* gas/config/tc-arm.c (do_t_mov_cmp): Fix reporting of unpredictable and
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
188 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
200
201 static const arm_feature_set arm_arch_any = ARM_ANY;
202 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
203 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
204 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
205
206 static const arm_feature_set arm_cext_iwmmxt2 =
207 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
208 static const arm_feature_set arm_cext_iwmmxt =
209 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
210 static const arm_feature_set arm_cext_xscale =
211 ARM_FEATURE (0, ARM_CEXT_XSCALE);
212 static const arm_feature_set arm_cext_maverick =
213 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
214 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
215 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
216 static const arm_feature_set fpu_vfp_ext_v1xd =
217 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
218 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
219 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
220 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
221 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
222 static const arm_feature_set fpu_vfp_ext_d32 =
223 ARM_FEATURE (0, FPU_VFP_EXT_D32);
224 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
225 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
226 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
227 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
228 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
229 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
230
231 static int mfloat_abi_opt = -1;
232 /* Record user cpu selection for object attributes. */
233 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
234 /* Must be long enough to hold any of the names in arm_cpus. */
235 static char selected_cpu_name[16];
236 #ifdef OBJ_ELF
237 # ifdef EABI_DEFAULT
238 static int meabi_flags = EABI_DEFAULT;
239 # else
240 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
241 # endif
242
243 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
244
245 bfd_boolean
246 arm_is_eabi (void)
247 {
248 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
249 }
250 #endif
251
252 #ifdef OBJ_ELF
253 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
254 symbolS * GOT_symbol;
255 #endif
256
257 /* 0: assemble for ARM,
258 1: assemble for Thumb,
259 2: assemble for Thumb even though target CPU does not support thumb
260 instructions. */
261 static int thumb_mode = 0;
262 /* A value distinct from the possible values for thumb_mode that we
263 can use to record whether thumb_mode has been copied into the
264 tc_frag_data field of a frag. */
265 #define MODE_RECORDED (1 << 4)
266
267 /* Specifies the intrinsic IT insn behavior mode. */
268 enum implicit_it_mode
269 {
270 IMPLICIT_IT_MODE_NEVER = 0x00,
271 IMPLICIT_IT_MODE_ARM = 0x01,
272 IMPLICIT_IT_MODE_THUMB = 0x02,
273 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
274 };
275 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
276
277 /* If unified_syntax is true, we are processing the new unified
278 ARM/Thumb syntax. Important differences from the old ARM mode:
279
280 - Immediate operands do not require a # prefix.
281 - Conditional affixes always appear at the end of the
282 instruction. (For backward compatibility, those instructions
283 that formerly had them in the middle, continue to accept them
284 there.)
285 - The IT instruction may appear, and if it does is validated
286 against subsequent conditional affixes. It does not generate
287 machine code.
288
289 Important differences from the old Thumb mode:
290
291 - Immediate operands do not require a # prefix.
292 - Most of the V6T2 instructions are only available in unified mode.
293 - The .N and .W suffixes are recognized and honored (it is an error
294 if they cannot be honored).
295 - All instructions set the flags if and only if they have an 's' affix.
296 - Conditional affixes may be used. They are validated against
297 preceding IT instructions. Unlike ARM mode, you cannot use a
298 conditional affix except in the scope of an IT instruction. */
299
300 static bfd_boolean unified_syntax = FALSE;
301
302 enum neon_el_type
303 {
304 NT_invtype,
305 NT_untyped,
306 NT_integer,
307 NT_float,
308 NT_poly,
309 NT_signed,
310 NT_unsigned
311 };
312
313 struct neon_type_el
314 {
315 enum neon_el_type type;
316 unsigned size;
317 };
318
319 #define NEON_MAX_TYPE_ELS 4
320
321 struct neon_type
322 {
323 struct neon_type_el el[NEON_MAX_TYPE_ELS];
324 unsigned elems;
325 };
326
327 enum it_instruction_type
328 {
329 OUTSIDE_IT_INSN,
330 INSIDE_IT_INSN,
331 INSIDE_IT_LAST_INSN,
332 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
333 if inside, should be the last one. */
334 NEUTRAL_IT_INSN, /* This could be either inside or outside,
335 i.e. BKPT and NOP. */
336 IT_INSN /* The IT insn has been parsed. */
337 };
338
339 struct arm_it
340 {
341 const char * error;
342 unsigned long instruction;
343 int size;
344 int size_req;
345 int cond;
346 /* "uncond_value" is set to the value in place of the conditional field in
347 unconditional versions of the instruction, or -1 if nothing is
348 appropriate. */
349 int uncond_value;
350 struct neon_type vectype;
351 /* This does not indicate an actual NEON instruction, only that
352 the mnemonic accepts neon-style type suffixes. */
353 int is_neon;
354 /* Set to the opcode if the instruction needs relaxation.
355 Zero if the instruction is not relaxed. */
356 unsigned long relax;
357 struct
358 {
359 bfd_reloc_code_real_type type;
360 expressionS exp;
361 int pc_rel;
362 } reloc;
363
364 enum it_instruction_type it_insn_type;
365
366 struct
367 {
368 unsigned reg;
369 signed int imm;
370 struct neon_type_el vectype;
371 unsigned present : 1; /* Operand present. */
372 unsigned isreg : 1; /* Operand was a register. */
373 unsigned immisreg : 1; /* .imm field is a second register. */
374 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
375 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
376 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
377 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
378 instructions. This allows us to disambiguate ARM <-> vector insns. */
379 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
380 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
381 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
382 unsigned issingle : 1; /* Operand is VFP single-precision register. */
383 unsigned hasreloc : 1; /* Operand has relocation suffix. */
384 unsigned writeback : 1; /* Operand has trailing ! */
385 unsigned preind : 1; /* Preindexed address. */
386 unsigned postind : 1; /* Postindexed address. */
387 unsigned negative : 1; /* Index register was negated. */
388 unsigned shifted : 1; /* Shift applied to operation. */
389 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
390 } operands[6];
391 };
392
393 static struct arm_it inst;
394
395 #define NUM_FLOAT_VALS 8
396
397 const char * fp_const[] =
398 {
399 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
400 };
401
402 /* Number of littlenums required to hold an extended precision number. */
403 #define MAX_LITTLENUMS 6
404
405 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
406
407 #define FAIL (-1)
408 #define SUCCESS (0)
409
410 #define SUFF_S 1
411 #define SUFF_D 2
412 #define SUFF_E 3
413 #define SUFF_P 4
414
415 #define CP_T_X 0x00008000
416 #define CP_T_Y 0x00400000
417
418 #define CONDS_BIT 0x00100000
419 #define LOAD_BIT 0x00100000
420
421 #define DOUBLE_LOAD_FLAG 0x00000001
422
423 struct asm_cond
424 {
425 const char * template_name;
426 unsigned long value;
427 };
428
429 #define COND_ALWAYS 0xE
430
431 struct asm_psr
432 {
433 const char * template_name;
434 unsigned long field;
435 };
436
437 struct asm_barrier_opt
438 {
439 const char * template_name;
440 unsigned long value;
441 };
442
443 /* The bit that distinguishes CPSR and SPSR. */
444 #define SPSR_BIT (1 << 22)
445
446 /* The individual PSR flag bits. */
447 #define PSR_c (1 << 16)
448 #define PSR_x (1 << 17)
449 #define PSR_s (1 << 18)
450 #define PSR_f (1 << 19)
451
452 struct reloc_entry
453 {
454 char * name;
455 bfd_reloc_code_real_type reloc;
456 };
457
458 enum vfp_reg_pos
459 {
460 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
461 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
462 };
463
464 enum vfp_ldstm_type
465 {
466 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
467 };
468
469 /* Bits for DEFINED field in neon_typed_alias. */
470 #define NTA_HASTYPE 1
471 #define NTA_HASINDEX 2
472
473 struct neon_typed_alias
474 {
475 unsigned char defined;
476 unsigned char index;
477 struct neon_type_el eltype;
478 };
479
480 /* ARM register categories. This includes coprocessor numbers and various
481 architecture extensions' registers. */
482 enum arm_reg_type
483 {
484 REG_TYPE_RN,
485 REG_TYPE_CP,
486 REG_TYPE_CN,
487 REG_TYPE_FN,
488 REG_TYPE_VFS,
489 REG_TYPE_VFD,
490 REG_TYPE_NQ,
491 REG_TYPE_VFSD,
492 REG_TYPE_NDQ,
493 REG_TYPE_NSDQ,
494 REG_TYPE_VFC,
495 REG_TYPE_MVF,
496 REG_TYPE_MVD,
497 REG_TYPE_MVFX,
498 REG_TYPE_MVDX,
499 REG_TYPE_MVAX,
500 REG_TYPE_DSPSC,
501 REG_TYPE_MMXWR,
502 REG_TYPE_MMXWC,
503 REG_TYPE_MMXWCG,
504 REG_TYPE_XSCALE,
505 };
506
507 /* Structure for a hash table entry for a register.
508 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
509 information which states whether a vector type or index is specified (for a
510 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
511 struct reg_entry
512 {
513 const char * name;
514 unsigned char number;
515 unsigned char type;
516 unsigned char builtin;
517 struct neon_typed_alias * neon;
518 };
519
520 /* Diagnostics used when we don't get a register of the expected type. */
521 const char * const reg_expected_msgs[] =
522 {
523 N_("ARM register expected"),
524 N_("bad or missing co-processor number"),
525 N_("co-processor register expected"),
526 N_("FPA register expected"),
527 N_("VFP single precision register expected"),
528 N_("VFP/Neon double precision register expected"),
529 N_("Neon quad precision register expected"),
530 N_("VFP single or double precision register expected"),
531 N_("Neon double or quad precision register expected"),
532 N_("VFP single, double or Neon quad precision register expected"),
533 N_("VFP system register expected"),
534 N_("Maverick MVF register expected"),
535 N_("Maverick MVD register expected"),
536 N_("Maverick MVFX register expected"),
537 N_("Maverick MVDX register expected"),
538 N_("Maverick MVAX register expected"),
539 N_("Maverick DSPSC register expected"),
540 N_("iWMMXt data register expected"),
541 N_("iWMMXt control register expected"),
542 N_("iWMMXt scalar register expected"),
543 N_("XScale accumulator register expected"),
544 };
545
546 /* Some well known registers that we refer to directly elsewhere. */
547 #define REG_SP 13
548 #define REG_LR 14
549 #define REG_PC 15
550
551 /* ARM instructions take 4bytes in the object file, Thumb instructions
552 take 2: */
553 #define INSN_SIZE 4
554
555 struct asm_opcode
556 {
557 /* Basic string to match. */
558 const char * template_name;
559
560 /* Parameters to instruction. */
561 unsigned int operands[8];
562
563 /* Conditional tag - see opcode_lookup. */
564 unsigned int tag : 4;
565
566 /* Basic instruction code. */
567 unsigned int avalue : 28;
568
569 /* Thumb-format instruction code. */
570 unsigned int tvalue;
571
572 /* Which architecture variant provides this instruction. */
573 const arm_feature_set * avariant;
574 const arm_feature_set * tvariant;
575
576 /* Function to call to encode instruction in ARM format. */
577 void (* aencode) (void);
578
579 /* Function to call to encode instruction in Thumb format. */
580 void (* tencode) (void);
581 };
582
583 /* Defines for various bits that we will want to toggle. */
584 #define INST_IMMEDIATE 0x02000000
585 #define OFFSET_REG 0x02000000
586 #define HWOFFSET_IMM 0x00400000
587 #define SHIFT_BY_REG 0x00000010
588 #define PRE_INDEX 0x01000000
589 #define INDEX_UP 0x00800000
590 #define WRITE_BACK 0x00200000
591 #define LDM_TYPE_2_OR_3 0x00400000
592 #define CPSI_MMOD 0x00020000
593
594 #define LITERAL_MASK 0xf000f000
595 #define OPCODE_MASK 0xfe1fffff
596 #define V4_STR_BIT 0x00000020
597
598 #define T2_SUBS_PC_LR 0xf3de8f00
599
600 #define DATA_OP_SHIFT 21
601
602 #define T2_OPCODE_MASK 0xfe1fffff
603 #define T2_DATA_OP_SHIFT 21
604
605 /* Codes to distinguish the arithmetic instructions. */
606 #define OPCODE_AND 0
607 #define OPCODE_EOR 1
608 #define OPCODE_SUB 2
609 #define OPCODE_RSB 3
610 #define OPCODE_ADD 4
611 #define OPCODE_ADC 5
612 #define OPCODE_SBC 6
613 #define OPCODE_RSC 7
614 #define OPCODE_TST 8
615 #define OPCODE_TEQ 9
616 #define OPCODE_CMP 10
617 #define OPCODE_CMN 11
618 #define OPCODE_ORR 12
619 #define OPCODE_MOV 13
620 #define OPCODE_BIC 14
621 #define OPCODE_MVN 15
622
623 #define T2_OPCODE_AND 0
624 #define T2_OPCODE_BIC 1
625 #define T2_OPCODE_ORR 2
626 #define T2_OPCODE_ORN 3
627 #define T2_OPCODE_EOR 4
628 #define T2_OPCODE_ADD 8
629 #define T2_OPCODE_ADC 10
630 #define T2_OPCODE_SBC 11
631 #define T2_OPCODE_SUB 13
632 #define T2_OPCODE_RSB 14
633
634 #define T_OPCODE_MUL 0x4340
635 #define T_OPCODE_TST 0x4200
636 #define T_OPCODE_CMN 0x42c0
637 #define T_OPCODE_NEG 0x4240
638 #define T_OPCODE_MVN 0x43c0
639
640 #define T_OPCODE_ADD_R3 0x1800
641 #define T_OPCODE_SUB_R3 0x1a00
642 #define T_OPCODE_ADD_HI 0x4400
643 #define T_OPCODE_ADD_ST 0xb000
644 #define T_OPCODE_SUB_ST 0xb080
645 #define T_OPCODE_ADD_SP 0xa800
646 #define T_OPCODE_ADD_PC 0xa000
647 #define T_OPCODE_ADD_I8 0x3000
648 #define T_OPCODE_SUB_I8 0x3800
649 #define T_OPCODE_ADD_I3 0x1c00
650 #define T_OPCODE_SUB_I3 0x1e00
651
652 #define T_OPCODE_ASR_R 0x4100
653 #define T_OPCODE_LSL_R 0x4080
654 #define T_OPCODE_LSR_R 0x40c0
655 #define T_OPCODE_ROR_R 0x41c0
656 #define T_OPCODE_ASR_I 0x1000
657 #define T_OPCODE_LSL_I 0x0000
658 #define T_OPCODE_LSR_I 0x0800
659
660 #define T_OPCODE_MOV_I8 0x2000
661 #define T_OPCODE_CMP_I8 0x2800
662 #define T_OPCODE_CMP_LR 0x4280
663 #define T_OPCODE_MOV_HR 0x4600
664 #define T_OPCODE_CMP_HR 0x4500
665
666 #define T_OPCODE_LDR_PC 0x4800
667 #define T_OPCODE_LDR_SP 0x9800
668 #define T_OPCODE_STR_SP 0x9000
669 #define T_OPCODE_LDR_IW 0x6800
670 #define T_OPCODE_STR_IW 0x6000
671 #define T_OPCODE_LDR_IH 0x8800
672 #define T_OPCODE_STR_IH 0x8000
673 #define T_OPCODE_LDR_IB 0x7800
674 #define T_OPCODE_STR_IB 0x7000
675 #define T_OPCODE_LDR_RW 0x5800
676 #define T_OPCODE_STR_RW 0x5000
677 #define T_OPCODE_LDR_RH 0x5a00
678 #define T_OPCODE_STR_RH 0x5200
679 #define T_OPCODE_LDR_RB 0x5c00
680 #define T_OPCODE_STR_RB 0x5400
681
682 #define T_OPCODE_PUSH 0xb400
683 #define T_OPCODE_POP 0xbc00
684
685 #define T_OPCODE_BRANCH 0xe000
686
687 #define THUMB_SIZE 2 /* Size of thumb instruction. */
688 #define THUMB_PP_PC_LR 0x0100
689 #define THUMB_LOAD_BIT 0x0800
690 #define THUMB2_LOAD_BIT 0x00100000
691
692 #define BAD_ARGS _("bad arguments to instruction")
693 #define BAD_SP _("r13 not allowed here")
694 #define BAD_PC _("r15 not allowed here")
695 #define BAD_COND _("instruction cannot be conditional")
696 #define BAD_OVERLAP _("registers may not be the same")
697 #define BAD_HIREG _("lo register required")
698 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
699 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
700 #define BAD_BRANCH _("branch must be last instruction in IT block")
701 #define BAD_NOT_IT _("instruction not allowed in IT block")
702 #define BAD_FPU _("selected FPU does not support instruction")
703 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
704 #define BAD_IT_COND _("incorrect condition in IT block")
705 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
706 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
707 #define BAD_PC_ADDRESSING \
708 _("cannot use register index with PC-relative addressing")
709 #define BAD_PC_WRITEBACK \
710 _("cannot use writeback with PC-relative addressing")
711
712 static struct hash_control * arm_ops_hsh;
713 static struct hash_control * arm_cond_hsh;
714 static struct hash_control * arm_shift_hsh;
715 static struct hash_control * arm_psr_hsh;
716 static struct hash_control * arm_v7m_psr_hsh;
717 static struct hash_control * arm_reg_hsh;
718 static struct hash_control * arm_reloc_hsh;
719 static struct hash_control * arm_barrier_opt_hsh;
720
721 /* Stuff needed to resolve the label ambiguity
722 As:
723 ...
724 label: <insn>
725 may differ from:
726 ...
727 label:
728 <insn> */
729
730 symbolS * last_label_seen;
731 static int label_is_thumb_function_name = FALSE;
732
733 /* Literal pool structure. Held on a per-section
734 and per-sub-section basis. */
735
736 #define MAX_LITERAL_POOL_SIZE 1024
737 typedef struct literal_pool
738 {
739 expressionS literals [MAX_LITERAL_POOL_SIZE];
740 unsigned int next_free_entry;
741 unsigned int id;
742 symbolS * symbol;
743 segT section;
744 subsegT sub_section;
745 struct literal_pool * next;
746 } literal_pool;
747
748 /* Pointer to a linked list of literal pools. */
749 literal_pool * list_of_pools = NULL;
750
751 #ifdef OBJ_ELF
752 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
753 #else
754 static struct current_it now_it;
755 #endif
756
757 static inline int
758 now_it_compatible (int cond)
759 {
760 return (cond & ~1) == (now_it.cc & ~1);
761 }
762
763 static inline int
764 conditional_insn (void)
765 {
766 return inst.cond != COND_ALWAYS;
767 }
768
769 static int in_it_block (void);
770
771 static int handle_it_state (void);
772
773 static void force_automatic_it_block_close (void);
774
775 static void it_fsm_post_encode (void);
776
777 #define set_it_insn_type(type) \
778 do \
779 { \
780 inst.it_insn_type = type; \
781 if (handle_it_state () == FAIL) \
782 return; \
783 } \
784 while (0)
785
786 #define set_it_insn_type_nonvoid(type, failret) \
787 do \
788 { \
789 inst.it_insn_type = type; \
790 if (handle_it_state () == FAIL) \
791 return failret; \
792 } \
793 while(0)
794
795 #define set_it_insn_type_last() \
796 do \
797 { \
798 if (inst.cond == COND_ALWAYS) \
799 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
800 else \
801 set_it_insn_type (INSIDE_IT_LAST_INSN); \
802 } \
803 while (0)
804
805 /* Pure syntax. */
806
807 /* This array holds the chars that always start a comment. If the
808 pre-processor is disabled, these aren't very useful. */
809 const char comment_chars[] = "@";
810
811 /* This array holds the chars that only start a comment at the beginning of
812 a line. If the line seems to have the form '# 123 filename'
813 .line and .file directives will appear in the pre-processed output. */
814 /* Note that input_file.c hand checks for '#' at the beginning of the
815 first line of the input file. This is because the compiler outputs
816 #NO_APP at the beginning of its output. */
817 /* Also note that comments like this one will always work. */
818 const char line_comment_chars[] = "#";
819
820 const char line_separator_chars[] = ";";
821
822 /* Chars that can be used to separate mant
823 from exp in floating point numbers. */
824 const char EXP_CHARS[] = "eE";
825
826 /* Chars that mean this number is a floating point constant. */
827 /* As in 0f12.456 */
828 /* or 0d1.2345e12 */
829
830 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
831
832 /* Prefix characters that indicate the start of an immediate
833 value. */
834 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
835
836 /* Separator character handling. */
837
838 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
839
840 static inline int
841 skip_past_char (char ** str, char c)
842 {
843 if (**str == c)
844 {
845 (*str)++;
846 return SUCCESS;
847 }
848 else
849 return FAIL;
850 }
851
852 #define skip_past_comma(str) skip_past_char (str, ',')
853
854 /* Arithmetic expressions (possibly involving symbols). */
855
856 /* Return TRUE if anything in the expression is a bignum. */
857
858 static int
859 walk_no_bignums (symbolS * sp)
860 {
861 if (symbol_get_value_expression (sp)->X_op == O_big)
862 return 1;
863
864 if (symbol_get_value_expression (sp)->X_add_symbol)
865 {
866 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
867 || (symbol_get_value_expression (sp)->X_op_symbol
868 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
869 }
870
871 return 0;
872 }
873
874 static int in_my_get_expression = 0;
875
876 /* Third argument to my_get_expression. */
877 #define GE_NO_PREFIX 0
878 #define GE_IMM_PREFIX 1
879 #define GE_OPT_PREFIX 2
880 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
881 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
882 #define GE_OPT_PREFIX_BIG 3
883
884 static int
885 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
886 {
887 char * save_in;
888 segT seg;
889
890 /* In unified syntax, all prefixes are optional. */
891 if (unified_syntax)
892 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
893 : GE_OPT_PREFIX;
894
895 switch (prefix_mode)
896 {
897 case GE_NO_PREFIX: break;
898 case GE_IMM_PREFIX:
899 if (!is_immediate_prefix (**str))
900 {
901 inst.error = _("immediate expression requires a # prefix");
902 return FAIL;
903 }
904 (*str)++;
905 break;
906 case GE_OPT_PREFIX:
907 case GE_OPT_PREFIX_BIG:
908 if (is_immediate_prefix (**str))
909 (*str)++;
910 break;
911 default: abort ();
912 }
913
914 memset (ep, 0, sizeof (expressionS));
915
916 save_in = input_line_pointer;
917 input_line_pointer = *str;
918 in_my_get_expression = 1;
919 seg = expression (ep);
920 in_my_get_expression = 0;
921
922 if (ep->X_op == O_illegal || ep->X_op == O_absent)
923 {
924 /* We found a bad or missing expression in md_operand(). */
925 *str = input_line_pointer;
926 input_line_pointer = save_in;
927 if (inst.error == NULL)
928 inst.error = (ep->X_op == O_absent
929 ? _("missing expression") :_("bad expression"));
930 return 1;
931 }
932
933 #ifdef OBJ_AOUT
934 if (seg != absolute_section
935 && seg != text_section
936 && seg != data_section
937 && seg != bss_section
938 && seg != undefined_section)
939 {
940 inst.error = _("bad segment");
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 return 1;
944 }
945 #else
946 (void) seg;
947 #endif
948
949 /* Get rid of any bignums now, so that we don't generate an error for which
950 we can't establish a line number later on. Big numbers are never valid
951 in instructions, which is where this routine is always called. */
952 if (prefix_mode != GE_OPT_PREFIX_BIG
953 && (ep->X_op == O_big
954 || (ep->X_add_symbol
955 && (walk_no_bignums (ep->X_add_symbol)
956 || (ep->X_op_symbol
957 && walk_no_bignums (ep->X_op_symbol))))))
958 {
959 inst.error = _("invalid constant");
960 *str = input_line_pointer;
961 input_line_pointer = save_in;
962 return 1;
963 }
964
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 return 0;
968 }
969
970 /* Turn a string in input_line_pointer into a floating point constant
971 of type TYPE, and store the appropriate bytes in *LITP. The number
972 of LITTLENUMS emitted is stored in *SIZEP. An error message is
973 returned, or NULL on OK.
974
975 Note that fp constants aren't represent in the normal way on the ARM.
976 In big endian mode, things are as expected. However, in little endian
977 mode fp constants are big-endian word-wise, and little-endian byte-wise
978 within the words. For example, (double) 1.1 in big endian mode is
979 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
980 the byte sequence 99 99 f1 3f 9a 99 99 99.
981
982 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
983
984 char *
985 md_atof (int type, char * litP, int * sizeP)
986 {
987 int prec;
988 LITTLENUM_TYPE words[MAX_LITTLENUMS];
989 char *t;
990 int i;
991
992 switch (type)
993 {
994 case 'f':
995 case 'F':
996 case 's':
997 case 'S':
998 prec = 2;
999 break;
1000
1001 case 'd':
1002 case 'D':
1003 case 'r':
1004 case 'R':
1005 prec = 4;
1006 break;
1007
1008 case 'x':
1009 case 'X':
1010 prec = 5;
1011 break;
1012
1013 case 'p':
1014 case 'P':
1015 prec = 5;
1016 break;
1017
1018 default:
1019 *sizeP = 0;
1020 return _("Unrecognized or unsupported floating point constant");
1021 }
1022
1023 t = atof_ieee (input_line_pointer, type, words);
1024 if (t)
1025 input_line_pointer = t;
1026 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1027
1028 if (target_big_endian)
1029 {
1030 for (i = 0; i < prec; i++)
1031 {
1032 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1033 litP += sizeof (LITTLENUM_TYPE);
1034 }
1035 }
1036 else
1037 {
1038 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1039 for (i = prec - 1; i >= 0; i--)
1040 {
1041 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1042 litP += sizeof (LITTLENUM_TYPE);
1043 }
1044 else
1045 /* For a 4 byte float the order of elements in `words' is 1 0.
1046 For an 8 byte float the order is 1 0 3 2. */
1047 for (i = 0; i < prec; i += 2)
1048 {
1049 md_number_to_chars (litP, (valueT) words[i + 1],
1050 sizeof (LITTLENUM_TYPE));
1051 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1052 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1053 litP += 2 * sizeof (LITTLENUM_TYPE);
1054 }
1055 }
1056
1057 return NULL;
1058 }
1059
1060 /* We handle all bad expressions here, so that we can report the faulty
1061 instruction in the error message. */
1062 void
1063 md_operand (expressionS * exp)
1064 {
1065 if (in_my_get_expression)
1066 exp->X_op = O_illegal;
1067 }
1068
1069 /* Immediate values. */
1070
1071 /* Generic immediate-value read function for use in directives.
1072 Accepts anything that 'expression' can fold to a constant.
1073 *val receives the number. */
1074 #ifdef OBJ_ELF
1075 static int
1076 immediate_for_directive (int *val)
1077 {
1078 expressionS exp;
1079 exp.X_op = O_illegal;
1080
1081 if (is_immediate_prefix (*input_line_pointer))
1082 {
1083 input_line_pointer++;
1084 expression (&exp);
1085 }
1086
1087 if (exp.X_op != O_constant)
1088 {
1089 as_bad (_("expected #constant"));
1090 ignore_rest_of_line ();
1091 return FAIL;
1092 }
1093 *val = exp.X_add_number;
1094 return SUCCESS;
1095 }
1096 #endif
1097
1098 /* Register parsing. */
1099
1100 /* Generic register parser. CCP points to what should be the
1101 beginning of a register name. If it is indeed a valid register
1102 name, advance CCP over it and return the reg_entry structure;
1103 otherwise return NULL. Does not issue diagnostics. */
1104
1105 static struct reg_entry *
1106 arm_reg_parse_multi (char **ccp)
1107 {
1108 char *start = *ccp;
1109 char *p;
1110 struct reg_entry *reg;
1111
1112 #ifdef REGISTER_PREFIX
1113 if (*start != REGISTER_PREFIX)
1114 return NULL;
1115 start++;
1116 #endif
1117 #ifdef OPTIONAL_REGISTER_PREFIX
1118 if (*start == OPTIONAL_REGISTER_PREFIX)
1119 start++;
1120 #endif
1121
1122 p = start;
1123 if (!ISALPHA (*p) || !is_name_beginner (*p))
1124 return NULL;
1125
1126 do
1127 p++;
1128 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1129
1130 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1131
1132 if (!reg)
1133 return NULL;
1134
1135 *ccp = p;
1136 return reg;
1137 }
1138
1139 static int
1140 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1141 enum arm_reg_type type)
1142 {
1143 /* Alternative syntaxes are accepted for a few register classes. */
1144 switch (type)
1145 {
1146 case REG_TYPE_MVF:
1147 case REG_TYPE_MVD:
1148 case REG_TYPE_MVFX:
1149 case REG_TYPE_MVDX:
1150 /* Generic coprocessor register names are allowed for these. */
1151 if (reg && reg->type == REG_TYPE_CN)
1152 return reg->number;
1153 break;
1154
1155 case REG_TYPE_CP:
1156 /* For backward compatibility, a bare number is valid here. */
1157 {
1158 unsigned long processor = strtoul (start, ccp, 10);
1159 if (*ccp != start && processor <= 15)
1160 return processor;
1161 }
1162
1163 case REG_TYPE_MMXWC:
1164 /* WC includes WCG. ??? I'm not sure this is true for all
1165 instructions that take WC registers. */
1166 if (reg && reg->type == REG_TYPE_MMXWCG)
1167 return reg->number;
1168 break;
1169
1170 default:
1171 break;
1172 }
1173
1174 return FAIL;
1175 }
1176
1177 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1178 return value is the register number or FAIL. */
1179
1180 static int
1181 arm_reg_parse (char **ccp, enum arm_reg_type type)
1182 {
1183 char *start = *ccp;
1184 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1185 int ret;
1186
1187 /* Do not allow a scalar (reg+index) to parse as a register. */
1188 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1189 return FAIL;
1190
1191 if (reg && reg->type == type)
1192 return reg->number;
1193
1194 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1195 return ret;
1196
1197 *ccp = start;
1198 return FAIL;
1199 }
1200
1201 /* Parse a Neon type specifier. *STR should point at the leading '.'
1202 character. Does no verification at this stage that the type fits the opcode
1203 properly. E.g.,
1204
1205 .i32.i32.s16
1206 .s32.f32
1207 .u16
1208
1209 Can all be legally parsed by this function.
1210
1211 Fills in neon_type struct pointer with parsed information, and updates STR
1212 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1213 type, FAIL if not. */
1214
1215 static int
1216 parse_neon_type (struct neon_type *type, char **str)
1217 {
1218 char *ptr = *str;
1219
1220 if (type)
1221 type->elems = 0;
1222
1223 while (type->elems < NEON_MAX_TYPE_ELS)
1224 {
1225 enum neon_el_type thistype = NT_untyped;
1226 unsigned thissize = -1u;
1227
1228 if (*ptr != '.')
1229 break;
1230
1231 ptr++;
1232
1233 /* Just a size without an explicit type. */
1234 if (ISDIGIT (*ptr))
1235 goto parsesize;
1236
1237 switch (TOLOWER (*ptr))
1238 {
1239 case 'i': thistype = NT_integer; break;
1240 case 'f': thistype = NT_float; break;
1241 case 'p': thistype = NT_poly; break;
1242 case 's': thistype = NT_signed; break;
1243 case 'u': thistype = NT_unsigned; break;
1244 case 'd':
1245 thistype = NT_float;
1246 thissize = 64;
1247 ptr++;
1248 goto done;
1249 default:
1250 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1251 return FAIL;
1252 }
1253
1254 ptr++;
1255
1256 /* .f is an abbreviation for .f32. */
1257 if (thistype == NT_float && !ISDIGIT (*ptr))
1258 thissize = 32;
1259 else
1260 {
1261 parsesize:
1262 thissize = strtoul (ptr, &ptr, 10);
1263
1264 if (thissize != 8 && thissize != 16 && thissize != 32
1265 && thissize != 64)
1266 {
1267 as_bad (_("bad size %d in type specifier"), thissize);
1268 return FAIL;
1269 }
1270 }
1271
1272 done:
1273 if (type)
1274 {
1275 type->el[type->elems].type = thistype;
1276 type->el[type->elems].size = thissize;
1277 type->elems++;
1278 }
1279 }
1280
1281 /* Empty/missing type is not a successful parse. */
1282 if (type->elems == 0)
1283 return FAIL;
1284
1285 *str = ptr;
1286
1287 return SUCCESS;
1288 }
1289
1290 /* Errors may be set multiple times during parsing or bit encoding
1291 (particularly in the Neon bits), but usually the earliest error which is set
1292 will be the most meaningful. Avoid overwriting it with later (cascading)
1293 errors by calling this function. */
1294
1295 static void
1296 first_error (const char *err)
1297 {
1298 if (!inst.error)
1299 inst.error = err;
1300 }
1301
1302 /* Parse a single type, e.g. ".s32", leading period included. */
1303 static int
1304 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1305 {
1306 char *str = *ccp;
1307 struct neon_type optype;
1308
1309 if (*str == '.')
1310 {
1311 if (parse_neon_type (&optype, &str) == SUCCESS)
1312 {
1313 if (optype.elems == 1)
1314 *vectype = optype.el[0];
1315 else
1316 {
1317 first_error (_("only one type should be specified for operand"));
1318 return FAIL;
1319 }
1320 }
1321 else
1322 {
1323 first_error (_("vector type expected"));
1324 return FAIL;
1325 }
1326 }
1327 else
1328 return FAIL;
1329
1330 *ccp = str;
1331
1332 return SUCCESS;
1333 }
1334
1335 /* Special meanings for indices (which have a range of 0-7), which will fit into
1336 a 4-bit integer. */
1337
1338 #define NEON_ALL_LANES 15
1339 #define NEON_INTERLEAVE_LANES 14
1340
1341 /* Parse either a register or a scalar, with an optional type. Return the
1342 register number, and optionally fill in the actual type of the register
1343 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1344 type/index information in *TYPEINFO. */
1345
1346 static int
1347 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1348 enum arm_reg_type *rtype,
1349 struct neon_typed_alias *typeinfo)
1350 {
1351 char *str = *ccp;
1352 struct reg_entry *reg = arm_reg_parse_multi (&str);
1353 struct neon_typed_alias atype;
1354 struct neon_type_el parsetype;
1355
1356 atype.defined = 0;
1357 atype.index = -1;
1358 atype.eltype.type = NT_invtype;
1359 atype.eltype.size = -1;
1360
1361 /* Try alternate syntax for some types of register. Note these are mutually
1362 exclusive with the Neon syntax extensions. */
1363 if (reg == NULL)
1364 {
1365 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1366 if (altreg != FAIL)
1367 *ccp = str;
1368 if (typeinfo)
1369 *typeinfo = atype;
1370 return altreg;
1371 }
1372
1373 /* Undo polymorphism when a set of register types may be accepted. */
1374 if ((type == REG_TYPE_NDQ
1375 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1376 || (type == REG_TYPE_VFSD
1377 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1378 || (type == REG_TYPE_NSDQ
1379 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1380 || reg->type == REG_TYPE_NQ))
1381 || (type == REG_TYPE_MMXWC
1382 && (reg->type == REG_TYPE_MMXWCG)))
1383 type = (enum arm_reg_type) reg->type;
1384
1385 if (type != reg->type)
1386 return FAIL;
1387
1388 if (reg->neon)
1389 atype = *reg->neon;
1390
1391 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1392 {
1393 if ((atype.defined & NTA_HASTYPE) != 0)
1394 {
1395 first_error (_("can't redefine type for operand"));
1396 return FAIL;
1397 }
1398 atype.defined |= NTA_HASTYPE;
1399 atype.eltype = parsetype;
1400 }
1401
1402 if (skip_past_char (&str, '[') == SUCCESS)
1403 {
1404 if (type != REG_TYPE_VFD)
1405 {
1406 first_error (_("only D registers may be indexed"));
1407 return FAIL;
1408 }
1409
1410 if ((atype.defined & NTA_HASINDEX) != 0)
1411 {
1412 first_error (_("can't change index for operand"));
1413 return FAIL;
1414 }
1415
1416 atype.defined |= NTA_HASINDEX;
1417
1418 if (skip_past_char (&str, ']') == SUCCESS)
1419 atype.index = NEON_ALL_LANES;
1420 else
1421 {
1422 expressionS exp;
1423
1424 my_get_expression (&exp, &str, GE_NO_PREFIX);
1425
1426 if (exp.X_op != O_constant)
1427 {
1428 first_error (_("constant expression required"));
1429 return FAIL;
1430 }
1431
1432 if (skip_past_char (&str, ']') == FAIL)
1433 return FAIL;
1434
1435 atype.index = exp.X_add_number;
1436 }
1437 }
1438
1439 if (typeinfo)
1440 *typeinfo = atype;
1441
1442 if (rtype)
1443 *rtype = type;
1444
1445 *ccp = str;
1446
1447 return reg->number;
1448 }
1449
1450 /* Like arm_reg_parse, but allow allow the following extra features:
1451 - If RTYPE is non-zero, return the (possibly restricted) type of the
1452 register (e.g. Neon double or quad reg when either has been requested).
1453 - If this is a Neon vector type with additional type information, fill
1454 in the struct pointed to by VECTYPE (if non-NULL).
1455 This function will fault on encountering a scalar. */
1456
1457 static int
1458 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1459 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1460 {
1461 struct neon_typed_alias atype;
1462 char *str = *ccp;
1463 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1464
1465 if (reg == FAIL)
1466 return FAIL;
1467
1468 /* Do not allow a scalar (reg+index) to parse as a register. */
1469 if ((atype.defined & NTA_HASINDEX) != 0)
1470 {
1471 first_error (_("register operand expected, but got scalar"));
1472 return FAIL;
1473 }
1474
1475 if (vectype)
1476 *vectype = atype.eltype;
1477
1478 *ccp = str;
1479
1480 return reg;
1481 }
1482
1483 #define NEON_SCALAR_REG(X) ((X) >> 4)
1484 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1485
1486 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1487 have enough information to be able to do a good job bounds-checking. So, we
1488 just do easy checks here, and do further checks later. */
1489
1490 static int
1491 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1492 {
1493 int reg;
1494 char *str = *ccp;
1495 struct neon_typed_alias atype;
1496
1497 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1498
1499 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1500 return FAIL;
1501
1502 if (atype.index == NEON_ALL_LANES)
1503 {
1504 first_error (_("scalar must have an index"));
1505 return FAIL;
1506 }
1507 else if (atype.index >= 64 / elsize)
1508 {
1509 first_error (_("scalar index out of range"));
1510 return FAIL;
1511 }
1512
1513 if (type)
1514 *type = atype.eltype;
1515
1516 *ccp = str;
1517
1518 return reg * 16 + atype.index;
1519 }
1520
1521 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1522
1523 static long
1524 parse_reg_list (char ** strp)
1525 {
1526 char * str = * strp;
1527 long range = 0;
1528 int another_range;
1529
1530 /* We come back here if we get ranges concatenated by '+' or '|'. */
1531 do
1532 {
1533 another_range = 0;
1534
1535 if (*str == '{')
1536 {
1537 int in_range = 0;
1538 int cur_reg = -1;
1539
1540 str++;
1541 do
1542 {
1543 int reg;
1544
1545 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1546 {
1547 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1548 return FAIL;
1549 }
1550
1551 if (in_range)
1552 {
1553 int i;
1554
1555 if (reg <= cur_reg)
1556 {
1557 first_error (_("bad range in register list"));
1558 return FAIL;
1559 }
1560
1561 for (i = cur_reg + 1; i < reg; i++)
1562 {
1563 if (range & (1 << i))
1564 as_tsktsk
1565 (_("Warning: duplicated register (r%d) in register list"),
1566 i);
1567 else
1568 range |= 1 << i;
1569 }
1570 in_range = 0;
1571 }
1572
1573 if (range & (1 << reg))
1574 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1575 reg);
1576 else if (reg <= cur_reg)
1577 as_tsktsk (_("Warning: register range not in ascending order"));
1578
1579 range |= 1 << reg;
1580 cur_reg = reg;
1581 }
1582 while (skip_past_comma (&str) != FAIL
1583 || (in_range = 1, *str++ == '-'));
1584 str--;
1585
1586 if (*str++ != '}')
1587 {
1588 first_error (_("missing `}'"));
1589 return FAIL;
1590 }
1591 }
1592 else
1593 {
1594 expressionS exp;
1595
1596 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1597 return FAIL;
1598
1599 if (exp.X_op == O_constant)
1600 {
1601 if (exp.X_add_number
1602 != (exp.X_add_number & 0x0000ffff))
1603 {
1604 inst.error = _("invalid register mask");
1605 return FAIL;
1606 }
1607
1608 if ((range & exp.X_add_number) != 0)
1609 {
1610 int regno = range & exp.X_add_number;
1611
1612 regno &= -regno;
1613 regno = (1 << regno) - 1;
1614 as_tsktsk
1615 (_("Warning: duplicated register (r%d) in register list"),
1616 regno);
1617 }
1618
1619 range |= exp.X_add_number;
1620 }
1621 else
1622 {
1623 if (inst.reloc.type != 0)
1624 {
1625 inst.error = _("expression too complex");
1626 return FAIL;
1627 }
1628
1629 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1630 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1631 inst.reloc.pc_rel = 0;
1632 }
1633 }
1634
1635 if (*str == '|' || *str == '+')
1636 {
1637 str++;
1638 another_range = 1;
1639 }
1640 }
1641 while (another_range);
1642
1643 *strp = str;
1644 return range;
1645 }
1646
1647 /* Types of registers in a list. */
1648
1649 enum reg_list_els
1650 {
1651 REGLIST_VFP_S,
1652 REGLIST_VFP_D,
1653 REGLIST_NEON_D
1654 };
1655
1656 /* Parse a VFP register list. If the string is invalid return FAIL.
1657 Otherwise return the number of registers, and set PBASE to the first
1658 register. Parses registers of type ETYPE.
1659 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1660 - Q registers can be used to specify pairs of D registers
1661 - { } can be omitted from around a singleton register list
1662 FIXME: This is not implemented, as it would require backtracking in
1663 some cases, e.g.:
1664 vtbl.8 d3,d4,d5
1665 This could be done (the meaning isn't really ambiguous), but doesn't
1666 fit in well with the current parsing framework.
1667 - 32 D registers may be used (also true for VFPv3).
1668 FIXME: Types are ignored in these register lists, which is probably a
1669 bug. */
1670
1671 static int
1672 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1673 {
1674 char *str = *ccp;
1675 int base_reg;
1676 int new_base;
1677 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1678 int max_regs = 0;
1679 int count = 0;
1680 int warned = 0;
1681 unsigned long mask = 0;
1682 int i;
1683
1684 if (*str != '{')
1685 {
1686 inst.error = _("expecting {");
1687 return FAIL;
1688 }
1689
1690 str++;
1691
1692 switch (etype)
1693 {
1694 case REGLIST_VFP_S:
1695 regtype = REG_TYPE_VFS;
1696 max_regs = 32;
1697 break;
1698
1699 case REGLIST_VFP_D:
1700 regtype = REG_TYPE_VFD;
1701 break;
1702
1703 case REGLIST_NEON_D:
1704 regtype = REG_TYPE_NDQ;
1705 break;
1706 }
1707
1708 if (etype != REGLIST_VFP_S)
1709 {
1710 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1711 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1712 {
1713 max_regs = 32;
1714 if (thumb_mode)
1715 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1716 fpu_vfp_ext_d32);
1717 else
1718 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1719 fpu_vfp_ext_d32);
1720 }
1721 else
1722 max_regs = 16;
1723 }
1724
1725 base_reg = max_regs;
1726
1727 do
1728 {
1729 int setmask = 1, addregs = 1;
1730
1731 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1732
1733 if (new_base == FAIL)
1734 {
1735 first_error (_(reg_expected_msgs[regtype]));
1736 return FAIL;
1737 }
1738
1739 if (new_base >= max_regs)
1740 {
1741 first_error (_("register out of range in list"));
1742 return FAIL;
1743 }
1744
1745 /* Note: a value of 2 * n is returned for the register Q<n>. */
1746 if (regtype == REG_TYPE_NQ)
1747 {
1748 setmask = 3;
1749 addregs = 2;
1750 }
1751
1752 if (new_base < base_reg)
1753 base_reg = new_base;
1754
1755 if (mask & (setmask << new_base))
1756 {
1757 first_error (_("invalid register list"));
1758 return FAIL;
1759 }
1760
1761 if ((mask >> new_base) != 0 && ! warned)
1762 {
1763 as_tsktsk (_("register list not in ascending order"));
1764 warned = 1;
1765 }
1766
1767 mask |= setmask << new_base;
1768 count += addregs;
1769
1770 if (*str == '-') /* We have the start of a range expression */
1771 {
1772 int high_range;
1773
1774 str++;
1775
1776 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1777 == FAIL)
1778 {
1779 inst.error = gettext (reg_expected_msgs[regtype]);
1780 return FAIL;
1781 }
1782
1783 if (high_range >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
1789 if (regtype == REG_TYPE_NQ)
1790 high_range = high_range + 1;
1791
1792 if (high_range <= new_base)
1793 {
1794 inst.error = _("register range not in ascending order");
1795 return FAIL;
1796 }
1797
1798 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1799 {
1800 if (mask & (setmask << new_base))
1801 {
1802 inst.error = _("invalid register list");
1803 return FAIL;
1804 }
1805
1806 mask |= setmask << new_base;
1807 count += addregs;
1808 }
1809 }
1810 }
1811 while (skip_past_comma (&str) != FAIL);
1812
1813 str++;
1814
1815 /* Sanity check -- should have raised a parse error above. */
1816 if (count == 0 || count > max_regs)
1817 abort ();
1818
1819 *pbase = base_reg;
1820
1821 /* Final test -- the registers must be consecutive. */
1822 mask >>= base_reg;
1823 for (i = 0; i < count; i++)
1824 {
1825 if ((mask & (1u << i)) == 0)
1826 {
1827 inst.error = _("non-contiguous register range");
1828 return FAIL;
1829 }
1830 }
1831
1832 *ccp = str;
1833
1834 return count;
1835 }
1836
1837 /* True if two alias types are the same. */
1838
1839 static bfd_boolean
1840 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1841 {
1842 if (!a && !b)
1843 return TRUE;
1844
1845 if (!a || !b)
1846 return FALSE;
1847
1848 if (a->defined != b->defined)
1849 return FALSE;
1850
1851 if ((a->defined & NTA_HASTYPE) != 0
1852 && (a->eltype.type != b->eltype.type
1853 || a->eltype.size != b->eltype.size))
1854 return FALSE;
1855
1856 if ((a->defined & NTA_HASINDEX) != 0
1857 && (a->index != b->index))
1858 return FALSE;
1859
1860 return TRUE;
1861 }
1862
1863 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1864 The base register is put in *PBASE.
1865 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1866 the return value.
1867 The register stride (minus one) is put in bit 4 of the return value.
1868 Bits [6:5] encode the list length (minus one).
1869 The type of the list elements is put in *ELTYPE, if non-NULL. */
1870
1871 #define NEON_LANE(X) ((X) & 0xf)
1872 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1873 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1874
1875 static int
1876 parse_neon_el_struct_list (char **str, unsigned *pbase,
1877 struct neon_type_el *eltype)
1878 {
1879 char *ptr = *str;
1880 int base_reg = -1;
1881 int reg_incr = -1;
1882 int count = 0;
1883 int lane = -1;
1884 int leading_brace = 0;
1885 enum arm_reg_type rtype = REG_TYPE_NDQ;
1886 const char *const incr_error = _("register stride must be 1 or 2");
1887 const char *const type_error = _("mismatched element/structure types in list");
1888 struct neon_typed_alias firsttype;
1889
1890 if (skip_past_char (&ptr, '{') == SUCCESS)
1891 leading_brace = 1;
1892
1893 do
1894 {
1895 struct neon_typed_alias atype;
1896 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1897
1898 if (getreg == FAIL)
1899 {
1900 first_error (_(reg_expected_msgs[rtype]));
1901 return FAIL;
1902 }
1903
1904 if (base_reg == -1)
1905 {
1906 base_reg = getreg;
1907 if (rtype == REG_TYPE_NQ)
1908 {
1909 reg_incr = 1;
1910 }
1911 firsttype = atype;
1912 }
1913 else if (reg_incr == -1)
1914 {
1915 reg_incr = getreg - base_reg;
1916 if (reg_incr < 1 || reg_incr > 2)
1917 {
1918 first_error (_(incr_error));
1919 return FAIL;
1920 }
1921 }
1922 else if (getreg != base_reg + reg_incr * count)
1923 {
1924 first_error (_(incr_error));
1925 return FAIL;
1926 }
1927
1928 if (! neon_alias_types_same (&atype, &firsttype))
1929 {
1930 first_error (_(type_error));
1931 return FAIL;
1932 }
1933
1934 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1935 modes. */
1936 if (ptr[0] == '-')
1937 {
1938 struct neon_typed_alias htype;
1939 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1940 if (lane == -1)
1941 lane = NEON_INTERLEAVE_LANES;
1942 else if (lane != NEON_INTERLEAVE_LANES)
1943 {
1944 first_error (_(type_error));
1945 return FAIL;
1946 }
1947 if (reg_incr == -1)
1948 reg_incr = 1;
1949 else if (reg_incr != 1)
1950 {
1951 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1952 return FAIL;
1953 }
1954 ptr++;
1955 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1956 if (hireg == FAIL)
1957 {
1958 first_error (_(reg_expected_msgs[rtype]));
1959 return FAIL;
1960 }
1961 if (! neon_alias_types_same (&htype, &firsttype))
1962 {
1963 first_error (_(type_error));
1964 return FAIL;
1965 }
1966 count += hireg + dregs - getreg;
1967 continue;
1968 }
1969
1970 /* If we're using Q registers, we can't use [] or [n] syntax. */
1971 if (rtype == REG_TYPE_NQ)
1972 {
1973 count += 2;
1974 continue;
1975 }
1976
1977 if ((atype.defined & NTA_HASINDEX) != 0)
1978 {
1979 if (lane == -1)
1980 lane = atype.index;
1981 else if (lane != atype.index)
1982 {
1983 first_error (_(type_error));
1984 return FAIL;
1985 }
1986 }
1987 else if (lane == -1)
1988 lane = NEON_INTERLEAVE_LANES;
1989 else if (lane != NEON_INTERLEAVE_LANES)
1990 {
1991 first_error (_(type_error));
1992 return FAIL;
1993 }
1994 count++;
1995 }
1996 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1997
1998 /* No lane set by [x]. We must be interleaving structures. */
1999 if (lane == -1)
2000 lane = NEON_INTERLEAVE_LANES;
2001
2002 /* Sanity check. */
2003 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2004 || (count > 1 && reg_incr == -1))
2005 {
2006 first_error (_("error parsing element/structure list"));
2007 return FAIL;
2008 }
2009
2010 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2011 {
2012 first_error (_("expected }"));
2013 return FAIL;
2014 }
2015
2016 if (reg_incr == -1)
2017 reg_incr = 1;
2018
2019 if (eltype)
2020 *eltype = firsttype.eltype;
2021
2022 *pbase = base_reg;
2023 *str = ptr;
2024
2025 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2026 }
2027
2028 /* Parse an explicit relocation suffix on an expression. This is
2029 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2030 arm_reloc_hsh contains no entries, so this function can only
2031 succeed if there is no () after the word. Returns -1 on error,
2032 BFD_RELOC_UNUSED if there wasn't any suffix. */
2033 static int
2034 parse_reloc (char **str)
2035 {
2036 struct reloc_entry *r;
2037 char *p, *q;
2038
2039 if (**str != '(')
2040 return BFD_RELOC_UNUSED;
2041
2042 p = *str + 1;
2043 q = p;
2044
2045 while (*q && *q != ')' && *q != ',')
2046 q++;
2047 if (*q != ')')
2048 return -1;
2049
2050 if ((r = (struct reloc_entry *)
2051 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2052 return -1;
2053
2054 *str = q + 1;
2055 return r->reloc;
2056 }
2057
2058 /* Directives: register aliases. */
2059
2060 static struct reg_entry *
2061 insert_reg_alias (char *str, int number, int type)
2062 {
2063 struct reg_entry *new_reg;
2064 const char *name;
2065
2066 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2067 {
2068 if (new_reg->builtin)
2069 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2070
2071 /* Only warn about a redefinition if it's not defined as the
2072 same register. */
2073 else if (new_reg->number != number || new_reg->type != type)
2074 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2075
2076 return NULL;
2077 }
2078
2079 name = xstrdup (str);
2080 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2081
2082 new_reg->name = name;
2083 new_reg->number = number;
2084 new_reg->type = type;
2085 new_reg->builtin = FALSE;
2086 new_reg->neon = NULL;
2087
2088 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2089 abort ();
2090
2091 return new_reg;
2092 }
2093
2094 static void
2095 insert_neon_reg_alias (char *str, int number, int type,
2096 struct neon_typed_alias *atype)
2097 {
2098 struct reg_entry *reg = insert_reg_alias (str, number, type);
2099
2100 if (!reg)
2101 {
2102 first_error (_("attempt to redefine typed alias"));
2103 return;
2104 }
2105
2106 if (atype)
2107 {
2108 reg->neon = (struct neon_typed_alias *)
2109 xmalloc (sizeof (struct neon_typed_alias));
2110 *reg->neon = *atype;
2111 }
2112 }
2113
2114 /* Look for the .req directive. This is of the form:
2115
2116 new_register_name .req existing_register_name
2117
2118 If we find one, or if it looks sufficiently like one that we want to
2119 handle any error here, return TRUE. Otherwise return FALSE. */
2120
2121 static bfd_boolean
2122 create_register_alias (char * newname, char *p)
2123 {
2124 struct reg_entry *old;
2125 char *oldname, *nbuf;
2126 size_t nlen;
2127
2128 /* The input scrubber ensures that whitespace after the mnemonic is
2129 collapsed to single spaces. */
2130 oldname = p;
2131 if (strncmp (oldname, " .req ", 6) != 0)
2132 return FALSE;
2133
2134 oldname += 6;
2135 if (*oldname == '\0')
2136 return FALSE;
2137
2138 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2139 if (!old)
2140 {
2141 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2142 return TRUE;
2143 }
2144
2145 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2146 the desired alias name, and p points to its end. If not, then
2147 the desired alias name is in the global original_case_string. */
2148 #ifdef TC_CASE_SENSITIVE
2149 nlen = p - newname;
2150 #else
2151 newname = original_case_string;
2152 nlen = strlen (newname);
2153 #endif
2154
2155 nbuf = (char *) alloca (nlen + 1);
2156 memcpy (nbuf, newname, nlen);
2157 nbuf[nlen] = '\0';
2158
2159 /* Create aliases under the new name as stated; an all-lowercase
2160 version of the new name; and an all-uppercase version of the new
2161 name. */
2162 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2163 {
2164 for (p = nbuf; *p; p++)
2165 *p = TOUPPER (*p);
2166
2167 if (strncmp (nbuf, newname, nlen))
2168 {
2169 /* If this attempt to create an additional alias fails, do not bother
2170 trying to create the all-lower case alias. We will fail and issue
2171 a second, duplicate error message. This situation arises when the
2172 programmer does something like:
2173 foo .req r0
2174 Foo .req r1
2175 The second .req creates the "Foo" alias but then fails to create
2176 the artificial FOO alias because it has already been created by the
2177 first .req. */
2178 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2179 return TRUE;
2180 }
2181
2182 for (p = nbuf; *p; p++)
2183 *p = TOLOWER (*p);
2184
2185 if (strncmp (nbuf, newname, nlen))
2186 insert_reg_alias (nbuf, old->number, old->type);
2187 }
2188
2189 return TRUE;
2190 }
2191
2192 /* Create a Neon typed/indexed register alias using directives, e.g.:
2193 X .dn d5.s32[1]
2194 Y .qn 6.s16
2195 Z .dn d7
2196 T .dn Z[0]
2197 These typed registers can be used instead of the types specified after the
2198 Neon mnemonic, so long as all operands given have types. Types can also be
2199 specified directly, e.g.:
2200 vadd d0.s32, d1.s32, d2.s32 */
2201
2202 static bfd_boolean
2203 create_neon_reg_alias (char *newname, char *p)
2204 {
2205 enum arm_reg_type basetype;
2206 struct reg_entry *basereg;
2207 struct reg_entry mybasereg;
2208 struct neon_type ntype;
2209 struct neon_typed_alias typeinfo;
2210 char *namebuf, *nameend;
2211 int namelen;
2212
2213 typeinfo.defined = 0;
2214 typeinfo.eltype.type = NT_invtype;
2215 typeinfo.eltype.size = -1;
2216 typeinfo.index = -1;
2217
2218 nameend = p;
2219
2220 if (strncmp (p, " .dn ", 5) == 0)
2221 basetype = REG_TYPE_VFD;
2222 else if (strncmp (p, " .qn ", 5) == 0)
2223 basetype = REG_TYPE_NQ;
2224 else
2225 return FALSE;
2226
2227 p += 5;
2228
2229 if (*p == '\0')
2230 return FALSE;
2231
2232 basereg = arm_reg_parse_multi (&p);
2233
2234 if (basereg && basereg->type != basetype)
2235 {
2236 as_bad (_("bad type for register"));
2237 return FALSE;
2238 }
2239
2240 if (basereg == NULL)
2241 {
2242 expressionS exp;
2243 /* Try parsing as an integer. */
2244 my_get_expression (&exp, &p, GE_NO_PREFIX);
2245 if (exp.X_op != O_constant)
2246 {
2247 as_bad (_("expression must be constant"));
2248 return FALSE;
2249 }
2250 basereg = &mybasereg;
2251 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2252 : exp.X_add_number;
2253 basereg->neon = 0;
2254 }
2255
2256 if (basereg->neon)
2257 typeinfo = *basereg->neon;
2258
2259 if (parse_neon_type (&ntype, &p) == SUCCESS)
2260 {
2261 /* We got a type. */
2262 if (typeinfo.defined & NTA_HASTYPE)
2263 {
2264 as_bad (_("can't redefine the type of a register alias"));
2265 return FALSE;
2266 }
2267
2268 typeinfo.defined |= NTA_HASTYPE;
2269 if (ntype.elems != 1)
2270 {
2271 as_bad (_("you must specify a single type only"));
2272 return FALSE;
2273 }
2274 typeinfo.eltype = ntype.el[0];
2275 }
2276
2277 if (skip_past_char (&p, '[') == SUCCESS)
2278 {
2279 expressionS exp;
2280 /* We got a scalar index. */
2281
2282 if (typeinfo.defined & NTA_HASINDEX)
2283 {
2284 as_bad (_("can't redefine the index of a scalar alias"));
2285 return FALSE;
2286 }
2287
2288 my_get_expression (&exp, &p, GE_NO_PREFIX);
2289
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("scalar index must be constant"));
2293 return FALSE;
2294 }
2295
2296 typeinfo.defined |= NTA_HASINDEX;
2297 typeinfo.index = exp.X_add_number;
2298
2299 if (skip_past_char (&p, ']') == FAIL)
2300 {
2301 as_bad (_("expecting ]"));
2302 return FALSE;
2303 }
2304 }
2305
2306 namelen = nameend - newname;
2307 namebuf = (char *) alloca (namelen + 1);
2308 strncpy (namebuf, newname, namelen);
2309 namebuf[namelen] = '\0';
2310
2311 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2312 typeinfo.defined != 0 ? &typeinfo : NULL);
2313
2314 /* Insert name in all uppercase. */
2315 for (p = namebuf; *p; p++)
2316 *p = TOUPPER (*p);
2317
2318 if (strncmp (namebuf, newname, namelen))
2319 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2320 typeinfo.defined != 0 ? &typeinfo : NULL);
2321
2322 /* Insert name in all lowercase. */
2323 for (p = namebuf; *p; p++)
2324 *p = TOLOWER (*p);
2325
2326 if (strncmp (namebuf, newname, namelen))
2327 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2328 typeinfo.defined != 0 ? &typeinfo : NULL);
2329
2330 return TRUE;
2331 }
2332
2333 /* Should never be called, as .req goes between the alias and the
2334 register name, not at the beginning of the line. */
2335
2336 static void
2337 s_req (int a ATTRIBUTE_UNUSED)
2338 {
2339 as_bad (_("invalid syntax for .req directive"));
2340 }
2341
2342 static void
2343 s_dn (int a ATTRIBUTE_UNUSED)
2344 {
2345 as_bad (_("invalid syntax for .dn directive"));
2346 }
2347
2348 static void
2349 s_qn (int a ATTRIBUTE_UNUSED)
2350 {
2351 as_bad (_("invalid syntax for .qn directive"));
2352 }
2353
2354 /* The .unreq directive deletes an alias which was previously defined
2355 by .req. For example:
2356
2357 my_alias .req r11
2358 .unreq my_alias */
2359
2360 static void
2361 s_unreq (int a ATTRIBUTE_UNUSED)
2362 {
2363 char * name;
2364 char saved_char;
2365
2366 name = input_line_pointer;
2367
2368 while (*input_line_pointer != 0
2369 && *input_line_pointer != ' '
2370 && *input_line_pointer != '\n')
2371 ++input_line_pointer;
2372
2373 saved_char = *input_line_pointer;
2374 *input_line_pointer = 0;
2375
2376 if (!*name)
2377 as_bad (_("invalid syntax for .unreq directive"));
2378 else
2379 {
2380 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2381 name);
2382
2383 if (!reg)
2384 as_bad (_("unknown register alias '%s'"), name);
2385 else if (reg->builtin)
2386 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2387 name);
2388 else
2389 {
2390 char * p;
2391 char * nbuf;
2392
2393 hash_delete (arm_reg_hsh, name, FALSE);
2394 free ((char *) reg->name);
2395 if (reg->neon)
2396 free (reg->neon);
2397 free (reg);
2398
2399 /* Also locate the all upper case and all lower case versions.
2400 Do not complain if we cannot find one or the other as it
2401 was probably deleted above. */
2402
2403 nbuf = strdup (name);
2404 for (p = nbuf; *p; p++)
2405 *p = TOUPPER (*p);
2406 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2407 if (reg)
2408 {
2409 hash_delete (arm_reg_hsh, nbuf, FALSE);
2410 free ((char *) reg->name);
2411 if (reg->neon)
2412 free (reg->neon);
2413 free (reg);
2414 }
2415
2416 for (p = nbuf; *p; p++)
2417 *p = TOLOWER (*p);
2418 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2419 if (reg)
2420 {
2421 hash_delete (arm_reg_hsh, nbuf, FALSE);
2422 free ((char *) reg->name);
2423 if (reg->neon)
2424 free (reg->neon);
2425 free (reg);
2426 }
2427
2428 free (nbuf);
2429 }
2430 }
2431
2432 *input_line_pointer = saved_char;
2433 demand_empty_rest_of_line ();
2434 }
2435
2436 /* Directives: Instruction set selection. */
2437
2438 #ifdef OBJ_ELF
2439 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2440 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2441 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2442 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2443
2444 /* Create a new mapping symbol for the transition to STATE. */
2445
2446 static void
2447 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2448 {
2449 symbolS * symbolP;
2450 const char * symname;
2451 int type;
2452
2453 switch (state)
2454 {
2455 case MAP_DATA:
2456 symname = "$d";
2457 type = BSF_NO_FLAGS;
2458 break;
2459 case MAP_ARM:
2460 symname = "$a";
2461 type = BSF_NO_FLAGS;
2462 break;
2463 case MAP_THUMB:
2464 symname = "$t";
2465 type = BSF_NO_FLAGS;
2466 break;
2467 default:
2468 abort ();
2469 }
2470
2471 symbolP = symbol_new (symname, now_seg, value, frag);
2472 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2473
2474 switch (state)
2475 {
2476 case MAP_ARM:
2477 THUMB_SET_FUNC (symbolP, 0);
2478 ARM_SET_THUMB (symbolP, 0);
2479 ARM_SET_INTERWORK (symbolP, support_interwork);
2480 break;
2481
2482 case MAP_THUMB:
2483 THUMB_SET_FUNC (symbolP, 1);
2484 ARM_SET_THUMB (symbolP, 1);
2485 ARM_SET_INTERWORK (symbolP, support_interwork);
2486 break;
2487
2488 case MAP_DATA:
2489 default:
2490 break;
2491 }
2492
2493 /* Save the mapping symbols for future reference. Also check that
2494 we do not place two mapping symbols at the same offset within a
2495 frag. We'll handle overlap between frags in
2496 check_mapping_symbols.
2497
2498 If .fill or other data filling directive generates zero sized data,
2499 the mapping symbol for the following code will have the same value
2500 as the one generated for the data filling directive. In this case,
2501 we replace the old symbol with the new one at the same address. */
2502 if (value == 0)
2503 {
2504 if (frag->tc_frag_data.first_map != NULL)
2505 {
2506 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2507 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2508 }
2509 frag->tc_frag_data.first_map = symbolP;
2510 }
2511 if (frag->tc_frag_data.last_map != NULL)
2512 {
2513 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2514 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2515 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2516 }
2517 frag->tc_frag_data.last_map = symbolP;
2518 }
2519
2520 /* We must sometimes convert a region marked as code to data during
2521 code alignment, if an odd number of bytes have to be padded. The
2522 code mapping symbol is pushed to an aligned address. */
2523
2524 static void
2525 insert_data_mapping_symbol (enum mstate state,
2526 valueT value, fragS *frag, offsetT bytes)
2527 {
2528 /* If there was already a mapping symbol, remove it. */
2529 if (frag->tc_frag_data.last_map != NULL
2530 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2531 {
2532 symbolS *symp = frag->tc_frag_data.last_map;
2533
2534 if (value == 0)
2535 {
2536 know (frag->tc_frag_data.first_map == symp);
2537 frag->tc_frag_data.first_map = NULL;
2538 }
2539 frag->tc_frag_data.last_map = NULL;
2540 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2541 }
2542
2543 make_mapping_symbol (MAP_DATA, value, frag);
2544 make_mapping_symbol (state, value + bytes, frag);
2545 }
2546
2547 static void mapping_state_2 (enum mstate state, int max_chars);
2548
2549 /* Set the mapping state to STATE. Only call this when about to
2550 emit some STATE bytes to the file. */
2551
2552 void
2553 mapping_state (enum mstate state)
2554 {
2555 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2556
2557 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2558
2559 if (mapstate == state)
2560 /* The mapping symbol has already been emitted.
2561 There is nothing else to do. */
2562 return;
2563 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2564 /* This case will be evaluated later in the next else. */
2565 return;
2566 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2567 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2568 {
2569 /* Only add the symbol if the offset is > 0:
2570 if we're at the first frag, check it's size > 0;
2571 if we're not at the first frag, then for sure
2572 the offset is > 0. */
2573 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2574 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2575
2576 if (add_symbol)
2577 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2578 }
2579
2580 mapping_state_2 (state, 0);
2581 #undef TRANSITION
2582 }
2583
2584 /* Same as mapping_state, but MAX_CHARS bytes have already been
2585 allocated. Put the mapping symbol that far back. */
2586
2587 static void
2588 mapping_state_2 (enum mstate state, int max_chars)
2589 {
2590 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2591
2592 if (!SEG_NORMAL (now_seg))
2593 return;
2594
2595 if (mapstate == state)
2596 /* The mapping symbol has already been emitted.
2597 There is nothing else to do. */
2598 return;
2599
2600 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2601 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2602 }
2603 #else
2604 #define mapping_state(x) ((void)0)
2605 #define mapping_state_2(x, y) ((void)0)
2606 #endif
2607
2608 /* Find the real, Thumb encoded start of a Thumb function. */
2609
2610 #ifdef OBJ_COFF
2611 static symbolS *
2612 find_real_start (symbolS * symbolP)
2613 {
2614 char * real_start;
2615 const char * name = S_GET_NAME (symbolP);
2616 symbolS * new_target;
2617
2618 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2619 #define STUB_NAME ".real_start_of"
2620
2621 if (name == NULL)
2622 abort ();
2623
2624 /* The compiler may generate BL instructions to local labels because
2625 it needs to perform a branch to a far away location. These labels
2626 do not have a corresponding ".real_start_of" label. We check
2627 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2628 the ".real_start_of" convention for nonlocal branches. */
2629 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2630 return symbolP;
2631
2632 real_start = ACONCAT ((STUB_NAME, name, NULL));
2633 new_target = symbol_find (real_start);
2634
2635 if (new_target == NULL)
2636 {
2637 as_warn (_("Failed to find real start of function: %s\n"), name);
2638 new_target = symbolP;
2639 }
2640
2641 return new_target;
2642 }
2643 #endif
2644
2645 static void
2646 opcode_select (int width)
2647 {
2648 switch (width)
2649 {
2650 case 16:
2651 if (! thumb_mode)
2652 {
2653 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2654 as_bad (_("selected processor does not support THUMB opcodes"));
2655
2656 thumb_mode = 1;
2657 /* No need to force the alignment, since we will have been
2658 coming from ARM mode, which is word-aligned. */
2659 record_alignment (now_seg, 1);
2660 }
2661 break;
2662
2663 case 32:
2664 if (thumb_mode)
2665 {
2666 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2667 as_bad (_("selected processor does not support ARM opcodes"));
2668
2669 thumb_mode = 0;
2670
2671 if (!need_pass_2)
2672 frag_align (2, 0, 0);
2673
2674 record_alignment (now_seg, 1);
2675 }
2676 break;
2677
2678 default:
2679 as_bad (_("invalid instruction size selected (%d)"), width);
2680 }
2681 }
2682
2683 static void
2684 s_arm (int ignore ATTRIBUTE_UNUSED)
2685 {
2686 opcode_select (32);
2687 demand_empty_rest_of_line ();
2688 }
2689
2690 static void
2691 s_thumb (int ignore ATTRIBUTE_UNUSED)
2692 {
2693 opcode_select (16);
2694 demand_empty_rest_of_line ();
2695 }
2696
2697 static void
2698 s_code (int unused ATTRIBUTE_UNUSED)
2699 {
2700 int temp;
2701
2702 temp = get_absolute_expression ();
2703 switch (temp)
2704 {
2705 case 16:
2706 case 32:
2707 opcode_select (temp);
2708 break;
2709
2710 default:
2711 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2712 }
2713 }
2714
2715 static void
2716 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2717 {
2718 /* If we are not already in thumb mode go into it, EVEN if
2719 the target processor does not support thumb instructions.
2720 This is used by gcc/config/arm/lib1funcs.asm for example
2721 to compile interworking support functions even if the
2722 target processor should not support interworking. */
2723 if (! thumb_mode)
2724 {
2725 thumb_mode = 2;
2726 record_alignment (now_seg, 1);
2727 }
2728
2729 demand_empty_rest_of_line ();
2730 }
2731
2732 static void
2733 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2734 {
2735 s_thumb (0);
2736
2737 /* The following label is the name/address of the start of a Thumb function.
