2010-09-27 Tejas Belagod <tejas.belagod@arm.com>
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
201 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
202 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
203 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
204 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
205
206 static const arm_feature_set arm_arch_any = ARM_ANY;
207 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210
211 static const arm_feature_set arm_cext_iwmmxt2 =
212 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
213 static const arm_feature_set arm_cext_iwmmxt =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
215 static const arm_feature_set arm_cext_xscale =
216 ARM_FEATURE (0, ARM_CEXT_XSCALE);
217 static const arm_feature_set arm_cext_maverick =
218 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
219 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
220 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
221 static const arm_feature_set fpu_vfp_ext_v1xd =
222 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
223 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
224 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
225 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
226 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
227 static const arm_feature_set fpu_vfp_ext_d32 =
228 ARM_FEATURE (0, FPU_VFP_EXT_D32);
229 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
230 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
231 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
232 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
233 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
234 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
235
236 static int mfloat_abi_opt = -1;
237 /* Record user cpu selection for object attributes. */
238 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
239 /* Must be long enough to hold any of the names in arm_cpus. */
240 static char selected_cpu_name[16];
241 #ifdef OBJ_ELF
242 # ifdef EABI_DEFAULT
243 static int meabi_flags = EABI_DEFAULT;
244 # else
245 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
246 # endif
247
248 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
249
250 bfd_boolean
251 arm_is_eabi (void)
252 {
253 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
254 }
255 #endif
256
257 #ifdef OBJ_ELF
258 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
259 symbolS * GOT_symbol;
260 #endif
261
262 /* 0: assemble for ARM,
263 1: assemble for Thumb,
264 2: assemble for Thumb even though target CPU does not support thumb
265 instructions. */
266 static int thumb_mode = 0;
267 /* A value distinct from the possible values for thumb_mode that we
268 can use to record whether thumb_mode has been copied into the
269 tc_frag_data field of a frag. */
270 #define MODE_RECORDED (1 << 4)
271
272 /* Specifies the intrinsic IT insn behavior mode. */
273 enum implicit_it_mode
274 {
275 IMPLICIT_IT_MODE_NEVER = 0x00,
276 IMPLICIT_IT_MODE_ARM = 0x01,
277 IMPLICIT_IT_MODE_THUMB = 0x02,
278 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
279 };
280 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
281
282 /* If unified_syntax is true, we are processing the new unified
283 ARM/Thumb syntax. Important differences from the old ARM mode:
284
285 - Immediate operands do not require a # prefix.
286 - Conditional affixes always appear at the end of the
287 instruction. (For backward compatibility, those instructions
288 that formerly had them in the middle, continue to accept them
289 there.)
290 - The IT instruction may appear, and if it does is validated
291 against subsequent conditional affixes. It does not generate
292 machine code.
293
294 Important differences from the old Thumb mode:
295
296 - Immediate operands do not require a # prefix.
297 - Most of the V6T2 instructions are only available in unified mode.
298 - The .N and .W suffixes are recognized and honored (it is an error
299 if they cannot be honored).
300 - All instructions set the flags if and only if they have an 's' affix.
301 - Conditional affixes may be used. They are validated against
302 preceding IT instructions. Unlike ARM mode, you cannot use a
303 conditional affix except in the scope of an IT instruction. */
304
305 static bfd_boolean unified_syntax = FALSE;
306
307 enum neon_el_type
308 {
309 NT_invtype,
310 NT_untyped,
311 NT_integer,
312 NT_float,
313 NT_poly,
314 NT_signed,
315 NT_unsigned
316 };
317
318 struct neon_type_el
319 {
320 enum neon_el_type type;
321 unsigned size;
322 };
323
324 #define NEON_MAX_TYPE_ELS 4
325
326 struct neon_type
327 {
328 struct neon_type_el el[NEON_MAX_TYPE_ELS];
329 unsigned elems;
330 };
331
332 enum it_instruction_type
333 {
334 OUTSIDE_IT_INSN,
335 INSIDE_IT_INSN,
336 INSIDE_IT_LAST_INSN,
337 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
338 if inside, should be the last one. */
339 NEUTRAL_IT_INSN, /* This could be either inside or outside,
340 i.e. BKPT and NOP. */
341 IT_INSN /* The IT insn has been parsed. */
342 };
343
344 struct arm_it
345 {
346 const char * error;
347 unsigned long instruction;
348 int size;
349 int size_req;
350 int cond;
351 /* "uncond_value" is set to the value in place of the conditional field in
352 unconditional versions of the instruction, or -1 if nothing is
353 appropriate. */
354 int uncond_value;
355 struct neon_type vectype;
356 /* This does not indicate an actual NEON instruction, only that
357 the mnemonic accepts neon-style type suffixes. */
358 int is_neon;
359 /* Set to the opcode if the instruction needs relaxation.
360 Zero if the instruction is not relaxed. */
361 unsigned long relax;
362 struct
363 {
364 bfd_reloc_code_real_type type;
365 expressionS exp;
366 int pc_rel;
367 } reloc;
368
369 enum it_instruction_type it_insn_type;
370
371 struct
372 {
373 unsigned reg;
374 signed int imm;
375 struct neon_type_el vectype;
376 unsigned present : 1; /* Operand present. */
377 unsigned isreg : 1; /* Operand was a register. */
378 unsigned immisreg : 1; /* .imm field is a second register. */
379 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
380 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
381 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
382 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
383 instructions. This allows us to disambiguate ARM <-> vector insns. */
384 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
385 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
386 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
387 unsigned issingle : 1; /* Operand is VFP single-precision register. */
388 unsigned hasreloc : 1; /* Operand has relocation suffix. */
389 unsigned writeback : 1; /* Operand has trailing ! */
390 unsigned preind : 1; /* Preindexed address. */
391 unsigned postind : 1; /* Postindexed address. */
392 unsigned negative : 1; /* Index register was negated. */
393 unsigned shifted : 1; /* Shift applied to operation. */
394 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
395 } operands[6];
396 };
397
398 static struct arm_it inst;
399
400 #define NUM_FLOAT_VALS 8
401
402 const char * fp_const[] =
403 {
404 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
405 };
406
407 /* Number of littlenums required to hold an extended precision number. */
408 #define MAX_LITTLENUMS 6
409
410 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
411
412 #define FAIL (-1)
413 #define SUCCESS (0)
414
415 #define SUFF_S 1
416 #define SUFF_D 2
417 #define SUFF_E 3
418 #define SUFF_P 4
419
420 #define CP_T_X 0x00008000
421 #define CP_T_Y 0x00400000
422
423 #define CONDS_BIT 0x00100000
424 #define LOAD_BIT 0x00100000
425
426 #define DOUBLE_LOAD_FLAG 0x00000001
427
428 struct asm_cond
429 {
430 const char * template_name;
431 unsigned long value;
432 };
433
434 #define COND_ALWAYS 0xE
435
436 struct asm_psr
437 {
438 const char * template_name;
439 unsigned long field;
440 };
441
442 struct asm_barrier_opt
443 {
444 const char * template_name;
445 unsigned long value;
446 };
447
448 /* The bit that distinguishes CPSR and SPSR. */
449 #define SPSR_BIT (1 << 22)
450
451 /* The individual PSR flag bits. */
452 #define PSR_c (1 << 16)
453 #define PSR_x (1 << 17)
454 #define PSR_s (1 << 18)
455 #define PSR_f (1 << 19)
456
457 struct reloc_entry
458 {
459 char * name;
460 bfd_reloc_code_real_type reloc;
461 };
462
463 enum vfp_reg_pos
464 {
465 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
466 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
467 };
468
469 enum vfp_ldstm_type
470 {
471 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
472 };
473
474 /* Bits for DEFINED field in neon_typed_alias. */
475 #define NTA_HASTYPE 1
476 #define NTA_HASINDEX 2
477
478 struct neon_typed_alias
479 {
480 unsigned char defined;
481 unsigned char index;
482 struct neon_type_el eltype;
483 };
484
485 /* ARM register categories. This includes coprocessor numbers and various
486 architecture extensions' registers. */
487 enum arm_reg_type
488 {
489 REG_TYPE_RN,
490 REG_TYPE_CP,
491 REG_TYPE_CN,
492 REG_TYPE_FN,
493 REG_TYPE_VFS,
494 REG_TYPE_VFD,
495 REG_TYPE_NQ,
496 REG_TYPE_VFSD,
497 REG_TYPE_NDQ,
498 REG_TYPE_NSDQ,
499 REG_TYPE_VFC,
500 REG_TYPE_MVF,
501 REG_TYPE_MVD,
502 REG_TYPE_MVFX,
503 REG_TYPE_MVDX,
504 REG_TYPE_MVAX,
505 REG_TYPE_DSPSC,
506 REG_TYPE_MMXWR,
507 REG_TYPE_MMXWC,
508 REG_TYPE_MMXWCG,
509 REG_TYPE_XSCALE,
510 REG_TYPE_RNB
511 };
512
513 /* Structure for a hash table entry for a register.
514 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
515 information which states whether a vector type or index is specified (for a
516 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
517 struct reg_entry
518 {
519 const char * name;
520 unsigned int number;
521 unsigned char type;
522 unsigned char builtin;
523 struct neon_typed_alias * neon;
524 };
525
526 /* Diagnostics used when we don't get a register of the expected type. */
527 const char * const reg_expected_msgs[] =
528 {
529 N_("ARM register expected"),
530 N_("bad or missing co-processor number"),
531 N_("co-processor register expected"),
532 N_("FPA register expected"),
533 N_("VFP single precision register expected"),
534 N_("VFP/Neon double precision register expected"),
535 N_("Neon quad precision register expected"),
536 N_("VFP single or double precision register expected"),
537 N_("Neon double or quad precision register expected"),
538 N_("VFP single, double or Neon quad precision register expected"),
539 N_("VFP system register expected"),
540 N_("Maverick MVF register expected"),
541 N_("Maverick MVD register expected"),
542 N_("Maverick MVFX register expected"),
543 N_("Maverick MVDX register expected"),
544 N_("Maverick MVAX register expected"),
545 N_("Maverick DSPSC register expected"),
546 N_("iWMMXt data register expected"),
547 N_("iWMMXt control register expected"),
548 N_("iWMMXt scalar register expected"),
549 N_("XScale accumulator register expected"),
550 };
551
552 /* Some well known registers that we refer to directly elsewhere. */
553 #define REG_SP 13
554 #define REG_LR 14
555 #define REG_PC 15
556
557 /* ARM instructions take 4bytes in the object file, Thumb instructions
558 take 2: */
559 #define INSN_SIZE 4
560
561 struct asm_opcode
562 {
563 /* Basic string to match. */
564 const char * template_name;
565
566 /* Parameters to instruction. */
567 unsigned int operands[8];
568
569 /* Conditional tag - see opcode_lookup. */
570 unsigned int tag : 4;
571
572 /* Basic instruction code. */
573 unsigned int avalue : 28;
574
575 /* Thumb-format instruction code. */
576 unsigned int tvalue;
577
578 /* Which architecture variant provides this instruction. */
579 const arm_feature_set * avariant;
580 const arm_feature_set * tvariant;
581
582 /* Function to call to encode instruction in ARM format. */
583 void (* aencode) (void);
584
585 /* Function to call to encode instruction in Thumb format. */
586 void (* tencode) (void);
587 };
588
589 /* Defines for various bits that we will want to toggle. */
590 #define INST_IMMEDIATE 0x02000000
591 #define OFFSET_REG 0x02000000
592 #define HWOFFSET_IMM 0x00400000
593 #define SHIFT_BY_REG 0x00000010
594 #define PRE_INDEX 0x01000000
595 #define INDEX_UP 0x00800000
596 #define WRITE_BACK 0x00200000
597 #define LDM_TYPE_2_OR_3 0x00400000
598 #define CPSI_MMOD 0x00020000
599
600 #define LITERAL_MASK 0xf000f000
601 #define OPCODE_MASK 0xfe1fffff
602 #define V4_STR_BIT 0x00000020
603
604 #define T2_SUBS_PC_LR 0xf3de8f00
605
606 #define DATA_OP_SHIFT 21
607
608 #define T2_OPCODE_MASK 0xfe1fffff
609 #define T2_DATA_OP_SHIFT 21
610
611 /* Codes to distinguish the arithmetic instructions. */
612 #define OPCODE_AND 0
613 #define OPCODE_EOR 1
614 #define OPCODE_SUB 2
615 #define OPCODE_RSB 3
616 #define OPCODE_ADD 4
617 #define OPCODE_ADC 5
618 #define OPCODE_SBC 6
619 #define OPCODE_RSC 7
620 #define OPCODE_TST 8
621 #define OPCODE_TEQ 9
622 #define OPCODE_CMP 10
623 #define OPCODE_CMN 11
624 #define OPCODE_ORR 12
625 #define OPCODE_MOV 13
626 #define OPCODE_BIC 14
627 #define OPCODE_MVN 15
628
629 #define T2_OPCODE_AND 0
630 #define T2_OPCODE_BIC 1
631 #define T2_OPCODE_ORR 2
632 #define T2_OPCODE_ORN 3
633 #define T2_OPCODE_EOR 4
634 #define T2_OPCODE_ADD 8
635 #define T2_OPCODE_ADC 10
636 #define T2_OPCODE_SBC 11
637 #define T2_OPCODE_SUB 13
638 #define T2_OPCODE_RSB 14
639
640 #define T_OPCODE_MUL 0x4340
641 #define T_OPCODE_TST 0x4200
642 #define T_OPCODE_CMN 0x42c0
643 #define T_OPCODE_NEG 0x4240
644 #define T_OPCODE_MVN 0x43c0
645
646 #define T_OPCODE_ADD_R3 0x1800
647 #define T_OPCODE_SUB_R3 0x1a00
648 #define T_OPCODE_ADD_HI 0x4400
649 #define T_OPCODE_ADD_ST 0xb000
650 #define T_OPCODE_SUB_ST 0xb080
651 #define T_OPCODE_ADD_SP 0xa800
652 #define T_OPCODE_ADD_PC 0xa000
653 #define T_OPCODE_ADD_I8 0x3000
654 #define T_OPCODE_SUB_I8 0x3800
655 #define T_OPCODE_ADD_I3 0x1c00
656 #define T_OPCODE_SUB_I3 0x1e00
657
658 #define T_OPCODE_ASR_R 0x4100
659 #define T_OPCODE_LSL_R 0x4080
660 #define T_OPCODE_LSR_R 0x40c0
661 #define T_OPCODE_ROR_R 0x41c0
662 #define T_OPCODE_ASR_I 0x1000
663 #define T_OPCODE_LSL_I 0x0000
664 #define T_OPCODE_LSR_I 0x0800
665
666 #define T_OPCODE_MOV_I8 0x2000
667 #define T_OPCODE_CMP_I8 0x2800
668 #define T_OPCODE_CMP_LR 0x4280
669 #define T_OPCODE_MOV_HR 0x4600
670 #define T_OPCODE_CMP_HR 0x4500
671
672 #define T_OPCODE_LDR_PC 0x4800
673 #define T_OPCODE_LDR_SP 0x9800
674 #define T_OPCODE_STR_SP 0x9000
675 #define T_OPCODE_LDR_IW 0x6800
676 #define T_OPCODE_STR_IW 0x6000
677 #define T_OPCODE_LDR_IH 0x8800
678 #define T_OPCODE_STR_IH 0x8000
679 #define T_OPCODE_LDR_IB 0x7800
680 #define T_OPCODE_STR_IB 0x7000
681 #define T_OPCODE_LDR_RW 0x5800
682 #define T_OPCODE_STR_RW 0x5000
683 #define T_OPCODE_LDR_RH 0x5a00
684 #define T_OPCODE_STR_RH 0x5200
685 #define T_OPCODE_LDR_RB 0x5c00
686 #define T_OPCODE_STR_RB 0x5400
687
688 #define T_OPCODE_PUSH 0xb400
689 #define T_OPCODE_POP 0xbc00
690
691 #define T_OPCODE_BRANCH 0xe000
692
693 #define THUMB_SIZE 2 /* Size of thumb instruction. */
694 #define THUMB_PP_PC_LR 0x0100
695 #define THUMB_LOAD_BIT 0x0800
696 #define THUMB2_LOAD_BIT 0x00100000
697
698 #define BAD_ARGS _("bad arguments to instruction")
699 #define BAD_SP _("r13 not allowed here")
700 #define BAD_PC _("r15 not allowed here")
701 #define BAD_COND _("instruction cannot be conditional")
702 #define BAD_OVERLAP _("registers may not be the same")
703 #define BAD_HIREG _("lo register required")
704 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
705 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
706 #define BAD_BRANCH _("branch must be last instruction in IT block")
707 #define BAD_NOT_IT _("instruction not allowed in IT block")
708 #define BAD_FPU _("selected FPU does not support instruction")
709 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
710 #define BAD_IT_COND _("incorrect condition in IT block")
711 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
712 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
713 #define BAD_PC_ADDRESSING \
714 _("cannot use register index with PC-relative addressing")
715 #define BAD_PC_WRITEBACK \
716 _("cannot use writeback with PC-relative addressing")
717
718 static struct hash_control * arm_ops_hsh;
719 static struct hash_control * arm_cond_hsh;
720 static struct hash_control * arm_shift_hsh;
721 static struct hash_control * arm_psr_hsh;
722 static struct hash_control * arm_v7m_psr_hsh;
723 static struct hash_control * arm_reg_hsh;
724 static struct hash_control * arm_reloc_hsh;
725 static struct hash_control * arm_barrier_opt_hsh;
726
727 /* Stuff needed to resolve the label ambiguity
728 As:
729 ...
730 label: <insn>
731 may differ from:
732 ...
733 label:
734 <insn> */
735
736 symbolS * last_label_seen;
737 static int label_is_thumb_function_name = FALSE;
738
739 /* Literal pool structure. Held on a per-section
740 and per-sub-section basis. */
741
742 #define MAX_LITERAL_POOL_SIZE 1024
743 typedef struct literal_pool
744 {
745 expressionS literals [MAX_LITERAL_POOL_SIZE];
746 unsigned int next_free_entry;
747 unsigned int id;
748 symbolS * symbol;
749 segT section;
750 subsegT sub_section;
751 struct literal_pool * next;
752 } literal_pool;
753
754 /* Pointer to a linked list of literal pools. */
755 literal_pool * list_of_pools = NULL;
756
757 #ifdef OBJ_ELF
758 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
759 #else
760 static struct current_it now_it;
761 #endif
762
763 static inline int
764 now_it_compatible (int cond)
765 {
766 return (cond & ~1) == (now_it.cc & ~1);
767 }
768
769 static inline int
770 conditional_insn (void)
771 {
772 return inst.cond != COND_ALWAYS;
773 }
774
775 static int in_it_block (void);
776
777 static int handle_it_state (void);
778
779 static void force_automatic_it_block_close (void);
780
781 static void it_fsm_post_encode (void);
782
783 #define set_it_insn_type(type) \
784 do \
785 { \
786 inst.it_insn_type = type; \
787 if (handle_it_state () == FAIL) \
788 return; \
789 } \
790 while (0)
791
792 #define set_it_insn_type_nonvoid(type, failret) \
793 do \
794 { \
795 inst.it_insn_type = type; \
796 if (handle_it_state () == FAIL) \
797 return failret; \
798 } \
799 while(0)
800
801 #define set_it_insn_type_last() \
802 do \
803 { \
804 if (inst.cond == COND_ALWAYS) \
805 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
806 else \
807 set_it_insn_type (INSIDE_IT_LAST_INSN); \
808 } \
809 while (0)
810
811 /* Pure syntax. */
812
813 /* This array holds the chars that always start a comment. If the
814 pre-processor is disabled, these aren't very useful. */
815 const char comment_chars[] = "@";
816
817 /* This array holds the chars that only start a comment at the beginning of
818 a line. If the line seems to have the form '# 123 filename'
819 .line and .file directives will appear in the pre-processed output. */
820 /* Note that input_file.c hand checks for '#' at the beginning of the
821 first line of the input file. This is because the compiler outputs
822 #NO_APP at the beginning of its output. */
823 /* Also note that comments like this one will always work. */
824 const char line_comment_chars[] = "#";
825
826 const char line_separator_chars[] = ";";
827
828 /* Chars that can be used to separate mant
829 from exp in floating point numbers. */
830 const char EXP_CHARS[] = "eE";
831
832 /* Chars that mean this number is a floating point constant. */
833 /* As in 0f12.456 */
834 /* or 0d1.2345e12 */
835
836 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
837
838 /* Prefix characters that indicate the start of an immediate
839 value. */
840 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
841
842 /* Separator character handling. */
843
844 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
845
846 static inline int
847 skip_past_char (char ** str, char c)
848 {
849 if (**str == c)
850 {
851 (*str)++;
852 return SUCCESS;
853 }
854 else
855 return FAIL;
856 }
857
858 #define skip_past_comma(str) skip_past_char (str, ',')
859
860 /* Arithmetic expressions (possibly involving symbols). */
861
862 /* Return TRUE if anything in the expression is a bignum. */
863
864 static int
865 walk_no_bignums (symbolS * sp)
866 {
867 if (symbol_get_value_expression (sp)->X_op == O_big)
868 return 1;
869
870 if (symbol_get_value_expression (sp)->X_add_symbol)
871 {
872 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
873 || (symbol_get_value_expression (sp)->X_op_symbol
874 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
875 }
876
877 return 0;
878 }
879
880 static int in_my_get_expression = 0;
881
882 /* Third argument to my_get_expression. */
883 #define GE_NO_PREFIX 0
884 #define GE_IMM_PREFIX 1
885 #define GE_OPT_PREFIX 2
886 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
887 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
888 #define GE_OPT_PREFIX_BIG 3
889
890 static int
891 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
892 {
893 char * save_in;
894 segT seg;
895
896 /* In unified syntax, all prefixes are optional. */
897 if (unified_syntax)
898 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
899 : GE_OPT_PREFIX;
900
901 switch (prefix_mode)
902 {
903 case GE_NO_PREFIX: break;
904 case GE_IMM_PREFIX:
905 if (!is_immediate_prefix (**str))
906 {
907 inst.error = _("immediate expression requires a # prefix");
908 return FAIL;
909 }
910 (*str)++;
911 break;
912 case GE_OPT_PREFIX:
913 case GE_OPT_PREFIX_BIG:
914 if (is_immediate_prefix (**str))
915 (*str)++;
916 break;
917 default: abort ();
918 }
919
920 memset (ep, 0, sizeof (expressionS));
921
922 save_in = input_line_pointer;
923 input_line_pointer = *str;
924 in_my_get_expression = 1;
925 seg = expression (ep);
926 in_my_get_expression = 0;
927
928 if (ep->X_op == O_illegal || ep->X_op == O_absent)
929 {
930 /* We found a bad or missing expression in md_operand(). */
931 *str = input_line_pointer;
932 input_line_pointer = save_in;
933 if (inst.error == NULL)
934 inst.error = (ep->X_op == O_absent
935 ? _("missing expression") :_("bad expression"));
936 return 1;
937 }
938
939 #ifdef OBJ_AOUT
940 if (seg != absolute_section
941 && seg != text_section
942 && seg != data_section
943 && seg != bss_section
944 && seg != undefined_section)
945 {
946 inst.error = _("bad segment");
947 *str = input_line_pointer;
948 input_line_pointer = save_in;
949 return 1;
950 }
951 #else
952 (void) seg;
953 #endif
954
955 /* Get rid of any bignums now, so that we don't generate an error for which
956 we can't establish a line number later on. Big numbers are never valid
957 in instructions, which is where this routine is always called. */
958 if (prefix_mode != GE_OPT_PREFIX_BIG
959 && (ep->X_op == O_big
960 || (ep->X_add_symbol
961 && (walk_no_bignums (ep->X_add_symbol)
962 || (ep->X_op_symbol
963 && walk_no_bignums (ep->X_op_symbol))))))
964 {
965 inst.error = _("invalid constant");
966 *str = input_line_pointer;
967 input_line_pointer = save_in;
968 return 1;
969 }
970
971 *str = input_line_pointer;
972 input_line_pointer = save_in;
973 return 0;
974 }
975
976 /* Turn a string in input_line_pointer into a floating point constant
977 of type TYPE, and store the appropriate bytes in *LITP. The number
978 of LITTLENUMS emitted is stored in *SIZEP. An error message is
979 returned, or NULL on OK.
980
981 Note that fp constants aren't represent in the normal way on the ARM.
982 In big endian mode, things are as expected. However, in little endian
983 mode fp constants are big-endian word-wise, and little-endian byte-wise
984 within the words. For example, (double) 1.1 in big endian mode is
985 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
986 the byte sequence 99 99 f1 3f 9a 99 99 99.
987
988 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
989
990 char *
991 md_atof (int type, char * litP, int * sizeP)
992 {
993 int prec;
994 LITTLENUM_TYPE words[MAX_LITTLENUMS];
995 char *t;
996 int i;
997
998 switch (type)
999 {
1000 case 'f':
1001 case 'F':
1002 case 's':
1003 case 'S':
1004 prec = 2;
1005 break;
1006
1007 case 'd':
1008 case 'D':
1009 case 'r':
1010 case 'R':
1011 prec = 4;
1012 break;
1013
1014 case 'x':
1015 case 'X':
1016 prec = 5;
1017 break;
1018
1019 case 'p':
1020 case 'P':
1021 prec = 5;
1022 break;
1023
1024 default:
1025 *sizeP = 0;
1026 return _("Unrecognized or unsupported floating point constant");
1027 }
1028
1029 t = atof_ieee (input_line_pointer, type, words);
1030 if (t)
1031 input_line_pointer = t;
1032 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1033
1034 if (target_big_endian)
1035 {
1036 for (i = 0; i < prec; i++)
1037 {
1038 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1039 litP += sizeof (LITTLENUM_TYPE);
1040 }
1041 }
1042 else
1043 {
1044 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1045 for (i = prec - 1; i >= 0; i--)
1046 {
1047 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1048 litP += sizeof (LITTLENUM_TYPE);
1049 }
1050 else
1051 /* For a 4 byte float the order of elements in `words' is 1 0.
1052 For an 8 byte float the order is 1 0 3 2. */
1053 for (i = 0; i < prec; i += 2)
1054 {
1055 md_number_to_chars (litP, (valueT) words[i + 1],
1056 sizeof (LITTLENUM_TYPE));
1057 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1058 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1059 litP += 2 * sizeof (LITTLENUM_TYPE);
1060 }
1061 }
1062
1063 return NULL;
1064 }
1065
1066 /* We handle all bad expressions here, so that we can report the faulty
1067 instruction in the error message. */
1068 void
1069 md_operand (expressionS * exp)
1070 {
1071 if (in_my_get_expression)
1072 exp->X_op = O_illegal;
1073 }
1074
1075 /* Immediate values. */
1076
1077 /* Generic immediate-value read function for use in directives.
1078 Accepts anything that 'expression' can fold to a constant.
1079 *val receives the number. */
1080 #ifdef OBJ_ELF
1081 static int
1082 immediate_for_directive (int *val)
1083 {
1084 expressionS exp;
1085 exp.X_op = O_illegal;
1086
1087 if (is_immediate_prefix (*input_line_pointer))
1088 {
1089 input_line_pointer++;
1090 expression (&exp);
1091 }
1092
1093 if (exp.X_op != O_constant)
1094 {
1095 as_bad (_("expected #constant"));
1096 ignore_rest_of_line ();
1097 return FAIL;
1098 }
1099 *val = exp.X_add_number;
1100 return SUCCESS;
1101 }
1102 #endif
1103
1104 /* Register parsing. */
1105
1106 /* Generic register parser. CCP points to what should be the
1107 beginning of a register name. If it is indeed a valid register
1108 name, advance CCP over it and return the reg_entry structure;
1109 otherwise return NULL. Does not issue diagnostics. */
1110
1111 static struct reg_entry *
1112 arm_reg_parse_multi (char **ccp)
1113 {
1114 char *start = *ccp;
1115 char *p;
1116 struct reg_entry *reg;
1117
1118 #ifdef REGISTER_PREFIX
1119 if (*start != REGISTER_PREFIX)
1120 return NULL;
1121 start++;
1122 #endif
1123 #ifdef OPTIONAL_REGISTER_PREFIX
1124 if (*start == OPTIONAL_REGISTER_PREFIX)
1125 start++;
1126 #endif
1127
1128 p = start;
1129 if (!ISALPHA (*p) || !is_name_beginner (*p))
1130 return NULL;
1131
1132 do
1133 p++;
1134 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1135
1136 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1137
1138 if (!reg)
1139 return NULL;
1140
1141 *ccp = p;
1142 return reg;
1143 }
1144
1145 static int
1146 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1147 enum arm_reg_type type)
1148 {
1149 /* Alternative syntaxes are accepted for a few register classes. */
1150 switch (type)
1151 {
1152 case REG_TYPE_MVF:
1153 case REG_TYPE_MVD:
1154 case REG_TYPE_MVFX:
1155 case REG_TYPE_MVDX:
1156 /* Generic coprocessor register names are allowed for these. */
1157 if (reg && reg->type == REG_TYPE_CN)
1158 return reg->number;
1159 break;
1160
1161 case REG_TYPE_CP:
1162 /* For backward compatibility, a bare number is valid here. */
1163 {
1164 unsigned long processor = strtoul (start, ccp, 10);
1165 if (*ccp != start && processor <= 15)
1166 return processor;
1167 }
1168
1169 case REG_TYPE_MMXWC:
1170 /* WC includes WCG. ??? I'm not sure this is true for all
1171 instructions that take WC registers. */
1172 if (reg && reg->type == REG_TYPE_MMXWCG)
1173 return reg->number;
1174 break;
1175
1176 default:
1177 break;
1178 }
1179
1180 return FAIL;
1181 }
1182
1183 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1184 return value is the register number or FAIL. */
1185
1186 static int
1187 arm_reg_parse (char **ccp, enum arm_reg_type type)
1188 {
1189 char *start = *ccp;
1190 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1191 int ret;
1192
1193 /* Do not allow a scalar (reg+index) to parse as a register. */
1194 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1195 return FAIL;
1196
1197 if (reg && reg->type == type)
1198 return reg->number;
1199
1200 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1201 return ret;
1202
1203 *ccp = start;
1204 return FAIL;
1205 }
1206
1207 /* Parse a Neon type specifier. *STR should point at the leading '.'
1208 character. Does no verification at this stage that the type fits the opcode
1209 properly. E.g.,
1210
1211 .i32.i32.s16
1212 .s32.f32
1213 .u16
1214
1215 Can all be legally parsed by this function.
1216
1217 Fills in neon_type struct pointer with parsed information, and updates STR
1218 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1219 type, FAIL if not. */
1220
1221 static int
1222 parse_neon_type (struct neon_type *type, char **str)
1223 {
1224 char *ptr = *str;
1225
1226 if (type)
1227 type->elems = 0;
1228
1229 while (type->elems < NEON_MAX_TYPE_ELS)
1230 {
1231 enum neon_el_type thistype = NT_untyped;
1232 unsigned thissize = -1u;
1233
1234 if (*ptr != '.')
1235 break;
1236
1237 ptr++;
1238
1239 /* Just a size without an explicit type. */
1240 if (ISDIGIT (*ptr))
1241 goto parsesize;
1242
1243 switch (TOLOWER (*ptr))
1244 {
1245 case 'i': thistype = NT_integer; break;
1246 case 'f': thistype = NT_float; break;
1247 case 'p': thistype = NT_poly; break;
1248 case 's': thistype = NT_signed; break;
1249 case 'u': thistype = NT_unsigned; break;
1250 case 'd':
1251 thistype = NT_float;
1252 thissize = 64;
1253 ptr++;
1254 goto done;
1255 default:
1256 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1257 return FAIL;
1258 }
1259
1260 ptr++;
1261
1262 /* .f is an abbreviation for .f32. */
1263 if (thistype == NT_float && !ISDIGIT (*ptr))
1264 thissize = 32;
1265 else
1266 {
1267 parsesize:
1268 thissize = strtoul (ptr, &ptr, 10);
1269
1270 if (thissize != 8 && thissize != 16 && thissize != 32
1271 && thissize != 64)
1272 {
1273 as_bad (_("bad size %d in type specifier"), thissize);
1274 return FAIL;
1275 }
1276 }
1277
1278 done:
1279 if (type)
1280 {
1281 type->el[type->elems].type = thistype;
1282 type->el[type->elems].size = thissize;
1283 type->elems++;
1284 }
1285 }
1286
1287 /* Empty/missing type is not a successful parse. */
1288 if (type->elems == 0)
1289 return FAIL;
1290
1291 *str = ptr;
1292
1293 return SUCCESS;
1294 }
1295
1296 /* Errors may be set multiple times during parsing or bit encoding
1297 (particularly in the Neon bits), but usually the earliest error which is set
1298 will be the most meaningful. Avoid overwriting it with later (cascading)
1299 errors by calling this function. */
1300
1301 static void
1302 first_error (const char *err)
1303 {
1304 if (!inst.error)
1305 inst.error = err;
1306 }
1307
1308 /* Parse a single type, e.g. ".s32", leading period included. */
1309 static int
1310 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1311 {
1312 char *str = *ccp;
1313 struct neon_type optype;
1314
1315 if (*str == '.')
1316 {
1317 if (parse_neon_type (&optype, &str) == SUCCESS)
1318 {
1319 if (optype.elems == 1)
1320 *vectype = optype.el[0];
1321 else
1322 {
1323 first_error (_("only one type should be specified for operand"));
1324 return FAIL;
1325 }
1326 }
1327 else
1328 {
1329 first_error (_("vector type expected"));
1330 return FAIL;
1331 }
1332 }
1333 else
1334 return FAIL;
1335
1336 *ccp = str;
1337
1338 return SUCCESS;
1339 }
1340
1341 /* Special meanings for indices (which have a range of 0-7), which will fit into
1342 a 4-bit integer. */
1343
1344 #define NEON_ALL_LANES 15
1345 #define NEON_INTERLEAVE_LANES 14
1346
1347 /* Parse either a register or a scalar, with an optional type. Return the
1348 register number, and optionally fill in the actual type of the register
1349 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1350 type/index information in *TYPEINFO. */
1351
1352 static int
1353 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1354 enum arm_reg_type *rtype,
1355 struct neon_typed_alias *typeinfo)
1356 {
1357 char *str = *ccp;
1358 struct reg_entry *reg = arm_reg_parse_multi (&str);
1359 struct neon_typed_alias atype;
1360 struct neon_type_el parsetype;
1361
1362 atype.defined = 0;
1363 atype.index = -1;
1364 atype.eltype.type = NT_invtype;
1365 atype.eltype.size = -1;
1366
1367 /* Try alternate syntax for some types of register. Note these are mutually
1368 exclusive with the Neon syntax extensions. */
1369 if (reg == NULL)
1370 {
1371 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1372 if (altreg != FAIL)
1373 *ccp = str;
1374 if (typeinfo)
1375 *typeinfo = atype;
1376 return altreg;
1377 }
1378
1379 /* Undo polymorphism when a set of register types may be accepted. */
1380 if ((type == REG_TYPE_NDQ
1381 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1382 || (type == REG_TYPE_VFSD
1383 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1384 || (type == REG_TYPE_NSDQ
1385 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1386 || reg->type == REG_TYPE_NQ))
1387 || (type == REG_TYPE_MMXWC
1388 && (reg->type == REG_TYPE_MMXWCG)))
1389 type = (enum arm_reg_type) reg->type;
1390
1391 if (type != reg->type)
1392 return FAIL;
1393
1394 if (reg->neon)
1395 atype = *reg->neon;
1396
1397 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1398 {
1399 if ((atype.defined & NTA_HASTYPE) != 0)
1400 {
1401 first_error (_("can't redefine type for operand"));
1402 return FAIL;
1403 }
1404 atype.defined |= NTA_HASTYPE;
1405 atype.eltype = parsetype;
1406 }
1407
1408 if (skip_past_char (&str, '[') == SUCCESS)
1409 {
1410 if (type != REG_TYPE_VFD)
1411 {
1412 first_error (_("only D registers may be indexed"));
1413 return FAIL;
1414 }
1415
1416 if ((atype.defined & NTA_HASINDEX) != 0)
1417 {
1418 first_error (_("can't change index for operand"));
1419 return FAIL;
1420 }
1421
1422 atype.defined |= NTA_HASINDEX;
1423
1424 if (skip_past_char (&str, ']') == SUCCESS)
1425 atype.index = NEON_ALL_LANES;
1426 else
1427 {
1428 expressionS exp;
1429
1430 my_get_expression (&exp, &str, GE_NO_PREFIX);
1431
1432 if (exp.X_op != O_constant)
1433 {
1434 first_error (_("constant expression required"));
1435 return FAIL;
1436 }
1437
1438 if (skip_past_char (&str, ']') == FAIL)
1439 return FAIL;
1440
1441 atype.index = exp.X_add_number;
1442 }
1443 }
1444
1445 if (typeinfo)
1446 *typeinfo = atype;
1447
1448 if (rtype)
1449 *rtype = type;
1450
1451 *ccp = str;
1452
1453 return reg->number;
1454 }
1455
1456 /* Like arm_reg_parse, but allow allow the following extra features:
1457 - If RTYPE is non-zero, return the (possibly restricted) type of the
1458 register (e.g. Neon double or quad reg when either has been requested).
1459 - If this is a Neon vector type with additional type information, fill
1460 in the struct pointed to by VECTYPE (if non-NULL).
1461 This function will fault on encountering a scalar. */
1462
1463 static int
1464 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1465 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1466 {
1467 struct neon_typed_alias atype;
1468 char *str = *ccp;
1469 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1470
1471 if (reg == FAIL)
1472 return FAIL;
1473
1474 /* Do not allow a scalar (reg+index) to parse as a register. */
1475 if ((atype.defined & NTA_HASINDEX) != 0)
1476 {
1477 first_error (_("register operand expected, but got scalar"));
1478 return FAIL;
1479 }
1480
1481 if (vectype)
1482 *vectype = atype.eltype;
1483
1484 *ccp = str;
1485
1486 return reg;
1487 }
1488
1489 #define NEON_SCALAR_REG(X) ((X) >> 4)
1490 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1491
1492 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1493 have enough information to be able to do a good job bounds-checking. So, we
1494 just do easy checks here, and do further checks later. */
1495
1496 static int
1497 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1498 {
1499 int reg;
1500 char *str = *ccp;
1501 struct neon_typed_alias atype;
1502
1503 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1504
1505 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1506 return FAIL;
1507
1508 if (atype.index == NEON_ALL_LANES)
1509 {
1510 first_error (_("scalar must have an index"));
1511 return FAIL;
1512 }
1513 else if (atype.index >= 64 / elsize)
1514 {
1515 first_error (_("scalar index out of range"));
1516 return FAIL;
1517 }
1518
1519 if (type)
1520 *type = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg * 16 + atype.index;
1525 }
1526
1527 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1528
1529 static long
1530 parse_reg_list (char ** strp)
1531 {
1532 char * str = * strp;
1533 long range = 0;
1534 int another_range;
1535
1536 /* We come back here if we get ranges concatenated by '+' or '|'. */
1537 do
1538 {
1539 another_range = 0;
1540
1541 if (*str == '{')
1542 {
1543 int in_range = 0;
1544 int cur_reg = -1;
1545
1546 str++;
1547 do
1548 {
1549 int reg;
1550
1551 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1552 {
1553 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1554 return FAIL;
1555 }
1556
1557 if (in_range)
1558 {
1559 int i;
1560
1561 if (reg <= cur_reg)
1562 {
1563 first_error (_("bad range in register list"));
1564 return FAIL;
1565 }
1566
1567 for (i = cur_reg + 1; i < reg; i++)
1568 {
1569 if (range & (1 << i))
1570 as_tsktsk
1571 (_("Warning: duplicated register (r%d) in register list"),
1572 i);
1573 else
1574 range |= 1 << i;
1575 }
1576 in_range = 0;
1577 }
1578
1579 if (range & (1 << reg))
1580 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1581 reg);
1582 else if (reg <= cur_reg)
1583 as_tsktsk (_("Warning: register range not in ascending order"));
1584
1585 range |= 1 << reg;
1586 cur_reg = reg;
1587 }
1588 while (skip_past_comma (&str) != FAIL
1589 || (in_range = 1, *str++ == '-'));
1590 str--;
1591
1592 if (*str++ != '}')
1593 {
1594 first_error (_("missing `}'"));
1595 return FAIL;
1596 }
1597 }
1598 else
1599 {
1600 expressionS exp;
1601
1602 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1603 return FAIL;
1604
1605 if (exp.X_op == O_constant)
1606 {
1607 if (exp.X_add_number
1608 != (exp.X_add_number & 0x0000ffff))
1609 {
1610 inst.error = _("invalid register mask");
1611 return FAIL;
1612 }
1613
1614 if ((range & exp.X_add_number) != 0)
1615 {
1616 int regno = range & exp.X_add_number;
1617
1618 regno &= -regno;
1619 regno = (1 << regno) - 1;
1620 as_tsktsk
1621 (_("Warning: duplicated register (r%d) in register list"),
1622 regno);
1623 }
1624
1625 range |= exp.X_add_number;
1626 }
1627 else
1628 {
1629 if (inst.reloc.type != 0)
1630 {
1631 inst.error = _("expression too complex");
1632 return FAIL;
1633 }
1634
1635 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1636 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1637 inst.reloc.pc_rel = 0;
1638 }
1639 }
1640
1641 if (*str == '|' || *str == '+')
1642 {
1643 str++;
1644 another_range = 1;
1645 }
1646 }
1647 while (another_range);
1648
1649 *strp = str;
1650 return range;
1651 }
1652
1653 /* Types of registers in a list. */
1654
1655 enum reg_list_els
1656 {
1657 REGLIST_VFP_S,
1658 REGLIST_VFP_D,
1659 REGLIST_NEON_D
1660 };
1661
1662 /* Parse a VFP register list. If the string is invalid return FAIL.
1663 Otherwise return the number of registers, and set PBASE to the first
1664 register. Parses registers of type ETYPE.
1665 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1666 - Q registers can be used to specify pairs of D registers
1667 - { } can be omitted from around a singleton register list
1668 FIXME: This is not implemented, as it would require backtracking in
1669 some cases, e.g.:
1670 vtbl.8 d3,d4,d5
1671 This could be done (the meaning isn't really ambiguous), but doesn't
1672 fit in well with the current parsing framework.
1673 - 32 D registers may be used (also true for VFPv3).
1674 FIXME: Types are ignored in these register lists, which is probably a
1675 bug. */
1676
1677 static int
1678 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1679 {
1680 char *str = *ccp;
1681 int base_reg;
1682 int new_base;
1683 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1684 int max_regs = 0;
1685 int count = 0;
1686 int warned = 0;
1687 unsigned long mask = 0;
1688 int i;
1689
1690 if (*str != '{')
1691 {
1692 inst.error = _("expecting {");
1693 return FAIL;
1694 }
1695
1696 str++;
1697
1698 switch (etype)
1699 {
1700 case REGLIST_VFP_S:
1701 regtype = REG_TYPE_VFS;
1702 max_regs = 32;
1703 break;
1704
1705 case REGLIST_VFP_D:
1706 regtype = REG_TYPE_VFD;
1707 break;
1708
1709 case REGLIST_NEON_D:
1710 regtype = REG_TYPE_NDQ;
1711 break;
1712 }
1713
1714 if (etype != REGLIST_VFP_S)
1715 {
1716 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1717 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1718 {
1719 max_regs = 32;
1720 if (thumb_mode)
1721 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1722 fpu_vfp_ext_d32);
1723 else
1724 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1725 fpu_vfp_ext_d32);
1726 }
1727 else
1728 max_regs = 16;
1729 }
1730
1731 base_reg = max_regs;
1732
1733 do
1734 {
1735 int setmask = 1, addregs = 1;
1736
1737 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1738
1739 if (new_base == FAIL)
1740 {
1741 first_error (_(reg_expected_msgs[regtype]));
1742 return FAIL;
1743 }
1744
1745 if (new_base >= max_regs)
1746 {
1747 first_error (_("register out of range in list"));
1748 return FAIL;
1749 }
1750
1751 /* Note: a value of 2 * n is returned for the register Q<n>. */
1752 if (regtype == REG_TYPE_NQ)
1753 {
1754 setmask = 3;
1755 addregs = 2;
1756 }
1757
1758 if (new_base < base_reg)
1759 base_reg = new_base;
1760
1761 if (mask & (setmask << new_base))
1762 {
1763 first_error (_("invalid register list"));
1764 return FAIL;
1765 }
1766
1767 if ((mask >> new_base) != 0 && ! warned)
1768 {
1769 as_tsktsk (_("register list not in ascending order"));
1770 warned = 1;
1771 }
1772
1773 mask |= setmask << new_base;
1774 count += addregs;
1775
1776 if (*str == '-') /* We have the start of a range expression */
1777 {
1778 int high_range;
1779
1780 str++;
1781
1782 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1783 == FAIL)
1784 {
1785 inst.error = gettext (reg_expected_msgs[regtype]);
1786 return FAIL;
1787 }
1788
1789 if (high_range >= max_regs)
1790 {
1791 first_error (_("register out of range in list"));
1792 return FAIL;
1793 }
1794
1795 if (regtype == REG_TYPE_NQ)
1796 high_range = high_range + 1;
1797
1798 if (high_range <= new_base)
1799 {
1800 inst.error = _("register range not in ascending order");
1801 return FAIL;
1802 }
1803
1804 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1805 {
1806 if (mask & (setmask << new_base))
1807 {
1808 inst.error = _("invalid register list");
1809 return FAIL;
1810 }
1811
1812 mask |= setmask << new_base;
1813 count += addregs;
1814 }
1815 }
1816 }
1817 while (skip_past_comma (&str) != FAIL);
1818
1819 str++;
1820
1821 /* Sanity check -- should have raised a parse error above. */
1822 if (count == 0 || count > max_regs)
1823 abort ();
1824
1825 *pbase = base_reg;
1826
1827 /* Final test -- the registers must be consecutive. */
1828 mask >>= base_reg;
1829 for (i = 0; i < count; i++)
1830 {
1831 if ((mask & (1u << i)) == 0)
1832 {
1833 inst.error = _("non-contiguous register range");
1834 return FAIL;
1835 }
1836 }
1837
1838 *ccp = str;
1839
1840 return count;
1841 }
1842
1843 /* True if two alias types are the same. */
1844
1845 static bfd_boolean
1846 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1847 {
1848 if (!a && !b)
1849 return TRUE;
1850
1851 if (!a || !b)
1852 return FALSE;
1853
1854 if (a->defined != b->defined)
1855 return FALSE;
1856
1857 if ((a->defined & NTA_HASTYPE) != 0
1858 && (a->eltype.type != b->eltype.type
1859 || a->eltype.size != b->eltype.size))
1860 return FALSE;
1861
1862 if ((a->defined & NTA_HASINDEX) != 0
1863 && (a->index != b->index))
1864 return FALSE;
1865
1866 return TRUE;
1867 }
1868
1869 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1870 The base register is put in *PBASE.
1871 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1872 the return value.
1873 The register stride (minus one) is put in bit 4 of the return value.
1874 Bits [6:5] encode the list length (minus one).
1875 The type of the list elements is put in *ELTYPE, if non-NULL. */
1876
1877 #define NEON_LANE(X) ((X) & 0xf)
1878 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1879 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1880
1881 static int
1882 parse_neon_el_struct_list (char **str, unsigned *pbase,
1883 struct neon_type_el *eltype)
1884 {
1885 char *ptr = *str;
1886 int base_reg = -1;
1887 int reg_incr = -1;
1888 int count = 0;
1889 int lane = -1;
1890 int leading_brace = 0;
1891 enum arm_reg_type rtype = REG_TYPE_NDQ;
1892 const char *const incr_error = _("register stride must be 1 or 2");
1893 const char *const type_error = _("mismatched element/structure types in list");
1894 struct neon_typed_alias firsttype;
1895
1896 if (skip_past_char (&ptr, '{') == SUCCESS)
1897 leading_brace = 1;
1898
1899 do
1900 {
1901 struct neon_typed_alias atype;
1902 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1903
1904 if (getreg == FAIL)
1905 {
1906 first_error (_(reg_expected_msgs[rtype]));
1907 return FAIL;
1908 }
1909
1910 if (base_reg == -1)
1911 {
1912 base_reg = getreg;
1913 if (rtype == REG_TYPE_NQ)
1914 {
1915 reg_incr = 1;
1916 }
1917 firsttype = atype;
1918 }
1919 else if (reg_incr == -1)
1920 {
1921 reg_incr = getreg - base_reg;
1922 if (reg_incr < 1 || reg_incr > 2)
1923 {
1924 first_error (_(incr_error));
1925 return FAIL;
1926 }
1927 }
1928 else if (getreg != base_reg + reg_incr * count)
1929 {
1930 first_error (_(incr_error));
1931 return FAIL;
1932 }
1933
1934 if (! neon_alias_types_same (&atype, &firsttype))
1935 {
1936 first_error (_(type_error));
1937 return FAIL;
1938 }
1939
1940 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1941 modes. */
1942 if (ptr[0] == '-')
1943 {
1944 struct neon_typed_alias htype;
1945 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1946 if (lane == -1)
1947 lane = NEON_INTERLEAVE_LANES;
1948 else if (lane != NEON_INTERLEAVE_LANES)
1949 {
1950 first_error (_(type_error));
1951 return FAIL;
1952 }
1953 if (reg_incr == -1)
1954 reg_incr = 1;
1955 else if (reg_incr != 1)
1956 {
1957 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1958 return FAIL;
1959 }
1960 ptr++;
1961 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1962 if (hireg == FAIL)
1963 {
1964 first_error (_(reg_expected_msgs[rtype]));
1965 return FAIL;
1966 }
1967 if (! neon_alias_types_same (&htype, &firsttype))
1968 {
1969 first_error (_(type_error));
1970 return FAIL;
1971 }
1972 count += hireg + dregs - getreg;
1973 continue;
1974 }
1975
1976 /* If we're using Q registers, we can't use [] or [n] syntax. */
1977 if (rtype == REG_TYPE_NQ)
1978 {
1979 count += 2;
1980 continue;
1981 }
1982
1983 if ((atype.defined & NTA_HASINDEX) != 0)
1984 {
1985 if (lane == -1)
1986 lane = atype.index;
1987 else if (lane != atype.index)
1988 {
1989 first_error (_(type_error));
1990 return FAIL;
1991 }
1992 }
1993 else if (lane == -1)
1994 lane = NEON_INTERLEAVE_LANES;
1995 else if (lane != NEON_INTERLEAVE_LANES)
1996 {
1997 first_error (_(type_error));
1998 return FAIL;
1999 }
2000 count++;
2001 }
2002 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2003
2004 /* No lane set by [x]. We must be interleaving structures. */
2005 if (lane == -1)
2006 lane = NEON_INTERLEAVE_LANES;
2007
2008 /* Sanity check. */
2009 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2010 || (count > 1 && reg_incr == -1))
2011 {
2012 first_error (_("error parsing element/structure list"));
2013 return FAIL;
2014 }
2015
2016 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2017 {
2018 first_error (_("expected }"));
2019 return FAIL;
2020 }
2021
2022 if (reg_incr == -1)
2023 reg_incr = 1;
2024
2025 if (eltype)
2026 *eltype = firsttype.eltype;
2027
2028 *pbase = base_reg;
2029 *str = ptr;
2030
2031 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2032 }
2033
2034 /* Parse an explicit relocation suffix on an expression. This is
2035 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2036 arm_reloc_hsh contains no entries, so this function can only
2037 succeed if there is no () after the word. Returns -1 on error,
2038 BFD_RELOC_UNUSED if there wasn't any suffix. */
2039 static int
2040 parse_reloc (char **str)
2041 {
2042 struct reloc_entry *r;
2043 char *p, *q;
2044
2045 if (**str != '(')
2046 return BFD_RELOC_UNUSED;
2047
2048 p = *str + 1;
2049 q = p;
2050
2051 while (*q && *q != ')' && *q != ',')
2052 q++;
2053 if (*q != ')')
2054 return -1;
2055
2056 if ((r = (struct reloc_entry *)
2057 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2058 return -1;
2059
2060 *str = q + 1;
2061 return r->reloc;
2062 }
2063
2064 /* Directives: register aliases. */
2065
2066 static struct reg_entry *
2067 insert_reg_alias (char *str, unsigned number, int type)
2068 {
2069 struct reg_entry *new_reg;
2070 const char *name;
2071
2072 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2073 {
2074 if (new_reg->builtin)
2075 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2076
2077 /* Only warn about a redefinition if it's not defined as the
2078 same register. */
2079 else if (new_reg->number != number || new_reg->type != type)
2080 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2081
2082 return NULL;
2083 }
2084
2085 name = xstrdup (str);
2086 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2087
2088 new_reg->name = name;
2089 new_reg->number = number;
2090 new_reg->type = type;
2091 new_reg->builtin = FALSE;
2092 new_reg->neon = NULL;
2093
2094 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2095 abort ();
2096
2097 return new_reg;
2098 }
2099
2100 static void
2101 insert_neon_reg_alias (char *str, int number, int type,
2102 struct neon_typed_alias *atype)
2103 {
2104 struct reg_entry *reg = insert_reg_alias (str, number, type);
2105
2106 if (!reg)
2107 {
2108 first_error (_("attempt to redefine typed alias"));
2109 return;
2110 }
2111
2112 if (atype)
2113 {
2114 reg->neon = (struct neon_typed_alias *)
2115 xmalloc (sizeof (struct neon_typed_alias));
2116 *reg->neon = *atype;
2117 }
2118 }
2119
2120 /* Look for the .req directive. This is of the form:
2121
2122 new_register_name .req existing_register_name
2123
2124 If we find one, or if it looks sufficiently like one that we want to
2125 handle any error here, return TRUE. Otherwise return FALSE. */
2126
2127 static bfd_boolean
2128 create_register_alias (char * newname, char *p)
2129 {
2130 struct reg_entry *old;
2131 char *oldname, *nbuf;
2132 size_t nlen;
2133
2134 /* The input scrubber ensures that whitespace after the mnemonic is
2135 collapsed to single spaces. */
2136 oldname = p;
2137 if (strncmp (oldname, " .req ", 6) != 0)
2138 return FALSE;
2139
2140 oldname += 6;
2141 if (*oldname == '\0')
2142 return FALSE;
2143
2144 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2145 if (!old)
2146 {
2147 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2148 return TRUE;
2149 }
2150
2151 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2152 the desired alias name, and p points to its end. If not, then
2153 the desired alias name is in the global original_case_string. */
2154 #ifdef TC_CASE_SENSITIVE
2155 nlen = p - newname;
2156 #else
2157 newname = original_case_string;
2158 nlen = strlen (newname);
2159 #endif
2160
2161 nbuf = (char *) alloca (nlen + 1);
2162 memcpy (nbuf, newname, nlen);
2163 nbuf[nlen] = '\0';
2164
2165 /* Create aliases under the new name as stated; an all-lowercase
2166 version of the new name; and an all-uppercase version of the new
2167 name. */
2168 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2169 {
2170 for (p = nbuf; *p; p++)
2171 *p = TOUPPER (*p);
2172
2173 if (strncmp (nbuf, newname, nlen))
2174 {
2175 /* If this attempt to create an additional alias fails, do not bother
2176 trying to create the all-lower case alias. We will fail and issue
2177 a second, duplicate error message. This situation arises when the
2178 programmer does something like:
2179 foo .req r0
2180 Foo .req r1
2181 The second .req creates the "Foo" alias but then fails to create
2182 the artificial FOO alias because it has already been created by the
2183 first .req. */
2184 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2185 return TRUE;
2186 }
2187
2188 for (p = nbuf; *p; p++)
2189 *p = TOLOWER (*p);
2190
2191 if (strncmp (nbuf, newname, nlen))
2192 insert_reg_alias (nbuf, old->number, old->type);
2193 }
2194
2195 return TRUE;
2196 }
2197
2198 /* Create a Neon typed/indexed register alias using directives, e.g.:
2199 X .dn d5.s32[1]
2200 Y .qn 6.s16
2201 Z .dn d7
2202 T .dn Z[0]
2203 These typed registers can be used instead of the types specified after the
2204 Neon mnemonic, so long as all operands given have types. Types can also be
2205 specified directly, e.g.:
2206 vadd d0.s32, d1.s32, d2.s32 */
2207
2208 static bfd_boolean
2209 create_neon_reg_alias (char *newname, char *p)
2210 {
2211 enum arm_reg_type basetype;
2212 struct reg_entry *basereg;
2213 struct reg_entry mybasereg;
2214 struct neon_type ntype;
2215 struct neon_typed_alias typeinfo;
2216 char *namebuf, *nameend;
2217 int namelen;
2218
2219 typeinfo.defined = 0;
2220 typeinfo.eltype.type = NT_invtype;
2221 typeinfo.eltype.size = -1;
2222 typeinfo.index = -1;
2223
2224 nameend = p;
2225
2226 if (strncmp (p, " .dn ", 5) == 0)
2227 basetype = REG_TYPE_VFD;
2228 else if (strncmp (p, " .qn ", 5) == 0)
2229 basetype = REG_TYPE_NQ;
2230 else
2231 return FALSE;
2232
2233 p += 5;
2234
2235 if (*p == '\0')
2236 return FALSE;
2237
2238 basereg = arm_reg_parse_multi (&p);
2239
2240 if (basereg && basereg->type != basetype)
2241 {
2242 as_bad (_("bad type for register"));
2243 return FALSE;
2244 }
2245
2246 if (basereg == NULL)
2247 {
2248 expressionS exp;
2249 /* Try parsing as an integer. */
2250 my_get_expression (&exp, &p, GE_NO_PREFIX);
2251 if (exp.X_op != O_constant)
2252 {
2253 as_bad (_("expression must be constant"));
2254 return FALSE;
2255 }
2256 basereg = &mybasereg;
2257 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2258 : exp.X_add_number;
2259 basereg->neon = 0;
2260 }
2261
2262 if (basereg->neon)
2263 typeinfo = *basereg->neon;
2264
2265 if (parse_neon_type (&ntype, &p) == SUCCESS)
2266 {
2267 /* We got a type. */
2268 if (typeinfo.defined & NTA_HASTYPE)
2269 {
2270 as_bad (_("can't redefine the type of a register alias"));
2271 return FALSE;
2272 }
2273
2274 typeinfo.defined |= NTA_HASTYPE;
2275 if (ntype.elems != 1)
2276 {
2277 as_bad (_("you must specify a single type only"));
2278 return FALSE;
2279 }
2280 typeinfo.eltype = ntype.el[0];
2281 }
2282
2283 if (skip_past_char (&p, '[') == SUCCESS)
2284 {
2285 expressionS exp;
2286 /* We got a scalar index. */
2287
2288 if (typeinfo.defined & NTA_HASINDEX)
2289 {
2290 as_bad (_("can't redefine the index of a scalar alias"));
2291 return FALSE;
2292 }
2293
2294 my_get_expression (&exp, &p, GE_NO_PREFIX);
2295
2296 if (exp.X_op != O_constant)
2297 {
2298 as_bad (_("scalar index must be constant"));
2299 return FALSE;
2300 }
2301
2302 typeinfo.defined |= NTA_HASINDEX;
2303 typeinfo.index = exp.X_add_number;
2304
2305 if (skip_past_char (&p, ']') == FAIL)
2306 {
2307 as_bad (_("expecting ]"));
2308 return FALSE;
2309 }
2310 }
2311
2312 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2313 the desired alias name, and p points to its end. If not, then
2314 the desired alias name is in the global original_case_string. */
2315 #ifdef TC_CASE_SENSITIVE
2316 namelen = nameend - newname;
2317 #else
2318 newname = original_case_string;
2319 namelen = strlen (newname);
2320 #endif
2321
2322 namebuf = (char *) alloca (namelen + 1);
2323 strncpy (namebuf, newname, namelen);
2324 namebuf[namelen] = '\0';
2325
2326 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2327 typeinfo.defined != 0 ? &typeinfo : NULL);
2328
2329 /* Insert name in all uppercase. */
2330 for (p = namebuf; *p; p++)
2331 *p = TOUPPER (*p);
2332
2333 if (strncmp (namebuf, newname, namelen))
2334 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2335 typeinfo.defined != 0 ? &typeinfo : NULL);
2336
2337 /* Insert name in all lowercase. */
2338 for (p = namebuf; *p; p++)
2339 *p = TOLOWER (*p);
2340
2341 if (strncmp (namebuf, newname, namelen))
2342 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2343 typeinfo.defined != 0 ? &typeinfo : NULL);
2344
2345 return TRUE;
2346 }
2347
2348 /* Should never be called, as .req goes between the alias and the
2349 register name, not at the beginning of the line. */
2350
2351 static void
2352 s_req (int a ATTRIBUTE_UNUSED)
2353 {
2354 as_bad (_("invalid syntax for .req directive"));
2355 }
2356
2357 static void
2358 s_dn (int a ATTRIBUTE_UNUSED)
2359 {
2360 as_bad (_("invalid syntax for .dn directive"));
2361 }
2362
2363 static void
2364 s_qn (int a ATTRIBUTE_UNUSED)
2365 {
2366 as_bad (_("invalid syntax for .qn directive"));
2367 }
2368
2369 /* The .unreq directive deletes an alias which was previously defined
2370 by .req. For example:
2371
2372 my_alias .req r11
2373 .unreq my_alias */
2374
2375 static void
2376 s_unreq (int a ATTRIBUTE_UNUSED)
2377 {
2378 char * name;
2379 char saved_char;
2380
2381 name = input_line_pointer;
2382
2383 while (*input_line_pointer != 0
2384 && *input_line_pointer != ' '
2385 && *input_line_pointer != '\n')
2386 ++input_line_pointer;
2387
2388 saved_char = *input_line_pointer;
2389 *input_line_pointer = 0;
2390
2391 if (!*name)
2392 as_bad (_("invalid syntax for .unreq directive"));
2393 else
2394 {
2395 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2396 name);
2397
2398 if (!reg)
2399 as_bad (_("unknown register alias '%s'"), name);
2400 else if (reg->builtin)
2401 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2402 name);
2403 else
2404 {
2405 char * p;
2406 char * nbuf;
2407
2408 hash_delete (arm_reg_hsh, name, FALSE);
2409 free ((char *) reg->name);
2410 if (reg->neon)
2411 free (reg->neon);
2412 free (reg);
2413
2414 /* Also locate the all upper case and all lower case versions.
2415 Do not complain if we cannot find one or the other as it
2416 was probably deleted above. */
2417
2418 nbuf = strdup (name);
2419 for (p = nbuf; *p; p++)
2420 *p = TOUPPER (*p);
2421 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2422 if (reg)
2423 {
2424 hash_delete (arm_reg_hsh, nbuf, FALSE);
2425 free ((char *) reg->name);
2426 if (reg->neon)
2427 free (reg->neon);
2428 free (reg);
2429 }
2430
2431 for (p = nbuf; *p; p++)
2432 *p = TOLOWER (*p);
2433 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2434 if (reg)
2435 {
2436 hash_delete (arm_reg_hsh, nbuf, FALSE);
2437 free ((char *) reg->name);
2438 if (reg->neon)
2439 free (reg->neon);
2440 free (reg);
2441 }
2442
2443 free (nbuf);
2444 }
2445 }
2446
2447 *input_line_pointer = saved_char;
2448 demand_empty_rest_of_line ();
2449 }
2450
2451 /* Directives: Instruction set selection. */
2452
2453 #ifdef OBJ_ELF
2454 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2455 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2456 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2457 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2458
2459 /* Create a new mapping symbol for the transition to STATE. */
2460
2461 static void
2462 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2463 {
2464 symbolS * symbolP;
2465 const char * symname;
2466 int type;
2467
2468 switch (state)
2469 {
2470 case MAP_DATA:
2471 symname = "$d";
2472 type = BSF_NO_FLAGS;
2473 break;
2474 case MAP_ARM:
2475 symname = "$a";
2476 type = BSF_NO_FLAGS;
2477 break;
2478 case MAP_THUMB:
2479 symname = "$t";
2480 type = BSF_NO_FLAGS;
2481 break;
2482 default:
2483 abort ();
2484 }
2485
2486 symbolP = symbol_new (symname, now_seg, value, frag);
2487 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2488
2489 switch (state)
2490 {
2491 case MAP_ARM:
2492 THUMB_SET_FUNC (symbolP, 0);
2493 ARM_SET_THUMB (symbolP, 0);
2494 ARM_SET_INTERWORK (symbolP, support_interwork);
2495 break;
2496
2497 case MAP_THUMB:
2498 THUMB_SET_FUNC (symbolP, 1);
2499 ARM_SET_THUMB (symbolP, 1);
2500 ARM_SET_INTERWORK (symbolP, support_interwork);
2501 break;
2502
2503 case MAP_DATA:
2504 default:
2505 break;
2506 }
2507
2508 /* Save the mapping symbols for future reference. Also check that
2509 we do not place two mapping symbols at the same offset within a
2510 frag. We'll handle overlap between frags in
2511 check_mapping_symbols.
2512
2513 If .fill or other data filling directive generates zero sized data,
2514 the mapping symbol for the following code will have the same value
2515 as the one generated for the data filling directive. In this case,
2516 we replace the old symbol with the new one at the same address. */
2517 if (value == 0)
2518 {
2519 if (frag->tc_frag_data.first_map != NULL)
2520 {
2521 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2522 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2523 }
2524 frag->tc_frag_data.first_map = symbolP;
2525 }
2526 if (frag->tc_frag_data.last_map != NULL)
2527 {
2528 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2529 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2530 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2531 }
2532 frag->tc_frag_data.last_map = symbolP;
2533 }
2534
2535 /* We must sometimes convert a region marked as code to data during
2536 code alignment, if an odd number of bytes have to be padded. The
2537 code mapping symbol is pushed to an aligned address. */
2538
2539 static void
2540 insert_data_mapping_symbol (enum mstate state,
2541 valueT value, fragS *frag, offsetT bytes)
2542 {
2543 /* If there was already a mapping symbol, remove it. */
2544 if (frag->tc_frag_data.last_map != NULL
2545 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2546 {
2547 symbolS *symp = frag->tc_frag_data.last_map;
2548
2549 if (value == 0)
2550 {
2551 know (frag->tc_frag_data.first_map == symp);
2552 frag->tc_frag_data.first_map = NULL;
2553 }
2554 frag->tc_frag_data.last_map = NULL;
2555 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2556 }
2557
2558 make_mapping_symbol (MAP_DATA, value, frag);
2559 make_mapping_symbol (state, value + bytes, frag);
2560 }
2561
2562 static void mapping_state_2 (enum mstate state, int max_chars);
2563
2564 /* Set the mapping state to STATE. Only call this when about to
2565 emit some STATE bytes to the file. */
2566
2567 void
2568 mapping_state (enum mstate state)
2569 {
2570 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2571
2572 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2573
2574 if (mapstate == state)
2575 /* The mapping symbol has already been emitted.
2576 There is nothing else to do. */
2577 return;
2578 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2579 /* This case will be evaluated later in the next else. */
2580 return;
2581 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2582 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2583 {
2584 /* Only add the symbol if the offset is > 0:
2585 if we're at the first frag, check it's size > 0;
2586 if we're not at the first frag, then for sure
2587 the offset is > 0. */
2588 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2589 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2590
2591 if (add_symbol)
2592 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2593 }
2594
2595 mapping_state_2 (state, 0);
2596 #undef TRANSITION
2597 }
2598
2599 /* Same as mapping_state, but MAX_CHARS bytes have already been
2600 allocated. Put the mapping symbol that far back. */
2601
2602 static void
2603 mapping_state_2 (enum mstate state, int max_chars)
2604 {
2605 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2606
2607 if (!SEG_NORMAL (now_seg))
2608 return;
2609
2610 if (mapstate == state)
2611 /* The mapping symbol has already been emitted.
2612 There is nothing else to do. */
2613 return;
2614
2615 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2616 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2617 }
2618 #else
2619 #define mapping_state(x) ((void)0)
2620 #define mapping_state_2(x, y) ((void)0)
2621 #endif
2622
2623 /* Find the real, Thumb encoded start of a Thumb function. */
2624
2625 #ifdef OBJ_COFF
2626 static symbolS *
2627 find_real_start (symbolS * symbolP)
2628 {
2629 char * real_start;
2630 const char * name = S_GET_NAME (symbolP);
2631 symbolS * new_target;
2632
2633 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2634 #define STUB_NAME ".real_start_of"
2635
2636 if (name == NULL)
2637 abort ();
2638
2639 /* The compiler may generate BL instructions to local labels because
2640 it needs to perform a branch to a far away location. These labels
2641 do not have a corresponding ".real_start_of" label. We check
2642 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2643 the ".real_start_of" convention for nonlocal branches. */
2644 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2645 return symbolP;
2646
2647 real_start = ACONCAT ((STUB_NAME, name, NULL));
2648 new_target = symbol_find (real_start);
2649
2650 if (new_target == NULL)
2651 {
2652 as_warn (_("Failed to find real start of function: %s\n"), name);
2653 new_target = symbolP;
2654 }
2655
2656 return new_target;
2657 }
2658 #endif
2659
2660 static void
2661 opcode_select (int width)
2662 {
2663 switch (width)
2664 {
2665 case 16:
2666 if (! thumb_mode)
2667 {
2668 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2669 as_bad (_("selected processor does not support THUMB opcodes"));
2670
2671 thumb_mode = 1;
2672 /* No need to force the alignment, since we will have been
2673 coming from ARM mode, which is word-aligned. */
2674 record_alignment (now_seg, 1);
2675 }
2676 break;
2677
2678 case 32:
2679 if (thumb_mode)
2680 {
2681 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2682 as_bad (_("selected processor does not support ARM opcodes"));
2683
2684 thumb_mode = 0;
2685
2686 if (!need_pass_2)
2687 frag_align (2, 0, 0);
2688
2689 record_alignment (now_seg, 1);
2690 }
2691 break;
2692
2693 default:
2694 as_bad (_("invalid instruction size selected (%d)"), width);
2695 }
2696 }
2697
2698 static void
2699 s_arm (int ignore ATTRIBUTE_UNUSED)
2700 {
2701 opcode_select (32);
2702 demand_empty_rest_of_line ();
2703 }
2704
2705 static void
2706 s_thumb (int ignore ATTRIBUTE_UNUSED)
2707 {
2708 opcode_select (16);
2709 demand_empty_rest_of_line ();
2710 }
2711
2712 static void
2713 s_code (int unused ATTRIBUTE_UNUSED)
2714 {
2715 int temp;
2716
2717 temp = get_absolute_expression ();
2718 switch (temp)
2719 {
2720 case 16:
2721 case 32:
2722 opcode_select (temp);
2723 break;
2724
2725 default:
2726 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2727 }
2728 }
2729
2730 static void
2731 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2732 {
2733 /* If we are not already in thumb mode go into it, EVEN if
2734 the target processor does not support thumb instructions.
2735 This is used by gcc/config/arm/lib1funcs.asm for example
2736 to compile interworking support functions even if the
2737 target processor should not support interworking. */
2738 if (! thumb_mode)
2739 {
2740 thumb_mode = 2;
2741 record_alignment (now_seg, 1);
2742 }
2743
2744 demand_empty_rest_of_line ();
2745 }
2746
2747 static void
2748 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2749 {
2750 s_thumb (0);
2751
2752 /* The following label is the name/address of the start of a Thumb function.
2753 We need to know this for the interworking support. */
2754 label_is_thumb_function_name = TRUE;
2755 }
2756
2757 /* Perform a .set directive, but also mark the alias as
2758 being a thumb function. */
2759
2760 static void
2761 s_thumb_set (int equiv)
2762 {
2763 /* XXX the following is a duplicate of the code for s_set() in read.c
2764 We cannot just call that code as we need to get at the symbol that
2765 is created. */
2766 char * name;
2767 char delim;
2768 char * end_name;
2769 symbolS * symbolP;
2770
2771 /* Especial apologies for the random logic:
2772 This just grew, and could be parsed much more simply!
2773 Dean - in haste. */
2774 name = input_line_pointer;
2775 delim = get_symbol_end ();
2776 end_name = input_line_pointer;
2777 *end_name = delim;
2778
2779 if (*input_line_pointer != ',')
2780 {
2781 *end_name = 0;
2782 as_bad (_("expected comma after name \"%s\""), name);
2783 *end_name = delim;
2784 ignore_rest_of_line ();
2785 return;
2786 }
2787
2788 input_line_pointer++;
2789 *end_name = 0;
2790
2791 if (name[0] == '.' && name[1] == '\0')
2792 {
2793 /* XXX - this should not happen to .thumb_set. */
2794 abort ();
2795 }
2796
2797 if ((symbolP = symbol_find (name)) == NULL
2798 && (symbolP = md_undefined_symbol (name)) == NULL)
2799 {
2800 #ifndef NO_LISTING
2801 /* When doing symbol listings, play games with dummy fragments living
2802 outside the normal fragment chain to record the file and line info
2803 for this symbol. */
2804 if (listing & LISTING_SYMBOLS)
2805 {
2806 extern struct list_info_struct * listing_tail;
2807 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2808
2809 memset (dummy_frag, 0, sizeof (fragS));
2810 dummy_frag->fr_type = rs_fill;
2811 dummy_frag->line = listing_tail;
2812 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2813 dummy_frag->fr_symbol = symbolP;
2814 }
2815 else
2816 #endif
2817 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2818
2819 #ifdef OBJ_COFF
2820 /* "set" symbols are local unless otherwise specified. */
2821 SF_SET_LOCAL (symbolP);
2822 #endif /* OBJ_COFF */
2823 } /* Make a new symbol. */
2824
2825 symbol_table_insert (symbolP);
2826
2827 * end_name = delim;
2828
2829 if (equiv
2830 && S_IS_DEFINED (symbolP)
2831 && S_GET_SEGMENT (symbolP) != reg_section)
2832 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2833
2834 pseudo_set (symbolP);
2835
2836 demand_empty_rest_of_line ();
2837
2838 /* XXX Now we come to the Thumb specific bit of code. */
2839
2840 THUMB_SET_FUNC (symbolP, 1);
2841 ARM_SET_THUMB (symbolP, 1);
2842 #if defined OBJ_ELF || defined OBJ_COFF
2843 ARM_SET_INTERWORK (symbolP, support_interwork);
2844 #endif
2845 }
2846
2847 /* Directives: Mode selection. */
2848
2849 /* .syntax [unified|divided] - choose the new unified syntax
2850 (same for Arm and Thumb encoding, modulo slight differences in what
2851 can be represented) or the old divergent syntax for each mode. */
2852 static void
2853 s_syntax (int unused ATTRIBUTE_UNUSED)
2854 {
2855 char *name, delim;
2856
2857 name = input_line_pointer;
2858 delim = get_symbol_end ();
2859
2860 if (!strcasecmp (name, "unified"))
2861 unified_syntax = TRUE;
2862 else if (!strcasecmp (name, "divided"))
2863 unified_syntax = FALSE;
2864 else
2865 {
2866 as_bad (_("unrecognized syntax mode \"%s\""), name);
2867 return;
2868 }
2869 *input_line_pointer = delim;
2870 demand_empty_rest_of_line ();
2871 }
2872
2873 /* Directives: sectioning and alignment. */
2874
2875 /* Same as s_align_ptwo but align 0 => align 2. */
2876
2877 static void
2878 s_align (int unused ATTRIBUTE_UNUSED)
2879 {
2880 int temp;
2881 bfd_boolean fill_p;
2882 long temp_fill;
2883 long max_alignment = 15;
2884
2885 temp = get_absolute_expression ();
2886 if (temp > max_alignment)
2887 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2888 else if (temp < 0)
2889 {
2890 as_bad (_("alignment negative. 0 assumed."));
2891 temp = 0;
2892 }
2893
2894 if (*input_line_pointer == ',')
2895 {
2896 input_line_pointer++;
2897 temp_fill = get_absolute_expression ();
2898 fill_p = TRUE;
2899 }
2900 else
2901 {
2902 fill_p = FALSE;
2903 temp_fill = 0;
2904 }
2905
2906 if (!temp)
2907 temp = 2;
2908
2909 /* Only make a frag if we HAVE to. */
2910 if (temp && !need_pass_2)
2911 {
2912 if (!fill_p && subseg_text_p (now_seg))
2913 frag_align_code (temp, 0);
2914 else
2915 frag_align (temp, (int) temp_fill, 0);
2916 }
2917 demand_empty_rest_of_line ();
2918
2919 record_alignment (now_seg, temp);
2920 }
2921
2922 static void
2923 s_bss (int ignore ATTRIBUTE_UNUSED)
2924 {
2925 /* We don't support putting frags in the BSS segment, we fake it by
2926 marking in_bss, then looking at s_skip for clues. */
2927 subseg_set (bss_section, 0);
2928 demand_empty_rest_of_line ();
2929
2930 #ifdef md_elf_section_change_hook
2931 md_elf_section_change_hook ();
2932 #endif
2933 }
2934
2935 static void
2936 s_even (int ignore ATTRIBUTE_UNUSED)
2937 {
2938 /* Never make frag if expect extra pass. */
2939 if (!need_pass_2)
2940 frag_align (1, 0, 0);
2941
2942 record_alignment (now_seg, 1);
2943
2944 demand_empty_rest_of_line ();
2945 }
2946
2947 /* Directives: Literal pools. */
2948
2949 static literal_pool *
2950 find_literal_pool (void)
2951 {
2952 literal_pool * pool;
2953
2954 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2955 {
2956 if (pool->section == now_seg
2957 && pool->sub_section == now_subseg)
2958 break;
2959 }
2960
2961 return pool;
2962 }
2963
2964 static literal_pool *
2965 find_or_make_literal_pool (void)
2966 {
2967 /* Next literal pool ID number. */
2968 static unsigned int latest_pool_num = 1;
2969 literal_pool * pool;
2970
2971 pool = find_literal_pool ();
2972
2973 if (pool == NULL)
2974 {
2975 /* Create a new pool. */
2976 pool = (literal_pool *) xmalloc (sizeof (* pool));
2977 if (! pool)
2978 return NULL;
2979
2980 pool->next_free_entry = 0;
2981 pool->section = now_seg;
2982 pool->sub_section = now_subseg;
2983 pool->next = list_of_pools;
2984 pool->symbol = NULL;
2985
2986 /* Add it to the list. */
2987 list_of_pools = pool;
2988 }
2989
2990 /* New pools, and emptied pools, will have a NULL symbol. */
2991 if (pool->symbol == NULL)
2992 {
2993 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2994 (valueT) 0, &zero_address_frag);
2995 pool->id = latest_pool_num ++;
2996 }
2997
2998 /* Done. */
2999 return pool;
3000 }
3001
3002 /* Add the literal in the global 'inst'
3003 structure to the relevant literal pool. */
3004
3005 static int
3006 add_to_lit_pool (void)
3007 {
3008 literal_pool * pool;
3009 unsigned int entry;
3010
3011 pool = find_or_make_literal_pool ();
3012
3013 /* Check if this literal value is already in the pool. */
3014 for (entry = 0; entry < pool->next_free_entry; entry ++)
3015 {
3016 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3017 && (inst.reloc.exp.X_op == O_constant)
3018 && (pool->literals[entry].X_add_number
3019 == inst.reloc.exp.X_add_number)
3020 && (pool->literals[entry].X_unsigned
3021 == inst.reloc.exp.X_unsigned))
3022 break;
3023
3024 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3025 && (inst.reloc.exp.X_op == O_symbol)
3026 && (pool->literals[entry].X_add_number
3027 == inst.reloc.exp.X_add_number)
3028 && (pool->literals[entry].X_add_symbol
3029 == inst.reloc.exp.X_add_symbol)
3030 && (pool->literals[entry].X_op_symbol
3031 == inst.reloc.exp.X_op_symbol))
3032 break;
3033 }
3034
3035 /* Do we need to create a new entry? */
3036 if (entry == pool->next_free_entry)
3037 {
3038 if (entry >= MAX_LITERAL_POOL_SIZE)
3039 {
3040 inst.error = _("literal pool overflow");
3041 return FAIL;
3042 }
3043
3044 pool->literals[entry] = inst.reloc.exp;
3045 pool->next_free_entry += 1;
3046 }
3047
3048 inst.reloc.exp.X_op = O_symbol;
3049 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3050 inst.reloc.exp.X_add_symbol = pool->symbol;
3051
3052 return SUCCESS;
3053 }
3054
3055 /* Can't use symbol_new here, so have to create a symbol and then at
3056 a later date assign it a value. Thats what these functions do. */
3057
3058 static void
3059 symbol_locate (symbolS * symbolP,
3060 const char * name, /* It is copied, the caller can modify. */
3061 segT segment, /* Segment identifier (SEG_<something>). */
3062 valueT valu, /* Symbol value. */
3063 fragS * frag) /* Associated fragment. */
3064 {
3065 unsigned int name_length;
3066 char * preserved_copy_of_name;
3067
3068 name_length = strlen (name) + 1; /* +1 for \0. */
3069 obstack_grow (&notes, name, name_length);
3070 preserved_copy_of_name = (char *) obstack_finish (&notes);
3071
3072 #ifdef tc_canonicalize_symbol_name
3073 preserved_copy_of_name =
3074 tc_canonicalize_symbol_name (preserved_copy_of_name);
3075 #endif
3076
3077 S_SET_NAME (symbolP, preserved_copy_of_name);
3078
3079 S_SET_SEGMENT (symbolP, segment);
3080 S_SET_VALUE (symbolP, valu);
3081 symbol_clear_list_pointers (symbolP);
3082
3083 symbol_set_frag (symbolP, frag);
3084
3085 /* Link to end of symbol chain. */
3086 {
3087 extern int symbol_table_frozen;
3088
3089 if (symbol_table_frozen)
3090 abort ();
3091 }
3092
3093 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3094
3095 obj_symbol_new_hook (symbolP);
3096
3097 #ifdef tc_symbol_new_hook
3098 tc_symbol_new_hook (symbolP);
3099 #endif
3100
3101 #ifdef DEBUG_SYMS
3102 verify_symbol_chain (symbol_rootP, symbol_lastP);
3103 #endif /* DEBUG_SYMS */
3104 }
3105
3106
3107 static void
3108 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3109 {
3110 unsigned int entry;
3111 literal_pool * pool;
3112 char sym_name[20];
3113
3114 pool = find_literal_pool ();
3115 if (pool == NULL
3116 || pool->symbol == NULL
3117 || pool->next_free_entry == 0)
3118 return;
3119
3120 mapping_state (MAP_DATA);
3121
3122 /* Align pool as you have word accesses.
