_invtype)
15900 return;
15901
15902 if (inst.operands[1].immisalign)
15903 switch (inst.operands[1].imm >> 8)
15904 {
15905 case 64: alignbits = 1; break;
15906 case 128:
15907 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15908 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15909 goto bad_alignment;
15910 alignbits = 2;
15911 break;
15912 case 256:
15913 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15914 goto bad_alignment;
15915 alignbits = 3;
15916 break;
15917 default:
15918 bad_alignment:
15919 first_error (_("bad alignment"));
15920 return;
15921 }
15922
15923 inst.instruction |= alignbits << 4;
15924 inst.instruction |= neon_logbits (et.size) << 6;
15925
15926 /* Bits [4:6] of the immediate in a list specifier encode register stride
15927 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15928 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15929 up the right value for "type" in a table based on this value and the given
15930 list style, then stick it back. */
15931 idx = ((inst.operands[0].imm >> 4) & 7)
15932 | (((inst.instruction >> 8) & 3) << 3);
15933
15934 typebits = typetable[idx];
15935
15936 constraint (typebits == -1, _("bad list type for instruction"));
15937 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
15938 _("bad element type for instruction"));
15939
15940 inst.instruction &= ~0xf00;
15941 inst.instruction |= typebits << 8;
15942 }
15943
15944 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15945 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15946 otherwise. The variable arguments are a list of pairs of legal (size, align)
15947 values, terminated with -1. */
15948
15949 static int
15950 neon_alignment_bit (int size, int align, int *do_align, ...)
15951 {
15952 va_list ap;
15953 int result = FAIL, thissize, thisalign;
15954
15955 if (!inst.operands[1].immisalign)
15956 {
15957 *do_align = 0;
15958 return SUCCESS;
15959 }
15960
15961 va_start (ap, do_align);
15962
15963 do
15964 {
15965 thissize = va_arg (ap, int);
15966 if (thissize == -1)
15967 break;
15968 thisalign = va_arg (ap, int);
15969
15970 if (size == thissize && align == thisalign)
15971 result = SUCCESS;
15972 }
15973 while (result != SUCCESS);
15974
15975 va_end (ap);
15976
15977 if (result == SUCCESS)
15978 *do_align = 1;
15979 else
15980 first_error (_("unsupported alignment for instruction"));
15981
15982 return result;
15983 }
15984
15985 static void
15986 do_neon_ld_st_lane (void)
15987 {
15988 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15989 int align_good, do_align = 0;
15990 int logsize = neon_logbits (et.size);
15991 int align = inst.operands[1].imm >> 8;
15992 int n = (inst.instruction >> 8) & 3;
15993 int max_el = 64 / et.size;
15994
15995 if (et.type == NT_invtype)
15996 return;
15997
15998 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15999 _("bad list length"));
16000 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
16001 _("scalar index out of range"));
16002 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
16003 && et.size == 8,
16004 _("stride of 2 unavailable when element size is 8"));
16005
16006 switch (n)
16007 {
16008 case 0: /* VLD1 / VST1. */
16009 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
16010 32, 32, -1);
16011 if (align_good == FAIL)
16012 return;
16013 if (do_align)
16014 {
16015 unsigned alignbits = 0;
16016 switch (et.size)
16017 {
16018 case 16: alignbits = 0x1; break;
16019 case 32: alignbits = 0x3; break;
16020 default: ;
16021 }
16022 inst.instruction |= alignbits << 4;
16023 }
16024 break;
16025
16026 case 1: /* VLD2 / VST2. */
16027 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
16028 32, 64, -1);
16029 if (align_good == FAIL)
16030 return;
16031 if (do_align)
16032 inst.instruction |= 1 << 4;
16033 break;
16034
16035 case 2: /* VLD3 / VST3. */
16036 constraint (inst.operands[1].immisalign,
16037 _("can't use alignment with this instruction"));
16038 break;
16039
16040 case 3: /* VLD4 / VST4. */
16041 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
16042 16, 64, 32, 64, 32, 128, -1);
16043 if (align_good == FAIL)
16044 return;
16045 if (do_align)
16046 {
16047 unsigned alignbits = 0;
16048 switch (et.size)
16049 {
16050 case 8: alignbits = 0x1; break;
16051 case 16: alignbits = 0x1; break;
16052 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
16053 default: ;
16054 }
16055 inst.instruction |= alignbits << 4;
16056 }
16057 break;
16058
16059 default: ;
16060 }
16061
16062 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
16063 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16064 inst.instruction |= 1 << (4 + logsize);
16065
16066 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
16067 inst.instruction |= logsize << 10;
16068 }
16069
16070 /* Encode single n-element structure to all lanes VLD<n> instructions. */
16071
16072 static void
16073 do_neon_ld_dup (void)
16074 {
16075 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16076 int align_good, do_align = 0;
16077
16078 if (et.type == NT_invtype)
16079 return;
16080
16081 switch ((inst.instruction >> 8) & 3)
16082 {
16083 case 0: /* VLD1. */
16084 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
16085 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16086 &do_align, 16, 16, 32, 32, -1);
16087 if (align_good == FAIL)
16088 return;
16089 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
16090 {
16091 case 1: break;
16092 case 2: inst.instruction |= 1 << 5; break;
16093 default: first_error (_("bad list length")); return;
16094 }
16095 inst.instruction |= neon_logbits (et.size) << 6;
16096 break;
16097
16098 case 1: /* VLD2. */
16099 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16100 &do_align, 8, 16, 16, 32, 32, 64, -1);
16101 if (align_good == FAIL)
16102 return;
16103 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
16104 _("bad list length"));
16105 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16106 inst.instruction |= 1 << 5;
16107 inst.instruction |= neon_logbits (et.size) << 6;
16108 break;
16109
16110 case 2: /* VLD3. */
16111 constraint (inst.operands[1].immisalign,
16112 _("can't use alignment with this instruction"));
16113 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
16114 _("bad list length"));
16115 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16116 inst.instruction |= 1 << 5;
16117 inst.instruction |= neon_logbits (et.size) << 6;
16118 break;
16119
16120 case 3: /* VLD4. */
16121 {
16122 int align = inst.operands[1].imm >> 8;
16123 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
16124 16, 64, 32, 64, 32, 128, -1);
16125 if (align_good == FAIL)
16126 return;
16127 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
16128 _("bad list length"));
16129 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16130 inst.instruction |= 1 << 5;
16131 if (et.size == 32 && align == 128)
16132 inst.instruction |= 0x3 << 6;
16133 else
16134 inst.instruction |= neon_logbits (et.size) << 6;
16135 }
16136 break;
16137
16138 default: ;
16139 }
16140
16141 inst.instruction |= do_align << 4;
16142 }
16143
16144 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
16145 apart from bits [11:4]. */
16146
16147 static void
16148 do_neon_ldx_stx (void)
16149 {
16150 if (inst.operands[1].isreg)
16151 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16152
16153 switch (NEON_LANE (inst.operands[0].imm))
16154 {
16155 case NEON_INTERLEAVE_LANES:
16156 NEON_ENCODE (INTERLV, inst);
16157 do_neon_ld_st_interleave ();
16158 break;
16159
16160 case NEON_ALL_LANES:
16161 NEON_ENCODE (DUP, inst);
16162 if (inst.instruction == N_INV)
16163 {
16164 first_error ("only loads support such operands");
16165 break;
16166 }
16167 do_neon_ld_dup ();
16168 break;
16169
16170 default:
16171 NEON_ENCODE (LANE, inst);
16172 do_neon_ld_st_lane ();
16173 }
16174
16175 /* L bit comes from bit mask. */
16176 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16177 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16178 inst.instruction |= inst.operands[1].reg << 16;
16179
16180 if (inst.operands[1].postind)
16181 {
16182 int postreg = inst.operands[1].imm & 0xf;
16183 constraint (!inst.operands[1].immisreg,
16184 _("post-index must be a register"));
16185 constraint (postreg == 0xd || postreg == 0xf,
16186 _("bad register for post-index"));
16187 inst.instruction |= postreg;
16188 }
16189 else
16190 {
16191 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16192 constraint (inst.reloc.exp.X_op != O_constant
16193 || inst.reloc.exp.X_add_number != 0,
16194 BAD_ADDR_MODE);
16195
16196 if (inst.operands[1].writeback)
16197 {
16198 inst.instruction |= 0xd;
16199 }
16200 else
16201 inst.instruction |= 0xf;
16202 }
16203
16204 if (thumb_mode)
16205 inst.instruction |= 0xf9000000;
16206 else
16207 inst.instruction |= 0xf4000000;
16208 }
16209
16210 /* FP v8. */
16211 static void
16212 do_vfp_nsyn_fpv8 (enum neon_shape rs)
16213 {
16214 NEON_ENCODE (FPV8, inst);
16215
16216 if (rs == NS_FFF)
16217 do_vfp_sp_dyadic ();
16218 else
16219 do_vfp_dp_rd_rn_rm ();
16220
16221 if (rs == NS_DDD)
16222 inst.instruction |= 0x100;
16223
16224 inst.instruction |= 0xf0000000;
16225 }
16226
16227 static void
16228 do_vsel (void)
16229 {
16230 set_it_insn_type (OUTSIDE_IT_INSN);
16231
16232 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
16233 first_error (_("invalid instruction shape"));
16234 }
16235
16236 static void
16237 do_vmaxnm (void)
16238 {
16239 set_it_insn_type (OUTSIDE_IT_INSN);
16240
16241 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
16242 return;
16243
16244 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16245 return;
16246
16247 neon_dyadic_misc (NT_untyped, N_F32, 0);
16248 }
16249
16250 static void
16251 do_vrint_1 (enum neon_cvt_mode mode)
16252 {
16253 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_QQ, NS_NULL);
16254 struct neon_type_el et;
16255
16256 if (rs == NS_NULL)
16257 return;
16258
16259 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
16260 if (et.type != NT_invtype)
16261 {
16262 /* VFP encodings. */
16263 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
16264 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
16265 set_it_insn_type (OUTSIDE_IT_INSN);
16266
16267 NEON_ENCODE (FPV8, inst);
16268 if (rs == NS_FF)
16269 do_vfp_sp_monadic ();
16270 else
16271 do_vfp_dp_rd_rm ();
16272
16273 switch (mode)
16274 {
16275 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
16276 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
16277 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
16278 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
16279 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
16280 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
16281 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
16282 default: abort ();
16283 }
16284
16285 inst.instruction |= (rs == NS_DD) << 8;
16286 do_vfp_cond_or_thumb ();
16287 }
16288 else
16289 {
16290 /* Neon encodings (or something broken...). */
16291 inst.error = NULL;
16292 et = neon_check_type (2, rs, N_EQK, N_F32 | N_KEY);
16293
16294 if (et.type == NT_invtype)
16295 return;
16296
16297 set_it_insn_type (OUTSIDE_IT_INSN);
16298 NEON_ENCODE (FLOAT, inst);
16299
16300 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16301 return;
16302
16303 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16304 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16305 inst.instruction |= LOW4 (inst.operands[1].reg);
16306 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16307 inst.instruction |= neon_quad (rs) << 6;
16308 switch (mode)
16309 {
16310 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
16311 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
16312 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
16313 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
16314 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
16315 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
16316 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
16317 default: abort ();
16318 }
16319
16320 if (thumb_mode)
16321 inst.instruction |= 0xfc000000;
16322 else
16323 inst.instruction |= 0xf0000000;
16324 }
16325 }
16326
16327 static void
16328 do_vrintx (void)
16329 {
16330 do_vrint_1 (neon_cvt_mode_x);
16331 }
16332
16333 static void
16334 do_vrintz (void)
16335 {
16336 do_vrint_1 (neon_cvt_mode_z);
16337 }
16338
16339 static void
16340 do_vrintr (void)
16341 {
16342 do_vrint_1 (neon_cvt_mode_r);
16343 }
16344
16345 static void
16346 do_vrinta (void)
16347 {
16348 do_vrint_1 (neon_cvt_mode_a);
16349 }
16350
16351 static void
16352 do_vrintn (void)
16353 {
16354 do_vrint_1 (neon_cvt_mode_n);
16355 }
16356
16357 static void
16358 do_vrintp (void)
16359 {
16360 do_vrint_1 (neon_cvt_mode_p);
16361 }
16362
16363 static void
16364 do_vrintm (void)
16365 {
16366 do_vrint_1 (neon_cvt_mode_m);
16367 }
16368
16369 /* Crypto v1 instructions. */
16370 static void
16371 do_crypto_2op_1 (unsigned elttype, int op)
16372 {
16373 set_it_insn_type (OUTSIDE_IT_INSN);
16374
16375 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
16376 == NT_invtype)
16377 return;
16378
16379 inst.error = NULL;
16380
16381 NEON_ENCODE (INTEGER, inst);
16382 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16383 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16384 inst.instruction |= LOW4 (inst.operands[1].reg);
16385 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16386 if (op != -1)
16387 inst.instruction |= op << 6;
16388
16389 if (thumb_mode)
16390 inst.instruction |= 0xfc000000;
16391 else
16392 inst.instruction |= 0xf0000000;
16393 }
16394
16395 static void
16396 do_crypto_3op_1 (int u, int op)
16397 {
16398 set_it_insn_type (OUTSIDE_IT_INSN);
16399
16400 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
16401 N_32 | N_UNT | N_KEY).type == NT_invtype)
16402 return;
16403
16404 inst.error = NULL;
16405
16406 NEON_ENCODE (INTEGER, inst);
16407 neon_three_same (1, u, 8 << op);
16408 }
16409
16410 static void
16411 do_aese (void)
16412 {
16413 do_crypto_2op_1 (N_8, 0);
16414 }
16415
16416 static void
16417 do_aesd (void)
16418 {
16419 do_crypto_2op_1 (N_8, 1);
16420 }
16421
16422 static void
16423 do_aesmc (void)
16424 {
16425 do_crypto_2op_1 (N_8, 2);
16426 }
16427
16428 static void
16429 do_aesimc (void)
16430 {
16431 do_crypto_2op_1 (N_8, 3);
16432 }
16433
16434 static void
16435 do_sha1c (void)
16436 {
16437 do_crypto_3op_1 (0, 0);
16438 }
16439
16440 static void
16441 do_sha1p (void)
16442 {
16443 do_crypto_3op_1 (0, 1);
16444 }
16445
16446 static void
16447 do_sha1m (void)
16448 {
16449 do_crypto_3op_1 (0, 2);
16450 }
16451
16452 static void
16453 do_sha1su0 (void)
16454 {
16455 do_crypto_3op_1 (0, 3);
16456 }
16457
16458 static void
16459 do_sha256h (void)
16460 {
16461 do_crypto_3op_1 (1, 0);
16462 }
16463
16464 static void
16465 do_sha256h2 (void)
16466 {
16467 do_crypto_3op_1 (1, 1);
16468 }
16469
16470 static void
16471 do_sha256su1 (void)
16472 {
16473 do_crypto_3op_1 (1, 2);
16474 }
16475
16476 static void
16477 do_sha1h (void)
16478 {
16479 do_crypto_2op_1 (N_32, -1);
16480 }
16481
16482 static void
16483 do_sha1su1 (void)
16484 {
16485 do_crypto_2op_1 (N_32, 0);
16486 }
16487
16488 static void
16489 do_sha256su0 (void)
16490 {
16491 do_crypto_2op_1 (N_32, 1);
16492 }
16493
16494 static void
16495 do_crc32_1 (unsigned int poly, unsigned int sz)
16496 {
16497 unsigned int Rd = inst.operands[0].reg;
16498 unsigned int Rn = inst.operands[1].reg;
16499 unsigned int Rm = inst.operands[2].reg;
16500
16501 set_it_insn_type (OUTSIDE_IT_INSN);
16502 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
16503 inst.instruction |= LOW4 (Rn) << 16;
16504 inst.instruction |= LOW4 (Rm);
16505 inst.instruction |= sz << (thumb_mode ? 4 : 21);
16506 inst.instruction |= poly << (thumb_mode ? 20 : 9);
16507
16508 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
16509 as_warn (UNPRED_REG ("r15"));
16510 if (thumb_mode && (Rd == REG_SP || Rn == REG_SP || Rm == REG_SP))
16511 as_warn (UNPRED_REG ("r13"));
16512 }
16513
16514 static void
16515 do_crc32b (void)
16516 {
16517 do_crc32_1 (0, 0);
16518 }
16519
16520 static void
16521 do_crc32h (void)
16522 {
16523 do_crc32_1 (0, 1);
16524 }
16525
16526 static void
16527 do_crc32w (void)
16528 {
16529 do_crc32_1 (0, 2);
16530 }
16531
16532 static void
16533 do_crc32cb (void)
16534 {
16535 do_crc32_1 (1, 0);
16536 }
16537
16538 static void
16539 do_crc32ch (void)
16540 {
16541 do_crc32_1 (1, 1);
16542 }
16543
16544 static void
16545 do_crc32cw (void)
16546 {
16547 do_crc32_1 (1, 2);
16548 }
16549
16550 \f
16551 /* Overall per-instruction processing. */
16552
16553 /* We need to be able to fix up arbitrary expressions in some statements.
16554 This is so that we can handle symbols that are an arbitrary distance from
16555 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
16556 which returns part of an address in a form which will be valid for
16557 a data instruction. We do this by pushing the expression into a symbol
16558 in the expr_section, and creating a fix for that. */
16559
16560 static void
16561 fix_new_arm (fragS * frag,
16562 int where,
16563 short int size,
16564 expressionS * exp,
16565 int pc_rel,
16566 int reloc)
16567 {
16568 fixS * new_fix;
16569
16570 switch (exp->X_op)
16571 {
16572 case O_constant:
16573 if (pc_rel)
16574 {
16575 /* Create an absolute valued symbol, so we have something to
16576 refer to in the object file. Unfortunately for us, gas's
16577 generic expression parsing will already have folded out
16578 any use of .set foo/.type foo %function that may have
16579 been used to set type information of the target location,
16580 that's being specified symbolically. We have to presume
16581 the user knows what they are doing. */
16582 char name[16 + 8];
16583 symbolS *symbol;
16584
16585 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
16586
16587 symbol = symbol_find_or_make (name);
16588 S_SET_SEGMENT (symbol, absolute_section);
16589 symbol_set_frag (symbol, &zero_address_frag);
16590 S_SET_VALUE (symbol, exp->X_add_number);
16591 exp->X_op = O_symbol;
16592 exp->X_add_symbol = symbol;
16593 exp->X_add_number = 0;
16594 }
16595 /* FALLTHROUGH */
16596 case O_symbol:
16597 case O_add:
16598 case O_subtract:
16599 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
16600 (enum bfd_reloc_code_real) reloc);
16601 break;
16602
16603 default:
16604 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
16605 pc_rel, (enum bfd_reloc_code_real) reloc);
16606 break;
16607 }
16608
16609 /* Mark whether the fix is to a THUMB instruction, or an ARM
16610 instruction. */
16611 new_fix->tc_fix_data = thumb_mode;
16612 }
16613
16614 /* Create a frg for an instruction requiring relaxation. */
16615 static void
16616 output_relax_insn (void)
16617 {
16618 char * to;
16619 symbolS *sym;
16620 int offset;
16621
16622 /* The size of the instruction is unknown, so tie the debug info to the
16623 start of the instruction. */
16624 dwarf2_emit_insn (0);
16625
16626 switch (inst.reloc.exp.X_op)
16627 {
16628 case O_symbol:
16629 sym = inst.reloc.exp.X_add_symbol;
16630 offset = inst.reloc.exp.X_add_number;
16631 break;
16632 case O_constant:
16633 sym = NULL;
16634 offset = inst.reloc.exp.X_add_number;
16635 break;
16636 default:
16637 sym = make_expr_symbol (&inst.reloc.exp);
16638 offset = 0;
16639 break;
16640 }
16641 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
16642 inst.relax, sym, offset, NULL/*offset, opcode*/);
16643 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
16644 }
16645
16646 /* Write a 32-bit thumb instruction to buf. */
16647 static void
16648 put_thumb32_insn (char * buf, unsigned long insn)
16649 {
16650 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
16651 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
16652 }
16653
16654 static void
16655 output_inst (const char * str)
16656 {
16657 char * to = NULL;
16658
16659 if (inst.error)
16660 {
16661 as_bad ("%s -- `%s'", inst.error, str);
16662 return;
16663 }
16664 if (inst.relax)
16665 {
16666 output_relax_insn ();
16667 return;
16668 }
16669 if (inst.size == 0)
16670 return;
16671
16672 to = frag_more (inst.size);
16673 /* PR 9814: Record the thumb mode into the current frag so that we know
16674 what type of NOP padding to use, if necessary. We override any previous
16675 setting so that if the mode has changed then the NOPS that we use will
16676 match the encoding of the last instruction in the frag. */
16677 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
16678
16679 if (thumb_mode && (inst.size > THUMB_SIZE))
16680 {
16681 gas_assert (inst.size == (2 * THUMB_SIZE));
16682 put_thumb32_insn (to, inst.instruction);
16683 }
16684 else if (inst.size > INSN_SIZE)
16685 {
16686 gas_assert (inst.size == (2 * INSN_SIZE));
16687 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16688 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
16689 }
16690 else
16691 md_number_to_chars (to, inst.instruction, inst.size);
16692
16693 if (inst.reloc.type != BFD_RELOC_UNUSED)
16694 fix_new_arm (frag_now, to - frag_now->fr_literal,
16695 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16696 inst.reloc.type);
16697
16698 dwarf2_emit_insn (inst.size);
16699 }
16700
16701 static char *
16702 output_it_inst (int cond, int mask, char * to)
16703 {
16704 unsigned long instruction = 0xbf00;
16705
16706 mask &= 0xf;
16707 instruction |= mask;
16708 instruction |= cond << 4;
16709
16710 if (to == NULL)
16711 {
16712 to = frag_more (2);
16713 #ifdef OBJ_ELF
16714 dwarf2_emit_insn (2);
16715 #endif
16716 }
16717
16718 md_number_to_chars (to, instruction, 2);
16719
16720 return to;
16721 }
16722
16723 /* Tag values used in struct asm_opcode's tag field. */
16724 enum opcode_tag
16725 {
16726 OT_unconditional, /* Instruction cannot be conditionalized.
16727 The ARM condition field is still 0xE. */
16728 OT_unconditionalF, /* Instruction cannot be conditionalized
16729 and carries 0xF in its ARM condition field. */
16730 OT_csuffix, /* Instruction takes a conditional suffix. */
16731 OT_csuffixF, /* Some forms of the instruction take a conditional
16732 suffix, others place 0xF where the condition field
16733 would be. */
16734 OT_cinfix3, /* Instruction takes a conditional infix,
16735 beginning at character index 3. (In
16736 unified mode, it becomes a suffix.) */
16737 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16738 tsts, cmps, cmns, and teqs. */
16739 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16740 character index 3, even in unified mode. Used for
16741 legacy instructions where suffix and infix forms
16742 may be ambiguous. */
16743 OT_csuf_or_in3, /* Instruction takes either a conditional
16744 suffix or an infix at character index 3. */
16745 OT_odd_infix_unc, /* This is the unconditional variant of an
16746 instruction that takes a conditional infix
16747 at an unusual position. In unified mode,
16748 this variant will accept a suffix. */
16749 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16750 are the conditional variants of instructions that
16751 take conditional infixes in unusual positions.
16752 The infix appears at character index
16753 (tag - OT_odd_infix_0). These are not accepted
16754 in unified mode. */
16755 };
16756
16757 /* Subroutine of md_assemble, responsible for looking up the primary
16758 opcode from the mnemonic the user wrote. STR points to the
16759 beginning of the mnemonic.
16760
16761 This is not simply a hash table lookup, because of conditional
16762 variants. Most instructions have conditional variants, which are
16763 expressed with a _conditional affix_ to the mnemonic. If we were
16764 to encode each conditional variant as a literal string in the opcode
16765 table, it would have approximately 20,000 entries.
16766
16767 Most mnemonics take this affix as a suffix, and in unified syntax,
16768 'most' is upgraded to 'all'. However, in the divided syntax, some
16769 instructions take the affix as an infix, notably the s-variants of
16770 the arithmetic instructions. Of those instructions, all but six
16771 have the infix appear after the third character of the mnemonic.
16772
16773 Accordingly, the algorithm for looking up primary opcodes given
16774 an identifier is:
16775
16776 1. Look up the identifier in the opcode table.
16777 If we find a match, go to step U.
16778
16779 2. Look up the last two characters of the identifier in the
16780 conditions table. If we find a match, look up the first N-2
16781 characters of the identifier in the opcode table. If we
16782 find a match, go to step CE.
16783
16784 3. Look up the fourth and fifth characters of the identifier in
16785 the conditions table. If we find a match, extract those
16786 characters from the identifier, and look up the remaining
16787 characters in the opcode table. If we find a match, go
16788 to step CM.
16789
16790 4. Fail.
16791
16792 U. Examine the tag field of the opcode structure, in case this is
16793 one of the six instructions with its conditional infix in an
16794 unusual place. If it is, the tag tells us where to find the
16795 infix; look it up in the conditions table and set inst.cond
16796 accordingly. Otherwise, this is an unconditional instruction.
16797 Again set inst.cond accordingly. Return the opcode structure.
16798
16799 CE. Examine the tag field to make sure this is an instruction that
16800 should receive a conditional suffix. If it is not, fail.
16801 Otherwise, set inst.cond from the suffix we already looked up,
16802 and return the opcode structure.
16803
16804 CM. Examine the tag field to make sure this is an instruction that
16805 should receive a conditional infix after the third character.
16806 If it is not, fail. Otherwise, undo the edits to the current
16807 line of input and proceed as for case CE. */
16808
16809 static const struct asm_opcode *
16810 opcode_lookup (char **str)
16811 {
16812 char *end, *base;
16813 char *affix;
16814 const struct asm_opcode *opcode;
16815 const struct asm_cond *cond;
16816 char save[2];
16817
16818 /* Scan up to the end of the mnemonic, which must end in white space,
16819 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16820 for (base = end = *str; *end != '\0'; end++)
16821 if (*end == ' ' || *end == '.')
16822 break;
16823
16824 if (end == base)
16825 return NULL;
16826
16827 /* Handle a possible width suffix and/or Neon type suffix. */
16828 if (end[0] == '.')
16829 {
16830 int offset = 2;
16831
16832 /* The .w and .n suffixes are only valid if the unified syntax is in
16833 use. */
16834 if (unified_syntax && end[1] == 'w')
16835 inst.size_req = 4;
16836 else if (unified_syntax && end[1] == 'n')
16837 inst.size_req = 2;
16838 else
16839 offset = 0;
16840
16841 inst.vectype.elems = 0;
16842
16843 *str = end + offset;
16844
16845 if (end[offset] == '.')
16846 {
16847 /* See if we have a Neon type suffix (possible in either unified or
16848 non-unified ARM syntax mode). */
16849 if (parse_neon_type (&inst.vectype, str) == FAIL)
16850 return NULL;
16851 }
16852 else if (end[offset] != '\0' && end[offset] != ' ')
16853 return NULL;
16854 }
16855 else
16856 *str = end;
16857
16858 /* Look for unaffixed or special-case affixed mnemonic. */
16859 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16860 end - base);
16861 if (opcode)
16862 {
16863 /* step U */
16864 if (opcode->tag < OT_odd_infix_0)
16865 {
16866 inst.cond = COND_ALWAYS;
16867 return opcode;
16868 }
16869
16870 if (warn_on_deprecated && unified_syntax)
16871 as_warn (_("conditional infixes are deprecated in unified syntax"));
16872 affix = base + (opcode->tag - OT_odd_infix_0);
16873 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16874 gas_assert (cond);
16875
16876 inst.cond = cond->value;
16877 return opcode;
16878 }
16879
16880 /* Cannot have a conditional suffix on a mnemonic of less than two
16881 characters. */
16882 if (end - base < 3)
16883 return NULL;
16884
16885 /* Look for suffixed mnemonic. */
16886 affix = end - 2;
16887 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16888 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16889 affix - base);
16890 if (opcode && cond)
16891 {
16892 /* step CE */
16893 switch (opcode->tag)
16894 {
16895 case OT_cinfix3_legacy:
16896 /* Ignore conditional suffixes matched on infix only mnemonics. */
16897 break;
16898
16899 case OT_cinfix3:
16900 case OT_cinfix3_deprecated:
16901 case OT_odd_infix_unc:
16902 if (!unified_syntax)
16903 return 0;
16904 /* else fall through */
16905
16906 case OT_csuffix:
16907 case OT_csuffixF:
16908 case OT_csuf_or_in3:
16909 inst.cond = cond->value;
16910 return opcode;
16911
16912 case OT_unconditional:
16913 case OT_unconditionalF:
16914 if (thumb_mode)
16915 inst.cond = cond->value;
16916 else
16917 {
16918 /* Delayed diagnostic. */
16919 inst.error = BAD_COND;
16920 inst.cond = COND_ALWAYS;
16921 }
16922 return opcode;
16923
16924 default:
16925 return NULL;
16926 }
16927 }
16928
16929 /* Cannot have a usual-position infix on a mnemonic of less than
16930 six characters (five would be a suffix). */
16931 if (end - base < 6)
16932 return NULL;
16933
16934 /* Look for infixed mnemonic in the usual position. */
16935 affix = base + 3;
16936 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16937 if (!cond)
16938 return NULL;
16939
16940 memcpy (save, affix, 2);
16941 memmove (affix, affix + 2, (end - affix) - 2);
16942 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16943 (end - base) - 2);
16944 memmove (affix + 2, affix, (end - affix) - 2);
16945 memcpy (affix, save, 2);
16946
16947 if (opcode
16948 && (opcode->tag == OT_cinfix3
16949 || opcode->tag == OT_cinfix3_deprecated
16950 || opcode->tag == OT_csuf_or_in3
16951 || opcode->tag == OT_cinfix3_legacy))
16952 {
16953 /* Step CM. */
16954 if (warn_on_deprecated && unified_syntax
16955 && (opcode->tag == OT_cinfix3
16956 || opcode->tag == OT_cinfix3_deprecated))
16957 as_warn (_("conditional infixes are deprecated in unified syntax"));
16958
16959 inst.cond = cond->value;
16960 return opcode;
16961 }
16962
16963 return NULL;
16964 }
16965
16966 /* This function generates an initial IT instruction, leaving its block
16967 virtually open for the new instructions. Eventually,
16968 the mask will be updated by now_it_add_mask () each time
16969 a new instruction needs to be included in the IT block.
16970 Finally, the block is closed with close_automatic_it_block ().
16971 The block closure can be requested either from md_assemble (),
16972 a tencode (), or due to a label hook. */
16973
16974 static void
16975 new_automatic_it_block (int cond)
16976 {
16977 now_it.state = AUTOMATIC_IT_BLOCK;
16978 now_it.mask = 0x18;
16979 now_it.cc = cond;
16980 now_it.block_length = 1;
16981 mapping_state (MAP_THUMB);
16982 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16983 now_it.warn_deprecated = FALSE;
16984 now_it.insn_cond = TRUE;
16985 }
16986
16987 /* Close an automatic IT block.
16988 See comments in new_automatic_it_block (). */
16989
16990 static void
16991 close_automatic_it_block (void)
16992 {
16993 now_it.mask = 0x10;
16994 now_it.block_length = 0;
16995 }
16996
16997 /* Update the mask of the current automatically-generated IT
16998 instruction. See comments in new_automatic_it_block (). */
16999
17000 static void
17001 now_it_add_mask (int cond)
17002 {
17003 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
17004 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
17005 | ((bitvalue) << (nbit)))
17006 const int resulting_bit = (cond & 1);
17007
17008 now_it.mask &= 0xf;
17009 now_it.mask = SET_BIT_VALUE (now_it.mask,
17010 resulting_bit,
17011 (5 - now_it.block_length));
17012 now_it.mask = SET_BIT_VALUE (now_it.mask,
17013 1,
17014 ((5 - now_it.block_length) - 1) );
17015 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
17016
17017 #undef CLEAR_BIT
17018 #undef SET_BIT_VALUE
17019 }
17020
17021 /* The IT blocks handling machinery is accessed through the these functions:
17022 it_fsm_pre_encode () from md_assemble ()
17023 set_it_insn_type () optional, from the tencode functions
17024 set_it_insn_type_last () ditto
17025 in_it_block () ditto
17026 it_fsm_post_encode () from md_assemble ()
17027 force_automatic_it_block_close () from label habdling functions
17028
17029 Rationale:
17030 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
17031 initializing the IT insn type with a generic initial value depending
17032 on the inst.condition.