2738 We need to know this for the interworking support. */
2739 label_is_thumb_function_name = TRUE;
2740 }
2741
2742 /* Perform a .set directive, but also mark the alias as
2743 being a thumb function. */
2744
2745 static void
2746 s_thumb_set (int equiv)
2747 {
2748 /* XXX the following is a duplicate of the code for s_set() in read.c
2749 We cannot just call that code as we need to get at the symbol that
2750 is created. */
2751 char * name;
2752 char delim;
2753 char * end_name;
2754 symbolS * symbolP;
2755
2756 /* Especial apologies for the random logic:
2757 This just grew, and could be parsed much more simply!
2758 Dean - in haste. */
2759 name = input_line_pointer;
2760 delim = get_symbol_end ();
2761 end_name = input_line_pointer;
2762 *end_name = delim;
2763
2764 if (*input_line_pointer != ',')
2765 {
2766 *end_name = 0;
2767 as_bad (_("expected comma after name \"%s\""), name);
2768 *end_name = delim;
2769 ignore_rest_of_line ();
2770 return;
2771 }
2772
2773 input_line_pointer++;
2774 *end_name = 0;
2775
2776 if (name[0] == '.' && name[1] == '\0')
2777 {
2778 /* XXX - this should not happen to .thumb_set. */
2779 abort ();
2780 }
2781
2782 if ((symbolP = symbol_find (name)) == NULL
2783 && (symbolP = md_undefined_symbol (name)) == NULL)
2784 {
2785 #ifndef NO_LISTING
2786 /* When doing symbol listings, play games with dummy fragments living
2787 outside the normal fragment chain to record the file and line info
2788 for this symbol. */
2789 if (listing & LISTING_SYMBOLS)
2790 {
2791 extern struct list_info_struct * listing_tail;
2792 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2793
2794 memset (dummy_frag, 0, sizeof (fragS));
2795 dummy_frag->fr_type = rs_fill;
2796 dummy_frag->line = listing_tail;
2797 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2798 dummy_frag->fr_symbol = symbolP;
2799 }
2800 else
2801 #endif
2802 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2803
2804 #ifdef OBJ_COFF
2805 /* "set" symbols are local unless otherwise specified. */
2806 SF_SET_LOCAL (symbolP);
2807 #endif /* OBJ_COFF */
2808 } /* Make a new symbol. */
2809
2810 symbol_table_insert (symbolP);
2811
2812 * end_name = delim;
2813
2814 if (equiv
2815 && S_IS_DEFINED (symbolP)
2816 && S_GET_SEGMENT (symbolP) != reg_section)
2817 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2818
2819 pseudo_set (symbolP);
2820
2821 demand_empty_rest_of_line ();
2822
2823 /* XXX Now we come to the Thumb specific bit of code. */
2824
2825 THUMB_SET_FUNC (symbolP, 1);
2826 ARM_SET_THUMB (symbolP, 1);
2827 #if defined OBJ_ELF || defined OBJ_COFF
2828 ARM_SET_INTERWORK (symbolP, support_interwork);
2829 #endif
2830 }
2831
2832 /* Directives: Mode selection. */
2833
2834 /* .syntax [unified|divided] - choose the new unified syntax
2835 (same for Arm and Thumb encoding, modulo slight differences in what
2836 can be represented) or the old divergent syntax for each mode. */
2837 static void
2838 s_syntax (int unused ATTRIBUTE_UNUSED)
2839 {
2840 char *name, delim;
2841
2842 name = input_line_pointer;
2843 delim = get_symbol_end ();
2844
2845 if (!strcasecmp (name, "unified"))
2846 unified_syntax = TRUE;
2847 else if (!strcasecmp (name, "divided"))
2848 unified_syntax = FALSE;
2849 else
2850 {
2851 as_bad (_("unrecognized syntax mode \"%s\""), name);
2852 return;
2853 }
2854 *input_line_pointer = delim;
2855 demand_empty_rest_of_line ();
2856 }
2857
2858 /* Directives: sectioning and alignment. */
2859
2860 /* Same as s_align_ptwo but align 0 => align 2. */
2861
2862 static void
2863 s_align (int unused ATTRIBUTE_UNUSED)
2864 {
2865 int temp;
2866 bfd_boolean fill_p;
2867 long temp_fill;
2868 long max_alignment = 15;
2869
2870 temp = get_absolute_expression ();
2871 if (temp > max_alignment)
2872 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2873 else if (temp < 0)
2874 {
2875 as_bad (_("alignment negative. 0 assumed."));
2876 temp = 0;
2877 }
2878
2879 if (*input_line_pointer == ',')
2880 {
2881 input_line_pointer++;
2882 temp_fill = get_absolute_expression ();
2883 fill_p = TRUE;
2884 }
2885 else
2886 {
2887 fill_p = FALSE;
2888 temp_fill = 0;
2889 }
2890
2891 if (!temp)
2892 temp = 2;
2893
2894 /* Only make a frag if we HAVE to. */
2895 if (temp && !need_pass_2)
2896 {
2897 if (!fill_p && subseg_text_p (now_seg))
2898 frag_align_code (temp, 0);
2899 else
2900 frag_align (temp, (int) temp_fill, 0);
2901 }
2902 demand_empty_rest_of_line ();
2903
2904 record_alignment (now_seg, temp);
2905 }
2906
2907 static void
2908 s_bss (int ignore ATTRIBUTE_UNUSED)
2909 {
2910 /* We don't support putting frags in the BSS segment, we fake it by
2911 marking in_bss, then looking at s_skip for clues. */
2912 subseg_set (bss_section, 0);
2913 demand_empty_rest_of_line ();
2914
2915 #ifdef md_elf_section_change_hook
2916 md_elf_section_change_hook ();
2917 #endif
2918 }
2919
2920 static void
2921 s_even (int ignore ATTRIBUTE_UNUSED)
2922 {
2923 /* Never make frag if expect extra pass. */
2924 if (!need_pass_2)
2925 frag_align (1, 0, 0);
2926
2927 record_alignment (now_seg, 1);
2928
2929 demand_empty_rest_of_line ();
2930 }
2931
2932 /* Directives: Literal pools. */
2933
2934 static literal_pool *
2935 find_literal_pool (void)
2936 {
2937 literal_pool * pool;
2938
2939 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2940 {
2941 if (pool->section == now_seg
2942 && pool->sub_section == now_subseg)
2943 break;
2944 }
2945
2946 return pool;
2947 }
2948
2949 static literal_pool *
2950 find_or_make_literal_pool (void)
2951 {
2952 /* Next literal pool ID number. */
2953 static unsigned int latest_pool_num = 1;
2954 literal_pool * pool;
2955
2956 pool = find_literal_pool ();
2957
2958 if (pool == NULL)
2959 {
2960 /* Create a new pool. */
2961 pool = (literal_pool *) xmalloc (sizeof (* pool));
2962 if (! pool)
2963 return NULL;
2964
2965 pool->next_free_entry = 0;
2966 pool->section = now_seg;
2967 pool->sub_section = now_subseg;
2968 pool->next = list_of_pools;
2969 pool->symbol = NULL;
2970
2971 /* Add it to the list. */
2972 list_of_pools = pool;
2973 }
2974
2975 /* New pools, and emptied pools, will have a NULL symbol. */
2976 if (pool->symbol == NULL)
2977 {
2978 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2979 (valueT) 0, &zero_address_frag);
2980 pool->id = latest_pool_num ++;
2981 }
2982
2983 /* Done. */
2984 return pool;
2985 }
2986
2987 /* Add the literal in the global 'inst'
2988 structure to the relevant literal pool. */
2989
2990 static int
2991 add_to_lit_pool (void)
2992 {
2993 literal_pool * pool;
2994 unsigned int entry;
2995
2996 pool = find_or_make_literal_pool ();
2997
2998 /* Check if this literal value is already in the pool. */
2999 for (entry = 0; entry < pool->next_free_entry; entry ++)
3000 {
3001 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3002 && (inst.reloc.exp.X_op == O_constant)
3003 && (pool->literals[entry].X_add_number
3004 == inst.reloc.exp.X_add_number)
3005 && (pool->literals[entry].X_unsigned
3006 == inst.reloc.exp.X_unsigned))
3007 break;
3008
3009 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3010 && (inst.reloc.exp.X_op == O_symbol)
3011 && (pool->literals[entry].X_add_number
3012 == inst.reloc.exp.X_add_number)
3013 && (pool->literals[entry].X_add_symbol
3014 == inst.reloc.exp.X_add_symbol)
3015 && (pool->literals[entry].X_op_symbol
3016 == inst.reloc.exp.X_op_symbol))
3017 break;
3018 }
3019
3020 /* Do we need to create a new entry? */
3021 if (entry == pool->next_free_entry)
3022 {
3023 if (entry >= MAX_LITERAL_POOL_SIZE)
3024 {
3025 inst.error = _("literal pool overflow");
3026 return FAIL;
3027 }
3028
3029 pool->literals[entry] = inst.reloc.exp;
3030 pool->next_free_entry += 1;
3031 }
3032
3033 inst.reloc.exp.X_op = O_symbol;
3034 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3035 inst.reloc.exp.X_add_symbol = pool->symbol;
3036
3037 return SUCCESS;
3038 }
3039
3040 /* Can't use symbol_new here, so have to create a symbol and then at
3041 a later date assign it a value. Thats what these functions do. */
3042
3043 static void
3044 symbol_locate (symbolS * symbolP,
3045 const char * name, /* It is copied, the caller can modify. */
3046 segT segment, /* Segment identifier (SEG_<something>). */
3047 valueT valu, /* Symbol value. */
3048 fragS * frag) /* Associated fragment. */
3049 {
3050 unsigned int name_length;
3051 char * preserved_copy_of_name;
3052
3053 name_length = strlen (name) + 1; /* +1 for \0. */
3054 obstack_grow (&notes, name, name_length);
3055 preserved_copy_of_name = (char *) obstack_finish (&notes);
3056
3057 #ifdef tc_canonicalize_symbol_name
3058 preserved_copy_of_name =
3059 tc_canonicalize_symbol_name (preserved_copy_of_name);
3060 #endif
3061
3062 S_SET_NAME (symbolP, preserved_copy_of_name);
3063
3064 S_SET_SEGMENT (symbolP, segment);
3065 S_SET_VALUE (symbolP, valu);
3066 symbol_clear_list_pointers (symbolP);
3067
3068 symbol_set_frag (symbolP, frag);
3069
3070 /* Link to end of symbol chain. */
3071 {
3072 extern int symbol_table_frozen;
3073
3074 if (symbol_table_frozen)
3075 abort ();
3076 }
3077
3078 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3079
3080 obj_symbol_new_hook (symbolP);
3081
3082 #ifdef tc_symbol_new_hook
3083 tc_symbol_new_hook (symbolP);
3084 #endif
3085
3086 #ifdef DEBUG_SYMS
3087 verify_symbol_chain (symbol_rootP, symbol_lastP);
3088 #endif /* DEBUG_SYMS */
3089 }
3090
3091
3092 static void
3093 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3094 {
3095 unsigned int entry;
3096 literal_pool * pool;
3097 char sym_name[20];
3098
3099 pool = find_literal_pool ();
3100 if (pool == NULL
3101 || pool->symbol == NULL
3102 || pool->next_free_entry == 0)
3103 return;
3104
3105 mapping_state (MAP_DATA);
3106
3107 /* Align pool as you have word accesses.
3108 Only make a frag if we have to. */
3109 if (!need_pass_2)
3110 frag_align (2, 0, 0);
3111
3112 record_alignment (now_seg, 2);
3113
3114 sprintf (sym_name, "$$lit_\002%x", pool->id);
3115
3116 symbol_locate (pool->symbol, sym_name, now_seg,
3117 (valueT) frag_now_fix (), frag_now);
3118 symbol_table_insert (pool->symbol);
3119
3120 ARM_SET_THUMB (pool->symbol, thumb_mode);
3121
3122 #if defined OBJ_COFF || defined OBJ_ELF
3123 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3124 #endif
3125
3126 for (entry = 0; entry < pool->next_free_entry; entry ++)
3127 /* First output the expression in the instruction to the pool. */
3128 emit_expr (&(pool->literals[entry]), 4); /* .word */
3129
3130 /* Mark the pool as empty. */
3131 pool->next_free_entry = 0;
3132 pool->symbol = NULL;
3133 }
3134
3135 #ifdef OBJ_ELF
3136 /* Forward declarations for functions below, in the MD interface
3137 section. */
3138 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3139 static valueT create_unwind_entry (int);
3140 static void start_unwind_section (const segT, int);
3141 static void add_unwind_opcode (valueT, int);
3142 static void flush_pending_unwind (void);
3143
3144 /* Directives: Data. */
3145
3146 static void
3147 s_arm_elf_cons (int nbytes)
3148 {
3149 expressionS exp;
3150
3151 #ifdef md_flush_pending_output
3152 md_flush_pending_output ();
3153 #endif
3154
3155 if (is_it_end_of_statement ())
3156 {
3157 demand_empty_rest_of_line ();
3158 return;
3159 }
3160
3161 #ifdef md_cons_align
3162 md_cons_align (nbytes);
3163 #endif
3164
3165 mapping_state (MAP_DATA);
3166 do
3167 {
3168 int reloc;
3169 char *base = input_line_pointer;
3170
3171 expression (& exp);
3172
3173 if (exp.X_op != O_symbol)
3174 emit_expr (&exp, (unsigned int) nbytes);
3175 else
3176 {
3177 char *before_reloc = input_line_pointer;
3178 reloc = parse_reloc (&input_line_pointer);
3179 if (reloc == -1)
3180 {
3181 as_bad (_("unrecognized relocation suffix"));
3182 ignore_rest_of_line ();
3183 return;
3184 }
3185 else if (reloc == BFD_RELOC_UNUSED)
3186 emit_expr (&exp, (unsigned int) nbytes);
3187 else
3188 {
3189 reloc_howto_type *howto = (reloc_howto_type *)
3190 bfd_reloc_type_lookup (stdoutput,
3191 (bfd_reloc_code_real_type) reloc);
3192 int size = bfd_get_reloc_size (howto);
3193
3194 if (reloc == BFD_RELOC_ARM_PLT32)
3195 {
3196 as_bad (_("(plt) is only valid on branch targets"));
3197 reloc = BFD_RELOC_UNUSED;
3198 size = 0;
3199 }
3200
3201 if (size > nbytes)
3202 as_bad (_("%s relocations do not fit in %d bytes"),
3203 howto->name, nbytes);
3204 else
3205 {
3206 /* We've parsed an expression stopping at O_symbol.
3207 But there may be more expression left now that we
3208 have parsed the relocation marker. Parse it again.
3209 XXX Surely there is a cleaner way to do this. */
3210 char *p = input_line_pointer;
3211 int offset;
3212 char *save_buf = (char *) alloca (input_line_pointer - base);
3213 memcpy (save_buf, base, input_line_pointer - base);
3214 memmove (base + (input_line_pointer - before_reloc),
3215 base, before_reloc - base);
3216
3217 input_line_pointer = base + (input_line_pointer-before_reloc);
3218 expression (&exp);
3219 memcpy (base, save_buf, p - base);
3220
3221 offset = nbytes - size;
3222 p = frag_more ((int) nbytes);
3223 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3224 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3225 }
3226 }
3227 }
3228 }
3229 while (*input_line_pointer++ == ',');
3230
3231 /* Put terminator back into stream. */
3232 input_line_pointer --;
3233 demand_empty_rest_of_line ();
3234 }
3235
3236 /* Emit an expression containing a 32-bit thumb instruction.
3237 Implementation based on put_thumb32_insn. */
3238
3239 static void
3240 emit_thumb32_expr (expressionS * exp)
3241 {
3242 expressionS exp_high = *exp;
3243
3244 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3245 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3246 exp->X_add_number &= 0xffff;
3247 emit_expr (exp, (unsigned int) THUMB_SIZE);
3248 }
3249
3250 /* Guess the instruction size based on the opcode. */
3251
3252 static int
3253 thumb_insn_size (int opcode)
3254 {
3255 if ((unsigned int) opcode < 0xe800u)
3256 return 2;
3257 else if ((unsigned int) opcode >= 0xe8000000u)
3258 return 4;
3259 else
3260 return 0;
3261 }
3262
3263 static bfd_boolean
3264 emit_insn (expressionS *exp, int nbytes)
3265 {
3266 int size = 0;
3267
3268 if (exp->X_op == O_constant)
3269 {
3270 size = nbytes;
3271
3272 if (size == 0)
3273 size = thumb_insn_size (exp->X_add_number);
3274
3275 if (size != 0)
3276 {
3277 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3278 {
3279 as_bad (_(".inst.n operand too big. "\
3280 "Use .inst.w instead"));
3281 size = 0;
3282 }
3283 else
3284 {
3285 if (now_it.state == AUTOMATIC_IT_BLOCK)
3286 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3287 else
3288 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3289
3290 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3291 emit_thumb32_expr (exp);
3292 else
3293 emit_expr (exp, (unsigned int) size);
3294
3295 it_fsm_post_encode ();
3296 }
3297 }
3298 else
3299 as_bad (_("cannot determine Thumb instruction size. " \
3300 "Use .inst.n/.inst.w instead"));
3301 }
3302 else
3303 as_bad (_("constant expression required"));
3304
3305 return (size != 0);
3306 }
3307
3308 /* Like s_arm_elf_cons but do not use md_cons_align and
3309 set the mapping state to MAP_ARM/MAP_THUMB. */
3310
3311 static void
3312 s_arm_elf_inst (int nbytes)
3313 {
3314 if (is_it_end_of_statement ())
3315 {
3316 demand_empty_rest_of_line ();
3317 return;
3318 }
3319
3320 /* Calling mapping_state () here will not change ARM/THUMB,
3321 but will ensure not to be in DATA state. */
3322
3323 if (thumb_mode)
3324 mapping_state (MAP_THUMB);
3325 else
3326 {
3327 if (nbytes != 0)
3328 {
3329 as_bad (_("width suffixes are invalid in ARM mode"));
3330 ignore_rest_of_line ();
3331 return;
3332 }
3333
3334 nbytes = 4;
3335
3336 mapping_state (MAP_ARM);
3337 }
3338
3339 do
3340 {
3341 expressionS exp;
3342
3343 expression (& exp);
3344
3345 if (! emit_insn (& exp, nbytes))
3346 {
3347 ignore_rest_of_line ();
3348 return;
3349 }
3350 }
3351 while (*input_line_pointer++ == ',');
3352
3353 /* Put terminator back into stream. */
3354 input_line_pointer --;
3355 demand_empty_rest_of_line ();
3356 }
3357
3358 /* Parse a .rel31 directive. */
3359
3360 static void
3361 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3362 {
3363 expressionS exp;
3364 char *p;
3365 valueT highbit;
3366
3367 highbit = 0;
3368 if (*input_line_pointer == '1')
3369 highbit = 0x80000000;
3370 else if (*input_line_pointer != '0')
3371 as_bad (_("expected 0 or 1"));
3372
3373 input_line_pointer++;
3374 if (*input_line_pointer != ',')
3375 as_bad (_("missing comma"));
3376 input_line_pointer++;
3377
3378 #ifdef md_flush_pending_output
3379 md_flush_pending_output ();
3380 #endif
3381
3382 #ifdef md_cons_align
3383 md_cons_align (4);
3384 #endif
3385
3386 mapping_state (MAP_DATA);
3387
3388 expression (&exp);
3389
3390 p = frag_more (4);
3391 md_number_to_chars (p, highbit, 4);
3392 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3393 BFD_RELOC_ARM_PREL31);
3394
3395 demand_empty_rest_of_line ();
3396 }
3397
3398 /* Directives: AEABI stack-unwind tables. */
3399
3400 /* Parse an unwind_fnstart directive. Simply records the current location. */
3401
3402 static void
3403 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3404 {
3405 demand_empty_rest_of_line ();
3406 if (unwind.proc_start)
3407 {
3408 as_bad (_("duplicate .fnstart directive"));
3409 return;
3410 }
3411
3412 /* Mark the start of the function. */
3413 unwind.proc_start = expr_build_dot ();
3414
3415 /* Reset the rest of the unwind info. */
3416 unwind.opcode_count = 0;
3417 unwind.table_entry = NULL;
3418 unwind.personality_routine = NULL;
3419 unwind.personality_index = -1;
3420 unwind.frame_size = 0;
3421 unwind.fp_offset = 0;
3422 unwind.fp_reg = REG_SP;
3423 unwind.fp_used = 0;
3424 unwind.sp_restored = 0;
3425 }
3426
3427
3428 /* Parse a handlerdata directive. Creates the exception handling table entry
3429 for the function. */
3430
3431 static void
3432 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3433 {
3434 demand_empty_rest_of_line ();
3435 if (!unwind.proc_start)
3436 as_bad (MISSING_FNSTART);
3437
3438 if (unwind.table_entry)
3439 as_bad (_("duplicate .handlerdata directive"));
3440
3441 create_unwind_entry (1);
3442 }
3443
3444 /* Parse an unwind_fnend directive. Generates the index table entry. */
3445
3446 static void
3447 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3448 {
3449 long where;
3450 char *ptr;
3451 valueT val;
3452 unsigned int marked_pr_dependency;
3453
3454 demand_empty_rest_of_line ();
3455
3456 if (!unwind.proc_start)
3457 {
3458 as_bad (_(".fnend directive without .fnstart"));
3459 return;
3460 }
3461
3462 /* Add eh table entry. */
3463 if (unwind.table_entry == NULL)
3464 val = create_unwind_entry (0);
3465 else
3466 val = 0;
3467
3468 /* Add index table entry. This is two words. */
3469 start_unwind_section (unwind.saved_seg, 1);
3470 frag_align (2, 0, 0);
3471 record_alignment (now_seg, 2);
3472
3473 ptr = frag_more (8);
3474 where = frag_now_fix () - 8;
3475
3476 /* Self relative offset of the function start. */
3477 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3478 BFD_RELOC_ARM_PREL31);
3479
3480 /* Indicate dependency on EHABI-defined personality routines to the
3481 linker, if it hasn't been done already. */
3482 marked_pr_dependency
3483 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3484 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3485 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3486 {
3487 static const char *const name[] =
3488 {
3489 "__aeabi_unwind_cpp_pr0",
3490 "__aeabi_unwind_cpp_pr1",
3491 "__aeabi_unwind_cpp_pr2"
3492 };
3493 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3494 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3495 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3496 |= 1 << unwind.personality_index;
3497 }
3498
3499 if (val)
3500 /* Inline exception table entry. */
3501 md_number_to_chars (ptr + 4, val, 4);
3502 else
3503 /* Self relative offset of the table entry. */
3504 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3505 BFD_RELOC_ARM_PREL31);
3506
3507 /* Restore the original section. */
3508 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3509
3510 unwind.proc_start = NULL;
3511 }
3512
3513
3514 /* Parse an unwind_cantunwind directive. */
3515
3516 static void
3517 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3518 {
3519 demand_empty_rest_of_line ();
3520 if (!unwind.proc_start)
3521 as_bad (MISSING_FNSTART);
3522
3523 if (unwind.personality_routine || unwind.personality_index != -1)
3524 as_bad (_("personality routine specified for cantunwind frame"));
3525
3526 unwind.personality_index = -2;
3527 }
3528
3529
3530 /* Parse a personalityindex directive. */
3531
3532 static void
3533 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3534 {
3535 expressionS exp;
3536
3537 if (!unwind.proc_start)
3538 as_bad (MISSING_FNSTART);
3539
3540 if (unwind.personality_routine || unwind.personality_index != -1)
3541 as_bad (_("duplicate .personalityindex directive"));
3542
3543 expression (&exp);
3544
3545 if (exp.X_op != O_constant
3546 || exp.X_add_number < 0 || exp.X_add_number > 15)
3547 {
3548 as_bad (_("bad personality routine number"));
3549 ignore_rest_of_line ();
3550 return;
3551 }
3552
3553 unwind.personality_index = exp.X_add_number;
3554
3555 demand_empty_rest_of_line ();
3556 }
3557
3558
3559 /* Parse a personality directive. */
3560
3561 static void
3562 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3563 {
3564 char *name, *p, c;
3565
3566 if (!unwind.proc_start)
3567 as_bad (MISSING_FNSTART);
3568
3569 if (unwind.personality_routine || unwind.personality_index != -1)
3570 as_bad (_("duplicate .personality directive"));
3571
3572 name = input_line_pointer;
3573 c = get_symbol_end ();
3574 p = input_line_pointer;
3575 unwind.personality_routine = symbol_find_or_make (name);
3576 *p = c;
3577 demand_empty_rest_of_line ();
3578 }
3579
3580
3581 /* Parse a directive saving core registers. */
3582
3583 static void
3584 s_arm_unwind_save_core (void)
3585 {
3586 valueT op;
3587 long range;
3588 int n;
3589
3590 range = parse_reg_list (&input_line_pointer);
3591 if (range == FAIL)
3592 {
3593 as_bad (_("expected register list"));
3594 ignore_rest_of_line ();
3595 return;
3596 }
3597
3598 demand_empty_rest_of_line ();
3599
3600 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3601 into .unwind_save {..., sp...}. We aren't bothered about the value of
3602 ip because it is clobbered by calls. */
3603 if (unwind.sp_restored && unwind.fp_reg == 12
3604 && (range & 0x3000) == 0x1000)
3605 {
3606 unwind.opcode_count--;
3607 unwind.sp_restored = 0;
3608 range = (range | 0x2000) & ~0x1000;
3609 unwind.pending_offset = 0;
3610 }
3611
3612 /* Pop r4-r15. */
3613 if (range & 0xfff0)
3614 {
3615 /* See if we can use the short opcodes. These pop a block of up to 8
3616 registers starting with r4, plus maybe r14. */
3617 for (n = 0; n < 8; n++)
3618 {
3619 /* Break at the first non-saved register. */
3620 if ((range & (1 << (n + 4))) == 0)
3621 break;
3622 }
3623 /* See if there are any other bits set. */
3624 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3625 {
3626 /* Use the long form. */
3627 op = 0x8000 | ((range >> 4) & 0xfff);
3628 add_unwind_opcode (op, 2);
3629 }
3630 else
3631 {
3632 /* Use the short form. */
3633 if (range & 0x4000)
3634 op = 0xa8; /* Pop r14. */
3635 else
3636 op = 0xa0; /* Do not pop r14. */
3637 op |= (n - 1);
3638 add_unwind_opcode (op, 1);
3639 }
3640 }
3641
3642 /* Pop r0-r3. */
3643 if (range & 0xf)
3644 {
3645 op = 0xb100 | (range & 0xf);
3646 add_unwind_opcode (op, 2);
3647 }
3648
3649 /* Record the number of bytes pushed. */
3650 for (n = 0; n < 16; n++)
3651 {
3652 if (range & (1 << n))
3653 unwind.frame_size += 4;
3654 }
3655 }
3656
3657
3658 /* Parse a directive saving FPA registers. */
3659
3660 static void
3661 s_arm_unwind_save_fpa (int reg)
3662 {
3663 expressionS exp;
3664 int num_regs;
3665 valueT op;
3666
3667 /* Get Number of registers to transfer. */
3668 if (skip_past_comma (&input_line_pointer) != FAIL)
3669 expression (&exp);
3670 else
3671 exp.X_op = O_illegal;
3672
3673 if (exp.X_op != O_constant)
3674 {
3675 as_bad (_("expected , <constant>"));
3676 ignore_rest_of_line ();
3677 return;
3678 }
3679
3680 num_regs = exp.X_add_number;
3681
3682 if (num_regs < 1 || num_regs > 4)
3683 {
3684 as_bad (_("number of registers must be in the range [1:4]"));
3685 ignore_rest_of_line ();
3686 return;
3687 }
3688
3689 demand_empty_rest_of_line ();
3690
3691 if (reg == 4)
3692 {
3693 /* Short form. */
3694 op = 0xb4 | (num_regs - 1);
3695 add_unwind_opcode (op, 1);
3696 }
3697 else
3698 {
3699 /* Long form. */
3700 op = 0xc800 | (reg << 4) | (num_regs - 1);
3701 add_unwind_opcode (op, 2);
3702 }
3703 unwind.frame_size += num_regs * 12;
3704 }
3705
3706
3707 /* Parse a directive saving VFP registers for ARMv6 and above. */
3708
3709 static void
3710 s_arm_unwind_save_vfp_armv6 (void)
3711 {
3712 int count;
3713 unsigned int start;
3714 valueT op;
3715 int num_vfpv3_regs = 0;
3716 int num_regs_below_16;
3717
3718 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3719 if (count == FAIL)
3720 {
3721 as_bad (_("expected register list"));
3722 ignore_rest_of_line ();
3723 return;
3724 }
3725
3726 demand_empty_rest_of_line ();
3727
3728 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3729 than FSTMX/FLDMX-style ones). */
3730
3731 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3732 if (start >= 16)
3733 num_vfpv3_regs = count;
3734 else if (start + count > 16)
3735 num_vfpv3_regs = start + count - 16;
3736
3737 if (num_vfpv3_regs > 0)
3738 {
3739 int start_offset = start > 16 ? start - 16 : 0;
3740 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3741 add_unwind_opcode (op, 2);
3742 }
3743
3744 /* Generate opcode for registers numbered in the range 0 .. 15. */
3745 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3746 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3747 if (num_regs_below_16 > 0)
3748 {
3749 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3750 add_unwind_opcode (op, 2);
3751 }
3752
3753 unwind.frame_size += count * 8;
3754 }
3755
3756
3757 /* Parse a directive saving VFP registers for pre-ARMv6. */
3758
3759 static void
3760 s_arm_unwind_save_vfp (void)
3761 {
3762 int count;
3763 unsigned int reg;
3764 valueT op;
3765
3766 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3767 if (count == FAIL)
3768 {
3769 as_bad (_("expected register list"));
3770 ignore_rest_of_line ();
3771 return;
3772 }
3773
3774 demand_empty_rest_of_line ();
3775
3776 if (reg == 8)
3777 {
3778 /* Short form. */
3779 op = 0xb8 | (count - 1);
3780 add_unwind_opcode (op, 1);
3781 }
3782 else
3783 {
3784 /* Long form. */
3785 op = 0xb300 | (reg << 4) | (count - 1);
3786 add_unwind_opcode (op, 2);
3787 }
3788 unwind.frame_size += count * 8 + 4;
3789 }
3790
3791
3792 /* Parse a directive saving iWMMXt data registers. */
3793
3794 static void
3795 s_arm_unwind_save_mmxwr (void)
3796 {
3797 int reg;
3798 int hi_reg;
3799 int i;
3800 unsigned mask = 0;
3801 valueT op;
3802
3803 if (*input_line_pointer == '{')
3804 input_line_pointer++;
3805
3806 do
3807 {
3808 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3809
3810 if (reg == FAIL)
3811 {
3812 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3813 goto error;
3814 }
3815
3816 if (mask >> reg)
3817 as_tsktsk (_("register list not in ascending order"));
3818 mask |= 1 << reg;
3819
3820 if (*input_line_pointer == '-')
3821 {
3822 input_line_pointer++;
3823 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3824 if (hi_reg == FAIL)
3825 {
3826 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3827 goto error;
3828 }
3829 else if (reg >= hi_reg)
3830 {
3831 as_bad (_("bad register range"));
3832 goto error;
3833 }
3834 for (; reg < hi_reg; reg++)
3835 mask |= 1 << reg;
3836 }
3837 }
3838 while (skip_past_comma (&input_line_pointer) != FAIL);
3839
3840 if (*input_line_pointer == '}')
3841 input_line_pointer++;
3842
3843 demand_empty_rest_of_line ();
3844
3845 /* Generate any deferred opcodes because we're going to be looking at
3846 the list. */
3847 flush_pending_unwind ();
3848
3849 for (i = 0; i < 16; i++)
3850 {
3851 if (mask & (1 << i))
3852 unwind.frame_size += 8;
3853 }
3854
3855 /* Attempt to combine with a previous opcode. We do this because gcc
3856 likes to output separate unwind directives for a single block of
3857 registers. */
3858 if (unwind.opcode_count > 0)
3859 {
3860 i = unwind.opcodes[unwind.opcode_count - 1];
3861 if ((i & 0xf8) == 0xc0)
3862 {
3863 i &= 7;
3864 /* Only merge if the blocks are contiguous. */
3865 if (i < 6)
3866 {
3867 if ((mask & 0xfe00) == (1 << 9))
3868 {
3869 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3870 unwind.opcode_count--;
3871 }
3872 }
3873 else if (i == 6 && unwind.opcode_count >= 2)
3874 {
3875 i = unwind.opcodes[unwind.opcode_count - 2];
3876 reg = i >> 4;
3877 i &= 0xf;
3878
3879 op = 0xffff << (reg - 1);
3880 if (reg > 0
3881 && ((mask & op) == (1u << (reg - 1))))
3882 {
3883 op = (1 << (reg + i + 1)) - 1;
3884 op &= ~((1 << reg) - 1);
3885 mask |= op;
3886 unwind.opcode_count -= 2;
3887 }
3888 }
3889 }
3890 }
3891
3892 hi_reg = 15;
3893 /* We want to generate opcodes in the order the registers have been
3894 saved, ie. descending order. */
3895 for (reg = 15; reg >= -1; reg--)
3896 {
3897 /* Save registers in blocks. */
3898 if (reg < 0
3899 || !(mask & (1 << reg)))
3900 {
3901 /* We found an unsaved reg. Generate opcodes to save the
3902 preceding block. */
3903 if (reg != hi_reg)
3904 {
3905 if (reg == 9)
3906 {
3907 /* Short form. */
3908 op = 0xc0 | (hi_reg - 10);
3909 add_unwind_opcode (op, 1);
3910 }
3911 else
3912 {
3913 /* Long form. */
3914 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3915 add_unwind_opcode (op, 2);
3916 }
3917 }
3918 hi_reg = reg - 1;
3919 }
3920 }
3921
3922 return;
3923 error:
3924 ignore_rest_of_line ();
3925 }
3926
3927 static void
3928 s_arm_unwind_save_mmxwcg (void)
3929 {
3930 int reg;
3931 int hi_reg;
3932 unsigned mask = 0;
3933 valueT op;
3934
3935 if (*input_line_pointer == '{')
3936 input_line_pointer++;
3937
3938 do
3939 {
3940 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3941
3942 if (reg == FAIL)
3943 {
3944 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3945 goto error;
3946 }
3947
3948 reg -= 8;
3949 if (mask >> reg)
3950 as_tsktsk (_("register list not in ascending order"));
3951 mask |= 1 << reg;
3952
3953 if (*input_line_pointer == '-')
3954 {
3955 input_line_pointer++;
3956 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3957 if (hi_reg == FAIL)
3958 {
3959 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3960 goto error;
3961 }
3962 else if (reg >= hi_reg)
3963 {
3964 as_bad (_("bad register range"));
3965 goto error;
3966 }
3967 for (; reg < hi_reg; reg++)
3968 mask |= 1 << reg;
3969 }
3970 }
3971 while (skip_past_comma (&input_line_pointer) != FAIL);
3972
3973 if (*input_line_pointer == '}')
3974 input_line_pointer++;
3975
3976 demand_empty_rest_of_line ();
3977
3978 /* Generate any deferred opcodes because we're going to be looking at
3979 the list. */
3980 flush_pending_unwind ();
3981
3982 for (reg = 0; reg < 16; reg++)
3983 {
3984 if (mask & (1 << reg))
3985 unwind.frame_size += 4;
3986 }
3987 op = 0xc700 | mask;
3988 add_unwind_opcode (op, 2);
3989 return;
3990 error:
3991 ignore_rest_of_line ();
3992 }
3993
3994
3995 /* Parse an unwind_save directive.
3996 If the argument is non-zero, this is a .vsave directive. */
3997
3998 static void
3999 s_arm_unwind_save (int arch_v6)
4000 {
4001 char *peek;
4002 struct reg_entry *reg;
4003 bfd_boolean had_brace = FALSE;
4004
4005 if (!unwind.proc_start)
4006 as_bad (MISSING_FNSTART);
4007
4008 /* Figure out what sort of save we have. */
4009 peek = input_line_pointer;
4010
4011 if (*peek == '{')
4012 {
4013 had_brace = TRUE;
4014 peek++;
4015 }
4016
4017 reg = arm_reg_parse_multi (&peek);
4018
4019 if (!reg)
4020 {
4021 as_bad (_("register expected"));
4022 ignore_rest_of_line ();
4023 return;
4024 }
4025
4026 switch (reg->type)
4027 {
4028 case REG_TYPE_FN:
4029 if (had_brace)
4030 {
4031 as_bad (_("FPA .unwind_save does not take a register list"));
4032 ignore_rest_of_line ();
4033 return;
4034 }
4035 input_line_pointer = peek;
4036 s_arm_unwind_save_fpa (reg->number);
4037 return;
4038
4039 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4040 case REG_TYPE_VFD:
4041 if (arch_v6)
4042 s_arm_unwind_save_vfp_armv6 ();
4043 else
4044 s_arm_unwind_save_vfp ();
4045 return;
4046 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4047 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4048
4049 default:
4050 as_bad (_(".unwind_save does not support this kind of register"));
4051 ignore_rest_of_line ();
4052 }
4053 }
4054
4055
4056 /* Parse an unwind_movsp directive. */
4057
4058 static void
4059 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4060 {
4061 int reg;
4062 valueT op;
4063 int offset;
4064
4065 if (!unwind.proc_start)
4066 as_bad (MISSING_FNSTART);
4067
4068 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4069 if (reg == FAIL)
4070 {
4071 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4072 ignore_rest_of_line ();
4073 return;
4074 }
4075
4076 /* Optional constant. */
4077 if (skip_past_comma (&input_line_pointer) != FAIL)
4078 {
4079 if (immediate_for_directive (&offset) == FAIL)
4080 return;
4081 }
4082 else
4083 offset = 0;
4084
4085 demand_empty_rest_of_line ();
4086
4087 if (reg == REG_SP || reg == REG_PC)
4088 {
4089 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4090 return;
4091 }
4092
4093 if (unwind.fp_reg != REG_SP)
4094 as_bad (_("unexpected .unwind_movsp directive"));
4095
4096 /* Generate opcode to restore the value. */
4097 op = 0x90 | reg;
4098 add_unwind_opcode (op, 1);
4099
4100 /* Record the information for later. */
4101 unwind.fp_reg = reg;
4102 unwind.fp_offset = unwind.frame_size - offset;
4103 unwind.sp_restored = 1;
4104 }
4105
4106 /* Parse an unwind_pad directive. */
4107
4108 static void
4109 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4110 {
4111 int offset;
4112
4113 if (!unwind.proc_start)
4114 as_bad (MISSING_FNSTART);
4115
4116 if (immediate_for_directive (&offset) == FAIL)
4117 return;
4118
4119 if (offset & 3)
4120 {
4121 as_bad (_("stack increment must be multiple of 4"));
4122 ignore_rest_of_line ();
4123 return;
4124 }
4125
4126 /* Don't generate any opcodes, just record the details for later. */
4127 unwind.frame_size += offset;
4128 unwind.pending_offset += offset;
4129
4130 demand_empty_rest_of_line ();
4131 }
4132
4133 /* Parse an unwind_setfp directive. */
4134
4135 static void
4136 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4137 {
4138 int sp_reg;
4139 int fp_reg;
4140 int offset;
4141
4142 if (!unwind.proc_start)
4143 as_bad (MISSING_FNSTART);
4144
4145 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4146 if (skip_past_comma (&input_line_pointer) == FAIL)
4147 sp_reg = FAIL;
4148 else
4149 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4150
4151 if (fp_reg == FAIL || sp_reg == FAIL)
4152 {
4153 as_bad (_("expected <reg>, <reg>"));
4154 ignore_rest_of_line ();
4155 return;
4156 }
4157
4158 /* Optional constant. */
4159 if (skip_past_comma (&input_line_pointer) != FAIL)
4160 {
4161 if (immediate_for_directive (&offset) == FAIL)
4162 return;
4163 }
4164 else
4165 offset = 0;
4166
4167 demand_empty_rest_of_line ();
4168
4169 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4170 {
4171 as_bad (_("register must be either sp or set by a previous"
4172 "unwind_movsp directive"));
4173 return;
4174 }
4175
4176 /* Don't generate any opcodes, just record the information for later. */
4177 unwind.fp_reg = fp_reg;
4178 unwind.fp_used = 1;
4179 if (sp_reg == REG_SP)
4180 unwind.fp_offset = unwind.frame_size - offset;
4181 else
4182 unwind.fp_offset -= offset;
4183 }
4184
4185 /* Parse an unwind_raw directive. */
4186
4187 static void
4188 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4189 {
4190 expressionS exp;
4191 /* This is an arbitrary limit. */
4192 unsigned char op[16];
4193 int count;
4194
4195 if (!unwind.proc_start)
4196 as_bad (MISSING_FNSTART);
4197
4198 expression (&exp);
4199 if (exp.X_op == O_constant
4200 && skip_past_comma (&input_line_pointer) != FAIL)
4201 {
4202 unwind.frame_size += exp.X_add_number;
4203 expression (&exp);
4204 }
4205 else
4206 exp.X_op = O_illegal;
4207
4208 if (exp.X_op != O_constant)
4209 {
4210 as_bad (_("expected <offset>, <opcode>"));
4211 ignore_rest_of_line ();
4212 return;
4213 }
4214
4215 count = 0;
4216
4217 /* Parse the opcode. */
4218 for (;;)
4219 {
4220 if (count >= 16)
4221 {
4222 as_bad (_("unwind opcode too long"));
4223 ignore_rest_of_line ();
4224 }
4225 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4226 {
4227 as_bad (_("invalid unwind opcode"));
4228 ignore_rest_of_line ();
4229 return;
4230 }
4231 op[count++] = exp.X_add_number;
4232
4233 /* Parse the next byte. */
4234 if (skip_past_comma (&input_line_pointer) == FAIL)
4235 break;
4236
4237 expression (&exp);
4238 }
4239
4240 /* Add the opcode bytes in reverse order. */
4241 while (count--)
4242 add_unwind_opcode (op[count], 1);
4243
4244 demand_empty_rest_of_line ();
4245 }
4246
4247
4248 /* Parse a .eabi_attribute directive. */
4249
4250 static void
4251 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4252 {
4253 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4254
4255 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4256 attributes_set_explicitly[tag] = 1;
4257 }
4258 #endif /* OBJ_ELF */
4259
4260 static void s_arm_arch (int);
4261 static void s_arm_object_arch (int);
4262 static void s_arm_cpu (int);
4263 static void s_arm_fpu (int);
4264
4265 #ifdef TE_PE
4266
4267 static void
4268 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4269 {
4270 expressionS exp;
4271
4272 do
4273 {
4274 expression (&exp);
4275 if (exp.X_op == O_symbol)
4276 exp.X_op = O_secrel;
4277
4278 emit_expr (&exp, 4);
4279 }
4280 while (*input_line_pointer++ == ',');
4281
4282 input_line_pointer--;
4283 demand_empty_rest_of_line ();
4284 }
4285 #endif /* TE_PE */
4286
4287 /* This table describes all the machine specific pseudo-ops the assembler
4288 has to support. The fields are:
4289 pseudo-op name without dot
4290 function to call to execute this pseudo-op
4291 Integer arg to pass to the function. */
4292
4293 const pseudo_typeS md_pseudo_table[] =
4294 {
4295 /* Never called because '.req' does not start a line. */
4296 { "req", s_req, 0 },
4297 /* Following two are likewise never called. */
4298 { "dn", s_dn, 0 },
4299 { "qn", s_qn, 0 },
4300 { "unreq", s_unreq, 0 },
4301 { "bss", s_bss, 0 },
4302 { "align", s_align, 0 },
4303 { "arm", s_arm, 0 },
4304 { "thumb", s_thumb, 0 },
4305 { "code", s_code, 0 },
4306 { "force_thumb", s_force_thumb, 0 },
4307 { "thumb_func", s_thumb_func, 0 },
4308 { "thumb_set", s_thumb_set, 0 },
4309 { "even", s_even, 0 },
4310 { "ltorg", s_ltorg, 0 },
4311 { "pool", s_ltorg, 0 },
4312 { "syntax", s_syntax, 0 },
4313 { "cpu", s_arm_cpu, 0 },
4314 { "arch", s_arm_arch, 0 },
4315 { "object_arch", s_arm_object_arch, 0 },
4316 { "fpu", s_arm_fpu, 0 },
4317 #ifdef OBJ_ELF
4318 { "word", s_arm_elf_cons, 4 },
4319 { "long", s_arm_elf_cons, 4 },
4320 { "inst.n", s_arm_elf_inst, 2 },
4321 { "inst.w", s_arm_elf_inst, 4 },
4322 { "inst", s_arm_elf_inst, 0 },
4323 { "rel31", s_arm_rel31, 0 },
4324 { "fnstart", s_arm_unwind_fnstart, 0 },
4325 { "fnend", s_arm_unwind_fnend, 0 },
4326 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4327 { "personality", s_arm_unwind_personality, 0 },
4328 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4329 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4330 { "save", s_arm_unwind_save, 0 },
4331 { "vsave", s_arm_unwind_save, 1 },
4332 { "movsp", s_arm_unwind_movsp, 0 },
4333 { "pad", s_arm_unwind_pad, 0 },
4334 { "setfp", s_arm_unwind_setfp, 0 },
4335 { "unwind_raw", s_arm_unwind_raw, 0 },
4336 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4337 #else
4338 { "word", cons, 4},
4339
4340 /* These are used for dwarf. */
4341 {"2byte", cons, 2},
4342 {"4byte", cons, 4},
4343 {"8byte", cons, 8},
4344 /* These are used for dwarf2. */
4345 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4346 { "loc", dwarf2_directive_loc, 0 },
4347 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4348 #endif
4349 { "extend", float_cons, 'x' },
4350 { "ldouble", float_cons, 'x' },
4351 { "packed", float_cons, 'p' },
4352 #ifdef TE_PE
4353 {"secrel32", pe_directive_secrel, 0},
4354 #endif
4355 { 0, 0, 0 }
4356 };
4357 \f
4358 /* Parser functions used exclusively in instruction operands. */
4359
4360 /* Generic immediate-value read function for use in insn parsing.
4361 STR points to the beginning of the immediate (the leading #);
4362 VAL receives the value; if the value is outside [MIN, MAX]
4363 issue an error. PREFIX_OPT is true if the immediate prefix is
4364 optional. */
4365
4366 static int
4367 parse_immediate (char **str, int *val, int min, int max,
4368 bfd_boolean prefix_opt)
4369 {
4370 expressionS exp;
4371 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4372 if (exp.X_op != O_constant)
4373 {
4374 inst.error = _("constant expression required");
4375 return FAIL;
4376 }
4377
4378 if (exp.X_add_number < min || exp.X_add_number > max)
4379 {
4380 inst.error = _("immediate value out of range");
4381 return FAIL;
4382 }
4383
4384 *val = exp.X_add_number;
4385 return SUCCESS;
4386 }
4387
4388 /* Less-generic immediate-value read function with the possibility of loading a
4389 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4390 instructions. Puts the result directly in inst.operands[i]. */
4391
4392 static int
4393 parse_big_immediate (char **str, int i)
4394 {
4395 expressionS exp;
4396 char *ptr = *str;
4397
4398 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4399
4400 if (exp.X_op == O_constant)
4401 {
4402 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4403 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4404 O_constant. We have to be careful not to break compilation for
4405 32-bit X_add_number, though. */
4406 if ((exp.X_add_number & ~0xffffffffl) != 0)
4407 {
4408 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4409 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4410 inst.operands[i].regisimm = 1;
4411 }
4412 }
4413 else if (exp.X_op == O_big
4414 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4415 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4416 {
4417 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4418 /* Bignums have their least significant bits in
4419 generic_bignum[0]. Make sure we put 32 bits in imm and
4420 32 bits in reg, in a (hopefully) portable way. */
4421 gas_assert (parts != 0);
4422 inst.operands[i].imm = 0;
4423 for (j = 0; j < parts; j++, idx++)
4424 inst.operands[i].imm |= generic_bignum[idx]
4425 << (LITTLENUM_NUMBER_OF_BITS * j);
4426 inst.operands[i].reg = 0;
4427 for (j = 0; j < parts; j++, idx++)
4428 inst.operands[i].reg |= generic_bignum[idx]
4429 << (LITTLENUM_NUMBER_OF_BITS * j);
4430 inst.operands[i].regisimm = 1;
4431 }
4432 else
4433 return FAIL;
4434
4435 *str = ptr;
4436
4437 return SUCCESS;
4438 }
4439
4440 /* Returns the pseudo-register number of an FPA immediate constant,
4441 or FAIL if there isn't a valid constant here. */
4442
4443 static int
4444 parse_fpa_immediate (char ** str)
4445 {
4446 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4447 char * save_in;
4448 expressionS exp;
4449 int i;
4450 int j;
4451
4452 /* First try and match exact strings, this is to guarantee
4453 that some formats will work even for cross assembly. */
4454
4455 for (i = 0; fp_const[i]; i++)
4456 {
4457 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4458 {
4459 char *start = *str;
4460
4461 *str += strlen (fp_const[i]);
4462 if (is_end_of_line[(unsigned char) **str])
4463 return i + 8;
4464 *str = start;
4465 }
4466 }
4467
4468 /* Just because we didn't get a match doesn't mean that the constant
4469 isn't valid, just that it is in a format that we don't
4470 automatically recognize. Try parsing it with the standard
4471 expression routines. */
4472
4473 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4474
4475 /* Look for a raw floating point number. */
4476 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4477 && is_end_of_line[(unsigned char) *save_in])
4478 {
4479 for (i = 0; i < NUM_FLOAT_VALS; i++)
4480 {
4481 for (j = 0; j < MAX_LITTLENUMS; j++)
4482 {
4483 if (words[j] != fp_values[i][j])
4484 break;
4485 }
4486
4487 if (j == MAX_LITTLENUMS)
4488 {
4489 *str = save_in;
4490 return i + 8;
4491 }
4492 }
4493 }
4494
4495 /* Try and parse a more complex expression, this will probably fail
4496 unless the code uses a floating point prefix (eg "0f"). */
4497 save_in = input_line_pointer;
4498 input_line_pointer = *str;
4499 if (expression (&exp) == absolute_section
4500 && exp.X_op == O_big
4501 && exp.X_add_number < 0)
4502 {
4503 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4504 Ditto for 15. */
4505 if (gen_to_words (words, 5, (long) 15) == 0)
4506 {
4507 for (i = 0; i < NUM_FLOAT_VALS; i++)
4508 {
4509 for (j = 0; j < MAX_LITTLENUMS; j++)
4510 {
4511 if (words[j] != fp_values[i][j])
4512 break;
4513 }
4514
4515 if (j == MAX_LITTLENUMS)
4516 {
4517 *str = input_line_pointer;
4518 input_line_pointer = save_in;
4519 return i + 8;
4520 }
4521 }
4522 }
4523 }
4524
4525 *str = input_line_pointer;
4526 input_line_pointer = save_in;
4527 inst.error = _("invalid FPA immediate expression");
4528 return FAIL;
4529 }
4530
4531 /* Returns 1 if a number has "quarter-precision" float format
4532 0baBbbbbbc defgh000 00000000 00000000. */
4533
4534 static int
4535 is_quarter_float (unsigned imm)
4536 {
4537 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4538 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4539 }
4540
4541 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4542 0baBbbbbbc defgh000 00000000 00000000.
4543 The zero and minus-zero cases need special handling, since they can't be
4544 encoded in the "quarter-precision" float format, but can nonetheless be
4545 loaded as integer constants. */
4546
4547 static unsigned
4548 parse_qfloat_immediate (char **ccp, int *immed)
4549 {
4550 char *str = *ccp;
4551 char *fpnum;
4552 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4553 int found_fpchar = 0;
4554
4555 skip_past_char (&str, '#');
4556
4557 /* We must not accidentally parse an integer as a floating-point number. Make
4558 sure that the value we parse is not an integer by checking for special
4559 characters '.' or 'e'.
4560 FIXME: This is a horrible hack, but doing better is tricky because type
4561 information isn't in a very usable state at parse time. */
4562 fpnum = str;
4563 skip_whitespace (fpnum);
4564
4565 if (strncmp (fpnum, "0x", 2) == 0)
4566 return FAIL;
4567 else
4568 {
4569 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4570 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4571 {
4572 found_fpchar = 1;
4573 break;
4574 }
4575
4576 if (!found_fpchar)
4577 return FAIL;
4578 }
4579
4580 if ((str = atof_ieee (str, 's', words)) != NULL)
4581 {
4582 unsigned fpword = 0;
4583 int i;
4584
4585 /* Our FP word must be 32 bits (single-precision FP). */
4586 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4587 {
4588 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4589 fpword |= words[i];
4590 }
4591
4592 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4593 *immed = fpword;
4594 else
4595 return FAIL;
4596
4597 *ccp = str;
4598
4599 return SUCCESS;
4600 }
4601
4602 return FAIL;
4603 }
4604
4605 /* Shift operands. */
4606 enum shift_kind
4607 {
4608 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4609 };
4610
4611 struct asm_shift_name
4612 {
4613 const char *name;
4614 enum shift_kind kind;
4615 };
4616
4617 /* Third argument to parse_shift. */
4618 enum parse_shift_mode
4619 {
4620 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4621 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4622 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4623 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4624 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4625 };
4626
4627 /* Parse a <shift> specifier on an ARM data processing instruction.
4628 This has three forms:
4629
4630 (LSL|LSR|ASL|ASR|ROR) Rs
4631 (LSL|LSR|ASL|ASR|ROR) #imm
4632 RRX
4633
4634 Note that ASL is assimilated to LSL in the instruction encoding, and
4635 RRX to ROR #0 (which cannot be written as such). */
4636
4637 static int
4638 parse_shift (char **str, int i, enum parse_shift_mode mode)
4639 {
4640 const struct asm_shift_name *shift_name;
4641 enum shift_kind shift;
4642 char *s = *str;
4643 char *p = s;
4644 int reg;
4645
4646 for (p = *str; ISALPHA (*p); p++)
4647 ;
4648
4649 if (p == *str)
4650 {
4651 inst.error = _("shift expression expected");
4652 return FAIL;
4653 }
4654
4655 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4656 p - *str);
4657
4658 if (shift_name == NULL)
4659 {
4660 inst.error = _("shift expression expected");
4661 return FAIL;
4662 }
4663
4664 shift = shift_name->kind;
4665
4666 switch (mode)
4667 {
4668 case NO_SHIFT_RESTRICT:
4669 case SHIFT_IMMEDIATE: break;
4670
4671 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4672 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4673 {
4674 inst.error = _("'LSL' or 'ASR' required");
4675 return FAIL;
4676 }
4677 break;
4678
4679 case SHIFT_LSL_IMMEDIATE:
4680 if (shift != SHIFT_LSL)
4681 {
4682 inst.error = _("'LSL' required");
4683 return FAIL;
4684 }
4685 break;
4686
4687 case SHIFT_ASR_IMMEDIATE:
4688 if (shift != SHIFT_ASR)
4689 {
4690 inst.error = _("'ASR' required");
4691 return FAIL;
4692 }
4693 break;
4694
4695 default: abort ();
4696 }
4697
4698 if (shift != SHIFT_RRX)
4699 {
4700 /* Whitespace can appear here if the next thing is a bare digit. */
4701 skip_whitespace (p);
4702
4703 if (mode == NO_SHIFT_RESTRICT
4704 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4705 {
4706 inst.operands[i].imm = reg;
4707 inst.operands[i].immisreg = 1;
4708 }
4709 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4710 return FAIL;
4711 }
4712 inst.operands[i].shift_kind = shift;
4713 inst.operands[i].shifted = 1;
4714 *str = p;
4715 return SUCCESS;
4716 }
4717
4718 /* Parse a <shifter_operand> for an ARM data processing instruction:
4719
4720 #<immediate>
4721 #<immediate>, <rotate>
4722 <Rm>
4723 <Rm>, <shift>
4724
4725 where <shift> is defined by parse_shift above, and <rotate> is a
4726 multiple of 2 between 0 and 30. Validation of immediate operands
4727 is deferred to md_apply_fix. */
4728
4729 static int
4730 parse_shifter_operand (char **str, int i)
4731 {
4732 int value;
4733 expressionS exp;
4734
4735 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4736 {
4737 inst.operands[i].reg = value;
4738 inst.operands[i].isreg = 1;
4739
4740 /* parse_shift will override this if appropriate */
4741 inst.reloc.exp.X_op = O_constant;
4742 inst.reloc.exp.X_add_number = 0;
4743
4744 if (skip_past_comma (str) == FAIL)
4745 return SUCCESS;
4746
4747 /* Shift operation on register. */
4748 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4749 }
4750
4751 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4752 return FAIL;
4753
4754 if (skip_past_comma (str) == SUCCESS)
4755 {
4756 /* #x, y -- ie explicit rotation by Y. */
4757 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4758 return FAIL;
4759
4760 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4761 {
4762 inst.error = _("constant expression expected");
4763 return FAIL;
4764 }
4765
4766 value = exp.X_add_number;
4767 if (value < 0 || value > 30 || value % 2 != 0)
4768 {
4769 inst.error = _("invalid rotation");
4770 return FAIL;
4771 }
4772 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4773 {
4774 inst.error = _("invalid constant");
4775 return FAIL;
4776 }
4777
4778 /* Convert to decoded value. md_apply_fix will put it back. */
4779 inst.reloc.exp.X_add_number
4780 = (((inst.reloc.exp.X_add_number << (32 - value))
4781 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4782 }
4783
4784 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4785 inst.reloc.pc_rel = 0;
4786 return SUCCESS;
4787 }
4788
4789 /* Group relocation information. Each entry in the table contains the
4790 textual name of the relocation as may appear in assembler source
4791 and must end with a colon.
4792 Along with this textual name are the relocation codes to be used if
4793 the corresponding instruction is an ALU instruction (ADD or SUB only),
4794 an LDR, an LDRS, or an LDC. */
4795
4796 struct group_reloc_table_entry
4797 {
4798 const char *name;
4799 int alu_code;
4800 int ldr_code;
4801 int ldrs_code;
4802 int ldc_code;
4803 };
4804
4805 typedef enum
4806 {
4807 /* Varieties of non-ALU group relocation. */
4808
4809 GROUP_LDR,
4810 GROUP_LDRS,
4811 GROUP_LDC
4812 } group_reloc_type;
4813
4814 static struct group_reloc_table_entry group_reloc_table[] =
4815 { /* Program counter relative: */
4816 { "pc_g0_nc",
4817 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4818 0, /* LDR */
4819 0, /* LDRS */
4820 0 }, /* LDC */
4821 { "pc_g0",
4822 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4823 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4824 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4825 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4826 { "pc_g1_nc",
4827 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4828 0, /* LDR */
4829 0, /* LDRS */
4830 0 }, /* LDC */
4831 { "pc_g1",
4832 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4833 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4834 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4835 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4836 { "pc_g2",
4837 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4838 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4839 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4840 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4841 /* Section base relative */
4842 { "sb_g0_nc",
4843 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4844 0, /* LDR */
4845 0, /* LDRS */
4846 0 }, /* LDC */
4847 { "sb_g0",
4848 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4849 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4850 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4851 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4852 { "sb_g1_nc",
4853 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4854 0, /* LDR */
4855 0, /* LDRS */
4856 0 }, /* LDC */
4857 { "sb_g1",
4858 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4859 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4860 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4861 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4862 { "sb_g2",
4863 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4864 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4865 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4866 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4867
4868 /* Given the address of a pointer pointing to the textual name of a group
4869 relocation as may appear in assembler source, attempt to find its details
4870 in group_reloc_table. The pointer will be updated to the character after
4871 the trailing colon. On failure, FAIL will be returned; SUCCESS
4872 otherwise. On success, *entry will be updated to point at the relevant
4873 group_reloc_table entry. */
4874
4875 static int
4876 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4877 {
4878 unsigned int i;
4879 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4880 {
4881 int length = strlen (group_reloc_table[i].name);
4882
4883 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4884 && (*str)[length] == ':')
4885 {
4886 *out = &group_reloc_table[i];
4887 *str += (length + 1);
4888 return SUCCESS;
4889 }
4890 }
4891
4892 return FAIL;
4893 }
4894
4895 /* Parse a <shifter_operand> for an ARM data processing instruction
4896 (as for parse_shifter_operand) where group relocations are allowed:
4897
4898 #<immediate>
4899 #<immediate>, <rotate>
4900 #:<group_reloc>:<expression>
4901 <Rm>
4902 <Rm>, <shift>
4903
4904 where <group_reloc> is one of the strings defined in group_reloc_table.
4905 The hashes are optional.
4906
4907 Everything else is as for parse_shifter_operand. */
4908
4909 static parse_operand_result
4910 parse_shifter_operand_group_reloc (char **str, int i)
4911 {
4912 /* Determine if we have the sequence of characters #: or just :
4913 coming next. If we do, then we check for a group relocation.
4914 If we don't, punt the whole lot to parse_shifter_operand. */
4915
4916 if (((*str)[0] == '#' && (*str)[1] == ':')
4917 || (*str)[0] == ':')
4918 {
4919 struct group_reloc_table_entry *entry;
4920
4921 if ((*str)[0] == '#')
4922 (*str) += 2;
4923 else
4924 (*str)++;
4925
4926 /* Try to parse a group relocation. Anything else is an error. */
4927 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4928 {
4929 inst.error = _("unknown group relocation");
4930 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4931 }
4932
4933 /* We now have the group relocation table entry corresponding to
4934 the name in the assembler source. Next, we parse the expression. */
4935 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4936 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4937
4938 /* Record the relocation type (always the ALU variant here). */
4939 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
4940 gas_assert (inst.reloc.type != 0);
4941
4942 return PARSE_OPERAND_SUCCESS;
4943 }
4944 else
4945 return parse_shifter_operand (str, i) == SUCCESS
4946 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4947
4948 /* Never reached. */
4949 }
4950
4951 /* Parse a Neon alignment expression. Information is written to
4952 inst.operands[i]. We assume the initial ':' has been skipped.
4953
4954 align .imm = align << 8, .immisalign=1, .preind=0 */
4955 static parse_operand_result
4956 parse_neon_alignment (char **str, int i)
4957 {
4958 char *p = *str;
4959 expressionS exp;
4960
4961 my_get_expression (&exp, &p, GE_NO_PREFIX);
4962
4963 if (exp.X_op != O_constant)
4964 {
4965 inst.error = _("alignment must be constant");
4966 return PARSE_OPERAND_FAIL;
4967 }
4968
4969 inst.operands[i].imm = exp.X_add_number << 8;
4970 inst.operands[i].immisalign = 1;
4971 /* Alignments are not pre-indexes. */
4972 inst.operands[i].preind = 0;
4973
4974 *str = p;
4975 return PARSE_OPERAND_SUCCESS;
4976 }
4977
4978 /* Parse all forms of an ARM address expression. Information is written
4979 to inst.operands[i] and/or inst.reloc.
4980
4981 Preindexed addressing (.preind=1):
4982
4983 [Rn, #offset] .reg=Rn .reloc.exp=offset
4984 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4985 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4986 .shift_kind=shift .reloc.exp=shift_imm
4987
4988 These three may have a trailing ! which causes .writeback to be set also.
4989
4990 Postindexed addressing (.postind=1, .writeback=1):
4991
4992 [Rn], #offset .reg=Rn .reloc.exp=offset
4993 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4994 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4995 .shift_kind=shift .reloc.exp=shift_imm
4996
4997 Unindexed addressing (.preind=0, .postind=0):
4998
4999 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5000
5001 Other:
5002
5003 [Rn]{!} shorthand for [Rn,#0]{!}
5004 =immediate .isreg=0 .reloc.exp=immediate
5005 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5006
5007 It is the caller's responsibility to check for addressing modes not
5008 supported by the instruction, and to set inst.reloc.type. */
5009
5010 static parse_operand_result
5011 parse_address_main (char **str, int i, int group_relocations,
5012 group_reloc_type group_type)
5013 {
5014 char *p = *str;
5015 int reg;
5016
5017 if (skip_past_char (&p, '[') == FAIL)
5018 {
5019 if (skip_past_char (&p, '=') == FAIL)
5020 {
5021 /* Bare address - translate to PC-relative offset. */
5022 inst.reloc.pc_rel = 1;
5023 inst.operands[i].reg = REG_PC;
5024 inst.operands[i].isreg = 1;
5025 inst.operands[i].preind = 1;
5026 }
5027 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5028
5029 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5030 return PARSE_OPERAND_FAIL;
5031
5032 *str = p;
5033 return PARSE_OPERAND_SUCCESS;
5034 }
5035
5036 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5037 {
5038 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5039 return PARSE_OPERAND_FAIL;
5040 }
5041 inst.operands[i].reg = reg;
5042 inst.operands[i].isreg = 1;
5043
5044 if (skip_past_comma (&p) == SUCCESS)
5045 {
5046 inst.operands[i].preind = 1;
5047
5048 if (*p == '+') p++;
5049 else if (*p == '-') p++, inst.operands[i].negative = 1;
5050
5051 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5052 {
5053 inst.operands[i].imm = reg;
5054 inst.operands[i].immisreg = 1;
5055
5056 if (skip_past_comma (&p) == SUCCESS)
5057 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5058 return PARSE_OPERAND_FAIL;
5059 }
5060 else if (skip_past_char (&p, ':') == SUCCESS)
5061 {
5062 /* FIXME: '@' should be used here, but it's filtered out by generic
5063 code before we get to see it here. This may be subject to
5064 change. */
5065 parse_operand_result result = parse_neon_alignment (&p, i);
5066
5067 if (result != PARSE_OPERAND_SUCCESS)
5068 return result;
5069 }
5070 else
5071 {
5072 if (inst.operands[i].negative)
5073 {
5074 inst.operands[i].negative = 0;
5075 p--;
5076 }
5077
5078 if (group_relocations
5079 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5080 {
5081 struct group_reloc_table_entry *entry;
5082
5083 /* Skip over the #: or : sequence. */
5084 if (*p == '#')
5085 p += 2;
5086 else
5087 p++;
5088
5089 /* Try to parse a group relocation. Anything else is an
5090 error. */
5091 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5092 {
5093 inst.error = _("unknown group relocation");
5094 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5095 }
5096
5097 /* We now have the group relocation table entry corresponding to
5098 the name in the assembler source. Next, we parse the
5099 expression. */
5100 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5101 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5102
5103 /* Record the relocation type. */
5104 switch (group_type)
5105 {
5106 case GROUP_LDR:
5107 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5108 break;
5109
5110 case GROUP_LDRS:
5111 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5112 break;
5113
5114 case GROUP_LDC:
5115 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5116 break;
5117
5118 default:
5119 gas_assert (0);
5120 }
5121
5122 if (inst.reloc.type == 0)
5123 {
5124 inst.error = _("this group relocation is not allowed on this instruction");
5125 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5126 }
5127 }
5128 else
5129 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5130 return PARSE_OPERAND_FAIL;
5131 }
5132 }
5133 else if (skip_past_char (&p, ':') == SUCCESS)
5134 {
5135 /* FIXME: '@' should be used here, but it's filtered out by generic code
5136 before we get to see it here. This may be subject to change. */
5137 parse_operand_result result = parse_neon_alignment (&p, i);
5138
5139 if (result != PARSE_OPERAND_SUCCESS)
5140 return result;
5141 }
5142
5143 if (skip_past_char (&p, ']') == FAIL)
5144 {
5145 inst.error = _("']' expected");
5146 return PARSE_OPERAND_FAIL;
5147 }
5148
5149 if (skip_past_char (&p, '!') == SUCCESS)
5150 inst.operands[i].writeback = 1;
5151
5152 else if (skip_past_comma (&p) == SUCCESS)
5153 {
5154 if (skip_past_char (&p, '{') == SUCCESS)
5155 {
5156 /* [Rn], {expr} - unindexed, with option */
5157 if (parse_immediate (&p, &inst.operands[i].imm,
5158 0, 255, TRUE) == FAIL)
5159 return PARSE_OPERAND_FAIL;
5160
5161 if (skip_past_char (&p, '}') == FAIL)
5162 {
5163 inst.error = _("'}' expected at end of 'option' field");
5164 return PARSE_OPERAND_FAIL;
5165 }
5166 if (inst.operands[i].preind)
5167 {
5168 inst.error = _("cannot combine index with option");
5169 return PARSE_OPERAND_FAIL;
5170 }
5171 *str = p;
5172 return PARSE_OPERAND_SUCCESS;
5173 }
5174 else
5175 {
5176 inst.operands[i].postind = 1;
5177 inst.operands[i].writeback = 1;
5178
5179 if (inst.operands[i].preind)
5180 {
5181 inst.error = _("cannot combine pre- and post-indexing");
5182 return PARSE_OPERAND_FAIL;
5183 }
5184
5185 if (*p == '+') p++;
5186 else if (*p == '-') p++, inst.operands[i].negative = 1;
5187
5188 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5189 {
5190 /* We might be using the immediate for alignment already. If we
5191 are, OR the register number into the low-order bits. */
5192 if (inst.operands[i].immisalign)
5193 inst.operands[i].imm |= reg;
5194 else
5195 inst.operands[i].imm = reg;
5196 inst.operands[i].immisreg = 1;
5197
5198 if (skip_past_comma (&p) == SUCCESS)
5199 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5200 return PARSE_OPERAND_FAIL;
5201 }
5202 else
5203 {
5204 if (inst.operands[i].negative)
5205 {
5206 inst.operands[i].negative = 0;
5207 p--;
5208 }
5209 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5210 return PARSE_OPERAND_FAIL;
5211 }
5212 }
5213 }
5214
5215 /* If at this point neither .preind nor .postind is set, we have a
5216 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5217 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5218 {
5219 inst.operands[i].preind = 1;
5220 inst.reloc.exp.X_op = O_constant;
5221 inst.reloc.exp.X_add_number = 0;
5222 }
5223 *str = p;
5224 return PARSE_OPERAND_SUCCESS;
5225 }
5226
5227 static int
5228 parse_address (char **str, int i)
5229 {
5230 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5231 ? SUCCESS : FAIL;
5232 }
5233
5234 static parse_operand_result
5235 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5236 {
5237 return parse_address_main (str, i, 1, type);
5238 }
5239
5240 /* Parse an operand for a MOVW or MOVT instruction. */
5241 static int
5242 parse_half (char **str)
5243 {
5244 char * p;
5245
5246 p = *str;
5247 skip_past_char (&p, '#');
5248 if (strncasecmp (p, ":lower16:", 9) == 0)
5249 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5250 else if (strncasecmp (p, ":upper16:", 9) == 0)
5251 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5252
5253 if (inst.reloc.type != BFD_RELOC_UNUSED)
5254 {
5255 p += 9;
5256 skip_whitespace (p);
5257 }
5258
5259 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5260 return FAIL;
5261
5262 if (inst.reloc.type == BFD_RELOC_UNUSED)
5263 {
5264 if (inst.reloc.exp.X_op != O_constant)
5265 {
5266 inst.error = _("constant expression expected");
5267 return FAIL;
5268 }
5269 if (inst.reloc.exp.X_add_number < 0
5270 || inst.reloc.exp.X_add_number > 0xffff)
5271 {
5272 inst.error = _("immediate value out of range");
5273 return FAIL;
5274 }
5275 }
5276 *str = p;
5277 return SUCCESS;
5278 }
5279
5280 /* Miscellaneous. */
5281
5282 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5283 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5284 static int
5285 parse_psr (char **str)
5286 {
5287 char *p;
5288 unsigned long psr_field;
5289 const struct asm_psr *psr;
5290 char *start;
5291
5292 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5293 feature for ease of use and backwards compatibility. */
5294 p = *str;
5295 if (strncasecmp (p, "SPSR", 4) == 0)
5296 psr_field = SPSR_BIT;
5297 else if (strncasecmp (p, "CPSR", 4) == 0)
5298 psr_field = 0;
5299 else
5300 {
5301 start = p;
5302 do
5303 p++;
5304 while (ISALNUM (*p) || *p == '_');
5305
5306 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5307 p - start);
5308 if (!psr)
5309 return FAIL;
5310
5311 *str = p;
5312 return psr->field;
5313 }
5314
5315 p += 4;
5316 if (*p == '_')
5317 {
5318 /* A suffix follows. */
5319 p++;
5320 start = p;
5321
5322 do
5323 p++;
5324 while (ISALNUM (*p) || *p == '_');
5325
5326 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5327 p - start);
5328 if (!psr)
5329 goto error;
5330
5331 psr_field |= psr->field;
5332 }
5333 else
5334 {
5335 if (ISALNUM (*p))
5336 goto error; /* Garbage after "[CS]PSR". */
5337
5338 psr_field |= (PSR_c | PSR_f);
5339 }
5340 *str = p;
5341 return psr_field;
5342
5343 error:
5344 inst.error = _("flag for {c}psr instruction expected");
5345 return FAIL;
5346 }
5347
5348 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5349 value suitable for splatting into the AIF field of the instruction. */
5350
5351 static int
5352 parse_cps_flags (char **str)
5353 {
5354 int val = 0;
5355 int saw_a_flag = 0;
5356 char *s = *str;
5357
5358 for (;;)
5359 switch (*s++)
5360 {
5361 case '\0': case ',':
5362 goto done;
5363
5364 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5365 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5366 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5367
5368 default:
5369 inst.error = _("unrecognized CPS flag");
5370 return FAIL;
5371 }
5372
5373 done:
5374 if (saw_a_flag == 0)
5375 {
5376 inst.error = _("missing CPS flags");
5377 return FAIL;
5378 }
5379
5380 *str = s - 1;
5381 return val;
5382 }
5383
5384 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5385 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5386
5387 static int
5388 parse_endian_specifier (char **str)
5389 {
5390 int little_endian;
5391 char *s = *str;
5392
5393 if (strncasecmp (s, "BE", 2))
5394 little_endian = 0;
5395 else if (strncasecmp (s, "LE", 2))
5396 little_endian = 1;
5397 else
5398 {
5399 inst.error = _("valid endian specifiers are be or le");
5400 return FAIL;
5401 }
5402
5403 if (ISALNUM (s[2]) || s[2] == '_')
5404 {
5405 inst.error = _("valid endian specifiers are be or le");
5406 return FAIL;
5407 }
5408
5409 *str = s + 2;
5410 return little_endian;
5411 }
5412
5413 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5414 value suitable for poking into the rotate field of an sxt or sxta
5415 instruction, or FAIL on error. */
5416
5417 static int
5418 parse_ror (char **str)
5419 {
5420 int rot;
5421 char *s = *str;
5422
5423 if (strncasecmp (s, "ROR", 3) == 0)
5424 s += 3;
5425 else
5426 {
5427 inst.error = _("missing rotation field after comma");
5428 return FAIL;
5429 }
5430
5431 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5432 return FAIL;
5433
5434 switch (rot)
5435 {
5436 case 0: *str = s; return 0x0;
5437 case 8: *str = s; return 0x1;
5438 case 16: *str = s; return 0x2;
5439 case 24: *str = s; return 0x3;
5440
5441 default:
5442 inst.error = _("rotation can only be 0, 8, 16, or 24");
5443 return FAIL;
5444 }
5445 }
5446
5447 /* Parse a conditional code (from conds[] below). The value returned is in the
5448 range 0 .. 14, or FAIL. */
5449 static int
5450 parse_cond (char **str)
5451 {
5452 char *q;
5453 const struct asm_cond *c;
5454 int n;
5455 /* Condition codes are always 2 characters, so matching up to
5456 3 characters is sufficient. */
5457 char cond[3];
5458
5459 q = *str;
5460 n = 0;
5461 while (ISALPHA (*q) && n < 3)
5462 {
5463 cond[n] = TOLOWER (*q);
5464 q++;
5465 n++;
5466 }
5467
5468 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5469 if (!c)
5470 {
5471 inst.error = _("condition required");
5472 return FAIL;
5473 }
5474
5475 *str = q;
5476 return c->value;
5477 }
5478
5479 /* Parse an option for a barrier instruction. Returns the encoding for the
5480 option, or FAIL. */
5481 static int
5482 parse_barrier (char **str)
5483 {
5484 char *p, *q;
5485 const struct asm_barrier_opt *o;
5486
5487 p = q = *str;
5488 while (ISALPHA (*q))
5489 q++;
5490
5491 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5492 q - p);
5493 if (!o)
5494 return FAIL;
5495
5496 *str = q;
5497 return o->value;
5498 }
5499
5500 /* Parse the operands of a table branch instruction. Similar to a memory
5501 operand. */
5502 static int
5503 parse_tb (char **str)
5504 {
5505 char * p = *str;
5506 int reg;
5507
5508 if (skip_past_char (&p, '[') == FAIL)
5509 {
5510 inst.error = _("'[' expected");
5511 return FAIL;
5512 }
5513
5514 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5515 {
5516 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5517 return FAIL;
5518 }
5519 inst.operands[0].reg = reg;
5520
5521 if (skip_past_comma (&p) == FAIL)
5522 {
5523 inst.error = _("',' expected");
5524 return FAIL;
5525 }
5526
5527 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5528 {
5529 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5530 return FAIL;
5531 }
5532 inst.operands[0].imm = reg;
5533
5534 if (skip_past_comma (&p) == SUCCESS)
5535 {
5536 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5537 return FAIL;
5538 if (inst.reloc.exp.X_add_number != 1)
5539 {
5540 inst.error = _("invalid shift");
5541 return FAIL;
5542 }
5543 inst.operands[0].shifted = 1;
5544 }
5545
5546 if (skip_past_char (&p, ']') == FAIL)
5547 {
5548 inst.error = _("']' expected");
5549 return FAIL;
5550 }
5551 *str = p;
5552 return SUCCESS;
5553 }
5554
5555 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5556 information on the types the operands can take and how they are encoded.
5557 Up to four operands may be read; this function handles setting the
5558 ".present" field for each read operand itself.