3123 Only make a frag if we have to. */
3124 if (!need_pass_2)
3125 frag_align (2, 0, 0);
3126
3127 record_alignment (now_seg, 2);
3128
3129 sprintf (sym_name, "$$lit_\002%x", pool->id);
3130
3131 symbol_locate (pool->symbol, sym_name, now_seg,
3132 (valueT) frag_now_fix (), frag_now);
3133 symbol_table_insert (pool->symbol);
3134
3135 ARM_SET_THUMB (pool->symbol, thumb_mode);
3136
3137 #if defined OBJ_COFF || defined OBJ_ELF
3138 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3139 #endif
3140
3141 for (entry = 0; entry < pool->next_free_entry; entry ++)
3142 /* First output the expression in the instruction to the pool. */
3143 emit_expr (&(pool->literals[entry]), 4); /* .word */
3144
3145 /* Mark the pool as empty. */
3146 pool->next_free_entry = 0;
3147 pool->symbol = NULL;
3148 }
3149
3150 #ifdef OBJ_ELF
3151 /* Forward declarations for functions below, in the MD interface
3152 section. */
3153 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3154 static valueT create_unwind_entry (int);
3155 static void start_unwind_section (const segT, int);
3156 static void add_unwind_opcode (valueT, int);
3157 static void flush_pending_unwind (void);
3158
3159 /* Directives: Data. */
3160
3161 static void
3162 s_arm_elf_cons (int nbytes)
3163 {
3164 expressionS exp;
3165
3166 #ifdef md_flush_pending_output
3167 md_flush_pending_output ();
3168 #endif
3169
3170 if (is_it_end_of_statement ())
3171 {
3172 demand_empty_rest_of_line ();
3173 return;
3174 }
3175
3176 #ifdef md_cons_align
3177 md_cons_align (nbytes);
3178 #endif
3179
3180 mapping_state (MAP_DATA);
3181 do
3182 {
3183 int reloc;
3184 char *base = input_line_pointer;
3185
3186 expression (& exp);
3187
3188 if (exp.X_op != O_symbol)
3189 emit_expr (&exp, (unsigned int) nbytes);
3190 else
3191 {
3192 char *before_reloc = input_line_pointer;
3193 reloc = parse_reloc (&input_line_pointer);
3194 if (reloc == -1)
3195 {
3196 as_bad (_("unrecognized relocation suffix"));
3197 ignore_rest_of_line ();
3198 return;
3199 }
3200 else if (reloc == BFD_RELOC_UNUSED)
3201 emit_expr (&exp, (unsigned int) nbytes);
3202 else
3203 {
3204 reloc_howto_type *howto = (reloc_howto_type *)
3205 bfd_reloc_type_lookup (stdoutput,
3206 (bfd_reloc_code_real_type) reloc);
3207 int size = bfd_get_reloc_size (howto);
3208
3209 if (reloc == BFD_RELOC_ARM_PLT32)
3210 {
3211 as_bad (_("(plt) is only valid on branch targets"));
3212 reloc = BFD_RELOC_UNUSED;
3213 size = 0;
3214 }
3215
3216 if (size > nbytes)
3217 as_bad (_("%s relocations do not fit in %d bytes"),
3218 howto->name, nbytes);
3219 else
3220 {
3221 /* We've parsed an expression stopping at O_symbol.
3222 But there may be more expression left now that we
3223 have parsed the relocation marker. Parse it again.
3224 XXX Surely there is a cleaner way to do this. */
3225 char *p = input_line_pointer;
3226 int offset;
3227 char *save_buf = (char *) alloca (input_line_pointer - base);
3228 memcpy (save_buf, base, input_line_pointer - base);
3229 memmove (base + (input_line_pointer - before_reloc),
3230 base, before_reloc - base);
3231
3232 input_line_pointer = base + (input_line_pointer-before_reloc);
3233 expression (&exp);
3234 memcpy (base, save_buf, p - base);
3235
3236 offset = nbytes - size;
3237 p = frag_more ((int) nbytes);
3238 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3239 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3240 }
3241 }
3242 }
3243 }
3244 while (*input_line_pointer++ == ',');
3245
3246 /* Put terminator back into stream. */
3247 input_line_pointer --;
3248 demand_empty_rest_of_line ();
3249 }
3250
3251 /* Emit an expression containing a 32-bit thumb instruction.
3252 Implementation based on put_thumb32_insn. */
3253
3254 static void
3255 emit_thumb32_expr (expressionS * exp)
3256 {
3257 expressionS exp_high = *exp;
3258
3259 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3260 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3261 exp->X_add_number &= 0xffff;
3262 emit_expr (exp, (unsigned int) THUMB_SIZE);
3263 }
3264
3265 /* Guess the instruction size based on the opcode. */
3266
3267 static int
3268 thumb_insn_size (int opcode)
3269 {
3270 if ((unsigned int) opcode < 0xe800u)
3271 return 2;
3272 else if ((unsigned int) opcode >= 0xe8000000u)
3273 return 4;
3274 else
3275 return 0;
3276 }
3277
3278 static bfd_boolean
3279 emit_insn (expressionS *exp, int nbytes)
3280 {
3281 int size = 0;
3282
3283 if (exp->X_op == O_constant)
3284 {
3285 size = nbytes;
3286
3287 if (size == 0)
3288 size = thumb_insn_size (exp->X_add_number);
3289
3290 if (size != 0)
3291 {
3292 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3293 {
3294 as_bad (_(".inst.n operand too big. "\
3295 "Use .inst.w instead"));
3296 size = 0;
3297 }
3298 else
3299 {
3300 if (now_it.state == AUTOMATIC_IT_BLOCK)
3301 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3302 else
3303 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3304
3305 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3306 emit_thumb32_expr (exp);
3307 else
3308 emit_expr (exp, (unsigned int) size);
3309
3310 it_fsm_post_encode ();
3311 }
3312 }
3313 else
3314 as_bad (_("cannot determine Thumb instruction size. " \
3315 "Use .inst.n/.inst.w instead"));
3316 }
3317 else
3318 as_bad (_("constant expression required"));
3319
3320 return (size != 0);
3321 }
3322
3323 /* Like s_arm_elf_cons but do not use md_cons_align and
3324 set the mapping state to MAP_ARM/MAP_THUMB. */
3325
3326 static void
3327 s_arm_elf_inst (int nbytes)
3328 {
3329 if (is_it_end_of_statement ())
3330 {
3331 demand_empty_rest_of_line ();
3332 return;
3333 }
3334
3335 /* Calling mapping_state () here will not change ARM/THUMB,
3336 but will ensure not to be in DATA state. */
3337
3338 if (thumb_mode)
3339 mapping_state (MAP_THUMB);
3340 else
3341 {
3342 if (nbytes != 0)
3343 {
3344 as_bad (_("width suffixes are invalid in ARM mode"));
3345 ignore_rest_of_line ();
3346 return;
3347 }
3348
3349 nbytes = 4;
3350
3351 mapping_state (MAP_ARM);
3352 }
3353
3354 do
3355 {
3356 expressionS exp;
3357
3358 expression (& exp);
3359
3360 if (! emit_insn (& exp, nbytes))
3361 {
3362 ignore_rest_of_line ();
3363 return;
3364 }
3365 }
3366 while (*input_line_pointer++ == ',');
3367
3368 /* Put terminator back into stream. */
3369 input_line_pointer --;
3370 demand_empty_rest_of_line ();
3371 }
3372
3373 /* Parse a .rel31 directive. */
3374
3375 static void
3376 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3377 {
3378 expressionS exp;
3379 char *p;
3380 valueT highbit;
3381
3382 highbit = 0;
3383 if (*input_line_pointer == '1')
3384 highbit = 0x80000000;
3385 else if (*input_line_pointer != '0')
3386 as_bad (_("expected 0 or 1"));
3387
3388 input_line_pointer++;
3389 if (*input_line_pointer != ',')
3390 as_bad (_("missing comma"));
3391 input_line_pointer++;
3392
3393 #ifdef md_flush_pending_output
3394 md_flush_pending_output ();
3395 #endif
3396
3397 #ifdef md_cons_align
3398 md_cons_align (4);
3399 #endif
3400
3401 mapping_state (MAP_DATA);
3402
3403 expression (&exp);
3404
3405 p = frag_more (4);
3406 md_number_to_chars (p, highbit, 4);
3407 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3408 BFD_RELOC_ARM_PREL31);
3409
3410 demand_empty_rest_of_line ();
3411 }
3412
3413 /* Directives: AEABI stack-unwind tables. */
3414
3415 /* Parse an unwind_fnstart directive. Simply records the current location. */
3416
3417 static void
3418 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3419 {
3420 demand_empty_rest_of_line ();
3421 if (unwind.proc_start)
3422 {
3423 as_bad (_("duplicate .fnstart directive"));
3424 return;
3425 }
3426
3427 /* Mark the start of the function. */
3428 unwind.proc_start = expr_build_dot ();
3429
3430 /* Reset the rest of the unwind info. */
3431 unwind.opcode_count = 0;
3432 unwind.table_entry = NULL;
3433 unwind.personality_routine = NULL;
3434 unwind.personality_index = -1;
3435 unwind.frame_size = 0;
3436 unwind.fp_offset = 0;
3437 unwind.fp_reg = REG_SP;
3438 unwind.fp_used = 0;
3439 unwind.sp_restored = 0;
3440 }
3441
3442
3443 /* Parse a handlerdata directive. Creates the exception handling table entry
3444 for the function. */
3445
3446 static void
3447 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3448 {
3449 demand_empty_rest_of_line ();
3450 if (!unwind.proc_start)
3451 as_bad (MISSING_FNSTART);
3452
3453 if (unwind.table_entry)
3454 as_bad (_("duplicate .handlerdata directive"));
3455
3456 create_unwind_entry (1);
3457 }
3458
3459 /* Parse an unwind_fnend directive. Generates the index table entry. */
3460
3461 static void
3462 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3463 {
3464 long where;
3465 char *ptr;
3466 valueT val;
3467 unsigned int marked_pr_dependency;
3468
3469 demand_empty_rest_of_line ();
3470
3471 if (!unwind.proc_start)
3472 {
3473 as_bad (_(".fnend directive without .fnstart"));
3474 return;
3475 }
3476
3477 /* Add eh table entry. */
3478 if (unwind.table_entry == NULL)
3479 val = create_unwind_entry (0);
3480 else
3481 val = 0;
3482
3483 /* Add index table entry. This is two words. */
3484 start_unwind_section (unwind.saved_seg, 1);
3485 frag_align (2, 0, 0);
3486 record_alignment (now_seg, 2);
3487
3488 ptr = frag_more (8);
3489 where = frag_now_fix () - 8;
3490
3491 /* Self relative offset of the function start. */
3492 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3493 BFD_RELOC_ARM_PREL31);
3494
3495 /* Indicate dependency on EHABI-defined personality routines to the
3496 linker, if it hasn't been done already. */
3497 marked_pr_dependency
3498 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3499 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3500 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3501 {
3502 static const char *const name[] =
3503 {
3504 "__aeabi_unwind_cpp_pr0",
3505 "__aeabi_unwind_cpp_pr1",
3506 "__aeabi_unwind_cpp_pr2"
3507 };
3508 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3509 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3510 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3511 |= 1 << unwind.personality_index;
3512 }
3513
3514 if (val)
3515 /* Inline exception table entry. */
3516 md_number_to_chars (ptr + 4, val, 4);
3517 else
3518 /* Self relative offset of the table entry. */
3519 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3520 BFD_RELOC_ARM_PREL31);
3521
3522 /* Restore the original section. */
3523 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3524
3525 unwind.proc_start = NULL;
3526 }
3527
3528
3529 /* Parse an unwind_cantunwind directive. */
3530
3531 static void
3532 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3533 {
3534 demand_empty_rest_of_line ();
3535 if (!unwind.proc_start)
3536 as_bad (MISSING_FNSTART);
3537
3538 if (unwind.personality_routine || unwind.personality_index != -1)
3539 as_bad (_("personality routine specified for cantunwind frame"));
3540
3541 unwind.personality_index = -2;
3542 }
3543
3544
3545 /* Parse a personalityindex directive. */
3546
3547 static void
3548 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3549 {
3550 expressionS exp;
3551
3552 if (!unwind.proc_start)
3553 as_bad (MISSING_FNSTART);
3554
3555 if (unwind.personality_routine || unwind.personality_index != -1)
3556 as_bad (_("duplicate .personalityindex directive"));
3557
3558 expression (&exp);
3559
3560 if (exp.X_op != O_constant
3561 || exp.X_add_number < 0 || exp.X_add_number > 15)
3562 {
3563 as_bad (_("bad personality routine number"));
3564 ignore_rest_of_line ();
3565 return;
3566 }
3567
3568 unwind.personality_index = exp.X_add_number;
3569
3570 demand_empty_rest_of_line ();
3571 }
3572
3573
3574 /* Parse a personality directive. */
3575
3576 static void
3577 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3578 {
3579 char *name, *p, c;
3580
3581 if (!unwind.proc_start)
3582 as_bad (MISSING_FNSTART);
3583
3584 if (unwind.personality_routine || unwind.personality_index != -1)
3585 as_bad (_("duplicate .personality directive"));
3586
3587 name = input_line_pointer;
3588 c = get_symbol_end ();
3589 p = input_line_pointer;
3590 unwind.personality_routine = symbol_find_or_make (name);
3591 *p = c;
3592 demand_empty_rest_of_line ();
3593 }
3594
3595
3596 /* Parse a directive saving core registers. */
3597
3598 static void
3599 s_arm_unwind_save_core (void)
3600 {
3601 valueT op;
3602 long range;
3603 int n;
3604
3605 range = parse_reg_list (&input_line_pointer);
3606 if (range == FAIL)
3607 {
3608 as_bad (_("expected register list"));
3609 ignore_rest_of_line ();
3610 return;
3611 }
3612
3613 demand_empty_rest_of_line ();
3614
3615 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3616 into .unwind_save {..., sp...}. We aren't bothered about the value of
3617 ip because it is clobbered by calls. */
3618 if (unwind.sp_restored && unwind.fp_reg == 12
3619 && (range & 0x3000) == 0x1000)
3620 {
3621 unwind.opcode_count--;
3622 unwind.sp_restored = 0;
3623 range = (range | 0x2000) & ~0x1000;
3624 unwind.pending_offset = 0;
3625 }
3626
3627 /* Pop r4-r15. */
3628 if (range & 0xfff0)
3629 {
3630 /* See if we can use the short opcodes. These pop a block of up to 8
3631 registers starting with r4, plus maybe r14. */
3632 for (n = 0; n < 8; n++)
3633 {
3634 /* Break at the first non-saved register. */
3635 if ((range & (1 << (n + 4))) == 0)
3636 break;
3637 }
3638 /* See if there are any other bits set. */
3639 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3640 {
3641 /* Use the long form. */
3642 op = 0x8000 | ((range >> 4) & 0xfff);
3643 add_unwind_opcode (op, 2);
3644 }
3645 else
3646 {
3647 /* Use the short form. */
3648 if (range & 0x4000)
3649 op = 0xa8; /* Pop r14. */
3650 else
3651 op = 0xa0; /* Do not pop r14. */
3652 op |= (n - 1);
3653 add_unwind_opcode (op, 1);
3654 }
3655 }
3656
3657 /* Pop r0-r3. */
3658 if (range & 0xf)
3659 {
3660 op = 0xb100 | (range & 0xf);
3661 add_unwind_opcode (op, 2);
3662 }
3663
3664 /* Record the number of bytes pushed. */
3665 for (n = 0; n < 16; n++)
3666 {
3667 if (range & (1 << n))
3668 unwind.frame_size += 4;
3669 }
3670 }
3671
3672
3673 /* Parse a directive saving FPA registers. */
3674
3675 static void
3676 s_arm_unwind_save_fpa (int reg)
3677 {
3678 expressionS exp;
3679 int num_regs;
3680 valueT op;
3681
3682 /* Get Number of registers to transfer. */
3683 if (skip_past_comma (&input_line_pointer) != FAIL)
3684 expression (&exp);
3685 else
3686 exp.X_op = O_illegal;
3687
3688 if (exp.X_op != O_constant)
3689 {
3690 as_bad (_("expected , <constant>"));
3691 ignore_rest_of_line ();
3692 return;
3693 }
3694
3695 num_regs = exp.X_add_number;
3696
3697 if (num_regs < 1 || num_regs > 4)
3698 {
3699 as_bad (_("number of registers must be in the range [1:4]"));
3700 ignore_rest_of_line ();
3701 return;
3702 }
3703
3704 demand_empty_rest_of_line ();
3705
3706 if (reg == 4)
3707 {
3708 /* Short form. */
3709 op = 0xb4 | (num_regs - 1);
3710 add_unwind_opcode (op, 1);
3711 }
3712 else
3713 {
3714 /* Long form. */
3715 op = 0xc800 | (reg << 4) | (num_regs - 1);
3716 add_unwind_opcode (op, 2);
3717 }
3718 unwind.frame_size += num_regs * 12;
3719 }
3720
3721
3722 /* Parse a directive saving VFP registers for ARMv6 and above. */
3723
3724 static void
3725 s_arm_unwind_save_vfp_armv6 (void)
3726 {
3727 int count;
3728 unsigned int start;
3729 valueT op;
3730 int num_vfpv3_regs = 0;
3731 int num_regs_below_16;
3732
3733 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3734 if (count == FAIL)
3735 {
3736 as_bad (_("expected register list"));
3737 ignore_rest_of_line ();
3738 return;
3739 }
3740
3741 demand_empty_rest_of_line ();
3742
3743 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3744 than FSTMX/FLDMX-style ones). */
3745
3746 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3747 if (start >= 16)
3748 num_vfpv3_regs = count;
3749 else if (start + count > 16)
3750 num_vfpv3_regs = start + count - 16;
3751
3752 if (num_vfpv3_regs > 0)
3753 {
3754 int start_offset = start > 16 ? start - 16 : 0;
3755 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3756 add_unwind_opcode (op, 2);
3757 }
3758
3759 /* Generate opcode for registers numbered in the range 0 .. 15. */
3760 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3761 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3762 if (num_regs_below_16 > 0)
3763 {
3764 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3765 add_unwind_opcode (op, 2);
3766 }
3767
3768 unwind.frame_size += count * 8;
3769 }
3770
3771
3772 /* Parse a directive saving VFP registers for pre-ARMv6. */
3773
3774 static void
3775 s_arm_unwind_save_vfp (void)
3776 {
3777 int count;
3778 unsigned int reg;
3779 valueT op;
3780
3781 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3782 if (count == FAIL)
3783 {
3784 as_bad (_("expected register list"));
3785 ignore_rest_of_line ();
3786 return;
3787 }
3788
3789 demand_empty_rest_of_line ();
3790
3791 if (reg == 8)
3792 {
3793 /* Short form. */
3794 op = 0xb8 | (count - 1);
3795 add_unwind_opcode (op, 1);
3796 }
3797 else
3798 {
3799 /* Long form. */
3800 op = 0xb300 | (reg << 4) | (count - 1);
3801 add_unwind_opcode (op, 2);
3802 }
3803 unwind.frame_size += count * 8 + 4;
3804 }
3805
3806
3807 /* Parse a directive saving iWMMXt data registers. */
3808
3809 static void
3810 s_arm_unwind_save_mmxwr (void)
3811 {
3812 int reg;
3813 int hi_reg;
3814 int i;
3815 unsigned mask = 0;
3816 valueT op;
3817
3818 if (*input_line_pointer == '{')
3819 input_line_pointer++;
3820
3821 do
3822 {
3823 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3824
3825 if (reg == FAIL)
3826 {
3827 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3828 goto error;
3829 }
3830
3831 if (mask >> reg)
3832 as_tsktsk (_("register list not in ascending order"));
3833 mask |= 1 << reg;
3834
3835 if (*input_line_pointer == '-')
3836 {
3837 input_line_pointer++;
3838 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3839 if (hi_reg == FAIL)
3840 {
3841 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3842 goto error;
3843 }
3844 else if (reg >= hi_reg)
3845 {
3846 as_bad (_("bad register range"));
3847 goto error;
3848 }
3849 for (; reg < hi_reg; reg++)
3850 mask |= 1 << reg;
3851 }
3852 }
3853 while (skip_past_comma (&input_line_pointer) != FAIL);
3854
3855 if (*input_line_pointer == '}')
3856 input_line_pointer++;
3857
3858 demand_empty_rest_of_line ();
3859
3860 /* Generate any deferred opcodes because we're going to be looking at
3861 the list. */
3862 flush_pending_unwind ();
3863
3864 for (i = 0; i < 16; i++)
3865 {
3866 if (mask & (1 << i))
3867 unwind.frame_size += 8;
3868 }
3869
3870 /* Attempt to combine with a previous opcode. We do this because gcc
3871 likes to output separate unwind directives for a single block of
3872 registers. */
3873 if (unwind.opcode_count > 0)
3874 {
3875 i = unwind.opcodes[unwind.opcode_count - 1];
3876 if ((i & 0xf8) == 0xc0)
3877 {
3878 i &= 7;
3879 /* Only merge if the blocks are contiguous. */
3880 if (i < 6)
3881 {
3882 if ((mask & 0xfe00) == (1 << 9))
3883 {
3884 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3885 unwind.opcode_count--;
3886 }
3887 }
3888 else if (i == 6 && unwind.opcode_count >= 2)
3889 {
3890 i = unwind.opcodes[unwind.opcode_count - 2];
3891 reg = i >> 4;
3892 i &= 0xf;
3893
3894 op = 0xffff << (reg - 1);
3895 if (reg > 0
3896 && ((mask & op) == (1u << (reg - 1))))
3897 {
3898 op = (1 << (reg + i + 1)) - 1;
3899 op &= ~((1 << reg) - 1);
3900 mask |= op;
3901 unwind.opcode_count -= 2;
3902 }
3903 }
3904 }
3905 }
3906
3907 hi_reg = 15;
3908 /* We want to generate opcodes in the order the registers have been
3909 saved, ie. descending order. */
3910 for (reg = 15; reg >= -1; reg--)
3911 {
3912 /* Save registers in blocks. */
3913 if (reg < 0
3914 || !(mask & (1 << reg)))
3915 {
3916 /* We found an unsaved reg. Generate opcodes to save the
3917 preceding block. */
3918 if (reg != hi_reg)
3919 {
3920 if (reg == 9)
3921 {
3922 /* Short form. */
3923 op = 0xc0 | (hi_reg - 10);
3924 add_unwind_opcode (op, 1);
3925 }
3926 else
3927 {
3928 /* Long form. */
3929 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3930 add_unwind_opcode (op, 2);
3931 }
3932 }
3933 hi_reg = reg - 1;
3934 }
3935 }
3936
3937 return;
3938 error:
3939 ignore_rest_of_line ();
3940 }
3941
3942 static void
3943 s_arm_unwind_save_mmxwcg (void)
3944 {
3945 int reg;
3946 int hi_reg;
3947 unsigned mask = 0;
3948 valueT op;
3949
3950 if (*input_line_pointer == '{')
3951 input_line_pointer++;
3952
3953 do
3954 {
3955 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3956
3957 if (reg == FAIL)
3958 {
3959 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3960 goto error;
3961 }
3962
3963 reg -= 8;
3964 if (mask >> reg)
3965 as_tsktsk (_("register list not in ascending order"));
3966 mask |= 1 << reg;
3967
3968 if (*input_line_pointer == '-')
3969 {
3970 input_line_pointer++;
3971 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3972 if (hi_reg == FAIL)
3973 {
3974 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3975 goto error;
3976 }
3977 else if (reg >= hi_reg)
3978 {
3979 as_bad (_("bad register range"));
3980 goto error;
3981 }
3982 for (; reg < hi_reg; reg++)
3983 mask |= 1 << reg;
3984 }
3985 }
3986 while (skip_past_comma (&input_line_pointer) != FAIL);
3987
3988 if (*input_line_pointer == '}')
3989 input_line_pointer++;
3990
3991 demand_empty_rest_of_line ();
3992
3993 /* Generate any deferred opcodes because we're going to be looking at
3994 the list. */
3995 flush_pending_unwind ();
3996
3997 for (reg = 0; reg < 16; reg++)
3998 {
3999 if (mask & (1 << reg))
4000 unwind.frame_size += 4;
4001 }
4002 op = 0xc700 | mask;
4003 add_unwind_opcode (op, 2);
4004 return;
4005 error:
4006 ignore_rest_of_line ();
4007 }
4008
4009
4010 /* Parse an unwind_save directive.
4011 If the argument is non-zero, this is a .vsave directive. */
4012
4013 static void
4014 s_arm_unwind_save (int arch_v6)
4015 {
4016 char *peek;
4017 struct reg_entry *reg;
4018 bfd_boolean had_brace = FALSE;
4019
4020 if (!unwind.proc_start)
4021 as_bad (MISSING_FNSTART);
4022
4023 /* Figure out what sort of save we have. */
4024 peek = input_line_pointer;
4025
4026 if (*peek == '{')
4027 {
4028 had_brace = TRUE;
4029 peek++;
4030 }
4031
4032 reg = arm_reg_parse_multi (&peek);
4033
4034 if (!reg)
4035 {
4036 as_bad (_("register expected"));
4037 ignore_rest_of_line ();
4038 return;
4039 }
4040
4041 switch (reg->type)
4042 {
4043 case REG_TYPE_FN:
4044 if (had_brace)
4045 {
4046 as_bad (_("FPA .unwind_save does not take a register list"));
4047 ignore_rest_of_line ();
4048 return;
4049 }
4050 input_line_pointer = peek;
4051 s_arm_unwind_save_fpa (reg->number);
4052 return;
4053
4054 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4055 case REG_TYPE_VFD:
4056 if (arch_v6)
4057 s_arm_unwind_save_vfp_armv6 ();
4058 else
4059 s_arm_unwind_save_vfp ();
4060 return;
4061 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4062 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4063
4064 default:
4065 as_bad (_(".unwind_save does not support this kind of register"));
4066 ignore_rest_of_line ();
4067 }
4068 }
4069
4070
4071 /* Parse an unwind_movsp directive. */
4072
4073 static void
4074 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4075 {
4076 int reg;
4077 valueT op;
4078 int offset;
4079
4080 if (!unwind.proc_start)
4081 as_bad (MISSING_FNSTART);
4082
4083 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4084 if (reg == FAIL)
4085 {
4086 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4087 ignore_rest_of_line ();
4088 return;
4089 }
4090
4091 /* Optional constant. */
4092 if (skip_past_comma (&input_line_pointer) != FAIL)
4093 {
4094 if (immediate_for_directive (&offset) == FAIL)
4095 return;
4096 }
4097 else
4098 offset = 0;
4099
4100 demand_empty_rest_of_line ();
4101
4102 if (reg == REG_SP || reg == REG_PC)
4103 {
4104 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4105 return;
4106 }
4107
4108 if (unwind.fp_reg != REG_SP)
4109 as_bad (_("unexpected .unwind_movsp directive"));
4110
4111 /* Generate opcode to restore the value. */
4112 op = 0x90 | reg;
4113 add_unwind_opcode (op, 1);
4114
4115 /* Record the information for later. */
4116 unwind.fp_reg = reg;
4117 unwind.fp_offset = unwind.frame_size - offset;
4118 unwind.sp_restored = 1;
4119 }
4120
4121 /* Parse an unwind_pad directive. */
4122
4123 static void
4124 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4125 {
4126 int offset;
4127
4128 if (!unwind.proc_start)
4129 as_bad (MISSING_FNSTART);
4130
4131 if (immediate_for_directive (&offset) == FAIL)
4132 return;
4133
4134 if (offset & 3)
4135 {
4136 as_bad (_("stack increment must be multiple of 4"));
4137 ignore_rest_of_line ();
4138 return;
4139 }
4140
4141 /* Don't generate any opcodes, just record the details for later. */
4142 unwind.frame_size += offset;
4143 unwind.pending_offset += offset;
4144
4145 demand_empty_rest_of_line ();
4146 }
4147
4148 /* Parse an unwind_setfp directive. */
4149
4150 static void
4151 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4152 {
4153 int sp_reg;
4154 int fp_reg;
4155 int offset;
4156
4157 if (!unwind.proc_start)
4158 as_bad (MISSING_FNSTART);
4159
4160 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4161 if (skip_past_comma (&input_line_pointer) == FAIL)
4162 sp_reg = FAIL;
4163 else
4164 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4165
4166 if (fp_reg == FAIL || sp_reg == FAIL)
4167 {
4168 as_bad (_("expected <reg>, <reg>"));
4169 ignore_rest_of_line ();
4170 return;
4171 }
4172
4173 /* Optional constant. */
4174 if (skip_past_comma (&input_line_pointer) != FAIL)
4175 {
4176 if (immediate_for_directive (&offset) == FAIL)
4177 return;
4178 }
4179 else
4180 offset = 0;
4181
4182 demand_empty_rest_of_line ();
4183
4184 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4185 {
4186 as_bad (_("register must be either sp or set by a previous"
4187 "unwind_movsp directive"));
4188 return;
4189 }
4190
4191 /* Don't generate any opcodes, just record the information for later. */
4192 unwind.fp_reg = fp_reg;
4193 unwind.fp_used = 1;
4194 if (sp_reg == REG_SP)
4195 unwind.fp_offset = unwind.frame_size - offset;
4196 else
4197 unwind.fp_offset -= offset;
4198 }
4199
4200 /* Parse an unwind_raw directive. */
4201
4202 static void
4203 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4204 {
4205 expressionS exp;
4206 /* This is an arbitrary limit. */
4207 unsigned char op[16];
4208 int count;
4209
4210 if (!unwind.proc_start)
4211 as_bad (MISSING_FNSTART);
4212
4213 expression (&exp);
4214 if (exp.X_op == O_constant
4215 && skip_past_comma (&input_line_pointer) != FAIL)
4216 {
4217 unwind.frame_size += exp.X_add_number;
4218 expression (&exp);
4219 }
4220 else
4221 exp.X_op = O_illegal;
4222
4223 if (exp.X_op != O_constant)
4224 {
4225 as_bad (_("expected <offset>, <opcode>"));
4226 ignore_rest_of_line ();
4227 return;
4228 }
4229
4230 count = 0;
4231
4232 /* Parse the opcode. */
4233 for (;;)
4234 {
4235 if (count >= 16)
4236 {
4237 as_bad (_("unwind opcode too long"));
4238 ignore_rest_of_line ();
4239 }
4240 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4241 {
4242 as_bad (_("invalid unwind opcode"));
4243 ignore_rest_of_line ();
4244 return;
4245 }
4246 op[count++] = exp.X_add_number;
4247
4248 /* Parse the next byte. */
4249 if (skip_past_comma (&input_line_pointer) == FAIL)
4250 break;
4251
4252 expression (&exp);
4253 }
4254
4255 /* Add the opcode bytes in reverse order. */
4256 while (count--)
4257 add_unwind_opcode (op[count], 1);
4258
4259 demand_empty_rest_of_line ();
4260 }
4261
4262
4263 /* Parse a .eabi_attribute directive. */
4264
4265 static void
4266 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4267 {
4268 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4269
4270 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4271 attributes_set_explicitly[tag] = 1;
4272 }
4273 #endif /* OBJ_ELF */
4274
4275 static void s_arm_arch (int);
4276 static void s_arm_object_arch (int);
4277 static void s_arm_cpu (int);
4278 static void s_arm_fpu (int);
4279 static void s_arm_arch_extension (int);
4280
4281 #ifdef TE_PE
4282
4283 static void
4284 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4285 {
4286 expressionS exp;
4287
4288 do
4289 {
4290 expression (&exp);
4291 if (exp.X_op == O_symbol)
4292 exp.X_op = O_secrel;
4293
4294 emit_expr (&exp, 4);
4295 }
4296 while (*input_line_pointer++ == ',');
4297
4298 input_line_pointer--;
4299 demand_empty_rest_of_line ();
4300 }
4301 #endif /* TE_PE */
4302
4303 /* This table describes all the machine specific pseudo-ops the assembler
4304 has to support. The fields are:
4305 pseudo-op name without dot
4306 function to call to execute this pseudo-op
4307 Integer arg to pass to the function. */
4308
4309 const pseudo_typeS md_pseudo_table[] =
4310 {
4311 /* Never called because '.req' does not start a line. */
4312 { "req", s_req, 0 },
4313 /* Following two are likewise never called. */
4314 { "dn", s_dn, 0 },
4315 { "qn", s_qn, 0 },
4316 { "unreq", s_unreq, 0 },
4317 { "bss", s_bss, 0 },
4318 { "align", s_align, 0 },
4319 { "arm", s_arm, 0 },
4320 { "thumb", s_thumb, 0 },
4321 { "code", s_code, 0 },
4322 { "force_thumb", s_force_thumb, 0 },
4323 { "thumb_func", s_thumb_func, 0 },
4324 { "thumb_set", s_thumb_set, 0 },
4325 { "even", s_even, 0 },
4326 { "ltorg", s_ltorg, 0 },
4327 { "pool", s_ltorg, 0 },
4328 { "syntax", s_syntax, 0 },
4329 { "cpu", s_arm_cpu, 0 },
4330 { "arch", s_arm_arch, 0 },
4331 { "object_arch", s_arm_object_arch, 0 },
4332 { "fpu", s_arm_fpu, 0 },
4333 { "arch_extension", s_arm_arch_extension, 0 },
4334 #ifdef OBJ_ELF
4335 { "word", s_arm_elf_cons, 4 },
4336 { "long", s_arm_elf_cons, 4 },
4337 { "inst.n", s_arm_elf_inst, 2 },
4338 { "inst.w", s_arm_elf_inst, 4 },
4339 { "inst", s_arm_elf_inst, 0 },
4340 { "rel31", s_arm_rel31, 0 },
4341 { "fnstart", s_arm_unwind_fnstart, 0 },
4342 { "fnend", s_arm_unwind_fnend, 0 },
4343 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4344 { "personality", s_arm_unwind_personality, 0 },
4345 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4346 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4347 { "save", s_arm_unwind_save, 0 },
4348 { "vsave", s_arm_unwind_save, 1 },
4349 { "movsp", s_arm_unwind_movsp, 0 },
4350 { "pad", s_arm_unwind_pad, 0 },
4351 { "setfp", s_arm_unwind_setfp, 0 },
4352 { "unwind_raw", s_arm_unwind_raw, 0 },
4353 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4354 #else
4355 { "word", cons, 4},
4356
4357 /* These are used for dwarf. */
4358 {"2byte", cons, 2},
4359 {"4byte", cons, 4},
4360 {"8byte", cons, 8},
4361 /* These are used for dwarf2. */
4362 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4363 { "loc", dwarf2_directive_loc, 0 },
4364 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4365 #endif
4366 { "extend", float_cons, 'x' },
4367 { "ldouble", float_cons, 'x' },
4368 { "packed", float_cons, 'p' },
4369 #ifdef TE_PE
4370 {"secrel32", pe_directive_secrel, 0},
4371 #endif
4372 { 0, 0, 0 }
4373 };
4374 \f
4375 /* Parser functions used exclusively in instruction operands. */
4376
4377 /* Generic immediate-value read function for use in insn parsing.
4378 STR points to the beginning of the immediate (the leading #);
4379 VAL receives the value; if the value is outside [MIN, MAX]
4380 issue an error. PREFIX_OPT is true if the immediate prefix is
4381 optional. */
4382
4383 static int
4384 parse_immediate (char **str, int *val, int min, int max,
4385 bfd_boolean prefix_opt)
4386 {
4387 expressionS exp;
4388 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4389 if (exp.X_op != O_constant)
4390 {
4391 inst.error = _("constant expression required");
4392 return FAIL;
4393 }
4394
4395 if (exp.X_add_number < min || exp.X_add_number > max)
4396 {
4397 inst.error = _("immediate value out of range");
4398 return FAIL;
4399 }
4400
4401 *val = exp.X_add_number;
4402 return SUCCESS;
4403 }
4404
4405 /* Less-generic immediate-value read function with the possibility of loading a
4406 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4407 instructions. Puts the result directly in inst.operands[i]. */
4408
4409 static int
4410 parse_big_immediate (char **str, int i)
4411 {
4412 expressionS exp;
4413 char *ptr = *str;
4414
4415 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4416
4417 if (exp.X_op == O_constant)
4418 {
4419 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4420 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4421 O_constant. We have to be careful not to break compilation for
4422 32-bit X_add_number, though. */
4423 if ((exp.X_add_number & ~0xffffffffl) != 0)
4424 {
4425 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4426 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4427 inst.operands[i].regisimm = 1;
4428 }
4429 }
4430 else if (exp.X_op == O_big
4431 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4432 {
4433 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4434
4435 /* Bignums have their least significant bits in
4436 generic_bignum[0]. Make sure we put 32 bits in imm and
4437 32 bits in reg, in a (hopefully) portable way. */
4438 gas_assert (parts != 0);
4439
4440 /* Make sure that the number is not too big.
4441 PR 11972: Bignums can now be sign-extended to the
4442 size of a .octa so check that the out of range bits
4443 are all zero or all one. */
4444 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4445 {
4446 LITTLENUM_TYPE m = -1;
4447
4448 if (generic_bignum[parts * 2] != 0
4449 && generic_bignum[parts * 2] != m)
4450 return FAIL;
4451
4452 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4453 if (generic_bignum[j] != generic_bignum[j-1])
4454 return FAIL;
4455 }
4456
4457 inst.operands[i].imm = 0;
4458 for (j = 0; j < parts; j++, idx++)
4459 inst.operands[i].imm |= generic_bignum[idx]
4460 << (LITTLENUM_NUMBER_OF_BITS * j);
4461 inst.operands[i].reg = 0;
4462 for (j = 0; j < parts; j++, idx++)
4463 inst.operands[i].reg |= generic_bignum[idx]
4464 << (LITTLENUM_NUMBER_OF_BITS * j);
4465 inst.operands[i].regisimm = 1;
4466 }
4467 else
4468 return FAIL;
4469
4470 *str = ptr;
4471
4472 return SUCCESS;
4473 }
4474
4475 /* Returns the pseudo-register number of an FPA immediate constant,
4476 or FAIL if there isn't a valid constant here. */
4477
4478 static int
4479 parse_fpa_immediate (char ** str)
4480 {
4481 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4482 char * save_in;
4483 expressionS exp;
4484 int i;
4485 int j;
4486
4487 /* First try and match exact strings, this is to guarantee
4488 that some formats will work even for cross assembly. */
4489
4490 for (i = 0; fp_const[i]; i++)
4491 {
4492 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4493 {
4494 char *start = *str;
4495
4496 *str += strlen (fp_const[i]);
4497 if (is_end_of_line[(unsigned char) **str])
4498 return i + 8;
4499 *str = start;
4500 }
4501 }
4502
4503 /* Just because we didn't get a match doesn't mean that the constant
4504 isn't valid, just that it is in a format that we don't
4505 automatically recognize. Try parsing it with the standard
4506 expression routines. */
4507
4508 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4509
4510 /* Look for a raw floating point number. */
4511 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4512 && is_end_of_line[(unsigned char) *save_in])
4513 {
4514 for (i = 0; i < NUM_FLOAT_VALS; i++)
4515 {
4516 for (j = 0; j < MAX_LITTLENUMS; j++)
4517 {
4518 if (words[j] != fp_values[i][j])
4519 break;
4520 }
4521
4522 if (j == MAX_LITTLENUMS)
4523 {
4524 *str = save_in;
4525 return i + 8;
4526 }
4527 }
4528 }
4529
4530 /* Try and parse a more complex expression, this will probably fail
4531 unless the code uses a floating point prefix (eg "0f"). */
4532 save_in = input_line_pointer;
4533 input_line_pointer = *str;
4534 if (expression (&exp) == absolute_section
4535 && exp.X_op == O_big
4536 && exp.X_add_number < 0)
4537 {
4538 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4539 Ditto for 15. */
4540 if (gen_to_words (words, 5, (long) 15) == 0)
4541 {
4542 for (i = 0; i < NUM_FLOAT_VALS; i++)
4543 {
4544 for (j = 0; j < MAX_LITTLENUMS; j++)
4545 {
4546 if (words[j] != fp_values[i][j])
4547 break;
4548 }
4549
4550 if (j == MAX_LITTLENUMS)
4551 {
4552 *str = input_line_pointer;
4553 input_line_pointer = save_in;
4554 return i + 8;
4555 }
4556 }
4557 }
4558 }
4559
4560 *str = input_line_pointer;
4561 input_line_pointer = save_in;
4562 inst.error = _("invalid FPA immediate expression");
4563 return FAIL;
4564 }
4565
4566 /* Returns 1 if a number has "quarter-precision" float format
4567 0baBbbbbbc defgh000 00000000 00000000. */
4568
4569 static int
4570 is_quarter_float (unsigned imm)
4571 {
4572 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4573 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4574 }
4575
4576 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4577 0baBbbbbbc defgh000 00000000 00000000.
4578 The zero and minus-zero cases need special handling, since they can't be
4579 encoded in the "quarter-precision" float format, but can nonetheless be
4580 loaded as integer constants. */
4581
4582 static unsigned
4583 parse_qfloat_immediate (char **ccp, int *immed)
4584 {
4585 char *str = *ccp;
4586 char *fpnum;
4587 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4588 int found_fpchar = 0;
4589
4590 skip_past_char (&str, '#');
4591
4592 /* We must not accidentally parse an integer as a floating-point number. Make
4593 sure that the value we parse is not an integer by checking for special
4594 characters '.' or 'e'.
4595 FIXME: This is a horrible hack, but doing better is tricky because type
4596 information isn't in a very usable state at parse time. */
4597 fpnum = str;
4598 skip_whitespace (fpnum);
4599
4600 if (strncmp (fpnum, "0x", 2) == 0)
4601 return FAIL;
4602 else
4603 {
4604 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4605 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4606 {
4607 found_fpchar = 1;
4608 break;
4609 }
4610
4611 if (!found_fpchar)
4612 return FAIL;
4613 }
4614
4615 if ((str = atof_ieee (str, 's', words)) != NULL)
4616 {
4617 unsigned fpword = 0;
4618 int i;
4619
4620 /* Our FP word must be 32 bits (single-precision FP). */
4621 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4622 {
4623 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4624 fpword |= words[i];
4625 }
4626
4627 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4628 *immed = fpword;
4629 else
4630 return FAIL;
4631
4632 *ccp = str;
4633
4634 return SUCCESS;
4635 }
4636
4637 return FAIL;
4638 }
4639
4640 /* Shift operands. */
4641 enum shift_kind
4642 {
4643 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4644 };
4645
4646 struct asm_shift_name
4647 {
4648 const char *name;
4649 enum shift_kind kind;
4650 };
4651
4652 /* Third argument to parse_shift. */
4653 enum parse_shift_mode
4654 {
4655 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4656 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4657 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4658 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4659 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4660 };
4661
4662 /* Parse a <shift> specifier on an ARM data processing instruction.
4663 This has three forms:
4664
4665 (LSL|LSR|ASL|ASR|ROR) Rs
4666 (LSL|LSR|ASL|ASR|ROR) #imm
4667 RRX
4668
4669 Note that ASL is assimilated to LSL in the instruction encoding, and
4670 RRX to ROR #0 (which cannot be written as such). */
4671
4672 static int
4673 parse_shift (char **str, int i, enum parse_shift_mode mode)
4674 {
4675 const struct asm_shift_name *shift_name;
4676 enum shift_kind shift;
4677 char *s = *str;
4678 char *p = s;
4679 int reg;
4680
4681 for (p = *str; ISALPHA (*p); p++)
4682 ;
4683
4684 if (p == *str)
4685 {
4686 inst.error = _("shift expression expected");
4687 return FAIL;
4688 }
4689
4690 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4691 p - *str);
4692
4693 if (shift_name == NULL)
4694 {
4695 inst.error = _("shift expression expected");
4696 return FAIL;
4697 }
4698
4699 shift = shift_name->kind;
4700
4701 switch (mode)
4702 {
4703 case NO_SHIFT_RESTRICT:
4704 case SHIFT_IMMEDIATE: break;
4705
4706 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4707 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4708 {
4709 inst.error = _("'LSL' or 'ASR' required");
4710 return FAIL;
4711 }
4712 break;
4713
4714 case SHIFT_LSL_IMMEDIATE:
4715 if (shift != SHIFT_LSL)
4716 {
4717 inst.error = _("'LSL' required");
4718 return FAIL;
4719 }
4720 break;
4721
4722 case SHIFT_ASR_IMMEDIATE:
4723 if (shift != SHIFT_ASR)
4724 {
4725 inst.error = _("'ASR' required");
4726 return FAIL;
4727 }
4728 break;
4729
4730 default: abort ();
4731 }
4732
4733 if (shift != SHIFT_RRX)
4734 {
4735 /* Whitespace can appear here if the next thing is a bare digit. */
4736 skip_whitespace (p);
4737
4738 if (mode == NO_SHIFT_RESTRICT
4739 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4740 {
4741 inst.operands[i].imm = reg;
4742 inst.operands[i].immisreg = 1;
4743 }
4744 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4745 return FAIL;
4746 }
4747 inst.operands[i].shift_kind = shift;
4748 inst.operands[i].shifted = 1;
4749 *str = p;
4750 return SUCCESS;
4751 }
4752
4753 /* Parse a <shifter_operand> for an ARM data processing instruction:
4754
4755 #<immediate>
4756 #<immediate>, <rotate>
4757 <Rm>
4758 <Rm>, <shift>
4759
4760 where <shift> is defined by parse_shift above, and <rotate> is a
4761 multiple of 2 between 0 and 30. Validation of immediate operands
4762 is deferred to md_apply_fix. */
4763
4764 static int
4765 parse_shifter_operand (char **str, int i)
4766 {
4767 int value;
4768 expressionS exp;
4769
4770 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4771 {
4772 inst.operands[i].reg = value;
4773 inst.operands[i].isreg = 1;
4774
4775 /* parse_shift will override this if appropriate */
4776 inst.reloc.exp.X_op = O_constant;
4777 inst.reloc.exp.X_add_number = 0;
4778
4779 if (skip_past_comma (str) == FAIL)
4780 return SUCCESS;
4781
4782 /* Shift operation on register. */
4783 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4784 }
4785
4786 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4787 return FAIL;
4788
4789 if (skip_past_comma (str) == SUCCESS)
4790 {
4791 /* #x, y -- ie explicit rotation by Y. */
4792 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4793 return FAIL;
4794
4795 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4796 {
4797 inst.error = _("constant expression expected");
4798 return FAIL;
4799 }
4800
4801 value = exp.X_add_number;
4802 if (value < 0 || value > 30 || value % 2 != 0)
4803 {
4804 inst.error = _("invalid rotation");
4805 return FAIL;
4806 }
4807 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4808 {
4809 inst.error = _("invalid constant");
4810 return FAIL;
4811 }
4812
4813 /* Convert to decoded value. md_apply_fix will put it back. */
4814 inst.reloc.exp.X_add_number
4815 = (((inst.reloc.exp.X_add_number << (32 - value))
4816 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4817 }
4818
4819 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4820 inst.reloc.pc_rel = 0;
4821 return SUCCESS;
4822 }
4823
4824 /* Group relocation information. Each entry in the table contains the
4825 textual name of the relocation as may appear in assembler source
4826 and must end with a colon.
4827 Along with this textual name are the relocation codes to be used if
4828 the corresponding instruction is an ALU instruction (ADD or SUB only),
4829 an LDR, an LDRS, or an LDC. */
4830
4831 struct group_reloc_table_entry
4832 {
4833 const char *name;
4834 int alu_code;
4835 int ldr_code;
4836 int ldrs_code;
4837 int ldc_code;
4838 };
4839
4840 typedef enum
4841 {
4842 /* Varieties of non-ALU group relocation. */
4843
4844 GROUP_LDR,
4845 GROUP_LDRS,
4846 GROUP_LDC
4847 } group_reloc_type;
4848
4849 static struct group_reloc_table_entry group_reloc_table[] =
4850 { /* Program counter relative: */
4851 { "pc_g0_nc",
4852 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4853 0, /* LDR */
4854 0, /* LDRS */
4855 0 }, /* LDC */
4856 { "pc_g0",
4857 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4858 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4859 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4860 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4861 { "pc_g1_nc",
4862 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4863 0, /* LDR */
4864 0, /* LDRS */
4865 0 }, /* LDC */
4866 { "pc_g1",
4867 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4868 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4869 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4870 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4871 { "pc_g2",
4872 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4873 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4874 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4875 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4876 /* Section base relative */
4877 { "sb_g0_nc",
4878 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4879 0, /* LDR */
4880 0, /* LDRS */
4881 0 }, /* LDC */
4882 { "sb_g0",
4883 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4884 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4885 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4886 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4887 { "sb_g1_nc",
4888 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4889 0, /* LDR */
4890 0, /* LDRS */
4891 0 }, /* LDC */
4892 { "sb_g1",
4893 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4894 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4895 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4896 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4897 { "sb_g2",
4898 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4899 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4900 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4901 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4902
4903 /* Given the address of a pointer pointing to the textual name of a group
4904 relocation as may appear in assembler source, attempt to find its details
4905 in group_reloc_table. The pointer will be updated to the character after
4906 the trailing colon. On failure, FAIL will be returned; SUCCESS
4907 otherwise. On success, *entry will be updated to point at the relevant
4908 group_reloc_table entry. */
4909
4910 static int
4911 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4912 {
4913 unsigned int i;
4914 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4915 {
4916 int length = strlen (group_reloc_table[i].name);
4917
4918 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4919 && (*str)[length] == ':')
4920 {
4921 *out = &group_reloc_table[i];
4922 *str += (length + 1);
4923 return SUCCESS;
4924 }
4925 }
4926
4927 return FAIL;
4928 }
4929
4930 /* Parse a <shifter_operand> for an ARM data processing instruction
4931 (as for parse_shifter_operand) where group relocations are allowed:
4932
4933 #<immediate>
4934 #<immediate>, <rotate>
4935 #:<group_reloc>:<expression>
4936 <Rm>
4937 <Rm>, <shift>
4938
4939 where <group_reloc> is one of the strings defined in group_reloc_table.
4940 The hashes are optional.
4941
4942 Everything else is as for parse_shifter_operand. */
4943
4944 static parse_operand_result
4945 parse_shifter_operand_group_reloc (char **str, int i)
4946 {
4947 /* Determine if we have the sequence of characters #: or just :
4948 coming next. If we do, then we check for a group relocation.
4949 If we don't, punt the whole lot to parse_shifter_operand. */
4950
4951 if (((*str)[0] == '#' && (*str)[1] == ':')
4952 || (*str)[0] == ':')
4953 {
4954 struct group_reloc_table_entry *entry;
4955
4956 if ((*str)[0] == '#')
4957 (*str) += 2;
4958 else
4959 (*str)++;
4960
4961 /* Try to parse a group relocation. Anything else is an error. */
4962 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4963 {
4964 inst.error = _("unknown group relocation");
4965 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4966 }
4967
4968 /* We now have the group relocation table entry corresponding to
4969 the name in the assembler source. Next, we parse the expression. */
4970 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4971 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4972
4973 /* Record the relocation type (always the ALU variant here). */
4974 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
4975 gas_assert (inst.reloc.type != 0);
4976
4977 return PARSE_OPERAND_SUCCESS;
4978 }
4979 else
4980 return parse_shifter_operand (str, i) == SUCCESS
4981 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4982
4983 /* Never reached. */
4984 }
4985
4986 /* Parse a Neon alignment expression. Information is written to
4987 inst.operands[i]. We assume the initial ':' has been skipped.
4988
4989 align .imm = align << 8, .immisalign=1, .preind=0 */
4990 static parse_operand_result
4991 parse_neon_alignment (char **str, int i)
4992 {
4993 char *p = *str;
4994 expressionS exp;
4995
4996 my_get_expression (&exp, &p, GE_NO_PREFIX);
4997
4998 if (exp.X_op != O_constant)
4999 {
5000 inst.error = _("alignment must be constant");
5001 return PARSE_OPERAND_FAIL;
5002 }
5003
5004 inst.operands[i].imm = exp.X_add_number << 8;
5005 inst.operands[i].immisalign = 1;
5006 /* Alignments are not pre-indexes. */
5007 inst.operands[i].preind = 0;
5008
5009 *str = p;
5010 return PARSE_OPERAND_SUCCESS;
5011 }
5012
5013 /* Parse all forms of an ARM address expression. Information is written
5014 to inst.operands[i] and/or inst.reloc.
5015
5016 Preindexed addressing (.preind=1):
5017
5018 [Rn, #offset] .reg=Rn .reloc.exp=offset
5019 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5020 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5021 .shift_kind=shift .reloc.exp=shift_imm
5022
5023 These three may have a trailing ! which causes .writeback to be set also.
5024
5025 Postindexed addressing (.postind=1, .writeback=1):
5026
5027 [Rn], #offset .reg=Rn .reloc.exp=offset
5028 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5029 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5030 .shift_kind=shift .reloc.exp=shift_imm
5031
5032 Unindexed addressing (.preind=0, .postind=0):
5033
5034 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5035
5036 Other:
5037
5038 [Rn]{!} shorthand for [Rn,#0]{!}
5039 =immediate .isreg=0 .reloc.exp=immediate
5040 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5041
5042 It is the caller's responsibility to check for addressing modes not
5043 supported by the instruction, and to set inst.reloc.type. */
5044
5045 static parse_operand_result
5046 parse_address_main (char **str, int i, int group_relocations,
5047 group_reloc_type group_type)
5048 {
5049 char *p = *str;
5050 int reg;
5051
5052 if (skip_past_char (&p, '[') == FAIL)
5053 {
5054 if (skip_past_char (&p, '=') == FAIL)
5055 {
5056 /* Bare address - translate to PC-relative offset. */
5057 inst.reloc.pc_rel = 1;
5058 inst.operands[i].reg = REG_PC;
5059 inst.operands[i].isreg = 1;
5060 inst.operands[i].preind = 1;
5061 }
5062 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5063
5064 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5065 return PARSE_OPERAND_FAIL;
5066
5067 *str = p;
5068 return PARSE_OPERAND_SUCCESS;
5069 }
5070
5071 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5072 {
5073 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5074 return PARSE_OPERAND_FAIL;
5075 }
5076 inst.operands[i].reg = reg;
5077 inst.operands[i].isreg = 1;
5078
5079 if (skip_past_comma (&p) == SUCCESS)
5080 {
5081 inst.operands[i].preind = 1;
5082
5083 if (*p == '+') p++;
5084 else if (*p == '-') p++, inst.operands[i].negative = 1;
5085
5086 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5087 {
5088 inst.operands[i].imm = reg;
5089 inst.operands[i].immisreg = 1;
5090
5091 if (skip_past_comma (&p) == SUCCESS)
5092 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5093 return PARSE_OPERAND_FAIL;
5094 }
5095 else if (skip_past_char (&p, ':') == SUCCESS)
5096 {
5097 /* FIXME: '@' should be used here, but it's filtered out by generic
5098 code before we get to see it here. This may be subject to
5099 change. */
5100 parse_operand_result result = parse_neon_alignment (&p, i);
5101
5102 if (result != PARSE_OPERAND_SUCCESS)
5103 return result;
5104 }
5105 else
5106 {
5107 if (inst.operands[i].negative)
5108 {
5109 inst.operands[i].negative = 0;
5110 p--;
5111 }
5112
5113 if (group_relocations
5114 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5115 {
5116 struct group_reloc_table_entry *entry;
5117
5118 /* Skip over the #: or : sequence. */
5119 if (*p == '#')
5120 p += 2;
5121 else
5122 p++;
5123
5124 /* Try to parse a group relocation. Anything else is an
5125 error. */
5126 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5127 {
5128 inst.error = _("unknown group relocation");
5129 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5130 }
5131
5132 /* We now have the group relocation table entry corresponding to
5133 the name in the assembler source. Next, we parse the
5134 expression. */
5135 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5136 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5137
5138 /* Record the relocation type. */
5139 switch (group_type)
5140 {
5141 case GROUP_LDR:
5142 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5143 break;
5144
5145 case GROUP_LDRS:
5146 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5147 break;
5148
5149 case GROUP_LDC:
5150 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5151 break;
5152
5153 default:
5154 gas_assert (0);
5155 }
5156
5157 if (inst.reloc.type == 0)
5158 {
5159 inst.error = _("this group relocation is not allowed on this instruction");
5160 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5161 }
5162 }
5163 else
5164 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5165 return PARSE_OPERAND_FAIL;
5166 }
5167 }
5168 else if (skip_past_char (&p, ':') == SUCCESS)
5169 {
5170 /* FIXME: '@' should be used here, but it's filtered out by generic code
5171 before we get to see it here. This may be subject to change. */
5172 parse_operand_result result = parse_neon_alignment (&p, i);
5173
5174 if (result != PARSE_OPERAND_SUCCESS)
5175 return result;
5176 }
5177
5178 if (skip_past_char (&p, ']') == FAIL)
5179 {
5180 inst.error = _("']' expected");
5181 return PARSE_OPERAND_FAIL;
5182 }
5183
5184 if (skip_past_char (&p, '!') == SUCCESS)
5185 inst.operands[i].writeback = 1;
5186
5187 else if (skip_past_comma (&p) == SUCCESS)
5188 {
5189 if (skip_past_char (&p, '{') == SUCCESS)
5190 {
5191 /* [Rn], {expr} - unindexed, with option */
5192 if (parse_immediate (&p, &inst.operands[i].imm,
5193 0, 255, TRUE) == FAIL)
5194 return PARSE_OPERAND_FAIL;
5195
5196 if (skip_past_char (&p, '}') == FAIL)
5197 {
5198 inst.error = _("'}' expected at end of 'option' field");
5199 return PARSE_OPERAND_FAIL;
5200 }
5201 if (inst.operands[i].preind)
5202 {
5203 inst.error = _("cannot combine index with option");
5204 return PARSE_OPERAND_FAIL;
5205 }
5206 *str = p;
5207 return PARSE_OPERAND_SUCCESS;
5208 }
5209 else
5210 {
5211 inst.operands[i].postind = 1;
5212 inst.operands[i].writeback = 1;
5213
5214 if (inst.operands[i].preind)
5215 {
5216 inst.error = _("cannot combine pre- and post-indexing");
5217 return PARSE_OPERAND_FAIL;
5218 }
5219
5220 if (*p == '+') p++;
5221 else if (*p == '-') p++, inst.operands[i].negative = 1;
5222
5223 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5224 {
5225 /* We might be using the immediate for alignment already. If we
5226 are, OR the register number into the low-order bits. */
5227 if (inst.operands[i].immisalign)
5228 inst.operands[i].imm |= reg;
5229 else
5230 inst.operands[i].imm = reg;
5231 inst.operands[i].immisreg = 1;
5232
5233 if (skip_past_comma (&p) == SUCCESS)
5234 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5235 return PARSE_OPERAND_FAIL;
5236 }
5237 else
5238 {
5239 if (inst.operands[i].negative)
5240 {
5241 inst.operands[i].negative = 0;
5242 p--;
5243 }
5244 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5245 return PARSE_OPERAND_FAIL;
5246 }
5247 }
5248 }
5249
5250 /* If at this point neither .preind nor .postind is set, we have a
5251 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5252 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5253 {
5254 inst.operands[i].preind = 1;
5255 inst.reloc.exp.X_op = O_constant;
5256 inst.reloc.exp.X_add_number = 0;
5257 }
5258 *str = p;
5259 return PARSE_OPERAND_SUCCESS;
5260 }
5261
5262 static int
5263 parse_address (char **str, int i)
5264 {
5265 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5266 ? SUCCESS : FAIL;
5267 }
5268
5269 static parse_operand_result
5270 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5271 {
5272 return parse_address_main (str, i, 1, type);
5273 }
5274
5275 /* Parse an operand for a MOVW or MOVT instruction. */
5276 static int
5277 parse_half (char **str)
5278 {
5279 char * p;
5280
5281 p = *str;
5282 skip_past_char (&p, '#');
5283 if (strncasecmp (p, ":lower16:", 9) == 0)
5284 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5285 else if (strncasecmp (p, ":upper16:", 9) == 0)
5286 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5287
5288 if (inst.reloc.type != BFD_RELOC_UNUSED)
5289 {
5290 p += 9;
5291 skip_whitespace (p);
5292 }
5293
5294 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5295 return FAIL;
5296
5297 if (inst.reloc.type == BFD_RELOC_UNUSED)
5298 {
5299 if (inst.reloc.exp.X_op != O_constant)
5300 {
5301 inst.error = _("constant expression expected");
5302 return FAIL;
5303 }
5304 if (inst.reloc.exp.X_add_number < 0
5305 || inst.reloc.exp.X_add_number > 0xffff)
5306 {
5307 inst.error = _("immediate value out of range");
5308 return FAIL;
5309 }
5310 }
5311 *str = p;
5312 return SUCCESS;
5313 }
5314
5315 /* Miscellaneous. */
5316
5317 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5318 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5319 static int
5320 parse_psr (char **str)
5321 {
5322 char *p;
5323 unsigned long psr_field;
5324 const struct asm_psr *psr;
5325 char *start;
5326
5327 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5328 feature for ease of use and backwards compatibility. */
5329 p = *str;
5330 if (strncasecmp (p, "SPSR", 4) == 0)
5331 psr_field = SPSR_BIT;
5332 else if (strncasecmp (p, "CPSR", 4) == 0
5333 || (strncasecmp (p, "APSR", 4) == 0
5334 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m)))
5335 psr_field = 0;
5336 else
5337 {
5338 start = p;
5339 do
5340 p++;
5341 while (ISALNUM (*p) || *p == '_');
5342
5343 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5344 p - start);
5345 if (!psr)
5346 return FAIL;
5347
5348 *str = p;
5349 return psr->field;
5350 }
5351
5352 p += 4;
5353 if (*p == '_')
5354 {
5355 /* A suffix follows. */
5356 p++;
5357 start = p;
5358
5359 do
5360 p++;
5361 while (ISALNUM (*p) || *p == '_');
5362
5363 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5364 p - start);
5365 if (!psr)
5366 goto error;
5367
5368 psr_field |= psr->field;
5369 }
5370 else
5371 {
5372 if (ISALNUM (*p))
5373 goto error; /* Garbage after "[CS]PSR". */
5374
5375 psr_field |= (PSR_c | PSR_f);
5376 }
5377 *str = p;
5378 return psr_field;
5379
5380 error:
5381 inst.error = _("flag for {c}psr instruction expected");
5382 return FAIL;
5383 }
5384
5385 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5386 value suitable for splatting into the AIF field of the instruction. */
5387
5388 static int
5389 parse_cps_flags (char **str)
5390 {
5391 int val = 0;
5392 int saw_a_flag = 0;
5393 char *s = *str;
5394
5395 for (;;)
5396 switch (*s++)
5397 {
5398 case '\0': case ',':
5399 goto done;
5400
5401 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5402 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5403 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5404
5405 default:
5406 inst.error = _("unrecognized CPS flag");
5407 return FAIL;
5408 }
5409
5410 done:
5411 if (saw_a_flag == 0)
5412 {
5413 inst.error = _("missing CPS flags");
5414 return FAIL;
5415 }
5416
5417 *str = s - 1;
5418 return val;
5419 }
5420
5421 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5422 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5423
5424 static int
5425 parse_endian_specifier (char **str)
5426 {
5427 int little_endian;
5428 char *s = *str;
5429
5430 if (strncasecmp (s, "BE", 2))
5431 little_endian = 0;
5432 else if (strncasecmp (s, "LE", 2))
5433 little_endian = 1;
5434 else
5435 {
5436 inst.error = _("valid endian specifiers are be or le");
5437 return FAIL;
5438 }
5439
5440 if (ISALNUM (s[2]) || s[2] == '_')
5441 {
5442 inst.error = _("valid endian specifiers are be or le");
5443 return FAIL;
5444 }
5445
5446 *str = s + 2;
5447 return little_endian;
5448 }
5449
5450 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5451 value suitable for poking into the rotate field of an sxt or sxta
5452 instruction, or FAIL on error. */
5453
5454 static int
5455 parse_ror (char **str)
5456 {
5457 int rot;
5458 char *s = *str;
5459
5460 if (strncasecmp (s, "ROR", 3) == 0)
5461 s += 3;
5462 else
5463 {
5464 inst.error = _("missing rotation field after comma");
5465 return FAIL;
5466 }
5467
5468 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5469 return FAIL;
5470
5471 switch (rot)
5472 {
5473 case 0: *str = s; return 0x0;
5474 case 8: *str = s; return 0x1;
5475 case 16: *str = s; return 0x2;
5476 case 24: *str = s; return 0x3;
5477
5478 default:
5479 inst.error = _("rotation can only be 0, 8, 16, or 24");
5480 return FAIL;
5481 }
5482 }
5483
5484 /* Parse a conditional code (from conds[] below). The value returned is in the
5485 range 0 .. 14, or FAIL. */
5486 static int
5487 parse_cond (char **str)
5488 {
5489 char *q;
5490 const struct asm_cond *c;
5491 int n;
5492 /* Condition codes are always 2 characters, so matching up to
5493 3 characters is sufficient. */
5494 char cond[3];
5495
5496 q = *str;
5497 n = 0;
5498 while (ISALPHA (*q) && n < 3)
5499 {
5500 cond[n] = TOLOWER (*q);
5501 q++;
5502 n++;
5503 }
5504
5505 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5506 if (!c)
5507 {
5508 inst.error = _("condition required");
5509 return FAIL;
5510 }
5511
5512 *str = q;
5513 return c->value;
5514 }
5515
5516 /* Parse an option for a barrier instruction. Returns the encoding for the
5517 option, or FAIL. */
5518 static int
5519 parse_barrier (char **str)
5520 {
5521 char *p, *q;
5522 const struct asm_barrier_opt *o;
5523
5524 p = q = *str;
5525 while (ISALPHA (*q))
5526 q++;
5527
5528 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5529 q - p);
5530 if (!o)
5531 return FAIL;
5532
5533 *str = q;
5534 return o->value;
5535 }
5536
5537 /* Parse the operands of a table branch instruction. Similar to a memory
5538 operand. */
5539 static int
5540 parse_tb (char **str)
5541 {
5542 char * p = *str;
5543 int reg;
5544
5545 if (skip_past_char (&p, '[') == FAIL)
5546 {
5547 inst.error = _("'[' expected");
5548 return FAIL;
5549 }
5550
5551 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5552 {
5553 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5554 return FAIL;
5555 }
5556 inst.operands[0].reg = reg;
5557
5558 if (skip_past_comma (&p) == FAIL)
5559 {
5560 inst.error = _("',' expected");
5561 return FAIL;
5562 }
5563
5564 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5565 {
5566 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5567 return FAIL;
5568 }
5569 inst.operands[0].imm = reg;
5570
5571 if (skip_past_comma (&p) == SUCCESS)
5572 {
5573 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5574 return FAIL;
5575 if (inst.reloc.exp.X_add_number != 1)
5576 {
5577 inst.error = _("invalid shift");
5578 return FAIL;
5579 }
5580 inst.operands[0].shifted = 1;
5581 }
5582
5583 if (skip_past_char (&p, ']') == FAIL)
5584 {
5585 inst.error = _("']' expected");
5586 return FAIL;
5587 }
5588 *str = p;
5589 return SUCCESS;
5590 }
5591
5592 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5593 information on the types the operands can take and how they are encoded.
5594 Up to four operands may be read; this function handles setting the
5595 ".present" field for each read operand itself.
5596 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5597 else returns FAIL. */
5598
5599 static int
5600 parse_neon_mov (char **str, int *which_operand)
5601 {
5602 int i = *which_operand, val;
5603 enum arm_reg_type rtype;
5604 char *ptr = *str;
5605 struct neon_type_el optype;
5606
5607 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5608 {
5609 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5610 inst.operands[i].reg = val;
5611 inst.operands[i].isscalar = 1;
5612 inst.operands[i].vectype = optype;
5613 inst.operands[i++].present = 1;
5614
5615 if (skip_past_comma (&ptr) == FAIL)
5616 goto wanted_comma;
5617
5618 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5619 goto wanted_arm;
5620
5621 inst.operands[i].reg = val;
5622 inst.operands[i].isreg = 1;
5623 inst.operands[i].present = 1;
5624 }
5625 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5626 != FAIL)
5627 {
5628 /* Cases 0, 1, 2, 3, 5 (D only). */
5629 if (skip_past_comma (&ptr) == FAIL)
5630 goto wanted_comma;
5631
5632 inst.operands[i].reg = val;
5633 inst.operands[i].isreg = 1;
5634 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5635 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5636 inst.operands[i].isvec = 1;
5637 inst.operands[i].vectype = optype;
5638 inst.operands[i++].present = 1;
5639
5640 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5641 {
5642 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5643 Case 13: VMOV <Sd>, <Rm> */
5644 inst.operands[i].reg = val;
5645 inst.operands[i].isreg = 1;
5646 inst.operands[i].present = 1;
5647
5648 if (rtype == REG_TYPE_NQ)
5649 {
5650 first_error (_("can't use Neon quad register here"));
5651 return FAIL;
5652 }
5653 else if (rtype != REG_TYPE_VFS)
5654 {
5655 i++;
5656 if (skip_past_comma (&ptr) == FAIL)
5657 goto wanted_comma;
5658 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5659 goto wanted_arm;
5660 inst.operands[i].reg = val;
5661 inst.operands[i].isreg = 1;
5662 inst.operands[i].present = 1;
5663 }
5664 }
5665 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5666 &optype)) != FAIL)
5667 {
5668 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5669 Case 1: VMOV<c><q> <Dd>, <Dm>
5670 Case 8: VMOV.F32 <Sd>, <Sm>
5671 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5672
5673 inst.operands[i].reg = val;
5674 inst.operands[i].isreg = 1;
5675 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5676 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5677 inst.operands[i].isvec = 1;
5678 inst.operands[i].vectype = optype;
5679 inst.operands[i].present = 1;
5680
5681 if (skip_past_comma (&ptr) == SUCCESS)
5682 {
5683 /* Case 15. */
5684 i++;
5685
5686 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5687 goto wanted_arm;
5688
5689 inst.operands[i].reg = val;
5690 inst.operands[i].isreg = 1;
5691 inst.operands[i++].present = 1;
5692
5693 if (skip_past_comma (&ptr) == FAIL)
5694 goto wanted_comma;
5695
5696 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5697 goto wanted_arm;
5698
5699 inst.operands[i].reg = val;
5700 inst.operands[i].isreg = 1;
5701 inst.operands[i++].present = 1;
5702 }
5703 }
5704 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5705 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5706 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5707 Case 10: VMOV.F32 <Sd>, #<imm>
5708 Case 11: VMOV.F64 <Dd>, #<imm> */
5709 inst.operands[i].immisfloat = 1;
5710 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5711 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5712 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5713 ;
5714 else
5715 {
5716 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5717 return FAIL;
5718 }
5719 }
5720 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5721 {
5722 /* Cases 6, 7. */
5723 inst.operands[i].reg = val;
5724 inst.operands[i].isreg = 1;
5725 inst.operands[i++].present = 1;
5726
5727 if (skip_past_comma (&ptr) == FAIL)
5728 goto wanted_comma;
5729
5730 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5731 {
5732 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5733 inst.operands[i].reg = val;
5734 inst.operands[i].isscalar = 1;
5735 inst.operands[i].present = 1;
5736 inst.operands[i].vectype = optype;
5737 }
5738 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5739 {
5740 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5741 inst.operands[i].reg = val;
5742 inst.operands[i].isreg = 1;
5743 inst.operands[i++].present = 1;
5744
5745 if (skip_past_comma (&ptr) == FAIL)
5746 goto wanted_comma;
5747
5748 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5749 == FAIL)
5750 {
5751 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5752 return FAIL;
5753 }
5754
5755 inst.operands[i].reg = val;
5756 inst.operands[i].isreg = 1;
5757 inst.operands[i].isvec = 1;
5758 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5759 inst.operands[i].vectype = optype;
5760 inst.operands[i].present = 1;
5761
5762 if (rtype == REG_TYPE_VFS)
5763 {
5764 /* Case 14. */
5765 i++;
5766 if (skip_past_comma (&ptr) == FAIL)
5767 goto wanted_comma;
5768 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5769 &optype)) == FAIL)
5770 {
5771 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5772 return FAIL;
5773 }
5774 inst.operands[i].reg = val;
5775 inst.operands[i].isreg = 1;
5776 inst.operands[i].isvec = 1;
5777 inst.operands[i].issingle = 1;
5778 inst.operands[i].vectype = optype;
5779 inst.operands[i].present = 1;
5780 }
5781 }
5782 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5783 != FAIL)
5784 {
5785 /* Case 13. */
5786 inst.operands[i].reg = val;
5787 inst.operands[i].isreg = 1;
5788 inst.operands[i].isvec = 1;
5789 inst.operands[i].issingle = 1;
5790 inst.operands[i].vectype = optype;
5791 inst.operands[i++].present = 1;
5792 }
5793 }
5794 else
5795 {
5796 first_error (_("parse error"));
5797 return FAIL;
5798 }
5799
5800 /* Successfully parsed the operands. Update args. */
5801 *which_operand = i;
5802 *str = ptr;
5803 return SUCCESS;
5804
5805 wanted_comma:
5806 first_error (_("expected comma"));
5807 return FAIL;
5808
5809 wanted_arm:
5810 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5811 return FAIL;
5812 }
5813
5814 /* Use this macro when the operand constraints are different
5815 for ARM and THUMB (e.g. ldrd). */
5816 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5817 ((arm_operand) | ((thumb_operand) << 16))
5818
5819 /* Matcher codes for parse_operands. */
5820 enum operand_parse_code
5821 {
5822 OP_stop, /* end of line */
5823
5824 OP_RR, /* ARM register */
5825 OP_RRnpc, /* ARM register, not r15 */
5826 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
5827 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5828 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5829 optional trailing ! */
5830 OP_RRw, /* ARM register, not r15, optional trailing ! */
5831 OP_RCP, /* Coprocessor number */
5832 OP_RCN, /* Coprocessor register */
5833 OP_RF, /* FPA register */
5834 OP_RVS, /* VFP single precision register */
5835 OP_RVD, /* VFP double precision register (0..15) */
5836 OP_RND, /* Neon double precision register (0..31) */
5837 OP_RNQ, /* Neon quad precision register */
5838 OP_RVSD, /* VFP single or double precision register */
5839 OP_RNDQ, /* Neon double or quad precision register */
5840 OP_RNSDQ, /* Neon single, double or quad precision register */
5841 OP_RNSC, /* Neon scalar D[X] */
5842 OP_RVC, /* VFP control register */
5843 OP_RMF, /* Maverick F register */
5844 OP_RMD, /* Maverick D register */
5845 OP_RMFX, /* Maverick FX register */
5846 OP_RMDX, /* Maverick DX register */
5847 OP_RMAX, /* Maverick AX register */
5848 OP_RMDS, /* Maverick DSPSC register */
5849 OP_RIWR, /* iWMMXt wR register */
5850 OP_RIWC, /* iWMMXt wC register */
5851 OP_RIWG, /* iWMMXt wCG register */
5852 OP_RXA, /* XScale accumulator register */
5853
5854 OP_REGLST, /* ARM register list */
5855 OP_VRSLST, /* VFP single-precision register list */
5856 OP_VRDLST, /* VFP double-precision register list */
5857 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5858 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5859 OP_NSTRLST, /* Neon element/structure list */
5860
5861 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5862 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5863 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5864 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5865 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5866 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5867 OP_VMOV, /* Neon VMOV operands. */
5868 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5869 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5870 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5871
5872 OP_I0, /* immediate zero */
5873 OP_I7, /* immediate value 0 .. 7 */
5874 OP_I15, /* 0 .. 15 */
5875 OP_I16, /* 1 .. 16 */
5876 OP_I16z, /* 0 .. 16 */
5877 OP_I31, /* 0 .. 31 */
5878 OP_I31w, /* 0 .. 31, optional trailing ! */
5879 OP_I32, /* 1 .. 32 */
5880 OP_I32z, /* 0 .. 32 */
5881 OP_I63, /* 0 .. 63 */
5882 OP_I63s, /* -64 .. 63 */
5883 OP_I64, /* 1 .. 64 */
5884 OP_I64z, /* 0 .. 64 */
5885 OP_I255, /* 0 .. 255 */
5886
5887 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5888 OP_I7b, /* 0 .. 7 */
5889 OP_I15b, /* 0 .. 15 */
5890 OP_I31b, /* 0 .. 31 */
5891
5892 OP_SH, /* shifter operand */
5893 OP_SHG, /* shifter operand with possible group relocation */
5894 OP_ADDR, /* Memory address expression (any mode) */
5895 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5896 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5897 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5898 OP_EXP, /* arbitrary expression */
5899 OP_EXPi, /* same, with optional immediate prefix */
5900 OP_EXPr, /* same, with optional relocation suffix */
5901 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5902
5903 OP_CPSF, /* CPS flags */
5904 OP_ENDI, /* Endianness specifier */
5905 OP_PSR, /* CPSR/SPSR mask for msr */
5906 OP_COND, /* conditional code */
5907 OP_TB, /* Table branch. */
5908
5909 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5910 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5911
5912 OP_RRnpc_I0, /* ARM register or literal 0 */
5913 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5914 OP_RR_EXi, /* ARM register or expression with imm prefix */
5915 OP_RF_IF, /* FPA register or immediate */
5916 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5917 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5918
5919 /* Optional operands. */
5920 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5921 OP_oI31b, /* 0 .. 31 */
5922 OP_oI32b, /* 1 .. 32 */
5923 OP_oIffffb, /* 0 .. 65535 */
5924 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5925
5926 OP_oRR, /* ARM register */
5927 OP_oRRnpc, /* ARM register, not the PC */
5928 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
5929 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5930 OP_oRND, /* Optional Neon double precision register */
5931 OP_oRNQ, /* Optional Neon quad precision register */
5932 OP_oRNDQ, /* Optional Neon double or quad precision register */
5933 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5934 OP_oSHll, /* LSL immediate */
5935 OP_oSHar, /* ASR immediate */
5936 OP_oSHllar, /* LSL or ASR immediate */
5937 OP_oROR, /* ROR 0/8/16/24 */
5938 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
5939
5940 /* Some pre-defined mixed (ARM/THUMB) operands. */
5941 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5942 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5943 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5944
5945 OP_FIRST_OPTIONAL = OP_oI7b
5946 };
5947
5948 /* Generic instruction operand parser. This does no encoding and no
5949 semantic validation; it merely squirrels values away in the inst
5950 structure. Returns SUCCESS or FAIL depending on whether the
5951 specified grammar matched. */
5952 static int
5953 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
5954 {
5955 unsigned const int *upat = pattern;
5956 char *backtrack_pos = 0;
5957 const char *backtrack_error = 0;
5958 int i, val, backtrack_index = 0;
5959 enum arm_reg_type rtype;
5960 parse_operand_result result;
5961 unsigned int op_parse_code;
5962
5963 #define po_char_or_fail(chr) \
5964 do \
5965 { \
5966 if (skip_past_char (&str, chr) == FAIL) \
5967 goto bad_args; \
5968 } \
5969 while (0)
5970
5971 #define po_reg_or_fail(regtype) \
5972 do \
5973 { \
5974 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5975 & inst.operands[i].vectype); \
5976 if (val == FAIL) \
5977 { \
5978 first_error (_(reg_expected_msgs[regtype])); \
5979 goto failure; \
5980 } \
5981 inst.operands[i].reg = val; \
5982 inst.operands[i].isreg = 1; \
5983 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5984 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5985 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5986 || rtype == REG_TYPE_VFD \
5987 || rtype == REG_TYPE_NQ); \
5988 } \
5989 while (0)
5990
5991 #define po_reg_or_goto(regtype, label) \
5992 do \
5993 { \
5994 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5995 & inst.operands[i].vectype); \
5996 if (val == FAIL) \
5997 goto label; \
5998 \
5999 inst.operands[i].reg = val; \
6000 inst.operands[i].isreg = 1; \
6001 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6002 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6003 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6004 || rtype == REG_TYPE_VFD \
6005 || rtype == REG_TYPE_NQ); \
6006 } \
6007 while (0)
6008
6009 #define po_imm_or_fail(min, max, popt) \
6010 do \
6011 { \
6012 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6013 goto failure; \
6014 inst.operands[i].imm = val; \
6015 } \
6016 while (0)
6017
6018 #define po_scalar_or_goto(elsz, label) \
6019 do \
6020 { \
6021 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6022 if (val == FAIL) \
6023 goto label; \
6024 inst.operands[i].reg = val; \
6025 inst.operands[i].isscalar = 1; \
6026 } \
6027 while (0)
6028
6029 #define po_misc_or_fail(expr) \
6030 do \
6031 { \
6032 if (expr) \
6033 goto failure; \
6034 } \
6035 while (0)
6036
6037 #define po_misc_or_fail_no_backtrack(expr) \
6038 do \
6039 { \
6040 result = expr; \
6041 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6042 backtrack_pos = 0; \
6043 if (result != PARSE_OPERAND_SUCCESS) \
6044 goto failure; \
6045 } \
6046 while (0)
6047
6048 #define po_barrier_or_imm(str) \
6049 do \
6050 { \
6051 val = parse_barrier (&str); \
6052 if (val == FAIL) \
6053 { \
6054 if (ISALPHA (*str)) \
6055 goto failure; \
6056 else \
6057 goto immediate; \
6058 } \
6059 else \
6060 { \
6061 if ((inst.instruction & 0xf0) == 0x60 \
6062 && val != 0xf) \
6063 { \
6064 /* ISB can only take SY as an option. */ \
6065 inst.error = _("invalid barrier type"); \
6066 goto failure; \
6067 } \
6068 } \
6069 } \
6070 while (0)
6071
6072 skip_whitespace (str);
6073
6074 for (i = 0; upat[i] != OP_stop; i++)
6075 {
6076 op_parse_code = upat[i];
6077 if (op_parse_code >= 1<<16)
6078 op_parse_code = thumb ? (op_parse_code >> 16)
6079 : (op_parse_code & ((1<<16)-1));
6080
6081 if (op_parse_code >= OP_FIRST_OPTIONAL)
6082 {
6083 /* Remember where we are in case we need to backtrack. */
6084 gas_assert (!backtrack_pos);
6085 backtrack_pos = str;
6086 backtrack_error = inst.error;
6087 backtrack_index = i;
6088 }
6089
6090 if (i > 0 && (i > 1 || inst.operands[0].present))
6091 po_char_or_fail (',');
6092
6093 switch (op_parse_code)
6094 {
6095 /* Registers */
6096 case OP_oRRnpc:
6097 case OP_oRRnpcsp:
6098 case OP_RRnpc:
6099 case OP_RRnpcsp:
6100 case OP_oRR:
6101 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6102 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6103 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6104 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6105 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6106 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6107 case OP_oRND:
6108 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6109 case OP_RVC:
6110 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6111 break;
6112 /* Also accept generic coprocessor regs for unknown registers. */
6113 coproc_reg:
6114 po_reg_or_fail (REG_TYPE_CN);
6115 break;
6116 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6117 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6118 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6119 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6120 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6121 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6122 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6123 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6124 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6125 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6126 case OP_oRNQ:
6127 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6128 case OP_oRNDQ:
6129 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6130 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6131 case OP_oRNSDQ:
6132 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6133
6134 /* Neon scalar. Using an element size of 8 means that some invalid
6135 scalars are accepted here, so deal with those in later code. */
6136 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6137
6138 case OP_RNDQ_I0:
6139 {
6140 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6141 break;
6142 try_imm0:
6143 po_imm_or_fail (0, 0, TRUE);
6144 }
6145 break;
6146
6147 case OP_RVSD_I0:
6148 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6149 break;
6150
6151 case OP_RR_RNSC:
6152 {
6153 po_scalar_or_goto (8, try_rr);
6154 break;
6155 try_rr:
6156 po_reg_or_fail (REG_TYPE_RN);
6157 }
6158 break;
6159
6160 case OP_RNSDQ_RNSC:
6161 {
6162 po_scalar_or_goto (8, try_nsdq);
6163 break;
6164 try_nsdq:
6165 po_reg_or_fail (REG_TYPE_NSDQ);
6166 }
6167 break;
6168
6169 case OP_RNDQ_RNSC:
6170 {
6171 po_scalar_or_goto (8, try_ndq);
6172 break;
6173 try_ndq:
6174 po_reg_or_fail (REG_TYPE_NDQ);
6175 }
6176 break;
6177
6178 case OP_RND_RNSC:
6179 {
6180 po_scalar_or_goto (8, try_vfd);
6181 break;
6182 try_vfd:
6183 po_reg_or_fail (REG_TYPE_VFD);
6184 }
6185 break;
6186
6187 case OP_VMOV:
6188 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6189 not careful then bad things might happen. */
6190 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6191 break;
6192
6193 case OP_RNDQ_Ibig:
6194 {
6195 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6196 break;
6197 try_immbig:
6198 /* There's a possibility of getting a 64-bit immediate here, so
6199 we need special handling. */
6200 if (parse_big_immediate (&str, i) == FAIL)
6201 {
6202 inst.error = _("immediate value is out of range");
6203 goto failure;
6204 }
6205 }
6206 break;
6207
6208 case OP_RNDQ_I63b:
6209 {
6210 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6211 break;
6212 try_shimm:
6213 po_imm_or_fail (0, 63, TRUE);
6214 }
6215 break;
6216
6217 case OP_RRnpcb:
6218 po_char_or_fail ('[');
6219 po_reg_or_fail (REG_TYPE_RN);
6220 po_char_or_fail (']');
6221 break;
6222
6223 case OP_RRnpctw:
6224 case OP_RRw:
6225 case OP_oRRw:
6226 po_reg_or_fail (REG_TYPE_RN);
6227 if (skip_past_char (&str, '!') == SUCCESS)
6228 inst.operands[i].writeback = 1;
6229 break;
6230
6231 /* Immediates */
6232 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6233 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6234 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6235 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6236 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6237 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6238 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6239 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6240 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6241 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6242 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6243 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6244
6245 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6246 case OP_oI7b:
6247 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6248 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6249 case OP_oI31b:
6250 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6251 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6252 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6253
6254 /* Immediate variants */
6255 case OP_oI255c:
6256 po_char_or_fail ('{');
6257 po_imm_or_fail (0, 255, TRUE);
6258 po_char_or_fail ('}');
6259 break;
6260
6261 case OP_I31w:
6262 /* The expression parser chokes on a trailing !, so we have
6263 to find it first and zap it. */
6264 {
6265 char *s = str;
6266 while (*s && *s != ',')
6267 s++;
6268 if (s[-1] == '!')