17033 2) During the tencode function, two things may happen:
17034 a) The tencode function overrides the IT insn type by
17035 calling either set_it_insn_type (type) or set_it_insn_type_last ().
17036 b) The tencode function queries the IT block state by
17037 calling in_it_block () (i.e. to determine narrow/not narrow mode).
17038
17039 Both set_it_insn_type and in_it_block run the internal FSM state
17040 handling function (handle_it_state), because: a) setting the IT insn
17041 type may incur in an invalid state (exiting the function),
17042 and b) querying the state requires the FSM to be updated.
17043 Specifically we want to avoid creating an IT block for conditional
17044 branches, so it_fsm_pre_encode is actually a guess and we can't
17045 determine whether an IT block is required until the tencode () routine
17046 has decided what type of instruction this actually it.
17047 Because of this, if set_it_insn_type and in_it_block have to be used,
17048 set_it_insn_type has to be called first.
17049
17050 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
17051 determines the insn IT type depending on the inst.cond code.
17052 When a tencode () routine encodes an instruction that can be
17053 either outside an IT block, or, in the case of being inside, has to be
17054 the last one, set_it_insn_type_last () will determine the proper
17055 IT instruction type based on the inst.cond code. Otherwise,
17056 set_it_insn_type can be called for overriding that logic or
17057 for covering other cases.
17058
17059 Calling handle_it_state () may not transition the IT block state to
17060 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
17061 still queried. Instead, if the FSM determines that the state should
17062 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
17063 after the tencode () function: that's what it_fsm_post_encode () does.
17064
17065 Since in_it_block () calls the state handling function to get an
17066 updated state, an error may occur (due to invalid insns combination).
17067 In that case, inst.error is set.
17068 Therefore, inst.error has to be checked after the execution of
17069 the tencode () routine.
17070
17071 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
17072 any pending state change (if any) that didn't take place in
17073 handle_it_state () as explained above. */
17074
17075 static void
17076 it_fsm_pre_encode (void)
17077 {
17078 if (inst.cond != COND_ALWAYS)
17079 inst.it_insn_type = INSIDE_IT_INSN;
17080 else
17081 inst.it_insn_type = OUTSIDE_IT_INSN;
17082
17083 now_it.state_handled = 0;
17084 }
17085
17086 /* IT state FSM handling function. */
17087
17088 static int
17089 handle_it_state (void)
17090 {
17091 now_it.state_handled = 1;
17092 now_it.insn_cond = FALSE;
17093
17094 switch (now_it.state)
17095 {
17096 case OUTSIDE_IT_BLOCK:
17097 switch (inst.it_insn_type)
17098 {
17099 case OUTSIDE_IT_INSN:
17100 break;
17101
17102 case INSIDE_IT_INSN:
17103 case INSIDE_IT_LAST_INSN:
17104 if (thumb_mode == 0)
17105 {
17106 if (unified_syntax
17107 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
17108 as_tsktsk (_("Warning: conditional outside an IT block"\
17109 " for Thumb."));
17110 }
17111 else
17112 {
17113 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
17114 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
17115 {
17116 /* Automatically generate the IT instruction. */
17117 new_automatic_it_block (inst.cond);
17118 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
17119 close_automatic_it_block ();
17120 }
17121 else
17122 {
17123 inst.error = BAD_OUT_IT;
17124 return FAIL;
17125 }
17126 }
17127 break;
17128
17129 case IF_INSIDE_IT_LAST_INSN:
17130 case NEUTRAL_IT_INSN:
17131 break;
17132
17133 case IT_INSN:
17134 now_it.state = MANUAL_IT_BLOCK;
17135 now_it.block_length = 0;
17136 break;
17137 }
17138 break;
17139
17140 case AUTOMATIC_IT_BLOCK:
17141 /* Three things may happen now:
17142 a) We should increment current it block size;
17143 b) We should close current it block (closing insn or 4 insns);
17144 c) We should close current it block and start a new one (due
17145 to incompatible conditions or
17146 4 insns-length block reached). */
17147
17148 switch (inst.it_insn_type)
17149 {
17150 case OUTSIDE_IT_INSN:
17151 /* The closure of the block shall happen immediatelly,
17152 so any in_it_block () call reports the block as closed. */
17153 force_automatic_it_block_close ();
17154 break;
17155
17156 case INSIDE_IT_INSN:
17157 case INSIDE_IT_LAST_INSN:
17158 case IF_INSIDE_IT_LAST_INSN:
17159 now_it.block_length++;
17160
17161 if (now_it.block_length > 4
17162 || !now_it_compatible (inst.cond))
17163 {
17164 force_automatic_it_block_close ();
17165 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
17166 new_automatic_it_block (inst.cond);
17167 }
17168 else
17169 {
17170 now_it.insn_cond = TRUE;
17171 now_it_add_mask (inst.cond);
17172 }
17173
17174 if (now_it.state == AUTOMATIC_IT_BLOCK
17175 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
17176 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
17177 close_automatic_it_block ();
17178 break;
17179
17180 case NEUTRAL_IT_INSN:
17181 now_it.block_length++;
17182 now_it.insn_cond = TRUE;
17183
17184 if (now_it.block_length > 4)
17185 force_automatic_it_block_close ();
17186 else
17187 now_it_add_mask (now_it.cc & 1);
17188 break;
17189
17190 case IT_INSN:
17191 close_automatic_it_block ();
17192 now_it.state = MANUAL_IT_BLOCK;
17193 break;
17194 }
17195 break;
17196
17197 case MANUAL_IT_BLOCK:
17198 {
17199 /* Check conditional suffixes. */
17200 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
17201 int is_last;
17202 now_it.mask <<= 1;
17203 now_it.mask &= 0x1f;
17204 is_last = (now_it.mask == 0x10);
17205 now_it.insn_cond = TRUE;
17206
17207 switch (inst.it_insn_type)
17208 {
17209 case OUTSIDE_IT_INSN:
17210 inst.error = BAD_NOT_IT;
17211 return FAIL;
17212
17213 case INSIDE_IT_INSN:
17214 if (cond != inst.cond)
17215 {
17216 inst.error = BAD_IT_COND;
17217 return FAIL;
17218 }
17219 break;
17220
17221 case INSIDE_IT_LAST_INSN:
17222 case IF_INSIDE_IT_LAST_INSN:
17223 if (cond != inst.cond)
17224 {
17225 inst.error = BAD_IT_COND;
17226 return FAIL;
17227 }
17228 if (!is_last)
17229 {
17230 inst.error = BAD_BRANCH;
17231 return FAIL;
17232 }
17233 break;
17234
17235 case NEUTRAL_IT_INSN:
17236 /* The BKPT instruction is unconditional even in an IT block. */
17237 break;
17238
17239 case IT_INSN:
17240 inst.error = BAD_IT_IT;
17241 return FAIL;
17242 }
17243 }
17244 break;
17245 }
17246
17247 return SUCCESS;
17248 }
17249
17250 struct depr_insn_mask
17251 {
17252 unsigned long pattern;
17253 unsigned long mask;
17254 const char* description;
17255 };
17256
17257 /* List of 16-bit instruction patterns deprecated in an IT block in
17258 ARMv8. */
17259 static const struct depr_insn_mask depr_it_insns[] = {
17260 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
17261 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
17262 { 0xa000, 0xb800, N_("ADR") },
17263 { 0x4800, 0xf800, N_("Literal loads") },
17264 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
17265 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
17266 { 0, 0, NULL }
17267 };
17268
17269 static void
17270 it_fsm_post_encode (void)
17271 {
17272 int is_last;
17273
17274 if (!now_it.state_handled)
17275 handle_it_state ();
17276
17277 if (now_it.insn_cond
17278 && !now_it.warn_deprecated
17279 && warn_on_deprecated
17280 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
17281 {
17282 if (inst.instruction >= 0x10000)
17283 {
17284 as_warn (_("IT blocks containing 32-bit Thumb instructions are "
17285 "deprecated in ARMv8"));
17286 now_it.warn_deprecated = TRUE;
17287 }
17288 else
17289 {
17290 const struct depr_insn_mask *p = depr_it_insns;
17291
17292 while (p->mask != 0)
17293 {
17294 if ((inst.instruction & p->mask) == p->pattern)
17295 {
17296 as_warn (_("IT blocks containing 16-bit Thumb instructions "
17297 "of the following class are deprecated in ARMv8: "
17298 "%s"), p->description);
17299 now_it.warn_deprecated = TRUE;
17300 break;
17301 }
17302
17303 ++p;
17304 }
17305 }
17306
17307 if (now_it.block_length > 1)
17308 {
17309 as_warn (_("IT blocks containing more than one conditional "
17310 "instruction are deprecated in ARMv8"));
17311 now_it.warn_deprecated = TRUE;
17312 }
17313 }
17314
17315 is_last = (now_it.mask == 0x10);
17316 if (is_last)
17317 {
17318 now_it.state = OUTSIDE_IT_BLOCK;
17319 now_it.mask = 0;
17320 }
17321 }
17322
17323 static void
17324 force_automatic_it_block_close (void)
17325 {
17326 if (now_it.state == AUTOMATIC_IT_BLOCK)
17327 {
17328 close_automatic_it_block ();
17329 now_it.state = OUTSIDE_IT_BLOCK;
17330 now_it.mask = 0;
17331 }
17332 }
17333
17334 static int
17335 in_it_block (void)
17336 {
17337 if (!now_it.state_handled)
17338 handle_it_state ();
17339
17340 return now_it.state != OUTSIDE_IT_BLOCK;
17341 }
17342
17343 void
17344 md_assemble (char *str)
17345 {
17346 char *p = str;
17347 const struct asm_opcode * opcode;
17348
17349 /* Align the previous label if needed. */
17350 if (last_label_seen != NULL)
17351 {
17352 symbol_set_frag (last_label_seen, frag_now);
17353 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
17354 S_SET_SEGMENT (last_label_seen, now_seg);
17355 }
17356
17357 memset (&inst, '\0', sizeof (inst));
17358 inst.reloc.type = BFD_RELOC_UNUSED;
17359
17360 opcode = opcode_lookup (&p);
17361 if (!opcode)
17362 {
17363 /* It wasn't an instruction, but it might be a register alias of
17364 the form alias .req reg, or a Neon .dn/.qn directive. */
17365 if (! create_register_alias (str, p)
17366 && ! create_neon_reg_alias (str, p))
17367 as_bad (_("bad instruction `%s'"), str);
17368
17369 return;
17370 }
17371
17372 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
17373 as_warn (_("s suffix on comparison instruction is deprecated"));
17374
17375 /* The value which unconditional instructions should have in place of the
17376 condition field. */
17377 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
17378
17379 if (thumb_mode)
17380 {
17381 arm_feature_set variant;
17382
17383 variant = cpu_variant;
17384 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
17385 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
17386 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
17387 /* Check that this instruction is supported for this CPU. */
17388 if (!opcode->tvariant
17389 || (thumb_mode == 1
17390 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
17391 {
17392 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
17393 return;
17394 }
17395 if (inst.cond != COND_ALWAYS && !unified_syntax
17396 && opcode->tencode != do_t_branch)
17397 {
17398 as_bad (_("Thumb does not support conditional execution"));
17399 return;
17400 }
17401
17402 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
17403 {
17404 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
17405 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
17406 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
17407 {
17408 /* Two things are addressed here.
17409 1) Implicit require narrow instructions on Thumb-1.
17410 This avoids relaxation accidentally introducing Thumb-2
17411 instructions.
17412 2) Reject wide instructions in non Thumb-2 cores. */
17413 if (inst.size_req == 0)
17414 inst.size_req = 2;
17415 else if (inst.size_req == 4)
17416 {
17417 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
17418 return;
17419 }
17420 }
17421 }
17422
17423 inst.instruction = opcode->tvalue;
17424
17425 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
17426 {
17427 /* Prepare the it_insn_type for those encodings that don't set
17428 it. */
17429 it_fsm_pre_encode ();
17430
17431 opcode->tencode ();
17432
17433 it_fsm_post_encode ();
17434 }
17435
17436 if (!(inst.error || inst.relax))
17437 {
17438 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
17439 inst.size = (inst.instruction > 0xffff ? 4 : 2);
17440 if (inst.size_req && inst.size_req != inst.size)
17441 {
17442 as_bad (_("cannot honor width suffix -- `%s'"), str);
17443 return;
17444 }
17445 }
17446
17447 /* Something has gone badly wrong if we try to relax a fixed size
17448 instruction. */
17449 gas_assert (inst.size_req == 0 || !inst.relax);
17450
17451 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17452 *opcode->tvariant);
17453 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
17454 set those bits when Thumb-2 32-bit instructions are seen. ie.
17455 anything other than bl/blx and v6-M instructions.
17456 This is overly pessimistic for relaxable instructions. */
17457 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
17458 || inst.relax)
17459 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
17460 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
17461 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17462 arm_ext_v6t2);
17463
17464 check_neon_suffixes;
17465
17466 if (!inst.error)
17467 {
17468 mapping_state (MAP_THUMB);
17469 }
17470 }
17471 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
17472 {
17473 bfd_boolean is_bx;
17474
17475 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
17476 is_bx = (opcode->aencode == do_bx);
17477
17478 /* Check that this instruction is supported for this CPU. */
17479 if (!(is_bx && fix_v4bx)
17480 && !(opcode->avariant &&
17481 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
17482 {
17483 as_bad (_("selected processor does not support ARM mode `%s'"), str);
17484 return;
17485 }
17486 if (inst.size_req)
17487 {
17488 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
17489 return;
17490 }
17491
17492 inst.instruction = opcode->avalue;
17493 if (opcode->tag == OT_unconditionalF)
17494 inst.instruction |= 0xF << 28;
17495 else
17496 inst.instruction |= inst.cond << 28;
17497 inst.size = INSN_SIZE;
17498 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
17499 {
17500 it_fsm_pre_encode ();
17501 opcode->aencode ();
17502 it_fsm_post_encode ();
17503 }
17504 /* Arm mode bx is marked as both v4T and v5 because it's still required
17505 on a hypothetical non-thumb v5 core. */
17506 if (is_bx)
17507 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
17508 else
17509 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
17510 *opcode->avariant);
17511
17512 check_neon_suffixes;
17513
17514 if (!inst.error)
17515 {
17516 mapping_state (MAP_ARM);
17517 }
17518 }
17519 else
17520 {
17521 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
17522 "-- `%s'"), str);
17523 return;
17524 }
17525 output_inst (str);
17526 }
17527
17528 static void
17529 check_it_blocks_finished (void)
17530 {
17531 #ifdef OBJ_ELF
17532 asection *sect;
17533
17534 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
17535 if (seg_info (sect)->tc_segment_info_data.current_it.state
17536 == MANUAL_IT_BLOCK)
17537 {
17538 as_warn (_("section '%s' finished with an open IT block."),
17539 sect->name);
17540 }
17541 #else
17542 if (now_it.state == MANUAL_IT_BLOCK)
17543 as_warn (_("file finished with an open IT block."));
17544 #endif
17545 }
17546
17547 /* Various frobbings of labels and their addresses. */
17548
17549 void
17550 arm_start_line_hook (void)
17551 {
17552 last_label_seen = NULL;
17553 }
17554
17555 void
17556 arm_frob_label (symbolS * sym)
17557 {
17558 last_label_seen = sym;
17559
17560 ARM_SET_THUMB (sym, thumb_mode);
17561
17562 #if defined OBJ_COFF || defined OBJ_ELF
17563 ARM_SET_INTERWORK (sym, support_interwork);
17564 #endif
17565
17566 force_automatic_it_block_close ();
17567
17568 /* Note - do not allow local symbols (.Lxxx) to be labelled
17569 as Thumb functions. This is because these labels, whilst
17570 they exist inside Thumb code, are not the entry points for
17571 possible ARM->Thumb calls. Also, these labels can be used
17572 as part of a computed goto or switch statement. eg gcc
17573 can generate code that looks like this:
17574
17575 ldr r2, [pc, .Laaa]
17576 lsl r3, r3, #2
17577 ldr r2, [r3, r2]
17578 mov pc, r2
17579
17580 .Lbbb: .word .Lxxx
17581 .Lccc: .word .Lyyy
17582 ..etc...
17583 .Laaa: .word Lbbb
17584
17585 The first instruction loads the address of the jump table.
17586 The second instruction converts a table index into a byte offset.
17587 The third instruction gets the jump address out of the table.
17588 The fourth instruction performs the jump.
17589
17590 If the address stored at .Laaa is that of a symbol which has the
17591 Thumb_Func bit set, then the linker will arrange for this address
17592 to have the bottom bit set, which in turn would mean that the
17593 address computation performed by the third instruction would end
17594 up with the bottom bit set. Since the ARM is capable of unaligned
17595 word loads, the instruction would then load the incorrect address
17596 out of the jump table, and chaos would ensue. */
17597 if (label_is_thumb_function_name
17598 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
17599 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
17600 {
17601 /* When the address of a Thumb function is taken the bottom
17602 bit of that address should be set. This will allow
17603 interworking between Arm and Thumb functions to work
17604 correctly. */
17605
17606 THUMB_SET_FUNC (sym, 1);
17607
17608 label_is_thumb_function_name = FALSE;
17609 }
17610
17611 dwarf2_emit_label (sym);
17612 }
17613
17614 bfd_boolean
17615 arm_data_in_code (void)
17616 {
17617 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
17618 {
17619 *input_line_pointer = '/';
17620 input_line_pointer += 5;
17621 *input_line_pointer = 0;
17622 return TRUE;
17623 }
17624
17625 return FALSE;
17626 }
17627
17628 char *
17629 arm_canonicalize_symbol_name (char * name)
17630 {
17631 int len;
17632
17633 if (thumb_mode && (len = strlen (name)) > 5
17634 && streq (name + len - 5, "/data"))
17635 *(name + len - 5) = 0;
17636
17637 return name;
17638 }
17639 \f
17640 /* Table of all register names defined by default. The user can
17641 define additional names with .req. Note that all register names
17642 should appear in both upper and lowercase variants. Some registers
17643 also have mixed-case names. */
17644
17645 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
17646 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
17647 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
17648 #define REGSET(p,t) \
17649 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
17650 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
17651 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
17652 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
17653 #define REGSETH(p,t) \
17654 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
17655 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
17656 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
17657 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
17658 #define REGSET2(p,t) \
17659 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
17660 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
17661 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
17662 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
17663 #define SPLRBANK(base,bank,t) \
17664 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
17665 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
17666 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
17667 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
17668 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
17669 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
17670
17671 static const struct reg_entry reg_names[] =
17672 {
17673 /* ARM integer registers. */
17674 REGSET(r, RN), REGSET(R, RN),
17675
17676 /* ATPCS synonyms. */
17677 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17678 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17679 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
17680
17681 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17682 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17683 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
17684
17685 /* Well-known aliases. */
17686 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17687 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17688
17689 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17690 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17691
17692 /* Coprocessor numbers. */
17693 REGSET(p, CP), REGSET(P, CP),
17694
17695 /* Coprocessor register numbers. The "cr" variants are for backward
17696 compatibility. */
17697 REGSET(c, CN), REGSET(C, CN),
17698 REGSET(cr, CN), REGSET(CR, CN),
17699
17700 /* ARM banked registers. */
17701 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17702 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17703 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17704 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17705 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17706 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17707 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17708
17709 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17710 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17711 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17712 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17713 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17714 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
17715 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17716 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17717
17718 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17719 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17720 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17721 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17722 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17723 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17724 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
17725 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
17726 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17727
17728 /* FPA registers. */
17729 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17730 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17731
17732 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17733 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17734
17735 /* VFP SP registers. */
17736 REGSET(s,VFS), REGSET(S,VFS),
17737 REGSETH(s,VFS), REGSETH(S,VFS),
17738
17739 /* VFP DP Registers. */
17740 REGSET(d,VFD), REGSET(D,VFD),
17741 /* Extra Neon DP registers. */
17742 REGSETH(d,VFD), REGSETH(D,VFD),
17743
17744 /* Neon QP registers. */
17745 REGSET2(q,NQ), REGSET2(Q,NQ),
17746
17747 /* VFP control registers. */
17748 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17749 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
17750 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17751 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17752 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17753 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
17754
17755 /* Maverick DSP coprocessor registers. */
17756 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17757 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17758
17759 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17760 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17761 REGDEF(dspsc,0,DSPSC),
17762
17763 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17764 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17765 REGDEF(DSPSC,0,DSPSC),
17766
17767 /* iWMMXt data registers - p0, c0-15. */
17768 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17769
17770 /* iWMMXt control registers - p1, c0-3. */
17771 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17772 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17773 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17774 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17775
17776 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17777 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17778 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17779 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17780 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17781
17782 /* XScale accumulator registers. */
17783 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17784 };
17785 #undef REGDEF
17786 #undef REGNUM
17787 #undef REGSET
17788
17789 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17790 within psr_required_here. */
17791 static const struct asm_psr psrs[] =
17792 {
17793 /* Backward compatibility notation. Note that "all" is no longer
17794 truly all possible PSR bits. */
17795 {"all", PSR_c | PSR_f},
17796 {"flg", PSR_f},
17797 {"ctl", PSR_c},
17798
17799 /* Individual flags. */
17800 {"f", PSR_f},
17801 {"c", PSR_c},
17802 {"x", PSR_x},
17803 {"s", PSR_s},
17804
17805 /* Combinations of flags. */
17806 {"fs", PSR_f | PSR_s},
17807 {"fx", PSR_f | PSR_x},
17808 {"fc", PSR_f | PSR_c},
17809 {"sf", PSR_s | PSR_f},
17810 {"sx", PSR_s | PSR_x},
17811 {"sc", PSR_s | PSR_c},
17812 {"xf", PSR_x | PSR_f},
17813 {"xs", PSR_x | PSR_s},
17814 {"xc", PSR_x | PSR_c},
17815 {"cf", PSR_c | PSR_f},
17816 {"cs", PSR_c | PSR_s},
17817 {"cx", PSR_c | PSR_x},
17818 {"fsx", PSR_f | PSR_s | PSR_x},
17819 {"fsc", PSR_f | PSR_s | PSR_c},
17820 {"fxs", PSR_f | PSR_x | PSR_s},
17821 {"fxc", PSR_f | PSR_x | PSR_c},
17822 {"fcs", PSR_f | PSR_c | PSR_s},
17823 {"fcx", PSR_f | PSR_c | PSR_x},
17824 {"sfx", PSR_s | PSR_f | PSR_x},
17825 {"sfc", PSR_s | PSR_f | PSR_c},
17826 {"sxf", PSR_s | PSR_x | PSR_f},
17827 {"sxc", PSR_s | PSR_x | PSR_c},
17828 {"scf", PSR_s | PSR_c | PSR_f},
17829 {"scx", PSR_s | PSR_c | PSR_x},
17830 {"xfs", PSR_x | PSR_f | PSR_s},
17831 {"xfc", PSR_x | PSR_f | PSR_c},
17832 {"xsf", PSR_x | PSR_s | PSR_f},
17833 {"xsc", PSR_x | PSR_s | PSR_c},
17834 {"xcf", PSR_x | PSR_c | PSR_f},
17835 {"xcs", PSR_x | PSR_c | PSR_s},
17836 {"cfs", PSR_c | PSR_f | PSR_s},
17837 {"cfx", PSR_c | PSR_f | PSR_x},
17838 {"csf", PSR_c | PSR_s | PSR_f},
17839 {"csx", PSR_c | PSR_s | PSR_x},
17840 {"cxf", PSR_c | PSR_x | PSR_f},
17841 {"cxs", PSR_c | PSR_x | PSR_s},
17842 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17843 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17844 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17845 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17846 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17847 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17848 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17849 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17850 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17851 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17852 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17853 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17854 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17855 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17856 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17857 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17858 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17859 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17860 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17861 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17862 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17863 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17864 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17865 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17866 };
17867
17868 /* Table of V7M psr names. */
17869 static const struct asm_psr v7m_psrs[] =
17870 {
17871 {"apsr", 0 }, {"APSR", 0 },
17872 {"iapsr", 1 }, {"IAPSR", 1 },
17873 {"eapsr", 2 }, {"EAPSR", 2 },
17874 {"psr", 3 }, {"PSR", 3 },
17875 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17876 {"ipsr", 5 }, {"IPSR", 5 },
17877 {"epsr", 6 }, {"EPSR", 6 },
17878 {"iepsr", 7 }, {"IEPSR", 7 },
17879 {"msp", 8 }, {"MSP", 8 },
17880 {"psp", 9 }, {"PSP", 9 },
17881 {"primask", 16}, {"PRIMASK", 16},
17882 {"basepri", 17}, {"BASEPRI", 17},
17883 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17884 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17885 {"faultmask", 19}, {"FAULTMASK", 19},
17886 {"control", 20}, {"CONTROL", 20}
17887 };
17888
17889 /* Table of all shift-in-operand names. */
17890 static const struct asm_shift_name shift_names [] =
17891 {
17892 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17893 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17894 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17895 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17896 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17897 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17898 };
17899
17900 /* Table of all explicit relocation names. */
17901 #ifdef OBJ_ELF
17902 static struct reloc_entry reloc_names[] =
17903 {
17904 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17905 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17906 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17907 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17908 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17909 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17910 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17911 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17912 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17913 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17914 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17915 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17916 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17917 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17918 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17919 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17920 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17921 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17922 };
17923 #endif
17924
17925 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17926 static const struct asm_cond conds[] =
17927 {
17928 {"eq", 0x0},
17929 {"ne", 0x1},
17930 {"cs", 0x2}, {"hs", 0x2},
17931 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17932 {"mi", 0x4},
17933 {"pl", 0x5},
17934 {"vs", 0x6},
17935 {"vc", 0x7},
17936 {"hi", 0x8},
17937 {"ls", 0x9},
17938 {"ge", 0xa},
17939 {"lt", 0xb},
17940 {"gt", 0xc},
17941 {"le", 0xd},
17942 {"al", 0xe}
17943 };
17944
17945 #define UL_BARRIER(L,U,CODE,FEAT) \
17946 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17947 { U, CODE, ARM_FEATURE (FEAT, 0) }
17948
17949 static struct asm_barrier_opt barrier_opt_names[] =
17950 {
17951 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17952 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17953 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17954 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17955 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17956 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17957 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17958 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17959 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17960 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17961 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17962 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17963 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17964 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17965 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17966 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
17967 };
17968
17969 #undef UL_BARRIER
17970
17971 /* Table of ARM-format instructions. */
17972
17973 /* Macros for gluing together operand strings. N.B. In all cases
17974 other than OPS0, the trailing OP_stop comes from default
17975 zero-initialization of the unspecified elements of the array. */
17976 #define OPS0() { OP_stop, }
17977 #define OPS1(a) { OP_##a, }
17978 #define OPS2(a,b) { OP_##a,OP_##b, }
17979 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17980 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17981 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17982 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17983
17984 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17985 This is useful when mixing operands for ARM and THUMB, i.e. using the