5559 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5560 else returns FAIL. */
5561
5562 static int
5563 parse_neon_mov (char **str, int *which_operand)
5564 {
5565 int i = *which_operand, val;
5566 enum arm_reg_type rtype;
5567 char *ptr = *str;
5568 struct neon_type_el optype;
5569
5570 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5571 {
5572 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5573 inst.operands[i].reg = val;
5574 inst.operands[i].isscalar = 1;
5575 inst.operands[i].vectype = optype;
5576 inst.operands[i++].present = 1;
5577
5578 if (skip_past_comma (&ptr) == FAIL)
5579 goto wanted_comma;
5580
5581 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5582 goto wanted_arm;
5583
5584 inst.operands[i].reg = val;
5585 inst.operands[i].isreg = 1;
5586 inst.operands[i].present = 1;
5587 }
5588 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5589 != FAIL)
5590 {
5591 /* Cases 0, 1, 2, 3, 5 (D only). */
5592 if (skip_past_comma (&ptr) == FAIL)
5593 goto wanted_comma;
5594
5595 inst.operands[i].reg = val;
5596 inst.operands[i].isreg = 1;
5597 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5598 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5599 inst.operands[i].isvec = 1;
5600 inst.operands[i].vectype = optype;
5601 inst.operands[i++].present = 1;
5602
5603 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5604 {
5605 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5606 Case 13: VMOV <Sd>, <Rm> */
5607 inst.operands[i].reg = val;
5608 inst.operands[i].isreg = 1;
5609 inst.operands[i].present = 1;
5610
5611 if (rtype == REG_TYPE_NQ)
5612 {
5613 first_error (_("can't use Neon quad register here"));
5614 return FAIL;
5615 }
5616 else if (rtype != REG_TYPE_VFS)
5617 {
5618 i++;
5619 if (skip_past_comma (&ptr) == FAIL)
5620 goto wanted_comma;
5621 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5622 goto wanted_arm;
5623 inst.operands[i].reg = val;
5624 inst.operands[i].isreg = 1;
5625 inst.operands[i].present = 1;
5626 }
5627 }
5628 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5629 &optype)) != FAIL)
5630 {
5631 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5632 Case 1: VMOV<c><q> <Dd>, <Dm>
5633 Case 8: VMOV.F32 <Sd>, <Sm>
5634 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5635
5636 inst.operands[i].reg = val;
5637 inst.operands[i].isreg = 1;
5638 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5639 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5640 inst.operands[i].isvec = 1;
5641 inst.operands[i].vectype = optype;
5642 inst.operands[i].present = 1;
5643
5644 if (skip_past_comma (&ptr) == SUCCESS)
5645 {
5646 /* Case 15. */
5647 i++;
5648
5649 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5650 goto wanted_arm;
5651
5652 inst.operands[i].reg = val;
5653 inst.operands[i].isreg = 1;
5654 inst.operands[i++].present = 1;
5655
5656 if (skip_past_comma (&ptr) == FAIL)
5657 goto wanted_comma;
5658
5659 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5660 goto wanted_arm;
5661
5662 inst.operands[i].reg = val;
5663 inst.operands[i].isreg = 1;
5664 inst.operands[i++].present = 1;
5665 }
5666 }
5667 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5668 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5669 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5670 Case 10: VMOV.F32 <Sd>, #<imm>
5671 Case 11: VMOV.F64 <Dd>, #<imm> */
5672 inst.operands[i].immisfloat = 1;
5673 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5674 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5675 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5676 ;
5677 else
5678 {
5679 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5680 return FAIL;
5681 }
5682 }
5683 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5684 {
5685 /* Cases 6, 7. */
5686 inst.operands[i].reg = val;
5687 inst.operands[i].isreg = 1;
5688 inst.operands[i++].present = 1;
5689
5690 if (skip_past_comma (&ptr) == FAIL)
5691 goto wanted_comma;
5692
5693 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5694 {
5695 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5696 inst.operands[i].reg = val;
5697 inst.operands[i].isscalar = 1;
5698 inst.operands[i].present = 1;
5699 inst.operands[i].vectype = optype;
5700 }
5701 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5702 {
5703 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5704 inst.operands[i].reg = val;
5705 inst.operands[i].isreg = 1;
5706 inst.operands[i++].present = 1;
5707
5708 if (skip_past_comma (&ptr) == FAIL)
5709 goto wanted_comma;
5710
5711 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5712 == FAIL)
5713 {
5714 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5715 return FAIL;
5716 }
5717
5718 inst.operands[i].reg = val;
5719 inst.operands[i].isreg = 1;
5720 inst.operands[i].isvec = 1;
5721 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5722 inst.operands[i].vectype = optype;
5723 inst.operands[i].present = 1;
5724
5725 if (rtype == REG_TYPE_VFS)
5726 {
5727 /* Case 14. */
5728 i++;
5729 if (skip_past_comma (&ptr) == FAIL)
5730 goto wanted_comma;
5731 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5732 &optype)) == FAIL)
5733 {
5734 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5735 return FAIL;
5736 }
5737 inst.operands[i].reg = val;
5738 inst.operands[i].isreg = 1;
5739 inst.operands[i].isvec = 1;
5740 inst.operands[i].issingle = 1;
5741 inst.operands[i].vectype = optype;
5742 inst.operands[i].present = 1;
5743 }
5744 }
5745 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5746 != FAIL)
5747 {
5748 /* Case 13. */
5749 inst.operands[i].reg = val;
5750 inst.operands[i].isreg = 1;
5751 inst.operands[i].isvec = 1;
5752 inst.operands[i].issingle = 1;
5753 inst.operands[i].vectype = optype;
5754 inst.operands[i++].present = 1;
5755 }
5756 }
5757 else
5758 {
5759 first_error (_("parse error"));
5760 return FAIL;
5761 }
5762
5763 /* Successfully parsed the operands. Update args. */
5764 *which_operand = i;
5765 *str = ptr;
5766 return SUCCESS;
5767
5768 wanted_comma:
5769 first_error (_("expected comma"));
5770 return FAIL;
5771
5772 wanted_arm:
5773 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5774 return FAIL;
5775 }
5776
5777 /* Use this macro when the operand constraints are different
5778 for ARM and THUMB (e.g. ldrd). */
5779 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5780 ((arm_operand) | ((thumb_operand) << 16))
5781
5782 /* Matcher codes for parse_operands. */
5783 enum operand_parse_code
5784 {
5785 OP_stop, /* end of line */
5786
5787 OP_RR, /* ARM register */
5788 OP_RRnpc, /* ARM register, not r15 */
5789 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
5790 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5791 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5792 optional trailing ! */
5793 OP_RRw, /* ARM register, not r15, optional trailing ! */
5794 OP_RCP, /* Coprocessor number */
5795 OP_RCN, /* Coprocessor register */
5796 OP_RF, /* FPA register */
5797 OP_RVS, /* VFP single precision register */
5798 OP_RVD, /* VFP double precision register (0..15) */
5799 OP_RND, /* Neon double precision register (0..31) */
5800 OP_RNQ, /* Neon quad precision register */
5801 OP_RVSD, /* VFP single or double precision register */
5802 OP_RNDQ, /* Neon double or quad precision register */
5803 OP_RNSDQ, /* Neon single, double or quad precision register */
5804 OP_RNSC, /* Neon scalar D[X] */
5805 OP_RVC, /* VFP control register */
5806 OP_RMF, /* Maverick F register */
5807 OP_RMD, /* Maverick D register */
5808 OP_RMFX, /* Maverick FX register */
5809 OP_RMDX, /* Maverick DX register */
5810 OP_RMAX, /* Maverick AX register */
5811 OP_RMDS, /* Maverick DSPSC register */
5812 OP_RIWR, /* iWMMXt wR register */
5813 OP_RIWC, /* iWMMXt wC register */
5814 OP_RIWG, /* iWMMXt wCG register */
5815 OP_RXA, /* XScale accumulator register */
5816
5817 OP_REGLST, /* ARM register list */
5818 OP_VRSLST, /* VFP single-precision register list */
5819 OP_VRDLST, /* VFP double-precision register list */
5820 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5821 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5822 OP_NSTRLST, /* Neon element/structure list */
5823
5824 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5825 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5826 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5827 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5828 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5829 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5830 OP_VMOV, /* Neon VMOV operands. */
5831 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5832 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5833 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5834
5835 OP_I0, /* immediate zero */
5836 OP_I7, /* immediate value 0 .. 7 */
5837 OP_I15, /* 0 .. 15 */
5838 OP_I16, /* 1 .. 16 */
5839 OP_I16z, /* 0 .. 16 */
5840 OP_I31, /* 0 .. 31 */
5841 OP_I31w, /* 0 .. 31, optional trailing ! */
5842 OP_I32, /* 1 .. 32 */
5843 OP_I32z, /* 0 .. 32 */
5844 OP_I63, /* 0 .. 63 */
5845 OP_I63s, /* -64 .. 63 */
5846 OP_I64, /* 1 .. 64 */
5847 OP_I64z, /* 0 .. 64 */
5848 OP_I255, /* 0 .. 255 */
5849
5850 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5851 OP_I7b, /* 0 .. 7 */
5852 OP_I15b, /* 0 .. 15 */
5853 OP_I31b, /* 0 .. 31 */
5854
5855 OP_SH, /* shifter operand */
5856 OP_SHG, /* shifter operand with possible group relocation */
5857 OP_ADDR, /* Memory address expression (any mode) */
5858 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5859 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5860 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5861 OP_EXP, /* arbitrary expression */
5862 OP_EXPi, /* same, with optional immediate prefix */
5863 OP_EXPr, /* same, with optional relocation suffix */
5864 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5865
5866 OP_CPSF, /* CPS flags */
5867 OP_ENDI, /* Endianness specifier */
5868 OP_PSR, /* CPSR/SPSR mask for msr */
5869 OP_COND, /* conditional code */
5870 OP_TB, /* Table branch. */
5871
5872 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5873 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5874
5875 OP_RRnpc_I0, /* ARM register or literal 0 */
5876 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5877 OP_RR_EXi, /* ARM register or expression with imm prefix */
5878 OP_RF_IF, /* FPA register or immediate */
5879 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5880 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5881
5882 /* Optional operands. */
5883 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5884 OP_oI31b, /* 0 .. 31 */
5885 OP_oI32b, /* 1 .. 32 */
5886 OP_oIffffb, /* 0 .. 65535 */
5887 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5888
5889 OP_oRR, /* ARM register */
5890 OP_oRRnpc, /* ARM register, not the PC */
5891 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
5892 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5893 OP_oRND, /* Optional Neon double precision register */
5894 OP_oRNQ, /* Optional Neon quad precision register */
5895 OP_oRNDQ, /* Optional Neon double or quad precision register */
5896 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5897 OP_oSHll, /* LSL immediate */
5898 OP_oSHar, /* ASR immediate */
5899 OP_oSHllar, /* LSL or ASR immediate */
5900 OP_oROR, /* ROR 0/8/16/24 */
5901 OP_oBARRIER, /* Option argument for a barrier instruction. */
5902
5903 /* Some pre-defined mixed (ARM/THUMB) operands. */
5904 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5905 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5906 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5907
5908 OP_FIRST_OPTIONAL = OP_oI7b
5909 };
5910
5911 /* Generic instruction operand parser. This does no encoding and no
5912 semantic validation; it merely squirrels values away in the inst
5913 structure. Returns SUCCESS or FAIL depending on whether the
5914 specified grammar matched. */
5915 static int
5916 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
5917 {
5918 unsigned const int *upat = pattern;
5919 char *backtrack_pos = 0;
5920 const char *backtrack_error = 0;
5921 int i, val, backtrack_index = 0;
5922 enum arm_reg_type rtype;
5923 parse_operand_result result;
5924 unsigned int op_parse_code;
5925
5926 #define po_char_or_fail(chr) \
5927 do \
5928 { \
5929 if (skip_past_char (&str, chr) == FAIL) \
5930 goto bad_args; \
5931 } \
5932 while (0)
5933
5934 #define po_reg_or_fail(regtype) \
5935 do \
5936 { \
5937 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5938 & inst.operands[i].vectype); \
5939 if (val == FAIL) \
5940 { \
5941 first_error (_(reg_expected_msgs[regtype])); \
5942 goto failure; \
5943 } \
5944 inst.operands[i].reg = val; \
5945 inst.operands[i].isreg = 1; \
5946 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5947 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5948 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5949 || rtype == REG_TYPE_VFD \
5950 || rtype == REG_TYPE_NQ); \
5951 } \
5952 while (0)
5953
5954 #define po_reg_or_goto(regtype, label) \
5955 do \
5956 { \
5957 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5958 & inst.operands[i].vectype); \
5959 if (val == FAIL) \
5960 goto label; \
5961 \
5962 inst.operands[i].reg = val; \
5963 inst.operands[i].isreg = 1; \
5964 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5965 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5966 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5967 || rtype == REG_TYPE_VFD \
5968 || rtype == REG_TYPE_NQ); \
5969 } \
5970 while (0)
5971
5972 #define po_imm_or_fail(min, max, popt) \
5973 do \
5974 { \
5975 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5976 goto failure; \
5977 inst.operands[i].imm = val; \
5978 } \
5979 while (0)
5980
5981 #define po_scalar_or_goto(elsz, label) \
5982 do \
5983 { \
5984 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5985 if (val == FAIL) \
5986 goto label; \
5987 inst.operands[i].reg = val; \
5988 inst.operands[i].isscalar = 1; \
5989 } \
5990 while (0)
5991
5992 #define po_misc_or_fail(expr) \
5993 do \
5994 { \
5995 if (expr) \
5996 goto failure; \
5997 } \
5998 while (0)
5999
6000 #define po_misc_or_fail_no_backtrack(expr) \
6001 do \
6002 { \
6003 result = expr; \
6004 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6005 backtrack_pos = 0; \
6006 if (result != PARSE_OPERAND_SUCCESS) \
6007 goto failure; \
6008 } \
6009 while (0)
6010
6011 skip_whitespace (str);
6012
6013 for (i = 0; upat[i] != OP_stop; i++)
6014 {
6015 op_parse_code = upat[i];
6016 if (op_parse_code >= 1<<16)
6017 op_parse_code = thumb ? (op_parse_code >> 16)
6018 : (op_parse_code & ((1<<16)-1));
6019
6020 if (op_parse_code >= OP_FIRST_OPTIONAL)
6021 {
6022 /* Remember where we are in case we need to backtrack. */
6023 gas_assert (!backtrack_pos);
6024 backtrack_pos = str;
6025 backtrack_error = inst.error;
6026 backtrack_index = i;
6027 }
6028
6029 if (i > 0 && (i > 1 || inst.operands[0].present))
6030 po_char_or_fail (',');
6031
6032 switch (op_parse_code)
6033 {
6034 /* Registers */
6035 case OP_oRRnpc:
6036 case OP_oRRnpcsp:
6037 case OP_RRnpc:
6038 case OP_RRnpcsp:
6039 case OP_oRR:
6040 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6041 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6042 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6043 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6044 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6045 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6046 case OP_oRND:
6047 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6048 case OP_RVC:
6049 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6050 break;
6051 /* Also accept generic coprocessor regs for unknown registers. */
6052 coproc_reg:
6053 po_reg_or_fail (REG_TYPE_CN);
6054 break;
6055 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6056 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6057 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6058 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6059 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6060 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6061 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6062 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6063 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6064 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6065 case OP_oRNQ:
6066 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6067 case OP_oRNDQ:
6068 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6069 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6070 case OP_oRNSDQ:
6071 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6072
6073 /* Neon scalar. Using an element size of 8 means that some invalid
6074 scalars are accepted here, so deal with those in later code. */
6075 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6076
6077 case OP_RNDQ_I0:
6078 {
6079 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6080 break;
6081 try_imm0:
6082 po_imm_or_fail (0, 0, TRUE);
6083 }
6084 break;
6085
6086 case OP_RVSD_I0:
6087 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6088 break;
6089
6090 case OP_RR_RNSC:
6091 {
6092 po_scalar_or_goto (8, try_rr);
6093 break;
6094 try_rr:
6095 po_reg_or_fail (REG_TYPE_RN);
6096 }
6097 break;
6098
6099 case OP_RNSDQ_RNSC:
6100 {
6101 po_scalar_or_goto (8, try_nsdq);
6102 break;
6103 try_nsdq:
6104 po_reg_or_fail (REG_TYPE_NSDQ);
6105 }
6106 break;
6107
6108 case OP_RNDQ_RNSC:
6109 {
6110 po_scalar_or_goto (8, try_ndq);
6111 break;
6112 try_ndq:
6113 po_reg_or_fail (REG_TYPE_NDQ);
6114 }
6115 break;
6116
6117 case OP_RND_RNSC:
6118 {
6119 po_scalar_or_goto (8, try_vfd);
6120 break;
6121 try_vfd:
6122 po_reg_or_fail (REG_TYPE_VFD);
6123 }
6124 break;
6125
6126 case OP_VMOV:
6127 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6128 not careful then bad things might happen. */
6129 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6130 break;
6131
6132 case OP_RNDQ_Ibig:
6133 {
6134 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6135 break;
6136 try_immbig:
6137 /* There's a possibility of getting a 64-bit immediate here, so
6138 we need special handling. */
6139 if (parse_big_immediate (&str, i) == FAIL)
6140 {
6141 inst.error = _("immediate value is out of range");
6142 goto failure;
6143 }
6144 }
6145 break;
6146
6147 case OP_RNDQ_I63b:
6148 {
6149 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6150 break;
6151 try_shimm:
6152 po_imm_or_fail (0, 63, TRUE);
6153 }
6154 break;
6155
6156 case OP_RRnpcb:
6157 po_char_or_fail ('[');
6158 po_reg_or_fail (REG_TYPE_RN);
6159 po_char_or_fail (']');
6160 break;
6161
6162 case OP_RRnpctw:
6163 case OP_RRw:
6164 case OP_oRRw:
6165 po_reg_or_fail (REG_TYPE_RN);
6166 if (skip_past_char (&str, '!') == SUCCESS)
6167 inst.operands[i].writeback = 1;
6168 break;
6169
6170 /* Immediates */
6171 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6172 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6173 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6174 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6175 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6176 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6177 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6178 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6179 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6180 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6181 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6182 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6183
6184 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6185 case OP_oI7b:
6186 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6187 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6188 case OP_oI31b:
6189 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6190 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6191 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6192
6193 /* Immediate variants */
6194 case OP_oI255c:
6195 po_char_or_fail ('{');
6196 po_imm_or_fail (0, 255, TRUE);
6197 po_char_or_fail ('}');
6198 break;
6199
6200 case OP_I31w:
6201 /* The expression parser chokes on a trailing !, so we have
6202 to find it first and zap it. */
6203 {
6204 char *s = str;
6205 while (*s && *s != ',')
6206 s++;
6207 if (s[-1] == '!')
6208 {
6209 s[-1] = '\0';
6210 inst.operands[i].writeback = 1;
6211 }
6212 po_imm_or_fail (0, 31, TRUE);
6213 if (str == s - 1)
6214 str = s;
6215 }
6216 break;
6217
6218 /* Expressions */
6219 case OP_EXPi: EXPi:
6220 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6221 GE_OPT_PREFIX));
6222 break;
6223
6224 case OP_EXP:
6225 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6226 GE_NO_PREFIX));
6227 break;
6228
6229 case OP_EXPr: EXPr:
6230 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6231 GE_NO_PREFIX));
6232 if (inst.reloc.exp.X_op == O_symbol)
6233 {
6234 val = parse_reloc (&str);
6235 if (val == -1)
6236 {
6237 inst.error = _("unrecognized relocation suffix");
6238 goto failure;
6239 }
6240 else if (val != BFD_RELOC_UNUSED)
6241 {
6242 inst.operands[i].imm = val;
6243 inst.operands[i].hasreloc = 1;
6244 }
6245 }
6246 break;
6247
6248 /* Operand for MOVW or MOVT. */
6249 case OP_HALF:
6250 po_misc_or_fail (parse_half (&str));
6251 break;
6252
6253 /* Register or expression. */
6254 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6255 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6256
6257 /* Register or immediate. */
6258 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6259 I0: po_imm_or_fail (0, 0, FALSE); break;
6260
6261 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6262 IF:
6263 if (!is_immediate_prefix (*str))
6264 goto bad_args;
6265 str++;
6266 val = parse_fpa_immediate (&str);
6267 if (val == FAIL)
6268 goto failure;
6269 /* FPA immediates are encoded as registers 8-15.
6270 parse_fpa_immediate has already applied the offset. */
6271 inst.operands[i].reg = val;
6272 inst.operands[i].isreg = 1;
6273 break;
6274
6275 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6276 I32z: po_imm_or_fail (0, 32, FALSE); break;
6277
6278 /* Two kinds of register. */
6279 case OP_RIWR_RIWC:
6280 {
6281 struct reg_entry *rege = arm_reg_parse_multi (&str);
6282 if (!rege
6283 || (rege->type != REG_TYPE_MMXWR
6284 && rege->type != REG_TYPE_MMXWC
6285 && rege->type != REG_TYPE_MMXWCG))
6286 {
6287 inst.error = _("iWMMXt data or control register expected");
6288 goto failure;
6289 }
6290 inst.operands[i].reg = rege->number;
6291 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6292 }
6293 break;
6294
6295 case OP_RIWC_RIWG:
6296 {
6297 struct reg_entry *rege = arm_reg_parse_multi (&str);
6298 if (!rege
6299 || (rege->type != REG_TYPE_MMXWC
6300 && rege->type != REG_TYPE_MMXWCG))
6301 {
6302 inst.error = _("iWMMXt control register expected");
6303 goto failure;
6304 }
6305 inst.operands[i].reg = rege->number;
6306 inst.operands[i].isreg = 1;
6307 }
6308 break;
6309
6310 /* Misc */
6311 case OP_CPSF: val = parse_cps_flags (&str); break;
6312 case OP_ENDI: val = parse_endian_specifier (&str); break;
6313 case OP_oROR: val = parse_ror (&str); break;
6314 case OP_PSR: val = parse_psr (&str); break;
6315 case OP_COND: val = parse_cond (&str); break;
6316 case OP_oBARRIER:val = parse_barrier (&str); break;
6317
6318 case OP_RVC_PSR:
6319 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6320 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6321 break;
6322 try_psr:
6323 val = parse_psr (&str);
6324 break;
6325
6326 case OP_APSR_RR:
6327 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6328 break;
6329 try_apsr:
6330 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6331 instruction). */
6332 if (strncasecmp (str, "APSR_", 5) == 0)
6333 {
6334 unsigned found = 0;
6335 str += 5;
6336 while (found < 15)
6337 switch (*str++)
6338 {
6339 case 'c': found = (found & 1) ? 16 : found | 1; break;
6340 case 'n': found = (found & 2) ? 16 : found | 2; break;
6341 case 'z': found = (found & 4) ? 16 : found | 4; break;
6342 case 'v': found = (found & 8) ? 16 : found | 8; break;
6343 default: found = 16;
6344 }
6345 if (found != 15)
6346 goto failure;
6347 inst.operands[i].isvec = 1;
6348 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6349 inst.operands[i].reg = REG_PC;
6350 }
6351 else
6352 goto failure;
6353 break;
6354
6355 case OP_TB:
6356 po_misc_or_fail (parse_tb (&str));
6357 break;
6358
6359 /* Register lists. */
6360 case OP_REGLST:
6361 val = parse_reg_list (&str);
6362 if (*str == '^')
6363 {
6364 inst.operands[1].writeback = 1;
6365 str++;
6366 }
6367 break;
6368
6369 case OP_VRSLST:
6370 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6371 break;
6372
6373 case OP_VRDLST:
6374 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6375 break;
6376
6377 case OP_VRSDLST:
6378 /* Allow Q registers too. */
6379 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6380 REGLIST_NEON_D);
6381 if (val == FAIL)
6382 {
6383 inst.error = NULL;
6384 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6385 REGLIST_VFP_S);
6386 inst.operands[i].issingle = 1;
6387 }
6388 break;
6389
6390 case OP_NRDLST:
6391 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6392 REGLIST_NEON_D);
6393 break;
6394
6395 case OP_NSTRLST:
6396 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6397 &inst.operands[i].vectype);
6398 break;
6399
6400 /* Addressing modes */
6401 case OP_ADDR:
6402 po_misc_or_fail (parse_address (&str, i));
6403 break;
6404
6405 case OP_ADDRGLDR:
6406 po_misc_or_fail_no_backtrack (
6407 parse_address_group_reloc (&str, i, GROUP_LDR));
6408 break;
6409
6410 case OP_ADDRGLDRS:
6411 po_misc_or_fail_no_backtrack (
6412 parse_address_group_reloc (&str, i, GROUP_LDRS));
6413 break;
6414
6415 case OP_ADDRGLDC:
6416 po_misc_or_fail_no_backtrack (
6417 parse_address_group_reloc (&str, i, GROUP_LDC));
6418 break;
6419
6420 case OP_SH:
6421 po_misc_or_fail (parse_shifter_operand (&str, i));
6422 break;
6423
6424 case OP_SHG:
6425 po_misc_or_fail_no_backtrack (
6426 parse_shifter_operand_group_reloc (&str, i));
6427 break;
6428
6429 case OP_oSHll:
6430 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6431 break;
6432
6433 case OP_oSHar:
6434 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6435 break;
6436
6437 case OP_oSHllar:
6438 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6439 break;
6440
6441 default:
6442 as_fatal (_("unhandled operand code %d"), op_parse_code);
6443 }
6444
6445 /* Various value-based sanity checks and shared operations. We
6446 do not signal immediate failures for the register constraints;
6447 this allows a syntax error to take precedence. */
6448 switch (op_parse_code)
6449 {
6450 case OP_oRRnpc:
6451 case OP_RRnpc:
6452 case OP_RRnpcb:
6453 case OP_RRw:
6454 case OP_oRRw:
6455 case OP_RRnpc_I0:
6456 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6457 inst.error = BAD_PC;
6458 break;
6459
6460 case OP_oRRnpcsp:
6461 case OP_RRnpcsp:
6462 if (inst.operands[i].isreg)
6463 {
6464 if (inst.operands[i].reg == REG_PC)
6465 inst.error = BAD_PC;
6466 else if (inst.operands[i].reg == REG_SP)
6467 inst.error = BAD_SP;
6468 }
6469 break;
6470
6471 case OP_RRnpctw:
6472 if (inst.operands[i].isreg
6473 && inst.operands[i].reg == REG_PC
6474 && (inst.operands[i].writeback || thumb))
6475 inst.error = BAD_PC;
6476 break;
6477
6478 case OP_CPSF:
6479 case OP_ENDI:
6480 case OP_oROR:
6481 case OP_PSR:
6482 case OP_RVC_PSR:
6483 case OP_COND:
6484 case OP_oBARRIER:
6485 case OP_REGLST:
6486 case OP_VRSLST:
6487 case OP_VRDLST:
6488 case OP_VRSDLST:
6489 case OP_NRDLST:
6490 case OP_NSTRLST:
6491 if (val == FAIL)
6492 goto failure;
6493 inst.operands[i].imm = val;
6494 break;
6495
6496 default:
6497 break;
6498 }
6499
6500 /* If we get here, this operand was successfully parsed. */
6501 inst.operands[i].present = 1;
6502 continue;
6503
6504 bad_args:
6505 inst.error = BAD_ARGS;
6506
6507 failure:
6508 if (!backtrack_pos)
6509 {
6510 /* The parse routine should already have set inst.error, but set a
6511 default here just in case. */
6512 if (!inst.error)
6513 inst.error = _("syntax error");
6514 return FAIL;
6515 }
6516
6517 /* Do not backtrack over a trailing optional argument that
6518 absorbed some text. We will only fail again, with the
6519 'garbage following instruction' error message, which is
6520 probably less helpful than the current one. */
6521 if (backtrack_index == i && backtrack_pos != str
6522 && upat[i+1] == OP_stop)
6523 {
6524 if (!inst.error)
6525 inst.error = _("syntax error");
6526 return FAIL;
6527 }
6528
6529 /* Try again, skipping the optional argument at backtrack_pos. */
6530 str = backtrack_pos;
6531 inst.error = backtrack_error;
6532 inst.operands[backtrack_index].present = 0;
6533 i = backtrack_index;
6534 backtrack_pos = 0;
6535 }
6536
6537 /* Check that we have parsed all the arguments. */
6538 if (*str != '\0' && !inst.error)
6539 inst.error = _("garbage following instruction");
6540
6541 return inst.error ? FAIL : SUCCESS;
6542 }
6543
6544 #undef po_char_or_fail
6545 #undef po_reg_or_fail
6546 #undef po_reg_or_goto
6547 #undef po_imm_or_fail
6548 #undef po_scalar_or_fail
6549
6550 /* Shorthand macro for instruction encoding functions issuing errors. */
6551 #define constraint(expr, err) \
6552 do \
6553 { \
6554 if (expr) \
6555 { \
6556 inst.error = err; \
6557 return; \
6558 } \
6559 } \
6560 while (0)
6561
6562 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6563 instructions are unpredictable if these registers are used. This
6564 is the BadReg predicate in ARM's Thumb-2 documentation. */
6565 #define reject_bad_reg(reg) \
6566 do \
6567 if (reg == REG_SP || reg == REG_PC) \
6568 { \
6569 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6570 return; \
6571 } \
6572 while (0)
6573
6574 /* If REG is R13 (the stack pointer), warn that its use is
6575 deprecated. */
6576 #define warn_deprecated_sp(reg) \
6577 do \
6578 if (warn_on_deprecated && reg == REG_SP) \
6579 as_warn (_("use of r13 is deprecated")); \
6580 while (0)
6581
6582 /* Functions for operand encoding. ARM, then Thumb. */
6583
6584 #define rotate_left(v, n) (v << n | v >> (32 - n))
6585
6586 /* If VAL can be encoded in the immediate field of an ARM instruction,
6587 return the encoded form. Otherwise, return FAIL. */
6588
6589 static unsigned int
6590 encode_arm_immediate (unsigned int val)
6591 {
6592 unsigned int a, i;
6593
6594 for (i = 0; i < 32; i += 2)
6595 if ((a = rotate_left (val, i)) <= 0xff)
6596 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6597
6598 return FAIL;
6599 }
6600
6601 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6602 return the encoded form. Otherwise, return FAIL. */
6603 static unsigned int
6604 encode_thumb32_immediate (unsigned int val)
6605 {
6606 unsigned int a, i;
6607
6608 if (val <= 0xff)
6609 return val;
6610
6611 for (i = 1; i <= 24; i++)
6612 {
6613 a = val >> i;
6614 if ((val & ~(0xff << i)) == 0)
6615 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6616 }
6617
6618 a = val & 0xff;
6619 if (val == ((a << 16) | a))
6620 return 0x100 | a;
6621 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6622 return 0x300 | a;
6623
6624 a = val & 0xff00;
6625 if (val == ((a << 16) | a))
6626 return 0x200 | (a >> 8);
6627
6628 return FAIL;
6629 }
6630 /* Encode a VFP SP or DP register number into inst.instruction. */
6631
6632 static void
6633 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6634 {
6635 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6636 && reg > 15)
6637 {
6638 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6639 {
6640 if (thumb_mode)
6641 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6642 fpu_vfp_ext_d32);
6643 else
6644 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6645 fpu_vfp_ext_d32);
6646 }
6647 else
6648 {
6649 first_error (_("D register out of range for selected VFP version"));
6650 return;
6651 }
6652 }
6653
6654 switch (pos)
6655 {
6656 case VFP_REG_Sd:
6657 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6658 break;
6659
6660 case VFP_REG_Sn:
6661 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6662 break;
6663
6664 case VFP_REG_Sm:
6665 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6666 break;
6667
6668 case VFP_REG_Dd:
6669 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6670 break;
6671
6672 case VFP_REG_Dn:
6673 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6674 break;
6675
6676 case VFP_REG_Dm:
6677 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6678 break;
6679
6680 default:
6681 abort ();
6682 }
6683 }
6684
6685 /* Encode a <shift> in an ARM-format instruction. The immediate,
6686 if any, is handled by md_apply_fix. */
6687 static void
6688 encode_arm_shift (int i)
6689 {
6690 if (inst.operands[i].shift_kind == SHIFT_RRX)
6691 inst.instruction |= SHIFT_ROR << 5;
6692 else
6693 {
6694 inst.instruction |= inst.operands[i].shift_kind << 5;
6695 if (inst.operands[i].immisreg)
6696 {
6697 inst.instruction |= SHIFT_BY_REG;
6698 inst.instruction |= inst.operands[i].imm << 8;
6699 }
6700 else
6701 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6702 }
6703 }
6704
6705 static void
6706 encode_arm_shifter_operand (int i)
6707 {
6708 if (inst.operands[i].isreg)
6709 {
6710 inst.instruction |= inst.operands[i].reg;
6711 encode_arm_shift (i);
6712 }
6713 else
6714 inst.instruction |= INST_IMMEDIATE;
6715 }
6716
6717 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6718 static void
6719 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6720 {
6721 gas_assert (inst.operands[i].isreg);
6722 inst.instruction |= inst.operands[i].reg << 16;
6723
6724 if (inst.operands[i].preind)
6725 {
6726 if (is_t)
6727 {
6728 inst.error = _("instruction does not accept preindexed addressing");
6729 return;
6730 }
6731 inst.instruction |= PRE_INDEX;
6732 if (inst.operands[i].writeback)
6733 inst.instruction |= WRITE_BACK;
6734
6735 }
6736 else if (inst.operands[i].postind)
6737 {
6738 gas_assert (inst.operands[i].writeback);
6739 if (is_t)
6740 inst.instruction |= WRITE_BACK;
6741 }
6742 else /* unindexed - only for coprocessor */
6743 {
6744 inst.error = _("instruction does not accept unindexed addressing");
6745 return;
6746 }
6747
6748 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6749 && (((inst.instruction & 0x000f0000) >> 16)
6750 == ((inst.instruction & 0x0000f000) >> 12)))
6751 as_warn ((inst.instruction & LOAD_BIT)
6752 ? _("destination register same as write-back base")
6753 : _("source register same as write-back base"));
6754 }
6755
6756 /* inst.operands[i] was set up by parse_address. Encode it into an
6757 ARM-format mode 2 load or store instruction. If is_t is true,
6758 reject forms that cannot be used with a T instruction (i.e. not
6759 post-indexed). */
6760 static void
6761 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6762 {
6763 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6764
6765 encode_arm_addr_mode_common (i, is_t);
6766
6767 if (inst.operands[i].immisreg)
6768 {
6769 constraint ((inst.operands[i].imm == REG_PC
6770 || (is_pc && inst.operands[i].writeback)),
6771 BAD_PC_ADDRESSING);
6772 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6773 inst.instruction |= inst.operands[i].imm;
6774 if (!inst.operands[i].negative)
6775 inst.instruction |= INDEX_UP;
6776 if (inst.operands[i].shifted)
6777 {
6778 if (inst.operands[i].shift_kind == SHIFT_RRX)
6779 inst.instruction |= SHIFT_ROR << 5;
6780 else
6781 {
6782 inst.instruction |= inst.operands[i].shift_kind << 5;
6783 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6784 }
6785 }
6786 }
6787 else /* immediate offset in inst.reloc */
6788 {
6789 if (is_pc && !inst.reloc.pc_rel)
6790 {
6791 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
6792 /* BAD_PC_ADDRESSING Condition =
6793 is_load => is_t
6794 which becomes !is_load || is_t. */
6795 constraint ((!is_load || is_t),
6796 BAD_PC_ADDRESSING);
6797 }
6798
6799 if (inst.reloc.type == BFD_RELOC_UNUSED)
6800 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6801 }
6802 }
6803
6804 /* inst.operands[i] was set up by parse_address. Encode it into an
6805 ARM-format mode 3 load or store instruction. Reject forms that
6806 cannot be used with such instructions. If is_t is true, reject
6807 forms that cannot be used with a T instruction (i.e. not
6808 post-indexed). */
6809 static void
6810 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6811 {
6812 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6813 {
6814 inst.error = _("instruction does not accept scaled register index");
6815 return;
6816 }
6817
6818 encode_arm_addr_mode_common (i, is_t);
6819
6820 if (inst.operands[i].immisreg)
6821 {
6822 constraint ((inst.operands[i].imm == REG_PC
6823 || inst.operands[i].reg == REG_PC),
6824 BAD_PC_ADDRESSING);
6825 inst.instruction |= inst.operands[i].imm;
6826 if (!inst.operands[i].negative)
6827 inst.instruction |= INDEX_UP;
6828 }
6829 else /* immediate offset in inst.reloc */
6830 {
6831 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6832 && inst.operands[i].writeback),
6833 BAD_PC_WRITEBACK);
6834 inst.instruction |= HWOFFSET_IMM;
6835 if (inst.reloc.type == BFD_RELOC_UNUSED)
6836 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6837 }
6838 }
6839
6840 /* inst.operands[i] was set up by parse_address. Encode it into an
6841 ARM-format instruction. Reject all forms which cannot be encoded
6842 into a coprocessor load/store instruction. If wb_ok is false,
6843 reject use of writeback; if unind_ok is false, reject use of
6844 unindexed addressing. If reloc_override is not 0, use it instead
6845 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6846 (in which case it is preserved). */
6847
6848 static int
6849 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6850 {
6851 inst.instruction |= inst.operands[i].reg << 16;
6852
6853 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6854
6855 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6856 {
6857 gas_assert (!inst.operands[i].writeback);
6858 if (!unind_ok)
6859 {
6860 inst.error = _("instruction does not support unindexed addressing");
6861 return FAIL;
6862 }
6863 inst.instruction |= inst.operands[i].imm;
6864 inst.instruction |= INDEX_UP;
6865 return SUCCESS;
6866 }
6867
6868 if (inst.operands[i].preind)
6869 inst.instruction |= PRE_INDEX;
6870
6871 if (inst.operands[i].writeback)
6872 {
6873 if (inst.operands[i].reg == REG_PC)
6874 {
6875 inst.error = _("pc may not be used with write-back");
6876 return FAIL;
6877 }
6878 if (!wb_ok)
6879 {
6880 inst.error = _("instruction does not support writeback");
6881 return FAIL;
6882 }
6883 inst.instruction |= WRITE_BACK;
6884 }
6885
6886 if (reloc_override)
6887 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
6888 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6889 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6890 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6891 {
6892 if (thumb_mode)
6893 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6894 else
6895 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6896 }
6897
6898 return SUCCESS;
6899 }
6900
6901 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6902 Determine whether it can be performed with a move instruction; if
6903 it can, convert inst.instruction to that move instruction and
6904 return TRUE; if it can't, convert inst.instruction to a literal-pool
6905 load and return FALSE. If this is not a valid thing to do in the
6906 current context, set inst.error and return TRUE.
6907
6908 inst.operands[i] describes the destination register. */
6909
6910 static bfd_boolean
6911 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6912 {
6913 unsigned long tbit;
6914
6915 if (thumb_p)
6916 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6917 else
6918 tbit = LOAD_BIT;
6919
6920 if ((inst.instruction & tbit) == 0)
6921 {
6922 inst.error = _("invalid pseudo operation");
6923 return TRUE;
6924 }
6925 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6926 {
6927 inst.error = _("constant expression expected");
6928 return TRUE;
6929 }
6930 if (inst.reloc.exp.X_op == O_constant)
6931 {
6932 if (thumb_p)
6933 {
6934 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6935 {
6936 /* This can be done with a mov(1) instruction. */
6937 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6938 inst.instruction |= inst.reloc.exp.X_add_number;
6939 return TRUE;
6940 }
6941 }
6942 else
6943 {
6944 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6945 if (value != FAIL)
6946 {
6947 /* This can be done with a mov instruction. */
6948 inst.instruction &= LITERAL_MASK;
6949 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6950 inst.instruction |= value & 0xfff;
6951 return TRUE;
6952 }
6953
6954 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6955 if (value != FAIL)
6956 {
6957 /* This can be done with a mvn instruction. */
6958 inst.instruction &= LITERAL_MASK;
6959 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6960 inst.instruction |= value & 0xfff;
6961 return TRUE;
6962 }
6963 }
6964 }
6965
6966 if (add_to_lit_pool () == FAIL)
6967 {
6968 inst.error = _("literal pool insertion failed");
6969 return TRUE;
6970 }
6971 inst.operands[1].reg = REG_PC;
6972 inst.operands[1].isreg = 1;
6973 inst.operands[1].preind = 1;
6974 inst.reloc.pc_rel = 1;
6975 inst.reloc.type = (thumb_p
6976 ? BFD_RELOC_ARM_THUMB_OFFSET
6977 : (mode_3
6978 ? BFD_RELOC_ARM_HWLITERAL
6979 : BFD_RELOC_ARM_LITERAL));
6980 return FALSE;
6981 }
6982
6983 /* Functions for instruction encoding, sorted by sub-architecture.
6984 First some generics; their names are taken from the conventional
6985 bit positions for register arguments in ARM format instructions. */
6986
6987 static void
6988 do_noargs (void)
6989 {
6990 }
6991
6992 static void
6993 do_rd (void)
6994 {
6995 inst.instruction |= inst.operands[0].reg << 12;
6996 }
6997
6998 static void
6999 do_rd_rm (void)
7000 {
7001 inst.instruction |= inst.operands[0].reg << 12;
7002 inst.instruction |= inst.operands[1].reg;
7003 }
7004
7005 static void
7006 do_rd_rn (void)
7007 {
7008 inst.instruction |= inst.operands[0].reg << 12;
7009 inst.instruction |= inst.operands[1].reg << 16;
7010 }
7011
7012 static void
7013 do_rn_rd (void)
7014 {
7015 inst.instruction |= inst.operands[0].reg << 16;
7016 inst.instruction |= inst.operands[1].reg << 12;
7017 }
7018
7019 static void
7020 do_rd_rm_rn (void)
7021 {
7022 unsigned Rn = inst.operands[2].reg;
7023 /* Enforce restrictions on SWP instruction. */
7024 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7025 {
7026 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7027 _("Rn must not overlap other operands"));
7028
7029 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7030 if (warn_on_deprecated
7031 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7032 as_warn (_("swp{b} use is deprecated for this architecture"));
7033
7034 }
7035 inst.instruction |= inst.operands[0].reg << 12;
7036 inst.instruction |= inst.operands[1].reg;
7037 inst.instruction |= Rn << 16;
7038 }
7039
7040 static void
7041 do_rd_rn_rm (void)
7042 {
7043 inst.instruction |= inst.operands[0].reg << 12;
7044 inst.instruction |= inst.operands[1].reg << 16;
7045 inst.instruction |= inst.operands[2].reg;
7046 }
7047
7048 static void
7049 do_rm_rd_rn (void)
7050 {
7051 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7052 constraint (((inst.reloc.exp.X_op != O_constant
7053 && inst.reloc.exp.X_op != O_illegal)
7054 || inst.reloc.exp.X_add_number != 0),
7055 BAD_ADDR_MODE);
7056 inst.instruction |= inst.operands[0].reg;
7057 inst.instruction |= inst.operands[1].reg << 12;
7058 inst.instruction |= inst.operands[2].reg << 16;
7059 }
7060
7061 static void
7062 do_imm0 (void)
7063 {
7064 inst.instruction |= inst.operands[0].imm;
7065 }
7066
7067 static void
7068 do_rd_cpaddr (void)
7069 {
7070 inst.instruction |= inst.operands[0].reg << 12;
7071 encode_arm_cp_address (1, TRUE, TRUE, 0);
7072 }
7073
7074 /* ARM instructions, in alphabetical order by function name (except
7075 that wrapper functions appear immediately after the function they
7076 wrap). */
7077
7078 /* This is a pseudo-op of the form "adr rd, label" to be converted
7079 into a relative address of the form "add rd, pc, #label-.-8". */
7080
7081 static void
7082 do_adr (void)
7083 {
7084 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7085
7086 /* Frag hacking will turn this into a sub instruction if the offset turns
7087 out to be negative. */
7088 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7089 inst.reloc.pc_rel = 1;
7090 inst.reloc.exp.X_add_number -= 8;
7091 }
7092
7093 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7094 into a relative address of the form:
7095 add rd, pc, #low(label-.-8)"
7096 add rd, rd, #high(label-.-8)" */
7097
7098 static void
7099 do_adrl (void)
7100 {
7101 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7102
7103 /* Frag hacking will turn this into a sub instruction if the offset turns
7104 out to be negative. */
7105 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7106 inst.reloc.pc_rel = 1;
7107 inst.size = INSN_SIZE * 2;
7108 inst.reloc.exp.X_add_number -= 8;
7109 }
7110
7111 static void
7112 do_arit (void)
7113 {
7114 if (!inst.operands[1].present)
7115 inst.operands[1].reg = inst.operands[0].reg;
7116 inst.instruction |= inst.operands[0].reg << 12;
7117 inst.instruction |= inst.operands[1].reg << 16;
7118 encode_arm_shifter_operand (2);
7119 }
7120
7121 static void
7122 do_barrier (void)
7123 {
7124 if (inst.operands[0].present)
7125 {
7126 constraint ((inst.instruction & 0xf0) != 0x40
7127 && inst.operands[0].imm != 0xf,
7128 _("bad barrier type"));
7129 inst.instruction |= inst.operands[0].imm;
7130 }
7131 else
7132 inst.instruction |= 0xf;
7133 }
7134
7135 static void
7136 do_bfc (void)
7137 {
7138 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7139 constraint (msb > 32, _("bit-field extends past end of register"));
7140 /* The instruction encoding stores the LSB and MSB,
7141 not the LSB and width. */
7142 inst.instruction |= inst.operands[0].reg << 12;
7143 inst.instruction |= inst.operands[1].imm << 7;
7144 inst.instruction |= (msb - 1) << 16;
7145 }
7146
7147 static void
7148 do_bfi (void)
7149 {
7150 unsigned int msb;
7151
7152 /* #0 in second position is alternative syntax for bfc, which is
7153 the same instruction but with REG_PC in the Rm field. */
7154 if (!inst.operands[1].isreg)
7155 inst.operands[1].reg = REG_PC;
7156
7157 msb = inst.operands[2].imm + inst.operands[3].imm;
7158 constraint (msb > 32, _("bit-field extends past end of register"));
7159 /* The instruction encoding stores the LSB and MSB,
7160 not the LSB and width. */
7161 inst.instruction |= inst.operands[0].reg << 12;
7162 inst.instruction |= inst.operands[1].reg;
7163 inst.instruction |= inst.operands[2].imm << 7;
7164 inst.instruction |= (msb - 1) << 16;
7165 }
7166
7167 static void
7168 do_bfx (void)
7169 {
7170 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7171 _("bit-field extends past end of register"));
7172 inst.instruction |= inst.operands[0].reg << 12;
7173 inst.instruction |= inst.operands[1].reg;
7174 inst.instruction |= inst.operands[2].imm << 7;
7175 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7176 }
7177
7178 /* ARM V5 breakpoint instruction (argument parse)
7179 BKPT <16 bit unsigned immediate>
7180 Instruction is not conditional.
7181 The bit pattern given in insns[] has the COND_ALWAYS condition,
7182 and it is an error if the caller tried to override that. */
7183
7184 static void
7185 do_bkpt (void)
7186 {
7187 /* Top 12 of 16 bits to bits 19:8. */
7188 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7189
7190 /* Bottom 4 of 16 bits to bits 3:0. */
7191 inst.instruction |= inst.operands[0].imm & 0xf;
7192 }
7193
7194 static void
7195 encode_branch (int default_reloc)
7196 {
7197 if (inst.operands[0].hasreloc)
7198 {
7199 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7200 _("the only suffix valid here is '(plt)'"));
7201 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7202 }
7203 else
7204 {
7205 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7206 }
7207 inst.reloc.pc_rel = 1;
7208 }
7209
7210 static void
7211 do_branch (void)
7212 {
7213 #ifdef OBJ_ELF
7214 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7215 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7216 else
7217 #endif
7218 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7219 }
7220
7221 static void
7222 do_bl (void)
7223 {
7224 #ifdef OBJ_ELF
7225 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7226 {
7227 if (inst.cond == COND_ALWAYS)
7228 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7229 else
7230 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7231 }
7232 else
7233 #endif
7234 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7235 }
7236
7237 /* ARM V5 branch-link-exchange instruction (argument parse)
7238 BLX <target_addr> ie BLX(1)
7239 BLX{<condition>} <Rm> ie BLX(2)
7240 Unfortunately, there are two different opcodes for this mnemonic.
7241 So, the insns[].value is not used, and the code here zaps values
7242 into inst.instruction.
7243 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7244
7245 static void
7246 do_blx (void)
7247 {
7248 if (inst.operands[0].isreg)
7249 {
7250 /* Arg is a register; the opcode provided by insns[] is correct.
7251 It is not illegal to do "blx pc", just useless. */
7252 if (inst.operands[0].reg == REG_PC)
7253 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7254
7255 inst.instruction |= inst.operands[0].reg;
7256 }
7257 else
7258 {
7259 /* Arg is an address; this instruction cannot be executed
7260 conditionally, and the opcode must be adjusted.
7261 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7262 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7263 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7264 inst.instruction = 0xfa000000;
7265 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7266 }
7267 }
7268
7269 static void
7270 do_bx (void)
7271 {
7272 bfd_boolean want_reloc;
7273
7274 if (inst.operands[0].reg == REG_PC)
7275 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7276
7277 inst.instruction |= inst.operands[0].reg;
7278 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7279 it is for ARMv4t or earlier. */
7280 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7281 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7282 want_reloc = TRUE;
7283
7284 #ifdef OBJ_ELF
7285 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7286 #endif
7287 want_reloc = FALSE;
7288
7289 if (want_reloc)
7290 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7291 }
7292
7293
7294 /* ARM v5TEJ. Jump to Jazelle code. */
7295
7296 static void
7297 do_bxj (void)
7298 {
7299 if (inst.operands[0].reg == REG_PC)
7300 as_tsktsk (_("use of r15 in bxj is not really useful"));
7301
7302 inst.instruction |= inst.operands[0].reg;
7303 }
7304
7305 /* Co-processor data operation:
7306 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7307 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7308 static void
7309 do_cdp (void)
7310 {
7311 inst.instruction |= inst.operands[0].reg << 8;
7312 inst.instruction |= inst.operands[1].imm << 20;
7313 inst.instruction |= inst.operands[2].reg << 12;
7314 inst.instruction |= inst.operands[3].reg << 16;
7315 inst.instruction |= inst.operands[4].reg;
7316 inst.instruction |= inst.operands[5].imm << 5;
7317 }
7318
7319 static void
7320 do_cmp (void)
7321 {
7322 inst.instruction |= inst.operands[0].reg << 16;
7323 encode_arm_shifter_operand (1);
7324 }
7325
7326 /* Transfer between coprocessor and ARM registers.
7327 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7328 MRC2
7329 MCR{cond}
7330 MCR2
7331
7332 No special properties. */
7333
7334 static void
7335 do_co_reg (void)
7336 {
7337 unsigned Rd;
7338
7339 Rd = inst.operands[2].reg;
7340 if (thumb_mode)
7341 {
7342 if (inst.instruction == 0xee000010
7343 || inst.instruction == 0xfe000010)
7344 /* MCR, MCR2 */
7345 reject_bad_reg (Rd);
7346 else
7347 /* MRC, MRC2 */
7348 constraint (Rd == REG_SP, BAD_SP);
7349 }
7350 else
7351 {
7352 /* MCR */
7353 if (inst.instruction == 0xe000010)
7354 constraint (Rd == REG_PC, BAD_PC);
7355 }
7356
7357
7358 inst.instruction |= inst.operands[0].reg << 8;
7359 inst.instruction |= inst.operands[1].imm << 21;
7360 inst.instruction |= Rd << 12;
7361 inst.instruction |= inst.operands[3].reg << 16;
7362 inst.instruction |= inst.operands[4].reg;
7363 inst.instruction |= inst.operands[5].imm << 5;
7364 }
7365
7366 /* Transfer between coprocessor register and pair of ARM registers.
7367 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7368 MCRR2
7369 MRRC{cond}
7370 MRRC2
7371
7372 Two XScale instructions are special cases of these:
7373
7374 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7375 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7376
7377 Result unpredictable if Rd or Rn is R15. */
7378
7379 static void
7380 do_co_reg2c (void)
7381 {
7382 unsigned Rd, Rn;
7383
7384 Rd = inst.operands[2].reg;
7385 Rn = inst.operands[3].reg;
7386
7387 if (thumb_mode)
7388 {
7389 reject_bad_reg (Rd);
7390 reject_bad_reg (Rn);
7391 }
7392 else
7393 {
7394 constraint (Rd == REG_PC, BAD_PC);
7395 constraint (Rn == REG_PC, BAD_PC);
7396 }
7397
7398 inst.instruction |= inst.operands[0].reg << 8;
7399 inst.instruction |= inst.operands[1].imm << 4;
7400 inst.instruction |= Rd << 12;
7401 inst.instruction |= Rn << 16;
7402 inst.instruction |= inst.operands[4].reg;
7403 }
7404
7405 static void
7406 do_cpsi (void)
7407 {
7408 inst.instruction |= inst.operands[0].imm << 6;
7409 if (inst.operands[1].present)
7410 {
7411 inst.instruction |= CPSI_MMOD;
7412 inst.instruction |= inst.operands[1].imm;
7413 }
7414 }
7415
7416 static void
7417 do_dbg (void)
7418 {
7419 inst.instruction |= inst.operands[0].imm;
7420 }
7421
7422 static void
7423 do_it (void)
7424 {
7425 /* There is no IT instruction in ARM mode. We
7426 process it to do the validation as if in
7427 thumb mode, just in case the code gets
7428 assembled for thumb using the unified syntax. */
7429
7430 inst.size = 0;
7431 if (unified_syntax)
7432 {
7433 set_it_insn_type (IT_INSN);
7434 now_it.mask = (inst.instruction & 0xf) | 0x10;
7435 now_it.cc = inst.operands[0].imm;
7436 }
7437 }
7438
7439 static void
7440 do_ldmstm (void)
7441 {
7442 int base_reg = inst.operands[0].reg;
7443 int range = inst.operands[1].imm;
7444
7445 inst.instruction |= base_reg << 16;
7446 inst.instruction |= range;
7447
7448 if (inst.operands[1].writeback)
7449 inst.instruction |= LDM_TYPE_2_OR_3;
7450
7451 if (inst.operands[0].writeback)
7452 {
7453 inst.instruction |= WRITE_BACK;
7454 /* Check for unpredictable uses of writeback. */
7455 if (inst.instruction & LOAD_BIT)
7456 {
7457 /* Not allowed in LDM type 2. */
7458 if ((inst.instruction & LDM_TYPE_2_OR_3)
7459 && ((range & (1 << REG_PC)) == 0))
7460 as_warn (_("writeback of base register is UNPREDICTABLE"));
7461 /* Only allowed if base reg not in list for other types. */
7462 else if (range & (1 << base_reg))
7463 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7464 }
7465 else /* STM. */
7466 {
7467 /* Not allowed for type 2. */
7468 if (inst.instruction & LDM_TYPE_2_OR_3)
7469 as_warn (_("writeback of base register is UNPREDICTABLE"));
7470 /* Only allowed if base reg not in list, or first in list. */
7471 else if ((range & (1 << base_reg))
7472 && (range & ((1 << base_reg) - 1)))
7473 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7474 }
7475 }
7476 }
7477
7478 /* ARMv5TE load-consecutive (argument parse)
7479 Mode is like LDRH.
7480
7481 LDRccD R, mode
7482 STRccD R, mode. */
7483
7484 static void
7485 do_ldrd (void)
7486 {
7487 constraint (inst.operands[0].reg % 2 != 0,
7488 _("first destination register must be even"));
7489 constraint (inst.operands[1].present
7490 && inst.operands[1].reg != inst.operands[0].reg + 1,
7491 _("can only load two consecutive registers"));
7492 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7493 constraint (!inst.operands[2].isreg, _("'[' expected"));
7494
7495 if (!inst.operands[1].present)
7496 inst.operands[1].reg = inst.operands[0].reg + 1;
7497
7498 if (inst.instruction & LOAD_BIT)
7499 {
7500 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7501 register and the first register written; we have to diagnose
7502 overlap between the base and the second register written here. */
7503
7504 if (inst.operands[2].reg == inst.operands[1].reg
7505 && (inst.operands[2].writeback || inst.operands[2].postind))
7506 as_warn (_("base register written back, and overlaps "
7507 "second destination register"));
7508
7509 /* For an index-register load, the index register must not overlap the
7510 destination (even if not write-back). */
7511 else if (inst.operands[2].immisreg
7512 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7513 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7514 as_warn (_("index register overlaps destination register"));
7515 }
7516
7517 inst.instruction |= inst.operands[0].reg << 12;
7518 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7519 }
7520
7521 static void
7522 do_ldrex (void)
7523 {
7524 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7525 || inst.operands[1].postind || inst.operands[1].writeback
7526 || inst.operands[1].immisreg || inst.operands[1].shifted
7527 || inst.operands[1].negative
7528 /* This can arise if the programmer has written
7529 strex rN, rM, foo
7530 or if they have mistakenly used a register name as the last
7531 operand, eg:
7532 strex rN, rM, rX
7533 It is very difficult to distinguish between these two cases
7534 because "rX" might actually be a label. ie the register
7535 name has been occluded by a symbol of the same name. So we
7536 just generate a general 'bad addressing mode' type error
7537 message and leave it up to the programmer to discover the
7538 true cause and fix their mistake. */
7539 || (inst.operands[1].reg == REG_PC),
7540 BAD_ADDR_MODE);
7541
7542 constraint (inst.reloc.exp.X_op != O_constant
7543 || inst.reloc.exp.X_add_number != 0,
7544 _("offset must be zero in ARM encoding"));
7545
7546 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7547
7548 inst.instruction |= inst.operands[0].reg << 12;
7549 inst.instruction |= inst.operands[1].reg << 16;
7550 inst.reloc.type = BFD_RELOC_UNUSED;
7551 }
7552
7553 static void
7554 do_ldrexd (void)
7555 {
7556 constraint (inst.operands[0].reg % 2 != 0,
7557 _("even register required"));
7558 constraint (inst.operands[1].present
7559 && inst.operands[1].reg != inst.operands[0].reg + 1,
7560 _("can only load two consecutive registers"));
7561 /* If op 1 were present and equal to PC, this function wouldn't
7562 have been called in the first place. */
7563 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7564
7565 inst.instruction |= inst.operands[0].reg << 12;
7566 inst.instruction |= inst.operands[2].reg << 16;
7567 }
7568
7569 static void
7570 do_ldst (void)
7571 {
7572 inst.instruction |= inst.operands[0].reg << 12;
7573 if (!inst.operands[1].isreg)
7574 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7575 return;
7576 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7577 }
7578
7579 static void
7580 do_ldstt (void)
7581 {
7582 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7583 reject [Rn,...]. */
7584 if (inst.operands[1].preind)
7585 {
7586 constraint (inst.reloc.exp.X_op != O_constant
7587 || inst.reloc.exp.X_add_number != 0,
7588 _("this instruction requires a post-indexed address"));
7589
7590 inst.operands[1].preind = 0;
7591 inst.operands[1].postind = 1;
7592 inst.operands[1].writeback = 1;
7593 }
7594 inst.instruction |= inst.operands[0].reg << 12;
7595 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7596 }
7597
7598 /* Halfword and signed-byte load/store operations. */
7599
7600 static void
7601 do_ldstv4 (void)
7602 {
7603 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7604 inst.instruction |= inst.operands[0].reg << 12;
7605 if (!inst.operands[1].isreg)
7606 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7607 return;
7608 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7609 }
7610
7611 static void
7612 do_ldsttv4 (void)
7613 {
7614 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7615 reject [Rn,...]. */
7616 if (inst.operands[1].preind)
7617 {
7618 constraint (inst.reloc.exp.X_op != O_constant
7619 || inst.reloc.exp.X_add_number != 0,
7620 _("this instruction requires a post-indexed address"));
7621
7622 inst.operands[1].preind = 0;
7623 inst.operands[1].postind = 1;
7624 inst.operands[1].writeback = 1;
7625 }
7626 inst.instruction |= inst.operands[0].reg << 12;
7627 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7628 }
7629
7630 /* Co-processor register load/store.
7631 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7632 static void
7633 do_lstc (void)
7634 {
7635 inst.instruction |= inst.operands[0].reg << 8;
7636 inst.instruction |= inst.operands[1].reg << 12;
7637 encode_arm_cp_address (2, TRUE, TRUE, 0);
7638 }
7639
7640 static void
7641 do_mlas (void)
7642 {
7643 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7644 if (inst.operands[0].reg == inst.operands[1].reg
7645 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7646 && !(inst.instruction & 0x00400000))
7647 as_tsktsk (_("Rd and Rm should be different in mla"));
7648
7649 inst.instruction |= inst.operands[0].reg << 16;
7650 inst.instruction |= inst.operands[1].reg;
7651 inst.instruction |= inst.operands[2].reg << 8;
7652 inst.instruction |= inst.operands[3].reg << 12;
7653 }
7654
7655 static void
7656 do_mov (void)
7657 {
7658 inst.instruction |= inst.operands[0].reg << 12;
7659 encode_arm_shifter_operand (1);
7660 }
7661
7662 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7663 static void
7664 do_mov16 (void)
7665 {
7666 bfd_vma imm;
7667 bfd_boolean top;
7668
7669 top = (inst.instruction & 0x00400000) != 0;
7670 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7671 _(":lower16: not allowed this instruction"));
7672 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7673 _(":upper16: not allowed instruction"));
7674 inst.instruction |= inst.operands[0].reg << 12;
7675 if (inst.reloc.type == BFD_RELOC_UNUSED)
7676 {
7677 imm = inst.reloc.exp.X_add_number;
7678 /* The value is in two pieces: 0:11, 16:19. */
7679 inst.instruction |= (imm & 0x00000fff);
7680 inst.instruction |= (imm & 0x0000f000) << 4;
7681 }
7682 }
7683
7684 static void do_vfp_nsyn_opcode (const char *);
7685
7686 static int
7687 do_vfp_nsyn_mrs (void)
7688 {
7689 if (inst.operands[0].isvec)
7690 {
7691 if (inst.operands[1].reg != 1)
7692 first_error (_("operand 1 must be FPSCR"));
7693 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7694 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7695 do_vfp_nsyn_opcode ("fmstat");
7696 }
7697 else if (inst.operands[1].isvec)
7698 do_vfp_nsyn_opcode ("fmrx");
7699 else
7700 return FAIL;
7701
7702 return SUCCESS;
7703 }
7704
7705 static int
7706 do_vfp_nsyn_msr (void)
7707 {
7708 if (inst.operands[0].isvec)
7709 do_vfp_nsyn_opcode ("fmxr");
7710 else
7711 return FAIL;
7712
7713 return SUCCESS;
7714 }
7715
7716 static void
7717 do_vmrs (void)
7718 {
7719 unsigned Rt = inst.operands[0].reg;
7720
7721 if (thumb_mode && inst.operands[0].reg == REG_SP)
7722 {
7723 inst.error = BAD_SP;
7724 return;
7725 }
7726
7727 /* APSR_ sets isvec. All other refs to PC are illegal. */
7728 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7729 {
7730 inst.error = BAD_PC;
7731 return;
7732 }
7733
7734 if (inst.operands[1].reg != 1)
7735 first_error (_("operand 1 must be FPSCR"));
7736
7737 inst.instruction |= (Rt << 12);
7738 }
7739
7740 static void
7741 do_vmsr (void)
7742 {
7743 unsigned Rt = inst.operands[1].reg;
7744
7745 if (thumb_mode)
7746 reject_bad_reg (Rt);
7747 else if (Rt == REG_PC)
7748 {
7749 inst.error = BAD_PC;
7750 return;
7751 }
7752
7753 if (inst.operands[0].reg != 1)
7754 first_error (_("operand 0 must be FPSCR"));
7755
7756 inst.instruction |= (Rt << 12);
7757 }
7758
7759 static void
7760 do_mrs (void)
7761 {
7762 if (do_vfp_nsyn_mrs () == SUCCESS)
7763 return;
7764
7765 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7766 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7767 != (PSR_c|PSR_f),
7768 _("'CPSR' or 'SPSR' expected"));
7769 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7770 inst.instruction |= inst.operands[0].reg << 12;
7771 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7772 }
7773
7774 /* Two possible forms:
7775 "{C|S}PSR_<field>, Rm",
7776 "{C|S}PSR_f, #expression". */
7777
7778 static void
7779 do_msr (void)
7780 {
7781 if (do_vfp_nsyn_msr () == SUCCESS)
7782 return;
7783
7784 inst.instruction |= inst.operands[0].imm;
7785 if (inst.operands[1].isreg)
7786 inst.instruction |= inst.operands[1].reg;
7787 else
7788 {
7789 inst.instruction |= INST_IMMEDIATE;
7790 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7791 inst.reloc.pc_rel = 0;
7792 }
7793 }
7794
7795 static void
7796 do_mul (void)
7797 {
7798 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7799
7800 if (!inst.operands[2].present)
7801 inst.operands[2].reg = inst.operands[0].reg;
7802 inst.instruction |= inst.operands[0].reg << 16;
7803 inst.instruction |= inst.operands[1].reg;
7804 inst.instruction |= inst.operands[2].reg << 8;
7805
7806 if (inst.operands[0].reg == inst.operands[1].reg
7807 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7808 as_tsktsk (_("Rd and Rm should be different in mul"));
7809 }
7810
7811 /* Long Multiply Parser
7812 UMULL RdLo, RdHi, Rm, Rs
7813 SMULL RdLo, RdHi, Rm, Rs
7814 UMLAL RdLo, RdHi, Rm, Rs
7815 SMLAL RdLo, RdHi, Rm, Rs. */
7816
7817 static void
7818 do_mull (void)
7819 {
7820 inst.instruction |= inst.operands[0].reg << 12;
7821 inst.instruction |= inst.operands[1].reg << 16;
7822 inst.instruction |= inst.operands[2].reg;
7823 inst.instruction |= inst.operands[3].reg << 8;
7824
7825 /* rdhi and rdlo must be different. */
7826 if (inst.operands[0].reg == inst.operands[1].reg)
7827 as_tsktsk (_("rdhi and rdlo must be different"));
7828
7829 /* rdhi, rdlo and rm must all be different before armv6. */
7830 if ((inst.operands[0].reg == inst.operands[2].reg
7831 || inst.operands[1].reg == inst.operands[2].reg)
7832 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7833 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7834 }
7835
7836 static void
7837 do_nop (void)
7838 {
7839 if (inst.operands[0].present
7840 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7841 {
7842 /* Architectural NOP hints are CPSR sets with no bits selected. */
7843 inst.instruction &= 0xf0000000;
7844 inst.instruction |= 0x0320f000;
7845 if (inst.operands[0].present)
7846 inst.instruction |= inst.operands[0].imm;
7847 }
7848 }
7849
7850 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7851 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7852 Condition defaults to COND_ALWAYS.
7853 Error if Rd, Rn or Rm are R15. */
7854
7855 static void
7856 do_pkhbt (void)
7857 {
7858 inst.instruction |= inst.operands[0].reg << 12;
7859 inst.instruction |= inst.operands[1].reg << 16;
7860 inst.instruction |= inst.operands[2].reg;
7861 if (inst.operands[3].present)
7862 encode_arm_shift (3);
7863 }
7864
7865 /* ARM V6 PKHTB (Argument Parse). */
7866
7867 static void
7868 do_pkhtb (void)
7869 {
7870 if (!inst.operands[3].present)
7871 {
7872 /* If the shift specifier is omitted, turn the instruction
7873 into pkhbt rd, rm, rn. */
7874 inst.instruction &= 0xfff00010;
7875 inst.instruction |= inst.operands[0].reg << 12;
7876 inst.instruction |= inst.operands[1].reg;
7877 inst.instruction |= inst.operands[2].reg << 16;
7878 }
7879 else
7880 {
7881 inst.instruction |= inst.operands[0].reg << 12;
7882 inst.instruction |= inst.operands[1].reg << 16;
7883 inst.instruction |= inst.operands[2].reg;
7884 encode_arm_shift (3);
7885 }
7886 }
7887
7888 /* ARMv5TE: Preload-Cache
7889
7890 PLD <addr_mode>
7891
7892 Syntactically, like LDR with B=1, W=0, L=1. */
7893
7894 static void
7895 do_pld (void)
7896 {
7897 constraint (!inst.operands[0].isreg,
7898 _("'[' expected after PLD mnemonic"));
7899 constraint (inst.operands[0].postind,
7900 _("post-indexed expression used in preload instruction"));
7901 constraint (inst.operands[0].writeback,
7902 _("writeback used in preload instruction"));
7903 constraint (!inst.operands[0].preind,
7904 _("unindexed addressing used in preload instruction"));
7905 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7906 }
7907
7908 /* ARMv7: PLI <addr_mode> */
7909 static void
7910 do_pli (void)
7911 {
7912 constraint (!inst.operands[0].isreg,
7913 _("'[' expected after PLI mnemonic"));
7914 constraint (inst.operands[0].postind,
7915 _("post-indexed expression used in preload instruction"));
7916 constraint (inst.operands[0].writeback,
7917 _("writeback used in preload instruction"));
7918 constraint (!inst.operands[0].preind,
7919 _("unindexed addressing used in preload instruction"));
7920 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7921 inst.instruction &= ~PRE_INDEX;
7922 }
7923
7924 static void
7925 do_push_pop (void)
7926 {
7927 inst.operands[1] = inst.operands[0];
7928 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7929 inst.operands[0].isreg = 1;
7930 inst.operands[0].writeback = 1;
7931 inst.operands[0].reg = REG_SP;
7932 do_ldmstm ();
7933 }
7934
7935 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7936 word at the specified address and the following word
7937 respectively.
7938 Unconditionally executed.
7939 Error if Rn is R15. */
7940
7941 static void
7942 do_rfe (void)
7943 {
7944 inst.instruction |= inst.operands[0].reg << 16;
7945 if (inst.operands[0].writeback)
7946 inst.instruction |= WRITE_BACK;
7947 }
7948
7949 /* ARM V6 ssat (argument parse). */
7950
7951 static void
7952 do_ssat (void)
7953 {
7954 inst.instruction |= inst.operands[0].reg << 12;
7955 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7956 inst.instruction |= inst.operands[2].reg;
7957
7958 if (inst.operands[3].present)
7959 encode_arm_shift (3);
7960 }
7961
7962 /* ARM V6 usat (argument parse). */
7963
7964 static void
7965 do_usat (void)
7966 {
7967 inst.instruction |= inst.operands[0].reg << 12;
7968 inst.instruction |= inst.operands[1].imm << 16;
7969 inst.instruction |= inst.operands[2].reg;
7970
7971 if (inst.operands[3].present)
7972 encode_arm_shift (3);
7973 }
7974
7975 /* ARM V6 ssat16 (argument parse). */
7976
7977 static void
7978 do_ssat16 (void)
7979 {
7980 inst.instruction |= inst.operands[0].reg << 12;
7981 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7982 inst.instruction |= inst.operands[2].reg;
7983 }
7984
7985 static void
7986 do_usat16 (void)
7987 {
7988 inst.instruction |= inst.operands[0].reg << 12;
7989 inst.instruction |= inst.operands[1].imm << 16;
7990 inst.instruction |= inst.operands[2].reg;
7991 }
7992
7993 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7994 preserving the other bits.
7995
7996 setend <endian_specifier>, where <endian_specifier> is either
7997 BE or LE. */
7998
7999 static void
8000 do_setend (void)
8001 {
8002 if (inst.operands[0].imm)
8003 inst.instruction |= 0x200;
8004 }
8005
8006 static void
8007 do_shift (void)
8008 {
8009 unsigned int Rm = (inst.operands[1].present
8010 ? inst.operands[1].reg
8011 : inst.operands[0].reg);
8012
8013 inst.instruction |= inst.operands[0].reg << 12;
8014 inst.instruction |= Rm;
8015 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8016 {
8017 inst.instruction |= inst.operands[2].reg << 8;
8018 inst.instruction |= SHIFT_BY_REG;
8019 }
8020 else
8021 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8022 }
8023
8024 static void
8025 do_smc (void)
8026 {
8027 inst.reloc.type = BFD_RELOC_ARM_SMC;
8028 inst.reloc.pc_rel = 0;
8029 }
8030
8031 static void
8032 do_swi (void)
8033 {
8034 inst.reloc.type = BFD_RELOC_ARM_SWI;
8035 inst.reloc.pc_rel = 0;
8036 }
8037
8038 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8039 SMLAxy{cond} Rd,Rm,Rs,Rn
8040 SMLAWy{cond} Rd,Rm,Rs,Rn
8041 Error if any register is R15. */
8042
8043 static void
8044 do_smla (void)
8045 {
8046 inst.instruction |= inst.operands[0].reg << 16;
8047 inst.instruction |= inst.operands[1].reg;
8048 inst.instruction |= inst.operands[2].reg << 8;
8049 inst.instruction |= inst.operands[3].reg << 12;
8050 }
8051
8052 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8053 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8054 Error if any register is R15.
8055 Warning if Rdlo == Rdhi. */
8056
8057 static void
8058 do_smlal (void)
8059 {
8060 inst.instruction |= inst.operands[0].reg << 12;
8061 inst.instruction |= inst.operands[1].reg << 16;
8062 inst.instruction |= inst.operands[2].reg;
8063 inst.instruction |= inst.operands[3].reg << 8;
8064
8065 if (inst.operands[0].reg == inst.operands[1].reg)
8066 as_tsktsk (_("rdhi and rdlo must be different"));
8067 }
8068
8069 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8070 SMULxy{cond} Rd,Rm,Rs
8071 Error if any register is R15. */
8072
8073 static void
8074 do_smul (void)
8075 {
8076 inst.instruction |= inst.operands[0].reg << 16;
8077 inst.instruction |= inst.operands[1].reg;
8078 inst.instruction |= inst.operands[2].reg << 8;
8079 }
8080
8081 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8082 the same for both ARM and Thumb-2. */
8083
8084 static void
8085 do_srs (void)
8086 {
8087 int reg;
8088
8089 if (inst.operands[0].present)
8090 {
8091 reg = inst.operands[0].reg;
8092 constraint (reg != REG_SP, _("SRS base register must be r13"));
8093 }
8094 else
8095 reg = REG_SP;
8096
8097 inst.instruction |= reg << 16;
8098 inst.instruction |= inst.operands[1].imm;
8099 if (inst.operands[0].writeback || inst.operands[1].writeback)
8100 inst.instruction |= WRITE_BACK;
8101 }
8102
8103 /* ARM V6 strex (argument parse). */
8104
8105 static void
8106 do_strex (void)
8107 {
8108 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8109 || inst.operands[2].postind || inst.operands[2].writeback
8110 || inst.operands[2].immisreg || inst.operands[2].shifted
8111 || inst.operands[2].negative
8112 /* See comment in do_ldrex(). */
8113 || (inst.operands[2].reg == REG_PC),
8114 BAD_ADDR_MODE);
8115
8116 constraint (inst.operands[0].reg == inst.operands[1].reg
8117 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8118
8119 constraint (inst.reloc.exp.X_op != O_constant
8120 || inst.reloc.exp.X_add_number != 0,
8121 _("offset must be zero in ARM encoding"));
8122
8123 inst.instruction |= inst.operands[0].reg << 12;
8124 inst.instruction |= inst.operands[1].reg;
8125 inst.instruction |= inst.operands[2].reg << 16;
8126 inst.reloc.type = BFD_RELOC_UNUSED;
8127 }
8128
8129 static void
8130 do_strexd (void)
8131 {
8132 constraint (inst.operands[1].reg % 2 != 0,
8133 _("even register required"));
8134 constraint (inst.operands[2].present
8135 && inst.operands[2].reg != inst.operands[1].reg + 1,
8136 _("can only store two consecutive registers"));
8137 /* If op 2 were present and equal to PC, this function wouldn't
8138 have been called in the first place. */
8139 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8140
8141 constraint (inst.operands[0].reg == inst.operands[1].reg
8142 || inst.operands[0].reg == inst.operands[1].reg + 1
8143 || inst.operands[0].reg == inst.operands[3].reg,
8144 BAD_OVERLAP);
8145
8146 inst.instruction |= inst.operands[0].reg << 12;
8147 inst.instruction |= inst.operands[1].reg;
8148 inst.instruction |= inst.operands[3].reg << 16;
8149 }
8150
8151 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8152 extends it to 32-bits, and adds the result to a value in another
8153 register. You can specify a rotation by 0, 8, 16, or 24 bits
8154 before extracting the 16-bit value.