6269 {
6270 s[-1] = '\0';
6271 inst.operands[i].writeback = 1;
6272 }
6273 po_imm_or_fail (0, 31, TRUE);
6274 if (str == s - 1)
6275 str = s;
6276 }
6277 break;
6278
6279 /* Expressions */
6280 case OP_EXPi: EXPi:
6281 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6282 GE_OPT_PREFIX));
6283 break;
6284
6285 case OP_EXP:
6286 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6287 GE_NO_PREFIX));
6288 break;
6289
6290 case OP_EXPr: EXPr:
6291 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6292 GE_NO_PREFIX));
6293 if (inst.reloc.exp.X_op == O_symbol)
6294 {
6295 val = parse_reloc (&str);
6296 if (val == -1)
6297 {
6298 inst.error = _("unrecognized relocation suffix");
6299 goto failure;
6300 }
6301 else if (val != BFD_RELOC_UNUSED)
6302 {
6303 inst.operands[i].imm = val;
6304 inst.operands[i].hasreloc = 1;
6305 }
6306 }
6307 break;
6308
6309 /* Operand for MOVW or MOVT. */
6310 case OP_HALF:
6311 po_misc_or_fail (parse_half (&str));
6312 break;
6313
6314 /* Register or expression. */
6315 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6316 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6317
6318 /* Register or immediate. */
6319 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6320 I0: po_imm_or_fail (0, 0, FALSE); break;
6321
6322 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6323 IF:
6324 if (!is_immediate_prefix (*str))
6325 goto bad_args;
6326 str++;
6327 val = parse_fpa_immediate (&str);
6328 if (val == FAIL)
6329 goto failure;
6330 /* FPA immediates are encoded as registers 8-15.
6331 parse_fpa_immediate has already applied the offset. */
6332 inst.operands[i].reg = val;
6333 inst.operands[i].isreg = 1;
6334 break;
6335
6336 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6337 I32z: po_imm_or_fail (0, 32, FALSE); break;
6338
6339 /* Two kinds of register. */
6340 case OP_RIWR_RIWC:
6341 {
6342 struct reg_entry *rege = arm_reg_parse_multi (&str);
6343 if (!rege
6344 || (rege->type != REG_TYPE_MMXWR
6345 && rege->type != REG_TYPE_MMXWC
6346 && rege->type != REG_TYPE_MMXWCG))
6347 {
6348 inst.error = _("iWMMXt data or control register expected");
6349 goto failure;
6350 }
6351 inst.operands[i].reg = rege->number;
6352 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6353 }
6354 break;
6355
6356 case OP_RIWC_RIWG:
6357 {
6358 struct reg_entry *rege = arm_reg_parse_multi (&str);
6359 if (!rege
6360 || (rege->type != REG_TYPE_MMXWC
6361 && rege->type != REG_TYPE_MMXWCG))
6362 {
6363 inst.error = _("iWMMXt control register expected");
6364 goto failure;
6365 }
6366 inst.operands[i].reg = rege->number;
6367 inst.operands[i].isreg = 1;
6368 }
6369 break;
6370
6371 /* Misc */
6372 case OP_CPSF: val = parse_cps_flags (&str); break;
6373 case OP_ENDI: val = parse_endian_specifier (&str); break;
6374 case OP_oROR: val = parse_ror (&str); break;
6375 case OP_PSR: val = parse_psr (&str); break;
6376 case OP_COND: val = parse_cond (&str); break;
6377 case OP_oBARRIER_I15:
6378 po_barrier_or_imm (str); break;
6379 immediate:
6380 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6381 goto failure;
6382 break;
6383
6384 case OP_RVC_PSR:
6385 po_reg_or_goto (REG_TYPE_VFC, try_banked_reg);
6386 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6387 break;
6388 try_banked_reg:
6389 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6390 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6391 {
6392 inst.error = _("Banked registers are not available with this "
6393 "architecture.");
6394 goto failure;
6395 }
6396 break;
6397 try_psr:
6398 val = parse_psr (&str);
6399 break;
6400
6401 case OP_APSR_RR:
6402 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6403 break;
6404 try_apsr:
6405 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6406 instruction). */
6407 if (strncasecmp (str, "APSR_", 5) == 0)
6408 {
6409 unsigned found = 0;
6410 str += 5;
6411 while (found < 15)
6412 switch (*str++)
6413 {
6414 case 'c': found = (found & 1) ? 16 : found | 1; break;
6415 case 'n': found = (found & 2) ? 16 : found | 2; break;
6416 case 'z': found = (found & 4) ? 16 : found | 4; break;
6417 case 'v': found = (found & 8) ? 16 : found | 8; break;
6418 default: found = 16;
6419 }
6420 if (found != 15)
6421 goto failure;
6422 inst.operands[i].isvec = 1;
6423 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6424 inst.operands[i].reg = REG_PC;
6425 }
6426 else
6427 goto failure;
6428 break;
6429
6430 case OP_TB:
6431 po_misc_or_fail (parse_tb (&str));
6432 break;
6433
6434 /* Register lists. */
6435 case OP_REGLST:
6436 val = parse_reg_list (&str);
6437 if (*str == '^')
6438 {
6439 inst.operands[1].writeback = 1;
6440 str++;
6441 }
6442 break;
6443
6444 case OP_VRSLST:
6445 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6446 break;
6447
6448 case OP_VRDLST:
6449 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6450 break;
6451
6452 case OP_VRSDLST:
6453 /* Allow Q registers too. */
6454 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6455 REGLIST_NEON_D);
6456 if (val == FAIL)
6457 {
6458 inst.error = NULL;
6459 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6460 REGLIST_VFP_S);
6461 inst.operands[i].issingle = 1;
6462 }
6463 break;
6464
6465 case OP_NRDLST:
6466 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6467 REGLIST_NEON_D);
6468 break;
6469
6470 case OP_NSTRLST:
6471 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6472 &inst.operands[i].vectype);
6473 break;
6474
6475 /* Addressing modes */
6476 case OP_ADDR:
6477 po_misc_or_fail (parse_address (&str, i));
6478 break;
6479
6480 case OP_ADDRGLDR:
6481 po_misc_or_fail_no_backtrack (
6482 parse_address_group_reloc (&str, i, GROUP_LDR));
6483 break;
6484
6485 case OP_ADDRGLDRS:
6486 po_misc_or_fail_no_backtrack (
6487 parse_address_group_reloc (&str, i, GROUP_LDRS));
6488 break;
6489
6490 case OP_ADDRGLDC:
6491 po_misc_or_fail_no_backtrack (
6492 parse_address_group_reloc (&str, i, GROUP_LDC));
6493 break;
6494
6495 case OP_SH:
6496 po_misc_or_fail (parse_shifter_operand (&str, i));
6497 break;
6498
6499 case OP_SHG:
6500 po_misc_or_fail_no_backtrack (
6501 parse_shifter_operand_group_reloc (&str, i));
6502 break;
6503
6504 case OP_oSHll:
6505 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6506 break;
6507
6508 case OP_oSHar:
6509 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6510 break;
6511
6512 case OP_oSHllar:
6513 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6514 break;
6515
6516 default:
6517 as_fatal (_("unhandled operand code %d"), op_parse_code);
6518 }
6519
6520 /* Various value-based sanity checks and shared operations. We
6521 do not signal immediate failures for the register constraints;
6522 this allows a syntax error to take precedence. */
6523 switch (op_parse_code)
6524 {
6525 case OP_oRRnpc:
6526 case OP_RRnpc:
6527 case OP_RRnpcb:
6528 case OP_RRw:
6529 case OP_oRRw:
6530 case OP_RRnpc_I0:
6531 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6532 inst.error = BAD_PC;
6533 break;
6534
6535 case OP_oRRnpcsp:
6536 case OP_RRnpcsp:
6537 if (inst.operands[i].isreg)
6538 {
6539 if (inst.operands[i].reg == REG_PC)
6540 inst.error = BAD_PC;
6541 else if (inst.operands[i].reg == REG_SP)
6542 inst.error = BAD_SP;
6543 }
6544 break;
6545
6546 case OP_RRnpctw:
6547 if (inst.operands[i].isreg
6548 && inst.operands[i].reg == REG_PC
6549 && (inst.operands[i].writeback || thumb))
6550 inst.error = BAD_PC;
6551 break;
6552
6553 case OP_CPSF:
6554 case OP_ENDI:
6555 case OP_oROR:
6556 case OP_PSR:
6557 case OP_RVC_PSR:
6558 case OP_COND:
6559 case OP_oBARRIER_I15:
6560 case OP_REGLST:
6561 case OP_VRSLST:
6562 case OP_VRDLST:
6563 case OP_VRSDLST:
6564 case OP_NRDLST:
6565 case OP_NSTRLST:
6566 if (val == FAIL)
6567 goto failure;
6568 inst.operands[i].imm = val;
6569 break;
6570
6571 default:
6572 break;
6573 }
6574
6575 /* If we get here, this operand was successfully parsed. */
6576 inst.operands[i].present = 1;
6577 continue;
6578
6579 bad_args:
6580 inst.error = BAD_ARGS;
6581
6582 failure:
6583 if (!backtrack_pos)
6584 {
6585 /* The parse routine should already have set inst.error, but set a
6586 default here just in case. */
6587 if (!inst.error)
6588 inst.error = _("syntax error");
6589 return FAIL;
6590 }
6591
6592 /* Do not backtrack over a trailing optional argument that
6593 absorbed some text. We will only fail again, with the
6594 'garbage following instruction' error message, which is
6595 probably less helpful than the current one. */
6596 if (backtrack_index == i && backtrack_pos != str
6597 && upat[i+1] == OP_stop)
6598 {
6599 if (!inst.error)
6600 inst.error = _("syntax error");
6601 return FAIL;
6602 }
6603
6604 /* Try again, skipping the optional argument at backtrack_pos. */
6605 str = backtrack_pos;
6606 inst.error = backtrack_error;
6607 inst.operands[backtrack_index].present = 0;
6608 i = backtrack_index;
6609 backtrack_pos = 0;
6610 }
6611
6612 /* Check that we have parsed all the arguments. */
6613 if (*str != '\0' && !inst.error)
6614 inst.error = _("garbage following instruction");
6615
6616 return inst.error ? FAIL : SUCCESS;
6617 }
6618
6619 #undef po_char_or_fail
6620 #undef po_reg_or_fail
6621 #undef po_reg_or_goto
6622 #undef po_imm_or_fail
6623 #undef po_scalar_or_fail
6624 #undef po_barrier_or_imm
6625
6626 /* Shorthand macro for instruction encoding functions issuing errors. */
6627 #define constraint(expr, err) \
6628 do \
6629 { \
6630 if (expr) \
6631 { \
6632 inst.error = err; \
6633 return; \
6634 } \
6635 } \
6636 while (0)
6637
6638 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6639 instructions are unpredictable if these registers are used. This
6640 is the BadReg predicate in ARM's Thumb-2 documentation. */
6641 #define reject_bad_reg(reg) \
6642 do \
6643 if (reg == REG_SP || reg == REG_PC) \
6644 { \
6645 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6646 return; \
6647 } \
6648 while (0)
6649
6650 /* If REG is R13 (the stack pointer), warn that its use is
6651 deprecated. */
6652 #define warn_deprecated_sp(reg) \
6653 do \
6654 if (warn_on_deprecated && reg == REG_SP) \
6655 as_warn (_("use of r13 is deprecated")); \
6656 while (0)
6657
6658 /* Functions for operand encoding. ARM, then Thumb. */
6659
6660 #define rotate_left(v, n) (v << n | v >> (32 - n))
6661
6662 /* If VAL can be encoded in the immediate field of an ARM instruction,
6663 return the encoded form. Otherwise, return FAIL. */
6664
6665 static unsigned int
6666 encode_arm_immediate (unsigned int val)
6667 {
6668 unsigned int a, i;
6669
6670 for (i = 0; i < 32; i += 2)
6671 if ((a = rotate_left (val, i)) <= 0xff)
6672 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6673
6674 return FAIL;
6675 }
6676
6677 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6678 return the encoded form. Otherwise, return FAIL. */
6679 static unsigned int
6680 encode_thumb32_immediate (unsigned int val)
6681 {
6682 unsigned int a, i;
6683
6684 if (val <= 0xff)
6685 return val;
6686
6687 for (i = 1; i <= 24; i++)
6688 {
6689 a = val >> i;
6690 if ((val & ~(0xff << i)) == 0)
6691 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6692 }
6693
6694 a = val & 0xff;
6695 if (val == ((a << 16) | a))
6696 return 0x100 | a;
6697 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6698 return 0x300 | a;
6699
6700 a = val & 0xff00;
6701 if (val == ((a << 16) | a))
6702 return 0x200 | (a >> 8);
6703
6704 return FAIL;
6705 }
6706 /* Encode a VFP SP or DP register number into inst.instruction. */
6707
6708 static void
6709 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6710 {
6711 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6712 && reg > 15)
6713 {
6714 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6715 {
6716 if (thumb_mode)
6717 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6718 fpu_vfp_ext_d32);
6719 else
6720 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6721 fpu_vfp_ext_d32);
6722 }
6723 else
6724 {
6725 first_error (_("D register out of range for selected VFP version"));
6726 return;
6727 }
6728 }
6729
6730 switch (pos)
6731 {
6732 case VFP_REG_Sd:
6733 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6734 break;
6735
6736 case VFP_REG_Sn:
6737 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6738 break;
6739
6740 case VFP_REG_Sm:
6741 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6742 break;
6743
6744 case VFP_REG_Dd:
6745 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6746 break;
6747
6748 case VFP_REG_Dn:
6749 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6750 break;
6751
6752 case VFP_REG_Dm:
6753 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6754 break;
6755
6756 default:
6757 abort ();
6758 }
6759 }
6760
6761 /* Encode a <shift> in an ARM-format instruction. The immediate,
6762 if any, is handled by md_apply_fix. */
6763 static void
6764 encode_arm_shift (int i)
6765 {
6766 if (inst.operands[i].shift_kind == SHIFT_RRX)
6767 inst.instruction |= SHIFT_ROR << 5;
6768 else
6769 {
6770 inst.instruction |= inst.operands[i].shift_kind << 5;
6771 if (inst.operands[i].immisreg)
6772 {
6773 inst.instruction |= SHIFT_BY_REG;
6774 inst.instruction |= inst.operands[i].imm << 8;
6775 }
6776 else
6777 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6778 }
6779 }
6780
6781 static void
6782 encode_arm_shifter_operand (int i)
6783 {
6784 if (inst.operands[i].isreg)
6785 {
6786 inst.instruction |= inst.operands[i].reg;
6787 encode_arm_shift (i);
6788 }
6789 else
6790 inst.instruction |= INST_IMMEDIATE;
6791 }
6792
6793 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6794 static void
6795 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6796 {
6797 gas_assert (inst.operands[i].isreg);
6798 inst.instruction |= inst.operands[i].reg << 16;
6799
6800 if (inst.operands[i].preind)
6801 {
6802 if (is_t)
6803 {
6804 inst.error = _("instruction does not accept preindexed addressing");
6805 return;
6806 }
6807 inst.instruction |= PRE_INDEX;
6808 if (inst.operands[i].writeback)
6809 inst.instruction |= WRITE_BACK;
6810
6811 }
6812 else if (inst.operands[i].postind)
6813 {
6814 gas_assert (inst.operands[i].writeback);
6815 if (is_t)
6816 inst.instruction |= WRITE_BACK;
6817 }
6818 else /* unindexed - only for coprocessor */
6819 {
6820 inst.error = _("instruction does not accept unindexed addressing");
6821 return;
6822 }
6823
6824 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6825 && (((inst.instruction & 0x000f0000) >> 16)
6826 == ((inst.instruction & 0x0000f000) >> 12)))
6827 as_warn ((inst.instruction & LOAD_BIT)
6828 ? _("destination register same as write-back base")
6829 : _("source register same as write-back base"));
6830 }
6831
6832 /* inst.operands[i] was set up by parse_address. Encode it into an
6833 ARM-format mode 2 load or store instruction. If is_t is true,
6834 reject forms that cannot be used with a T instruction (i.e. not
6835 post-indexed). */
6836 static void
6837 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6838 {
6839 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6840
6841 encode_arm_addr_mode_common (i, is_t);
6842
6843 if (inst.operands[i].immisreg)
6844 {
6845 constraint ((inst.operands[i].imm == REG_PC
6846 || (is_pc && inst.operands[i].writeback)),
6847 BAD_PC_ADDRESSING);
6848 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6849 inst.instruction |= inst.operands[i].imm;
6850 if (!inst.operands[i].negative)
6851 inst.instruction |= INDEX_UP;
6852 if (inst.operands[i].shifted)
6853 {
6854 if (inst.operands[i].shift_kind == SHIFT_RRX)
6855 inst.instruction |= SHIFT_ROR << 5;
6856 else
6857 {
6858 inst.instruction |= inst.operands[i].shift_kind << 5;
6859 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6860 }
6861 }
6862 }
6863 else /* immediate offset in inst.reloc */
6864 {
6865 if (is_pc && !inst.reloc.pc_rel)
6866 {
6867 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
6868
6869 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
6870 cannot use PC in addressing.
6871 PC cannot be used in writeback addressing, either. */
6872 constraint ((is_t || inst.operands[i].writeback),
6873 BAD_PC_ADDRESSING);
6874
6875 /* Use of PC in str is deprecated for ARMv7. */
6876 if (warn_on_deprecated
6877 && !is_load
6878 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
6879 as_warn (_("use of PC in this instruction is deprecated"));
6880 }
6881
6882 if (inst.reloc.type == BFD_RELOC_UNUSED)
6883 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6884 }
6885 }
6886
6887 /* inst.operands[i] was set up by parse_address. Encode it into an
6888 ARM-format mode 3 load or store instruction. Reject forms that
6889 cannot be used with such instructions. If is_t is true, reject
6890 forms that cannot be used with a T instruction (i.e. not
6891 post-indexed). */
6892 static void
6893 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6894 {
6895 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6896 {
6897 inst.error = _("instruction does not accept scaled register index");
6898 return;
6899 }
6900
6901 encode_arm_addr_mode_common (i, is_t);
6902
6903 if (inst.operands[i].immisreg)
6904 {
6905 constraint ((inst.operands[i].imm == REG_PC
6906 || inst.operands[i].reg == REG_PC),
6907 BAD_PC_ADDRESSING);
6908 inst.instruction |= inst.operands[i].imm;
6909 if (!inst.operands[i].negative)
6910 inst.instruction |= INDEX_UP;
6911 }
6912 else /* immediate offset in inst.reloc */
6913 {
6914 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6915 && inst.operands[i].writeback),
6916 BAD_PC_WRITEBACK);
6917 inst.instruction |= HWOFFSET_IMM;
6918 if (inst.reloc.type == BFD_RELOC_UNUSED)
6919 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6920 }
6921 }
6922
6923 /* inst.operands[i] was set up by parse_address. Encode it into an
6924 ARM-format instruction. Reject all forms which cannot be encoded
6925 into a coprocessor load/store instruction. If wb_ok is false,
6926 reject use of writeback; if unind_ok is false, reject use of
6927 unindexed addressing. If reloc_override is not 0, use it instead
6928 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6929 (in which case it is preserved). */
6930
6931 static int
6932 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6933 {
6934 inst.instruction |= inst.operands[i].reg << 16;
6935
6936 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6937
6938 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6939 {
6940 gas_assert (!inst.operands[i].writeback);
6941 if (!unind_ok)
6942 {
6943 inst.error = _("instruction does not support unindexed addressing");
6944 return FAIL;
6945 }
6946 inst.instruction |= inst.operands[i].imm;
6947 inst.instruction |= INDEX_UP;
6948 return SUCCESS;
6949 }
6950
6951 if (inst.operands[i].preind)
6952 inst.instruction |= PRE_INDEX;
6953
6954 if (inst.operands[i].writeback)
6955 {
6956 if (inst.operands[i].reg == REG_PC)
6957 {
6958 inst.error = _("pc may not be used with write-back");
6959 return FAIL;
6960 }
6961 if (!wb_ok)
6962 {
6963 inst.error = _("instruction does not support writeback");
6964 return FAIL;
6965 }
6966 inst.instruction |= WRITE_BACK;
6967 }
6968
6969 if (reloc_override)
6970 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
6971 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6972 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6973 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6974 {
6975 if (thumb_mode)
6976 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6977 else
6978 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6979 }
6980
6981 return SUCCESS;
6982 }
6983
6984 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6985 Determine whether it can be performed with a move instruction; if
6986 it can, convert inst.instruction to that move instruction and
6987 return TRUE; if it can't, convert inst.instruction to a literal-pool
6988 load and return FALSE. If this is not a valid thing to do in the
6989 current context, set inst.error and return TRUE.
6990
6991 inst.operands[i] describes the destination register. */
6992
6993 static bfd_boolean
6994 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6995 {
6996 unsigned long tbit;
6997
6998 if (thumb_p)
6999 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7000 else
7001 tbit = LOAD_BIT;
7002
7003 if ((inst.instruction & tbit) == 0)
7004 {
7005 inst.error = _("invalid pseudo operation");
7006 return TRUE;
7007 }
7008 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7009 {
7010 inst.error = _("constant expression expected");
7011 return TRUE;
7012 }
7013 if (inst.reloc.exp.X_op == O_constant)
7014 {
7015 if (thumb_p)
7016 {
7017 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7018 {
7019 /* This can be done with a mov(1) instruction. */
7020 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7021 inst.instruction |= inst.reloc.exp.X_add_number;
7022 return TRUE;
7023 }
7024 }
7025 else
7026 {
7027 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7028 if (value != FAIL)
7029 {
7030 /* This can be done with a mov instruction. */
7031 inst.instruction &= LITERAL_MASK;
7032 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7033 inst.instruction |= value & 0xfff;
7034 return TRUE;
7035 }
7036
7037 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7038 if (value != FAIL)
7039 {
7040 /* This can be done with a mvn instruction. */
7041 inst.instruction &= LITERAL_MASK;
7042 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7043 inst.instruction |= value & 0xfff;
7044 return TRUE;
7045 }
7046 }
7047 }
7048
7049 if (add_to_lit_pool () == FAIL)
7050 {
7051 inst.error = _("literal pool insertion failed");
7052 return TRUE;
7053 }
7054 inst.operands[1].reg = REG_PC;
7055 inst.operands[1].isreg = 1;
7056 inst.operands[1].preind = 1;
7057 inst.reloc.pc_rel = 1;
7058 inst.reloc.type = (thumb_p
7059 ? BFD_RELOC_ARM_THUMB_OFFSET
7060 : (mode_3
7061 ? BFD_RELOC_ARM_HWLITERAL
7062 : BFD_RELOC_ARM_LITERAL));
7063 return FALSE;
7064 }
7065
7066 /* Functions for instruction encoding, sorted by sub-architecture.
7067 First some generics; their names are taken from the conventional
7068 bit positions for register arguments in ARM format instructions. */
7069
7070 static void
7071 do_noargs (void)
7072 {
7073 }
7074
7075 static void
7076 do_rd (void)
7077 {
7078 inst.instruction |= inst.operands[0].reg << 12;
7079 }
7080
7081 static void
7082 do_rd_rm (void)
7083 {
7084 inst.instruction |= inst.operands[0].reg << 12;
7085 inst.instruction |= inst.operands[1].reg;
7086 }
7087
7088 static void
7089 do_rd_rn (void)
7090 {
7091 inst.instruction |= inst.operands[0].reg << 12;
7092 inst.instruction |= inst.operands[1].reg << 16;
7093 }
7094
7095 static void
7096 do_rn_rd (void)
7097 {
7098 inst.instruction |= inst.operands[0].reg << 16;
7099 inst.instruction |= inst.operands[1].reg << 12;
7100 }
7101
7102 static void
7103 do_rd_rm_rn (void)
7104 {
7105 unsigned Rn = inst.operands[2].reg;
7106 /* Enforce restrictions on SWP instruction. */
7107 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7108 {
7109 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7110 _("Rn must not overlap other operands"));
7111
7112 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7113 if (warn_on_deprecated
7114 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7115 as_warn (_("swp{b} use is deprecated for this architecture"));
7116
7117 }
7118 inst.instruction |= inst.operands[0].reg << 12;
7119 inst.instruction |= inst.operands[1].reg;
7120 inst.instruction |= Rn << 16;
7121 }
7122
7123 static void
7124 do_rd_rn_rm (void)
7125 {
7126 inst.instruction |= inst.operands[0].reg << 12;
7127 inst.instruction |= inst.operands[1].reg << 16;
7128 inst.instruction |= inst.operands[2].reg;
7129 }
7130
7131 static void
7132 do_rm_rd_rn (void)
7133 {
7134 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7135 constraint (((inst.reloc.exp.X_op != O_constant
7136 && inst.reloc.exp.X_op != O_illegal)
7137 || inst.reloc.exp.X_add_number != 0),
7138 BAD_ADDR_MODE);
7139 inst.instruction |= inst.operands[0].reg;
7140 inst.instruction |= inst.operands[1].reg << 12;
7141 inst.instruction |= inst.operands[2].reg << 16;
7142 }
7143
7144 static void
7145 do_imm0 (void)
7146 {
7147 inst.instruction |= inst.operands[0].imm;
7148 }
7149
7150 static void
7151 do_rd_cpaddr (void)
7152 {
7153 inst.instruction |= inst.operands[0].reg << 12;
7154 encode_arm_cp_address (1, TRUE, TRUE, 0);
7155 }
7156
7157 /* ARM instructions, in alphabetical order by function name (except
7158 that wrapper functions appear immediately after the function they
7159 wrap). */
7160
7161 /* This is a pseudo-op of the form "adr rd, label" to be converted
7162 into a relative address of the form "add rd, pc, #label-.-8". */
7163
7164 static void
7165 do_adr (void)
7166 {
7167 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7168
7169 /* Frag hacking will turn this into a sub instruction if the offset turns
7170 out to be negative. */
7171 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7172 inst.reloc.pc_rel = 1;
7173 inst.reloc.exp.X_add_number -= 8;
7174 }
7175
7176 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7177 into a relative address of the form:
7178 add rd, pc, #low(label-.-8)"
7179 add rd, rd, #high(label-.-8)" */
7180
7181 static void
7182 do_adrl (void)
7183 {
7184 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7185
7186 /* Frag hacking will turn this into a sub instruction if the offset turns
7187 out to be negative. */
7188 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7189 inst.reloc.pc_rel = 1;
7190 inst.size = INSN_SIZE * 2;
7191 inst.reloc.exp.X_add_number -= 8;
7192 }
7193
7194 static void
7195 do_arit (void)
7196 {
7197 if (!inst.operands[1].present)
7198 inst.operands[1].reg = inst.operands[0].reg;
7199 inst.instruction |= inst.operands[0].reg << 12;
7200 inst.instruction |= inst.operands[1].reg << 16;
7201 encode_arm_shifter_operand (2);
7202 }
7203
7204 static void
7205 do_barrier (void)
7206 {
7207 if (inst.operands[0].present)
7208 {
7209 constraint ((inst.instruction & 0xf0) != 0x40
7210 && inst.operands[0].imm > 0xf
7211 && inst.operands[0].imm < 0x0,
7212 _("bad barrier type"));
7213 inst.instruction |= inst.operands[0].imm;
7214 }
7215 else
7216 inst.instruction |= 0xf;
7217 }
7218
7219 static void
7220 do_bfc (void)
7221 {
7222 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7223 constraint (msb > 32, _("bit-field extends past end of register"));
7224 /* The instruction encoding stores the LSB and MSB,
7225 not the LSB and width. */
7226 inst.instruction |= inst.operands[0].reg << 12;
7227 inst.instruction |= inst.operands[1].imm << 7;
7228 inst.instruction |= (msb - 1) << 16;
7229 }
7230
7231 static void
7232 do_bfi (void)
7233 {
7234 unsigned int msb;
7235
7236 /* #0 in second position is alternative syntax for bfc, which is
7237 the same instruction but with REG_PC in the Rm field. */
7238 if (!inst.operands[1].isreg)
7239 inst.operands[1].reg = REG_PC;
7240
7241 msb = inst.operands[2].imm + inst.operands[3].imm;
7242 constraint (msb > 32, _("bit-field extends past end of register"));
7243 /* The instruction encoding stores the LSB and MSB,
7244 not the LSB and width. */
7245 inst.instruction |= inst.operands[0].reg << 12;
7246 inst.instruction |= inst.operands[1].reg;
7247 inst.instruction |= inst.operands[2].imm << 7;
7248 inst.instruction |= (msb - 1) << 16;
7249 }
7250
7251 static void
7252 do_bfx (void)
7253 {
7254 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7255 _("bit-field extends past end of register"));
7256 inst.instruction |= inst.operands[0].reg << 12;
7257 inst.instruction |= inst.operands[1].reg;
7258 inst.instruction |= inst.operands[2].imm << 7;
7259 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7260 }
7261
7262 /* ARM V5 breakpoint instruction (argument parse)
7263 BKPT <16 bit unsigned immediate>
7264 Instruction is not conditional.
7265 The bit pattern given in insns[] has the COND_ALWAYS condition,
7266 and it is an error if the caller tried to override that. */
7267
7268 static void
7269 do_bkpt (void)
7270 {
7271 /* Top 12 of 16 bits to bits 19:8. */
7272 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7273
7274 /* Bottom 4 of 16 bits to bits 3:0. */
7275 inst.instruction |= inst.operands[0].imm & 0xf;
7276 }
7277
7278 static void
7279 encode_branch (int default_reloc)
7280 {
7281 if (inst.operands[0].hasreloc)
7282 {
7283 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7284 _("the only suffix valid here is '(plt)'"));
7285 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7286 }
7287 else
7288 {
7289 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7290 }
7291 inst.reloc.pc_rel = 1;
7292 }
7293
7294 static void
7295 do_branch (void)
7296 {
7297 #ifdef OBJ_ELF
7298 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7299 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7300 else
7301 #endif
7302 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7303 }
7304
7305 static void
7306 do_bl (void)
7307 {
7308 #ifdef OBJ_ELF
7309 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7310 {
7311 if (inst.cond == COND_ALWAYS)
7312 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7313 else
7314 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7315 }
7316 else
7317 #endif
7318 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7319 }
7320
7321 /* ARM V5 branch-link-exchange instruction (argument parse)
7322 BLX <target_addr> ie BLX(1)
7323 BLX{<condition>} <Rm> ie BLX(2)
7324 Unfortunately, there are two different opcodes for this mnemonic.
7325 So, the insns[].value is not used, and the code here zaps values
7326 into inst.instruction.
7327 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7328
7329 static void
7330 do_blx (void)
7331 {
7332 if (inst.operands[0].isreg)
7333 {
7334 /* Arg is a register; the opcode provided by insns[] is correct.
7335 It is not illegal to do "blx pc", just useless. */
7336 if (inst.operands[0].reg == REG_PC)
7337 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7338
7339 inst.instruction |= inst.operands[0].reg;
7340 }
7341 else
7342 {
7343 /* Arg is an address; this instruction cannot be executed
7344 conditionally, and the opcode must be adjusted.
7345 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7346 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7347 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7348 inst.instruction = 0xfa000000;
7349 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7350 }
7351 }
7352
7353 static void
7354 do_bx (void)
7355 {
7356 bfd_boolean want_reloc;
7357
7358 if (inst.operands[0].reg == REG_PC)
7359 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7360
7361 inst.instruction |= inst.operands[0].reg;
7362 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7363 it is for ARMv4t or earlier. */
7364 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7365 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7366 want_reloc = TRUE;
7367
7368 #ifdef OBJ_ELF
7369 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7370 #endif
7371 want_reloc = FALSE;
7372
7373 if (want_reloc)
7374 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7375 }
7376
7377
7378 /* ARM v5TEJ. Jump to Jazelle code. */
7379
7380 static void
7381 do_bxj (void)
7382 {
7383 if (inst.operands[0].reg == REG_PC)
7384 as_tsktsk (_("use of r15 in bxj is not really useful"));
7385
7386 inst.instruction |= inst.operands[0].reg;
7387 }
7388
7389 /* Co-processor data operation:
7390 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7391 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7392 static void
7393 do_cdp (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 8;
7396 inst.instruction |= inst.operands[1].imm << 20;
7397 inst.instruction |= inst.operands[2].reg << 12;
7398 inst.instruction |= inst.operands[3].reg << 16;
7399 inst.instruction |= inst.operands[4].reg;
7400 inst.instruction |= inst.operands[5].imm << 5;
7401 }
7402
7403 static void
7404 do_cmp (void)
7405 {
7406 inst.instruction |= inst.operands[0].reg << 16;
7407 encode_arm_shifter_operand (1);
7408 }
7409
7410 /* Transfer between coprocessor and ARM registers.
7411 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7412 MRC2
7413 MCR{cond}
7414 MCR2
7415
7416 No special properties. */
7417
7418 static void
7419 do_co_reg (void)
7420 {
7421 unsigned Rd;
7422
7423 Rd = inst.operands[2].reg;
7424 if (thumb_mode)
7425 {
7426 if (inst.instruction == 0xee000010
7427 || inst.instruction == 0xfe000010)
7428 /* MCR, MCR2 */
7429 reject_bad_reg (Rd);
7430 else
7431 /* MRC, MRC2 */
7432 constraint (Rd == REG_SP, BAD_SP);
7433 }
7434 else
7435 {
7436 /* MCR */
7437 if (inst.instruction == 0xe000010)
7438 constraint (Rd == REG_PC, BAD_PC);
7439 }
7440
7441
7442 inst.instruction |= inst.operands[0].reg << 8;
7443 inst.instruction |= inst.operands[1].imm << 21;
7444 inst.instruction |= Rd << 12;
7445 inst.instruction |= inst.operands[3].reg << 16;
7446 inst.instruction |= inst.operands[4].reg;
7447 inst.instruction |= inst.operands[5].imm << 5;
7448 }
7449
7450 /* Transfer between coprocessor register and pair of ARM registers.
7451 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7452 MCRR2
7453 MRRC{cond}
7454 MRRC2
7455
7456 Two XScale instructions are special cases of these:
7457
7458 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7459 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7460
7461 Result unpredictable if Rd or Rn is R15. */
7462
7463 static void
7464 do_co_reg2c (void)
7465 {
7466 unsigned Rd, Rn;
7467
7468 Rd = inst.operands[2].reg;
7469 Rn = inst.operands[3].reg;
7470
7471 if (thumb_mode)
7472 {
7473 reject_bad_reg (Rd);
7474 reject_bad_reg (Rn);
7475 }
7476 else
7477 {
7478 constraint (Rd == REG_PC, BAD_PC);
7479 constraint (Rn == REG_PC, BAD_PC);
7480 }
7481
7482 inst.instruction |= inst.operands[0].reg << 8;
7483 inst.instruction |= inst.operands[1].imm << 4;
7484 inst.instruction |= Rd << 12;
7485 inst.instruction |= Rn << 16;
7486 inst.instruction |= inst.operands[4].reg;
7487 }
7488
7489 static void
7490 do_cpsi (void)
7491 {
7492 inst.instruction |= inst.operands[0].imm << 6;
7493 if (inst.operands[1].present)
7494 {
7495 inst.instruction |= CPSI_MMOD;
7496 inst.instruction |= inst.operands[1].imm;
7497 }
7498 }
7499
7500 static void
7501 do_dbg (void)
7502 {
7503 inst.instruction |= inst.operands[0].imm;
7504 }
7505
7506 static void
7507 do_div (void)
7508 {
7509 unsigned Rd, Rn, Rm;
7510
7511 Rd = inst.operands[0].reg;
7512 Rn = (inst.operands[1].present
7513 ? inst.operands[1].reg : Rd);
7514 Rm = inst.operands[2].reg;
7515
7516 constraint ((Rd == REG_PC), BAD_PC);
7517 constraint ((Rn == REG_PC), BAD_PC);
7518 constraint ((Rm == REG_PC), BAD_PC);
7519
7520 inst.instruction |= Rd << 16;
7521 inst.instruction |= Rn << 0;
7522 inst.instruction |= Rm << 8;
7523 }
7524
7525 static void
7526 do_it (void)
7527 {
7528 /* There is no IT instruction in ARM mode. We
7529 process it to do the validation as if in
7530 thumb mode, just in case the code gets
7531 assembled for thumb using the unified syntax. */
7532
7533 inst.size = 0;
7534 if (unified_syntax)
7535 {
7536 set_it_insn_type (IT_INSN);
7537 now_it.mask = (inst.instruction & 0xf) | 0x10;
7538 now_it.cc = inst.operands[0].imm;
7539 }
7540 }
7541
7542 static void
7543 do_ldmstm (void)
7544 {
7545 int base_reg = inst.operands[0].reg;
7546 int range = inst.operands[1].imm;
7547
7548 inst.instruction |= base_reg << 16;
7549 inst.instruction |= range;
7550
7551 if (inst.operands[1].writeback)
7552 inst.instruction |= LDM_TYPE_2_OR_3;
7553
7554 if (inst.operands[0].writeback)
7555 {
7556 inst.instruction |= WRITE_BACK;
7557 /* Check for unpredictable uses of writeback. */
7558 if (inst.instruction & LOAD_BIT)
7559 {
7560 /* Not allowed in LDM type 2. */
7561 if ((inst.instruction & LDM_TYPE_2_OR_3)
7562 && ((range & (1 << REG_PC)) == 0))
7563 as_warn (_("writeback of base register is UNPREDICTABLE"));
7564 /* Only allowed if base reg not in list for other types. */
7565 else if (range & (1 << base_reg))
7566 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7567 }
7568 else /* STM. */
7569 {
7570 /* Not allowed for type 2. */
7571 if (inst.instruction & LDM_TYPE_2_OR_3)
7572 as_warn (_("writeback of base register is UNPREDICTABLE"));
7573 /* Only allowed if base reg not in list, or first in list. */
7574 else if ((range & (1 << base_reg))
7575 && (range & ((1 << base_reg) - 1)))
7576 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7577 }
7578 }
7579 }
7580
7581 /* ARMv5TE load-consecutive (argument parse)
7582 Mode is like LDRH.
7583
7584 LDRccD R, mode
7585 STRccD R, mode. */
7586
7587 static void
7588 do_ldrd (void)
7589 {
7590 constraint (inst.operands[0].reg % 2 != 0,
7591 _("first destination register must be even"));
7592 constraint (inst.operands[1].present
7593 && inst.operands[1].reg != inst.operands[0].reg + 1,
7594 _("can only load two consecutive registers"));
7595 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7596 constraint (!inst.operands[2].isreg, _("'[' expected"));
7597
7598 if (!inst.operands[1].present)
7599 inst.operands[1].reg = inst.operands[0].reg + 1;
7600
7601 if (inst.instruction & LOAD_BIT)
7602 {
7603 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7604 register and the first register written; we have to diagnose
7605 overlap between the base and the second register written here. */
7606
7607 if (inst.operands[2].reg == inst.operands[1].reg
7608 && (inst.operands[2].writeback || inst.operands[2].postind))
7609 as_warn (_("base register written back, and overlaps "
7610 "second destination register"));
7611
7612 /* For an index-register load, the index register must not overlap the
7613 destination (even if not write-back). */
7614 else if (inst.operands[2].immisreg
7615 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7616 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7617 as_warn (_("index register overlaps destination register"));
7618 }
7619
7620 inst.instruction |= inst.operands[0].reg << 12;
7621 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7622 }
7623
7624 static void
7625 do_ldrex (void)
7626 {
7627 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7628 || inst.operands[1].postind || inst.operands[1].writeback
7629 || inst.operands[1].immisreg || inst.operands[1].shifted
7630 || inst.operands[1].negative
7631 /* This can arise if the programmer has written
7632 strex rN, rM, foo
7633 or if they have mistakenly used a register name as the last
7634 operand, eg:
7635 strex rN, rM, rX
7636 It is very difficult to distinguish between these two cases
7637 because "rX" might actually be a label. ie the register
7638 name has been occluded by a symbol of the same name. So we
7639 just generate a general 'bad addressing mode' type error
7640 message and leave it up to the programmer to discover the
7641 true cause and fix their mistake. */
7642 || (inst.operands[1].reg == REG_PC),
7643 BAD_ADDR_MODE);
7644
7645 constraint (inst.reloc.exp.X_op != O_constant
7646 || inst.reloc.exp.X_add_number != 0,
7647 _("offset must be zero in ARM encoding"));
7648
7649 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7650
7651 inst.instruction |= inst.operands[0].reg << 12;
7652 inst.instruction |= inst.operands[1].reg << 16;
7653 inst.reloc.type = BFD_RELOC_UNUSED;
7654 }
7655
7656 static void
7657 do_ldrexd (void)
7658 {
7659 constraint (inst.operands[0].reg % 2 != 0,
7660 _("even register required"));
7661 constraint (inst.operands[1].present
7662 && inst.operands[1].reg != inst.operands[0].reg + 1,
7663 _("can only load two consecutive registers"));
7664 /* If op 1 were present and equal to PC, this function wouldn't
7665 have been called in the first place. */
7666 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7667
7668 inst.instruction |= inst.operands[0].reg << 12;
7669 inst.instruction |= inst.operands[2].reg << 16;
7670 }
7671
7672 static void
7673 do_ldst (void)
7674 {
7675 inst.instruction |= inst.operands[0].reg << 12;
7676 if (!inst.operands[1].isreg)
7677 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7678 return;
7679 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7680 }
7681
7682 static void
7683 do_ldstt (void)
7684 {
7685 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7686 reject [Rn,...]. */
7687 if (inst.operands[1].preind)
7688 {
7689 constraint (inst.reloc.exp.X_op != O_constant
7690 || inst.reloc.exp.X_add_number != 0,
7691 _("this instruction requires a post-indexed address"));
7692
7693 inst.operands[1].preind = 0;
7694 inst.operands[1].postind = 1;
7695 inst.operands[1].writeback = 1;
7696 }
7697 inst.instruction |= inst.operands[0].reg << 12;
7698 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7699 }
7700
7701 /* Halfword and signed-byte load/store operations. */
7702
7703 static void
7704 do_ldstv4 (void)
7705 {
7706 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7707 inst.instruction |= inst.operands[0].reg << 12;
7708 if (!inst.operands[1].isreg)
7709 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7710 return;
7711 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7712 }
7713
7714 static void
7715 do_ldsttv4 (void)
7716 {
7717 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7718 reject [Rn,...]. */
7719 if (inst.operands[1].preind)
7720 {
7721 constraint (inst.reloc.exp.X_op != O_constant
7722 || inst.reloc.exp.X_add_number != 0,
7723 _("this instruction requires a post-indexed address"));
7724
7725 inst.operands[1].preind = 0;
7726 inst.operands[1].postind = 1;
7727 inst.operands[1].writeback = 1;
7728 }
7729 inst.instruction |= inst.operands[0].reg << 12;
7730 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7731 }
7732
7733 /* Co-processor register load/store.
7734 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7735 static void
7736 do_lstc (void)
7737 {
7738 inst.instruction |= inst.operands[0].reg << 8;
7739 inst.instruction |= inst.operands[1].reg << 12;
7740 encode_arm_cp_address (2, TRUE, TRUE, 0);
7741 }
7742
7743 static void
7744 do_mlas (void)
7745 {
7746 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7747 if (inst.operands[0].reg == inst.operands[1].reg
7748 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7749 && !(inst.instruction & 0x00400000))
7750 as_tsktsk (_("Rd and Rm should be different in mla"));
7751
7752 inst.instruction |= inst.operands[0].reg << 16;
7753 inst.instruction |= inst.operands[1].reg;
7754 inst.instruction |= inst.operands[2].reg << 8;
7755 inst.instruction |= inst.operands[3].reg << 12;
7756 }
7757
7758 static void
7759 do_mov (void)
7760 {
7761 inst.instruction |= inst.operands[0].reg << 12;
7762 encode_arm_shifter_operand (1);
7763 }
7764
7765 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7766 static void
7767 do_mov16 (void)
7768 {
7769 bfd_vma imm;
7770 bfd_boolean top;
7771
7772 top = (inst.instruction & 0x00400000) != 0;
7773 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7774 _(":lower16: not allowed this instruction"));
7775 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7776 _(":upper16: not allowed instruction"));
7777 inst.instruction |= inst.operands[0].reg << 12;
7778 if (inst.reloc.type == BFD_RELOC_UNUSED)
7779 {
7780 imm = inst.reloc.exp.X_add_number;
7781 /* The value is in two pieces: 0:11, 16:19. */
7782 inst.instruction |= (imm & 0x00000fff);
7783 inst.instruction |= (imm & 0x0000f000) << 4;
7784 }
7785 }
7786
7787 static void do_vfp_nsyn_opcode (const char *);
7788
7789 static int
7790 do_vfp_nsyn_mrs (void)
7791 {
7792 if (inst.operands[0].isvec)
7793 {
7794 if (inst.operands[1].reg != 1)
7795 first_error (_("operand 1 must be FPSCR"));
7796 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7797 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7798 do_vfp_nsyn_opcode ("fmstat");
7799 }
7800 else if (inst.operands[1].isvec)
7801 do_vfp_nsyn_opcode ("fmrx");
7802 else
7803 return FAIL;
7804
7805 return SUCCESS;
7806 }
7807
7808 static int
7809 do_vfp_nsyn_msr (void)
7810 {
7811 if (inst.operands[0].isvec)
7812 do_vfp_nsyn_opcode ("fmxr");
7813 else
7814 return FAIL;
7815
7816 return SUCCESS;
7817 }
7818
7819 static void
7820 do_vmrs (void)
7821 {
7822 unsigned Rt = inst.operands[0].reg;
7823
7824 if (thumb_mode && inst.operands[0].reg == REG_SP)
7825 {
7826 inst.error = BAD_SP;
7827 return;
7828 }
7829
7830 /* APSR_ sets isvec. All other refs to PC are illegal. */
7831 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7832 {
7833 inst.error = BAD_PC;
7834 return;
7835 }
7836
7837 if (inst.operands[1].reg != 1)
7838 first_error (_("operand 1 must be FPSCR"));
7839
7840 inst.instruction |= (Rt << 12);
7841 }
7842
7843 static void
7844 do_vmsr (void)
7845 {
7846 unsigned Rt = inst.operands[1].reg;
7847
7848 if (thumb_mode)
7849 reject_bad_reg (Rt);
7850 else if (Rt == REG_PC)
7851 {
7852 inst.error = BAD_PC;
7853 return;
7854 }
7855
7856 if (inst.operands[0].reg != 1)
7857 first_error (_("operand 0 must be FPSCR"));
7858
7859 inst.instruction |= (Rt << 12);
7860 }
7861
7862 static void
7863 do_mrs (void)
7864 {
7865 unsigned br;
7866
7867 if (do_vfp_nsyn_mrs () == SUCCESS)
7868 return;
7869
7870 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7871 inst.instruction |= inst.operands[0].reg << 12;
7872
7873 if (inst.operands[1].isreg)
7874 {
7875 br = inst.operands[1].reg;
7876 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
7877 as_bad (_("bad register for mrs"));
7878 }
7879 else
7880 {
7881 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7882 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7883 != (PSR_c|PSR_f),
7884 _("'CPSR' or 'SPSR' expected"));
7885 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
7886 }
7887
7888 inst.instruction |= br;
7889 }
7890
7891 /* Two possible forms:
7892 "{C|S}PSR_<field>, Rm",
7893 "{C|S}PSR_f, #expression". */
7894
7895 static void
7896 do_msr (void)
7897 {
7898 if (do_vfp_nsyn_msr () == SUCCESS)
7899 return;
7900
7901 inst.instruction |= inst.operands[0].imm;
7902 if (inst.operands[1].isreg)
7903 inst.instruction |= inst.operands[1].reg;
7904 else
7905 {
7906 inst.instruction |= INST_IMMEDIATE;
7907 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7908 inst.reloc.pc_rel = 0;
7909 }
7910 }
7911
7912 static void
7913 do_mul (void)
7914 {
7915 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7916
7917 if (!inst.operands[2].present)
7918 inst.operands[2].reg = inst.operands[0].reg;
7919 inst.instruction |= inst.operands[0].reg << 16;
7920 inst.instruction |= inst.operands[1].reg;
7921 inst.instruction |= inst.operands[2].reg << 8;
7922
7923 if (inst.operands[0].reg == inst.operands[1].reg
7924 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7925 as_tsktsk (_("Rd and Rm should be different in mul"));
7926 }
7927
7928 /* Long Multiply Parser
7929 UMULL RdLo, RdHi, Rm, Rs
7930 SMULL RdLo, RdHi, Rm, Rs
7931 UMLAL RdLo, RdHi, Rm, Rs
7932 SMLAL RdLo, RdHi, Rm, Rs. */
7933
7934 static void
7935 do_mull (void)
7936 {
7937 inst.instruction |= inst.operands[0].reg << 12;
7938 inst.instruction |= inst.operands[1].reg << 16;
7939 inst.instruction |= inst.operands[2].reg;
7940 inst.instruction |= inst.operands[3].reg << 8;
7941
7942 /* rdhi and rdlo must be different. */
7943 if (inst.operands[0].reg == inst.operands[1].reg)
7944 as_tsktsk (_("rdhi and rdlo must be different"));
7945
7946 /* rdhi, rdlo and rm must all be different before armv6. */
7947 if ((inst.operands[0].reg == inst.operands[2].reg
7948 || inst.operands[1].reg == inst.operands[2].reg)
7949 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7950 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7951 }
7952
7953 static void
7954 do_nop (void)
7955 {
7956 if (inst.operands[0].present
7957 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7958 {
7959 /* Architectural NOP hints are CPSR sets with no bits selected. */
7960 inst.instruction &= 0xf0000000;
7961 inst.instruction |= 0x0320f000;
7962 if (inst.operands[0].present)
7963 inst.instruction |= inst.operands[0].imm;
7964 }
7965 }
7966
7967 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7968 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7969 Condition defaults to COND_ALWAYS.
7970 Error if Rd, Rn or Rm are R15. */
7971
7972 static void
7973 do_pkhbt (void)
7974 {
7975 inst.instruction |= inst.operands[0].reg << 12;
7976 inst.instruction |= inst.operands[1].reg << 16;
7977 inst.instruction |= inst.operands[2].reg;
7978 if (inst.operands[3].present)
7979 encode_arm_shift (3);
7980 }
7981
7982 /* ARM V6 PKHTB (Argument Parse). */
7983
7984 static void
7985 do_pkhtb (void)
7986 {
7987 if (!inst.operands[3].present)
7988 {
7989 /* If the shift specifier is omitted, turn the instruction
7990 into pkhbt rd, rm, rn. */
7991 inst.instruction &= 0xfff00010;
7992 inst.instruction |= inst.operands[0].reg << 12;
7993 inst.instruction |= inst.operands[1].reg;
7994 inst.instruction |= inst.operands[2].reg << 16;
7995 }
7996 else
7997 {
7998 inst.instruction |= inst.operands[0].reg << 12;
7999 inst.instruction |= inst.operands[1].reg << 16;
8000 inst.instruction |= inst.operands[2].reg;
8001 encode_arm_shift (3);
8002 }
8003 }
8004
8005 /* ARMv5TE: Preload-Cache
8006 MP Extensions: Preload for write
8007
8008 PLD(W) <addr_mode>
8009
8010 Syntactically, like LDR with B=1, W=0, L=1. */
8011
8012 static void
8013 do_pld (void)
8014 {
8015 constraint (!inst.operands[0].isreg,
8016 _("'[' expected after PLD mnemonic"));
8017 constraint (inst.operands[0].postind,
8018 _("post-indexed expression used in preload instruction"));
8019 constraint (inst.operands[0].writeback,
8020 _("writeback used in preload instruction"));
8021 constraint (!inst.operands[0].preind,
8022 _("unindexed addressing used in preload instruction"));
8023 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8024 }
8025
8026 /* ARMv7: PLI <addr_mode> */
8027 static void
8028 do_pli (void)
8029 {
8030 constraint (!inst.operands[0].isreg,
8031 _("'[' expected after PLI mnemonic"));
8032 constraint (inst.operands[0].postind,
8033 _("post-indexed expression used in preload instruction"));
8034 constraint (inst.operands[0].writeback,
8035 _("writeback used in preload instruction"));
8036 constraint (!inst.operands[0].preind,
8037 _("unindexed addressing used in preload instruction"));
8038 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8039 inst.instruction &= ~PRE_INDEX;
8040 }
8041
8042 static void
8043 do_push_pop (void)
8044 {
8045 inst.operands[1] = inst.operands[0];
8046 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8047 inst.operands[0].isreg = 1;
8048 inst.operands[0].writeback = 1;
8049 inst.operands[0].reg = REG_SP;
8050 do_ldmstm ();
8051 }
8052
8053 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8054 word at the specified address and the following word
8055 respectively.
8056 Unconditionally executed.
8057 Error if Rn is R15. */
8058
8059 static void
8060 do_rfe (void)
8061 {
8062 inst.instruction |= inst.operands[0].reg << 16;
8063 if (inst.operands[0].writeback)
8064 inst.instruction |= WRITE_BACK;
8065 }
8066
8067 /* ARM V6 ssat (argument parse). */
8068
8069 static void
8070 do_ssat (void)
8071 {
8072 inst.instruction |= inst.operands[0].reg << 12;
8073 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8074 inst.instruction |= inst.operands[2].reg;
8075
8076 if (inst.operands[3].present)
8077 encode_arm_shift (3);
8078 }
8079
8080 /* ARM V6 usat (argument parse). */
8081
8082 static void
8083 do_usat (void)
8084 {
8085 inst.instruction |= inst.operands[0].reg << 12;
8086 inst.instruction |= inst.operands[1].imm << 16;
8087 inst.instruction |= inst.operands[2].reg;
8088
8089 if (inst.operands[3].present)
8090 encode_arm_shift (3);
8091 }
8092
8093 /* ARM V6 ssat16 (argument parse). */
8094
8095 static void
8096 do_ssat16 (void)
8097 {
8098 inst.instruction |= inst.operands[0].reg << 12;
8099 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8100 inst.instruction |= inst.operands[2].reg;
8101 }
8102
8103 static void
8104 do_usat16 (void)
8105 {
8106 inst.instruction |= inst.operands[0].reg << 12;
8107 inst.instruction |= inst.operands[1].imm << 16;
8108 inst.instruction |= inst.operands[2].reg;
8109 }
8110
8111 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8112 preserving the other bits.
8113
8114 setend <endian_specifier>, where <endian_specifier> is either
8115 BE or LE. */
8116
8117 static void
8118 do_setend (void)
8119 {
8120 if (inst.operands[0].imm)
8121 inst.instruction |= 0x200;
8122 }
8123
8124 static void
8125 do_shift (void)
8126 {
8127 unsigned int Rm = (inst.operands[1].present
8128 ? inst.operands[1].reg
8129 : inst.operands[0].reg);
8130
8131 inst.instruction |= inst.operands[0].reg << 12;
8132 inst.instruction |= Rm;
8133 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8134 {
8135 inst.instruction |= inst.operands[2].reg << 8;
8136 inst.instruction |= SHIFT_BY_REG;
8137 }
8138 else
8139 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8140 }
8141
8142 static void
8143 do_smc (void)
8144 {
8145 inst.reloc.type = BFD_RELOC_ARM_SMC;
8146 inst.reloc.pc_rel = 0;
8147 }
8148
8149 static void
8150 do_hvc (void)
8151 {
8152 inst.reloc.type = BFD_RELOC_ARM_HVC;
8153 inst.reloc.pc_rel = 0;
8154 }
8155
8156 static void
8157 do_swi (void)
8158 {
8159 inst.reloc.type = BFD_RELOC_ARM_SWI;
8160 inst.reloc.pc_rel = 0;
8161 }
8162
8163 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8164 SMLAxy{cond} Rd,Rm,Rs,Rn
8165 SMLAWy{cond} Rd,Rm,Rs,Rn
8166 Error if any register is R15. */
8167
8168 static void
8169 do_smla (void)
8170 {
8171 inst.instruction |= inst.operands[0].reg << 16;
8172 inst.instruction |= inst.operands[1].reg;
8173 inst.instruction |= inst.operands[2].reg << 8;
8174 inst.instruction |= inst.operands[3].reg << 12;
8175 }
8176
8177 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8178 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8179 Error if any register is R15.
8180 Warning if Rdlo == Rdhi. */
8181
8182 static void
8183 do_smlal (void)
8184 {
8185 inst.instruction |= inst.operands[0].reg << 12;
8186 inst.instruction |= inst.operands[1].reg << 16;
8187 inst.instruction |= inst.operands[2].reg;
8188 inst.instruction |= inst.operands[3].reg << 8;
8189
8190 if (inst.operands[0].reg == inst.operands[1].reg)
8191 as_tsktsk (_("rdhi and rdlo must be different"));
8192 }
8193
8194 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8195 SMULxy{cond} Rd,Rm,Rs
8196 Error if any register is R15. */
8197
8198 static void
8199 do_smul (void)
8200 {
8201 inst.instruction |= inst.operands[0].reg << 16;
8202 inst.instruction |= inst.operands[1].reg;
8203 inst.instruction |= inst.operands[2].reg << 8;
8204 }
8205
8206 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8207 the same for both ARM and Thumb-2. */
8208
8209 static void
8210 do_srs (void)
8211 {
8212 int reg;
8213
8214 if (inst.operands[0].present)
8215 {
8216 reg = inst.operands[0].reg;
8217 constraint (reg != REG_SP, _("SRS base register must be r13"));
8218 }
8219 else
8220 reg = REG_SP;
8221
8222 inst.instruction |= reg << 16;
8223 inst.instruction |= inst.operands[1].imm;
8224 if (inst.operands[0].writeback || inst.operands[1].writeback)
8225 inst.instruction |= WRITE_BACK;
8226 }
8227
8228 /* ARM V6 strex (argument parse). */
8229
8230 static void
8231 do_strex (void)
8232 {
8233 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8234 || inst.operands[2].postind || inst.operands[2].writeback
8235 || inst.operands[2].immisreg || inst.operands[2].shifted
8236 || inst.operands[2].negative
8237 /* See comment in do_ldrex(). */
8238 || (inst.operands[2].reg == REG_PC),
8239 BAD_ADDR_MODE);
8240
8241 constraint (inst.operands[0].reg == inst.operands[1].reg
8242 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8243
8244 constraint (inst.reloc.exp.X_op != O_constant
8245 || inst.reloc.exp.X_add_number != 0,
8246 _("offset must be zero in ARM encoding"));
8247
8248 inst.instruction |= inst.operands[0].reg << 12;
8249 inst.instruction |= inst.operands[1].reg;
8250 inst.instruction |= inst.operands[2].reg << 16;
8251 inst.reloc.type = BFD_RELOC_UNUSED;
8252 }
8253
8254 static void
8255 do_strexd (void)
8256 {
8257 constraint (inst.operands[1].reg % 2 != 0,
8258 _("even register required"));
8259 constraint (inst.operands[2].present
8260 && inst.operands[2].reg != inst.operands[1].reg + 1,
8261 _("can only store two consecutive registers"));
8262 /* If op 2 were present and equal to PC, this function wouldn't
8263 have been called in the first place. */
8264 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8265
8266 constraint (inst.operands[0].reg == inst.operands[1].reg
8267 || inst.operands[0].reg == inst.operands[1].reg + 1
8268 || inst.operands[0].reg == inst.operands[3].reg,
8269 BAD_OVERLAP);
8270
8271 inst.instruction |= inst.operands[0].reg << 12;
8272 inst.instruction |= inst.operands[1].reg;
8273 inst.instruction |= inst.operands[3].reg << 16;
8274 }
8275
8276 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8277 extends it to 32-bits, and adds the result to a value in another
8278 register. You can specify a rotation by 0, 8, 16, or 24 bits
8279 before extracting the 16-bit value.
8280 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8281 Condition defaults to COND_ALWAYS.
8282 Error if any register uses R15. */
8283
8284 static void
8285 do_sxtah (void)
8286 {
8287 inst.instruction |= inst.operands[0].reg << 12;
8288 inst.instruction |= inst.operands[1].reg << 16;
8289 inst.instruction |= inst.operands[2].reg;
8290 inst.instruction |= inst.operands[3].imm << 10;
8291 }
8292
8293 /* ARM V6 SXTH.
8294
8295 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8296 Condition defaults to COND_ALWAYS.
8297 Error if any register uses R15. */
8298
8299 static void
8300 do_sxth (void)
8301 {
8302 inst.instruction |= inst.operands[0].reg << 12;
8303 inst.instruction |= inst.operands[1].reg;
8304 inst.instruction |= inst.operands[2].imm << 10;
8305 }
8306 \f
8307 /* VFP instructions. In a logical order: SP variant first, monad
8308 before dyad, arithmetic then move then load/store. */
8309
8310 static void
8311 do_vfp_sp_monadic (void)
8312 {
8313 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8314 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8315 }
8316
8317 static void
8318 do_vfp_sp_dyadic (void)
8319 {
8320 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8321 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8322 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8323 }
8324
8325 static void
8326 do_vfp_sp_compare_z (void)
8327 {
8328 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8329 }
8330
8331 static void
8332 do_vfp_dp_sp_cvt (void)
8333 {
8334 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8335 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8336 }
8337
8338 static void
8339 do_vfp_sp_dp_cvt (void)
8340 {
8341 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8342 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8343 }
8344
8345 static void
8346 do_vfp_reg_from_sp (void)
8347 {
8348 inst.instruction |= inst.operands[0].reg << 12;
8349 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8350 }
8351
8352 static void
8353 do_vfp_reg2_from_sp2 (void)
8354 {
8355 constraint (inst.operands[2].imm != 2,
8356 _("only two consecutive VFP SP registers allowed here"));
8357 inst.instruction |= inst.operands[0].reg << 12;
8358 inst.instruction |= inst.operands[1].reg << 16;
8359 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8360 }
8361
8362 static void
8363 do_vfp_sp_from_reg (void)
8364 {
8365 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8366 inst.instruction |= inst.operands[1].reg << 12;
8367 }
8368
8369 static void
8370 do_vfp_sp2_from_reg2 (void)
8371 {
8372 constraint (inst.operands[0].imm != 2,
8373 _("only two consecutive VFP SP registers allowed here"));
8374 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8375 inst.instruction |= inst.operands[1].reg << 12;
8376 inst.instruction |= inst.operands[2].reg << 16;
8377 }
8378
8379 static void
8380 do_vfp_sp_ldst (void)
8381 {
8382 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8383 encode_arm_cp_address (1, FALSE, TRUE, 0);
8384 }
8385
8386 static void
8387 do_vfp_dp_ldst (void)
8388 {
8389 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8390 encode_arm_cp_address (1, FALSE, TRUE, 0);
8391 }
8392
8393
8394 static void
8395 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8396 {
8397 if (inst.operands[0].writeback)
8398 inst.instruction |= WRITE_BACK;
8399 else
8400 constraint (ldstm_type != VFP_LDSTMIA,
8401 _("this addressing mode requires base-register writeback"));
8402 inst.instruction |= inst.operands[0].reg << 16;
8403 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8404 inst.instruction |= inst.operands[1].imm;
8405 }
8406
8407 static void
8408 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8409 {
8410 int count;
8411
8412 if (inst.operands[0].writeback)
8413 inst.instruction |= WRITE_BACK;
8414 else
8415 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8416 _("this addressing mode requires base-register writeback"));
8417
8418 inst.instruction |= inst.operands[0].reg << 16;
8419 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8420
8421 count = inst.operands[1].imm << 1;
8422 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8423 count += 1;
8424
8425 inst.instruction |= count;
8426 }
8427
8428 static void
8429 do_vfp_sp_ldstmia (void)
8430 {
8431 vfp_sp_ldstm (VFP_LDSTMIA);
8432 }
8433
8434 static void
8435 do_vfp_sp_ldstmdb (void)
8436 {
8437 vfp_sp_ldstm (VFP_LDSTMDB);
8438 }
8439
8440 static void
8441 do_vfp_dp_ldstmia (void)
8442 {
8443 vfp_dp_ldstm (VFP_LDSTMIA);
8444 }
8445
8446 static void
8447 do_vfp_dp_ldstmdb (void)
8448 {
8449 vfp_dp_ldstm (VFP_LDSTMDB);
8450 }
8451
8452 static void
8453 do_vfp_xp_ldstmia (void)
8454 {
8455 vfp_dp_ldstm (VFP_LDSTMIAX);
8456 }
8457
8458 static void
8459 do_vfp_xp_ldstmdb (void)
8460 {
8461 vfp_dp_ldstm (VFP_LDSTMDBX);
8462 }
8463
8464 static void
8465 do_vfp_dp_rd_rm (void)
8466 {
8467 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8468 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8469 }
8470
8471 static void
8472 do_vfp_dp_rn_rd (void)
8473 {
8474 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8475 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8476 }
8477
8478 static void
8479 do_vfp_dp_rd_rn (void)
8480 {
8481 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8482 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8483 }
8484
8485 static void
8486 do_vfp_dp_rd_rn_rm (void)
8487 {
8488 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8489 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8490 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8491 }
8492
8493 static void
8494 do_vfp_dp_rd (void)
8495 {
8496 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8497 }
8498
8499 static void
8500 do_vfp_dp_rm_rd_rn (void)
8501 {
8502 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8503 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8504 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8505 }
8506
8507 /* VFPv3 instructions. */
8508 static void
8509 do_vfp_sp_const (void)
8510 {
8511 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8512 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8513 inst.instruction |= (inst.operands[1].imm & 0x0f);
8514 }
8515
8516 static void
8517 do_vfp_dp_const (void)
8518 {
8519 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8520 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8521 inst.instruction |= (inst.operands[1].imm & 0x0f);
8522 }
8523
8524 static void
8525 vfp_conv (int srcsize)
8526 {
8527 unsigned immbits = srcsize - inst.operands[1].imm;
8528 inst.instruction |= (immbits & 1) << 5;
8529 inst.instruction |= (immbits >> 1);
8530 }
8531
8532 static void
8533 do_vfp_sp_conv_16 (void)
8534 {
8535 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8536 vfp_conv (16);
8537 }
8538
8539 static void
8540 do_vfp_dp_conv_16 (void)
8541 {
8542 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8543 vfp_conv (16);
8544 }
8545
8546 static void
8547 do_vfp_sp_conv_32 (void)
8548 {
8549 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8550 vfp_conv (32);
8551 }
8552
8553 static void
8554 do_vfp_dp_conv_32 (void)
8555 {
8556 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8557 vfp_conv (32);
8558 }
8559 \f
8560 /* FPA instructions. Also in a logical order. */
8561
8562 static void
8563 do_fpa_cmp (void)
8564 {
8565 inst.instruction |= inst.operands[0].reg << 16;
8566 inst.instruction |= inst.operands[1].reg;
8567 }
8568
8569 static void
8570 do_fpa_ldmstm (void)
8571 {
8572 inst.instruction |= inst.operands[0].reg << 12;
8573 switch (inst.operands[1].imm)
8574 {
8575 case 1: inst.instruction |= CP_T_X; break;
8576 case 2: inst.instruction |= CP_T_Y; break;
8577 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8578 case 4: break;
8579 default: abort ();
8580 }
8581
8582 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8583 {
8584 /* The instruction specified "ea" or "fd", so we can only accept
8585 [Rn]{!}. The instruction does not really support stacking or
8586 unstacking, so we have to emulate these by setting appropriate
8587 bits and offsets. */
8588 constraint (inst.reloc.exp.X_op != O_constant
8589 || inst.reloc.exp.X_add_number != 0,
8590 _("this instruction does not support indexing"));
8591
8592 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8593 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8594
8595 if (!(inst.instruction & INDEX_UP))
8596 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8597
8598 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8599 {
8600 inst.operands[2].preind = 0;
8601 inst.operands[2].postind = 1;
8602 }
8603 }
8604
8605 encode_arm_cp_address (2, TRUE, TRUE, 0);
8606 }
8607 \f
8608 /* iWMMXt instructions: strictly in alphabetical order. */
8609
8610 static void
8611 do_iwmmxt_tandorc (void)
8612 {
8613 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8614 }
8615
8616 static void
8617 do_iwmmxt_textrc (void)
8618 {
8619 inst.instruction |= inst.operands[0].reg << 12;
8620 inst.instruction |= inst.operands[1].imm;
8621 }
8622
8623 static void
8624 do_iwmmxt_textrm (void)
8625 {
8626 inst.instruction |= inst.operands[0].reg << 12;
8627 inst.instruction |= inst.operands[1].reg << 16;
8628 inst.instruction |= inst.operands[2].imm;
8629 }
8630
8631 static void
8632 do_iwmmxt_tinsr (void)
8633 {
8634 inst.instruction |= inst.operands[0].reg << 16;
8635 inst.instruction |= inst.operands[1].reg << 12;
8636 inst.instruction |= inst.operands[2].imm;
8637 }
8638
8639 static void
8640 do_iwmmxt_tmia (void)
8641 {
8642 inst.instruction |= inst.operands[0].reg << 5;
8643 inst.instruction |= inst.operands[1].reg;
8644 inst.instruction |= inst.operands[2].reg << 12;
8645 }
8646
8647 static void
8648 do_iwmmxt_waligni (void)
8649 {
8650 inst.instruction |= inst.operands[0].reg << 12;
8651 inst.instruction |= inst.operands[1].reg << 16;
8652 inst.instruction |= inst.operands[2].reg;
8653 inst.instruction |= inst.operands[3].imm << 20;
8654 }
8655
8656 static void
8657 do_iwmmxt_wmerge (void)
8658 {
8659 inst.instruction |= inst.operands[0].reg << 12;
8660 inst.instruction |= inst.operands[1].reg << 16;
8661 inst.instruction |= inst.operands[2].reg;
8662 inst.instruction |= inst.operands[3].imm << 21;
8663 }
8664
8665 static void
8666 do_iwmmxt_wmov (void)
8667 {
8668 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8669 inst.instruction |= inst.operands[0].reg << 12;
8670 inst.instruction |= inst.operands[1].reg << 16;
8671 inst.instruction |= inst.operands[1].reg;
8672 }
8673
8674 static void
8675 do_iwmmxt_wldstbh (void)
8676 {
8677 int reloc;
8678 inst.instruction |= inst.operands[0].reg << 12;
8679 if (thumb_mode)
8680 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8681 else
8682 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8683 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8684 }
8685
8686 static void
8687 do_iwmmxt_wldstw (void)
8688 {
8689 /* RIWR_RIWC clears .isreg for a control register. */
8690 if (!inst.operands[0].isreg)
8691 {
8692 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8693 inst.instruction |= 0xf0000000;
8694 }
8695
8696 inst.instruction |= inst.operands[0].reg << 12;
8697 encode_arm_cp_address (1, TRUE, TRUE, 0);
8698 }
8699
8700 static void
8701 do_iwmmxt_wldstd (void)
8702 {
8703 inst.instruction |= inst.operands[0].reg << 12;
8704 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8705 && inst.operands[1].immisreg)
8706 {
8707 inst.instruction &= ~0x1a000ff;
8708 inst.instruction |= (0xf << 28);
8709 if (inst.operands[1].preind)
8710 inst.instruction |= PRE_INDEX;
8711 if (!inst.operands[1].negative)
8712 inst.instruction |= INDEX_UP;
8713 if (inst.operands[1].writeback)
8714 inst.instruction |= WRITE_BACK;
8715 inst.instruction |= inst.operands[1].reg << 16;
8716 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8717 inst.instruction |= inst.operands[1].imm;
8718 }
8719 else
8720 encode_arm_cp_address (1, TRUE, FALSE, 0);
8721 }
8722
8723 static void
8724 do_iwmmxt_wshufh (void)
8725 {
8726 inst.instruction |= inst.operands[0].reg << 12;
8727 inst.instruction |= inst.operands[1].reg << 16;
8728 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8729 inst.instruction |= (inst.operands[2].imm & 0x0f);
8730 }
8731
8732 static void
8733 do_iwmmxt_wzero (void)
8734 {
8735 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8736 inst.instruction |= inst.operands[0].reg;
8737 inst.instruction |= inst.operands[0].reg << 12;
8738 inst.instruction |= inst.operands[0].reg << 16;
8739 }
8740
8741 static void
8742 do_iwmmxt_wrwrwr_or_imm5 (void)
8743 {
8744 if (inst.operands[2].isreg)
8745 do_rd_rn_rm ();
8746 else {
8747 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8748 _("immediate operand requires iWMMXt2"));
8749 do_rd_rn ();
8750 if (inst.operands[2].imm == 0)
8751 {
8752 switch ((inst.instruction >> 20) & 0xf)
8753 {
8754 case 4:
8755 case 5:
8756 case 6:
8757 case 7:
8758 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8759 inst.operands[2].imm = 16;
8760 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8761 break;
8762 case 8:
8763 case 9:
8764 case 10:
8765 case 11:
8766 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8767 inst.operands[2].imm = 32;
8768 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8769 break;
8770 case 12:
8771 case 13:
8772 case 14:
8773 case 15:
8774 {
8775 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8776 unsigned long wrn;
8777 wrn = (inst.instruction >> 16) & 0xf;
8778 inst.instruction &= 0xff0fff0f;
8779 inst.instruction |= wrn;
8780 /* Bail out here; the instruction is now assembled. */
8781 return;
8782 }
8783 }
8784 }
8785 /* Map 32 -> 0, etc. */
8786 inst.operands[2].imm &= 0x1f;
8787 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8788 }
8789 }
8790 \f
8791 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8792 operations first, then control, shift, and load/store. */
8793
8794 /* Insns like "foo X,Y,Z". */
8795
8796 static void
8797 do_mav_triple (void)
8798 {
8799 inst.instruction |= inst.operands[0].reg << 16;
8800 inst.instruction |= inst.operands[1].reg;
8801 inst.instruction |= inst.operands[2].reg << 12;
8802 }
8803
8804 /* Insns like "foo W,X,Y,Z".
8805 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8806
8807 static void
8808 do_mav_quad (void)
8809 {
8810 inst.instruction |= inst.operands[0].reg << 5;
8811 inst.instruction |= inst.operands[1].reg << 12;
8812 inst.instruction |= inst.operands[2].reg << 16;
8813 inst.instruction |= inst.operands[3].reg;
8814 }
8815
8816 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8817 static void
8818 do_mav_dspsc (void)
8819 {
8820 inst.instruction |= inst.operands[1].reg << 12;
8821 }
8822
8823 /* Maverick shift immediate instructions.