17986 MIX_ARM_THUMB_OPERANDS macro.
17987 In order to use these macros, prefix the number of operands with _
17988 e.g. _3. */
17989 #define OPS_1(a) { a, }
17990 #define OPS_2(a,b) { a,b, }
17991 #define OPS_3(a,b,c) { a,b,c, }
17992 #define OPS_4(a,b,c,d) { a,b,c,d, }
17993 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17994 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17995
17996 /* These macros abstract out the exact format of the mnemonic table and
17997 save some repeated characters. */
17998
17999 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
18000 #define TxCE(mnem, op, top, nops, ops, ae, te) \
18001 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
18002 THUMB_VARIANT, do_##ae, do_##te }
18003
18004 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
18005 a T_MNEM_xyz enumerator. */
18006 #define TCE(mnem, aop, top, nops, ops, ae, te) \
18007 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
18008 #define tCE(mnem, aop, top, nops, ops, ae, te) \
18009 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18010
18011 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
18012 infix after the third character. */
18013 #define TxC3(mnem, op, top, nops, ops, ae, te) \
18014 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
18015 THUMB_VARIANT, do_##ae, do_##te }
18016 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
18017 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
18018 THUMB_VARIANT, do_##ae, do_##te }
18019 #define TC3(mnem, aop, top, nops, ops, ae, te) \
18020 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
18021 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
18022 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
18023 #define tC3(mnem, aop, top, nops, ops, ae, te) \
18024 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18025 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
18026 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18027
18028 /* Mnemonic that cannot be conditionalized. The ARM condition-code
18029 field is still 0xE. Many of the Thumb variants can be executed
18030 conditionally, so this is checked separately. */
18031 #define TUE(mnem, op, top, nops, ops, ae, te) \
18032 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
18033 THUMB_VARIANT, do_##ae, do_##te }
18034
18035 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
18036 Used by mnemonics that have very minimal differences in the encoding for
18037 ARM and Thumb variants and can be handled in a common function. */
18038 #define TUEc(mnem, op, top, nops, ops, en) \
18039 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
18040 THUMB_VARIANT, do_##en, do_##en }
18041
18042 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
18043 condition code field. */
18044 #define TUF(mnem, op, top, nops, ops, ae, te) \
18045 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
18046 THUMB_VARIANT, do_##ae, do_##te }
18047
18048 /* ARM-only variants of all the above. */
18049 #define CE(mnem, op, nops, ops, ae) \
18050 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18051
18052 #define C3(mnem, op, nops, ops, ae) \
18053 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18054
18055 /* Legacy mnemonics that always have conditional infix after the third
18056 character. */
18057 #define CL(mnem, op, nops, ops, ae) \
18058 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
18059 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18060
18061 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
18062 #define cCE(mnem, op, nops, ops, ae) \
18063 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18064
18065 /* Legacy coprocessor instructions where conditional infix and conditional
18066 suffix are ambiguous. For consistency this includes all FPA instructions,
18067 not just the potentially ambiguous ones. */
18068 #define cCL(mnem, op, nops, ops, ae) \
18069 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
18070 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18071
18072 /* Coprocessor, takes either a suffix or a position-3 infix
18073 (for an FPA corner case). */
18074 #define C3E(mnem, op, nops, ops, ae) \
18075 { mnem, OPS##nops ops, OT_csuf_or_in3, \
18076 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18077
18078 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
18079 { m1 #m2 m3, OPS##nops ops, \
18080 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
18081 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18082
18083 #define CM(m1, m2, op, nops, ops, ae) \
18084 xCM_ (m1, , m2, op, nops, ops, ae), \
18085 xCM_ (m1, eq, m2, op, nops, ops, ae), \
18086 xCM_ (m1, ne, m2, op, nops, ops, ae), \
18087 xCM_ (m1, cs, m2, op, nops, ops, ae), \
18088 xCM_ (m1, hs, m2, op, nops, ops, ae), \
18089 xCM_ (m1, cc, m2, op, nops, ops, ae), \
18090 xCM_ (m1, ul, m2, op, nops, ops, ae), \
18091 xCM_ (m1, lo, m2, op, nops, ops, ae), \
18092 xCM_ (m1, mi, m2, op, nops, ops, ae), \
18093 xCM_ (m1, pl, m2, op, nops, ops, ae), \
18094 xCM_ (m1, vs, m2, op, nops, ops, ae), \
18095 xCM_ (m1, vc, m2, op, nops, ops, ae), \
18096 xCM_ (m1, hi, m2, op, nops, ops, ae), \
18097 xCM_ (m1, ls, m2, op, nops, ops, ae), \
18098 xCM_ (m1, ge, m2, op, nops, ops, ae), \
18099 xCM_ (m1, lt, m2, op, nops, ops, ae), \
18100 xCM_ (m1, gt, m2, op, nops, ops, ae), \
18101 xCM_ (m1, le, m2, op, nops, ops, ae), \
18102 xCM_ (m1, al, m2, op, nops, ops, ae)
18103
18104 #define UE(mnem, op, nops, ops, ae) \
18105 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
18106
18107 #define UF(mnem, op, nops, ops, ae) \
18108 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
18109
18110 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
18111 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
18112 use the same encoding function for each. */
18113 #define NUF(mnem, op, nops, ops, enc) \
18114 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
18115 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18116
18117 /* Neon data processing, version which indirects through neon_enc_tab for
18118 the various overloaded versions of opcodes. */
18119 #define nUF(mnem, op, nops, ops, enc) \
18120 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
18121 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18122
18123 /* Neon insn with conditional suffix for the ARM version, non-overloaded
18124 version. */
18125 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
18126 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
18127 THUMB_VARIANT, do_##enc, do_##enc }
18128
18129 #define NCE(mnem, op, nops, ops, enc) \
18130 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
18131
18132 #define NCEF(mnem, op, nops, ops, enc) \
18133 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
18134
18135 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
18136 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
18137 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
18138 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18139
18140 #define nCE(mnem, op, nops, ops, enc) \
18141 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
18142
18143 #define nCEF(mnem, op, nops, ops, enc) \
18144 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
18145
18146 #define do_0 0
18147
18148 static const struct asm_opcode insns[] =
18149 {
18150 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
18151 #define THUMB_VARIANT & arm_ext_v4t
18152 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
18153 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
18154 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
18155 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
18156 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
18157 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
18158 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
18159 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
18160 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
18161 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
18162 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
18163 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
18164 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
18165 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
18166 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
18167 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
18168
18169 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
18170 for setting PSR flag bits. They are obsolete in V6 and do not
18171 have Thumb equivalents. */
18172 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
18173 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
18174 CL("tstp", 110f000, 2, (RR, SH), cmp),
18175 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
18176 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
18177 CL("cmpp", 150f000, 2, (RR, SH), cmp),
18178 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
18179 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
18180 CL("cmnp", 170f000, 2, (RR, SH), cmp),
18181
18182 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
18183 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
18184 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
18185 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
18186
18187 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
18188 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
18189 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
18190 OP_RRnpc),
18191 OP_ADDRGLDR),ldst, t_ldst),
18192 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
18193
18194 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18195 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18196 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18197 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18198 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18199 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18200
18201 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
18202 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
18203 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
18204 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
18205
18206 /* Pseudo ops. */
18207 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
18208 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
18209 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
18210 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
18211
18212 /* Thumb-compatibility pseudo ops. */
18213 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
18214 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
18215 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
18216 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
18217 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
18218 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
18219 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
18220 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
18221 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
18222 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
18223 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
18224 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
18225
18226 /* These may simplify to neg. */
18227 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
18228 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
18229
18230 #undef THUMB_VARIANT
18231 #define THUMB_VARIANT & arm_ext_v6
18232
18233 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
18234
18235 /* V1 instructions with no Thumb analogue prior to V6T2. */
18236 #undef THUMB_VARIANT
18237 #define THUMB_VARIANT & arm_ext_v6t2
18238
18239 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18240 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18241 CL("teqp", 130f000, 2, (RR, SH), cmp),
18242
18243 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18244 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18245 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
18246 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18247
18248 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18249 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18250
18251 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18252 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18253
18254 /* V1 instructions with no Thumb analogue at all. */
18255 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
18256 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
18257
18258 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
18259 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
18260 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
18261 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
18262 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
18263 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
18264 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
18265 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
18266
18267 #undef ARM_VARIANT
18268 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
18269 #undef THUMB_VARIANT
18270 #define THUMB_VARIANT & arm_ext_v4t
18271
18272 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18273 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18274
18275 #undef THUMB_VARIANT
18276 #define THUMB_VARIANT & arm_ext_v6t2
18277
18278 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18279 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
18280
18281 /* Generic coprocessor instructions. */
18282 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18283 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18284 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18285 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18286 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18287 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18288 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
18289
18290 #undef ARM_VARIANT
18291 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
18292
18293 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18294 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18295
18296 #undef ARM_VARIANT
18297 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
18298 #undef THUMB_VARIANT
18299 #define THUMB_VARIANT & arm_ext_msr
18300
18301 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
18302 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
18303
18304 #undef ARM_VARIANT
18305 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
18306 #undef THUMB_VARIANT
18307 #define THUMB_VARIANT & arm_ext_v6t2
18308
18309 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18310 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18311 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18312 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18313 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18314 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18315 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18316 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18317
18318 #undef ARM_VARIANT
18319 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
18320 #undef THUMB_VARIANT
18321 #define THUMB_VARIANT & arm_ext_v4t
18322
18323 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18324 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18325 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18326 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18327 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18328 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18329
18330 #undef ARM_VARIANT
18331 #define ARM_VARIANT & arm_ext_v4t_5
18332
18333 /* ARM Architecture 4T. */
18334 /* Note: bx (and blx) are required on V5, even if the processor does
18335 not support Thumb. */
18336 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
18337
18338 #undef ARM_VARIANT
18339 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
18340 #undef THUMB_VARIANT
18341 #define THUMB_VARIANT & arm_ext_v5t
18342
18343 /* Note: blx has 2 variants; the .value coded here is for
18344 BLX(2). Only this variant has conditional execution. */
18345 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
18346 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
18347
18348 #undef THUMB_VARIANT
18349 #define THUMB_VARIANT & arm_ext_v6t2
18350
18351 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
18352 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18353 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18354 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18355 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18356 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18357 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18358 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18359
18360 #undef ARM_VARIANT
18361 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
18362 #undef THUMB_VARIANT
18363 #define THUMB_VARIANT & arm_ext_v5exp
18364
18365 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18366 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18367 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18368 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18369
18370 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18371 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18372
18373 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18374 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18375 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18376 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18377
18378 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18379 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18380 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18381 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18382
18383 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18384 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18385
18386 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18387 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18388 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18389 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18390
18391 #undef ARM_VARIANT
18392 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
18393 #undef THUMB_VARIANT
18394 #define THUMB_VARIANT & arm_ext_v6t2
18395
18396 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
18397 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
18398 ldrd, t_ldstd),
18399 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
18400 ADDRGLDRS), ldrd, t_ldstd),
18401
18402 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18403 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18404
18405 #undef ARM_VARIANT
18406 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
18407
18408 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
18409
18410 #undef ARM_VARIANT
18411 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
18412 #undef THUMB_VARIANT
18413 #define THUMB_VARIANT & arm_ext_v6
18414
18415 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
18416 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
18417 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18418 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18419 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18420 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18421 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18422 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18423 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18424 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
18425
18426 #undef THUMB_VARIANT
18427 #define THUMB_VARIANT & arm_ext_v6t2
18428
18429 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
18430 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18431 strex, t_strex),
18432 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18433 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18434
18435 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
18436 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
18437
18438 /* ARM V6 not included in V7M. */
18439 #undef THUMB_VARIANT
18440 #define THUMB_VARIANT & arm_ext_v6_notm
18441 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18442 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18443 UF(rfeib, 9900a00, 1, (RRw), rfe),
18444 UF(rfeda, 8100a00, 1, (RRw), rfe),
18445 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18446 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18447 UF(rfefa, 8100a00, 1, (RRw), rfe),
18448 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18449 UF(rfeed, 9900a00, 1, (RRw), rfe),
18450 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18451 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18452 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18453 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
18454 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
18455 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
18456 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
18457 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18458 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18459
18460 /* ARM V6 not included in V7M (eg. integer SIMD). */
18461 #undef THUMB_VARIANT
18462 #define THUMB_VARIANT & arm_ext_v6_dsp
18463 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
18464 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
18465 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
18466 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18467 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18468 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18469 /* Old name for QASX. */
18470 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18471 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18472 /* Old name for QSAX. */
18473 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18474 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18475 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18476 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18477 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18478 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18479 /* Old name for SASX. */
18480 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18481 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18482 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18483 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18484 /* Old name for SHASX. */
18485 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18486 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18487 /* Old name for SHSAX. */
18488 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18489 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18490 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18491 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18492 /* Old name for SSAX. */
18493 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18494 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18495 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18496 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18497 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18498 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18499 /* Old name for UASX. */
18500 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18501 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18502 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18503 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18504 /* Old name for UHASX. */
18505 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18506 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18507 /* Old name for UHSAX. */
18508 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18509 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18510 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18511 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18512 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18513 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18514 /* Old name for UQASX. */
18515 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18516 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18517 /* Old name for UQSAX. */
18518 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18519 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18520 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18521 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18522 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18523 /* Old name for USAX. */
18524 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18525 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18526 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18527 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18528 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18529 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18530 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18531 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18532 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18533 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18534 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18535 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18536 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18537 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18538 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18539 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18540 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18541 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18542 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18543 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18544 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18545 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18546 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18547 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18548 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18549 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18550 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18551 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18552 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18553 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
18554 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
18555 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18556 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18557 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
18558
18559 #undef ARM_VARIANT
18560 #define ARM_VARIANT & arm_ext_v6k
18561 #undef THUMB_VARIANT
18562 #define THUMB_VARIANT & arm_ext_v6k
18563
18564 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
18565 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
18566 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
18567 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
18568
18569 #undef THUMB_VARIANT
18570 #define THUMB_VARIANT & arm_ext_v6_notm
18571 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
18572 ldrexd, t_ldrexd),
18573 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
18574 RRnpcb), strexd, t_strexd),
18575
18576 #undef THUMB_VARIANT
18577 #define THUMB_VARIANT & arm_ext_v6t2
18578 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
18579 rd_rn, rd_rn),
18580 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
18581 rd_rn, rd_rn),
18582 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18583 strex, t_strexbh),
18584 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18585 strex, t_strexbh),
18586 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
18587
18588 #undef ARM_VARIANT
18589 #define ARM_VARIANT & arm_ext_sec
18590 #undef THUMB_VARIANT
18591 #define THUMB_VARIANT & arm_ext_sec
18592
18593 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
18594
18595 #undef ARM_VARIANT
18596 #define ARM_VARIANT & arm_ext_virt
18597 #undef THUMB_VARIANT
18598 #define THUMB_VARIANT & arm_ext_virt
18599
18600 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
18601 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
18602
18603 #undef ARM_VARIANT
18604 #define ARM_VARIANT & arm_ext_v6t2
18605 #undef THUMB_VARIANT
18606 #define THUMB_VARIANT & arm_ext_v6t2
18607
18608 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
18609 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
18610 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18611 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18612
18613 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18614 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
18615 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
18616 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
18617
18618 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18619 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18620 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18621 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18622
18623 /* Thumb-only instructions. */
18624 #undef ARM_VARIANT
18625 #define ARM_VARIANT NULL
18626 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
18627 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
18628
18629 /* ARM does not really have an IT instruction, so always allow it.
18630 The opcode is copied from Thumb in order to allow warnings in
18631 -mimplicit-it=[never | arm] modes. */
18632 #undef ARM_VARIANT
18633 #define ARM_VARIANT & arm_ext_v1
18634
18635 TUE("it", bf08, bf08, 1, (COND), it, t_it),
18636 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
18637 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
18638 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
18639 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
18640 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
18641 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
18642 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
18643 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
18644 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
18645 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
18646 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
18647 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
18648 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
18649 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
18650 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
18651 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
18652 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
18653
18654 /* Thumb2 only instructions. */
18655 #undef ARM_VARIANT
18656 #define ARM_VARIANT NULL
18657
18658 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18659 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18660 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18661 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18662 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18663 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
18664
18665 /* Hardware division instructions. */
18666 #undef ARM_VARIANT
18667 #define ARM_VARIANT & arm_ext_adiv
18668 #undef THUMB_VARIANT
18669 #define THUMB_VARIANT & arm_ext_div
18670
18671 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18672 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
18673
18674 /* ARM V6M/V7 instructions. */
18675 #undef ARM_VARIANT
18676 #define ARM_VARIANT & arm_ext_barrier
18677 #undef THUMB_VARIANT
18678 #define THUMB_VARIANT & arm_ext_barrier
18679
18680 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
18681 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
18682 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
18683
18684 /* ARM V7 instructions. */
18685 #undef ARM_VARIANT
18686 #define ARM_VARIANT & arm_ext_v7
18687 #undef THUMB_VARIANT
18688 #define THUMB_VARIANT & arm_ext_v7
18689
18690 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18691 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
18692
18693 #undef ARM_VARIANT
18694 #define ARM_VARIANT & arm_ext_mp
18695 #undef THUMB_VARIANT
18696 #define THUMB_VARIANT & arm_ext_mp
18697
18698 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18699
18700 /* AArchv8 instructions. */
18701 #undef ARM_VARIANT
18702 #define ARM_VARIANT & arm_ext_v8
18703 #undef THUMB_VARIANT
18704 #define THUMB_VARIANT & arm_ext_v8
18705
18706 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
18707 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
18708 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18709 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18710 ldrexd, t_ldrexd),
18711 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18712 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18713 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18714 stlex, t_stlex),
18715 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18716 strexd, t_strexd),
18717 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18718 stlex, t_stlex),
18719 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18720 stlex, t_stlex),
18721 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18722 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18723 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18724 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18725 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18726 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18727
18728 /* ARMv8 T32 only. */
18729 #undef ARM_VARIANT
18730 #define ARM_VARIANT NULL
18731 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18732 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18733 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18734
18735 /* FP for ARMv8. */
18736 #undef ARM_VARIANT
18737 #define ARM_VARIANT & fpu_vfp_ext_armv8
18738 #undef THUMB_VARIANT
18739 #define THUMB_VARIANT & fpu_vfp_ext_armv8
18740
18741 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
18742 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
18743 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
18744 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
18745 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18746 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18747 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
18748 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
18749 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
18750 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
18751 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
18752 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
18753 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
18754 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
18755 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
18756 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
18757 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
18758
18759 /* Crypto v1 extensions. */
18760 #undef ARM_VARIANT
18761 #define ARM_VARIANT & fpu_crypto_ext_armv8
18762 #undef THUMB_VARIANT
18763 #define THUMB_VARIANT & fpu_crypto_ext_armv8
18764
18765 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
18766 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
18767 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
18768 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
18769 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
18770 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
18771 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
18772 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
18773 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
18774 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
18775 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
18776 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
18777 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
18778 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
18779
18780 #undef ARM_VARIANT
18781 #define ARM_VARIANT & crc_ext_armv8
18782 #undef THUMB_VARIANT
18783 #define THUMB_VARIANT & crc_ext_armv8
18784 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
18785 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
18786 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
18787 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
18788 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
18789 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
18790
18791 #undef ARM_VARIANT
18792 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
18793 #undef THUMB_VARIANT
18794 #define THUMB_VARIANT NULL
18795
18796 cCE("wfs", e200110, 1, (RR), rd),
18797 cCE("rfs", e300110, 1, (RR), rd),
18798 cCE("wfc", e400110, 1, (RR), rd),
18799 cCE("rfc", e500110, 1, (RR), rd),
18800
18801 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18802 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18803 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18804 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18805
18806 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18807 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18808 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18809 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18810
18811 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18812 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18813 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18814 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18815 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18816 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18817 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18818 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18819 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18820 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18821 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18822 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18823
18824 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18825 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18826 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18827 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18828 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18829 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18830 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18831 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18832 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18833 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18834 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18835 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18836
18837 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18838 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18839 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18840 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18841 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18842 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18843 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18844 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18845 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18846 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18847 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18848 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18849
18850 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18851 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18852 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18853 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18854 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18855 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18856 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18857 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18858 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18859 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18860 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18861 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18862
18863 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18864 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18865 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18866 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18867 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18868 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18869 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18870 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18871 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18872 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18873 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18874 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18875
18876 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18877 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18878 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18879 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18880 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18881 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18882 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18883 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18884 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18885 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18886 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18887 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18888
18889 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18890 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18891 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18892 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18893 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18894 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18895 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18896 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18897 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18898 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18899 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18900 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18901
18902 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18903 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18904 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18905 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18906 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18907 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18908 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18909 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18910 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18911 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18912 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18913 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18914
18915 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18916 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18917 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18918 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18919 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18920 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18921 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18922 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18923 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18924 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18925 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18926 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18927
18928 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18929 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18930 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18931 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18932 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18933 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18934 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18935 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18936 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18937 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18938 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18939 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18940
18941 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18942 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18943 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18944 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18945 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18946 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18947 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18948 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18949 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18950 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18951 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18952 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18953
18954 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18955 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18956 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18957 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18958 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18959 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18960 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18961 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18962 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18963 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18964 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18965 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18966
18967 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18968 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18969 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18970 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18971 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18972 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18973 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18974 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18975 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18976 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18977 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18978 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18979
18980 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18981 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18982 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18983 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18984 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18985 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18986 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18987 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18988 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18989 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18990 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18991 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18992
18993 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18994 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18995 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18996 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18997 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18998 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18999 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
19000 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
19001 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
19002 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
19003 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
19004 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
19005
19006 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
19007 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
19008 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
19009 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
19010 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
19011 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
19012 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
19013 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
19014 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
19015 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
19016 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
19017 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
19018
19019 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
19020 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
19021 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
19022 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
19023 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
19024 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19025 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19026 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19027 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
19028 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
19029 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
19030 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
19031
19032 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
19033 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
19034 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
19035 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
19036 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
19037 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19038 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19039 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19040 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
19041 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
19042 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
19043 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
19044
19045 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
19046 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
19047 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
19048 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
19049 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
19050 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19051 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19052 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19053 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
19054 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
19055 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
19056 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
19057
19058 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
19059 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
19060 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
19061 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
19062 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
19063 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19064 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19065 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19066 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
19067 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
19068 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
19069 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
19070
19071 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
19072 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
19073 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
19074 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
19075 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
19076 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19077 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19078 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19079 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
19080 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
19081 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
19082 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
19083
19084 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
19085 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
19086 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
19087 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
19088 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
19089 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19090 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19091 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19092 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
19093 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
19094 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
19095 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
19096
19097 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
19098 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
19099 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
19100 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
19101 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
19102 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19103 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19104 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19105 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
19106 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
19107 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
19108 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
19109
19110 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
19111 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
19112 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
19113 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
19114 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
19115 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19116 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19117 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19118 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
19119 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
19120 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
19121 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
19122
19123 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
19124 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
19125 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
19126 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
19127 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
19128 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19129 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19130 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19131 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
19132 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
19133 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
19134 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
19135
19136 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
19137 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
19138 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
19139 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
19140 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
19141 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19142 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19143 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19144 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
19145 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
19146 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
19147 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
19148
19149 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19150 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19151 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19152 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19153 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19154 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19155 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19156 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19157 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19158 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19159 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19160 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19161
19162 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19163 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19164 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19165 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19166 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19167 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19168 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19169 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19170 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19171 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19172 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19173 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19174
19175 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19176 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19177 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19178 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19179 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19180 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19181 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19182 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19183 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19184 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19185 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19186 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19187
19188 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
19189 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
19190 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
19191 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
19192
19193 cCL("flts", e000110, 2, (RF, RR), rn_rd),
19194 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
19195 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
19196 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
19197 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
19198 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
19199 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
19200 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
19201 cCL("flte", e080110, 2, (RF, RR), rn_rd),
19202 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
19203 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
19204 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
19205
19206 /* The implementation of the FIX instruction is broken on some
19207 assemblers, in that it accepts a precision specifier as well as a
19208 rounding specifier, despite the fact that this is meaningless.
19209 To be more compatible, we accept it as well, though of course it
19210 does not set any bits. */
19211 cCE("fix", e100110, 2, (RR, RF), rd_rm),
19212 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
19213 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
19214 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
19215 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
19216 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
19217 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
19218 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
19219 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
19220 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
19221 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
19222 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
19223 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
19224
19225 /* Instructions that were new with the real FPA, call them V2. */
19226 #undef ARM_VARIANT
19227 #define ARM_VARIANT & fpu_fpa_ext_v2
19228
19229 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19230 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19231 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19232 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19233 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19234 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19235
19236 #undef ARM_VARIANT
19237 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
19238
19239 /* Moves and type conversions. */
19240 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
19241 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
19242 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
19243 cCE("fmstat", ef1fa10, 0, (), noargs),
19244 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
19245 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
19246 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
19247 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
19248 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
19249 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19250 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
19251 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19252 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
19253 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
19254
19255 /* Memory operations. */
19256 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19257 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19258 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19259 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19260 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19261 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19262 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19263 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19264 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19265 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19266 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19267 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19268 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19269 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19270 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19271 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19272 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19273 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19274
19275 /* Monadic operations. */
19276 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
19277 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
19278 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
19279
19280 /* Dyadic operations. */
19281 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19282 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19283 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19284 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19285 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19286 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19287 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19288 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19289 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19290
19291 /* Comparisons. */
19292 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
19293 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
19294 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
19295 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
19296
19297 /* Double precision load/store are still present on single precision
19298 implementations. */
19299 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19300 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19301 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19302 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19303 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19304 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19305 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19306 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19307 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19308 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19309
19310 #undef ARM_VARIANT
19311 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
19312
19313 /* Moves and type conversions. */
19314 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19315 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19316 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19317 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
19318 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
19319 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
19320 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
19321 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19322 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
19323 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19324 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19325 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19326 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19327
19328 /* Monadic operations. */
19329 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19330 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19331 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19332
19333 /* Dyadic operations. */
19334 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19335 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19336 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19337 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19338 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19339 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19340 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19341 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19342 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19343
19344 /* Comparisons. */
19345 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19346 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
19347 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19348 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
19349
19350 #undef ARM_VARIANT
19351 #define ARM_VARIANT & fpu_vfp_ext_v2
19352
19353 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
19354 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
19355 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
19356 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
19357
19358 /* Instructions which may belong to either the Neon or VFP instruction sets.
19359 Individual encoder functions perform additional architecture checks. */
19360 #undef ARM_VARIANT
19361 #define ARM_VARIANT & fpu_vfp_ext_v1xd
19362 #undef THUMB_VARIANT
19363 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
19364
19365 /* These mnemonics are unique to VFP. */
19366 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
19367 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
19368 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19369 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19370 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19371 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
19372 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
19373 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
19374 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
19375 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
19376
19377 /* Mnemonics shared by Neon and VFP. */
19378 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
19379 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19380 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19381
19382 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19383 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19384
19385 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19386 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19387
19388 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19389 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19390 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19391 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19392 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19393 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19394 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19395 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19396
19397 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
19398 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
19399 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
19400 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
19401
19402
19403 /* NOTE: All VMOV encoding is special-cased! */
19404 NCE(vmov, 0, 1, (VMOV), neon_mov),
19405 NCE(vmovq, 0, 1, (VMOV), neon_mov),
19406
19407 #undef THUMB_VARIANT
19408 #define THUMB_VARIANT & fpu_neon_ext_v1
19409 #undef ARM_VARIANT
19410 #define ARM_VARIANT & fpu_neon_ext_v1
19411
19412 /* Data processing with three registers of the same length. */
19413 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
19414 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
19415 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
19416 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19417 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19418 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19419 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19420 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19421 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19422 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
19423 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19424 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19425 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19426 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19427 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19428 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19429 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19430 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19431 /* If not immediate, fall back to neon_dyadic_i64_su.
19432 shl_imm should accept I8 I16 I32 I64,
19433 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
19434 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
19435 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
19436 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
19437 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
19438 /* Logic ops, types optional & ignored. */
19439 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19440 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19441 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19442 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19443 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19444 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19445 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19446 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19447 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
19448 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
19449 /* Bitfield ops, untyped. */
19450 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19451 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19452 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19453 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19454 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19455 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19456 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
19457 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19458 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19459 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19460 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19461 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19462 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19463 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
19464 back to neon_dyadic_if_su. */
19465 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19466 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19467 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19468 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19469 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19470 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19471 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19472 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19473 /* Comparison. Type I8 I16 I32 F32. */
19474 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
19475 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
19476 /* As above, D registers only. */
19477 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19478 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19479 /* Int and float variants, signedness unimportant. */
19480 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19481 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19482 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
19483 /* Add/sub take types I8 I16 I32 I64 F32. */
19484 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19485 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19486 /* vtst takes sizes 8, 16, 32. */
19487 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
19488 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
19489 /* VMUL takes I8 I16 I32 F32 P8. */
19490 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
19491 /* VQD{R}MULH takes S16 S32. */
19492 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19493 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19494 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19495 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19496 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19497 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19498 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19499 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19500 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19501 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19502 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19503 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19504 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19505 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19506 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19507 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19508
19509 /* Two address, int/float. Types S8 S16 S32 F32. */
19510 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
19511 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
19512
19513 /* Data processing with two registers and a shift amount. */
19514 /* Right shifts, and variants with rounding.
19515 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
19516 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19517 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19518 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19519 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19520 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19521 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19522 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19523 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19524 /* Shift and insert. Sizes accepted 8 16 32 64. */
19525 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
19526 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
19527 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
19528 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
19529 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
19530 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
19531 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
19532 /* Right shift immediate, saturating & narrowing, with rounding variants.
19533 Types accepted S16 S32 S64 U16 U32 U64. */
19534 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19535 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19536 /* As above, unsigned. Types accepted S16 S32 S64. */
19537 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19538 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19539 /* Right shift narrowing. Types accepted I16 I32 I64. */
19540 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19541 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19542 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
19543 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
19544 /* CVT with optional immediate for fixed-point variant. */
19545 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
19546
19547 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
19548 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
19549
19550 /* Data processing, three registers of different lengths. */
19551 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
19552 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
19553 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
19554 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
19555 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
19556 /* If not scalar, fall back to neon_dyadic_long.
19557 Vector types as above, scalar types S16 S32 U16 U32. */
19558 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19559 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19560 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
19561 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19562 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19563 /* Dyadic, narrowing insns. Types I16 I32 I64. */
19564 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19565 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19566 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19567 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19568 /* Saturating doubling multiplies. Types S16 S32. */
19569 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19570 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19571 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19572 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
19573 S16 S32 U16 U32. */
19574 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
19575
19576 /* Extract. Size 8. */
19577 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
19578 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
19579
19580 /* Two registers, miscellaneous. */
19581 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
19582 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
19583 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
19584 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
19585 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
19586 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
19587 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
19588 /* Vector replicate. Sizes 8 16 32. */
19589 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
19590 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
19591 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
19592 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
19593 /* VMOVN. Types I16 I32 I64. */
19594 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
19595 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
19596 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
19597 /* VQMOVUN. Types S16 S32 S64. */
19598 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
19599 /* VZIP / VUZP. Sizes 8 16 32. */
19600 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
19601 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
19602 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
19603 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
19604 /* VQABS / VQNEG. Types S8 S16 S32. */
19605 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19606 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
19607 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19608 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
19609 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
19610 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
19611 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
19612 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
19613 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
19614 /* Reciprocal estimates. Types U32 F32. */
19615 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
19616 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
19617 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
19618 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
19619 /* VCLS. Types S8 S16 S32. */
19620 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
19621 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
19622 /* VCLZ. Types I8 I16 I32. */
19623 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
19624 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
19625 /* VCNT. Size 8. */
19626 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
19627 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
19628 /* Two address, untyped. */
19629 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
19630 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
19631 /* VTRN. Sizes 8 16 32. */
19632 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
19633 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
19634
19635 /* Table lookup. Size 8. */
19636 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19637 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19638
19639 #undef THUMB_VARIANT
19640 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
19641 #undef ARM_VARIANT
19642 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
19643
19644 /* Neon element/structure load/store. */
19645 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19646 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19647 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19648 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19649 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19650 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19651 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19652 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19653
19654 #undef THUMB_VARIANT
19655 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
19656 #undef ARM_VARIANT
19657 #define ARM_VARIANT & fpu_vfp_ext_v3xd
19658 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
19659 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19660 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19661 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19662 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19663 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19664 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19665 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19666 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19667
19668 #undef THUMB_VARIANT
19669 #define THUMB_VARIANT & fpu_vfp_ext_v3
19670 #undef ARM_VARIANT
19671 #define ARM_VARIANT & fpu_vfp_ext_v3
19672
19673 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
19674 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19675 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19676 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19677 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19678 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19679 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19680 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19681 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19682
19683 #undef ARM_VARIANT
19684 #define ARM_VARIANT & fpu_vfp_ext_fma
19685 #undef THUMB_VARIANT
19686 #define THUMB_VARIANT & fpu_vfp_ext_fma
19687 /* Mnemonics shared by Neon and VFP. These are included in the
19688 VFP FMA variant; NEON and VFP FMA always includes the NEON
19689 FMA instructions. */
19690 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19691 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19692 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
19693 the v form should always be used. */
19694 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19695 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19696 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19697 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19698 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19699 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19700
19701 #undef THUMB_VARIANT
19702 #undef ARM_VARIANT
19703 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19704
19705 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19706 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19707 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19708 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19709 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19710 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19711 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19712 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
19713
19714 #undef ARM_VARIANT
19715 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19716
19717 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19718 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19719 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19720 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19721 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19722 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19723 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19724 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19725 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19726 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19727 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19728 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19729 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19730 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19731 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19732 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19733 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19734 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19735 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
19736 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
19737 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19738 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19739 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19740 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19741 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19742 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19743 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
19744 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
19745 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
19746 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19747 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19748 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19749 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19750 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19751 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19752 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19753 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19754 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19755 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19756 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19757 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19758 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19759 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19760 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19761 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19762 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19763 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19764 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19765 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19766 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19767 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19768 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19769 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19770 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19771 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19772 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19773 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19774 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19775 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19776 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19777 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19778 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19779 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19780 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19781 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19782 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19783 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19784 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19785 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19786 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19787 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19788 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19789 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19790 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19791 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19792 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19793 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19794 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19795 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19796 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19797 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19798 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19799 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19800 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19801 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19802 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19803 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19804 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19805 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19806 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19807 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19808 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19809 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19810 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19811 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19812 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19813 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19814 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19815 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19816 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19817 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19818 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19819 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19820 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19821 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19822 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19823 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19824 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19825 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19826 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19827 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19828 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19829 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19830 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19831 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19832 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19833 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19834 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19835 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19836 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19837 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19838 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19839 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19840 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19841 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19842 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19843 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19844 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19845 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19846 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19847 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19848 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19849 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19850 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19851 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19852 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19853 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19854 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19855 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19856 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19857 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19858 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19859 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19860 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19861 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19862 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19863 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19864 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19865 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19866 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19867 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19868 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19869 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19870 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19871 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19872 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19873 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19874 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19875 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19876 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19877 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19878 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19879
19880 #undef ARM_VARIANT
19881 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19882
19883 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19884 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19885 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19886 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19887 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19888 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19889 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19890 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19891 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19892 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19893 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19894 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19895 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19896 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19897 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19898 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19899 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19900 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19901 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19902 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19903 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19904 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19905 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19906 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19907 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19908 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19909 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19910 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19911 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19912 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19913 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19914 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19915 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19916 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19917 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19918 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19919 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19920 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19921 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19922 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19923 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19924 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19925 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19926 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19927 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19928 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19929 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19930 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19931 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19932 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19933 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19934 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19935 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19936 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19937 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19938 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19939 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19940
19941 #undef ARM_VARIANT
19942 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19943
19944 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19945 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19946 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19947 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19948 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19949 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19950 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19951 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19952 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19953 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19954 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19955 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19956 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19957 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19958 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
19959 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
19960 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
19961 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
19962 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
19963 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
19964 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
19965 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
19966 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
19967 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
19968 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19969 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19970 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19971 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19972 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19973 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
19974 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19975 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19976 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19977 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19978 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
19979 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
19980 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
19981 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
19982 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
19983 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
19984 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19985 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19986 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
19987 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
19988 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19989 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19990 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19991 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19992 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19993 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19994 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19995 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19996 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19997 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19998 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19999 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
20000 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
20001 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
20002 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
20003 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
20004 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
20005 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
20006 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
20007 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
20008 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20009 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20010 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20011 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20012 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20013 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20014 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20015 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20016 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
20017 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
20018 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
20019 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
20020 };
20021 #undef ARM_VARIANT
20022 #undef THUMB_VARIANT
20023 #undef TCE
20024 #undef TUE
20025 #undef TUF
20026 #undef TCC
20027 #undef cCE
20028 #undef cCL
20029 #undef C3E
20030 #undef CE
20031 #undef CM
20032 #undef UE
20033 #undef UF
20034 #undef UT
20035 #undef NUF
20036 #undef nUF
20037 #undef NCE
20038 #undef nCE
20039 #undef OPS0
20040 #undef OPS1
20041 #undef OPS2
20042 #undef OPS3
20043 #undef OPS4
20044 #undef OPS5
20045 #undef OPS6
20046 #undef do_0
20047 \f
20048 /* MD interface: bits in the object file. */
20049
20050 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
20051 for use in the a.out file, and stores them in the array pointed to by buf.