8155 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8156 Condition defaults to COND_ALWAYS.
8157 Error if any register uses R15. */
8158
8159 static void
8160 do_sxtah (void)
8161 {
8162 inst.instruction |= inst.operands[0].reg << 12;
8163 inst.instruction |= inst.operands[1].reg << 16;
8164 inst.instruction |= inst.operands[2].reg;
8165 inst.instruction |= inst.operands[3].imm << 10;
8166 }
8167
8168 /* ARM V6 SXTH.
8169
8170 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8171 Condition defaults to COND_ALWAYS.
8172 Error if any register uses R15. */
8173
8174 static void
8175 do_sxth (void)
8176 {
8177 inst.instruction |= inst.operands[0].reg << 12;
8178 inst.instruction |= inst.operands[1].reg;
8179 inst.instruction |= inst.operands[2].imm << 10;
8180 }
8181 \f
8182 /* VFP instructions. In a logical order: SP variant first, monad
8183 before dyad, arithmetic then move then load/store. */
8184
8185 static void
8186 do_vfp_sp_monadic (void)
8187 {
8188 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8189 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8190 }
8191
8192 static void
8193 do_vfp_sp_dyadic (void)
8194 {
8195 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8196 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8197 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8198 }
8199
8200 static void
8201 do_vfp_sp_compare_z (void)
8202 {
8203 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8204 }
8205
8206 static void
8207 do_vfp_dp_sp_cvt (void)
8208 {
8209 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8210 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8211 }
8212
8213 static void
8214 do_vfp_sp_dp_cvt (void)
8215 {
8216 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8217 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8218 }
8219
8220 static void
8221 do_vfp_reg_from_sp (void)
8222 {
8223 inst.instruction |= inst.operands[0].reg << 12;
8224 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8225 }
8226
8227 static void
8228 do_vfp_reg2_from_sp2 (void)
8229 {
8230 constraint (inst.operands[2].imm != 2,
8231 _("only two consecutive VFP SP registers allowed here"));
8232 inst.instruction |= inst.operands[0].reg << 12;
8233 inst.instruction |= inst.operands[1].reg << 16;
8234 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8235 }
8236
8237 static void
8238 do_vfp_sp_from_reg (void)
8239 {
8240 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8241 inst.instruction |= inst.operands[1].reg << 12;
8242 }
8243
8244 static void
8245 do_vfp_sp2_from_reg2 (void)
8246 {
8247 constraint (inst.operands[0].imm != 2,
8248 _("only two consecutive VFP SP registers allowed here"));
8249 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8250 inst.instruction |= inst.operands[1].reg << 12;
8251 inst.instruction |= inst.operands[2].reg << 16;
8252 }
8253
8254 static void
8255 do_vfp_sp_ldst (void)
8256 {
8257 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8258 encode_arm_cp_address (1, FALSE, TRUE, 0);
8259 }
8260
8261 static void
8262 do_vfp_dp_ldst (void)
8263 {
8264 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8265 encode_arm_cp_address (1, FALSE, TRUE, 0);
8266 }
8267
8268
8269 static void
8270 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8271 {
8272 if (inst.operands[0].writeback)
8273 inst.instruction |= WRITE_BACK;
8274 else
8275 constraint (ldstm_type != VFP_LDSTMIA,
8276 _("this addressing mode requires base-register writeback"));
8277 inst.instruction |= inst.operands[0].reg << 16;
8278 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8279 inst.instruction |= inst.operands[1].imm;
8280 }
8281
8282 static void
8283 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8284 {
8285 int count;
8286
8287 if (inst.operands[0].writeback)
8288 inst.instruction |= WRITE_BACK;
8289 else
8290 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8291 _("this addressing mode requires base-register writeback"));
8292
8293 inst.instruction |= inst.operands[0].reg << 16;
8294 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8295
8296 count = inst.operands[1].imm << 1;
8297 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8298 count += 1;
8299
8300 inst.instruction |= count;
8301 }
8302
8303 static void
8304 do_vfp_sp_ldstmia (void)
8305 {
8306 vfp_sp_ldstm (VFP_LDSTMIA);
8307 }
8308
8309 static void
8310 do_vfp_sp_ldstmdb (void)
8311 {
8312 vfp_sp_ldstm (VFP_LDSTMDB);
8313 }
8314
8315 static void
8316 do_vfp_dp_ldstmia (void)
8317 {
8318 vfp_dp_ldstm (VFP_LDSTMIA);
8319 }
8320
8321 static void
8322 do_vfp_dp_ldstmdb (void)
8323 {
8324 vfp_dp_ldstm (VFP_LDSTMDB);
8325 }
8326
8327 static void
8328 do_vfp_xp_ldstmia (void)
8329 {
8330 vfp_dp_ldstm (VFP_LDSTMIAX);
8331 }
8332
8333 static void
8334 do_vfp_xp_ldstmdb (void)
8335 {
8336 vfp_dp_ldstm (VFP_LDSTMDBX);
8337 }
8338
8339 static void
8340 do_vfp_dp_rd_rm (void)
8341 {
8342 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8343 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8344 }
8345
8346 static void
8347 do_vfp_dp_rn_rd (void)
8348 {
8349 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8350 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8351 }
8352
8353 static void
8354 do_vfp_dp_rd_rn (void)
8355 {
8356 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8357 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8358 }
8359
8360 static void
8361 do_vfp_dp_rd_rn_rm (void)
8362 {
8363 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8364 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8365 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8366 }
8367
8368 static void
8369 do_vfp_dp_rd (void)
8370 {
8371 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8372 }
8373
8374 static void
8375 do_vfp_dp_rm_rd_rn (void)
8376 {
8377 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8378 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8379 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8380 }
8381
8382 /* VFPv3 instructions. */
8383 static void
8384 do_vfp_sp_const (void)
8385 {
8386 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8387 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8388 inst.instruction |= (inst.operands[1].imm & 0x0f);
8389 }
8390
8391 static void
8392 do_vfp_dp_const (void)
8393 {
8394 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8395 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8396 inst.instruction |= (inst.operands[1].imm & 0x0f);
8397 }
8398
8399 static void
8400 vfp_conv (int srcsize)
8401 {
8402 unsigned immbits = srcsize - inst.operands[1].imm;
8403 inst.instruction |= (immbits & 1) << 5;
8404 inst.instruction |= (immbits >> 1);
8405 }
8406
8407 static void
8408 do_vfp_sp_conv_16 (void)
8409 {
8410 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8411 vfp_conv (16);
8412 }
8413
8414 static void
8415 do_vfp_dp_conv_16 (void)
8416 {
8417 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8418 vfp_conv (16);
8419 }
8420
8421 static void
8422 do_vfp_sp_conv_32 (void)
8423 {
8424 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8425 vfp_conv (32);
8426 }
8427
8428 static void
8429 do_vfp_dp_conv_32 (void)
8430 {
8431 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8432 vfp_conv (32);
8433 }
8434 \f
8435 /* FPA instructions. Also in a logical order. */
8436
8437 static void
8438 do_fpa_cmp (void)
8439 {
8440 inst.instruction |= inst.operands[0].reg << 16;
8441 inst.instruction |= inst.operands[1].reg;
8442 }
8443
8444 static void
8445 do_fpa_ldmstm (void)
8446 {
8447 inst.instruction |= inst.operands[0].reg << 12;
8448 switch (inst.operands[1].imm)
8449 {
8450 case 1: inst.instruction |= CP_T_X; break;
8451 case 2: inst.instruction |= CP_T_Y; break;
8452 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8453 case 4: break;
8454 default: abort ();
8455 }
8456
8457 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8458 {
8459 /* The instruction specified "ea" or "fd", so we can only accept
8460 [Rn]{!}. The instruction does not really support stacking or
8461 unstacking, so we have to emulate these by setting appropriate
8462 bits and offsets. */
8463 constraint (inst.reloc.exp.X_op != O_constant
8464 || inst.reloc.exp.X_add_number != 0,
8465 _("this instruction does not support indexing"));
8466
8467 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8468 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8469
8470 if (!(inst.instruction & INDEX_UP))
8471 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8472
8473 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8474 {
8475 inst.operands[2].preind = 0;
8476 inst.operands[2].postind = 1;
8477 }
8478 }
8479
8480 encode_arm_cp_address (2, TRUE, TRUE, 0);
8481 }
8482 \f
8483 /* iWMMXt instructions: strictly in alphabetical order. */
8484
8485 static void
8486 do_iwmmxt_tandorc (void)
8487 {
8488 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8489 }
8490
8491 static void
8492 do_iwmmxt_textrc (void)
8493 {
8494 inst.instruction |= inst.operands[0].reg << 12;
8495 inst.instruction |= inst.operands[1].imm;
8496 }
8497
8498 static void
8499 do_iwmmxt_textrm (void)
8500 {
8501 inst.instruction |= inst.operands[0].reg << 12;
8502 inst.instruction |= inst.operands[1].reg << 16;
8503 inst.instruction |= inst.operands[2].imm;
8504 }
8505
8506 static void
8507 do_iwmmxt_tinsr (void)
8508 {
8509 inst.instruction |= inst.operands[0].reg << 16;
8510 inst.instruction |= inst.operands[1].reg << 12;
8511 inst.instruction |= inst.operands[2].imm;
8512 }
8513
8514 static void
8515 do_iwmmxt_tmia (void)
8516 {
8517 inst.instruction |= inst.operands[0].reg << 5;
8518 inst.instruction |= inst.operands[1].reg;
8519 inst.instruction |= inst.operands[2].reg << 12;
8520 }
8521
8522 static void
8523 do_iwmmxt_waligni (void)
8524 {
8525 inst.instruction |= inst.operands[0].reg << 12;
8526 inst.instruction |= inst.operands[1].reg << 16;
8527 inst.instruction |= inst.operands[2].reg;
8528 inst.instruction |= inst.operands[3].imm << 20;
8529 }
8530
8531 static void
8532 do_iwmmxt_wmerge (void)
8533 {
8534 inst.instruction |= inst.operands[0].reg << 12;
8535 inst.instruction |= inst.operands[1].reg << 16;
8536 inst.instruction |= inst.operands[2].reg;
8537 inst.instruction |= inst.operands[3].imm << 21;
8538 }
8539
8540 static void
8541 do_iwmmxt_wmov (void)
8542 {
8543 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8544 inst.instruction |= inst.operands[0].reg << 12;
8545 inst.instruction |= inst.operands[1].reg << 16;
8546 inst.instruction |= inst.operands[1].reg;
8547 }
8548
8549 static void
8550 do_iwmmxt_wldstbh (void)
8551 {
8552 int reloc;
8553 inst.instruction |= inst.operands[0].reg << 12;
8554 if (thumb_mode)
8555 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8556 else
8557 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8558 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8559 }
8560
8561 static void
8562 do_iwmmxt_wldstw (void)
8563 {
8564 /* RIWR_RIWC clears .isreg for a control register. */
8565 if (!inst.operands[0].isreg)
8566 {
8567 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8568 inst.instruction |= 0xf0000000;
8569 }
8570
8571 inst.instruction |= inst.operands[0].reg << 12;
8572 encode_arm_cp_address (1, TRUE, TRUE, 0);
8573 }
8574
8575 static void
8576 do_iwmmxt_wldstd (void)
8577 {
8578 inst.instruction |= inst.operands[0].reg << 12;
8579 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8580 && inst.operands[1].immisreg)
8581 {
8582 inst.instruction &= ~0x1a000ff;
8583 inst.instruction |= (0xf << 28);
8584 if (inst.operands[1].preind)
8585 inst.instruction |= PRE_INDEX;
8586 if (!inst.operands[1].negative)
8587 inst.instruction |= INDEX_UP;
8588 if (inst.operands[1].writeback)
8589 inst.instruction |= WRITE_BACK;
8590 inst.instruction |= inst.operands[1].reg << 16;
8591 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8592 inst.instruction |= inst.operands[1].imm;
8593 }
8594 else
8595 encode_arm_cp_address (1, TRUE, FALSE, 0);
8596 }
8597
8598 static void
8599 do_iwmmxt_wshufh (void)
8600 {
8601 inst.instruction |= inst.operands[0].reg << 12;
8602 inst.instruction |= inst.operands[1].reg << 16;
8603 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8604 inst.instruction |= (inst.operands[2].imm & 0x0f);
8605 }
8606
8607 static void
8608 do_iwmmxt_wzero (void)
8609 {
8610 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8611 inst.instruction |= inst.operands[0].reg;
8612 inst.instruction |= inst.operands[0].reg << 12;
8613 inst.instruction |= inst.operands[0].reg << 16;
8614 }
8615
8616 static void
8617 do_iwmmxt_wrwrwr_or_imm5 (void)
8618 {
8619 if (inst.operands[2].isreg)
8620 do_rd_rn_rm ();
8621 else {
8622 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8623 _("immediate operand requires iWMMXt2"));
8624 do_rd_rn ();
8625 if (inst.operands[2].imm == 0)
8626 {
8627 switch ((inst.instruction >> 20) & 0xf)
8628 {
8629 case 4:
8630 case 5:
8631 case 6:
8632 case 7:
8633 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8634 inst.operands[2].imm = 16;
8635 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8636 break;
8637 case 8:
8638 case 9:
8639 case 10:
8640 case 11:
8641 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8642 inst.operands[2].imm = 32;
8643 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8644 break;
8645 case 12:
8646 case 13:
8647 case 14:
8648 case 15:
8649 {
8650 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8651 unsigned long wrn;
8652 wrn = (inst.instruction >> 16) & 0xf;
8653 inst.instruction &= 0xff0fff0f;
8654 inst.instruction |= wrn;
8655 /* Bail out here; the instruction is now assembled. */
8656 return;
8657 }
8658 }
8659 }
8660 /* Map 32 -> 0, etc. */
8661 inst.operands[2].imm &= 0x1f;
8662 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8663 }
8664 }
8665 \f
8666 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8667 operations first, then control, shift, and load/store. */
8668
8669 /* Insns like "foo X,Y,Z". */
8670
8671 static void
8672 do_mav_triple (void)
8673 {
8674 inst.instruction |= inst.operands[0].reg << 16;
8675 inst.instruction |= inst.operands[1].reg;
8676 inst.instruction |= inst.operands[2].reg << 12;
8677 }
8678
8679 /* Insns like "foo W,X,Y,Z".
8680 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8681
8682 static void
8683 do_mav_quad (void)
8684 {
8685 inst.instruction |= inst.operands[0].reg << 5;
8686 inst.instruction |= inst.operands[1].reg << 12;
8687 inst.instruction |= inst.operands[2].reg << 16;
8688 inst.instruction |= inst.operands[3].reg;
8689 }
8690
8691 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8692 static void
8693 do_mav_dspsc (void)
8694 {
8695 inst.instruction |= inst.operands[1].reg << 12;
8696 }
8697
8698 /* Maverick shift immediate instructions.
8699 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8700 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8701
8702 static void
8703 do_mav_shift (void)
8704 {
8705 int imm = inst.operands[2].imm;
8706
8707 inst.instruction |= inst.operands[0].reg << 12;
8708 inst.instruction |= inst.operands[1].reg << 16;
8709
8710 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8711 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8712 Bit 4 should be 0. */
8713 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8714
8715 inst.instruction |= imm;
8716 }
8717 \f
8718 /* XScale instructions. Also sorted arithmetic before move. */
8719
8720 /* Xscale multiply-accumulate (argument parse)
8721 MIAcc acc0,Rm,Rs
8722 MIAPHcc acc0,Rm,Rs
8723 MIAxycc acc0,Rm,Rs. */
8724
8725 static void
8726 do_xsc_mia (void)
8727 {
8728 inst.instruction |= inst.operands[1].reg;
8729 inst.instruction |= inst.operands[2].reg << 12;
8730 }
8731
8732 /* Xscale move-accumulator-register (argument parse)
8733
8734 MARcc acc0,RdLo,RdHi. */
8735
8736 static void
8737 do_xsc_mar (void)
8738 {
8739 inst.instruction |= inst.operands[1].reg << 12;
8740 inst.instruction |= inst.operands[2].reg << 16;
8741 }
8742
8743 /* Xscale move-register-accumulator (argument parse)
8744
8745 MRAcc RdLo,RdHi,acc0. */
8746
8747 static void
8748 do_xsc_mra (void)
8749 {
8750 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8751 inst.instruction |= inst.operands[0].reg << 12;
8752 inst.instruction |= inst.operands[1].reg << 16;
8753 }
8754 \f
8755 /* Encoding functions relevant only to Thumb. */
8756
8757 /* inst.operands[i] is a shifted-register operand; encode
8758 it into inst.instruction in the format used by Thumb32. */
8759
8760 static void
8761 encode_thumb32_shifted_operand (int i)
8762 {
8763 unsigned int value = inst.reloc.exp.X_add_number;
8764 unsigned int shift = inst.operands[i].shift_kind;
8765
8766 constraint (inst.operands[i].immisreg,
8767 _("shift by register not allowed in thumb mode"));
8768 inst.instruction |= inst.operands[i].reg;
8769 if (shift == SHIFT_RRX)
8770 inst.instruction |= SHIFT_ROR << 4;
8771 else
8772 {
8773 constraint (inst.reloc.exp.X_op != O_constant,
8774 _("expression too complex"));
8775
8776 constraint (value > 32
8777 || (value == 32 && (shift == SHIFT_LSL
8778 || shift == SHIFT_ROR)),
8779 _("shift expression is too large"));
8780
8781 if (value == 0)
8782 shift = SHIFT_LSL;
8783 else if (value == 32)
8784 value = 0;
8785
8786 inst.instruction |= shift << 4;
8787 inst.instruction |= (value & 0x1c) << 10;
8788 inst.instruction |= (value & 0x03) << 6;
8789 }
8790 }
8791
8792
8793 /* inst.operands[i] was set up by parse_address. Encode it into a
8794 Thumb32 format load or store instruction. Reject forms that cannot
8795 be used with such instructions. If is_t is true, reject forms that
8796 cannot be used with a T instruction; if is_d is true, reject forms
8797 that cannot be used with a D instruction. If it is a store insn,
8798 reject PC in Rn. */
8799
8800 static void
8801 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8802 {
8803 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8804
8805 constraint (!inst.operands[i].isreg,
8806 _("Instruction does not support =N addresses"));
8807
8808 inst.instruction |= inst.operands[i].reg << 16;
8809 if (inst.operands[i].immisreg)
8810 {
8811 constraint (is_pc, BAD_PC_ADDRESSING);
8812 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8813 constraint (inst.operands[i].negative,
8814 _("Thumb does not support negative register indexing"));
8815 constraint (inst.operands[i].postind,
8816 _("Thumb does not support register post-indexing"));
8817 constraint (inst.operands[i].writeback,
8818 _("Thumb does not support register indexing with writeback"));
8819 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8820 _("Thumb supports only LSL in shifted register indexing"));
8821
8822 inst.instruction |= inst.operands[i].imm;
8823 if (inst.operands[i].shifted)
8824 {
8825 constraint (inst.reloc.exp.X_op != O_constant,
8826 _("expression too complex"));
8827 constraint (inst.reloc.exp.X_add_number < 0
8828 || inst.reloc.exp.X_add_number > 3,
8829 _("shift out of range"));
8830 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8831 }
8832 inst.reloc.type = BFD_RELOC_UNUSED;
8833 }
8834 else if (inst.operands[i].preind)
8835 {
8836 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
8837 constraint (is_t && inst.operands[i].writeback,
8838 _("cannot use writeback with this instruction"));
8839 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8840 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
8841
8842 if (is_d)
8843 {
8844 inst.instruction |= 0x01000000;
8845 if (inst.operands[i].writeback)
8846 inst.instruction |= 0x00200000;
8847 }
8848 else
8849 {
8850 inst.instruction |= 0x00000c00;
8851 if (inst.operands[i].writeback)
8852 inst.instruction |= 0x00000100;
8853 }
8854 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8855 }
8856 else if (inst.operands[i].postind)
8857 {
8858 gas_assert (inst.operands[i].writeback);
8859 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8860 constraint (is_t, _("cannot use post-indexing with this instruction"));
8861
8862 if (is_d)
8863 inst.instruction |= 0x00200000;
8864 else
8865 inst.instruction |= 0x00000900;
8866 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8867 }
8868 else /* unindexed - only for coprocessor */
8869 inst.error = _("instruction does not accept unindexed addressing");
8870 }
8871
8872 /* Table of Thumb instructions which exist in both 16- and 32-bit
8873 encodings (the latter only in post-V6T2 cores). The index is the
8874 value used in the insns table below. When there is more than one
8875 possible 16-bit encoding for the instruction, this table always
8876 holds variant (1).
8877 Also contains several pseudo-instructions used during relaxation. */
8878 #define T16_32_TAB \
8879 X(_adc, 4140, eb400000), \
8880 X(_adcs, 4140, eb500000), \
8881 X(_add, 1c00, eb000000), \
8882 X(_adds, 1c00, eb100000), \
8883 X(_addi, 0000, f1000000), \
8884 X(_addis, 0000, f1100000), \
8885 X(_add_pc,000f, f20f0000), \
8886 X(_add_sp,000d, f10d0000), \
8887 X(_adr, 000f, f20f0000), \
8888 X(_and, 4000, ea000000), \
8889 X(_ands, 4000, ea100000), \
8890 X(_asr, 1000, fa40f000), \
8891 X(_asrs, 1000, fa50f000), \
8892 X(_b, e000, f000b000), \
8893 X(_bcond, d000, f0008000), \
8894 X(_bic, 4380, ea200000), \
8895 X(_bics, 4380, ea300000), \
8896 X(_cmn, 42c0, eb100f00), \
8897 X(_cmp, 2800, ebb00f00), \
8898 X(_cpsie, b660, f3af8400), \
8899 X(_cpsid, b670, f3af8600), \
8900 X(_cpy, 4600, ea4f0000), \
8901 X(_dec_sp,80dd, f1ad0d00), \
8902 X(_eor, 4040, ea800000), \
8903 X(_eors, 4040, ea900000), \
8904 X(_inc_sp,00dd, f10d0d00), \
8905 X(_ldmia, c800, e8900000), \
8906 X(_ldr, 6800, f8500000), \
8907 X(_ldrb, 7800, f8100000), \
8908 X(_ldrh, 8800, f8300000), \
8909 X(_ldrsb, 5600, f9100000), \
8910 X(_ldrsh, 5e00, f9300000), \
8911 X(_ldr_pc,4800, f85f0000), \
8912 X(_ldr_pc2,4800, f85f0000), \
8913 X(_ldr_sp,9800, f85d0000), \
8914 X(_lsl, 0000, fa00f000), \
8915 X(_lsls, 0000, fa10f000), \
8916 X(_lsr, 0800, fa20f000), \
8917 X(_lsrs, 0800, fa30f000), \
8918 X(_mov, 2000, ea4f0000), \
8919 X(_movs, 2000, ea5f0000), \
8920 X(_mul, 4340, fb00f000), \
8921 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8922 X(_mvn, 43c0, ea6f0000), \
8923 X(_mvns, 43c0, ea7f0000), \
8924 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8925 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8926 X(_orr, 4300, ea400000), \
8927 X(_orrs, 4300, ea500000), \
8928 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8929 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8930 X(_rev, ba00, fa90f080), \
8931 X(_rev16, ba40, fa90f090), \
8932 X(_revsh, bac0, fa90f0b0), \
8933 X(_ror, 41c0, fa60f000), \
8934 X(_rors, 41c0, fa70f000), \
8935 X(_sbc, 4180, eb600000), \
8936 X(_sbcs, 4180, eb700000), \
8937 X(_stmia, c000, e8800000), \
8938 X(_str, 6000, f8400000), \
8939 X(_strb, 7000, f8000000), \
8940 X(_strh, 8000, f8200000), \
8941 X(_str_sp,9000, f84d0000), \
8942 X(_sub, 1e00, eba00000), \
8943 X(_subs, 1e00, ebb00000), \
8944 X(_subi, 8000, f1a00000), \
8945 X(_subis, 8000, f1b00000), \
8946 X(_sxtb, b240, fa4ff080), \
8947 X(_sxth, b200, fa0ff080), \
8948 X(_tst, 4200, ea100f00), \
8949 X(_uxtb, b2c0, fa5ff080), \
8950 X(_uxth, b280, fa1ff080), \
8951 X(_nop, bf00, f3af8000), \
8952 X(_yield, bf10, f3af8001), \
8953 X(_wfe, bf20, f3af8002), \
8954 X(_wfi, bf30, f3af8003), \
8955 X(_sev, bf40, f3af8004),
8956
8957 /* To catch errors in encoding functions, the codes are all offset by
8958 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8959 as 16-bit instructions. */
8960 #define X(a,b,c) T_MNEM##a
8961 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8962 #undef X
8963
8964 #define X(a,b,c) 0x##b
8965 static const unsigned short thumb_op16[] = { T16_32_TAB };
8966 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8967 #undef X
8968
8969 #define X(a,b,c) 0x##c
8970 static const unsigned int thumb_op32[] = { T16_32_TAB };
8971 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8972 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8973 #undef X
8974 #undef T16_32_TAB
8975
8976 /* Thumb instruction encoders, in alphabetical order. */
8977
8978 /* ADDW or SUBW. */
8979
8980 static void
8981 do_t_add_sub_w (void)
8982 {
8983 int Rd, Rn;
8984
8985 Rd = inst.operands[0].reg;
8986 Rn = inst.operands[1].reg;
8987
8988 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8989 is the SP-{plus,minus}-immediate form of the instruction. */
8990 if (Rn == REG_SP)
8991 constraint (Rd == REG_PC, BAD_PC);
8992 else
8993 reject_bad_reg (Rd);
8994
8995 inst.instruction |= (Rn << 16) | (Rd << 8);
8996 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8997 }
8998
8999 /* Parse an add or subtract instruction. We get here with inst.instruction
9000 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9001
9002 static void
9003 do_t_add_sub (void)
9004 {
9005 int Rd, Rs, Rn;
9006
9007 Rd = inst.operands[0].reg;
9008 Rs = (inst.operands[1].present
9009 ? inst.operands[1].reg /* Rd, Rs, foo */
9010 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9011
9012 if (Rd == REG_PC)
9013 set_it_insn_type_last ();
9014
9015 if (unified_syntax)
9016 {
9017 bfd_boolean flags;
9018 bfd_boolean narrow;
9019 int opcode;
9020
9021 flags = (inst.instruction == T_MNEM_adds
9022 || inst.instruction == T_MNEM_subs);
9023 if (flags)
9024 narrow = !in_it_block ();
9025 else
9026 narrow = in_it_block ();
9027 if (!inst.operands[2].isreg)
9028 {
9029 int add;
9030
9031 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9032
9033 add = (inst.instruction == T_MNEM_add
9034 || inst.instruction == T_MNEM_adds);
9035 opcode = 0;
9036 if (inst.size_req != 4)
9037 {
9038 /* Attempt to use a narrow opcode, with relaxation if
9039 appropriate. */
9040 if (Rd == REG_SP && Rs == REG_SP && !flags)
9041 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9042 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9043 opcode = T_MNEM_add_sp;
9044 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9045 opcode = T_MNEM_add_pc;
9046 else if (Rd <= 7 && Rs <= 7 && narrow)
9047 {
9048 if (flags)
9049 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9050 else
9051 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9052 }
9053 if (opcode)
9054 {
9055 inst.instruction = THUMB_OP16(opcode);
9056 inst.instruction |= (Rd << 4) | Rs;
9057 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9058 if (inst.size_req != 2)
9059 inst.relax = opcode;
9060 }
9061 else
9062 constraint (inst.size_req == 2, BAD_HIREG);
9063 }
9064 if (inst.size_req == 4
9065 || (inst.size_req != 2 && !opcode))
9066 {
9067 if (Rd == REG_PC)
9068 {
9069 constraint (add, BAD_PC);
9070 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9071 _("only SUBS PC, LR, #const allowed"));
9072 constraint (inst.reloc.exp.X_op != O_constant,
9073 _("expression too complex"));
9074 constraint (inst.reloc.exp.X_add_number < 0
9075 || inst.reloc.exp.X_add_number > 0xff,
9076 _("immediate value out of range"));
9077 inst.instruction = T2_SUBS_PC_LR
9078 | inst.reloc.exp.X_add_number;
9079 inst.reloc.type = BFD_RELOC_UNUSED;
9080 return;
9081 }
9082 else if (Rs == REG_PC)
9083 {
9084 /* Always use addw/subw. */
9085 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9086 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9087 }
9088 else
9089 {
9090 inst.instruction = THUMB_OP32 (inst.instruction);
9091 inst.instruction = (inst.instruction & 0xe1ffffff)
9092 | 0x10000000;
9093 if (flags)
9094 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9095 else
9096 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9097 }
9098 inst.instruction |= Rd << 8;
9099 inst.instruction |= Rs << 16;
9100 }
9101 }
9102 else
9103 {
9104 Rn = inst.operands[2].reg;
9105 /* See if we can do this with a 16-bit instruction. */
9106 if (!inst.operands[2].shifted && inst.size_req != 4)
9107 {
9108 if (Rd > 7 || Rs > 7 || Rn > 7)
9109 narrow = FALSE;
9110
9111 if (narrow)
9112 {
9113 inst.instruction = ((inst.instruction == T_MNEM_adds
9114 || inst.instruction == T_MNEM_add)
9115 ? T_OPCODE_ADD_R3
9116 : T_OPCODE_SUB_R3);
9117 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9118 return;
9119 }
9120
9121 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9122 {
9123 /* Thumb-1 cores (except v6-M) require at least one high
9124 register in a narrow non flag setting add. */
9125 if (Rd > 7 || Rn > 7
9126 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9127 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9128 {
9129 if (Rd == Rn)
9130 {
9131 Rn = Rs;
9132 Rs = Rd;
9133 }
9134 inst.instruction = T_OPCODE_ADD_HI;
9135 inst.instruction |= (Rd & 8) << 4;
9136 inst.instruction |= (Rd & 7);
9137 inst.instruction |= Rn << 3;
9138 return;
9139 }
9140 }
9141 }
9142
9143 constraint (Rd == REG_PC, BAD_PC);
9144 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9145 constraint (Rs == REG_PC, BAD_PC);
9146 reject_bad_reg (Rn);
9147
9148 /* If we get here, it can't be done in 16 bits. */
9149 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9150 _("shift must be constant"));
9151 inst.instruction = THUMB_OP32 (inst.instruction);
9152 inst.instruction |= Rd << 8;
9153 inst.instruction |= Rs << 16;
9154 encode_thumb32_shifted_operand (2);
9155 }
9156 }
9157 else
9158 {
9159 constraint (inst.instruction == T_MNEM_adds
9160 || inst.instruction == T_MNEM_subs,
9161 BAD_THUMB32);
9162
9163 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9164 {
9165 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9166 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9167 BAD_HIREG);
9168
9169 inst.instruction = (inst.instruction == T_MNEM_add
9170 ? 0x0000 : 0x8000);
9171 inst.instruction |= (Rd << 4) | Rs;
9172 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9173 return;
9174 }
9175
9176 Rn = inst.operands[2].reg;
9177 constraint (inst.operands[2].shifted, _("unshifted register required"));
9178
9179 /* We now have Rd, Rs, and Rn set to registers. */
9180 if (Rd > 7 || Rs > 7 || Rn > 7)
9181 {
9182 /* Can't do this for SUB. */
9183 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9184 inst.instruction = T_OPCODE_ADD_HI;
9185 inst.instruction |= (Rd & 8) << 4;
9186 inst.instruction |= (Rd & 7);
9187 if (Rs == Rd)
9188 inst.instruction |= Rn << 3;
9189 else if (Rn == Rd)
9190 inst.instruction |= Rs << 3;
9191 else
9192 constraint (1, _("dest must overlap one source register"));
9193 }
9194 else
9195 {
9196 inst.instruction = (inst.instruction == T_MNEM_add
9197 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9198 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9199 }
9200 }
9201 }
9202
9203 static void
9204 do_t_adr (void)
9205 {
9206 unsigned Rd;
9207
9208 Rd = inst.operands[0].reg;
9209 reject_bad_reg (Rd);
9210
9211 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9212 {
9213 /* Defer to section relaxation. */
9214 inst.relax = inst.instruction;
9215 inst.instruction = THUMB_OP16 (inst.instruction);
9216 inst.instruction |= Rd << 4;
9217 }
9218 else if (unified_syntax && inst.size_req != 2)
9219 {
9220 /* Generate a 32-bit opcode. */
9221 inst.instruction = THUMB_OP32 (inst.instruction);
9222 inst.instruction |= Rd << 8;
9223 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9224 inst.reloc.pc_rel = 1;
9225 }
9226 else
9227 {
9228 /* Generate a 16-bit opcode. */
9229 inst.instruction = THUMB_OP16 (inst.instruction);
9230 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9231 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9232 inst.reloc.pc_rel = 1;
9233
9234 inst.instruction |= Rd << 4;
9235 }
9236 }
9237
9238 /* Arithmetic instructions for which there is just one 16-bit
9239 instruction encoding, and it allows only two low registers.
9240 For maximal compatibility with ARM syntax, we allow three register
9241 operands even when Thumb-32 instructions are not available, as long
9242 as the first two are identical. For instance, both "sbc r0,r1" and
9243 "sbc r0,r0,r1" are allowed. */
9244 static void
9245 do_t_arit3 (void)
9246 {
9247 int Rd, Rs, Rn;
9248
9249 Rd = inst.operands[0].reg;
9250 Rs = (inst.operands[1].present
9251 ? inst.operands[1].reg /* Rd, Rs, foo */
9252 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9253 Rn = inst.operands[2].reg;
9254
9255 reject_bad_reg (Rd);
9256 reject_bad_reg (Rs);
9257 if (inst.operands[2].isreg)
9258 reject_bad_reg (Rn);
9259
9260 if (unified_syntax)
9261 {
9262 if (!inst.operands[2].isreg)
9263 {
9264 /* For an immediate, we always generate a 32-bit opcode;
9265 section relaxation will shrink it later if possible. */
9266 inst.instruction = THUMB_OP32 (inst.instruction);
9267 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9268 inst.instruction |= Rd << 8;
9269 inst.instruction |= Rs << 16;
9270 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9271 }
9272 else
9273 {
9274 bfd_boolean narrow;
9275
9276 /* See if we can do this with a 16-bit instruction. */
9277 if (THUMB_SETS_FLAGS (inst.instruction))
9278 narrow = !in_it_block ();
9279 else
9280 narrow = in_it_block ();
9281
9282 if (Rd > 7 || Rn > 7 || Rs > 7)
9283 narrow = FALSE;
9284 if (inst.operands[2].shifted)
9285 narrow = FALSE;
9286 if (inst.size_req == 4)
9287 narrow = FALSE;
9288
9289 if (narrow
9290 && Rd == Rs)
9291 {
9292 inst.instruction = THUMB_OP16 (inst.instruction);
9293 inst.instruction |= Rd;
9294 inst.instruction |= Rn << 3;
9295 return;
9296 }
9297
9298 /* If we get here, it can't be done in 16 bits. */
9299 constraint (inst.operands[2].shifted
9300 && inst.operands[2].immisreg,
9301 _("shift must be constant"));
9302 inst.instruction = THUMB_OP32 (inst.instruction);
9303 inst.instruction |= Rd << 8;
9304 inst.instruction |= Rs << 16;
9305 encode_thumb32_shifted_operand (2);
9306 }
9307 }
9308 else
9309 {
9310 /* On its face this is a lie - the instruction does set the
9311 flags. However, the only supported mnemonic in this mode
9312 says it doesn't. */
9313 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9314
9315 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9316 _("unshifted register required"));
9317 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9318 constraint (Rd != Rs,
9319 _("dest and source1 must be the same register"));
9320
9321 inst.instruction = THUMB_OP16 (inst.instruction);
9322 inst.instruction |= Rd;
9323 inst.instruction |= Rn << 3;
9324 }
9325 }
9326
9327 /* Similarly, but for instructions where the arithmetic operation is
9328 commutative, so we can allow either of them to be different from
9329 the destination operand in a 16-bit instruction. For instance, all
9330 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9331 accepted. */
9332 static void
9333 do_t_arit3c (void)
9334 {
9335 int Rd, Rs, Rn;
9336
9337 Rd = inst.operands[0].reg;
9338 Rs = (inst.operands[1].present
9339 ? inst.operands[1].reg /* Rd, Rs, foo */
9340 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9341 Rn = inst.operands[2].reg;
9342
9343 reject_bad_reg (Rd);
9344 reject_bad_reg (Rs);
9345 if (inst.operands[2].isreg)
9346 reject_bad_reg (Rn);
9347
9348 if (unified_syntax)
9349 {
9350 if (!inst.operands[2].isreg)
9351 {
9352 /* For an immediate, we always generate a 32-bit opcode;
9353 section relaxation will shrink it later if possible. */
9354 inst.instruction = THUMB_OP32 (inst.instruction);
9355 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9356 inst.instruction |= Rd << 8;
9357 inst.instruction |= Rs << 16;
9358 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9359 }
9360 else
9361 {
9362 bfd_boolean narrow;
9363
9364 /* See if we can do this with a 16-bit instruction. */
9365 if (THUMB_SETS_FLAGS (inst.instruction))
9366 narrow = !in_it_block ();
9367 else
9368 narrow = in_it_block ();
9369
9370 if (Rd > 7 || Rn > 7 || Rs > 7)
9371 narrow = FALSE;
9372 if (inst.operands[2].shifted)
9373 narrow = FALSE;
9374 if (inst.size_req == 4)
9375 narrow = FALSE;
9376
9377 if (narrow)
9378 {
9379 if (Rd == Rs)
9380 {
9381 inst.instruction = THUMB_OP16 (inst.instruction);
9382 inst.instruction |= Rd;
9383 inst.instruction |= Rn << 3;
9384 return;
9385 }
9386 if (Rd == Rn)
9387 {
9388 inst.instruction = THUMB_OP16 (inst.instruction);
9389 inst.instruction |= Rd;
9390 inst.instruction |= Rs << 3;
9391 return;
9392 }
9393 }
9394
9395 /* If we get here, it can't be done in 16 bits. */
9396 constraint (inst.operands[2].shifted
9397 && inst.operands[2].immisreg,
9398 _("shift must be constant"));
9399 inst.instruction = THUMB_OP32 (inst.instruction);
9400 inst.instruction |= Rd << 8;
9401 inst.instruction |= Rs << 16;
9402 encode_thumb32_shifted_operand (2);
9403 }
9404 }
9405 else
9406 {
9407 /* On its face this is a lie - the instruction does set the
9408 flags. However, the only supported mnemonic in this mode
9409 says it doesn't. */
9410 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9411
9412 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9413 _("unshifted register required"));
9414 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9415
9416 inst.instruction = THUMB_OP16 (inst.instruction);
9417 inst.instruction |= Rd;
9418
9419 if (Rd == Rs)
9420 inst.instruction |= Rn << 3;
9421 else if (Rd == Rn)
9422 inst.instruction |= Rs << 3;
9423 else
9424 constraint (1, _("dest must overlap one source register"));
9425 }
9426 }
9427
9428 static void
9429 do_t_barrier (void)
9430 {
9431 if (inst.operands[0].present)
9432 {
9433 constraint ((inst.instruction & 0xf0) != 0x40
9434 && inst.operands[0].imm != 0xf,
9435 _("bad barrier type"));
9436 inst.instruction |= inst.operands[0].imm;
9437 }
9438 else
9439 inst.instruction |= 0xf;
9440 }
9441
9442 static void
9443 do_t_bfc (void)
9444 {
9445 unsigned Rd;
9446 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9447 constraint (msb > 32, _("bit-field extends past end of register"));
9448 /* The instruction encoding stores the LSB and MSB,
9449 not the LSB and width. */
9450 Rd = inst.operands[0].reg;
9451 reject_bad_reg (Rd);
9452 inst.instruction |= Rd << 8;
9453 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9454 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9455 inst.instruction |= msb - 1;
9456 }
9457
9458 static void
9459 do_t_bfi (void)
9460 {
9461 int Rd, Rn;
9462 unsigned int msb;
9463
9464 Rd = inst.operands[0].reg;
9465 reject_bad_reg (Rd);
9466
9467 /* #0 in second position is alternative syntax for bfc, which is
9468 the same instruction but with REG_PC in the Rm field. */
9469 if (!inst.operands[1].isreg)
9470 Rn = REG_PC;
9471 else
9472 {
9473 Rn = inst.operands[1].reg;
9474 reject_bad_reg (Rn);
9475 }
9476
9477 msb = inst.operands[2].imm + inst.operands[3].imm;
9478 constraint (msb > 32, _("bit-field extends past end of register"));
9479 /* The instruction encoding stores the LSB and MSB,
9480 not the LSB and width. */
9481 inst.instruction |= Rd << 8;
9482 inst.instruction |= Rn << 16;
9483 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9484 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9485 inst.instruction |= msb - 1;
9486 }
9487
9488 static void
9489 do_t_bfx (void)
9490 {
9491 unsigned Rd, Rn;
9492
9493 Rd = inst.operands[0].reg;
9494 Rn = inst.operands[1].reg;
9495
9496 reject_bad_reg (Rd);
9497 reject_bad_reg (Rn);
9498
9499 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9500 _("bit-field extends past end of register"));
9501 inst.instruction |= Rd << 8;
9502 inst.instruction |= Rn << 16;
9503 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9504 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9505 inst.instruction |= inst.operands[3].imm - 1;
9506 }
9507
9508 /* ARM V5 Thumb BLX (argument parse)
9509 BLX <target_addr> which is BLX(1)
9510 BLX <Rm> which is BLX(2)
9511 Unfortunately, there are two different opcodes for this mnemonic.
9512 So, the insns[].value is not used, and the code here zaps values
9513 into inst.instruction.
9514
9515 ??? How to take advantage of the additional two bits of displacement
9516 available in Thumb32 mode? Need new relocation? */
9517
9518 static void
9519 do_t_blx (void)
9520 {
9521 set_it_insn_type_last ();
9522
9523 if (inst.operands[0].isreg)
9524 {
9525 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9526 /* We have a register, so this is BLX(2). */
9527 inst.instruction |= inst.operands[0].reg << 3;
9528 }
9529 else
9530 {
9531 /* No register. This must be BLX(1). */
9532 inst.instruction = 0xf000e800;
9533 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9534 inst.reloc.pc_rel = 1;
9535 }
9536 }
9537
9538 static void
9539 do_t_branch (void)
9540 {
9541 int opcode;
9542 int cond;
9543
9544 cond = inst.cond;
9545 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9546
9547 if (in_it_block ())
9548 {
9549 /* Conditional branches inside IT blocks are encoded as unconditional
9550 branches. */
9551 cond = COND_ALWAYS;
9552 }
9553 else
9554 cond = inst.cond;
9555
9556 if (cond != COND_ALWAYS)
9557 opcode = T_MNEM_bcond;
9558 else
9559 opcode = inst.instruction;
9560
9561 if (unified_syntax && inst.size_req == 4)
9562 {
9563 inst.instruction = THUMB_OP32(opcode);
9564 if (cond == COND_ALWAYS)
9565 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9566 else
9567 {
9568 gas_assert (cond != 0xF);
9569 inst.instruction |= cond << 22;
9570 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9571 }
9572 }
9573 else
9574 {
9575 inst.instruction = THUMB_OP16(opcode);
9576 if (cond == COND_ALWAYS)
9577 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9578 else
9579 {
9580 inst.instruction |= cond << 8;
9581 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9582 }
9583 /* Allow section relaxation. */
9584 if (unified_syntax && inst.size_req != 2)
9585 inst.relax = opcode;
9586 }
9587
9588 inst.reloc.pc_rel = 1;
9589 }
9590
9591 static void
9592 do_t_bkpt (void)
9593 {
9594 constraint (inst.cond != COND_ALWAYS,
9595 _("instruction is always unconditional"));
9596 if (inst.operands[0].present)
9597 {
9598 constraint (inst.operands[0].imm > 255,
9599 _("immediate value out of range"));
9600 inst.instruction |= inst.operands[0].imm;
9601 set_it_insn_type (NEUTRAL_IT_INSN);
9602 }
9603 }
9604
9605 static void
9606 do_t_branch23 (void)
9607 {
9608 set_it_insn_type_last ();
9609 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9610 inst.reloc.pc_rel = 1;
9611
9612 #if defined(OBJ_COFF)
9613 /* If the destination of the branch is a defined symbol which does not have
9614 the THUMB_FUNC attribute, then we must be calling a function which has
9615 the (interfacearm) attribute. We look for the Thumb entry point to that
9616 function and change the branch to refer to that function instead. */
9617 if ( inst.reloc.exp.X_op == O_symbol
9618 && inst.reloc.exp.X_add_symbol != NULL
9619 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9620 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9621 inst.reloc.exp.X_add_symbol =
9622 find_real_start (inst.reloc.exp.X_add_symbol);
9623 #endif
9624 }
9625
9626 static void
9627 do_t_bx (void)
9628 {
9629 set_it_insn_type_last ();
9630 inst.instruction |= inst.operands[0].reg << 3;
9631 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9632 should cause the alignment to be checked once it is known. This is
9633 because BX PC only works if the instruction is word aligned. */
9634 }
9635
9636 static void
9637 do_t_bxj (void)
9638 {
9639 int Rm;
9640
9641 set_it_insn_type_last ();
9642 Rm = inst.operands[0].reg;
9643 reject_bad_reg (Rm);
9644 inst.instruction |= Rm << 16;
9645 }
9646
9647 static void
9648 do_t_clz (void)
9649 {
9650 unsigned Rd;
9651 unsigned Rm;
9652
9653 Rd = inst.operands[0].reg;
9654 Rm = inst.operands[1].reg;
9655
9656 reject_bad_reg (Rd);
9657 reject_bad_reg (Rm);
9658
9659 inst.instruction |= Rd << 8;
9660 inst.instruction |= Rm << 16;
9661 inst.instruction |= Rm;
9662 }
9663
9664 static void
9665 do_t_cps (void)
9666 {
9667 set_it_insn_type (OUTSIDE_IT_INSN);
9668 inst.instruction |= inst.operands[0].imm;
9669 }
9670
9671 static void
9672 do_t_cpsi (void)
9673 {
9674 set_it_insn_type (OUTSIDE_IT_INSN);
9675 if (unified_syntax
9676 && (inst.operands[1].present || inst.size_req == 4)
9677 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9678 {
9679 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9680 inst.instruction = 0xf3af8000;
9681 inst.instruction |= imod << 9;
9682 inst.instruction |= inst.operands[0].imm << 5;
9683 if (inst.operands[1].present)
9684 inst.instruction |= 0x100 | inst.operands[1].imm;
9685 }
9686 else
9687 {
9688 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9689 && (inst.operands[0].imm & 4),
9690 _("selected processor does not support 'A' form "
9691 "of this instruction"));
9692 constraint (inst.operands[1].present || inst.size_req == 4,
9693 _("Thumb does not support the 2-argument "
9694 "form of this instruction"));
9695 inst.instruction |= inst.operands[0].imm;
9696 }
9697 }
9698
9699 /* THUMB CPY instruction (argument parse). */
9700
9701 static void
9702 do_t_cpy (void)
9703 {
9704 if (inst.size_req == 4)
9705 {
9706 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9707 inst.instruction |= inst.operands[0].reg << 8;
9708 inst.instruction |= inst.operands[1].reg;
9709 }
9710 else
9711 {
9712 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9713 inst.instruction |= (inst.operands[0].reg & 0x7);
9714 inst.instruction |= inst.operands[1].reg << 3;
9715 }
9716 }
9717
9718 static void
9719 do_t_cbz (void)
9720 {
9721 set_it_insn_type (OUTSIDE_IT_INSN);
9722 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9723 inst.instruction |= inst.operands[0].reg;
9724 inst.reloc.pc_rel = 1;
9725 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9726 }
9727
9728 static void
9729 do_t_dbg (void)
9730 {
9731 inst.instruction |= inst.operands[0].imm;
9732 }
9733
9734 static void
9735 do_t_div (void)
9736 {
9737 unsigned Rd, Rn, Rm;
9738
9739 Rd = inst.operands[0].reg;
9740 Rn = (inst.operands[1].present
9741 ? inst.operands[1].reg : Rd);
9742 Rm = inst.operands[2].reg;
9743
9744 reject_bad_reg (Rd);
9745 reject_bad_reg (Rn);
9746 reject_bad_reg (Rm);
9747
9748 inst.instruction |= Rd << 8;
9749 inst.instruction |= Rn << 16;
9750 inst.instruction |= Rm;
9751 }
9752
9753 static void
9754 do_t_hint (void)
9755 {
9756 if (unified_syntax && inst.size_req == 4)
9757 inst.instruction = THUMB_OP32 (inst.instruction);
9758 else
9759 inst.instruction = THUMB_OP16 (inst.instruction);
9760 }
9761
9762 static void
9763 do_t_it (void)
9764 {
9765 unsigned int cond = inst.operands[0].imm;
9766
9767 set_it_insn_type (IT_INSN);
9768 now_it.mask = (inst.instruction & 0xf) | 0x10;
9769 now_it.cc = cond;
9770
9771 /* If the condition is a negative condition, invert the mask. */
9772 if ((cond & 0x1) == 0x0)
9773 {
9774 unsigned int mask = inst.instruction & 0x000f;
9775
9776 if ((mask & 0x7) == 0)
9777 /* no conversion needed */;
9778 else if ((mask & 0x3) == 0)
9779 mask ^= 0x8;
9780 else if ((mask & 0x1) == 0)
9781 mask ^= 0xC;
9782 else
9783 mask ^= 0xE;
9784
9785 inst.instruction &= 0xfff0;
9786 inst.instruction |= mask;
9787 }
9788
9789 inst.instruction |= cond << 4;
9790 }
9791
9792 /* Helper function used for both push/pop and ldm/stm. */
9793 static void
9794 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9795 {
9796 bfd_boolean load;
9797
9798 load = (inst.instruction & (1 << 20)) != 0;
9799
9800 if (mask & (1 << 13))
9801 inst.error = _("SP not allowed in register list");
9802
9803 if ((mask & (1 << base)) != 0
9804 && writeback)
9805 inst.error = _("having the base register in the register list when "
9806 "using write back is UNPREDICTABLE");
9807
9808 if (load)
9809 {
9810 if (mask & (1 << 15))
9811 {
9812 if (mask & (1 << 14))
9813 inst.error = _("LR and PC should not both be in register list");
9814 else
9815 set_it_insn_type_last ();
9816 }
9817 }
9818 else
9819 {
9820 if (mask & (1 << 15))
9821 inst.error = _("PC not allowed in register list");
9822 }
9823
9824 if ((mask & (mask - 1)) == 0)
9825 {
9826 /* Single register transfers implemented as str/ldr. */
9827 if (writeback)
9828 {
9829 if (inst.instruction & (1 << 23))
9830 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9831 else
9832 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9833 }
9834 else
9835 {
9836 if (inst.instruction & (1 << 23))
9837 inst.instruction = 0x00800000; /* ia -> [base] */
9838 else
9839 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9840 }
9841
9842 inst.instruction |= 0xf8400000;
9843 if (load)
9844 inst.instruction |= 0x00100000;
9845
9846 mask = ffs (mask) - 1;
9847 mask <<= 12;
9848 }
9849 else if (writeback)
9850 inst.instruction |= WRITE_BACK;
9851
9852 inst.instruction |= mask;
9853 inst.instruction |= base << 16;
9854 }
9855
9856 static void
9857 do_t_ldmstm (void)
9858 {
9859 /* This really doesn't seem worth it. */
9860 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9861 _("expression too complex"));
9862 constraint (inst.operands[1].writeback,
9863 _("Thumb load/store multiple does not support {reglist}^"));
9864
9865 if (unified_syntax)
9866 {
9867 bfd_boolean narrow;
9868 unsigned mask;
9869
9870 narrow = FALSE;
9871 /* See if we can use a 16-bit instruction. */
9872 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9873 && inst.size_req != 4
9874 && !(inst.operands[1].imm & ~0xff))
9875 {
9876 mask = 1 << inst.operands[0].reg;
9877
9878 if (inst.operands[0].reg <= 7
9879 && (inst.instruction == T_MNEM_stmia
9880 ? inst.operands[0].writeback
9881 : (inst.operands[0].writeback
9882 == !(inst.operands[1].imm & mask))))
9883 {
9884 if (inst.instruction == T_MNEM_stmia
9885 && (inst.operands[1].imm & mask)
9886 && (inst.operands[1].imm & (mask - 1)))
9887 as_warn (_("value stored for r%d is UNKNOWN"),
9888 inst.operands[0].reg);
9889
9890 inst.instruction = THUMB_OP16 (inst.instruction);
9891 inst.instruction |= inst.operands[0].reg << 8;
9892 inst.instruction |= inst.operands[1].imm;
9893 narrow = TRUE;
9894 }
9895 else if (inst.operands[0] .reg == REG_SP
9896 && inst.operands[0].writeback)
9897 {
9898 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9899 ? T_MNEM_push : T_MNEM_pop);
9900 inst.instruction |= inst.operands[1].imm;
9901 narrow = TRUE;
9902 }
9903 }
9904
9905 if (!narrow)
9906 {
9907 if (inst.instruction < 0xffff)
9908 inst.instruction = THUMB_OP32 (inst.instruction);
9909
9910 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9911 inst.operands[0].writeback);
9912 }
9913 }
9914 else
9915 {
9916 constraint (inst.operands[0].reg > 7
9917 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9918 constraint (inst.instruction != T_MNEM_ldmia
9919 && inst.instruction != T_MNEM_stmia,
9920 _("Thumb-2 instruction only valid in unified syntax"));
9921 if (inst.instruction == T_MNEM_stmia)
9922 {
9923 if (!inst.operands[0].writeback)
9924 as_warn (_("this instruction will write back the base register"));
9925 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9926 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9927 as_warn (_("value stored for r%d is UNKNOWN"),
9928 inst.operands[0].reg);
9929 }
9930 else
9931 {
9932 if (!inst.operands[0].writeback
9933 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9934 as_warn (_("this instruction will write back the base register"));
9935 else if (inst.operands[0].writeback
9936 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9937 as_warn (_("this instruction will not write back the base register"));
9938 }
9939
9940 inst.instruction = THUMB_OP16 (inst.instruction);
9941 inst.instruction |= inst.operands[0].reg << 8;
9942 inst.instruction |= inst.operands[1].imm;
9943 }
9944 }
9945
9946 static void
9947 do_t_ldrex (void)
9948 {
9949 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9950 || inst.operands[1].postind || inst.operands[1].writeback
9951 || inst.operands[1].immisreg || inst.operands[1].shifted
9952 || inst.operands[1].negative,
9953 BAD_ADDR_MODE);
9954
9955 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9956
9957 inst.instruction |= inst.operands[0].reg << 12;
9958 inst.instruction |= inst.operands[1].reg << 16;
9959 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9960 }
9961
9962 static void
9963 do_t_ldrexd (void)
9964 {
9965 if (!inst.operands[1].present)
9966 {
9967 constraint (inst.operands[0].reg == REG_LR,
9968 _("r14 not allowed as first register "
9969 "when second register is omitted"));
9970 inst.operands[1].reg = inst.operands[0].reg + 1;
9971 }
9972 constraint (inst.operands[0].reg == inst.operands[1].reg,
9973 BAD_OVERLAP);
9974
9975 inst.instruction |= inst.operands[0].reg << 12;
9976 inst.instruction |= inst.operands[1].reg << 8;
9977 inst.instruction |= inst.operands[2].reg << 16;
9978 }
9979
9980 static void
9981 do_t_ldst (void)
9982 {
9983 unsigned long opcode;
9984 int Rn;
9985
9986 if (inst.operands[0].isreg
9987 && !inst.operands[0].preind
9988 && inst.operands[0].reg == REG_PC)
9989 set_it_insn_type_last ();
9990
9991 opcode = inst.instruction;
9992 if (unified_syntax)
9993 {
9994 if (!inst.operands[1].isreg)
9995 {
9996 if (opcode <= 0xffff)
9997 inst.instruction = THUMB_OP32 (opcode);
9998 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9999 return;
10000 }
10001 if (inst.operands[1].isreg
10002 && !inst.operands[1].writeback
10003 && !inst.operands[1].shifted && !inst.operands[1].postind
10004 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10005 && opcode <= 0xffff
10006 && inst.size_req != 4)
10007 {
10008 /* Insn may have a 16-bit form. */
10009 Rn = inst.operands[1].reg;
10010 if (inst.operands[1].immisreg)
10011 {
10012 inst.instruction = THUMB_OP16 (opcode);
10013 /* [Rn, Rik] */
10014 if (Rn <= 7 && inst.operands[1].imm <= 7)
10015 goto op16;
10016 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10017 reject_bad_reg (inst.operands[1].imm);
10018 }
10019 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10020 && opcode != T_MNEM_ldrsb)
10021 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10022 || (Rn == REG_SP && opcode == T_MNEM_str))
10023 {
10024 /* [Rn, #const] */
10025 if (Rn > 7)
10026 {
10027 if (Rn == REG_PC)
10028 {
10029 if (inst.reloc.pc_rel)
10030 opcode = T_MNEM_ldr_pc2;
10031 else
10032 opcode = T_MNEM_ldr_pc;
10033 }
10034 else
10035 {
10036 if (opcode == T_MNEM_ldr)
10037 opcode = T_MNEM_ldr_sp;
10038 else
10039 opcode = T_MNEM_str_sp;
10040 }
10041 inst.instruction = inst.operands[0].reg << 8;
10042 }
10043 else
10044 {
10045 inst.instruction = inst.operands[0].reg;
10046 inst.instruction |= inst.operands[1].reg << 3;
10047 }
10048 inst.instruction |= THUMB_OP16 (opcode);
10049 if (inst.size_req == 2)
10050 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10051 else
10052 inst.relax = opcode;
10053 return;
10054 }
10055 }
10056 /* Definitely a 32-bit variant. */
10057
10058 /* Do some validations regarding addressing modes. */
10059 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10060 && opcode != T_MNEM_str)
10061 reject_bad_reg (inst.operands[1].imm);
10062
10063 inst.instruction = THUMB_OP32 (opcode);
10064 inst.instruction |= inst.operands[0].reg << 12;
10065 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10066 return;
10067 }
10068
10069 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10070
10071 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10072 {
10073 /* Only [Rn,Rm] is acceptable. */
10074 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10075 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10076 || inst.operands[1].postind || inst.operands[1].shifted
10077 || inst.operands[1].negative,
10078 _("Thumb does not support this addressing mode"));
10079 inst.instruction = THUMB_OP16 (inst.instruction);
10080 goto op16;
10081 }
10082
10083 inst.instruction = THUMB_OP16 (inst.instruction);
10084 if (!inst.operands[1].isreg)
10085 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10086 return;
10087
10088 constraint (!inst.operands[1].preind
10089 || inst.operands[1].shifted
10090 || inst.operands[1].writeback,
10091 _("Thumb does not support this addressing mode"));
10092 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10093 {
10094 constraint (inst.instruction & 0x0600,
10095 _("byte or halfword not valid for base register"));
10096 constraint (inst.operands[1].reg == REG_PC
10097 && !(inst.instruction & THUMB_LOAD_BIT),
10098 _("r15 based store not allowed"));
10099 constraint (inst.operands[1].immisreg,
10100 _("invalid base register for register offset"));
10101
10102 if (inst.operands[1].reg == REG_PC)
10103 inst.instruction = T_OPCODE_LDR_PC;
10104 else if (inst.instruction & THUMB_LOAD_BIT)
10105 inst.instruction = T_OPCODE_LDR_SP;
10106 else
10107 inst.instruction = T_OPCODE_STR_SP;
10108
10109 inst.instruction |= inst.operands[0].reg << 8;
10110 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10111 return;
10112 }
10113
10114 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10115 if (!inst.operands[1].immisreg)
10116 {
10117 /* Immediate offset. */
10118 inst.instruction |= inst.operands[0].reg;
10119 inst.instruction |= inst.operands[1].reg << 3;
10120 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10121 return;
10122 }
10123
10124 /* Register offset. */
10125 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10126 constraint (inst.operands[1].negative,
10127 _("Thumb does not support this addressing mode"));
10128
10129 op16:
10130 switch (inst.instruction)
10131 {
10132 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10133 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10134 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10135 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10136 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10137 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10138 case 0x5600 /* ldrsb */:
10139 case 0x5e00 /* ldrsh */: break;
10140 default: abort ();
10141 }
10142
10143 inst.instruction |= inst.operands[0].reg;
10144 inst.instruction |= inst.operands[1].reg << 3;
10145 inst.instruction |= inst.operands[1].imm << 6;
10146 }
10147
10148 static void
10149 do_t_ldstd (void)
10150 {
10151 if (!inst.operands[1].present)
10152 {
10153 inst.operands[1].reg = inst.operands[0].reg + 1;
10154 constraint (inst.operands[0].reg == REG_LR,
10155 _("r14 not allowed here"));
10156 }
10157 inst.instruction |= inst.operands[0].reg << 12;
10158 inst.instruction |= inst.operands[1].reg << 8;
10159 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10160 }
10161
10162 static void
10163 do_t_ldstt (void)
10164 {
10165 inst.instruction |= inst.operands[0].reg << 12;
10166 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10167 }
10168
10169 static void
10170 do_t_mla (void)
10171 {
10172 unsigned Rd, Rn, Rm, Ra;
10173
10174 Rd = inst.operands[0].reg;
10175 Rn = inst.operands[1].reg;
10176 Rm = inst.operands[2].reg;
10177 Ra = inst.operands[3].reg;
10178
10179 reject_bad_reg (Rd);
10180 reject_bad_reg (Rn);
10181 reject_bad_reg (Rm);
10182 reject_bad_reg (Ra);
10183
10184 inst.instruction |= Rd << 8;
10185 inst.instruction |= Rn << 16;
10186 inst.instruction |= Rm;
10187 inst.instruction |= Ra << 12;
10188 }
10189
10190 static void
10191 do_t_mlal (void)
10192 {
10193 unsigned RdLo, RdHi, Rn, Rm;
10194
10195 RdLo = inst.operands[0].reg;
10196 RdHi = inst.operands[1].reg;
10197 Rn = inst.operands[2].reg;
10198 Rm = inst.operands[3].reg;
10199
10200 reject_bad_reg (RdLo);
10201 reject_bad_reg (RdHi);
10202 reject_bad_reg (Rn);
10203 reject_bad_reg (Rm);
10204
10205 inst.instruction |= RdLo << 12;
10206 inst.instruction |= RdHi << 8;
10207 inst.instruction |= Rn << 16;
10208 inst.instruction |= Rm;
10209 }
10210
10211 static void
10212 do_t_mov_cmp (void)
10213 {
10214 unsigned Rn, Rm;
10215
10216 Rn = inst.operands[0].reg;
10217 Rm = inst.operands[1].reg;
10218
10219 if (Rn == REG_PC)
10220 set_it_insn_type_last ();
10221
10222 if (unified_syntax)
10223 {
10224 int r0off = (inst.instruction == T_MNEM_mov
10225 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10226 unsigned long opcode;
10227 bfd_boolean narrow;
10228 bfd_boolean low_regs;
10229
10230 low_regs = (Rn <= 7 && Rm <= 7);
10231 opcode = inst.instruction;
10232 if (in_it_block ())
10233 narrow = opcode != T_MNEM_movs;
10234 else
10235 narrow = opcode != T_MNEM_movs || low_regs;
10236 if (inst.size_req == 4
10237 || inst.operands[1].shifted)
10238 narrow = FALSE;
10239
10240 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10241 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10242 && !inst.operands[1].shifted
10243 && Rn == REG_PC
10244 && Rm == REG_LR)
10245 {
10246 inst.instruction = T2_SUBS_PC_LR;
10247 return;
10248 }
10249
10250 if (opcode == T_MNEM_cmp)
10251 {
10252 constraint (Rn == REG_PC, BAD_PC);
10253 if (narrow)
10254 {
10255 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10256 but valid. */
10257 warn_deprecated_sp (Rm);
10258 /* R15 was documented as a valid choice for Rm in ARMv6,
10259 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10260 tools reject R15, so we do too. */
10261 constraint (Rm == REG_PC, BAD_PC);
10262 }
10263 else
10264 reject_bad_reg (Rm);
10265 }
10266 else if (opcode == T_MNEM_mov
10267 || opcode == T_MNEM_movs)
10268 {
10269 if (inst.operands[1].isreg)
10270 {
10271 if (opcode == T_MNEM_movs)
10272 {
10273 reject_bad_reg (Rn);
10274 reject_bad_reg (Rm);
10275 }
10276 else if (narrow)
10277 {
10278 /* This is mov.n. */
10279 if ((Rn == REG_SP || Rn == REG_PC)
10280 && (Rm == REG_SP || Rm == REG_PC))
10281 {
10282 as_warn (_("Use of r%u as a source register is "
10283 "deprecated when r%u is the destination "
10284 "register."), Rm, Rn);
10285 }
10286 }
10287 else
10288 {
10289 /* This is mov.w. */
10290 constraint (Rn == REG_PC, BAD_PC);
10291 constraint (Rm == REG_PC, BAD_PC);
10292 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10293 }
10294 }
10295 else
10296 reject_bad_reg (Rn);
10297 }
10298
10299 if (!inst.operands[1].isreg)
10300 {
10301 /* Immediate operand. */
10302 if (!in_it_block () && opcode == T_MNEM_mov)
10303 narrow = 0;
10304 if (low_regs && narrow)
10305 {
10306 inst.instruction = THUMB_OP16 (opcode);
10307 inst.instruction |= Rn << 8;
10308 if (inst.size_req == 2)
10309 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10310 else
10311 inst.relax = opcode;
10312 }
10313 else
10314 {
10315 inst.instruction = THUMB_OP32 (inst.instruction);
10316 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10317 inst.instruction |= Rn << r0off;
10318 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10319 }
10320 }
10321 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10322 && (inst.instruction == T_MNEM_mov
10323 || inst.instruction == T_MNEM_movs))
10324 {
10325 /* Register shifts are encoded as separate shift instructions. */
10326 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10327
10328 if (in_it_block ())
10329 narrow = !flags;
10330 else
10331 narrow = flags;
10332
10333 if (inst.size_req == 4)
10334 narrow = FALSE;
10335
10336 if (!low_regs || inst.operands[1].imm > 7)
10337 narrow = FALSE;
10338
10339 if (Rn != Rm)
10340 narrow = FALSE;
10341
10342 switch (inst.operands[1].shift_kind)
10343 {
10344 case SHIFT_LSL:
10345 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10346 break;
10347 case SHIFT_ASR:
10348 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10349 break;
10350 case SHIFT_LSR:
10351 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10352 break;
10353 case SHIFT_ROR:
10354 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10355 break;
10356 default:
10357 abort ();
10358 }
10359
10360 inst.instruction = opcode;
10361 if (narrow)
10362 {
10363 inst.instruction |= Rn;
10364 inst.instruction |= inst.operands[1].imm << 3;
10365 }
10366 else
10367 {
10368 if (flags)
10369 inst.instruction |= CONDS_BIT;
10370
10371 inst.instruction |= Rn << 8;
10372 inst.instruction |= Rm << 16;
10373 inst.instruction |= inst.operands[1].imm;
10374 }
10375 }
10376 else if (!narrow)
10377 {
10378 /* Some mov with immediate shift have narrow variants.
10379 Register shifts are handled above. */
10380 if (low_regs && inst.operands[1].shifted
10381 && (inst.instruction == T_MNEM_mov
10382 || inst.instruction == T_MNEM_movs))
10383 {
10384 if (in_it_block ())
10385 narrow = (inst.instruction == T_MNEM_mov);
10386 else
10387 narrow = (inst.instruction == T_MNEM_movs);
10388 }
10389
10390 if (narrow)
10391 {
10392 switch (inst.operands[1].shift_kind)
10393 {
10394 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10395 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10396 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10397 default: narrow = FALSE; break;
10398 }
10399 }
10400
10401 if (narrow)
10402 {
10403 inst.instruction |= Rn;
10404 inst.instruction |= Rm << 3;
10405 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10406 }
10407 else
10408 {
10409 inst.instruction = THUMB_OP32 (inst.instruction);
10410 inst.instruction |= Rn << r0off;
10411 encode_thumb32_shifted_operand (1);
10412 }
10413 }
10414 else
10415 switch (inst.instruction)
10416 {
10417 case T_MNEM_mov:
10418 inst.instruction = T_OPCODE_MOV_HR;
10419 inst.instruction |= (Rn & 0x8) << 4;
10420 inst.instruction |= (Rn & 0x7);
10421 inst.instruction |= Rm << 3;
10422 break;
10423
10424 case T_MNEM_movs:
10425 /* We know we have low registers at this point.