8824 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8825 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8826
8827 static void
8828 do_mav_shift (void)
8829 {
8830 int imm = inst.operands[2].imm;
8831
8832 inst.instruction |= inst.operands[0].reg << 12;
8833 inst.instruction |= inst.operands[1].reg << 16;
8834
8835 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8836 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8837 Bit 4 should be 0. */
8838 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8839
8840 inst.instruction |= imm;
8841 }
8842 \f
8843 /* XScale instructions. Also sorted arithmetic before move. */
8844
8845 /* Xscale multiply-accumulate (argument parse)
8846 MIAcc acc0,Rm,Rs
8847 MIAPHcc acc0,Rm,Rs
8848 MIAxycc acc0,Rm,Rs. */
8849
8850 static void
8851 do_xsc_mia (void)
8852 {
8853 inst.instruction |= inst.operands[1].reg;
8854 inst.instruction |= inst.operands[2].reg << 12;
8855 }
8856
8857 /* Xscale move-accumulator-register (argument parse)
8858
8859 MARcc acc0,RdLo,RdHi. */
8860
8861 static void
8862 do_xsc_mar (void)
8863 {
8864 inst.instruction |= inst.operands[1].reg << 12;
8865 inst.instruction |= inst.operands[2].reg << 16;
8866 }
8867
8868 /* Xscale move-register-accumulator (argument parse)
8869
8870 MRAcc RdLo,RdHi,acc0. */
8871
8872 static void
8873 do_xsc_mra (void)
8874 {
8875 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8876 inst.instruction |= inst.operands[0].reg << 12;
8877 inst.instruction |= inst.operands[1].reg << 16;
8878 }
8879 \f
8880 /* Encoding functions relevant only to Thumb. */
8881
8882 /* inst.operands[i] is a shifted-register operand; encode
8883 it into inst.instruction in the format used by Thumb32. */
8884
8885 static void
8886 encode_thumb32_shifted_operand (int i)
8887 {
8888 unsigned int value = inst.reloc.exp.X_add_number;
8889 unsigned int shift = inst.operands[i].shift_kind;
8890
8891 constraint (inst.operands[i].immisreg,
8892 _("shift by register not allowed in thumb mode"));
8893 inst.instruction |= inst.operands[i].reg;
8894 if (shift == SHIFT_RRX)
8895 inst.instruction |= SHIFT_ROR << 4;
8896 else
8897 {
8898 constraint (inst.reloc.exp.X_op != O_constant,
8899 _("expression too complex"));
8900
8901 constraint (value > 32
8902 || (value == 32 && (shift == SHIFT_LSL
8903 || shift == SHIFT_ROR)),
8904 _("shift expression is too large"));
8905
8906 if (value == 0)
8907 shift = SHIFT_LSL;
8908 else if (value == 32)
8909 value = 0;
8910
8911 inst.instruction |= shift << 4;
8912 inst.instruction |= (value & 0x1c) << 10;
8913 inst.instruction |= (value & 0x03) << 6;
8914 }
8915 }
8916
8917
8918 /* inst.operands[i] was set up by parse_address. Encode it into a
8919 Thumb32 format load or store instruction. Reject forms that cannot
8920 be used with such instructions. If is_t is true, reject forms that
8921 cannot be used with a T instruction; if is_d is true, reject forms
8922 that cannot be used with a D instruction. If it is a store insn,
8923 reject PC in Rn. */
8924
8925 static void
8926 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8927 {
8928 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8929
8930 constraint (!inst.operands[i].isreg,
8931 _("Instruction does not support =N addresses"));
8932
8933 inst.instruction |= inst.operands[i].reg << 16;
8934 if (inst.operands[i].immisreg)
8935 {
8936 constraint (is_pc, BAD_PC_ADDRESSING);
8937 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8938 constraint (inst.operands[i].negative,
8939 _("Thumb does not support negative register indexing"));
8940 constraint (inst.operands[i].postind,
8941 _("Thumb does not support register post-indexing"));
8942 constraint (inst.operands[i].writeback,
8943 _("Thumb does not support register indexing with writeback"));
8944 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8945 _("Thumb supports only LSL in shifted register indexing"));
8946
8947 inst.instruction |= inst.operands[i].imm;
8948 if (inst.operands[i].shifted)
8949 {
8950 constraint (inst.reloc.exp.X_op != O_constant,
8951 _("expression too complex"));
8952 constraint (inst.reloc.exp.X_add_number < 0
8953 || inst.reloc.exp.X_add_number > 3,
8954 _("shift out of range"));
8955 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8956 }
8957 inst.reloc.type = BFD_RELOC_UNUSED;
8958 }
8959 else if (inst.operands[i].preind)
8960 {
8961 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
8962 constraint (is_t && inst.operands[i].writeback,
8963 _("cannot use writeback with this instruction"));
8964 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8965 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
8966
8967 if (is_d)
8968 {
8969 inst.instruction |= 0x01000000;
8970 if (inst.operands[i].writeback)
8971 inst.instruction |= 0x00200000;
8972 }
8973 else
8974 {
8975 inst.instruction |= 0x00000c00;
8976 if (inst.operands[i].writeback)
8977 inst.instruction |= 0x00000100;
8978 }
8979 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8980 }
8981 else if (inst.operands[i].postind)
8982 {
8983 gas_assert (inst.operands[i].writeback);
8984 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8985 constraint (is_t, _("cannot use post-indexing with this instruction"));
8986
8987 if (is_d)
8988 inst.instruction |= 0x00200000;
8989 else
8990 inst.instruction |= 0x00000900;
8991 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8992 }
8993 else /* unindexed - only for coprocessor */
8994 inst.error = _("instruction does not accept unindexed addressing");
8995 }
8996
8997 /* Table of Thumb instructions which exist in both 16- and 32-bit
8998 encodings (the latter only in post-V6T2 cores). The index is the
8999 value used in the insns table below. When there is more than one
9000 possible 16-bit encoding for the instruction, this table always
9001 holds variant (1).
9002 Also contains several pseudo-instructions used during relaxation. */
9003 #define T16_32_TAB \
9004 X(_adc, 4140, eb400000), \
9005 X(_adcs, 4140, eb500000), \
9006 X(_add, 1c00, eb000000), \
9007 X(_adds, 1c00, eb100000), \
9008 X(_addi, 0000, f1000000), \
9009 X(_addis, 0000, f1100000), \
9010 X(_add_pc,000f, f20f0000), \
9011 X(_add_sp,000d, f10d0000), \
9012 X(_adr, 000f, f20f0000), \
9013 X(_and, 4000, ea000000), \
9014 X(_ands, 4000, ea100000), \
9015 X(_asr, 1000, fa40f000), \
9016 X(_asrs, 1000, fa50f000), \
9017 X(_b, e000, f000b000), \
9018 X(_bcond, d000, f0008000), \
9019 X(_bic, 4380, ea200000), \
9020 X(_bics, 4380, ea300000), \
9021 X(_cmn, 42c0, eb100f00), \
9022 X(_cmp, 2800, ebb00f00), \
9023 X(_cpsie, b660, f3af8400), \
9024 X(_cpsid, b670, f3af8600), \
9025 X(_cpy, 4600, ea4f0000), \
9026 X(_dec_sp,80dd, f1ad0d00), \
9027 X(_eor, 4040, ea800000), \
9028 X(_eors, 4040, ea900000), \
9029 X(_inc_sp,00dd, f10d0d00), \
9030 X(_ldmia, c800, e8900000), \
9031 X(_ldr, 6800, f8500000), \
9032 X(_ldrb, 7800, f8100000), \
9033 X(_ldrh, 8800, f8300000), \
9034 X(_ldrsb, 5600, f9100000), \
9035 X(_ldrsh, 5e00, f9300000), \
9036 X(_ldr_pc,4800, f85f0000), \
9037 X(_ldr_pc2,4800, f85f0000), \
9038 X(_ldr_sp,9800, f85d0000), \
9039 X(_lsl, 0000, fa00f000), \
9040 X(_lsls, 0000, fa10f000), \
9041 X(_lsr, 0800, fa20f000), \
9042 X(_lsrs, 0800, fa30f000), \
9043 X(_mov, 2000, ea4f0000), \
9044 X(_movs, 2000, ea5f0000), \
9045 X(_mul, 4340, fb00f000), \
9046 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9047 X(_mvn, 43c0, ea6f0000), \
9048 X(_mvns, 43c0, ea7f0000), \
9049 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9050 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9051 X(_orr, 4300, ea400000), \
9052 X(_orrs, 4300, ea500000), \
9053 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9054 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9055 X(_rev, ba00, fa90f080), \
9056 X(_rev16, ba40, fa90f090), \
9057 X(_revsh, bac0, fa90f0b0), \
9058 X(_ror, 41c0, fa60f000), \
9059 X(_rors, 41c0, fa70f000), \
9060 X(_sbc, 4180, eb600000), \
9061 X(_sbcs, 4180, eb700000), \
9062 X(_stmia, c000, e8800000), \
9063 X(_str, 6000, f8400000), \
9064 X(_strb, 7000, f8000000), \
9065 X(_strh, 8000, f8200000), \
9066 X(_str_sp,9000, f84d0000), \
9067 X(_sub, 1e00, eba00000), \
9068 X(_subs, 1e00, ebb00000), \
9069 X(_subi, 8000, f1a00000), \
9070 X(_subis, 8000, f1b00000), \
9071 X(_sxtb, b240, fa4ff080), \
9072 X(_sxth, b200, fa0ff080), \
9073 X(_tst, 4200, ea100f00), \
9074 X(_uxtb, b2c0, fa5ff080), \
9075 X(_uxth, b280, fa1ff080), \
9076 X(_nop, bf00, f3af8000), \
9077 X(_yield, bf10, f3af8001), \
9078 X(_wfe, bf20, f3af8002), \
9079 X(_wfi, bf30, f3af8003), \
9080 X(_sev, bf40, f3af8004),
9081
9082 /* To catch errors in encoding functions, the codes are all offset by
9083 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9084 as 16-bit instructions. */
9085 #define X(a,b,c) T_MNEM##a
9086 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9087 #undef X
9088
9089 #define X(a,b,c) 0x##b
9090 static const unsigned short thumb_op16[] = { T16_32_TAB };
9091 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9092 #undef X
9093
9094 #define X(a,b,c) 0x##c
9095 static const unsigned int thumb_op32[] = { T16_32_TAB };
9096 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9097 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9098 #undef X
9099 #undef T16_32_TAB
9100
9101 /* Thumb instruction encoders, in alphabetical order. */
9102
9103 /* ADDW or SUBW. */
9104
9105 static void
9106 do_t_add_sub_w (void)
9107 {
9108 int Rd, Rn;
9109
9110 Rd = inst.operands[0].reg;
9111 Rn = inst.operands[1].reg;
9112
9113 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9114 is the SP-{plus,minus}-immediate form of the instruction. */
9115 if (Rn == REG_SP)
9116 constraint (Rd == REG_PC, BAD_PC);
9117 else
9118 reject_bad_reg (Rd);
9119
9120 inst.instruction |= (Rn << 16) | (Rd << 8);
9121 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9122 }
9123
9124 /* Parse an add or subtract instruction. We get here with inst.instruction
9125 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9126
9127 static void
9128 do_t_add_sub (void)
9129 {
9130 int Rd, Rs, Rn;
9131
9132 Rd = inst.operands[0].reg;
9133 Rs = (inst.operands[1].present
9134 ? inst.operands[1].reg /* Rd, Rs, foo */
9135 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9136
9137 if (Rd == REG_PC)
9138 set_it_insn_type_last ();
9139
9140 if (unified_syntax)
9141 {
9142 bfd_boolean flags;
9143 bfd_boolean narrow;
9144 int opcode;
9145
9146 flags = (inst.instruction == T_MNEM_adds
9147 || inst.instruction == T_MNEM_subs);
9148 if (flags)
9149 narrow = !in_it_block ();
9150 else
9151 narrow = in_it_block ();
9152 if (!inst.operands[2].isreg)
9153 {
9154 int add;
9155
9156 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9157
9158 add = (inst.instruction == T_MNEM_add
9159 || inst.instruction == T_MNEM_adds);
9160 opcode = 0;
9161 if (inst.size_req != 4)
9162 {
9163 /* Attempt to use a narrow opcode, with relaxation if
9164 appropriate. */
9165 if (Rd == REG_SP && Rs == REG_SP && !flags)
9166 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9167 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9168 opcode = T_MNEM_add_sp;
9169 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9170 opcode = T_MNEM_add_pc;
9171 else if (Rd <= 7 && Rs <= 7 && narrow)
9172 {
9173 if (flags)
9174 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9175 else
9176 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9177 }
9178 if (opcode)
9179 {
9180 inst.instruction = THUMB_OP16(opcode);
9181 inst.instruction |= (Rd << 4) | Rs;
9182 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9183 if (inst.size_req != 2)
9184 inst.relax = opcode;
9185 }
9186 else
9187 constraint (inst.size_req == 2, BAD_HIREG);
9188 }
9189 if (inst.size_req == 4
9190 || (inst.size_req != 2 && !opcode))
9191 {
9192 if (Rd == REG_PC)
9193 {
9194 constraint (add, BAD_PC);
9195 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9196 _("only SUBS PC, LR, #const allowed"));
9197 constraint (inst.reloc.exp.X_op != O_constant,
9198 _("expression too complex"));
9199 constraint (inst.reloc.exp.X_add_number < 0
9200 || inst.reloc.exp.X_add_number > 0xff,
9201 _("immediate value out of range"));
9202 inst.instruction = T2_SUBS_PC_LR
9203 | inst.reloc.exp.X_add_number;
9204 inst.reloc.type = BFD_RELOC_UNUSED;
9205 return;
9206 }
9207 else if (Rs == REG_PC)
9208 {
9209 /* Always use addw/subw. */
9210 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9211 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9212 }
9213 else
9214 {
9215 inst.instruction = THUMB_OP32 (inst.instruction);
9216 inst.instruction = (inst.instruction & 0xe1ffffff)
9217 | 0x10000000;
9218 if (flags)
9219 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9220 else
9221 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9222 }
9223 inst.instruction |= Rd << 8;
9224 inst.instruction |= Rs << 16;
9225 }
9226 }
9227 else
9228 {
9229 Rn = inst.operands[2].reg;
9230 /* See if we can do this with a 16-bit instruction. */
9231 if (!inst.operands[2].shifted && inst.size_req != 4)
9232 {
9233 if (Rd > 7 || Rs > 7 || Rn > 7)
9234 narrow = FALSE;
9235
9236 if (narrow)
9237 {
9238 inst.instruction = ((inst.instruction == T_MNEM_adds
9239 || inst.instruction == T_MNEM_add)
9240 ? T_OPCODE_ADD_R3
9241 : T_OPCODE_SUB_R3);
9242 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9243 return;
9244 }
9245
9246 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9247 {
9248 /* Thumb-1 cores (except v6-M) require at least one high
9249 register in a narrow non flag setting add. */
9250 if (Rd > 7 || Rn > 7
9251 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9252 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9253 {
9254 if (Rd == Rn)
9255 {
9256 Rn = Rs;
9257 Rs = Rd;
9258 }
9259 inst.instruction = T_OPCODE_ADD_HI;
9260 inst.instruction |= (Rd & 8) << 4;
9261 inst.instruction |= (Rd & 7);
9262 inst.instruction |= Rn << 3;
9263 return;
9264 }
9265 }
9266 }
9267
9268 constraint (Rd == REG_PC, BAD_PC);
9269 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9270 constraint (Rs == REG_PC, BAD_PC);
9271 reject_bad_reg (Rn);
9272
9273 /* If we get here, it can't be done in 16 bits. */
9274 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9275 _("shift must be constant"));
9276 inst.instruction = THUMB_OP32 (inst.instruction);
9277 inst.instruction |= Rd << 8;
9278 inst.instruction |= Rs << 16;
9279 encode_thumb32_shifted_operand (2);
9280 }
9281 }
9282 else
9283 {
9284 constraint (inst.instruction == T_MNEM_adds
9285 || inst.instruction == T_MNEM_subs,
9286 BAD_THUMB32);
9287
9288 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9289 {
9290 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9291 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9292 BAD_HIREG);
9293
9294 inst.instruction = (inst.instruction == T_MNEM_add
9295 ? 0x0000 : 0x8000);
9296 inst.instruction |= (Rd << 4) | Rs;
9297 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9298 return;
9299 }
9300
9301 Rn = inst.operands[2].reg;
9302 constraint (inst.operands[2].shifted, _("unshifted register required"));
9303
9304 /* We now have Rd, Rs, and Rn set to registers. */
9305 if (Rd > 7 || Rs > 7 || Rn > 7)
9306 {
9307 /* Can't do this for SUB. */
9308 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9309 inst.instruction = T_OPCODE_ADD_HI;
9310 inst.instruction |= (Rd & 8) << 4;
9311 inst.instruction |= (Rd & 7);
9312 if (Rs == Rd)
9313 inst.instruction |= Rn << 3;
9314 else if (Rn == Rd)
9315 inst.instruction |= Rs << 3;
9316 else
9317 constraint (1, _("dest must overlap one source register"));
9318 }
9319 else
9320 {
9321 inst.instruction = (inst.instruction == T_MNEM_add
9322 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9323 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9324 }
9325 }
9326 }
9327
9328 static void
9329 do_t_adr (void)
9330 {
9331 unsigned Rd;
9332
9333 Rd = inst.operands[0].reg;
9334 reject_bad_reg (Rd);
9335
9336 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9337 {
9338 /* Defer to section relaxation. */
9339 inst.relax = inst.instruction;
9340 inst.instruction = THUMB_OP16 (inst.instruction);
9341 inst.instruction |= Rd << 4;
9342 }
9343 else if (unified_syntax && inst.size_req != 2)
9344 {
9345 /* Generate a 32-bit opcode. */
9346 inst.instruction = THUMB_OP32 (inst.instruction);
9347 inst.instruction |= Rd << 8;
9348 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9349 inst.reloc.pc_rel = 1;
9350 }
9351 else
9352 {
9353 /* Generate a 16-bit opcode. */
9354 inst.instruction = THUMB_OP16 (inst.instruction);
9355 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9356 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9357 inst.reloc.pc_rel = 1;
9358
9359 inst.instruction |= Rd << 4;
9360 }
9361 }
9362
9363 /* Arithmetic instructions for which there is just one 16-bit
9364 instruction encoding, and it allows only two low registers.
9365 For maximal compatibility with ARM syntax, we allow three register
9366 operands even when Thumb-32 instructions are not available, as long
9367 as the first two are identical. For instance, both "sbc r0,r1" and
9368 "sbc r0,r0,r1" are allowed. */
9369 static void
9370 do_t_arit3 (void)
9371 {
9372 int Rd, Rs, Rn;
9373
9374 Rd = inst.operands[0].reg;
9375 Rs = (inst.operands[1].present
9376 ? inst.operands[1].reg /* Rd, Rs, foo */
9377 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9378 Rn = inst.operands[2].reg;
9379
9380 reject_bad_reg (Rd);
9381 reject_bad_reg (Rs);
9382 if (inst.operands[2].isreg)
9383 reject_bad_reg (Rn);
9384
9385 if (unified_syntax)
9386 {
9387 if (!inst.operands[2].isreg)
9388 {
9389 /* For an immediate, we always generate a 32-bit opcode;
9390 section relaxation will shrink it later if possible. */
9391 inst.instruction = THUMB_OP32 (inst.instruction);
9392 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9393 inst.instruction |= Rd << 8;
9394 inst.instruction |= Rs << 16;
9395 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9396 }
9397 else
9398 {
9399 bfd_boolean narrow;
9400
9401 /* See if we can do this with a 16-bit instruction. */
9402 if (THUMB_SETS_FLAGS (inst.instruction))
9403 narrow = !in_it_block ();
9404 else
9405 narrow = in_it_block ();
9406
9407 if (Rd > 7 || Rn > 7 || Rs > 7)
9408 narrow = FALSE;
9409 if (inst.operands[2].shifted)
9410 narrow = FALSE;
9411 if (inst.size_req == 4)
9412 narrow = FALSE;
9413
9414 if (narrow
9415 && Rd == Rs)
9416 {
9417 inst.instruction = THUMB_OP16 (inst.instruction);
9418 inst.instruction |= Rd;
9419 inst.instruction |= Rn << 3;
9420 return;
9421 }
9422
9423 /* If we get here, it can't be done in 16 bits. */
9424 constraint (inst.operands[2].shifted
9425 && inst.operands[2].immisreg,
9426 _("shift must be constant"));
9427 inst.instruction = THUMB_OP32 (inst.instruction);
9428 inst.instruction |= Rd << 8;
9429 inst.instruction |= Rs << 16;
9430 encode_thumb32_shifted_operand (2);
9431 }
9432 }
9433 else
9434 {
9435 /* On its face this is a lie - the instruction does set the
9436 flags. However, the only supported mnemonic in this mode
9437 says it doesn't. */
9438 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9439
9440 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9441 _("unshifted register required"));
9442 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9443 constraint (Rd != Rs,
9444 _("dest and source1 must be the same register"));
9445
9446 inst.instruction = THUMB_OP16 (inst.instruction);
9447 inst.instruction |= Rd;
9448 inst.instruction |= Rn << 3;
9449 }
9450 }
9451
9452 /* Similarly, but for instructions where the arithmetic operation is
9453 commutative, so we can allow either of them to be different from
9454 the destination operand in a 16-bit instruction. For instance, all
9455 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9456 accepted. */
9457 static void
9458 do_t_arit3c (void)
9459 {
9460 int Rd, Rs, Rn;
9461
9462 Rd = inst.operands[0].reg;
9463 Rs = (inst.operands[1].present
9464 ? inst.operands[1].reg /* Rd, Rs, foo */
9465 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9466 Rn = inst.operands[2].reg;
9467
9468 reject_bad_reg (Rd);
9469 reject_bad_reg (Rs);
9470 if (inst.operands[2].isreg)
9471 reject_bad_reg (Rn);
9472
9473 if (unified_syntax)
9474 {
9475 if (!inst.operands[2].isreg)
9476 {
9477 /* For an immediate, we always generate a 32-bit opcode;
9478 section relaxation will shrink it later if possible. */
9479 inst.instruction = THUMB_OP32 (inst.instruction);
9480 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9481 inst.instruction |= Rd << 8;
9482 inst.instruction |= Rs << 16;
9483 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9484 }
9485 else
9486 {
9487 bfd_boolean narrow;
9488
9489 /* See if we can do this with a 16-bit instruction. */
9490 if (THUMB_SETS_FLAGS (inst.instruction))
9491 narrow = !in_it_block ();
9492 else
9493 narrow = in_it_block ();
9494
9495 if (Rd > 7 || Rn > 7 || Rs > 7)
9496 narrow = FALSE;
9497 if (inst.operands[2].shifted)
9498 narrow = FALSE;
9499 if (inst.size_req == 4)
9500 narrow = FALSE;
9501
9502 if (narrow)
9503 {
9504 if (Rd == Rs)
9505 {
9506 inst.instruction = THUMB_OP16 (inst.instruction);
9507 inst.instruction |= Rd;
9508 inst.instruction |= Rn << 3;
9509 return;
9510 }
9511 if (Rd == Rn)
9512 {
9513 inst.instruction = THUMB_OP16 (inst.instruction);
9514 inst.instruction |= Rd;
9515 inst.instruction |= Rs << 3;
9516 return;
9517 }
9518 }
9519
9520 /* If we get here, it can't be done in 16 bits. */
9521 constraint (inst.operands[2].shifted
9522 && inst.operands[2].immisreg,
9523 _("shift must be constant"));
9524 inst.instruction = THUMB_OP32 (inst.instruction);
9525 inst.instruction |= Rd << 8;
9526 inst.instruction |= Rs << 16;
9527 encode_thumb32_shifted_operand (2);
9528 }
9529 }
9530 else
9531 {
9532 /* On its face this is a lie - the instruction does set the
9533 flags. However, the only supported mnemonic in this mode
9534 says it doesn't. */
9535 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9536
9537 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9538 _("unshifted register required"));
9539 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9540
9541 inst.instruction = THUMB_OP16 (inst.instruction);
9542 inst.instruction |= Rd;
9543
9544 if (Rd == Rs)
9545 inst.instruction |= Rn << 3;
9546 else if (Rd == Rn)
9547 inst.instruction |= Rs << 3;
9548 else
9549 constraint (1, _("dest must overlap one source register"));
9550 }
9551 }
9552
9553 static void
9554 do_t_barrier (void)
9555 {
9556 if (inst.operands[0].present)
9557 {
9558 constraint ((inst.instruction & 0xf0) != 0x40
9559 && inst.operands[0].imm > 0xf
9560 && inst.operands[0].imm < 0x0,
9561 _("bad barrier type"));
9562 inst.instruction |= inst.operands[0].imm;
9563 }
9564 else
9565 inst.instruction |= 0xf;
9566 }
9567
9568 static void
9569 do_t_bfc (void)
9570 {
9571 unsigned Rd;
9572 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9573 constraint (msb > 32, _("bit-field extends past end of register"));
9574 /* The instruction encoding stores the LSB and MSB,
9575 not the LSB and width. */
9576 Rd = inst.operands[0].reg;
9577 reject_bad_reg (Rd);
9578 inst.instruction |= Rd << 8;
9579 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9580 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9581 inst.instruction |= msb - 1;
9582 }
9583
9584 static void
9585 do_t_bfi (void)
9586 {
9587 int Rd, Rn;
9588 unsigned int msb;
9589
9590 Rd = inst.operands[0].reg;
9591 reject_bad_reg (Rd);
9592
9593 /* #0 in second position is alternative syntax for bfc, which is
9594 the same instruction but with REG_PC in the Rm field. */
9595 if (!inst.operands[1].isreg)
9596 Rn = REG_PC;
9597 else
9598 {
9599 Rn = inst.operands[1].reg;
9600 reject_bad_reg (Rn);
9601 }
9602
9603 msb = inst.operands[2].imm + inst.operands[3].imm;
9604 constraint (msb > 32, _("bit-field extends past end of register"));
9605 /* The instruction encoding stores the LSB and MSB,
9606 not the LSB and width. */
9607 inst.instruction |= Rd << 8;
9608 inst.instruction |= Rn << 16;
9609 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9610 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9611 inst.instruction |= msb - 1;
9612 }
9613
9614 static void
9615 do_t_bfx (void)
9616 {
9617 unsigned Rd, Rn;
9618
9619 Rd = inst.operands[0].reg;
9620 Rn = inst.operands[1].reg;
9621
9622 reject_bad_reg (Rd);
9623 reject_bad_reg (Rn);
9624
9625 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9626 _("bit-field extends past end of register"));
9627 inst.instruction |= Rd << 8;
9628 inst.instruction |= Rn << 16;
9629 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9630 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9631 inst.instruction |= inst.operands[3].imm - 1;
9632 }
9633
9634 /* ARM V5 Thumb BLX (argument parse)
9635 BLX <target_addr> which is BLX(1)
9636 BLX <Rm> which is BLX(2)
9637 Unfortunately, there are two different opcodes for this mnemonic.
9638 So, the insns[].value is not used, and the code here zaps values
9639 into inst.instruction.
9640
9641 ??? How to take advantage of the additional two bits of displacement
9642 available in Thumb32 mode? Need new relocation? */
9643
9644 static void
9645 do_t_blx (void)
9646 {
9647 set_it_insn_type_last ();
9648
9649 if (inst.operands[0].isreg)
9650 {
9651 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9652 /* We have a register, so this is BLX(2). */
9653 inst.instruction |= inst.operands[0].reg << 3;
9654 }
9655 else
9656 {
9657 /* No register. This must be BLX(1). */
9658 inst.instruction = 0xf000e800;
9659 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9660 inst.reloc.pc_rel = 1;
9661 }
9662 }
9663
9664 static void
9665 do_t_branch (void)
9666 {
9667 int opcode;
9668 int cond;
9669
9670 cond = inst.cond;
9671 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9672
9673 if (in_it_block ())
9674 {
9675 /* Conditional branches inside IT blocks are encoded as unconditional
9676 branches. */
9677 cond = COND_ALWAYS;
9678 }
9679 else
9680 cond = inst.cond;
9681
9682 if (cond != COND_ALWAYS)
9683 opcode = T_MNEM_bcond;
9684 else
9685 opcode = inst.instruction;
9686
9687 if (unified_syntax && inst.size_req == 4)
9688 {
9689 inst.instruction = THUMB_OP32(opcode);
9690 if (cond == COND_ALWAYS)
9691 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9692 else
9693 {
9694 gas_assert (cond != 0xF);
9695 inst.instruction |= cond << 22;
9696 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9697 }
9698 }
9699 else
9700 {
9701 inst.instruction = THUMB_OP16(opcode);
9702 if (cond == COND_ALWAYS)
9703 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9704 else
9705 {
9706 inst.instruction |= cond << 8;
9707 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9708 }
9709 /* Allow section relaxation. */
9710 if (unified_syntax && inst.size_req != 2)
9711 inst.relax = opcode;
9712 }
9713
9714 inst.reloc.pc_rel = 1;
9715 }
9716
9717 static void
9718 do_t_bkpt (void)
9719 {
9720 constraint (inst.cond != COND_ALWAYS,
9721 _("instruction is always unconditional"));
9722 if (inst.operands[0].present)
9723 {
9724 constraint (inst.operands[0].imm > 255,
9725 _("immediate value out of range"));
9726 inst.instruction |= inst.operands[0].imm;
9727 set_it_insn_type (NEUTRAL_IT_INSN);
9728 }
9729 }
9730
9731 static void
9732 do_t_branch23 (void)
9733 {
9734 set_it_insn_type_last ();
9735 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9736 inst.reloc.pc_rel = 1;
9737
9738 #if defined(OBJ_COFF)
9739 /* If the destination of the branch is a defined symbol which does not have
9740 the THUMB_FUNC attribute, then we must be calling a function which has
9741 the (interfacearm) attribute. We look for the Thumb entry point to that
9742 function and change the branch to refer to that function instead. */
9743 if ( inst.reloc.exp.X_op == O_symbol
9744 && inst.reloc.exp.X_add_symbol != NULL
9745 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9746 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9747 inst.reloc.exp.X_add_symbol =
9748 find_real_start (inst.reloc.exp.X_add_symbol);
9749 #endif
9750 }
9751
9752 static void
9753 do_t_bx (void)
9754 {
9755 set_it_insn_type_last ();
9756 inst.instruction |= inst.operands[0].reg << 3;
9757 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9758 should cause the alignment to be checked once it is known. This is
9759 because BX PC only works if the instruction is word aligned. */
9760 }
9761
9762 static void
9763 do_t_bxj (void)
9764 {
9765 int Rm;
9766
9767 set_it_insn_type_last ();
9768 Rm = inst.operands[0].reg;
9769 reject_bad_reg (Rm);
9770 inst.instruction |= Rm << 16;
9771 }
9772
9773 static void
9774 do_t_clz (void)
9775 {
9776 unsigned Rd;
9777 unsigned Rm;
9778
9779 Rd = inst.operands[0].reg;
9780 Rm = inst.operands[1].reg;
9781
9782 reject_bad_reg (Rd);
9783 reject_bad_reg (Rm);
9784
9785 inst.instruction |= Rd << 8;
9786 inst.instruction |= Rm << 16;
9787 inst.instruction |= Rm;
9788 }
9789
9790 static void
9791 do_t_cps (void)
9792 {
9793 set_it_insn_type (OUTSIDE_IT_INSN);
9794 inst.instruction |= inst.operands[0].imm;
9795 }
9796
9797 static void
9798 do_t_cpsi (void)
9799 {
9800 set_it_insn_type (OUTSIDE_IT_INSN);
9801 if (unified_syntax
9802 && (inst.operands[1].present || inst.size_req == 4)
9803 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9804 {
9805 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9806 inst.instruction = 0xf3af8000;
9807 inst.instruction |= imod << 9;
9808 inst.instruction |= inst.operands[0].imm << 5;
9809 if (inst.operands[1].present)
9810 inst.instruction |= 0x100 | inst.operands[1].imm;
9811 }
9812 else
9813 {
9814 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9815 && (inst.operands[0].imm & 4),
9816 _("selected processor does not support 'A' form "
9817 "of this instruction"));
9818 constraint (inst.operands[1].present || inst.size_req == 4,
9819 _("Thumb does not support the 2-argument "
9820 "form of this instruction"));
9821 inst.instruction |= inst.operands[0].imm;
9822 }
9823 }
9824
9825 /* THUMB CPY instruction (argument parse). */
9826
9827 static void
9828 do_t_cpy (void)
9829 {
9830 if (inst.size_req == 4)
9831 {
9832 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9833 inst.instruction |= inst.operands[0].reg << 8;
9834 inst.instruction |= inst.operands[1].reg;
9835 }
9836 else
9837 {
9838 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9839 inst.instruction |= (inst.operands[0].reg & 0x7);
9840 inst.instruction |= inst.operands[1].reg << 3;
9841 }
9842 }
9843
9844 static void
9845 do_t_cbz (void)
9846 {
9847 set_it_insn_type (OUTSIDE_IT_INSN);
9848 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9849 inst.instruction |= inst.operands[0].reg;
9850 inst.reloc.pc_rel = 1;
9851 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9852 }
9853
9854 static void
9855 do_t_dbg (void)
9856 {
9857 inst.instruction |= inst.operands[0].imm;
9858 }
9859
9860 static void
9861 do_t_div (void)
9862 {
9863 unsigned Rd, Rn, Rm;
9864
9865 Rd = inst.operands[0].reg;
9866 Rn = (inst.operands[1].present
9867 ? inst.operands[1].reg : Rd);
9868 Rm = inst.operands[2].reg;
9869
9870 reject_bad_reg (Rd);
9871 reject_bad_reg (Rn);
9872 reject_bad_reg (Rm);
9873
9874 inst.instruction |= Rd << 8;
9875 inst.instruction |= Rn << 16;
9876 inst.instruction |= Rm;
9877 }
9878
9879 static void
9880 do_t_hint (void)
9881 {
9882 if (unified_syntax && inst.size_req == 4)
9883 inst.instruction = THUMB_OP32 (inst.instruction);
9884 else
9885 inst.instruction = THUMB_OP16 (inst.instruction);
9886 }
9887
9888 static void
9889 do_t_it (void)
9890 {
9891 unsigned int cond = inst.operands[0].imm;
9892
9893 set_it_insn_type (IT_INSN);
9894 now_it.mask = (inst.instruction & 0xf) | 0x10;
9895 now_it.cc = cond;
9896
9897 /* If the condition is a negative condition, invert the mask. */
9898 if ((cond & 0x1) == 0x0)
9899 {
9900 unsigned int mask = inst.instruction & 0x000f;
9901
9902 if ((mask & 0x7) == 0)
9903 /* no conversion needed */;
9904 else if ((mask & 0x3) == 0)
9905 mask ^= 0x8;
9906 else if ((mask & 0x1) == 0)
9907 mask ^= 0xC;
9908 else
9909 mask ^= 0xE;
9910
9911 inst.instruction &= 0xfff0;
9912 inst.instruction |= mask;
9913 }
9914
9915 inst.instruction |= cond << 4;
9916 }
9917
9918 /* Helper function used for both push/pop and ldm/stm. */
9919 static void
9920 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9921 {
9922 bfd_boolean load;
9923
9924 load = (inst.instruction & (1 << 20)) != 0;
9925
9926 if (mask & (1 << 13))
9927 inst.error = _("SP not allowed in register list");
9928
9929 if ((mask & (1 << base)) != 0
9930 && writeback)
9931 inst.error = _("having the base register in the register list when "
9932 "using write back is UNPREDICTABLE");
9933
9934 if (load)
9935 {
9936 if (mask & (1 << 15))
9937 {
9938 if (mask & (1 << 14))
9939 inst.error = _("LR and PC should not both be in register list");
9940 else
9941 set_it_insn_type_last ();
9942 }
9943 }
9944 else
9945 {
9946 if (mask & (1 << 15))
9947 inst.error = _("PC not allowed in register list");
9948 }
9949
9950 if ((mask & (mask - 1)) == 0)
9951 {
9952 /* Single register transfers implemented as str/ldr. */
9953 if (writeback)
9954 {
9955 if (inst.instruction & (1 << 23))
9956 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9957 else
9958 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9959 }
9960 else
9961 {
9962 if (inst.instruction & (1 << 23))
9963 inst.instruction = 0x00800000; /* ia -> [base] */
9964 else
9965 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9966 }
9967
9968 inst.instruction |= 0xf8400000;
9969 if (load)
9970 inst.instruction |= 0x00100000;
9971
9972 mask = ffs (mask) - 1;
9973 mask <<= 12;
9974 }
9975 else if (writeback)
9976 inst.instruction |= WRITE_BACK;
9977
9978 inst.instruction |= mask;
9979 inst.instruction |= base << 16;
9980 }
9981
9982 static void
9983 do_t_ldmstm (void)
9984 {
9985 /* This really doesn't seem worth it. */
9986 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9987 _("expression too complex"));
9988 constraint (inst.operands[1].writeback,
9989 _("Thumb load/store multiple does not support {reglist}^"));
9990
9991 if (unified_syntax)
9992 {
9993 bfd_boolean narrow;
9994 unsigned mask;
9995
9996 narrow = FALSE;
9997 /* See if we can use a 16-bit instruction. */
9998 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9999 && inst.size_req != 4
10000 && !(inst.operands[1].imm & ~0xff))
10001 {
10002 mask = 1 << inst.operands[0].reg;
10003
10004 if (inst.operands[0].reg <= 7)
10005 {
10006 if (inst.instruction == T_MNEM_stmia
10007 ? inst.operands[0].writeback
10008 : (inst.operands[0].writeback
10009 == !(inst.operands[1].imm & mask)))
10010 {
10011 if (inst.instruction == T_MNEM_stmia
10012 && (inst.operands[1].imm & mask)
10013 && (inst.operands[1].imm & (mask - 1)))
10014 as_warn (_("value stored for r%d is UNKNOWN"),
10015 inst.operands[0].reg);
10016
10017 inst.instruction = THUMB_OP16 (inst.instruction);
10018 inst.instruction |= inst.operands[0].reg << 8;
10019 inst.instruction |= inst.operands[1].imm;
10020 narrow = TRUE;
10021 }
10022 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10023 {
10024 /* This means 1 register in reg list one of 3 situations:
10025 1. Instruction is stmia, but without writeback.
10026 2. lmdia without writeback, but with Rn not in
10027 reglist.
10028 3. ldmia with writeback, but with Rn in reglist.
10029 Case 3 is UNPREDICTABLE behaviour, so we handle
10030 case 1 and 2 which can be converted into a 16-bit
10031 str or ldr. The SP cases are handled below. */
10032 unsigned long opcode;
10033 /* First, record an error for Case 3. */
10034 if (inst.operands[1].imm & mask
10035 && inst.operands[0].writeback)
10036 inst.error =
10037 _("having the base register in the register list when "
10038 "using write back is UNPREDICTABLE");
10039
10040 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10041 : T_MNEM_ldr);
10042 inst.instruction = THUMB_OP16 (opcode);
10043 inst.instruction |= inst.operands[0].reg << 3;
10044 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10045 narrow = TRUE;
10046 }
10047 }
10048 else if (inst.operands[0] .reg == REG_SP)
10049 {
10050 if (inst.operands[0].writeback)
10051 {
10052 inst.instruction =
10053 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10054 ? T_MNEM_push : T_MNEM_pop);
10055 inst.instruction |= inst.operands[1].imm;
10056 narrow = TRUE;
10057 }
10058 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10059 {
10060 inst.instruction =
10061 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10062 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10063 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10064 narrow = TRUE;
10065 }
10066 }
10067 }
10068
10069 if (!narrow)
10070 {
10071 if (inst.instruction < 0xffff)
10072 inst.instruction = THUMB_OP32 (inst.instruction);
10073
10074 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10075 inst.operands[0].writeback);
10076 }
10077 }
10078 else
10079 {
10080 constraint (inst.operands[0].reg > 7
10081 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10082 constraint (inst.instruction != T_MNEM_ldmia
10083 && inst.instruction != T_MNEM_stmia,
10084 _("Thumb-2 instruction only valid in unified syntax"));
10085 if (inst.instruction == T_MNEM_stmia)
10086 {
10087 if (!inst.operands[0].writeback)
10088 as_warn (_("this instruction will write back the base register"));
10089 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10090 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10091 as_warn (_("value stored for r%d is UNKNOWN"),
10092 inst.operands[0].reg);
10093 }
10094 else
10095 {
10096 if (!inst.operands[0].writeback
10097 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10098 as_warn (_("this instruction will write back the base register"));
10099 else if (inst.operands[0].writeback
10100 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10101 as_warn (_("this instruction will not write back the base register"));
10102 }
10103
10104 inst.instruction = THUMB_OP16 (inst.instruction);
10105 inst.instruction |= inst.operands[0].reg << 8;
10106 inst.instruction |= inst.operands[1].imm;
10107 }
10108 }
10109
10110 static void
10111 do_t_ldrex (void)
10112 {
10113 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10114 || inst.operands[1].postind || inst.operands[1].writeback
10115 || inst.operands[1].immisreg || inst.operands[1].shifted
10116 || inst.operands[1].negative,
10117 BAD_ADDR_MODE);
10118
10119 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10120
10121 inst.instruction |= inst.operands[0].reg << 12;
10122 inst.instruction |= inst.operands[1].reg << 16;
10123 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10124 }
10125
10126 static void
10127 do_t_ldrexd (void)
10128 {
10129 if (!inst.operands[1].present)
10130 {
10131 constraint (inst.operands[0].reg == REG_LR,
10132 _("r14 not allowed as first register "
10133 "when second register is omitted"));
10134 inst.operands[1].reg = inst.operands[0].reg + 1;
10135 }
10136 constraint (inst.operands[0].reg == inst.operands[1].reg,
10137 BAD_OVERLAP);
10138
10139 inst.instruction |= inst.operands[0].reg << 12;
10140 inst.instruction |= inst.operands[1].reg << 8;
10141 inst.instruction |= inst.operands[2].reg << 16;
10142 }
10143
10144 static void
10145 do_t_ldst (void)
10146 {
10147 unsigned long opcode;
10148 int Rn;
10149
10150 if (inst.operands[0].isreg
10151 && !inst.operands[0].preind
10152 && inst.operands[0].reg == REG_PC)
10153 set_it_insn_type_last ();
10154
10155 opcode = inst.instruction;
10156 if (unified_syntax)
10157 {
10158 if (!inst.operands[1].isreg)
10159 {
10160 if (opcode <= 0xffff)
10161 inst.instruction = THUMB_OP32 (opcode);
10162 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10163 return;
10164 }
10165 if (inst.operands[1].isreg
10166 && !inst.operands[1].writeback
10167 && !inst.operands[1].shifted && !inst.operands[1].postind
10168 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10169 && opcode <= 0xffff
10170 && inst.size_req != 4)
10171 {
10172 /* Insn may have a 16-bit form. */
10173 Rn = inst.operands[1].reg;
10174 if (inst.operands[1].immisreg)
10175 {
10176 inst.instruction = THUMB_OP16 (opcode);
10177 /* [Rn, Rik] */
10178 if (Rn <= 7 && inst.operands[1].imm <= 7)
10179 goto op16;
10180 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10181 reject_bad_reg (inst.operands[1].imm);
10182 }
10183 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10184 && opcode != T_MNEM_ldrsb)
10185 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10186 || (Rn == REG_SP && opcode == T_MNEM_str))
10187 {
10188 /* [Rn, #const] */
10189 if (Rn > 7)
10190 {
10191 if (Rn == REG_PC)
10192 {
10193 if (inst.reloc.pc_rel)
10194 opcode = T_MNEM_ldr_pc2;
10195 else
10196 opcode = T_MNEM_ldr_pc;
10197 }
10198 else
10199 {
10200 if (opcode == T_MNEM_ldr)
10201 opcode = T_MNEM_ldr_sp;
10202 else
10203 opcode = T_MNEM_str_sp;
10204 }
10205 inst.instruction = inst.operands[0].reg << 8;
10206 }
10207 else
10208 {
10209 inst.instruction = inst.operands[0].reg;
10210 inst.instruction |= inst.operands[1].reg << 3;
10211 }
10212 inst.instruction |= THUMB_OP16 (opcode);
10213 if (inst.size_req == 2)
10214 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10215 else
10216 inst.relax = opcode;
10217 return;
10218 }
10219 }
10220 /* Definitely a 32-bit variant. */
10221
10222 /* Do some validations regarding addressing modes. */
10223 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10224 && opcode != T_MNEM_str)
10225 reject_bad_reg (inst.operands[1].imm);
10226
10227 inst.instruction = THUMB_OP32 (opcode);
10228 inst.instruction |= inst.operands[0].reg << 12;
10229 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10230 return;
10231 }
10232
10233 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10234
10235 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10236 {
10237 /* Only [Rn,Rm] is acceptable. */
10238 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10239 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10240 || inst.operands[1].postind || inst.operands[1].shifted
10241 || inst.operands[1].negative,
10242 _("Thumb does not support this addressing mode"));
10243 inst.instruction = THUMB_OP16 (inst.instruction);
10244 goto op16;
10245 }
10246
10247 inst.instruction = THUMB_OP16 (inst.instruction);
10248 if (!inst.operands[1].isreg)
10249 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10250 return;
10251
10252 constraint (!inst.operands[1].preind
10253 || inst.operands[1].shifted
10254 || inst.operands[1].writeback,
10255 _("Thumb does not support this addressing mode"));
10256 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10257 {
10258 constraint (inst.instruction & 0x0600,
10259 _("byte or halfword not valid for base register"));
10260 constraint (inst.operands[1].reg == REG_PC
10261 && !(inst.instruction & THUMB_LOAD_BIT),
10262 _("r15 based store not allowed"));
10263 constraint (inst.operands[1].immisreg,
10264 _("invalid base register for register offset"));
10265
10266 if (inst.operands[1].reg == REG_PC)
10267 inst.instruction = T_OPCODE_LDR_PC;
10268 else if (inst.instruction & THUMB_LOAD_BIT)
10269 inst.instruction = T_OPCODE_LDR_SP;
10270 else
10271 inst.instruction = T_OPCODE_STR_SP;
10272
10273 inst.instruction |= inst.operands[0].reg << 8;
10274 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10275 return;
10276 }
10277
10278 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10279 if (!inst.operands[1].immisreg)
10280 {
10281 /* Immediate offset. */
10282 inst.instruction |= inst.operands[0].reg;
10283 inst.instruction |= inst.operands[1].reg << 3;
10284 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10285 return;
10286 }
10287
10288 /* Register offset. */
10289 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10290 constraint (inst.operands[1].negative,
10291 _("Thumb does not support this addressing mode"));
10292
10293 op16:
10294 switch (inst.instruction)
10295 {
10296 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10297 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10298 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10299 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10300 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10301 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10302 case 0x5600 /* ldrsb */:
10303 case 0x5e00 /* ldrsh */: break;
10304 default: abort ();
10305 }
10306
10307 inst.instruction |= inst.operands[0].reg;
10308 inst.instruction |= inst.operands[1].reg << 3;
10309 inst.instruction |= inst.operands[1].imm << 6;
10310 }
10311
10312 static void
10313 do_t_ldstd (void)
10314 {
10315 if (!inst.operands[1].present)
10316 {
10317 inst.operands[1].reg = inst.operands[0].reg + 1;
10318 constraint (inst.operands[0].reg == REG_LR,
10319 _("r14 not allowed here"));
10320 }
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg << 8;
10323 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10324 }
10325
10326 static void
10327 do_t_ldstt (void)
10328 {
10329 inst.instruction |= inst.operands[0].reg << 12;
10330 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10331 }
10332
10333 static void
10334 do_t_mla (void)
10335 {
10336 unsigned Rd, Rn, Rm, Ra;
10337
10338 Rd = inst.operands[0].reg;
10339 Rn = inst.operands[1].reg;
10340 Rm = inst.operands[2].reg;
10341 Ra = inst.operands[3].reg;
10342
10343 reject_bad_reg (Rd);
10344 reject_bad_reg (Rn);
10345 reject_bad_reg (Rm);
10346 reject_bad_reg (Ra);
10347
10348 inst.instruction |= Rd << 8;
10349 inst.instruction |= Rn << 16;
10350 inst.instruction |= Rm;
10351 inst.instruction |= Ra << 12;
10352 }
10353
10354 static void
10355 do_t_mlal (void)
10356 {
10357 unsigned RdLo, RdHi, Rn, Rm;
10358
10359 RdLo = inst.operands[0].reg;
10360 RdHi = inst.operands[1].reg;
10361 Rn = inst.operands[2].reg;
10362 Rm = inst.operands[3].reg;
10363
10364 reject_bad_reg (RdLo);
10365 reject_bad_reg (RdHi);
10366 reject_bad_reg (Rn);
10367 reject_bad_reg (Rm);
10368
10369 inst.instruction |= RdLo << 12;
10370 inst.instruction |= RdHi << 8;
10371 inst.instruction |= Rn << 16;
10372 inst.instruction |= Rm;
10373 }
10374
10375 static void
10376 do_t_mov_cmp (void)
10377 {
10378 unsigned Rn, Rm;
10379
10380 Rn = inst.operands[0].reg;
10381 Rm = inst.operands[1].reg;
10382
10383 if (Rn == REG_PC)
10384 set_it_insn_type_last ();
10385
10386 if (unified_syntax)
10387 {
10388 int r0off = (inst.instruction == T_MNEM_mov
10389 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10390 unsigned long opcode;
10391 bfd_boolean narrow;
10392 bfd_boolean low_regs;
10393
10394 low_regs = (Rn <= 7 && Rm <= 7);
10395 opcode = inst.instruction;
10396 if (in_it_block ())
10397 narrow = opcode != T_MNEM_movs;
10398 else
10399 narrow = opcode != T_MNEM_movs || low_regs;
10400 if (inst.size_req == 4
10401 || inst.operands[1].shifted)
10402 narrow = FALSE;
10403
10404 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10405 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10406 && !inst.operands[1].shifted
10407 && Rn == REG_PC
10408 && Rm == REG_LR)
10409 {
10410 inst.instruction = T2_SUBS_PC_LR;
10411 return;
10412 }
10413
10414 if (opcode == T_MNEM_cmp)
10415 {
10416 constraint (Rn == REG_PC, BAD_PC);
10417 if (narrow)
10418 {
10419 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10420 but valid. */
10421 warn_deprecated_sp (Rm);
10422 /* R15 was documented as a valid choice for Rm in ARMv6,
10423 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10424 tools reject R15, so we do too. */
10425 constraint (Rm == REG_PC, BAD_PC);
10426 }
10427 else
10428 reject_bad_reg (Rm);
10429 }
10430 else if (opcode == T_MNEM_mov
10431 || opcode == T_MNEM_movs)
10432 {
10433 if (inst.operands[1].isreg)
10434 {
10435 if (opcode == T_MNEM_movs)
10436 {
10437 reject_bad_reg (Rn);
10438 reject_bad_reg (Rm);
10439 }
10440 else if (narrow)
10441 {
10442 /* This is mov.n. */
10443 if ((Rn == REG_SP || Rn == REG_PC)
10444 && (Rm == REG_SP || Rm == REG_PC))
10445 {
10446 as_warn (_("Use of r%u as a source register is "
10447 "deprecated when r%u is the destination "
10448 "register."), Rm, Rn);
10449 }
10450 }
10451 else
10452 {
10453 /* This is mov.w. */
10454 constraint (Rn == REG_PC, BAD_PC);
10455 constraint (Rm == REG_PC, BAD_PC);
10456 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10457 }
10458 }
10459 else
10460 reject_bad_reg (Rn);
10461 }
10462
10463 if (!inst.operands[1].isreg)
10464 {
10465 /* Immediate operand. */
10466 if (!in_it_block () && opcode == T_MNEM_mov)
10467 narrow = 0;
10468 if (low_regs && narrow)
10469 {
10470 inst.instruction = THUMB_OP16 (opcode);
10471 inst.instruction |= Rn << 8;
10472 if (inst.size_req == 2)
10473 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10474 else
10475 inst.relax = opcode;
10476 }
10477 else
10478 {
10479 inst.instruction = THUMB_OP32 (inst.instruction);
10480 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10481 inst.instruction |= Rn << r0off;
10482 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10483 }
10484 }
10485 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10486 && (inst.instruction == T_MNEM_mov
10487 || inst.instruction == T_MNEM_movs))
10488 {
10489 /* Register shifts are encoded as separate shift instructions. */
10490 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10491
10492 if (in_it_block ())
10493 narrow = !flags;
10494 else
10495 narrow = flags;
10496
10497 if (inst.size_req == 4)
10498 narrow = FALSE;
10499
10500 if (!low_regs || inst.operands[1].imm > 7)
10501 narrow = FALSE;
10502
10503 if (Rn != Rm)
10504 narrow = FALSE;
10505
10506 switch (inst.operands[1].shift_kind)
10507 {
10508 case SHIFT_LSL:
10509 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10510 break;
10511 case SHIFT_ASR:
10512 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10513 break;
10514 case SHIFT_LSR:
10515 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10516 break;
10517 case SHIFT_ROR:
10518 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10519 break;
10520 default:
10521 abort ();
10522 }
10523
10524 inst.instruction = opcode;
10525 if (narrow)
10526 {
10527 inst.instruction |= Rn;
10528 inst.instruction |= inst.operands[1].imm << 3;
10529 }
10530 else
10531 {
10532 if (flags)
10533 inst.instruction |= CONDS_BIT;
10534
10535 inst.instruction |= Rn << 8;
10536 inst.instruction |= Rm << 16;
10537 inst.instruction |= inst.operands[1].imm;
10538 }
10539 }
10540 else if (!narrow)
10541 {
10542 /* Some mov with immediate shift have narrow variants.
10543 Register shifts are handled above. */
10544 if (low_regs && inst.operands[1].shifted
10545 && (inst.instruction == T_MNEM_mov
10546 || inst.instruction == T_MNEM_movs))
10547 {
10548 if (in_it_block ())
10549 narrow = (inst.instruction == T_MNEM_mov);
10550 else
10551 narrow = (inst.instruction == T_MNEM_movs);
10552 }
10553
10554 if (narrow)
10555 {
10556 switch (inst.operands[1].shift_kind)
10557 {
10558 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10559 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10560 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10561 default: narrow = FALSE; break;
10562 }
10563 }
10564
10565 if (narrow)
10566 {
10567 inst.instruction |= Rn;
10568 inst.instruction |= Rm << 3;
10569 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10570 }
10571 else
10572 {
10573 inst.instruction = THUMB_OP32 (inst.instruction);
10574 inst.instruction |= Rn << r0off;
10575 encode_thumb32_shifted_operand (1);
10576 }
10577 }
10578 else
10579 switch (inst.instruction)
10580 {
10581 case T_MNEM_mov:
10582 inst.instruction = T_OPCODE_MOV_HR;
10583 inst.instruction |= (Rn & 0x8) << 4;
10584 inst.instruction |= (Rn & 0x7);
10585 inst.instruction |= Rm << 3;
10586 break;
10587
10588 case T_MNEM_movs:
10589 /* We know we have low registers at this point.
10590 Generate LSLS Rd, Rs, #0. */
10591 inst.instruction = T_OPCODE_LSL_I;
10592 inst.instruction |= Rn;
10593 inst.instruction |= Rm << 3;
10594 break;
10595
10596 case T_MNEM_cmp:
10597 if (low_regs)
10598 {
10599 inst.instruction = T_OPCODE_CMP_LR;
10600 inst.instruction |= Rn;
10601 inst.instruction |= Rm << 3;
10602 }
10603 else
10604 {
10605 inst.instruction = T_OPCODE_CMP_HR;
10606 inst.instruction |= (Rn & 0x8) << 4;
10607 inst.instruction |= (Rn & 0x7);
10608 inst.instruction |= Rm << 3;
10609 }
10610 break;
10611 }
10612 return;
10613 }
10614
10615 inst.instruction = THUMB_OP16 (inst.instruction);
10616
10617 /* PR 10443: Do not silently ignore shifted operands. */
10618 constraint (inst.operands[1].shifted,
10619 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10620
10621 if (inst.operands[1].isreg)
10622 {
10623 if (Rn < 8 && Rm < 8)
10624 {
10625 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10626 since a MOV instruction produces unpredictable results. */
10627 if (inst.instruction == T_OPCODE_MOV_I8)
10628 inst.instruction = T_OPCODE_ADD_I3;
10629 else
10630 inst.instruction = T_OPCODE_CMP_LR;
10631
10632 inst.instruction |= Rn;
10633 inst.instruction |= Rm << 3;
10634 }
10635 else
10636 {
10637 if (inst.instruction == T_OPCODE_MOV_I8)
10638 inst.instruction = T_OPCODE_MOV_HR;
10639 else
10640 inst.instruction = T_OPCODE_CMP_HR;
10641 do_t_cpy ();
10642 }
10643 }
10644 else
10645 {
10646 constraint (Rn > 7,
10647 _("only lo regs allowed with immediate"));
10648 inst.instruction |= Rn << 8;
10649 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10650 }
10651 }
10652
10653 static void
10654 do_t_mov16 (void)
10655 {
10656 unsigned Rd;
10657 bfd_vma imm;
10658 bfd_boolean top;
10659
10660 top = (inst.instruction & 0x00800000) != 0;
10661 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10662 {
10663 constraint (top, _(":lower16: not allowed this instruction"));
10664 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10665 }
10666 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10667 {
10668 constraint (!top, _(":upper16: not allowed this instruction"));
10669 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10670 }
10671
10672 Rd = inst.operands[0].reg;
10673 reject_bad_reg (Rd);
10674
10675 inst.instruction |= Rd << 8;
10676 if (inst.reloc.type == BFD_RELOC_UNUSED)
10677 {
10678 imm = inst.reloc.exp.X_add_number;
10679 inst.instruction |= (imm & 0xf000) << 4;
10680 inst.instruction |= (imm & 0x0800) << 15;
10681 inst.instruction |= (imm & 0x0700) << 4;
10682 inst.instruction |= (imm & 0x00ff);
10683 }
10684 }
10685
10686 static void
10687 do_t_mvn_tst (void)
10688 {
10689 unsigned Rn, Rm;
10690
10691 Rn = inst.operands[0].reg;
10692 Rm = inst.operands[1].reg;
10693
10694 if (inst.instruction == T_MNEM_cmp
10695 || inst.instruction == T_MNEM_cmn)
10696 constraint (Rn == REG_PC, BAD_PC);
10697 else
10698 reject_bad_reg (Rn);
10699 reject_bad_reg (Rm);
10700
10701 if (unified_syntax)
10702 {
10703 int r0off = (inst.instruction == T_MNEM_mvn
10704 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10705 bfd_boolean narrow;
10706
10707 if (inst.size_req == 4
10708 || inst.instruction > 0xffff
10709 || inst.operands[1].shifted
10710 || Rn > 7 || Rm > 7)
10711 narrow = FALSE;
10712 else if (inst.instruction == T_MNEM_cmn)
10713 narrow = TRUE;
10714 else if (THUMB_SETS_FLAGS (inst.instruction))
10715 narrow = !in_it_block ();
10716 else
10717 narrow = in_it_block ();
10718
10719 if (!inst.operands[1].isreg)
10720 {
10721 /* For an immediate, we always generate a 32-bit opcode;
10722 section relaxation will shrink it later if possible. */
10723 if (inst.instruction < 0xffff)
10724 inst.instruction = THUMB_OP32 (inst.instruction);
10725 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10726 inst.instruction |= Rn << r0off;
10727 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10728 }
10729 else
10730 {
10731 /* See if we can do this with a 16-bit instruction. */
10732 if (narrow)
10733 {
10734 inst.instruction = THUMB_OP16 (inst.instruction);
10735 inst.instruction |= Rn;
10736 inst.instruction |= Rm << 3;
10737 }
10738 else
10739 {
10740 constraint (inst.operands[1].shifted
10741 && inst.operands[1].immisreg,
10742 _("shift must be constant"));
10743 if (inst.instruction < 0xffff)
10744 inst.instruction = THUMB_OP32 (inst.instruction);
10745 inst.instruction |= Rn << r0off;
10746 encode_thumb32_shifted_operand (1);
10747 }
10748 }
10749 }
10750 else
10751 {
10752 constraint (inst.instruction > 0xffff
10753 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10754 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10755 _("unshifted register required"));
10756 constraint (Rn > 7 || Rm > 7,
10757 BAD_HIREG);
10758
10759 inst.instruction = THUMB_OP16 (inst.instruction);
10760 inst.instruction |= Rn;
10761 inst.instruction |= Rm << 3;
10762 }
10763 }
10764
10765 static void
10766 do_t_mrs (void)
10767 {
10768 unsigned Rd;
10769
10770 if (do_vfp_nsyn_mrs () == SUCCESS)
10771 return;
10772
10773 Rd = inst.operands[0].reg;
10774 reject_bad_reg (Rd);
10775 inst.instruction |= Rd << 8;
10776
10777 if (inst.operands[1].isreg)
10778 {
10779 unsigned br = inst.operands[1].reg;
10780 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
10781 as_bad (_("bad register for mrs"));
10782
10783 inst.instruction |= br & (0xf << 16);
10784 inst.instruction |= (br & 0x300) >> 4;
10785 inst.instruction |= (br & SPSR_BIT) >> 2;
10786 }
10787 else
10788 {
10789 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10790
10791 if (flags == 0)
10792 {
10793 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10794 _("selected processor does not support "
10795 "requested special purpose register"));
10796 }
10797 else
10798 {
10799 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10800 _("selected processor does not support "
10801 "requested special purpose register"));
10802 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10803 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10804 _("'CPSR' or 'SPSR' expected"));
10805 }
10806
10807 inst.instruction |= (flags & SPSR_BIT) >> 2;
10808 inst.instruction |= inst.operands[1].imm & 0xff;
10809 inst.instruction |= 0xf0000;
10810 }
10811 }
10812
10813 static void
10814 do_t_msr (void)
10815 {
10816 int flags;
10817 unsigned Rn;
10818
10819 if (do_vfp_nsyn_msr () == SUCCESS)
10820 return;
10821
10822 constraint (!inst.operands[1].isreg,
10823 _("Thumb encoding does not support an immediate here"));
10824
10825 if (inst.operands[0].isreg)
10826 flags = (int)(inst.operands[0].reg);
10827 else
10828 flags = inst.operands[0].imm;
10829
10830 if (flags & ~0xff)
10831 {
10832 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10833 _("selected processor does not support "
10834 "requested special purpose register"));
10835 }
10836 else
10837 {
10838 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10839 _("selected processor does not support "
10840 "requested special purpose register"));
10841 flags |= PSR_f;
10842 }
10843
10844 Rn = inst.operands[1].reg;
10845 reject_bad_reg (Rn);
10846
10847 inst.instruction |= (flags & SPSR_BIT) >> 2;
10848 inst.instruction |= (flags & 0xf0000) >> 8;
10849 inst.instruction |= (flags & 0x300) >> 4;
10850 inst.instruction |= (flags & 0xff);
10851 inst.instruction |= Rn << 16;
10852 }
10853
10854 static void
10855 do_t_mul (void)
10856 {
10857 bfd_boolean narrow;
10858 unsigned Rd, Rn, Rm;
10859
10860 if (!inst.operands[2].present)
10861 inst.operands[2].reg = inst.operands[0].reg;
10862
10863 Rd = inst.operands[0].reg;
10864 Rn = inst.operands[1].reg;
10865 Rm = inst.operands[2].reg;
10866
10867 if (unified_syntax)
10868 {
10869 if (inst.size_req == 4
10870 || (Rd != Rn
10871 && Rd != Rm)
10872 || Rn > 7
10873 || Rm > 7)
10874 narrow = FALSE;
10875 else if (inst.instruction == T_MNEM_muls)
10876 narrow = !in_it_block ();
10877 else
10878 narrow = in_it_block ();
10879 }
10880 else
10881 {
10882 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10883 constraint (Rn > 7 || Rm > 7,
10884 BAD_HIREG);
10885 narrow = TRUE;
10886 }
10887
10888 if (narrow)
10889 {
10890 /* 16-bit MULS/Conditional MUL. */
10891 inst.instruction = THUMB_OP16 (inst.instruction);
10892 inst.instruction |= Rd;
10893
10894 if (Rd == Rn)
10895 inst.instruction |= Rm << 3;
10896 else if (Rd == Rm)
10897 inst.instruction |= Rn << 3;
10898 else
10899 constraint (1, _("dest must overlap one source register"));
10900 }
10901 else
10902 {
10903 constraint (inst.instruction != T_MNEM_mul,
10904 _("Thumb-2 MUL must not set flags"));
10905 /* 32-bit MUL. */
10906 inst.instruction = THUMB_OP32 (inst.instruction);
10907 inst.instruction |= Rd << 8;
10908 inst.instruction |= Rn << 16;
10909 inst.instruction |= Rm << 0;
10910
10911 reject_bad_reg (Rd);
10912 reject_bad_reg (Rn);
10913 reject_bad_reg (Rm);
10914 }
10915 }
10916
10917 static void
10918 do_t_mull (void)
10919 {
10920 unsigned RdLo, RdHi, Rn, Rm;
10921
10922 RdLo = inst.operands[0].reg;
10923 RdHi = inst.operands[1].reg;
10924 Rn = inst.operands[2].reg;
10925 Rm = inst.operands[3].reg;
10926
10927 reject_bad_reg (RdLo);
10928 reject_bad_reg (RdHi);
10929 reject_bad_reg (Rn);
10930 reject_bad_reg (Rm);
10931
10932 inst.instruction |= RdLo << 12;
10933 inst.instruction |= RdHi << 8;
10934 inst.instruction |= Rn << 16;
10935 inst.instruction |= Rm;
10936
10937 if (RdLo == RdHi)
10938 as_tsktsk (_("rdhi and rdlo must be different"));
10939 }
10940
10941 static void
10942 do_t_nop (void)
10943 {
10944 set_it_insn_type (NEUTRAL_IT_INSN);
10945
10946 if (unified_syntax)
10947 {
10948 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10949 {
10950 inst.instruction = THUMB_OP32 (inst.instruction);
10951 inst.instruction |= inst.operands[0].imm;
10952 }
10953 else
10954 {
10955 /* PR9722: Check for Thumb2 availability before
10956 generating a thumb2 nop instruction. */
10957 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
10958 {
10959 inst.instruction = THUMB_OP16 (inst.instruction);
10960 inst.instruction |= inst.operands[0].imm << 4;
10961 }
10962 else
10963 inst.instruction = 0x46c0;
10964 }
10965 }
10966 else
10967 {
10968 constraint (inst.operands[0].present,
10969 _("Thumb does not support NOP with hints"));
10970 inst.instruction = 0x46c0;
10971 }
10972 }
10973
10974 static void
10975 do_t_neg (void)
10976 {
10977 if (unified_syntax)
10978 {
10979 bfd_boolean narrow;
10980
10981 if (THUMB_SETS_FLAGS (inst.instruction))
10982 narrow = !in_it_block ();
10983 else
10984 narrow = in_it_block ();
10985 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10986 narrow = FALSE;
10987 if (inst.size_req == 4)
10988 narrow = FALSE;
10989
10990 if (!narrow)
10991 {
10992 inst.instruction = THUMB_OP32 (inst.instruction);
10993 inst.instruction |= inst.operands[0].reg << 8;
10994 inst.instruction |= inst.operands[1].reg << 16;
10995 }
10996 else
10997 {
10998 inst.instruction = THUMB_OP16 (inst.instruction);
10999 inst.instruction |= inst.operands[0].reg;
11000 inst.instruction |= inst.operands[1].reg << 3;
11001 }
11002 }
11003 else
11004 {
11005 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11006 BAD_HIREG);
11007 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11008
11009 inst.instruction = THUMB_OP16 (inst.instruction);
11010 inst.instruction |= inst.operands[0].reg;
11011 inst.instruction |= inst.operands[1].reg << 3;
11012 }
11013 }
11014
11015 static void
11016 do_t_orn (void)
11017 {
11018 unsigned Rd, Rn;
11019
11020 Rd = inst.operands[0].reg;
11021 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11022
11023 reject_bad_reg (Rd);
11024 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11025 reject_bad_reg (Rn);
11026
11027 inst.instruction |= Rd << 8;
11028 inst.instruction |= Rn << 16;
11029
11030 if (!inst.operands[2].isreg)
11031 {
11032 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11033 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11034 }
11035 else
11036 {
11037 unsigned Rm;
11038
11039 Rm = inst.operands[2].reg;
11040 reject_bad_reg (Rm);
11041
11042 constraint (inst.operands[2].shifted
11043 && inst.operands[2].immisreg,
11044 _("shift must be constant"));
11045 encode_thumb32_shifted_operand (2);
11046 }
11047 }
11048
11049 static void
11050 do_t_pkhbt (void)
11051 {
11052 unsigned Rd, Rn, Rm;
11053
11054 Rd = inst.operands[0].reg;
11055 Rn = inst.operands[1].reg;
11056 Rm = inst.operands[2].reg;
11057
11058 reject_bad_reg (Rd);
11059 reject_bad_reg (Rn);
11060 reject_bad_reg (Rm);
11061
11062 inst.instruction |= Rd << 8;
11063 inst.instruction |= Rn << 16;
11064 inst.instruction |= Rm;
11065 if (inst.operands[3].present)
11066 {
11067 unsigned int val = inst.reloc.exp.X_add_number;
11068 constraint (inst.reloc.exp.X_op != O_constant,
11069 _("expression too complex"));
11070 inst.instruction |= (val & 0x1c) << 10;
11071 inst.instruction |= (val & 0x03) << 6;
11072 }
11073 }
11074
11075 static void
11076 do_t_pkhtb (void)
11077 {
11078 if (!inst.operands[3].present)
11079 {
11080 unsigned Rtmp;
11081
11082 inst.instruction &= ~0x00000020;
11083
11084 /* PR 10168. Swap the Rm and Rn registers. */
11085 Rtmp = inst.operands[1].reg;
11086 inst.operands[1].reg = inst.operands[2].reg;
11087 inst.operands[2].reg = Rtmp;
11088 }
11089 do_t_pkhbt ();
11090 }
11091
11092 static void
11093 do_t_pld (void)
11094 {
11095 if (inst.operands[0].immisreg)
11096 reject_bad_reg (inst.operands[0].imm);
11097
11098 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11099 }
11100
11101 static void
11102 do_t_push_pop (void)
11103 {
11104 unsigned mask;
11105
11106 constraint (inst.operands[0].writeback,
11107 _("push/pop do not support {reglist}^"));
11108 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11109 _("expression too complex"));
11110
11111 mask = inst.operands[0].imm;
11112 if ((mask & ~0xff) == 0)
11113 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11114 else if ((inst.instruction == T_MNEM_push
11115 && (mask & ~0xff) == 1 << REG_LR)
11116 || (inst.instruction == T_MNEM_pop
11117 && (mask & ~0xff) == 1 << REG_PC))
11118 {
11119 inst.instruction = THUMB_OP16 (inst.instruction);
11120 inst.instruction |= THUMB_PP_PC_LR;
11121 inst.instruction |= mask & 0xff;
11122 }
11123 else if (unified_syntax)
11124 {
11125 inst.instruction = THUMB_OP32 (inst.instruction);
11126 encode_thumb2_ldmstm (13, mask, TRUE);
11127 }
11128 else
11129 {
11130 inst.error = _("invalid register list to push/pop instruction");
11131 return;
11132 }
11133 }
11134
11135 static void
11136 do_t_rbit (void)
11137 {
11138 unsigned Rd, Rm;
11139
11140 Rd = inst.operands[0].reg;
11141 Rm = inst.operands[1].reg;
11142
11143 reject_bad_reg (Rd);
11144 reject_bad_reg (Rm);
11145
11146 inst.instruction |= Rd << 8;
11147 inst.instruction |= Rm << 16;
11148 inst.instruction |= Rm;
11149 }
11150
11151 static void
11152 do_t_rev (void)
11153 {
11154 unsigned Rd, Rm;
11155
11156 Rd = inst.operands[0].reg;
11157 Rm = inst.operands[1].reg;
11158
11159 reject_bad_reg (Rd);
11160 reject_bad_reg (Rm);
11161
11162 if (Rd <= 7 && Rm <= 7
11163 && inst.size_req != 4)
11164 {
11165 inst.instruction = THUMB_OP16 (inst.instruction);
11166 inst.instruction |= Rd;
11167 inst.instruction |= Rm << 3;
11168 }
11169 else if (unified_syntax)
11170 {
11171 inst.instruction = THUMB_OP32 (inst.instruction);
11172 inst.instruction |= Rd << 8;
11173 inst.instruction |= Rm << 16;
11174 inst.instruction |= Rm;
11175 }
11176 else
11177 inst.error = BAD_HIREG;
11178 }
11179
11180 static void
11181 do_t_rrx (void)
11182 {
11183 unsigned Rd, Rm;
11184
11185 Rd = inst.operands[0].reg;
11186 Rm = inst.operands[1].reg;
11187
11188 reject_bad_reg (Rd);
11189 reject_bad_reg (Rm);
11190
11191 inst.instruction |= Rd << 8;
11192 inst.instruction |= Rm;
11193 }
11194
11195 static void
11196 do_t_rsb (void)
11197 {
11198 unsigned Rd, Rs;
11199
11200 Rd = inst.operands[0].reg;
11201 Rs = (inst.operands[1].present
11202 ? inst.operands[1].reg /* Rd, Rs, foo */
11203 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11204
11205 reject_bad_reg (Rd);
11206 reject_bad_reg (Rs);
11207 if (inst.operands[2].isreg)
11208 reject_bad_reg (inst.operands[2].reg);
11209
11210 inst.instruction |= Rd << 8;
11211 inst.instruction |= Rs << 16;
11212 if (!inst.operands[2].isreg)
11213 {
11214 bfd_boolean narrow;
11215
11216 if ((inst.instruction & 0x00100000) != 0)
11217 narrow = !in_it_block ();
11218 else
11219 narrow = in_it_block ();
11220
11221 if (Rd > 7 || Rs > 7)
11222 narrow = FALSE;
11223
11224 if (inst.size_req == 4 || !unified_syntax)
11225 narrow = FALSE;
11226
11227 if (inst.reloc.exp.X_op != O_constant
11228 || inst.reloc.exp.X_add_number != 0)
11229 narrow = FALSE;
11230
11231 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11232 relaxation, but it doesn't seem worth the hassle. */
11233 if (narrow)
11234 {
11235 inst.reloc.type = BFD_RELOC_UNUSED;
11236 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11237 inst.instruction |= Rs << 3;
11238 inst.instruction |= Rd;
11239 }
11240 else
11241 {
11242 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11243 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11244 }
11245 }
11246 else
11247 encode_thumb32_shifted_operand (2);
11248 }
11249
11250 static void
11251 do_t_setend (void)
11252 {
11253 set_it_insn_type (OUTSIDE_IT_INSN);
11254 if (inst.operands[0].imm)
11255 inst.instruction |= 0x8;
11256 }
11257
11258 static void
11259 do_t_shift (void)
11260 {
11261 if (!inst.operands[1].present)
11262 inst.operands[1].reg = inst.operands[0].reg;
11263
11264 if (unified_syntax)
11265 {
11266 bfd_boolean narrow;
11267 int shift_kind;
11268
11269 switch (inst.instruction)
11270 {
11271 case T_MNEM_asr:
11272 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11273 case T_MNEM_lsl:
11274 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11275 case T_MNEM_lsr:
11276 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11277 case T_MNEM_ror:
11278 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11279 default: abort ();
11280 }
11281
11282 if (THUMB_SETS_FLAGS (inst.instruction))
11283 narrow = !in_it_block ();
11284 else
11285 narrow = in_it_block ();
11286 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11287 narrow = FALSE;
11288 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11289 narrow = FALSE;
11290 if (inst.operands[2].isreg
11291 && (inst.operands[1].reg != inst.operands[0].reg
11292 || inst.operands[2].reg > 7))
11293 narrow = FALSE;
11294 if (inst.size_req == 4)
11295 narrow = FALSE;
11296
11297 reject_bad_reg (inst.operands[0].reg);
11298 reject_bad_reg (inst.operands[1].reg);
11299
11300 if (!narrow)
11301 {
11302 if (inst.operands[2].isreg)
11303 {
11304 reject_bad_reg (inst.operands[2].reg);
11305 inst.instruction = THUMB_OP32 (inst.instruction);
11306 inst.instruction |= inst.operands[0].reg << 8;
11307 inst.instruction |= inst.operands[1].reg << 16;
11308 inst.instruction |= inst.operands[2].reg;
11309 }
11310 else
11311 {
11312 inst.operands[1].shifted = 1;
11313 inst.operands[1].shift_kind = shift_kind;
11314 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11315 ? T_MNEM_movs : T_MNEM_mov);
11316 inst.instruction |= inst.operands[0].reg << 8;
11317 encode_thumb32_shifted_operand (1);
11318 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11319 inst.reloc.type = BFD_RELOC_UNUSED;
11320 }
11321 }
11322 else
11323 {
11324 if (inst.operands[2].isreg)
11325 {
11326 switch (shift_kind)
11327 {
11328 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11329 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11330 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11331 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11332 default: abort ();
11333 }
11334
11335 inst.instruction |= inst.operands[0].reg;
11336 inst.instruction |= inst.operands[2].reg << 3;
11337 }
11338 else
11339 {
11340 switch (shift_kind)
11341 {
11342 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11343 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11344 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11345 default: abort ();
11346 }
11347 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11348 inst.instruction |= inst.operands[0].reg;
11349 inst.instruction |= inst.operands[1].reg << 3;
11350 }
11351 }
11352 }
11353 else
11354 {
11355 constraint (inst.operands[0].reg > 7
11356 || inst.operands[1].reg > 7, BAD_HIREG);
11357 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11358
11359 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11360 {
11361 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11362 constraint (inst.operands[0].reg != inst.operands[1].reg,
11363 _("source1 and dest must be same register"));
11364
11365 switch (inst.instruction)
11366 {
11367 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11368 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11369 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11370 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11371 default: abort ();
11372 }
11373
11374 inst.instruction |= inst.operands[0].reg;
11375 inst.instruction |= inst.operands[2].reg << 3;
11376 }
11377 else
11378 {
11379 switch (inst.instruction)
11380 {
11381 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11382 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11383 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11384 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11385 default: abort ();
11386 }
11387 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11388 inst.instruction |= inst.operands[0].reg;
11389 inst.instruction |= inst.operands[1].reg << 3;
11390 }
11391 }
11392 }
11393
11394 static void
11395 do_t_simd (void)
11396 {
11397 unsigned Rd, Rn, Rm;
11398
11399 Rd = inst.operands[0].reg;
11400 Rn = inst.operands[1].reg;
11401 Rm = inst.operands[2].reg;
11402
11403 reject_bad_reg (Rd);
11404 reject_bad_reg (Rn);
11405 reject_bad_reg (Rm);
11406
11407 inst.instruction |= Rd << 8;
11408 inst.instruction |= Rn << 16;
11409 inst.instruction |= Rm;
11410 }
11411
11412 static void
11413 do_t_simd2 (void)
11414 {
11415 unsigned Rd, Rn, Rm;
11416
11417 Rd = inst.operands[0].reg;
11418 Rm = inst.operands[1].reg;
11419 Rn = inst.operands[2].reg;
11420
11421 reject_bad_reg (Rd);
11422 reject_bad_reg (Rn);
11423 reject_bad_reg (Rm);
11424
11425 inst.instruction |= Rd << 8;
11426 inst.instruction |= Rn << 16;
11427 inst.instruction |= Rm;
11428 }
11429
11430 static void
11431 do_t_smc (void)
11432 {
11433 unsigned int value = inst.reloc.exp.X_add_number;
11434 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11435 _("SMC is not permitted on this architecture"));
11436 constraint (inst.reloc.exp.X_op != O_constant,
11437 _("expression too complex"));
11438 inst.reloc.type = BFD_RELOC_UNUSED;
11439 inst.instruction |= (value & 0xf000) >> 12;
11440 inst.instruction |= (value & 0x0ff0);
11441 inst.instruction |= (value & 0x000f) << 16;
11442 }
11443
11444 static void
11445 do_t_hvc (void)
11446 {
11447 unsigned int value = inst.reloc.exp.X_add_number;
11448
11449 inst.reloc.type = BFD_RELOC_UNUSED;
11450 inst.instruction |= (value & 0x0fff);
11451 inst.instruction |= (value & 0xf000) << 4;
11452 }
11453
11454 static void
11455 do_t_ssat_usat (int bias)
11456 {
11457 unsigned Rd, Rn;
11458
11459 Rd = inst.operands[0].reg;
11460 Rn = inst.operands[2].reg;
11461
11462 reject_bad_reg (Rd);
11463 reject_bad_reg (Rn);
11464
11465 inst.instruction |= Rd << 8;
11466 inst.instruction |= inst.operands[1].imm - bias;
11467 inst.instruction |= Rn << 16;
11468
11469 if (inst.operands[3].present)
11470 {
11471 offsetT shift_amount = inst.reloc.exp.X_add_number;
11472
11473 inst.reloc.type = BFD_RELOC_UNUSED;
11474
11475 constraint (inst.reloc.exp.X_op != O_constant,
11476 _("expression too complex"));
11477
11478 if (shift_amount != 0)
11479 {
11480 constraint (shift_amount > 31,
11481 _("shift expression is too large"));
11482
11483 if (inst.operands[3].shift_kind == SHIFT_ASR)
11484 inst.instruction |= 0x00200000; /* sh bit. */
11485
11486 inst.instruction |= (shift_amount & 0x1c) << 10;
11487 inst.instruction |= (shift_amount & 0x03) << 6;
11488 }
11489 }
11490 }
11491
11492 static void
11493 do_t_ssat (void)
11494 {
11495 do_t_ssat_usat (1);
11496 }
11497
11498 static void
11499 do_t_ssat16 (void)
11500 {
11501 unsigned Rd, Rn;
11502
11503 Rd = inst.operands[0].reg;
11504 Rn = inst.operands[2].reg;
11505
11506 reject_bad_reg (Rd);
11507 reject_bad_reg (Rn);
11508
11509 inst.instruction |= Rd << 8;
11510 inst.instruction |= inst.operands[1].imm - 1;
11511 inst.instruction |= Rn << 16;
11512 }
11513
11514 static void
11515 do_t_strex (void)
11516 {
11517 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11518 || inst.operands[2].postind || inst.operands[2].writeback
11519 || inst.operands[2].immisreg || inst.operands[2].shifted
11520 || inst.operands[2].negative,
11521 BAD_ADDR_MODE);
11522
11523 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11524
11525 inst.instruction |= inst.operands[0].reg << 8;
11526 inst.instruction |= inst.operands[1].reg << 12;
11527 inst.instruction |= inst.operands[2].reg << 16;
11528 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11529 }
11530
11531 static void
11532 do_t_strexd (void)
11533 {
11534 if (!inst.operands[2].present)
11535 inst.operands[2].reg = inst.operands[1].reg + 1;
11536
11537 constraint (inst.operands[0].reg == inst.operands[1].reg
11538 || inst.operands[0].reg == inst.operands[2].reg
11539 || inst.operands[0].reg == inst.operands[3].reg,
11540 BAD_OVERLAP);
11541
11542 inst.instruction |= inst.operands[0].reg;
11543 inst.instruction |= inst.operands[1].reg << 12;
11544 inst.instruction |= inst.operands[2].reg << 8;
11545 inst.instruction |= inst.operands[3].reg << 16;
11546 }
11547
11548 static void
11549 do_t_sxtah (void)
11550 {
11551 unsigned Rd, Rn, Rm;
11552
11553 Rd = inst.operands[0].reg;
11554 Rn = inst.operands[1].reg;
11555 Rm = inst.operands[2].reg;
11556
11557 reject_bad_reg (Rd);
11558 reject_bad_reg (Rn);
11559 reject_bad_reg (Rm);
11560
11561 inst.instruction |= Rd << 8;
11562 inst.instruction |= Rn << 16;
11563 inst.instruction |= Rm;
11564 inst.instruction |= inst.operands[3].imm << 4;
11565 }
11566
11567 static void
11568 do_t_sxth (void)
11569 {
11570 unsigned Rd, Rm;
11571
11572 Rd = inst.operands[0].reg;
11573 Rm = inst.operands[1].reg;
11574
11575 reject_bad_reg (Rd);
11576 reject_bad_reg (Rm);
11577
11578 if (inst.instruction <= 0xffff
11579 && inst.size_req != 4
11580 && Rd <= 7 && Rm <= 7
11581 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11582 {
11583 inst.instruction = THUMB_OP16 (inst.instruction);
11584 inst.instruction |= Rd;
11585 inst.instruction |= Rm << 3;
11586 }
11587 else if (unified_syntax)
11588 {
11589 if (inst.instruction <= 0xffff)
11590 inst.instruction = THUMB_OP32 (inst.instruction);
11591 inst.instruction |= Rd << 8;
11592 inst.instruction |= Rm;
11593 inst.instruction |= inst.operands[2].imm << 4;
11594 }
11595 else
11596 {
11597 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11598 _("Thumb encoding does not support rotation"));
11599 constraint (1, BAD_HIREG);
11600 }
11601 }
11602
11603 static void
11604 do_t_swi (void)
11605 {
11606 /* We have to do the following check manually as ARM_EXT_OS only applies
11607 to ARM_EXT_V6M. */
11608 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11609 {
11610 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os))
11611 as_bad (_("SVC is not permitted on this architecture"));
11612 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11613 }
11614
11615 inst.reloc.type = BFD_RELOC_ARM_SWI;
11616 }
11617
11618 static void
11619 do_t_tb (void)
11620 {
11621 unsigned Rn, Rm;
11622 int half;
11623
11624 half = (inst.instruction & 0x10) != 0;
11625 set_it_insn_type_last ();
11626 constraint (inst.operands[0].immisreg,
11627 _("instruction requires register index"));
11628
11629 Rn = inst.operands[0].reg;
11630 Rm = inst.operands[0].imm;
11631
11632 constraint (Rn == REG_SP, BAD_SP);
11633 reject_bad_reg (Rm);
11634
11635 constraint (!half && inst.operands[0].shifted,
11636 _("instruction does not allow shifted index"));
11637 inst.instruction |= (Rn << 16) | Rm;
11638 }
11639
11640 static void
11641 do_t_usat (void)
11642 {
11643 do_t_ssat_usat (0);
11644 }
11645
11646 static void
11647 do_t_usat16 (void)
11648 {
11649 unsigned Rd, Rn;
11650
11651 Rd = inst.operands[0].reg;
11652 Rn = inst.operands[2].reg;
11653
11654 reject_bad_reg (Rd);
11655 reject_bad_reg (Rn);
11656
11657 inst.instruction |= Rd << 8;
11658 inst.instruction |= inst.operands[1].imm;
11659 inst.instruction |= Rn << 16;
11660 }
11661
11662 /* Neon instruction encoder helpers. */
11663
11664 /* Encodings for the different types for various Neon opcodes. */
11665
11666 /* An "invalid" code for the following tables. */
11667 #define N_INV -1u
11668
11669 struct neon_tab_entry
11670 {
11671 unsigned integer;
11672 unsigned float_or_poly;
11673 unsigned scalar_or_imm;
11674 };
11675
11676 /* Map overloaded Neon opcodes to their respective encodings. */
11677 #define NEON_ENC_TAB \
11678 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11679 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11680 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11681 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11682 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11683 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11684 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11685 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11686 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11687 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11688 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11689 /* Register variants of the following two instructions are encoded as
11690 vcge / vcgt with the operands reversed. */ \
11691 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11692 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11693 X(vfma, N_INV, 0x0000c10, N_INV), \
11694 X(vfms, N_INV, 0x0200c10, N_INV), \
11695 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11696 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11697 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11698 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11699 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11700 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11701 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11702 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11703 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11704 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11705 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11706 X(vshl, 0x0000400, N_INV, 0x0800510), \
11707 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11708 X(vand, 0x0000110, N_INV, 0x0800030), \
11709 X(vbic, 0x0100110, N_INV, 0x0800030), \
11710 X(veor, 0x1000110, N_INV, N_INV), \
11711 X(vorn, 0x0300110, N_INV, 0x0800010), \
11712 X(vorr, 0x0200110, N_INV, 0x0800010), \
11713 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11714 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11715 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11716 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11717 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11718 X(vst1, 0x0000000, 0x0800000, N_INV), \
11719 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11720 X(vst2, 0x0000100, 0x0800100, N_INV), \
11721 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11722 X(vst3, 0x0000200, 0x0800200, N_INV), \
11723 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11724 X(vst4, 0x0000300, 0x0800300, N_INV), \
11725 X(vmovn, 0x1b20200, N_INV, N_INV), \
11726 X(vtrn, 0x1b20080, N_INV, N_INV), \
11727 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11728 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11729 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11730 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11731 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11732 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11733 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11734 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11735 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11736 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11737 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11738
11739 enum neon_opc
11740 {
11741 #define X(OPC,I,F,S) N_MNEM_##OPC
11742 NEON_ENC_TAB
11743 #undef X
11744 };
11745
11746 static const struct neon_tab_entry neon_enc_tab[] =
11747 {
11748 #define X(OPC,I,F,S) { (I), (F), (S) }
11749 NEON_ENC_TAB
11750 #undef X
11751 };
11752
11753 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11754 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11755 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11756 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11757 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11758 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11759 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11760 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11761 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11762 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11763 #define NEON_ENC_SINGLE_(X) \
11764 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11765 #define NEON_ENC_DOUBLE_(X) \
11766 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11767
11768 #define NEON_ENCODE(type, inst) \
11769 do \
11770 { \
11771 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11772 inst.is_neon = 1; \
11773 } \
11774 while (0)
11775
11776 #define check_neon_suffixes \
11777 do \
11778 { \
11779 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11780 { \
11781 as_bad (_("invalid neon suffix for non neon instruction")); \
11782 return; \
11783 } \
11784 } \
11785 while (0)
11786
11787 /* Define shapes for instruction operands. The following mnemonic characters
11788 are used in this table:
11789
11790 F - VFP S<n> register
11791 D - Neon D<n> register
11792 Q - Neon Q<n> register
11793 I - Immediate
11794 S - Scalar
11795 R - ARM register
11796 L - D<n> register list
11797
11798 This table is used to generate various data:
11799 - enumerations of the form NS_DDR to be used as arguments to
11800 neon_select_shape.