20052 This knows about the endian-ness of the target machine and does
20053 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
20054 2 (short) and 4 (long) Floating numbers are put out as a series of
20055 LITTLENUMS (shorts, here at least). */
20056
20057 void
20058 md_number_to_chars (char * buf, valueT val, int n)
20059 {
20060 if (target_big_endian)
20061 number_to_chars_bigendian (buf, val, n);
20062 else
20063 number_to_chars_littleendian (buf, val, n);
20064 }
20065
20066 static valueT
20067 md_chars_to_number (char * buf, int n)
20068 {
20069 valueT result = 0;
20070 unsigned char * where = (unsigned char *) buf;
20071
20072 if (target_big_endian)
20073 {
20074 while (n--)
20075 {
20076 result <<= 8;
20077 result |= (*where++ & 255);
20078 }
20079 }
20080 else
20081 {
20082 while (n--)
20083 {
20084 result <<= 8;
20085 result |= (where[n] & 255);
20086 }
20087 }
20088
20089 return result;
20090 }
20091
20092 /* MD interface: Sections. */
20093
20094 /* Calculate the maximum variable size (i.e., excluding fr_fix)
20095 that an rs_machine_dependent frag may reach. */
20096
20097 unsigned int
20098 arm_frag_max_var (fragS *fragp)
20099 {
20100 /* We only use rs_machine_dependent for variable-size Thumb instructions,
20101 which are either THUMB_SIZE (2) or INSN_SIZE (4).
20102
20103 Note that we generate relaxable instructions even for cases that don't
20104 really need it, like an immediate that's a trivial constant. So we're
20105 overestimating the instruction size for some of those cases. Rather
20106 than putting more intelligence here, it would probably be better to
20107 avoid generating a relaxation frag in the first place when it can be
20108 determined up front that a short instruction will suffice. */
20109
20110 gas_assert (fragp->fr_type == rs_machine_dependent);
20111 return INSN_SIZE;
20112 }
20113
20114 /* Estimate the size of a frag before relaxing. Assume everything fits in
20115 2 bytes. */
20116
20117 int
20118 md_estimate_size_before_relax (fragS * fragp,
20119 segT segtype ATTRIBUTE_UNUSED)
20120 {
20121 fragp->fr_var = 2;
20122 return 2;
20123 }
20124
20125 /* Convert a machine dependent frag. */
20126
20127 void
20128 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
20129 {
20130 unsigned long insn;
20131 unsigned long old_op;
20132 char *buf;
20133 expressionS exp;
20134 fixS *fixp;
20135 int reloc_type;
20136 int pc_rel;
20137 int opcode;
20138
20139 buf = fragp->fr_literal + fragp->fr_fix;
20140
20141 old_op = bfd_get_16(abfd, buf);
20142 if (fragp->fr_symbol)
20143 {
20144 exp.X_op = O_symbol;
20145 exp.X_add_symbol = fragp->fr_symbol;
20146 }
20147 else
20148 {
20149 exp.X_op = O_constant;
20150 }
20151 exp.X_add_number = fragp->fr_offset;
20152 opcode = fragp->fr_subtype;
20153 switch (opcode)
20154 {
20155 case T_MNEM_ldr_pc:
20156 case T_MNEM_ldr_pc2:
20157 case T_MNEM_ldr_sp:
20158 case T_MNEM_str_sp:
20159 case T_MNEM_ldr:
20160 case T_MNEM_ldrb:
20161 case T_MNEM_ldrh:
20162 case T_MNEM_str:
20163 case T_MNEM_strb:
20164 case T_MNEM_strh:
20165 if (fragp->fr_var == 4)
20166 {
20167 insn = THUMB_OP32 (opcode);
20168 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
20169 {
20170 insn |= (old_op & 0x700) << 4;
20171 }
20172 else
20173 {
20174 insn |= (old_op & 7) << 12;
20175 insn |= (old_op & 0x38) << 13;
20176 }
20177 insn |= 0x00000c00;
20178 put_thumb32_insn (buf, insn);
20179 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
20180 }
20181 else
20182 {
20183 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
20184 }
20185 pc_rel = (opcode == T_MNEM_ldr_pc2);
20186 break;
20187 case T_MNEM_adr:
20188 if (fragp->fr_var == 4)
20189 {
20190 insn = THUMB_OP32 (opcode);
20191 insn |= (old_op & 0xf0) << 4;
20192 put_thumb32_insn (buf, insn);
20193 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
20194 }
20195 else
20196 {
20197 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20198 exp.X_add_number -= 4;
20199 }
20200 pc_rel = 1;
20201 break;
20202 case T_MNEM_mov:
20203 case T_MNEM_movs:
20204 case T_MNEM_cmp:
20205 case T_MNEM_cmn:
20206 if (fragp->fr_var == 4)
20207 {
20208 int r0off = (opcode == T_MNEM_mov
20209 || opcode == T_MNEM_movs) ? 0 : 8;
20210 insn = THUMB_OP32 (opcode);
20211 insn = (insn & 0xe1ffffff) | 0x10000000;
20212 insn |= (old_op & 0x700) << r0off;
20213 put_thumb32_insn (buf, insn);
20214 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
20215 }
20216 else
20217 {
20218 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
20219 }
20220 pc_rel = 0;
20221 break;
20222 case T_MNEM_b:
20223 if (fragp->fr_var == 4)
20224 {
20225 insn = THUMB_OP32(opcode);
20226 put_thumb32_insn (buf, insn);
20227 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
20228 }
20229 else
20230 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
20231 pc_rel = 1;
20232 break;
20233 case T_MNEM_bcond:
20234 if (fragp->fr_var == 4)
20235 {
20236 insn = THUMB_OP32(opcode);
20237 insn |= (old_op & 0xf00) << 14;
20238 put_thumb32_insn (buf, insn);
20239 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
20240 }
20241 else
20242 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
20243 pc_rel = 1;
20244 break;
20245 case T_MNEM_add_sp:
20246 case T_MNEM_add_pc:
20247 case T_MNEM_inc_sp:
20248 case T_MNEM_dec_sp:
20249 if (fragp->fr_var == 4)
20250 {
20251 /* ??? Choose between add and addw. */
20252 insn = THUMB_OP32 (opcode);
20253 insn |= (old_op & 0xf0) << 4;
20254 put_thumb32_insn (buf, insn);
20255 if (opcode == T_MNEM_add_pc)
20256 reloc_type = BFD_RELOC_ARM_T32_IMM12;
20257 else
20258 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20259 }
20260 else
20261 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20262 pc_rel = 0;
20263 break;
20264
20265 case T_MNEM_addi:
20266 case T_MNEM_addis:
20267 case T_MNEM_subi:
20268 case T_MNEM_subis:
20269 if (fragp->fr_var == 4)
20270 {
20271 insn = THUMB_OP32 (opcode);
20272 insn |= (old_op & 0xf0) << 4;
20273 insn |= (old_op & 0xf) << 16;
20274 put_thumb32_insn (buf, insn);
20275 if (insn & (1 << 20))
20276 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20277 else
20278 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
20279 }
20280 else
20281 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20282 pc_rel = 0;
20283 break;
20284 default:
20285 abort ();
20286 }
20287 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
20288 (enum bfd_reloc_code_real) reloc_type);
20289 fixp->fx_file = fragp->fr_file;
20290 fixp->fx_line = fragp->fr_line;
20291 fragp->fr_fix += fragp->fr_var;
20292 }
20293
20294 /* Return the size of a relaxable immediate operand instruction.
20295 SHIFT and SIZE specify the form of the allowable immediate. */
20296 static int
20297 relax_immediate (fragS *fragp, int size, int shift)
20298 {
20299 offsetT offset;
20300 offsetT mask;
20301 offsetT low;
20302
20303 /* ??? Should be able to do better than this. */
20304 if (fragp->fr_symbol)
20305 return 4;
20306
20307 low = (1 << shift) - 1;
20308 mask = (1 << (shift + size)) - (1 << shift);
20309 offset = fragp->fr_offset;
20310 /* Force misaligned offsets to 32-bit variant. */
20311 if (offset & low)
20312 return 4;
20313 if (offset & ~mask)
20314 return 4;
20315 return 2;
20316 }
20317
20318 /* Get the address of a symbol during relaxation. */
20319 static addressT
20320 relaxed_symbol_addr (fragS *fragp, long stretch)
20321 {
20322 fragS *sym_frag;
20323 addressT addr;
20324 symbolS *sym;
20325
20326 sym = fragp->fr_symbol;
20327 sym_frag = symbol_get_frag (sym);
20328 know (S_GET_SEGMENT (sym) != absolute_section
20329 || sym_frag == &zero_address_frag);
20330 addr = S_GET_VALUE (sym) + fragp->fr_offset;
20331
20332 /* If frag has yet to be reached on this pass, assume it will
20333 move by STRETCH just as we did. If this is not so, it will
20334 be because some frag between grows, and that will force
20335 another pass. */
20336
20337 if (stretch != 0
20338 && sym_frag->relax_marker != fragp->relax_marker)
20339 {
20340 fragS *f;
20341
20342 /* Adjust stretch for any alignment frag. Note that if have
20343 been expanding the earlier code, the symbol may be
20344 defined in what appears to be an earlier frag. FIXME:
20345 This doesn't handle the fr_subtype field, which specifies
20346 a maximum number of bytes to skip when doing an
20347 alignment. */
20348 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
20349 {
20350 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
20351 {
20352 if (stretch < 0)
20353 stretch = - ((- stretch)
20354 & ~ ((1 << (int) f->fr_offset) - 1));
20355 else
20356 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
20357 if (stretch == 0)
20358 break;
20359 }
20360 }
20361 if (f != NULL)
20362 addr += stretch;
20363 }
20364
20365 return addr;
20366 }
20367
20368 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
20369 load. */
20370 static int
20371 relax_adr (fragS *fragp, asection *sec, long stretch)
20372 {
20373 addressT addr;
20374 offsetT val;
20375
20376 /* Assume worst case for symbols not known to be in the same section. */
20377 if (fragp->fr_symbol == NULL
20378 || !S_IS_DEFINED (fragp->fr_symbol)
20379 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20380 || S_IS_WEAK (fragp->fr_symbol))
20381 return 4;
20382
20383 val = relaxed_symbol_addr (fragp, stretch);
20384 addr = fragp->fr_address + fragp->fr_fix;
20385 addr = (addr + 4) & ~3;
20386 /* Force misaligned targets to 32-bit variant. */
20387 if (val & 3)
20388 return 4;
20389 val -= addr;
20390 if (val < 0 || val > 1020)
20391 return 4;
20392 return 2;
20393 }
20394
20395 /* Return the size of a relaxable add/sub immediate instruction. */
20396 static int
20397 relax_addsub (fragS *fragp, asection *sec)
20398 {
20399 char *buf;
20400 int op;
20401
20402 buf = fragp->fr_literal + fragp->fr_fix;
20403 op = bfd_get_16(sec->owner, buf);
20404 if ((op & 0xf) == ((op >> 4) & 0xf))
20405 return relax_immediate (fragp, 8, 0);
20406 else
20407 return relax_immediate (fragp, 3, 0);
20408 }
20409
20410 /* Return TRUE iff the definition of symbol S could be pre-empted
20411 (overridden) at link or load time. */
20412 static bfd_boolean
20413 symbol_preemptible (symbolS *s)
20414 {
20415 /* Weak symbols can always be pre-empted. */
20416 if (S_IS_WEAK (s))
20417 return TRUE;
20418
20419 /* Non-global symbols cannot be pre-empted. */
20420 if (! S_IS_EXTERNAL (s))
20421 return FALSE;
20422
20423 #ifdef OBJ_ELF
20424 /* In ELF, a global symbol can be marked protected, or private. In that
20425 case it can't be pre-empted (other definitions in the same link unit
20426 would violate the ODR). */
20427 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
20428 return FALSE;
20429 #endif
20430
20431 /* Other global symbols might be pre-empted. */
20432 return TRUE;
20433 }
20434
20435 /* Return the size of a relaxable branch instruction. BITS is the
20436 size of the offset field in the narrow instruction. */
20437
20438 static int
20439 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
20440 {
20441 addressT addr;
20442 offsetT val;
20443 offsetT limit;
20444
20445 /* Assume worst case for symbols not known to be in the same section. */
20446 if (!S_IS_DEFINED (fragp->fr_symbol)
20447 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20448 || S_IS_WEAK (fragp->fr_symbol))
20449 return 4;
20450
20451 #ifdef OBJ_ELF
20452 /* A branch to a function in ARM state will require interworking. */
20453 if (S_IS_DEFINED (fragp->fr_symbol)
20454 && ARM_IS_FUNC (fragp->fr_symbol))
20455 return 4;
20456 #endif
20457
20458 if (symbol_preemptible (fragp->fr_symbol))
20459 return 4;
20460
20461 val = relaxed_symbol_addr (fragp, stretch);
20462 addr = fragp->fr_address + fragp->fr_fix + 4;
20463 val -= addr;
20464
20465 /* Offset is a signed value *2 */
20466 limit = 1 << bits;
20467 if (val >= limit || val < -limit)
20468 return 4;
20469 return 2;
20470 }
20471
20472
20473 /* Relax a machine dependent frag. This returns the amount by which
20474 the current size of the frag should change. */
20475
20476 int
20477 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
20478 {
20479 int oldsize;
20480 int newsize;
20481
20482 oldsize = fragp->fr_var;
20483 switch (fragp->fr_subtype)
20484 {
20485 case T_MNEM_ldr_pc2:
20486 newsize = relax_adr (fragp, sec, stretch);
20487 break;
20488 case T_MNEM_ldr_pc:
20489 case T_MNEM_ldr_sp:
20490 case T_MNEM_str_sp:
20491 newsize = relax_immediate (fragp, 8, 2);
20492 break;
20493 case T_MNEM_ldr:
20494 case T_MNEM_str:
20495 newsize = relax_immediate (fragp, 5, 2);
20496 break;
20497 case T_MNEM_ldrh:
20498 case T_MNEM_strh:
20499 newsize = relax_immediate (fragp, 5, 1);
20500 break;
20501 case T_MNEM_ldrb:
20502 case T_MNEM_strb:
20503 newsize = relax_immediate (fragp, 5, 0);
20504 break;
20505 case T_MNEM_adr:
20506 newsize = relax_adr (fragp, sec, stretch);
20507 break;
20508 case T_MNEM_mov:
20509 case T_MNEM_movs:
20510 case T_MNEM_cmp:
20511 case T_MNEM_cmn:
20512 newsize = relax_immediate (fragp, 8, 0);
20513 break;
20514 case T_MNEM_b:
20515 newsize = relax_branch (fragp, sec, 11, stretch);
20516 break;
20517 case T_MNEM_bcond:
20518 newsize = relax_branch (fragp, sec, 8, stretch);
20519 break;
20520 case T_MNEM_add_sp:
20521 case T_MNEM_add_pc:
20522 newsize = relax_immediate (fragp, 8, 2);
20523 break;
20524 case T_MNEM_inc_sp:
20525 case T_MNEM_dec_sp:
20526 newsize = relax_immediate (fragp, 7, 2);
20527 break;
20528 case T_MNEM_addi:
20529 case T_MNEM_addis:
20530 case T_MNEM_subi:
20531 case T_MNEM_subis:
20532 newsize = relax_addsub (fragp, sec);
20533 break;
20534 default:
20535 abort ();
20536 }
20537
20538 fragp->fr_var = newsize;
20539 /* Freeze wide instructions that are at or before the same location as
20540 in the previous pass. This avoids infinite loops.
20541 Don't freeze them unconditionally because targets may be artificially
20542 misaligned by the expansion of preceding frags. */
20543 if (stretch <= 0 && newsize > 2)
20544 {
20545 md_convert_frag (sec->owner, sec, fragp);
20546 frag_wane (fragp);
20547 }
20548
20549 return newsize - oldsize;
20550 }
20551
20552 /* Round up a section size to the appropriate boundary. */
20553
20554 valueT
20555 md_section_align (segT segment ATTRIBUTE_UNUSED,
20556 valueT size)
20557 {
20558 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
20559 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
20560 {
20561 /* For a.out, force the section size to be aligned. If we don't do
20562 this, BFD will align it for us, but it will not write out the
20563 final bytes of the section. This may be a bug in BFD, but it is
20564 easier to fix it here since that is how the other a.out targets
20565 work. */
20566 int align;
20567
20568 align = bfd_get_section_alignment (stdoutput, segment);
20569 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
20570 }
20571 #endif
20572
20573 return size;
20574 }
20575
20576 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
20577 of an rs_align_code fragment. */
20578
20579 void
20580 arm_handle_align (fragS * fragP)
20581 {
20582 static char const arm_noop[2][2][4] =
20583 {
20584 { /* ARMv1 */
20585 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
20586 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
20587 },
20588 { /* ARMv6k */
20589 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
20590 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
20591 },
20592 };
20593 static char const thumb_noop[2][2][2] =
20594 {
20595 { /* Thumb-1 */
20596 {0xc0, 0x46}, /* LE */
20597 {0x46, 0xc0}, /* BE */
20598 },
20599 { /* Thumb-2 */
20600 {0x00, 0xbf}, /* LE */
20601 {0xbf, 0x00} /* BE */
20602 }
20603 };
20604 static char const wide_thumb_noop[2][4] =
20605 { /* Wide Thumb-2 */
20606 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
20607 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
20608 };
20609
20610 unsigned bytes, fix, noop_size;
20611 char * p;
20612 const char * noop;
20613 const char *narrow_noop = NULL;
20614 #ifdef OBJ_ELF
20615 enum mstate state;
20616 #endif
20617
20618 if (fragP->fr_type != rs_align_code)
20619 return;
20620
20621 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
20622 p = fragP->fr_literal + fragP->fr_fix;
20623 fix = 0;
20624
20625 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
20626 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
20627
20628 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
20629
20630 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
20631 {
20632 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
20633 {
20634 narrow_noop = thumb_noop[1][target_big_endian];
20635 noop = wide_thumb_noop[target_big_endian];
20636 }
20637 else
20638 noop = thumb_noop[0][target_big_endian];
20639 noop_size = 2;
20640 #ifdef OBJ_ELF
20641 state = MAP_THUMB;
20642 #endif
20643 }
20644 else
20645 {
20646 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
20647 [target_big_endian];
20648 noop_size = 4;
20649 #ifdef OBJ_ELF
20650 state = MAP_ARM;
20651 #endif
20652 }
20653
20654 fragP->fr_var = noop_size;
20655
20656 if (bytes & (noop_size - 1))
20657 {
20658 fix = bytes & (noop_size - 1);
20659 #ifdef OBJ_ELF
20660 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
20661 #endif
20662 memset (p, 0, fix);
20663 p += fix;
20664 bytes -= fix;
20665 }
20666
20667 if (narrow_noop)
20668 {
20669 if (bytes & noop_size)
20670 {
20671 /* Insert a narrow noop. */
20672 memcpy (p, narrow_noop, noop_size);
20673 p += noop_size;
20674 bytes -= noop_size;
20675 fix += noop_size;
20676 }
20677
20678 /* Use wide noops for the remainder */
20679 noop_size = 4;
20680 }
20681
20682 while (bytes >= noop_size)
20683 {
20684 memcpy (p, noop, noop_size);
20685 p += noop_size;
20686 bytes -= noop_size;
20687 fix += noop_size;
20688 }
20689
20690 fragP->fr_fix += fix;
20691 }
20692
20693 /* Called from md_do_align. Used to create an alignment
20694 frag in a code section. */
20695
20696 void
20697 arm_frag_align_code (int n, int max)
20698 {
20699 char * p;
20700
20701 /* We assume that there will never be a requirement
20702 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
20703 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
20704 {
20705 char err_msg[128];
20706
20707 sprintf (err_msg,
20708 _("alignments greater than %d bytes not supported in .text sections."),
20709 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20710 as_fatal ("%s", err_msg);
20711 }
20712
20713 p = frag_var (rs_align_code,
20714 MAX_MEM_FOR_RS_ALIGN_CODE,
20715 1,
20716 (relax_substateT) max,
20717 (symbolS *) NULL,
20718 (offsetT) n,
20719 (char *) NULL);
20720 *p = 0;
20721 }
20722
20723 /* Perform target specific initialisation of a frag.
20724 Note - despite the name this initialisation is not done when the frag
20725 is created, but only when its type is assigned. A frag can be created
20726 and used a long time before its type is set, so beware of assuming that
20727 this initialisationis performed first. */
20728
20729 #ifndef OBJ_ELF
20730 void
20731 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
20732 {
20733 /* Record whether this frag is in an ARM or a THUMB area. */
20734 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20735 }
20736
20737 #else /* OBJ_ELF is defined. */
20738 void
20739 arm_init_frag (fragS * fragP, int max_chars)
20740 {
20741 /* If the current ARM vs THUMB mode has not already
20742 been recorded into this frag then do so now. */
20743 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
20744 {
20745 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20746
20747 /* Record a mapping symbol for alignment frags. We will delete this
20748 later if the alignment ends up empty. */
20749 switch (fragP->fr_type)
20750 {
20751 case rs_align:
20752 case rs_align_test:
20753 case rs_fill:
20754 mapping_state_2 (MAP_DATA, max_chars);
20755 break;
20756 case rs_align_code:
20757 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
20758 break;
20759 default:
20760 break;
20761 }
20762 }
20763 }
20764
20765 /* When we change sections we need to issue a new mapping symbol. */
20766
20767 void
20768 arm_elf_change_section (void)
20769 {
20770 /* Link an unlinked unwind index table section to the .text section. */
20771 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20772 && elf_linked_to_section (now_seg) == NULL)
20773 elf_linked_to_section (now_seg) = text_section;
20774 }
20775
20776 int
20777 arm_elf_section_type (const char * str, size_t len)
20778 {
20779 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20780 return SHT_ARM_EXIDX;
20781
20782 return -1;
20783 }
20784 \f
20785 /* Code to deal with unwinding tables. */
20786
20787 static void add_unwind_adjustsp (offsetT);
20788
20789 /* Generate any deferred unwind frame offset. */
20790
20791 static void
20792 flush_pending_unwind (void)
20793 {
20794 offsetT offset;
20795
20796 offset = unwind.pending_offset;
20797 unwind.pending_offset = 0;
20798 if (offset != 0)
20799 add_unwind_adjustsp (offset);
20800 }
20801
20802 /* Add an opcode to this list for this function. Two-byte opcodes should
20803 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20804 order. */
20805
20806 static void
20807 add_unwind_opcode (valueT op, int length)
20808 {
20809 /* Add any deferred stack adjustment. */
20810 if (unwind.pending_offset)
20811 flush_pending_unwind ();
20812
20813 unwind.sp_restored = 0;
20814
20815 if (unwind.opcode_count + length > unwind.opcode_alloc)
20816 {
20817 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20818 if (unwind.opcodes)
20819 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20820 unwind.opcode_alloc);
20821 else
20822 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
20823 }
20824 while (length > 0)
20825 {
20826 length--;
20827 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20828 op >>= 8;
20829 unwind.opcode_count++;
20830 }
20831 }
20832
20833 /* Add unwind opcodes to adjust the stack pointer. */
20834
20835 static void
20836 add_unwind_adjustsp (offsetT offset)
20837 {
20838 valueT op;
20839
20840 if (offset > 0x200)
20841 {
20842 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20843 char bytes[5];
20844 int n;
20845 valueT o;
20846
20847 /* Long form: 0xb2, uleb128. */
20848 /* This might not fit in a word so add the individual bytes,
20849 remembering the list is built in reverse order. */
20850 o = (valueT) ((offset - 0x204) >> 2);
20851 if (o == 0)
20852 add_unwind_opcode (0, 1);
20853
20854 /* Calculate the uleb128 encoding of the offset. */
20855 n = 0;
20856 while (o)
20857 {
20858 bytes[n] = o & 0x7f;
20859 o >>= 7;
20860 if (o)
20861 bytes[n] |= 0x80;
20862 n++;
20863 }
20864 /* Add the insn. */
20865 for (; n; n--)
20866 add_unwind_opcode (bytes[n - 1], 1);
20867 add_unwind_opcode (0xb2, 1);
20868 }
20869 else if (offset > 0x100)
20870 {
20871 /* Two short opcodes. */
20872 add_unwind_opcode (0x3f, 1);
20873 op = (offset - 0x104) >> 2;
20874 add_unwind_opcode (op, 1);
20875 }
20876 else if (offset > 0)
20877 {
20878 /* Short opcode. */
20879 op = (offset - 4) >> 2;
20880 add_unwind_opcode (op, 1);
20881 }
20882 else if (offset < 0)
20883 {
20884 offset = -offset;
20885 while (offset > 0x100)
20886 {
20887 add_unwind_opcode (0x7f, 1);
20888 offset -= 0x100;
20889 }
20890 op = ((offset - 4) >> 2) | 0x40;
20891 add_unwind_opcode (op, 1);
20892 }
20893 }
20894
20895 /* Finish the list of unwind opcodes for this function. */
20896 static void
20897 finish_unwind_opcodes (void)
20898 {
20899 valueT op;
20900
20901 if (unwind.fp_used)
20902 {
20903 /* Adjust sp as necessary. */
20904 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20905 flush_pending_unwind ();
20906
20907 /* After restoring sp from the frame pointer. */
20908 op = 0x90 | unwind.fp_reg;
20909 add_unwind_opcode (op, 1);
20910 }
20911 else
20912 flush_pending_unwind ();
20913 }
20914
20915
20916 /* Start an exception table entry. If idx is nonzero this is an index table
20917 entry. */
20918
20919 static void
20920 start_unwind_section (const segT text_seg, int idx)
20921 {
20922 const char * text_name;
20923 const char * prefix;
20924 const char * prefix_once;
20925 const char * group_name;
20926 size_t prefix_len;
20927 size_t text_len;
20928 char * sec_name;
20929 size_t sec_name_len;
20930 int type;
20931 int flags;
20932 int linkonce;
20933
20934 if (idx)
20935 {
20936 prefix = ELF_STRING_ARM_unwind;
20937 prefix_once = ELF_STRING_ARM_unwind_once;
20938 type = SHT_ARM_EXIDX;
20939 }
20940 else
20941 {
20942 prefix = ELF_STRING_ARM_unwind_info;
20943 prefix_once = ELF_STRING_ARM_unwind_info_once;
20944 type = SHT_PROGBITS;
20945 }
20946
20947 text_name = segment_name (text_seg);
20948 if (streq (text_name, ".text"))
20949 text_name = "";
20950
20951 if (strncmp (text_name, ".gnu.linkonce.t.",
20952 strlen (".gnu.linkonce.t.")) == 0)
20953 {
20954 prefix = prefix_once;
20955 text_name += strlen (".gnu.linkonce.t.");
20956 }
20957
20958 prefix_len = strlen (prefix);
20959 text_len = strlen (text_name);
20960 sec_name_len = prefix_len + text_len;
20961 sec_name = (char *) xmalloc (sec_name_len + 1);
20962 memcpy (sec_name, prefix, prefix_len);
20963 memcpy (sec_name + prefix_len, text_name, text_len);
20964 sec_name[prefix_len + text_len] = '\0';
20965
20966 flags = SHF_ALLOC;
20967 linkonce = 0;
20968 group_name = 0;
20969
20970 /* Handle COMDAT group. */
20971 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20972 {
20973 group_name = elf_group_name (text_seg);
20974 if (group_name == NULL)
20975 {
20976 as_bad (_("Group section `%s' has no group signature"),
20977 segment_name (text_seg));
20978 ignore_rest_of_line ();
20979 return;
20980 }
20981 flags |= SHF_GROUP;
20982 linkonce = 1;
20983 }
20984
20985 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20986
20987 /* Set the section link for index tables. */
20988 if (idx)
20989 elf_linked_to_section (now_seg) = text_seg;
20990 }
20991
20992
20993 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20994 personality routine data. Returns zero, or the index table value for
20995 an inline entry. */
20996
20997 static valueT
20998 create_unwind_entry (int have_data)
20999 {
21000 int size;
21001 addressT where;
21002 char *ptr;
21003 /* The current word of data. */
21004 valueT data;
21005 /* The number of bytes left in this word. */
21006 int n;
21007
21008 finish_unwind_opcodes ();
21009
21010 /* Remember the current text section. */
21011 unwind.saved_seg = now_seg;
21012 unwind.saved_subseg = now_subseg;
21013
21014 start_unwind_section (now_seg, 0);
21015
21016 if (unwind.personality_routine == NULL)
21017 {
21018 if (unwind.personality_index == -2)
21019 {
21020 if (have_data)
21021 as_bad (_("handlerdata in cantunwind frame"));
21022 return 1; /* EXIDX_CANTUNWIND. */
21023 }
21024
21025 /* Use a default personality routine if none is specified. */
21026 if (unwind.personality_index == -1)
21027 {
21028 if (unwind.opcode_count > 3)
21029 unwind.personality_index = 1;
21030 else
21031 unwind.personality_index = 0;
21032 }
21033
21034 /* Space for the personality routine entry. */
21035 if (unwind.personality_index == 0)
21036 {
21037 if (unwind.opcode_count > 3)
21038 as_bad (_("too many unwind opcodes for personality routine 0"));
21039
21040 if (!have_data)
21041 {
21042 /* All the data is inline in the index table. */
21043 data = 0x80;
21044 n = 3;
21045 while (unwind.opcode_count > 0)
21046 {
21047 unwind.opcode_count--;
21048 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
21049 n--;
21050 }
21051
21052 /* Pad with "finish" opcodes. */
21053 while (n--)
21054 data = (data << 8) | 0xb0;
21055
21056 return data;
21057 }
21058 size = 0;
21059 }
21060 else
21061 /* We get two opcodes "free" in the first word. */
21062 size = unwind.opcode_count - 2;
21063 }
21064 else
21065 {
21066 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
21067 if (unwind.personality_index != -1)
21068 {
21069 as_bad (_("attempt to recreate an unwind entry"));
21070 return 1;
21071 }
21072
21073 /* An extra byte is required for the opcode count. */
21074 size = unwind.opcode_count + 1;
21075 }
21076
21077 size = (size + 3) >> 2;
21078 if (size > 0xff)
21079 as_bad (_("too many unwind opcodes"));
21080
21081 frag_align (2, 0, 0);
21082 record_alignment (now_seg, 2);
21083 unwind.table_entry = expr_build_dot ();
21084
21085 /* Allocate the table entry. */
21086 ptr = frag_more ((size << 2) + 4);
21087 /* PR 13449: Zero the table entries in case some of them are not used. */
21088 memset (ptr, 0, (size << 2) + 4);
21089 where = frag_now_fix () - ((size << 2) + 4);
21090
21091 switch (unwind.personality_index)
21092 {
21093 case -1:
21094 /* ??? Should this be a PLT generating relocation? */
21095 /* Custom personality routine. */
21096 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
21097 BFD_RELOC_ARM_PREL31);
21098
21099 where += 4;
21100 ptr += 4;
21101
21102 /* Set the first byte to the number of additional words. */
21103 data = size > 0 ? size - 1 : 0;
21104 n = 3;
21105 break;
21106
21107 /* ABI defined personality routines. */
21108 case 0:
21109 /* Three opcodes bytes are packed into the first word. */
21110 data = 0x80;
21111 n = 3;
21112 break;
21113
21114 case 1:
21115 case 2:
21116 /* The size and first two opcode bytes go in the first word. */
21117 data = ((0x80 + unwind.personality_index) << 8) | size;
21118 n = 2;
21119 break;
21120
21121 default:
21122 /* Should never happen. */
21123 abort ();
21124 }
21125
21126 /* Pack the opcodes into words (MSB first), reversing the list at the same
21127 time. */
21128 while (unwind.opcode_count > 0)
21129 {
21130 if (n == 0)
21131 {
21132 md_number_to_chars (ptr, data, 4);
21133 ptr += 4;
21134 n = 4;
21135 data = 0;
21136 }
21137 unwind.opcode_count--;
21138 n--;
21139 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
21140 }
21141
21142 /* Finish off the last word. */
21143 if (n < 4)
21144 {
21145 /* Pad with "finish" opcodes. */
21146 while (n--)
21147 data = (data << 8) | 0xb0;
21148
21149 md_number_to_chars (ptr, data, 4);
21150 }
21151
21152 if (!have_data)
21153 {
21154 /* Add an empty descriptor if there is no user-specified data. */
21155 ptr = frag_more (4);
21156 md_number_to_chars (ptr, 0, 4);
21157 }
21158
21159 return 0;
21160 }
21161
21162
21163 /* Initialize the DWARF-2 unwind information for this procedure. */
21164
21165 void
21166 tc_arm_frame_initial_instructions (void)
21167 {
21168 cfi_add_CFA_def_cfa (REG_SP, 0);
21169 }
21170 #endif /* OBJ_ELF */
21171
21172 /* Convert REGNAME to a DWARF-2 register number. */
21173
21174 int
21175 tc_arm_regname_to_dw2regnum (char *regname)
21176 {
21177 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
21178 if (reg != FAIL)
21179 return reg;
21180
21181 /* PR 16694: Allow VFP registers as well. */
21182 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
21183 if (reg != FAIL)
21184 return 64 + reg;
21185
21186 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
21187 if (reg != FAIL)
21188 return reg + 256;
21189
21190 return -1;
21191 }
21192
21193 #ifdef TE_PE
21194 void
21195 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
21196 {
21197 expressionS exp;
21198
21199 exp.X_op = O_secrel;
21200 exp.X_add_symbol = symbol;
21201 exp.X_add_number = 0;
21202 emit_expr (&exp, size);
21203 }
21204 #endif
21205
21206 /* MD interface: Symbol and relocation handling. */
21207
21208 /* Return the address within the segment that a PC-relative fixup is
21209 relative to. For ARM, PC-relative fixups applied to instructions
21210 are generally relative to the location of the fixup plus 8 bytes.