10426 Generate LSLS Rd, Rs, #0. */
10427 inst.instruction = T_OPCODE_LSL_I;
10428 inst.instruction |= Rn;
10429 inst.instruction |= Rm << 3;
10430 break;
10431
10432 case T_MNEM_cmp:
10433 if (low_regs)
10434 {
10435 inst.instruction = T_OPCODE_CMP_LR;
10436 inst.instruction |= Rn;
10437 inst.instruction |= Rm << 3;
10438 }
10439 else
10440 {
10441 inst.instruction = T_OPCODE_CMP_HR;
10442 inst.instruction |= (Rn & 0x8) << 4;
10443 inst.instruction |= (Rn & 0x7);
10444 inst.instruction |= Rm << 3;
10445 }
10446 break;
10447 }
10448 return;
10449 }
10450
10451 inst.instruction = THUMB_OP16 (inst.instruction);
10452
10453 /* PR 10443: Do not silently ignore shifted operands. */
10454 constraint (inst.operands[1].shifted,
10455 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10456
10457 if (inst.operands[1].isreg)
10458 {
10459 if (Rn < 8 && Rm < 8)
10460 {
10461 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10462 since a MOV instruction produces unpredictable results. */
10463 if (inst.instruction == T_OPCODE_MOV_I8)
10464 inst.instruction = T_OPCODE_ADD_I3;
10465 else
10466 inst.instruction = T_OPCODE_CMP_LR;
10467
10468 inst.instruction |= Rn;
10469 inst.instruction |= Rm << 3;
10470 }
10471 else
10472 {
10473 if (inst.instruction == T_OPCODE_MOV_I8)
10474 inst.instruction = T_OPCODE_MOV_HR;
10475 else
10476 inst.instruction = T_OPCODE_CMP_HR;
10477 do_t_cpy ();
10478 }
10479 }
10480 else
10481 {
10482 constraint (Rn > 7,
10483 _("only lo regs allowed with immediate"));
10484 inst.instruction |= Rn << 8;
10485 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10486 }
10487 }
10488
10489 static void
10490 do_t_mov16 (void)
10491 {
10492 unsigned Rd;
10493 bfd_vma imm;
10494 bfd_boolean top;
10495
10496 top = (inst.instruction & 0x00800000) != 0;
10497 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10498 {
10499 constraint (top, _(":lower16: not allowed this instruction"));
10500 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10501 }
10502 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10503 {
10504 constraint (!top, _(":upper16: not allowed this instruction"));
10505 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10506 }
10507
10508 Rd = inst.operands[0].reg;
10509 reject_bad_reg (Rd);
10510
10511 inst.instruction |= Rd << 8;
10512 if (inst.reloc.type == BFD_RELOC_UNUSED)
10513 {
10514 imm = inst.reloc.exp.X_add_number;
10515 inst.instruction |= (imm & 0xf000) << 4;
10516 inst.instruction |= (imm & 0x0800) << 15;
10517 inst.instruction |= (imm & 0x0700) << 4;
10518 inst.instruction |= (imm & 0x00ff);
10519 }
10520 }
10521
10522 static void
10523 do_t_mvn_tst (void)
10524 {
10525 unsigned Rn, Rm;
10526
10527 Rn = inst.operands[0].reg;
10528 Rm = inst.operands[1].reg;
10529
10530 if (inst.instruction == T_MNEM_cmp
10531 || inst.instruction == T_MNEM_cmn)
10532 constraint (Rn == REG_PC, BAD_PC);
10533 else
10534 reject_bad_reg (Rn);
10535 reject_bad_reg (Rm);
10536
10537 if (unified_syntax)
10538 {
10539 int r0off = (inst.instruction == T_MNEM_mvn
10540 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10541 bfd_boolean narrow;
10542
10543 if (inst.size_req == 4
10544 || inst.instruction > 0xffff
10545 || inst.operands[1].shifted
10546 || Rn > 7 || Rm > 7)
10547 narrow = FALSE;
10548 else if (inst.instruction == T_MNEM_cmn)
10549 narrow = TRUE;
10550 else if (THUMB_SETS_FLAGS (inst.instruction))
10551 narrow = !in_it_block ();
10552 else
10553 narrow = in_it_block ();
10554
10555 if (!inst.operands[1].isreg)
10556 {
10557 /* For an immediate, we always generate a 32-bit opcode;
10558 section relaxation will shrink it later if possible. */
10559 if (inst.instruction < 0xffff)
10560 inst.instruction = THUMB_OP32 (inst.instruction);
10561 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10562 inst.instruction |= Rn << r0off;
10563 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10564 }
10565 else
10566 {
10567 /* See if we can do this with a 16-bit instruction. */
10568 if (narrow)
10569 {
10570 inst.instruction = THUMB_OP16 (inst.instruction);
10571 inst.instruction |= Rn;
10572 inst.instruction |= Rm << 3;
10573 }
10574 else
10575 {
10576 constraint (inst.operands[1].shifted
10577 && inst.operands[1].immisreg,
10578 _("shift must be constant"));
10579 if (inst.instruction < 0xffff)
10580 inst.instruction = THUMB_OP32 (inst.instruction);
10581 inst.instruction |= Rn << r0off;
10582 encode_thumb32_shifted_operand (1);
10583 }
10584 }
10585 }
10586 else
10587 {
10588 constraint (inst.instruction > 0xffff
10589 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10590 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10591 _("unshifted register required"));
10592 constraint (Rn > 7 || Rm > 7,
10593 BAD_HIREG);
10594
10595 inst.instruction = THUMB_OP16 (inst.instruction);
10596 inst.instruction |= Rn;
10597 inst.instruction |= Rm << 3;
10598 }
10599 }
10600
10601 static void
10602 do_t_mrs (void)
10603 {
10604 unsigned Rd;
10605 int flags;
10606
10607 if (do_vfp_nsyn_mrs () == SUCCESS)
10608 return;
10609
10610 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10611 if (flags == 0)
10612 {
10613 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10614 _("selected processor does not support "
10615 "requested special purpose register"));
10616 }
10617 else
10618 {
10619 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10620 _("selected processor does not support "
10621 "requested special purpose register"));
10622 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10623 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10624 _("'CPSR' or 'SPSR' expected"));
10625 }
10626
10627 Rd = inst.operands[0].reg;
10628 reject_bad_reg (Rd);
10629
10630 inst.instruction |= Rd << 8;
10631 inst.instruction |= (flags & SPSR_BIT) >> 2;
10632 inst.instruction |= inst.operands[1].imm & 0xff;
10633 }
10634
10635 static void
10636 do_t_msr (void)
10637 {
10638 int flags;
10639 unsigned Rn;
10640
10641 if (do_vfp_nsyn_msr () == SUCCESS)
10642 return;
10643
10644 constraint (!inst.operands[1].isreg,
10645 _("Thumb encoding does not support an immediate here"));
10646 flags = inst.operands[0].imm;
10647 if (flags & ~0xff)
10648 {
10649 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10650 _("selected processor does not support "
10651 "requested special purpose register"));
10652 }
10653 else
10654 {
10655 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10656 _("selected processor does not support "
10657 "requested special purpose register"));
10658 flags |= PSR_f;
10659 }
10660
10661 Rn = inst.operands[1].reg;
10662 reject_bad_reg (Rn);
10663
10664 inst.instruction |= (flags & SPSR_BIT) >> 2;
10665 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10666 inst.instruction |= (flags & 0xff);
10667 inst.instruction |= Rn << 16;
10668 }
10669
10670 static void
10671 do_t_mul (void)
10672 {
10673 bfd_boolean narrow;
10674 unsigned Rd, Rn, Rm;
10675
10676 if (!inst.operands[2].present)
10677 inst.operands[2].reg = inst.operands[0].reg;
10678
10679 Rd = inst.operands[0].reg;
10680 Rn = inst.operands[1].reg;
10681 Rm = inst.operands[2].reg;
10682
10683 if (unified_syntax)
10684 {
10685 if (inst.size_req == 4
10686 || (Rd != Rn
10687 && Rd != Rm)
10688 || Rn > 7
10689 || Rm > 7)
10690 narrow = FALSE;
10691 else if (inst.instruction == T_MNEM_muls)
10692 narrow = !in_it_block ();
10693 else
10694 narrow = in_it_block ();
10695 }
10696 else
10697 {
10698 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10699 constraint (Rn > 7 || Rm > 7,
10700 BAD_HIREG);
10701 narrow = TRUE;
10702 }
10703
10704 if (narrow)
10705 {
10706 /* 16-bit MULS/Conditional MUL. */
10707 inst.instruction = THUMB_OP16 (inst.instruction);
10708 inst.instruction |= Rd;
10709
10710 if (Rd == Rn)
10711 inst.instruction |= Rm << 3;
10712 else if (Rd == Rm)
10713 inst.instruction |= Rn << 3;
10714 else
10715 constraint (1, _("dest must overlap one source register"));
10716 }
10717 else
10718 {
10719 constraint (inst.instruction != T_MNEM_mul,
10720 _("Thumb-2 MUL must not set flags"));
10721 /* 32-bit MUL. */
10722 inst.instruction = THUMB_OP32 (inst.instruction);
10723 inst.instruction |= Rd << 8;
10724 inst.instruction |= Rn << 16;
10725 inst.instruction |= Rm << 0;
10726
10727 reject_bad_reg (Rd);
10728 reject_bad_reg (Rn);
10729 reject_bad_reg (Rm);
10730 }
10731 }
10732
10733 static void
10734 do_t_mull (void)
10735 {
10736 unsigned RdLo, RdHi, Rn, Rm;
10737
10738 RdLo = inst.operands[0].reg;
10739 RdHi = inst.operands[1].reg;
10740 Rn = inst.operands[2].reg;
10741 Rm = inst.operands[3].reg;
10742
10743 reject_bad_reg (RdLo);
10744 reject_bad_reg (RdHi);
10745 reject_bad_reg (Rn);
10746 reject_bad_reg (Rm);
10747
10748 inst.instruction |= RdLo << 12;
10749 inst.instruction |= RdHi << 8;
10750 inst.instruction |= Rn << 16;
10751 inst.instruction |= Rm;
10752
10753 if (RdLo == RdHi)
10754 as_tsktsk (_("rdhi and rdlo must be different"));
10755 }
10756
10757 static void
10758 do_t_nop (void)
10759 {
10760 set_it_insn_type (NEUTRAL_IT_INSN);
10761
10762 if (unified_syntax)
10763 {
10764 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10765 {
10766 inst.instruction = THUMB_OP32 (inst.instruction);
10767 inst.instruction |= inst.operands[0].imm;
10768 }
10769 else
10770 {
10771 /* PR9722: Check for Thumb2 availability before
10772 generating a thumb2 nop instruction. */
10773 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
10774 {
10775 inst.instruction = THUMB_OP16 (inst.instruction);
10776 inst.instruction |= inst.operands[0].imm << 4;
10777 }
10778 else
10779 inst.instruction = 0x46c0;
10780 }
10781 }
10782 else
10783 {
10784 constraint (inst.operands[0].present,
10785 _("Thumb does not support NOP with hints"));
10786 inst.instruction = 0x46c0;
10787 }
10788 }
10789
10790 static void
10791 do_t_neg (void)
10792 {
10793 if (unified_syntax)
10794 {
10795 bfd_boolean narrow;
10796
10797 if (THUMB_SETS_FLAGS (inst.instruction))
10798 narrow = !in_it_block ();
10799 else
10800 narrow = in_it_block ();
10801 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10802 narrow = FALSE;
10803 if (inst.size_req == 4)
10804 narrow = FALSE;
10805
10806 if (!narrow)
10807 {
10808 inst.instruction = THUMB_OP32 (inst.instruction);
10809 inst.instruction |= inst.operands[0].reg << 8;
10810 inst.instruction |= inst.operands[1].reg << 16;
10811 }
10812 else
10813 {
10814 inst.instruction = THUMB_OP16 (inst.instruction);
10815 inst.instruction |= inst.operands[0].reg;
10816 inst.instruction |= inst.operands[1].reg << 3;
10817 }
10818 }
10819 else
10820 {
10821 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10822 BAD_HIREG);
10823 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10824
10825 inst.instruction = THUMB_OP16 (inst.instruction);
10826 inst.instruction |= inst.operands[0].reg;
10827 inst.instruction |= inst.operands[1].reg << 3;
10828 }
10829 }
10830
10831 static void
10832 do_t_orn (void)
10833 {
10834 unsigned Rd, Rn;
10835
10836 Rd = inst.operands[0].reg;
10837 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10838
10839 reject_bad_reg (Rd);
10840 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10841 reject_bad_reg (Rn);
10842
10843 inst.instruction |= Rd << 8;
10844 inst.instruction |= Rn << 16;
10845
10846 if (!inst.operands[2].isreg)
10847 {
10848 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10849 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10850 }
10851 else
10852 {
10853 unsigned Rm;
10854
10855 Rm = inst.operands[2].reg;
10856 reject_bad_reg (Rm);
10857
10858 constraint (inst.operands[2].shifted
10859 && inst.operands[2].immisreg,
10860 _("shift must be constant"));
10861 encode_thumb32_shifted_operand (2);
10862 }
10863 }
10864
10865 static void
10866 do_t_pkhbt (void)
10867 {
10868 unsigned Rd, Rn, Rm;
10869
10870 Rd = inst.operands[0].reg;
10871 Rn = inst.operands[1].reg;
10872 Rm = inst.operands[2].reg;
10873
10874 reject_bad_reg (Rd);
10875 reject_bad_reg (Rn);
10876 reject_bad_reg (Rm);
10877
10878 inst.instruction |= Rd << 8;
10879 inst.instruction |= Rn << 16;
10880 inst.instruction |= Rm;
10881 if (inst.operands[3].present)
10882 {
10883 unsigned int val = inst.reloc.exp.X_add_number;
10884 constraint (inst.reloc.exp.X_op != O_constant,
10885 _("expression too complex"));
10886 inst.instruction |= (val & 0x1c) << 10;
10887 inst.instruction |= (val & 0x03) << 6;
10888 }
10889 }
10890
10891 static void
10892 do_t_pkhtb (void)
10893 {
10894 if (!inst.operands[3].present)
10895 {
10896 unsigned Rtmp;
10897
10898 inst.instruction &= ~0x00000020;
10899
10900 /* PR 10168. Swap the Rm and Rn registers. */
10901 Rtmp = inst.operands[1].reg;
10902 inst.operands[1].reg = inst.operands[2].reg;
10903 inst.operands[2].reg = Rtmp;
10904 }
10905 do_t_pkhbt ();
10906 }
10907
10908 static void
10909 do_t_pld (void)
10910 {
10911 if (inst.operands[0].immisreg)
10912 reject_bad_reg (inst.operands[0].imm);
10913
10914 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10915 }
10916
10917 static void
10918 do_t_push_pop (void)
10919 {
10920 unsigned mask;
10921
10922 constraint (inst.operands[0].writeback,
10923 _("push/pop do not support {reglist}^"));
10924 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10925 _("expression too complex"));
10926
10927 mask = inst.operands[0].imm;
10928 if ((mask & ~0xff) == 0)
10929 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10930 else if ((inst.instruction == T_MNEM_push
10931 && (mask & ~0xff) == 1 << REG_LR)
10932 || (inst.instruction == T_MNEM_pop
10933 && (mask & ~0xff) == 1 << REG_PC))
10934 {
10935 inst.instruction = THUMB_OP16 (inst.instruction);
10936 inst.instruction |= THUMB_PP_PC_LR;
10937 inst.instruction |= mask & 0xff;
10938 }
10939 else if (unified_syntax)
10940 {
10941 inst.instruction = THUMB_OP32 (inst.instruction);
10942 encode_thumb2_ldmstm (13, mask, TRUE);
10943 }
10944 else
10945 {
10946 inst.error = _("invalid register list to push/pop instruction");
10947 return;
10948 }
10949 }
10950
10951 static void
10952 do_t_rbit (void)
10953 {
10954 unsigned Rd, Rm;
10955
10956 Rd = inst.operands[0].reg;
10957 Rm = inst.operands[1].reg;
10958
10959 reject_bad_reg (Rd);
10960 reject_bad_reg (Rm);
10961
10962 inst.instruction |= Rd << 8;
10963 inst.instruction |= Rm << 16;
10964 inst.instruction |= Rm;
10965 }
10966
10967 static void
10968 do_t_rev (void)
10969 {
10970 unsigned Rd, Rm;
10971
10972 Rd = inst.operands[0].reg;
10973 Rm = inst.operands[1].reg;
10974
10975 reject_bad_reg (Rd);
10976 reject_bad_reg (Rm);
10977
10978 if (Rd <= 7 && Rm <= 7
10979 && inst.size_req != 4)
10980 {
10981 inst.instruction = THUMB_OP16 (inst.instruction);
10982 inst.instruction |= Rd;
10983 inst.instruction |= Rm << 3;
10984 }
10985 else if (unified_syntax)
10986 {
10987 inst.instruction = THUMB_OP32 (inst.instruction);
10988 inst.instruction |= Rd << 8;
10989 inst.instruction |= Rm << 16;
10990 inst.instruction |= Rm;
10991 }
10992 else
10993 inst.error = BAD_HIREG;
10994 }
10995
10996 static void
10997 do_t_rrx (void)
10998 {
10999 unsigned Rd, Rm;
11000
11001 Rd = inst.operands[0].reg;
11002 Rm = inst.operands[1].reg;
11003
11004 reject_bad_reg (Rd);
11005 reject_bad_reg (Rm);
11006
11007 inst.instruction |= Rd << 8;
11008 inst.instruction |= Rm;
11009 }
11010
11011 static void
11012 do_t_rsb (void)
11013 {
11014 unsigned Rd, Rs;
11015
11016 Rd = inst.operands[0].reg;
11017 Rs = (inst.operands[1].present
11018 ? inst.operands[1].reg /* Rd, Rs, foo */
11019 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11020
11021 reject_bad_reg (Rd);
11022 reject_bad_reg (Rs);
11023 if (inst.operands[2].isreg)
11024 reject_bad_reg (inst.operands[2].reg);
11025
11026 inst.instruction |= Rd << 8;
11027 inst.instruction |= Rs << 16;
11028 if (!inst.operands[2].isreg)
11029 {
11030 bfd_boolean narrow;
11031
11032 if ((inst.instruction & 0x00100000) != 0)
11033 narrow = !in_it_block ();
11034 else
11035 narrow = in_it_block ();
11036
11037 if (Rd > 7 || Rs > 7)
11038 narrow = FALSE;
11039
11040 if (inst.size_req == 4 || !unified_syntax)
11041 narrow = FALSE;
11042
11043 if (inst.reloc.exp.X_op != O_constant
11044 || inst.reloc.exp.X_add_number != 0)
11045 narrow = FALSE;
11046
11047 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11048 relaxation, but it doesn't seem worth the hassle. */
11049 if (narrow)
11050 {
11051 inst.reloc.type = BFD_RELOC_UNUSED;
11052 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11053 inst.instruction |= Rs << 3;
11054 inst.instruction |= Rd;
11055 }
11056 else
11057 {
11058 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11059 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11060 }
11061 }
11062 else
11063 encode_thumb32_shifted_operand (2);
11064 }
11065
11066 static void
11067 do_t_setend (void)
11068 {
11069 set_it_insn_type (OUTSIDE_IT_INSN);
11070 if (inst.operands[0].imm)
11071 inst.instruction |= 0x8;
11072 }
11073
11074 static void
11075 do_t_shift (void)
11076 {
11077 if (!inst.operands[1].present)
11078 inst.operands[1].reg = inst.operands[0].reg;
11079
11080 if (unified_syntax)
11081 {
11082 bfd_boolean narrow;
11083 int shift_kind;
11084
11085 switch (inst.instruction)
11086 {
11087 case T_MNEM_asr:
11088 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11089 case T_MNEM_lsl:
11090 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11091 case T_MNEM_lsr:
11092 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11093 case T_MNEM_ror:
11094 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11095 default: abort ();
11096 }
11097
11098 if (THUMB_SETS_FLAGS (inst.instruction))
11099 narrow = !in_it_block ();
11100 else
11101 narrow = in_it_block ();
11102 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11103 narrow = FALSE;
11104 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11105 narrow = FALSE;
11106 if (inst.operands[2].isreg
11107 && (inst.operands[1].reg != inst.operands[0].reg
11108 || inst.operands[2].reg > 7))
11109 narrow = FALSE;
11110 if (inst.size_req == 4)
11111 narrow = FALSE;
11112
11113 reject_bad_reg (inst.operands[0].reg);
11114 reject_bad_reg (inst.operands[1].reg);
11115
11116 if (!narrow)
11117 {
11118 if (inst.operands[2].isreg)
11119 {
11120 reject_bad_reg (inst.operands[2].reg);
11121 inst.instruction = THUMB_OP32 (inst.instruction);
11122 inst.instruction |= inst.operands[0].reg << 8;
11123 inst.instruction |= inst.operands[1].reg << 16;
11124 inst.instruction |= inst.operands[2].reg;
11125 }
11126 else
11127 {
11128 inst.operands[1].shifted = 1;
11129 inst.operands[1].shift_kind = shift_kind;
11130 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11131 ? T_MNEM_movs : T_MNEM_mov);
11132 inst.instruction |= inst.operands[0].reg << 8;
11133 encode_thumb32_shifted_operand (1);
11134 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11135 inst.reloc.type = BFD_RELOC_UNUSED;
11136 }
11137 }
11138 else
11139 {
11140 if (inst.operands[2].isreg)
11141 {
11142 switch (shift_kind)
11143 {
11144 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11145 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11146 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11147 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11148 default: abort ();
11149 }
11150
11151 inst.instruction |= inst.operands[0].reg;
11152 inst.instruction |= inst.operands[2].reg << 3;
11153 }
11154 else
11155 {
11156 switch (shift_kind)
11157 {
11158 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11159 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11160 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11161 default: abort ();
11162 }
11163 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11164 inst.instruction |= inst.operands[0].reg;
11165 inst.instruction |= inst.operands[1].reg << 3;
11166 }
11167 }
11168 }
11169 else
11170 {
11171 constraint (inst.operands[0].reg > 7
11172 || inst.operands[1].reg > 7, BAD_HIREG);
11173 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11174
11175 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11176 {
11177 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11178 constraint (inst.operands[0].reg != inst.operands[1].reg,
11179 _("source1 and dest must be same register"));
11180
11181 switch (inst.instruction)
11182 {
11183 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11184 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11185 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11186 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11187 default: abort ();
11188 }
11189
11190 inst.instruction |= inst.operands[0].reg;
11191 inst.instruction |= inst.operands[2].reg << 3;
11192 }
11193 else
11194 {
11195 switch (inst.instruction)
11196 {
11197 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11198 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11199 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11200 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11201 default: abort ();
11202 }
11203 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11204 inst.instruction |= inst.operands[0].reg;
11205 inst.instruction |= inst.operands[1].reg << 3;
11206 }
11207 }
11208 }
11209
11210 static void
11211 do_t_simd (void)
11212 {
11213 unsigned Rd, Rn, Rm;
11214
11215 Rd = inst.operands[0].reg;
11216 Rn = inst.operands[1].reg;
11217 Rm = inst.operands[2].reg;
11218
11219 reject_bad_reg (Rd);
11220 reject_bad_reg (Rn);
11221 reject_bad_reg (Rm);
11222
11223 inst.instruction |= Rd << 8;
11224 inst.instruction |= Rn << 16;
11225 inst.instruction |= Rm;
11226 }
11227
11228 static void
11229 do_t_simd2 (void)
11230 {
11231 unsigned Rd, Rn, Rm;
11232
11233 Rd = inst.operands[0].reg;
11234 Rm = inst.operands[1].reg;
11235 Rn = inst.operands[2].reg;
11236
11237 reject_bad_reg (Rd);
11238 reject_bad_reg (Rn);
11239 reject_bad_reg (Rm);
11240
11241 inst.instruction |= Rd << 8;
11242 inst.instruction |= Rn << 16;
11243 inst.instruction |= Rm;
11244 }
11245
11246 static void
11247 do_t_smc (void)
11248 {
11249 unsigned int value = inst.reloc.exp.X_add_number;
11250 constraint (inst.reloc.exp.X_op != O_constant,
11251 _("expression too complex"));
11252 inst.reloc.type = BFD_RELOC_UNUSED;
11253 inst.instruction |= (value & 0xf000) >> 12;
11254 inst.instruction |= (value & 0x0ff0);
11255 inst.instruction |= (value & 0x000f) << 16;
11256 }
11257
11258 static void
11259 do_t_ssat_usat (int bias)
11260 {
11261 unsigned Rd, Rn;
11262
11263 Rd = inst.operands[0].reg;
11264 Rn = inst.operands[2].reg;
11265
11266 reject_bad_reg (Rd);
11267 reject_bad_reg (Rn);
11268
11269 inst.instruction |= Rd << 8;
11270 inst.instruction |= inst.operands[1].imm - bias;
11271 inst.instruction |= Rn << 16;
11272
11273 if (inst.operands[3].present)
11274 {
11275 offsetT shift_amount = inst.reloc.exp.X_add_number;
11276
11277 inst.reloc.type = BFD_RELOC_UNUSED;
11278
11279 constraint (inst.reloc.exp.X_op != O_constant,
11280 _("expression too complex"));
11281
11282 if (shift_amount != 0)
11283 {
11284 constraint (shift_amount > 31,
11285 _("shift expression is too large"));
11286
11287 if (inst.operands[3].shift_kind == SHIFT_ASR)
11288 inst.instruction |= 0x00200000; /* sh bit. */
11289
11290 inst.instruction |= (shift_amount & 0x1c) << 10;
11291 inst.instruction |= (shift_amount & 0x03) << 6;
11292 }
11293 }
11294 }
11295
11296 static void
11297 do_t_ssat (void)
11298 {
11299 do_t_ssat_usat (1);
11300 }
11301
11302 static void
11303 do_t_ssat16 (void)
11304 {
11305 unsigned Rd, Rn;
11306
11307 Rd = inst.operands[0].reg;
11308 Rn = inst.operands[2].reg;
11309
11310 reject_bad_reg (Rd);
11311 reject_bad_reg (Rn);
11312
11313 inst.instruction |= Rd << 8;
11314 inst.instruction |= inst.operands[1].imm - 1;
11315 inst.instruction |= Rn << 16;
11316 }
11317
11318 static void
11319 do_t_strex (void)
11320 {
11321 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11322 || inst.operands[2].postind || inst.operands[2].writeback
11323 || inst.operands[2].immisreg || inst.operands[2].shifted
11324 || inst.operands[2].negative,
11325 BAD_ADDR_MODE);
11326
11327 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11328
11329 inst.instruction |= inst.operands[0].reg << 8;
11330 inst.instruction |= inst.operands[1].reg << 12;
11331 inst.instruction |= inst.operands[2].reg << 16;
11332 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11333 }
11334
11335 static void
11336 do_t_strexd (void)
11337 {
11338 if (!inst.operands[2].present)
11339 inst.operands[2].reg = inst.operands[1].reg + 1;
11340
11341 constraint (inst.operands[0].reg == inst.operands[1].reg
11342 || inst.operands[0].reg == inst.operands[2].reg
11343 || inst.operands[0].reg == inst.operands[3].reg,
11344 BAD_OVERLAP);
11345
11346 inst.instruction |= inst.operands[0].reg;
11347 inst.instruction |= inst.operands[1].reg << 12;
11348 inst.instruction |= inst.operands[2].reg << 8;
11349 inst.instruction |= inst.operands[3].reg << 16;
11350 }
11351
11352 static void
11353 do_t_sxtah (void)
11354 {
11355 unsigned Rd, Rn, Rm;
11356
11357 Rd = inst.operands[0].reg;
11358 Rn = inst.operands[1].reg;
11359 Rm = inst.operands[2].reg;
11360
11361 reject_bad_reg (Rd);
11362 reject_bad_reg (Rn);
11363 reject_bad_reg (Rm);
11364
11365 inst.instruction |= Rd << 8;
11366 inst.instruction |= Rn << 16;
11367 inst.instruction |= Rm;
11368 inst.instruction |= inst.operands[3].imm << 4;
11369 }
11370
11371 static void
11372 do_t_sxth (void)
11373 {
11374 unsigned Rd, Rm;
11375
11376 Rd = inst.operands[0].reg;
11377 Rm = inst.operands[1].reg;
11378
11379 reject_bad_reg (Rd);
11380 reject_bad_reg (Rm);
11381
11382 if (inst.instruction <= 0xffff
11383 && inst.size_req != 4
11384 && Rd <= 7 && Rm <= 7
11385 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11386 {
11387 inst.instruction = THUMB_OP16 (inst.instruction);
11388 inst.instruction |= Rd;
11389 inst.instruction |= Rm << 3;
11390 }
11391 else if (unified_syntax)
11392 {
11393 if (inst.instruction <= 0xffff)
11394 inst.instruction = THUMB_OP32 (inst.instruction);
11395 inst.instruction |= Rd << 8;
11396 inst.instruction |= Rm;
11397 inst.instruction |= inst.operands[2].imm << 4;
11398 }
11399 else
11400 {
11401 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11402 _("Thumb encoding does not support rotation"));
11403 constraint (1, BAD_HIREG);
11404 }
11405 }
11406
11407 static void
11408 do_t_swi (void)
11409 {
11410 inst.reloc.type = BFD_RELOC_ARM_SWI;
11411 }
11412
11413 static void
11414 do_t_tb (void)
11415 {
11416 unsigned Rn, Rm;
11417 int half;
11418
11419 half = (inst.instruction & 0x10) != 0;
11420 set_it_insn_type_last ();
11421 constraint (inst.operands[0].immisreg,
11422 _("instruction requires register index"));
11423
11424 Rn = inst.operands[0].reg;
11425 Rm = inst.operands[0].imm;
11426
11427 constraint (Rn == REG_SP, BAD_SP);
11428 reject_bad_reg (Rm);
11429
11430 constraint (!half && inst.operands[0].shifted,
11431 _("instruction does not allow shifted index"));
11432 inst.instruction |= (Rn << 16) | Rm;
11433 }
11434
11435 static void
11436 do_t_usat (void)
11437 {
11438 do_t_ssat_usat (0);
11439 }
11440
11441 static void
11442 do_t_usat16 (void)
11443 {
11444 unsigned Rd, Rn;
11445
11446 Rd = inst.operands[0].reg;
11447 Rn = inst.operands[2].reg;
11448
11449 reject_bad_reg (Rd);
11450 reject_bad_reg (Rn);
11451
11452 inst.instruction |= Rd << 8;
11453 inst.instruction |= inst.operands[1].imm;
11454 inst.instruction |= Rn << 16;
11455 }
11456
11457 /* Neon instruction encoder helpers. */
11458
11459 /* Encodings for the different types for various Neon opcodes. */
11460
11461 /* An "invalid" code for the following tables. */
11462 #define N_INV -1u
11463
11464 struct neon_tab_entry
11465 {
11466 unsigned integer;
11467 unsigned float_or_poly;
11468 unsigned scalar_or_imm;
11469 };
11470
11471 /* Map overloaded Neon opcodes to their respective encodings. */
11472 #define NEON_ENC_TAB \
11473 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11474 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11475 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11476 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11477 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11478 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11479 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11480 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11481 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11482 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11483 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11484 /* Register variants of the following two instructions are encoded as
11485 vcge / vcgt with the operands reversed. */ \
11486 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11487 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11488 X(vfma, N_INV, 0x0000c10, N_INV), \
11489 X(vfms, N_INV, 0x0200c10, N_INV), \
11490 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11491 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11492 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11493 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11494 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11495 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11496 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11497 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11498 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11499 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11500 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11501 X(vshl, 0x0000400, N_INV, 0x0800510), \
11502 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11503 X(vand, 0x0000110, N_INV, 0x0800030), \
11504 X(vbic, 0x0100110, N_INV, 0x0800030), \
11505 X(veor, 0x1000110, N_INV, N_INV), \
11506 X(vorn, 0x0300110, N_INV, 0x0800010), \
11507 X(vorr, 0x0200110, N_INV, 0x0800010), \
11508 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11509 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11510 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11511 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11512 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11513 X(vst1, 0x0000000, 0x0800000, N_INV), \
11514 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11515 X(vst2, 0x0000100, 0x0800100, N_INV), \
11516 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11517 X(vst3, 0x0000200, 0x0800200, N_INV), \
11518 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11519 X(vst4, 0x0000300, 0x0800300, N_INV), \
11520 X(vmovn, 0x1b20200, N_INV, N_INV), \
11521 X(vtrn, 0x1b20080, N_INV, N_INV), \
11522 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11523 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11524 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11525 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11526 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11527 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11528 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11529 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11530 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11531 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11532 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11533
11534 enum neon_opc
11535 {
11536 #define X(OPC,I,F,S) N_MNEM_##OPC
11537 NEON_ENC_TAB
11538 #undef X
11539 };
11540
11541 static const struct neon_tab_entry neon_enc_tab[] =
11542 {
11543 #define X(OPC,I,F,S) { (I), (F), (S) }
11544 NEON_ENC_TAB
11545 #undef X
11546 };
11547
11548 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11549 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11550 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11551 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11552 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11553 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11554 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11555 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11556 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11557 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11558 #define NEON_ENC_SINGLE_(X) \
11559 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11560 #define NEON_ENC_DOUBLE_(X) \
11561 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11562
11563 #define NEON_ENCODE(type, inst) \
11564 do \
11565 { \
11566 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11567 inst.is_neon = 1; \
11568 } \
11569 while (0)
11570
11571 #define check_neon_suffixes \
11572 do \
11573 { \
11574 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11575 { \
11576 as_bad (_("invalid neon suffix for non neon instruction")); \
11577 return; \
11578 } \
11579 } \
11580 while (0)
11581
11582 /* Define shapes for instruction operands. The following mnemonic characters
11583 are used in this table:
11584
11585 F - VFP S<n> register
11586 D - Neon D<n> register
11587 Q - Neon Q<n> register
11588 I - Immediate
11589 S - Scalar
11590 R - ARM register
11591 L - D<n> register list
11592
11593 This table is used to generate various data:
11594 - enumerations of the form NS_DDR to be used as arguments to
11595 neon_select_shape.
11596 - a table classifying shapes into single, double, quad, mixed.
11597 - a table used to drive neon_select_shape. */
11598
11599 #define NEON_SHAPE_DEF \
11600 X(3, (D, D, D), DOUBLE), \
11601 X(3, (Q, Q, Q), QUAD), \
11602 X(3, (D, D, I), DOUBLE), \
11603 X(3, (Q, Q, I), QUAD), \
11604 X(3, (D, D, S), DOUBLE), \
11605 X(3, (Q, Q, S), QUAD), \
11606 X(2, (D, D), DOUBLE), \
11607 X(2, (Q, Q), QUAD), \
11608 X(2, (D, S), DOUBLE), \
11609 X(2, (Q, S), QUAD), \
11610 X(2, (D, R), DOUBLE), \
11611 X(2, (Q, R), QUAD), \
11612 X(2, (D, I), DOUBLE), \
11613 X(2, (Q, I), QUAD), \
11614 X(3, (D, L, D), DOUBLE), \
11615 X(2, (D, Q), MIXED), \
11616 X(2, (Q, D), MIXED), \
11617 X(3, (D, Q, I), MIXED), \
11618 X(3, (Q, D, I), MIXED), \
11619 X(3, (Q, D, D), MIXED), \
11620 X(3, (D, Q, Q), MIXED), \
11621 X(3, (Q, Q, D), MIXED), \
11622 X(3, (Q, D, S), MIXED), \
11623 X(3, (D, Q, S), MIXED), \
11624 X(4, (D, D, D, I), DOUBLE), \
11625 X(4, (Q, Q, Q, I), QUAD), \
11626 X(2, (F, F), SINGLE), \
11627 X(3, (F, F, F), SINGLE), \
11628 X(2, (F, I), SINGLE), \
11629 X(2, (F, D), MIXED), \
11630 X(2, (D, F), MIXED), \
11631 X(3, (F, F, I), MIXED), \
11632 X(4, (R, R, F, F), SINGLE), \
11633 X(4, (F, F, R, R), SINGLE), \
11634 X(3, (D, R, R), DOUBLE), \
11635 X(3, (R, R, D), DOUBLE), \
11636 X(2, (S, R), SINGLE), \
11637 X(2, (R, S), SINGLE), \
11638 X(2, (F, R), SINGLE), \
11639 X(2, (R, F), SINGLE)
11640
11641 #define S2(A,B) NS_##A##B
11642 #define S3(A,B,C) NS_##A##B##C
11643 #define S4(A,B,C,D) NS_##A##B##C##D
11644
11645 #define X(N, L, C) S##N L
11646
11647 enum neon_shape
11648 {
11649 NEON_SHAPE_DEF,
11650 NS_NULL
11651 };
11652
11653 #undef X
11654 #undef S2
11655 #undef S3
11656 #undef S4
11657
11658 enum neon_shape_class
11659 {
11660 SC_SINGLE,
11661 SC_DOUBLE,
11662 SC_QUAD,
11663 SC_MIXED
11664 };
11665
11666 #define X(N, L, C) SC_##C
11667
11668 static enum neon_shape_class neon_shape_class[] =
11669 {
11670 NEON_SHAPE_DEF
11671 };
11672
11673 #undef X
11674
11675 enum neon_shape_el
11676 {
11677 SE_F,
11678 SE_D,
11679 SE_Q,
11680 SE_I,
11681 SE_S,
11682 SE_R,
11683 SE_L
11684 };
11685
11686 /* Register widths of above. */
11687 static unsigned neon_shape_el_size[] =
11688 {
11689 32,
11690 64,
11691 128,
11692 0,
11693 32,
11694 32,
11695 0
11696 };
11697
11698 struct neon_shape_info
11699 {
11700 unsigned els;
11701 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11702 };
11703
11704 #define S2(A,B) { SE_##A, SE_##B }
11705 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11706 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11707
11708 #define X(N, L, C) { N, S##N L }
11709
11710 static struct neon_shape_info neon_shape_tab[] =
11711 {
11712 NEON_SHAPE_DEF
11713 };
11714
11715 #undef X
11716 #undef S2
11717 #undef S3
11718 #undef S4
11719
11720 /* Bit masks used in type checking given instructions.
11721 'N_EQK' means the type must be the same as (or based on in some way) the key
11722 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11723 set, various other bits can be set as well in order to modify the meaning of
11724 the type constraint. */
11725
11726 enum neon_type_mask
11727 {
11728 N_S8 = 0x0000001,
11729 N_S16 = 0x0000002,
11730 N_S32 = 0x0000004,
11731 N_S64 = 0x0000008,
11732 N_U8 = 0x0000010,
11733 N_U16 = 0x0000020,
11734 N_U32 = 0x0000040,
11735 N_U64 = 0x0000080,
11736 N_I8 = 0x0000100,
11737 N_I16 = 0x0000200,
11738 N_I32 = 0x0000400,
11739 N_I64 = 0x0000800,
11740 N_8 = 0x0001000,
11741 N_16 = 0x0002000,
11742 N_32 = 0x0004000,
11743 N_64 = 0x0008000,
11744 N_P8 = 0x0010000,
11745 N_P16 = 0x0020000,
11746 N_F16 = 0x0040000,
11747 N_F32 = 0x0080000,
11748 N_F64 = 0x0100000,
11749 N_KEY = 0x1000000, /* Key element (main type specifier). */
11750 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11751 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11752 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11753 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11754 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11755 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11756 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11757 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11758 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11759 N_UTYP = 0,
11760 N_MAX_NONSPECIAL = N_F64
11761 };
11762
11763 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11764
11765 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11766 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11767 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11768 #define N_SUF_32 (N_SU_32 | N_F32)
11769 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11770 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11771
11772 /* Pass this as the first type argument to neon_check_type to ignore types
11773 altogether. */
11774 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11775
11776 /* Select a "shape" for the current instruction (describing register types or
11777 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11778 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11779 function of operand parsing, so this function doesn't need to be called.
11780 Shapes should be listed in order of decreasing length. */
11781
11782 static enum neon_shape
11783 neon_select_shape (enum neon_shape shape, ...)
11784 {
11785 va_list ap;
11786 enum neon_shape first_shape = shape;
11787
11788 /* Fix missing optional operands. FIXME: we don't know at this point how
11789 many arguments we should have, so this makes the assumption that we have
11790 > 1. This is true of all current Neon opcodes, I think, but may not be
11791 true in the future. */
11792 if (!inst.operands[1].present)
11793 inst.operands[1] = inst.operands[0];
11794
11795 va_start (ap, shape);
11796
11797 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
11798 {
11799 unsigned j;
11800 int matches = 1;
11801
11802 for (j = 0; j < neon_shape_tab[shape].els; j++)
11803 {
11804 if (!inst.operands[j].present)
11805 {
11806 matches = 0;
11807 break;
11808 }
11809
11810 switch (neon_shape_tab[shape].el[j])
11811 {
11812 case SE_F:
11813 if (!(inst.operands[j].isreg
11814 && inst.operands[j].isvec
11815 && inst.operands[j].issingle
11816 && !inst.operands[j].isquad))
11817 matches = 0;
11818 break;
11819
11820 case SE_D:
11821 if (!(inst.operands[j].isreg
11822 && inst.operands[j].isvec
11823 && !inst.operands[j].isquad
11824 && !inst.operands[j].issingle))
11825 matches = 0;
11826 break;
11827
11828 case SE_R:
11829 if (!(inst.operands[j].isreg
11830 && !inst.operands[j].isvec))
11831 matches = 0;
11832 break;
11833
11834 case SE_Q:
11835 if (!(inst.operands[j].isreg
11836 && inst.operands[j].isvec
11837 && inst.operands[j].isquad
11838 && !inst.operands[j].issingle))
11839 matches = 0;
11840 break;
11841
11842 case SE_I:
11843 if (!(!inst.operands[j].isreg
11844 && !inst.operands[j].isscalar))
11845 matches = 0;
11846 break;
11847
11848 case SE_S:
11849 if (!(!inst.operands[j].isreg
11850 && inst.operands[j].isscalar))
11851 matches = 0;
11852 break;
11853
11854 case SE_L:
11855 break;
11856 }
11857 if (!matches)
11858 break;
11859 }
11860 if (matches)
11861 break;
11862 }
11863
11864 va_end (ap);
11865
11866 if (shape == NS_NULL && first_shape != NS_NULL)
11867 first_error (_("invalid instruction shape"));
11868
11869 return shape;
11870 }
11871
11872 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11873 means the Q bit should be set). */
11874
11875 static int
11876 neon_quad (enum neon_shape shape)
11877 {
11878 return neon_shape_class[shape] == SC_QUAD;
11879 }
11880
11881 static void
11882 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11883 unsigned *g_size)
11884 {
11885 /* Allow modification to be made to types which are constrained to be
11886 based on the key element, based on bits set alongside N_EQK. */
11887 if ((typebits & N_EQK) != 0)
11888 {
11889 if ((typebits & N_HLF) != 0)
11890 *g_size /= 2;
11891 else if ((typebits & N_DBL) != 0)
11892 *g_size *= 2;
11893 if ((typebits & N_SGN) != 0)
11894 *g_type = NT_signed;
11895 else if ((typebits & N_UNS) != 0)
11896 *g_type = NT_unsigned;
11897 else if ((typebits & N_INT) != 0)
11898 *g_type = NT_integer;
11899 else if ((typebits & N_FLT) != 0)
11900 *g_type = NT_float;
11901 else if ((typebits & N_SIZ) != 0)
11902 *g_type = NT_untyped;
11903 }
11904 }
11905
11906 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11907 operand type, i.e. the single type specified in a Neon instruction when it
11908 is the only one given. */
11909
11910 static struct neon_type_el
11911 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11912 {
11913 struct neon_type_el dest = *key;
11914
11915 gas_assert ((thisarg & N_EQK) != 0);
11916
11917 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11918
11919 return dest;
11920 }
11921
11922 /* Convert Neon type and size into compact bitmask representation. */
11923
11924 static enum neon_type_mask
11925 type_chk_of_el_type (enum neon_el_type type, unsigned size)
11926 {
11927 switch (type)
11928 {
11929 case NT_untyped:
11930 switch (size)
11931 {
11932 case 8: return N_8;
11933 case 16: return N_16;
11934 case 32: return N_32;
11935 case 64: return N_64;
11936 default: ;
11937 }
11938 break;
11939
11940 case NT_integer:
11941 switch (size)
11942 {
11943 case 8: return N_I8;
11944 case 16: return N_I16;
11945 case 32: return N_I32;
11946 case 64: return N_I64;
11947 default: ;
11948 }
11949 break;
11950
11951 case NT_float:
11952 switch (size)
11953 {
11954 case 16: return N_F16;
11955 case 32: return N_F32;
11956 case 64: return N_F64;
11957 default: ;
11958 }
11959 break;
11960
11961 case NT_poly:
11962 switch (size)
11963 {
11964 case 8: return N_P8;
11965 case 16: return N_P16;
11966 default: ;
11967 }
11968 break;
11969
11970 case NT_signed:
11971 switch (size)
11972 {
11973 case 8: return N_S8;
11974 case 16: return N_S16;
11975 case 32: return N_S32;
11976 case 64: return N_S64;
11977 default: ;
11978 }
11979 break;
11980
11981 case NT_unsigned:
11982 switch (size)
11983 {
11984 case 8: return N_U8;
11985 case 16: return N_U16;
11986 case 32: return N_U32;
11987 case 64: return N_U64;
11988 default: ;
11989 }
11990 break;
11991
11992 default: ;
11993 }
11994
11995 return N_UTYP;
11996 }
11997
11998 /* Convert compact Neon bitmask type representation to a type and size. Only
11999 handles the case where a single bit is set in the mask. */
12000
12001 static int
12002 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12003 enum neon_type_mask mask)
12004 {
12005 if ((mask & N_EQK) != 0)
12006 return FAIL;
12007
12008 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12009 *size = 8;
12010 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12011 *size = 16;
12012 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12013 *size = 32;
12014 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12015 *size = 64;
12016 else
12017 return FAIL;
12018
12019 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12020 *type = NT_signed;
12021 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12022 *type = NT_unsigned;
12023 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12024 *type = NT_integer;
12025 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12026 *type = NT_untyped;
12027 else if ((mask & (N_P8 | N_P16)) != 0)
12028 *type = NT_poly;
12029 else if ((mask & (N_F32 | N_F64)) != 0)
12030 *type = NT_float;
12031 else
12032 return FAIL;
12033
12034 return SUCCESS;
12035 }
12036
12037 /* Modify a bitmask of allowed types. This is only needed for type
12038 relaxation. */
12039
12040 static unsigned
12041 modify_types_allowed (unsigned allowed, unsigned mods)
12042 {
12043 unsigned size;
12044 enum neon_el_type type;
12045 unsigned destmask;
12046 int i;
12047
12048 destmask = 0;
12049
12050 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12051 {
12052 if (el_type_of_type_chk (&type, &size,
12053 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12054 {
12055 neon_modify_type_size (mods, &type, &size);
12056 destmask |= type_chk_of_el_type (type, size);
12057 }
12058 }
12059
12060 return destmask;
12061 }
12062
12063 /* Check type and return type classification.
12064 The manual states (paraphrase): If one datatype is given, it indicates the
12065 type given in:
12066 - the second operand, if there is one
12067 - the operand, if there is no second operand
12068 - the result, if there are no operands.
12069 This isn't quite good enough though, so we use a concept of a "key" datatype
12070 which is set on a per-instruction basis, which is the one which matters when
12071 only one data type is written.
12072 Note: this function has side-effects (e.g. filling in missing operands). All
12073 Neon instructions should call it before performing bit encoding. */
12074
12075 static struct neon_type_el
12076 neon_check_type (unsigned els, enum neon_shape ns, ...)
12077 {
12078 va_list ap;
12079 unsigned i, pass, key_el = 0;
12080 unsigned types[NEON_MAX_TYPE_ELS];
12081 enum neon_el_type k_type = NT_invtype;
12082 unsigned k_size = -1u;
12083 struct neon_type_el badtype = {NT_invtype, -1};
12084 unsigned key_allowed = 0;
12085
12086 /* Optional registers in Neon instructions are always (not) in operand 1.
12087 Fill in the missing operand here, if it was omitted. */
12088 if (els > 1 && !inst.operands[1].present)
12089 inst.operands[1] = inst.operands[0];
12090
12091 /* Suck up all the varargs. */
12092 va_start (ap, ns);
12093 for (i = 0; i < els; i++)
12094 {
12095 unsigned thisarg = va_arg (ap, unsigned);
12096 if (thisarg == N_IGNORE_TYPE)
12097 {
12098 va_end (ap);
12099 return badtype;
12100 }
12101 types[i] = thisarg;
12102 if ((thisarg & N_KEY) != 0)
12103 key_el = i;
12104 }
12105 va_end (ap);
12106
12107 if (inst.vectype.elems > 0)
12108 for (i = 0; i < els; i++)
12109 if (inst.operands[i].vectype.type != NT_invtype)
12110 {
12111 first_error (_("types specified in both the mnemonic and operands"));
12112 return badtype;
12113 }
12114
12115 /* Duplicate inst.vectype elements here as necessary.
12116 FIXME: No idea if this is exactly the same as the ARM assembler,
12117 particularly when an insn takes one register and one non-register
12118 operand. */
12119 if (inst.vectype.elems == 1 && els > 1)
12120 {
12121 unsigned j;
12122 inst.vectype.elems = els;
12123 inst.vectype.el[key_el] = inst.vectype.el[0];
12124 for (j = 0; j < els; j++)
12125 if (j != key_el)
12126 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12127 types[j]);
12128 }
12129 else if (inst.vectype.elems == 0 && els > 0)
12130 {
12131 unsigned j;
12132 /* No types were given after the mnemonic, so look for types specified
12133 after each operand. We allow some flexibility here; as long as the
12134 "key" operand has a type, we can infer the others. */
12135 for (j = 0; j < els; j++)
12136 if (inst.operands[j].vectype.type != NT_invtype)
12137 inst.vectype.el[j] = inst.operands[j].vectype;
12138
12139 if (inst.operands[key_el].vectype.type != NT_invtype)
12140 {
12141 for (j = 0; j < els; j++)
12142 if (inst.operands[j].vectype.type == NT_invtype)
12143 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12144 types[j]);
12145 }
12146 else
12147 {
12148 first_error (_("operand types can't be inferred"));
12149 return badtype;
12150 }
12151 }
12152 else if (inst.vectype.elems != els)
12153 {
12154 first_error (_("type specifier has the wrong number of parts"));
12155 return badtype;
12156 }
12157
12158 for (pass = 0; pass < 2; pass++)
12159 {
12160 for (i = 0; i < els; i++)
12161 {
12162 unsigned thisarg = types[i];
12163 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12164 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12165 enum neon_el_type g_type = inst.vectype.el[i].type;
12166 unsigned g_size = inst.vectype.el[i].size;
12167
12168 /* Decay more-specific signed & unsigned types to sign-insensitive
12169 integer types if sign-specific variants are unavailable. */
12170 if ((g_type == NT_signed || g_type == NT_unsigned)
12171 && (types_allowed & N_SU_ALL) == 0)
12172 g_type = NT_integer;
12173
12174 /* If only untyped args are allowed, decay any more specific types to
12175 them. Some instructions only care about signs for some element
12176 sizes, so handle that properly. */
12177 if ((g_size == 8 && (types_allowed & N_8) != 0)
12178 || (g_size == 16 && (types_allowed & N_16) != 0)
12179 || (g_size == 32 && (types_allowed & N_32) != 0)
12180 || (g_size == 64 && (types_allowed & N_64) != 0))
12181 g_type = NT_untyped;
12182
12183 if (pass == 0)
12184 {
12185 if ((thisarg & N_KEY) != 0)
12186 {
12187 k_type = g_type;
12188 k_size = g_size;
12189 key_allowed = thisarg & ~N_KEY;
12190 }
12191 }
12192 else
12193 {
12194 if ((thisarg & N_VFP) != 0)
12195 {
12196 enum neon_shape_el regshape;
12197 unsigned regwidth, match;
12198
12199 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12200 if (ns == NS_NULL)
12201 {
12202 first_error (_("invalid instruction shape"));
12203 return badtype;
12204 }
12205 regshape = neon_shape_tab[ns].el[i];
12206 regwidth = neon_shape_el_size[regshape];
12207
12208 /* In VFP mode, operands must match register widths. If we
12209 have a key operand, use its width, else use the width of
12210 the current operand. */
12211 if (k_size != -1u)
12212 match = k_size;
12213 else
12214 match = g_size;
12215
12216 if (regwidth != match)
12217 {
12218 first_error (_("operand size must match register width"));
12219 return badtype;
12220 }
12221 }
12222
12223 if ((thisarg & N_EQK) == 0)
12224 {
12225 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12226
12227 if ((given_type & types_allowed) == 0)
12228 {
12229 first_error (_("bad type in Neon instruction"));
12230 return badtype;
12231 }
12232 }
12233 else
12234 {
12235 enum neon_el_type mod_k_type = k_type;
12236 unsigned mod_k_size = k_size;
12237 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12238 if (g_type != mod_k_type || g_size != mod_k_size)
12239 {
12240 first_error (_("inconsistent types in Neon instruction"));
12241 return badtype;
12242 }
12243 }
12244 }
12245 }
12246 }
12247
12248 return inst.vectype.el[key_el];
12249 }
12250
12251 /* Neon-style VFP instruction forwarding. */
12252
12253 /* Thumb VFP instructions have 0xE in the condition field. */
12254
12255 static void
12256 do_vfp_cond_or_thumb (void)
12257 {
12258 inst.is_neon = 1;
12259
12260 if (thumb_mode)
12261 inst.instruction |= 0xe0000000;
12262 else
12263 inst.instruction |= inst.cond << 28;
12264 }
12265
12266 /* Look up and encode a simple mnemonic, for use as a helper function for the
12267 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12268 etc. It is assumed that operand parsing has already been done, and that the
12269 operands are in the form expected by the given opcode (this isn't necessarily
12270 the same as the form in which they were parsed, hence some massaging must
12271 take place before this function is called).
12272 Checks current arch version against that in the looked-up opcode. */
12273
12274 static void
12275 do_vfp_nsyn_opcode (const char *opname)
12276 {
12277 const struct asm_opcode *opcode;
12278
12279 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12280
12281 if (!opcode)
12282 abort ();
12283
12284 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12285 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12286 _(BAD_FPU));
12287
12288 inst.is_neon = 1;
12289
12290 if (thumb_mode)
12291 {
12292 inst.instruction = opcode->tvalue;
12293 opcode->tencode ();
12294 }
12295 else
12296 {
12297 inst.instruction = (inst.cond << 28) | opcode->avalue;
12298 opcode->aencode ();
12299 }
12300 }
12301
12302 static void
12303 do_vfp_nsyn_add_sub (enum neon_shape rs)
12304 {
12305 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12306
12307 if (rs == NS_FFF)
12308 {
12309 if (is_add)
12310 do_vfp_nsyn_opcode ("fadds");
12311 else
12312 do_vfp_nsyn_opcode ("fsubs");
12313 }
12314 else
12315 {
12316 if (is_add)
12317 do_vfp_nsyn_opcode ("faddd");
12318 else
12319 do_vfp_nsyn_opcode ("fsubd");
12320 }
12321 }
12322
12323 /* Check operand types to see if this is a VFP instruction, and if so call
12324 PFN (). */
12325
12326 static int
12327 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12328 {
12329 enum neon_shape rs;
12330 struct neon_type_el et;
12331
12332 switch (args)
12333 {
12334 case 2:
12335 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12336 et = neon_check_type (2, rs,
12337 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12338 break;
12339
12340 case 3:
12341 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12342 et = neon_check_type (3, rs,
12343 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12344 break;
12345
12346 default:
12347 abort ();
12348 }
12349
12350 if (et.type != NT_invtype)
12351 {
12352 pfn (rs);
12353 return SUCCESS;
12354 }
12355
12356 inst.error = NULL;
12357 return FAIL;
12358 }
12359
12360 static void
12361 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12362 {
12363 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12364
12365 if (rs == NS_FFF)
12366 {
12367 if (is_mla)
12368 do_vfp_nsyn_opcode ("fmacs");
12369 else
12370 do_vfp_nsyn_opcode ("fnmacs");
12371 }
12372 else
12373 {
12374 if (is_mla)
12375 do_vfp_nsyn_opcode ("fmacd");
12376 else
12377 do_vfp_nsyn_opcode ("fnmacd");
12378 }
12379 }
12380
12381 static void
12382 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12383 {
12384 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12385
12386 if (rs == NS_FFF)
12387 {
12388 if (is_fma)
12389 do_vfp_nsyn_opcode ("ffmas");
12390 else
12391 do_vfp_nsyn_opcode ("ffnmas");
12392 }
12393 else
12394 {
12395 if (is_fma)
12396 do_vfp_nsyn_opcode ("ffmad");
12397 else
12398 do_vfp_nsyn_opcode ("ffnmad");
12399 }
12400 }
12401
12402 static void
12403 do_vfp_nsyn_mul (enum neon_shape rs)
12404 {
12405 if (rs == NS_FFF)
12406 do_vfp_nsyn_opcode ("fmuls");
12407 else
12408 do_vfp_nsyn_opcode ("fmuld");
12409 }
12410
12411 static void
12412 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12413 {
12414 int is_neg = (inst.instruction & 0x80) != 0;
12415 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12416
12417 if (rs == NS_FF)
12418 {
12419 if (is_neg)
12420 do_vfp_nsyn_opcode ("fnegs");
12421 else
12422 do_vfp_nsyn_opcode ("fabss");
12423 }
12424 else
12425 {
12426 if (is_neg)
12427 do_vfp_nsyn_opcode ("fnegd");
12428 else
12429 do_vfp_nsyn_opcode ("fabsd");
12430 }
12431 }
12432
12433 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12434 insns belong to Neon, and are handled elsewhere. */
12435
12436 static void
12437 do_vfp_nsyn_ldm_stm (int is_dbmode)
12438 {
12439 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12440 if (is_ldm)
12441 {
12442 if (is_dbmode)
12443 do_vfp_nsyn_opcode ("fldmdbs");
12444 else
12445 do_vfp_nsyn_opcode ("fldmias");
12446 }
12447 else
12448 {
12449 if (is_dbmode)
12450 do_vfp_nsyn_opcode ("fstmdbs");
12451 else
12452 do_vfp_nsyn_opcode ("fstmias");
12453 }
12454 }
12455
12456 static void
12457 do_vfp_nsyn_sqrt (void)
12458 {
12459 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12460 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12461
12462 if (rs == NS_FF)
12463 do_vfp_nsyn_opcode ("fsqrts");
12464 else
12465 do_vfp_nsyn_opcode ("fsqrtd");
12466 }
12467
12468 static void
12469 do_vfp_nsyn_div (void)
12470 {
12471 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12472 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12473 N_F32 | N_F64 | N_KEY | N_VFP);
12474
12475 if (rs == NS_FFF)
12476 do_vfp_nsyn_opcode ("fdivs");
12477 else
12478 do_vfp_nsyn_opcode ("fdivd");
12479 }
12480
12481 static void
12482 do_vfp_nsyn_nmul (void)
12483 {
12484 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12485 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12486 N_F32 | N_F64 | N_KEY | N_VFP);
12487
12488 if (rs == NS_FFF)
12489 {
12490 NEON_ENCODE (SINGLE, inst);
12491 do_vfp_sp_dyadic ();
12492 }
12493 else
12494 {
12495 NEON_ENCODE (DOUBLE, inst);
12496 do_vfp_dp_rd_rn_rm ();
12497 }
12498 do_vfp_cond_or_thumb ();
12499 }
12500
12501 static void
12502 do_vfp_nsyn_cmp (void)
12503 {
12504 if (inst.operands[1].isreg)
12505 {
12506 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12507 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12508
12509 if (rs == NS_FF)
12510 {
12511 NEON_ENCODE (SINGLE, inst);
12512 do_vfp_sp_monadic ();
12513 }
12514 else
12515 {
12516 NEON_ENCODE (DOUBLE, inst);
12517 do_vfp_dp_rd_rm ();
12518 }
12519 }
12520 else
12521 {
12522 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12523 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12524
12525 switch (inst.instruction & 0x0fffffff)
12526 {
12527 case N_MNEM_vcmp:
12528 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12529 break;
12530 case N_MNEM_vcmpe:
12531 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12532 break;
12533 default:
12534 abort ();
12535 }
12536
12537 if (rs == NS_FI)
12538 {
12539 NEON_ENCODE (SINGLE, inst);
12540 do_vfp_sp_compare_z ();
12541 }
12542 else
12543 {
12544 NEON_ENCODE (DOUBLE, inst);
12545 do_vfp_dp_rd ();
12546 }
12547 }
12548 do_vfp_cond_or_thumb ();
12549 }
12550
12551 static void
12552 nsyn_insert_sp (void)
12553 {
12554 inst.operands[1] = inst.operands[0];
12555 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12556 inst.operands[0].reg = REG_SP;
12557 inst.operands[0].isreg = 1;
12558 inst.operands[0].writeback = 1;
12559 inst.operands[0].present = 1;
12560 }
12561
12562 static void
12563 do_vfp_nsyn_push (void)
12564 {
12565 nsyn_insert_sp ();
12566 if (inst.operands[1].issingle)
12567 do_vfp_nsyn_opcode ("fstmdbs");
12568 else
12569 do_vfp_nsyn_opcode ("fstmdbd");
12570 }
12571
12572 static void
12573 do_vfp_nsyn_pop (void)
12574 {
12575 nsyn_insert_sp ();
12576 if (inst.operands[1].issingle)
12577 do_vfp_nsyn_opcode ("fldmias");
12578 else
12579 do_vfp_nsyn_opcode ("fldmiad");
12580 }
12581
12582 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12583 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12584
12585 static void
12586 neon_dp_fixup (struct arm_it* insn)
12587 {
12588 unsigned int i = insn->instruction;
12589 insn->is_neon = 1;
12590
12591 if (thumb_mode)
12592 {
12593 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12594 if (i & (1 << 24))
12595 i |= 1 << 28;
12596
12597 i &= ~(1 << 24);
12598
12599 i |= 0xef000000;
12600 }
12601 else
12602 i |= 0xf2000000;
12603
12604 insn->instruction = i;
12605 }
12606
12607 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12608 (0, 1, 2, 3). */
12609
12610 static unsigned
12611 neon_logbits (unsigned x)
12612 {
12613 return ffs (x) - 4;
12614 }
12615
12616 #define LOW4(R) ((R) & 0xf)
12617 #define HI1(R) (((R) >> 4) & 1)
12618
12619 /* Encode insns with bit pattern:
12620
12621 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12622 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12623
12624 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12625 different meaning for some instruction. */
12626
12627 static void
12628 neon_three_same (int isquad, int ubit, int size)
12629 {
12630 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12631 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12632 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12633 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12634 inst.instruction |= LOW4 (inst.operands[2].reg);
12635 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12636 inst.instruction |= (isquad != 0) << 6;
12637 inst.instruction |= (ubit != 0) << 24;
12638 if (size != -1)
12639 inst.instruction |= neon_logbits (size) << 20;
12640
12641 neon_dp_fixup (&inst);
12642 }
12643
12644 /* Encode instructions of the form:
12645
12646 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12647 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12648
12649 Don't write size if SIZE == -1. */
12650
12651 static void
12652 neon_two_same (int qbit, int ubit, int size)
12653 {
12654 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12655 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12656 inst.instruction |= LOW4 (inst.operands[1].reg);
12657 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12658 inst.instruction |= (qbit != 0) << 6;
12659 inst.instruction |= (ubit != 0) << 24;
12660
12661 if (size != -1)
12662 inst.instruction |= neon_logbits (size) << 18;
12663
12664 neon_dp_fixup (&inst);
12665 }
12666
12667 /* Neon instruction encoders, in approximate order of appearance. */
12668
12669 static void
12670 do_neon_dyadic_i_su (void)
12671 {
12672 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12673 struct neon_type_el et = neon_check_type (3, rs,
12674 N_EQK, N_EQK, N_SU_32 | N_KEY);
12675 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12676 }
12677
12678 static void
12679 do_neon_dyadic_i64_su (void)
12680 {
12681 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12682 struct neon_type_el et = neon_check_type (3, rs,
12683 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12684 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12685 }
12686
12687 static void
12688 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12689 unsigned immbits)
12690 {
12691 unsigned size = et.size >> 3;
12692 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12693 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12694 inst.instruction |= LOW4 (inst.operands[1].reg);
12695 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12696 inst.instruction |= (isquad != 0) << 6;
12697 inst.instruction |= immbits << 16;
12698 inst.instruction |= (size >> 3) << 7;
12699 inst.instruction |= (size & 0x7) << 19;
12700 if (write_ubit)
12701 inst.instruction |= (uval != 0) << 24;
12702
12703 neon_dp_fixup (&inst);
12704 }
12705
12706 static void
12707 do_neon_shl_imm (void)
12708 {
12709 if (!inst.operands[2].isreg)
12710 {
12711 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12712 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12713 NEON_ENCODE (IMMED, inst);
12714 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12715 }
12716 else
12717 {
12718 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12719 struct neon_type_el et = neon_check_type (3, rs,
12720 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12721 unsigned int tmp;
12722
12723 /* VSHL/VQSHL 3-register variants have syntax such as:
12724 vshl.xx Dd, Dm, Dn
12725 whereas other 3-register operations encoded by neon_three_same have
12726 syntax like:
12727 vadd.xx Dd, Dn, Dm
12728 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12729 here. */
12730 tmp = inst.operands[2].reg;
12731 inst.operands[2].reg = inst.operands[1].reg;
12732 inst.operands[1].reg = tmp;
12733 NEON_ENCODE (INTEGER, inst);
12734 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12735 }
12736 }
12737
12738 static void
12739 do_neon_qshl_imm (void)
12740 {
12741 if (!inst.operands[2].isreg)
12742 {
12743 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12744 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12745
12746 NEON_ENCODE (IMMED, inst);
12747 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12748 inst.operands[2].imm);
12749 }
12750 else
12751 {
12752 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12753 struct neon_type_el et = neon_check_type (3, rs,
12754 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12755 unsigned int tmp;
12756
12757 /* See note in do_neon_shl_imm. */
12758 tmp = inst.operands[2].reg;
12759 inst.operands[2].reg = inst.operands[1].reg;
12760 inst.operands[1].reg = tmp;
12761 NEON_ENCODE (INTEGER, inst);
12762 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12763 }
12764 }
12765
12766 static void
12767 do_neon_rshl (void)
12768 {
12769 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12770 struct neon_type_el et = neon_check_type (3, rs,
12771 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12772 unsigned int tmp;
12773
12774 tmp = inst.operands[2].reg;
12775 inst.operands[2].reg = inst.operands[1].reg;
12776 inst.operands[1].reg = tmp;
12777 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12778 }
12779
12780 static int
12781 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12782 {
12783 /* Handle .I8 pseudo-instructions. */
12784 if (size == 8)
12785 {
12786 /* Unfortunately, this will make everything apart from zero out-of-range.
12787 FIXME is this the intended semantics? There doesn't seem much point in
12788 accepting .I8 if so. */
12789 immediate |= immediate << 8;
12790 size = 16;
12791 }
12792
12793 if (size >= 32)
12794 {
12795 if (immediate == (immediate & 0x000000ff))
12796 {
12797 *immbits = immediate;
12798 return 0x1;
12799 }
12800 else if (immediate == (immediate & 0x0000ff00))
12801 {
12802 *immbits = immediate >> 8;
12803 return 0x3;
12804 }
12805 else if (immediate == (immediate & 0x00ff0000))
12806 {
12807 *immbits = immediate >> 16;
12808 return 0x5;
12809 }
12810 else if (immediate == (immediate & 0xff000000))
12811 {
12812 *immbits = immediate >> 24;
12813 return 0x7;
12814 }
12815 if ((immediate & 0xffff) != (immediate >> 16))
12816 goto bad_immediate;
12817 immediate &= 0xffff;
12818 }
12819
12820 if (immediate == (immediate & 0x000000ff))
12821 {
12822 *immbits = immediate;
12823 return 0x9;
12824 }
12825 else if (immediate == (immediate & 0x0000ff00))
12826 {
12827 *immbits = immediate >> 8;
12828 return 0xb;
12829 }
12830
12831 bad_immediate:
12832 first_error (_("immediate value out of range"));
12833 return FAIL;
12834 }
12835
12836 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12837 A, B, C, D. */
12838
12839 static int
12840 neon_bits_same_in_bytes (unsigned imm)
12841 {
12842 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12843 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12844 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12845 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12846 }
12847
12848 /* For immediate of above form, return 0bABCD. */
12849
12850 static unsigned
12851 neon_squash_bits (unsigned imm)
12852 {
12853 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12854 | ((imm & 0x01000000) >> 21);
12855 }
12856
12857 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12858
12859 static unsigned
12860 neon_qfloat_bits (unsigned imm)
12861 {
12862 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12863 }
12864
12865 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12866 the instruction. *OP is passed as the initial value of the op field, and
12867 may be set to a different value depending on the constant (i.e.
12868 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12869 MVN). If the immediate looks like a repeated pattern then also
12870 try smaller element sizes. */
12871
12872 static int
12873 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12874 unsigned *immbits, int *op, int size,
12875 enum neon_el_type type)
12876 {
12877 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12878 float. */
12879 if (type == NT_float && !float_p)
12880 return FAIL;
12881
12882 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12883 {
12884 if (size != 32 || *op == 1)
12885 return FAIL;
12886 *immbits = neon_qfloat_bits (immlo);
12887 return 0xf;
12888 }
12889
12890 if (size == 64)
12891 {
12892 if (neon_bits_same_in_bytes (immhi)
12893 && neon_bits_same_in_bytes (immlo))
12894 {
12895 if (*op == 1)
12896 return FAIL;
12897 *immbits = (neon_squash_bits (immhi) << 4)
12898 | neon_squash_bits (immlo);
12899 *op = 1;
12900 return 0xe;
12901 }
12902
12903 if (immhi != immlo)
12904 return FAIL;
12905 }
12906
12907 if (size >= 32)
12908 {
12909 if (immlo == (immlo & 0x000000ff))
12910 {
12911 *immbits = immlo;
12912 return 0x0;
12913 }
12914 else if (immlo == (immlo & 0x0000ff00))
12915 {
12916 *immbits = immlo >> 8;
12917 return 0x2;
12918 }
12919 else if (immlo == (immlo & 0x00ff0000))
12920 {
12921 *immbits = immlo >> 16;
12922 return 0x4;
12923 }
12924 else if (immlo == (immlo & 0xff000000))
12925 {
12926 *immbits = immlo >> 24;
12927 return 0x6;
12928 }
12929 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12930 {
12931 *immbits = (immlo >> 8) & 0xff;
12932 return 0xc;
12933 }
12934 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12935 {
12936 *immbits = (immlo >> 16) & 0xff;
12937 return 0xd;
12938 }
12939
12940 if ((immlo & 0xffff) != (immlo >> 16))
12941 return FAIL;
12942 immlo &= 0xffff;
12943 }
12944
12945 if (size >= 16)
12946 {
12947 if (immlo == (immlo & 0x000000ff))
12948 {
12949 *immbits = immlo;
12950 return 0x8;
12951 }
12952 else if (immlo == (immlo & 0x0000ff00))
12953 {
12954 *immbits = immlo >> 8;
12955 return 0xa;
12956 }
12957
12958 if ((immlo & 0xff) != (immlo >> 8))
12959 return FAIL;
12960 immlo &= 0xff;
12961 }
12962
12963 if (immlo == (immlo & 0x000000ff))
12964 {
12965 /* Don't allow MVN with 8-bit immediate. */
12966 if (*op == 1)
12967 return FAIL;
12968 *immbits = immlo;
12969 return 0xe;
12970 }
12971
12972 return FAIL;
12973 }
12974
12975 /* Write immediate bits [7:0] to the following locations:
12976
12977 |28/24|23 19|18 16|15 4|3 0|
12978 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12979
12980 This function is used by VMOV/VMVN/VORR/VBIC. */
12981
12982 static void
12983 neon_write_immbits (unsigned immbits)
12984 {
12985 inst.instruction |= immbits & 0xf;
12986 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12987 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12988 }
12989
12990 /* Invert low-order SIZE bits of XHI:XLO. */
12991
12992 static void
12993 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12994 {
12995 unsigned immlo = xlo ? *xlo : 0;
12996 unsigned immhi = xhi ? *xhi : 0;
12997
12998 switch (size)
12999 {
13000 case 8:
13001 immlo = (~immlo) & 0xff;
13002 break;
13003
13004 case 16:
13005 immlo = (~immlo) & 0xffff;
13006 break;
13007
13008 case 64:
13009 immhi = (~immhi) & 0xffffffff;
13010 /* fall through. */
13011
13012 case 32:
13013 immlo = (~immlo) & 0xffffffff;
13014 break;
13015
13016 default:
13017 abort ();
13018 }
13019
13020 if (xlo)
13021 *xlo = immlo;
13022
13023 if (xhi)
13024 *xhi = immhi;
13025 }
13026
13027 static void
13028 do_neon_logic (void)
13029 {
13030 if (inst.operands[2].present && inst.operands[2].isreg)
13031 {
13032 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13033 neon_check_type (3, rs, N_IGNORE_TYPE);
13034 /* U bit and size field were set as part of the bitmask. */
13035 NEON_ENCODE (INTEGER, inst);
13036 neon_three_same (neon_quad (rs), 0, -1);
13037 }
13038 else
13039 {
13040 const int three_ops_form = (inst.operands[2].present
13041 && !inst.operands[2].isreg);
13042 const int immoperand = (three_ops_form ? 2 : 1);
13043 enum neon_shape rs = (three_ops_form
13044 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13045 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13046 struct neon_type_el et = neon_check_type (2, rs,
13047 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13048 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13049 unsigned immbits;
13050 int cmode;
13051
13052 if (et.type == NT_invtype)
13053 return;
13054
13055 if (three_ops_form)
13056 constraint (inst.operands[0].reg != inst.operands[1].reg,
13057 _("first and second operands shall be the same register"));
13058
13059 NEON_ENCODE (IMMED, inst);
13060
13061 immbits = inst.operands[immoperand].imm;
13062 if (et.size == 64)
13063 {
13064 /* .i64 is a pseudo-op, so the immediate must be a repeating
13065 pattern. */
13066 if (immbits != (inst.operands[immoperand].regisimm ?
13067 inst.operands[immoperand].reg : 0))
13068 {
13069 /* Set immbits to an invalid constant. */
13070 immbits = 0xdeadbeef;
13071 }
13072 }
13073
13074 switch (opcode)
13075 {
13076 case N_MNEM_vbic:
13077 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13078 break;
13079
13080 case N_MNEM_vorr:
13081 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13082 break;
13083
13084 case N_MNEM_vand:
13085 /* Pseudo-instruction for VBIC. */
13086 neon_invert_size (&immbits, 0, et.size);
13087 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13088 break;
13089
13090 case N_MNEM_vorn:
13091 /* Pseudo-instruction for VORR. */
13092 neon_invert_size (&immbits, 0, et.size);
13093 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13094 break;
13095
13096 default:
13097 abort ();
13098 }
13099
13100 if (cmode == FAIL)
13101 return;
13102
13103 inst.instruction |= neon_quad (rs) << 6;
13104 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13105 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13106 inst.instruction |= cmode << 8;
13107 neon_write_immbits (immbits);
13108
13109 neon_dp_fixup (&inst);
13110 }
13111 }
13112
13113 static void
13114 do_neon_bitfield (void)
13115 {
13116 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13117 neon_check_type (3, rs, N_IGNORE_TYPE);
13118 neon_three_same (neon_quad (rs), 0, -1);
13119 }
13120
13121 static void
13122 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13123 unsigned destbits)
13124 {
13125 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13126 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13127 types | N_KEY);
13128 if (et.type == NT_float)
13129 {
13130 NEON_ENCODE (FLOAT, inst);
13131 neon_three_same (neon_quad (rs), 0, -1);
13132 }
13133 else
13134 {
13135 NEON_ENCODE (INTEGER, inst);
13136 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13137 }
13138 }
13139
13140 static void
13141 do_neon_dyadic_if_su (void)
13142 {
13143 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13144 }
13145
13146 static void
13147 do_neon_dyadic_if_su_d (void)
13148 {
13149 /* This version only allow D registers, but that constraint is enforced during
13150 operand parsing so we don't need to do anything extra here. */
13151 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13152 }
13153
13154 static void
13155 do_neon_dyadic_if_i_d (void)
13156 {
13157 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13158 affected if we specify unsigned args. */
13159 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13160 }
13161
13162 enum vfp_or_neon_is_neon_bits
13163 {
13164 NEON_CHECK_CC = 1,
13165 NEON_CHECK_ARCH = 2
13166 };
13167
13168 /* Call this function if an instruction which may have belonged to the VFP or
13169 Neon instruction sets, but turned out to be a Neon instruction (due to the
13170 operand types involved, etc.). We have to check and/or fix-up a couple of
13171 things:
13172
13173 - Make sure the user hasn't attempted to make a Neon instruction
13174 conditional.
13175 - Alter the value in the condition code field if necessary.
13176 - Make sure that the arch supports Neon instructions.
13177
13178 Which of these operations take place depends on bits from enum
13179 vfp_or_neon_is_neon_bits.
13180
13181 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13182 current instruction's condition is COND_ALWAYS, the condition field is
13183 changed to inst.uncond_value. This is necessary because instructions shared
13184 between VFP and Neon may be conditional for the VFP variants only, and the
13185 unconditional Neon version must have, e.g., 0xF in the condition field. */
13186
13187 static int
13188 vfp_or_neon_is_neon (unsigned check)
13189 {
13190 /* Conditions are always legal in Thumb mode (IT blocks). */
13191 if (!thumb_mode && (check & NEON_CHECK_CC))
13192 {
13193 if (inst.cond != COND_ALWAYS)
13194 {
13195 first_error (_(BAD_COND));
13196 return FAIL;
13197 }
13198 if (inst.uncond_value != -1)
13199 inst.instruction |= inst.uncond_value << 28;
13200 }
13201
13202 if ((check & NEON_CHECK_ARCH)
13203 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13204 {
13205 first_error (_(BAD_FPU));
13206 return FAIL;
13207 }
13208
13209 return SUCCESS;
13210 }
13211
13212 static void
13213 do_neon_addsub_if_i (void)
13214 {
13215 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13216 return;
13217
13218 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13219 return;
13220
13221 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13222 affected if we specify unsigned args. */
13223 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13224 }
13225
13226 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13227 result to be:
13228 V<op> A,B (A is operand 0, B is operand 2)
13229 to mean:
13230 V<op> A,B,A
13231 not:
13232 V<op> A,B,B
13233 so handle that case specially. */
13234
13235 static void
13236 neon_exchange_operands (void)
13237 {
13238 void *scratch = alloca (sizeof (inst.operands[0]));
13239 if (inst.operands[1].present)
13240 {
13241 /* Swap operands[1] and operands[2]. */
13242 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13243 inst.operands[1] = inst.operands[2];
13244 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13245 }
13246 else
13247 {
13248 inst.operands[1] = inst.operands[2];
13249 inst.operands[2] = inst.operands[0];
13250 }
13251 }
13252
13253 static void
13254 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13255 {
13256 if (inst.operands[2].isreg)
13257 {
13258 if (invert)
13259 neon_exchange_operands ();
13260 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13261 }
13262 else
13263 {
13264 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13265 struct neon_type_el et = neon_check_type (2, rs,
13266 N_EQK | N_SIZ, immtypes | N_KEY);
13267
13268 NEON_ENCODE (IMMED, inst);
13269 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13270 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13271 inst.instruction |= LOW4 (inst.operands[1].reg);
13272 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13273 inst.instruction |= neon_quad (rs) << 6;
13274 inst.instruction |= (et.type == NT_float) << 10;
13275 inst.instruction |= neon_logbits (et.size) << 18;
13276
13277 neon_dp_fixup (&inst);
13278 }
13279 }
13280
13281 static void
13282 do_neon_cmp (void)
13283 {
13284 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13285 }
13286
13287 static void
13288 do_neon_cmp_inv (void)
13289 {
13290 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13291 }
13292
13293 static void
13294 do_neon_ceq (void)
13295 {
13296 neon_compare (N_IF_32, N_IF_32, FALSE);
13297 }
13298
13299 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13300 scalars, which are encoded in 5 bits, M : Rm.