11801 - a table classifying shapes into single, double, quad, mixed.
11802 - a table used to drive neon_select_shape. */
11803
11804 #define NEON_SHAPE_DEF \
11805 X(3, (D, D, D), DOUBLE), \
11806 X(3, (Q, Q, Q), QUAD), \
11807 X(3, (D, D, I), DOUBLE), \
11808 X(3, (Q, Q, I), QUAD), \
11809 X(3, (D, D, S), DOUBLE), \
11810 X(3, (Q, Q, S), QUAD), \
11811 X(2, (D, D), DOUBLE), \
11812 X(2, (Q, Q), QUAD), \
11813 X(2, (D, S), DOUBLE), \
11814 X(2, (Q, S), QUAD), \
11815 X(2, (D, R), DOUBLE), \
11816 X(2, (Q, R), QUAD), \
11817 X(2, (D, I), DOUBLE), \
11818 X(2, (Q, I), QUAD), \
11819 X(3, (D, L, D), DOUBLE), \
11820 X(2, (D, Q), MIXED), \
11821 X(2, (Q, D), MIXED), \
11822 X(3, (D, Q, I), MIXED), \
11823 X(3, (Q, D, I), MIXED), \
11824 X(3, (Q, D, D), MIXED), \
11825 X(3, (D, Q, Q), MIXED), \
11826 X(3, (Q, Q, D), MIXED), \
11827 X(3, (Q, D, S), MIXED), \
11828 X(3, (D, Q, S), MIXED), \
11829 X(4, (D, D, D, I), DOUBLE), \
11830 X(4, (Q, Q, Q, I), QUAD), \
11831 X(2, (F, F), SINGLE), \
11832 X(3, (F, F, F), SINGLE), \
11833 X(2, (F, I), SINGLE), \
11834 X(2, (F, D), MIXED), \
11835 X(2, (D, F), MIXED), \
11836 X(3, (F, F, I), MIXED), \
11837 X(4, (R, R, F, F), SINGLE), \
11838 X(4, (F, F, R, R), SINGLE), \
11839 X(3, (D, R, R), DOUBLE), \
11840 X(3, (R, R, D), DOUBLE), \
11841 X(2, (S, R), SINGLE), \
11842 X(2, (R, S), SINGLE), \
11843 X(2, (F, R), SINGLE), \
11844 X(2, (R, F), SINGLE)
11845
11846 #define S2(A,B) NS_##A##B
11847 #define S3(A,B,C) NS_##A##B##C
11848 #define S4(A,B,C,D) NS_##A##B##C##D
11849
11850 #define X(N, L, C) S##N L
11851
11852 enum neon_shape
11853 {
11854 NEON_SHAPE_DEF,
11855 NS_NULL
11856 };
11857
11858 #undef X
11859 #undef S2
11860 #undef S3
11861 #undef S4
11862
11863 enum neon_shape_class
11864 {
11865 SC_SINGLE,
11866 SC_DOUBLE,
11867 SC_QUAD,
11868 SC_MIXED
11869 };
11870
11871 #define X(N, L, C) SC_##C
11872
11873 static enum neon_shape_class neon_shape_class[] =
11874 {
11875 NEON_SHAPE_DEF
11876 };
11877
11878 #undef X
11879
11880 enum neon_shape_el
11881 {
11882 SE_F,
11883 SE_D,
11884 SE_Q,
11885 SE_I,
11886 SE_S,
11887 SE_R,
11888 SE_L
11889 };
11890
11891 /* Register widths of above. */
11892 static unsigned neon_shape_el_size[] =
11893 {
11894 32,
11895 64,
11896 128,
11897 0,
11898 32,
11899 32,
11900 0
11901 };
11902
11903 struct neon_shape_info
11904 {
11905 unsigned els;
11906 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11907 };
11908
11909 #define S2(A,B) { SE_##A, SE_##B }
11910 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11911 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11912
11913 #define X(N, L, C) { N, S##N L }
11914
11915 static struct neon_shape_info neon_shape_tab[] =
11916 {
11917 NEON_SHAPE_DEF
11918 };
11919
11920 #undef X
11921 #undef S2
11922 #undef S3
11923 #undef S4
11924
11925 /* Bit masks used in type checking given instructions.
11926 'N_EQK' means the type must be the same as (or based on in some way) the key
11927 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11928 set, various other bits can be set as well in order to modify the meaning of
11929 the type constraint. */
11930
11931 enum neon_type_mask
11932 {
11933 N_S8 = 0x0000001,
11934 N_S16 = 0x0000002,
11935 N_S32 = 0x0000004,
11936 N_S64 = 0x0000008,
11937 N_U8 = 0x0000010,
11938 N_U16 = 0x0000020,
11939 N_U32 = 0x0000040,
11940 N_U64 = 0x0000080,
11941 N_I8 = 0x0000100,
11942 N_I16 = 0x0000200,
11943 N_I32 = 0x0000400,
11944 N_I64 = 0x0000800,
11945 N_8 = 0x0001000,
11946 N_16 = 0x0002000,
11947 N_32 = 0x0004000,
11948 N_64 = 0x0008000,
11949 N_P8 = 0x0010000,
11950 N_P16 = 0x0020000,
11951 N_F16 = 0x0040000,
11952 N_F32 = 0x0080000,
11953 N_F64 = 0x0100000,
11954 N_KEY = 0x1000000, /* Key element (main type specifier). */
11955 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11956 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11957 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11958 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11959 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11960 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11961 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11962 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11963 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11964 N_UTYP = 0,
11965 N_MAX_NONSPECIAL = N_F64
11966 };
11967
11968 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11969
11970 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11971 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11972 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11973 #define N_SUF_32 (N_SU_32 | N_F32)
11974 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11975 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11976
11977 /* Pass this as the first type argument to neon_check_type to ignore types
11978 altogether. */
11979 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11980
11981 /* Select a "shape" for the current instruction (describing register types or
11982 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11983 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11984 function of operand parsing, so this function doesn't need to be called.
11985 Shapes should be listed in order of decreasing length. */
11986
11987 static enum neon_shape
11988 neon_select_shape (enum neon_shape shape, ...)
11989 {
11990 va_list ap;
11991 enum neon_shape first_shape = shape;
11992
11993 /* Fix missing optional operands. FIXME: we don't know at this point how
11994 many arguments we should have, so this makes the assumption that we have
11995 > 1. This is true of all current Neon opcodes, I think, but may not be
11996 true in the future. */
11997 if (!inst.operands[1].present)
11998 inst.operands[1] = inst.operands[0];
11999
12000 va_start (ap, shape);
12001
12002 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12003 {
12004 unsigned j;
12005 int matches = 1;
12006
12007 for (j = 0; j < neon_shape_tab[shape].els; j++)
12008 {
12009 if (!inst.operands[j].present)
12010 {
12011 matches = 0;
12012 break;
12013 }
12014
12015 switch (neon_shape_tab[shape].el[j])
12016 {
12017 case SE_F:
12018 if (!(inst.operands[j].isreg
12019 && inst.operands[j].isvec
12020 && inst.operands[j].issingle
12021 && !inst.operands[j].isquad))
12022 matches = 0;
12023 break;
12024
12025 case SE_D:
12026 if (!(inst.operands[j].isreg
12027 && inst.operands[j].isvec
12028 && !inst.operands[j].isquad
12029 && !inst.operands[j].issingle))
12030 matches = 0;
12031 break;
12032
12033 case SE_R:
12034 if (!(inst.operands[j].isreg
12035 && !inst.operands[j].isvec))
12036 matches = 0;
12037 break;
12038
12039 case SE_Q:
12040 if (!(inst.operands[j].isreg
12041 && inst.operands[j].isvec
12042 && inst.operands[j].isquad
12043 && !inst.operands[j].issingle))
12044 matches = 0;
12045 break;
12046
12047 case SE_I:
12048 if (!(!inst.operands[j].isreg
12049 && !inst.operands[j].isscalar))
12050 matches = 0;
12051 break;
12052
12053 case SE_S:
12054 if (!(!inst.operands[j].isreg
12055 && inst.operands[j].isscalar))
12056 matches = 0;
12057 break;
12058
12059 case SE_L:
12060 break;
12061 }
12062 if (!matches)
12063 break;
12064 }
12065 if (matches)
12066 break;
12067 }
12068
12069 va_end (ap);
12070
12071 if (shape == NS_NULL && first_shape != NS_NULL)
12072 first_error (_("invalid instruction shape"));
12073
12074 return shape;
12075 }
12076
12077 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12078 means the Q bit should be set). */
12079
12080 static int
12081 neon_quad (enum neon_shape shape)
12082 {
12083 return neon_shape_class[shape] == SC_QUAD;
12084 }
12085
12086 static void
12087 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12088 unsigned *g_size)
12089 {
12090 /* Allow modification to be made to types which are constrained to be
12091 based on the key element, based on bits set alongside N_EQK. */
12092 if ((typebits & N_EQK) != 0)
12093 {
12094 if ((typebits & N_HLF) != 0)
12095 *g_size /= 2;
12096 else if ((typebits & N_DBL) != 0)
12097 *g_size *= 2;
12098 if ((typebits & N_SGN) != 0)
12099 *g_type = NT_signed;
12100 else if ((typebits & N_UNS) != 0)
12101 *g_type = NT_unsigned;
12102 else if ((typebits & N_INT) != 0)
12103 *g_type = NT_integer;
12104 else if ((typebits & N_FLT) != 0)
12105 *g_type = NT_float;
12106 else if ((typebits & N_SIZ) != 0)
12107 *g_type = NT_untyped;
12108 }
12109 }
12110
12111 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12112 operand type, i.e. the single type specified in a Neon instruction when it
12113 is the only one given. */
12114
12115 static struct neon_type_el
12116 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12117 {
12118 struct neon_type_el dest = *key;
12119
12120 gas_assert ((thisarg & N_EQK) != 0);
12121
12122 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12123
12124 return dest;
12125 }
12126
12127 /* Convert Neon type and size into compact bitmask representation. */
12128
12129 static enum neon_type_mask
12130 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12131 {
12132 switch (type)
12133 {
12134 case NT_untyped:
12135 switch (size)
12136 {
12137 case 8: return N_8;
12138 case 16: return N_16;
12139 case 32: return N_32;
12140 case 64: return N_64;
12141 default: ;
12142 }
12143 break;
12144
12145 case NT_integer:
12146 switch (size)
12147 {
12148 case 8: return N_I8;
12149 case 16: return N_I16;
12150 case 32: return N_I32;
12151 case 64: return N_I64;
12152 default: ;
12153 }
12154 break;
12155
12156 case NT_float:
12157 switch (size)
12158 {
12159 case 16: return N_F16;
12160 case 32: return N_F32;
12161 case 64: return N_F64;
12162 default: ;
12163 }
12164 break;
12165
12166 case NT_poly:
12167 switch (size)
12168 {
12169 case 8: return N_P8;
12170 case 16: return N_P16;
12171 default: ;
12172 }
12173 break;
12174
12175 case NT_signed:
12176 switch (size)
12177 {
12178 case 8: return N_S8;
12179 case 16: return N_S16;
12180 case 32: return N_S32;
12181 case 64: return N_S64;
12182 default: ;
12183 }
12184 break;
12185
12186 case NT_unsigned:
12187 switch (size)
12188 {
12189 case 8: return N_U8;
12190 case 16: return N_U16;
12191 case 32: return N_U32;
12192 case 64: return N_U64;
12193 default: ;
12194 }
12195 break;
12196
12197 default: ;
12198 }
12199
12200 return N_UTYP;
12201 }
12202
12203 /* Convert compact Neon bitmask type representation to a type and size. Only
12204 handles the case where a single bit is set in the mask. */
12205
12206 static int
12207 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12208 enum neon_type_mask mask)
12209 {
12210 if ((mask & N_EQK) != 0)
12211 return FAIL;
12212
12213 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12214 *size = 8;
12215 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12216 *size = 16;
12217 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12218 *size = 32;
12219 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12220 *size = 64;
12221 else
12222 return FAIL;
12223
12224 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12225 *type = NT_signed;
12226 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12227 *type = NT_unsigned;
12228 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12229 *type = NT_integer;
12230 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12231 *type = NT_untyped;
12232 else if ((mask & (N_P8 | N_P16)) != 0)
12233 *type = NT_poly;
12234 else if ((mask & (N_F32 | N_F64)) != 0)
12235 *type = NT_float;
12236 else
12237 return FAIL;
12238
12239 return SUCCESS;
12240 }
12241
12242 /* Modify a bitmask of allowed types. This is only needed for type
12243 relaxation. */
12244
12245 static unsigned
12246 modify_types_allowed (unsigned allowed, unsigned mods)
12247 {
12248 unsigned size;
12249 enum neon_el_type type;
12250 unsigned destmask;
12251 int i;
12252
12253 destmask = 0;
12254
12255 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12256 {
12257 if (el_type_of_type_chk (&type, &size,
12258 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12259 {
12260 neon_modify_type_size (mods, &type, &size);
12261 destmask |= type_chk_of_el_type (type, size);
12262 }
12263 }
12264
12265 return destmask;
12266 }
12267
12268 /* Check type and return type classification.
12269 The manual states (paraphrase): If one datatype is given, it indicates the
12270 type given in:
12271 - the second operand, if there is one
12272 - the operand, if there is no second operand
12273 - the result, if there are no operands.
12274 This isn't quite good enough though, so we use a concept of a "key" datatype
12275 which is set on a per-instruction basis, which is the one which matters when
12276 only one data type is written.
12277 Note: this function has side-effects (e.g. filling in missing operands). All
12278 Neon instructions should call it before performing bit encoding. */
12279
12280 static struct neon_type_el
12281 neon_check_type (unsigned els, enum neon_shape ns, ...)
12282 {
12283 va_list ap;
12284 unsigned i, pass, key_el = 0;
12285 unsigned types[NEON_MAX_TYPE_ELS];
12286 enum neon_el_type k_type = NT_invtype;
12287 unsigned k_size = -1u;
12288 struct neon_type_el badtype = {NT_invtype, -1};
12289 unsigned key_allowed = 0;
12290
12291 /* Optional registers in Neon instructions are always (not) in operand 1.
12292 Fill in the missing operand here, if it was omitted. */
12293 if (els > 1 && !inst.operands[1].present)
12294 inst.operands[1] = inst.operands[0];
12295
12296 /* Suck up all the varargs. */
12297 va_start (ap, ns);
12298 for (i = 0; i < els; i++)
12299 {
12300 unsigned thisarg = va_arg (ap, unsigned);
12301 if (thisarg == N_IGNORE_TYPE)
12302 {
12303 va_end (ap);
12304 return badtype;
12305 }
12306 types[i] = thisarg;
12307 if ((thisarg & N_KEY) != 0)
12308 key_el = i;
12309 }
12310 va_end (ap);
12311
12312 if (inst.vectype.elems > 0)
12313 for (i = 0; i < els; i++)
12314 if (inst.operands[i].vectype.type != NT_invtype)
12315 {
12316 first_error (_("types specified in both the mnemonic and operands"));
12317 return badtype;
12318 }
12319
12320 /* Duplicate inst.vectype elements here as necessary.
12321 FIXME: No idea if this is exactly the same as the ARM assembler,
12322 particularly when an insn takes one register and one non-register
12323 operand. */
12324 if (inst.vectype.elems == 1 && els > 1)
12325 {
12326 unsigned j;
12327 inst.vectype.elems = els;
12328 inst.vectype.el[key_el] = inst.vectype.el[0];
12329 for (j = 0; j < els; j++)
12330 if (j != key_el)
12331 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12332 types[j]);
12333 }
12334 else if (inst.vectype.elems == 0 && els > 0)
12335 {
12336 unsigned j;
12337 /* No types were given after the mnemonic, so look for types specified
12338 after each operand. We allow some flexibility here; as long as the
12339 "key" operand has a type, we can infer the others. */
12340 for (j = 0; j < els; j++)
12341 if (inst.operands[j].vectype.type != NT_invtype)
12342 inst.vectype.el[j] = inst.operands[j].vectype;
12343
12344 if (inst.operands[key_el].vectype.type != NT_invtype)
12345 {
12346 for (j = 0; j < els; j++)
12347 if (inst.operands[j].vectype.type == NT_invtype)
12348 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12349 types[j]);
12350 }
12351 else
12352 {
12353 first_error (_("operand types can't be inferred"));
12354 return badtype;
12355 }
12356 }
12357 else if (inst.vectype.elems != els)
12358 {
12359 first_error (_("type specifier has the wrong number of parts"));
12360 return badtype;
12361 }
12362
12363 for (pass = 0; pass < 2; pass++)
12364 {
12365 for (i = 0; i < els; i++)
12366 {
12367 unsigned thisarg = types[i];
12368 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12369 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12370 enum neon_el_type g_type = inst.vectype.el[i].type;
12371 unsigned g_size = inst.vectype.el[i].size;
12372
12373 /* Decay more-specific signed & unsigned types to sign-insensitive
12374 integer types if sign-specific variants are unavailable. */
12375 if ((g_type == NT_signed || g_type == NT_unsigned)
12376 && (types_allowed & N_SU_ALL) == 0)
12377 g_type = NT_integer;
12378
12379 /* If only untyped args are allowed, decay any more specific types to
12380 them. Some instructions only care about signs for some element
12381 sizes, so handle that properly. */
12382 if ((g_size == 8 && (types_allowed & N_8) != 0)
12383 || (g_size == 16 && (types_allowed & N_16) != 0)
12384 || (g_size == 32 && (types_allowed & N_32) != 0)
12385 || (g_size == 64 && (types_allowed & N_64) != 0))
12386 g_type = NT_untyped;
12387
12388 if (pass == 0)
12389 {
12390 if ((thisarg & N_KEY) != 0)
12391 {
12392 k_type = g_type;
12393 k_size = g_size;
12394 key_allowed = thisarg & ~N_KEY;
12395 }
12396 }
12397 else
12398 {
12399 if ((thisarg & N_VFP) != 0)
12400 {
12401 enum neon_shape_el regshape;
12402 unsigned regwidth, match;
12403
12404 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12405 if (ns == NS_NULL)
12406 {
12407 first_error (_("invalid instruction shape"));
12408 return badtype;
12409 }
12410 regshape = neon_shape_tab[ns].el[i];
12411 regwidth = neon_shape_el_size[regshape];
12412
12413 /* In VFP mode, operands must match register widths. If we
12414 have a key operand, use its width, else use the width of
12415 the current operand. */
12416 if (k_size != -1u)
12417 match = k_size;
12418 else
12419 match = g_size;
12420
12421 if (regwidth != match)
12422 {
12423 first_error (_("operand size must match register width"));
12424 return badtype;
12425 }
12426 }
12427
12428 if ((thisarg & N_EQK) == 0)
12429 {
12430 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12431
12432 if ((given_type & types_allowed) == 0)
12433 {
12434 first_error (_("bad type in Neon instruction"));
12435 return badtype;
12436 }
12437 }
12438 else
12439 {
12440 enum neon_el_type mod_k_type = k_type;
12441 unsigned mod_k_size = k_size;
12442 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12443 if (g_type != mod_k_type || g_size != mod_k_size)
12444 {
12445 first_error (_("inconsistent types in Neon instruction"));
12446 return badtype;
12447 }
12448 }
12449 }
12450 }
12451 }
12452
12453 return inst.vectype.el[key_el];
12454 }
12455
12456 /* Neon-style VFP instruction forwarding. */
12457
12458 /* Thumb VFP instructions have 0xE in the condition field. */
12459
12460 static void
12461 do_vfp_cond_or_thumb (void)
12462 {
12463 inst.is_neon = 1;
12464
12465 if (thumb_mode)
12466 inst.instruction |= 0xe0000000;
12467 else
12468 inst.instruction |= inst.cond << 28;
12469 }
12470
12471 /* Look up and encode a simple mnemonic, for use as a helper function for the
12472 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12473 etc. It is assumed that operand parsing has already been done, and that the
12474 operands are in the form expected by the given opcode (this isn't necessarily
12475 the same as the form in which they were parsed, hence some massaging must
12476 take place before this function is called).
12477 Checks current arch version against that in the looked-up opcode. */
12478
12479 static void
12480 do_vfp_nsyn_opcode (const char *opname)
12481 {
12482 const struct asm_opcode *opcode;
12483
12484 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12485
12486 if (!opcode)
12487 abort ();
12488
12489 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12490 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12491 _(BAD_FPU));
12492
12493 inst.is_neon = 1;
12494
12495 if (thumb_mode)
12496 {
12497 inst.instruction = opcode->tvalue;
12498 opcode->tencode ();
12499 }
12500 else
12501 {
12502 inst.instruction = (inst.cond << 28) | opcode->avalue;
12503 opcode->aencode ();
12504 }
12505 }
12506
12507 static void
12508 do_vfp_nsyn_add_sub (enum neon_shape rs)
12509 {
12510 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12511
12512 if (rs == NS_FFF)
12513 {
12514 if (is_add)
12515 do_vfp_nsyn_opcode ("fadds");
12516 else
12517 do_vfp_nsyn_opcode ("fsubs");
12518 }
12519 else
12520 {
12521 if (is_add)
12522 do_vfp_nsyn_opcode ("faddd");
12523 else
12524 do_vfp_nsyn_opcode ("fsubd");
12525 }
12526 }
12527
12528 /* Check operand types to see if this is a VFP instruction, and if so call
12529 PFN (). */
12530
12531 static int
12532 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12533 {
12534 enum neon_shape rs;
12535 struct neon_type_el et;
12536
12537 switch (args)
12538 {
12539 case 2:
12540 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12541 et = neon_check_type (2, rs,
12542 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12543 break;
12544
12545 case 3:
12546 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12547 et = neon_check_type (3, rs,
12548 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12549 break;
12550
12551 default:
12552 abort ();
12553 }
12554
12555 if (et.type != NT_invtype)
12556 {
12557 pfn (rs);
12558 return SUCCESS;
12559 }
12560
12561 inst.error = NULL;
12562 return FAIL;
12563 }
12564
12565 static void
12566 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12567 {
12568 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12569
12570 if (rs == NS_FFF)
12571 {
12572 if (is_mla)
12573 do_vfp_nsyn_opcode ("fmacs");
12574 else
12575 do_vfp_nsyn_opcode ("fnmacs");
12576 }
12577 else
12578 {
12579 if (is_mla)
12580 do_vfp_nsyn_opcode ("fmacd");
12581 else
12582 do_vfp_nsyn_opcode ("fnmacd");
12583 }
12584 }
12585
12586 static void
12587 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12588 {
12589 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12590
12591 if (rs == NS_FFF)
12592 {
12593 if (is_fma)
12594 do_vfp_nsyn_opcode ("ffmas");
12595 else
12596 do_vfp_nsyn_opcode ("ffnmas");
12597 }
12598 else
12599 {
12600 if (is_fma)
12601 do_vfp_nsyn_opcode ("ffmad");
12602 else
12603 do_vfp_nsyn_opcode ("ffnmad");
12604 }
12605 }
12606
12607 static void
12608 do_vfp_nsyn_mul (enum neon_shape rs)
12609 {
12610 if (rs == NS_FFF)
12611 do_vfp_nsyn_opcode ("fmuls");
12612 else
12613 do_vfp_nsyn_opcode ("fmuld");
12614 }
12615
12616 static void
12617 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12618 {
12619 int is_neg = (inst.instruction & 0x80) != 0;
12620 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12621
12622 if (rs == NS_FF)
12623 {
12624 if (is_neg)
12625 do_vfp_nsyn_opcode ("fnegs");
12626 else
12627 do_vfp_nsyn_opcode ("fabss");
12628 }
12629 else
12630 {
12631 if (is_neg)
12632 do_vfp_nsyn_opcode ("fnegd");
12633 else
12634 do_vfp_nsyn_opcode ("fabsd");
12635 }
12636 }
12637
12638 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12639 insns belong to Neon, and are handled elsewhere. */
12640
12641 static void
12642 do_vfp_nsyn_ldm_stm (int is_dbmode)
12643 {
12644 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12645 if (is_ldm)
12646 {
12647 if (is_dbmode)
12648 do_vfp_nsyn_opcode ("fldmdbs");
12649 else
12650 do_vfp_nsyn_opcode ("fldmias");
12651 }
12652 else
12653 {
12654 if (is_dbmode)
12655 do_vfp_nsyn_opcode ("fstmdbs");
12656 else
12657 do_vfp_nsyn_opcode ("fstmias");
12658 }
12659 }
12660
12661 static void
12662 do_vfp_nsyn_sqrt (void)
12663 {
12664 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12665 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12666
12667 if (rs == NS_FF)
12668 do_vfp_nsyn_opcode ("fsqrts");
12669 else
12670 do_vfp_nsyn_opcode ("fsqrtd");
12671 }
12672
12673 static void
12674 do_vfp_nsyn_div (void)
12675 {
12676 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12677 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12678 N_F32 | N_F64 | N_KEY | N_VFP);
12679
12680 if (rs == NS_FFF)
12681 do_vfp_nsyn_opcode ("fdivs");
12682 else
12683 do_vfp_nsyn_opcode ("fdivd");
12684 }
12685
12686 static void
12687 do_vfp_nsyn_nmul (void)
12688 {
12689 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12690 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12691 N_F32 | N_F64 | N_KEY | N_VFP);
12692
12693 if (rs == NS_FFF)
12694 {
12695 NEON_ENCODE (SINGLE, inst);
12696 do_vfp_sp_dyadic ();
12697 }
12698 else
12699 {
12700 NEON_ENCODE (DOUBLE, inst);
12701 do_vfp_dp_rd_rn_rm ();
12702 }
12703 do_vfp_cond_or_thumb ();
12704 }
12705
12706 static void
12707 do_vfp_nsyn_cmp (void)
12708 {
12709 if (inst.operands[1].isreg)
12710 {
12711 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12712 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12713
12714 if (rs == NS_FF)
12715 {
12716 NEON_ENCODE (SINGLE, inst);
12717 do_vfp_sp_monadic ();
12718 }
12719 else
12720 {
12721 NEON_ENCODE (DOUBLE, inst);
12722 do_vfp_dp_rd_rm ();
12723 }
12724 }
12725 else
12726 {
12727 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12728 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12729
12730 switch (inst.instruction & 0x0fffffff)
12731 {
12732 case N_MNEM_vcmp:
12733 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12734 break;
12735 case N_MNEM_vcmpe:
12736 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12737 break;
12738 default:
12739 abort ();
12740 }
12741
12742 if (rs == NS_FI)
12743 {
12744 NEON_ENCODE (SINGLE, inst);
12745 do_vfp_sp_compare_z ();
12746 }
12747 else
12748 {
12749 NEON_ENCODE (DOUBLE, inst);
12750 do_vfp_dp_rd ();
12751 }
12752 }
12753 do_vfp_cond_or_thumb ();
12754 }
12755
12756 static void
12757 nsyn_insert_sp (void)
12758 {
12759 inst.operands[1] = inst.operands[0];
12760 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12761 inst.operands[0].reg = REG_SP;
12762 inst.operands[0].isreg = 1;
12763 inst.operands[0].writeback = 1;
12764 inst.operands[0].present = 1;
12765 }
12766
12767 static void
12768 do_vfp_nsyn_push (void)
12769 {
12770 nsyn_insert_sp ();
12771 if (inst.operands[1].issingle)
12772 do_vfp_nsyn_opcode ("fstmdbs");
12773 else
12774 do_vfp_nsyn_opcode ("fstmdbd");
12775 }
12776
12777 static void
12778 do_vfp_nsyn_pop (void)
12779 {
12780 nsyn_insert_sp ();
12781 if (inst.operands[1].issingle)
12782 do_vfp_nsyn_opcode ("fldmias");
12783 else
12784 do_vfp_nsyn_opcode ("fldmiad");
12785 }
12786
12787 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12788 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12789
12790 static void
12791 neon_dp_fixup (struct arm_it* insn)
12792 {
12793 unsigned int i = insn->instruction;
12794 insn->is_neon = 1;
12795
12796 if (thumb_mode)
12797 {
12798 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12799 if (i & (1 << 24))
12800 i |= 1 << 28;
12801
12802 i &= ~(1 << 24);
12803
12804 i |= 0xef000000;
12805 }
12806 else
12807 i |= 0xf2000000;
12808
12809 insn->instruction = i;
12810 }
12811
12812 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12813 (0, 1, 2, 3). */
12814
12815 static unsigned
12816 neon_logbits (unsigned x)
12817 {
12818 return ffs (x) - 4;
12819 }
12820
12821 #define LOW4(R) ((R) & 0xf)
12822 #define HI1(R) (((R) >> 4) & 1)
12823
12824 /* Encode insns with bit pattern:
12825
12826 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12827 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12828
12829 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12830 different meaning for some instruction. */
12831
12832 static void
12833 neon_three_same (int isquad, int ubit, int size)
12834 {
12835 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12836 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12837 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12838 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12839 inst.instruction |= LOW4 (inst.operands[2].reg);
12840 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12841 inst.instruction |= (isquad != 0) << 6;
12842 inst.instruction |= (ubit != 0) << 24;
12843 if (size != -1)
12844 inst.instruction |= neon_logbits (size) << 20;
12845
12846 neon_dp_fixup (&inst);
12847 }
12848
12849 /* Encode instructions of the form:
12850
12851 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12852 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12853
12854 Don't write size if SIZE == -1. */
12855
12856 static void
12857 neon_two_same (int qbit, int ubit, int size)
12858 {
12859 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12860 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12861 inst.instruction |= LOW4 (inst.operands[1].reg);
12862 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12863 inst.instruction |= (qbit != 0) << 6;
12864 inst.instruction |= (ubit != 0) << 24;
12865
12866 if (size != -1)
12867 inst.instruction |= neon_logbits (size) << 18;
12868
12869 neon_dp_fixup (&inst);
12870 }
12871
12872 /* Neon instruction encoders, in approximate order of appearance. */
12873
12874 static void
12875 do_neon_dyadic_i_su (void)
12876 {
12877 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12878 struct neon_type_el et = neon_check_type (3, rs,
12879 N_EQK, N_EQK, N_SU_32 | N_KEY);
12880 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12881 }
12882
12883 static void
12884 do_neon_dyadic_i64_su (void)
12885 {
12886 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12887 struct neon_type_el et = neon_check_type (3, rs,
12888 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12889 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12890 }
12891
12892 static void
12893 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12894 unsigned immbits)
12895 {
12896 unsigned size = et.size >> 3;
12897 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12898 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12899 inst.instruction |= LOW4 (inst.operands[1].reg);
12900 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12901 inst.instruction |= (isquad != 0) << 6;
12902 inst.instruction |= immbits << 16;
12903 inst.instruction |= (size >> 3) << 7;
12904 inst.instruction |= (size & 0x7) << 19;
12905 if (write_ubit)
12906 inst.instruction |= (uval != 0) << 24;
12907
12908 neon_dp_fixup (&inst);
12909 }
12910
12911 static void
12912 do_neon_shl_imm (void)
12913 {
12914 if (!inst.operands[2].isreg)
12915 {
12916 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12917 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12918 NEON_ENCODE (IMMED, inst);
12919 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12920 }
12921 else
12922 {
12923 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12924 struct neon_type_el et = neon_check_type (3, rs,
12925 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12926 unsigned int tmp;
12927
12928 /* VSHL/VQSHL 3-register variants have syntax such as:
12929 vshl.xx Dd, Dm, Dn
12930 whereas other 3-register operations encoded by neon_three_same have
12931 syntax like:
12932 vadd.xx Dd, Dn, Dm
12933 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12934 here. */
12935 tmp = inst.operands[2].reg;
12936 inst.operands[2].reg = inst.operands[1].reg;
12937 inst.operands[1].reg = tmp;
12938 NEON_ENCODE (INTEGER, inst);
12939 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12940 }
12941 }
12942
12943 static void
12944 do_neon_qshl_imm (void)
12945 {
12946 if (!inst.operands[2].isreg)
12947 {
12948 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12949 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12950
12951 NEON_ENCODE (IMMED, inst);
12952 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12953 inst.operands[2].imm);
12954 }
12955 else
12956 {
12957 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12958 struct neon_type_el et = neon_check_type (3, rs,
12959 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12960 unsigned int tmp;
12961
12962 /* See note in do_neon_shl_imm. */
12963 tmp = inst.operands[2].reg;
12964 inst.operands[2].reg = inst.operands[1].reg;
12965 inst.operands[1].reg = tmp;
12966 NEON_ENCODE (INTEGER, inst);
12967 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12968 }
12969 }
12970
12971 static void
12972 do_neon_rshl (void)
12973 {
12974 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12975 struct neon_type_el et = neon_check_type (3, rs,
12976 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12977 unsigned int tmp;
12978
12979 tmp = inst.operands[2].reg;
12980 inst.operands[2].reg = inst.operands[1].reg;
12981 inst.operands[1].reg = tmp;
12982 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12983 }
12984
12985 static int
12986 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12987 {
12988 /* Handle .I8 pseudo-instructions. */
12989 if (size == 8)
12990 {
12991 /* Unfortunately, this will make everything apart from zero out-of-range.
12992 FIXME is this the intended semantics? There doesn't seem much point in
12993 accepting .I8 if so. */
12994 immediate |= immediate << 8;
12995 size = 16;
12996 }
12997
12998 if (size >= 32)
12999 {
13000 if (immediate == (immediate & 0x000000ff))
13001 {
13002 *immbits = immediate;
13003 return 0x1;
13004 }
13005 else if (immediate == (immediate & 0x0000ff00))
13006 {
13007 *immbits = immediate >> 8;
13008 return 0x3;
13009 }
13010 else if (immediate == (immediate & 0x00ff0000))
13011 {
13012 *immbits = immediate >> 16;
13013 return 0x5;
13014 }
13015 else if (immediate == (immediate & 0xff000000))
13016 {
13017 *immbits = immediate >> 24;
13018 return 0x7;
13019 }
13020 if ((immediate & 0xffff) != (immediate >> 16))
13021 goto bad_immediate;
13022 immediate &= 0xffff;
13023 }
13024
13025 if (immediate == (immediate & 0x000000ff))
13026 {
13027 *immbits = immediate;
13028 return 0x9;
13029 }
13030 else if (immediate == (immediate & 0x0000ff00))
13031 {
13032 *immbits = immediate >> 8;
13033 return 0xb;
13034 }
13035
13036 bad_immediate:
13037 first_error (_("immediate value out of range"));
13038 return FAIL;
13039 }
13040
13041 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13042 A, B, C, D. */
13043
13044 static int
13045 neon_bits_same_in_bytes (unsigned imm)
13046 {
13047 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13048 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13049 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13050 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13051 }
13052
13053 /* For immediate of above form, return 0bABCD. */
13054
13055 static unsigned
13056 neon_squash_bits (unsigned imm)
13057 {
13058 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13059 | ((imm & 0x01000000) >> 21);
13060 }
13061
13062 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13063
13064 static unsigned
13065 neon_qfloat_bits (unsigned imm)
13066 {
13067 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13068 }
13069
13070 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13071 the instruction. *OP is passed as the initial value of the op field, and
13072 may be set to a different value depending on the constant (i.e.
13073 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13074 MVN). If the immediate looks like a repeated pattern then also
13075 try smaller element sizes. */
13076
13077 static int
13078 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13079 unsigned *immbits, int *op, int size,
13080 enum neon_el_type type)
13081 {
13082 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13083 float. */
13084 if (type == NT_float && !float_p)
13085 return FAIL;
13086
13087 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13088 {
13089 if (size != 32 || *op == 1)
13090 return FAIL;
13091 *immbits = neon_qfloat_bits (immlo);
13092 return 0xf;
13093 }
13094
13095 if (size == 64)
13096 {
13097 if (neon_bits_same_in_bytes (immhi)
13098 && neon_bits_same_in_bytes (immlo))
13099 {
13100 if (*op == 1)
13101 return FAIL;
13102 *immbits = (neon_squash_bits (immhi) << 4)
13103 | neon_squash_bits (immlo);
13104 *op = 1;
13105 return 0xe;
13106 }
13107
13108 if (immhi != immlo)
13109 return FAIL;
13110 }
13111
13112 if (size >= 32)
13113 {
13114 if (immlo == (immlo & 0x000000ff))
13115 {
13116 *immbits = immlo;
13117 return 0x0;
13118 }
13119 else if (immlo == (immlo & 0x0000ff00))
13120 {
13121 *immbits = immlo >> 8;
13122 return 0x2;
13123 }
13124 else if (immlo == (immlo & 0x00ff0000))
13125 {
13126 *immbits = immlo >> 16;
13127 return 0x4;
13128 }
13129 else if (immlo == (immlo & 0xff000000))
13130 {
13131 *immbits = immlo >> 24;
13132 return 0x6;
13133 }
13134 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13135 {
13136 *immbits = (immlo >> 8) & 0xff;
13137 return 0xc;
13138 }
13139 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13140 {
13141 *immbits = (immlo >> 16) & 0xff;
13142 return 0xd;
13143 }
13144
13145 if ((immlo & 0xffff) != (immlo >> 16))
13146 return FAIL;
13147 immlo &= 0xffff;
13148 }
13149
13150 if (size >= 16)
13151 {
13152 if (immlo == (immlo & 0x000000ff))
13153 {
13154 *immbits = immlo;
13155 return 0x8;
13156 }
13157 else if (immlo == (immlo & 0x0000ff00))
13158 {
13159 *immbits = immlo >> 8;
13160 return 0xa;
13161 }
13162
13163 if ((immlo & 0xff) != (immlo >> 8))
13164 return FAIL;
13165 immlo &= 0xff;
13166 }
13167
13168 if (immlo == (immlo & 0x000000ff))
13169 {
13170 /* Don't allow MVN with 8-bit immediate. */
13171 if (*op == 1)
13172 return FAIL;
13173 *immbits = immlo;
13174 return 0xe;
13175 }
13176
13177 return FAIL;
13178 }
13179
13180 /* Write immediate bits [7:0] to the following locations:
13181
13182 |28/24|23 19|18 16|15 4|3 0|
13183 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13184
13185 This function is used by VMOV/VMVN/VORR/VBIC. */
13186
13187 static void
13188 neon_write_immbits (unsigned immbits)
13189 {
13190 inst.instruction |= immbits & 0xf;
13191 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13192 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13193 }
13194
13195 /* Invert low-order SIZE bits of XHI:XLO. */
13196
13197 static void
13198 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13199 {
13200 unsigned immlo = xlo ? *xlo : 0;
13201 unsigned immhi = xhi ? *xhi : 0;
13202
13203 switch (size)
13204 {
13205 case 8:
13206 immlo = (~immlo) & 0xff;
13207 break;
13208
13209 case 16:
13210 immlo = (~immlo) & 0xffff;
13211 break;
13212
13213 case 64:
13214 immhi = (~immhi) & 0xffffffff;
13215 /* fall through. */
13216
13217 case 32:
13218 immlo = (~immlo) & 0xffffffff;
13219 break;
13220
13221 default:
13222 abort ();
13223 }
13224
13225 if (xlo)
13226 *xlo = immlo;
13227
13228 if (xhi)
13229 *xhi = immhi;
13230 }
13231
13232 static void
13233 do_neon_logic (void)
13234 {
13235 if (inst.operands[2].present && inst.operands[2].isreg)
13236 {
13237 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13238 neon_check_type (3, rs, N_IGNORE_TYPE);
13239 /* U bit and size field were set as part of the bitmask. */
13240 NEON_ENCODE (INTEGER, inst);
13241 neon_three_same (neon_quad (rs), 0, -1);
13242 }
13243 else
13244 {
13245 const int three_ops_form = (inst.operands[2].present
13246 && !inst.operands[2].isreg);
13247 const int immoperand = (three_ops_form ? 2 : 1);
13248 enum neon_shape rs = (three_ops_form
13249 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13250 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13251 struct neon_type_el et = neon_check_type (2, rs,
13252 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13253 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13254 unsigned immbits;
13255 int cmode;
13256
13257 if (et.type == NT_invtype)
13258 return;
13259
13260 if (three_ops_form)
13261 constraint (inst.operands[0].reg != inst.operands[1].reg,
13262 _("first and second operands shall be the same register"));
13263
13264 NEON_ENCODE (IMMED, inst);
13265
13266 immbits = inst.operands[immoperand].imm;
13267 if (et.size == 64)
13268 {
13269 /* .i64 is a pseudo-op, so the immediate must be a repeating
13270 pattern. */
13271 if (immbits != (inst.operands[immoperand].regisimm ?
13272 inst.operands[immoperand].reg : 0))
13273 {
13274 /* Set immbits to an invalid constant. */
13275 immbits = 0xdeadbeef;
13276 }
13277 }
13278
13279 switch (opcode)
13280 {
13281 case N_MNEM_vbic:
13282 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13283 break;
13284
13285 case N_MNEM_vorr:
13286 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13287 break;
13288
13289 case N_MNEM_vand:
13290 /* Pseudo-instruction for VBIC. */
13291 neon_invert_size (&immbits, 0, et.size);
13292 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13293 break;
13294
13295 case N_MNEM_vorn:
13296 /* Pseudo-instruction for VORR. */
13297 neon_invert_size (&immbits, 0, et.size);
13298 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13299 break;
13300
13301 default:
13302 abort ();
13303 }
13304
13305 if (cmode == FAIL)
13306 return;
13307
13308 inst.instruction |= neon_quad (rs) << 6;
13309 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13310 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13311 inst.instruction |= cmode << 8;
13312 neon_write_immbits (immbits);
13313
13314 neon_dp_fixup (&inst);
13315 }
13316 }
13317
13318 static void
13319 do_neon_bitfield (void)
13320 {
13321 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13322 neon_check_type (3, rs, N_IGNORE_TYPE);
13323 neon_three_same (neon_quad (rs), 0, -1);
13324 }
13325
13326 static void
13327 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13328 unsigned destbits)
13329 {
13330 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13331 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13332 types | N_KEY);
13333 if (et.type == NT_float)
13334 {
13335 NEON_ENCODE (FLOAT, inst);
13336 neon_three_same (neon_quad (rs), 0, -1);
13337 }
13338 else
13339 {
13340 NEON_ENCODE (INTEGER, inst);
13341 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13342 }
13343 }
13344
13345 static void
13346 do_neon_dyadic_if_su (void)
13347 {
13348 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13349 }
13350
13351 static void
13352 do_neon_dyadic_if_su_d (void)
13353 {
13354 /* This version only allow D registers, but that constraint is enforced during
13355 operand parsing so we don't need to do anything extra here. */
13356 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13357 }
13358
13359 static void
13360 do_neon_dyadic_if_i_d (void)
13361 {
13362 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13363 affected if we specify unsigned args. */
13364 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13365 }
13366
13367 enum vfp_or_neon_is_neon_bits
13368 {
13369 NEON_CHECK_CC = 1,
13370 NEON_CHECK_ARCH = 2
13371 };
13372
13373 /* Call this function if an instruction which may have belonged to the VFP or
13374 Neon instruction sets, but turned out to be a Neon instruction (due to the
13375 operand types involved, etc.). We have to check and/or fix-up a couple of
13376 things:
13377
13378 - Make sure the user hasn't attempted to make a Neon instruction
13379 conditional.
13380 - Alter the value in the condition code field if necessary.
13381 - Make sure that the arch supports Neon instructions.
13382
13383 Which of these operations take place depends on bits from enum
13384 vfp_or_neon_is_neon_bits.
13385
13386 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13387 current instruction's condition is COND_ALWAYS, the condition field is
13388 changed to inst.uncond_value. This is necessary because instructions shared
13389 between VFP and Neon may be conditional for the VFP variants only, and the
13390 unconditional Neon version must have, e.g., 0xF in the condition field. */
13391
13392 static int
13393 vfp_or_neon_is_neon (unsigned check)
13394 {
13395 /* Conditions are always legal in Thumb mode (IT blocks). */
13396 if (!thumb_mode && (check & NEON_CHECK_CC))
13397 {
13398 if (inst.cond != COND_ALWAYS)
13399 {
13400 first_error (_(BAD_COND));
13401 return FAIL;
13402 }
13403 if (inst.uncond_value != -1)
13404 inst.instruction |= inst.uncond_value << 28;
13405 }
13406
13407 if ((check & NEON_CHECK_ARCH)
13408 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13409 {
13410 first_error (_(BAD_FPU));
13411 return FAIL;
13412 }
13413
13414 return SUCCESS;
13415 }
13416
13417 static void
13418 do_neon_addsub_if_i (void)
13419 {
13420 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13421 return;
13422
13423 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13424 return;
13425
13426 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13427 affected if we specify unsigned args. */
13428 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13429 }
13430
13431 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13432 result to be:
13433 V<op> A,B (A is operand 0, B is operand 2)
13434 to mean:
13435 V<op> A,B,A
13436 not:
13437 V<op> A,B,B
13438 so handle that case specially. */
13439
13440 static void
13441 neon_exchange_operands (void)
13442 {
13443 void *scratch = alloca (sizeof (inst.operands[0]));
13444 if (inst.operands[1].present)
13445 {
13446 /* Swap operands[1] and operands[2]. */
13447 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13448 inst.operands[1] = inst.operands[2];
13449 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13450 }
13451 else
13452 {
13453 inst.operands[1] = inst.operands[2];
13454 inst.operands[2] = inst.operands[0];
13455 }
13456 }
13457
13458 static void
13459 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13460 {
13461 if (inst.operands[2].isreg)
13462 {
13463 if (invert)
13464 neon_exchange_operands ();
13465 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13466 }
13467 else
13468 {
13469 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13470 struct neon_type_el et = neon_check_type (2, rs,
13471 N_EQK | N_SIZ, immtypes | N_KEY);
13472
13473 NEON_ENCODE (IMMED, inst);
13474 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13475 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13476 inst.instruction |= LOW4 (inst.operands[1].reg);
13477 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13478 inst.instruction |= neon_quad (rs) << 6;
13479 inst.instruction |= (et.type == NT_float) << 10;
13480 inst.instruction |= neon_logbits (et.size) << 18;
13481
13482 neon_dp_fixup (&inst);
13483 }
13484 }
13485
13486 static void
13487 do_neon_cmp (void)
13488 {
13489 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13490 }
13491
13492 static void
13493 do_neon_cmp_inv (void)
13494 {
13495 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13496 }
13497
13498 static void
13499 do_neon_ceq (void)
13500 {
13501 neon_compare (N_IF_32, N_IF_32, FALSE);
13502 }
13503
13504 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13505 scalars, which are encoded in 5 bits, M : Rm.
13506 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13507 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13508 index in M. */
13509
13510 static unsigned
13511 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13512 {
13513 unsigned regno = NEON_SCALAR_REG (scalar);
13514 unsigned elno = NEON_SCALAR_INDEX (scalar);
13515
13516 switch (elsize)
13517 {
13518 case 16:
13519 if (regno > 7 || elno > 3)
13520 goto bad_scalar;
13521 return regno | (elno << 3);
13522
13523 case 32:
13524 if (regno > 15 || elno > 1)
13525 goto bad_scalar;
13526 return regno | (elno << 4);
13527
13528 default:
13529 bad_scalar:
13530 first_error (_("scalar out of range for multiply instruction"));
13531 }
13532
13533 return 0;
13534 }
13535
13536 /* Encode multiply / multiply-accumulate scalar instructions. */
13537
13538 static void
13539 neon_mul_mac (struct neon_type_el et, int ubit)
13540 {
13541 unsigned scalar;
13542
13543 /* Give a more helpful error message if we have an invalid type. */
13544 if (et.type == NT_invtype)
13545 return;
13546
13547 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13548 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13549 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13550 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13551 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13552 inst.instruction |= LOW4 (scalar);
13553 inst.instruction |= HI1 (scalar) << 5;
13554 inst.instruction |= (et.type == NT_float) << 8;
13555 inst.instruction |= neon_logbits (et.size) << 20;
13556 inst.instruction |= (ubit != 0) << 24;
13557
13558 neon_dp_fixup (&inst);
13559 }
13560
13561 static void
13562 do_neon_mac_maybe_scalar (void)
13563 {
13564 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13565 return;
13566
13567 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13568 return;
13569
13570 if (inst.operands[2].isscalar)
13571 {
13572 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13573 struct neon_type_el et = neon_check_type (3, rs,
13574 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13575 NEON_ENCODE (SCALAR, inst);
13576 neon_mul_mac (et, neon_quad (rs));
13577 }
13578 else
13579 {
13580 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13581 affected if we specify unsigned args. */
13582 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13583 }
13584 }
13585
13586 static void
13587 do_neon_fmac (void)
13588 {
13589 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13590 return;
13591
13592 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13593 return;
13594
13595 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13596 }
13597
13598 static void
13599 do_neon_tst (void)
13600 {
13601 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13602 struct neon_type_el et = neon_check_type (3, rs,
13603 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13604 neon_three_same (neon_quad (rs), 0, et.size);
13605 }
13606
13607 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13608 same types as the MAC equivalents. The polynomial type for this instruction
13609 is encoded the same as the integer type. */
13610
13611 static void
13612 do_neon_mul (void)
13613 {
13614 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13615 return;
13616
13617 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13618 return;
13619
13620 if (inst.operands[2].isscalar)
13621 do_neon_mac_maybe_scalar ();
13622 else
13623 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13624 }
13625
13626 static void
13627 do_neon_qdmulh (void)
13628 {
13629 if (inst.operands[2].isscalar)
13630 {
13631 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13632 struct neon_type_el et = neon_check_type (3, rs,
13633 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13634 NEON_ENCODE (SCALAR, inst);
13635 neon_mul_mac (et, neon_quad (rs));
13636 }
13637 else
13638 {
13639 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13640 struct neon_type_el et = neon_check_type (3, rs,
13641 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13642 NEON_ENCODE (INTEGER, inst);
13643 /* The U bit (rounding) comes from bit mask. */
13644 neon_three_same (neon_quad (rs), 0, et.size);
13645 }
13646 }
13647
13648 static void
13649 do_neon_fcmp_absolute (void)
13650 {
13651 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13652 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13653 /* Size field comes from bit mask. */
13654 neon_three_same (neon_quad (rs), 1, -1);
13655 }
13656
13657 static void
13658 do_neon_fcmp_absolute_inv (void)
13659 {
13660 neon_exchange_operands ();
13661 do_neon_fcmp_absolute ();
13662 }
13663
13664 static void
13665 do_neon_step (void)
13666 {
13667 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13668 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13669 neon_three_same (neon_quad (rs), 0, -1);
13670 }
13671
13672 static void
13673 do_neon_abs_neg (void)
13674 {
13675 enum neon_shape rs;
13676 struct neon_type_el et;
13677
13678 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13679 return;
13680
13681 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13682 return;
13683
13684 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13685 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13686
13687 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13688 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13689 inst.instruction |= LOW4 (inst.operands[1].reg);
13690 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13691 inst.instruction |= neon_quad (rs) << 6;
13692 inst.instruction |= (et.type == NT_float) << 10;
13693 inst.instruction |= neon_logbits (et.size) << 18;
13694
13695 neon_dp_fixup (&inst);
13696 }
13697
13698 static void
13699 do_neon_sli (void)
13700 {
13701 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13702 struct neon_type_el et = neon_check_type (2, rs,
13703 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13704 int imm = inst.operands[2].imm;
13705 constraint (imm < 0 || (unsigned)imm >= et.size,
13706 _("immediate out of range for insert"));
13707 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13708 }
13709
13710 static void
13711 do_neon_sri (void)
13712 {
13713 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13714 struct neon_type_el et = neon_check_type (2, rs,
13715 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13716 int imm = inst.operands[2].imm;
13717 constraint (imm < 1 || (unsigned)imm > et.size,
13718 _("immediate out of range for insert"));
13719 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13720 }
13721
13722 static void
13723 do_neon_qshlu_imm (void)
13724 {
13725 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13726 struct neon_type_el et = neon_check_type (2, rs,
13727 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13728 int imm = inst.operands[2].imm;
13729 constraint (imm < 0 || (unsigned)imm >= et.size,
13730 _("immediate out of range for shift"));
13731 /* Only encodes the 'U present' variant of the instruction.
13732 In this case, signed types have OP (bit 8) set to 0.
13733 Unsigned types have OP set to 1. */
13734 inst.instruction |= (et.type == NT_unsigned) << 8;
13735 /* The rest of the bits are the same as other immediate shifts. */
13736 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13737 }
13738
13739 static void
13740 do_neon_qmovn (void)
13741 {
13742 struct neon_type_el et = neon_check_type (2, NS_DQ,
13743 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13744 /* Saturating move where operands can be signed or unsigned, and the
13745 destination has the same signedness. */
13746 NEON_ENCODE (INTEGER, inst);
13747 if (et.type == NT_unsigned)
13748 inst.instruction |= 0xc0;
13749 else
13750 inst.instruction |= 0x80;
13751 neon_two_same (0, 1, et.size / 2);
13752 }
13753
13754 static void
13755 do_neon_qmovun (void)
13756 {
13757 struct neon_type_el et = neon_check_type (2, NS_DQ,
13758 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13759 /* Saturating move with unsigned results. Operands must be signed. */
13760 NEON_ENCODE (INTEGER, inst);
13761 neon_two_same (0, 1, et.size / 2);
13762 }
13763
13764 static void
13765 do_neon_rshift_sat_narrow (void)
13766 {
13767 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13768 or unsigned. If operands are unsigned, results must also be unsigned. */
13769 struct neon_type_el et = neon_check_type (2, NS_DQI,
13770 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13771 int imm = inst.operands[2].imm;
13772 /* This gets the bounds check, size encoding and immediate bits calculation
13773 right. */
13774 et.size /= 2;
13775
13776 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13777 VQMOVN.I<size> <Dd>, <Qm>. */
13778 if (imm == 0)
13779 {
13780 inst.operands[2].present = 0;
13781 inst.instruction = N_MNEM_vqmovn;
13782 do_neon_qmovn ();
13783 return;
13784 }
13785
13786 constraint (imm < 1 || (unsigned)imm > et.size,
13787 _("immediate out of range"));
13788 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13789 }
13790
13791 static void
13792 do_neon_rshift_sat_narrow_u (void)
13793 {
13794 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13795 or unsigned. If operands are unsigned, results must also be unsigned. */
13796 struct neon_type_el et = neon_check_type (2, NS_DQI,
13797 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13798 int imm = inst.operands[2].imm;
13799 /* This gets the bounds check, size encoding and immediate bits calculation
13800 right. */
13801 et.size /= 2;
13802
13803 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13804 VQMOVUN.I<size> <Dd>, <Qm>. */
13805 if (imm == 0)
13806 {
13807 inst.operands[2].present = 0;
13808 inst.instruction = N_MNEM_vqmovun;
13809 do_neon_qmovun ();
13810 return;
13811 }
13812
13813 constraint (imm < 1 || (unsigned)imm > et.size,
13814 _("immediate out of range"));
13815 /* FIXME: The manual is kind of unclear about what value U should have in
13816 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13817 must be 1. */
13818 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13819 }
13820
13821 static void
13822 do_neon_movn (void)
13823 {
13824 struct neon_type_el et = neon_check_type (2, NS_DQ,
13825 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13826 NEON_ENCODE (INTEGER, inst);
13827 neon_two_same (0, 1, et.size / 2);
13828 }
13829
13830 static void
13831 do_neon_rshift_narrow (void)
13832 {
13833 struct neon_type_el et = neon_check_type (2, NS_DQI,
13834 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13835 int imm = inst.operands[2].imm;
13836 /* This gets the bounds check, size encoding and immediate bits calculation
13837 right. */
13838 et.size /= 2;
13839
13840 /* If immediate is zero then we are a pseudo-instruction for
13841 VMOVN.I<size> <Dd>, <Qm> */
13842 if (imm == 0)
13843 {
13844 inst.operands[2].present = 0;
13845 inst.instruction = N_MNEM_vmovn;
13846 do_neon_movn ();
13847 return;
13848 }
13849
13850 constraint (imm < 1 || (unsigned)imm > et.size,
13851 _("immediate out of range for narrowing operation"));
13852 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13853 }
13854
13855 static void
13856 do_neon_shll (void)
13857 {
13858 /* FIXME: Type checking when lengthening. */
13859 struct neon_type_el et = neon_check_type (2, NS_QDI,
13860 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13861 unsigned imm = inst.operands[2].imm;
13862
13863 if (imm == et.size)
13864 {
13865 /* Maximum shift variant. */
13866 NEON_ENCODE (INTEGER, inst);
13867 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13868 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13869 inst.instruction |= LOW4 (inst.operands[1].reg);
13870 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13871 inst.instruction |= neon_logbits (et.size) << 18;
13872
13873 neon_dp_fixup (&inst);
13874 }
13875 else
13876 {
13877 /* A more-specific type check for non-max versions. */
13878 et = neon_check_type (2, NS_QDI,
13879 N_EQK | N_DBL, N_SU_32 | N_KEY);
13880 NEON_ENCODE (IMMED, inst);
13881 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13882 }
13883 }
13884
13885 /* Check the various types for the VCVT instruction, and return which version
13886 the current instruction is. */
13887
13888 static int
13889 neon_cvt_flavour (enum neon_shape rs)
13890 {
13891 #define CVT_VAR(C,X,Y) \
13892 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13893 if (et.type != NT_invtype) \
13894 { \
13895 inst.error = NULL; \
13896 return (C); \
13897 }
13898 struct neon_type_el et;
13899 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13900 || rs == NS_FF) ? N_VFP : 0;
13901 /* The instruction versions which take an immediate take one register
13902 argument, which is extended to the width of the full register. Thus the
13903 "source" and "destination" registers must have the same width. Hack that
13904 here by making the size equal to the key (wider, in this case) operand. */
13905 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13906
13907 CVT_VAR (0, N_S32, N_F32);
13908 CVT_VAR (1, N_U32, N_F32);
13909 CVT_VAR (2, N_F32, N_S32);
13910 CVT_VAR (3, N_F32, N_U32);
13911 /* Half-precision conversions. */
13912 CVT_VAR (4, N_F32, N_F16);
13913 CVT_VAR (5, N_F16, N_F32);
13914
13915 whole_reg = N_VFP;
13916
13917 /* VFP instructions. */
13918 CVT_VAR (6, N_F32, N_F64);
13919 CVT_VAR (7, N_F64, N_F32);
13920 CVT_VAR (8, N_S32, N_F64 | key);
13921 CVT_VAR (9, N_U32, N_F64 | key);
13922 CVT_VAR (10, N_F64 | key, N_S32);
13923 CVT_VAR (11, N_F64 | key, N_U32);
13924 /* VFP instructions with bitshift. */
13925 CVT_VAR (12, N_F32 | key, N_S16);
13926 CVT_VAR (13, N_F32 | key, N_U16);
13927 CVT_VAR (14, N_F64 | key, N_S16);
13928 CVT_VAR (15, N_F64 | key, N_U16);
13929 CVT_VAR (16, N_S16, N_F32 | key);
13930 CVT_VAR (17, N_U16, N_F32 | key);
13931 CVT_VAR (18, N_S16, N_F64 | key);
13932 CVT_VAR (19, N_U16, N_F64 | key);
13933
13934 return -1;
13935 #undef CVT_VAR
13936 }
13937
13938 /* Neon-syntax VFP conversions. */
13939
13940 static void
13941 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13942 {
13943 const char *opname = 0;
13944
13945 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13946 {
13947 /* Conversions with immediate bitshift. */
13948 const char *enc[] =
13949 {
13950 "ftosls",
13951 "ftouls",
13952 "fsltos",
13953 "fultos",
13954 NULL,
13955 NULL,
13956 NULL,
13957 NULL,
13958 "ftosld",
13959 "ftould",
13960 "fsltod",
13961 "fultod",
13962 "fshtos",
13963 "fuhtos",
13964 "fshtod",
13965 "fuhtod",
13966 "ftoshs",
13967 "ftouhs",
13968 "ftoshd",
13969 "ftouhd"
13970 };
13971
13972 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13973 {
13974 opname = enc[flavour];
13975 constraint (inst.operands[0].reg != inst.operands[1].reg,
13976 _("operands 0 and 1 must be the same register"));
13977 inst.operands[1] = inst.operands[2];
13978 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13979 }
13980 }
13981 else
13982 {
13983 /* Conversions without bitshift. */
13984 const char *enc[] =
13985 {
13986 "ftosis",
13987 "ftouis",
13988 "fsitos",
13989 "fuitos",
13990 "NULL",
13991 "NULL",
13992 "fcvtsd",
13993 "fcvtds",
13994 "ftosid",
13995 "ftouid",
13996 "fsitod",
13997 "fuitod"
13998 };
13999
14000 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14001 opname = enc[flavour];
14002 }
14003
14004 if (opname)
14005 do_vfp_nsyn_opcode (opname);
14006 }
14007
14008 static void
14009 do_vfp_nsyn_cvtz (void)
14010 {
14011 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14012 int flavour = neon_cvt_flavour (rs);
14013 const char *enc[] =
14014 {
14015 "ftosizs",
14016 "ftouizs",
14017 NULL,
14018 NULL,
14019 NULL,
14020 NULL,
14021 NULL,
14022 NULL,
14023 "ftosizd",
14024 "ftouizd"
14025 };
14026
14027 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14028 do_vfp_nsyn_opcode (enc[flavour]);
14029 }
14030
14031 static void
14032 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14033 {
14034 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14035 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14036 int flavour = neon_cvt_flavour (rs);
14037
14038 /* PR11109: Handle round-to-zero for VCVT conversions. */
14039 if (round_to_zero
14040 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14041 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14042 && (rs == NS_FD || rs == NS_FF))
14043 {
14044 do_vfp_nsyn_cvtz ();
14045 return;
14046 }
14047
14048 /* VFP rather than Neon conversions. */
14049 if (flavour >= 6)
14050 {
14051 do_vfp_nsyn_cvt (rs, flavour);
14052 return;
14053 }
14054
14055 switch (rs)
14056 {
14057 case NS_DDI:
14058 case NS_QQI:
14059 {
14060 unsigned immbits;
14061 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14062
14063 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14064 return;
14065
14066 /* Fixed-point conversion with #0 immediate is encoded as an
14067 integer conversion. */
14068 if (inst.operands[2].present && inst.operands[2].imm == 0)
14069 goto int_encode;
14070 immbits = 32 - inst.operands[2].imm;
14071 NEON_ENCODE (IMMED, inst);
14072 if (flavour != -1)
14073 inst.instruction |= enctab[flavour];
14074 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14075 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14076 inst.instruction |= LOW4 (inst.operands[1].reg);
14077 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14078 inst.instruction |= neon_quad (rs) << 6;
14079 inst.instruction |= 1 << 21;
14080 inst.instruction |= immbits << 16;
14081
14082 neon_dp_fixup (&inst);
14083 }
14084 break;
14085
14086 case NS_DD:
14087 case NS_QQ:
14088 int_encode:
14089 {
14090 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14091
14092 NEON_ENCODE (INTEGER, inst);
14093
14094 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14095 return;
14096
14097 if (flavour != -1)
14098 inst.instruction |= enctab[flavour];
14099
14100 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14101 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14102 inst.instruction |= LOW4 (inst.operands[1].reg);
14103 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14104 inst.instruction |= neon_quad (rs) << 6;
14105 inst.instruction |= 2 << 18;
14106
14107 neon_dp_fixup (&inst);
14108 }
14109 break;
14110
14111 /* Half-precision conversions for Advanced SIMD -- neon. */
14112 case NS_QD:
14113 case NS_DQ:
14114
14115 if ((rs == NS_DQ)
14116 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14117 {
14118 as_bad (_("operand size must match register width"));
14119 break;
14120 }
14121
14122 if ((rs == NS_QD)
14123 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14124 {
14125 as_bad (_("operand size must match register width"));
14126 break;
14127 }
14128
14129 if (rs == NS_DQ)
14130 inst.instruction = 0x3b60600;
14131 else
14132 inst.instruction = 0x3b60700;
14133
14134 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14135 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14136 inst.instruction |= LOW4 (inst.operands[1].reg);
14137 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14138 neon_dp_fixup (&inst);
14139 break;
14140
14141 default:
14142 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14143 do_vfp_nsyn_cvt (rs, flavour);
14144 }
14145 }
14146
14147 static void
14148 do_neon_cvtr (void)
14149 {
14150 do_neon_cvt_1 (FALSE);
14151 }
14152
14153 static void
14154 do_neon_cvt (void)
14155 {
14156 do_neon_cvt_1 (TRUE);
14157 }
14158
14159 static void
14160 do_neon_cvtb (void)
14161 {
14162 inst.instruction = 0xeb20a40;
14163
14164 /* The sizes are attached to the mnemonic. */
14165 if (inst.vectype.el[0].type != NT_invtype
14166 && inst.vectype.el[0].size == 16)
14167 inst.instruction |= 0x00010000;
14168
14169 /* Programmer's syntax: the sizes are attached to the operands. */
14170 else if (inst.operands[0].vectype.type != NT_invtype
14171 && inst.operands[0].vectype.size == 16)
14172 inst.instruction |= 0x00010000;
14173
14174 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14175 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14176 do_vfp_cond_or_thumb ();
14177 }
14178
14179
14180 static void
14181 do_neon_cvtt (void)
14182 {
14183 do_neon_cvtb ();
14184 inst.instruction |= 0x80;
14185 }
14186
14187 static void
14188 neon_move_immediate (void)
14189 {
14190 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14191 struct neon_type_el et = neon_check_type (2, rs,
14192 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14193 unsigned immlo, immhi = 0, immbits;
14194 int op, cmode, float_p;
14195
14196 constraint (et.type == NT_invtype,
14197 _("operand size must be specified for immediate VMOV"));
14198
14199 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14200 op = (inst.instruction & (1 << 5)) != 0;
14201
14202 immlo = inst.operands[1].imm;
14203 if (inst.operands[1].regisimm)
14204 immhi = inst.operands[1].reg;
14205
14206 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14207 _("immediate has bits set outside the operand size"));
14208
14209 float_p = inst.operands[1].immisfloat;
14210
14211 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14212 et.size, et.type)) == FAIL)
14213 {
14214 /* Invert relevant bits only. */
14215 neon_invert_size (&immlo, &immhi, et.size);
14216 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14217 with one or the other; those cases are caught by
14218 neon_cmode_for_move_imm. */
14219 op = !op;
14220 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14221 &op, et.size, et.type)) == FAIL)
14222 {
14223 first_error (_("immediate out of range"));
14224 return;
14225 }
14226 }
14227
14228 inst.instruction &= ~(1 << 5);
14229 inst.instruction |= op << 5;
14230
14231 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14232 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14233 inst.instruction |= neon_quad (rs) << 6;
14234 inst.instruction |= cmode << 8;
14235
14236 neon_write_immbits (immbits);
14237 }
14238
14239 static void
14240 do_neon_mvn (void)
14241 {
14242 if (inst.operands[1].isreg)
14243 {
14244 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14245
14246 NEON_ENCODE (INTEGER, inst);
14247 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14248 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14249 inst.instruction |= LOW4 (inst.operands[1].reg);
14250 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14251 inst.instruction |= neon_quad (rs) << 6;
14252 }
14253 else
14254 {
14255 NEON_ENCODE (IMMED, inst);
14256 neon_move_immediate ();
14257 }
14258
14259 neon_dp_fixup (&inst);
14260 }
14261
14262 /* Encode instructions of form:
14263
14264 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14265 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14266
14267 static void
14268 neon_mixed_length (struct neon_type_el et, unsigned size)
14269 {
14270 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14271 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14272 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14273 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14274 inst.instruction |= LOW4 (inst.operands[2].reg);
14275 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14276 inst.instruction |= (et.type == NT_unsigned) << 24;
14277 inst.instruction |= neon_logbits (size) << 20;
14278
14279 neon_dp_fixup (&inst);
14280 }
14281
14282 static void
14283 do_neon_dyadic_long (void)
14284 {
14285 /* FIXME: Type checking for lengthening op. */
14286 struct neon_type_el et = neon_check_type (3, NS_QDD,
14287 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14288 neon_mixed_length (et, et.size);
14289 }
14290
14291 static void
14292 do_neon_abal (void)
14293 {
14294 struct neon_type_el et = neon_check_type (3, NS_QDD,
14295 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14296 neon_mixed_length (et, et.size);
14297 }
14298
14299 static void
14300 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14301 {
14302 if (inst.operands[2].isscalar)
14303 {
14304 struct neon_type_el et = neon_check_type (3, NS_QDS,
14305 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14306 NEON_ENCODE (SCALAR, inst);
14307 neon_mul_mac (et, et.type == NT_unsigned);
14308 }
14309 else
14310 {
14311 struct neon_type_el et = neon_check_type (3, NS_QDD,
14312 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14313 NEON_ENCODE (INTEGER, inst);
14314 neon_mixed_length (et, et.size);
14315 }
14316 }
14317
14318 static void
14319 do_neon_mac_maybe_scalar_long (void)
14320 {
14321 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14322 }
14323
14324 static void
14325 do_neon_dyadic_wide (void)
14326 {
14327 struct neon_type_el et = neon_check_type (3, NS_QQD,
14328 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14329 neon_mixed_length (et, et.size);
14330 }
14331
14332 static void
14333 do_neon_dyadic_narrow (void)
14334 {
14335 struct neon_type_el et = neon_check_type (3, NS_QDD,
14336 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14337 /* Operand sign is unimportant, and the U bit is part of the opcode,
14338 so force the operand type to integer. */
14339 et.type = NT_integer;
14340 neon_mixed_length (et, et.size / 2);
14341 }
14342
14343 static void
14344 do_neon_mul_sat_scalar_long (void)
14345 {
14346 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14347 }
14348
14349 static void
14350 do_neon_vmull (void)
14351 {
14352 if (inst.operands[2].isscalar)
14353 do_neon_mac_maybe_scalar_long ();
14354 else
14355 {
14356 struct neon_type_el et = neon_check_type (3, NS_QDD,
14357 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14358 if (et.type == NT_poly)
14359 NEON_ENCODE (POLY, inst);
14360 else
14361 NEON_ENCODE (INTEGER, inst);
14362 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14363 zero. Should be OK as-is. */
14364 neon_mixed_length (et, et.size);
14365 }
14366 }
14367
14368 static void
14369 do_neon_ext (void)
14370 {
14371 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14372 struct neon_type_el et = neon_check_type (3, rs,
14373 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14374 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14375
14376 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14377 _("shift out of range"));
14378 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14379 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14380 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14381 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14382 inst.instruction |= LOW4 (inst.operands[2].reg);
14383 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14384 inst.instruction |= neon_quad (rs) << 6;
14385 inst.instruction |= imm << 8;
14386
14387 neon_dp_fixup (&inst);
14388 }
14389
14390 static void
14391 do_neon_rev (void)
14392 {
14393 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14394 struct neon_type_el et = neon_check_type (2, rs,
14395 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14396 unsigned op = (inst.instruction >> 7) & 3;
14397 /* N (width of reversed regions) is encoded as part of the bitmask. We
14398 extract it here to check the elements to be reversed are smaller.
14399 Otherwise we'd get a reserved instruction. */
14400 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14401 gas_assert (elsize != 0);
14402 constraint (et.size >= elsize,
14403 _("elements must be smaller than reversal region"));
14404 neon_two_same (neon_quad (rs), 1, et.size);
14405 }
14406
14407 static void
14408 do_neon_dup (void)
14409 {
14410 if (inst.operands[1].isscalar)
14411 {
14412 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14413 struct neon_type_el et = neon_check_type (2, rs,
14414 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14415 unsigned sizebits = et.size >> 3;
14416 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14417 int logsize = neon_logbits (et.size);
14418 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14419
14420 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14421 return;
14422
14423 NEON_ENCODE (SCALAR, inst);
14424 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14425 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14426 inst.instruction |= LOW4 (dm);
14427 inst.instruction |= HI1 (dm) << 5;
14428 inst.instruction |= neon_quad (rs) << 6;
14429 inst.instruction |= x << 17;
14430 inst.instruction |= sizebits << 16;
14431
14432 neon_dp_fixup (&inst);
14433 }
14434 else
14435 {
14436 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14437 struct neon_type_el et = neon_check_type (2, rs,
14438 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14439 /* Duplicate ARM register to lanes of vector. */
14440 NEON_ENCODE (ARMREG, inst);
14441 switch (et.size)
14442 {
14443 case 8: inst.instruction |= 0x400000; break;
14444 case 16: inst.instruction |= 0x000020; break;
14445 case 32: inst.instruction |= 0x000000; break;
14446 default: break;
14447 }
14448 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14449 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14450 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14451 inst.instruction |= neon_quad (rs) << 21;
14452 /* The encoding for this instruction is identical for the ARM and Thumb
14453 variants, except for the condition field. */
14454 do_vfp_cond_or_thumb ();
14455 }
14456 }
14457
14458 /* VMOV has particularly many variations. It can be one of:
14459 0. VMOV<c><q> <Qd>, <Qm>
14460 1. VMOV<c><q> <Dd>, <Dm>
14461 (Register operations, which are VORR with Rm = Rn.)