21211 Thumb branches are offset by 4, and Thumb loads relative to PC
21212 require special handling. */
21213
21214 long
21215 md_pcrel_from_section (fixS * fixP, segT seg)
21216 {
21217 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
21218
21219 /* If this is pc-relative and we are going to emit a relocation
21220 then we just want to put out any pipeline compensation that the linker
21221 will need. Otherwise we want to use the calculated base.
21222 For WinCE we skip the bias for externals as well, since this
21223 is how the MS ARM-CE assembler behaves and we want to be compatible. */
21224 if (fixP->fx_pcrel
21225 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
21226 || (arm_force_relocation (fixP)
21227 #ifdef TE_WINCE
21228 && !S_IS_EXTERNAL (fixP->fx_addsy)
21229 #endif
21230 )))
21231 base = 0;
21232
21233
21234 switch (fixP->fx_r_type)
21235 {
21236 /* PC relative addressing on the Thumb is slightly odd as the
21237 bottom two bits of the PC are forced to zero for the
21238 calculation. This happens *after* application of the
21239 pipeline offset. However, Thumb adrl already adjusts for
21240 this, so we need not do it again. */
21241 case BFD_RELOC_ARM_THUMB_ADD:
21242 return base & ~3;
21243
21244 case BFD_RELOC_ARM_THUMB_OFFSET:
21245 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21246 case BFD_RELOC_ARM_T32_ADD_PC12:
21247 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21248 return (base + 4) & ~3;
21249
21250 /* Thumb branches are simply offset by +4. */
21251 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21252 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21253 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21254 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21255 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21256 return base + 4;
21257
21258 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21259 if (fixP->fx_addsy
21260 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21261 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21262 && ARM_IS_FUNC (fixP->fx_addsy)
21263 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21264 base = fixP->fx_where + fixP->fx_frag->fr_address;
21265 return base + 4;
21266
21267 /* BLX is like branches above, but forces the low two bits of PC to
21268 zero. */
21269 case BFD_RELOC_THUMB_PCREL_BLX:
21270 if (fixP->fx_addsy
21271 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21272 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21273 && THUMB_IS_FUNC (fixP->fx_addsy)
21274 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21275 base = fixP->fx_where + fixP->fx_frag->fr_address;
21276 return (base + 4) & ~3;
21277
21278 /* ARM mode branches are offset by +8. However, the Windows CE
21279 loader expects the relocation not to take this into account. */
21280 case BFD_RELOC_ARM_PCREL_BLX:
21281 if (fixP->fx_addsy
21282 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21283 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21284 && ARM_IS_FUNC (fixP->fx_addsy)
21285 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21286 base = fixP->fx_where + fixP->fx_frag->fr_address;
21287 return base + 8;
21288
21289 case BFD_RELOC_ARM_PCREL_CALL:
21290 if (fixP->fx_addsy
21291 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21292 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21293 && THUMB_IS_FUNC (fixP->fx_addsy)
21294 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21295 base = fixP->fx_where + fixP->fx_frag->fr_address;
21296 return base + 8;
21297
21298 case BFD_RELOC_ARM_PCREL_BRANCH:
21299 case BFD_RELOC_ARM_PCREL_JUMP:
21300 case BFD_RELOC_ARM_PLT32:
21301 #ifdef TE_WINCE
21302 /* When handling fixups immediately, because we have already
21303 discovered the value of a symbol, or the address of the frag involved
21304 we must account for the offset by +8, as the OS loader will never see the reloc.
21305 see fixup_segment() in write.c
21306 The S_IS_EXTERNAL test handles the case of global symbols.
21307 Those need the calculated base, not just the pipe compensation the linker will need. */
21308 if (fixP->fx_pcrel
21309 && fixP->fx_addsy != NULL
21310 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21311 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
21312 return base + 8;
21313 return base;
21314 #else
21315 return base + 8;
21316 #endif
21317
21318
21319 /* ARM mode loads relative to PC are also offset by +8. Unlike
21320 branches, the Windows CE loader *does* expect the relocation
21321 to take this into account. */
21322 case BFD_RELOC_ARM_OFFSET_IMM:
21323 case BFD_RELOC_ARM_OFFSET_IMM8:
21324 case BFD_RELOC_ARM_HWLITERAL:
21325 case BFD_RELOC_ARM_LITERAL:
21326 case BFD_RELOC_ARM_CP_OFF_IMM:
21327 return base + 8;
21328
21329
21330 /* Other PC-relative relocations are un-offset. */
21331 default:
21332 return base;
21333 }
21334 }
21335
21336 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
21337 Otherwise we have no need to default values of symbols. */
21338
21339 symbolS *
21340 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
21341 {
21342 #ifdef OBJ_ELF
21343 if (name[0] == '_' && name[1] == 'G'
21344 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
21345 {
21346 if (!GOT_symbol)
21347 {
21348 if (symbol_find (name))
21349 as_bad (_("GOT already in the symbol table"));
21350
21351 GOT_symbol = symbol_new (name, undefined_section,
21352 (valueT) 0, & zero_address_frag);
21353 }
21354
21355 return GOT_symbol;
21356 }
21357 #endif
21358
21359 return NULL;
21360 }
21361
21362 /* Subroutine of md_apply_fix. Check to see if an immediate can be
21363 computed as two separate immediate values, added together. We
21364 already know that this value cannot be computed by just one ARM
21365 instruction. */
21366
21367 static unsigned int
21368 validate_immediate_twopart (unsigned int val,
21369 unsigned int * highpart)
21370 {
21371 unsigned int a;
21372 unsigned int i;
21373
21374 for (i = 0; i < 32; i += 2)
21375 if (((a = rotate_left (val, i)) & 0xff) != 0)
21376 {
21377 if (a & 0xff00)
21378 {
21379 if (a & ~ 0xffff)
21380 continue;
21381 * highpart = (a >> 8) | ((i + 24) << 7);
21382 }
21383 else if (a & 0xff0000)
21384 {
21385 if (a & 0xff000000)
21386 continue;
21387 * highpart = (a >> 16) | ((i + 16) << 7);
21388 }
21389 else
21390 {
21391 gas_assert (a & 0xff000000);
21392 * highpart = (a >> 24) | ((i + 8) << 7);
21393 }
21394
21395 return (a & 0xff) | (i << 7);
21396 }
21397
21398 return FAIL;
21399 }
21400
21401 static int
21402 validate_offset_imm (unsigned int val, int hwse)
21403 {
21404 if ((hwse && val > 255) || val > 4095)
21405 return FAIL;
21406 return val;
21407 }
21408
21409 /* Subroutine of md_apply_fix. Do those data_ops which can take a
21410 negative immediate constant by altering the instruction. A bit of
21411 a hack really.
21412 MOV <-> MVN
21413 AND <-> BIC
21414 ADC <-> SBC
21415 by inverting the second operand, and
21416 ADD <-> SUB
21417 CMP <-> CMN
21418 by negating the second operand. */
21419
21420 static int
21421 negate_data_op (unsigned long * instruction,
21422 unsigned long value)
21423 {
21424 int op, new_inst;
21425 unsigned long negated, inverted;
21426
21427 negated = encode_arm_immediate (-value);
21428 inverted = encode_arm_immediate (~value);
21429
21430 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
21431 switch (op)
21432 {
21433 /* First negates. */
21434 case OPCODE_SUB: /* ADD <-> SUB */
21435 new_inst = OPCODE_ADD;
21436 value = negated;
21437 break;
21438
21439 case OPCODE_ADD:
21440 new_inst = OPCODE_SUB;
21441 value = negated;
21442 break;
21443
21444 case OPCODE_CMP: /* CMP <-> CMN */
21445 new_inst = OPCODE_CMN;
21446 value = negated;
21447 break;
21448
21449 case OPCODE_CMN:
21450 new_inst = OPCODE_CMP;
21451 value = negated;
21452 break;
21453
21454 /* Now Inverted ops. */
21455 case OPCODE_MOV: /* MOV <-> MVN */
21456 new_inst = OPCODE_MVN;
21457 value = inverted;
21458 break;
21459
21460 case OPCODE_MVN:
21461 new_inst = OPCODE_MOV;
21462 value = inverted;
21463 break;
21464
21465 case OPCODE_AND: /* AND <-> BIC */
21466 new_inst = OPCODE_BIC;
21467 value = inverted;
21468 break;
21469
21470 case OPCODE_BIC:
21471 new_inst = OPCODE_AND;
21472 value = inverted;
21473 break;
21474
21475 case OPCODE_ADC: /* ADC <-> SBC */
21476 new_inst = OPCODE_SBC;
21477 value = inverted;
21478 break;
21479
21480 case OPCODE_SBC:
21481 new_inst = OPCODE_ADC;
21482 value = inverted;
21483 break;
21484
21485 /* We cannot do anything. */
21486 default:
21487 return FAIL;
21488 }
21489
21490 if (value == (unsigned) FAIL)
21491 return FAIL;
21492
21493 *instruction &= OPCODE_MASK;
21494 *instruction |= new_inst << DATA_OP_SHIFT;
21495 return value;
21496 }
21497
21498 /* Like negate_data_op, but for Thumb-2. */
21499
21500 static unsigned int
21501 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
21502 {
21503 int op, new_inst;
21504 int rd;
21505 unsigned int negated, inverted;
21506
21507 negated = encode_thumb32_immediate (-value);
21508 inverted = encode_thumb32_immediate (~value);
21509
21510 rd = (*instruction >> 8) & 0xf;
21511 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
21512 switch (op)
21513 {
21514 /* ADD <-> SUB. Includes CMP <-> CMN. */
21515 case T2_OPCODE_SUB:
21516 new_inst = T2_OPCODE_ADD;
21517 value = negated;
21518 break;
21519
21520 case T2_OPCODE_ADD:
21521 new_inst = T2_OPCODE_SUB;
21522 value = negated;
21523 break;
21524
21525 /* ORR <-> ORN. Includes MOV <-> MVN. */
21526 case T2_OPCODE_ORR:
21527 new_inst = T2_OPCODE_ORN;
21528 value = inverted;
21529 break;
21530
21531 case T2_OPCODE_ORN:
21532 new_inst = T2_OPCODE_ORR;
21533 value = inverted;
21534 break;
21535
21536 /* AND <-> BIC. TST has no inverted equivalent. */
21537 case T2_OPCODE_AND:
21538 new_inst = T2_OPCODE_BIC;
21539 if (rd == 15)
21540 value = FAIL;
21541 else
21542 value = inverted;
21543 break;
21544
21545 case T2_OPCODE_BIC:
21546 new_inst = T2_OPCODE_AND;
21547 value = inverted;
21548 break;
21549
21550 /* ADC <-> SBC */
21551 case T2_OPCODE_ADC:
21552 new_inst = T2_OPCODE_SBC;
21553 value = inverted;
21554 break;
21555
21556 case T2_OPCODE_SBC:
21557 new_inst = T2_OPCODE_ADC;
21558 value = inverted;
21559 break;
21560
21561 /* We cannot do anything. */
21562 default:
21563 return FAIL;
21564 }
21565
21566 if (value == (unsigned int)FAIL)
21567 return FAIL;
21568
21569 *instruction &= T2_OPCODE_MASK;
21570 *instruction |= new_inst << T2_DATA_OP_SHIFT;
21571 return value;
21572 }
21573
21574 /* Read a 32-bit thumb instruction from buf. */
21575 static unsigned long
21576 get_thumb32_insn (char * buf)
21577 {
21578 unsigned long insn;
21579 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
21580 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21581
21582 return insn;
21583 }
21584
21585
21586 /* We usually want to set the low bit on the address of thumb function
21587 symbols. In particular .word foo - . should have the low bit set.
21588 Generic code tries to fold the difference of two symbols to
21589 a constant. Prevent this and force a relocation when the first symbols
21590 is a thumb function. */
21591
21592 bfd_boolean
21593 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
21594 {
21595 if (op == O_subtract
21596 && l->X_op == O_symbol
21597 && r->X_op == O_symbol
21598 && THUMB_IS_FUNC (l->X_add_symbol))
21599 {
21600 l->X_op = O_subtract;
21601 l->X_op_symbol = r->X_add_symbol;
21602 l->X_add_number -= r->X_add_number;
21603 return TRUE;
21604 }
21605
21606 /* Process as normal. */
21607 return FALSE;
21608 }
21609
21610 /* Encode Thumb2 unconditional branches and calls. The encoding
21611 for the 2 are identical for the immediate values. */
21612
21613 static void
21614 encode_thumb2_b_bl_offset (char * buf, offsetT value)
21615 {
21616 #define T2I1I2MASK ((1 << 13) | (1 << 11))
21617 offsetT newval;
21618 offsetT newval2;
21619 addressT S, I1, I2, lo, hi;
21620
21621 S = (value >> 24) & 0x01;
21622 I1 = (value >> 23) & 0x01;
21623 I2 = (value >> 22) & 0x01;
21624 hi = (value >> 12) & 0x3ff;
21625 lo = (value >> 1) & 0x7ff;
21626 newval = md_chars_to_number (buf, THUMB_SIZE);
21627 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21628 newval |= (S << 10) | hi;
21629 newval2 &= ~T2I1I2MASK;
21630 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
21631 md_number_to_chars (buf, newval, THUMB_SIZE);
21632 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21633 }
21634
21635 void
21636 md_apply_fix (fixS * fixP,
21637 valueT * valP,
21638 segT seg)
21639 {
21640 offsetT value = * valP;
21641 offsetT newval;
21642 unsigned int newimm;
21643 unsigned long temp;
21644 int sign;
21645 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
21646
21647 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
21648
21649 /* Note whether this will delete the relocation. */
21650
21651 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
21652 fixP->fx_done = 1;
21653
21654 /* On a 64-bit host, silently truncate 'value' to 32 bits for
21655 consistency with the behaviour on 32-bit hosts. Remember value
21656 for emit_reloc. */
21657 value &= 0xffffffff;
21658 value ^= 0x80000000;
21659 value -= 0x80000000;
21660
21661 *valP = value;
21662 fixP->fx_addnumber = value;
21663
21664 /* Same treatment for fixP->fx_offset. */
21665 fixP->fx_offset &= 0xffffffff;
21666 fixP->fx_offset ^= 0x80000000;
21667 fixP->fx_offset -= 0x80000000;
21668
21669 switch (fixP->fx_r_type)
21670 {
21671 case BFD_RELOC_NONE:
21672 /* This will need to go in the object file. */
21673 fixP->fx_done = 0;
21674 break;
21675
21676 case BFD_RELOC_ARM_IMMEDIATE:
21677 /* We claim that this fixup has been processed here,
21678 even if in fact we generate an error because we do
21679 not have a reloc for it, so tc_gen_reloc will reject it. */
21680 fixP->fx_done = 1;
21681
21682 if (fixP->fx_addsy)
21683 {
21684 const char *msg = 0;
21685
21686 if (! S_IS_DEFINED (fixP->fx_addsy))
21687 msg = _("undefined symbol %s used as an immediate value");
21688 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21689 msg = _("symbol %s is in a different section");
21690 else if (S_IS_WEAK (fixP->fx_addsy))
21691 msg = _("symbol %s is weak and may be overridden later");
21692
21693 if (msg)
21694 {
21695 as_bad_where (fixP->fx_file, fixP->fx_line,
21696 msg, S_GET_NAME (fixP->fx_addsy));
21697 break;
21698 }
21699 }
21700
21701 temp = md_chars_to_number (buf, INSN_SIZE);
21702
21703 /* If the offset is negative, we should use encoding A2 for ADR. */
21704 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
21705 newimm = negate_data_op (&temp, value);
21706 else
21707 {
21708 newimm = encode_arm_immediate (value);
21709
21710 /* If the instruction will fail, see if we can fix things up by
21711 changing the opcode. */
21712 if (newimm == (unsigned int) FAIL)
21713 newimm = negate_data_op (&temp, value);
21714 }
21715
21716 if (newimm == (unsigned int) FAIL)
21717 {
21718 as_bad_where (fixP->fx_file, fixP->fx_line,
21719 _("invalid constant (%lx) after fixup"),
21720 (unsigned long) value);
21721 break;
21722 }
21723
21724 newimm |= (temp & 0xfffff000);
21725 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21726 break;
21727
21728 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21729 {
21730 unsigned int highpart = 0;
21731 unsigned int newinsn = 0xe1a00000; /* nop. */
21732
21733 if (fixP->fx_addsy)
21734 {
21735 const char *msg = 0;
21736
21737 if (! S_IS_DEFINED (fixP->fx_addsy))
21738 msg = _("undefined symbol %s used as an immediate value");
21739 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21740 msg = _("symbol %s is in a different section");
21741 else if (S_IS_WEAK (fixP->fx_addsy))
21742 msg = _("symbol %s is weak and may be overridden later");
21743
21744 if (msg)
21745 {
21746 as_bad_where (fixP->fx_file, fixP->fx_line,
21747 msg, S_GET_NAME (fixP->fx_addsy));
21748 break;
21749 }
21750 }
21751
21752 newimm = encode_arm_immediate (value);
21753 temp = md_chars_to_number (buf, INSN_SIZE);
21754
21755 /* If the instruction will fail, see if we can fix things up by
21756 changing the opcode. */
21757 if (newimm == (unsigned int) FAIL
21758 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
21759 {
21760 /* No ? OK - try using two ADD instructions to generate
21761 the value. */
21762 newimm = validate_immediate_twopart (value, & highpart);
21763
21764 /* Yes - then make sure that the second instruction is
21765 also an add. */
21766 if (newimm != (unsigned int) FAIL)
21767 newinsn = temp;
21768 /* Still No ? Try using a negated value. */
21769 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
21770 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
21771 /* Otherwise - give up. */
21772 else
21773 {
21774 as_bad_where (fixP->fx_file, fixP->fx_line,
21775 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21776 (long) value);
21777 break;
21778 }
21779
21780 /* Replace the first operand in the 2nd instruction (which
21781 is the PC) with the destination register. We have
21782 already added in the PC in the first instruction and we
21783 do not want to do it again. */
21784 newinsn &= ~ 0xf0000;
21785 newinsn |= ((newinsn & 0x0f000) << 4);
21786 }
21787
21788 newimm |= (temp & 0xfffff000);
21789 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21790
21791 highpart |= (newinsn & 0xfffff000);
21792 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21793 }
21794 break;
21795
21796 case BFD_RELOC_ARM_OFFSET_IMM:
21797 if (!fixP->fx_done && seg->use_rela_p)
21798 value = 0;
21799
21800 case BFD_RELOC_ARM_LITERAL:
21801 sign = value > 0;
21802
21803 if (value < 0)
21804 value = - value;
21805
21806 if (validate_offset_imm (value, 0) == FAIL)
21807 {
21808 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21809 as_bad_where (fixP->fx_file, fixP->fx_line,
21810 _("invalid literal constant: pool needs to be closer"));
21811 else
21812 as_bad_where (fixP->fx_file, fixP->fx_line,
21813 _("bad immediate value for offset (%ld)"),
21814 (long) value);
21815 break;
21816 }
21817
21818 newval = md_chars_to_number (buf, INSN_SIZE);
21819 if (value == 0)
21820 newval &= 0xfffff000;
21821 else
21822 {
21823 newval &= 0xff7ff000;
21824 newval |= value | (sign ? INDEX_UP : 0);
21825 }
21826 md_number_to_chars (buf, newval, INSN_SIZE);
21827 break;
21828
21829 case BFD_RELOC_ARM_OFFSET_IMM8:
21830 case BFD_RELOC_ARM_HWLITERAL:
21831 sign = value > 0;
21832
21833 if (value < 0)
21834 value = - value;
21835
21836 if (validate_offset_imm (value, 1) == FAIL)
21837 {
21838 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21839 as_bad_where (fixP->fx_file, fixP->fx_line,
21840 _("invalid literal constant: pool needs to be closer"));
21841 else
21842 as_bad_where (fixP->fx_file, fixP->fx_line,
21843 _("bad immediate value for 8-bit offset (%ld)"),
21844 (long) value);
21845 break;
21846 }
21847
21848 newval = md_chars_to_number (buf, INSN_SIZE);
21849 if (value == 0)
21850 newval &= 0xfffff0f0;
21851 else
21852 {
21853 newval &= 0xff7ff0f0;
21854 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21855 }
21856 md_number_to_chars (buf, newval, INSN_SIZE);
21857 break;
21858
21859 case BFD_RELOC_ARM_T32_OFFSET_U8:
21860 if (value < 0 || value > 1020 || value % 4 != 0)
21861 as_bad_where (fixP->fx_file, fixP->fx_line,
21862 _("bad immediate value for offset (%ld)"), (long) value);
21863 value /= 4;
21864
21865 newval = md_chars_to_number (buf+2, THUMB_SIZE);
21866 newval |= value;
21867 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21868 break;
21869
21870 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21871 /* This is a complicated relocation used for all varieties of Thumb32
21872 load/store instruction with immediate offset:
21873
21874 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21875 *4, optional writeback(W)
21876 (doubleword load/store)
21877
21878 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21879 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21880 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21881 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21882 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21883
21884 Uppercase letters indicate bits that are already encoded at
21885 this point. Lowercase letters are our problem. For the
21886 second block of instructions, the secondary opcode nybble
21887 (bits 8..11) is present, and bit 23 is zero, even if this is
21888 a PC-relative operation. */
21889 newval = md_chars_to_number (buf, THUMB_SIZE);
21890 newval <<= 16;
21891 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
21892
21893 if ((newval & 0xf0000000) == 0xe0000000)
21894 {
21895 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21896 if (value >= 0)
21897 newval |= (1 << 23);
21898 else
21899 value = -value;
21900 if (value % 4 != 0)
21901 {
21902 as_bad_where (fixP->fx_file, fixP->fx_line,
21903 _("offset not a multiple of 4"));
21904 break;
21905 }
21906 value /= 4;
21907 if (value > 0xff)
21908 {
21909 as_bad_where (fixP->fx_file, fixP->fx_line,
21910 _("offset out of range"));
21911 break;
21912 }
21913 newval &= ~0xff;
21914 }
21915 else if ((newval & 0x000f0000) == 0x000f0000)
21916 {
21917 /* PC-relative, 12-bit offset. */
21918 if (value >= 0)
21919 newval |= (1 << 23);
21920 else
21921 value = -value;
21922 if (value > 0xfff)
21923 {
21924 as_bad_where (fixP->fx_file, fixP->fx_line,
21925 _("offset out of range"));
21926 break;
21927 }
21928 newval &= ~0xfff;
21929 }
21930 else if ((newval & 0x00000100) == 0x00000100)
21931 {
21932 /* Writeback: 8-bit, +/- offset. */
21933 if (value >= 0)
21934 newval |= (1 << 9);
21935 else
21936 value = -value;
21937 if (value > 0xff)
21938 {
21939 as_bad_where (fixP->fx_file, fixP->fx_line,
21940 _("offset out of range"));
21941 break;
21942 }
21943 newval &= ~0xff;
21944 }
21945 else if ((newval & 0x00000f00) == 0x00000e00)
21946 {
21947 /* T-instruction: positive 8-bit offset. */
21948 if (value < 0 || value > 0xff)
21949 {
21950 as_bad_where (fixP->fx_file, fixP->fx_line,
21951 _("offset out of range"));
21952 break;
21953 }
21954 newval &= ~0xff;
21955 newval |= value;
21956 }
21957 else
21958 {
21959 /* Positive 12-bit or negative 8-bit offset. */
21960 int limit;
21961 if (value >= 0)
21962 {
21963 newval |= (1 << 23);
21964 limit = 0xfff;
21965 }
21966 else
21967 {
21968 value = -value;
21969 limit = 0xff;
21970 }
21971 if (value > limit)
21972 {
21973 as_bad_where (fixP->fx_file, fixP->fx_line,
21974 _("offset out of range"));
21975 break;
21976 }
21977 newval &= ~limit;
21978 }
21979
21980 newval |= value;
21981 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21982 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21983 break;
21984
21985 case BFD_RELOC_ARM_SHIFT_IMM:
21986 newval = md_chars_to_number (buf, INSN_SIZE);
21987 if (((unsigned long) value) > 32
21988 || (value == 32
21989 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21990 {
21991 as_bad_where (fixP->fx_file, fixP->fx_line,
21992 _("shift expression is too large"));
21993 break;
21994 }
21995
21996 if (value == 0)
21997 /* Shifts of zero must be done as lsl. */
21998 newval &= ~0x60;
21999 else if (value == 32)
22000 value = 0;
22001 newval &= 0xfffff07f;
22002 newval |= (value & 0x1f) << 7;
22003 md_number_to_chars (buf, newval, INSN_SIZE);
22004 break;
22005
22006 case BFD_RELOC_ARM_T32_IMMEDIATE:
22007 case BFD_RELOC_ARM_T32_ADD_IMM:
22008 case BFD_RELOC_ARM_T32_IMM12:
22009 case BFD_RELOC_ARM_T32_ADD_PC12:
22010 /* We claim that this fixup has been processed here,
22011 even if in fact we generate an error because we do
22012 not have a reloc for it, so tc_gen_reloc will reject it. */
22013 fixP->fx_done = 1;
22014
22015 if (fixP->fx_addsy
22016 && ! S_IS_DEFINED (fixP->fx_addsy))
22017 {
22018 as_bad_where (fixP->fx_file, fixP->fx_line,
22019 _("undefined symbol %s used as an immediate value"),
22020 S_GET_NAME (fixP->fx_addsy));
22021 break;
22022 }
22023
22024 newval = md_chars_to_number (buf, THUMB_SIZE);
22025 newval <<= 16;
22026 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
22027
22028 newimm = FAIL;
22029 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22030 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
22031 {
22032 newimm = encode_thumb32_immediate (value);
22033 if (newimm == (unsigned int) FAIL)
22034 newimm = thumb32_negate_data_op (&newval, value);
22035 }
22036 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
22037 && newimm == (unsigned int) FAIL)
22038 {
22039 /* Turn add/sum into addw/subw. */
22040 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
22041 newval = (newval & 0xfeffffff) | 0x02000000;
22042 /* No flat 12-bit imm encoding for addsw/subsw. */
22043 if ((newval & 0x00100000) == 0)
22044 {
22045 /* 12 bit immediate for addw/subw. */
22046 if (value < 0)
22047 {
22048 value = -value;
22049 newval ^= 0x00a00000;
22050 }
22051 if (value > 0xfff)
22052 newimm = (unsigned int) FAIL;
22053 else
22054 newimm = value;
22055 }
22056 }
22057
22058 if (newimm == (unsigned int)FAIL)
22059 {
22060 as_bad_where (fixP->fx_file, fixP->fx_line,
22061 _("invalid constant (%lx) after fixup"),
22062 (unsigned long) value);
22063 break;
22064 }
22065
22066 newval |= (newimm & 0x800) << 15;
22067 newval |= (newimm & 0x700) << 4;
22068 newval |= (newimm & 0x0ff);
22069
22070 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
22071 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
22072 break;
22073
22074 case BFD_RELOC_ARM_SMC:
22075 if (((unsigned long) value) > 0xffff)
22076 as_bad_where (fixP->fx_file, fixP->fx_line,
22077 _("invalid smc expression"));
22078 newval = md_chars_to_number (buf, INSN_SIZE);
22079 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
22080 md_number_to_chars (buf, newval, INSN_SIZE);
22081 break;
22082
22083 case BFD_RELOC_ARM_HVC:
22084 if (((unsigned long) value) > 0xffff)
22085 as_bad_where (fixP->fx_file, fixP->fx_line,
22086 _("invalid hvc expression"));
22087 newval = md_chars_to_number (buf, INSN_SIZE);
22088 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
22089 md_number_to_chars (buf, newval, INSN_SIZE);
22090 break;
22091
22092 case BFD_RELOC_ARM_SWI:
22093 if (fixP->tc_fix_data != 0)
22094 {
22095 if (((unsigned long) value) > 0xff)
22096 as_bad_where (fixP->fx_file, fixP->fx_line,
22097 _("invalid swi expression"));
22098 newval = md_chars_to_number (buf, THUMB_SIZE);
22099 newval |= value;
22100 md_number_to_chars (buf, newval, THUMB_SIZE);
22101 }
22102 else
22103 {
22104 if (((unsigned long) value) > 0x00ffffff)
22105 as_bad_where (fixP->fx_file, fixP->fx_line,
22106 _("invalid swi expression"));
22107 newval = md_chars_to_number (buf, INSN_SIZE);
22108 newval |= value;
22109 md_number_to_chars (buf, newval, INSN_SIZE);
22110 }
22111 break;
22112
22113 case BFD_RELOC_ARM_MULTI:
22114 if (((unsigned long) value) > 0xffff)
22115 as_bad_where (fixP->fx_file, fixP->fx_line,
22116 _("invalid expression in load/store multiple"));
22117 newval = value | md_chars_to_number (buf, INSN_SIZE);
22118 md_number_to_chars (buf, newval, INSN_SIZE);
22119 break;
22120
22121 #ifdef OBJ_ELF
22122 case BFD_RELOC_ARM_PCREL_CALL:
22123
22124 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22125 && fixP->fx_addsy
22126 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22127 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22128 && THUMB_IS_FUNC (fixP->fx_addsy))
22129 /* Flip the bl to blx. This is a simple flip
22130 bit here because we generate PCREL_CALL for
22131 unconditional bls. */
22132 {
22133 newval = md_chars_to_number (buf, INSN_SIZE);
22134 newval = newval | 0x10000000;
22135 md_number_to_chars (buf, newval, INSN_SIZE);
22136 temp = 1;
22137 fixP->fx_done = 1;
22138 }
22139 else
22140 temp = 3;
22141 goto arm_branch_common;
22142
22143 case BFD_RELOC_ARM_PCREL_JUMP:
22144 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22145 && fixP->fx_addsy
22146 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22147 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22148 && THUMB_IS_FUNC (fixP->fx_addsy))
22149 {
22150 /* This would map to a bl<cond>, b<cond>,
22151 b<always> to a Thumb function. We
22152 need to force a relocation for this particular
22153 case. */
22154 newval = md_chars_to_number (buf, INSN_SIZE);
22155 fixP->fx_done = 0;
22156 }
22157
22158 case BFD_RELOC_ARM_PLT32:
22159 #endif
22160 case BFD_RELOC_ARM_PCREL_BRANCH:
22161 temp = 3;
22162 goto arm_branch_common;
22163
22164 case BFD_RELOC_ARM_PCREL_BLX:
22165
22166 temp = 1;
22167 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22168 && fixP->fx_addsy
22169 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22170 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22171 && ARM_IS_FUNC (fixP->fx_addsy))
22172 {
22173 /* Flip the blx to a bl and warn. */
22174 const char *name = S_GET_NAME (fixP->fx_addsy);
22175 newval = 0xeb000000;
22176 as_warn_where (fixP->fx_file, fixP->fx_line,
22177 _("blx to '%s' an ARM ISA state function changed to bl"),
22178 name);
22179 md_number_to_chars (buf, newval, INSN_SIZE);
22180 temp = 3;
22181 fixP->fx_done = 1;
22182 }
22183
22184 #ifdef OBJ_ELF
22185 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22186 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
22187 #endif
22188
22189 arm_branch_common:
22190 /* We are going to store value (shifted right by two) in the
22191 instruction, in a 24 bit, signed field. Bits 26 through 32 either
22192 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
22193 also be be clear. */
22194 if (value & temp)
22195 as_bad_where (fixP->fx_file, fixP->fx_line,
22196 _("misaligned branch destination"));
22197 if ((value & (offsetT)0xfe000000) != (offsetT)0
22198 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
22199 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22200
22201 if (fixP->fx_done || !seg->use_rela_p)
22202 {
22203 newval = md_chars_to_number (buf, INSN_SIZE);
22204 newval |= (value >> 2) & 0x00ffffff;
22205 /* Set the H bit on BLX instructions. */
22206 if (temp == 1)
22207 {
22208 if (value & 2)
22209 newval |= 0x01000000;
22210 else
22211 newval &= ~0x01000000;
22212 }
22213 md_number_to_chars (buf, newval, INSN_SIZE);
22214 }
22215 break;
22216
22217 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
22218 /* CBZ can only branch forward. */
22219
22220 /* Attempts to use CBZ to branch to the next instruction
22221 (which, strictly speaking, are prohibited) will be turned into
22222 no-ops.