13301 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13302 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13303 index in M. */
13304
13305 static unsigned
13306 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13307 {
13308 unsigned regno = NEON_SCALAR_REG (scalar);
13309 unsigned elno = NEON_SCALAR_INDEX (scalar);
13310
13311 switch (elsize)
13312 {
13313 case 16:
13314 if (regno > 7 || elno > 3)
13315 goto bad_scalar;
13316 return regno | (elno << 3);
13317
13318 case 32:
13319 if (regno > 15 || elno > 1)
13320 goto bad_scalar;
13321 return regno | (elno << 4);
13322
13323 default:
13324 bad_scalar:
13325 first_error (_("scalar out of range for multiply instruction"));
13326 }
13327
13328 return 0;
13329 }
13330
13331 /* Encode multiply / multiply-accumulate scalar instructions. */
13332
13333 static void
13334 neon_mul_mac (struct neon_type_el et, int ubit)
13335 {
13336 unsigned scalar;
13337
13338 /* Give a more helpful error message if we have an invalid type. */
13339 if (et.type == NT_invtype)
13340 return;
13341
13342 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13343 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13344 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13345 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13346 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13347 inst.instruction |= LOW4 (scalar);
13348 inst.instruction |= HI1 (scalar) << 5;
13349 inst.instruction |= (et.type == NT_float) << 8;
13350 inst.instruction |= neon_logbits (et.size) << 20;
13351 inst.instruction |= (ubit != 0) << 24;
13352
13353 neon_dp_fixup (&inst);
13354 }
13355
13356 static void
13357 do_neon_mac_maybe_scalar (void)
13358 {
13359 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13360 return;
13361
13362 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13363 return;
13364
13365 if (inst.operands[2].isscalar)
13366 {
13367 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13368 struct neon_type_el et = neon_check_type (3, rs,
13369 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13370 NEON_ENCODE (SCALAR, inst);
13371 neon_mul_mac (et, neon_quad (rs));
13372 }
13373 else
13374 {
13375 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13376 affected if we specify unsigned args. */
13377 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13378 }
13379 }
13380
13381 static void
13382 do_neon_fmac (void)
13383 {
13384 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13385 return;
13386
13387 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13388 return;
13389
13390 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13391 }
13392
13393 static void
13394 do_neon_tst (void)
13395 {
13396 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13397 struct neon_type_el et = neon_check_type (3, rs,
13398 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13399 neon_three_same (neon_quad (rs), 0, et.size);
13400 }
13401
13402 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13403 same types as the MAC equivalents. The polynomial type for this instruction
13404 is encoded the same as the integer type. */
13405
13406 static void
13407 do_neon_mul (void)
13408 {
13409 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13410 return;
13411
13412 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13413 return;
13414
13415 if (inst.operands[2].isscalar)
13416 do_neon_mac_maybe_scalar ();
13417 else
13418 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13419 }
13420
13421 static void
13422 do_neon_qdmulh (void)
13423 {
13424 if (inst.operands[2].isscalar)
13425 {
13426 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13427 struct neon_type_el et = neon_check_type (3, rs,
13428 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13429 NEON_ENCODE (SCALAR, inst);
13430 neon_mul_mac (et, neon_quad (rs));
13431 }
13432 else
13433 {
13434 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13435 struct neon_type_el et = neon_check_type (3, rs,
13436 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13437 NEON_ENCODE (INTEGER, inst);
13438 /* The U bit (rounding) comes from bit mask. */
13439 neon_three_same (neon_quad (rs), 0, et.size);
13440 }
13441 }
13442
13443 static void
13444 do_neon_fcmp_absolute (void)
13445 {
13446 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13447 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13448 /* Size field comes from bit mask. */
13449 neon_three_same (neon_quad (rs), 1, -1);
13450 }
13451
13452 static void
13453 do_neon_fcmp_absolute_inv (void)
13454 {
13455 neon_exchange_operands ();
13456 do_neon_fcmp_absolute ();
13457 }
13458
13459 static void
13460 do_neon_step (void)
13461 {
13462 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13463 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13464 neon_three_same (neon_quad (rs), 0, -1);
13465 }
13466
13467 static void
13468 do_neon_abs_neg (void)
13469 {
13470 enum neon_shape rs;
13471 struct neon_type_el et;
13472
13473 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13474 return;
13475
13476 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13477 return;
13478
13479 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13480 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13481
13482 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13483 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13484 inst.instruction |= LOW4 (inst.operands[1].reg);
13485 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13486 inst.instruction |= neon_quad (rs) << 6;
13487 inst.instruction |= (et.type == NT_float) << 10;
13488 inst.instruction |= neon_logbits (et.size) << 18;
13489
13490 neon_dp_fixup (&inst);
13491 }
13492
13493 static void
13494 do_neon_sli (void)
13495 {
13496 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13497 struct neon_type_el et = neon_check_type (2, rs,
13498 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13499 int imm = inst.operands[2].imm;
13500 constraint (imm < 0 || (unsigned)imm >= et.size,
13501 _("immediate out of range for insert"));
13502 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13503 }
13504
13505 static void
13506 do_neon_sri (void)
13507 {
13508 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13509 struct neon_type_el et = neon_check_type (2, rs,
13510 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13511 int imm = inst.operands[2].imm;
13512 constraint (imm < 1 || (unsigned)imm > et.size,
13513 _("immediate out of range for insert"));
13514 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13515 }
13516
13517 static void
13518 do_neon_qshlu_imm (void)
13519 {
13520 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13521 struct neon_type_el et = neon_check_type (2, rs,
13522 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13523 int imm = inst.operands[2].imm;
13524 constraint (imm < 0 || (unsigned)imm >= et.size,
13525 _("immediate out of range for shift"));
13526 /* Only encodes the 'U present' variant of the instruction.
13527 In this case, signed types have OP (bit 8) set to 0.
13528 Unsigned types have OP set to 1. */
13529 inst.instruction |= (et.type == NT_unsigned) << 8;
13530 /* The rest of the bits are the same as other immediate shifts. */
13531 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13532 }
13533
13534 static void
13535 do_neon_qmovn (void)
13536 {
13537 struct neon_type_el et = neon_check_type (2, NS_DQ,
13538 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13539 /* Saturating move where operands can be signed or unsigned, and the
13540 destination has the same signedness. */
13541 NEON_ENCODE (INTEGER, inst);
13542 if (et.type == NT_unsigned)
13543 inst.instruction |= 0xc0;
13544 else
13545 inst.instruction |= 0x80;
13546 neon_two_same (0, 1, et.size / 2);
13547 }
13548
13549 static void
13550 do_neon_qmovun (void)
13551 {
13552 struct neon_type_el et = neon_check_type (2, NS_DQ,
13553 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13554 /* Saturating move with unsigned results. Operands must be signed. */
13555 NEON_ENCODE (INTEGER, inst);
13556 neon_two_same (0, 1, et.size / 2);
13557 }
13558
13559 static void
13560 do_neon_rshift_sat_narrow (void)
13561 {
13562 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13563 or unsigned. If operands are unsigned, results must also be unsigned. */
13564 struct neon_type_el et = neon_check_type (2, NS_DQI,
13565 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13566 int imm = inst.operands[2].imm;
13567 /* This gets the bounds check, size encoding and immediate bits calculation
13568 right. */
13569 et.size /= 2;
13570
13571 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13572 VQMOVN.I<size> <Dd>, <Qm>. */
13573 if (imm == 0)
13574 {
13575 inst.operands[2].present = 0;
13576 inst.instruction = N_MNEM_vqmovn;
13577 do_neon_qmovn ();
13578 return;
13579 }
13580
13581 constraint (imm < 1 || (unsigned)imm > et.size,
13582 _("immediate out of range"));
13583 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13584 }
13585
13586 static void
13587 do_neon_rshift_sat_narrow_u (void)
13588 {
13589 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13590 or unsigned. If operands are unsigned, results must also be unsigned. */
13591 struct neon_type_el et = neon_check_type (2, NS_DQI,
13592 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13593 int imm = inst.operands[2].imm;
13594 /* This gets the bounds check, size encoding and immediate bits calculation
13595 right. */
13596 et.size /= 2;
13597
13598 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13599 VQMOVUN.I<size> <Dd>, <Qm>. */
13600 if (imm == 0)
13601 {
13602 inst.operands[2].present = 0;
13603 inst.instruction = N_MNEM_vqmovun;
13604 do_neon_qmovun ();
13605 return;
13606 }
13607
13608 constraint (imm < 1 || (unsigned)imm > et.size,
13609 _("immediate out of range"));
13610 /* FIXME: The manual is kind of unclear about what value U should have in
13611 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13612 must be 1. */
13613 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13614 }
13615
13616 static void
13617 do_neon_movn (void)
13618 {
13619 struct neon_type_el et = neon_check_type (2, NS_DQ,
13620 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13621 NEON_ENCODE (INTEGER, inst);
13622 neon_two_same (0, 1, et.size / 2);
13623 }
13624
13625 static void
13626 do_neon_rshift_narrow (void)
13627 {
13628 struct neon_type_el et = neon_check_type (2, NS_DQI,
13629 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13630 int imm = inst.operands[2].imm;
13631 /* This gets the bounds check, size encoding and immediate bits calculation
13632 right. */
13633 et.size /= 2;
13634
13635 /* If immediate is zero then we are a pseudo-instruction for
13636 VMOVN.I<size> <Dd>, <Qm> */
13637 if (imm == 0)
13638 {
13639 inst.operands[2].present = 0;
13640 inst.instruction = N_MNEM_vmovn;
13641 do_neon_movn ();
13642 return;
13643 }
13644
13645 constraint (imm < 1 || (unsigned)imm > et.size,
13646 _("immediate out of range for narrowing operation"));
13647 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13648 }
13649
13650 static void
13651 do_neon_shll (void)
13652 {
13653 /* FIXME: Type checking when lengthening. */
13654 struct neon_type_el et = neon_check_type (2, NS_QDI,
13655 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13656 unsigned imm = inst.operands[2].imm;
13657
13658 if (imm == et.size)
13659 {
13660 /* Maximum shift variant. */
13661 NEON_ENCODE (INTEGER, inst);
13662 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13663 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13664 inst.instruction |= LOW4 (inst.operands[1].reg);
13665 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13666 inst.instruction |= neon_logbits (et.size) << 18;
13667
13668 neon_dp_fixup (&inst);
13669 }
13670 else
13671 {
13672 /* A more-specific type check for non-max versions. */
13673 et = neon_check_type (2, NS_QDI,
13674 N_EQK | N_DBL, N_SU_32 | N_KEY);
13675 NEON_ENCODE (IMMED, inst);
13676 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13677 }
13678 }
13679
13680 /* Check the various types for the VCVT instruction, and return which version
13681 the current instruction is. */
13682
13683 static int
13684 neon_cvt_flavour (enum neon_shape rs)
13685 {
13686 #define CVT_VAR(C,X,Y) \
13687 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13688 if (et.type != NT_invtype) \
13689 { \
13690 inst.error = NULL; \
13691 return (C); \
13692 }
13693 struct neon_type_el et;
13694 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13695 || rs == NS_FF) ? N_VFP : 0;
13696 /* The instruction versions which take an immediate take one register
13697 argument, which is extended to the width of the full register. Thus the
13698 "source" and "destination" registers must have the same width. Hack that
13699 here by making the size equal to the key (wider, in this case) operand. */
13700 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13701
13702 CVT_VAR (0, N_S32, N_F32);
13703 CVT_VAR (1, N_U32, N_F32);
13704 CVT_VAR (2, N_F32, N_S32);
13705 CVT_VAR (3, N_F32, N_U32);
13706 /* Half-precision conversions. */
13707 CVT_VAR (4, N_F32, N_F16);
13708 CVT_VAR (5, N_F16, N_F32);
13709
13710 whole_reg = N_VFP;
13711
13712 /* VFP instructions. */
13713 CVT_VAR (6, N_F32, N_F64);
13714 CVT_VAR (7, N_F64, N_F32);
13715 CVT_VAR (8, N_S32, N_F64 | key);
13716 CVT_VAR (9, N_U32, N_F64 | key);
13717 CVT_VAR (10, N_F64 | key, N_S32);
13718 CVT_VAR (11, N_F64 | key, N_U32);
13719 /* VFP instructions with bitshift. */
13720 CVT_VAR (12, N_F32 | key, N_S16);
13721 CVT_VAR (13, N_F32 | key, N_U16);
13722 CVT_VAR (14, N_F64 | key, N_S16);
13723 CVT_VAR (15, N_F64 | key, N_U16);
13724 CVT_VAR (16, N_S16, N_F32 | key);
13725 CVT_VAR (17, N_U16, N_F32 | key);
13726 CVT_VAR (18, N_S16, N_F64 | key);
13727 CVT_VAR (19, N_U16, N_F64 | key);
13728
13729 return -1;
13730 #undef CVT_VAR
13731 }
13732
13733 /* Neon-syntax VFP conversions. */
13734
13735 static void
13736 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13737 {
13738 const char *opname = 0;
13739
13740 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13741 {
13742 /* Conversions with immediate bitshift. */
13743 const char *enc[] =
13744 {
13745 "ftosls",
13746 "ftouls",
13747 "fsltos",
13748 "fultos",
13749 NULL,
13750 NULL,
13751 NULL,
13752 NULL,
13753 "ftosld",
13754 "ftould",
13755 "fsltod",
13756 "fultod",
13757 "fshtos",
13758 "fuhtos",
13759 "fshtod",
13760 "fuhtod",
13761 "ftoshs",
13762 "ftouhs",
13763 "ftoshd",
13764 "ftouhd"
13765 };
13766
13767 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13768 {
13769 opname = enc[flavour];
13770 constraint (inst.operands[0].reg != inst.operands[1].reg,
13771 _("operands 0 and 1 must be the same register"));
13772 inst.operands[1] = inst.operands[2];
13773 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13774 }
13775 }
13776 else
13777 {
13778 /* Conversions without bitshift. */
13779 const char *enc[] =
13780 {
13781 "ftosis",
13782 "ftouis",
13783 "fsitos",
13784 "fuitos",
13785 "NULL",
13786 "NULL",
13787 "fcvtsd",
13788 "fcvtds",
13789 "ftosid",
13790 "ftouid",
13791 "fsitod",
13792 "fuitod"
13793 };
13794
13795 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13796 opname = enc[flavour];
13797 }
13798
13799 if (opname)
13800 do_vfp_nsyn_opcode (opname);
13801 }
13802
13803 static void
13804 do_vfp_nsyn_cvtz (void)
13805 {
13806 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13807 int flavour = neon_cvt_flavour (rs);
13808 const char *enc[] =
13809 {
13810 "ftosizs",
13811 "ftouizs",
13812 NULL,
13813 NULL,
13814 NULL,
13815 NULL,
13816 NULL,
13817 NULL,
13818 "ftosizd",
13819 "ftouizd"
13820 };
13821
13822 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13823 do_vfp_nsyn_opcode (enc[flavour]);
13824 }
13825
13826 static void
13827 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
13828 {
13829 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13830 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13831 int flavour = neon_cvt_flavour (rs);
13832
13833 /* PR11109: Handle round-to-zero for VCVT conversions. */
13834 if (round_to_zero
13835 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
13836 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
13837 && (rs == NS_FD || rs == NS_FF))
13838 {
13839 do_vfp_nsyn_cvtz ();
13840 return;
13841 }
13842
13843 /* VFP rather than Neon conversions. */
13844 if (flavour >= 6)
13845 {
13846 do_vfp_nsyn_cvt (rs, flavour);
13847 return;
13848 }
13849
13850 switch (rs)
13851 {
13852 case NS_DDI:
13853 case NS_QQI:
13854 {
13855 unsigned immbits;
13856 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13857
13858 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13859 return;
13860
13861 /* Fixed-point conversion with #0 immediate is encoded as an
13862 integer conversion. */
13863 if (inst.operands[2].present && inst.operands[2].imm == 0)
13864 goto int_encode;
13865 immbits = 32 - inst.operands[2].imm;
13866 NEON_ENCODE (IMMED, inst);
13867 if (flavour != -1)
13868 inst.instruction |= enctab[flavour];
13869 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13870 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13871 inst.instruction |= LOW4 (inst.operands[1].reg);
13872 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13873 inst.instruction |= neon_quad (rs) << 6;
13874 inst.instruction |= 1 << 21;
13875 inst.instruction |= immbits << 16;
13876
13877 neon_dp_fixup (&inst);
13878 }
13879 break;
13880
13881 case NS_DD:
13882 case NS_QQ:
13883 int_encode:
13884 {
13885 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13886
13887 NEON_ENCODE (INTEGER, inst);
13888
13889 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13890 return;
13891
13892 if (flavour != -1)
13893 inst.instruction |= enctab[flavour];
13894
13895 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13896 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13897 inst.instruction |= LOW4 (inst.operands[1].reg);
13898 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13899 inst.instruction |= neon_quad (rs) << 6;
13900 inst.instruction |= 2 << 18;
13901
13902 neon_dp_fixup (&inst);
13903 }
13904 break;
13905
13906 /* Half-precision conversions for Advanced SIMD -- neon. */
13907 case NS_QD:
13908 case NS_DQ:
13909
13910 if ((rs == NS_DQ)
13911 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13912 {
13913 as_bad (_("operand size must match register width"));
13914 break;
13915 }
13916
13917 if ((rs == NS_QD)
13918 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13919 {
13920 as_bad (_("operand size must match register width"));
13921 break;
13922 }
13923
13924 if (rs == NS_DQ)
13925 inst.instruction = 0x3b60600;
13926 else
13927 inst.instruction = 0x3b60700;
13928
13929 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13930 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13931 inst.instruction |= LOW4 (inst.operands[1].reg);
13932 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13933 neon_dp_fixup (&inst);
13934 break;
13935
13936 default:
13937 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13938 do_vfp_nsyn_cvt (rs, flavour);
13939 }
13940 }
13941
13942 static void
13943 do_neon_cvtr (void)
13944 {
13945 do_neon_cvt_1 (FALSE);
13946 }
13947
13948 static void
13949 do_neon_cvt (void)
13950 {
13951 do_neon_cvt_1 (TRUE);
13952 }
13953
13954 static void
13955 do_neon_cvtb (void)
13956 {
13957 inst.instruction = 0xeb20a40;
13958
13959 /* The sizes are attached to the mnemonic. */
13960 if (inst.vectype.el[0].type != NT_invtype
13961 && inst.vectype.el[0].size == 16)
13962 inst.instruction |= 0x00010000;
13963
13964 /* Programmer's syntax: the sizes are attached to the operands. */
13965 else if (inst.operands[0].vectype.type != NT_invtype
13966 && inst.operands[0].vectype.size == 16)
13967 inst.instruction |= 0x00010000;
13968
13969 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13970 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13971 do_vfp_cond_or_thumb ();
13972 }
13973
13974
13975 static void
13976 do_neon_cvtt (void)
13977 {
13978 do_neon_cvtb ();
13979 inst.instruction |= 0x80;
13980 }
13981
13982 static void
13983 neon_move_immediate (void)
13984 {
13985 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13986 struct neon_type_el et = neon_check_type (2, rs,
13987 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13988 unsigned immlo, immhi = 0, immbits;
13989 int op, cmode, float_p;
13990
13991 constraint (et.type == NT_invtype,
13992 _("operand size must be specified for immediate VMOV"));
13993
13994 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13995 op = (inst.instruction & (1 << 5)) != 0;
13996
13997 immlo = inst.operands[1].imm;
13998 if (inst.operands[1].regisimm)
13999 immhi = inst.operands[1].reg;
14000
14001 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14002 _("immediate has bits set outside the operand size"));
14003
14004 float_p = inst.operands[1].immisfloat;
14005
14006 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14007 et.size, et.type)) == FAIL)
14008 {
14009 /* Invert relevant bits only. */
14010 neon_invert_size (&immlo, &immhi, et.size);
14011 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14012 with one or the other; those cases are caught by
14013 neon_cmode_for_move_imm. */
14014 op = !op;
14015 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14016 &op, et.size, et.type)) == FAIL)
14017 {
14018 first_error (_("immediate out of range"));
14019 return;
14020 }
14021 }
14022
14023 inst.instruction &= ~(1 << 5);
14024 inst.instruction |= op << 5;
14025
14026 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14027 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14028 inst.instruction |= neon_quad (rs) << 6;
14029 inst.instruction |= cmode << 8;
14030
14031 neon_write_immbits (immbits);
14032 }
14033
14034 static void
14035 do_neon_mvn (void)
14036 {
14037 if (inst.operands[1].isreg)
14038 {
14039 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14040
14041 NEON_ENCODE (INTEGER, inst);
14042 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14043 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14044 inst.instruction |= LOW4 (inst.operands[1].reg);
14045 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14046 inst.instruction |= neon_quad (rs) << 6;
14047 }
14048 else
14049 {
14050 NEON_ENCODE (IMMED, inst);
14051 neon_move_immediate ();
14052 }
14053
14054 neon_dp_fixup (&inst);
14055 }
14056
14057 /* Encode instructions of form:
14058
14059 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14060 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14061
14062 static void
14063 neon_mixed_length (struct neon_type_el et, unsigned size)
14064 {
14065 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14066 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14067 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14068 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14069 inst.instruction |= LOW4 (inst.operands[2].reg);
14070 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14071 inst.instruction |= (et.type == NT_unsigned) << 24;
14072 inst.instruction |= neon_logbits (size) << 20;
14073
14074 neon_dp_fixup (&inst);
14075 }
14076
14077 static void
14078 do_neon_dyadic_long (void)
14079 {
14080 /* FIXME: Type checking for lengthening op. */
14081 struct neon_type_el et = neon_check_type (3, NS_QDD,
14082 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14083 neon_mixed_length (et, et.size);
14084 }
14085
14086 static void
14087 do_neon_abal (void)
14088 {
14089 struct neon_type_el et = neon_check_type (3, NS_QDD,
14090 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14091 neon_mixed_length (et, et.size);
14092 }
14093
14094 static void
14095 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14096 {
14097 if (inst.operands[2].isscalar)
14098 {
14099 struct neon_type_el et = neon_check_type (3, NS_QDS,
14100 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14101 NEON_ENCODE (SCALAR, inst);
14102 neon_mul_mac (et, et.type == NT_unsigned);
14103 }
14104 else
14105 {
14106 struct neon_type_el et = neon_check_type (3, NS_QDD,
14107 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14108 NEON_ENCODE (INTEGER, inst);
14109 neon_mixed_length (et, et.size);
14110 }
14111 }
14112
14113 static void
14114 do_neon_mac_maybe_scalar_long (void)
14115 {
14116 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14117 }
14118
14119 static void
14120 do_neon_dyadic_wide (void)
14121 {
14122 struct neon_type_el et = neon_check_type (3, NS_QQD,
14123 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14124 neon_mixed_length (et, et.size);
14125 }
14126
14127 static void
14128 do_neon_dyadic_narrow (void)
14129 {
14130 struct neon_type_el et = neon_check_type (3, NS_QDD,
14131 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14132 /* Operand sign is unimportant, and the U bit is part of the opcode,
14133 so force the operand type to integer. */
14134 et.type = NT_integer;
14135 neon_mixed_length (et, et.size / 2);
14136 }
14137
14138 static void
14139 do_neon_mul_sat_scalar_long (void)
14140 {
14141 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14142 }
14143
14144 static void
14145 do_neon_vmull (void)
14146 {
14147 if (inst.operands[2].isscalar)
14148 do_neon_mac_maybe_scalar_long ();
14149 else
14150 {
14151 struct neon_type_el et = neon_check_type (3, NS_QDD,
14152 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14153 if (et.type == NT_poly)
14154 NEON_ENCODE (POLY, inst);
14155 else
14156 NEON_ENCODE (INTEGER, inst);
14157 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14158 zero. Should be OK as-is. */
14159 neon_mixed_length (et, et.size);
14160 }
14161 }
14162
14163 static void
14164 do_neon_ext (void)
14165 {
14166 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14167 struct neon_type_el et = neon_check_type (3, rs,
14168 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14169 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14170
14171 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14172 _("shift out of range"));
14173 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14174 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14175 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14176 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14177 inst.instruction |= LOW4 (inst.operands[2].reg);
14178 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14179 inst.instruction |= neon_quad (rs) << 6;
14180 inst.instruction |= imm << 8;
14181
14182 neon_dp_fixup (&inst);
14183 }
14184
14185 static void
14186 do_neon_rev (void)
14187 {
14188 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14189 struct neon_type_el et = neon_check_type (2, rs,
14190 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14191 unsigned op = (inst.instruction >> 7) & 3;
14192 /* N (width of reversed regions) is encoded as part of the bitmask. We
14193 extract it here to check the elements to be reversed are smaller.
14194 Otherwise we'd get a reserved instruction. */
14195 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14196 gas_assert (elsize != 0);
14197 constraint (et.size >= elsize,
14198 _("elements must be smaller than reversal region"));
14199 neon_two_same (neon_quad (rs), 1, et.size);
14200 }
14201
14202 static void
14203 do_neon_dup (void)
14204 {
14205 if (inst.operands[1].isscalar)
14206 {
14207 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14208 struct neon_type_el et = neon_check_type (2, rs,
14209 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14210 unsigned sizebits = et.size >> 3;
14211 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14212 int logsize = neon_logbits (et.size);
14213 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14214
14215 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14216 return;
14217
14218 NEON_ENCODE (SCALAR, inst);
14219 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14220 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14221 inst.instruction |= LOW4 (dm);
14222 inst.instruction |= HI1 (dm) << 5;
14223 inst.instruction |= neon_quad (rs) << 6;
14224 inst.instruction |= x << 17;
14225 inst.instruction |= sizebits << 16;
14226
14227 neon_dp_fixup (&inst);
14228 }
14229 else
14230 {
14231 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14232 struct neon_type_el et = neon_check_type (2, rs,
14233 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14234 /* Duplicate ARM register to lanes of vector. */
14235 NEON_ENCODE (ARMREG, inst);
14236 switch (et.size)
14237 {
14238 case 8: inst.instruction |= 0x400000; break;
14239 case 16: inst.instruction |= 0x000020; break;
14240 case 32: inst.instruction |= 0x000000; break;
14241 default: break;
14242 }
14243 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14244 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14245 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14246 inst.instruction |= neon_quad (rs) << 21;
14247 /* The encoding for this instruction is identical for the ARM and Thumb
14248 variants, except for the condition field. */
14249 do_vfp_cond_or_thumb ();
14250 }
14251 }
14252
14253 /* VMOV has particularly many variations. It can be one of:
14254 0. VMOV<c><q> <Qd>, <Qm>
14255 1. VMOV<c><q> <Dd>, <Dm>
14256 (Register operations, which are VORR with Rm = Rn.)
14257 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14258 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14259 (Immediate loads.)
14260 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14261 (ARM register to scalar.)
14262 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14263 (Two ARM registers to vector.)
14264 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14265 (Scalar to ARM register.)
14266 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14267 (Vector to two ARM registers.)
14268 8. VMOV.F32 <Sd>, <Sm>
14269 9. VMOV.F64 <Dd>, <Dm>
14270 (VFP register moves.)
14271 10. VMOV.F32 <Sd>, #imm
14272 11. VMOV.F64 <Dd>, #imm
14273 (VFP float immediate load.)
14274 12. VMOV <Rd>, <Sm>
14275 (VFP single to ARM reg.)
14276 13. VMOV <Sd>, <Rm>
14277 (ARM reg to VFP single.)
14278 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14279 (Two ARM regs to two VFP singles.)
14280 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14281 (Two VFP singles to two ARM regs.)
14282
14283 These cases can be disambiguated using neon_select_shape, except cases 1/9
14284 and 3/11 which depend on the operand type too.
14285
14286 All the encoded bits are hardcoded by this function.
14287
14288 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14289 Cases 5, 7 may be used with VFPv2 and above.
14290
14291 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14292 can specify a type where it doesn't make sense to, and is ignored). */
14293
14294 static void
14295 do_neon_mov (void)
14296 {
14297 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14298 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14299 NS_NULL);
14300 struct neon_type_el et;
14301 const char *ldconst = 0;
14302
14303 switch (rs)
14304 {
14305 case NS_DD: /* case 1/9. */
14306 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14307 /* It is not an error here if no type is given. */
14308 inst.error = NULL;
14309 if (et.type == NT_float && et.size == 64)
14310 {
14311 do_vfp_nsyn_opcode ("fcpyd");
14312 break;
14313 }
14314 /* fall through. */
14315
14316 case NS_QQ: /* case 0/1. */
14317 {
14318 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14319 return;
14320 /* The architecture manual I have doesn't explicitly state which
14321 value the U bit should have for register->register moves, but
14322 the equivalent VORR instruction has U = 0, so do that. */
14323 inst.instruction = 0x0200110;
14324 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14325 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14326 inst.instruction |= LOW4 (inst.operands[1].reg);
14327 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14328 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14329 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14330 inst.instruction |= neon_quad (rs) << 6;
14331
14332 neon_dp_fixup (&inst);
14333 }
14334 break;
14335
14336 case NS_DI: /* case 3/11. */
14337 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14338 inst.error = NULL;
14339 if (et.type == NT_float && et.size == 64)
14340 {
14341 /* case 11 (fconstd). */
14342 ldconst = "fconstd";
14343 goto encode_fconstd;
14344 }
14345 /* fall through. */
14346
14347 case NS_QI: /* case 2/3. */
14348 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14349 return;
14350 inst.instruction = 0x0800010;
14351 neon_move_immediate ();
14352 neon_dp_fixup (&inst);
14353 break;
14354
14355 case NS_SR: /* case 4. */
14356 {
14357 unsigned bcdebits = 0;
14358 int logsize;
14359 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14360 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14361
14362 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14363 logsize = neon_logbits (et.size);
14364
14365 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14366 _(BAD_FPU));
14367 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14368 && et.size != 32, _(BAD_FPU));
14369 constraint (et.type == NT_invtype, _("bad type for scalar"));
14370 constraint (x >= 64 / et.size, _("scalar index out of range"));
14371
14372 switch (et.size)
14373 {
14374 case 8: bcdebits = 0x8; break;
14375 case 16: bcdebits = 0x1; break;
14376 case 32: bcdebits = 0x0; break;
14377 default: ;
14378 }
14379
14380 bcdebits |= x << logsize;
14381
14382 inst.instruction = 0xe000b10;
14383 do_vfp_cond_or_thumb ();
14384 inst.instruction |= LOW4 (dn) << 16;
14385 inst.instruction |= HI1 (dn) << 7;
14386 inst.instruction |= inst.operands[1].reg << 12;
14387 inst.instruction |= (bcdebits & 3) << 5;
14388 inst.instruction |= (bcdebits >> 2) << 21;
14389 }
14390 break;
14391
14392 case NS_DRR: /* case 5 (fmdrr). */
14393 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14394 _(BAD_FPU));
14395
14396 inst.instruction = 0xc400b10;
14397 do_vfp_cond_or_thumb ();
14398 inst.instruction |= LOW4 (inst.operands[0].reg);
14399 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14400 inst.instruction |= inst.operands[1].reg << 12;
14401 inst.instruction |= inst.operands[2].reg << 16;
14402 break;
14403
14404 case NS_RS: /* case 6. */
14405 {
14406 unsigned logsize;
14407 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14408 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14409 unsigned abcdebits = 0;
14410
14411 et = neon_check_type (2, NS_NULL,
14412 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14413 logsize = neon_logbits (et.size);
14414
14415 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14416 _(BAD_FPU));
14417 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14418 && et.size != 32, _(BAD_FPU));
14419 constraint (et.type == NT_invtype, _("bad type for scalar"));
14420 constraint (x >= 64 / et.size, _("scalar index out of range"));
14421
14422 switch (et.size)
14423 {
14424 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14425 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14426 case 32: abcdebits = 0x00; break;
14427 default: ;
14428 }
14429
14430 abcdebits |= x << logsize;
14431 inst.instruction = 0xe100b10;
14432 do_vfp_cond_or_thumb ();
14433 inst.instruction |= LOW4 (dn) << 16;
14434 inst.instruction |= HI1 (dn) << 7;
14435 inst.instruction |= inst.operands[0].reg << 12;
14436 inst.instruction |= (abcdebits & 3) << 5;
14437 inst.instruction |= (abcdebits >> 2) << 21;
14438 }
14439 break;
14440
14441 case NS_RRD: /* case 7 (fmrrd). */
14442 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14443 _(BAD_FPU));
14444
14445 inst.instruction = 0xc500b10;
14446 do_vfp_cond_or_thumb ();
14447 inst.instruction |= inst.operands[0].reg << 12;
14448 inst.instruction |= inst.operands[1].reg << 16;
14449 inst.instruction |= LOW4 (inst.operands[2].reg);
14450 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14451 break;
14452
14453 case NS_FF: /* case 8 (fcpys). */
14454 do_vfp_nsyn_opcode ("fcpys");
14455 break;
14456
14457 case NS_FI: /* case 10 (fconsts). */
14458 ldconst = "fconsts";
14459 encode_fconstd:
14460 if (is_quarter_float (inst.operands[1].imm))
14461 {
14462 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14463 do_vfp_nsyn_opcode (ldconst);
14464 }
14465 else
14466 first_error (_("immediate out of range"));
14467 break;
14468
14469 case NS_RF: /* case 12 (fmrs). */
14470 do_vfp_nsyn_opcode ("fmrs");
14471 break;
14472
14473 case NS_FR: /* case 13 (fmsr). */
14474 do_vfp_nsyn_opcode ("fmsr");
14475 break;
14476
14477 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14478 (one of which is a list), but we have parsed four. Do some fiddling to
14479 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14480 expect. */
14481 case NS_RRFF: /* case 14 (fmrrs). */
14482 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14483 _("VFP registers must be adjacent"));
14484 inst.operands[2].imm = 2;
14485 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14486 do_vfp_nsyn_opcode ("fmrrs");
14487 break;
14488
14489 case NS_FFRR: /* case 15 (fmsrr). */
14490 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14491 _("VFP registers must be adjacent"));
14492 inst.operands[1] = inst.operands[2];
14493 inst.operands[2] = inst.operands[3];
14494 inst.operands[0].imm = 2;
14495 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14496 do_vfp_nsyn_opcode ("fmsrr");
14497 break;
14498
14499 default:
14500 abort ();
14501 }
14502 }
14503
14504 static void
14505 do_neon_rshift_round_imm (void)
14506 {
14507 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14508 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14509 int imm = inst.operands[2].imm;
14510
14511 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14512 if (imm == 0)
14513 {
14514 inst.operands[2].present = 0;
14515 do_neon_mov ();
14516 return;
14517 }
14518
14519 constraint (imm < 1 || (unsigned)imm > et.size,
14520 _("immediate out of range for shift"));
14521 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14522 et.size - imm);
14523 }
14524
14525 static void
14526 do_neon_movl (void)
14527 {
14528 struct neon_type_el et = neon_check_type (2, NS_QD,
14529 N_EQK | N_DBL, N_SU_32 | N_KEY);
14530 unsigned sizebits = et.size >> 3;
14531 inst.instruction |= sizebits << 19;
14532 neon_two_same (0, et.type == NT_unsigned, -1);
14533 }
14534
14535 static void
14536 do_neon_trn (void)
14537 {
14538 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14539 struct neon_type_el et = neon_check_type (2, rs,
14540 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14541 NEON_ENCODE (INTEGER, inst);
14542 neon_two_same (neon_quad (rs), 1, et.size);
14543 }
14544
14545 static void
14546 do_neon_zip_uzp (void)
14547 {
14548 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14549 struct neon_type_el et = neon_check_type (2, rs,
14550 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14551 if (rs == NS_DD && et.size == 32)
14552 {
14553 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14554 inst.instruction = N_MNEM_vtrn;
14555 do_neon_trn ();
14556 return;
14557 }
14558 neon_two_same (neon_quad (rs), 1, et.size);
14559 }
14560
14561 static void
14562 do_neon_sat_abs_neg (void)
14563 {
14564 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14565 struct neon_type_el et = neon_check_type (2, rs,
14566 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14567 neon_two_same (neon_quad (rs), 1, et.size);
14568 }
14569
14570 static void
14571 do_neon_pair_long (void)
14572 {
14573 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14574 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14575 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14576 inst.instruction |= (et.type == NT_unsigned) << 7;
14577 neon_two_same (neon_quad (rs), 1, et.size);
14578 }
14579
14580 static void
14581 do_neon_recip_est (void)
14582 {
14583 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14584 struct neon_type_el et = neon_check_type (2, rs,
14585 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14586 inst.instruction |= (et.type == NT_float) << 8;
14587 neon_two_same (neon_quad (rs), 1, et.size);
14588 }
14589
14590 static void
14591 do_neon_cls (void)
14592 {
14593 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14594 struct neon_type_el et = neon_check_type (2, rs,
14595 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14596 neon_two_same (neon_quad (rs), 1, et.size);
14597 }
14598
14599 static void
14600 do_neon_clz (void)
14601 {
14602 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14603 struct neon_type_el et = neon_check_type (2, rs,
14604 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14605 neon_two_same (neon_quad (rs), 1, et.size);
14606 }
14607
14608 static void
14609 do_neon_cnt (void)
14610 {
14611 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14612 struct neon_type_el et = neon_check_type (2, rs,
14613 N_EQK | N_INT, N_8 | N_KEY);
14614 neon_two_same (neon_quad (rs), 1, et.size);
14615 }
14616
14617 static void
14618 do_neon_swp (void)
14619 {
14620 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14621 neon_two_same (neon_quad (rs), 1, -1);
14622 }
14623
14624 static void
14625 do_neon_tbl_tbx (void)
14626 {
14627 unsigned listlenbits;
14628 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14629
14630 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14631 {
14632 first_error (_("bad list length for table lookup"));
14633 return;
14634 }
14635
14636 listlenbits = inst.operands[1].imm - 1;
14637 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14638 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14639 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14640 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14641 inst.instruction |= LOW4 (inst.operands[2].reg);
14642 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14643 inst.instruction |= listlenbits << 8;
14644
14645 neon_dp_fixup (&inst);
14646 }
14647
14648 static void
14649 do_neon_ldm_stm (void)
14650 {
14651 /* P, U and L bits are part of bitmask. */
14652 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14653 unsigned offsetbits = inst.operands[1].imm * 2;
14654
14655 if (inst.operands[1].issingle)
14656 {
14657 do_vfp_nsyn_ldm_stm (is_dbmode);
14658 return;
14659 }
14660
14661 constraint (is_dbmode && !inst.operands[0].writeback,
14662 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14663
14664 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14665 _("register list must contain at least 1 and at most 16 "
14666 "registers"));
14667
14668 inst.instruction |= inst.operands[0].reg << 16;
14669 inst.instruction |= inst.operands[0].writeback << 21;
14670 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14671 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14672
14673 inst.instruction |= offsetbits;
14674
14675 do_vfp_cond_or_thumb ();
14676 }
14677
14678 static void
14679 do_neon_ldr_str (void)
14680 {
14681 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14682
14683 if (inst.operands[0].issingle)
14684 {
14685 if (is_ldr)
14686 do_vfp_nsyn_opcode ("flds");
14687 else
14688 do_vfp_nsyn_opcode ("fsts");
14689 }
14690 else
14691 {
14692 if (is_ldr)
14693 do_vfp_nsyn_opcode ("fldd");
14694 else
14695 do_vfp_nsyn_opcode ("fstd");
14696 }
14697 }
14698
14699 /* "interleave" version also handles non-interleaving register VLD1/VST1
14700 instructions. */
14701
14702 static void
14703 do_neon_ld_st_interleave (void)
14704 {
14705 struct neon_type_el et = neon_check_type (1, NS_NULL,
14706 N_8 | N_16 | N_32 | N_64);
14707 unsigned alignbits = 0;
14708 unsigned idx;
14709 /* The bits in this table go:
14710 0: register stride of one (0) or two (1)
14711 1,2: register list length, minus one (1, 2, 3, 4).
14712 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14713 We use -1 for invalid entries. */
14714 const int typetable[] =
14715 {
14716 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14717 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14718 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14719 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14720 };
14721 int typebits;
14722
14723 if (et.type == NT_invtype)
14724 return;
14725
14726 if (inst.operands[1].immisalign)
14727 switch (inst.operands[1].imm >> 8)
14728 {
14729 case 64: alignbits = 1; break;
14730 case 128:
14731 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14732 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14733 goto bad_alignment;
14734 alignbits = 2;
14735 break;
14736 case 256:
14737 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14738 goto bad_alignment;
14739 alignbits = 3;
14740 break;
14741 default:
14742 bad_alignment:
14743 first_error (_("bad alignment"));
14744 return;
14745 }
14746
14747 inst.instruction |= alignbits << 4;
14748 inst.instruction |= neon_logbits (et.size) << 6;
14749
14750 /* Bits [4:6] of the immediate in a list specifier encode register stride
14751 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14752 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14753 up the right value for "type" in a table based on this value and the given
14754 list style, then stick it back. */
14755 idx = ((inst.operands[0].imm >> 4) & 7)
14756 | (((inst.instruction >> 8) & 3) << 3);
14757
14758 typebits = typetable[idx];
14759
14760 constraint (typebits == -1, _("bad list type for instruction"));
14761
14762 inst.instruction &= ~0xf00;
14763 inst.instruction |= typebits << 8;
14764 }
14765
14766 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14767 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14768 otherwise. The variable arguments are a list of pairs of legal (size, align)
14769 values, terminated with -1. */
14770
14771 static int
14772 neon_alignment_bit (int size, int align, int *do_align, ...)
14773 {
14774 va_list ap;
14775 int result = FAIL, thissize, thisalign;
14776
14777 if (!inst.operands[1].immisalign)
14778 {
14779 *do_align = 0;
14780 return SUCCESS;
14781 }
14782
14783 va_start (ap, do_align);
14784
14785 do
14786 {
14787 thissize = va_arg (ap, int);
14788 if (thissize == -1)
14789 break;
14790 thisalign = va_arg (ap, int);
14791
14792 if (size == thissize && align == thisalign)
14793 result = SUCCESS;
14794 }
14795 while (result != SUCCESS);
14796
14797 va_end (ap);
14798
14799 if (result == SUCCESS)
14800 *do_align = 1;
14801 else
14802 first_error (_("unsupported alignment for instruction"));
14803
14804 return result;
14805 }
14806
14807 static void
14808 do_neon_ld_st_lane (void)
14809 {
14810 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14811 int align_good, do_align = 0;
14812 int logsize = neon_logbits (et.size);
14813 int align = inst.operands[1].imm >> 8;
14814 int n = (inst.instruction >> 8) & 3;
14815 int max_el = 64 / et.size;
14816
14817 if (et.type == NT_invtype)
14818 return;
14819
14820 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14821 _("bad list length"));
14822 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14823 _("scalar index out of range"));
14824 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14825 && et.size == 8,
14826 _("stride of 2 unavailable when element size is 8"));
14827
14828 switch (n)
14829 {
14830 case 0: /* VLD1 / VST1. */
14831 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14832 32, 32, -1);
14833 if (align_good == FAIL)
14834 return;
14835 if (do_align)
14836 {
14837 unsigned alignbits = 0;
14838 switch (et.size)
14839 {
14840 case 16: alignbits = 0x1; break;
14841 case 32: alignbits = 0x3; break;
14842 default: ;
14843 }
14844 inst.instruction |= alignbits << 4;
14845 }
14846 break;
14847
14848 case 1: /* VLD2 / VST2. */
14849 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14850 32, 64, -1);
14851 if (align_good == FAIL)
14852 return;
14853 if (do_align)
14854 inst.instruction |= 1 << 4;
14855 break;
14856
14857 case 2: /* VLD3 / VST3. */
14858 constraint (inst.operands[1].immisalign,
14859 _("can't use alignment with this instruction"));
14860 break;
14861
14862 case 3: /* VLD4 / VST4. */
14863 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14864 16, 64, 32, 64, 32, 128, -1);
14865 if (align_good == FAIL)
14866 return;
14867 if (do_align)
14868 {
14869 unsigned alignbits = 0;
14870 switch (et.size)
14871 {
14872 case 8: alignbits = 0x1; break;
14873 case 16: alignbits = 0x1; break;
14874 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14875 default: ;
14876 }
14877 inst.instruction |= alignbits << 4;
14878 }
14879 break;
14880
14881 default: ;
14882 }
14883
14884 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14885 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14886 inst.instruction |= 1 << (4 + logsize);
14887
14888 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14889 inst.instruction |= logsize << 10;
14890 }
14891
14892 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14893
14894 static void
14895 do_neon_ld_dup (void)
14896 {
14897 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14898 int align_good, do_align = 0;
14899
14900 if (et.type == NT_invtype)
14901 return;
14902
14903 switch ((inst.instruction >> 8) & 3)
14904 {
14905 case 0: /* VLD1. */
14906 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14907 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14908 &do_align, 16, 16, 32, 32, -1);
14909 if (align_good == FAIL)
14910 return;
14911 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14912 {
14913 case 1: break;
14914 case 2: inst.instruction |= 1 << 5; break;
14915 default: first_error (_("bad list length")); return;
14916 }
14917 inst.instruction |= neon_logbits (et.size) << 6;
14918 break;
14919
14920 case 1: /* VLD2. */
14921 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14922 &do_align, 8, 16, 16, 32, 32, 64, -1);
14923 if (align_good == FAIL)
14924 return;
14925 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14926 _("bad list length"));
14927 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14928 inst.instruction |= 1 << 5;
14929 inst.instruction |= neon_logbits (et.size) << 6;
14930 break;
14931
14932 case 2: /* VLD3. */
14933 constraint (inst.operands[1].immisalign,
14934 _("can't use alignment with this instruction"));
14935 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14936 _("bad list length"));
14937 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14938 inst.instruction |= 1 << 5;
14939 inst.instruction |= neon_logbits (et.size) << 6;
14940 break;
14941
14942 case 3: /* VLD4. */
14943 {
14944 int align = inst.operands[1].imm >> 8;
14945 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14946 16, 64, 32, 64, 32, 128, -1);
14947 if (align_good == FAIL)
14948 return;
14949 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14950 _("bad list length"));
14951 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14952 inst.instruction |= 1 << 5;
14953 if (et.size == 32 && align == 128)
14954 inst.instruction |= 0x3 << 6;
14955 else
14956 inst.instruction |= neon_logbits (et.size) << 6;
14957 }
14958 break;
14959
14960 default: ;
14961 }
14962
14963 inst.instruction |= do_align << 4;
14964 }
14965
14966 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14967 apart from bits [11:4]. */
14968
14969 static void
14970 do_neon_ldx_stx (void)
14971 {
14972 if (inst.operands[1].isreg)
14973 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
14974
14975 switch (NEON_LANE (inst.operands[0].imm))
14976 {
14977 case NEON_INTERLEAVE_LANES:
14978 NEON_ENCODE (INTERLV, inst);
14979 do_neon_ld_st_interleave ();
14980 break;
14981
14982 case NEON_ALL_LANES:
14983 NEON_ENCODE (DUP, inst);
14984 do_neon_ld_dup ();
14985 break;
14986
14987 default:
14988 NEON_ENCODE (LANE, inst);
14989 do_neon_ld_st_lane ();
14990 }
14991
14992 /* L bit comes from bit mask. */
14993 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14994 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14995 inst.instruction |= inst.operands[1].reg << 16;
14996
14997 if (inst.operands[1].postind)
14998 {
14999 int postreg = inst.operands[1].imm & 0xf;
15000 constraint (!inst.operands[1].immisreg,
15001 _("post-index must be a register"));
15002 constraint (postreg == 0xd || postreg == 0xf,
15003 _("bad register for post-index"));
15004 inst.instruction |= postreg;
15005 }
15006 else if (inst.operands[1].writeback)
15007 {
15008 inst.instruction |= 0xd;
15009 }
15010 else
15011 inst.instruction |= 0xf;
15012
15013 if (thumb_mode)
15014 inst.instruction |= 0xf9000000;
15015 else
15016 inst.instruction |= 0xf4000000;
15017 }
15018 \f
15019 /* Overall per-instruction processing. */
15020
15021 /* We need to be able to fix up arbitrary expressions in some statements.
15022 This is so that we can handle symbols that are an arbitrary distance from
15023 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15024 which returns part of an address in a form which will be valid for
15025 a data instruction. We do this by pushing the expression into a symbol
15026 in the expr_section, and creating a fix for that. */
15027
15028 static void
15029 fix_new_arm (fragS * frag,
15030 int where,
15031 short int size,
15032 expressionS * exp,
15033 int pc_rel,
15034 int reloc)
15035 {
15036 fixS * new_fix;
15037
15038 switch (exp->X_op)
15039 {
15040 case O_constant:
15041 case O_symbol:
15042 case O_add:
15043 case O_subtract:
15044 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15045 (enum bfd_reloc_code_real) reloc);
15046 break;
15047
15048 default:
15049 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15050 pc_rel, (enum bfd_reloc_code_real) reloc);
15051 break;
15052 }
15053
15054 /* Mark whether the fix is to a THUMB instruction, or an ARM
15055 instruction. */
15056 new_fix->tc_fix_data = thumb_mode;
15057 }
15058
15059 /* Create a frg for an instruction requiring relaxation. */
15060 static void
15061 output_relax_insn (void)
15062 {
15063 char * to;
15064 symbolS *sym;
15065 int offset;
15066
15067 /* The size of the instruction is unknown, so tie the debug info to the
15068 start of the instruction. */
15069 dwarf2_emit_insn (0);
15070
15071 switch (inst.reloc.exp.X_op)
15072 {
15073 case O_symbol:
15074 sym = inst.reloc.exp.X_add_symbol;
15075 offset = inst.reloc.exp.X_add_number;
15076 break;
15077 case O_constant:
15078 sym = NULL;
15079 offset = inst.reloc.exp.X_add_number;
15080 break;
15081 default:
15082 sym = make_expr_symbol (&inst.reloc.exp);
15083 offset = 0;
15084 break;
15085 }
15086 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15087 inst.relax, sym, offset, NULL/*offset, opcode*/);
15088 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15089 }
15090
15091 /* Write a 32-bit thumb instruction to buf. */
15092 static void
15093 put_thumb32_insn (char * buf, unsigned long insn)
15094 {
15095 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15096 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15097 }
15098
15099 static void
15100 output_inst (const char * str)
15101 {
15102 char * to = NULL;
15103
15104 if (inst.error)
15105 {
15106 as_bad ("%s -- `%s'", inst.error, str);
15107 return;
15108 }
15109 if (inst.relax)
15110 {
15111 output_relax_insn ();
15112 return;
15113 }
15114 if (inst.size == 0)
15115 return;
15116
15117 to = frag_more (inst.size);
15118 /* PR 9814: Record the thumb mode into the current frag so that we know
15119 what type of NOP padding to use, if necessary. We override any previous
15120 setting so that if the mode has changed then the NOPS that we use will
15121 match the encoding of the last instruction in the frag. */
15122 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15123
15124 if (thumb_mode && (inst.size > THUMB_SIZE))
15125 {
15126 gas_assert (inst.size == (2 * THUMB_SIZE));
15127 put_thumb32_insn (to, inst.instruction);
15128 }
15129 else if (inst.size > INSN_SIZE)
15130 {
15131 gas_assert (inst.size == (2 * INSN_SIZE));
15132 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15133 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15134 }
15135 else
15136 md_number_to_chars (to, inst.instruction, inst.size);
15137
15138 if (inst.reloc.type != BFD_RELOC_UNUSED)
15139 fix_new_arm (frag_now, to - frag_now->fr_literal,
15140 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15141 inst.reloc.type);
15142
15143 dwarf2_emit_insn (inst.size);
15144 }
15145
15146 static char *
15147 output_it_inst (int cond, int mask, char * to)
15148 {
15149 unsigned long instruction = 0xbf00;
15150
15151 mask &= 0xf;
15152 instruction |= mask;
15153 instruction |= cond << 4;
15154
15155 if (to == NULL)
15156 {
15157 to = frag_more (2);
15158 #ifdef OBJ_ELF
15159 dwarf2_emit_insn (2);
15160 #endif
15161 }
15162
15163 md_number_to_chars (to, instruction, 2);
15164
15165 return to;
15166 }
15167
15168 /* Tag values used in struct asm_opcode's tag field. */
15169 enum opcode_tag
15170 {
15171 OT_unconditional, /* Instruction cannot be conditionalized.
15172 The ARM condition field is still 0xE. */
15173 OT_unconditionalF, /* Instruction cannot be conditionalized
15174 and carries 0xF in its ARM condition field. */
15175 OT_csuffix, /* Instruction takes a conditional suffix. */
15176 OT_csuffixF, /* Some forms of the instruction take a conditional
15177 suffix, others place 0xF where the condition field
15178 would be. */
15179 OT_cinfix3, /* Instruction takes a conditional infix,
15180 beginning at character index 3. (In
15181 unified mode, it becomes a suffix.) */
15182 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15183 tsts, cmps, cmns, and teqs. */
15184 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15185 character index 3, even in unified mode. Used for
15186 legacy instructions where suffix and infix forms
15187 may be ambiguous. */
15188 OT_csuf_or_in3, /* Instruction takes either a conditional
15189 suffix or an infix at character index 3. */
15190 OT_odd_infix_unc, /* This is the unconditional variant of an
15191 instruction that takes a conditional infix
15192 at an unusual position. In unified mode,
15193 this variant will accept a suffix. */
15194 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15195 are the conditional variants of instructions that
15196 take conditional infixes in unusual positions.
15197 The infix appears at character index
15198 (tag - OT_odd_infix_0). These are not accepted
15199 in unified mode. */
15200 };
15201
15202 /* Subroutine of md_assemble, responsible for looking up the primary
15203 opcode from the mnemonic the user wrote. STR points to the
15204 beginning of the mnemonic.
15205
15206 This is not simply a hash table lookup, because of conditional
15207 variants. Most instructions have conditional variants, which are
15208 expressed with a _conditional affix_ to the mnemonic. If we were
15209 to encode each conditional variant as a literal string in the opcode
15210 table, it would have approximately 20,000 entries.
15211
15212 Most mnemonics take this affix as a suffix, and in unified syntax,
15213 'most' is upgraded to 'all'. However, in the divided syntax, some
15214 instructions take the affix as an infix, notably the s-variants of
15215 the arithmetic instructions. Of those instructions, all but six
15216 have the infix appear after the third character of the mnemonic.
15217
15218 Accordingly, the algorithm for looking up primary opcodes given
15219 an identifier is:
15220
15221 1. Look up the identifier in the opcode table.
15222 If we find a match, go to step U.
15223
15224 2. Look up the last two characters of the identifier in the
15225 conditions table. If we find a match, look up the first N-2
15226 characters of the identifier in the opcode table. If we
15227 find a match, go to step CE.
15228
15229 3. Look up the fourth and fifth characters of the identifier in
15230 the conditions table. If we find a match, extract those
15231 characters from the identifier, and look up the remaining
15232 characters in the opcode table. If we find a match, go
15233 to step CM.
15234
15235 4. Fail.
15236
15237 U. Examine the tag field of the opcode structure, in case this is
15238 one of the six instructions with its conditional infix in an
15239 unusual place. If it is, the tag tells us where to find the
15240 infix; look it up in the conditions table and set inst.cond
15241 accordingly. Otherwise, this is an unconditional instruction.
15242 Again set inst.cond accordingly. Return the opcode structure.
15243
15244 CE. Examine the tag field to make sure this is an instruction that
15245 should receive a conditional suffix. If it is not, fail.
15246 Otherwise, set inst.cond from the suffix we already looked up,
15247 and return the opcode structure.
15248
15249 CM. Examine the tag field to make sure this is an instruction that
15250 should receive a conditional infix after the third character.
15251 If it is not, fail. Otherwise, undo the edits to the current
15252 line of input and proceed as for case CE. */
15253
15254 static const struct asm_opcode *
15255 opcode_lookup (char **str)
15256 {
15257 char *end, *base;
15258 char *affix;
15259 const struct asm_opcode *opcode;
15260 const struct asm_cond *cond;
15261 char save[2];
15262
15263 /* Scan up to the end of the mnemonic, which must end in white space,
15264 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15265 for (base = end = *str; *end != '\0'; end++)
15266 if (*end == ' ' || *end == '.')
15267 break;
15268
15269 if (end == base)
15270 return NULL;
15271
15272 /* Handle a possible width suffix and/or Neon type suffix. */
15273 if (end[0] == '.')
15274 {
15275 int offset = 2;
15276
15277 /* The .w and .n suffixes are only valid if the unified syntax is in
15278 use. */
15279 if (unified_syntax && end[1] == 'w')
15280 inst.size_req = 4;
15281 else if (unified_syntax && end[1] == 'n')
15282 inst.size_req = 2;
15283 else
15284 offset = 0;
15285
15286 inst.vectype.elems = 0;
15287
15288 *str = end + offset;
15289
15290 if (end[offset] == '.')
15291 {
15292 /* See if we have a Neon type suffix (possible in either unified or
15293 non-unified ARM syntax mode). */
15294 if (parse_neon_type (&inst.vectype, str) == FAIL)
15295 return NULL;
15296 }
15297 else if (end[offset] != '\0' && end[offset] != ' ')
15298 return NULL;
15299 }
15300 else
15301 *str = end;
15302
15303 /* Look for unaffixed or special-case affixed mnemonic. */
15304 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15305 end - base);
15306 if (opcode)
15307 {
15308 /* step U */
15309 if (opcode->tag < OT_odd_infix_0)
15310 {
15311 inst.cond = COND_ALWAYS;
15312 return opcode;
15313 }
15314
15315 if (warn_on_deprecated && unified_syntax)
15316 as_warn (_("conditional infixes are deprecated in unified syntax"));
15317 affix = base + (opcode->tag - OT_odd_infix_0);
15318 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15319 gas_assert (cond);
15320
15321 inst.cond = cond->value;
15322 return opcode;
15323 }
15324
15325 /* Cannot have a conditional suffix on a mnemonic of less than two
15326 characters. */
15327 if (end - base < 3)
15328 return NULL;
15329
15330 /* Look for suffixed mnemonic. */
15331 affix = end - 2;
15332 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15333 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15334 affix - base);
15335 if (opcode && cond)
15336 {
15337 /* step CE */
15338 switch (opcode->tag)
15339 {
15340 case OT_cinfix3_legacy:
15341 /* Ignore conditional suffixes matched on infix only mnemonics. */
15342 break;
15343
15344 case OT_cinfix3:
15345 case OT_cinfix3_deprecated:
15346 case OT_odd_infix_unc:
15347 if (!unified_syntax)
15348 return 0;
15349 /* else fall through */
15350
15351 case OT_csuffix:
15352 case OT_csuffixF:
15353 case OT_csuf_or_in3:
15354 inst.cond = cond->value;
15355 return opcode;
15356
15357 case OT_unconditional:
15358 case OT_unconditionalF:
15359 if (thumb_mode)
15360 inst.cond = cond->value;
15361 else
15362 {
15363 /* Delayed diagnostic. */
15364 inst.error = BAD_COND;
15365 inst.cond = COND_ALWAYS;
15366 }
15367 return opcode;
15368
15369 default:
15370 return NULL;
15371 }
15372 }
15373
15374 /* Cannot have a usual-position infix on a mnemonic of less than
15375 six characters (five would be a suffix). */
15376 if (end - base < 6)
15377 return NULL;
15378
15379 /* Look for infixed mnemonic in the usual position. */
15380 affix = base + 3;
15381 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15382 if (!cond)
15383 return NULL;
15384
15385 memcpy (save, affix, 2);
15386 memmove (affix, affix + 2, (end - affix) - 2);
15387 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15388 (end - base) - 2);
15389 memmove (affix + 2, affix, (end - affix) - 2);
15390 memcpy (affix, save, 2);
15391
15392 if (opcode
15393 && (opcode->tag == OT_cinfix3
15394 || opcode->tag == OT_cinfix3_deprecated
15395 || opcode->tag == OT_csuf_or_in3
15396 || opcode->tag == OT_cinfix3_legacy))
15397 {
15398 /* Step CM. */
15399 if (warn_on_deprecated && unified_syntax
15400 && (opcode->tag == OT_cinfix3
15401 || opcode->tag == OT_cinfix3_deprecated))
15402 as_warn (_("conditional infixes are deprecated in unified syntax"));
15403
15404 inst.cond = cond->value;
15405 return opcode;
15406 }
15407
15408 return NULL;
15409 }
15410
15411 /* This function generates an initial IT instruction, leaving its block
15412 virtually open for the new instructions. Eventually,
15413 the mask will be updated by now_it_add_mask () each time
15414 a new instruction needs to be included in the IT block.
15415 Finally, the block is closed with close_automatic_it_block ().
15416 The block closure can be requested either from md_assemble (),
15417 a tencode (), or due to a label hook. */
15418
15419 static void
15420 new_automatic_it_block (int cond)
15421 {
15422 now_it.state = AUTOMATIC_IT_BLOCK;
15423 now_it.mask = 0x18;
15424 now_it.cc = cond;
15425 now_it.block_length = 1;
15426 mapping_state (MAP_THUMB);
15427 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15428 }
15429
15430 /* Close an automatic IT block.
15431 See comments in new_automatic_it_block (). */
15432
15433 static void
15434 close_automatic_it_block (void)
15435 {
15436 now_it.mask = 0x10;
15437 now_it.block_length = 0;
15438 }
15439
15440 /* Update the mask of the current automatically-generated IT
15441 instruction. See comments in new_automatic_it_block (). */
15442
15443 static void
15444 now_it_add_mask (int cond)
15445 {
15446 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15447 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15448 | ((bitvalue) << (nbit)))
15449 const int resulting_bit = (cond & 1);
15450
15451 now_it.mask &= 0xf;
15452 now_it.mask = SET_BIT_VALUE (now_it.mask,
15453 resulting_bit,
15454 (5 - now_it.block_length));
15455 now_it.mask = SET_BIT_VALUE (now_it.mask,
15456 1,
15457 ((5 - now_it.block_length) - 1) );
15458 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15459
15460 #undef CLEAR_BIT
15461 #undef SET_BIT_VALUE
15462 }
15463
15464 /* The IT blocks handling machinery is accessed through the these functions:
15465 it_fsm_pre_encode () from md_assemble ()
15466 set_it_insn_type () optional, from the tencode functions
15467 set_it_insn_type_last () ditto
15468 in_it_block () ditto
15469 it_fsm_post_encode () from md_assemble ()
15470 force_automatic_it_block_close () from label habdling functions
15471
15472 Rationale:
15473 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15474 initializing the IT insn type with a generic initial value depending
15475 on the inst.condition.
15476 2) During the tencode function, two things may happen:
15477 a) The tencode function overrides the IT insn type by
15478 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15479 b) The tencode function queries the IT block state by
15480 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15481
15482 Both set_it_insn_type and in_it_block run the internal FSM state
15483 handling function (handle_it_state), because: a) setting the IT insn
15484 type may incur in an invalid state (exiting the function),
15485 and b) querying the state requires the FSM to be updated.
15486 Specifically we want to avoid creating an IT block for conditional
15487 branches, so it_fsm_pre_encode is actually a guess and we can't
15488 determine whether an IT block is required until the tencode () routine
15489 has decided what type of instruction this actually it.
15490 Because of this, if set_it_insn_type and in_it_block have to be used,
15491 set_it_insn_type has to be called first.
15492
15493 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15494 determines the insn IT type depending on the inst.cond code.
15495 When a tencode () routine encodes an instruction that can be
15496 either outside an IT block, or, in the case of being inside, has to be
15497 the last one, set_it_insn_type_last () will determine the proper
15498 IT instruction type based on the inst.cond code. Otherwise,
15499 set_it_insn_type can be called for overriding that logic or
15500 for covering other cases.
15501
15502 Calling handle_it_state () may not transition the IT block state to
15503 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15504 still queried. Instead, if the FSM determines that the state should
15505 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15506 after the tencode () function: that's what it_fsm_post_encode () does.
15507
15508 Since in_it_block () calls the state handling function to get an
15509 updated state, an error may occur (due to invalid insns combination).
15510 In that case, inst.error is set.
15511 Therefore, inst.error has to be checked after the execution of
15512 the tencode () routine.
15513
15514 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15515 any pending state change (if any) that didn't take place in
15516 handle_it_state () as explained above. */
15517
15518 static void
15519 it_fsm_pre_encode (void)
15520 {
15521 if (inst.cond != COND_ALWAYS)
15522 inst.it_insn_type = INSIDE_IT_INSN;
15523 else
15524 inst.it_insn_type = OUTSIDE_IT_INSN;
15525
15526 now_it.state_handled = 0;
15527 }
15528
15529 /* IT state FSM handling function. */
15530
15531 static int
15532 handle_it_state (void)
15533 {
15534 now_it.state_handled = 1;
15535
15536 switch (now_it.state)
15537 {
15538 case OUTSIDE_IT_BLOCK:
15539 switch (inst.it_insn_type)
15540 {
15541 case OUTSIDE_IT_INSN:
15542 break;
15543
15544 case INSIDE_IT_INSN:
15545 case INSIDE_IT_LAST_INSN:
15546 if (thumb_mode == 0)
15547 {
15548 if (unified_syntax
15549 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15550 as_tsktsk (_("Warning: conditional outside an IT block"\
15551 " for Thumb."));
15552 }
15553 else
15554 {
15555 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15556 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15557 {
15558 /* Automatically generate the IT instruction. */
15559 new_automatic_it_block (inst.cond);
15560 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15561 close_automatic_it_block ();
15562 }
15563 else
15564 {
15565 inst.error = BAD_OUT_IT;
15566 return FAIL;
15567 }
15568 }
15569 break;
15570
15571 case IF_INSIDE_IT_LAST_INSN:
15572 case NEUTRAL_IT_INSN:
15573 break;
15574
15575 case IT_INSN:
15576 now_it.state = MANUAL_IT_BLOCK;
15577 now_it.block_length = 0;
15578 break;
15579 }
15580 break;
15581
15582 case AUTOMATIC_IT_BLOCK:
15583 /* Three things may happen now:
15584 a) We should increment current it block size;
15585 b) We should close current it block (closing insn or 4 insns);
15586 c) We should close current it block and start a new one (due
15587 to incompatible conditions or
15588 4 insns-length block reached). */
15589
15590 switch (inst.it_insn_type)
15591 {
15592 case OUTSIDE_IT_INSN:
15593 /* The closure of the block shall happen immediatelly,
15594 so any in_it_block () call reports the block as closed. */
15595 force_automatic_it_block_close ();
15596 break;
15597
15598 case INSIDE_IT_INSN:
15599 case INSIDE_IT_LAST_INSN:
15600 case IF_INSIDE_IT_LAST_INSN:
15601 now_it.block_length++;
15602
15603 if (now_it.block_length > 4
15604 || !now_it_compatible (inst.cond))
15605 {
15606 force_automatic_it_block_close ();
15607 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15608 new_automatic_it_block (inst.cond);
15609 }
15610 else
15611 {
15612 now_it_add_mask (inst.cond);
15613 }
15614
15615 if (now_it.state == AUTOMATIC_IT_BLOCK
15616 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15617 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15618 close_automatic_it_block ();
15619 break;
15620
15621 case NEUTRAL_IT_INSN:
15622 now_it.block_length++;
15623
15624 if (now_it.block_length > 4)
15625 force_automatic_it_block_close ();
15626 else
15627 now_it_add_mask (now_it.cc & 1);
15628 break;
15629
15630 case IT_INSN:
15631 close_automatic_it_block ();
15632 now_it.state = MANUAL_IT_BLOCK;
15633 break;
15634 }
15635 break;
15636
15637 case MANUAL_IT_BLOCK:
15638 {
15639 /* Check conditional suffixes. */
15640 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15641 int is_last;
15642 now_it.mask <<= 1;
15643 now_it.mask &= 0x1f;
15644 is_last = (now_it.mask == 0x10);
15645
15646 switch (inst.it_insn_type)
15647 {
15648 case OUTSIDE_IT_INSN:
15649 inst.error = BAD_NOT_IT;
15650 return FAIL;
15651
15652 case INSIDE_IT_INSN:
15653 if (cond != inst.cond)
15654 {
15655 inst.error = BAD_IT_COND;
15656 return FAIL;
15657 }
15658 break;
15659
15660 case INSIDE_IT_LAST_INSN:
15661 case IF_INSIDE_IT_LAST_INSN:
15662 if (cond != inst.cond)
15663 {
15664 inst.error = BAD_IT_COND;
15665 return FAIL;
15666 }
15667 if (!is_last)
15668 {
15669 inst.error = BAD_BRANCH;
15670 return FAIL;
15671 }
15672 break;
15673
15674 case NEUTRAL_IT_INSN:
15675 /* The BKPT instruction is unconditional even in an IT block. */
15676 break;
15677
15678 case IT_INSN:
15679 inst.error = BAD_IT_IT;
15680 return FAIL;
15681 }
15682 }
15683 break;
15684 }
15685
15686 return SUCCESS;
15687 }
15688
15689 static void
15690 it_fsm_post_encode (void)
15691 {
15692 int is_last;
15693
15694 if (!now_it.state_handled)
15695 handle_it_state ();
15696
15697 is_last = (now_it.mask == 0x10);
15698 if (is_last)
15699 {
15700 now_it.state = OUTSIDE_IT_BLOCK;
15701 now_it.mask = 0;
15702 }
15703 }
15704
15705 static void
15706 force_automatic_it_block_close (void)
15707 {
15708 if (now_it.state == AUTOMATIC_IT_BLOCK)
15709 {
15710 close_automatic_it_block ();
15711 now_it.state = OUTSIDE_IT_BLOCK;
15712 now_it.mask = 0;
15713 }
15714 }
15715
15716 static int
15717 in_it_block (void)
15718 {
15719 if (!now_it.state_handled)
15720 handle_it_state ();
15721
15722 return now_it.state != OUTSIDE_IT_BLOCK;
15723 }
15724
15725 void
15726 md_assemble (char *str)
15727 {
15728 char *p = str;
15729 const struct asm_opcode * opcode;
15730
15731 /* Align the previous label if needed. */
15732 if (last_label_seen != NULL)
15733 {
15734 symbol_set_frag (last_label_seen, frag_now);
15735 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15736 S_SET_SEGMENT (last_label_seen, now_seg);
15737 }
15738
15739 memset (&inst, '\0', sizeof (inst));
15740 inst.reloc.type = BFD_RELOC_UNUSED;
15741
15742 opcode = opcode_lookup (&p);
15743 if (!opcode)
15744 {
15745 /* It wasn't an instruction, but it might be a register alias of
15746 the form alias .req reg, or a Neon .dn/.qn directive. */
15747 if (! create_register_alias (str, p)
15748 && ! create_neon_reg_alias (str, p))
15749 as_bad (_("bad instruction `%s'"), str);
15750
15751 return;
15752 }
15753
15754 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15755 as_warn (_("s suffix on comparison instruction is deprecated"));
15756
15757 /* The value which unconditional instructions should have in place of the
15758 condition field. */
15759 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15760
15761 if (thumb_mode)
15762 {
15763 arm_feature_set variant;
15764
15765 variant = cpu_variant;
15766 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15767 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15768 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15769 /* Check that this instruction is supported for this CPU. */
15770 if (!opcode->tvariant
15771 || (thumb_mode == 1
15772 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15773 {
15774 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
15775 return;
15776 }
15777 if (inst.cond != COND_ALWAYS && !unified_syntax
15778 && opcode->tencode != do_t_branch)
15779 {
15780 as_bad (_("Thumb does not support conditional execution"));
15781 return;
15782 }
15783
15784 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
15785 {
15786 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
15787 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15788 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15789 {
15790 /* Two things are addressed here.
15791 1) Implicit require narrow instructions on Thumb-1.
15792 This avoids relaxation accidentally introducing Thumb-2
15793 instructions.
15794 2) Reject wide instructions in non Thumb-2 cores. */
15795 if (inst.size_req == 0)
15796 inst.size_req = 2;
15797 else if (inst.size_req == 4)
15798 {
15799 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
15800 return;
15801 }
15802 }
15803 }
15804
15805 inst.instruction = opcode->tvalue;
15806
15807 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
15808 {
15809 /* Prepare the it_insn_type for those encodings that don't set
15810 it. */
15811 it_fsm_pre_encode ();
15812
15813 opcode->tencode ();
15814
15815 it_fsm_post_encode ();
15816 }
15817
15818 if (!(inst.error || inst.relax))
15819 {
15820 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
15821 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15822 if (inst.size_req && inst.size_req != inst.size)
15823 {
15824 as_bad (_("cannot honor width suffix -- `%s'"), str);
15825 return;
15826 }
15827 }
15828
15829 /* Something has gone badly wrong if we try to relax a fixed size
15830 instruction. */
15831 gas_assert (inst.size_req == 0 || !inst.relax);
15832
15833 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15834 *opcode->tvariant);
15835 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
15836 set those bits when Thumb-2 32-bit instructions are seen. ie.
15837 anything other than bl/blx and v6-M instructions.