14462 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14463 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14464 (Immediate loads.)
14465 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14466 (ARM register to scalar.)
14467 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14468 (Two ARM registers to vector.)
14469 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14470 (Scalar to ARM register.)
14471 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14472 (Vector to two ARM registers.)
14473 8. VMOV.F32 <Sd>, <Sm>
14474 9. VMOV.F64 <Dd>, <Dm>
14475 (VFP register moves.)
14476 10. VMOV.F32 <Sd>, #imm
14477 11. VMOV.F64 <Dd>, #imm
14478 (VFP float immediate load.)
14479 12. VMOV <Rd>, <Sm>
14480 (VFP single to ARM reg.)
14481 13. VMOV <Sd>, <Rm>
14482 (ARM reg to VFP single.)
14483 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14484 (Two ARM regs to two VFP singles.)
14485 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14486 (Two VFP singles to two ARM regs.)
14487
14488 These cases can be disambiguated using neon_select_shape, except cases 1/9
14489 and 3/11 which depend on the operand type too.
14490
14491 All the encoded bits are hardcoded by this function.
14492
14493 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14494 Cases 5, 7 may be used with VFPv2 and above.
14495
14496 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14497 can specify a type where it doesn't make sense to, and is ignored). */
14498
14499 static void
14500 do_neon_mov (void)
14501 {
14502 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14503 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14504 NS_NULL);
14505 struct neon_type_el et;
14506 const char *ldconst = 0;
14507
14508 switch (rs)
14509 {
14510 case NS_DD: /* case 1/9. */
14511 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14512 /* It is not an error here if no type is given. */
14513 inst.error = NULL;
14514 if (et.type == NT_float && et.size == 64)
14515 {
14516 do_vfp_nsyn_opcode ("fcpyd");
14517 break;
14518 }
14519 /* fall through. */
14520
14521 case NS_QQ: /* case 0/1. */
14522 {
14523 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14524 return;
14525 /* The architecture manual I have doesn't explicitly state which
14526 value the U bit should have for register->register moves, but
14527 the equivalent VORR instruction has U = 0, so do that. */
14528 inst.instruction = 0x0200110;
14529 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14530 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14531 inst.instruction |= LOW4 (inst.operands[1].reg);
14532 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14533 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14534 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14535 inst.instruction |= neon_quad (rs) << 6;
14536
14537 neon_dp_fixup (&inst);
14538 }
14539 break;
14540
14541 case NS_DI: /* case 3/11. */
14542 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14543 inst.error = NULL;
14544 if (et.type == NT_float && et.size == 64)
14545 {
14546 /* case 11 (fconstd). */
14547 ldconst = "fconstd";
14548 goto encode_fconstd;
14549 }
14550 /* fall through. */
14551
14552 case NS_QI: /* case 2/3. */
14553 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14554 return;
14555 inst.instruction = 0x0800010;
14556 neon_move_immediate ();
14557 neon_dp_fixup (&inst);
14558 break;
14559
14560 case NS_SR: /* case 4. */
14561 {
14562 unsigned bcdebits = 0;
14563 int logsize;
14564 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14565 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14566
14567 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14568 logsize = neon_logbits (et.size);
14569
14570 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14571 _(BAD_FPU));
14572 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14573 && et.size != 32, _(BAD_FPU));
14574 constraint (et.type == NT_invtype, _("bad type for scalar"));
14575 constraint (x >= 64 / et.size, _("scalar index out of range"));
14576
14577 switch (et.size)
14578 {
14579 case 8: bcdebits = 0x8; break;
14580 case 16: bcdebits = 0x1; break;
14581 case 32: bcdebits = 0x0; break;
14582 default: ;
14583 }
14584
14585 bcdebits |= x << logsize;
14586
14587 inst.instruction = 0xe000b10;
14588 do_vfp_cond_or_thumb ();
14589 inst.instruction |= LOW4 (dn) << 16;
14590 inst.instruction |= HI1 (dn) << 7;
14591 inst.instruction |= inst.operands[1].reg << 12;
14592 inst.instruction |= (bcdebits & 3) << 5;
14593 inst.instruction |= (bcdebits >> 2) << 21;
14594 }
14595 break;
14596
14597 case NS_DRR: /* case 5 (fmdrr). */
14598 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14599 _(BAD_FPU));
14600
14601 inst.instruction = 0xc400b10;
14602 do_vfp_cond_or_thumb ();
14603 inst.instruction |= LOW4 (inst.operands[0].reg);
14604 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14605 inst.instruction |= inst.operands[1].reg << 12;
14606 inst.instruction |= inst.operands[2].reg << 16;
14607 break;
14608
14609 case NS_RS: /* case 6. */
14610 {
14611 unsigned logsize;
14612 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14613 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14614 unsigned abcdebits = 0;
14615
14616 et = neon_check_type (2, NS_NULL,
14617 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14618 logsize = neon_logbits (et.size);
14619
14620 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14621 _(BAD_FPU));
14622 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14623 && et.size != 32, _(BAD_FPU));
14624 constraint (et.type == NT_invtype, _("bad type for scalar"));
14625 constraint (x >= 64 / et.size, _("scalar index out of range"));
14626
14627 switch (et.size)
14628 {
14629 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14630 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14631 case 32: abcdebits = 0x00; break;
14632 default: ;
14633 }
14634
14635 abcdebits |= x << logsize;
14636 inst.instruction = 0xe100b10;
14637 do_vfp_cond_or_thumb ();
14638 inst.instruction |= LOW4 (dn) << 16;
14639 inst.instruction |= HI1 (dn) << 7;
14640 inst.instruction |= inst.operands[0].reg << 12;
14641 inst.instruction |= (abcdebits & 3) << 5;
14642 inst.instruction |= (abcdebits >> 2) << 21;
14643 }
14644 break;
14645
14646 case NS_RRD: /* case 7 (fmrrd). */
14647 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14648 _(BAD_FPU));
14649
14650 inst.instruction = 0xc500b10;
14651 do_vfp_cond_or_thumb ();
14652 inst.instruction |= inst.operands[0].reg << 12;
14653 inst.instruction |= inst.operands[1].reg << 16;
14654 inst.instruction |= LOW4 (inst.operands[2].reg);
14655 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14656 break;
14657
14658 case NS_FF: /* case 8 (fcpys). */
14659 do_vfp_nsyn_opcode ("fcpys");
14660 break;
14661
14662 case NS_FI: /* case 10 (fconsts). */
14663 ldconst = "fconsts";
14664 encode_fconstd:
14665 if (is_quarter_float (inst.operands[1].imm))
14666 {
14667 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14668 do_vfp_nsyn_opcode (ldconst);
14669 }
14670 else
14671 first_error (_("immediate out of range"));
14672 break;
14673
14674 case NS_RF: /* case 12 (fmrs). */
14675 do_vfp_nsyn_opcode ("fmrs");
14676 break;
14677
14678 case NS_FR: /* case 13 (fmsr). */
14679 do_vfp_nsyn_opcode ("fmsr");
14680 break;
14681
14682 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14683 (one of which is a list), but we have parsed four. Do some fiddling to
14684 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14685 expect. */
14686 case NS_RRFF: /* case 14 (fmrrs). */
14687 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14688 _("VFP registers must be adjacent"));
14689 inst.operands[2].imm = 2;
14690 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14691 do_vfp_nsyn_opcode ("fmrrs");
14692 break;
14693
14694 case NS_FFRR: /* case 15 (fmsrr). */
14695 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14696 _("VFP registers must be adjacent"));
14697 inst.operands[1] = inst.operands[2];
14698 inst.operands[2] = inst.operands[3];
14699 inst.operands[0].imm = 2;
14700 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14701 do_vfp_nsyn_opcode ("fmsrr");
14702 break;
14703
14704 default:
14705 abort ();
14706 }
14707 }
14708
14709 static void
14710 do_neon_rshift_round_imm (void)
14711 {
14712 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14713 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14714 int imm = inst.operands[2].imm;
14715
14716 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14717 if (imm == 0)
14718 {
14719 inst.operands[2].present = 0;
14720 do_neon_mov ();
14721 return;
14722 }
14723
14724 constraint (imm < 1 || (unsigned)imm > et.size,
14725 _("immediate out of range for shift"));
14726 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14727 et.size - imm);
14728 }
14729
14730 static void
14731 do_neon_movl (void)
14732 {
14733 struct neon_type_el et = neon_check_type (2, NS_QD,
14734 N_EQK | N_DBL, N_SU_32 | N_KEY);
14735 unsigned sizebits = et.size >> 3;
14736 inst.instruction |= sizebits << 19;
14737 neon_two_same (0, et.type == NT_unsigned, -1);
14738 }
14739
14740 static void
14741 do_neon_trn (void)
14742 {
14743 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14744 struct neon_type_el et = neon_check_type (2, rs,
14745 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14746 NEON_ENCODE (INTEGER, inst);
14747 neon_two_same (neon_quad (rs), 1, et.size);
14748 }
14749
14750 static void
14751 do_neon_zip_uzp (void)
14752 {
14753 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14754 struct neon_type_el et = neon_check_type (2, rs,
14755 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14756 if (rs == NS_DD && et.size == 32)
14757 {
14758 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14759 inst.instruction = N_MNEM_vtrn;
14760 do_neon_trn ();
14761 return;
14762 }
14763 neon_two_same (neon_quad (rs), 1, et.size);
14764 }
14765
14766 static void
14767 do_neon_sat_abs_neg (void)
14768 {
14769 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14770 struct neon_type_el et = neon_check_type (2, rs,
14771 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14772 neon_two_same (neon_quad (rs), 1, et.size);
14773 }
14774
14775 static void
14776 do_neon_pair_long (void)
14777 {
14778 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14779 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14780 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14781 inst.instruction |= (et.type == NT_unsigned) << 7;
14782 neon_two_same (neon_quad (rs), 1, et.size);
14783 }
14784
14785 static void
14786 do_neon_recip_est (void)
14787 {
14788 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14789 struct neon_type_el et = neon_check_type (2, rs,
14790 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14791 inst.instruction |= (et.type == NT_float) << 8;
14792 neon_two_same (neon_quad (rs), 1, et.size);
14793 }
14794
14795 static void
14796 do_neon_cls (void)
14797 {
14798 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14799 struct neon_type_el et = neon_check_type (2, rs,
14800 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14801 neon_two_same (neon_quad (rs), 1, et.size);
14802 }
14803
14804 static void
14805 do_neon_clz (void)
14806 {
14807 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14808 struct neon_type_el et = neon_check_type (2, rs,
14809 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14810 neon_two_same (neon_quad (rs), 1, et.size);
14811 }
14812
14813 static void
14814 do_neon_cnt (void)
14815 {
14816 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14817 struct neon_type_el et = neon_check_type (2, rs,
14818 N_EQK | N_INT, N_8 | N_KEY);
14819 neon_two_same (neon_quad (rs), 1, et.size);
14820 }
14821
14822 static void
14823 do_neon_swp (void)
14824 {
14825 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14826 neon_two_same (neon_quad (rs), 1, -1);
14827 }
14828
14829 static void
14830 do_neon_tbl_tbx (void)
14831 {
14832 unsigned listlenbits;
14833 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14834
14835 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14836 {
14837 first_error (_("bad list length for table lookup"));
14838 return;
14839 }
14840
14841 listlenbits = inst.operands[1].imm - 1;
14842 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14843 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14844 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14845 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14846 inst.instruction |= LOW4 (inst.operands[2].reg);
14847 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14848 inst.instruction |= listlenbits << 8;
14849
14850 neon_dp_fixup (&inst);
14851 }
14852
14853 static void
14854 do_neon_ldm_stm (void)
14855 {
14856 /* P, U and L bits are part of bitmask. */
14857 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14858 unsigned offsetbits = inst.operands[1].imm * 2;
14859
14860 if (inst.operands[1].issingle)
14861 {
14862 do_vfp_nsyn_ldm_stm (is_dbmode);
14863 return;
14864 }
14865
14866 constraint (is_dbmode && !inst.operands[0].writeback,
14867 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14868
14869 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14870 _("register list must contain at least 1 and at most 16 "
14871 "registers"));
14872
14873 inst.instruction |= inst.operands[0].reg << 16;
14874 inst.instruction |= inst.operands[0].writeback << 21;
14875 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14876 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14877
14878 inst.instruction |= offsetbits;
14879
14880 do_vfp_cond_or_thumb ();
14881 }
14882
14883 static void
14884 do_neon_ldr_str (void)
14885 {
14886 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14887
14888 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
14889 And is UNPREDICTABLE in thumb mode. */
14890 if (!is_ldr
14891 && inst.operands[1].reg == REG_PC
14892 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
14893 {
14894 if (!thumb_mode && warn_on_deprecated)
14895 as_warn (_("Use of PC here is deprecated"));
14896 else
14897 inst.error = _("Use of PC here is UNPREDICTABLE");
14898 }
14899
14900 if (inst.operands[0].issingle)
14901 {
14902 if (is_ldr)
14903 do_vfp_nsyn_opcode ("flds");
14904 else
14905 do_vfp_nsyn_opcode ("fsts");
14906 }
14907 else
14908 {
14909 if (is_ldr)
14910 do_vfp_nsyn_opcode ("fldd");
14911 else
14912 do_vfp_nsyn_opcode ("fstd");
14913 }
14914 }
14915
14916 /* "interleave" version also handles non-interleaving register VLD1/VST1
14917 instructions. */
14918
14919 static void
14920 do_neon_ld_st_interleave (void)
14921 {
14922 struct neon_type_el et = neon_check_type (1, NS_NULL,
14923 N_8 | N_16 | N_32 | N_64);
14924 unsigned alignbits = 0;
14925 unsigned idx;
14926 /* The bits in this table go:
14927 0: register stride of one (0) or two (1)
14928 1,2: register list length, minus one (1, 2, 3, 4).
14929 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14930 We use -1 for invalid entries. */
14931 const int typetable[] =
14932 {
14933 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14934 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14935 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14936 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14937 };
14938 int typebits;
14939
14940 if (et.type == NT_invtype)
14941 return;
14942
14943 if (inst.operands[1].immisalign)
14944 switch (inst.operands[1].imm >> 8)
14945 {
14946 case 64: alignbits = 1; break;
14947 case 128:
14948 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14949 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14950 goto bad_alignment;
14951 alignbits = 2;
14952 break;
14953 case 256:
14954 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14955 goto bad_alignment;
14956 alignbits = 3;
14957 break;
14958 default:
14959 bad_alignment:
14960 first_error (_("bad alignment"));
14961 return;
14962 }
14963
14964 inst.instruction |= alignbits << 4;
14965 inst.instruction |= neon_logbits (et.size) << 6;
14966
14967 /* Bits [4:6] of the immediate in a list specifier encode register stride
14968 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14969 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14970 up the right value for "type" in a table based on this value and the given
14971 list style, then stick it back. */
14972 idx = ((inst.operands[0].imm >> 4) & 7)
14973 | (((inst.instruction >> 8) & 3) << 3);
14974
14975 typebits = typetable[idx];
14976
14977 constraint (typebits == -1, _("bad list type for instruction"));
14978
14979 inst.instruction &= ~0xf00;
14980 inst.instruction |= typebits << 8;
14981 }
14982
14983 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14984 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14985 otherwise. The variable arguments are a list of pairs of legal (size, align)
14986 values, terminated with -1. */
14987
14988 static int
14989 neon_alignment_bit (int size, int align, int *do_align, ...)
14990 {
14991 va_list ap;
14992 int result = FAIL, thissize, thisalign;
14993
14994 if (!inst.operands[1].immisalign)
14995 {
14996 *do_align = 0;
14997 return SUCCESS;
14998 }
14999
15000 va_start (ap, do_align);
15001
15002 do
15003 {
15004 thissize = va_arg (ap, int);
15005 if (thissize == -1)
15006 break;
15007 thisalign = va_arg (ap, int);
15008
15009 if (size == thissize && align == thisalign)
15010 result = SUCCESS;
15011 }
15012 while (result != SUCCESS);
15013
15014 va_end (ap);
15015
15016 if (result == SUCCESS)
15017 *do_align = 1;
15018 else
15019 first_error (_("unsupported alignment for instruction"));
15020
15021 return result;
15022 }
15023
15024 static void
15025 do_neon_ld_st_lane (void)
15026 {
15027 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15028 int align_good, do_align = 0;
15029 int logsize = neon_logbits (et.size);
15030 int align = inst.operands[1].imm >> 8;
15031 int n = (inst.instruction >> 8) & 3;
15032 int max_el = 64 / et.size;
15033
15034 if (et.type == NT_invtype)
15035 return;
15036
15037 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15038 _("bad list length"));
15039 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15040 _("scalar index out of range"));
15041 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15042 && et.size == 8,
15043 _("stride of 2 unavailable when element size is 8"));
15044
15045 switch (n)
15046 {
15047 case 0: /* VLD1 / VST1. */
15048 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15049 32, 32, -1);
15050 if (align_good == FAIL)
15051 return;
15052 if (do_align)
15053 {
15054 unsigned alignbits = 0;
15055 switch (et.size)
15056 {
15057 case 16: alignbits = 0x1; break;
15058 case 32: alignbits = 0x3; break;
15059 default: ;
15060 }
15061 inst.instruction |= alignbits << 4;
15062 }
15063 break;
15064
15065 case 1: /* VLD2 / VST2. */
15066 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15067 32, 64, -1);
15068 if (align_good == FAIL)
15069 return;
15070 if (do_align)
15071 inst.instruction |= 1 << 4;
15072 break;
15073
15074 case 2: /* VLD3 / VST3. */
15075 constraint (inst.operands[1].immisalign,
15076 _("can't use alignment with this instruction"));
15077 break;
15078
15079 case 3: /* VLD4 / VST4. */
15080 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15081 16, 64, 32, 64, 32, 128, -1);
15082 if (align_good == FAIL)
15083 return;
15084 if (do_align)
15085 {
15086 unsigned alignbits = 0;
15087 switch (et.size)
15088 {
15089 case 8: alignbits = 0x1; break;
15090 case 16: alignbits = 0x1; break;
15091 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15092 default: ;
15093 }
15094 inst.instruction |= alignbits << 4;
15095 }
15096 break;
15097
15098 default: ;
15099 }
15100
15101 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15102 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15103 inst.instruction |= 1 << (4 + logsize);
15104
15105 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15106 inst.instruction |= logsize << 10;
15107 }
15108
15109 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15110
15111 static void
15112 do_neon_ld_dup (void)
15113 {
15114 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15115 int align_good, do_align = 0;
15116
15117 if (et.type == NT_invtype)
15118 return;
15119
15120 switch ((inst.instruction >> 8) & 3)
15121 {
15122 case 0: /* VLD1. */
15123 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15124 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15125 &do_align, 16, 16, 32, 32, -1);
15126 if (align_good == FAIL)
15127 return;
15128 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15129 {
15130 case 1: break;
15131 case 2: inst.instruction |= 1 << 5; break;
15132 default: first_error (_("bad list length")); return;
15133 }
15134 inst.instruction |= neon_logbits (et.size) << 6;
15135 break;
15136
15137 case 1: /* VLD2. */
15138 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15139 &do_align, 8, 16, 16, 32, 32, 64, -1);
15140 if (align_good == FAIL)
15141 return;
15142 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15143 _("bad list length"));
15144 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15145 inst.instruction |= 1 << 5;
15146 inst.instruction |= neon_logbits (et.size) << 6;
15147 break;
15148
15149 case 2: /* VLD3. */
15150 constraint (inst.operands[1].immisalign,
15151 _("can't use alignment with this instruction"));
15152 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15153 _("bad list length"));
15154 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15155 inst.instruction |= 1 << 5;
15156 inst.instruction |= neon_logbits (et.size) << 6;
15157 break;
15158
15159 case 3: /* VLD4. */
15160 {
15161 int align = inst.operands[1].imm >> 8;
15162 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15163 16, 64, 32, 64, 32, 128, -1);
15164 if (align_good == FAIL)
15165 return;
15166 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15167 _("bad list length"));
15168 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15169 inst.instruction |= 1 << 5;
15170 if (et.size == 32 && align == 128)
15171 inst.instruction |= 0x3 << 6;
15172 else
15173 inst.instruction |= neon_logbits (et.size) << 6;
15174 }
15175 break;
15176
15177 default: ;
15178 }
15179
15180 inst.instruction |= do_align << 4;
15181 }
15182
15183 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15184 apart from bits [11:4]. */
15185
15186 static void
15187 do_neon_ldx_stx (void)
15188 {
15189 if (inst.operands[1].isreg)
15190 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15191
15192 switch (NEON_LANE (inst.operands[0].imm))
15193 {
15194 case NEON_INTERLEAVE_LANES:
15195 NEON_ENCODE (INTERLV, inst);
15196 do_neon_ld_st_interleave ();
15197 break;
15198
15199 case NEON_ALL_LANES:
15200 NEON_ENCODE (DUP, inst);
15201 do_neon_ld_dup ();
15202 break;
15203
15204 default:
15205 NEON_ENCODE (LANE, inst);
15206 do_neon_ld_st_lane ();
15207 }
15208
15209 /* L bit comes from bit mask. */
15210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15211 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15212 inst.instruction |= inst.operands[1].reg << 16;
15213
15214 if (inst.operands[1].postind)
15215 {
15216 int postreg = inst.operands[1].imm & 0xf;
15217 constraint (!inst.operands[1].immisreg,
15218 _("post-index must be a register"));
15219 constraint (postreg == 0xd || postreg == 0xf,
15220 _("bad register for post-index"));
15221 inst.instruction |= postreg;
15222 }
15223 else if (inst.operands[1].writeback)
15224 {
15225 inst.instruction |= 0xd;
15226 }
15227 else
15228 inst.instruction |= 0xf;
15229
15230 if (thumb_mode)
15231 inst.instruction |= 0xf9000000;
15232 else
15233 inst.instruction |= 0xf4000000;
15234 }
15235 \f
15236 /* Overall per-instruction processing. */
15237
15238 /* We need to be able to fix up arbitrary expressions in some statements.
15239 This is so that we can handle symbols that are an arbitrary distance from
15240 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15241 which returns part of an address in a form which will be valid for
15242 a data instruction. We do this by pushing the expression into a symbol
15243 in the expr_section, and creating a fix for that. */
15244
15245 static void
15246 fix_new_arm (fragS * frag,
15247 int where,
15248 short int size,
15249 expressionS * exp,
15250 int pc_rel,
15251 int reloc)
15252 {
15253 fixS * new_fix;
15254
15255 switch (exp->X_op)
15256 {
15257 case O_constant:
15258 case O_symbol:
15259 case O_add:
15260 case O_subtract:
15261 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15262 (enum bfd_reloc_code_real) reloc);
15263 break;
15264
15265 default:
15266 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15267 pc_rel, (enum bfd_reloc_code_real) reloc);
15268 break;
15269 }
15270
15271 /* Mark whether the fix is to a THUMB instruction, or an ARM
15272 instruction. */
15273 new_fix->tc_fix_data = thumb_mode;
15274 }
15275
15276 /* Create a frg for an instruction requiring relaxation. */
15277 static void
15278 output_relax_insn (void)
15279 {
15280 char * to;
15281 symbolS *sym;
15282 int offset;
15283
15284 /* The size of the instruction is unknown, so tie the debug info to the
15285 start of the instruction. */
15286 dwarf2_emit_insn (0);
15287
15288 switch (inst.reloc.exp.X_op)
15289 {
15290 case O_symbol:
15291 sym = inst.reloc.exp.X_add_symbol;
15292 offset = inst.reloc.exp.X_add_number;
15293 break;
15294 case O_constant:
15295 sym = NULL;
15296 offset = inst.reloc.exp.X_add_number;
15297 break;
15298 default:
15299 sym = make_expr_symbol (&inst.reloc.exp);
15300 offset = 0;
15301 break;
15302 }
15303 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15304 inst.relax, sym, offset, NULL/*offset, opcode*/);
15305 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15306 }
15307
15308 /* Write a 32-bit thumb instruction to buf. */
15309 static void
15310 put_thumb32_insn (char * buf, unsigned long insn)
15311 {
15312 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15313 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15314 }
15315
15316 static void
15317 output_inst (const char * str)
15318 {
15319 char * to = NULL;
15320
15321 if (inst.error)
15322 {
15323 as_bad ("%s -- `%s'", inst.error, str);
15324 return;
15325 }
15326 if (inst.relax)
15327 {
15328 output_relax_insn ();
15329 return;
15330 }
15331 if (inst.size == 0)
15332 return;
15333
15334 to = frag_more (inst.size);
15335 /* PR 9814: Record the thumb mode into the current frag so that we know
15336 what type of NOP padding to use, if necessary. We override any previous
15337 setting so that if the mode has changed then the NOPS that we use will
15338 match the encoding of the last instruction in the frag. */
15339 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15340
15341 if (thumb_mode && (inst.size > THUMB_SIZE))
15342 {
15343 gas_assert (inst.size == (2 * THUMB_SIZE));
15344 put_thumb32_insn (to, inst.instruction);
15345 }
15346 else if (inst.size > INSN_SIZE)
15347 {
15348 gas_assert (inst.size == (2 * INSN_SIZE));
15349 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15350 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15351 }
15352 else
15353 md_number_to_chars (to, inst.instruction, inst.size);
15354
15355 if (inst.reloc.type != BFD_RELOC_UNUSED)
15356 fix_new_arm (frag_now, to - frag_now->fr_literal,
15357 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15358 inst.reloc.type);
15359
15360 dwarf2_emit_insn (inst.size);
15361 }
15362
15363 static char *
15364 output_it_inst (int cond, int mask, char * to)
15365 {
15366 unsigned long instruction = 0xbf00;
15367
15368 mask &= 0xf;
15369 instruction |= mask;
15370 instruction |= cond << 4;
15371
15372 if (to == NULL)
15373 {
15374 to = frag_more (2);
15375 #ifdef OBJ_ELF
15376 dwarf2_emit_insn (2);
15377 #endif
15378 }
15379
15380 md_number_to_chars (to, instruction, 2);
15381
15382 return to;
15383 }
15384
15385 /* Tag values used in struct asm_opcode's tag field. */
15386 enum opcode_tag
15387 {
15388 OT_unconditional, /* Instruction cannot be conditionalized.
15389 The ARM condition field is still 0xE. */
15390 OT_unconditionalF, /* Instruction cannot be conditionalized
15391 and carries 0xF in its ARM condition field. */
15392 OT_csuffix, /* Instruction takes a conditional suffix. */
15393 OT_csuffixF, /* Some forms of the instruction take a conditional
15394 suffix, others place 0xF where the condition field
15395 would be. */
15396 OT_cinfix3, /* Instruction takes a conditional infix,
15397 beginning at character index 3. (In
15398 unified mode, it becomes a suffix.) */
15399 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15400 tsts, cmps, cmns, and teqs. */
15401 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15402 character index 3, even in unified mode. Used for
15403 legacy instructions where suffix and infix forms
15404 may be ambiguous. */
15405 OT_csuf_or_in3, /* Instruction takes either a conditional
15406 suffix or an infix at character index 3. */
15407 OT_odd_infix_unc, /* This is the unconditional variant of an
15408 instruction that takes a conditional infix
15409 at an unusual position. In unified mode,
15410 this variant will accept a suffix. */
15411 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15412 are the conditional variants of instructions that
15413 take conditional infixes in unusual positions.
15414 The infix appears at character index
15415 (tag - OT_odd_infix_0). These are not accepted
15416 in unified mode. */
15417 };
15418
15419 /* Subroutine of md_assemble, responsible for looking up the primary
15420 opcode from the mnemonic the user wrote. STR points to the
15421 beginning of the mnemonic.
15422
15423 This is not simply a hash table lookup, because of conditional
15424 variants. Most instructions have conditional variants, which are
15425 expressed with a _conditional affix_ to the mnemonic. If we were
15426 to encode each conditional variant as a literal string in the opcode
15427 table, it would have approximately 20,000 entries.
15428
15429 Most mnemonics take this affix as a suffix, and in unified syntax,
15430 'most' is upgraded to 'all'. However, in the divided syntax, some
15431 instructions take the affix as an infix, notably the s-variants of
15432 the arithmetic instructions. Of those instructions, all but six
15433 have the infix appear after the third character of the mnemonic.
15434
15435 Accordingly, the algorithm for looking up primary opcodes given
15436 an identifier is:
15437
15438 1. Look up the identifier in the opcode table.
15439 If we find a match, go to step U.
15440
15441 2. Look up the last two characters of the identifier in the
15442 conditions table. If we find a match, look up the first N-2
15443 characters of the identifier in the opcode table. If we
15444 find a match, go to step CE.
15445
15446 3. Look up the fourth and fifth characters of the identifier in
15447 the conditions table. If we find a match, extract those
15448 characters from the identifier, and look up the remaining
15449 characters in the opcode table. If we find a match, go
15450 to step CM.
15451
15452 4. Fail.
15453
15454 U. Examine the tag field of the opcode structure, in case this is
15455 one of the six instructions with its conditional infix in an
15456 unusual place. If it is, the tag tells us where to find the
15457 infix; look it up in the conditions table and set inst.cond
15458 accordingly. Otherwise, this is an unconditional instruction.
15459 Again set inst.cond accordingly. Return the opcode structure.
15460
15461 CE. Examine the tag field to make sure this is an instruction that
15462 should receive a conditional suffix. If it is not, fail.
15463 Otherwise, set inst.cond from the suffix we already looked up,
15464 and return the opcode structure.
15465
15466 CM. Examine the tag field to make sure this is an instruction that
15467 should receive a conditional infix after the third character.
15468 If it is not, fail. Otherwise, undo the edits to the current
15469 line of input and proceed as for case CE. */
15470
15471 static const struct asm_opcode *
15472 opcode_lookup (char **str)
15473 {
15474 char *end, *base;
15475 char *affix;
15476 const struct asm_opcode *opcode;
15477 const struct asm_cond *cond;
15478 char save[2];
15479
15480 /* Scan up to the end of the mnemonic, which must end in white space,
15481 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15482 for (base = end = *str; *end != '\0'; end++)
15483 if (*end == ' ' || *end == '.')
15484 break;
15485
15486 if (end == base)
15487 return NULL;
15488
15489 /* Handle a possible width suffix and/or Neon type suffix. */
15490 if (end[0] == '.')
15491 {
15492 int offset = 2;
15493
15494 /* The .w and .n suffixes are only valid if the unified syntax is in
15495 use. */
15496 if (unified_syntax && end[1] == 'w')
15497 inst.size_req = 4;
15498 else if (unified_syntax && end[1] == 'n')
15499 inst.size_req = 2;
15500 else
15501 offset = 0;
15502
15503 inst.vectype.elems = 0;
15504
15505 *str = end + offset;
15506
15507 if (end[offset] == '.')
15508 {
15509 /* See if we have a Neon type suffix (possible in either unified or
15510 non-unified ARM syntax mode). */
15511 if (parse_neon_type (&inst.vectype, str) == FAIL)
15512 return NULL;
15513 }
15514 else if (end[offset] != '\0' && end[offset] != ' ')
15515 return NULL;
15516 }
15517 else
15518 *str = end;
15519
15520 /* Look for unaffixed or special-case affixed mnemonic. */
15521 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15522 end - base);
15523 if (opcode)
15524 {
15525 /* step U */
15526 if (opcode->tag < OT_odd_infix_0)
15527 {
15528 inst.cond = COND_ALWAYS;
15529 return opcode;
15530 }
15531
15532 if (warn_on_deprecated && unified_syntax)
15533 as_warn (_("conditional infixes are deprecated in unified syntax"));
15534 affix = base + (opcode->tag - OT_odd_infix_0);
15535 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15536 gas_assert (cond);
15537
15538 inst.cond = cond->value;
15539 return opcode;
15540 }
15541
15542 /* Cannot have a conditional suffix on a mnemonic of less than two
15543 characters. */
15544 if (end - base < 3)
15545 return NULL;
15546
15547 /* Look for suffixed mnemonic. */
15548 affix = end - 2;
15549 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15550 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15551 affix - base);
15552 if (opcode && cond)
15553 {
15554 /* step CE */
15555 switch (opcode->tag)
15556 {
15557 case OT_cinfix3_legacy:
15558 /* Ignore conditional suffixes matched on infix only mnemonics. */
15559 break;
15560
15561 case OT_cinfix3:
15562 case OT_cinfix3_deprecated:
15563 case OT_odd_infix_unc:
15564 if (!unified_syntax)
15565 return 0;
15566 /* else fall through */
15567
15568 case OT_csuffix:
15569 case OT_csuffixF:
15570 case OT_csuf_or_in3:
15571 inst.cond = cond->value;
15572 return opcode;
15573
15574 case OT_unconditional:
15575 case OT_unconditionalF:
15576 if (thumb_mode)
15577 inst.cond = cond->value;
15578 else
15579 {
15580 /* Delayed diagnostic. */
15581 inst.error = BAD_COND;
15582 inst.cond = COND_ALWAYS;
15583 }
15584 return opcode;
15585
15586 default:
15587 return NULL;
15588 }
15589 }
15590
15591 /* Cannot have a usual-position infix on a mnemonic of less than
15592 six characters (five would be a suffix). */
15593 if (end - base < 6)
15594 return NULL;
15595
15596 /* Look for infixed mnemonic in the usual position. */
15597 affix = base + 3;
15598 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15599 if (!cond)
15600 return NULL;
15601
15602 memcpy (save, affix, 2);
15603 memmove (affix, affix + 2, (end - affix) - 2);
15604 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15605 (end - base) - 2);
15606 memmove (affix + 2, affix, (end - affix) - 2);
15607 memcpy (affix, save, 2);
15608
15609 if (opcode
15610 && (opcode->tag == OT_cinfix3
15611 || opcode->tag == OT_cinfix3_deprecated
15612 || opcode->tag == OT_csuf_or_in3
15613 || opcode->tag == OT_cinfix3_legacy))
15614 {
15615 /* Step CM. */
15616 if (warn_on_deprecated && unified_syntax
15617 && (opcode->tag == OT_cinfix3
15618 || opcode->tag == OT_cinfix3_deprecated))
15619 as_warn (_("conditional infixes are deprecated in unified syntax"));
15620
15621 inst.cond = cond->value;
15622 return opcode;
15623 }
15624
15625 return NULL;
15626 }
15627
15628 /* This function generates an initial IT instruction, leaving its block
15629 virtually open for the new instructions. Eventually,
15630 the mask will be updated by now_it_add_mask () each time
15631 a new instruction needs to be included in the IT block.
15632 Finally, the block is closed with close_automatic_it_block ().
15633 The block closure can be requested either from md_assemble (),
15634 a tencode (), or due to a label hook. */
15635
15636 static void
15637 new_automatic_it_block (int cond)
15638 {
15639 now_it.state = AUTOMATIC_IT_BLOCK;
15640 now_it.mask = 0x18;
15641 now_it.cc = cond;
15642 now_it.block_length = 1;
15643 mapping_state (MAP_THUMB);
15644 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15645 }
15646
15647 /* Close an automatic IT block.
15648 See comments in new_automatic_it_block (). */
15649
15650 static void
15651 close_automatic_it_block (void)
15652 {
15653 now_it.mask = 0x10;
15654 now_it.block_length = 0;
15655 }
15656
15657 /* Update the mask of the current automatically-generated IT
15658 instruction. See comments in new_automatic_it_block (). */
15659
15660 static void
15661 now_it_add_mask (int cond)
15662 {
15663 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15664 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15665 | ((bitvalue) << (nbit)))
15666 const int resulting_bit = (cond & 1);
15667
15668 now_it.mask &= 0xf;
15669 now_it.mask = SET_BIT_VALUE (now_it.mask,
15670 resulting_bit,
15671 (5 - now_it.block_length));
15672 now_it.mask = SET_BIT_VALUE (now_it.mask,
15673 1,
15674 ((5 - now_it.block_length) - 1) );
15675 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15676
15677 #undef CLEAR_BIT
15678 #undef SET_BIT_VALUE
15679 }
15680
15681 /* The IT blocks handling machinery is accessed through the these functions:
15682 it_fsm_pre_encode () from md_assemble ()
15683 set_it_insn_type () optional, from the tencode functions
15684 set_it_insn_type_last () ditto
15685 in_it_block () ditto
15686 it_fsm_post_encode () from md_assemble ()
15687 force_automatic_it_block_close () from label habdling functions
15688
15689 Rationale:
15690 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15691 initializing the IT insn type with a generic initial value depending
15692 on the inst.condition.
15693 2) During the tencode function, two things may happen:
15694 a) The tencode function overrides the IT insn type by
15695 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15696 b) The tencode function queries the IT block state by
15697 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15698
15699 Both set_it_insn_type and in_it_block run the internal FSM state
15700 handling function (handle_it_state), because: a) setting the IT insn
15701 type may incur in an invalid state (exiting the function),
15702 and b) querying the state requires the FSM to be updated.
15703 Specifically we want to avoid creating an IT block for conditional
15704 branches, so it_fsm_pre_encode is actually a guess and we can't
15705 determine whether an IT block is required until the tencode () routine
15706 has decided what type of instruction this actually it.
15707 Because of this, if set_it_insn_type and in_it_block have to be used,
15708 set_it_insn_type has to be called first.
15709
15710 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15711 determines the insn IT type depending on the inst.cond code.
15712 When a tencode () routine encodes an instruction that can be
15713 either outside an IT block, or, in the case of being inside, has to be
15714 the last one, set_it_insn_type_last () will determine the proper
15715 IT instruction type based on the inst.cond code. Otherwise,
15716 set_it_insn_type can be called for overriding that logic or
15717 for covering other cases.
15718
15719 Calling handle_it_state () may not transition the IT block state to
15720 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15721 still queried. Instead, if the FSM determines that the state should
15722 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15723 after the tencode () function: that's what it_fsm_post_encode () does.
15724
15725 Since in_it_block () calls the state handling function to get an
15726 updated state, an error may occur (due to invalid insns combination).
15727 In that case, inst.error is set.
15728 Therefore, inst.error has to be checked after the execution of
15729 the tencode () routine.
15730
15731 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15732 any pending state change (if any) that didn't take place in
15733 handle_it_state () as explained above. */
15734
15735 static void
15736 it_fsm_pre_encode (void)
15737 {
15738 if (inst.cond != COND_ALWAYS)
15739 inst.it_insn_type = INSIDE_IT_INSN;
15740 else
15741 inst.it_insn_type = OUTSIDE_IT_INSN;
15742
15743 now_it.state_handled = 0;
15744 }
15745
15746 /* IT state FSM handling function. */
15747
15748 static int
15749 handle_it_state (void)
15750 {
15751 now_it.state_handled = 1;
15752
15753 switch (now_it.state)
15754 {
15755 case OUTSIDE_IT_BLOCK:
15756 switch (inst.it_insn_type)
15757 {
15758 case OUTSIDE_IT_INSN:
15759 break;
15760
15761 case INSIDE_IT_INSN:
15762 case INSIDE_IT_LAST_INSN:
15763 if (thumb_mode == 0)
15764 {
15765 if (unified_syntax
15766 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15767 as_tsktsk (_("Warning: conditional outside an IT block"\
15768 " for Thumb."));
15769 }
15770 else
15771 {
15772 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15773 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15774 {
15775 /* Automatically generate the IT instruction. */
15776 new_automatic_it_block (inst.cond);
15777 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15778 close_automatic_it_block ();
15779 }
15780 else
15781 {
15782 inst.error = BAD_OUT_IT;
15783 return FAIL;
15784 }
15785 }
15786 break;
15787
15788 case IF_INSIDE_IT_LAST_INSN:
15789 case NEUTRAL_IT_INSN:
15790 break;
15791
15792 case IT_INSN:
15793 now_it.state = MANUAL_IT_BLOCK;
15794 now_it.block_length = 0;
15795 break;
15796 }
15797 break;
15798
15799 case AUTOMATIC_IT_BLOCK:
15800 /* Three things may happen now:
15801 a) We should increment current it block size;
15802 b) We should close current it block (closing insn or 4 insns);
15803 c) We should close current it block and start a new one (due
15804 to incompatible conditions or
15805 4 insns-length block reached). */
15806
15807 switch (inst.it_insn_type)
15808 {
15809 case OUTSIDE_IT_INSN:
15810 /* The closure of the block shall happen immediatelly,
15811 so any in_it_block () call reports the block as closed. */
15812 force_automatic_it_block_close ();
15813 break;
15814
15815 case INSIDE_IT_INSN:
15816 case INSIDE_IT_LAST_INSN:
15817 case IF_INSIDE_IT_LAST_INSN:
15818 now_it.block_length++;
15819
15820 if (now_it.block_length > 4
15821 || !now_it_compatible (inst.cond))
15822 {
15823 force_automatic_it_block_close ();
15824 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15825 new_automatic_it_block (inst.cond);
15826 }
15827 else
15828 {
15829 now_it_add_mask (inst.cond);
15830 }
15831
15832 if (now_it.state == AUTOMATIC_IT_BLOCK
15833 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15834 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15835 close_automatic_it_block ();
15836 break;
15837
15838 case NEUTRAL_IT_INSN:
15839 now_it.block_length++;
15840
15841 if (now_it.block_length > 4)
15842 force_automatic_it_block_close ();
15843 else
15844 now_it_add_mask (now_it.cc & 1);
15845 break;
15846
15847 case IT_INSN:
15848 close_automatic_it_block ();
15849 now_it.state = MANUAL_IT_BLOCK;
15850 break;
15851 }
15852 break;
15853
15854 case MANUAL_IT_BLOCK:
15855 {
15856 /* Check conditional suffixes. */
15857 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15858 int is_last;
15859 now_it.mask <<= 1;
15860 now_it.mask &= 0x1f;
15861 is_last = (now_it.mask == 0x10);
15862
15863 switch (inst.it_insn_type)
15864 {
15865 case OUTSIDE_IT_INSN:
15866 inst.error = BAD_NOT_IT;
15867 return FAIL;
15868
15869 case INSIDE_IT_INSN:
15870 if (cond != inst.cond)
15871 {
15872 inst.error = BAD_IT_COND;
15873 return FAIL;
15874 }
15875 break;
15876
15877 case INSIDE_IT_LAST_INSN:
15878 case IF_INSIDE_IT_LAST_INSN:
15879 if (cond != inst.cond)
15880 {
15881 inst.error = BAD_IT_COND;
15882 return FAIL;
15883 }
15884 if (!is_last)
15885 {
15886 inst.error = BAD_BRANCH;
15887 return FAIL;
15888 }
15889 break;
15890
15891 case NEUTRAL_IT_INSN:
15892 /* The BKPT instruction is unconditional even in an IT block. */
15893 break;
15894
15895 case IT_INSN:
15896 inst.error = BAD_IT_IT;
15897 return FAIL;
15898 }
15899 }
15900 break;
15901 }
15902
15903 return SUCCESS;
15904 }
15905
15906 static void
15907 it_fsm_post_encode (void)
15908 {
15909 int is_last;
15910
15911 if (!now_it.state_handled)
15912 handle_it_state ();
15913
15914 is_last = (now_it.mask == 0x10);
15915 if (is_last)
15916 {
15917 now_it.state = OUTSIDE_IT_BLOCK;
15918 now_it.mask = 0;
15919 }
15920 }
15921
15922 static void
15923 force_automatic_it_block_close (void)
15924 {
15925 if (now_it.state == AUTOMATIC_IT_BLOCK)
15926 {
15927 close_automatic_it_block ();
15928 now_it.state = OUTSIDE_IT_BLOCK;
15929 now_it.mask = 0;
15930 }
15931 }
15932
15933 static int
15934 in_it_block (void)
15935 {
15936 if (!now_it.state_handled)
15937 handle_it_state ();
15938
15939 return now_it.state != OUTSIDE_IT_BLOCK;
15940 }
15941
15942 void
15943 md_assemble (char *str)
15944 {
15945 char *p = str;
15946 const struct asm_opcode * opcode;
15947
15948 /* Align the previous label if needed. */
15949 if (last_label_seen != NULL)
15950 {
15951 symbol_set_frag (last_label_seen, frag_now);
15952 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15953 S_SET_SEGMENT (last_label_seen, now_seg);
15954 }
15955
15956 memset (&inst, '\0', sizeof (inst));
15957 inst.reloc.type = BFD_RELOC_UNUSED;
15958
15959 opcode = opcode_lookup (&p);
15960 if (!opcode)
15961 {
15962 /* It wasn't an instruction, but it might be a register alias of
15963 the form alias .req reg, or a Neon .dn/.qn directive. */
15964 if (! create_register_alias (str, p)
15965 && ! create_neon_reg_alias (str, p))
15966 as_bad (_("bad instruction `%s'"), str);
15967
15968 return;
15969 }
15970
15971 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15972 as_warn (_("s suffix on comparison instruction is deprecated"));
15973
15974 /* The value which unconditional instructions should have in place of the
15975 condition field. */
15976 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15977
15978 if (thumb_mode)
15979 {
15980 arm_feature_set variant;
15981
15982 variant = cpu_variant;
15983 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15984 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15985 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15986 /* Check that this instruction is supported for this CPU. */
15987 if (!opcode->tvariant
15988 || (thumb_mode == 1
15989 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15990 {
15991 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
15992 return;
15993 }
15994 if (inst.cond != COND_ALWAYS && !unified_syntax
15995 && opcode->tencode != do_t_branch)
15996 {
15997 as_bad (_("Thumb does not support conditional execution"));
15998 return;
15999 }
16000
16001 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16002 {
16003 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16004 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16005 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16006 {
16007 /* Two things are addressed here.
16008 1) Implicit require narrow instructions on Thumb-1.
16009 This avoids relaxation accidentally introducing Thumb-2
16010 instructions.
16011 2) Reject wide instructions in non Thumb-2 cores. */
16012 if (inst.size_req == 0)
16013 inst.size_req = 2;
16014 else if (inst.size_req == 4)
16015 {
16016 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16017 return;
16018 }
16019 }
16020 }
16021
16022 inst.instruction = opcode->tvalue;
16023
16024 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16025 {
16026 /* Prepare the it_insn_type for those encodings that don't set
16027 it. */
16028 it_fsm_pre_encode ();
16029
16030 opcode->tencode ();
16031
16032 it_fsm_post_encode ();
16033 }
16034
16035 if (!(inst.error || inst.relax))
16036 {
16037 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16038 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16039 if (inst.size_req && inst.size_req != inst.size)
16040 {
16041 as_bad (_("cannot honor width suffix -- `%s'"), str);
16042 return;
16043 }
16044 }
16045
16046 /* Something has gone badly wrong if we try to relax a fixed size
16047 instruction. */
16048 gas_assert (inst.size_req == 0 || !inst.relax);
16049
16050 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16051 *opcode->tvariant);
16052 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16053 set those bits when Thumb-2 32-bit instructions are seen. ie.
16054 anything other than bl/blx and v6-M instructions.
16055 This is overly pessimistic for relaxable instructions. */
16056 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16057 || inst.relax)
16058 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16059 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16060 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16061 arm_ext_v6t2);
16062
16063 check_neon_suffixes;
16064
16065 if (!inst.error)
16066 {
16067 mapping_state (MAP_THUMB);
16068 }
16069 }
16070 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16071 {
16072 bfd_boolean is_bx;
16073
16074 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16075 is_bx = (opcode->aencode == do_bx);
16076
16077 /* Check that this instruction is supported for this CPU. */
16078 if (!(is_bx && fix_v4bx)
16079 && !(opcode->avariant &&
16080 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16081 {
16082 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16083 return;
16084 }
16085 if (inst.size_req)
16086 {
16087 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16088 return;
16089 }
16090
16091 inst.instruction = opcode->avalue;
16092 if (opcode->tag == OT_unconditionalF)
16093 inst.instruction |= 0xF << 28;
16094 else
16095 inst.instruction |= inst.cond << 28;
16096 inst.size = INSN_SIZE;
16097 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16098 {
16099 it_fsm_pre_encode ();
16100 opcode->aencode ();
16101 it_fsm_post_encode ();
16102 }
16103 /* Arm mode bx is marked as both v4T and v5 because it's still required
16104 on a hypothetical non-thumb v5 core. */
16105 if (is_bx)
16106 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16107 else
16108 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16109 *opcode->avariant);
16110
16111 check_neon_suffixes;
16112
16113 if (!inst.error)
16114 {
16115 mapping_state (MAP_ARM);
16116 }
16117 }
16118 else
16119 {
16120 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16121 "-- `%s'"), str);
16122 return;
16123 }
16124 output_inst (str);
16125 }
16126
16127 static void
16128 check_it_blocks_finished (void)
16129 {
16130 #ifdef OBJ_ELF
16131 asection *sect;
16132
16133 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16134 if (seg_info (sect)->tc_segment_info_data.current_it.state
16135 == MANUAL_IT_BLOCK)
16136 {
16137 as_warn (_("section '%s' finished with an open IT block."),
16138 sect->name);
16139 }
16140 #else
16141 if (now_it.state == MANUAL_IT_BLOCK)
16142 as_warn (_("file finished with an open IT block."));
16143 #endif
16144 }
16145
16146 /* Various frobbings of labels and their addresses. */
16147
16148 void
16149 arm_start_line_hook (void)
16150 {
16151 last_label_seen = NULL;
16152 }
16153
16154 void
16155 arm_frob_label (symbolS * sym)
16156 {
16157 last_label_seen = sym;
16158
16159 ARM_SET_THUMB (sym, thumb_mode);
16160
16161 #if defined OBJ_COFF || defined OBJ_ELF
16162 ARM_SET_INTERWORK (sym, support_interwork);
16163 #endif
16164
16165 force_automatic_it_block_close ();
16166
16167 /* Note - do not allow local symbols (.Lxxx) to be labelled
16168 as Thumb functions. This is because these labels, whilst
16169 they exist inside Thumb code, are not the entry points for
16170 possible ARM->Thumb calls. Also, these labels can be used
16171 as part of a computed goto or switch statement. eg gcc
16172 can generate code that looks like this:
16173
16174 ldr r2, [pc, .Laaa]
16175 lsl r3, r3, #2
16176 ldr r2, [r3, r2]
16177 mov pc, r2
16178
16179 .Lbbb: .word .Lxxx
16180 .Lccc: .word .Lyyy
16181 ..etc...
16182 .Laaa: .word Lbbb
16183
16184 The first instruction loads the address of the jump table.
16185 The second instruction converts a table index into a byte offset.
16186 The third instruction gets the jump address out of the table.
16187 The fourth instruction performs the jump.
16188
16189 If the address stored at .Laaa is that of a symbol which has the
16190 Thumb_Func bit set, then the linker will arrange for this address
16191 to have the bottom bit set, which in turn would mean that the
16192 address computation performed by the third instruction would end
16193 up with the bottom bit set. Since the ARM is capable of unaligned
16194 word loads, the instruction would then load the incorrect address
16195 out of the jump table, and chaos would ensue. */
16196 if (label_is_thumb_function_name
16197 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16198 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16199 {
16200 /* When the address of a Thumb function is taken the bottom
16201 bit of that address should be set. This will allow
16202 interworking between Arm and Thumb functions to work
16203 correctly. */
16204
16205 THUMB_SET_FUNC (sym, 1);
16206
16207 label_is_thumb_function_name = FALSE;
16208 }
16209
16210 dwarf2_emit_label (sym);
16211 }
16212
16213 bfd_boolean
16214 arm_data_in_code (void)
16215 {
16216 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16217 {
16218 *input_line_pointer = '/';
16219 input_line_pointer += 5;
16220 *input_line_pointer = 0;
16221 return TRUE;
16222 }
16223
16224 return FALSE;
16225 }
16226
16227 char *
16228 arm_canonicalize_symbol_name (char * name)
16229 {
16230 int len;
16231
16232 if (thumb_mode && (len = strlen (name)) > 5
16233 && streq (name + len - 5, "/data"))
16234 *(name + len - 5) = 0;
16235
16236 return name;
16237 }
16238 \f
16239 /* Table of all register names defined by default. The user can
16240 define additional names with .req. Note that all register names
16241 should appear in both upper and lowercase variants. Some registers
16242 also have mixed-case names. */
16243
16244 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16245 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16246 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16247 #define REGSET(p,t) \
16248 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16249 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16250 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16251 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16252 #define REGSETH(p,t) \
16253 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16254 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16255 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16256 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16257 #define REGSET2(p,t) \
16258 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16259 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16260 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16261 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16262 #define SPLRBANK(base,bank,t) \
16263 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16264 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16265 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16266 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16267 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16268 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16269
16270 static const struct reg_entry reg_names[] =
16271 {
16272 /* ARM integer registers. */
16273 REGSET(r, RN), REGSET(R, RN),
16274
16275 /* ATPCS synonyms. */
16276 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16277 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16278 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16279
16280 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16281 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16282 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16283
16284 /* Well-known aliases. */
16285 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16286 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16287
16288 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16289 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16290
16291 /* Coprocessor numbers. */
16292 REGSET(p, CP), REGSET(P, CP),
16293
16294 /* Coprocessor register numbers. The "cr" variants are for backward
16295 compatibility. */
16296 REGSET(c, CN), REGSET(C, CN),
16297 REGSET(cr, CN), REGSET(CR, CN),
16298
16299 /* ARM banked registers. */
16300 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16301 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16302 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16303 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16304 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16305 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16306 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16307
16308 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16309 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16310 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16311 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16312 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16313 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16314 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16315 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16316
16317 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16318 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16319 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16320 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16321 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16322 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16323 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16324 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16325 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16326
16327 /* FPA registers. */
16328 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16329 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16330
16331 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16332 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16333
16334 /* VFP SP registers. */
16335 REGSET(s,VFS), REGSET(S,VFS),
16336 REGSETH(s,VFS), REGSETH(S,VFS),
16337
16338 /* VFP DP Registers. */
16339 REGSET(d,VFD), REGSET(D,VFD),
16340 /* Extra Neon DP registers. */
16341 REGSETH(d,VFD), REGSETH(D,VFD),
16342
16343 /* Neon QP registers. */
16344 REGSET2(q,NQ), REGSET2(Q,NQ),
16345
16346 /* VFP control registers. */
16347 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16348 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16349 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16350 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16351 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16352 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16353
16354 /* Maverick DSP coprocessor registers. */
16355 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16356 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16357
16358 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16359 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16360 REGDEF(dspsc,0,DSPSC),
16361
16362 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16363 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16364 REGDEF(DSPSC,0,DSPSC),
16365
16366 /* iWMMXt data registers - p0, c0-15. */
16367 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16368
16369 /* iWMMXt control registers - p1, c0-3. */
16370 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16371 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16372 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16373 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16374
16375 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16376 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16377 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16378 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16379 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16380
16381 /* XScale accumulator registers. */
16382 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16383 };
16384 #undef REGDEF
16385 #undef REGNUM
16386 #undef REGSET
16387
16388 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16389 within psr_required_here. */
16390 static const struct asm_psr psrs[] =
16391 {
16392 /* Backward compatibility notation. Note that "all" is no longer
16393 truly all possible PSR bits. */
16394 {"all", PSR_c | PSR_f},
16395 {"flg", PSR_f},
16396 {"ctl", PSR_c},
16397
16398 /* Individual flags. */
16399 {"f", PSR_f},
16400 {"c", PSR_c},
16401 {"x", PSR_x},
16402 {"s", PSR_s},
16403 {"g", PSR_s},
16404
16405 /* Combinations of flags. */
16406 {"fs", PSR_f | PSR_s},
16407 {"fx", PSR_f | PSR_x},
16408 {"fc", PSR_f | PSR_c},
16409 {"sf", PSR_s | PSR_f},
16410 {"sx", PSR_s | PSR_x},
16411 {"sc", PSR_s | PSR_c},
16412 {"xf", PSR_x | PSR_f},
16413 {"xs", PSR_x | PSR_s},
16414 {"xc", PSR_x | PSR_c},
16415 {"cf", PSR_c | PSR_f},
16416 {"cs", PSR_c | PSR_s},
16417 {"cx", PSR_c | PSR_x},
16418 {"fsx", PSR_f | PSR_s | PSR_x},
16419 {"fsc", PSR_f | PSR_s | PSR_c},
16420 {"fxs", PSR_f | PSR_x | PSR_s},
16421 {"fxc", PSR_f | PSR_x | PSR_c},
16422 {"fcs", PSR_f | PSR_c | PSR_s},
16423 {"fcx", PSR_f | PSR_c | PSR_x},
16424 {"sfx", PSR_s | PSR_f | PSR_x},
16425 {"sfc", PSR_s | PSR_f | PSR_c},
16426 {"sxf", PSR_s | PSR_x | PSR_f},
16427 {"sxc", PSR_s | PSR_x | PSR_c},
16428 {"scf", PSR_s | PSR_c | PSR_f},
16429 {"scx", PSR_s | PSR_c | PSR_x},
16430 {"xfs", PSR_x | PSR_f | PSR_s},
16431 {"xfc", PSR_x | PSR_f | PSR_c},
16432 {"xsf", PSR_x | PSR_s | PSR_f},
16433 {"xsc", PSR_x | PSR_s | PSR_c},
16434 {"xcf", PSR_x | PSR_c | PSR_f},
16435 {"xcs", PSR_x | PSR_c | PSR_s},
16436 {"cfs", PSR_c | PSR_f | PSR_s},
16437 {"cfx", PSR_c | PSR_f | PSR_x},
16438 {"csf", PSR_c | PSR_s | PSR_f},
16439 {"csx", PSR_c | PSR_s | PSR_x},
16440 {"cxf", PSR_c | PSR_x | PSR_f},
16441 {"cxs", PSR_c | PSR_x | PSR_s},
16442 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16443 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16444 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16445 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16446 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16447 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16448 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16449 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16450 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16451 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16452 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16453 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16454 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16455 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16456 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16457 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16458 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16459 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16460 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16461 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16462 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16463 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16464 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16465 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16466
16467 /* APSR flags */
16468 {"nzcvq", PSR_f},
16469 {"nzcvqg", PSR_s | PSR_f}
16470 };
16471
16472 /* Table of V7M psr names. */
16473 static const struct asm_psr v7m_psrs[] =
16474 {
16475 {"apsr", 0 }, {"APSR", 0 },
16476 {"iapsr", 1 }, {"IAPSR", 1 },
16477 {"eapsr", 2 }, {"EAPSR", 2 },
16478 {"psr", 3 }, {"PSR", 3 },
16479 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16480 {"ipsr", 5 }, {"IPSR", 5 },
16481 {"epsr", 6 }, {"EPSR", 6 },
16482 {"iepsr", 7 }, {"IEPSR", 7 },
16483 {"msp", 8 }, {"MSP", 8 },
16484 {"psp", 9 }, {"PSP", 9 },
16485 {"primask", 16}, {"PRIMASK", 16},
16486 {"basepri", 17}, {"BASEPRI", 17},
16487 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16488 {"faultmask", 19}, {"FAULTMASK", 19},
16489 {"control", 20}, {"CONTROL", 20}
16490 };
16491
16492 /* Table of all shift-in-operand names. */
16493 static const struct asm_shift_name shift_names [] =
16494 {
16495 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16496 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16497 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16498 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16499 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16500 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16501 };
16502
16503 /* Table of all explicit relocation names. */
16504 #ifdef OBJ_ELF
16505 static struct reloc_entry reloc_names[] =
16506 {
16507 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16508 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16509 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16510 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16511 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16512 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16513 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16514 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16515 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16516 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16517 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16518 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL}
16519 };
16520 #endif
16521
16522 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16523 static const struct asm_cond conds[] =
16524 {
16525 {"eq", 0x0},
16526 {"ne", 0x1},
16527 {"cs", 0x2}, {"hs", 0x2},
16528 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16529 {"mi", 0x4},
16530 {"pl", 0x5},
16531 {"vs", 0x6},
16532 {"vc", 0x7},
16533 {"hi", 0x8},
16534 {"ls", 0x9},
16535 {"ge", 0xa},
16536 {"lt", 0xb},
16537 {"gt", 0xc},
16538 {"le", 0xd},
16539 {"al", 0xe}
16540 };
16541
16542 static struct asm_barrier_opt barrier_opt_names[] =
16543 {
16544 { "sy", 0xf }, { "SY", 0xf },
16545 { "un", 0x7 }, { "UN", 0x7 },
16546 { "st", 0xe }, { "ST", 0xe },
16547 { "unst", 0x6 }, { "UNST", 0x6 },
16548 { "ish", 0xb }, { "ISH", 0xb },
16549 { "sh", 0xb }, { "SH", 0xb },
16550 { "ishst", 0xa }, { "ISHST", 0xa },
16551 { "shst", 0xa }, { "SHST", 0xa },
16552 { "nsh", 0x7 }, { "NSH", 0x7 },
16553 { "nshst", 0x6 }, { "NSHST", 0x6 },
16554 { "osh", 0x3 }, { "OSH", 0x3 },
16555 { "oshst", 0x2 }, { "OSHST", 0x2 }
16556 };
16557
16558 /* Table of ARM-format instructions. */
16559
16560 /* Macros for gluing together operand strings. N.B. In all cases
16561 other than OPS0, the trailing OP_stop comes from default
16562 zero-initialization of the unspecified elements of the array. */
16563 #define OPS0() { OP_stop, }
16564 #define OPS1(a) { OP_##a, }
16565 #define OPS2(a,b) { OP_##a,OP_##b, }
16566 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16567 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16568 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16569 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16570
16571 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16572 This is useful when mixing operands for ARM and THUMB, i.e. using the
16573 MIX_ARM_THUMB_OPERANDS macro.
16574 In order to use these macros, prefix the number of operands with _
16575 e.g. _3. */
16576 #define OPS_1(a) { a, }
16577 #define OPS_2(a,b) { a,b, }
16578 #define OPS_3(a,b,c) { a,b,c, }
16579 #define OPS_4(a,b,c,d) { a,b,c,d, }
16580 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16581 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16582
16583 /* These macros abstract out the exact format of the mnemonic table and
16584 save some repeated characters. */
16585
16586 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16587 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16588 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16589 THUMB_VARIANT, do_##ae, do_##te }
16590
16591 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16592 a T_MNEM_xyz enumerator. */
16593 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16594 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16595 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16596 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16597
16598 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16599 infix after the third character. */
16600 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16601 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16602 THUMB_VARIANT, do_##ae, do_##te }
16603 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16604 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16605 THUMB_VARIANT, do_##ae, do_##te }
16606 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16607 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16608 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16609 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16610 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16611 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16612 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16613 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16614
16615 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16616 appear in the condition table. */
16617 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16618 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16619 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16620
16621 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16622 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16623 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16624 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16625 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16626 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16627 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16628 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16629 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16630 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16631 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16632 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16633 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16634 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16635 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16636 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16637 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16638 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16639 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16640 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16641
16642 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16643 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16644 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16645 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16646
16647 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16648 field is still 0xE. Many of the Thumb variants can be executed
16649 conditionally, so this is checked separately. */
16650 #define TUE(mnem, op, top, nops, ops, ae, te) \
16651 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16652 THUMB_VARIANT, do_##ae, do_##te }
16653
16654 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16655 condition code field. */
16656 #define TUF(mnem, op, top, nops, ops, ae, te) \
16657 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16658 THUMB_VARIANT, do_##ae, do_##te }
16659
16660 /* ARM-only variants of all the above. */
16661 #define CE(mnem, op, nops, ops, ae) \
16662 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16663
16664 #define C3(mnem, op, nops, ops, ae) \
16665 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16666
16667 /* Legacy mnemonics that always have conditional infix after the third
16668 character. */
16669 #define CL(mnem, op, nops, ops, ae) \
16670 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16671 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16672
16673 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16674 #define cCE(mnem, op, nops, ops, ae) \
16675 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16676
16677 /* Legacy coprocessor instructions where conditional infix and conditional
16678 suffix are ambiguous. For consistency this includes all FPA instructions,
16679 not just the potentially ambiguous ones. */
16680 #define cCL(mnem, op, nops, ops, ae) \
16681 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16682 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16683
16684 /* Coprocessor, takes either a suffix or a position-3 infix
16685 (for an FPA corner case). */
16686 #define C3E(mnem, op, nops, ops, ae) \
16687 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16688 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16689
16690 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16691 { m1 #m2 m3, OPS##nops ops, \
16692 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16693 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16694
16695 #define CM(m1, m2, op, nops, ops, ae) \
16696 xCM_ (m1, , m2, op, nops, ops, ae), \
16697 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16698 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16699 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16700 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16701 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16702 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16703 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16704 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16705 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16706 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16707 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16708 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16709 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16710 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16711 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16712 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16713 xCM_ (m1, le, m2, op, nops, ops, ae), \
16714 xCM_ (m1, al, m2, op, nops, ops, ae)
16715
16716 #define UE(mnem, op, nops, ops, ae) \
16717 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16718
16719 #define UF(mnem, op, nops, ops, ae) \
16720 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16721
16722 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16723 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16724 use the same encoding function for each. */
16725 #define NUF(mnem, op, nops, ops, enc) \
16726 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16727 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16728
16729 /* Neon data processing, version which indirects through neon_enc_tab for
16730 the various overloaded versions of opcodes. */
16731 #define nUF(mnem, op, nops, ops, enc) \
16732 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16733 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16734
16735 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16736 version. */
16737 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16738 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16739 THUMB_VARIANT, do_##enc, do_##enc }
16740
16741 #define NCE(mnem, op, nops, ops, enc) \
16742 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16743
16744 #define NCEF(mnem, op, nops, ops, enc) \
16745 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16746
16747 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16748 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16749 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16750 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16751
16752 #define nCE(mnem, op, nops, ops, enc) \
16753 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16754
16755 #define nCEF(mnem, op, nops, ops, enc) \
16756 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16757
16758 #define do_0 0
16759
16760 static const struct asm_opcode insns[] =
16761 {
16762 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16763 #define THUMB_VARIANT &arm_ext_v4t
16764 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16765 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16766 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16767 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16768 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16769 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16770 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16771 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16772 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16773 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16774 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16775 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16776 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16777 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16778 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16779 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16780
16781 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16782 for setting PSR flag bits. They are obsolete in V6 and do not
16783 have Thumb equivalents. */
16784 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16785 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16786 CL("tstp", 110f000, 2, (RR, SH), cmp),
16787 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16788 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16789 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16790 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16791 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16792 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16793
16794 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16795 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16796 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16797 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16798
16799 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16800 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16801 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16802 OP_RRnpc),
16803 OP_ADDRGLDR),ldst, t_ldst),
16804 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16805
16806 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16807 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16808 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16809 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16810 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16811 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16812
16813 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16814 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16815 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16816 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16817
16818 /* Pseudo ops. */
16819 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16820 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16821 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16822
16823 /* Thumb-compatibility pseudo ops. */
16824 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16825 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16826 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16827 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16828 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16829 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16830 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16831 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16832 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16833 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16834 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16835 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16836
16837 /* These may simplify to neg. */
16838 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16839 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16840
16841 #undef THUMB_VARIANT
16842 #define THUMB_VARIANT & arm_ext_v6
16843
16844 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16845
16846 /* V1 instructions with no Thumb analogue prior to V6T2. */
16847 #undef THUMB_VARIANT
16848 #define THUMB_VARIANT & arm_ext_v6t2
16849
16850 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16851 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16852 CL("teqp", 130f000, 2, (RR, SH), cmp),
16853
16854 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16855 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16856 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16857 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16858
16859 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16860 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16861
16862 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16863 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16864
16865 /* V1 instructions with no Thumb analogue at all. */
16866 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16867 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16868
16869 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16870 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16871 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16872 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16873 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16874 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16875 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16876 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16877
16878 #undef ARM_VARIANT
16879 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16880 #undef THUMB_VARIANT
16881 #define THUMB_VARIANT & arm_ext_v4t
16882
16883 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16884 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16885
16886 #undef THUMB_VARIANT
16887 #define THUMB_VARIANT & arm_ext_v6t2
16888
16889 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16890 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16891
16892 /* Generic coprocessor instructions. */
16893 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16894 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16895 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16896 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16897 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16898 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16899 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
16900
16901 #undef ARM_VARIANT
16902 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16903
16904 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16905 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16906
16907 #undef ARM_VARIANT
16908 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16909 #undef THUMB_VARIANT
16910 #define THUMB_VARIANT & arm_ext_msr
16911
16912 TCE("mrs", 1000000, f3e08000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16913 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16914
16915 #undef ARM_VARIANT
16916 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16917 #undef THUMB_VARIANT
16918 #define THUMB_VARIANT & arm_ext_v6t2
16919
16920 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16921 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16922 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16923 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16924 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16925 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16926 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16927 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16928
16929 #undef ARM_VARIANT
16930 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16931 #undef THUMB_VARIANT
16932 #define THUMB_VARIANT & arm_ext_v4t
16933
16934 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16935 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16936 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16937 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16938 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16939 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16940
16941 #undef ARM_VARIANT
16942 #define ARM_VARIANT & arm_ext_v4t_5
16943
16944 /* ARM Architecture 4T. */
16945 /* Note: bx (and blx) are required on V5, even if the processor does
16946 not support Thumb. */
16947 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16948
16949 #undef ARM_VARIANT
16950 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16951 #undef THUMB_VARIANT
16952 #define THUMB_VARIANT & arm_ext_v5t
16953
16954 /* Note: blx has 2 variants; the .value coded here is for
16955 BLX(2). Only this variant has conditional execution. */
16956 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16957 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16958
16959 #undef THUMB_VARIANT
16960 #define THUMB_VARIANT & arm_ext_v6t2
16961
16962 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16963 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16964 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16965 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16966 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16967 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16968 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16969 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16970
16971 #undef ARM_VARIANT
16972 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16973 #undef THUMB_VARIANT
16974 #define THUMB_VARIANT &arm_ext_v5exp
16975
16976 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16977 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16978 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16979 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16980
16981 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16982 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16983
16984 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16985 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16986 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16987 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16988
16989 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16990 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16991 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16992 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16993
16994 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16995 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16996
16997 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16998 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16999 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17000 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17001
17002 #undef ARM_VARIANT
17003 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17004 #undef THUMB_VARIANT
17005 #define THUMB_VARIANT &arm_ext_v6t2
17006
17007 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17008 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17009 ldrd, t_ldstd),
17010 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17011 ADDRGLDRS), ldrd, t_ldstd),
17012
17013 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17014 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17015
17016 #undef ARM_VARIANT
17017 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17018
17019 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17020
17021 #undef ARM_VARIANT
17022 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17023 #undef THUMB_VARIANT
17024 #define THUMB_VARIANT & arm_ext_v6
17025
17026 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17027 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17028 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17029 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17030 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17031 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17032 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17033 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17034 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17035 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17036
17037 #undef THUMB_VARIANT
17038 #define THUMB_VARIANT & arm_ext_v6t2
17039
17040 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17041 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17042 strex, t_strex),
17043 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17044 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17045
17046 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17047 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17048
17049 /* ARM V6 not included in V7M. */
17050 #undef THUMB_VARIANT
17051 #define THUMB_VARIANT & arm_ext_v6_notm
17052 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17053 UF(rfeib, 9900a00, 1, (RRw), rfe),
17054 UF(rfeda, 8100a00, 1, (RRw), rfe),
17055 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17056 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17057 UF(rfefa, 9900a00, 1, (RRw), rfe),
17058 UF(rfeea, 8100a00, 1, (RRw), rfe),
17059 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17060 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17061 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17062 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17063 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17064
17065 /* ARM V6 not included in V7M (eg. integer SIMD). */
17066 #undef THUMB_VARIANT
17067 #define THUMB_VARIANT & arm_ext_v6_dsp
17068 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17069 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17070 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17071 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17072 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17073 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17074 /* Old name for QASX. */
17075 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17076 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17077 /* Old name for QSAX. */
17078 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17079 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17080 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17081 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17082 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17083 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17084 /* Old name for SASX. */
17085 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17086 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17087 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17088 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17089 /* Old name for SHASX. */
17090 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17091 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17092 /* Old name for SHSAX. */
17093 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17094 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17095 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17096 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17097 /* Old name for SSAX. */
17098 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17099 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17100 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17101 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17102 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17103 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17104 /* Old name for UASX. */
17105 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17106 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17107 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17108 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17109 /* Old name for UHASX. */
17110 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17111 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17112 /* Old name for UHSAX. */
17113 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17114 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17115 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17116 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17117 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17118 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17119 /* Old name for UQASX. */
17120 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17121 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17122 /* Old name for UQSAX. */
17123 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17124 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17125 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17126 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17127 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17128 /* Old name for USAX. */
17129 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17130 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17131 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17132 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17133 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17134 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17135 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17136 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17137 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17138 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17139 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17140 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17141 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17142 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17143 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17144 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17145 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17146 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17147 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17148 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17149 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17150 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17151 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17152 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17153 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17154 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17155 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17156 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17157 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17158 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17159 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17160 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17161 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17162 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17163
17164 #undef ARM_VARIANT
17165 #define ARM_VARIANT & arm_ext_v6k
17166 #undef THUMB_VARIANT
17167 #define THUMB_VARIANT & arm_ext_v6k
17168
17169 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17170 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17171 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17172 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17173
17174 #undef THUMB_VARIANT
17175 #define THUMB_VARIANT & arm_ext_v6_notm
17176 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17177 ldrexd, t_ldrexd),
17178 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17179 RRnpcb), strexd, t_strexd),
17180
17181 #undef THUMB_VARIANT
17182 #define THUMB_VARIANT & arm_ext_v6t2
17183 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17184 rd_rn, rd_rn),
17185 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17186 rd_rn, rd_rn),
17187 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17188 strex, rm_rd_rn),
17189 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17190 strex, rm_rd_rn),
17191 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17192
17193 #undef ARM_VARIANT
17194 #define ARM_VARIANT & arm_ext_sec
17195 #undef THUMB_VARIANT
17196 #define THUMB_VARIANT & arm_ext_sec
17197
17198 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17199
17200 #undef ARM_VARIANT
17201 #define ARM_VARIANT & arm_ext_virt
17202 #undef THUMB_VARIANT
17203 #define THUMB_VARIANT & arm_ext_virt
17204
17205 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17206 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17207
17208 #undef ARM_VARIANT
17209 #define ARM_VARIANT & arm_ext_v6t2
17210 #undef THUMB_VARIANT
17211 #define THUMB_VARIANT & arm_ext_v6t2
17212
17213 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17214 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17215 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17216 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17217
17218 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17219 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17220 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17221 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17222
17223 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17224 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17225 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17226 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17227
17228 /* Thumb-only instructions. */
17229 #undef ARM_VARIANT
17230 #define ARM_VARIANT NULL
17231 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17232 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17233
17234 /* ARM does not really have an IT instruction, so always allow it.
17235 The opcode is copied from Thumb in order to allow warnings in
17236 -mimplicit-it=[never | arm] modes. */
17237 #undef ARM_VARIANT
17238 #define ARM_VARIANT & arm_ext_v1
17239
17240 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17241 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17242 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17243 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17244 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17245 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17246 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17247 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17248 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17249 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17250 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17251 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17252 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17253 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17254 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17255 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17256 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17257 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17258
17259 /* Thumb2 only instructions. */
17260 #undef ARM_VARIANT
17261 #define ARM_VARIANT NULL
17262
17263 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17264 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17265 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17266 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17267 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17268 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17269
17270 /* Hardware division instructions. */
17271 #undef ARM_VARIANT
17272 #define ARM_VARIANT & arm_ext_adiv
17273 #undef THUMB_VARIANT
17274 #define THUMB_VARIANT & arm_ext_div
17275
17276 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17277 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17278
17279 /* ARM V6M/V7 instructions. */
17280 #undef ARM_VARIANT
17281 #define ARM_VARIANT & arm_ext_barrier
17282 #undef THUMB_VARIANT
17283 #define THUMB_VARIANT & arm_ext_barrier
17284
17285 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17286 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17287 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17288
17289 /* ARM V7 instructions. */
17290 #undef ARM_VARIANT
17291 #define ARM_VARIANT & arm_ext_v7
17292 #undef THUMB_VARIANT
17293 #define THUMB_VARIANT & arm_ext_v7
17294
17295 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17296 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17297
17298 #undef ARM_VARIANT
17299 #define ARM_VARIANT & arm_ext_mp
17300 #undef THUMB_VARIANT
17301 #define THUMB_VARIANT & arm_ext_mp
17302
17303 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17304
17305 #undef ARM_VARIANT
17306 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17307
17308 cCE("wfs", e200110, 1, (RR), rd),
17309 cCE("rfs", e300110, 1, (RR), rd),
17310 cCE("wfc", e400110, 1, (RR), rd),
17311 cCE("rfc", e500110, 1, (RR), rd),
17312
17313 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17314 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17315 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17316 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17317
17318 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17319 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17320 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17321 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17322
17323 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17324 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17325 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17326 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17327 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17328 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17329 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17330 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17331 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17332 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17333 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17334 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17335
17336 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17337 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17338 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17339 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17340 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17341 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17342 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17343 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17344 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17345 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17346 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17347 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17348
17349 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17350 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17351 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17352 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17353 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17354 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17355 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17356 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17357 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17358 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17359 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17360 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17361
17362 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17363 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17364 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17365 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17366 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17367 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17368 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17369 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17370 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17371 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17372 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17373 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17374
17375 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17376 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17377 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17378 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17379 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17380 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17381 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17382 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17383 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17384 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17385 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17386 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17387
17388 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17389 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17390 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17391 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17392 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17393 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17394 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17395 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17396 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17397 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17398 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17399 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17400
17401 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17402 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17403 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17404 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17405 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17406 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17407 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17408 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17409 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17410 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17411 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17412 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17413
17414 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17415 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17416 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17417 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17418 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17419 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17420 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17421 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17422 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17423 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17424 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17425 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17426
17427 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17428 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17429 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17430 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17431 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17432 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17433 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17434 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17435 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17436 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17437 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17438 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17439
17440 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17441 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17442 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17443 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17444 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17445 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17446 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17447 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17448 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17449 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17450 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17451 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17452
17453 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17454 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17455 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17456 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17457 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17458 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17459 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17460 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17461 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17462 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17463 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17464 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17465
17466 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17467 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17468 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17469 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17470 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17471 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17472 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17473 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17474 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17475 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17476 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17477 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17478
17479 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17480 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17481 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17482 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17483 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17484 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17485 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17486 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17487 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17488 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17489 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17490 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17491
17492 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17493 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17494 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17495 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17496 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17497 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17498 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17499 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17500 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17501 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17502 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17503 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17504
17505 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17506 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17507 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17508 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17509 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17510 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17511 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17512 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17513 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17514 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17515 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17516 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17517
17518 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17519 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17520 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17521 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17522 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17523 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17524 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17525 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17526 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17527 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17528 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17529 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17530
17531 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17532 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17533 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17534 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17535 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17536 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17537 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17538 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17539 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17540 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17541 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17542 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17543
17544 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17545 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17546 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17547 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17548 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17549 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17550 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17551 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17552 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17553 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17554 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17555 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17556
17557 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17558 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17559 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17560 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17561 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17562 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17563 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17564 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17565 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17566 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17567 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17568 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17569
17570 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17571 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17572 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17573 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17574 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17575 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17576 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17577 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17578 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17579 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17580 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17581 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17582
17583 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17584 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17585 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17586 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17587 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17588 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17589 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17590 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17591 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17592 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17593 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17594 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17595
17596 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17597 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17598 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17599 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17600 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17601 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17602 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17603 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17604 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17605 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17606 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17607 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17608
17609 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17610 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17611 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17612 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17613 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17614 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17615 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17616 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17617 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17618 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17619 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17620 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17621
17622 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17623 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17624 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17625 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17626 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17627 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17628 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17629 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17630 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17631 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17632 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17633 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17634
17635 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17636 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17637 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17638 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17639 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17640 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17641 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17642 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17643 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17644 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17645 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17646 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17647
17648 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17649 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17650 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17651 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17652 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17653 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17654 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17655 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17656 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17657 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17658 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17659 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17660
17661 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17662 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17663 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17664 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17665 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17666 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17667 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17668 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17669 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17670 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17671 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17672 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17673
17674 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17675 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17676 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17677 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17678 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17679 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17680 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17681 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17682 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17683 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17684 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17685 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17686
17687 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17688 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17689 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17690 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17691 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17692 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17693 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17694 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17695 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17696 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17697 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17698 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17699
17700 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17701 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17702 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17703 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17704
17705 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17706 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17707 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17708 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17709 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17710 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17711 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17712 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17713 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17714 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17715 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17716 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17717
17718 /* The implementation of the FIX instruction is broken on some
17719 assemblers, in that it accepts a precision specifier as well as a
17720 rounding specifier, despite the fact that this is meaningless.