22223
22224 FIXME: It may be better to remove the instruction completely and
22225 perform relaxation. */
22226 if (value == -2)
22227 {
22228 newval = md_chars_to_number (buf, THUMB_SIZE);
22229 newval = 0xbf00; /* NOP encoding T1 */
22230 md_number_to_chars (buf, newval, THUMB_SIZE);
22231 }
22232 else
22233 {
22234 if (value & ~0x7e)
22235 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22236
22237 if (fixP->fx_done || !seg->use_rela_p)
22238 {
22239 newval = md_chars_to_number (buf, THUMB_SIZE);
22240 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
22241 md_number_to_chars (buf, newval, THUMB_SIZE);
22242 }
22243 }
22244 break;
22245
22246 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
22247 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
22248 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22249
22250 if (fixP->fx_done || !seg->use_rela_p)
22251 {
22252 newval = md_chars_to_number (buf, THUMB_SIZE);
22253 newval |= (value & 0x1ff) >> 1;
22254 md_number_to_chars (buf, newval, THUMB_SIZE);
22255 }
22256 break;
22257
22258 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
22259 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
22260 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22261
22262 if (fixP->fx_done || !seg->use_rela_p)
22263 {
22264 newval = md_chars_to_number (buf, THUMB_SIZE);
22265 newval |= (value & 0xfff) >> 1;
22266 md_number_to_chars (buf, newval, THUMB_SIZE);
22267 }
22268 break;
22269
22270 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22271 if (fixP->fx_addsy
22272 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22273 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22274 && ARM_IS_FUNC (fixP->fx_addsy)
22275 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22276 {
22277 /* Force a relocation for a branch 20 bits wide. */
22278 fixP->fx_done = 0;
22279 }
22280 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
22281 as_bad_where (fixP->fx_file, fixP->fx_line,
22282 _("conditional branch out of range"));
22283
22284 if (fixP->fx_done || !seg->use_rela_p)
22285 {
22286 offsetT newval2;
22287 addressT S, J1, J2, lo, hi;
22288
22289 S = (value & 0x00100000) >> 20;
22290 J2 = (value & 0x00080000) >> 19;
22291 J1 = (value & 0x00040000) >> 18;
22292 hi = (value & 0x0003f000) >> 12;
22293 lo = (value & 0x00000ffe) >> 1;
22294
22295 newval = md_chars_to_number (buf, THUMB_SIZE);
22296 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22297 newval |= (S << 10) | hi;
22298 newval2 |= (J1 << 13) | (J2 << 11) | lo;
22299 md_number_to_chars (buf, newval, THUMB_SIZE);
22300 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22301 }
22302 break;
22303
22304 case BFD_RELOC_THUMB_PCREL_BLX:
22305 /* If there is a blx from a thumb state function to
22306 another thumb function flip this to a bl and warn
22307 about it. */
22308
22309 if (fixP->fx_addsy
22310 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22311 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22312 && THUMB_IS_FUNC (fixP->fx_addsy))
22313 {
22314 const char *name = S_GET_NAME (fixP->fx_addsy);
22315 as_warn_where (fixP->fx_file, fixP->fx_line,
22316 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
22317 name);
22318 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22319 newval = newval | 0x1000;
22320 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22321 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22322 fixP->fx_done = 1;
22323 }
22324
22325
22326 goto thumb_bl_common;
22327
22328 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22329 /* A bl from Thumb state ISA to an internal ARM state function
22330 is converted to a blx. */
22331 if (fixP->fx_addsy
22332 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22333 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22334 && ARM_IS_FUNC (fixP->fx_addsy)
22335 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22336 {
22337 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22338 newval = newval & ~0x1000;
22339 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22340 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
22341 fixP->fx_done = 1;
22342 }
22343
22344 thumb_bl_common:
22345
22346 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22347 /* For a BLX instruction, make sure that the relocation is rounded up
22348 to a word boundary. This follows the semantics of the instruction
22349 which specifies that bit 1 of the target address will come from bit
22350 1 of the base address. */
22351 value = (value + 3) & ~ 3;
22352
22353 #ifdef OBJ_ELF
22354 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
22355 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22356 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22357 #endif
22358
22359 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
22360 {
22361 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
22362 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22363 else if ((value & ~0x1ffffff)
22364 && ((value & ~0x1ffffff) != ~0x1ffffff))
22365 as_bad_where (fixP->fx_file, fixP->fx_line,
22366 _("Thumb2 branch out of range"));
22367 }
22368
22369 if (fixP->fx_done || !seg->use_rela_p)
22370 encode_thumb2_b_bl_offset (buf, value);
22371
22372 break;
22373
22374 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22375 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
22376 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22377
22378 if (fixP->fx_done || !seg->use_rela_p)
22379 encode_thumb2_b_bl_offset (buf, value);
22380
22381 break;
22382
22383 case BFD_RELOC_8:
22384 if (fixP->fx_done || !seg->use_rela_p)
22385 md_number_to_chars (buf, value, 1);
22386 break;
22387
22388 case BFD_RELOC_16:
22389 if (fixP->fx_done || !seg->use_rela_p)
22390 md_number_to_chars (buf, value, 2);
22391 break;
22392
22393 #ifdef OBJ_ELF
22394 case BFD_RELOC_ARM_TLS_CALL:
22395 case BFD_RELOC_ARM_THM_TLS_CALL:
22396 case BFD_RELOC_ARM_TLS_DESCSEQ:
22397 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22398 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22399 break;
22400
22401 case BFD_RELOC_ARM_TLS_GOTDESC:
22402 case BFD_RELOC_ARM_TLS_GD32:
22403 case BFD_RELOC_ARM_TLS_LE32:
22404 case BFD_RELOC_ARM_TLS_IE32:
22405 case BFD_RELOC_ARM_TLS_LDM32:
22406 case BFD_RELOC_ARM_TLS_LDO32:
22407 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22408 /* fall through */
22409
22410 case BFD_RELOC_ARM_GOT32:
22411 case BFD_RELOC_ARM_GOTOFF:
22412 if (fixP->fx_done || !seg->use_rela_p)
22413 md_number_to_chars (buf, 0, 4);
22414 break;
22415
22416 case BFD_RELOC_ARM_GOT_PREL:
22417 if (fixP->fx_done || !seg->use_rela_p)
22418 md_number_to_chars (buf, value, 4);
22419 break;
22420
22421 case BFD_RELOC_ARM_TARGET2:
22422 /* TARGET2 is not partial-inplace, so we need to write the
22423 addend here for REL targets, because it won't be written out
22424 during reloc processing later. */
22425 if (fixP->fx_done || !seg->use_rela_p)
22426 md_number_to_chars (buf, fixP->fx_offset, 4);
22427 break;
22428 #endif
22429
22430 case BFD_RELOC_RVA:
22431 case BFD_RELOC_32:
22432 case BFD_RELOC_ARM_TARGET1:
22433 case BFD_RELOC_ARM_ROSEGREL32:
22434 case BFD_RELOC_ARM_SBREL32:
22435 case BFD_RELOC_32_PCREL:
22436 #ifdef TE_PE
22437 case BFD_RELOC_32_SECREL:
22438 #endif
22439 if (fixP->fx_done || !seg->use_rela_p)
22440 #ifdef TE_WINCE
22441 /* For WinCE we only do this for pcrel fixups. */
22442 if (fixP->fx_done || fixP->fx_pcrel)
22443 #endif
22444 md_number_to_chars (buf, value, 4);
22445 break;
22446
22447 #ifdef OBJ_ELF
22448 case BFD_RELOC_ARM_PREL31:
22449 if (fixP->fx_done || !seg->use_rela_p)
22450 {
22451 newval = md_chars_to_number (buf, 4) & 0x80000000;
22452 if ((value ^ (value >> 1)) & 0x40000000)
22453 {
22454 as_bad_where (fixP->fx_file, fixP->fx_line,
22455 _("rel31 relocation overflow"));
22456 }
22457 newval |= value & 0x7fffffff;
22458 md_number_to_chars (buf, newval, 4);
22459 }
22460 break;
22461 #endif
22462
22463 case BFD_RELOC_ARM_CP_OFF_IMM:
22464 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22465 if (value < -1023 || value > 1023 || (value & 3))
22466 as_bad_where (fixP->fx_file, fixP->fx_line,
22467 _("co-processor offset out of range"));
22468 cp_off_common:
22469 sign = value > 0;
22470 if (value < 0)
22471 value = -value;
22472 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22473 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22474 newval = md_chars_to_number (buf, INSN_SIZE);
22475 else
22476 newval = get_thumb32_insn (buf);
22477 if (value == 0)
22478 newval &= 0xffffff00;
22479 else
22480 {
22481 newval &= 0xff7fff00;
22482 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
22483 }
22484 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22485 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22486 md_number_to_chars (buf, newval, INSN_SIZE);
22487 else
22488 put_thumb32_insn (buf, newval);
22489 break;
22490
22491 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
22492 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
22493 if (value < -255 || value > 255)
22494 as_bad_where (fixP->fx_file, fixP->fx_line,
22495 _("co-processor offset out of range"));
22496 value *= 4;
22497 goto cp_off_common;
22498
22499 case BFD_RELOC_ARM_THUMB_OFFSET:
22500 newval = md_chars_to_number (buf, THUMB_SIZE);
22501 /* Exactly what ranges, and where the offset is inserted depends
22502 on the type of instruction, we can establish this from the
22503 top 4 bits. */
22504 switch (newval >> 12)
22505 {
22506 case 4: /* PC load. */
22507 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
22508 forced to zero for these loads; md_pcrel_from has already
22509 compensated for this. */
22510 if (value & 3)
22511 as_bad_where (fixP->fx_file, fixP->fx_line,
22512 _("invalid offset, target not word aligned (0x%08lX)"),
22513 (((unsigned long) fixP->fx_frag->fr_address
22514 + (unsigned long) fixP->fx_where) & ~3)
22515 + (unsigned long) value);
22516
22517 if (value & ~0x3fc)
22518 as_bad_where (fixP->fx_file, fixP->fx_line,
22519 _("invalid offset, value too big (0x%08lX)"),
22520 (long) value);
22521
22522 newval |= value >> 2;
22523 break;
22524
22525 case 9: /* SP load/store. */
22526 if (value & ~0x3fc)
22527 as_bad_where (fixP->fx_file, fixP->fx_line,
22528 _("invalid offset, value too big (0x%08lX)"),
22529 (long) value);
22530 newval |= value >> 2;
22531 break;
22532
22533 case 6: /* Word load/store. */
22534 if (value & ~0x7c)
22535 as_bad_where (fixP->fx_file, fixP->fx_line,
22536 _("invalid offset, value too big (0x%08lX)"),
22537 (long) value);
22538 newval |= value << 4; /* 6 - 2. */
22539 break;
22540
22541 case 7: /* Byte load/store. */
22542 if (value & ~0x1f)
22543 as_bad_where (fixP->fx_file, fixP->fx_line,
22544 _("invalid offset, value too big (0x%08lX)"),
22545 (long) value);
22546 newval |= value << 6;
22547 break;
22548
22549 case 8: /* Halfword load/store. */
22550 if (value & ~0x3e)
22551 as_bad_where (fixP->fx_file, fixP->fx_line,
22552 _("invalid offset, value too big (0x%08lX)"),
22553 (long) value);
22554 newval |= value << 5; /* 6 - 1. */
22555 break;
22556
22557 default:
22558 as_bad_where (fixP->fx_file, fixP->fx_line,
22559 "Unable to process relocation for thumb opcode: %lx",
22560 (unsigned long) newval);
22561 break;
22562 }
22563 md_number_to_chars (buf, newval, THUMB_SIZE);
22564 break;
22565
22566 case BFD_RELOC_ARM_THUMB_ADD:
22567 /* This is a complicated relocation, since we use it for all of
22568 the following immediate relocations:
22569
22570 3bit ADD/SUB
22571 8bit ADD/SUB
22572 9bit ADD/SUB SP word-aligned
22573 10bit ADD PC/SP word-aligned
22574
22575 The type of instruction being processed is encoded in the
22576 instruction field:
22577
22578 0x8000 SUB
22579 0x00F0 Rd
22580 0x000F Rs
22581 */
22582 newval = md_chars_to_number (buf, THUMB_SIZE);
22583 {
22584 int rd = (newval >> 4) & 0xf;
22585 int rs = newval & 0xf;
22586 int subtract = !!(newval & 0x8000);
22587
22588 /* Check for HI regs, only very restricted cases allowed:
22589 Adjusting SP, and using PC or SP to get an address. */
22590 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
22591 || (rs > 7 && rs != REG_SP && rs != REG_PC))
22592 as_bad_where (fixP->fx_file, fixP->fx_line,
22593 _("invalid Hi register with immediate"));
22594
22595 /* If value is negative, choose the opposite instruction. */
22596 if (value < 0)
22597 {
22598 value = -value;
22599 subtract = !subtract;
22600 if (value < 0)
22601 as_bad_where (fixP->fx_file, fixP->fx_line,
22602 _("immediate value out of range"));
22603 }
22604
22605 if (rd == REG_SP)
22606 {
22607 if (value & ~0x1fc)
22608 as_bad_where (fixP->fx_file, fixP->fx_line,
22609 _("invalid immediate for stack address calculation"));
22610 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
22611 newval |= value >> 2;
22612 }
22613 else if (rs == REG_PC || rs == REG_SP)
22614 {
22615 if (subtract || value & ~0x3fc)
22616 as_bad_where (fixP->fx_file, fixP->fx_line,
22617 _("invalid immediate for address calculation (value = 0x%08lX)"),
22618 (unsigned long) value);
22619 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
22620 newval |= rd << 8;
22621 newval |= value >> 2;
22622 }
22623 else if (rs == rd)
22624 {
22625 if (value & ~0xff)
22626 as_bad_where (fixP->fx_file, fixP->fx_line,
22627 _("immediate value out of range"));
22628 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
22629 newval |= (rd << 8) | value;
22630 }
22631 else
22632 {
22633 if (value & ~0x7)
22634 as_bad_where (fixP->fx_file, fixP->fx_line,
22635 _("immediate value out of range"));
22636 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
22637 newval |= rd | (rs << 3) | (value << 6);
22638 }
22639 }
22640 md_number_to_chars (buf, newval, THUMB_SIZE);
22641 break;
22642
22643 case BFD_RELOC_ARM_THUMB_IMM:
22644 newval = md_chars_to_number (buf, THUMB_SIZE);
22645 if (value < 0 || value > 255)
22646 as_bad_where (fixP->fx_file, fixP->fx_line,
22647 _("invalid immediate: %ld is out of range"),
22648 (long) value);
22649 newval |= value;
22650 md_number_to_chars (buf, newval, THUMB_SIZE);
22651 break;
22652
22653 case BFD_RELOC_ARM_THUMB_SHIFT:
22654 /* 5bit shift value (0..32). LSL cannot take 32. */
22655 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
22656 temp = newval & 0xf800;
22657 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
22658 as_bad_where (fixP->fx_file, fixP->fx_line,
22659 _("invalid shift value: %ld"), (long) value);
22660 /* Shifts of zero must be encoded as LSL. */
22661 if (value == 0)
22662 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
22663 /* Shifts of 32 are encoded as zero. */
22664 else if (value == 32)
22665 value = 0;
22666 newval |= value << 6;
22667 md_number_to_chars (buf, newval, THUMB_SIZE);
22668 break;
22669
22670 case BFD_RELOC_VTABLE_INHERIT:
22671 case BFD_RELOC_VTABLE_ENTRY:
22672 fixP->fx_done = 0;
22673 return;
22674
22675 case BFD_RELOC_ARM_MOVW:
22676 case BFD_RELOC_ARM_MOVT:
22677 case BFD_RELOC_ARM_THUMB_MOVW:
22678 case BFD_RELOC_ARM_THUMB_MOVT:
22679 if (fixP->fx_done || !seg->use_rela_p)
22680 {
22681 /* REL format relocations are limited to a 16-bit addend. */
22682 if (!fixP->fx_done)
22683 {
22684 if (value < -0x8000 || value > 0x7fff)
22685 as_bad_where (fixP->fx_file, fixP->fx_line,
22686 _("offset out of range"));
22687 }
22688 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22689 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22690 {
22691 value >>= 16;
22692 }
22693
22694 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22695 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22696 {
22697 newval = get_thumb32_insn (buf);
22698 newval &= 0xfbf08f00;
22699 newval |= (value & 0xf000) << 4;
22700 newval |= (value & 0x0800) << 15;
22701 newval |= (value & 0x0700) << 4;
22702 newval |= (value & 0x00ff);
22703 put_thumb32_insn (buf, newval);
22704 }
22705 else
22706 {
22707 newval = md_chars_to_number (buf, 4);
22708 newval &= 0xfff0f000;
22709 newval |= value & 0x0fff;
22710 newval |= (value & 0xf000) << 4;
22711 md_number_to_chars (buf, newval, 4);
22712 }
22713 }
22714 return;
22715
22716 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22717 case BFD_RELOC_ARM_ALU_PC_G0:
22718 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22719 case BFD_RELOC_ARM_ALU_PC_G1:
22720 case BFD_RELOC_ARM_ALU_PC_G2:
22721 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22722 case BFD_RELOC_ARM_ALU_SB_G0:
22723 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22724 case BFD_RELOC_ARM_ALU_SB_G1:
22725 case BFD_RELOC_ARM_ALU_SB_G2:
22726 gas_assert (!fixP->fx_done);
22727 if (!seg->use_rela_p)
22728 {
22729 bfd_vma insn;
22730 bfd_vma encoded_addend;
22731 bfd_vma addend_abs = abs (value);
22732
22733 /* Check that the absolute value of the addend can be
22734 expressed as an 8-bit constant plus a rotation. */
22735 encoded_addend = encode_arm_immediate (addend_abs);
22736 if (encoded_addend == (unsigned int) FAIL)
22737 as_bad_where (fixP->fx_file, fixP->fx_line,
22738 _("the offset 0x%08lX is not representable"),
22739 (unsigned long) addend_abs);
22740
22741 /* Extract the instruction. */
22742 insn = md_chars_to_number (buf, INSN_SIZE);
22743
22744 /* If the addend is positive, use an ADD instruction.
22745 Otherwise use a SUB. Take care not to destroy the S bit. */
22746 insn &= 0xff1fffff;
22747 if (value < 0)
22748 insn |= 1 << 22;
22749 else
22750 insn |= 1 << 23;
22751
22752 /* Place the encoded addend into the first 12 bits of the
22753 instruction. */
22754 insn &= 0xfffff000;
22755 insn |= encoded_addend;
22756
22757 /* Update the instruction. */
22758 md_number_to_chars (buf, insn, INSN_SIZE);
22759 }
22760 break;
22761
22762 case BFD_RELOC_ARM_LDR_PC_G0:
22763 case BFD_RELOC_ARM_LDR_PC_G1:
22764 case BFD_RELOC_ARM_LDR_PC_G2:
22765 case BFD_RELOC_ARM_LDR_SB_G0:
22766 case BFD_RELOC_ARM_LDR_SB_G1:
22767 case BFD_RELOC_ARM_LDR_SB_G2:
22768 gas_assert (!fixP->fx_done);
22769 if (!seg->use_rela_p)
22770 {
22771 bfd_vma insn;
22772 bfd_vma addend_abs = abs (value);
22773
22774 /* Check that the absolute value of the addend can be
22775 encoded in 12 bits. */
22776 if (addend_abs >= 0x1000)
22777 as_bad_where (fixP->fx_file, fixP->fx_line,
22778 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
22779 (unsigned long) addend_abs);
22780
22781 /* Extract the instruction. */
22782 insn = md_chars_to_number (buf, INSN_SIZE);
22783
22784 /* If the addend is negative, clear bit 23 of the instruction.
22785 Otherwise set it. */
22786 if (value < 0)
22787 insn &= ~(1 << 23);
22788 else
22789 insn |= 1 << 23;
22790
22791 /* Place the absolute value of the addend into the first 12 bits
22792 of the instruction. */
22793 insn &= 0xfffff000;
22794 insn |= addend_abs;
22795
22796 /* Update the instruction. */
22797 md_number_to_chars (buf, insn, INSN_SIZE);
22798 }
22799 break;
22800
22801 case BFD_RELOC_ARM_LDRS_PC_G0:
22802 case BFD_RELOC_ARM_LDRS_PC_G1:
22803 case BFD_RELOC_ARM_LDRS_PC_G2:
22804 case BFD_RELOC_ARM_LDRS_SB_G0:
22805 case BFD_RELOC_ARM_LDRS_SB_G1:
22806 case BFD_RELOC_ARM_LDRS_SB_G2:
22807 gas_assert (!fixP->fx_done);
22808 if (!seg->use_rela_p)
22809 {
22810 bfd_vma insn;
22811 bfd_vma addend_abs = abs (value);
22812
22813 /* Check that the absolute value of the addend can be
22814 encoded in 8 bits. */
22815 if (addend_abs >= 0x100)
22816 as_bad_where (fixP->fx_file, fixP->fx_line,
22817 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
22818 (unsigned long) addend_abs);
22819
22820 /* Extract the instruction. */
22821 insn = md_chars_to_number (buf, INSN_SIZE);
22822
22823 /* If the addend is negative, clear bit 23 of the instruction.
22824 Otherwise set it. */
22825 if (value < 0)
22826 insn &= ~(1 << 23);
22827 else
22828 insn |= 1 << 23;
22829
22830 /* Place the first four bits of the absolute value of the addend
22831 into the first 4 bits of the instruction, and the remaining
22832 four into bits 8 .. 11. */
22833 insn &= 0xfffff0f0;
22834 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
22835
22836 /* Update the instruction. */
22837 md_number_to_chars (buf, insn, INSN_SIZE);
22838 }
22839 break;
22840
22841 case BFD_RELOC_ARM_LDC_PC_G0:
22842 case BFD_RELOC_ARM_LDC_PC_G1:
22843 case BFD_RELOC_ARM_LDC_PC_G2:
22844 case BFD_RELOC_ARM_LDC_SB_G0:
22845 case BFD_RELOC_ARM_LDC_SB_G1:
22846 case BFD_RELOC_ARM_LDC_SB_G2:
22847 gas_assert (!fixP->fx_done);
22848 if (!seg->use_rela_p)
22849 {
22850 bfd_vma insn;
22851 bfd_vma addend_abs = abs (value);
22852
22853 /* Check that the absolute value of the addend is a multiple of
22854 four and, when divided by four, fits in 8 bits. */
22855 if (addend_abs & 0x3)
22856 as_bad_where (fixP->fx_file, fixP->fx_line,
22857 _("bad offset 0x%08lX (must be word-aligned)"),
22858 (unsigned long) addend_abs);
22859
22860 if ((addend_abs >> 2) > 0xff)
22861 as_bad_where (fixP->fx_file, fixP->fx_line,
22862 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22863 (unsigned long) addend_abs);
22864
22865 /* Extract the instruction. */
22866 insn = md_chars_to_number (buf, INSN_SIZE);
22867
22868 /* If the addend is negative, clear bit 23 of the instruction.
22869 Otherwise set it. */
22870 if (value < 0)
22871 insn &= ~(1 << 23);
22872 else
22873 insn |= 1 << 23;
22874
22875 /* Place the addend (divided by four) into the first eight
22876 bits of the instruction. */
22877 insn &= 0xfffffff0;
22878 insn |= addend_abs >> 2;
22879
22880 /* Update the instruction. */
22881 md_number_to_chars (buf, insn, INSN_SIZE);
22882 }
22883 break;
22884
22885 case BFD_RELOC_ARM_V4BX:
22886 /* This will need to go in the object file. */
22887 fixP->fx_done = 0;
22888 break;
22889
22890 case BFD_RELOC_UNUSED:
22891 default:
22892 as_bad_where (fixP->fx_file, fixP->fx_line,
22893 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22894 }
22895 }
22896
22897 /* Translate internal representation of relocation info to BFD target
22898 format. */
22899
22900 arelent *
22901 tc_gen_reloc (asection *section, fixS *fixp)
22902 {
22903 arelent * reloc;
22904 bfd_reloc_code_real_type code;
22905
22906 reloc = (arelent *) xmalloc (sizeof (arelent));
22907
22908 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22909 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22910 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22911
22912 if (fixp->fx_pcrel)
22913 {
22914 if (section->use_rela_p)
22915 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22916 else
22917 fixp->fx_offset = reloc->address;
22918 }
22919 reloc->addend = fixp->fx_offset;
22920
22921 switch (fixp->fx_r_type)
22922 {
22923 case BFD_RELOC_8:
22924 if (fixp->fx_pcrel)
22925 {
22926 code = BFD_RELOC_8_PCREL;
22927 break;
22928 }
22929
22930 case BFD_RELOC_16:
22931 if (fixp->fx_pcrel)
22932 {
22933 code = BFD_RELOC_16_PCREL;
22934 break;
22935 }
22936
22937 case BFD_RELOC_32:
22938 if (fixp->fx_pcrel)
22939 {
22940 code = BFD_RELOC_32_PCREL;
22941 break;
22942 }
22943
22944 case BFD_RELOC_ARM_MOVW:
22945 if (fixp->fx_pcrel)
22946 {
22947 code = BFD_RELOC_ARM_MOVW_PCREL;
22948 break;
22949 }
22950
22951 case BFD_RELOC_ARM_MOVT:
22952 if (fixp->fx_pcrel)
22953 {
22954 code = BFD_RELOC_ARM_MOVT_PCREL;
22955 break;
22956 }
22957
22958 case BFD_RELOC_ARM_THUMB_MOVW:
22959 if (fixp->fx_pcrel)
22960 {
22961 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22962 break;
22963 }
22964
22965 case BFD_RELOC_ARM_THUMB_MOVT:
22966 if (fixp->fx_pcrel)
22967 {
22968 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22969 break;
22970 }
22971
22972 case BFD_RELOC_NONE:
22973 case BFD_RELOC_ARM_PCREL_BRANCH:
22974 case BFD_RELOC_ARM_PCREL_BLX:
22975 case BFD_RELOC_RVA:
22976 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22977 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22978 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22979 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22980 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22981 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22982 case BFD_RELOC_VTABLE_ENTRY:
22983 case BFD_RELOC_VTABLE_INHERIT:
22984 #ifdef TE_PE
22985 case BFD_RELOC_32_SECREL:
22986 #endif
22987 code = fixp->fx_r_type;
22988 break;
22989
22990 case BFD_RELOC_THUMB_PCREL_BLX:
22991 #ifdef OBJ_ELF
22992 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22993 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22994 else
22995 #endif
22996 code = BFD_RELOC_THUMB_PCREL_BLX;
22997 break;
22998
22999 case BFD_RELOC_ARM_LITERAL:
23000 case BFD_RELOC_ARM_HWLITERAL:
23001 /* If this is called then the a literal has
23002 been referenced across a section boundary. */
23003 as_bad_where (fixp->fx_file, fixp->fx_line,
23004 _("literal referenced across section boundary"));
23005 return NULL;
23006
23007 #ifdef OBJ_ELF
23008 case BFD_RELOC_ARM_TLS_CALL:
23009 case BFD_RELOC_ARM_THM_TLS_CALL:
23010 case BFD_RELOC_ARM_TLS_DESCSEQ:
23011 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
23012 case BFD_RELOC_ARM_GOT32:
23013 case BFD_RELOC_ARM_GOTOFF:
23014 case BFD_RELOC_ARM_GOT_PREL:
23015 case BFD_RELOC_ARM_PLT32:
23016 case BFD_RELOC_ARM_TARGET1:
23017 case BFD_RELOC_ARM_ROSEGREL32:
23018 case BFD_RELOC_ARM_SBREL32:
23019 case BFD_RELOC_ARM_PREL31:
23020 case BFD_RELOC_ARM_TARGET2:
23021 case BFD_RELOC_ARM_TLS_LE32:
23022 case BFD_RELOC_ARM_TLS_LDO32:
23023 case BFD_RELOC_ARM_PCREL_CALL:
23024 case BFD_RELOC_ARM_PCREL_JUMP:
23025 case BFD_RELOC_ARM_ALU_PC_G0_NC:
23026 case BFD_RELOC_ARM_ALU_PC_G0:
23027 case BFD_RELOC_ARM_ALU_PC_G1_NC:
23028 case BFD_RELOC_ARM_ALU_PC_G1:
23029 case BFD_RELOC_ARM_ALU_PC_G2:
23030 case BFD_RELOC_ARM_LDR_PC_G0:
23031 case BFD_RELOC_ARM_LDR_PC_G1:
23032 case BFD_RELOC_ARM_LDR_PC_G2:
23033 case BFD_RELOC_ARM_LDRS_PC_G0:
23034 case BFD_RELOC_ARM_LDRS_PC_G1:
23035 case BFD_RELOC_ARM_LDRS_PC_G2:
23036 case BFD_RELOC_ARM_LDC_PC_G0:
23037 case BFD_RELOC_ARM_LDC_PC_G1:
23038 case BFD_RELOC_ARM_LDC_PC_G2:
23039 case BFD_RELOC_ARM_ALU_SB_G0_NC:
23040 case BFD_RELOC_ARM_ALU_SB_G0:
23041 case BFD_RELOC_ARM_ALU_SB_G1_NC:
23042 case BFD_RELOC_ARM_ALU_SB_G1:
23043 case BFD_RELOC_ARM_ALU_SB_G2:
23044 case BFD_RELOC_ARM_LDR_SB_G0:
23045 case BFD_RELOC_ARM_LDR_SB_G1:
23046 case BFD_RELOC_ARM_LDR_SB_G2:
23047 case BFD_RELOC_ARM_LDRS_SB_G0:
23048 case BFD_RELOC_ARM_LDRS_SB_G1:
23049 case BFD_RELOC_ARM_LDRS_SB_G2:
23050 case BFD_RELOC_ARM_LDC_SB_G0:
23051 case BFD_RELOC_ARM_LDC_SB_G1:
23052 case BFD_RELOC_ARM_LDC_SB_G2:
23053 case BFD_RELOC_ARM_V4BX:
23054 code = fixp->fx_r_type;
23055 break;
23056
23057 case BFD_RELOC_ARM_TLS_GOTDESC:
23058 case BFD_RELOC_ARM_TLS_GD32:
23059 case BFD_RELOC_ARM_TLS_IE32:
23060 case BFD_RELOC_ARM_TLS_LDM32:
23061 /* BFD will include the symbol's address in the addend.