15838 This is overly pessimistic for relaxable instructions. */
15839 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15840 || inst.relax)
15841 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15842 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
15843 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15844 arm_ext_v6t2);
15845
15846 check_neon_suffixes;
15847
15848 if (!inst.error)
15849 {
15850 mapping_state (MAP_THUMB);
15851 }
15852 }
15853 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
15854 {
15855 bfd_boolean is_bx;
15856
15857 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15858 is_bx = (opcode->aencode == do_bx);
15859
15860 /* Check that this instruction is supported for this CPU. */
15861 if (!(is_bx && fix_v4bx)
15862 && !(opcode->avariant &&
15863 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
15864 {
15865 as_bad (_("selected processor does not support ARM mode `%s'"), str);
15866 return;
15867 }
15868 if (inst.size_req)
15869 {
15870 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15871 return;
15872 }
15873
15874 inst.instruction = opcode->avalue;
15875 if (opcode->tag == OT_unconditionalF)
15876 inst.instruction |= 0xF << 28;
15877 else
15878 inst.instruction |= inst.cond << 28;
15879 inst.size = INSN_SIZE;
15880 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
15881 {
15882 it_fsm_pre_encode ();
15883 opcode->aencode ();
15884 it_fsm_post_encode ();
15885 }
15886 /* Arm mode bx is marked as both v4T and v5 because it's still required
15887 on a hypothetical non-thumb v5 core. */
15888 if (is_bx)
15889 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
15890 else
15891 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15892 *opcode->avariant);
15893
15894 check_neon_suffixes;
15895
15896 if (!inst.error)
15897 {
15898 mapping_state (MAP_ARM);
15899 }
15900 }
15901 else
15902 {
15903 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15904 "-- `%s'"), str);
15905 return;
15906 }
15907 output_inst (str);
15908 }
15909
15910 static void
15911 check_it_blocks_finished (void)
15912 {
15913 #ifdef OBJ_ELF
15914 asection *sect;
15915
15916 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15917 if (seg_info (sect)->tc_segment_info_data.current_it.state
15918 == MANUAL_IT_BLOCK)
15919 {
15920 as_warn (_("section '%s' finished with an open IT block."),
15921 sect->name);
15922 }
15923 #else
15924 if (now_it.state == MANUAL_IT_BLOCK)
15925 as_warn (_("file finished with an open IT block."));
15926 #endif
15927 }
15928
15929 /* Various frobbings of labels and their addresses. */
15930
15931 void
15932 arm_start_line_hook (void)
15933 {
15934 last_label_seen = NULL;
15935 }
15936
15937 void
15938 arm_frob_label (symbolS * sym)
15939 {
15940 last_label_seen = sym;
15941
15942 ARM_SET_THUMB (sym, thumb_mode);
15943
15944 #if defined OBJ_COFF || defined OBJ_ELF
15945 ARM_SET_INTERWORK (sym, support_interwork);
15946 #endif
15947
15948 force_automatic_it_block_close ();
15949
15950 /* Note - do not allow local symbols (.Lxxx) to be labelled
15951 as Thumb functions. This is because these labels, whilst
15952 they exist inside Thumb code, are not the entry points for
15953 possible ARM->Thumb calls. Also, these labels can be used
15954 as part of a computed goto or switch statement. eg gcc
15955 can generate code that looks like this:
15956
15957 ldr r2, [pc, .Laaa]
15958 lsl r3, r3, #2
15959 ldr r2, [r3, r2]
15960 mov pc, r2
15961
15962 .Lbbb: .word .Lxxx
15963 .Lccc: .word .Lyyy
15964 ..etc...
15965 .Laaa: .word Lbbb
15966
15967 The first instruction loads the address of the jump table.
15968 The second instruction converts a table index into a byte offset.
15969 The third instruction gets the jump address out of the table.
15970 The fourth instruction performs the jump.
15971
15972 If the address stored at .Laaa is that of a symbol which has the
15973 Thumb_Func bit set, then the linker will arrange for this address
15974 to have the bottom bit set, which in turn would mean that the
15975 address computation performed by the third instruction would end
15976 up with the bottom bit set. Since the ARM is capable of unaligned
15977 word loads, the instruction would then load the incorrect address
15978 out of the jump table, and chaos would ensue. */
15979 if (label_is_thumb_function_name
15980 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15981 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
15982 {
15983 /* When the address of a Thumb function is taken the bottom
15984 bit of that address should be set. This will allow
15985 interworking between Arm and Thumb functions to work
15986 correctly. */
15987
15988 THUMB_SET_FUNC (sym, 1);
15989
15990 label_is_thumb_function_name = FALSE;
15991 }
15992
15993 dwarf2_emit_label (sym);
15994 }
15995
15996 bfd_boolean
15997 arm_data_in_code (void)
15998 {
15999 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16000 {
16001 *input_line_pointer = '/';
16002 input_line_pointer += 5;
16003 *input_line_pointer = 0;
16004 return TRUE;
16005 }
16006
16007 return FALSE;
16008 }
16009
16010 char *
16011 arm_canonicalize_symbol_name (char * name)
16012 {
16013 int len;
16014
16015 if (thumb_mode && (len = strlen (name)) > 5
16016 && streq (name + len - 5, "/data"))
16017 *(name + len - 5) = 0;
16018
16019 return name;
16020 }
16021 \f
16022 /* Table of all register names defined by default. The user can
16023 define additional names with .req. Note that all register names
16024 should appear in both upper and lowercase variants. Some registers
16025 also have mixed-case names. */
16026
16027 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16028 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16029 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16030 #define REGSET(p,t) \
16031 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16032 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16033 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16034 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16035 #define REGSETH(p,t) \
16036 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16037 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16038 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16039 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16040 #define REGSET2(p,t) \
16041 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16042 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16043 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16044 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16045
16046 static const struct reg_entry reg_names[] =
16047 {
16048 /* ARM integer registers. */
16049 REGSET(r, RN), REGSET(R, RN),
16050
16051 /* ATPCS synonyms. */
16052 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16053 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16054 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16055
16056 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16057 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16058 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16059
16060 /* Well-known aliases. */
16061 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16062 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16063
16064 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16065 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16066
16067 /* Coprocessor numbers. */
16068 REGSET(p, CP), REGSET(P, CP),
16069
16070 /* Coprocessor register numbers. The "cr" variants are for backward
16071 compatibility. */
16072 REGSET(c, CN), REGSET(C, CN),
16073 REGSET(cr, CN), REGSET(CR, CN),
16074
16075 /* FPA registers. */
16076 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16077 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16078
16079 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16080 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16081
16082 /* VFP SP registers. */
16083 REGSET(s,VFS), REGSET(S,VFS),
16084 REGSETH(s,VFS), REGSETH(S,VFS),
16085
16086 /* VFP DP Registers. */
16087 REGSET(d,VFD), REGSET(D,VFD),
16088 /* Extra Neon DP registers. */
16089 REGSETH(d,VFD), REGSETH(D,VFD),
16090
16091 /* Neon QP registers. */
16092 REGSET2(q,NQ), REGSET2(Q,NQ),
16093
16094 /* VFP control registers. */
16095 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16096 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16097 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16098 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16099 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16100 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16101
16102 /* Maverick DSP coprocessor registers. */
16103 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16104 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16105
16106 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16107 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16108 REGDEF(dspsc,0,DSPSC),
16109
16110 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16111 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16112 REGDEF(DSPSC,0,DSPSC),
16113
16114 /* iWMMXt data registers - p0, c0-15. */
16115 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16116
16117 /* iWMMXt control registers - p1, c0-3. */
16118 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16119 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16120 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16121 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16122
16123 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16124 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16125 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16126 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16127 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16128
16129 /* XScale accumulator registers. */
16130 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16131 };
16132 #undef REGDEF
16133 #undef REGNUM
16134 #undef REGSET
16135
16136 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16137 within psr_required_here. */
16138 static const struct asm_psr psrs[] =
16139 {
16140 /* Backward compatibility notation. Note that "all" is no longer
16141 truly all possible PSR bits. */
16142 {"all", PSR_c | PSR_f},
16143 {"flg", PSR_f},
16144 {"ctl", PSR_c},
16145
16146 /* Individual flags. */
16147 {"f", PSR_f},
16148 {"c", PSR_c},
16149 {"x", PSR_x},
16150 {"s", PSR_s},
16151 /* Combinations of flags. */
16152 {"fs", PSR_f | PSR_s},
16153 {"fx", PSR_f | PSR_x},
16154 {"fc", PSR_f | PSR_c},
16155 {"sf", PSR_s | PSR_f},
16156 {"sx", PSR_s | PSR_x},
16157 {"sc", PSR_s | PSR_c},
16158 {"xf", PSR_x | PSR_f},
16159 {"xs", PSR_x | PSR_s},
16160 {"xc", PSR_x | PSR_c},
16161 {"cf", PSR_c | PSR_f},
16162 {"cs", PSR_c | PSR_s},
16163 {"cx", PSR_c | PSR_x},
16164 {"fsx", PSR_f | PSR_s | PSR_x},
16165 {"fsc", PSR_f | PSR_s | PSR_c},
16166 {"fxs", PSR_f | PSR_x | PSR_s},
16167 {"fxc", PSR_f | PSR_x | PSR_c},
16168 {"fcs", PSR_f | PSR_c | PSR_s},
16169 {"fcx", PSR_f | PSR_c | PSR_x},
16170 {"sfx", PSR_s | PSR_f | PSR_x},
16171 {"sfc", PSR_s | PSR_f | PSR_c},
16172 {"sxf", PSR_s | PSR_x | PSR_f},
16173 {"sxc", PSR_s | PSR_x | PSR_c},
16174 {"scf", PSR_s | PSR_c | PSR_f},
16175 {"scx", PSR_s | PSR_c | PSR_x},
16176 {"xfs", PSR_x | PSR_f | PSR_s},
16177 {"xfc", PSR_x | PSR_f | PSR_c},
16178 {"xsf", PSR_x | PSR_s | PSR_f},
16179 {"xsc", PSR_x | PSR_s | PSR_c},
16180 {"xcf", PSR_x | PSR_c | PSR_f},
16181 {"xcs", PSR_x | PSR_c | PSR_s},
16182 {"cfs", PSR_c | PSR_f | PSR_s},
16183 {"cfx", PSR_c | PSR_f | PSR_x},
16184 {"csf", PSR_c | PSR_s | PSR_f},
16185 {"csx", PSR_c | PSR_s | PSR_x},
16186 {"cxf", PSR_c | PSR_x | PSR_f},
16187 {"cxs", PSR_c | PSR_x | PSR_s},
16188 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16189 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16190 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16191 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16192 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16193 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16194 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16195 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16196 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16197 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16198 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16199 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16200 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16201 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16202 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16203 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16204 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16205 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16206 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16207 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16208 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16209 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16210 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16211 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16212 };
16213
16214 /* Table of V7M psr names. */
16215 static const struct asm_psr v7m_psrs[] =
16216 {
16217 {"apsr", 0 }, {"APSR", 0 },
16218 {"iapsr", 1 }, {"IAPSR", 1 },
16219 {"eapsr", 2 }, {"EAPSR", 2 },
16220 {"psr", 3 }, {"PSR", 3 },
16221 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16222 {"ipsr", 5 }, {"IPSR", 5 },
16223 {"epsr", 6 }, {"EPSR", 6 },
16224 {"iepsr", 7 }, {"IEPSR", 7 },
16225 {"msp", 8 }, {"MSP", 8 },
16226 {"psp", 9 }, {"PSP", 9 },
16227 {"primask", 16}, {"PRIMASK", 16},
16228 {"basepri", 17}, {"BASEPRI", 17},
16229 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16230 {"faultmask", 19}, {"FAULTMASK", 19},
16231 {"control", 20}, {"CONTROL", 20}
16232 };
16233
16234 /* Table of all shift-in-operand names. */
16235 static const struct asm_shift_name shift_names [] =
16236 {
16237 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16238 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16239 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16240 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16241 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16242 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16243 };
16244
16245 /* Table of all explicit relocation names. */
16246 #ifdef OBJ_ELF
16247 static struct reloc_entry reloc_names[] =
16248 {
16249 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16250 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16251 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16252 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16253 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16254 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16255 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16256 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16257 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16258 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16259 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16260 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL}
16261 };
16262 #endif
16263
16264 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16265 static const struct asm_cond conds[] =
16266 {
16267 {"eq", 0x0},
16268 {"ne", 0x1},
16269 {"cs", 0x2}, {"hs", 0x2},
16270 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16271 {"mi", 0x4},
16272 {"pl", 0x5},
16273 {"vs", 0x6},
16274 {"vc", 0x7},
16275 {"hi", 0x8},
16276 {"ls", 0x9},
16277 {"ge", 0xa},
16278 {"lt", 0xb},
16279 {"gt", 0xc},
16280 {"le", 0xd},
16281 {"al", 0xe}
16282 };
16283
16284 static struct asm_barrier_opt barrier_opt_names[] =
16285 {
16286 { "sy", 0xf },
16287 { "un", 0x7 },
16288 { "st", 0xe },
16289 { "unst", 0x6 }
16290 };
16291
16292 /* Table of ARM-format instructions. */
16293
16294 /* Macros for gluing together operand strings. N.B. In all cases
16295 other than OPS0, the trailing OP_stop comes from default
16296 zero-initialization of the unspecified elements of the array. */
16297 #define OPS0() { OP_stop, }
16298 #define OPS1(a) { OP_##a, }
16299 #define OPS2(a,b) { OP_##a,OP_##b, }
16300 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16301 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16302 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16303 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16304
16305 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16306 This is useful when mixing operands for ARM and THUMB, i.e. using the
16307 MIX_ARM_THUMB_OPERANDS macro.
16308 In order to use these macros, prefix the number of operands with _
16309 e.g. _3. */
16310 #define OPS_1(a) { a, }
16311 #define OPS_2(a,b) { a,b, }
16312 #define OPS_3(a,b,c) { a,b,c, }
16313 #define OPS_4(a,b,c,d) { a,b,c,d, }
16314 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16315 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16316
16317 /* These macros abstract out the exact format of the mnemonic table and
16318 save some repeated characters. */
16319
16320 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16321 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16322 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16323 THUMB_VARIANT, do_##ae, do_##te }
16324
16325 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16326 a T_MNEM_xyz enumerator. */
16327 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16328 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16329 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16330 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16331
16332 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16333 infix after the third character. */
16334 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16335 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16336 THUMB_VARIANT, do_##ae, do_##te }
16337 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16338 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16339 THUMB_VARIANT, do_##ae, do_##te }
16340 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16341 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16342 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16343 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16344 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16345 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16346 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16347 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16348
16349 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16350 appear in the condition table. */
16351 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16352 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16353 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16354
16355 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16356 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16357 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16358 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16359 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16360 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16361 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16362 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16363 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16364 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16365 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16366 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16367 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16368 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16369 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16370 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16371 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16372 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16373 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16374 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16375
16376 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16377 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16378 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16379 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16380
16381 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16382 field is still 0xE. Many of the Thumb variants can be executed
16383 conditionally, so this is checked separately. */
16384 #define TUE(mnem, op, top, nops, ops, ae, te) \
16385 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16386 THUMB_VARIANT, do_##ae, do_##te }
16387
16388 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16389 condition code field. */
16390 #define TUF(mnem, op, top, nops, ops, ae, te) \
16391 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16392 THUMB_VARIANT, do_##ae, do_##te }
16393
16394 /* ARM-only variants of all the above. */
16395 #define CE(mnem, op, nops, ops, ae) \
16396 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16397
16398 #define C3(mnem, op, nops, ops, ae) \
16399 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16400
16401 /* Legacy mnemonics that always have conditional infix after the third
16402 character. */
16403 #define CL(mnem, op, nops, ops, ae) \
16404 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16405 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16406
16407 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16408 #define cCE(mnem, op, nops, ops, ae) \
16409 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16410
16411 /* Legacy coprocessor instructions where conditional infix and conditional
16412 suffix are ambiguous. For consistency this includes all FPA instructions,
16413 not just the potentially ambiguous ones. */
16414 #define cCL(mnem, op, nops, ops, ae) \
16415 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16416 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16417
16418 /* Coprocessor, takes either a suffix or a position-3 infix
16419 (for an FPA corner case). */
16420 #define C3E(mnem, op, nops, ops, ae) \
16421 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16422 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16423
16424 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16425 { m1 #m2 m3, OPS##nops ops, \
16426 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16427 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16428
16429 #define CM(m1, m2, op, nops, ops, ae) \
16430 xCM_ (m1, , m2, op, nops, ops, ae), \
16431 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16432 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16433 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16434 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16435 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16436 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16437 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16438 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16439 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16440 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16441 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16442 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16443 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16444 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16445 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16446 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16447 xCM_ (m1, le, m2, op, nops, ops, ae), \
16448 xCM_ (m1, al, m2, op, nops, ops, ae)
16449
16450 #define UE(mnem, op, nops, ops, ae) \
16451 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16452
16453 #define UF(mnem, op, nops, ops, ae) \
16454 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16455
16456 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16457 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16458 use the same encoding function for each. */
16459 #define NUF(mnem, op, nops, ops, enc) \
16460 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16461 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16462
16463 /* Neon data processing, version which indirects through neon_enc_tab for
16464 the various overloaded versions of opcodes. */
16465 #define nUF(mnem, op, nops, ops, enc) \
16466 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16467 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16468
16469 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16470 version. */
16471 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16472 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16473 THUMB_VARIANT, do_##enc, do_##enc }
16474
16475 #define NCE(mnem, op, nops, ops, enc) \
16476 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16477
16478 #define NCEF(mnem, op, nops, ops, enc) \
16479 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16480
16481 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16482 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16483 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16484 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16485
16486 #define nCE(mnem, op, nops, ops, enc) \
16487 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16488
16489 #define nCEF(mnem, op, nops, ops, enc) \
16490 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16491
16492 #define do_0 0
16493
16494 static const struct asm_opcode insns[] =
16495 {
16496 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16497 #define THUMB_VARIANT &arm_ext_v4t
16498 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16499 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16500 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16501 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16502 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16503 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16504 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16505 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16506 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16507 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16508 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16509 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16510 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16511 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16512 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16513 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16514
16515 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16516 for setting PSR flag bits. They are obsolete in V6 and do not
16517 have Thumb equivalents. */
16518 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16519 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16520 CL("tstp", 110f000, 2, (RR, SH), cmp),
16521 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16522 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16523 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16524 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16525 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16526 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16527
16528 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16529 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16530 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16531 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16532
16533 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16534 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16535 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16536 OP_RRnpc),
16537 OP_ADDRGLDR),ldst, t_ldst),
16538 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16539
16540 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16541 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16542 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16543 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16544 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16545 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16546
16547 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16548 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16549 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16550 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16551
16552 /* Pseudo ops. */
16553 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16554 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16555 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16556
16557 /* Thumb-compatibility pseudo ops. */
16558 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16559 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16560 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16561 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16562 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16563 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16564 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16565 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16566 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16567 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16568 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16569 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16570
16571 /* These may simplify to neg. */
16572 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16573 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16574
16575 #undef THUMB_VARIANT
16576 #define THUMB_VARIANT & arm_ext_v6
16577
16578 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16579
16580 /* V1 instructions with no Thumb analogue prior to V6T2. */
16581 #undef THUMB_VARIANT
16582 #define THUMB_VARIANT & arm_ext_v6t2
16583
16584 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16585 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16586 CL("teqp", 130f000, 2, (RR, SH), cmp),
16587
16588 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16589 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16590 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16591 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16592
16593 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16594 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16595
16596 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16597 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16598
16599 /* V1 instructions with no Thumb analogue at all. */
16600 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16601 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16602
16603 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16604 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16605 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16606 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16607 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16608 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16609 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16610 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16611
16612 #undef ARM_VARIANT
16613 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16614 #undef THUMB_VARIANT
16615 #define THUMB_VARIANT & arm_ext_v4t
16616
16617 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16618 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16619
16620 #undef THUMB_VARIANT
16621 #define THUMB_VARIANT & arm_ext_v6t2
16622
16623 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16624 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16625
16626 /* Generic coprocessor instructions. */
16627 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16628 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16629 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16630 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16631 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16632 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16633 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16634
16635 #undef ARM_VARIANT
16636 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16637
16638 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16639 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16640
16641 #undef ARM_VARIANT
16642 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16643 #undef THUMB_VARIANT
16644 #define THUMB_VARIANT & arm_ext_msr
16645
16646 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16647 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16648
16649 #undef ARM_VARIANT
16650 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16651 #undef THUMB_VARIANT
16652 #define THUMB_VARIANT & arm_ext_v6t2
16653
16654 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16655 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16656 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16657 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16658 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16659 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16660 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16661 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16662
16663 #undef ARM_VARIANT
16664 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16665 #undef THUMB_VARIANT
16666 #define THUMB_VARIANT & arm_ext_v4t
16667
16668 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16669 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16670 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16671 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16672 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16673 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16674
16675 #undef ARM_VARIANT
16676 #define ARM_VARIANT & arm_ext_v4t_5
16677
16678 /* ARM Architecture 4T. */
16679 /* Note: bx (and blx) are required on V5, even if the processor does
16680 not support Thumb. */
16681 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16682
16683 #undef ARM_VARIANT
16684 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16685 #undef THUMB_VARIANT
16686 #define THUMB_VARIANT & arm_ext_v5t
16687
16688 /* Note: blx has 2 variants; the .value coded here is for
16689 BLX(2). Only this variant has conditional execution. */
16690 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16691 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16692
16693 #undef THUMB_VARIANT
16694 #define THUMB_VARIANT & arm_ext_v6t2
16695
16696 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16697 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16698 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16699 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16700 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16701 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16702 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16703 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16704
16705 #undef ARM_VARIANT
16706 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16707 #undef THUMB_VARIANT
16708 #define THUMB_VARIANT &arm_ext_v5exp
16709
16710 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16711 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16712 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16713 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16714
16715 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16716 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16717
16718 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16719 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16720 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16721 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16722
16723 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16724 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16725 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16726 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16727
16728 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16729 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16730
16731 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16732 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16733 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16734 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16735
16736 #undef ARM_VARIANT
16737 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16738 #undef THUMB_VARIANT
16739 #define THUMB_VARIANT &arm_ext_v6t2
16740
16741 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
16742 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
16743 ldrd, t_ldstd),
16744 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
16745 ADDRGLDRS), ldrd, t_ldstd),
16746
16747 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16748 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16749
16750 #undef ARM_VARIANT
16751 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16752
16753 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
16754
16755 #undef ARM_VARIANT
16756 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16757 #undef THUMB_VARIANT
16758 #define THUMB_VARIANT & arm_ext_v6
16759
16760 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16761 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16762 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16763 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16764 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16765 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16766 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16767 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16768 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16769 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
16770
16771 #undef THUMB_VARIANT
16772 #define THUMB_VARIANT & arm_ext_v6t2
16773
16774 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
16775 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16776 strex, t_strex),
16777 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16778 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16779
16780 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16781 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
16782
16783 /* ARM V6 not included in V7M. */
16784 #undef THUMB_VARIANT
16785 #define THUMB_VARIANT & arm_ext_v6_notm
16786 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16787 UF(rfeib, 9900a00, 1, (RRw), rfe),
16788 UF(rfeda, 8100a00, 1, (RRw), rfe),
16789 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16790 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16791 UF(rfefa, 9900a00, 1, (RRw), rfe),
16792 UF(rfeea, 8100a00, 1, (RRw), rfe),
16793 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16794 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16795 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16796 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16797 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
16798
16799 /* ARM V6 not included in V7M (eg. integer SIMD). */
16800 #undef THUMB_VARIANT
16801 #define THUMB_VARIANT & arm_ext_v6_dsp
16802 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16803 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16804 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16805 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16806 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16807 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16808 /* Old name for QASX. */
16809 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16810 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16811 /* Old name for QSAX. */
16812 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16813 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16814 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16815 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16816 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16817 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16818 /* Old name for SASX. */
16819 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16820 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16821 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16822 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16823 /* Old name for SHASX. */
16824 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16825 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16826 /* Old name for SHSAX. */
16827 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16828 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16829 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16830 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16831 /* Old name for SSAX. */
16832 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16833 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16834 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16835 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16836 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16837 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16838 /* Old name for UASX. */
16839 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16840 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16841 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16842 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16843 /* Old name for UHASX. */
16844 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16845 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16846 /* Old name for UHSAX. */
16847 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16848 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16849 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16850 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16851 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16852 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16853 /* Old name for UQASX. */
16854 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16855 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16856 /* Old name for UQSAX. */
16857 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16858 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16859 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16860 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16861 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16862 /* Old name for USAX. */
16863 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16864 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16865 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16866 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16867 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16868 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16869 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16870 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16871 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16872 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16873 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16874 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16875 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16876 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16877 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16878 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16879 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16880 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16881 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16882 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16883 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16884 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16885 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16886 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16887 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16888 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16889 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16890 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16891 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16892 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16893 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16894 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16895 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16896 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
16897
16898 #undef ARM_VARIANT
16899 #define ARM_VARIANT & arm_ext_v6k
16900 #undef THUMB_VARIANT
16901 #define THUMB_VARIANT & arm_ext_v6k
16902
16903 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16904 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16905 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16906 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
16907
16908 #undef THUMB_VARIANT
16909 #define THUMB_VARIANT & arm_ext_v6_notm
16910 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
16911 ldrexd, t_ldrexd),
16912 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
16913 RRnpcb), strexd, t_strexd),
16914
16915 #undef THUMB_VARIANT
16916 #define THUMB_VARIANT & arm_ext_v6t2
16917 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
16918 rd_rn, rd_rn),
16919 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
16920 rd_rn, rd_rn),
16921 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16922 strex, rm_rd_rn),
16923 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16924 strex, rm_rd_rn),
16925 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
16926
16927 #undef ARM_VARIANT
16928 #define ARM_VARIANT & arm_ext_v6z
16929
16930 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
16931
16932 #undef ARM_VARIANT
16933 #define ARM_VARIANT & arm_ext_v6t2
16934
16935 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16936 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16937 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16938 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16939
16940 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16941 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16942 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16943 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
16944
16945 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16946 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16947 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16948 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16949
16950 /* Thumb-only instructions. */
16951 #undef ARM_VARIANT
16952 #define ARM_VARIANT NULL
16953 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
16954 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
16955
16956 /* ARM does not really have an IT instruction, so always allow it.
16957 The opcode is copied from Thumb in order to allow warnings in
16958 -mimplicit-it=[never | arm] modes. */
16959 #undef ARM_VARIANT
16960 #define ARM_VARIANT & arm_ext_v1
16961
16962 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16963 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16964 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16965 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16966 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16967 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16968 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16969 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16970 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16971 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16972 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16973 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16974 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16975 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16976 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
16977 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
16978 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16979 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
16980
16981 /* Thumb2 only instructions. */
16982 #undef ARM_VARIANT
16983 #define ARM_VARIANT NULL
16984
16985 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16986 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16987 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16988 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16989 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16990 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
16991
16992 /* Thumb-2 hardware division instructions (R and M profiles only). */
16993 #undef THUMB_VARIANT
16994 #define THUMB_VARIANT & arm_ext_div
16995
16996 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16997 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
16998
16999 /* ARM V6M/V7 instructions. */
17000 #undef ARM_VARIANT
17001 #define ARM_VARIANT & arm_ext_barrier
17002 #undef THUMB_VARIANT
17003 #define THUMB_VARIANT & arm_ext_barrier
17004
17005 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
17006 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
17007 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
17008
17009 /* ARM V7 instructions. */
17010 #undef ARM_VARIANT
17011 #define ARM_VARIANT & arm_ext_v7
17012 #undef THUMB_VARIANT
17013 #define THUMB_VARIANT & arm_ext_v7
17014
17015 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17016 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17017
17018 #undef ARM_VARIANT
17019 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17020
17021 cCE("wfs", e200110, 1, (RR), rd),
17022 cCE("rfs", e300110, 1, (RR), rd),
17023 cCE("wfc", e400110, 1, (RR), rd),
17024 cCE("rfc", e500110, 1, (RR), rd),
17025
17026 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17027 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17028 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17029 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17030
17031 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17032 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17033 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17034 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17035
17036 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17037 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17038 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17039 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17040 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17041 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17042 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17043 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17044 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17045 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17046 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17047 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17048
17049 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17050 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17051 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17052 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17053 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17054 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17055 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17056 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17057 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17058 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17059 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17060 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17061
17062 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17063 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17064 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17065 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17066 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17067 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17068 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17069 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17070 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17071 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17072 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17073 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17074
17075 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17076 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17077 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17078 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17079 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17080 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17081 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17082 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17083 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17084 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17085 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17086 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17087
17088 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17089 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17090 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17091 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17092 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17093 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17094 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17095 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17096 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17097 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17098 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17099 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17100
17101 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17102 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17103 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17104 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17105 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17106 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17107 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17108 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17109 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17110 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17111 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17112 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17113
17114 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17115 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17116 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17117 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17118 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17119 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17120 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17121 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17122 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17123 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17124 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17125 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17126
17127 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17128 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17129 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17130 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17131 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17132 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17133 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17134 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17135 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17136 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17137 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17138 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17139
17140 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17141 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17142 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17143 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17144 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17145 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17146 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17147 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17148 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17149 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17150 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17151 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17152
17153 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17154 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17155 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17156 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17157 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17158 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17159 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17160 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17161 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17162 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17163 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17164 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17165
17166 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17167 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17168 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17169 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17170 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17171 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17172 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17173 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17174 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17175 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17176 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17177 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17178
17179 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17180 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17181 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17182 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17183 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17184 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17185 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17186 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17187 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17188 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17189 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17190 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17191
17192 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17193 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17194 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17195 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17196 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17197 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17198 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17199 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17200 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17201 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17202 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17203 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17204
17205 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17206 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17207 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17208 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17209 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17210 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17211 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17212 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17213 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17214 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17215 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17216 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17217
17218 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17219 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17220 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17221 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17222 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17223 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17224 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17225 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17226 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17227 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17228 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17229 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17230
17231 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17232 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17233 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17234 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17235 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17236 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17237 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17238 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17239 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17240 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17241 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17242 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17243
17244 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17245 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17246 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17247 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17248 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17249 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17250 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17251 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17252 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17253 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17254 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17255 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17256
17257 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17258 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17259 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17260 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17261 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17262 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17263 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17264 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17265 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17266 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17267 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17268 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17269
17270 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17271 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17272 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17273 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17274 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17275 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17276 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17277 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17278 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17279 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17280 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17281 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17282
17283 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17284 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17285 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17286 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17287 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17288 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17289 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17290 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17291 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17292 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17293 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17294 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17295
17296 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17297 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17298 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17299 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17300 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17301 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17302 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17303 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17304 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17305 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17306 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17307 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17308
17309 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17310 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17311 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17312 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17313 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17314 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17315 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17316 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17317 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17318 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17319 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17320 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17321
17322 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17323 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17324 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17325 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17326 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17327 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17328 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17329 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17330 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17331 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17332 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17333 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17334
17335 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17336 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17337 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17338 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17339 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17340 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17341 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17342 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17343 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17344 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17345 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17346 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17347
17348 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17349 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17350 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17351 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17352 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17353 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17354 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17355 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17356 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17357 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17358 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17359 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17360
17361 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17362 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17363 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17364 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17365 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17366 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17367 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17368 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17369 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17370 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17371 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17372 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17373
17374 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17375 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17376 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17377 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17378 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17379 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17380 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17381 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17382 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17383 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17384 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17385 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17386
17387 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17388 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17389 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17390 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17391 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17392 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17393 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17394 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17395 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17396 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17397 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17398 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17399
17400 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17401 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17402 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17403 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17404 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17405 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17406 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17407 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17408 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17409 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17410 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17411 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17412
17413 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17414 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17415 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17416 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17417
17418 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17419 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17420 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17421 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17422 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17423 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17424 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17425 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17426 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17427 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17428 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17429 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17430
17431 /* The implementation of the FIX instruction is broken on some
17432 assemblers, in that it accepts a precision specifier as well as a
17433 rounding specifier, despite the fact that this is meaningless.
17434 To be more compatible, we accept it as well, though of course it
17435 does not set any bits. */
17436 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17437 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17438 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17439 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17440 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17441 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17442 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17443 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17444 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17445 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17446 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17447 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17448 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17449
17450 /* Instructions that were new with the real FPA, call them V2. */
17451 #undef ARM_VARIANT
17452 #define ARM_VARIANT & fpu_fpa_ext_v2
17453
17454 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17455 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17456 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17457 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17458 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17459 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17460
17461 #undef ARM_VARIANT
17462 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17463
17464 /* Moves and type conversions. */
17465 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17466 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17467 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17468 cCE("fmstat", ef1fa10, 0, (), noargs),
17469 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17470 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17471 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17472 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17473 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17474 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17475 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17476 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17477 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17478 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17479
17480 /* Memory operations. */
17481 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17482 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17483 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17484 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17485 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17486 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17487 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17488 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17489 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17490 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17491 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17492 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17493 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17494 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17495 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17496 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17497 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17498 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17499
17500 /* Monadic operations. */
17501 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17502 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17503 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17504
17505 /* Dyadic operations. */
17506 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17507 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17508 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17509 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17510 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17511 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17512 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17513 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17514 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17515
17516 /* Comparisons. */
17517 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17518 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17519 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17520 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17521
17522 /* Double precision load/store are still present on single precision
17523 implementations. */
17524 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17525 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17526 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17527 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17528 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17529 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17530 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17531 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17532 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17533 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17534
17535 #undef ARM_VARIANT
17536 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17537
17538 /* Moves and type conversions. */
17539 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17540 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17541 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17542 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17543 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17544 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17545 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17546 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17547 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17548 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17549 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17550 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17551 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17552
17553 /* Monadic operations. */
17554 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17555 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17556 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17557
17558 /* Dyadic operations. */
17559 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17560 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17561 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17562 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17563 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17564 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17565 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17566 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17567 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17568
17569 /* Comparisons. */
17570 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17571 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17572 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17573 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17574
17575 #undef ARM_VARIANT
17576 #define ARM_VARIANT & fpu_vfp_ext_v2
17577
17578 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17579 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17580 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17581 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17582
17583 /* Instructions which may belong to either the Neon or VFP instruction sets.
17584 Individual encoder functions perform additional architecture checks. */
17585 #undef ARM_VARIANT
17586 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17587 #undef THUMB_VARIANT
17588 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17589
17590 /* These mnemonics are unique to VFP. */
17591 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17592 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17593 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17594 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17595 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17596 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17597 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17598 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17599 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17600 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17601
17602 /* Mnemonics shared by Neon and VFP. */
17603 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17604 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17605 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17606
17607 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17608 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17609
17610 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17611 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17612
17613 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17614 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17615 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17616 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17617 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17618 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17619 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17620 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17621
17622 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17623 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
17624 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17625 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17626
17627
17628 /* NOTE: All VMOV encoding is special-cased! */
17629 NCE(vmov, 0, 1, (VMOV), neon_mov),
17630 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17631
17632 #undef THUMB_VARIANT
17633 #define THUMB_VARIANT & fpu_neon_ext_v1
17634 #undef ARM_VARIANT
17635 #define ARM_VARIANT & fpu_neon_ext_v1
17636
17637 /* Data processing with three registers of the same length. */
17638 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17639 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17640 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17641 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17642 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17643 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17644 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17645 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17646 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17647 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17648 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17649 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17650 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17651 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17652 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17653 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17654 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17655 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17656 /* If not immediate, fall back to neon_dyadic_i64_su.
17657 shl_imm should accept I8 I16 I32 I64,
17658 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17659 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17660 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17661 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17662 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17663 /* Logic ops, types optional & ignored. */
17664 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17665 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17666 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17667 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17668 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17669 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17670 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17671 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17672 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17673 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17674 /* Bitfield ops, untyped. */
17675 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17676 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17677 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17678 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17679 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17680 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17681 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17682 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17683 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17684 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17685 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17686 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17687 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17688 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17689 back to neon_dyadic_if_su. */
17690 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17691 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17692 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17693 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17694 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17695 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17696 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17697 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17698 /* Comparison. Type I8 I16 I32 F32. */
17699 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17700 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17701 /* As above, D registers only. */
17702 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17703 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17704 /* Int and float variants, signedness unimportant. */
17705 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17706 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17707 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17708 /* Add/sub take types I8 I16 I32 I64 F32. */
17709 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17710 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17711 /* vtst takes sizes 8, 16, 32. */
17712 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17713 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17714 /* VMUL takes I8 I16 I32 F32 P8. */
17715 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
17716 /* VQD{R}MULH takes S16 S32. */
17717 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17718 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17719 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17720 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17721 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17722 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17723 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17724 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17725 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17726 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17727 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17728 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17729 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17730 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17731 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17732 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17733
17734 /* Two address, int/float. Types S8 S16 S32 F32. */
17735 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
17736 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17737
17738 /* Data processing with two registers and a shift amount. */
17739 /* Right shifts, and variants with rounding.
17740 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17741 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17742 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17743 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17744 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17745 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17746 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17747 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17748 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17749 /* Shift and insert. Sizes accepted 8 16 32 64. */
17750 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17751 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17752 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17753 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17754 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17755 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17756 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17757 /* Right shift immediate, saturating & narrowing, with rounding variants.
17758 Types accepted S16 S32 S64 U16 U32 U64. */
17759 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17760 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17761 /* As above, unsigned. Types accepted S16 S32 S64. */
17762 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17763 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17764 /* Right shift narrowing. Types accepted I16 I32 I64. */
17765 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17766 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17767 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
17768 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
17769 /* CVT with optional immediate for fixed-point variant. */
17770 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
17771
17772 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
17773 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
17774
17775 /* Data processing, three registers of different lengths. */
17776 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17777 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17778 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17779 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17780 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17781 /* If not scalar, fall back to neon_dyadic_long.
17782 Vector types as above, scalar types S16 S32 U16 U32. */
17783 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17784 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17785 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17786 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17787 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17788 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17789 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17790 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17791 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17792 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17793 /* Saturating doubling multiplies. Types S16 S32. */
17794 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17795 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17796 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17797 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17798 S16 S32 U16 U32. */
17799 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
17800
17801 /* Extract. Size 8. */
17802 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17803 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
17804
17805 /* Two registers, miscellaneous. */
17806 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17807 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17808 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17809 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17810 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17811 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17812 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17813 /* Vector replicate. Sizes 8 16 32. */
17814 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17815 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
17816 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17817 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17818 /* VMOVN. Types I16 I32 I64. */
17819 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
17820 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
17821 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
17822 /* VQMOVUN. Types S16 S32 S64. */
17823 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
17824 /* VZIP / VUZP. Sizes 8 16 32. */
17825 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17826 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17827 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17828 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17829 /* VQABS / VQNEG. Types S8 S16 S32. */
17830 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17831 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17832 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17833 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17834 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17835 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17836 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17837 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17838 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17839 /* Reciprocal estimates. Types U32 F32. */
17840 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17841 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17842 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17843 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17844 /* VCLS. Types S8 S16 S32. */
17845 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17846 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17847 /* VCLZ. Types I8 I16 I32. */
17848 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17849 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17850 /* VCNT. Size 8. */
17851 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17852 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17853 /* Two address, untyped. */
17854 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17855 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17856 /* VTRN. Sizes 8 16 32. */
17857 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17858 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
17859
17860 /* Table lookup. Size 8. */
17861 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17862 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17863
17864 #undef THUMB_VARIANT
17865 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17866 #undef ARM_VARIANT
17867 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17868
17869 /* Neon element/structure load/store. */
17870 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17871 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17872 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17873 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17874 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17875 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17876 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17877 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17878
17879 #undef THUMB_VARIANT
17880 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
17881 #undef ARM_VARIANT
17882 #define ARM_VARIANT &fpu_vfp_ext_v3xd
17883 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17884 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17885 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17886 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17887 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17888 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17889 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17890 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17891 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17892
17893 #undef THUMB_VARIANT
17894 #define THUMB_VARIANT & fpu_vfp_ext_v3
17895 #undef ARM_VARIANT
17896 #define ARM_VARIANT & fpu_vfp_ext_v3
17897
17898 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
17899 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17900 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17901 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17902 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17903 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17904 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17905 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17906 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17907
17908 #undef ARM_VARIANT
17909 #define ARM_VARIANT &fpu_vfp_ext_fma
17910 #undef THUMB_VARIANT
17911 #define THUMB_VARIANT &fpu_vfp_ext_fma
17912 /* Mnemonics shared by Neon and VFP. These are included in the
17913 VFP FMA variant; NEON and VFP FMA always includes the NEON
17914 FMA instructions. */
17915 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17916 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17917 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17918 the v form should always be used. */
17919 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17920 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17921 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17922 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17923 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17924 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17925
17926 #undef THUMB_VARIANT
17927 #undef ARM_VARIANT
17928 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17929
17930 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17931 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17932 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17933 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17934 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17935 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17936 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17937 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
17938
17939 #undef ARM_VARIANT
17940 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17941
17942 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17943 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17944 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17945 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17946 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17947 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17948 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17949 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17950 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17951 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17952 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17953 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17954 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17955 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17956 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17957 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17958 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17959 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17960 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17961 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17962 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17963 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17964 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17965 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17966 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17967 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17968 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17969 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17970 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17971 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17972 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17973 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17974 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17975 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17976 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17977 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17978 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17979 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17980 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17981 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17982 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17983 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17984 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17985 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17986 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17987 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17988 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17989 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17990 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17991 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17992 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17993 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17994 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17995 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17996 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17997 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17998 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17999 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18000 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18001 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18002 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18003 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18004 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18005 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18006 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18007 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18008 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18009 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18010 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18011 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18012 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18013 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18014 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18015 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18016 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18017 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18018 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18019 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18020 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18021 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18022 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18023 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18024 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18025 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18026 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18027 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18028 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18029 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18030 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18031 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18032 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18033 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18034 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18035 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18036 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18037 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18038 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18039 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18040 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18041 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18042 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18043 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18044 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18045 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18046 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18047 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18048 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18049 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18050 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18051 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18052 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18053 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18054 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18055 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18056 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18057 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18058 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18059 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18060 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18061 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18062 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18063 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18064 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18065 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18066 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18067 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18068 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18069 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18070 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18071 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18072 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18073 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18074 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18075 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18076 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18077 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18078 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18079 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18080 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18081 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18082 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18083 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18084 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18085 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18086 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18087 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18088 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18089 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18090 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18091 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18092 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18093 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18094 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18095 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18096 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18097 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18098 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18099 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18100 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18101 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18102 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18103 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18104
18105 #undef ARM_VARIANT
18106 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18107
18108 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18109 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18110 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18111 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18112 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18113 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18114 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18115 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18116 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18117 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18118 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18119 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18120 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18121 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18122 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18123 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18124 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18125 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18126 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18127 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18128 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18129 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18130 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18131 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18132 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18133 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18134 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18135 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18136 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18137 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18138 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18139 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18140 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18141 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18142 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18143 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18144 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18145 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18146 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18147 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18148 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18149 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18150 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18151 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18152 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18153 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18154 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18155 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18156 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18157 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18158 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18159 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18160 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18161 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18162 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18163 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18164 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18165
18166 #undef ARM_VARIANT
18167 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18168
18169 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18170 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18171 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18172 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18173 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18174 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18175 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18176 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18177 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18178 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18179 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18180 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18181 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18182 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18183 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18184 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18185 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18186 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18187 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18188 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18189 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18190 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18191 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18192 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18193 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18194 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18195 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18196 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18197 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18198 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18199 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18200 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18201 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18202 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18203 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18204 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18205 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18206 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18207 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18208 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18209 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18210 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18211 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18212 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18213 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18214 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18215 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18216 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18217 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18218 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18219 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18220 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18221 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18222 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18223 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18224 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18225 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18226 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18227 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18228 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18229 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18230 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18231 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18232 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18233 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18234 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18235 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18236 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18237 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18238 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18239 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18240 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18241 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18242 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18243 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18244 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18245 };
18246 #undef ARM_VARIANT
18247 #undef THUMB_VARIANT
18248 #undef TCE
18249 #undef TCM
18250 #undef TUE
18251 #undef TUF
18252 #undef TCC
18253 #undef cCE
18254 #undef cCL
18255 #undef C3E
18256 #undef CE
18257 #undef CM
18258 #undef UE
18259 #undef UF
18260 #undef UT
18261 #undef NUF
18262 #undef nUF
18263 #undef NCE
18264 #undef nCE
18265 #undef OPS0
18266 #undef OPS1
18267 #undef OPS2
18268 #undef OPS3
18269 #undef OPS4
18270 #undef OPS5
18271 #undef OPS6
18272 #undef do_0
18273 \f
18274 /* MD interface: bits in the object file. */
18275
18276 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18277 for use in the a.out file, and stores them in the array pointed to by buf.
18278 This knows about the endian-ness of the target machine and does
18279 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18280 2 (short) and 4 (long) Floating numbers are put out as a series of
18281 LITTLENUMS (shorts, here at least). */
18282
18283 void
18284 md_number_to_chars (char * buf, valueT val, int n)
18285 {
18286 if (target_big_endian)
18287 number_to_chars_bigendian (buf, val, n);
18288 else
18289 number_to_chars_littleendian (buf, val, n);
18290 }
18291
18292 static valueT
18293 md_chars_to_number (char * buf, int n)
18294 {
18295 valueT result = 0;
18296 unsigned char * where = (unsigned char *) buf;
18297
18298 if (target_big_endian)
18299 {
18300 while (n--)
18301 {
18302 result <<= 8;
18303 result |= (*where++ & 255);
18304 }
18305 }
18306 else
18307 {
18308 while (n--)
18309 {
18310 result <<= 8;
18311 result |= (where[n] & 255);
18312 }
18313 }
18314
18315 return result;
18316 }
18317
18318 /* MD interface: Sections. */
18319
18320 /* Estimate the size of a frag before relaxing. Assume everything fits in
18321 2 bytes. */
18322
18323 int
18324 md_estimate_size_before_relax (fragS * fragp,
18325 segT segtype ATTRIBUTE_UNUSED)
18326 {
18327 fragp->fr_var = 2;
18328 return 2;
18329 }
18330
18331 /* Convert a machine dependent frag. */
18332
18333 void
18334 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18335 {
18336 unsigned long insn;
18337 unsigned long old_op;
18338 char *buf;
18339 expressionS exp;
18340 fixS *fixp;
18341 int reloc_type;
18342 int pc_rel;
18343 int opcode;
18344
18345 buf = fragp->fr_literal + fragp->fr_fix;
18346
18347 old_op = bfd_get_16(abfd, buf);
18348 if (fragp->fr_symbol)
18349 {
18350 exp.X_op = O_symbol;
18351 exp.X_add_symbol = fragp->fr_symbol;
18352 }
18353 else
18354 {
18355 exp.X_op = O_constant;
18356 }
18357 exp.X_add_number = fragp->fr_offset;
18358 opcode = fragp->fr_subtype;
18359 switch (opcode)
18360 {
18361 case T_MNEM_ldr_pc:
18362 case T_MNEM_ldr_pc2:
18363 case T_MNEM_ldr_sp:
18364 case T_MNEM_str_sp:
18365 case T_MNEM_ldr:
18366 case T_MNEM_ldrb:
18367 case T_MNEM_ldrh:
18368 case T_MNEM_str:
18369 case T_MNEM_strb:
18370 case T_MNEM_strh:
18371 if (fragp->fr_var == 4)
18372 {
18373 insn = THUMB_OP32 (opcode);
18374 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18375 {
18376 insn |= (old_op & 0x700) << 4;
18377 }
18378 else
18379 {
18380 insn |= (old_op & 7) << 12;
18381 insn |= (old_op & 0x38) << 13;
18382 }
18383 insn |= 0x00000c00;
18384 put_thumb32_insn (buf, insn);
18385 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18386 }
18387 else
18388 {
18389 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18390 }
18391 pc_rel = (opcode == T_MNEM_ldr_pc2);
18392 break;
18393 case T_MNEM_adr:
18394 if (fragp->fr_var == 4)
18395 {
18396 insn = THUMB_OP32 (opcode);
18397 insn |= (old_op & 0xf0) << 4;
18398 put_thumb32_insn (buf, insn);
18399 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18400 }
18401 else
18402 {
18403 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18404 exp.X_add_number -= 4;
18405 }
18406 pc_rel = 1;
18407 break;
18408 case T_MNEM_mov:
18409 case T_MNEM_movs:
18410 case T_MNEM_cmp:
18411 case T_MNEM_cmn:
18412 if (fragp->fr_var == 4)
18413 {
18414 int r0off = (opcode == T_MNEM_mov
18415 || opcode == T_MNEM_movs) ? 0 : 8;
18416 insn = THUMB_OP32 (opcode);
18417 insn = (insn & 0xe1ffffff) | 0x10000000;
18418 insn |= (old_op & 0x700) << r0off;
18419 put_thumb32_insn (buf, insn);
18420 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18421 }
18422 else
18423 {
18424 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18425 }
18426 pc_rel = 0;
18427 break;
18428 case T_MNEM_b:
18429 if (fragp->fr_var == 4)
18430 {
18431 insn = THUMB_OP32(opcode);
18432 put_thumb32_insn (buf, insn);
18433 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18434 }
18435 else
18436 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18437 pc_rel = 1;
18438 break;
18439 case T_MNEM_bcond:
18440 if (fragp->fr_var == 4)
18441 {
18442 insn = THUMB_OP32(opcode);
18443 insn |= (old_op & 0xf00) << 14;
18444 put_thumb32_insn (buf, insn);
18445 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18446 }
18447 else
18448 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18449 pc_rel = 1;
18450 break;
18451 case T_MNEM_add_sp:
18452 case T_MNEM_add_pc:
18453 case T_MNEM_inc_sp:
18454 case T_MNEM_dec_sp:
18455 if (fragp->fr_var == 4)
18456 {
18457 /* ??? Choose between add and addw. */
18458 insn = THUMB_OP32 (opcode);
18459 insn |= (old_op & 0xf0) << 4;
18460 put_thumb32_insn (buf, insn);
18461 if (opcode == T_MNEM_add_pc)
18462 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18463 else
18464 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18465 }
18466 else
18467 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18468 pc_rel = 0;
18469 break;
18470
18471 case T_MNEM_addi:
18472 case T_MNEM_addis:
18473 case T_MNEM_subi:
18474 case T_MNEM_subis:
18475 if (fragp->fr_var == 4)
18476 {
18477 insn = THUMB_OP32 (opcode);
18478 insn |= (old_op & 0xf0) << 4;
18479 insn |= (old_op & 0xf) << 16;
18480 put_thumb32_insn (buf, insn);
18481 if (insn & (1 << 20))
18482 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18483 else
18484 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18485 }
18486 else
18487 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18488 pc_rel = 0;
18489 break;
18490 default:
18491 abort ();
18492 }
18493 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18494 (enum bfd_reloc_code_real) reloc_type);
18495 fixp->fx_file = fragp->fr_file;
18496 fixp->fx_line = fragp->fr_line;
18497 fragp->fr_fix += fragp->fr_var;
18498 }
18499
18500 /* Return the size of a relaxable immediate operand instruction.
18501 SHIFT and SIZE specify the form of the allowable immediate. */
18502 static int
18503 relax_immediate (fragS *fragp, int size, int shift)
18504 {
18505 offsetT offset;
18506 offsetT mask;
18507 offsetT low;
18508
18509 /* ??? Should be able to do better than this. */
18510 if (fragp->fr_symbol)
18511 return 4;
18512
18513 low = (1 << shift) - 1;
18514 mask = (1 << (shift + size)) - (1 << shift);
18515 offset = fragp->fr_offset;
18516 /* Force misaligned offsets to 32-bit variant. */
18517 if (offset & low)
18518 return 4;
18519 if (offset & ~mask)
18520 return 4;
18521 return 2;
18522 }
18523
18524 /* Get the address of a symbol during relaxation. */
18525 static addressT
18526 relaxed_symbol_addr (fragS *fragp, long stretch)
18527 {
18528 fragS *sym_frag;
18529 addressT addr;
18530 symbolS *sym;
18531
18532 sym = fragp->fr_symbol;
18533 sym_frag = symbol_get_frag (sym);
18534 know (S_GET_SEGMENT (sym) != absolute_section
18535 || sym_frag == &zero_address_frag);
18536 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18537
18538 /* If frag has yet to be reached on this pass, assume it will
18539 move by STRETCH just as we did. If this is not so, it will
18540 be because some frag between grows, and that will force
18541 another pass. */
18542
18543 if (stretch != 0
18544 && sym_frag->relax_marker != fragp->relax_marker)
18545 {
18546 fragS *f;
18547
18548 /* Adjust stretch for any alignment frag. Note that if have
18549 been expanding the earlier code, the symbol may be
18550 defined in what appears to be an earlier frag. FIXME:
18551 This doesn't handle the fr_subtype field, which specifies
18552 a maximum number of bytes to skip when doing an
18553 alignment. */
18554 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18555 {
18556 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18557 {
18558 if (stretch < 0)
18559 stretch = - ((- stretch)
18560 & ~ ((1 << (int) f->fr_offset) - 1));
18561 else
18562 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18563 if (stretch == 0)
18564 break;
18565 }
18566 }
18567 if (f != NULL)
18568 addr += stretch;
18569 }
18570
18571 return addr;
18572 }
18573
18574 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18575 load. */
18576 static int
18577 relax_adr (fragS *fragp, asection *sec, long stretch)
18578 {
18579 addressT addr;
18580 offsetT val;
18581
18582 /* Assume worst case for symbols not known to be in the same section. */
18583 if (fragp->fr_symbol == NULL
18584 || !S_IS_DEFINED (fragp->fr_symbol)
18585 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18586 || S_IS_WEAK (fragp->fr_symbol))
18587 return 4;
18588
18589 val = relaxed_symbol_addr (fragp, stretch);
18590 addr = fragp->fr_address + fragp->fr_fix;
18591 addr = (addr + 4) & ~3;
18592 /* Force misaligned targets to 32-bit variant. */
18593 if (val & 3)
18594 return 4;
18595 val -= addr;
18596 if (val < 0 || val > 1020)
18597 return 4;
18598 return 2;
18599 }
18600
18601 /* Return the size of a relaxable add/sub immediate instruction. */
18602 static int
18603 relax_addsub (fragS *fragp, asection *sec)
18604 {
18605 char *buf;
18606 int op;
18607
18608 buf = fragp->fr_literal + fragp->fr_fix;
18609 op = bfd_get_16(sec->owner, buf);
18610 if ((op & 0xf) == ((op >> 4) & 0xf))
18611 return relax_immediate (fragp, 8, 0);
18612 else
18613 return relax_immediate (fragp, 3, 0);
18614 }
18615
18616
18617 /* Return the size of a relaxable branch instruction. BITS is the
18618 size of the offset field in the narrow instruction. */
18619
18620 static int
18621 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18622 {
18623 addressT addr;
18624 offsetT val;
18625 offsetT limit;
18626
18627 /* Assume worst case for symbols not known to be in the same section. */
18628 if (!S_IS_DEFINED (fragp->fr_symbol)
18629 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18630 || S_IS_WEAK (fragp->fr_symbol))
18631 return 4;
18632
18633 #ifdef OBJ_ELF
18634 if (S_IS_DEFINED (fragp->fr_symbol)
18635 && ARM_IS_FUNC (fragp->fr_symbol))
18636 return 4;
18637 #endif
18638
18639 val = relaxed_symbol_addr (fragp, stretch);
18640 addr = fragp->fr_address + fragp->fr_fix + 4;
18641 val -= addr;
18642
18643 /* Offset is a signed value *2 */
18644 limit = 1 << bits;
18645 if (val >= limit || val < -limit)
18646 return 4;
18647 return 2;
18648 }
18649
18650
18651 /* Relax a machine dependent frag. This returns the amount by which
18652 the current size of the frag should change. */
18653
18654 int
18655 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18656 {
18657 int oldsize;
18658 int newsize;
18659
18660 oldsize = fragp->fr_var;
18661 switch (fragp->fr_subtype)
18662 {
18663 case T_MNEM_ldr_pc2:
18664 newsize = relax_adr (fragp, sec, stretch);
18665 break;
18666 case T_MNEM_ldr_pc:
18667 case T_MNEM_ldr_sp:
18668 case T_MNEM_str_sp:
18669 newsize = relax_immediate (fragp, 8, 2);
18670 break;
18671 case T_MNEM_ldr:
18672 case T_MNEM_str:
18673 newsize = relax_immediate (fragp, 5, 2);
18674 break;
18675 case T_MNEM_ldrh:
18676 case T_MNEM_strh:
18677 newsize = relax_immediate (fragp, 5, 1);
18678 break;
18679 case T_MNEM_ldrb:
18680 case T_MNEM_strb:
18681 newsize = relax_immediate (fragp, 5, 0);
18682 break;
18683 case T_MNEM_adr:
18684 newsize = relax_adr (fragp, sec, stretch);
18685 break;
18686 case T_MNEM_mov:
18687 case T_MNEM_movs:
18688 case T_MNEM_cmp:
18689 case T_MNEM_cmn:
18690 newsize = relax_immediate (fragp, 8, 0);
18691 break;
18692 case T_MNEM_b:
18693 newsize = relax_branch (fragp, sec, 11, stretch);
18694 break;
18695 case T_MNEM_bcond:
18696 newsize = relax_branch (fragp, sec, 8, stretch);
18697 break;
18698 case T_MNEM_add_sp:
18699 case T_MNEM_add_pc:
18700 newsize = relax_immediate (fragp, 8, 2);
18701 break;
18702 case T_MNEM_inc_sp:
18703 case T_MNEM_dec_sp:
18704 newsize = relax_immediate (fragp, 7, 2);
18705 break;
18706 case T_MNEM_addi:
18707 case T_MNEM_addis:
18708 case T_MNEM_subi:
18709 case T_MNEM_subis:
18710 newsize = relax_addsub (fragp, sec);
18711 break;
18712 default:
18713 abort ();
18714 }
18715
18716 fragp->fr_var = newsize;
18717 /* Freeze wide instructions that are at or before the same location as
18718 in the previous pass. This avoids infinite loops.
18719 Don't freeze them unconditionally because targets may be artificially
18720 misaligned by the expansion of preceding frags. */
18721 if (stretch <= 0 && newsize > 2)
18722 {
18723 md_convert_frag (sec->owner, sec, fragp);
18724 frag_wane (fragp);
18725 }
18726
18727 return newsize - oldsize;
18728 }
18729
18730 /* Round up a section size to the appropriate boundary. */
18731
18732 valueT
18733 md_section_align (segT segment ATTRIBUTE_UNUSED,
18734 valueT size)
18735 {
18736 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18737 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18738 {
18739 /* For a.out, force the section size to be aligned. If we don't do
18740 this, BFD will align it for us, but it will not write out the
18741 final bytes of the section. This may be a bug in BFD, but it is
18742 easier to fix it here since that is how the other a.out targets
18743 work. */
18744 int align;
18745
18746 align = bfd_get_section_alignment (stdoutput, segment);
18747 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18748 }
18749 #endif
18750
18751 return size;
18752 }
18753
18754 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18755 of an rs_align_code fragment. */
18756
18757 void
18758 arm_handle_align (fragS * fragP)
18759 {
18760 static char const arm_noop[2][2][4] =
18761 {
18762 { /* ARMv1 */
18763 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18764 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18765 },
18766 { /* ARMv6k */
18767 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18768 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18769 },
18770 };
18771 static char const thumb_noop[2][2][2] =
18772 {
18773 { /* Thumb-1 */
18774 {0xc0, 0x46}, /* LE */
18775 {0x46, 0xc0}, /* BE */
18776 },
18777 { /* Thumb-2 */
18778 {0x00, 0xbf}, /* LE */
18779 {0xbf, 0x00} /* BE */
18780 }
18781 };
18782 static char const wide_thumb_noop[2][4] =
18783 { /* Wide Thumb-2 */
18784 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18785 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18786 };
18787
18788 unsigned bytes, fix, noop_size;
18789 char * p;
18790 const char * noop;
18791 const char *narrow_noop = NULL;
18792 #ifdef OBJ_ELF
18793 enum mstate state;
18794 #endif
18795
18796 if (fragP->fr_type != rs_align_code)
18797 return;
18798
18799 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18800 p = fragP->fr_literal + fragP->fr_fix;
18801 fix = 0;
18802
18803 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18804 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
18805
18806 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
18807
18808 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
18809 {
18810 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18811 {
18812 narrow_noop = thumb_noop[1][target_big_endian];
18813 noop = wide_thumb_noop[target_big_endian];
18814 }
18815 else
18816 noop = thumb_noop[0][target_big_endian];
18817 noop_size = 2;
18818 #ifdef OBJ_ELF
18819 state = MAP_THUMB;
18820 #endif
18821 }
18822 else
18823 {
18824 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18825 [target_big_endian];
18826 noop_size = 4;
18827 #ifdef OBJ_ELF
18828 state = MAP_ARM;
18829 #endif
18830 }
18831
18832 fragP->fr_var = noop_size;
18833
18834 if (bytes & (noop_size - 1))
18835 {
18836 fix = bytes & (noop_size - 1);
18837 #ifdef OBJ_ELF
18838 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18839 #endif
18840 memset (p, 0, fix);
18841 p += fix;
18842 bytes -= fix;
18843 }
18844
18845 if (narrow_noop)
18846 {
18847 if (bytes & noop_size)
18848 {
18849 /* Insert a narrow noop. */
18850 memcpy (p, narrow_noop, noop_size);
18851 p += noop_size;
18852 bytes -= noop_size;
18853 fix += noop_size;
18854 }
18855
18856 /* Use wide noops for the remainder */
18857 noop_size = 4;
18858 }
18859
18860 while (bytes >= noop_size)
18861 {
18862 memcpy (p, noop, noop_size);
18863 p += noop_size;
18864 bytes -= noop_size;
18865 fix += noop_size;
18866 }
18867
18868 fragP->fr_fix += fix;
18869 }
18870
18871 /* Called from md_do_align. Used to create an alignment
18872 frag in a code section. */
18873
18874 void
18875 arm_frag_align_code (int n, int max)
18876 {
18877 char * p;
18878
18879 /* We assume that there will never be a requirement
18880 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
18881 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
18882 {
18883 char err_msg[128];
18884
18885 sprintf (err_msg,
18886 _("alignments greater than %d bytes not supported in .text sections."),
18887 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
18888 as_fatal ("%s", err_msg);
18889 }
18890
18891 p = frag_var (rs_align_code,
18892 MAX_MEM_FOR_RS_ALIGN_CODE,
18893 1,
18894 (relax_substateT) max,
18895 (symbolS *) NULL,
18896 (offsetT) n,
18897 (char *) NULL);
18898 *p = 0;
18899 }
18900
18901 /* Perform target specific initialisation of a frag.
18902 Note - despite the name this initialisation is not done when the frag
18903 is created, but only when its type is assigned. A frag can be created
18904 and used a long time before its type is set, so beware of assuming that
18905 this initialisationis performed first. */
18906
18907 #ifndef OBJ_ELF
18908 void
18909 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18910 {
18911 /* Record whether this frag is in an ARM or a THUMB area. */
18912 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18913 }
18914
18915 #else /* OBJ_ELF is defined. */
18916 void
18917 arm_init_frag (fragS * fragP, int max_chars)
18918 {
18919 /* If the current ARM vs THUMB mode has not already
18920 been recorded into this frag then do so now. */
18921 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18922 {
18923 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18924
18925 /* Record a mapping symbol for alignment frags. We will delete this
18926 later if the alignment ends up empty. */
18927 switch (fragP->fr_type)
18928 {
18929 case rs_align:
18930 case rs_align_test:
18931 case rs_fill:
18932 mapping_state_2 (MAP_DATA, max_chars);
18933 break;
18934 case rs_align_code:
18935 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18936 break;
18937 default:
18938 break;
18939 }
18940 }
18941 }
18942
18943 /* When we change sections we need to issue a new mapping symbol. */
18944
18945 void
18946 arm_elf_change_section (void)
18947 {
18948 /* Link an unlinked unwind index table section to the .text section. */
18949 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18950 && elf_linked_to_section (now_seg) == NULL)
18951 elf_linked_to_section (now_seg) = text_section;
18952 }
18953
18954 int
18955 arm_elf_section_type (const char * str, size_t len)
18956 {
18957 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18958 return SHT_ARM_EXIDX;
18959
18960 return -1;
18961 }
18962 \f
18963 /* Code to deal with unwinding tables. */
18964
18965 static void add_unwind_adjustsp (offsetT);
18966
18967 /* Generate any deferred unwind frame offset. */
18968
18969 static void
18970 flush_pending_unwind (void)
18971 {
18972 offsetT offset;
18973
18974 offset = unwind.pending_offset;
18975 unwind.pending_offset = 0;
18976 if (offset != 0)
18977 add_unwind_adjustsp (offset);
18978 }
18979
18980 /* Add an opcode to this list for this function. Two-byte opcodes should
18981 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18982 order. */
18983
18984 static void
18985 add_unwind_opcode (valueT op, int length)
18986 {
18987 /* Add any deferred stack adjustment. */
18988 if (unwind.pending_offset)
18989 flush_pending_unwind ();
18990
18991 unwind.sp_restored = 0;
18992
18993 if (unwind.opcode_count + length > unwind.opcode_alloc)
18994 {
18995 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18996 if (unwind.opcodes)
18997 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18998 unwind.opcode_alloc);
18999 else
19000 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19001 }
19002 while (length > 0)
19003 {
19004 length--;
19005 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19006 op >>= 8;
19007 unwind.opcode_count++;
19008 }
19009 }
19010
19011 /* Add unwind opcodes to adjust the stack pointer. */
19012
19013 static void
19014 add_unwind_adjustsp (offsetT offset)
19015 {
19016 valueT op;
19017
19018 if (offset > 0x200)
19019 {
19020 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19021 char bytes[5];
19022 int n;
19023 valueT o;
19024
19025 /* Long form: 0xb2, uleb128. */
19026 /* This might not fit in a word so add the individual bytes,
19027 remembering the list is built in reverse order. */
19028 o = (valueT) ((offset - 0x204) >> 2);
19029 if (o == 0)
19030 add_unwind_opcode (0, 1);
19031
19032 /* Calculate the uleb128 encoding of the offset. */
19033 n = 0;
19034 while (o)
19035 {
19036 bytes[n] = o & 0x7f;
19037 o >>= 7;
19038 if (o)
19039 bytes[n] |= 0x80;
19040 n++;
19041 }
19042 /* Add the insn. */
19043 for (; n; n--)
19044 add_unwind_opcode (bytes[n - 1], 1);
19045 add_unwind_opcode (0xb2, 1);
19046 }
19047 else if (offset > 0x100)
19048 {
19049 /* Two short opcodes. */
19050 add_unwind_opcode (0x3f, 1);
19051 op = (offset - 0x104) >> 2;
19052 add_unwind_opcode (op, 1);
19053 }
19054 else if (offset > 0)
19055 {
19056 /* Short opcode. */
19057 op = (offset - 4) >> 2;
19058 add_unwind_opcode (op, 1);
19059 }
19060 else if (offset < 0)
19061 {
19062 offset = -offset;
19063 while (offset > 0x100)
19064 {
19065 add_unwind_opcode (0x7f, 1);
19066 offset -= 0x100;
19067 }
19068 op = ((offset - 4) >> 2) | 0x40;
19069 add_unwind_opcode (op, 1);
19070 }
19071 }
19072
19073 /* Finish the list of unwind opcodes for this function. */
19074 static void
19075 finish_unwind_opcodes (void)
19076 {
19077 valueT op;
19078
19079 if (unwind.fp_used)
19080 {
19081 /* Adjust sp as necessary. */
19082 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19083 flush_pending_unwind ();
19084
19085 /* After restoring sp from the frame pointer. */
19086 op = 0x90 | unwind.fp_reg;
19087 add_unwind_opcode (op, 1);
19088 }
19089 else
19090 flush_pending_unwind ();
19091 }
19092
19093
19094 /* Start an exception table entry. If idx is nonzero this is an index table
19095 entry. */
19096
19097 static void
19098 start_unwind_section (const segT text_seg, int idx)
19099 {
19100 const char * text_name;
19101 const char * prefix;
19102 const char * prefix_once;
19103 const char * group_name;
19104 size_t prefix_len;
19105 size_t text_len;
19106 char * sec_name;
19107 size_t sec_name_len;
19108 int type;
19109 int flags;
19110 int linkonce;
19111
19112 if (idx)
19113 {
19114 prefix = ELF_STRING_ARM_unwind;
19115 prefix_once = ELF_STRING_ARM_unwind_once;
19116 type = SHT_ARM_EXIDX;
19117 }
19118 else
19119 {
19120 prefix = ELF_STRING_ARM_unwind_info;
19121 prefix_once = ELF_STRING_ARM_unwind_info_once;
19122 type = SHT_PROGBITS;
19123 }
19124
19125 text_name = segment_name (text_seg);
19126 if (streq (text_name, ".text"))
19127 text_name = "";
19128
19129 if (strncmp (text_name, ".gnu.linkonce.t.",
19130 strlen (".gnu.linkonce.t.")) == 0)
19131 {
19132 prefix = prefix_once;
19133 text_name += strlen (".gnu.linkonce.t.");
19134 }
19135
19136 prefix_len = strlen (prefix);
19137 text_len = strlen (text_name);
19138 sec_name_len = prefix_len + text_len;
19139 sec_name = (char *) xmalloc (sec_name_len + 1);
19140 memcpy (sec_name, prefix, prefix_len);
19141 memcpy (sec_name + prefix_len, text_name, text_len);
19142 sec_name[prefix_len + text_len] = '\0';
19143
19144 flags = SHF_ALLOC;
19145 linkonce = 0;
19146 group_name = 0;
19147
19148 /* Handle COMDAT group. */
19149 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19150 {
19151 group_name = elf_group_name (text_seg);
19152 if (group_name == NULL)
19153 {
19154 as_bad (_("Group section `%s' has no group signature"),
19155 segment_name (text_seg));
19156 ignore_rest_of_line ();
19157 return;
19158 }
19159 flags |= SHF_GROUP;
19160 linkonce = 1;
19161 }
19162
19163 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19164
19165 /* Set the section link for index tables. */
19166 if (idx)
19167 elf_linked_to_section (now_seg) = text_seg;
19168 }
19169
19170
19171 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19172 personality routine data. Returns zero, or the index table value for
19173 and inline entry. */
19174
19175 static valueT
19176 create_unwind_entry (int have_data)
19177 {
19178 int size;
19179 addressT where;
19180 char *ptr;
19181 /* The current word of data. */
19182 valueT data;
19183 /* The number of bytes left in this word. */
19184 int n;
19185
19186 finish_unwind_opcodes ();
19187
19188 /* Remember the current text section. */
19189 unwind.saved_seg = now_seg;
19190 unwind.saved_subseg = now_subseg;
19191
19192 start_unwind_section (now_seg, 0);
19193
19194 if (unwind.personality_routine == NULL)
19195 {
19196 if (unwind.personality_index == -2)
19197 {
19198 if (have_data)
19199 as_bad (_("handlerdata in cantunwind frame"));
19200 return 1; /* EXIDX_CANTUNWIND. */
19201 }
19202
19203 /* Use a default personality routine if none is specified. */
19204 if (unwind.personality_index == -1)
19205 {
19206 if (unwind.opcode_count > 3)
19207 unwind.personality_index = 1;
19208 else
19209 unwind.personality_index = 0;
19210 }
19211
19212 /* Space for the personality routine entry. */
19213 if (unwind.personality_index == 0)
19214 {
19215 if (unwind.opcode_count > 3)
19216 as_bad (_("too many unwind opcodes for personality routine 0"));
19217
19218 if (!have_data)
19219 {
19220 /* All the data is inline in the index table. */
19221 data = 0x80;
19222 n = 3;
19223 while (unwind.opcode_count > 0)
19224 {
19225 unwind.opcode_count--;
19226 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19227 n--;
19228 }
19229
19230 /* Pad with "finish" opcodes. */
19231 while (n--)
19232 data = (data << 8) | 0xb0;
19233
19234 return data;
19235 }
19236 size = 0;
19237 }
19238 else
19239 /* We get two opcodes "free" in the first word. */
19240 size = unwind.opcode_count - 2;
19241 }
19242 else
19243 /* An extra byte is required for the opcode count. */
19244 size = unwind.opcode_count + 1;
19245
19246 size = (size + 3) >> 2;
19247 if (size > 0xff)
19248 as_bad (_("too many unwind opcodes"));
19249
19250 frag_align (2, 0, 0);
19251 record_alignment (now_seg, 2);
19252 unwind.table_entry = expr_build_dot ();
19253
19254 /* Allocate the table entry. */
19255 ptr = frag_more ((size << 2) + 4);
19256 where = frag_now_fix () - ((size << 2) + 4);
19257
19258 switch (unwind.personality_index)
19259 {
19260 case -1:
19261 /* ??? Should this be a PLT generating relocation? */
19262 /* Custom personality routine. */
19263 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19264 BFD_RELOC_ARM_PREL31);
19265
19266 where += 4;
19267 ptr += 4;
19268
19269 /* Set the first byte to the number of additional words. */
19270 data = size - 1;
19271 n = 3;
19272 break;
19273
19274 /* ABI defined personality routines. */
19275 case 0:
19276 /* Three opcodes bytes are packed into the first word. */
19277 data = 0x80;
19278 n = 3;
19279 break;
19280
19281 case 1:
19282 case 2:
19283 /* The size and first two opcode bytes go in the first word. */
19284 data = ((0x80 + unwind.personality_index) << 8) | size;
19285 n = 2;
19286 break;
19287
19288 default:
19289 /* Should never happen. */
19290 abort ();
19291 }
19292
19293 /* Pack the opcodes into words (MSB first), reversing the list at the same
19294 time. */
19295 while (unwind.opcode_count > 0)
19296 {
19297 if (n == 0)
19298 {
19299 md_number_to_chars (ptr, data, 4);
19300 ptr += 4;
19301 n = 4;
19302 data = 0;
19303 }
19304 unwind.opcode_count--;
19305 n--;
19306 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19307 }
19308
19309 /* Finish off the last word. */
19310 if (n < 4)
19311 {
19312 /* Pad with "finish" opcodes. */
19313 while (n--)
19314 data = (data << 8) | 0xb0;
19315
19316 md_number_to_chars (ptr, data, 4);
19317 }
19318
19319 if (!have_data)
19320 {
19321 /* Add an empty descriptor if there is no user-specified data. */
19322 ptr = frag_more (4);
19323 md_number_to_chars (ptr, 0, 4);
19324 }
19325
19326 return 0;
19327 }
19328
19329
19330 /* Initialize the DWARF-2 unwind information for this procedure. */
19331
19332 void
19333 tc_arm_frame_initial_instructions (void)
19334 {
19335 cfi_add_CFA_def_cfa (REG_SP, 0);
19336 }
19337 #endif /* OBJ_ELF */
19338
19339 /* Convert REGNAME to a DWARF-2 register number. */
19340
19341 int
19342 tc_arm_regname_to_dw2regnum (char *regname)
19343 {
19344 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19345
19346 if (reg == FAIL)
19347 return -1;
19348
19349 return reg;
19350 }
19351
19352 #ifdef TE_PE
19353 void
19354 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19355 {
19356 expressionS exp;
19357
19358 exp.X_op = O_secrel;
19359 exp.X_add_symbol = symbol;
19360 exp.X_add_number = 0;
19361 emit_expr (&exp, size);
19362 }
19363 #endif
19364
19365 /* MD interface: Symbol and relocation handling. */
19366
19367 /* Return the address within the segment that a PC-relative fixup is
19368 relative to. For ARM, PC-relative fixups applied to instructions
19369 are generally relative to the location of the fixup plus 8 bytes.