17721 To be more compatible, we accept it as well, though of course it
17722 does not set any bits. */
17723 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17724 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17725 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17726 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17727 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17728 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17729 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17730 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17731 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17732 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17733 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17734 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17735 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17736
17737 /* Instructions that were new with the real FPA, call them V2. */
17738 #undef ARM_VARIANT
17739 #define ARM_VARIANT & fpu_fpa_ext_v2
17740
17741 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17742 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17743 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17744 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17745 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17746 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17747
17748 #undef ARM_VARIANT
17749 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17750
17751 /* Moves and type conversions. */
17752 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17753 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17754 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17755 cCE("fmstat", ef1fa10, 0, (), noargs),
17756 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17757 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17758 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17759 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17760 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17761 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17762 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17763 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17764 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17765 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17766
17767 /* Memory operations. */
17768 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17769 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17770 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17771 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17772 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17773 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17774 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17775 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17776 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17777 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17778 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17779 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17780 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17781 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17782 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17783 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17784 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17785 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17786
17787 /* Monadic operations. */
17788 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17789 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17790 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17791
17792 /* Dyadic operations. */
17793 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17794 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17795 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17796 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17797 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17798 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17799 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17800 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17801 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17802
17803 /* Comparisons. */
17804 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17805 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17806 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17807 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17808
17809 /* Double precision load/store are still present on single precision
17810 implementations. */
17811 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17812 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17813 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17814 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17815 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17816 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17817 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17818 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17819 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17820 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17821
17822 #undef ARM_VARIANT
17823 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17824
17825 /* Moves and type conversions. */
17826 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17827 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17828 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17829 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17830 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17831 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17832 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17833 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17834 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17835 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17836 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17837 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17838 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17839
17840 /* Monadic operations. */
17841 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17842 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17843 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17844
17845 /* Dyadic operations. */
17846 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17847 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17848 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17849 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17850 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17851 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17852 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17853 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17854 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17855
17856 /* Comparisons. */
17857 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17858 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17859 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17860 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17861
17862 #undef ARM_VARIANT
17863 #define ARM_VARIANT & fpu_vfp_ext_v2
17864
17865 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17866 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17867 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17868 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17869
17870 /* Instructions which may belong to either the Neon or VFP instruction sets.
17871 Individual encoder functions perform additional architecture checks. */
17872 #undef ARM_VARIANT
17873 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17874 #undef THUMB_VARIANT
17875 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17876
17877 /* These mnemonics are unique to VFP. */
17878 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17879 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17880 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17881 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17882 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17883 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17884 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17885 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17886 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17887 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17888
17889 /* Mnemonics shared by Neon and VFP. */
17890 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17891 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17892 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17893
17894 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17895 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17896
17897 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17898 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17899
17900 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17901 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17902 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17903 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17904 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17905 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17906 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17907 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17908
17909 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17910 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
17911 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17912 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17913
17914
17915 /* NOTE: All VMOV encoding is special-cased! */
17916 NCE(vmov, 0, 1, (VMOV), neon_mov),
17917 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17918
17919 #undef THUMB_VARIANT
17920 #define THUMB_VARIANT & fpu_neon_ext_v1
17921 #undef ARM_VARIANT
17922 #define ARM_VARIANT & fpu_neon_ext_v1
17923
17924 /* Data processing with three registers of the same length. */
17925 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17926 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17927 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17928 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17929 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17930 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17931 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17932 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17933 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17934 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17935 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17936 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17937 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17938 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17939 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17940 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17941 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17942 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17943 /* If not immediate, fall back to neon_dyadic_i64_su.
17944 shl_imm should accept I8 I16 I32 I64,
17945 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17946 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17947 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17948 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17949 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17950 /* Logic ops, types optional & ignored. */
17951 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17952 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17953 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17954 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17955 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17956 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17957 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17958 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17959 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17960 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17961 /* Bitfield ops, untyped. */
17962 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17963 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17964 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17965 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17966 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17967 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17968 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17969 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17970 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17971 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17972 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17973 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17974 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17975 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17976 back to neon_dyadic_if_su. */
17977 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17978 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17979 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17980 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17981 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17982 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17983 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17984 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17985 /* Comparison. Type I8 I16 I32 F32. */
17986 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17987 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17988 /* As above, D registers only. */
17989 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17990 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17991 /* Int and float variants, signedness unimportant. */
17992 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17993 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17994 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17995 /* Add/sub take types I8 I16 I32 I64 F32. */
17996 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17997 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17998 /* vtst takes sizes 8, 16, 32. */
17999 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18000 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18001 /* VMUL takes I8 I16 I32 F32 P8. */
18002 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18003 /* VQD{R}MULH takes S16 S32. */
18004 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18005 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18006 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18007 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18008 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18009 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18010 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18011 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18012 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18013 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18014 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18015 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18016 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18017 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18018 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18019 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18020
18021 /* Two address, int/float. Types S8 S16 S32 F32. */
18022 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18023 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18024
18025 /* Data processing with two registers and a shift amount. */
18026 /* Right shifts, and variants with rounding.
18027 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18028 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18029 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18030 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18031 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18032 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18033 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18034 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18035 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18036 /* Shift and insert. Sizes accepted 8 16 32 64. */
18037 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18038 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18039 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18040 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18041 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18042 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18043 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18044 /* Right shift immediate, saturating & narrowing, with rounding variants.
18045 Types accepted S16 S32 S64 U16 U32 U64. */
18046 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18047 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18048 /* As above, unsigned. Types accepted S16 S32 S64. */
18049 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18050 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18051 /* Right shift narrowing. Types accepted I16 I32 I64. */
18052 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18053 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18054 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18055 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18056 /* CVT with optional immediate for fixed-point variant. */
18057 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18058
18059 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18060 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18061
18062 /* Data processing, three registers of different lengths. */
18063 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18064 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18065 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18066 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18067 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18068 /* If not scalar, fall back to neon_dyadic_long.
18069 Vector types as above, scalar types S16 S32 U16 U32. */
18070 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18071 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18072 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18073 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18074 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18075 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18076 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18077 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18078 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18079 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18080 /* Saturating doubling multiplies. Types S16 S32. */
18081 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18082 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18083 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18084 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18085 S16 S32 U16 U32. */
18086 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18087
18088 /* Extract. Size 8. */
18089 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18090 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18091
18092 /* Two registers, miscellaneous. */
18093 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18094 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18095 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18096 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18097 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18098 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18099 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18100 /* Vector replicate. Sizes 8 16 32. */
18101 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18102 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18103 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18104 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18105 /* VMOVN. Types I16 I32 I64. */
18106 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18107 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18108 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18109 /* VQMOVUN. Types S16 S32 S64. */
18110 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18111 /* VZIP / VUZP. Sizes 8 16 32. */
18112 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18113 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18114 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18115 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18116 /* VQABS / VQNEG. Types S8 S16 S32. */
18117 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18118 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18119 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18120 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18121 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18122 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18123 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18124 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18125 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18126 /* Reciprocal estimates. Types U32 F32. */
18127 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18128 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18129 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18130 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18131 /* VCLS. Types S8 S16 S32. */
18132 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18133 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18134 /* VCLZ. Types I8 I16 I32. */
18135 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18136 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18137 /* VCNT. Size 8. */
18138 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18139 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18140 /* Two address, untyped. */
18141 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18142 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18143 /* VTRN. Sizes 8 16 32. */
18144 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18145 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18146
18147 /* Table lookup. Size 8. */
18148 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18149 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18150
18151 #undef THUMB_VARIANT
18152 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18153 #undef ARM_VARIANT
18154 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18155
18156 /* Neon element/structure load/store. */
18157 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18158 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18159 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18160 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18161 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18162 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18163 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18164 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18165
18166 #undef THUMB_VARIANT
18167 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18168 #undef ARM_VARIANT
18169 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18170 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18171 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18172 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18173 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18174 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18175 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18176 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18177 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18178 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18179
18180 #undef THUMB_VARIANT
18181 #define THUMB_VARIANT & fpu_vfp_ext_v3
18182 #undef ARM_VARIANT
18183 #define ARM_VARIANT & fpu_vfp_ext_v3
18184
18185 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18186 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18187 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18188 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18189 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18190 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18191 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18192 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18193 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18194
18195 #undef ARM_VARIANT
18196 #define ARM_VARIANT &fpu_vfp_ext_fma
18197 #undef THUMB_VARIANT
18198 #define THUMB_VARIANT &fpu_vfp_ext_fma
18199 /* Mnemonics shared by Neon and VFP. These are included in the
18200 VFP FMA variant; NEON and VFP FMA always includes the NEON
18201 FMA instructions. */
18202 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18203 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18204 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18205 the v form should always be used. */
18206 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18207 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18208 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18209 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18210 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18211 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18212
18213 #undef THUMB_VARIANT
18214 #undef ARM_VARIANT
18215 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18216
18217 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18218 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18219 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18220 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18221 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18222 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18223 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18224 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18225
18226 #undef ARM_VARIANT
18227 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18228
18229 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18230 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18231 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18232 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18233 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18234 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18235 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18236 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18237 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18238 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18239 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18240 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18241 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18242 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18243 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18244 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18245 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18246 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18247 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18248 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18249 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18250 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18251 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18252 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18253 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18254 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18255 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18256 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18257 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18258 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18259 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18260 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18261 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18262 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18263 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18264 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18265 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18266 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18267 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18268 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18269 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18270 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18271 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18272 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18273 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18274 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18275 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18276 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18277 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18278 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18279 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18280 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18281 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18282 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18283 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18284 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18285 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18286 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18287 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18288 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18289 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18290 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18291 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18292 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18293 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18294 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18295 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18296 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18297 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18298 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18299 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18300 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18301 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18302 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18303 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18304 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18305 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18306 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18307 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18308 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18309 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18310 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18311 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18312 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18313 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18314 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18315 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18316 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18317 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18318 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18319 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18320 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18321 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18322 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18323 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18324 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18325 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18326 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18327 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18328 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18329 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18330 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18331 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18332 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18333 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18334 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18335 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18336 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18337 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18338 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18339 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18340 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18341 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18342 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18343 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18344 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18345 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18346 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18347 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18348 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18349 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18350 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18351 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18352 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18353 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18354 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18355 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18356 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18357 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18358 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18359 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18360 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18361 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18362 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18363 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18364 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18365 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18366 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18367 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18368 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18369 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18370 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18371 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18372 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18373 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18374 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18375 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18376 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18377 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18378 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18379 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18380 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18381 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18382 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18383 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18384 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18385 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18386 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18387 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18388 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18389 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18390 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18391
18392 #undef ARM_VARIANT
18393 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18394
18395 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18396 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18397 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18398 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18399 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18400 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18401 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18402 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18403 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18404 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18405 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18406 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18407 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18408 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18409 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18410 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18411 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18412 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18413 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18414 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18415 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18416 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18417 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18418 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18419 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18420 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18421 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18422 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18423 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18424 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18425 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18426 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18427 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18428 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18429 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18430 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18431 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18432 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18433 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18434 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18435 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18436 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18437 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18438 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18439 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18440 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18441 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18442 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18443 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18444 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18445 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18446 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18447 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18448 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18449 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18450 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18451 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18452
18453 #undef ARM_VARIANT
18454 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18455
18456 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18457 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18458 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18459 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18460 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18461 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18462 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18463 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18464 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18465 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18466 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18467 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18468 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18469 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18470 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18471 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18472 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18473 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18474 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18475 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18476 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18477 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18478 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18479 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18480 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18481 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18482 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18483 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18484 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18485 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18486 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18487 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18488 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18489 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18490 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18491 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18492 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18493 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18494 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18495 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18496 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18497 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18498 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18499 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18500 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18501 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18502 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18503 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18504 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18505 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18506 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18507 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18508 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18509 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18510 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18511 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18512 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18513 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18514 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18515 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18516 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18517 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18518 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18519 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18520 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18521 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18522 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18523 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18524 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18525 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18526 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18527 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18528 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18529 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18530 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18531 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18532 };
18533 #undef ARM_VARIANT
18534 #undef THUMB_VARIANT
18535 #undef TCE
18536 #undef TCM
18537 #undef TUE
18538 #undef TUF
18539 #undef TCC
18540 #undef cCE
18541 #undef cCL
18542 #undef C3E
18543 #undef CE
18544 #undef CM
18545 #undef UE
18546 #undef UF
18547 #undef UT
18548 #undef NUF
18549 #undef nUF
18550 #undef NCE
18551 #undef nCE
18552 #undef OPS0
18553 #undef OPS1
18554 #undef OPS2
18555 #undef OPS3
18556 #undef OPS4
18557 #undef OPS5
18558 #undef OPS6
18559 #undef do_0
18560 \f
18561 /* MD interface: bits in the object file. */
18562
18563 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18564 for use in the a.out file, and stores them in the array pointed to by buf.
18565 This knows about the endian-ness of the target machine and does
18566 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18567 2 (short) and 4 (long) Floating numbers are put out as a series of
18568 LITTLENUMS (shorts, here at least). */
18569
18570 void
18571 md_number_to_chars (char * buf, valueT val, int n)
18572 {
18573 if (target_big_endian)
18574 number_to_chars_bigendian (buf, val, n);
18575 else
18576 number_to_chars_littleendian (buf, val, n);
18577 }
18578
18579 static valueT
18580 md_chars_to_number (char * buf, int n)
18581 {
18582 valueT result = 0;
18583 unsigned char * where = (unsigned char *) buf;
18584
18585 if (target_big_endian)
18586 {
18587 while (n--)
18588 {
18589 result <<= 8;
18590 result |= (*where++ & 255);
18591 }
18592 }
18593 else
18594 {
18595 while (n--)
18596 {
18597 result <<= 8;
18598 result |= (where[n] & 255);
18599 }
18600 }
18601
18602 return result;
18603 }
18604
18605 /* MD interface: Sections. */
18606
18607 /* Estimate the size of a frag before relaxing. Assume everything fits in
18608 2 bytes. */
18609
18610 int
18611 md_estimate_size_before_relax (fragS * fragp,
18612 segT segtype ATTRIBUTE_UNUSED)
18613 {
18614 fragp->fr_var = 2;
18615 return 2;
18616 }
18617
18618 /* Convert a machine dependent frag. */
18619
18620 void
18621 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18622 {
18623 unsigned long insn;
18624 unsigned long old_op;
18625 char *buf;
18626 expressionS exp;
18627 fixS *fixp;
18628 int reloc_type;
18629 int pc_rel;
18630 int opcode;
18631
18632 buf = fragp->fr_literal + fragp->fr_fix;
18633
18634 old_op = bfd_get_16(abfd, buf);
18635 if (fragp->fr_symbol)
18636 {
18637 exp.X_op = O_symbol;
18638 exp.X_add_symbol = fragp->fr_symbol;
18639 }
18640 else
18641 {
18642 exp.X_op = O_constant;
18643 }
18644 exp.X_add_number = fragp->fr_offset;
18645 opcode = fragp->fr_subtype;
18646 switch (opcode)
18647 {
18648 case T_MNEM_ldr_pc:
18649 case T_MNEM_ldr_pc2:
18650 case T_MNEM_ldr_sp:
18651 case T_MNEM_str_sp:
18652 case T_MNEM_ldr:
18653 case T_MNEM_ldrb:
18654 case T_MNEM_ldrh:
18655 case T_MNEM_str:
18656 case T_MNEM_strb:
18657 case T_MNEM_strh:
18658 if (fragp->fr_var == 4)
18659 {
18660 insn = THUMB_OP32 (opcode);
18661 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18662 {
18663 insn |= (old_op & 0x700) << 4;
18664 }
18665 else
18666 {
18667 insn |= (old_op & 7) << 12;
18668 insn |= (old_op & 0x38) << 13;
18669 }
18670 insn |= 0x00000c00;
18671 put_thumb32_insn (buf, insn);
18672 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18673 }
18674 else
18675 {
18676 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18677 }
18678 pc_rel = (opcode == T_MNEM_ldr_pc2);
18679 break;
18680 case T_MNEM_adr:
18681 if (fragp->fr_var == 4)
18682 {
18683 insn = THUMB_OP32 (opcode);
18684 insn |= (old_op & 0xf0) << 4;
18685 put_thumb32_insn (buf, insn);
18686 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18687 }
18688 else
18689 {
18690 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18691 exp.X_add_number -= 4;
18692 }
18693 pc_rel = 1;
18694 break;
18695 case T_MNEM_mov:
18696 case T_MNEM_movs:
18697 case T_MNEM_cmp:
18698 case T_MNEM_cmn:
18699 if (fragp->fr_var == 4)
18700 {
18701 int r0off = (opcode == T_MNEM_mov
18702 || opcode == T_MNEM_movs) ? 0 : 8;
18703 insn = THUMB_OP32 (opcode);
18704 insn = (insn & 0xe1ffffff) | 0x10000000;
18705 insn |= (old_op & 0x700) << r0off;
18706 put_thumb32_insn (buf, insn);
18707 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18708 }
18709 else
18710 {
18711 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18712 }
18713 pc_rel = 0;
18714 break;
18715 case T_MNEM_b:
18716 if (fragp->fr_var == 4)
18717 {
18718 insn = THUMB_OP32(opcode);
18719 put_thumb32_insn (buf, insn);
18720 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18721 }
18722 else
18723 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18724 pc_rel = 1;
18725 break;
18726 case T_MNEM_bcond:
18727 if (fragp->fr_var == 4)
18728 {
18729 insn = THUMB_OP32(opcode);
18730 insn |= (old_op & 0xf00) << 14;
18731 put_thumb32_insn (buf, insn);
18732 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18733 }
18734 else
18735 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18736 pc_rel = 1;
18737 break;
18738 case T_MNEM_add_sp:
18739 case T_MNEM_add_pc:
18740 case T_MNEM_inc_sp:
18741 case T_MNEM_dec_sp:
18742 if (fragp->fr_var == 4)
18743 {
18744 /* ??? Choose between add and addw. */
18745 insn = THUMB_OP32 (opcode);
18746 insn |= (old_op & 0xf0) << 4;
18747 put_thumb32_insn (buf, insn);
18748 if (opcode == T_MNEM_add_pc)
18749 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18750 else
18751 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18752 }
18753 else
18754 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18755 pc_rel = 0;
18756 break;
18757
18758 case T_MNEM_addi:
18759 case T_MNEM_addis:
18760 case T_MNEM_subi:
18761 case T_MNEM_subis:
18762 if (fragp->fr_var == 4)
18763 {
18764 insn = THUMB_OP32 (opcode);
18765 insn |= (old_op & 0xf0) << 4;
18766 insn |= (old_op & 0xf) << 16;
18767 put_thumb32_insn (buf, insn);
18768 if (insn & (1 << 20))
18769 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18770 else
18771 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18772 }
18773 else
18774 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18775 pc_rel = 0;
18776 break;
18777 default:
18778 abort ();
18779 }
18780 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18781 (enum bfd_reloc_code_real) reloc_type);
18782 fixp->fx_file = fragp->fr_file;
18783 fixp->fx_line = fragp->fr_line;
18784 fragp->fr_fix += fragp->fr_var;
18785 }
18786
18787 /* Return the size of a relaxable immediate operand instruction.
18788 SHIFT and SIZE specify the form of the allowable immediate. */
18789 static int
18790 relax_immediate (fragS *fragp, int size, int shift)
18791 {
18792 offsetT offset;
18793 offsetT mask;
18794 offsetT low;
18795
18796 /* ??? Should be able to do better than this. */
18797 if (fragp->fr_symbol)
18798 return 4;
18799
18800 low = (1 << shift) - 1;
18801 mask = (1 << (shift + size)) - (1 << shift);
18802 offset = fragp->fr_offset;
18803 /* Force misaligned offsets to 32-bit variant. */
18804 if (offset & low)
18805 return 4;
18806 if (offset & ~mask)
18807 return 4;
18808 return 2;
18809 }
18810
18811 /* Get the address of a symbol during relaxation. */
18812 static addressT
18813 relaxed_symbol_addr (fragS *fragp, long stretch)
18814 {
18815 fragS *sym_frag;
18816 addressT addr;
18817 symbolS *sym;
18818
18819 sym = fragp->fr_symbol;
18820 sym_frag = symbol_get_frag (sym);
18821 know (S_GET_SEGMENT (sym) != absolute_section
18822 || sym_frag == &zero_address_frag);
18823 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18824
18825 /* If frag has yet to be reached on this pass, assume it will
18826 move by STRETCH just as we did. If this is not so, it will
18827 be because some frag between grows, and that will force
18828 another pass. */
18829
18830 if (stretch != 0
18831 && sym_frag->relax_marker != fragp->relax_marker)
18832 {
18833 fragS *f;
18834
18835 /* Adjust stretch for any alignment frag. Note that if have
18836 been expanding the earlier code, the symbol may be
18837 defined in what appears to be an earlier frag. FIXME:
18838 This doesn't handle the fr_subtype field, which specifies
18839 a maximum number of bytes to skip when doing an
18840 alignment. */
18841 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18842 {
18843 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18844 {
18845 if (stretch < 0)
18846 stretch = - ((- stretch)
18847 & ~ ((1 << (int) f->fr_offset) - 1));
18848 else
18849 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18850 if (stretch == 0)
18851 break;
18852 }
18853 }
18854 if (f != NULL)
18855 addr += stretch;
18856 }
18857
18858 return addr;
18859 }
18860
18861 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18862 load. */
18863 static int
18864 relax_adr (fragS *fragp, asection *sec, long stretch)
18865 {
18866 addressT addr;
18867 offsetT val;
18868
18869 /* Assume worst case for symbols not known to be in the same section. */
18870 if (fragp->fr_symbol == NULL
18871 || !S_IS_DEFINED (fragp->fr_symbol)
18872 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18873 || S_IS_WEAK (fragp->fr_symbol))
18874 return 4;
18875
18876 val = relaxed_symbol_addr (fragp, stretch);
18877 addr = fragp->fr_address + fragp->fr_fix;
18878 addr = (addr + 4) & ~3;
18879 /* Force misaligned targets to 32-bit variant. */
18880 if (val & 3)
18881 return 4;
18882 val -= addr;
18883 if (val < 0 || val > 1020)
18884 return 4;
18885 return 2;
18886 }
18887
18888 /* Return the size of a relaxable add/sub immediate instruction. */
18889 static int
18890 relax_addsub (fragS *fragp, asection *sec)
18891 {
18892 char *buf;
18893 int op;
18894
18895 buf = fragp->fr_literal + fragp->fr_fix;
18896 op = bfd_get_16(sec->owner, buf);
18897 if ((op & 0xf) == ((op >> 4) & 0xf))
18898 return relax_immediate (fragp, 8, 0);
18899 else
18900 return relax_immediate (fragp, 3, 0);
18901 }
18902
18903
18904 /* Return the size of a relaxable branch instruction. BITS is the
18905 size of the offset field in the narrow instruction. */
18906
18907 static int
18908 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18909 {
18910 addressT addr;
18911 offsetT val;
18912 offsetT limit;
18913
18914 /* Assume worst case for symbols not known to be in the same section. */
18915 if (!S_IS_DEFINED (fragp->fr_symbol)
18916 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18917 || S_IS_WEAK (fragp->fr_symbol))
18918 return 4;
18919
18920 #ifdef OBJ_ELF
18921 if (S_IS_DEFINED (fragp->fr_symbol)
18922 && ARM_IS_FUNC (fragp->fr_symbol))
18923 return 4;
18924 #endif
18925
18926 val = relaxed_symbol_addr (fragp, stretch);
18927 addr = fragp->fr_address + fragp->fr_fix + 4;
18928 val -= addr;
18929
18930 /* Offset is a signed value *2 */
18931 limit = 1 << bits;
18932 if (val >= limit || val < -limit)
18933 return 4;
18934 return 2;
18935 }
18936
18937
18938 /* Relax a machine dependent frag. This returns the amount by which
18939 the current size of the frag should change. */
18940
18941 int
18942 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18943 {
18944 int oldsize;
18945 int newsize;
18946
18947 oldsize = fragp->fr_var;
18948 switch (fragp->fr_subtype)
18949 {
18950 case T_MNEM_ldr_pc2:
18951 newsize = relax_adr (fragp, sec, stretch);
18952 break;
18953 case T_MNEM_ldr_pc:
18954 case T_MNEM_ldr_sp:
18955 case T_MNEM_str_sp:
18956 newsize = relax_immediate (fragp, 8, 2);
18957 break;
18958 case T_MNEM_ldr:
18959 case T_MNEM_str:
18960 newsize = relax_immediate (fragp, 5, 2);
18961 break;
18962 case T_MNEM_ldrh:
18963 case T_MNEM_strh:
18964 newsize = relax_immediate (fragp, 5, 1);
18965 break;
18966 case T_MNEM_ldrb:
18967 case T_MNEM_strb:
18968 newsize = relax_immediate (fragp, 5, 0);
18969 break;
18970 case T_MNEM_adr:
18971 newsize = relax_adr (fragp, sec, stretch);
18972 break;
18973 case T_MNEM_mov:
18974 case T_MNEM_movs:
18975 case T_MNEM_cmp:
18976 case T_MNEM_cmn:
18977 newsize = relax_immediate (fragp, 8, 0);
18978 break;
18979 case T_MNEM_b:
18980 newsize = relax_branch (fragp, sec, 11, stretch);
18981 break;
18982 case T_MNEM_bcond:
18983 newsize = relax_branch (fragp, sec, 8, stretch);
18984 break;
18985 case T_MNEM_add_sp:
18986 case T_MNEM_add_pc:
18987 newsize = relax_immediate (fragp, 8, 2);
18988 break;
18989 case T_MNEM_inc_sp:
18990 case T_MNEM_dec_sp:
18991 newsize = relax_immediate (fragp, 7, 2);
18992 break;
18993 case T_MNEM_addi:
18994 case T_MNEM_addis:
18995 case T_MNEM_subi:
18996 case T_MNEM_subis:
18997 newsize = relax_addsub (fragp, sec);
18998 break;
18999 default:
19000 abort ();
19001 }
19002
19003 fragp->fr_var = newsize;
19004 /* Freeze wide instructions that are at or before the same location as
19005 in the previous pass. This avoids infinite loops.
19006 Don't freeze them unconditionally because targets may be artificially
19007 misaligned by the expansion of preceding frags. */
19008 if (stretch <= 0 && newsize > 2)
19009 {
19010 md_convert_frag (sec->owner, sec, fragp);
19011 frag_wane (fragp);
19012 }
19013
19014 return newsize - oldsize;
19015 }
19016
19017 /* Round up a section size to the appropriate boundary. */
19018
19019 valueT
19020 md_section_align (segT segment ATTRIBUTE_UNUSED,
19021 valueT size)
19022 {
19023 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19024 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19025 {
19026 /* For a.out, force the section size to be aligned. If we don't do
19027 this, BFD will align it for us, but it will not write out the
19028 final bytes of the section. This may be a bug in BFD, but it is
19029 easier to fix it here since that is how the other a.out targets
19030 work. */
19031 int align;
19032
19033 align = bfd_get_section_alignment (stdoutput, segment);
19034 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19035 }
19036 #endif
19037
19038 return size;
19039 }
19040
19041 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19042 of an rs_align_code fragment. */
19043
19044 void
19045 arm_handle_align (fragS * fragP)
19046 {
19047 static char const arm_noop[2][2][4] =
19048 {
19049 { /* ARMv1 */
19050 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19051 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19052 },
19053 { /* ARMv6k */
19054 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19055 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19056 },
19057 };
19058 static char const thumb_noop[2][2][2] =
19059 {
19060 { /* Thumb-1 */
19061 {0xc0, 0x46}, /* LE */
19062 {0x46, 0xc0}, /* BE */
19063 },
19064 { /* Thumb-2 */
19065 {0x00, 0xbf}, /* LE */
19066 {0xbf, 0x00} /* BE */
19067 }
19068 };
19069 static char const wide_thumb_noop[2][4] =
19070 { /* Wide Thumb-2 */
19071 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19072 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19073 };
19074
19075 unsigned bytes, fix, noop_size;
19076 char * p;
19077 const char * noop;
19078 const char *narrow_noop = NULL;
19079 #ifdef OBJ_ELF
19080 enum mstate state;
19081 #endif
19082
19083 if (fragP->fr_type != rs_align_code)
19084 return;
19085
19086 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19087 p = fragP->fr_literal + fragP->fr_fix;
19088 fix = 0;
19089
19090 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19091 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19092
19093 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19094
19095 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19096 {
19097 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19098 {
19099 narrow_noop = thumb_noop[1][target_big_endian];
19100 noop = wide_thumb_noop[target_big_endian];
19101 }
19102 else
19103 noop = thumb_noop[0][target_big_endian];
19104 noop_size = 2;
19105 #ifdef OBJ_ELF
19106 state = MAP_THUMB;
19107 #endif
19108 }
19109 else
19110 {
19111 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19112 [target_big_endian];
19113 noop_size = 4;
19114 #ifdef OBJ_ELF
19115 state = MAP_ARM;
19116 #endif
19117 }
19118
19119 fragP->fr_var = noop_size;
19120
19121 if (bytes & (noop_size - 1))
19122 {
19123 fix = bytes & (noop_size - 1);
19124 #ifdef OBJ_ELF
19125 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19126 #endif
19127 memset (p, 0, fix);
19128 p += fix;
19129 bytes -= fix;
19130 }
19131
19132 if (narrow_noop)
19133 {
19134 if (bytes & noop_size)
19135 {
19136 /* Insert a narrow noop. */
19137 memcpy (p, narrow_noop, noop_size);
19138 p += noop_size;
19139 bytes -= noop_size;
19140 fix += noop_size;
19141 }
19142
19143 /* Use wide noops for the remainder */
19144 noop_size = 4;
19145 }
19146
19147 while (bytes >= noop_size)
19148 {
19149 memcpy (p, noop, noop_size);
19150 p += noop_size;
19151 bytes -= noop_size;
19152 fix += noop_size;
19153 }
19154
19155 fragP->fr_fix += fix;
19156 }
19157
19158 /* Called from md_do_align. Used to create an alignment
19159 frag in a code section. */
19160
19161 void
19162 arm_frag_align_code (int n, int max)
19163 {
19164 char * p;
19165
19166 /* We assume that there will never be a requirement
19167 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19168 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19169 {
19170 char err_msg[128];
19171
19172 sprintf (err_msg,
19173 _("alignments greater than %d bytes not supported in .text sections."),
19174 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19175 as_fatal ("%s", err_msg);
19176 }
19177
19178 p = frag_var (rs_align_code,
19179 MAX_MEM_FOR_RS_ALIGN_CODE,
19180 1,
19181 (relax_substateT) max,
19182 (symbolS *) NULL,
19183 (offsetT) n,
19184 (char *) NULL);
19185 *p = 0;
19186 }
19187
19188 /* Perform target specific initialisation of a frag.
19189 Note - despite the name this initialisation is not done when the frag
19190 is created, but only when its type is assigned. A frag can be created
19191 and used a long time before its type is set, so beware of assuming that
19192 this initialisationis performed first. */
19193
19194 #ifndef OBJ_ELF
19195 void
19196 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19197 {
19198 /* Record whether this frag is in an ARM or a THUMB area. */
19199 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19200 }
19201
19202 #else /* OBJ_ELF is defined. */
19203 void
19204 arm_init_frag (fragS * fragP, int max_chars)
19205 {
19206 /* If the current ARM vs THUMB mode has not already
19207 been recorded into this frag then do so now. */
19208 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19209 {
19210 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19211
19212 /* Record a mapping symbol for alignment frags. We will delete this
19213 later if the alignment ends up empty. */
19214 switch (fragP->fr_type)
19215 {
19216 case rs_align:
19217 case rs_align_test:
19218 case rs_fill:
19219 mapping_state_2 (MAP_DATA, max_chars);
19220 break;
19221 case rs_align_code:
19222 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19223 break;
19224 default:
19225 break;
19226 }
19227 }
19228 }
19229
19230 /* When we change sections we need to issue a new mapping symbol. */
19231
19232 void
19233 arm_elf_change_section (void)
19234 {
19235 /* Link an unlinked unwind index table section to the .text section. */
19236 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19237 && elf_linked_to_section (now_seg) == NULL)
19238 elf_linked_to_section (now_seg) = text_section;
19239 }
19240
19241 int
19242 arm_elf_section_type (const char * str, size_t len)
19243 {
19244 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19245 return SHT_ARM_EXIDX;
19246
19247 return -1;
19248 }
19249 \f
19250 /* Code to deal with unwinding tables. */
19251
19252 static void add_unwind_adjustsp (offsetT);
19253
19254 /* Generate any deferred unwind frame offset. */
19255
19256 static void
19257 flush_pending_unwind (void)
19258 {
19259 offsetT offset;
19260
19261 offset = unwind.pending_offset;
19262 unwind.pending_offset = 0;
19263 if (offset != 0)
19264 add_unwind_adjustsp (offset);
19265 }
19266
19267 /* Add an opcode to this list for this function. Two-byte opcodes should
19268 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19269 order. */
19270
19271 static void
19272 add_unwind_opcode (valueT op, int length)
19273 {
19274 /* Add any deferred stack adjustment. */
19275 if (unwind.pending_offset)
19276 flush_pending_unwind ();
19277
19278 unwind.sp_restored = 0;
19279
19280 if (unwind.opcode_count + length > unwind.opcode_alloc)
19281 {
19282 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19283 if (unwind.opcodes)
19284 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19285 unwind.opcode_alloc);
19286 else
19287 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19288 }
19289 while (length > 0)
19290 {
19291 length--;
19292 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19293 op >>= 8;
19294 unwind.opcode_count++;
19295 }
19296 }
19297
19298 /* Add unwind opcodes to adjust the stack pointer. */
19299
19300 static void
19301 add_unwind_adjustsp (offsetT offset)
19302 {
19303 valueT op;
19304
19305 if (offset > 0x200)
19306 {
19307 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19308 char bytes[5];
19309 int n;
19310 valueT o;
19311
19312 /* Long form: 0xb2, uleb128. */
19313 /* This might not fit in a word so add the individual bytes,
19314 remembering the list is built in reverse order. */
19315 o = (valueT) ((offset - 0x204) >> 2);
19316 if (o == 0)
19317 add_unwind_opcode (0, 1);
19318
19319 /* Calculate the uleb128 encoding of the offset. */
19320 n = 0;
19321 while (o)
19322 {
19323 bytes[n] = o & 0x7f;
19324 o >>= 7;
19325 if (o)
19326 bytes[n] |= 0x80;
19327 n++;
19328 }
19329 /* Add the insn. */
19330 for (; n; n--)
19331 add_unwind_opcode (bytes[n - 1], 1);
19332 add_unwind_opcode (0xb2, 1);
19333 }
19334 else if (offset > 0x100)
19335 {
19336 /* Two short opcodes. */
19337 add_unwind_opcode (0x3f, 1);
19338 op = (offset - 0x104) >> 2;
19339 add_unwind_opcode (op, 1);
19340 }
19341 else if (offset > 0)
19342 {
19343 /* Short opcode. */
19344 op = (offset - 4) >> 2;
19345 add_unwind_opcode (op, 1);
19346 }
19347 else if (offset < 0)
19348 {
19349 offset = -offset;
19350 while (offset > 0x100)
19351 {
19352 add_unwind_opcode (0x7f, 1);
19353 offset -= 0x100;
19354 }
19355 op = ((offset - 4) >> 2) | 0x40;
19356 add_unwind_opcode (op, 1);
19357 }
19358 }
19359
19360 /* Finish the list of unwind opcodes for this function. */
19361 static void
19362 finish_unwind_opcodes (void)
19363 {
19364 valueT op;
19365
19366 if (unwind.fp_used)
19367 {
19368 /* Adjust sp as necessary. */
19369 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19370 flush_pending_unwind ();
19371
19372 /* After restoring sp from the frame pointer. */
19373 op = 0x90 | unwind.fp_reg;
19374 add_unwind_opcode (op, 1);
19375 }
19376 else
19377 flush_pending_unwind ();
19378 }
19379
19380
19381 /* Start an exception table entry. If idx is nonzero this is an index table
19382 entry. */
19383
19384 static void
19385 start_unwind_section (const segT text_seg, int idx)
19386 {
19387 const char * text_name;
19388 const char * prefix;
19389 const char * prefix_once;
19390 const char * group_name;
19391 size_t prefix_len;
19392 size_t text_len;
19393 char * sec_name;
19394 size_t sec_name_len;
19395 int type;
19396 int flags;
19397 int linkonce;
19398
19399 if (idx)
19400 {
19401 prefix = ELF_STRING_ARM_unwind;
19402 prefix_once = ELF_STRING_ARM_unwind_once;
19403 type = SHT_ARM_EXIDX;
19404 }
19405 else
19406 {
19407 prefix = ELF_STRING_ARM_unwind_info;
19408 prefix_once = ELF_STRING_ARM_unwind_info_once;
19409 type = SHT_PROGBITS;
19410 }
19411
19412 text_name = segment_name (text_seg);
19413 if (streq (text_name, ".text"))
19414 text_name = "";
19415
19416 if (strncmp (text_name, ".gnu.linkonce.t.",
19417 strlen (".gnu.linkonce.t.")) == 0)
19418 {
19419 prefix = prefix_once;
19420 text_name += strlen (".gnu.linkonce.t.");
19421 }
19422
19423 prefix_len = strlen (prefix);
19424 text_len = strlen (text_name);
19425 sec_name_len = prefix_len + text_len;
19426 sec_name = (char *) xmalloc (sec_name_len + 1);
19427 memcpy (sec_name, prefix, prefix_len);
19428 memcpy (sec_name + prefix_len, text_name, text_len);
19429 sec_name[prefix_len + text_len] = '\0';
19430
19431 flags = SHF_ALLOC;
19432 linkonce = 0;
19433 group_name = 0;
19434
19435 /* Handle COMDAT group. */
19436 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19437 {
19438 group_name = elf_group_name (text_seg);
19439 if (group_name == NULL)
19440 {
19441 as_bad (_("Group section `%s' has no group signature"),
19442 segment_name (text_seg));
19443 ignore_rest_of_line ();
19444 return;
19445 }
19446 flags |= SHF_GROUP;
19447 linkonce = 1;
19448 }
19449
19450 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19451
19452 /* Set the section link for index tables. */
19453 if (idx)
19454 elf_linked_to_section (now_seg) = text_seg;
19455 }
19456
19457
19458 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19459 personality routine data. Returns zero, or the index table value for
19460 and inline entry. */
19461
19462 static valueT
19463 create_unwind_entry (int have_data)
19464 {
19465 int size;
19466 addressT where;
19467 char *ptr;
19468 /* The current word of data. */
19469 valueT data;
19470 /* The number of bytes left in this word. */
19471 int n;
19472
19473 finish_unwind_opcodes ();
19474
19475 /* Remember the current text section. */
19476 unwind.saved_seg = now_seg;
19477 unwind.saved_subseg = now_subseg;
19478
19479 start_unwind_section (now_seg, 0);
19480
19481 if (unwind.personality_routine == NULL)
19482 {
19483 if (unwind.personality_index == -2)
19484 {
19485 if (have_data)
19486 as_bad (_("handlerdata in cantunwind frame"));
19487 return 1; /* EXIDX_CANTUNWIND. */
19488 }
19489
19490 /* Use a default personality routine if none is specified. */
19491 if (unwind.personality_index == -1)
19492 {
19493 if (unwind.opcode_count > 3)
19494 unwind.personality_index = 1;
19495 else
19496 unwind.personality_index = 0;
19497 }
19498
19499 /* Space for the personality routine entry. */
19500 if (unwind.personality_index == 0)
19501 {
19502 if (unwind.opcode_count > 3)
19503 as_bad (_("too many unwind opcodes for personality routine 0"));
19504
19505 if (!have_data)
19506 {
19507 /* All the data is inline in the index table. */
19508 data = 0x80;
19509 n = 3;
19510 while (unwind.opcode_count > 0)
19511 {
19512 unwind.opcode_count--;
19513 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19514 n--;
19515 }
19516
19517 /* Pad with "finish" opcodes. */
19518 while (n--)
19519 data = (data << 8) | 0xb0;
19520
19521 return data;
19522 }
19523 size = 0;
19524 }
19525 else
19526 /* We get two opcodes "free" in the first word. */
19527 size = unwind.opcode_count - 2;
19528 }
19529 else
19530 /* An extra byte is required for the opcode count. */
19531 size = unwind.opcode_count + 1;
19532
19533 size = (size + 3) >> 2;
19534 if (size > 0xff)
19535 as_bad (_("too many unwind opcodes"));
19536
19537 frag_align (2, 0, 0);
19538 record_alignment (now_seg, 2);
19539 unwind.table_entry = expr_build_dot ();
19540
19541 /* Allocate the table entry. */
19542 ptr = frag_more ((size << 2) + 4);
19543 where = frag_now_fix () - ((size << 2) + 4);
19544
19545 switch (unwind.personality_index)
19546 {
19547 case -1:
19548 /* ??? Should this be a PLT generating relocation? */
19549 /* Custom personality routine. */
19550 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19551 BFD_RELOC_ARM_PREL31);
19552
19553 where += 4;
19554 ptr += 4;
19555
19556 /* Set the first byte to the number of additional words. */
19557 data = size - 1;
19558 n = 3;
19559 break;
19560
19561 /* ABI defined personality routines. */
19562 case 0:
19563 /* Three opcodes bytes are packed into the first word. */
19564 data = 0x80;
19565 n = 3;
19566 break;
19567
19568 case 1:
19569 case 2:
19570 /* The size and first two opcode bytes go in the first word. */
19571 data = ((0x80 + unwind.personality_index) << 8) | size;
19572 n = 2;
19573 break;
19574
19575 default:
19576 /* Should never happen. */
19577 abort ();
19578 }
19579
19580 /* Pack the opcodes into words (MSB first), reversing the list at the same
19581 time. */
19582 while (unwind.opcode_count > 0)
19583 {
19584 if (n == 0)
19585 {
19586 md_number_to_chars (ptr, data, 4);
19587 ptr += 4;
19588 n = 4;
19589 data = 0;
19590 }
19591 unwind.opcode_count--;
19592 n--;
19593 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19594 }
19595
19596 /* Finish off the last word. */
19597 if (n < 4)
19598 {
19599 /* Pad with "finish" opcodes. */
19600 while (n--)
19601 data = (data << 8) | 0xb0;
19602
19603 md_number_to_chars (ptr, data, 4);
19604 }
19605
19606 if (!have_data)
19607 {
19608 /* Add an empty descriptor if there is no user-specified data. */
19609 ptr = frag_more (4);
19610 md_number_to_chars (ptr, 0, 4);
19611 }
19612
19613 return 0;
19614 }
19615
19616
19617 /* Initialize the DWARF-2 unwind information for this procedure. */
19618
19619 void
19620 tc_arm_frame_initial_instructions (void)
19621 {
19622 cfi_add_CFA_def_cfa (REG_SP, 0);
19623 }
19624 #endif /* OBJ_ELF */
19625
19626 /* Convert REGNAME to a DWARF-2 register number. */
19627
19628 int
19629 tc_arm_regname_to_dw2regnum (char *regname)
19630 {
19631 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19632
19633 if (reg == FAIL)
19634 return -1;
19635
19636 return reg;
19637 }
19638
19639 #ifdef TE_PE
19640 void
19641 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19642 {
19643 expressionS exp;
19644
19645 exp.X_op = O_secrel;
19646 exp.X_add_symbol = symbol;
19647 exp.X_add_number = 0;
19648 emit_expr (&exp, size);
19649 }
19650 #endif
19651
19652 /* MD interface: Symbol and relocation handling. */
19653
19654 /* Return the address within the segment that a PC-relative fixup is
19655 relative to. For ARM, PC-relative fixups applied to instructions
19656 are generally relative to the location of the fixup plus 8 bytes.
19657 Thumb branches are offset by 4, and Thumb loads relative to PC
19658 require special handling. */
19659
19660 long
19661 md_pcrel_from_section (fixS * fixP, segT seg)
19662 {
19663 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19664
19665 /* If this is pc-relative and we are going to emit a relocation
19666 then we just want to put out any pipeline compensation that the linker
19667 will need. Otherwise we want to use the calculated base.
19668 For WinCE we skip the bias for externals as well, since this
19669 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19670 if (fixP->fx_pcrel
19671 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19672 || (arm_force_relocation (fixP)
19673 #ifdef TE_WINCE
19674 && !S_IS_EXTERNAL (fixP->fx_addsy)
19675 #endif
19676 )))
19677 base = 0;
19678
19679
19680 switch (fixP->fx_r_type)
19681 {
19682 /* PC relative addressing on the Thumb is slightly odd as the
19683 bottom two bits of the PC are forced to zero for the
19684 calculation. This happens *after* application of the
19685 pipeline offset. However, Thumb adrl already adjusts for
19686 this, so we need not do it again. */
19687 case BFD_RELOC_ARM_THUMB_ADD:
19688 return base & ~3;
19689
19690 case BFD_RELOC_ARM_THUMB_OFFSET:
19691 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19692 case BFD_RELOC_ARM_T32_ADD_PC12:
19693 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19694 return (base + 4) & ~3;
19695
19696 /* Thumb branches are simply offset by +4. */
19697 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19698 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19699 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19700 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19701 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19702 return base + 4;
19703
19704 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19705 if (fixP->fx_addsy
19706 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19707 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19708 && ARM_IS_FUNC (fixP->fx_addsy)
19709 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19710 base = fixP->fx_where + fixP->fx_frag->fr_address;
19711 return base + 4;
19712
19713 /* BLX is like branches above, but forces the low two bits of PC to
19714 zero. */
19715 case BFD_RELOC_THUMB_PCREL_BLX:
19716 if (fixP->fx_addsy
19717 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19718 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19719 && THUMB_IS_FUNC (fixP->fx_addsy)
19720 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19721 base = fixP->fx_where + fixP->fx_frag->fr_address;
19722 return (base + 4) & ~3;
19723
19724 /* ARM mode branches are offset by +8. However, the Windows CE
19725 loader expects the relocation not to take this into account. */
19726 case BFD_RELOC_ARM_PCREL_BLX:
19727 if (fixP->fx_addsy
19728 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19729 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19730 && ARM_IS_FUNC (fixP->fx_addsy)
19731 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19732 base = fixP->fx_where + fixP->fx_frag->fr_address;
19733 return base + 8;
19734
19735 case BFD_RELOC_ARM_PCREL_CALL:
19736 if (fixP->fx_addsy
19737 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19738 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19739 && THUMB_IS_FUNC (fixP->fx_addsy)
19740 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19741 base = fixP->fx_where + fixP->fx_frag->fr_address;
19742 return base + 8;
19743
19744 case BFD_RELOC_ARM_PCREL_BRANCH:
19745 case BFD_RELOC_ARM_PCREL_JUMP:
19746 case BFD_RELOC_ARM_PLT32:
19747 #ifdef TE_WINCE
19748 /* When handling fixups immediately, because we have already
19749 discovered the value of a symbol, or the address of the frag involved
19750 we must account for the offset by +8, as the OS loader will never see the reloc.
19751 see fixup_segment() in write.c
19752 The S_IS_EXTERNAL test handles the case of global symbols.
19753 Those need the calculated base, not just the pipe compensation the linker will need. */
19754 if (fixP->fx_pcrel
19755 && fixP->fx_addsy != NULL
19756 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19757 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19758 return base + 8;
19759 return base;
19760 #else
19761 return base + 8;
19762 #endif
19763
19764
19765 /* ARM mode loads relative to PC are also offset by +8. Unlike
19766 branches, the Windows CE loader *does* expect the relocation
19767 to take this into account. */
19768 case BFD_RELOC_ARM_OFFSET_IMM:
19769 case BFD_RELOC_ARM_OFFSET_IMM8:
19770 case BFD_RELOC_ARM_HWLITERAL:
19771 case BFD_RELOC_ARM_LITERAL:
19772 case BFD_RELOC_ARM_CP_OFF_IMM:
19773 return base + 8;
19774
19775
19776 /* Other PC-relative relocations are un-offset. */
19777 default:
19778 return base;
19779 }
19780 }
19781
19782 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19783 Otherwise we have no need to default values of symbols. */
19784
19785 symbolS *
19786 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19787 {
19788 #ifdef OBJ_ELF
19789 if (name[0] == '_' && name[1] == 'G'
19790 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19791 {
19792 if (!GOT_symbol)
19793 {
19794 if (symbol_find (name))
19795 as_bad (_("GOT already in the symbol table"));
19796
19797 GOT_symbol = symbol_new (name, undefined_section,
19798 (valueT) 0, & zero_address_frag);
19799 }
19800
19801 return GOT_symbol;
19802 }
19803 #endif
19804
19805 return NULL;
19806 }
19807
19808 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19809 computed as two separate immediate values, added together. We
19810 already know that this value cannot be computed by just one ARM
19811 instruction. */
19812
19813 static unsigned int
19814 validate_immediate_twopart (unsigned int val,
19815 unsigned int * highpart)
19816 {
19817 unsigned int a;
19818 unsigned int i;
19819
19820 for (i = 0; i < 32; i += 2)
19821 if (((a = rotate_left (val, i)) & 0xff) != 0)
19822 {
19823 if (a & 0xff00)
19824 {
19825 if (a & ~ 0xffff)
19826 continue;
19827 * highpart = (a >> 8) | ((i + 24) << 7);
19828 }
19829 else if (a & 0xff0000)
19830 {
19831 if (a & 0xff000000)
19832 continue;
19833 * highpart = (a >> 16) | ((i + 16) << 7);
19834 }
19835 else
19836 {
19837 gas_assert (a & 0xff000000);
19838 * highpart = (a >> 24) | ((i + 8) << 7);
19839 }
19840
19841 return (a & 0xff) | (i << 7);
19842 }
19843
19844 return FAIL;
19845 }
19846
19847 static int
19848 validate_offset_imm (unsigned int val, int hwse)
19849 {
19850 if ((hwse && val > 255) || val > 4095)
19851 return FAIL;
19852 return val;
19853 }
19854
19855 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19856 negative immediate constant by altering the instruction. A bit of
19857 a hack really.
19858 MOV <-> MVN
19859 AND <-> BIC
19860 ADC <-> SBC
19861 by inverting the second operand, and
19862 ADD <-> SUB
19863 CMP <-> CMN
19864 by negating the second operand. */
19865
19866 static int
19867 negate_data_op (unsigned long * instruction,
19868 unsigned long value)
19869 {
19870 int op, new_inst;
19871 unsigned long negated, inverted;
19872
19873 negated = encode_arm_immediate (-value);
19874 inverted = encode_arm_immediate (~value);
19875
19876 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19877 switch (op)
19878 {
19879 /* First negates. */
19880 case OPCODE_SUB: /* ADD <-> SUB */
19881 new_inst = OPCODE_ADD;
19882 value = negated;
19883 break;
19884
19885 case OPCODE_ADD:
19886 new_inst = OPCODE_SUB;
19887 value = negated;
19888 break;
19889
19890 case OPCODE_CMP: /* CMP <-> CMN */
19891 new_inst = OPCODE_CMN;
19892 value = negated;
19893 break;
19894
19895 case OPCODE_CMN:
19896 new_inst = OPCODE_CMP;
19897 value = negated;
19898 break;
19899
19900 /* Now Inverted ops. */
19901 case OPCODE_MOV: /* MOV <-> MVN */
19902 new_inst = OPCODE_MVN;
19903 value = inverted;
19904 break;
19905
19906 case OPCODE_MVN:
19907 new_inst = OPCODE_MOV;
19908 value = inverted;
19909 break;
19910
19911 case OPCODE_AND: /* AND <-> BIC */
19912 new_inst = OPCODE_BIC;
19913 value = inverted;
19914 break;
19915
19916 case OPCODE_BIC:
19917 new_inst = OPCODE_AND;
19918 value = inverted;
19919 break;
19920
19921 case OPCODE_ADC: /* ADC <-> SBC */
19922 new_inst = OPCODE_SBC;
19923 value = inverted;
19924 break;
19925
19926 case OPCODE_SBC:
19927 new_inst = OPCODE_ADC;
19928 value = inverted;
19929 break;
19930
19931 /* We cannot do anything. */
19932 default:
19933 return FAIL;
19934 }
19935
19936 if (value == (unsigned) FAIL)
19937 return FAIL;
19938
19939 *instruction &= OPCODE_MASK;
19940 *instruction |= new_inst << DATA_OP_SHIFT;
19941 return value;
19942 }
19943
19944 /* Like negate_data_op, but for Thumb-2. */
19945
19946 static unsigned int
19947 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19948 {
19949 int op, new_inst;
19950 int rd;
19951 unsigned int negated, inverted;
19952
19953 negated = encode_thumb32_immediate (-value);
19954 inverted = encode_thumb32_immediate (~value);
19955
19956 rd = (*instruction >> 8) & 0xf;
19957 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19958 switch (op)
19959 {
19960 /* ADD <-> SUB. Includes CMP <-> CMN. */
19961 case T2_OPCODE_SUB:
19962 new_inst = T2_OPCODE_ADD;
19963 value = negated;
19964 break;
19965
19966 case T2_OPCODE_ADD:
19967 new_inst = T2_OPCODE_SUB;
19968 value = negated;
19969 break;
19970
19971 /* ORR <-> ORN. Includes MOV <-> MVN. */
19972 case T2_OPCODE_ORR:
19973 new_inst = T2_OPCODE_ORN;
19974 value = inverted;
19975 break;
19976
19977 case T2_OPCODE_ORN:
19978 new_inst = T2_OPCODE_ORR;
19979 value = inverted;
19980 break;
19981
19982 /* AND <-> BIC. TST has no inverted equivalent. */
19983 case T2_OPCODE_AND:
19984 new_inst = T2_OPCODE_BIC;
19985 if (rd == 15)
19986 value = FAIL;
19987 else
19988 value = inverted;
19989 break;
19990
19991 case T2_OPCODE_BIC:
19992 new_inst = T2_OPCODE_AND;
19993 value = inverted;
19994 break;
19995
19996 /* ADC <-> SBC */
19997 case T2_OPCODE_ADC:
19998 new_inst = T2_OPCODE_SBC;
19999 value = inverted;
20000 break;
20001
20002 case T2_OPCODE_SBC:
20003 new_inst = T2_OPCODE_ADC;
20004 value = inverted;
20005 break;
20006
20007 /* We cannot do anything. */
20008 default:
20009 return FAIL;
20010 }
20011
20012 if (value == (unsigned int)FAIL)
20013 return FAIL;
20014
20015 *instruction &= T2_OPCODE_MASK;
20016 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20017 return value;
20018 }
20019
20020 /* Read a 32-bit thumb instruction from buf. */
20021 static unsigned long
20022 get_thumb32_insn (char * buf)
20023 {
20024 unsigned long insn;
20025 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20026 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20027
20028 return insn;
20029 }
20030
20031
20032 /* We usually want to set the low bit on the address of thumb function
20033 symbols. In particular .word foo - . should have the low bit set.
20034 Generic code tries to fold the difference of two symbols to
20035 a constant. Prevent this and force a relocation when the first symbols
20036 is a thumb function. */
20037
20038 bfd_boolean
20039 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20040 {
20041 if (op == O_subtract
20042 && l->X_op == O_symbol
20043 && r->X_op == O_symbol
20044 && THUMB_IS_FUNC (l->X_add_symbol))
20045 {
20046 l->X_op = O_subtract;
20047 l->X_op_symbol = r->X_add_symbol;
20048 l->X_add_number -= r->X_add_number;
20049 return TRUE;
20050 }
20051
20052 /* Process as normal. */
20053 return FALSE;
20054 }
20055
20056 /* Encode Thumb2 unconditional branches and calls. The encoding
20057 for the 2 are identical for the immediate values. */
20058
20059 static void
20060 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20061 {
20062 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20063 offsetT newval;
20064 offsetT newval2;
20065 addressT S, I1, I2, lo, hi;
20066
20067 S = (value >> 24) & 0x01;
20068 I1 = (value >> 23) & 0x01;
20069 I2 = (value >> 22) & 0x01;
20070 hi = (value >> 12) & 0x3ff;
20071 lo = (value >> 1) & 0x7ff;
20072 newval = md_chars_to_number (buf, THUMB_SIZE);
20073 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20074 newval |= (S << 10) | hi;
20075 newval2 &= ~T2I1I2MASK;
20076 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20077 md_number_to_chars (buf, newval, THUMB_SIZE);
20078 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20079 }
20080
20081 void
20082 md_apply_fix (fixS * fixP,
20083 valueT * valP,
20084 segT seg)
20085 {
20086 offsetT value = * valP;
20087 offsetT newval;
20088 unsigned int newimm;
20089 unsigned long temp;
20090 int sign;
20091 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20092
20093 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20094
20095 /* Note whether this will delete the relocation. */
20096
20097 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20098 fixP->fx_done = 1;
20099
20100 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20101 consistency with the behaviour on 32-bit hosts. Remember value
20102 for emit_reloc. */
20103 value &= 0xffffffff;
20104 value ^= 0x80000000;
20105 value -= 0x80000000;
20106
20107 *valP = value;
20108 fixP->fx_addnumber = value;
20109
20110 /* Same treatment for fixP->fx_offset. */
20111 fixP->fx_offset &= 0xffffffff;
20112 fixP->fx_offset ^= 0x80000000;
20113 fixP->fx_offset -= 0x80000000;
20114
20115 switch (fixP->fx_r_type)
20116 {
20117 case BFD_RELOC_NONE:
20118 /* This will need to go in the object file. */
20119 fixP->fx_done = 0;
20120 break;
20121
20122 case BFD_RELOC_ARM_IMMEDIATE:
20123 /* We claim that this fixup has been processed here,
20124 even if in fact we generate an error because we do
20125 not have a reloc for it, so tc_gen_reloc will reject it. */
20126 fixP->fx_done = 1;
20127
20128 if (fixP->fx_addsy)
20129 {
20130 const char *msg = 0;
20131
20132 if (! S_IS_DEFINED (fixP->fx_addsy))
20133 msg = _("undefined symbol %s used as an immediate value");
20134 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20135 msg = _("symbol %s is in a different section");
20136 else if (S_IS_WEAK (fixP->fx_addsy))
20137 msg = _("symbol %s is weak and may be overridden later");
20138
20139 if (msg)
20140 {
20141 as_bad_where (fixP->fx_file, fixP->fx_line,
20142 msg, S_GET_NAME (fixP->fx_addsy));
20143 break;
20144 }
20145 }
20146
20147 newimm = encode_arm_immediate (value);
20148 temp = md_chars_to_number (buf, INSN_SIZE);
20149
20150 /* If the instruction will fail, see if we can fix things up by
20151 changing the opcode. */
20152 if (newimm == (unsigned int) FAIL
20153 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
20154 {
20155 as_bad_where (fixP->fx_file, fixP->fx_line,
20156 _("invalid constant (%lx) after fixup"),
20157 (unsigned long) value);
20158 break;
20159 }
20160
20161 newimm |= (temp & 0xfffff000);
20162 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20163 break;
20164
20165 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20166 {
20167 unsigned int highpart = 0;
20168 unsigned int newinsn = 0xe1a00000; /* nop. */
20169
20170 if (fixP->fx_addsy)
20171 {
20172 const char *msg = 0;
20173
20174 if (! S_IS_DEFINED (fixP->fx_addsy))
20175 msg = _("undefined symbol %s used as an immediate value");
20176 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20177 msg = _("symbol %s is in a different section");
20178 else if (S_IS_WEAK (fixP->fx_addsy))
20179 msg = _("symbol %s is weak and may be overridden later");
20180
20181 if (msg)
20182 {
20183 as_bad_where (fixP->fx_file, fixP->fx_line,
20184 msg, S_GET_NAME (fixP->fx_addsy));
20185 break;
20186 }
20187 }
20188
20189 newimm = encode_arm_immediate (value);
20190 temp = md_chars_to_number (buf, INSN_SIZE);
20191
20192 /* If the instruction will fail, see if we can fix things up by
20193 changing the opcode. */
20194 if (newimm == (unsigned int) FAIL
20195 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20196 {
20197 /* No ? OK - try using two ADD instructions to generate
20198 the value. */
20199 newimm = validate_immediate_twopart (value, & highpart);
20200
20201 /* Yes - then make sure that the second instruction is
20202 also an add. */
20203 if (newimm != (unsigned int) FAIL)
20204 newinsn = temp;
20205 /* Still No ? Try using a negated value. */
20206 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20207 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20208 /* Otherwise - give up. */
20209 else
20210 {
20211 as_bad_where (fixP->fx_file, fixP->fx_line,
20212 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20213 (long) value);
20214 break;
20215 }
20216
20217 /* Replace the first operand in the 2nd instruction (which
20218 is the PC) with the destination register. We have
20219 already added in the PC in the first instruction and we
20220 do not want to do it again. */
20221 newinsn &= ~ 0xf0000;
20222 newinsn |= ((newinsn & 0x0f000) << 4);
20223 }
20224
20225 newimm |= (temp & 0xfffff000);
20226 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20227
20228 highpart |= (newinsn & 0xfffff000);
20229 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20230 }
20231 break;
20232
20233 case BFD_RELOC_ARM_OFFSET_IMM:
20234 if (!fixP->fx_done && seg->use_rela_p)
20235 value = 0;
20236
20237 case BFD_RELOC_ARM_LITERAL:
20238 sign = value >= 0;
20239
20240 if (value < 0)
20241 value = - value;
20242
20243 if (validate_offset_imm (value, 0) == FAIL)
20244 {
20245 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20246 as_bad_where (fixP->fx_file, fixP->fx_line,
20247 _("invalid literal constant: pool needs to be closer"));
20248 else
20249 as_bad_where (fixP->fx_file, fixP->fx_line,
20250 _("bad immediate value for offset (%ld)"),
20251 (long) value);
20252 break;
20253 }
20254
20255 newval = md_chars_to_number (buf, INSN_SIZE);
20256 newval &= 0xff7ff000;
20257 newval |= value | (sign ? INDEX_UP : 0);
20258 md_number_to_chars (buf, newval, INSN_SIZE);
20259 break;
20260
20261 case BFD_RELOC_ARM_OFFSET_IMM8:
20262 case BFD_RELOC_ARM_HWLITERAL:
20263 sign = value >= 0;
20264
20265 if (value < 0)
20266 value = - value;
20267
20268 if (validate_offset_imm (value, 1) == FAIL)
20269 {
20270 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20271 as_bad_where (fixP->fx_file, fixP->fx_line,
20272 _("invalid literal constant: pool needs to be closer"));
20273 else
20274 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20275 (long) value);
20276 break;
20277 }
20278
20279 newval = md_chars_to_number (buf, INSN_SIZE);
20280 newval &= 0xff7ff0f0;
20281 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20282 md_number_to_chars (buf, newval, INSN_SIZE);
20283 break;
20284
20285 case BFD_RELOC_ARM_T32_OFFSET_U8:
20286 if (value < 0 || value > 1020 || value % 4 != 0)
20287 as_bad_where (fixP->fx_file, fixP->fx_line,
20288 _("bad immediate value for offset (%ld)"), (long) value);
20289 value /= 4;
20290
20291 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20292 newval |= value;
20293 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20294 break;
20295
20296 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20297 /* This is a complicated relocation used for all varieties of Thumb32
20298 load/store instruction with immediate offset:
20299
20300 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20301 *4, optional writeback(W)
20302 (doubleword load/store)
20303
20304 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20305 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20306 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20307 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20308 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20309
20310 Uppercase letters indicate bits that are already encoded at
20311 this point. Lowercase letters are our problem. For the
20312 second block of instructions, the secondary opcode nybble
20313 (bits 8..11) is present, and bit 23 is zero, even if this is
20314 a PC-relative operation. */
20315 newval = md_chars_to_number (buf, THUMB_SIZE);
20316 newval <<= 16;
20317 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20318
20319 if ((newval & 0xf0000000) == 0xe0000000)
20320 {
20321 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20322 if (value >= 0)
20323 newval |= (1 << 23);
20324 else
20325 value = -value;
20326 if (value % 4 != 0)
20327 {
20328 as_bad_where (fixP->fx_file, fixP->fx_line,
20329 _("offset not a multiple of 4"));
20330 break;
20331 }
20332 value /= 4;
20333 if (value > 0xff)
20334 {
20335 as_bad_where (fixP->fx_file, fixP->fx_line,
20336 _("offset out of range"));
20337 break;
20338 }
20339 newval &= ~0xff;
20340 }
20341 else if ((newval & 0x000f0000) == 0x000f0000)
20342 {
20343 /* PC-relative, 12-bit offset. */
20344 if (value >= 0)
20345 newval |= (1 << 23);
20346 else
20347 value = -value;
20348 if (value > 0xfff)
20349 {
20350 as_bad_where (fixP->fx_file, fixP->fx_line,
20351 _("offset out of range"));
20352 break;
20353 }
20354 newval &= ~0xfff;
20355 }
20356 else if ((newval & 0x00000100) == 0x00000100)
20357 {
20358 /* Writeback: 8-bit, +/- offset. */
20359 if (value >= 0)
20360 newval |= (1 << 9);
20361 else
20362 value = -value;
20363 if (value > 0xff)
20364 {
20365 as_bad_where (fixP->fx_file, fixP->fx_line,
20366 _("offset out of range"));
20367 break;
20368 }
20369 newval &= ~0xff;
20370 }
20371 else if ((newval & 0x00000f00) == 0x00000e00)
20372 {
20373 /* T-instruction: positive 8-bit offset. */
20374 if (value < 0 || value > 0xff)
20375 {
20376 as_bad_where (fixP->fx_file, fixP->fx_line,
20377 _("offset out of range"));
20378 break;
20379 }
20380 newval &= ~0xff;
20381 newval |= value;
20382 }
20383 else
20384 {
20385 /* Positive 12-bit or negative 8-bit offset. */
20386 int limit;
20387 if (value >= 0)
20388 {
20389 newval |= (1 << 23);
20390 limit = 0xfff;
20391 }
20392 else
20393 {
20394 value = -value;
20395 limit = 0xff;
20396 }
20397 if (value > limit)
20398 {
20399 as_bad_where (fixP->fx_file, fixP->fx_line,
20400 _("offset out of range"));
20401 break;
20402 }
20403 newval &= ~limit;
20404 }
20405
20406 newval |= value;
20407 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20408 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20409 break;
20410
20411 case BFD_RELOC_ARM_SHIFT_IMM:
20412 newval = md_chars_to_number (buf, INSN_SIZE);
20413 if (((unsigned long) value) > 32
20414 || (value == 32
20415 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20416 {
20417 as_bad_where (fixP->fx_file, fixP->fx_line,
20418 _("shift expression is too large"));
20419 break;
20420 }
20421
20422 if (value == 0)
20423 /* Shifts of zero must be done as lsl. */
20424 newval &= ~0x60;
20425 else if (value == 32)
20426 value = 0;
20427 newval &= 0xfffff07f;
20428 newval |= (value & 0x1f) << 7;
20429 md_number_to_chars (buf, newval, INSN_SIZE);
20430 break;
20431
20432 case BFD_RELOC_ARM_T32_IMMEDIATE:
20433 case BFD_RELOC_ARM_T32_ADD_IMM:
20434 case BFD_RELOC_ARM_T32_IMM12:
20435 case BFD_RELOC_ARM_T32_ADD_PC12:
20436 /* We claim that this fixup has been processed here,
20437 even if in fact we generate an error because we do
20438 not have a reloc for it, so tc_gen_reloc will reject it. */
20439 fixP->fx_done = 1;
20440
20441 if (fixP->fx_addsy
20442 && ! S_IS_DEFINED (fixP->fx_addsy))
20443 {
20444 as_bad_where (fixP->fx_file, fixP->fx_line,
20445 _("undefined symbol %s used as an immediate value"),
20446 S_GET_NAME (fixP->fx_addsy));
20447 break;
20448 }
20449
20450 newval = md_chars_to_number (buf, THUMB_SIZE);
20451 newval <<= 16;
20452 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20453
20454 newimm = FAIL;
20455 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20456 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20457 {
20458 newimm = encode_thumb32_immediate (value);
20459 if (newimm == (unsigned int) FAIL)
20460 newimm = thumb32_negate_data_op (&newval, value);
20461 }
20462 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20463 && newimm == (unsigned int) FAIL)
20464 {
20465 /* Turn add/sum into addw/subw. */
20466 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20467 newval = (newval & 0xfeffffff) | 0x02000000;
20468 /* No flat 12-bit imm encoding for addsw/subsw. */
20469 if ((newval & 0x00100000) == 0)
20470 {
20471 /* 12 bit immediate for addw/subw. */
20472 if (value < 0)
20473 {
20474 value = -value;
20475 newval ^= 0x00a00000;
20476 }
20477 if (value > 0xfff)
20478 newimm = (unsigned int) FAIL;
20479 else
20480 newimm = value;
20481 }
20482 }
20483
20484 if (newimm == (unsigned int)FAIL)
20485 {
20486 as_bad_where (fixP->fx_file, fixP->fx_line,
20487 _("invalid constant (%lx) after fixup"),
20488 (unsigned long) value);
20489 break;
20490 }
20491
20492 newval |= (newimm & 0x800) << 15;
20493 newval |= (newimm & 0x700) << 4;
20494 newval |= (newimm & 0x0ff);
20495
20496 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20497 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20498 break;
20499
20500 case BFD_RELOC_ARM_SMC:
20501 if (((unsigned long) value) > 0xffff)
20502 as_bad_where (fixP->fx_file, fixP->fx_line,
20503 _("invalid smc expression"));
20504 newval = md_chars_to_number (buf, INSN_SIZE);
20505 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20506 md_number_to_chars (buf, newval, INSN_SIZE);
20507 break;
20508
20509 case BFD_RELOC_ARM_HVC:
20510 if (((unsigned long) value) > 0xffff)
20511 as_bad_where (fixP->fx_file, fixP->fx_line,
20512 _("invalid hvc expression"));
20513 newval = md_chars_to_number (buf, INSN_SIZE);
20514 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20515 md_number_to_chars (buf, newval, INSN_SIZE);
20516 break;
20517
20518 case BFD_RELOC_ARM_SWI:
20519 if (fixP->tc_fix_data != 0)
20520 {
20521 if (((unsigned long) value) > 0xff)
20522 as_bad_where (fixP->fx_file, fixP->fx_line,
20523 _("invalid swi expression"));
20524 newval = md_chars_to_number (buf, THUMB_SIZE);
20525 newval |= value;
20526 md_number_to_chars (buf, newval, THUMB_SIZE);
20527 }
20528 else
20529 {
20530 if (((unsigned long) value) > 0x00ffffff)
20531 as_bad_where (fixP->fx_file, fixP->fx_line,
20532 _("invalid swi expression"));
20533 newval = md_chars_to_number (buf, INSN_SIZE);
20534 newval |= value;
20535 md_number_to_chars (buf, newval, INSN_SIZE);
20536 }
20537 break;
20538
20539 case BFD_RELOC_ARM_MULTI:
20540 if (((unsigned long) value) > 0xffff)
20541 as_bad_where (fixP->fx_file, fixP->fx_line,
20542 _("invalid expression in load/store multiple"));
20543 newval = value | md_chars_to_number (buf, INSN_SIZE);
20544 md_number_to_chars (buf, newval, INSN_SIZE);
20545 break;
20546
20547 #ifdef OBJ_ELF
20548 case BFD_RELOC_ARM_PCREL_CALL:
20549
20550 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20551 && fixP->fx_addsy
20552 && !S_IS_EXTERNAL (fixP->fx_addsy)
20553 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20554 && THUMB_IS_FUNC (fixP->fx_addsy))
20555 /* Flip the bl to blx. This is a simple flip
20556 bit here because we generate PCREL_CALL for
20557 unconditional bls. */
20558 {
20559 newval = md_chars_to_number (buf, INSN_SIZE);
20560 newval = newval | 0x10000000;
20561 md_number_to_chars (buf, newval, INSN_SIZE);
20562 temp = 1;
20563 fixP->fx_done = 1;
20564 }
20565 else
20566 temp = 3;
20567 goto arm_branch_common;
20568
20569 case BFD_RELOC_ARM_PCREL_JUMP:
20570 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20571 && fixP->fx_addsy
20572 && !S_IS_EXTERNAL (fixP->fx_addsy)
20573 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20574 && THUMB_IS_FUNC (fixP->fx_addsy))
20575 {
20576 /* This would map to a bl<cond>, b<cond>,
20577 b<always> to a Thumb function. We
20578 need to force a relocation for this particular
20579 case. */
20580 newval = md_chars_to_number (buf, INSN_SIZE);
20581 fixP->fx_done = 0;
20582 }
20583
20584 case BFD_RELOC_ARM_PLT32:
20585 #endif
20586 case BFD_RELOC_ARM_PCREL_BRANCH:
20587 temp = 3;
20588 goto arm_branch_common;
20589
20590 case BFD_RELOC_ARM_PCREL_BLX:
20591
20592 temp = 1;
20593 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20594 && fixP->fx_addsy
20595 && !S_IS_EXTERNAL (fixP->fx_addsy)
20596 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20597 && ARM_IS_FUNC (fixP->fx_addsy))
20598 {
20599 /* Flip the blx to a bl and warn. */
20600 const char *name = S_GET_NAME (fixP->fx_addsy);
20601 newval = 0xeb000000;
20602 as_warn_where (fixP->fx_file, fixP->fx_line,
20603 _("blx to '%s' an ARM ISA state function changed to bl"),
20604 name);
20605 md_number_to_chars (buf, newval, INSN_SIZE);
20606 temp = 3;
20607 fixP->fx_done = 1;
20608 }
20609
20610 #ifdef OBJ_ELF
20611 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20612 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20613 #endif
20614
20615 arm_branch_common:
20616 /* We are going to store value (shifted right by two) in the
20617 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20618 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20619 also be be clear. */
20620 if (value & temp)
20621 as_bad_where (fixP->fx_file, fixP->fx_line,
20622 _("misaligned branch destination"));
20623 if ((value & (offsetT)0xfe000000) != (offsetT)0
20624 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20625 as_bad_where (fixP->fx_file, fixP->fx_line,
20626 _("branch out of range"));
20627
20628 if (fixP->fx_done || !seg->use_rela_p)
20629 {
20630 newval = md_chars_to_number (buf, INSN_SIZE);
20631 newval |= (value >> 2) & 0x00ffffff;
20632 /* Set the H bit on BLX instructions. */
20633 if (temp == 1)
20634 {
20635 if (value & 2)
20636 newval |= 0x01000000;
20637 else
20638 newval &= ~0x01000000;
20639 }
20640 md_number_to_chars (buf, newval, INSN_SIZE);
20641 }
20642 break;
20643
20644 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20645 /* CBZ can only branch forward. */
20646
20647 /* Attempts to use CBZ to branch to the next instruction
20648 (which, strictly speaking, are prohibited) will be turned into
20649 no-ops.