23062 But we don't want that, so subtract it out again here. */
23063 if (!S_IS_COMMON (fixp->fx_addsy))
23064 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
23065 code = fixp->fx_r_type;
23066 break;
23067 #endif
23068
23069 case BFD_RELOC_ARM_IMMEDIATE:
23070 as_bad_where (fixp->fx_file, fixp->fx_line,
23071 _("internal relocation (type: IMMEDIATE) not fixed up"));
23072 return NULL;
23073
23074 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23075 as_bad_where (fixp->fx_file, fixp->fx_line,
23076 _("ADRL used for a symbol not defined in the same file"));
23077 return NULL;
23078
23079 case BFD_RELOC_ARM_OFFSET_IMM:
23080 if (section->use_rela_p)
23081 {
23082 code = fixp->fx_r_type;
23083 break;
23084 }
23085
23086 if (fixp->fx_addsy != NULL
23087 && !S_IS_DEFINED (fixp->fx_addsy)
23088 && S_IS_LOCAL (fixp->fx_addsy))
23089 {
23090 as_bad_where (fixp->fx_file, fixp->fx_line,
23091 _("undefined local label `%s'"),
23092 S_GET_NAME (fixp->fx_addsy));
23093 return NULL;
23094 }
23095
23096 as_bad_where (fixp->fx_file, fixp->fx_line,
23097 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
23098 return NULL;
23099
23100 default:
23101 {
23102 char * type;
23103
23104 switch (fixp->fx_r_type)
23105 {
23106 case BFD_RELOC_NONE: type = "NONE"; break;
23107 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
23108 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
23109 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
23110 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
23111 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
23112 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
23113 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
23114 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
23115 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
23116 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
23117 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
23118 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
23119 default: type = _("<unknown>"); break;
23120 }
23121 as_bad_where (fixp->fx_file, fixp->fx_line,
23122 _("cannot represent %s relocation in this object file format"),
23123 type);
23124 return NULL;
23125 }
23126 }
23127
23128 #ifdef OBJ_ELF
23129 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
23130 && GOT_symbol
23131 && fixp->fx_addsy == GOT_symbol)
23132 {
23133 code = BFD_RELOC_ARM_GOTPC;
23134 reloc->addend = fixp->fx_offset = reloc->address;
23135 }
23136 #endif
23137
23138 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
23139
23140 if (reloc->howto == NULL)
23141 {
23142 as_bad_where (fixp->fx_file, fixp->fx_line,
23143 _("cannot represent %s relocation in this object file format"),
23144 bfd_get_reloc_code_name (code));
23145 return NULL;
23146 }
23147
23148 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
23149 vtable entry to be used in the relocation's section offset. */
23150 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
23151 reloc->address = fixp->fx_offset;
23152
23153 return reloc;
23154 }
23155
23156 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
23157
23158 void
23159 cons_fix_new_arm (fragS * frag,
23160 int where,
23161 int size,
23162 expressionS * exp,
23163 bfd_reloc_code_real_type reloc)
23164 {
23165 int pcrel = 0;
23166
23167 /* Pick a reloc.
23168 FIXME: @@ Should look at CPU word size. */
23169 switch (size)
23170 {
23171 case 1:
23172 reloc = BFD_RELOC_8;
23173 break;
23174 case 2:
23175 reloc = BFD_RELOC_16;
23176 break;
23177 case 4:
23178 default:
23179 reloc = BFD_RELOC_32;
23180 break;
23181 case 8:
23182 reloc = BFD_RELOC_64;
23183 break;
23184 }
23185
23186 #ifdef TE_PE
23187 if (exp->X_op == O_secrel)
23188 {
23189 exp->X_op = O_symbol;
23190 reloc = BFD_RELOC_32_SECREL;
23191 }
23192 #endif
23193
23194 fix_new_exp (frag, where, size, exp, pcrel, reloc);
23195 }
23196
23197 #if defined (OBJ_COFF)
23198 void
23199 arm_validate_fix (fixS * fixP)
23200 {
23201 /* If the destination of the branch is a defined symbol which does not have
23202 the THUMB_FUNC attribute, then we must be calling a function which has
23203 the (interfacearm) attribute. We look for the Thumb entry point to that
23204 function and change the branch to refer to that function instead. */
23205 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
23206 && fixP->fx_addsy != NULL
23207 && S_IS_DEFINED (fixP->fx_addsy)
23208 && ! THUMB_IS_FUNC (fixP->fx_addsy))
23209 {
23210 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
23211 }
23212 }
23213 #endif
23214
23215
23216 int
23217 arm_force_relocation (struct fix * fixp)
23218 {
23219 #if defined (OBJ_COFF) && defined (TE_PE)
23220 if (fixp->fx_r_type == BFD_RELOC_RVA)
23221 return 1;
23222 #endif
23223
23224 /* In case we have a call or a branch to a function in ARM ISA mode from
23225 a thumb function or vice-versa force the relocation. These relocations
23226 are cleared off for some cores that might have blx and simple transformations
23227 are possible. */
23228
23229 #ifdef OBJ_ELF
23230 switch (fixp->fx_r_type)
23231 {
23232 case BFD_RELOC_ARM_PCREL_JUMP:
23233 case BFD_RELOC_ARM_PCREL_CALL:
23234 case BFD_RELOC_THUMB_PCREL_BLX:
23235 if (THUMB_IS_FUNC (fixp->fx_addsy))
23236 return 1;
23237 break;
23238
23239 case BFD_RELOC_ARM_PCREL_BLX:
23240 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23241 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23242 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23243 if (ARM_IS_FUNC (fixp->fx_addsy))
23244 return 1;
23245 break;
23246
23247 default:
23248 break;
23249 }
23250 #endif
23251
23252 /* Resolve these relocations even if the symbol is extern or weak.
23253 Technically this is probably wrong due to symbol preemption.
23254 In practice these relocations do not have enough range to be useful
23255 at dynamic link time, and some code (e.g. in the Linux kernel)
23256 expects these references to be resolved. */
23257 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
23258 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
23259 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
23260 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
23261 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23262 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
23263 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
23264 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
23265 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23266 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
23267 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
23268 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
23269 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
23270 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
23271 return 0;
23272
23273 /* Always leave these relocations for the linker. */
23274 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23275 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23276 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23277 return 1;
23278
23279 /* Always generate relocations against function symbols. */
23280 if (fixp->fx_r_type == BFD_RELOC_32
23281 && fixp->fx_addsy
23282 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
23283 return 1;
23284
23285 return generic_force_reloc (fixp);
23286 }
23287
23288 #if defined (OBJ_ELF) || defined (OBJ_COFF)
23289 /* Relocations against function names must be left unadjusted,
23290 so that the linker can use this information to generate interworking
23291 stubs. The MIPS version of this function
23292 also prevents relocations that are mips-16 specific, but I do not
23293 know why it does this.
23294
23295 FIXME:
23296 There is one other problem that ought to be addressed here, but
23297 which currently is not: Taking the address of a label (rather
23298 than a function) and then later jumping to that address. Such
23299 addresses also ought to have their bottom bit set (assuming that
23300 they reside in Thumb code), but at the moment they will not. */
23301
23302 bfd_boolean
23303 arm_fix_adjustable (fixS * fixP)
23304 {
23305 if (fixP->fx_addsy == NULL)
23306 return 1;
23307
23308 /* Preserve relocations against symbols with function type. */
23309 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
23310 return FALSE;
23311
23312 if (THUMB_IS_FUNC (fixP->fx_addsy)
23313 && fixP->fx_subsy == NULL)
23314 return FALSE;
23315
23316 /* We need the symbol name for the VTABLE entries. */
23317 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
23318 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
23319 return FALSE;
23320
23321 /* Don't allow symbols to be discarded on GOT related relocs. */
23322 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
23323 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
23324 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
23325 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
23326 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
23327 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
23328 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
23329 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
23330 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
23331 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
23332 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
23333 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
23334 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
23335 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
23336 return FALSE;
23337
23338 /* Similarly for group relocations. */
23339 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23340 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23341 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23342 return FALSE;
23343
23344 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
23345 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
23346 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
23347 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
23348 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
23349 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
23350 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
23351 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
23352 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
23353 return FALSE;
23354
23355 return TRUE;
23356 }
23357 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
23358
23359 #ifdef OBJ_ELF
23360
23361 const char *
23362 elf32_arm_target_format (void)
23363 {
23364 #ifdef TE_SYMBIAN
23365 return (target_big_endian
23366 ? "elf32-bigarm-symbian"
23367 : "elf32-littlearm-symbian");
23368 #elif defined (TE_VXWORKS)
23369 return (target_big_endian
23370 ? "elf32-bigarm-vxworks"
23371 : "elf32-littlearm-vxworks");
23372 #elif defined (TE_NACL)
23373 return (target_big_endian
23374 ? "elf32-bigarm-nacl"
23375 : "elf32-littlearm-nacl");
23376 #else
23377 if (target_big_endian)
23378 return "elf32-bigarm";
23379 else
23380 return "elf32-littlearm";
23381 #endif
23382 }
23383
23384 void
23385 armelf_frob_symbol (symbolS * symp,
23386 int * puntp)
23387 {
23388 elf_frob_symbol (symp, puntp);
23389 }
23390 #endif
23391
23392 /* MD interface: Finalization. */
23393
23394 void
23395 arm_cleanup (void)
23396 {
23397 literal_pool * pool;
23398
23399 /* Ensure that all the IT blocks are properly closed. */
23400 check_it_blocks_finished ();
23401
23402 for (pool = list_of_pools; pool; pool = pool->next)
23403 {
23404 /* Put it at the end of the relevant section. */
23405 subseg_set (pool->section, pool->sub_section);
23406 #ifdef OBJ_ELF
23407 arm_elf_change_section ();
23408 #endif
23409 s_ltorg (0);
23410 }
23411 }
23412
23413 #ifdef OBJ_ELF
23414 /* Remove any excess mapping symbols generated for alignment frags in
23415 SEC. We may have created a mapping symbol before a zero byte
23416 alignment; remove it if there's a mapping symbol after the
23417 alignment. */
23418 static void
23419 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
23420 void *dummy ATTRIBUTE_UNUSED)
23421 {
23422 segment_info_type *seginfo = seg_info (sec);
23423 fragS *fragp;
23424
23425 if (seginfo == NULL || seginfo->frchainP == NULL)
23426 return;
23427
23428 for (fragp = seginfo->frchainP->frch_root;
23429 fragp != NULL;
23430 fragp = fragp->fr_next)
23431 {
23432 symbolS *sym = fragp->tc_frag_data.last_map;
23433 fragS *next = fragp->fr_next;
23434
23435 /* Variable-sized frags have been converted to fixed size by
23436 this point. But if this was variable-sized to start with,
23437 there will be a fixed-size frag after it. So don't handle
23438 next == NULL. */
23439 if (sym == NULL || next == NULL)
23440 continue;
23441
23442 if (S_GET_VALUE (sym) < next->fr_address)
23443 /* Not at the end of this frag. */
23444 continue;
23445 know (S_GET_VALUE (sym) == next->fr_address);
23446
23447 do
23448 {
23449 if (next->tc_frag_data.first_map != NULL)
23450 {
23451 /* Next frag starts with a mapping symbol. Discard this
23452 one. */
23453 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23454 break;
23455 }
23456
23457 if (next->fr_next == NULL)
23458 {
23459 /* This mapping symbol is at the end of the section. Discard
23460 it. */
23461 know (next->fr_fix == 0 && next->fr_var == 0);
23462 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23463 break;
23464 }
23465
23466 /* As long as we have empty frags without any mapping symbols,
23467 keep looking. */
23468 /* If the next frag is non-empty and does not start with a
23469 mapping symbol, then this mapping symbol is required. */
23470 if (next->fr_address != next->fr_next->fr_address)
23471 break;
23472
23473 next = next->fr_next;
23474 }
23475 while (next != NULL);
23476 }
23477 }
23478 #endif
23479
23480 /* Adjust the symbol table. This marks Thumb symbols as distinct from
23481 ARM ones. */
23482
23483 void
23484 arm_adjust_symtab (void)
23485 {
23486 #ifdef OBJ_COFF
23487 symbolS * sym;
23488
23489 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23490 {
23491 if (ARM_IS_THUMB (sym))
23492 {
23493 if (THUMB_IS_FUNC (sym))
23494 {
23495 /* Mark the symbol as a Thumb function. */
23496 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
23497 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
23498 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
23499
23500 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
23501 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
23502 else
23503 as_bad (_("%s: unexpected function type: %d"),
23504 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
23505 }
23506 else switch (S_GET_STORAGE_CLASS (sym))
23507 {
23508 case C_EXT:
23509 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
23510 break;
23511 case C_STAT:
23512 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
23513 break;
23514 case C_LABEL:
23515 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
23516 break;
23517 default:
23518 /* Do nothing. */
23519 break;
23520 }
23521 }
23522
23523 if (ARM_IS_INTERWORK (sym))
23524 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
23525 }
23526 #endif
23527 #ifdef OBJ_ELF
23528 symbolS * sym;
23529 char bind;
23530
23531 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23532 {
23533 if (ARM_IS_THUMB (sym))
23534 {
23535 elf_symbol_type * elf_sym;
23536
23537 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
23538 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
23539
23540 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
23541 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
23542 {
23543 /* If it's a .thumb_func, declare it as so,
23544 otherwise tag label as .code 16. */
23545 if (THUMB_IS_FUNC (sym))
23546 elf_sym->internal_elf_sym.st_target_internal
23547 = ST_BRANCH_TO_THUMB;
23548 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23549 elf_sym->internal_elf_sym.st_info =
23550 ELF_ST_INFO (bind, STT_ARM_16BIT);
23551 }
23552 }
23553 }
23554
23555 /* Remove any overlapping mapping symbols generated by alignment frags. */
23556 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
23557 /* Now do generic ELF adjustments. */
23558 elf_adjust_symtab ();
23559 #endif
23560 }
23561
23562 /* MD interface: Initialization. */
23563
23564 static void
23565 set_constant_flonums (void)
23566 {
23567 int i;
23568
23569 for (i = 0; i < NUM_FLOAT_VALS; i++)
23570 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
23571 abort ();
23572 }
23573
23574 /* Auto-select Thumb mode if it's the only available instruction set for the
23575 given architecture. */
23576
23577 static void
23578 autoselect_thumb_from_cpu_variant (void)
23579 {
23580 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23581 opcode_select (16);
23582 }
23583
23584 void
23585 md_begin (void)
23586 {
23587 unsigned mach;
23588 unsigned int i;
23589
23590 if ( (arm_ops_hsh = hash_new ()) == NULL
23591 || (arm_cond_hsh = hash_new ()) == NULL
23592 || (arm_shift_hsh = hash_new ()) == NULL
23593 || (arm_psr_hsh = hash_new ()) == NULL
23594 || (arm_v7m_psr_hsh = hash_new ()) == NULL
23595 || (arm_reg_hsh = hash_new ()) == NULL
23596 || (arm_reloc_hsh = hash_new ()) == NULL
23597 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
23598 as_fatal (_("virtual memory exhausted"));
23599
23600 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
23601 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
23602 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
23603 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
23604 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
23605 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
23606 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
23607 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
23608 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
23609 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
23610 (void *) (v7m_psrs + i));
23611 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
23612 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
23613 for (i = 0;
23614 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
23615 i++)
23616 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
23617 (void *) (barrier_opt_names + i));
23618 #ifdef OBJ_ELF
23619 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
23620 {
23621 struct reloc_entry * entry = reloc_names + i;
23622
23623 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
23624 /* This makes encode_branch() use the EABI versions of this relocation. */
23625 entry->reloc = BFD_RELOC_UNUSED;
23626
23627 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
23628 }
23629 #endif
23630
23631 set_constant_flonums ();
23632
23633 /* Set the cpu variant based on the command-line options. We prefer
23634 -mcpu= over -march= if both are set (as for GCC); and we prefer
23635 -mfpu= over any other way of setting the floating point unit.
23636 Use of legacy options with new options are faulted. */
23637 if (legacy_cpu)
23638 {
23639 if (mcpu_cpu_opt || march_cpu_opt)
23640 as_bad (_("use of old and new-style options to set CPU type"));
23641
23642 mcpu_cpu_opt = legacy_cpu;
23643 }
23644 else if (!mcpu_cpu_opt)
23645 mcpu_cpu_opt = march_cpu_opt;
23646
23647 if (legacy_fpu)
23648 {
23649 if (mfpu_opt)
23650 as_bad (_("use of old and new-style options to set FPU type"));
23651
23652 mfpu_opt = legacy_fpu;
23653 }
23654 else if (!mfpu_opt)
23655 {
23656 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
23657 || defined (TE_NetBSD) || defined (TE_VXWORKS))
23658 /* Some environments specify a default FPU. If they don't, infer it
23659 from the processor. */
23660 if (mcpu_fpu_opt)
23661 mfpu_opt = mcpu_fpu_opt;
23662 else
23663 mfpu_opt = march_fpu_opt;
23664 #else
23665 mfpu_opt = &fpu_default;
23666 #endif
23667 }
23668
23669 if (!mfpu_opt)
23670 {
23671 if (mcpu_cpu_opt != NULL)
23672 mfpu_opt = &fpu_default;
23673 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
23674 mfpu_opt = &fpu_arch_vfp_v2;
23675 else
23676 mfpu_opt = &fpu_arch_fpa;
23677 }
23678
23679 #ifdef CPU_DEFAULT
23680 if (!mcpu_cpu_opt)
23681 {
23682 mcpu_cpu_opt = &cpu_default;
23683 selected_cpu = cpu_default;
23684 }
23685 #else
23686 if (mcpu_cpu_opt)
23687 selected_cpu = *mcpu_cpu_opt;
23688 else
23689 mcpu_cpu_opt = &arm_arch_any;
23690 #endif
23691
23692 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23693
23694 autoselect_thumb_from_cpu_variant ();
23695
23696 arm_arch_used = thumb_arch_used = arm_arch_none;
23697
23698 #if defined OBJ_COFF || defined OBJ_ELF
23699 {
23700 unsigned int flags = 0;
23701
23702 #if defined OBJ_ELF
23703 flags = meabi_flags;
23704
23705 switch (meabi_flags)
23706 {
23707 case EF_ARM_EABI_UNKNOWN:
23708 #endif
23709 /* Set the flags in the private structure. */
23710 if (uses_apcs_26) flags |= F_APCS26;
23711 if (support_interwork) flags |= F_INTERWORK;
23712 if (uses_apcs_float) flags |= F_APCS_FLOAT;
23713 if (pic_code) flags |= F_PIC;
23714 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
23715 flags |= F_SOFT_FLOAT;
23716
23717 switch (mfloat_abi_opt)
23718 {
23719 case ARM_FLOAT_ABI_SOFT:
23720 case ARM_FLOAT_ABI_SOFTFP:
23721 flags |= F_SOFT_FLOAT;
23722 break;
23723
23724 case ARM_FLOAT_ABI_HARD:
23725 if (flags & F_SOFT_FLOAT)
23726 as_bad (_("hard-float conflicts with specified fpu"));
23727 break;
23728 }
23729
23730 /* Using pure-endian doubles (even if soft-float). */
23731 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
23732 flags |= F_VFP_FLOAT;
23733
23734 #if defined OBJ_ELF
23735 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
23736 flags |= EF_ARM_MAVERICK_FLOAT;
23737 break;
23738
23739 case EF_ARM_EABI_VER4:
23740 case EF_ARM_EABI_VER5:
23741 /* No additional flags to set. */
23742 break;
23743
23744 default:
23745 abort ();
23746 }
23747 #endif
23748 bfd_set_private_flags (stdoutput, flags);
23749
23750 /* We have run out flags in the COFF header to encode the
23751 status of ATPCS support, so instead we create a dummy,
23752 empty, debug section called .arm.atpcs. */
23753 if (atpcs)
23754 {
23755 asection * sec;
23756
23757 sec = bfd_make_section (stdoutput, ".arm.atpcs");
23758
23759 if (sec != NULL)
23760 {
23761 bfd_set_section_flags
23762 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
23763 bfd_set_section_size (stdoutput, sec, 0);
23764 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
23765 }
23766 }
23767 }
23768 #endif
23769
23770 /* Record the CPU type as well. */
23771 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
23772 mach = bfd_mach_arm_iWMMXt2;
23773 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
23774 mach = bfd_mach_arm_iWMMXt;
23775 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
23776 mach = bfd_mach_arm_XScale;
23777 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
23778 mach = bfd_mach_arm_ep9312;
23779 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
23780 mach = bfd_mach_arm_5TE;
23781 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
23782 {
23783 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23784 mach = bfd_mach_arm_5T;
23785 else
23786 mach = bfd_mach_arm_5;
23787 }
23788 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
23789 {
23790 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23791 mach = bfd_mach_arm_4T;
23792 else
23793 mach = bfd_mach_arm_4;
23794 }
23795 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
23796 mach = bfd_mach_arm_3M;
23797 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23798 mach = bfd_mach_arm_3;
23799 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23800 mach = bfd_mach_arm_2a;
23801 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23802 mach = bfd_mach_arm_2;
23803 else
23804 mach = bfd_mach_arm_unknown;
23805
23806 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23807 }
23808
23809 /* Command line processing. */
23810
23811 /* md_parse_option
23812 Invocation line includes a switch not recognized by the base assembler.
23813 See if it's a processor-specific option.
23814
23815 This routine is somewhat complicated by the need for backwards
23816 compatibility (since older releases of gcc can't be changed).
23817 The new options try to make the interface as compatible as
23818 possible with GCC.
23819
23820 New options (supported) are:
23821
23822 -mcpu=<cpu name> Assemble for selected processor
23823 -march=<architecture name> Assemble for selected architecture
23824 -mfpu=<fpu architecture> Assemble for selected FPU.
23825 -EB/-mbig-endian Big-endian
23826 -EL/-mlittle-endian Little-endian
23827 -k Generate PIC code
23828 -mthumb Start in Thumb mode
23829 -mthumb-interwork Code supports ARM/Thumb interworking
23830
23831 -m[no-]warn-deprecated Warn about deprecated features
23832
23833 For now we will also provide support for:
23834
23835 -mapcs-32 32-bit Program counter
23836 -mapcs-26 26-bit Program counter
23837 -macps-float Floats passed in FP registers
23838 -mapcs-reentrant Reentrant code
23839 -matpcs
23840 (sometime these will probably be replaced with -mapcs=<list of options>
23841 and -matpcs=<list of options>)
23842
23843 The remaining options are only supported for back-wards compatibility.
23844 Cpu variants, the arm part is optional:
23845 -m[arm]1 Currently not supported.
23846 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23847 -m[arm]3 Arm 3 processor
23848 -m[arm]6[xx], Arm 6 processors
23849 -m[arm]7[xx][t][[d]m] Arm 7 processors
23850 -m[arm]8[10] Arm 8 processors
23851 -m[arm]9[20][tdmi] Arm 9 processors
23852 -mstrongarm[110[0]] StrongARM processors
23853 -mxscale XScale processors
23854 -m[arm]v[2345[t[e]]] Arm architectures
23855 -mall All (except the ARM1)
23856 FP variants:
23857 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23858 -mfpe-old (No float load/store multiples)
23859 -mvfpxd VFP Single precision
23860 -mvfp All VFP
23861 -mno-fpu Disable all floating point instructions
23862
23863 The following CPU names are recognized:
23864 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23865 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23866 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23867 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23868 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23869 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23870 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23871
23872 */
23873
23874 const char * md_shortopts = "m:k";
23875
23876 #ifdef ARM_BI_ENDIAN
23877 #define OPTION_EB (OPTION_MD_BASE + 0)
23878 #define OPTION_EL (OPTION_MD_BASE + 1)
23879 #else
23880 #if TARGET_BYTES_BIG_ENDIAN
23881 #define OPTION_EB (OPTION_MD_BASE + 0)
23882 #else
23883 #define OPTION_EL (OPTION_MD_BASE + 1)
23884 #endif
23885 #endif
23886 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23887
23888 struct option md_longopts[] =
23889 {
23890 #ifdef OPTION_EB
23891 {"EB", no_argument, NULL, OPTION_EB},
23892 #endif
23893 #ifdef OPTION_EL
23894 {"EL", no_argument, NULL, OPTION_EL},
23895 #endif
23896 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
23897 {NULL, no_argument, NULL, 0}
23898 };
23899
23900 size_t md_longopts_size = sizeof (md_longopts);
23901
23902 struct arm_option_table
23903 {
23904 char *option; /* Option name to match. */
23905 char *help; /* Help information. */
23906 int *var; /* Variable to change. */
23907 int value; /* What to change it to. */
23908 char *deprecated; /* If non-null, print this message. */
23909 };
23910
23911 struct arm_option_table arm_opts[] =
23912 {
23913 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23914 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23915 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23916 &support_interwork, 1, NULL},
23917 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23918 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23919 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23920 1, NULL},
23921 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23922 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23923 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23924 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23925 NULL},
23926
23927 /* These are recognized by the assembler, but have no affect on code. */
23928 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23929 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23930
23931 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23932 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23933 &warn_on_deprecated, 0, NULL},
23934 {NULL, NULL, NULL, 0, NULL}
23935 };
23936
23937 struct arm_legacy_option_table
23938 {
23939 char *option; /* Option name to match. */
23940 const arm_feature_set **var; /* Variable to change. */
23941 const arm_feature_set value; /* What to change it to. */
23942 char *deprecated; /* If non-null, print this message. */
23943 };
23944
23945 const struct arm_legacy_option_table arm_legacy_opts[] =
23946 {
23947 /* DON'T add any new processors to this list -- we want the whole list
23948 to go away... Add them to the processors table instead. */
23949 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23950 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23951 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23952 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23953 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23954 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23955 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23956 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23957 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23958 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23959 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23960 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23961 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23962 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23963 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23964 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23965 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23966 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23967 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23968 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23969 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23970 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23971 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23972 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23973 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23974 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23975 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23976 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23977 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23978 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23979 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23980 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23981 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23982 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23983 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23984 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23985 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23986 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23987 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23988 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23989 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23990 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23991 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23992 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23993 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23994 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23995 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23996 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23997 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23998 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23999 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
24000 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
24001 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
24002 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
24003 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
24004 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
24005 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
24006 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
24007 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
24008 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
24009 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
24010 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
24011 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
24012 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
24013 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
24014 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
24015 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
24016 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
24017 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
24018 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
24019 N_("use -mcpu=strongarm110")},
24020 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
24021 N_("use -mcpu=strongarm1100")},
24022 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
24023 N_("use -mcpu=strongarm1110")},
24024 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
24025 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
24026 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
24027
24028 /* Architecture variants -- don't add any more to this list either. */
24029 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
24030 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
24031 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
24032 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
24033 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
24034 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
24035 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
24036 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
24037 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
24038 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
24039 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
24040 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
24041 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
24042 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
24043 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
24044 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
24045 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
24046 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
24047
24048 /* Floating point variants -- don't add any more to this list either. */
24049 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
24050 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
24051 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
24052 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
24053 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
24054
24055 {NULL, NULL, ARM_ARCH_NONE, NULL}
24056 };
24057
24058 struct arm_cpu_option_table
24059 {
24060 char *name;
24061 size_t name_len;
24062 const arm_feature_set value;
24063 /* For some CPUs we assume an FPU unless the user explicitly sets
24064 -mfpu=... */
24065 const arm_feature_set default_fpu;
24066 /* The canonical name of the CPU, or NULL to use NAME converted to upper
24067 case. */
24068 const char *canonical_name;
24069 };
24070
24071 /* This list should, at a minimum, contain all the cpu names
24072 recognized by GCC. */
24073 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
24074 static const struct arm_cpu_option_table arm_cpus[] =
24075 {
24076 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
24077 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
24078 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
24079 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
24080 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
24081 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24082 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24083 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24084 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24085 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24086 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24087 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24088 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24089 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24090 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24091 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24092 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24093 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24094 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24095 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24096 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24097 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24098 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24099 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24100 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24101 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24102 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24103 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24104 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24105 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24106 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24107 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24108 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24109 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24110 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24111 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24112 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24113 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24114 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24115 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
24116 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24117 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24118 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24119 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24120 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24121 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24122 /* For V5 or later processors we default to using VFP; but the user
24123 should really set the FPU type explicitly. */
24124 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24125 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24126 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
24127 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
24128 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
24129 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24130 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
24131 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24132 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24133 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
24134 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24135 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24136 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24137 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24138 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24139 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
24140 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24141 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24142 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24143 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
24144 "ARM1026EJ-S"),
24145 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
24146 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24147 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24148 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24149 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24150 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24151 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
24152 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
24153 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
24154 "ARM1136JF-S"),
24155 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
24156 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
24157 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
24158 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
24159 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
24160 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
24161 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
24162 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
24163 FPU_NONE, "Cortex-A5"),
24164 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24165 "Cortex-A7"),
24166 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
24167 ARM_FEATURE (0, FPU_VFP_V3
24168 | FPU_NEON_EXT_V1),
24169 "Cortex-A8"),
24170 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
24171 ARM_FEATURE (0, FPU_VFP_V3
24172 | FPU_NEON_EXT_V1),
24173 "Cortex-A9"),
24174 ARM_CPU_OPT ("cortex-a12", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24175 "Cortex-A12"),
24176 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24177 "Cortex-A15"),
24178 ARM_CPU_OPT ("cortex-a53", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24179 "Cortex-A53"),
24180 ARM_CPU_OPT ("cortex-a57", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24181 "Cortex-A57"),
24182 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
24183 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
24184 "Cortex-R4F"),
24185 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
24186 FPU_NONE, "Cortex-R5"),
24187 ARM_CPU_OPT ("cortex-r7", ARM_ARCH_V7R_IDIV,
24188 FPU_ARCH_VFP_V3D16,
24189 "Cortex-R7"),
24190 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
24191 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
24192 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
24193 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
24194 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
24195 /* ??? XSCALE is really an architecture. */
24196 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
24197 /* ??? iwmmxt is not a processor. */
24198 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
24199 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
24200 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
24201 /* Maverick */
24202 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
24203 FPU_ARCH_MAVERICK, "ARM920T"),
24204 /* Marvell processors. */
24205 ARM_CPU_OPT ("marvell-pj4", ARM_FEATURE (ARM_AEXT_V7A | ARM_EXT_MP | ARM_EXT_SEC, 0),
24206 FPU_ARCH_VFP_V3D16, NULL),
24207
24208 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
24209 };
24210 #undef ARM_CPU_OPT
24211
24212 struct arm_arch_option_table
24213 {
24214 char *name;
24215 size_t name_len;
24216 const arm_feature_set value;
24217 const arm_feature_set default_fpu;
24218 };
24219
24220 /* This list should, at a minimum, contain all the architecture names
24221 recognized by GCC. */
24222 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
24223 static const struct arm_arch_option_table arm_archs[] =
24224 {
24225 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
24226 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
24227 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
24228 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
24229 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
24230 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
24231 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
24232 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
24233 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
24234 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
24235 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
24236 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
24237 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
24238 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
24239 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
24240 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
24241 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
24242 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
24243 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
24244 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
24245 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
24246 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
24247 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
24248 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
24249 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
24250 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
24251 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
24252 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
24253 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
24254 /* The official spelling of the ARMv7 profile variants is the dashed form.