20650
20651 FIXME: It may be better to remove the instruction completely and
20652 perform relaxation. */
20653 if (value == -2)
20654 {
20655 newval = md_chars_to_number (buf, THUMB_SIZE);
20656 newval = 0xbf00; /* NOP encoding T1 */
20657 md_number_to_chars (buf, newval, THUMB_SIZE);
20658 }
20659 else
20660 {
20661 if (value & ~0x7e)
20662 as_bad_where (fixP->fx_file, fixP->fx_line,
20663 _("branch out of range"));
20664
20665 if (fixP->fx_done || !seg->use_rela_p)
20666 {
20667 newval = md_chars_to_number (buf, THUMB_SIZE);
20668 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20669 md_number_to_chars (buf, newval, THUMB_SIZE);
20670 }
20671 }
20672 break;
20673
20674 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20675 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20676 as_bad_where (fixP->fx_file, fixP->fx_line,
20677 _("branch out of range"));
20678
20679 if (fixP->fx_done || !seg->use_rela_p)
20680 {
20681 newval = md_chars_to_number (buf, THUMB_SIZE);
20682 newval |= (value & 0x1ff) >> 1;
20683 md_number_to_chars (buf, newval, THUMB_SIZE);
20684 }
20685 break;
20686
20687 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20688 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20689 as_bad_where (fixP->fx_file, fixP->fx_line,
20690 _("branch out of range"));
20691
20692 if (fixP->fx_done || !seg->use_rela_p)
20693 {
20694 newval = md_chars_to_number (buf, THUMB_SIZE);
20695 newval |= (value & 0xfff) >> 1;
20696 md_number_to_chars (buf, newval, THUMB_SIZE);
20697 }
20698 break;
20699
20700 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20701 if (fixP->fx_addsy
20702 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20703 && !S_IS_EXTERNAL (fixP->fx_addsy)
20704 && S_IS_DEFINED (fixP->fx_addsy)
20705 && ARM_IS_FUNC (fixP->fx_addsy)
20706 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20707 {
20708 /* Force a relocation for a branch 20 bits wide. */
20709 fixP->fx_done = 0;
20710 }
20711 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20712 as_bad_where (fixP->fx_file, fixP->fx_line,
20713 _("conditional branch out of range"));
20714
20715 if (fixP->fx_done || !seg->use_rela_p)
20716 {
20717 offsetT newval2;
20718 addressT S, J1, J2, lo, hi;
20719
20720 S = (value & 0x00100000) >> 20;
20721 J2 = (value & 0x00080000) >> 19;
20722 J1 = (value & 0x00040000) >> 18;
20723 hi = (value & 0x0003f000) >> 12;
20724 lo = (value & 0x00000ffe) >> 1;
20725
20726 newval = md_chars_to_number (buf, THUMB_SIZE);
20727 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20728 newval |= (S << 10) | hi;
20729 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20730 md_number_to_chars (buf, newval, THUMB_SIZE);
20731 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20732 }
20733 break;
20734
20735 case BFD_RELOC_THUMB_PCREL_BLX:
20736
20737 /* If there is a blx from a thumb state function to
20738 another thumb function flip this to a bl and warn
20739 about it. */
20740
20741 if (fixP->fx_addsy
20742 && S_IS_DEFINED (fixP->fx_addsy)
20743 && !S_IS_EXTERNAL (fixP->fx_addsy)
20744 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20745 && THUMB_IS_FUNC (fixP->fx_addsy))
20746 {
20747 const char *name = S_GET_NAME (fixP->fx_addsy);
20748 as_warn_where (fixP->fx_file, fixP->fx_line,
20749 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20750 name);
20751 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20752 newval = newval | 0x1000;
20753 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20754 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20755 fixP->fx_done = 1;
20756 }
20757
20758
20759 goto thumb_bl_common;
20760
20761 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20762
20763 /* A bl from Thumb state ISA to an internal ARM state function
20764 is converted to a blx. */
20765 if (fixP->fx_addsy
20766 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20767 && !S_IS_EXTERNAL (fixP->fx_addsy)
20768 && S_IS_DEFINED (fixP->fx_addsy)
20769 && ARM_IS_FUNC (fixP->fx_addsy)
20770 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20771 {
20772 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20773 newval = newval & ~0x1000;
20774 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20775 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20776 fixP->fx_done = 1;
20777 }
20778
20779 thumb_bl_common:
20780
20781 #ifdef OBJ_ELF
20782 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20783 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20784 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20785 #endif
20786
20787 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20788 /* For a BLX instruction, make sure that the relocation is rounded up
20789 to a word boundary. This follows the semantics of the instruction
20790 which specifies that bit 1 of the target address will come from bit
20791 1 of the base address. */
20792 value = (value + 1) & ~ 1;
20793
20794
20795 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20796 {
20797 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20798 {
20799 as_bad_where (fixP->fx_file, fixP->fx_line,
20800 _("branch out of range"));
20801 }
20802 else if ((value & ~0x1ffffff)
20803 && ((value & ~0x1ffffff) != ~0x1ffffff))
20804 {
20805 as_bad_where (fixP->fx_file, fixP->fx_line,
20806 _("Thumb2 branch out of range"));
20807 }
20808 }
20809
20810 if (fixP->fx_done || !seg->use_rela_p)
20811 encode_thumb2_b_bl_offset (buf, value);
20812
20813 break;
20814
20815 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20816 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20817 as_bad_where (fixP->fx_file, fixP->fx_line,
20818 _("branch out of range"));
20819
20820 if (fixP->fx_done || !seg->use_rela_p)
20821 encode_thumb2_b_bl_offset (buf, value);
20822
20823 break;
20824
20825 case BFD_RELOC_8:
20826 if (fixP->fx_done || !seg->use_rela_p)
20827 md_number_to_chars (buf, value, 1);
20828 break;
20829
20830 case BFD_RELOC_16:
20831 if (fixP->fx_done || !seg->use_rela_p)
20832 md_number_to_chars (buf, value, 2);
20833 break;
20834
20835 #ifdef OBJ_ELF
20836 case BFD_RELOC_ARM_TLS_GD32:
20837 case BFD_RELOC_ARM_TLS_LE32:
20838 case BFD_RELOC_ARM_TLS_IE32:
20839 case BFD_RELOC_ARM_TLS_LDM32:
20840 case BFD_RELOC_ARM_TLS_LDO32:
20841 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20842 /* fall through */
20843
20844 case BFD_RELOC_ARM_GOT32:
20845 case BFD_RELOC_ARM_GOTOFF:
20846 if (fixP->fx_done || !seg->use_rela_p)
20847 md_number_to_chars (buf, 0, 4);
20848 break;
20849
20850 case BFD_RELOC_ARM_GOT_PREL:
20851 if (fixP->fx_done || !seg->use_rela_p)
20852 md_number_to_chars (buf, value, 4);
20853 break;
20854
20855 case BFD_RELOC_ARM_TARGET2:
20856 /* TARGET2 is not partial-inplace, so we need to write the
20857 addend here for REL targets, because it won't be written out
20858 during reloc processing later. */
20859 if (fixP->fx_done || !seg->use_rela_p)
20860 md_number_to_chars (buf, fixP->fx_offset, 4);
20861 break;
20862 #endif
20863
20864 case BFD_RELOC_RVA:
20865 case BFD_RELOC_32:
20866 case BFD_RELOC_ARM_TARGET1:
20867 case BFD_RELOC_ARM_ROSEGREL32:
20868 case BFD_RELOC_ARM_SBREL32:
20869 case BFD_RELOC_32_PCREL:
20870 #ifdef TE_PE
20871 case BFD_RELOC_32_SECREL:
20872 #endif
20873 if (fixP->fx_done || !seg->use_rela_p)
20874 #ifdef TE_WINCE
20875 /* For WinCE we only do this for pcrel fixups. */
20876 if (fixP->fx_done || fixP->fx_pcrel)
20877 #endif
20878 md_number_to_chars (buf, value, 4);
20879 break;
20880
20881 #ifdef OBJ_ELF
20882 case BFD_RELOC_ARM_PREL31:
20883 if (fixP->fx_done || !seg->use_rela_p)
20884 {
20885 newval = md_chars_to_number (buf, 4) & 0x80000000;
20886 if ((value ^ (value >> 1)) & 0x40000000)
20887 {
20888 as_bad_where (fixP->fx_file, fixP->fx_line,
20889 _("rel31 relocation overflow"));
20890 }
20891 newval |= value & 0x7fffffff;
20892 md_number_to_chars (buf, newval, 4);
20893 }
20894 break;
20895 #endif
20896
20897 case BFD_RELOC_ARM_CP_OFF_IMM:
20898 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20899 if (value < -1023 || value > 1023 || (value & 3))
20900 as_bad_where (fixP->fx_file, fixP->fx_line,
20901 _("co-processor offset out of range"));
20902 cp_off_common:
20903 sign = value >= 0;
20904 if (value < 0)
20905 value = -value;
20906 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20907 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20908 newval = md_chars_to_number (buf, INSN_SIZE);
20909 else
20910 newval = get_thumb32_insn (buf);
20911 newval &= 0xff7fff00;
20912 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20913 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20914 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20915 md_number_to_chars (buf, newval, INSN_SIZE);
20916 else
20917 put_thumb32_insn (buf, newval);
20918 break;
20919
20920 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20921 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20922 if (value < -255 || value > 255)
20923 as_bad_where (fixP->fx_file, fixP->fx_line,
20924 _("co-processor offset out of range"));
20925 value *= 4;
20926 goto cp_off_common;
20927
20928 case BFD_RELOC_ARM_THUMB_OFFSET:
20929 newval = md_chars_to_number (buf, THUMB_SIZE);
20930 /* Exactly what ranges, and where the offset is inserted depends
20931 on the type of instruction, we can establish this from the
20932 top 4 bits. */
20933 switch (newval >> 12)
20934 {
20935 case 4: /* PC load. */
20936 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20937 forced to zero for these loads; md_pcrel_from has already
20938 compensated for this. */
20939 if (value & 3)
20940 as_bad_where (fixP->fx_file, fixP->fx_line,
20941 _("invalid offset, target not word aligned (0x%08lX)"),
20942 (((unsigned long) fixP->fx_frag->fr_address
20943 + (unsigned long) fixP->fx_where) & ~3)
20944 + (unsigned long) value);
20945
20946 if (value & ~0x3fc)
20947 as_bad_where (fixP->fx_file, fixP->fx_line,
20948 _("invalid offset, value too big (0x%08lX)"),
20949 (long) value);
20950
20951 newval |= value >> 2;
20952 break;
20953
20954 case 9: /* SP load/store. */
20955 if (value & ~0x3fc)
20956 as_bad_where (fixP->fx_file, fixP->fx_line,
20957 _("invalid offset, value too big (0x%08lX)"),
20958 (long) value);
20959 newval |= value >> 2;
20960 break;
20961
20962 case 6: /* Word load/store. */
20963 if (value & ~0x7c)
20964 as_bad_where (fixP->fx_file, fixP->fx_line,
20965 _("invalid offset, value too big (0x%08lX)"),
20966 (long) value);
20967 newval |= value << 4; /* 6 - 2. */
20968 break;
20969
20970 case 7: /* Byte load/store. */
20971 if (value & ~0x1f)
20972 as_bad_where (fixP->fx_file, fixP->fx_line,
20973 _("invalid offset, value too big (0x%08lX)"),
20974 (long) value);
20975 newval |= value << 6;
20976 break;
20977
20978 case 8: /* Halfword load/store. */
20979 if (value & ~0x3e)
20980 as_bad_where (fixP->fx_file, fixP->fx_line,
20981 _("invalid offset, value too big (0x%08lX)"),
20982 (long) value);
20983 newval |= value << 5; /* 6 - 1. */
20984 break;
20985
20986 default:
20987 as_bad_where (fixP->fx_file, fixP->fx_line,
20988 "Unable to process relocation for thumb opcode: %lx",
20989 (unsigned long) newval);
20990 break;
20991 }
20992 md_number_to_chars (buf, newval, THUMB_SIZE);
20993 break;
20994
20995 case BFD_RELOC_ARM_THUMB_ADD:
20996 /* This is a complicated relocation, since we use it for all of
20997 the following immediate relocations:
20998
20999 3bit ADD/SUB
21000 8bit ADD/SUB
21001 9bit ADD/SUB SP word-aligned
21002 10bit ADD PC/SP word-aligned
21003
21004 The type of instruction being processed is encoded in the
21005 instruction field:
21006
21007 0x8000 SUB
21008 0x00F0 Rd
21009 0x000F Rs
21010 */
21011 newval = md_chars_to_number (buf, THUMB_SIZE);
21012 {
21013 int rd = (newval >> 4) & 0xf;
21014 int rs = newval & 0xf;
21015 int subtract = !!(newval & 0x8000);
21016
21017 /* Check for HI regs, only very restricted cases allowed:
21018 Adjusting SP, and using PC or SP to get an address. */
21019 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21020 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21021 as_bad_where (fixP->fx_file, fixP->fx_line,
21022 _("invalid Hi register with immediate"));
21023
21024 /* If value is negative, choose the opposite instruction. */
21025 if (value < 0)
21026 {
21027 value = -value;
21028 subtract = !subtract;
21029 if (value < 0)
21030 as_bad_where (fixP->fx_file, fixP->fx_line,
21031 _("immediate value out of range"));
21032 }
21033
21034 if (rd == REG_SP)
21035 {
21036 if (value & ~0x1fc)
21037 as_bad_where (fixP->fx_file, fixP->fx_line,
21038 _("invalid immediate for stack address calculation"));
21039 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21040 newval |= value >> 2;
21041 }
21042 else if (rs == REG_PC || rs == REG_SP)
21043 {
21044 if (subtract || value & ~0x3fc)
21045 as_bad_where (fixP->fx_file, fixP->fx_line,
21046 _("invalid immediate for address calculation (value = 0x%08lX)"),
21047 (unsigned long) value);
21048 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21049 newval |= rd << 8;
21050 newval |= value >> 2;
21051 }
21052 else if (rs == rd)
21053 {
21054 if (value & ~0xff)
21055 as_bad_where (fixP->fx_file, fixP->fx_line,
21056 _("immediate value out of range"));
21057 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21058 newval |= (rd << 8) | value;
21059 }
21060 else
21061 {
21062 if (value & ~0x7)
21063 as_bad_where (fixP->fx_file, fixP->fx_line,
21064 _("immediate value out of range"));
21065 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21066 newval |= rd | (rs << 3) | (value << 6);
21067 }
21068 }
21069 md_number_to_chars (buf, newval, THUMB_SIZE);
21070 break;
21071
21072 case BFD_RELOC_ARM_THUMB_IMM:
21073 newval = md_chars_to_number (buf, THUMB_SIZE);
21074 if (value < 0 || value > 255)
21075 as_bad_where (fixP->fx_file, fixP->fx_line,
21076 _("invalid immediate: %ld is out of range"),
21077 (long) value);
21078 newval |= value;
21079 md_number_to_chars (buf, newval, THUMB_SIZE);
21080 break;
21081
21082 case BFD_RELOC_ARM_THUMB_SHIFT:
21083 /* 5bit shift value (0..32). LSL cannot take 32. */
21084 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21085 temp = newval & 0xf800;
21086 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21087 as_bad_where (fixP->fx_file, fixP->fx_line,
21088 _("invalid shift value: %ld"), (long) value);
21089 /* Shifts of zero must be encoded as LSL. */
21090 if (value == 0)
21091 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21092 /* Shifts of 32 are encoded as zero. */
21093 else if (value == 32)
21094 value = 0;
21095 newval |= value << 6;
21096 md_number_to_chars (buf, newval, THUMB_SIZE);
21097 break;
21098
21099 case BFD_RELOC_VTABLE_INHERIT:
21100 case BFD_RELOC_VTABLE_ENTRY:
21101 fixP->fx_done = 0;
21102 return;
21103
21104 case BFD_RELOC_ARM_MOVW:
21105 case BFD_RELOC_ARM_MOVT:
21106 case BFD_RELOC_ARM_THUMB_MOVW:
21107 case BFD_RELOC_ARM_THUMB_MOVT:
21108 if (fixP->fx_done || !seg->use_rela_p)
21109 {
21110 /* REL format relocations are limited to a 16-bit addend. */
21111 if (!fixP->fx_done)
21112 {
21113 if (value < -0x8000 || value > 0x7fff)
21114 as_bad_where (fixP->fx_file, fixP->fx_line,
21115 _("offset out of range"));
21116 }
21117 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21118 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21119 {
21120 value >>= 16;
21121 }
21122
21123 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21124 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21125 {
21126 newval = get_thumb32_insn (buf);
21127 newval &= 0xfbf08f00;
21128 newval |= (value & 0xf000) << 4;
21129 newval |= (value & 0x0800) << 15;
21130 newval |= (value & 0x0700) << 4;
21131 newval |= (value & 0x00ff);
21132 put_thumb32_insn (buf, newval);
21133 }
21134 else
21135 {
21136 newval = md_chars_to_number (buf, 4);
21137 newval &= 0xfff0f000;
21138 newval |= value & 0x0fff;
21139 newval |= (value & 0xf000) << 4;
21140 md_number_to_chars (buf, newval, 4);
21141 }
21142 }
21143 return;
21144
21145 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21146 case BFD_RELOC_ARM_ALU_PC_G0:
21147 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21148 case BFD_RELOC_ARM_ALU_PC_G1:
21149 case BFD_RELOC_ARM_ALU_PC_G2:
21150 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21151 case BFD_RELOC_ARM_ALU_SB_G0:
21152 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21153 case BFD_RELOC_ARM_ALU_SB_G1:
21154 case BFD_RELOC_ARM_ALU_SB_G2:
21155 gas_assert (!fixP->fx_done);
21156 if (!seg->use_rela_p)
21157 {
21158 bfd_vma insn;
21159 bfd_vma encoded_addend;
21160 bfd_vma addend_abs = abs (value);
21161
21162 /* Check that the absolute value of the addend can be
21163 expressed as an 8-bit constant plus a rotation. */
21164 encoded_addend = encode_arm_immediate (addend_abs);
21165 if (encoded_addend == (unsigned int) FAIL)
21166 as_bad_where (fixP->fx_file, fixP->fx_line,
21167 _("the offset 0x%08lX is not representable"),
21168 (unsigned long) addend_abs);
21169
21170 /* Extract the instruction. */
21171 insn = md_chars_to_number (buf, INSN_SIZE);
21172
21173 /* If the addend is positive, use an ADD instruction.
21174 Otherwise use a SUB. Take care not to destroy the S bit. */
21175 insn &= 0xff1fffff;
21176 if (value < 0)
21177 insn |= 1 << 22;
21178 else
21179 insn |= 1 << 23;
21180
21181 /* Place the encoded addend into the first 12 bits of the
21182 instruction. */
21183 insn &= 0xfffff000;
21184 insn |= encoded_addend;
21185
21186 /* Update the instruction. */
21187 md_number_to_chars (buf, insn, INSN_SIZE);
21188 }
21189 break;
21190
21191 case BFD_RELOC_ARM_LDR_PC_G0:
21192 case BFD_RELOC_ARM_LDR_PC_G1:
21193 case BFD_RELOC_ARM_LDR_PC_G2:
21194 case BFD_RELOC_ARM_LDR_SB_G0:
21195 case BFD_RELOC_ARM_LDR_SB_G1:
21196 case BFD_RELOC_ARM_LDR_SB_G2:
21197 gas_assert (!fixP->fx_done);
21198 if (!seg->use_rela_p)
21199 {
21200 bfd_vma insn;
21201 bfd_vma addend_abs = abs (value);
21202
21203 /* Check that the absolute value of the addend can be
21204 encoded in 12 bits. */
21205 if (addend_abs >= 0x1000)
21206 as_bad_where (fixP->fx_file, fixP->fx_line,
21207 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21208 (unsigned long) addend_abs);
21209
21210 /* Extract the instruction. */
21211 insn = md_chars_to_number (buf, INSN_SIZE);
21212
21213 /* If the addend is negative, clear bit 23 of the instruction.
21214 Otherwise set it. */
21215 if (value < 0)
21216 insn &= ~(1 << 23);
21217 else
21218 insn |= 1 << 23;
21219
21220 /* Place the absolute value of the addend into the first 12 bits
21221 of the instruction. */
21222 insn &= 0xfffff000;
21223 insn |= addend_abs;
21224
21225 /* Update the instruction. */
21226 md_number_to_chars (buf, insn, INSN_SIZE);
21227 }
21228 break;
21229
21230 case BFD_RELOC_ARM_LDRS_PC_G0:
21231 case BFD_RELOC_ARM_LDRS_PC_G1:
21232 case BFD_RELOC_ARM_LDRS_PC_G2:
21233 case BFD_RELOC_ARM_LDRS_SB_G0:
21234 case BFD_RELOC_ARM_LDRS_SB_G1:
21235 case BFD_RELOC_ARM_LDRS_SB_G2:
21236 gas_assert (!fixP->fx_done);
21237 if (!seg->use_rela_p)
21238 {
21239 bfd_vma insn;
21240 bfd_vma addend_abs = abs (value);
21241
21242 /* Check that the absolute value of the addend can be
21243 encoded in 8 bits. */
21244 if (addend_abs >= 0x100)
21245 as_bad_where (fixP->fx_file, fixP->fx_line,
21246 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21247 (unsigned long) addend_abs);
21248
21249 /* Extract the instruction. */
21250 insn = md_chars_to_number (buf, INSN_SIZE);
21251
21252 /* If the addend is negative, clear bit 23 of the instruction.
21253 Otherwise set it. */
21254 if (value < 0)
21255 insn &= ~(1 << 23);
21256 else
21257 insn |= 1 << 23;
21258
21259 /* Place the first four bits of the absolute value of the addend
21260 into the first 4 bits of the instruction, and the remaining
21261 four into bits 8 .. 11. */
21262 insn &= 0xfffff0f0;
21263 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21264
21265 /* Update the instruction. */
21266 md_number_to_chars (buf, insn, INSN_SIZE);
21267 }
21268 break;
21269
21270 case BFD_RELOC_ARM_LDC_PC_G0:
21271 case BFD_RELOC_ARM_LDC_PC_G1:
21272 case BFD_RELOC_ARM_LDC_PC_G2:
21273 case BFD_RELOC_ARM_LDC_SB_G0:
21274 case BFD_RELOC_ARM_LDC_SB_G1:
21275 case BFD_RELOC_ARM_LDC_SB_G2:
21276 gas_assert (!fixP->fx_done);
21277 if (!seg->use_rela_p)
21278 {
21279 bfd_vma insn;
21280 bfd_vma addend_abs = abs (value);
21281
21282 /* Check that the absolute value of the addend is a multiple of
21283 four and, when divided by four, fits in 8 bits. */
21284 if (addend_abs & 0x3)
21285 as_bad_where (fixP->fx_file, fixP->fx_line,
21286 _("bad offset 0x%08lX (must be word-aligned)"),
21287 (unsigned long) addend_abs);
21288
21289 if ((addend_abs >> 2) > 0xff)
21290 as_bad_where (fixP->fx_file, fixP->fx_line,
21291 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21292 (unsigned long) addend_abs);
21293
21294 /* Extract the instruction. */
21295 insn = md_chars_to_number (buf, INSN_SIZE);
21296
21297 /* If the addend is negative, clear bit 23 of the instruction.
21298 Otherwise set it. */
21299 if (value < 0)
21300 insn &= ~(1 << 23);
21301 else
21302 insn |= 1 << 23;
21303
21304 /* Place the addend (divided by four) into the first eight
21305 bits of the instruction. */
21306 insn &= 0xfffffff0;
21307 insn |= addend_abs >> 2;
21308
21309 /* Update the instruction. */
21310 md_number_to_chars (buf, insn, INSN_SIZE);
21311 }
21312 break;
21313
21314 case BFD_RELOC_ARM_V4BX:
21315 /* This will need to go in the object file. */
21316 fixP->fx_done = 0;
21317 break;
21318
21319 case BFD_RELOC_UNUSED:
21320 default:
21321 as_bad_where (fixP->fx_file, fixP->fx_line,
21322 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21323 }
21324 }
21325
21326 /* Translate internal representation of relocation info to BFD target
21327 format. */
21328
21329 arelent *
21330 tc_gen_reloc (asection *section, fixS *fixp)
21331 {
21332 arelent * reloc;
21333 bfd_reloc_code_real_type code;
21334
21335 reloc = (arelent *) xmalloc (sizeof (arelent));
21336
21337 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21338 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21339 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21340
21341 if (fixp->fx_pcrel)
21342 {
21343 if (section->use_rela_p)
21344 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21345 else
21346 fixp->fx_offset = reloc->address;
21347 }
21348 reloc->addend = fixp->fx_offset;
21349
21350 switch (fixp->fx_r_type)
21351 {
21352 case BFD_RELOC_8:
21353 if (fixp->fx_pcrel)
21354 {
21355 code = BFD_RELOC_8_PCREL;
21356 break;
21357 }
21358
21359 case BFD_RELOC_16:
21360 if (fixp->fx_pcrel)
21361 {
21362 code = BFD_RELOC_16_PCREL;
21363 break;
21364 }
21365
21366 case BFD_RELOC_32:
21367 if (fixp->fx_pcrel)
21368 {
21369 code = BFD_RELOC_32_PCREL;
21370 break;
21371 }
21372
21373 case BFD_RELOC_ARM_MOVW:
21374 if (fixp->fx_pcrel)
21375 {
21376 code = BFD_RELOC_ARM_MOVW_PCREL;
21377 break;
21378 }
21379
21380 case BFD_RELOC_ARM_MOVT:
21381 if (fixp->fx_pcrel)
21382 {
21383 code = BFD_RELOC_ARM_MOVT_PCREL;
21384 break;
21385 }
21386
21387 case BFD_RELOC_ARM_THUMB_MOVW:
21388 if (fixp->fx_pcrel)
21389 {
21390 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21391 break;
21392 }
21393
21394 case BFD_RELOC_ARM_THUMB_MOVT:
21395 if (fixp->fx_pcrel)
21396 {
21397 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21398 break;
21399 }
21400
21401 case BFD_RELOC_NONE:
21402 case BFD_RELOC_ARM_PCREL_BRANCH:
21403 case BFD_RELOC_ARM_PCREL_BLX:
21404 case BFD_RELOC_RVA:
21405 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21406 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21407 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21408 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21409 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21410 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21411 case BFD_RELOC_VTABLE_ENTRY:
21412 case BFD_RELOC_VTABLE_INHERIT:
21413 #ifdef TE_PE
21414 case BFD_RELOC_32_SECREL:
21415 #endif
21416 code = fixp->fx_r_type;
21417 break;
21418
21419 case BFD_RELOC_THUMB_PCREL_BLX:
21420 #ifdef OBJ_ELF
21421 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21422 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21423 else
21424 #endif
21425 code = BFD_RELOC_THUMB_PCREL_BLX;
21426 break;
21427
21428 case BFD_RELOC_ARM_LITERAL:
21429 case BFD_RELOC_ARM_HWLITERAL:
21430 /* If this is called then the a literal has
21431 been referenced across a section boundary. */
21432 as_bad_where (fixp->fx_file, fixp->fx_line,
21433 _("literal referenced across section boundary"));
21434 return NULL;
21435
21436 #ifdef OBJ_ELF
21437 case BFD_RELOC_ARM_GOT32:
21438 case BFD_RELOC_ARM_GOTOFF:
21439 case BFD_RELOC_ARM_GOT_PREL:
21440 case BFD_RELOC_ARM_PLT32:
21441 case BFD_RELOC_ARM_TARGET1:
21442 case BFD_RELOC_ARM_ROSEGREL32:
21443 case BFD_RELOC_ARM_SBREL32:
21444 case BFD_RELOC_ARM_PREL31:
21445 case BFD_RELOC_ARM_TARGET2:
21446 case BFD_RELOC_ARM_TLS_LE32:
21447 case BFD_RELOC_ARM_TLS_LDO32:
21448 case BFD_RELOC_ARM_PCREL_CALL:
21449 case BFD_RELOC_ARM_PCREL_JUMP:
21450 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21451 case BFD_RELOC_ARM_ALU_PC_G0:
21452 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21453 case BFD_RELOC_ARM_ALU_PC_G1:
21454 case BFD_RELOC_ARM_ALU_PC_G2:
21455 case BFD_RELOC_ARM_LDR_PC_G0:
21456 case BFD_RELOC_ARM_LDR_PC_G1:
21457 case BFD_RELOC_ARM_LDR_PC_G2:
21458 case BFD_RELOC_ARM_LDRS_PC_G0:
21459 case BFD_RELOC_ARM_LDRS_PC_G1:
21460 case BFD_RELOC_ARM_LDRS_PC_G2:
21461 case BFD_RELOC_ARM_LDC_PC_G0:
21462 case BFD_RELOC_ARM_LDC_PC_G1:
21463 case BFD_RELOC_ARM_LDC_PC_G2:
21464 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21465 case BFD_RELOC_ARM_ALU_SB_G0:
21466 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21467 case BFD_RELOC_ARM_ALU_SB_G1:
21468 case BFD_RELOC_ARM_ALU_SB_G2:
21469 case BFD_RELOC_ARM_LDR_SB_G0:
21470 case BFD_RELOC_ARM_LDR_SB_G1:
21471 case BFD_RELOC_ARM_LDR_SB_G2:
21472 case BFD_RELOC_ARM_LDRS_SB_G0:
21473 case BFD_RELOC_ARM_LDRS_SB_G1:
21474 case BFD_RELOC_ARM_LDRS_SB_G2:
21475 case BFD_RELOC_ARM_LDC_SB_G0:
21476 case BFD_RELOC_ARM_LDC_SB_G1:
21477 case BFD_RELOC_ARM_LDC_SB_G2:
21478 case BFD_RELOC_ARM_V4BX:
21479 code = fixp->fx_r_type;
21480 break;
21481
21482 case BFD_RELOC_ARM_TLS_GD32:
21483 case BFD_RELOC_ARM_TLS_IE32:
21484 case BFD_RELOC_ARM_TLS_LDM32:
21485 /* BFD will include the symbol's address in the addend.
21486 But we don't want that, so subtract it out again here. */
21487 if (!S_IS_COMMON (fixp->fx_addsy))
21488 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21489 code = fixp->fx_r_type;
21490 break;
21491 #endif
21492
21493 case BFD_RELOC_ARM_IMMEDIATE:
21494 as_bad_where (fixp->fx_file, fixp->fx_line,
21495 _("internal relocation (type: IMMEDIATE) not fixed up"));
21496 return NULL;
21497
21498 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21499 as_bad_where (fixp->fx_file, fixp->fx_line,
21500 _("ADRL used for a symbol not defined in the same file"));
21501 return NULL;
21502
21503 case BFD_RELOC_ARM_OFFSET_IMM:
21504 if (section->use_rela_p)
21505 {
21506 code = fixp->fx_r_type;
21507 break;
21508 }
21509
21510 if (fixp->fx_addsy != NULL
21511 && !S_IS_DEFINED (fixp->fx_addsy)
21512 && S_IS_LOCAL (fixp->fx_addsy))
21513 {
21514 as_bad_where (fixp->fx_file, fixp->fx_line,
21515 _("undefined local label `%s'"),
21516 S_GET_NAME (fixp->fx_addsy));
21517 return NULL;
21518 }
21519
21520 as_bad_where (fixp->fx_file, fixp->fx_line,
21521 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21522 return NULL;
21523
21524 default:
21525 {
21526 char * type;
21527
21528 switch (fixp->fx_r_type)
21529 {
21530 case BFD_RELOC_NONE: type = "NONE"; break;
21531 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21532 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21533 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21534 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21535 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21536 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21537 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21538 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21539 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21540 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21541 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21542 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21543 default: type = _("<unknown>"); break;
21544 }
21545 as_bad_where (fixp->fx_file, fixp->fx_line,
21546 _("cannot represent %s relocation in this object file format"),
21547 type);
21548 return NULL;
21549 }
21550 }
21551
21552 #ifdef OBJ_ELF
21553 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21554 && GOT_symbol
21555 && fixp->fx_addsy == GOT_symbol)
21556 {
21557 code = BFD_RELOC_ARM_GOTPC;
21558 reloc->addend = fixp->fx_offset = reloc->address;
21559 }
21560 #endif
21561
21562 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21563
21564 if (reloc->howto == NULL)
21565 {
21566 as_bad_where (fixp->fx_file, fixp->fx_line,
21567 _("cannot represent %s relocation in this object file format"),
21568 bfd_get_reloc_code_name (code));
21569 return NULL;
21570 }
21571
21572 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21573 vtable entry to be used in the relocation's section offset. */
21574 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21575 reloc->address = fixp->fx_offset;
21576
21577 return reloc;
21578 }
21579
21580 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21581
21582 void
21583 cons_fix_new_arm (fragS * frag,
21584 int where,
21585 int size,
21586 expressionS * exp)
21587 {
21588 bfd_reloc_code_real_type type;
21589 int pcrel = 0;
21590
21591 /* Pick a reloc.
21592 FIXME: @@ Should look at CPU word size. */
21593 switch (size)
21594 {
21595 case 1:
21596 type = BFD_RELOC_8;
21597 break;
21598 case 2:
21599 type = BFD_RELOC_16;
21600 break;
21601 case 4:
21602 default:
21603 type = BFD_RELOC_32;
21604 break;
21605 case 8:
21606 type = BFD_RELOC_64;
21607 break;
21608 }
21609
21610 #ifdef TE_PE
21611 if (exp->X_op == O_secrel)
21612 {
21613 exp->X_op = O_symbol;
21614 type = BFD_RELOC_32_SECREL;
21615 }
21616 #endif
21617
21618 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21619 }
21620
21621 #if defined (OBJ_COFF)
21622 void
21623 arm_validate_fix (fixS * fixP)
21624 {
21625 /* If the destination of the branch is a defined symbol which does not have
21626 the THUMB_FUNC attribute, then we must be calling a function which has
21627 the (interfacearm) attribute. We look for the Thumb entry point to that
21628 function and change the branch to refer to that function instead. */
21629 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21630 && fixP->fx_addsy != NULL
21631 && S_IS_DEFINED (fixP->fx_addsy)
21632 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21633 {
21634 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21635 }
21636 }
21637 #endif
21638
21639
21640 int
21641 arm_force_relocation (struct fix * fixp)
21642 {
21643 #if defined (OBJ_COFF) && defined (TE_PE)
21644 if (fixp->fx_r_type == BFD_RELOC_RVA)
21645 return 1;
21646 #endif
21647
21648 /* In case we have a call or a branch to a function in ARM ISA mode from
21649 a thumb function or vice-versa force the relocation. These relocations
21650 are cleared off for some cores that might have blx and simple transformations
21651 are possible. */
21652
21653 #ifdef OBJ_ELF
21654 switch (fixp->fx_r_type)
21655 {
21656 case BFD_RELOC_ARM_PCREL_JUMP:
21657 case BFD_RELOC_ARM_PCREL_CALL:
21658 case BFD_RELOC_THUMB_PCREL_BLX:
21659 if (THUMB_IS_FUNC (fixp->fx_addsy))
21660 return 1;
21661 break;
21662
21663 case BFD_RELOC_ARM_PCREL_BLX:
21664 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21665 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21666 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21667 if (ARM_IS_FUNC (fixp->fx_addsy))
21668 return 1;
21669 break;
21670
21671 default:
21672 break;
21673 }
21674 #endif
21675
21676 /* Resolve these relocations even if the symbol is extern or weak. */
21677 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21678 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21679 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21680 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21681 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21682 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21683 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21684 return 0;
21685
21686 /* Always leave these relocations for the linker. */
21687 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21688 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21689 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21690 return 1;
21691
21692 /* Always generate relocations against function symbols. */
21693 if (fixp->fx_r_type == BFD_RELOC_32
21694 && fixp->fx_addsy
21695 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21696 return 1;
21697
21698 return generic_force_reloc (fixp);
21699 }
21700
21701 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21702 /* Relocations against function names must be left unadjusted,
21703 so that the linker can use this information to generate interworking
21704 stubs. The MIPS version of this function
21705 also prevents relocations that are mips-16 specific, but I do not
21706 know why it does this.
21707
21708 FIXME:
21709 There is one other problem that ought to be addressed here, but
21710 which currently is not: Taking the address of a label (rather
21711 than a function) and then later jumping to that address. Such
21712 addresses also ought to have their bottom bit set (assuming that
21713 they reside in Thumb code), but at the moment they will not. */
21714
21715 bfd_boolean
21716 arm_fix_adjustable (fixS * fixP)
21717 {
21718 if (fixP->fx_addsy == NULL)
21719 return 1;
21720
21721 /* Preserve relocations against symbols with function type. */
21722 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21723 return FALSE;
21724
21725 if (THUMB_IS_FUNC (fixP->fx_addsy)
21726 && fixP->fx_subsy == NULL)
21727 return FALSE;
21728
21729 /* We need the symbol name for the VTABLE entries. */
21730 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21731 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21732 return FALSE;
21733
21734 /* Don't allow symbols to be discarded on GOT related relocs. */
21735 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21736 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21737 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21738 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21739 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21740 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21741 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21742 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21743 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21744 return FALSE;
21745
21746 /* Similarly for group relocations. */
21747 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21748 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21749 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21750 return FALSE;
21751
21752 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21753 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21754 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21755 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21756 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21757 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21758 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21759 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21760 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21761 return FALSE;
21762
21763 return TRUE;
21764 }
21765 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21766
21767 #ifdef OBJ_ELF
21768
21769 const char *
21770 elf32_arm_target_format (void)
21771 {
21772 #ifdef TE_SYMBIAN
21773 return (target_big_endian
21774 ? "elf32-bigarm-symbian"
21775 : "elf32-littlearm-symbian");
21776 #elif defined (TE_VXWORKS)
21777 return (target_big_endian
21778 ? "elf32-bigarm-vxworks"
21779 : "elf32-littlearm-vxworks");
21780 #else
21781 if (target_big_endian)
21782 return "elf32-bigarm";
21783 else
21784 return "elf32-littlearm";
21785 #endif
21786 }
21787
21788 void
21789 armelf_frob_symbol (symbolS * symp,
21790 int * puntp)
21791 {
21792 elf_frob_symbol (symp, puntp);
21793 }
21794 #endif
21795
21796 /* MD interface: Finalization. */
21797
21798 void
21799 arm_cleanup (void)
21800 {
21801 literal_pool * pool;
21802
21803 /* Ensure that all the IT blocks are properly closed. */
21804 check_it_blocks_finished ();
21805
21806 for (pool = list_of_pools; pool; pool = pool->next)
21807 {
21808 /* Put it at the end of the relevant section. */
21809 subseg_set (pool->section, pool->sub_section);
21810 #ifdef OBJ_ELF
21811 arm_elf_change_section ();
21812 #endif
21813 s_ltorg (0);
21814 }
21815 }
21816
21817 #ifdef OBJ_ELF
21818 /* Remove any excess mapping symbols generated for alignment frags in
21819 SEC. We may have created a mapping symbol before a zero byte
21820 alignment; remove it if there's a mapping symbol after the
21821 alignment. */
21822 static void
21823 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21824 void *dummy ATTRIBUTE_UNUSED)
21825 {
21826 segment_info_type *seginfo = seg_info (sec);
21827 fragS *fragp;
21828
21829 if (seginfo == NULL || seginfo->frchainP == NULL)
21830 return;
21831
21832 for (fragp = seginfo->frchainP->frch_root;
21833 fragp != NULL;
21834 fragp = fragp->fr_next)
21835 {
21836 symbolS *sym = fragp->tc_frag_data.last_map;
21837 fragS *next = fragp->fr_next;
21838
21839 /* Variable-sized frags have been converted to fixed size by
21840 this point. But if this was variable-sized to start with,
21841 there will be a fixed-size frag after it. So don't handle
21842 next == NULL. */
21843 if (sym == NULL || next == NULL)
21844 continue;
21845
21846 if (S_GET_VALUE (sym) < next->fr_address)
21847 /* Not at the end of this frag. */
21848 continue;
21849 know (S_GET_VALUE (sym) == next->fr_address);
21850
21851 do
21852 {
21853 if (next->tc_frag_data.first_map != NULL)
21854 {
21855 /* Next frag starts with a mapping symbol. Discard this
21856 one. */
21857 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21858 break;
21859 }
21860
21861 if (next->fr_next == NULL)
21862 {
21863 /* This mapping symbol is at the end of the section. Discard
21864 it. */
21865 know (next->fr_fix == 0 && next->fr_var == 0);
21866 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21867 break;
21868 }
21869
21870 /* As long as we have empty frags without any mapping symbols,
21871 keep looking. */
21872 /* If the next frag is non-empty and does not start with a
21873 mapping symbol, then this mapping symbol is required. */
21874 if (next->fr_address != next->fr_next->fr_address)
21875 break;
21876
21877 next = next->fr_next;
21878 }
21879 while (next != NULL);
21880 }
21881 }
21882 #endif
21883
21884 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21885 ARM ones. */
21886
21887 void
21888 arm_adjust_symtab (void)
21889 {
21890 #ifdef OBJ_COFF
21891 symbolS * sym;
21892
21893 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21894 {
21895 if (ARM_IS_THUMB (sym))
21896 {
21897 if (THUMB_IS_FUNC (sym))
21898 {
21899 /* Mark the symbol as a Thumb function. */
21900 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21901 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21902 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21903
21904 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21905 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21906 else
21907 as_bad (_("%s: unexpected function type: %d"),
21908 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21909 }
21910 else switch (S_GET_STORAGE_CLASS (sym))
21911 {
21912 case C_EXT:
21913 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21914 break;
21915 case C_STAT:
21916 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21917 break;
21918 case C_LABEL:
21919 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21920 break;
21921 default:
21922 /* Do nothing. */
21923 break;
21924 }
21925 }
21926
21927 if (ARM_IS_INTERWORK (sym))
21928 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21929 }
21930 #endif
21931 #ifdef OBJ_ELF
21932 symbolS * sym;
21933 char bind;
21934
21935 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21936 {
21937 if (ARM_IS_THUMB (sym))
21938 {
21939 elf_symbol_type * elf_sym;
21940
21941 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21942 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21943
21944 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21945 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21946 {
21947 /* If it's a .thumb_func, declare it as so,
21948 otherwise tag label as .code 16. */
21949 if (THUMB_IS_FUNC (sym))
21950 elf_sym->internal_elf_sym.st_info =
21951 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21952 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21953 elf_sym->internal_elf_sym.st_info =
21954 ELF_ST_INFO (bind, STT_ARM_16BIT);
21955 }
21956 }
21957 }
21958
21959 /* Remove any overlapping mapping symbols generated by alignment frags. */
21960 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
21961 #endif
21962 }
21963
21964 /* MD interface: Initialization. */
21965
21966 static void
21967 set_constant_flonums (void)
21968 {
21969 int i;
21970
21971 for (i = 0; i < NUM_FLOAT_VALS; i++)
21972 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21973 abort ();
21974 }
21975
21976 /* Auto-select Thumb mode if it's the only available instruction set for the
21977 given architecture. */
21978
21979 static void
21980 autoselect_thumb_from_cpu_variant (void)
21981 {
21982 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21983 opcode_select (16);
21984 }
21985
21986 void
21987 md_begin (void)
21988 {
21989 unsigned mach;
21990 unsigned int i;
21991
21992 if ( (arm_ops_hsh = hash_new ()) == NULL
21993 || (arm_cond_hsh = hash_new ()) == NULL
21994 || (arm_shift_hsh = hash_new ()) == NULL
21995 || (arm_psr_hsh = hash_new ()) == NULL
21996 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21997 || (arm_reg_hsh = hash_new ()) == NULL
21998 || (arm_reloc_hsh = hash_new ()) == NULL
21999 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22000 as_fatal (_("virtual memory exhausted"));
22001
22002 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22003 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22004 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22005 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22006 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22007 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22008 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22009 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22010 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22011 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22012 (void *) (v7m_psrs + i));
22013 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22014 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22015 for (i = 0;
22016 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22017 i++)
22018 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22019 (void *) (barrier_opt_names + i));
22020 #ifdef OBJ_ELF
22021 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
22022 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
22023 #endif
22024
22025 set_constant_flonums ();
22026
22027 /* Set the cpu variant based on the command-line options. We prefer
22028 -mcpu= over -march= if both are set (as for GCC); and we prefer
22029 -mfpu= over any other way of setting the floating point unit.
22030 Use of legacy options with new options are faulted. */
22031 if (legacy_cpu)
22032 {
22033 if (mcpu_cpu_opt || march_cpu_opt)
22034 as_bad (_("use of old and new-style options to set CPU type"));
22035
22036 mcpu_cpu_opt = legacy_cpu;
22037 }
22038 else if (!mcpu_cpu_opt)
22039 mcpu_cpu_opt = march_cpu_opt;
22040
22041 if (legacy_fpu)
22042 {
22043 if (mfpu_opt)
22044 as_bad (_("use of old and new-style options to set FPU type"));
22045
22046 mfpu_opt = legacy_fpu;
22047 }
22048 else if (!mfpu_opt)
22049 {
22050 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22051 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22052 /* Some environments specify a default FPU. If they don't, infer it
22053 from the processor. */
22054 if (mcpu_fpu_opt)
22055 mfpu_opt = mcpu_fpu_opt;
22056 else
22057 mfpu_opt = march_fpu_opt;
22058 #else
22059 mfpu_opt = &fpu_default;
22060 #endif
22061 }
22062
22063 if (!mfpu_opt)
22064 {
22065 if (mcpu_cpu_opt != NULL)
22066 mfpu_opt = &fpu_default;
22067 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22068 mfpu_opt = &fpu_arch_vfp_v2;
22069 else
22070 mfpu_opt = &fpu_arch_fpa;
22071 }
22072
22073 #ifdef CPU_DEFAULT
22074 if (!mcpu_cpu_opt)
22075 {
22076 mcpu_cpu_opt = &cpu_default;
22077 selected_cpu = cpu_default;
22078 }
22079 #else
22080 if (mcpu_cpu_opt)
22081 selected_cpu = *mcpu_cpu_opt;
22082 else
22083 mcpu_cpu_opt = &arm_arch_any;
22084 #endif
22085
22086 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22087
22088 autoselect_thumb_from_cpu_variant ();
22089
22090 arm_arch_used = thumb_arch_used = arm_arch_none;
22091
22092 #if defined OBJ_COFF || defined OBJ_ELF
22093 {
22094 unsigned int flags = 0;
22095
22096 #if defined OBJ_ELF
22097 flags = meabi_flags;
22098
22099 switch (meabi_flags)
22100 {
22101 case EF_ARM_EABI_UNKNOWN:
22102 #endif
22103 /* Set the flags in the private structure. */
22104 if (uses_apcs_26) flags |= F_APCS26;
22105 if (support_interwork) flags |= F_INTERWORK;
22106 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22107 if (pic_code) flags |= F_PIC;
22108 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22109 flags |= F_SOFT_FLOAT;
22110
22111 switch (mfloat_abi_opt)
22112 {
22113 case ARM_FLOAT_ABI_SOFT:
22114 case ARM_FLOAT_ABI_SOFTFP:
22115 flags |= F_SOFT_FLOAT;
22116 break;
22117
22118 case ARM_FLOAT_ABI_HARD:
22119 if (flags & F_SOFT_FLOAT)
22120 as_bad (_("hard-float conflicts with specified fpu"));
22121 break;
22122 }
22123
22124 /* Using pure-endian doubles (even if soft-float). */
22125 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22126 flags |= F_VFP_FLOAT;
22127
22128 #if defined OBJ_ELF
22129 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22130 flags |= EF_ARM_MAVERICK_FLOAT;
22131 break;
22132
22133 case EF_ARM_EABI_VER4:
22134 case EF_ARM_EABI_VER5:
22135 /* No additional flags to set. */
22136 break;
22137
22138 default:
22139 abort ();
22140 }
22141 #endif
22142 bfd_set_private_flags (stdoutput, flags);
22143
22144 /* We have run out flags in the COFF header to encode the
22145 status of ATPCS support, so instead we create a dummy,
22146 empty, debug section called .arm.atpcs. */
22147 if (atpcs)
22148 {
22149 asection * sec;
22150
22151 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22152
22153 if (sec != NULL)
22154 {
22155 bfd_set_section_flags
22156 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22157 bfd_set_section_size (stdoutput, sec, 0);
22158 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22159 }
22160 }
22161 }
22162 #endif
22163
22164 /* Record the CPU type as well. */
22165 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22166 mach = bfd_mach_arm_iWMMXt2;
22167 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22168 mach = bfd_mach_arm_iWMMXt;
22169 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22170 mach = bfd_mach_arm_XScale;
22171 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22172 mach = bfd_mach_arm_ep9312;
22173 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22174 mach = bfd_mach_arm_5TE;
22175 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22176 {
22177 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22178 mach = bfd_mach_arm_5T;
22179 else
22180 mach = bfd_mach_arm_5;
22181 }
22182 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22183 {
22184 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22185 mach = bfd_mach_arm_4T;
22186 else
22187 mach = bfd_mach_arm_4;
22188 }
22189 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22190 mach = bfd_mach_arm_3M;
22191 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22192 mach = bfd_mach_arm_3;
22193 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22194 mach = bfd_mach_arm_2a;
22195 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22196 mach = bfd_mach_arm_2;
22197 else
22198 mach = bfd_mach_arm_unknown;
22199
22200 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22201 }
22202
22203 /* Command line processing. */
22204
22205 /* md_parse_option
22206 Invocation line includes a switch not recognized by the base assembler.
22207 See if it's a processor-specific option.
22208
22209 This routine is somewhat complicated by the need for backwards
22210 compatibility (since older releases of gcc can't be changed).
22211 The new options try to make the interface as compatible as
22212 possible with GCC.
22213
22214 New options (supported) are:
22215
22216 -mcpu=<cpu name> Assemble for selected processor
22217 -march=<architecture name> Assemble for selected architecture
22218 -mfpu=<fpu architecture> Assemble for selected FPU.
22219 -EB/-mbig-endian Big-endian
22220 -EL/-mlittle-endian Little-endian
22221 -k Generate PIC code
22222 -mthumb Start in Thumb mode
22223 -mthumb-interwork Code supports ARM/Thumb interworking
22224
22225 -m[no-]warn-deprecated Warn about deprecated features
22226
22227 For now we will also provide support for:
22228
22229 -mapcs-32 32-bit Program counter
22230 -mapcs-26 26-bit Program counter
22231 -macps-float Floats passed in FP registers
22232 -mapcs-reentrant Reentrant code
22233 -matpcs
22234 (sometime these will probably be replaced with -mapcs=<list of options>
22235 and -matpcs=<list of options>)
22236
22237 The remaining options are only supported for back-wards compatibility.
22238 Cpu variants, the arm part is optional:
22239 -m[arm]1 Currently not supported.
22240 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22241 -m[arm]3 Arm 3 processor
22242 -m[arm]6[xx], Arm 6 processors
22243 -m[arm]7[xx][t][[d]m] Arm 7 processors
22244 -m[arm]8[10] Arm 8 processors
22245 -m[arm]9[20][tdmi] Arm 9 processors
22246 -mstrongarm[110[0]] StrongARM processors
22247 -mxscale XScale processors
22248 -m[arm]v[2345[t[e]]] Arm architectures
22249 -mall All (except the ARM1)
22250 FP variants:
22251 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22252 -mfpe-old (No float load/store multiples)
22253 -mvfpxd VFP Single precision
22254 -mvfp All VFP
22255 -mno-fpu Disable all floating point instructions
22256
22257 The following CPU names are recognized:
22258 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22259 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22260 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22261 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22262 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22263 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22264 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22265
22266 */
22267
22268 const char * md_shortopts = "m:k";
22269
22270 #ifdef ARM_BI_ENDIAN
22271 #define OPTION_EB (OPTION_MD_BASE + 0)
22272 #define OPTION_EL (OPTION_MD_BASE + 1)
22273 #else
22274 #if TARGET_BYTES_BIG_ENDIAN
22275 #define OPTION_EB (OPTION_MD_BASE + 0)
22276 #else
22277 #define OPTION_EL (OPTION_MD_BASE + 1)
22278 #endif
22279 #endif
22280 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22281
22282 struct option md_longopts[] =
22283 {
22284 #ifdef OPTION_EB
22285 {"EB", no_argument, NULL, OPTION_EB},
22286 #endif
22287 #ifdef OPTION_EL
22288 {"EL", no_argument, NULL, OPTION_EL},
22289 #endif
22290 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22291 {NULL, no_argument, NULL, 0}
22292 };
22293
22294 size_t md_longopts_size = sizeof (md_longopts);
22295
22296 struct arm_option_table
22297 {
22298 char *option; /* Option name to match. */
22299 char *help; /* Help information. */
22300 int *var; /* Variable to change. */
22301 int value; /* What to change it to. */
22302 char *deprecated; /* If non-null, print this message. */
22303 };
22304
22305 struct arm_option_table arm_opts[] =
22306 {
22307 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22308 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22309 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22310 &support_interwork, 1, NULL},
22311 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22312 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22313 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22314 1, NULL},
22315 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22316 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22317 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22318 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22319 NULL},
22320
22321 /* These are recognized by the assembler, but have no affect on code. */
22322 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22323 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22324
22325 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22326 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22327 &warn_on_deprecated, 0, NULL},
22328 {NULL, NULL, NULL, 0, NULL}
22329 };
22330
22331 struct arm_legacy_option_table
22332 {
22333 char *option; /* Option name to match. */
22334 const arm_feature_set **var; /* Variable to change. */
22335 const arm_feature_set value; /* What to change it to. */
22336 char *deprecated; /* If non-null, print this message. */
22337 };
22338
22339 const struct arm_legacy_option_table arm_legacy_opts[] =
22340 {
22341 /* DON'T add any new processors to this list -- we want the whole list
22342 to go away... Add them to the processors table instead. */
22343 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22344 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22345 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22346 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22347 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22348 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22349 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22350 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22351 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22352 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22353 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22354 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22355 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22356 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22357 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22358 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22359 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22360 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22361 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22362 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22363 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22364 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22365 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22366 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22367 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22368 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22369 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22370 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22371 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22372 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22373 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22374 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22375 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22376 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22377 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22378 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22379 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22380 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22381 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22382 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22383 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22384 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22385 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22386 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22387 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22388 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22389 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22390 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22391 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22392 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22393 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22394 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22395 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22396 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22397 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22398 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22399 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22400 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22401 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22402 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22403 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22404 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22405 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22406 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22407 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22408 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22409 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22410 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22411 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22412 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22413 N_("use -mcpu=strongarm110")},
22414 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22415 N_("use -mcpu=strongarm1100")},
22416 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22417 N_("use -mcpu=strongarm1110")},
22418 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22419 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22420 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22421
22422 /* Architecture variants -- don't add any more to this list either. */
22423 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22424 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22425 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22426 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22427 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22428 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22429 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22430 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22431 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22432 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22433 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22434 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22435 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22436 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22437 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22438 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22439 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22440 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22441
22442 /* Floating point variants -- don't add any more to this list either. */
22443 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22444 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22445 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22446 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22447 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22448
22449 {NULL, NULL, ARM_ARCH_NONE, NULL}
22450 };
22451
22452 struct arm_cpu_option_table
22453 {
22454 char *name;
22455 const arm_feature_set value;
22456 /* For some CPUs we assume an FPU unless the user explicitly sets
22457 -mfpu=... */
22458 const arm_feature_set default_fpu;
22459 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22460 case. */
22461 const char *canonical_name;
22462 };
22463
22464 /* This list should, at a minimum, contain all the cpu names
22465 recognized by GCC. */
22466 static const struct arm_cpu_option_table arm_cpus[] =
22467 {
22468 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22469 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22470 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22471 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22472 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22473 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22474 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22475 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22476 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22477 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22478 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22479 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22480 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22481 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22482 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22483 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22484 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22485 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22486 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22487 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22488 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22489 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22490 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22491 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22492 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22493 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22494 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22495 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22496 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22497 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22498 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22499 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22500 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22501 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22502 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22503 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22504 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22505 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22506 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22507 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22508 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22509 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22510 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22511 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22512 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22513 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22514 /* For V5 or later processors we default to using VFP; but the user
22515 should really set the FPU type explicitly. */
22516 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22517 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22518 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22519 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22520 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22521 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22522 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22523 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22524 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22525 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22526 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22527 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22528 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22529 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22530 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22531 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22532 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22533 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22534 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22535 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22536 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22537 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22538 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22539 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22540 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22541 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22542 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22543 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22544 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
22545 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22546 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22547 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22548 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22549 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22550 FPU_NONE, "Cortex-A5"},
22551 {"cortex-a8", ARM_ARCH_V7A_SEC,
22552 ARM_FEATURE (0, FPU_VFP_V3
22553 | FPU_NEON_EXT_V1),
22554 "Cortex-A8"},
22555 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22556 ARM_FEATURE (0, FPU_VFP_V3
22557 | FPU_NEON_EXT_V1),
22558 "Cortex-A9"},
22559 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22560 FPU_ARCH_NEON_VFP_V4,
22561 "Cortex-A15"},
22562 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22563 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22564 "Cortex-R4F"},
22565 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22566 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
22567 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22568 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
22569 /* ??? XSCALE is really an architecture. */
22570 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22571 /* ??? iwmmxt is not a processor. */
22572 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22573 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22574 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22575 /* Maverick */
22576 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22577 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22578 };
22579
22580 struct arm_arch_option_table
22581 {
22582 char *name;
22583 const arm_feature_set value;
22584 const arm_feature_set default_fpu;
22585 };
22586
22587 /* This list should, at a minimum, contain all the architecture names
22588 recognized by GCC. */
22589 static const struct arm_arch_option_table arm_archs[] =
22590 {
22591 {"all", ARM_ANY, FPU_ARCH_FPA},
22592 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22593 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22594 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22595 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22596 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22597 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22598 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22599 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22600 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22601 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22602 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22603 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22604 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22605 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22606 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22607 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22608 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22609 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22610 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22611 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22612 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22613 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22614 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22615 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22616 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22617 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22618 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
22619 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22620 /* The official spelling of the ARMv7 profile variants is the dashed form.
22621 Accept the non-dashed form for compatibility with old toolchains. */
22622 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22623 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22624 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22625 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22626 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22627 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22628 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22629 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22630 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22631 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22632 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22633 };
22634
22635 /* ISA extensions in the co-processor and main instruction set space. */
22636 struct arm_option_extension_value_table
22637 {
22638 char *name;
22639 const arm_feature_set value;
22640 const arm_feature_set allowed_archs;
22641 };
22642
22643 /* The following table must be in alphabetical order with a NULL last entry.
22644 */
22645 static const struct arm_option_extension_value_table arm_extensions[] =
22646 {
22647 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22648 ARM_FEATURE (ARM_EXT_V7A, 0)},
22649 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22650 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22651 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
22652 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22653 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
22654 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22655 ARM_FEATURE (ARM_EXT_V6M, 0)},
22656 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22657 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
22658 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22659 ARM_FEATURE (ARM_EXT_V7A, 0)},
22660 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
22661 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22662 };
22663
22664 /* ISA floating-point and Advanced SIMD extensions. */
22665 struct arm_option_fpu_value_table
22666 {
22667 char *name;
22668 const arm_feature_set value;
22669 };
22670
22671 /* This list should, at a minimum, contain all the fpu names
22672 recognized by GCC. */
22673 static const struct arm_option_fpu_value_table arm_fpus[] =
22674 {
22675 {"softfpa", FPU_NONE},
22676 {"fpe", FPU_ARCH_FPE},
22677 {"fpe2", FPU_ARCH_FPE},
22678 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22679 {"fpa", FPU_ARCH_FPA},
22680 {"fpa10", FPU_ARCH_FPA},
22681 {"fpa11", FPU_ARCH_FPA},
22682 {"arm7500fe", FPU_ARCH_FPA},
22683 {"softvfp", FPU_ARCH_VFP},
22684 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22685 {"vfp", FPU_ARCH_VFP_V2},
22686 {"vfp9", FPU_ARCH_VFP_V2},
22687 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22688 {"vfp10", FPU_ARCH_VFP_V2},
22689 {"vfp10-r0", FPU_ARCH_VFP_V1},
22690 {"vfpxd", FPU_ARCH_VFP_V1xD},
22691 {"vfpv2", FPU_ARCH_VFP_V2},
22692 {"vfpv3", FPU_ARCH_VFP_V3},
22693 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22694 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22695 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22696 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22697 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22698 {"arm1020t", FPU_ARCH_VFP_V1},
22699 {"arm1020e", FPU_ARCH_VFP_V2},
22700 {"arm1136jfs", FPU_ARCH_VFP_V2},
22701 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22702 {"maverick", FPU_ARCH_MAVERICK},
22703 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22704 {"neon-fp16", FPU_ARCH_NEON_FP16},
22705 {"vfpv4", FPU_ARCH_VFP_V4},
22706 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22707 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22708 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22709 {NULL, ARM_ARCH_NONE}
22710 };
22711
22712 struct arm_option_value_table
22713 {
22714 char *name;
22715 long value;
22716 };
22717
22718 static const struct arm_option_value_table arm_float_abis[] =
22719 {
22720 {"hard", ARM_FLOAT_ABI_HARD},
22721 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22722 {"soft", ARM_FLOAT_ABI_SOFT},
22723 {NULL, 0}
22724 };
22725
22726 #ifdef OBJ_ELF
22727 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22728 static const struct arm_option_value_table arm_eabis[] =
22729 {
22730 {"gnu", EF_ARM_EABI_UNKNOWN},
22731 {"4", EF_ARM_EABI_VER4},
22732 {"5", EF_ARM_EABI_VER5},
22733 {NULL, 0}
22734 };
22735 #endif
22736
22737 struct arm_long_option_table
22738 {
22739 char * option; /* Substring to match. */
22740 char * help; /* Help information. */
22741 int (* func) (char * subopt); /* Function to decode sub-option. */
22742 char * deprecated; /* If non-null, print this message. */
22743 };
22744
22745 static bfd_boolean
22746 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22747 {
22748 arm_feature_set *ext_set = (arm_feature_set *)
22749 xmalloc (sizeof (arm_feature_set));
22750
22751 /* We insist on extensions being specified in alphabetical order, and with
22752 extensions being added before being removed. We achieve this by having
22753 the global ARM_EXTENSIONS table in alphabetical order, and using the
22754 ADDING_VALUE variable to indicate whether we are adding an extension (1)
22755 or removing it (0) and only allowing it to change in the order
22756 -1 -> 1 -> 0. */
22757 const struct arm_option_extension_value_table * opt = NULL;
22758 int adding_value = -1;
22759
22760 /* Copy the feature set, so that we can modify it. */
22761 *ext_set = **opt_p;
22762 *opt_p = ext_set;
22763
22764 while (str != NULL && *str != 0)
22765 {
22766 char * ext;
22767 size_t optlen;
22768
22769 if (*str != '+')
22770 {
22771 as_bad (_("invalid architectural extension"));
22772 return FALSE;
22773 }
22774
22775 str++;
22776 ext = strchr (str, '+');
22777
22778 if (ext != NULL)
22779 optlen = ext - str;
22780 else
22781 optlen = strlen (str);
22782
22783 if (optlen >= 2
22784 && strncmp (str, "no", 2) == 0)
22785 {
22786 if (adding_value != 0)
22787 {
22788 adding_value = 0;
22789 opt = arm_extensions;
22790 }
22791
22792 optlen -= 2;
22793 str += 2;
22794 }
22795 else if (optlen > 0)
22796 {
22797 if (adding_value == -1)
22798 {
22799 adding_value = 1;
22800 opt = arm_extensions;
22801 }
22802 else if (adding_value != 1)
22803 {
22804 as_bad (_("must specify extensions to add before specifying "
22805 "those to remove"));
22806 return FALSE;
22807 }
22808 }
22809
22810 if (optlen == 0)
22811 {
22812 as_bad (_("missing architectural extension"));
22813 return FALSE;
22814 }
22815
22816 gas_assert (adding_value != -1);
22817 gas_assert (opt != NULL);
22818
22819 /* Scan over the options table trying to find an exact match. */
22820 for (; opt->name != NULL; opt++)
22821 if (strncmp (opt->name, str, optlen) == 0
22822 && strlen (opt->name) == optlen)
22823 {
22824 /* Check we can apply the extension to this architecture. */
22825 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
22826 {
22827 as_bad (_("extension does not apply to the base architecture"));
22828 return FALSE;
22829 }
22830
22831 /* Add or remove the extension. */
22832 if (adding_value)
22833 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22834 else
22835 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
22836
22837 break;
22838 }
22839
22840 if (opt->name == NULL)
22841 {
22842 /* Did we fail to find an extension because it wasn't specified in
22843 alphabetical order, or because it does not exist? */
22844
22845 for (opt = arm_extensions; opt->name != NULL; opt++)
22846 if (strncmp (opt->name, str, optlen) == 0)
22847 break;
22848
22849 if (opt->name == NULL)
22850 as_bad (_("unknown architectural extension `%s'"), str);
22851 else
22852 as_bad (_("architectural extensions must be specified in "
22853 "alphabetical order"));
22854
22855 return FALSE;
22856 }
22857 else
22858 {
22859 /* We should skip the extension we've just matched the next time
22860 round. */
22861 opt++;
22862 }
22863
22864 str = ext;
22865 };
22866
22867 return TRUE;
22868 }
22869
22870 static bfd_boolean
22871 arm_parse_cpu (char * str)
22872 {
22873 const struct arm_cpu_option_table * opt;
22874 char * ext = strchr (str, '+');
22875 int optlen;
22876
22877 if (ext != NULL)
22878 optlen = ext - str;
22879 else
22880 optlen = strlen (str);
22881
22882 if (optlen == 0)
22883 {
22884 as_bad (_("missing cpu name `%s'"), str);
22885 return FALSE;
22886 }
22887
22888 for (opt = arm_cpus; opt->name != NULL; opt++)
22889 if (strncmp (opt->name, str, optlen) == 0)
22890 {
22891 mcpu_cpu_opt = &opt->value;
22892 mcpu_fpu_opt = &opt->default_fpu;
22893 if (opt->canonical_name)
22894 strcpy (selected_cpu_name, opt->canonical_name);
22895 else
22896 {
22897 int i;
22898
22899 for (i = 0; i < optlen; i++)
22900 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22901 selected_cpu_name[i] = 0;
22902 }
22903
22904 if (ext != NULL)
22905 return arm_parse_extension (ext, &mcpu_cpu_opt);
22906
22907 return TRUE;
22908 }
22909
22910 as_bad (_("unknown cpu `%s'"), str);
22911 return FALSE;
22912 }
22913
22914 static bfd_boolean
22915 arm_parse_arch (char * str)
22916 {
22917 const struct arm_arch_option_table *opt;
22918 char *ext = strchr (str, '+');
22919 int optlen;
22920
22921 if (ext != NULL)
22922 optlen = ext - str;
22923 else
22924 optlen = strlen (str);
22925
22926 if (optlen == 0)
22927 {
22928 as_bad (_("missing architecture name `%s'"), str);
22929 return FALSE;
22930 }
22931
22932 for (opt = arm_archs; opt->name != NULL; opt++)
22933 if (strncmp (opt->name, str, optlen) == 0)
22934 {
22935 march_cpu_opt = &opt->value;
22936 march_fpu_opt = &opt->default_fpu;
22937 strcpy (selected_cpu_name, opt->name);
22938
22939 if (ext != NULL)
22940 return arm_parse_extension (ext, &march_cpu_opt);
22941
22942 return TRUE;
22943 }
22944
22945 as_bad (_("unknown architecture `%s'\n"), str);
22946 return FALSE;
22947 }
22948
22949 static bfd_boolean
22950 arm_parse_fpu (char * str)
22951 {
22952 const struct arm_option_fpu_value_table * opt;
22953
22954 for (opt = arm_fpus; opt->name != NULL; opt++)
22955 if (streq (opt->name, str))
22956 {
22957 mfpu_opt = &opt->value;
22958 return TRUE;
22959 }
22960
22961 as_bad (_("unknown floating point format `%s'\n"), str);
22962 return FALSE;
22963 }
22964
22965 static bfd_boolean
22966 arm_parse_float_abi (char * str)
22967 {
22968 const struct arm_option_value_table * opt;
22969
22970 for (opt = arm_float_abis; opt->name != NULL; opt++)
22971 if (streq (opt->name, str))
22972 {
22973 mfloat_abi_opt = opt->value;
22974 return TRUE;
22975 }
22976
22977 as_bad (_("unknown floating point abi `%s'\n"), str);
22978 return FALSE;
22979 }
22980
22981 #ifdef OBJ_ELF
22982 static bfd_boolean
22983 arm_parse_eabi (char * str)
22984 {
22985 const struct arm_option_value_table *opt;
22986
22987 for (opt = arm_eabis; opt->name != NULL; opt++)
22988 if (streq (opt->name, str))
22989 {
22990 meabi_flags = opt->value;
22991 return TRUE;
22992 }
22993 as_bad (_("unknown EABI `%s'\n"), str);
22994 return FALSE;
22995 }
22996 #endif
22997
22998 static bfd_boolean
22999 arm_parse_it_mode (char * str)
23000 {
23001 bfd_boolean ret = TRUE;
23002
23003 if (streq ("arm", str))
23004 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23005 else if (streq ("thumb", str))
23006 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23007 else if (streq ("always", str))
23008 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23009 else if (streq ("never", str))
23010 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23011 else
23012 {
23013 as_bad (_("unknown implicit IT mode `%s', should be "\
23014 "arm, thumb, always, or never."), str);
23015 ret = FALSE;
23016 }
23017
23018 return ret;
23019 }
23020
23021 struct arm_long_option_table arm_long_opts[] =
23022 {
23023 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23024 arm_parse_cpu, NULL},
23025 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23026 arm_parse_arch, NULL},
23027 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23028 arm_parse_fpu, NULL},
23029 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23030 arm_parse_float_abi, NULL},
23031 #ifdef OBJ_ELF
23032 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23033 arm_parse_eabi, NULL},
23034 #endif
23035 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23036 arm_parse_it_mode, NULL},
23037 {NULL, NULL, 0, NULL}
23038 };
23039
23040 int
23041 md_parse_option (int c, char * arg)
23042 {
23043 struct arm_option_table *opt;
23044 const struct arm_legacy_option_table *fopt;
23045 struct arm_long_option_table *lopt;
23046
23047 switch (c)
23048 {
23049 #ifdef OPTION_EB
23050 case OPTION_EB:
23051 target_big_endian = 1;
23052 break;
23053 #endif
23054
23055 #ifdef OPTION_EL
23056 case OPTION_EL:
23057 target_big_endian = 0;
23058 break;
23059 #endif
23060
23061 case OPTION_FIX_V4BX:
23062 fix_v4bx = TRUE;
23063 break;
23064
23065 case 'a':
23066 /* Listing option. Just ignore these, we don't support additional
23067 ones. */
23068 return 0;
23069
23070 default:
23071 for (opt = arm_opts; opt->option != NULL; opt++)
23072 {
23073 if (c == opt->option[0]
23074 && ((arg == NULL && opt->option[1] == 0)
23075 || streq (arg, opt->option + 1)))
23076 {
23077 /* If the option is deprecated, tell the user. */
23078 if (warn_on_deprecated && opt->deprecated != NULL)
23079 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23080 arg ? arg : "", _(opt->deprecated));
23081
23082 if (opt->var != NULL)
23083 *opt->var = opt->value;
23084
23085 return 1;
23086 }
23087 }
23088
23089 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23090 {
23091 if (c == fopt->option[0]
23092 && ((arg == NULL && fopt->option[1] == 0)
23093 || streq (arg, fopt->option + 1)))
23094 {
23095 /* If the option is deprecated, tell the user. */
23096 if (warn_on_deprecated && fopt->deprecated != NULL)
23097 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23098 arg ? arg : "", _(fopt->deprecated));
23099
23100 if (fopt->var != NULL)
23101 *fopt->var = &fopt->value;
23102
23103 return 1;
23104 }
23105 }
23106
23107 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23108 {
23109 /* These options are expected to have an argument. */
23110 if (c == lopt->option[0]
23111 && arg != NULL
23112 && strncmp (arg, lopt->option + 1,
23113 strlen (lopt->option + 1)) == 0)
23114 {
23115 /* If the option is deprecated, tell the user. */
23116 if (warn_on_deprecated && lopt->deprecated != NULL)
23117 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23118 _(lopt->deprecated));
23119
23120 /* Call the sup-option parser. */
23121 return lopt->func (arg + strlen (lopt->option) - 1);
23122 }
23123 }
23124
23125 return 0;
23126 }
23127
23128 return 1;
23129 }
23130
23131 void
23132 md_show_usage (FILE * fp)
23133 {
23134 struct arm_option_table *opt;
23135 struct arm_long_option_table *lopt;
23136
23137 fprintf (fp, _(" ARM-specific assembler options:\n"));
23138
23139 for (opt = arm_opts; opt->option != NULL; opt++)
23140 if (opt->help != NULL)
23141 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23142
23143 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23144 if (lopt->help != NULL)
23145 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23146
23147 #ifdef OPTION_EB
23148 fprintf (fp, _("\
23149 -EB assemble code for a big-endian cpu\n"));
23150 #endif
23151
23152 #ifdef OPTION_EL
23153 fprintf (fp, _("\
23154 -EL assemble code for a little-endian cpu\n"));
23155 #endif
23156
23157 fprintf (fp, _("\
23158 --fix-v4bx Allow BX in ARMv4 code\n"));
23159 }
23160
23161
23162 #ifdef OBJ_ELF
23163 typedef struct
23164 {
23165 int val;
23166 arm_feature_set flags;
23167 } cpu_arch_ver_table;
23168
23169 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23170 least features first. */
23171 static const cpu_arch_ver_table cpu_arch_ver[] =
23172 {
23173 {1, ARM_ARCH_V4},
23174 {2, ARM_ARCH_V4T},
23175 {3, ARM_ARCH_V5},
23176 {3, ARM_ARCH_V5T},
23177 {4, ARM_ARCH_V5TE},
23178 {5, ARM_ARCH_V5TEJ},
23179 {6, ARM_ARCH_V6},
23180 {9, ARM_ARCH_V6K},
23181 {7, ARM_ARCH_V6Z},
23182 {11, ARM_ARCH_V6M},
23183 {12, ARM_ARCH_V6SM},
23184 {8, ARM_ARCH_V6T2},
23185 {10, ARM_ARCH_V7A},
23186 {10, ARM_ARCH_V7R},
23187 {10, ARM_ARCH_V7M},
23188 {0, ARM_ARCH_NONE}
23189 };
23190
23191 /* Set an attribute if it has not already been set by the user. */
23192 static void
23193 aeabi_set_attribute_int (int tag, int value)
23194 {
23195 if (tag < 1
23196 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23197 || !attributes_set_explicitly[tag])
23198 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23199 }
23200
23201 static void
23202 aeabi_set_attribute_string (int tag, const char *value)
23203 {
23204 if (tag < 1
23205 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23206 || !attributes_set_explicitly[tag])
23207 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23208 }
23209
23210 /* Set the public EABI object attributes. */
23211 static void
23212 aeabi_set_public_attributes (void)
23213 {
23214 int arch;
23215 int virt_sec = 0;
23216 arm_feature_set flags;
23217 arm_feature_set tmp;
23218 const cpu_arch_ver_table *p;
23219
23220 /* Choose the architecture based on the capabilities of the requested cpu
23221 (if any) and/or the instructions actually used. */
23222 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23223 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23224 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23225 /*Allow the user to override the reported architecture. */
23226 if (object_arch)
23227 {
23228 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23229 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23230 }
23231
23232 tmp = flags;
23233 arch = 0;
23234 for (p = cpu_arch_ver; p->val; p++)
23235 {
23236 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23237 {
23238 arch = p->val;
23239 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23240 }
23241 }
23242
23243 /* The table lookup above finds the last architecture to contribute
23244 a new feature. Unfortunately, Tag13 is a subset of the union of
23245 v6T2 and v7-M, so it is never seen as contributing a new feature.
23246 We can not search for the last entry which is entirely used,
23247 because if no CPU is specified we build up only those flags
23248 actually used. Perhaps we should separate out the specified
23249 and implicit cases. Avoid taking this path for -march=all by
23250 checking for contradictory v7-A / v7-M features. */
23251 if (arch == 10
23252 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23253 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23254 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23255 arch = 13;
23256
23257 /* Tag_CPU_name. */
23258 if (selected_cpu_name[0])
23259 {
23260 char *q;
23261
23262 q = selected_cpu_name;
23263 if (strncmp (q, "armv", 4) == 0)
23264 {
23265 int i;
23266
23267 q += 4;
23268 for (i = 0; q[i]; i++)
23269 q[i] = TOUPPER (q[i]);
23270 }
23271 aeabi_set_attribute_string (Tag_CPU_name, q);
23272 }
23273
23274 /* Tag_CPU_arch. */
23275 aeabi_set_attribute_int (Tag_CPU_arch, arch);
23276
23277 /* Tag_CPU_arch_profile. */
23278 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
23279 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
23280 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
23281 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
23282 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
23283 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
23284
23285 /* Tag_ARM_ISA_use. */
23286 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23287 || arch == 0)
23288 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
23289
23290 /* Tag_THUMB_ISA_use. */
23291 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23292 || arch == 0)
23293 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23294 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
23295
23296 /* Tag_VFP_arch. */
23297 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23298 aeabi_set_attribute_int (Tag_VFP_arch,
23299 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23300 ? 5 : 6);
23301 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
23302 aeabi_set_attribute_int (Tag_VFP_arch, 3);
23303 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
23304 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23305 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23306 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23307 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23308 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23309 aeabi_set_attribute_int (Tag_VFP_arch, 1);
23310
23311 /* Tag_ABI_HardFP_use. */
23312 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23313 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23314 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23315
23316 /* Tag_WMMX_arch. */
23317 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23318 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23319 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23320 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23321
23322 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23323 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23324 aeabi_set_attribute_int
23325 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23326 ? 2 : 1));
23327
23328 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23329 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23330 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23331
23332 /* Tag_DIV_use. */
23333 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23334 aeabi_set_attribute_int (Tag_DIV_use, 2);
23335 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23336 aeabi_set_attribute_int (Tag_DIV_use, 0);
23337 else
23338 aeabi_set_attribute_int (Tag_DIV_use, 1);
23339
23340 /* Tag_MP_extension_use. */
23341 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23342 aeabi_set_attribute_int (Tag_MPextension_use, 1);
23343
23344 /* Tag Virtualization_use. */
23345 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
23346 virt_sec |= 1;
23347 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23348 virt_sec |= 2;
23349 if (virt_sec != 0)
23350 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
23351 }
23352
23353 /* Add the default contents for the .ARM.attributes section. */
23354 void
23355 arm_md_end (void)
23356 {
23357 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23358 return;
23359
23360 aeabi_set_public_attributes ();
23361 }
23362 #endif /* OBJ_ELF */
23363
23364
23365 /* Parse a .cpu directive. */
23366
23367 static void
23368 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23369 {
23370 const struct arm_cpu_option_table *opt;
23371 char *name;
23372 char saved_char;
23373
23374 name = input_line_pointer;
23375 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23376 input_line_pointer++;
23377 saved_char = *input_line_pointer;
23378 *input_line_pointer = 0;
23379
23380 /* Skip the first "all" entry. */
23381 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23382 if (streq (opt->name, name))
23383 {
23384 mcpu_cpu_opt = &opt->value;
23385 selected_cpu = opt->value;
23386 if (opt->canonical_name)
23387 strcpy (selected_cpu_name, opt->canonical_name);
23388 else
23389 {
23390 int i;
23391 for (i = 0; opt->name[i]; i++)
23392 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23393 selected_cpu_name[i] = 0;
23394 }
23395 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23396 *input_line_pointer = saved_char;
23397 demand_empty_rest_of_line ();
23398 return;
23399 }
23400 as_bad (_("unknown cpu `%s'"), name);
23401 *input_line_pointer = saved_char;
23402 ignore_rest_of_line ();
23403 }
23404
23405
23406 /* Parse a .arch directive. */
23407
23408 static void
23409 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23410 {
23411 const struct arm_arch_option_table *opt;
23412 char saved_char;
23413 char *name;
23414
23415 name = input_line_pointer;
23416 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23417 input_line_pointer++;
23418 saved_char = *input_line_pointer;
23419 *input_line_pointer = 0;
23420
23421 /* Skip the first "all" entry. */
23422 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23423 if (streq (opt->name, name))
23424 {
23425 mcpu_cpu_opt = &opt->value;
23426 selected_cpu = opt->value;
23427 strcpy (selected_cpu_name, opt->name);
23428 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23429 *input_line_pointer = saved_char;
23430 demand_empty_rest_of_line ();
23431 return;
23432 }
23433
23434 as_bad (_("unknown architecture `%s'\n"), name);
23435 *input_line_pointer = saved_char;
23436 ignore_rest_of_line ();
23437 }
23438
23439
23440 /* Parse a .object_arch directive. */
23441
23442 static void
23443 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23444 {
23445 const struct arm_arch_option_table *opt;
23446 char saved_char;
23447 char *name;
23448
23449 name = input_line_pointer;
23450 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23451 input_line_pointer++;
23452 saved_char = *input_line_pointer;
23453 *input_line_pointer = 0;
23454
23455 /* Skip the first "all" entry. */
23456 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23457 if (streq (opt->name, name))
23458 {
23459 object_arch = &opt->value;
23460 *input_line_pointer = saved_char;
23461 demand_empty_rest_of_line ();
23462 return;
23463 }
23464
23465 as_bad (_("unknown architecture `%s'\n"), name);
23466 *input_line_pointer = saved_char;
23467 ignore_rest_of_line ();
23468 }
23469
23470 /* Parse a .arch_extension directive. */
23471
23472 static void
23473 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23474 {
23475 const struct arm_option_extension_value_table *opt;
23476 char saved_char;
23477 char *name;
23478 int adding_value = 1;
23479
23480 name = input_line_pointer;
23481 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23482 input_line_pointer++;
23483 saved_char = *input_line_pointer;
23484 *input_line_pointer = 0;
23485
23486 if (strlen (name) >= 2
23487 && strncmp (name, "no", 2) == 0)
23488 {
23489 adding_value = 0;
23490 name += 2;
23491 }
23492
23493 for (opt = arm_extensions; opt->name != NULL; opt++)
23494 if (streq (opt->name, name))
23495 {
23496 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23497 {
23498 as_bad (_("architectural extension `%s' is not allowed for the "
23499 "current base architecture"), name);
23500 break;
23501 }
23502
23503 if (adding_value)
23504 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23505 else
23506 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23507
23508 mcpu_cpu_opt = &selected_cpu;
23509 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23510 *input_line_pointer = saved_char;
23511 demand_empty_rest_of_line ();
23512 return;
23513 }
23514
23515 if (opt->name == NULL)
23516 as_bad (_("unknown architecture `%s'\n"), name);
23517
23518 *input_line_pointer = saved_char;
23519 ignore_rest_of_line ();
23520 }
23521
23522 /* Parse a .fpu directive. */
23523
23524 static void
23525 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23526 {
23527 const struct arm_option_fpu_value_table *opt;
23528 char saved_char;
23529 char *name;
23530
23531 name = input_line_pointer;
23532 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23533 input_line_pointer++;
23534 saved_char = *input_line_pointer;
23535 *input_line_pointer = 0;
23536
23537 for (opt = arm_fpus; opt->name != NULL; opt++)
23538 if (streq (opt->name, name))
23539 {
23540 mfpu_opt = &opt->value;
23541 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23542 *input_line_pointer = saved_char;
23543 demand_empty_rest_of_line ();
23544 return;
23545 }
23546
23547 as_bad (_("unknown floating point format `%s'\n"), name);
23548 *input_line_pointer = saved_char;
23549 ignore_rest_of_line ();
23550 }
23551
23552 /* Copy symbol information. */
23553
23554 void
23555 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23556 {
23557 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23558 }
23559
23560 #ifdef OBJ_ELF
23561 /* Given a symbolic attribute NAME, return the proper integer value.
23562 Returns -1 if the attribute is not known. */
23563
23564 int
23565 arm_convert_symbolic_attribute (const char *name)
23566 {
23567 static const struct
23568 {
23569 const char * name;
23570 const int tag;
23571 }
23572 attribute_table[] =
23573 {
23574 /* When you modify this table you should
23575 also modify the list in doc/c-arm.texi. */
23576 #define T(tag) {#tag, tag}
23577 T (Tag_CPU_raw_name),
23578 T (Tag_CPU_name),
23579 T (Tag_CPU_arch),
23580 T (Tag_CPU_arch_profile),
23581 T (Tag_ARM_ISA_use),
23582 T (Tag_THUMB_ISA_use),
23583 T (Tag_FP_arch),
23584 T (Tag_VFP_arch),
23585 T (Tag_WMMX_arch),
23586 T (Tag_Advanced_SIMD_arch),
23587 T (Tag_PCS_config),
23588 T (Tag_ABI_PCS_R9_use),
23589 T (Tag_ABI_PCS_RW_data),
23590 T (Tag_ABI_PCS_RO_data),
23591 T (Tag_ABI_PCS_GOT_use),
23592 T (Tag_ABI_PCS_wchar_t),
23593 T (Tag_ABI_FP_rounding),
23594 T (Tag_ABI_FP_denormal),
23595 T (Tag_ABI_FP_exceptions),
23596 T (Tag_ABI_FP_user_exceptions),
23597 T (Tag_ABI_FP_number_model),
23598 T (Tag_ABI_align_needed),
23599 T (Tag_ABI_align8_needed),
23600 T (Tag_ABI_align_preserved),
23601 T (Tag_ABI_align8_preserved),
23602 T (Tag_ABI_enum_size),
23603 T (Tag_ABI_HardFP_use),
23604 T (Tag_ABI_VFP_args),
23605 T (Tag_ABI_WMMX_args),
23606 T (Tag_ABI_optimization_goals),
23607 T (Tag_ABI_FP_optimization_goals),
23608 T (Tag_compatibility),
23609 T (Tag_CPU_unaligned_access),
23610 T (Tag_FP_HP_extension),
23611 T (Tag_VFP_HP_extension),
23612 T (Tag_ABI_FP_16bit_format),
23613 T (Tag_MPextension_use),
23614 T (Tag_DIV_use),
23615 T (Tag_nodefaults),
23616 T (Tag_also_compatible_with),
23617 T (Tag_conformance),
23618 T (Tag_T2EE_use),
23619 T (Tag_Virtualization_use),
23620 /* We deliberately do not include Tag_MPextension_use_legacy. */
23621 #undef T
23622 };
23623 unsigned int i;
23624
23625 if (name == NULL)
23626 return -1;
23627
23628 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
23629 if (streq (name, attribute_table[i].name))
23630 return attribute_table[i].tag;
23631
23632 return -1;
23633 }
23634
23635
23636 /* Apply sym value for relocations only in the case that
23637 they are for local symbols and you have the respective
23638 architectural feature for blx and simple switches. */
23639 int
23640 arm_apply_sym_value (struct fix * fixP)
23641 {
23642 if (fixP->fx_addsy
23643 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23644 && !S_IS_EXTERNAL (fixP->fx_addsy))
23645 {
23646 switch (fixP->fx_r_type)
23647 {
23648 case BFD_RELOC_ARM_PCREL_BLX:
23649 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23650 if (ARM_IS_FUNC (fixP->fx_addsy))
23651 return 1;
23652 break;
23653
23654 case BFD_RELOC_ARM_PCREL_CALL:
23655 case BFD_RELOC_THUMB_PCREL_BLX:
23656 if (THUMB_IS_FUNC (fixP->fx_addsy))
23657 return 1;
23658 break;
23659
23660 default:
23661 break;
23662 }
23663
23664 }
23665 return 0;
23666 }
23667 #endif /* OBJ_ELF */
This page took 0.528381 seconds and 5 git commands to generate.