24255 Accept the non-dashed form for compatibility with old toolchains. */
24256 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
24257 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
24258 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
24259 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
24260 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
24261 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
24262 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
24263 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
24264 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
24265 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
24266 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
24267 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
24268 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
24269 };
24270 #undef ARM_ARCH_OPT
24271
24272 /* ISA extensions in the co-processor and main instruction set space. */
24273 struct arm_option_extension_value_table
24274 {
24275 char *name;
24276 size_t name_len;
24277 const arm_feature_set value;
24278 const arm_feature_set allowed_archs;
24279 };
24280
24281 /* The following table must be in alphabetical order with a NULL last entry.
24282 */
24283 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
24284 static const struct arm_option_extension_value_table arm_extensions[] =
24285 {
24286 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE (ARM_EXT_V8, 0)),
24287 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24288 ARM_FEATURE (ARM_EXT_V8, 0)),
24289 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
24290 ARM_FEATURE (ARM_EXT_V8, 0)),
24291 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
24292 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
24293 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
24294 ARM_EXT_OPT ("iwmmxt2",
24295 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
24296 ARM_EXT_OPT ("maverick",
24297 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
24298 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
24299 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
24300 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
24301 ARM_FEATURE (ARM_EXT_V8, 0)),
24302 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
24303 ARM_FEATURE (ARM_EXT_V6M, 0)),
24304 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
24305 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
24306 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
24307 | ARM_EXT_DIV, 0),
24308 ARM_FEATURE (ARM_EXT_V7A, 0)),
24309 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
24310 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
24311 };
24312 #undef ARM_EXT_OPT
24313
24314 /* ISA floating-point and Advanced SIMD extensions. */
24315 struct arm_option_fpu_value_table
24316 {
24317 char *name;
24318 const arm_feature_set value;
24319 };
24320
24321 /* This list should, at a minimum, contain all the fpu names
24322 recognized by GCC. */
24323 static const struct arm_option_fpu_value_table arm_fpus[] =
24324 {
24325 {"softfpa", FPU_NONE},
24326 {"fpe", FPU_ARCH_FPE},
24327 {"fpe2", FPU_ARCH_FPE},
24328 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
24329 {"fpa", FPU_ARCH_FPA},
24330 {"fpa10", FPU_ARCH_FPA},
24331 {"fpa11", FPU_ARCH_FPA},
24332 {"arm7500fe", FPU_ARCH_FPA},
24333 {"softvfp", FPU_ARCH_VFP},
24334 {"softvfp+vfp", FPU_ARCH_VFP_V2},
24335 {"vfp", FPU_ARCH_VFP_V2},
24336 {"vfp9", FPU_ARCH_VFP_V2},
24337 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
24338 {"vfp10", FPU_ARCH_VFP_V2},
24339 {"vfp10-r0", FPU_ARCH_VFP_V1},
24340 {"vfpxd", FPU_ARCH_VFP_V1xD},
24341 {"vfpv2", FPU_ARCH_VFP_V2},
24342 {"vfpv3", FPU_ARCH_VFP_V3},
24343 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
24344 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
24345 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
24346 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
24347 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
24348 {"arm1020t", FPU_ARCH_VFP_V1},
24349 {"arm1020e", FPU_ARCH_VFP_V2},
24350 {"arm1136jfs", FPU_ARCH_VFP_V2},
24351 {"arm1136jf-s", FPU_ARCH_VFP_V2},
24352 {"maverick", FPU_ARCH_MAVERICK},
24353 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
24354 {"neon-fp16", FPU_ARCH_NEON_FP16},
24355 {"vfpv4", FPU_ARCH_VFP_V4},
24356 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
24357 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
24358 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
24359 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
24360 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
24361 {"crypto-neon-fp-armv8",
24362 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
24363 {NULL, ARM_ARCH_NONE}
24364 };
24365
24366 struct arm_option_value_table
24367 {
24368 char *name;
24369 long value;
24370 };
24371
24372 static const struct arm_option_value_table arm_float_abis[] =
24373 {
24374 {"hard", ARM_FLOAT_ABI_HARD},
24375 {"softfp", ARM_FLOAT_ABI_SOFTFP},
24376 {"soft", ARM_FLOAT_ABI_SOFT},
24377 {NULL, 0}
24378 };
24379
24380 #ifdef OBJ_ELF
24381 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
24382 static const struct arm_option_value_table arm_eabis[] =
24383 {
24384 {"gnu", EF_ARM_EABI_UNKNOWN},
24385 {"4", EF_ARM_EABI_VER4},
24386 {"5", EF_ARM_EABI_VER5},
24387 {NULL, 0}
24388 };
24389 #endif
24390
24391 struct arm_long_option_table
24392 {
24393 char * option; /* Substring to match. */
24394 char * help; /* Help information. */
24395 int (* func) (char * subopt); /* Function to decode sub-option. */
24396 char * deprecated; /* If non-null, print this message. */
24397 };
24398
24399 static bfd_boolean
24400 arm_parse_extension (char *str, const arm_feature_set **opt_p)
24401 {
24402 arm_feature_set *ext_set = (arm_feature_set *)
24403 xmalloc (sizeof (arm_feature_set));
24404
24405 /* We insist on extensions being specified in alphabetical order, and with
24406 extensions being added before being removed. We achieve this by having
24407 the global ARM_EXTENSIONS table in alphabetical order, and using the
24408 ADDING_VALUE variable to indicate whether we are adding an extension (1)
24409 or removing it (0) and only allowing it to change in the order
24410 -1 -> 1 -> 0. */
24411 const struct arm_option_extension_value_table * opt = NULL;
24412 int adding_value = -1;
24413
24414 /* Copy the feature set, so that we can modify it. */
24415 *ext_set = **opt_p;
24416 *opt_p = ext_set;
24417
24418 while (str != NULL && *str != 0)
24419 {
24420 char *ext;
24421 size_t len;
24422
24423 if (*str != '+')
24424 {
24425 as_bad (_("invalid architectural extension"));
24426 return FALSE;
24427 }
24428
24429 str++;
24430 ext = strchr (str, '+');
24431
24432 if (ext != NULL)
24433 len = ext - str;
24434 else
24435 len = strlen (str);
24436
24437 if (len >= 2 && strncmp (str, "no", 2) == 0)
24438 {
24439 if (adding_value != 0)
24440 {
24441 adding_value = 0;
24442 opt = arm_extensions;
24443 }
24444
24445 len -= 2;
24446 str += 2;
24447 }
24448 else if (len > 0)
24449 {
24450 if (adding_value == -1)
24451 {
24452 adding_value = 1;
24453 opt = arm_extensions;
24454 }
24455 else if (adding_value != 1)
24456 {
24457 as_bad (_("must specify extensions to add before specifying "
24458 "those to remove"));
24459 return FALSE;
24460 }
24461 }
24462
24463 if (len == 0)
24464 {
24465 as_bad (_("missing architectural extension"));
24466 return FALSE;
24467 }
24468
24469 gas_assert (adding_value != -1);
24470 gas_assert (opt != NULL);
24471
24472 /* Scan over the options table trying to find an exact match. */
24473 for (; opt->name != NULL; opt++)
24474 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24475 {
24476 /* Check we can apply the extension to this architecture. */
24477 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
24478 {
24479 as_bad (_("extension does not apply to the base architecture"));
24480 return FALSE;
24481 }
24482
24483 /* Add or remove the extension. */
24484 if (adding_value)
24485 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
24486 else
24487 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
24488
24489 break;
24490 }
24491
24492 if (opt->name == NULL)
24493 {
24494 /* Did we fail to find an extension because it wasn't specified in
24495 alphabetical order, or because it does not exist? */
24496
24497 for (opt = arm_extensions; opt->name != NULL; opt++)
24498 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24499 break;
24500
24501 if (opt->name == NULL)
24502 as_bad (_("unknown architectural extension `%s'"), str);
24503 else
24504 as_bad (_("architectural extensions must be specified in "
24505 "alphabetical order"));
24506
24507 return FALSE;
24508 }
24509 else
24510 {
24511 /* We should skip the extension we've just matched the next time
24512 round. */
24513 opt++;
24514 }
24515
24516 str = ext;
24517 };
24518
24519 return TRUE;
24520 }
24521
24522 static bfd_boolean
24523 arm_parse_cpu (char *str)
24524 {
24525 const struct arm_cpu_option_table *opt;
24526 char *ext = strchr (str, '+');
24527 size_t len;
24528
24529 if (ext != NULL)
24530 len = ext - str;
24531 else
24532 len = strlen (str);
24533
24534 if (len == 0)
24535 {
24536 as_bad (_("missing cpu name `%s'"), str);
24537 return FALSE;
24538 }
24539
24540 for (opt = arm_cpus; opt->name != NULL; opt++)
24541 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24542 {
24543 mcpu_cpu_opt = &opt->value;
24544 mcpu_fpu_opt = &opt->default_fpu;
24545 if (opt->canonical_name)
24546 strcpy (selected_cpu_name, opt->canonical_name);
24547 else
24548 {
24549 size_t i;
24550
24551 for (i = 0; i < len; i++)
24552 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24553 selected_cpu_name[i] = 0;
24554 }
24555
24556 if (ext != NULL)
24557 return arm_parse_extension (ext, &mcpu_cpu_opt);
24558
24559 return TRUE;
24560 }
24561
24562 as_bad (_("unknown cpu `%s'"), str);
24563 return FALSE;
24564 }
24565
24566 static bfd_boolean
24567 arm_parse_arch (char *str)
24568 {
24569 const struct arm_arch_option_table *opt;
24570 char *ext = strchr (str, '+');
24571 size_t len;
24572
24573 if (ext != NULL)
24574 len = ext - str;
24575 else
24576 len = strlen (str);
24577
24578 if (len == 0)
24579 {
24580 as_bad (_("missing architecture name `%s'"), str);
24581 return FALSE;
24582 }
24583
24584 for (opt = arm_archs; opt->name != NULL; opt++)
24585 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24586 {
24587 march_cpu_opt = &opt->value;
24588 march_fpu_opt = &opt->default_fpu;
24589 strcpy (selected_cpu_name, opt->name);
24590
24591 if (ext != NULL)
24592 return arm_parse_extension (ext, &march_cpu_opt);
24593
24594 return TRUE;
24595 }
24596
24597 as_bad (_("unknown architecture `%s'\n"), str);
24598 return FALSE;
24599 }
24600
24601 static bfd_boolean
24602 arm_parse_fpu (char * str)
24603 {
24604 const struct arm_option_fpu_value_table * opt;
24605
24606 for (opt = arm_fpus; opt->name != NULL; opt++)
24607 if (streq (opt->name, str))
24608 {
24609 mfpu_opt = &opt->value;
24610 return TRUE;
24611 }
24612
24613 as_bad (_("unknown floating point format `%s'\n"), str);
24614 return FALSE;
24615 }
24616
24617 static bfd_boolean
24618 arm_parse_float_abi (char * str)
24619 {
24620 const struct arm_option_value_table * opt;
24621
24622 for (opt = arm_float_abis; opt->name != NULL; opt++)
24623 if (streq (opt->name, str))
24624 {
24625 mfloat_abi_opt = opt->value;
24626 return TRUE;
24627 }
24628
24629 as_bad (_("unknown floating point abi `%s'\n"), str);
24630 return FALSE;
24631 }
24632
24633 #ifdef OBJ_ELF
24634 static bfd_boolean
24635 arm_parse_eabi (char * str)
24636 {
24637 const struct arm_option_value_table *opt;
24638
24639 for (opt = arm_eabis; opt->name != NULL; opt++)
24640 if (streq (opt->name, str))
24641 {
24642 meabi_flags = opt->value;
24643 return TRUE;
24644 }
24645 as_bad (_("unknown EABI `%s'\n"), str);
24646 return FALSE;
24647 }
24648 #endif
24649
24650 static bfd_boolean
24651 arm_parse_it_mode (char * str)
24652 {
24653 bfd_boolean ret = TRUE;
24654
24655 if (streq ("arm", str))
24656 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
24657 else if (streq ("thumb", str))
24658 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
24659 else if (streq ("always", str))
24660 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
24661 else if (streq ("never", str))
24662 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
24663 else
24664 {
24665 as_bad (_("unknown implicit IT mode `%s', should be "\
24666 "arm, thumb, always, or never."), str);
24667 ret = FALSE;
24668 }
24669
24670 return ret;
24671 }
24672
24673 static bfd_boolean
24674 arm_ccs_mode (char * unused ATTRIBUTE_UNUSED)
24675 {
24676 codecomposer_syntax = TRUE;
24677 arm_comment_chars[0] = ';';
24678 arm_line_separator_chars[0] = 0;
24679 return TRUE;
24680 }
24681
24682 struct arm_long_option_table arm_long_opts[] =
24683 {
24684 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
24685 arm_parse_cpu, NULL},
24686 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
24687 arm_parse_arch, NULL},
24688 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
24689 arm_parse_fpu, NULL},
24690 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
24691 arm_parse_float_abi, NULL},
24692 #ifdef OBJ_ELF
24693 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
24694 arm_parse_eabi, NULL},
24695 #endif
24696 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
24697 arm_parse_it_mode, NULL},
24698 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
24699 arm_ccs_mode, NULL},
24700 {NULL, NULL, 0, NULL}
24701 };
24702
24703 int
24704 md_parse_option (int c, char * arg)
24705 {
24706 struct arm_option_table *opt;
24707 const struct arm_legacy_option_table *fopt;
24708 struct arm_long_option_table *lopt;
24709
24710 switch (c)
24711 {
24712 #ifdef OPTION_EB
24713 case OPTION_EB:
24714 target_big_endian = 1;
24715 break;
24716 #endif
24717
24718 #ifdef OPTION_EL
24719 case OPTION_EL:
24720 target_big_endian = 0;
24721 break;
24722 #endif
24723
24724 case OPTION_FIX_V4BX:
24725 fix_v4bx = TRUE;
24726 break;
24727
24728 case 'a':
24729 /* Listing option. Just ignore these, we don't support additional
24730 ones. */
24731 return 0;
24732
24733 default:
24734 for (opt = arm_opts; opt->option != NULL; opt++)
24735 {
24736 if (c == opt->option[0]
24737 && ((arg == NULL && opt->option[1] == 0)
24738 || streq (arg, opt->option + 1)))
24739 {
24740 /* If the option is deprecated, tell the user. */
24741 if (warn_on_deprecated && opt->deprecated != NULL)
24742 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24743 arg ? arg : "", _(opt->deprecated));
24744
24745 if (opt->var != NULL)
24746 *opt->var = opt->value;
24747
24748 return 1;
24749 }
24750 }
24751
24752 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
24753 {
24754 if (c == fopt->option[0]
24755 && ((arg == NULL && fopt->option[1] == 0)
24756 || streq (arg, fopt->option + 1)))
24757 {
24758 /* If the option is deprecated, tell the user. */
24759 if (warn_on_deprecated && fopt->deprecated != NULL)
24760 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24761 arg ? arg : "", _(fopt->deprecated));
24762
24763 if (fopt->var != NULL)
24764 *fopt->var = &fopt->value;
24765
24766 return 1;
24767 }
24768 }
24769
24770 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24771 {
24772 /* These options are expected to have an argument. */
24773 if (c == lopt->option[0]
24774 && arg != NULL
24775 && strncmp (arg, lopt->option + 1,
24776 strlen (lopt->option + 1)) == 0)
24777 {
24778 /* If the option is deprecated, tell the user. */
24779 if (warn_on_deprecated && lopt->deprecated != NULL)
24780 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
24781 _(lopt->deprecated));
24782
24783 /* Call the sup-option parser. */
24784 return lopt->func (arg + strlen (lopt->option) - 1);
24785 }
24786 }
24787
24788 return 0;
24789 }
24790
24791 return 1;
24792 }
24793
24794 void
24795 md_show_usage (FILE * fp)
24796 {
24797 struct arm_option_table *opt;
24798 struct arm_long_option_table *lopt;
24799
24800 fprintf (fp, _(" ARM-specific assembler options:\n"));
24801
24802 for (opt = arm_opts; opt->option != NULL; opt++)
24803 if (opt->help != NULL)
24804 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
24805
24806 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24807 if (lopt->help != NULL)
24808 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
24809
24810 #ifdef OPTION_EB
24811 fprintf (fp, _("\
24812 -EB assemble code for a big-endian cpu\n"));
24813 #endif
24814
24815 #ifdef OPTION_EL
24816 fprintf (fp, _("\
24817 -EL assemble code for a little-endian cpu\n"));
24818 #endif
24819
24820 fprintf (fp, _("\
24821 --fix-v4bx Allow BX in ARMv4 code\n"));
24822 }
24823
24824
24825 #ifdef OBJ_ELF
24826 typedef struct
24827 {
24828 int val;
24829 arm_feature_set flags;
24830 } cpu_arch_ver_table;
24831
24832 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24833 least features first. */
24834 static const cpu_arch_ver_table cpu_arch_ver[] =
24835 {
24836 {1, ARM_ARCH_V4},
24837 {2, ARM_ARCH_V4T},
24838 {3, ARM_ARCH_V5},
24839 {3, ARM_ARCH_V5T},
24840 {4, ARM_ARCH_V5TE},
24841 {5, ARM_ARCH_V5TEJ},
24842 {6, ARM_ARCH_V6},
24843 {9, ARM_ARCH_V6K},
24844 {7, ARM_ARCH_V6Z},
24845 {11, ARM_ARCH_V6M},
24846 {12, ARM_ARCH_V6SM},
24847 {8, ARM_ARCH_V6T2},
24848 {10, ARM_ARCH_V7VE},
24849 {10, ARM_ARCH_V7R},
24850 {10, ARM_ARCH_V7M},
24851 {14, ARM_ARCH_V8A},
24852 {0, ARM_ARCH_NONE}
24853 };
24854
24855 /* Set an attribute if it has not already been set by the user. */
24856 static void
24857 aeabi_set_attribute_int (int tag, int value)
24858 {
24859 if (tag < 1
24860 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24861 || !attributes_set_explicitly[tag])
24862 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24863 }
24864
24865 static void
24866 aeabi_set_attribute_string (int tag, const char *value)
24867 {
24868 if (tag < 1
24869 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24870 || !attributes_set_explicitly[tag])
24871 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24872 }
24873
24874 /* Set the public EABI object attributes. */
24875 static void
24876 aeabi_set_public_attributes (void)
24877 {
24878 int arch;
24879 char profile;
24880 int virt_sec = 0;
24881 int fp16_optional = 0;
24882 arm_feature_set flags;
24883 arm_feature_set tmp;
24884 const cpu_arch_ver_table *p;
24885
24886 /* Choose the architecture based on the capabilities of the requested cpu
24887 (if any) and/or the instructions actually used. */
24888 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24889 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24890 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
24891
24892 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24893 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24894
24895 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24896 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24897
24898 /* Allow the user to override the reported architecture. */
24899 if (object_arch)
24900 {
24901 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24902 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24903 }
24904
24905 /* We need to make sure that the attributes do not identify us as v6S-M
24906 when the only v6S-M feature in use is the Operating System Extensions. */
24907 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24908 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24909 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24910
24911 tmp = flags;
24912 arch = 0;
24913 for (p = cpu_arch_ver; p->val; p++)
24914 {
24915 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24916 {
24917 arch = p->val;
24918 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24919 }
24920 }
24921
24922 /* The table lookup above finds the last architecture to contribute
24923 a new feature. Unfortunately, Tag13 is a subset of the union of
24924 v6T2 and v7-M, so it is never seen as contributing a new feature.
24925 We can not search for the last entry which is entirely used,
24926 because if no CPU is specified we build up only those flags
24927 actually used. Perhaps we should separate out the specified
24928 and implicit cases. Avoid taking this path for -march=all by
24929 checking for contradictory v7-A / v7-M features. */
24930 if (arch == 10
24931 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24932 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24933 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24934 arch = 13;
24935
24936 /* Tag_CPU_name. */
24937 if (selected_cpu_name[0])
24938 {
24939 char *q;
24940
24941 q = selected_cpu_name;
24942 if (strncmp (q, "armv", 4) == 0)
24943 {
24944 int i;
24945
24946 q += 4;
24947 for (i = 0; q[i]; i++)
24948 q[i] = TOUPPER (q[i]);
24949 }
24950 aeabi_set_attribute_string (Tag_CPU_name, q);
24951 }
24952
24953 /* Tag_CPU_arch. */
24954 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24955
24956 /* Tag_CPU_arch_profile. */
24957 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24958 profile = 'A';
24959 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24960 profile = 'R';
24961 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24962 profile = 'M';
24963 else
24964 profile = '\0';
24965
24966 if (profile != '\0')
24967 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24968
24969 /* Tag_ARM_ISA_use. */
24970 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24971 || arch == 0)
24972 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24973
24974 /* Tag_THUMB_ISA_use. */
24975 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24976 || arch == 0)
24977 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24978 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24979
24980 /* Tag_VFP_arch. */
24981 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24982 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24983 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24984 aeabi_set_attribute_int (Tag_VFP_arch,
24985 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24986 ? 5 : 6);
24987 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24988 {
24989 fp16_optional = 1;
24990 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24991 }
24992 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24993 {
24994 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24995 fp16_optional = 1;
24996 }
24997 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24998 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24999 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
25000 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
25001 aeabi_set_attribute_int (Tag_VFP_arch, 1);
25002
25003 /* Tag_ABI_HardFP_use. */
25004 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
25005 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
25006 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
25007
25008 /* Tag_WMMX_arch. */
25009 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
25010 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
25011 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
25012 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
25013
25014 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
25015 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
25016 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
25017 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
25018 {
25019 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
25020 {
25021 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
25022 }
25023 else
25024 {
25025 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
25026 fp16_optional = 1;
25027 }
25028 }
25029
25030 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
25031 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
25032 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
25033
25034 /* Tag_DIV_use.
25035
25036 We set Tag_DIV_use to two when integer divide instructions have been used
25037 in ARM state, or when Thumb integer divide instructions have been used,
25038 but we have no architecture profile set, nor have we any ARM instructions.
25039
25040 For ARMv8 we set the tag to 0 as integer divide is implied by the base
25041 architecture.
25042
25043 For new architectures we will have to check these tests. */
25044 gas_assert (arch <= TAG_CPU_ARCH_V8);
25045 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
25046 aeabi_set_attribute_int (Tag_DIV_use, 0);
25047 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
25048 || (profile == '\0'
25049 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
25050 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
25051 aeabi_set_attribute_int (Tag_DIV_use, 2);
25052
25053 /* Tag_MP_extension_use. */
25054 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
25055 aeabi_set_attribute_int (Tag_MPextension_use, 1);
25056
25057 /* Tag Virtualization_use. */
25058 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
25059 virt_sec |= 1;
25060 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
25061 virt_sec |= 2;
25062 if (virt_sec != 0)
25063 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
25064 }
25065
25066 /* Add the default contents for the .ARM.attributes section. */
25067 void
25068 arm_md_end (void)
25069 {
25070 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
25071 return;
25072
25073 aeabi_set_public_attributes ();
25074 }
25075 #endif /* OBJ_ELF */
25076
25077
25078 /* Parse a .cpu directive. */
25079
25080 static void
25081 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
25082 {
25083 const struct arm_cpu_option_table *opt;
25084 char *name;
25085 char saved_char;
25086
25087 name = input_line_pointer;
25088 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25089 input_line_pointer++;
25090 saved_char = *input_line_pointer;
25091 *input_line_pointer = 0;
25092
25093 /* Skip the first "all" entry. */
25094 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
25095 if (streq (opt->name, name))
25096 {
25097 mcpu_cpu_opt = &opt->value;
25098 selected_cpu = opt->value;
25099 if (opt->canonical_name)
25100 strcpy (selected_cpu_name, opt->canonical_name);
25101 else
25102 {
25103 int i;
25104 for (i = 0; opt->name[i]; i++)
25105 selected_cpu_name[i] = TOUPPER (opt->name[i]);
25106
25107 selected_cpu_name[i] = 0;
25108 }
25109 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25110 *input_line_pointer = saved_char;
25111 demand_empty_rest_of_line ();
25112 return;
25113 }
25114 as_bad (_("unknown cpu `%s'"), name);
25115 *input_line_pointer = saved_char;
25116 ignore_rest_of_line ();
25117 }
25118
25119
25120 /* Parse a .arch directive. */
25121
25122 static void
25123 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
25124 {
25125 const struct arm_arch_option_table *opt;
25126 char saved_char;
25127 char *name;
25128
25129 name = input_line_pointer;
25130 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25131 input_line_pointer++;
25132 saved_char = *input_line_pointer;
25133 *input_line_pointer = 0;
25134
25135 /* Skip the first "all" entry. */
25136 for (opt = arm_archs + 1; opt->name != NULL; opt++)
25137 if (streq (opt->name, name))
25138 {
25139 mcpu_cpu_opt = &opt->value;
25140 selected_cpu = opt->value;
25141 strcpy (selected_cpu_name, opt->name);
25142 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25143 *input_line_pointer = saved_char;
25144 demand_empty_rest_of_line ();
25145 return;
25146 }
25147
25148 as_bad (_("unknown architecture `%s'\n"), name);
25149 *input_line_pointer = saved_char;
25150 ignore_rest_of_line ();
25151 }
25152
25153
25154 /* Parse a .object_arch directive. */
25155
25156 static void
25157 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
25158 {
25159 const struct arm_arch_option_table *opt;
25160 char saved_char;
25161 char *name;
25162
25163 name = input_line_pointer;
25164 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25165 input_line_pointer++;
25166 saved_char = *input_line_pointer;
25167 *input_line_pointer = 0;
25168
25169 /* Skip the first "all" entry. */
25170 for (opt = arm_archs + 1; opt->name != NULL; opt++)
25171 if (streq (opt->name, name))
25172 {
25173 object_arch = &opt->value;
25174 *input_line_pointer = saved_char;
25175 demand_empty_rest_of_line ();
25176 return;
25177 }
25178
25179 as_bad (_("unknown architecture `%s'\n"), name);
25180 *input_line_pointer = saved_char;
25181 ignore_rest_of_line ();
25182 }
25183
25184 /* Parse a .arch_extension directive. */
25185
25186 static void
25187 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
25188 {
25189 const struct arm_option_extension_value_table *opt;
25190 char saved_char;
25191 char *name;
25192 int adding_value = 1;
25193
25194 name = input_line_pointer;
25195 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25196 input_line_pointer++;
25197 saved_char = *input_line_pointer;
25198 *input_line_pointer = 0;
25199
25200 if (strlen (name) >= 2
25201 && strncmp (name, "no", 2) == 0)
25202 {
25203 adding_value = 0;
25204 name += 2;
25205 }
25206
25207 for (opt = arm_extensions; opt->name != NULL; opt++)
25208 if (streq (opt->name, name))
25209 {
25210 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
25211 {
25212 as_bad (_("architectural extension `%s' is not allowed for the "
25213 "current base architecture"), name);
25214 break;
25215 }
25216
25217 if (adding_value)
25218 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
25219 else
25220 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
25221
25222 mcpu_cpu_opt = &selected_cpu;
25223 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25224 *input_line_pointer = saved_char;
25225 demand_empty_rest_of_line ();
25226 return;
25227 }
25228
25229 if (opt->name == NULL)
25230 as_bad (_("unknown architecture extension `%s'\n"), name);
25231
25232 *input_line_pointer = saved_char;
25233 ignore_rest_of_line ();
25234 }
25235
25236 /* Parse a .fpu directive. */
25237
25238 static void
25239 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
25240 {
25241 const struct arm_option_fpu_value_table *opt;
25242 char saved_char;
25243 char *name;
25244
25245 name = input_line_pointer;
25246 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25247 input_line_pointer++;
25248 saved_char = *input_line_pointer;
25249 *input_line_pointer = 0;
25250
25251 for (opt = arm_fpus; opt->name != NULL; opt++)
25252 if (streq (opt->name, name))
25253 {
25254 mfpu_opt = &opt->value;
25255 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25256 *input_line_pointer = saved_char;
25257 demand_empty_rest_of_line ();
25258 return;
25259 }
25260
25261 as_bad (_("unknown floating point format `%s'\n"), name);
25262 *input_line_pointer = saved_char;
25263 ignore_rest_of_line ();
25264 }
25265
25266 /* Copy symbol information. */
25267
25268 void
25269 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
25270 {
25271 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
25272 }
25273
25274 #ifdef OBJ_ELF
25275 /* Given a symbolic attribute NAME, return the proper integer value.
25276 Returns -1 if the attribute is not known. */
25277
25278 int
25279 arm_convert_symbolic_attribute (const char *name)
25280 {
25281 static const struct
25282 {
25283 const char * name;
25284 const int tag;
25285 }
25286 attribute_table[] =
25287 {
25288 /* When you modify this table you should
25289 also modify the list in doc/c-arm.texi. */
25290 #define T(tag) {#tag, tag}
25291 T (Tag_CPU_raw_name),
25292 T (Tag_CPU_name),
25293 T (Tag_CPU_arch),
25294 T (Tag_CPU_arch_profile),
25295 T (Tag_ARM_ISA_use),
25296 T (Tag_THUMB_ISA_use),
25297 T (Tag_FP_arch),
25298 T (Tag_VFP_arch),
25299 T (Tag_WMMX_arch),
25300 T (Tag_Advanced_SIMD_arch),
25301 T (Tag_PCS_config),
25302 T (Tag_ABI_PCS_R9_use),
25303 T (Tag_ABI_PCS_RW_data),
25304 T (Tag_ABI_PCS_RO_data),
25305 T (Tag_ABI_PCS_GOT_use),
25306 T (Tag_ABI_PCS_wchar_t),
25307 T (Tag_ABI_FP_rounding),
25308 T (Tag_ABI_FP_denormal),
25309 T (Tag_ABI_FP_exceptions),
25310 T (Tag_ABI_FP_user_exceptions),
25311 T (Tag_ABI_FP_number_model),
25312 T (Tag_ABI_align_needed),
25313 T (Tag_ABI_align8_needed),
25314 T (Tag_ABI_align_preserved),
25315 T (Tag_ABI_align8_preserved),
25316 T (Tag_ABI_enum_size),
25317 T (Tag_ABI_HardFP_use),
25318 T (Tag_ABI_VFP_args),
25319 T (Tag_ABI_WMMX_args),
25320 T (Tag_ABI_optimization_goals),
25321 T (Tag_ABI_FP_optimization_goals),
25322 T (Tag_compatibility),
25323 T (Tag_CPU_unaligned_access),
25324 T (Tag_FP_HP_extension),
25325 T (Tag_VFP_HP_extension),
25326 T (Tag_ABI_FP_16bit_format),
25327 T (Tag_MPextension_use),
25328 T (Tag_DIV_use),
25329 T (Tag_nodefaults),
25330 T (Tag_also_compatible_with),
25331 T (Tag_conformance),
25332 T (Tag_T2EE_use),
25333 T (Tag_Virtualization_use),
25334 /* We deliberately do not include Tag_MPextension_use_legacy. */
25335 #undef T
25336 };
25337 unsigned int i;
25338
25339 if (name == NULL)
25340 return -1;
25341
25342 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
25343 if (streq (name, attribute_table[i].name))
25344 return attribute_table[i].tag;
25345
25346 return -1;
25347 }
25348
25349
25350 /* Apply sym value for relocations only in the case that
25351 they are for local symbols and you have the respective
25352 architectural feature for blx and simple switches. */
25353 int
25354 arm_apply_sym_value (struct fix * fixP)
25355 {
25356 if (fixP->fx_addsy
25357 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
25358 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
25359 {
25360 switch (fixP->fx_r_type)
25361 {
25362 case BFD_RELOC_ARM_PCREL_BLX:
25363 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25364 if (ARM_IS_FUNC (fixP->fx_addsy))
25365 return 1;
25366 break;
25367
25368 case BFD_RELOC_ARM_PCREL_CALL:
25369 case BFD_RELOC_THUMB_PCREL_BLX:
25370 if (THUMB_IS_FUNC (fixP->fx_addsy))
25371 return 1;
25372 break;
25373
25374 default:
25375 break;
25376 }
25377
25378 }
25379 return 0;
25380 }
25381 #endif /* OBJ_ELF */
This page took 0.593088 seconds and 5 git commands to generate.