19370 Thumb branches are offset by 4, and Thumb loads relative to PC
19371 require special handling. */
19372
19373 long
19374 md_pcrel_from_section (fixS * fixP, segT seg)
19375 {
19376 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19377
19378 /* If this is pc-relative and we are going to emit a relocation
19379 then we just want to put out any pipeline compensation that the linker
19380 will need. Otherwise we want to use the calculated base.
19381 For WinCE we skip the bias for externals as well, since this
19382 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19383 if (fixP->fx_pcrel
19384 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19385 || (arm_force_relocation (fixP)
19386 #ifdef TE_WINCE
19387 && !S_IS_EXTERNAL (fixP->fx_addsy)
19388 #endif
19389 )))
19390 base = 0;
19391
19392
19393 switch (fixP->fx_r_type)
19394 {
19395 /* PC relative addressing on the Thumb is slightly odd as the
19396 bottom two bits of the PC are forced to zero for the
19397 calculation. This happens *after* application of the
19398 pipeline offset. However, Thumb adrl already adjusts for
19399 this, so we need not do it again. */
19400 case BFD_RELOC_ARM_THUMB_ADD:
19401 return base & ~3;
19402
19403 case BFD_RELOC_ARM_THUMB_OFFSET:
19404 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19405 case BFD_RELOC_ARM_T32_ADD_PC12:
19406 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19407 return (base + 4) & ~3;
19408
19409 /* Thumb branches are simply offset by +4. */
19410 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19411 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19412 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19413 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19414 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19415 return base + 4;
19416
19417 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19418 if (fixP->fx_addsy
19419 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19420 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19421 && ARM_IS_FUNC (fixP->fx_addsy)
19422 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19423 base = fixP->fx_where + fixP->fx_frag->fr_address;
19424 return base + 4;
19425
19426 /* BLX is like branches above, but forces the low two bits of PC to
19427 zero. */
19428 case BFD_RELOC_THUMB_PCREL_BLX:
19429 if (fixP->fx_addsy
19430 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19431 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19432 && THUMB_IS_FUNC (fixP->fx_addsy)
19433 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19434 base = fixP->fx_where + fixP->fx_frag->fr_address;
19435 return (base + 4) & ~3;
19436
19437 /* ARM mode branches are offset by +8. However, the Windows CE
19438 loader expects the relocation not to take this into account. */
19439 case BFD_RELOC_ARM_PCREL_BLX:
19440 if (fixP->fx_addsy
19441 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19442 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19443 && ARM_IS_FUNC (fixP->fx_addsy)
19444 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19445 base = fixP->fx_where + fixP->fx_frag->fr_address;
19446 return base + 8;
19447
19448 case BFD_RELOC_ARM_PCREL_CALL:
19449 if (fixP->fx_addsy
19450 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19451 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19452 && THUMB_IS_FUNC (fixP->fx_addsy)
19453 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19454 base = fixP->fx_where + fixP->fx_frag->fr_address;
19455 return base + 8;
19456
19457 case BFD_RELOC_ARM_PCREL_BRANCH:
19458 case BFD_RELOC_ARM_PCREL_JUMP:
19459 case BFD_RELOC_ARM_PLT32:
19460 #ifdef TE_WINCE
19461 /* When handling fixups immediately, because we have already
19462 discovered the value of a symbol, or the address of the frag involved
19463 we must account for the offset by +8, as the OS loader will never see the reloc.
19464 see fixup_segment() in write.c
19465 The S_IS_EXTERNAL test handles the case of global symbols.
19466 Those need the calculated base, not just the pipe compensation the linker will need. */
19467 if (fixP->fx_pcrel
19468 && fixP->fx_addsy != NULL
19469 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19470 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19471 return base + 8;
19472 return base;
19473 #else
19474 return base + 8;
19475 #endif
19476
19477
19478 /* ARM mode loads relative to PC are also offset by +8. Unlike
19479 branches, the Windows CE loader *does* expect the relocation
19480 to take this into account. */
19481 case BFD_RELOC_ARM_OFFSET_IMM:
19482 case BFD_RELOC_ARM_OFFSET_IMM8:
19483 case BFD_RELOC_ARM_HWLITERAL:
19484 case BFD_RELOC_ARM_LITERAL:
19485 case BFD_RELOC_ARM_CP_OFF_IMM:
19486 return base + 8;
19487
19488
19489 /* Other PC-relative relocations are un-offset. */
19490 default:
19491 return base;
19492 }
19493 }
19494
19495 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19496 Otherwise we have no need to default values of symbols. */
19497
19498 symbolS *
19499 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19500 {
19501 #ifdef OBJ_ELF
19502 if (name[0] == '_' && name[1] == 'G'
19503 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19504 {
19505 if (!GOT_symbol)
19506 {
19507 if (symbol_find (name))
19508 as_bad (_("GOT already in the symbol table"));
19509
19510 GOT_symbol = symbol_new (name, undefined_section,
19511 (valueT) 0, & zero_address_frag);
19512 }
19513
19514 return GOT_symbol;
19515 }
19516 #endif
19517
19518 return NULL;
19519 }
19520
19521 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19522 computed as two separate immediate values, added together. We
19523 already know that this value cannot be computed by just one ARM
19524 instruction. */
19525
19526 static unsigned int
19527 validate_immediate_twopart (unsigned int val,
19528 unsigned int * highpart)
19529 {
19530 unsigned int a;
19531 unsigned int i;
19532
19533 for (i = 0; i < 32; i += 2)
19534 if (((a = rotate_left (val, i)) & 0xff) != 0)
19535 {
19536 if (a & 0xff00)
19537 {
19538 if (a & ~ 0xffff)
19539 continue;
19540 * highpart = (a >> 8) | ((i + 24) << 7);
19541 }
19542 else if (a & 0xff0000)
19543 {
19544 if (a & 0xff000000)
19545 continue;
19546 * highpart = (a >> 16) | ((i + 16) << 7);
19547 }
19548 else
19549 {
19550 gas_assert (a & 0xff000000);
19551 * highpart = (a >> 24) | ((i + 8) << 7);
19552 }
19553
19554 return (a & 0xff) | (i << 7);
19555 }
19556
19557 return FAIL;
19558 }
19559
19560 static int
19561 validate_offset_imm (unsigned int val, int hwse)
19562 {
19563 if ((hwse && val > 255) || val > 4095)
19564 return FAIL;
19565 return val;
19566 }
19567
19568 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19569 negative immediate constant by altering the instruction. A bit of
19570 a hack really.
19571 MOV <-> MVN
19572 AND <-> BIC
19573 ADC <-> SBC
19574 by inverting the second operand, and
19575 ADD <-> SUB
19576 CMP <-> CMN
19577 by negating the second operand. */
19578
19579 static int
19580 negate_data_op (unsigned long * instruction,
19581 unsigned long value)
19582 {
19583 int op, new_inst;
19584 unsigned long negated, inverted;
19585
19586 negated = encode_arm_immediate (-value);
19587 inverted = encode_arm_immediate (~value);
19588
19589 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19590 switch (op)
19591 {
19592 /* First negates. */
19593 case OPCODE_SUB: /* ADD <-> SUB */
19594 new_inst = OPCODE_ADD;
19595 value = negated;
19596 break;
19597
19598 case OPCODE_ADD:
19599 new_inst = OPCODE_SUB;
19600 value = negated;
19601 break;
19602
19603 case OPCODE_CMP: /* CMP <-> CMN */
19604 new_inst = OPCODE_CMN;
19605 value = negated;
19606 break;
19607
19608 case OPCODE_CMN:
19609 new_inst = OPCODE_CMP;
19610 value = negated;
19611 break;
19612
19613 /* Now Inverted ops. */
19614 case OPCODE_MOV: /* MOV <-> MVN */
19615 new_inst = OPCODE_MVN;
19616 value = inverted;
19617 break;
19618
19619 case OPCODE_MVN:
19620 new_inst = OPCODE_MOV;
19621 value = inverted;
19622 break;
19623
19624 case OPCODE_AND: /* AND <-> BIC */
19625 new_inst = OPCODE_BIC;
19626 value = inverted;
19627 break;
19628
19629 case OPCODE_BIC:
19630 new_inst = OPCODE_AND;
19631 value = inverted;
19632 break;
19633
19634 case OPCODE_ADC: /* ADC <-> SBC */
19635 new_inst = OPCODE_SBC;
19636 value = inverted;
19637 break;
19638
19639 case OPCODE_SBC:
19640 new_inst = OPCODE_ADC;
19641 value = inverted;
19642 break;
19643
19644 /* We cannot do anything. */
19645 default:
19646 return FAIL;
19647 }
19648
19649 if (value == (unsigned) FAIL)
19650 return FAIL;
19651
19652 *instruction &= OPCODE_MASK;
19653 *instruction |= new_inst << DATA_OP_SHIFT;
19654 return value;
19655 }
19656
19657 /* Like negate_data_op, but for Thumb-2. */
19658
19659 static unsigned int
19660 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19661 {
19662 int op, new_inst;
19663 int rd;
19664 unsigned int negated, inverted;
19665
19666 negated = encode_thumb32_immediate (-value);
19667 inverted = encode_thumb32_immediate (~value);
19668
19669 rd = (*instruction >> 8) & 0xf;
19670 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19671 switch (op)
19672 {
19673 /* ADD <-> SUB. Includes CMP <-> CMN. */
19674 case T2_OPCODE_SUB:
19675 new_inst = T2_OPCODE_ADD;
19676 value = negated;
19677 break;
19678
19679 case T2_OPCODE_ADD:
19680 new_inst = T2_OPCODE_SUB;
19681 value = negated;
19682 break;
19683
19684 /* ORR <-> ORN. Includes MOV <-> MVN. */
19685 case T2_OPCODE_ORR:
19686 new_inst = T2_OPCODE_ORN;
19687 value = inverted;
19688 break;
19689
19690 case T2_OPCODE_ORN:
19691 new_inst = T2_OPCODE_ORR;
19692 value = inverted;
19693 break;
19694
19695 /* AND <-> BIC. TST has no inverted equivalent. */
19696 case T2_OPCODE_AND:
19697 new_inst = T2_OPCODE_BIC;
19698 if (rd == 15)
19699 value = FAIL;
19700 else
19701 value = inverted;
19702 break;
19703
19704 case T2_OPCODE_BIC:
19705 new_inst = T2_OPCODE_AND;
19706 value = inverted;
19707 break;
19708
19709 /* ADC <-> SBC */
19710 case T2_OPCODE_ADC:
19711 new_inst = T2_OPCODE_SBC;
19712 value = inverted;
19713 break;
19714
19715 case T2_OPCODE_SBC:
19716 new_inst = T2_OPCODE_ADC;
19717 value = inverted;
19718 break;
19719
19720 /* We cannot do anything. */
19721 default:
19722 return FAIL;
19723 }
19724
19725 if (value == (unsigned int)FAIL)
19726 return FAIL;
19727
19728 *instruction &= T2_OPCODE_MASK;
19729 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19730 return value;
19731 }
19732
19733 /* Read a 32-bit thumb instruction from buf. */
19734 static unsigned long
19735 get_thumb32_insn (char * buf)
19736 {
19737 unsigned long insn;
19738 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19739 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19740
19741 return insn;
19742 }
19743
19744
19745 /* We usually want to set the low bit on the address of thumb function
19746 symbols. In particular .word foo - . should have the low bit set.
19747 Generic code tries to fold the difference of two symbols to
19748 a constant. Prevent this and force a relocation when the first symbols
19749 is a thumb function. */
19750
19751 bfd_boolean
19752 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19753 {
19754 if (op == O_subtract
19755 && l->X_op == O_symbol
19756 && r->X_op == O_symbol
19757 && THUMB_IS_FUNC (l->X_add_symbol))
19758 {
19759 l->X_op = O_subtract;
19760 l->X_op_symbol = r->X_add_symbol;
19761 l->X_add_number -= r->X_add_number;
19762 return TRUE;
19763 }
19764
19765 /* Process as normal. */
19766 return FALSE;
19767 }
19768
19769 /* Encode Thumb2 unconditional branches and calls. The encoding
19770 for the 2 are identical for the immediate values. */
19771
19772 static void
19773 encode_thumb2_b_bl_offset (char * buf, offsetT value)
19774 {
19775 #define T2I1I2MASK ((1 << 13) | (1 << 11))
19776 offsetT newval;
19777 offsetT newval2;
19778 addressT S, I1, I2, lo, hi;
19779
19780 S = (value >> 24) & 0x01;
19781 I1 = (value >> 23) & 0x01;
19782 I2 = (value >> 22) & 0x01;
19783 hi = (value >> 12) & 0x3ff;
19784 lo = (value >> 1) & 0x7ff;
19785 newval = md_chars_to_number (buf, THUMB_SIZE);
19786 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19787 newval |= (S << 10) | hi;
19788 newval2 &= ~T2I1I2MASK;
19789 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
19790 md_number_to_chars (buf, newval, THUMB_SIZE);
19791 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19792 }
19793
19794 void
19795 md_apply_fix (fixS * fixP,
19796 valueT * valP,
19797 segT seg)
19798 {
19799 offsetT value = * valP;
19800 offsetT newval;
19801 unsigned int newimm;
19802 unsigned long temp;
19803 int sign;
19804 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
19805
19806 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
19807
19808 /* Note whether this will delete the relocation. */
19809
19810 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19811 fixP->fx_done = 1;
19812
19813 /* On a 64-bit host, silently truncate 'value' to 32 bits for
19814 consistency with the behaviour on 32-bit hosts. Remember value
19815 for emit_reloc. */
19816 value &= 0xffffffff;
19817 value ^= 0x80000000;
19818 value -= 0x80000000;
19819
19820 *valP = value;
19821 fixP->fx_addnumber = value;
19822
19823 /* Same treatment for fixP->fx_offset. */
19824 fixP->fx_offset &= 0xffffffff;
19825 fixP->fx_offset ^= 0x80000000;
19826 fixP->fx_offset -= 0x80000000;
19827
19828 switch (fixP->fx_r_type)
19829 {
19830 case BFD_RELOC_NONE:
19831 /* This will need to go in the object file. */
19832 fixP->fx_done = 0;
19833 break;
19834
19835 case BFD_RELOC_ARM_IMMEDIATE:
19836 /* We claim that this fixup has been processed here,
19837 even if in fact we generate an error because we do
19838 not have a reloc for it, so tc_gen_reloc will reject it. */
19839 fixP->fx_done = 1;
19840
19841 if (fixP->fx_addsy)
19842 {
19843 const char *msg = 0;
19844
19845 if (! S_IS_DEFINED (fixP->fx_addsy))
19846 msg = _("undefined symbol %s used as an immediate value");
19847 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
19848 msg = _("symbol %s is in a different section");
19849 else if (S_IS_WEAK (fixP->fx_addsy))
19850 msg = _("symbol %s is weak and may be overridden later");
19851
19852 if (msg)
19853 {
19854 as_bad_where (fixP->fx_file, fixP->fx_line,
19855 msg, S_GET_NAME (fixP->fx_addsy));
19856 break;
19857 }
19858 }
19859
19860 newimm = encode_arm_immediate (value);
19861 temp = md_chars_to_number (buf, INSN_SIZE);
19862
19863 /* If the instruction will fail, see if we can fix things up by
19864 changing the opcode. */
19865 if (newimm == (unsigned int) FAIL
19866 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
19867 {
19868 as_bad_where (fixP->fx_file, fixP->fx_line,
19869 _("invalid constant (%lx) after fixup"),
19870 (unsigned long) value);
19871 break;
19872 }
19873
19874 newimm |= (temp & 0xfffff000);
19875 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19876 break;
19877
19878 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19879 {
19880 unsigned int highpart = 0;
19881 unsigned int newinsn = 0xe1a00000; /* nop. */
19882
19883 if (fixP->fx_addsy)
19884 {
19885 const char *msg = 0;
19886
19887 if (! S_IS_DEFINED (fixP->fx_addsy))
19888 msg = _("undefined symbol %s used as an immediate value");
19889 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
19890 msg = _("symbol %s is in a different section");
19891 else if (S_IS_WEAK (fixP->fx_addsy))
19892 msg = _("symbol %s is weak and may be overridden later");
19893
19894 if (msg)
19895 {
19896 as_bad_where (fixP->fx_file, fixP->fx_line,
19897 msg, S_GET_NAME (fixP->fx_addsy));
19898 break;
19899 }
19900 }
19901
19902 newimm = encode_arm_immediate (value);
19903 temp = md_chars_to_number (buf, INSN_SIZE);
19904
19905 /* If the instruction will fail, see if we can fix things up by
19906 changing the opcode. */
19907 if (newimm == (unsigned int) FAIL
19908 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19909 {
19910 /* No ? OK - try using two ADD instructions to generate
19911 the value. */
19912 newimm = validate_immediate_twopart (value, & highpart);
19913
19914 /* Yes - then make sure that the second instruction is
19915 also an add. */
19916 if (newimm != (unsigned int) FAIL)
19917 newinsn = temp;
19918 /* Still No ? Try using a negated value. */
19919 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19920 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19921 /* Otherwise - give up. */
19922 else
19923 {
19924 as_bad_where (fixP->fx_file, fixP->fx_line,
19925 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19926 (long) value);
19927 break;
19928 }
19929
19930 /* Replace the first operand in the 2nd instruction (which
19931 is the PC) with the destination register. We have
19932 already added in the PC in the first instruction and we
19933 do not want to do it again. */
19934 newinsn &= ~ 0xf0000;
19935 newinsn |= ((newinsn & 0x0f000) << 4);
19936 }
19937
19938 newimm |= (temp & 0xfffff000);
19939 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19940
19941 highpart |= (newinsn & 0xfffff000);
19942 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19943 }
19944 break;
19945
19946 case BFD_RELOC_ARM_OFFSET_IMM:
19947 if (!fixP->fx_done && seg->use_rela_p)
19948 value = 0;
19949
19950 case BFD_RELOC_ARM_LITERAL:
19951 sign = value >= 0;
19952
19953 if (value < 0)
19954 value = - value;
19955
19956 if (validate_offset_imm (value, 0) == FAIL)
19957 {
19958 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19959 as_bad_where (fixP->fx_file, fixP->fx_line,
19960 _("invalid literal constant: pool needs to be closer"));
19961 else
19962 as_bad_where (fixP->fx_file, fixP->fx_line,
19963 _("bad immediate value for offset (%ld)"),
19964 (long) value);
19965 break;
19966 }
19967
19968 newval = md_chars_to_number (buf, INSN_SIZE);
19969 newval &= 0xff7ff000;
19970 newval |= value | (sign ? INDEX_UP : 0);
19971 md_number_to_chars (buf, newval, INSN_SIZE);
19972 break;
19973
19974 case BFD_RELOC_ARM_OFFSET_IMM8:
19975 case BFD_RELOC_ARM_HWLITERAL:
19976 sign = value >= 0;
19977
19978 if (value < 0)
19979 value = - value;
19980
19981 if (validate_offset_imm (value, 1) == FAIL)
19982 {
19983 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19984 as_bad_where (fixP->fx_file, fixP->fx_line,
19985 _("invalid literal constant: pool needs to be closer"));
19986 else
19987 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
19988 (long) value);
19989 break;
19990 }
19991
19992 newval = md_chars_to_number (buf, INSN_SIZE);
19993 newval &= 0xff7ff0f0;
19994 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19995 md_number_to_chars (buf, newval, INSN_SIZE);
19996 break;
19997
19998 case BFD_RELOC_ARM_T32_OFFSET_U8:
19999 if (value < 0 || value > 1020 || value % 4 != 0)
20000 as_bad_where (fixP->fx_file, fixP->fx_line,
20001 _("bad immediate value for offset (%ld)"), (long) value);
20002 value /= 4;
20003
20004 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20005 newval |= value;
20006 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20007 break;
20008
20009 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20010 /* This is a complicated relocation used for all varieties of Thumb32
20011 load/store instruction with immediate offset:
20012
20013 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20014 *4, optional writeback(W)
20015 (doubleword load/store)
20016
20017 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20018 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20019 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20020 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20021 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20022
20023 Uppercase letters indicate bits that are already encoded at
20024 this point. Lowercase letters are our problem. For the
20025 second block of instructions, the secondary opcode nybble
20026 (bits 8..11) is present, and bit 23 is zero, even if this is
20027 a PC-relative operation. */
20028 newval = md_chars_to_number (buf, THUMB_SIZE);
20029 newval <<= 16;
20030 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20031
20032 if ((newval & 0xf0000000) == 0xe0000000)
20033 {
20034 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20035 if (value >= 0)
20036 newval |= (1 << 23);
20037 else
20038 value = -value;
20039 if (value % 4 != 0)
20040 {
20041 as_bad_where (fixP->fx_file, fixP->fx_line,
20042 _("offset not a multiple of 4"));
20043 break;
20044 }
20045 value /= 4;
20046 if (value > 0xff)
20047 {
20048 as_bad_where (fixP->fx_file, fixP->fx_line,
20049 _("offset out of range"));
20050 break;
20051 }
20052 newval &= ~0xff;
20053 }
20054 else if ((newval & 0x000f0000) == 0x000f0000)
20055 {
20056 /* PC-relative, 12-bit offset. */
20057 if (value >= 0)
20058 newval |= (1 << 23);
20059 else
20060 value = -value;
20061 if (value > 0xfff)
20062 {
20063 as_bad_where (fixP->fx_file, fixP->fx_line,
20064 _("offset out of range"));
20065 break;
20066 }
20067 newval &= ~0xfff;
20068 }
20069 else if ((newval & 0x00000100) == 0x00000100)
20070 {
20071 /* Writeback: 8-bit, +/- offset. */
20072 if (value >= 0)
20073 newval |= (1 << 9);
20074 else
20075 value = -value;
20076 if (value > 0xff)
20077 {
20078 as_bad_where (fixP->fx_file, fixP->fx_line,
20079 _("offset out of range"));
20080 break;
20081 }
20082 newval &= ~0xff;
20083 }
20084 else if ((newval & 0x00000f00) == 0x00000e00)
20085 {
20086 /* T-instruction: positive 8-bit offset. */
20087 if (value < 0 || value > 0xff)
20088 {
20089 as_bad_where (fixP->fx_file, fixP->fx_line,
20090 _("offset out of range"));
20091 break;
20092 }
20093 newval &= ~0xff;
20094 newval |= value;
20095 }
20096 else
20097 {
20098 /* Positive 12-bit or negative 8-bit offset. */
20099 int limit;
20100 if (value >= 0)
20101 {
20102 newval |= (1 << 23);
20103 limit = 0xfff;
20104 }
20105 else
20106 {
20107 value = -value;
20108 limit = 0xff;
20109 }
20110 if (value > limit)
20111 {
20112 as_bad_where (fixP->fx_file, fixP->fx_line,
20113 _("offset out of range"));
20114 break;
20115 }
20116 newval &= ~limit;
20117 }
20118
20119 newval |= value;
20120 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20121 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20122 break;
20123
20124 case BFD_RELOC_ARM_SHIFT_IMM:
20125 newval = md_chars_to_number (buf, INSN_SIZE);
20126 if (((unsigned long) value) > 32
20127 || (value == 32
20128 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20129 {
20130 as_bad_where (fixP->fx_file, fixP->fx_line,
20131 _("shift expression is too large"));
20132 break;
20133 }
20134
20135 if (value == 0)
20136 /* Shifts of zero must be done as lsl. */
20137 newval &= ~0x60;
20138 else if (value == 32)
20139 value = 0;
20140 newval &= 0xfffff07f;
20141 newval |= (value & 0x1f) << 7;
20142 md_number_to_chars (buf, newval, INSN_SIZE);
20143 break;
20144
20145 case BFD_RELOC_ARM_T32_IMMEDIATE:
20146 case BFD_RELOC_ARM_T32_ADD_IMM:
20147 case BFD_RELOC_ARM_T32_IMM12:
20148 case BFD_RELOC_ARM_T32_ADD_PC12:
20149 /* We claim that this fixup has been processed here,
20150 even if in fact we generate an error because we do
20151 not have a reloc for it, so tc_gen_reloc will reject it. */
20152 fixP->fx_done = 1;
20153
20154 if (fixP->fx_addsy
20155 && ! S_IS_DEFINED (fixP->fx_addsy))
20156 {
20157 as_bad_where (fixP->fx_file, fixP->fx_line,
20158 _("undefined symbol %s used as an immediate value"),
20159 S_GET_NAME (fixP->fx_addsy));
20160 break;
20161 }
20162
20163 newval = md_chars_to_number (buf, THUMB_SIZE);
20164 newval <<= 16;
20165 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20166
20167 newimm = FAIL;
20168 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20169 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20170 {
20171 newimm = encode_thumb32_immediate (value);
20172 if (newimm == (unsigned int) FAIL)
20173 newimm = thumb32_negate_data_op (&newval, value);
20174 }
20175 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20176 && newimm == (unsigned int) FAIL)
20177 {
20178 /* Turn add/sum into addw/subw. */
20179 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20180 newval = (newval & 0xfeffffff) | 0x02000000;
20181
20182 /* 12 bit immediate for addw/subw. */
20183 if (value < 0)
20184 {
20185 value = -value;
20186 newval ^= 0x00a00000;
20187 }
20188 if (value > 0xfff)
20189 newimm = (unsigned int) FAIL;
20190 else
20191 newimm = value;
20192 }
20193
20194 if (newimm == (unsigned int)FAIL)
20195 {
20196 as_bad_where (fixP->fx_file, fixP->fx_line,
20197 _("invalid constant (%lx) after fixup"),
20198 (unsigned long) value);
20199 break;
20200 }
20201
20202 newval |= (newimm & 0x800) << 15;
20203 newval |= (newimm & 0x700) << 4;
20204 newval |= (newimm & 0x0ff);
20205
20206 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20207 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20208 break;
20209
20210 case BFD_RELOC_ARM_SMC:
20211 if (((unsigned long) value) > 0xffff)
20212 as_bad_where (fixP->fx_file, fixP->fx_line,
20213 _("invalid smc expression"));
20214 newval = md_chars_to_number (buf, INSN_SIZE);
20215 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20216 md_number_to_chars (buf, newval, INSN_SIZE);
20217 break;
20218
20219 case BFD_RELOC_ARM_SWI:
20220 if (fixP->tc_fix_data != 0)
20221 {
20222 if (((unsigned long) value) > 0xff)
20223 as_bad_where (fixP->fx_file, fixP->fx_line,
20224 _("invalid swi expression"));
20225 newval = md_chars_to_number (buf, THUMB_SIZE);
20226 newval |= value;
20227 md_number_to_chars (buf, newval, THUMB_SIZE);
20228 }
20229 else
20230 {
20231 if (((unsigned long) value) > 0x00ffffff)
20232 as_bad_where (fixP->fx_file, fixP->fx_line,
20233 _("invalid swi expression"));
20234 newval = md_chars_to_number (buf, INSN_SIZE);
20235 newval |= value;
20236 md_number_to_chars (buf, newval, INSN_SIZE);
20237 }
20238 break;
20239
20240 case BFD_RELOC_ARM_MULTI:
20241 if (((unsigned long) value) > 0xffff)
20242 as_bad_where (fixP->fx_file, fixP->fx_line,
20243 _("invalid expression in load/store multiple"));
20244 newval = value | md_chars_to_number (buf, INSN_SIZE);
20245 md_number_to_chars (buf, newval, INSN_SIZE);
20246 break;
20247
20248 #ifdef OBJ_ELF
20249 case BFD_RELOC_ARM_PCREL_CALL:
20250
20251 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20252 && fixP->fx_addsy
20253 && !S_IS_EXTERNAL (fixP->fx_addsy)
20254 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20255 && THUMB_IS_FUNC (fixP->fx_addsy))
20256 /* Flip the bl to blx. This is a simple flip
20257 bit here because we generate PCREL_CALL for
20258 unconditional bls. */
20259 {
20260 newval = md_chars_to_number (buf, INSN_SIZE);
20261 newval = newval | 0x10000000;
20262 md_number_to_chars (buf, newval, INSN_SIZE);
20263 temp = 1;
20264 fixP->fx_done = 1;
20265 }
20266 else
20267 temp = 3;
20268 goto arm_branch_common;
20269
20270 case BFD_RELOC_ARM_PCREL_JUMP:
20271 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20272 && fixP->fx_addsy
20273 && !S_IS_EXTERNAL (fixP->fx_addsy)
20274 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20275 && THUMB_IS_FUNC (fixP->fx_addsy))
20276 {
20277 /* This would map to a bl<cond>, b<cond>,
20278 b<always> to a Thumb function. We
20279 need to force a relocation for this particular
20280 case. */
20281 newval = md_chars_to_number (buf, INSN_SIZE);
20282 fixP->fx_done = 0;
20283 }
20284
20285 case BFD_RELOC_ARM_PLT32:
20286 #endif
20287 case BFD_RELOC_ARM_PCREL_BRANCH:
20288 temp = 3;
20289 goto arm_branch_common;
20290
20291 case BFD_RELOC_ARM_PCREL_BLX:
20292
20293 temp = 1;
20294 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20295 && fixP->fx_addsy
20296 && !S_IS_EXTERNAL (fixP->fx_addsy)
20297 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20298 && ARM_IS_FUNC (fixP->fx_addsy))
20299 {
20300 /* Flip the blx to a bl and warn. */
20301 const char *name = S_GET_NAME (fixP->fx_addsy);
20302 newval = 0xeb000000;
20303 as_warn_where (fixP->fx_file, fixP->fx_line,
20304 _("blx to '%s' an ARM ISA state function changed to bl"),
20305 name);
20306 md_number_to_chars (buf, newval, INSN_SIZE);
20307 temp = 3;
20308 fixP->fx_done = 1;
20309 }
20310
20311 #ifdef OBJ_ELF
20312 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20313 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20314 #endif
20315
20316 arm_branch_common:
20317 /* We are going to store value (shifted right by two) in the
20318 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20319 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20320 also be be clear. */
20321 if (value & temp)
20322 as_bad_where (fixP->fx_file, fixP->fx_line,
20323 _("misaligned branch destination"));
20324 if ((value & (offsetT)0xfe000000) != (offsetT)0
20325 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20326 as_bad_where (fixP->fx_file, fixP->fx_line,
20327 _("branch out of range"));
20328
20329 if (fixP->fx_done || !seg->use_rela_p)
20330 {
20331 newval = md_chars_to_number (buf, INSN_SIZE);
20332 newval |= (value >> 2) & 0x00ffffff;
20333 /* Set the H bit on BLX instructions. */
20334 if (temp == 1)
20335 {
20336 if (value & 2)
20337 newval |= 0x01000000;
20338 else
20339 newval &= ~0x01000000;
20340 }
20341 md_number_to_chars (buf, newval, INSN_SIZE);
20342 }
20343 break;
20344
20345 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20346 /* CBZ can only branch forward. */
20347
20348 /* Attempts to use CBZ to branch to the next instruction
20349 (which, strictly speaking, are prohibited) will be turned into
20350 no-ops.
20351
20352 FIXME: It may be better to remove the instruction completely and
20353 perform relaxation. */
20354 if (value == -2)
20355 {
20356 newval = md_chars_to_number (buf, THUMB_SIZE);
20357 newval = 0xbf00; /* NOP encoding T1 */
20358 md_number_to_chars (buf, newval, THUMB_SIZE);
20359 }
20360 else
20361 {
20362 if (value & ~0x7e)
20363 as_bad_where (fixP->fx_file, fixP->fx_line,
20364 _("branch out of range"));
20365
20366 if (fixP->fx_done || !seg->use_rela_p)
20367 {
20368 newval = md_chars_to_number (buf, THUMB_SIZE);
20369 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20370 md_number_to_chars (buf, newval, THUMB_SIZE);
20371 }
20372 }
20373 break;
20374
20375 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20376 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20377 as_bad_where (fixP->fx_file, fixP->fx_line,
20378 _("branch out of range"));
20379
20380 if (fixP->fx_done || !seg->use_rela_p)
20381 {
20382 newval = md_chars_to_number (buf, THUMB_SIZE);
20383 newval |= (value & 0x1ff) >> 1;
20384 md_number_to_chars (buf, newval, THUMB_SIZE);
20385 }
20386 break;
20387
20388 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20389 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20390 as_bad_where (fixP->fx_file, fixP->fx_line,
20391 _("branch out of range"));
20392
20393 if (fixP->fx_done || !seg->use_rela_p)
20394 {
20395 newval = md_chars_to_number (buf, THUMB_SIZE);
20396 newval |= (value & 0xfff) >> 1;
20397 md_number_to_chars (buf, newval, THUMB_SIZE);
20398 }
20399 break;
20400
20401 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20402 if (fixP->fx_addsy
20403 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20404 && !S_IS_EXTERNAL (fixP->fx_addsy)
20405 && S_IS_DEFINED (fixP->fx_addsy)
20406 && ARM_IS_FUNC (fixP->fx_addsy)
20407 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20408 {
20409 /* Force a relocation for a branch 20 bits wide. */
20410 fixP->fx_done = 0;
20411 }
20412 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20413 as_bad_where (fixP->fx_file, fixP->fx_line,
20414 _("conditional branch out of range"));
20415
20416 if (fixP->fx_done || !seg->use_rela_p)
20417 {
20418 offsetT newval2;
20419 addressT S, J1, J2, lo, hi;
20420
20421 S = (value & 0x00100000) >> 20;
20422 J2 = (value & 0x00080000) >> 19;
20423 J1 = (value & 0x00040000) >> 18;
20424 hi = (value & 0x0003f000) >> 12;
20425 lo = (value & 0x00000ffe) >> 1;
20426
20427 newval = md_chars_to_number (buf, THUMB_SIZE);
20428 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20429 newval |= (S << 10) | hi;
20430 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20431 md_number_to_chars (buf, newval, THUMB_SIZE);
20432 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20433 }
20434 break;
20435
20436 case BFD_RELOC_THUMB_PCREL_BLX:
20437
20438 /* If there is a blx from a thumb state function to
20439 another thumb function flip this to a bl and warn
20440 about it. */
20441
20442 if (fixP->fx_addsy
20443 && S_IS_DEFINED (fixP->fx_addsy)
20444 && !S_IS_EXTERNAL (fixP->fx_addsy)
20445 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20446 && THUMB_IS_FUNC (fixP->fx_addsy))
20447 {
20448 const char *name = S_GET_NAME (fixP->fx_addsy);
20449 as_warn_where (fixP->fx_file, fixP->fx_line,
20450 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20451 name);
20452 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20453 newval = newval | 0x1000;
20454 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20455 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20456 fixP->fx_done = 1;
20457 }
20458
20459
20460 goto thumb_bl_common;
20461
20462 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20463
20464 /* A bl from Thumb state ISA to an internal ARM state function
20465 is converted to a blx. */
20466 if (fixP->fx_addsy
20467 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20468 && !S_IS_EXTERNAL (fixP->fx_addsy)
20469 && S_IS_DEFINED (fixP->fx_addsy)
20470 && ARM_IS_FUNC (fixP->fx_addsy)
20471 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20472 {
20473 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20474 newval = newval & ~0x1000;
20475 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20476 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20477 fixP->fx_done = 1;
20478 }
20479
20480 thumb_bl_common:
20481
20482 #ifdef OBJ_ELF
20483 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20484 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20485 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20486 #endif
20487
20488 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20489 /* For a BLX instruction, make sure that the relocation is rounded up
20490 to a word boundary. This follows the semantics of the instruction
20491 which specifies that bit 1 of the target address will come from bit
20492 1 of the base address. */
20493 value = (value + 1) & ~ 1;
20494
20495
20496 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20497 {
20498 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20499 {
20500 as_bad_where (fixP->fx_file, fixP->fx_line,
20501 _("branch out of range"));
20502 }
20503 else if ((value & ~0x1ffffff)
20504 && ((value & ~0x1ffffff) != ~0x1ffffff))
20505 {
20506 as_bad_where (fixP->fx_file, fixP->fx_line,
20507 _("Thumb2 branch out of range"));
20508 }
20509 }
20510
20511 if (fixP->fx_done || !seg->use_rela_p)
20512 encode_thumb2_b_bl_offset (buf, value);
20513
20514 break;
20515
20516 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20517 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20518 as_bad_where (fixP->fx_file, fixP->fx_line,
20519 _("branch out of range"));
20520
20521 if (fixP->fx_done || !seg->use_rela_p)
20522 encode_thumb2_b_bl_offset (buf, value);
20523
20524 break;
20525
20526 case BFD_RELOC_8:
20527 if (fixP->fx_done || !seg->use_rela_p)
20528 md_number_to_chars (buf, value, 1);
20529 break;
20530
20531 case BFD_RELOC_16:
20532 if (fixP->fx_done || !seg->use_rela_p)
20533 md_number_to_chars (buf, value, 2);
20534 break;
20535
20536 #ifdef OBJ_ELF
20537 case BFD_RELOC_ARM_TLS_GD32:
20538 case BFD_RELOC_ARM_TLS_LE32:
20539 case BFD_RELOC_ARM_TLS_IE32:
20540 case BFD_RELOC_ARM_TLS_LDM32:
20541 case BFD_RELOC_ARM_TLS_LDO32:
20542 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20543 /* fall through */
20544
20545 case BFD_RELOC_ARM_GOT32:
20546 case BFD_RELOC_ARM_GOTOFF:
20547 if (fixP->fx_done || !seg->use_rela_p)
20548 md_number_to_chars (buf, 0, 4);
20549 break;
20550
20551 case BFD_RELOC_ARM_GOT_PREL:
20552 if (fixP->fx_done || !seg->use_rela_p)
20553 md_number_to_chars (buf, value, 4);
20554 break;
20555
20556 case BFD_RELOC_ARM_TARGET2:
20557 /* TARGET2 is not partial-inplace, so we need to write the
20558 addend here for REL targets, because it won't be written out
20559 during reloc processing later. */
20560 if (fixP->fx_done || !seg->use_rela_p)
20561 md_number_to_chars (buf, fixP->fx_offset, 4);
20562 break;
20563 #endif
20564
20565 case BFD_RELOC_RVA:
20566 case BFD_RELOC_32:
20567 case BFD_RELOC_ARM_TARGET1:
20568 case BFD_RELOC_ARM_ROSEGREL32:
20569 case BFD_RELOC_ARM_SBREL32:
20570 case BFD_RELOC_32_PCREL:
20571 #ifdef TE_PE
20572 case BFD_RELOC_32_SECREL:
20573 #endif
20574 if (fixP->fx_done || !seg->use_rela_p)
20575 #ifdef TE_WINCE
20576 /* For WinCE we only do this for pcrel fixups. */
20577 if (fixP->fx_done || fixP->fx_pcrel)
20578 #endif
20579 md_number_to_chars (buf, value, 4);
20580 break;
20581
20582 #ifdef OBJ_ELF
20583 case BFD_RELOC_ARM_PREL31:
20584 if (fixP->fx_done || !seg->use_rela_p)
20585 {
20586 newval = md_chars_to_number (buf, 4) & 0x80000000;
20587 if ((value ^ (value >> 1)) & 0x40000000)
20588 {
20589 as_bad_where (fixP->fx_file, fixP->fx_line,
20590 _("rel31 relocation overflow"));
20591 }
20592 newval |= value & 0x7fffffff;
20593 md_number_to_chars (buf, newval, 4);
20594 }
20595 break;
20596 #endif
20597
20598 case BFD_RELOC_ARM_CP_OFF_IMM:
20599 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20600 if (value < -1023 || value > 1023 || (value & 3))
20601 as_bad_where (fixP->fx_file, fixP->fx_line,
20602 _("co-processor offset out of range"));
20603 cp_off_common:
20604 sign = value >= 0;
20605 if (value < 0)
20606 value = -value;
20607 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20608 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20609 newval = md_chars_to_number (buf, INSN_SIZE);
20610 else
20611 newval = get_thumb32_insn (buf);
20612 newval &= 0xff7fff00;
20613 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20614 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20615 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20616 md_number_to_chars (buf, newval, INSN_SIZE);
20617 else
20618 put_thumb32_insn (buf, newval);
20619 break;
20620
20621 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20622 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20623 if (value < -255 || value > 255)
20624 as_bad_where (fixP->fx_file, fixP->fx_line,
20625 _("co-processor offset out of range"));
20626 value *= 4;
20627 goto cp_off_common;
20628
20629 case BFD_RELOC_ARM_THUMB_OFFSET:
20630 newval = md_chars_to_number (buf, THUMB_SIZE);
20631 /* Exactly what ranges, and where the offset is inserted depends
20632 on the type of instruction, we can establish this from the
20633 top 4 bits. */
20634 switch (newval >> 12)
20635 {
20636 case 4: /* PC load. */
20637 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20638 forced to zero for these loads; md_pcrel_from has already
20639 compensated for this. */
20640 if (value & 3)
20641 as_bad_where (fixP->fx_file, fixP->fx_line,
20642 _("invalid offset, target not word aligned (0x%08lX)"),
20643 (((unsigned long) fixP->fx_frag->fr_address
20644 + (unsigned long) fixP->fx_where) & ~3)
20645 + (unsigned long) value);
20646
20647 if (value & ~0x3fc)
20648 as_bad_where (fixP->fx_file, fixP->fx_line,
20649 _("invalid offset, value too big (0x%08lX)"),
20650 (long) value);
20651
20652 newval |= value >> 2;
20653 break;
20654
20655 case 9: /* SP load/store. */
20656 if (value & ~0x3fc)
20657 as_bad_where (fixP->fx_file, fixP->fx_line,
20658 _("invalid offset, value too big (0x%08lX)"),
20659 (long) value);
20660 newval |= value >> 2;
20661 break;
20662
20663 case 6: /* Word load/store. */
20664 if (value & ~0x7c)
20665 as_bad_where (fixP->fx_file, fixP->fx_line,
20666 _("invalid offset, value too big (0x%08lX)"),
20667 (long) value);
20668 newval |= value << 4; /* 6 - 2. */
20669 break;
20670
20671 case 7: /* Byte load/store. */
20672 if (value & ~0x1f)
20673 as_bad_where (fixP->fx_file, fixP->fx_line,
20674 _("invalid offset, value too big (0x%08lX)"),
20675 (long) value);
20676 newval |= value << 6;
20677 break;
20678
20679 case 8: /* Halfword load/store. */
20680 if (value & ~0x3e)
20681 as_bad_where (fixP->fx_file, fixP->fx_line,
20682 _("invalid offset, value too big (0x%08lX)"),
20683 (long) value);
20684 newval |= value << 5; /* 6 - 1. */
20685 break;
20686
20687 default:
20688 as_bad_where (fixP->fx_file, fixP->fx_line,
20689 "Unable to process relocation for thumb opcode: %lx",
20690 (unsigned long) newval);
20691 break;
20692 }
20693 md_number_to_chars (buf, newval, THUMB_SIZE);
20694 break;
20695
20696 case BFD_RELOC_ARM_THUMB_ADD:
20697 /* This is a complicated relocation, since we use it for all of
20698 the following immediate relocations:
20699
20700 3bit ADD/SUB
20701 8bit ADD/SUB
20702 9bit ADD/SUB SP word-aligned
20703 10bit ADD PC/SP word-aligned
20704
20705 The type of instruction being processed is encoded in the
20706 instruction field:
20707
20708 0x8000 SUB
20709 0x00F0 Rd
20710 0x000F Rs
20711 */
20712 newval = md_chars_to_number (buf, THUMB_SIZE);
20713 {
20714 int rd = (newval >> 4) & 0xf;
20715 int rs = newval & 0xf;
20716 int subtract = !!(newval & 0x8000);
20717
20718 /* Check for HI regs, only very restricted cases allowed:
20719 Adjusting SP, and using PC or SP to get an address. */
20720 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20721 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20722 as_bad_where (fixP->fx_file, fixP->fx_line,
20723 _("invalid Hi register with immediate"));
20724
20725 /* If value is negative, choose the opposite instruction. */
20726 if (value < 0)
20727 {
20728 value = -value;
20729 subtract = !subtract;
20730 if (value < 0)
20731 as_bad_where (fixP->fx_file, fixP->fx_line,
20732 _("immediate value out of range"));
20733 }
20734
20735 if (rd == REG_SP)
20736 {
20737 if (value & ~0x1fc)
20738 as_bad_where (fixP->fx_file, fixP->fx_line,
20739 _("invalid immediate for stack address calculation"));
20740 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20741 newval |= value >> 2;
20742 }
20743 else if (rs == REG_PC || rs == REG_SP)
20744 {
20745 if (subtract || value & ~0x3fc)
20746 as_bad_where (fixP->fx_file, fixP->fx_line,
20747 _("invalid immediate for address calculation (value = 0x%08lX)"),
20748 (unsigned long) value);
20749 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20750 newval |= rd << 8;
20751 newval |= value >> 2;
20752 }
20753 else if (rs == rd)
20754 {
20755 if (value & ~0xff)
20756 as_bad_where (fixP->fx_file, fixP->fx_line,
20757 _("immediate value out of range"));
20758 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20759 newval |= (rd << 8) | value;
20760 }
20761 else
20762 {
20763 if (value & ~0x7)
20764 as_bad_where (fixP->fx_file, fixP->fx_line,
20765 _("immediate value out of range"));
20766 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20767 newval |= rd | (rs << 3) | (value << 6);
20768 }
20769 }
20770 md_number_to_chars (buf, newval, THUMB_SIZE);
20771 break;
20772
20773 case BFD_RELOC_ARM_THUMB_IMM:
20774 newval = md_chars_to_number (buf, THUMB_SIZE);
20775 if (value < 0 || value > 255)
20776 as_bad_where (fixP->fx_file, fixP->fx_line,
20777 _("invalid immediate: %ld is out of range"),
20778 (long) value);
20779 newval |= value;
20780 md_number_to_chars (buf, newval, THUMB_SIZE);
20781 break;
20782
20783 case BFD_RELOC_ARM_THUMB_SHIFT:
20784 /* 5bit shift value (0..32). LSL cannot take 32. */
20785 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20786 temp = newval & 0xf800;
20787 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20788 as_bad_where (fixP->fx_file, fixP->fx_line,
20789 _("invalid shift value: %ld"), (long) value);
20790 /* Shifts of zero must be encoded as LSL. */
20791 if (value == 0)
20792 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20793 /* Shifts of 32 are encoded as zero. */
20794 else if (value == 32)
20795 value = 0;
20796 newval |= value << 6;
20797 md_number_to_chars (buf, newval, THUMB_SIZE);
20798 break;
20799
20800 case BFD_RELOC_VTABLE_INHERIT:
20801 case BFD_RELOC_VTABLE_ENTRY:
20802 fixP->fx_done = 0;
20803 return;
20804
20805 case BFD_RELOC_ARM_MOVW:
20806 case BFD_RELOC_ARM_MOVT:
20807 case BFD_RELOC_ARM_THUMB_MOVW:
20808 case BFD_RELOC_ARM_THUMB_MOVT:
20809 if (fixP->fx_done || !seg->use_rela_p)
20810 {
20811 /* REL format relocations are limited to a 16-bit addend. */
20812 if (!fixP->fx_done)
20813 {
20814 if (value < -0x8000 || value > 0x7fff)
20815 as_bad_where (fixP->fx_file, fixP->fx_line,
20816 _("offset out of range"));
20817 }
20818 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20819 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20820 {
20821 value >>= 16;
20822 }
20823
20824 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20825 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20826 {
20827 newval = get_thumb32_insn (buf);
20828 newval &= 0xfbf08f00;
20829 newval |= (value & 0xf000) << 4;
20830 newval |= (value & 0x0800) << 15;
20831 newval |= (value & 0x0700) << 4;
20832 newval |= (value & 0x00ff);
20833 put_thumb32_insn (buf, newval);
20834 }
20835 else
20836 {
20837 newval = md_chars_to_number (buf, 4);
20838 newval &= 0xfff0f000;
20839 newval |= value & 0x0fff;
20840 newval |= (value & 0xf000) << 4;
20841 md_number_to_chars (buf, newval, 4);
20842 }
20843 }
20844 return;
20845
20846 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20847 case BFD_RELOC_ARM_ALU_PC_G0:
20848 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20849 case BFD_RELOC_ARM_ALU_PC_G1:
20850 case BFD_RELOC_ARM_ALU_PC_G2:
20851 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20852 case BFD_RELOC_ARM_ALU_SB_G0:
20853 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20854 case BFD_RELOC_ARM_ALU_SB_G1:
20855 case BFD_RELOC_ARM_ALU_SB_G2:
20856 gas_assert (!fixP->fx_done);
20857 if (!seg->use_rela_p)
20858 {
20859 bfd_vma insn;
20860 bfd_vma encoded_addend;
20861 bfd_vma addend_abs = abs (value);
20862
20863 /* Check that the absolute value of the addend can be
20864 expressed as an 8-bit constant plus a rotation. */
20865 encoded_addend = encode_arm_immediate (addend_abs);
20866 if (encoded_addend == (unsigned int) FAIL)
20867 as_bad_where (fixP->fx_file, fixP->fx_line,
20868 _("the offset 0x%08lX is not representable"),
20869 (unsigned long) addend_abs);
20870
20871 /* Extract the instruction. */
20872 insn = md_chars_to_number (buf, INSN_SIZE);
20873
20874 /* If the addend is positive, use an ADD instruction.
20875 Otherwise use a SUB. Take care not to destroy the S bit. */
20876 insn &= 0xff1fffff;
20877 if (value < 0)
20878 insn |= 1 << 22;
20879 else
20880 insn |= 1 << 23;
20881
20882 /* Place the encoded addend into the first 12 bits of the
20883 instruction. */
20884 insn &= 0xfffff000;
20885 insn |= encoded_addend;
20886
20887 /* Update the instruction. */
20888 md_number_to_chars (buf, insn, INSN_SIZE);
20889 }
20890 break;
20891
20892 case BFD_RELOC_ARM_LDR_PC_G0:
20893 case BFD_RELOC_ARM_LDR_PC_G1:
20894 case BFD_RELOC_ARM_LDR_PC_G2:
20895 case BFD_RELOC_ARM_LDR_SB_G0:
20896 case BFD_RELOC_ARM_LDR_SB_G1:
20897 case BFD_RELOC_ARM_LDR_SB_G2:
20898 gas_assert (!fixP->fx_done);
20899 if (!seg->use_rela_p)
20900 {
20901 bfd_vma insn;
20902 bfd_vma addend_abs = abs (value);
20903
20904 /* Check that the absolute value of the addend can be
20905 encoded in 12 bits. */
20906 if (addend_abs >= 0x1000)
20907 as_bad_where (fixP->fx_file, fixP->fx_line,
20908 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
20909 (unsigned long) addend_abs);
20910
20911 /* Extract the instruction. */
20912 insn = md_chars_to_number (buf, INSN_SIZE);
20913
20914 /* If the addend is negative, clear bit 23 of the instruction.
20915 Otherwise set it. */
20916 if (value < 0)
20917 insn &= ~(1 << 23);
20918 else
20919 insn |= 1 << 23;
20920
20921 /* Place the absolute value of the addend into the first 12 bits
20922 of the instruction. */
20923 insn &= 0xfffff000;
20924 insn |= addend_abs;
20925
20926 /* Update the instruction. */
20927 md_number_to_chars (buf, insn, INSN_SIZE);
20928 }
20929 break;
20930
20931 case BFD_RELOC_ARM_LDRS_PC_G0:
20932 case BFD_RELOC_ARM_LDRS_PC_G1:
20933 case BFD_RELOC_ARM_LDRS_PC_G2:
20934 case BFD_RELOC_ARM_LDRS_SB_G0:
20935 case BFD_RELOC_ARM_LDRS_SB_G1:
20936 case BFD_RELOC_ARM_LDRS_SB_G2:
20937 gas_assert (!fixP->fx_done);
20938 if (!seg->use_rela_p)
20939 {
20940 bfd_vma insn;
20941 bfd_vma addend_abs = abs (value);
20942
20943 /* Check that the absolute value of the addend can be
20944 encoded in 8 bits. */
20945 if (addend_abs >= 0x100)
20946 as_bad_where (fixP->fx_file, fixP->fx_line,
20947 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
20948 (unsigned long) addend_abs);
20949
20950 /* Extract the instruction. */
20951 insn = md_chars_to_number (buf, INSN_SIZE);
20952
20953 /* If the addend is negative, clear bit 23 of the instruction.
20954 Otherwise set it. */
20955 if (value < 0)
20956 insn &= ~(1 << 23);
20957 else
20958 insn |= 1 << 23;
20959
20960 /* Place the first four bits of the absolute value of the addend
20961 into the first 4 bits of the instruction, and the remaining
20962 four into bits 8 .. 11. */
20963 insn &= 0xfffff0f0;
20964 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
20965
20966 /* Update the instruction. */
20967 md_number_to_chars (buf, insn, INSN_SIZE);
20968 }
20969 break;
20970
20971 case BFD_RELOC_ARM_LDC_PC_G0:
20972 case BFD_RELOC_ARM_LDC_PC_G1:
20973 case BFD_RELOC_ARM_LDC_PC_G2:
20974 case BFD_RELOC_ARM_LDC_SB_G0:
20975 case BFD_RELOC_ARM_LDC_SB_G1:
20976 case BFD_RELOC_ARM_LDC_SB_G2:
20977 gas_assert (!fixP->fx_done);
20978 if (!seg->use_rela_p)
20979 {
20980 bfd_vma insn;
20981 bfd_vma addend_abs = abs (value);
20982
20983 /* Check that the absolute value of the addend is a multiple of
20984 four and, when divided by four, fits in 8 bits. */
20985 if (addend_abs & 0x3)
20986 as_bad_where (fixP->fx_file, fixP->fx_line,
20987 _("bad offset 0x%08lX (must be word-aligned)"),
20988 (unsigned long) addend_abs);
20989
20990 if ((addend_abs >> 2) > 0xff)
20991 as_bad_where (fixP->fx_file, fixP->fx_line,
20992 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
20993 (unsigned long) addend_abs);
20994
20995 /* Extract the instruction. */
20996 insn = md_chars_to_number (buf, INSN_SIZE);
20997
20998 /* If the addend is negative, clear bit 23 of the instruction.
20999 Otherwise set it. */
21000 if (value < 0)
21001 insn &= ~(1 << 23);
21002 else
21003 insn |= 1 << 23;
21004
21005 /* Place the addend (divided by four) into the first eight
21006 bits of the instruction. */
21007 insn &= 0xfffffff0;
21008 insn |= addend_abs >> 2;
21009
21010 /* Update the instruction. */
21011 md_number_to_chars (buf, insn, INSN_SIZE);
21012 }
21013 break;
21014
21015 case BFD_RELOC_ARM_V4BX:
21016 /* This will need to go in the object file. */
21017 fixP->fx_done = 0;
21018 break;
21019
21020 case BFD_RELOC_UNUSED:
21021 default:
21022 as_bad_where (fixP->fx_file, fixP->fx_line,
21023 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21024 }
21025 }
21026
21027 /* Translate internal representation of relocation info to BFD target
21028 format. */
21029
21030 arelent *
21031 tc_gen_reloc (asection *section, fixS *fixp)
21032 {
21033 arelent * reloc;
21034 bfd_reloc_code_real_type code;
21035
21036 reloc = (arelent *) xmalloc (sizeof (arelent));
21037
21038 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21039 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21040 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21041
21042 if (fixp->fx_pcrel)
21043 {
21044 if (section->use_rela_p)
21045 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21046 else
21047 fixp->fx_offset = reloc->address;
21048 }
21049 reloc->addend = fixp->fx_offset;
21050
21051 switch (fixp->fx_r_type)
21052 {
21053 case BFD_RELOC_8:
21054 if (fixp->fx_pcrel)
21055 {
21056 code = BFD_RELOC_8_PCREL;
21057 break;
21058 }
21059
21060 case BFD_RELOC_16:
21061 if (fixp->fx_pcrel)
21062 {
21063 code = BFD_RELOC_16_PCREL;
21064 break;
21065 }
21066
21067 case BFD_RELOC_32:
21068 if (fixp->fx_pcrel)
21069 {
21070 code = BFD_RELOC_32_PCREL;
21071 break;
21072 }
21073
21074 case BFD_RELOC_ARM_MOVW:
21075 if (fixp->fx_pcrel)
21076 {
21077 code = BFD_RELOC_ARM_MOVW_PCREL;
21078 break;
21079 }
21080
21081 case BFD_RELOC_ARM_MOVT:
21082 if (fixp->fx_pcrel)
21083 {
21084 code = BFD_RELOC_ARM_MOVT_PCREL;
21085 break;
21086 }
21087
21088 case BFD_RELOC_ARM_THUMB_MOVW:
21089 if (fixp->fx_pcrel)
21090 {
21091 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21092 break;
21093 }
21094
21095 case BFD_RELOC_ARM_THUMB_MOVT:
21096 if (fixp->fx_pcrel)
21097 {
21098 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21099 break;
21100 }
21101
21102 case BFD_RELOC_NONE:
21103 case BFD_RELOC_ARM_PCREL_BRANCH:
21104 case BFD_RELOC_ARM_PCREL_BLX:
21105 case BFD_RELOC_RVA:
21106 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21107 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21108 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21109 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21110 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21111 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21112 case BFD_RELOC_VTABLE_ENTRY:
21113 case BFD_RELOC_VTABLE_INHERIT:
21114 #ifdef TE_PE
21115 case BFD_RELOC_32_SECREL:
21116 #endif
21117 code = fixp->fx_r_type;
21118 break;
21119
21120 case BFD_RELOC_THUMB_PCREL_BLX:
21121 #ifdef OBJ_ELF
21122 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21123 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21124 else
21125 #endif
21126 code = BFD_RELOC_THUMB_PCREL_BLX;
21127 break;
21128
21129 case BFD_RELOC_ARM_LITERAL:
21130 case BFD_RELOC_ARM_HWLITERAL:
21131 /* If this is called then the a literal has
21132 been referenced across a section boundary. */
21133 as_bad_where (fixp->fx_file, fixp->fx_line,
21134 _("literal referenced across section boundary"));
21135 return NULL;
21136
21137 #ifdef OBJ_ELF
21138 case BFD_RELOC_ARM_GOT32:
21139 case BFD_RELOC_ARM_GOTOFF:
21140 case BFD_RELOC_ARM_GOT_PREL:
21141 case BFD_RELOC_ARM_PLT32:
21142 case BFD_RELOC_ARM_TARGET1:
21143 case BFD_RELOC_ARM_ROSEGREL32:
21144 case BFD_RELOC_ARM_SBREL32:
21145 case BFD_RELOC_ARM_PREL31:
21146 case BFD_RELOC_ARM_TARGET2:
21147 case BFD_RELOC_ARM_TLS_LE32:
21148 case BFD_RELOC_ARM_TLS_LDO32:
21149 case BFD_RELOC_ARM_PCREL_CALL:
21150 case BFD_RELOC_ARM_PCREL_JUMP:
21151 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21152 case BFD_RELOC_ARM_ALU_PC_G0:
21153 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21154 case BFD_RELOC_ARM_ALU_PC_G1:
21155 case BFD_RELOC_ARM_ALU_PC_G2:
21156 case BFD_RELOC_ARM_LDR_PC_G0:
21157 case BFD_RELOC_ARM_LDR_PC_G1:
21158 case BFD_RELOC_ARM_LDR_PC_G2:
21159 case BFD_RELOC_ARM_LDRS_PC_G0:
21160 case BFD_RELOC_ARM_LDRS_PC_G1:
21161 case BFD_RELOC_ARM_LDRS_PC_G2:
21162 case BFD_RELOC_ARM_LDC_PC_G0:
21163 case BFD_RELOC_ARM_LDC_PC_G1:
21164 case BFD_RELOC_ARM_LDC_PC_G2:
21165 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21166 case BFD_RELOC_ARM_ALU_SB_G0:
21167 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21168 case BFD_RELOC_ARM_ALU_SB_G1:
21169 case BFD_RELOC_ARM_ALU_SB_G2:
21170 case BFD_RELOC_ARM_LDR_SB_G0:
21171 case BFD_RELOC_ARM_LDR_SB_G1:
21172 case BFD_RELOC_ARM_LDR_SB_G2:
21173 case BFD_RELOC_ARM_LDRS_SB_G0:
21174 case BFD_RELOC_ARM_LDRS_SB_G1:
21175 case BFD_RELOC_ARM_LDRS_SB_G2:
21176 case BFD_RELOC_ARM_LDC_SB_G0:
21177 case BFD_RELOC_ARM_LDC_SB_G1:
21178 case BFD_RELOC_ARM_LDC_SB_G2:
21179 case BFD_RELOC_ARM_V4BX:
21180 code = fixp->fx_r_type;
21181 break;
21182
21183 case BFD_RELOC_ARM_TLS_GD32:
21184 case BFD_RELOC_ARM_TLS_IE32:
21185 case BFD_RELOC_ARM_TLS_LDM32:
21186 /* BFD will include the symbol's address in the addend.
21187 But we don't want that, so subtract it out again here. */
21188 if (!S_IS_COMMON (fixp->fx_addsy))
21189 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21190 code = fixp->fx_r_type;
21191 break;
21192 #endif
21193
21194 case BFD_RELOC_ARM_IMMEDIATE:
21195 as_bad_where (fixp->fx_file, fixp->fx_line,
21196 _("internal relocation (type: IMMEDIATE) not fixed up"));
21197 return NULL;
21198
21199 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21200 as_bad_where (fixp->fx_file, fixp->fx_line,
21201 _("ADRL used for a symbol not defined in the same file"));
21202 return NULL;
21203
21204 case BFD_RELOC_ARM_OFFSET_IMM:
21205 if (section->use_rela_p)
21206 {
21207 code = fixp->fx_r_type;
21208 break;
21209 }
21210
21211 if (fixp->fx_addsy != NULL
21212 && !S_IS_DEFINED (fixp->fx_addsy)
21213 && S_IS_LOCAL (fixp->fx_addsy))
21214 {
21215 as_bad_where (fixp->fx_file, fixp->fx_line,
21216 _("undefined local label `%s'"),
21217 S_GET_NAME (fixp->fx_addsy));
21218 return NULL;
21219 }
21220
21221 as_bad_where (fixp->fx_file, fixp->fx_line,
21222 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21223 return NULL;
21224
21225 default:
21226 {
21227 char * type;
21228
21229 switch (fixp->fx_r_type)
21230 {
21231 case BFD_RELOC_NONE: type = "NONE"; break;
21232 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21233 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21234 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21235 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21236 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21237 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21238 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21239 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21240 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21241 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21242 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21243 default: type = _("<unknown>"); break;
21244 }
21245 as_bad_where (fixp->fx_file, fixp->fx_line,
21246 _("cannot represent %s relocation in this object file format"),
21247 type);
21248 return NULL;
21249 }
21250 }
21251
21252 #ifdef OBJ_ELF
21253 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21254 && GOT_symbol
21255 && fixp->fx_addsy == GOT_symbol)
21256 {
21257 code = BFD_RELOC_ARM_GOTPC;
21258 reloc->addend = fixp->fx_offset = reloc->address;
21259 }
21260 #endif
21261
21262 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21263
21264 if (reloc->howto == NULL)
21265 {
21266 as_bad_where (fixp->fx_file, fixp->fx_line,
21267 _("cannot represent %s relocation in this object file format"),
21268 bfd_get_reloc_code_name (code));
21269 return NULL;
21270 }
21271
21272 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21273 vtable entry to be used in the relocation's section offset. */
21274 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21275 reloc->address = fixp->fx_offset;
21276
21277 return reloc;
21278 }
21279
21280 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21281
21282 void
21283 cons_fix_new_arm (fragS * frag,
21284 int where,
21285 int size,
21286 expressionS * exp)
21287 {
21288 bfd_reloc_code_real_type type;
21289 int pcrel = 0;
21290
21291 /* Pick a reloc.
21292 FIXME: @@ Should look at CPU word size. */
21293 switch (size)
21294 {
21295 case 1:
21296 type = BFD_RELOC_8;
21297 break;
21298 case 2:
21299 type = BFD_RELOC_16;
21300 break;
21301 case 4:
21302 default:
21303 type = BFD_RELOC_32;
21304 break;
21305 case 8:
21306 type = BFD_RELOC_64;
21307 break;
21308 }
21309
21310 #ifdef TE_PE
21311 if (exp->X_op == O_secrel)
21312 {
21313 exp->X_op = O_symbol;
21314 type = BFD_RELOC_32_SECREL;
21315 }
21316 #endif
21317
21318 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21319 }
21320
21321 #if defined (OBJ_COFF)
21322 void
21323 arm_validate_fix (fixS * fixP)
21324 {
21325 /* If the destination of the branch is a defined symbol which does not have
21326 the THUMB_FUNC attribute, then we must be calling a function which has
21327 the (interfacearm) attribute. We look for the Thumb entry point to that
21328 function and change the branch to refer to that function instead. */
21329 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21330 && fixP->fx_addsy != NULL
21331 && S_IS_DEFINED (fixP->fx_addsy)
21332 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21333 {
21334 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21335 }
21336 }
21337 #endif
21338
21339
21340 int
21341 arm_force_relocation (struct fix * fixp)
21342 {
21343 #if defined (OBJ_COFF) && defined (TE_PE)
21344 if (fixp->fx_r_type == BFD_RELOC_RVA)
21345 return 1;
21346 #endif
21347
21348 /* In case we have a call or a branch to a function in ARM ISA mode from
21349 a thumb function or vice-versa force the relocation. These relocations
21350 are cleared off for some cores that might have blx and simple transformations
21351 are possible. */
21352
21353 #ifdef OBJ_ELF
21354 switch (fixp->fx_r_type)
21355 {
21356 case BFD_RELOC_ARM_PCREL_JUMP:
21357 case BFD_RELOC_ARM_PCREL_CALL:
21358 case BFD_RELOC_THUMB_PCREL_BLX:
21359 if (THUMB_IS_FUNC (fixp->fx_addsy))
21360 return 1;
21361 break;
21362
21363 case BFD_RELOC_ARM_PCREL_BLX:
21364 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21365 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21366 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21367 if (ARM_IS_FUNC (fixp->fx_addsy))
21368 return 1;
21369 break;
21370
21371 default:
21372 break;
21373 }
21374 #endif
21375
21376 /* Resolve these relocations even if the symbol is extern or weak. */
21377 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21378 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21379 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21380 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21381 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21382 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21383 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21384 return 0;
21385
21386 /* Always leave these relocations for the linker. */
21387 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21388 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21389 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21390 return 1;
21391
21392 /* Always generate relocations against function symbols. */
21393 if (fixp->fx_r_type == BFD_RELOC_32
21394 && fixp->fx_addsy
21395 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21396 return 1;
21397
21398 return generic_force_reloc (fixp);
21399 }
21400
21401 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21402 /* Relocations against function names must be left unadjusted,
21403 so that the linker can use this information to generate interworking
21404 stubs. The MIPS version of this function
21405 also prevents relocations that are mips-16 specific, but I do not
21406 know why it does this.
21407
21408 FIXME:
21409 There is one other problem that ought to be addressed here, but
21410 which currently is not: Taking the address of a label (rather
21411 than a function) and then later jumping to that address. Such
21412 addresses also ought to have their bottom bit set (assuming that
21413 they reside in Thumb code), but at the moment they will not. */
21414
21415 bfd_boolean
21416 arm_fix_adjustable (fixS * fixP)
21417 {
21418 if (fixP->fx_addsy == NULL)
21419 return 1;
21420
21421 /* Preserve relocations against symbols with function type. */
21422 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21423 return FALSE;
21424
21425 if (THUMB_IS_FUNC (fixP->fx_addsy)
21426 && fixP->fx_subsy == NULL)
21427 return FALSE;
21428
21429 /* We need the symbol name for the VTABLE entries. */
21430 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21431 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21432 return FALSE;
21433
21434 /* Don't allow symbols to be discarded on GOT related relocs. */
21435 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21436 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21437 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21438 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21439 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21440 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21441 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21442 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21443 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21444 return FALSE;
21445
21446 /* Similarly for group relocations. */
21447 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21448 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21449 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21450 return FALSE;
21451
21452 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21453 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21454 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21455 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21456 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21457 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21458 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21459 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21460 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21461 return FALSE;
21462
21463 return TRUE;
21464 }
21465 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21466
21467 #ifdef OBJ_ELF
21468
21469 const char *
21470 elf32_arm_target_format (void)
21471 {
21472 #ifdef TE_SYMBIAN
21473 return (target_big_endian
21474 ? "elf32-bigarm-symbian"
21475 : "elf32-littlearm-symbian");
21476 #elif defined (TE_VXWORKS)
21477 return (target_big_endian
21478 ? "elf32-bigarm-vxworks"
21479 : "elf32-littlearm-vxworks");
21480 #else
21481 if (target_big_endian)
21482 return "elf32-bigarm";
21483 else
21484 return "elf32-littlearm";
21485 #endif
21486 }
21487
21488 void
21489 armelf_frob_symbol (symbolS * symp,
21490 int * puntp)
21491 {
21492 elf_frob_symbol (symp, puntp);
21493 }
21494 #endif
21495
21496 /* MD interface: Finalization. */
21497
21498 void
21499 arm_cleanup (void)
21500 {
21501 literal_pool * pool;
21502
21503 /* Ensure that all the IT blocks are properly closed. */
21504 check_it_blocks_finished ();
21505
21506 for (pool = list_of_pools; pool; pool = pool->next)
21507 {
21508 /* Put it at the end of the relevant section. */
21509 subseg_set (pool->section, pool->sub_section);
21510 #ifdef OBJ_ELF
21511 arm_elf_change_section ();
21512 #endif
21513 s_ltorg (0);
21514 }
21515 }
21516
21517 #ifdef OBJ_ELF
21518 /* Remove any excess mapping symbols generated for alignment frags in
21519 SEC. We may have created a mapping symbol before a zero byte
21520 alignment; remove it if there's a mapping symbol after the
21521 alignment. */
21522 static void
21523 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21524 void *dummy ATTRIBUTE_UNUSED)
21525 {
21526 segment_info_type *seginfo = seg_info (sec);
21527 fragS *fragp;
21528
21529 if (seginfo == NULL || seginfo->frchainP == NULL)
21530 return;
21531
21532 for (fragp = seginfo->frchainP->frch_root;
21533 fragp != NULL;
21534 fragp = fragp->fr_next)
21535 {
21536 symbolS *sym = fragp->tc_frag_data.last_map;
21537 fragS *next = fragp->fr_next;
21538
21539 /* Variable-sized frags have been converted to fixed size by
21540 this point. But if this was variable-sized to start with,
21541 there will be a fixed-size frag after it. So don't handle
21542 next == NULL. */
21543 if (sym == NULL || next == NULL)
21544 continue;
21545
21546 if (S_GET_VALUE (sym) < next->fr_address)
21547 /* Not at the end of this frag. */
21548 continue;
21549 know (S_GET_VALUE (sym) == next->fr_address);
21550
21551 do
21552 {
21553 if (next->tc_frag_data.first_map != NULL)
21554 {
21555 /* Next frag starts with a mapping symbol. Discard this
21556 one. */
21557 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21558 break;
21559 }
21560
21561 if (next->fr_next == NULL)
21562 {
21563 /* This mapping symbol is at the end of the section. Discard
21564 it. */
21565 know (next->fr_fix == 0 && next->fr_var == 0);
21566 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21567 break;
21568 }
21569
21570 /* As long as we have empty frags without any mapping symbols,
21571 keep looking. */
21572 /* If the next frag is non-empty and does not start with a
21573 mapping symbol, then this mapping symbol is required. */
21574 if (next->fr_address != next->fr_next->fr_address)
21575 break;
21576
21577 next = next->fr_next;
21578 }
21579 while (next != NULL);
21580 }
21581 }
21582 #endif
21583
21584 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21585 ARM ones. */
21586
21587 void
21588 arm_adjust_symtab (void)
21589 {
21590 #ifdef OBJ_COFF
21591 symbolS * sym;
21592
21593 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21594 {
21595 if (ARM_IS_THUMB (sym))
21596 {
21597 if (THUMB_IS_FUNC (sym))
21598 {
21599 /* Mark the symbol as a Thumb function. */
21600 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21601 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21602 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21603
21604 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21605 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21606 else
21607 as_bad (_("%s: unexpected function type: %d"),
21608 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21609 }
21610 else switch (S_GET_STORAGE_CLASS (sym))
21611 {
21612 case C_EXT:
21613 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21614 break;
21615 case C_STAT:
21616 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21617 break;
21618 case C_LABEL:
21619 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21620 break;
21621 default:
21622 /* Do nothing. */
21623 break;
21624 }
21625 }
21626
21627 if (ARM_IS_INTERWORK (sym))
21628 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21629 }
21630 #endif
21631 #ifdef OBJ_ELF
21632 symbolS * sym;
21633 char bind;
21634
21635 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21636 {
21637 if (ARM_IS_THUMB (sym))
21638 {
21639 elf_symbol_type * elf_sym;
21640
21641 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21642 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21643
21644 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21645 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21646 {
21647 /* If it's a .thumb_func, declare it as so,
21648 otherwise tag label as .code 16. */
21649 if (THUMB_IS_FUNC (sym))
21650 elf_sym->internal_elf_sym.st_info =
21651 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21652 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21653 elf_sym->internal_elf_sym.st_info =
21654 ELF_ST_INFO (bind, STT_ARM_16BIT);
21655 }
21656 }
21657 }
21658
21659 /* Remove any overlapping mapping symbols generated by alignment frags. */
21660 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
21661 #endif
21662 }
21663
21664 /* MD interface: Initialization. */
21665
21666 static void
21667 set_constant_flonums (void)
21668 {
21669 int i;
21670
21671 for (i = 0; i < NUM_FLOAT_VALS; i++)
21672 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21673 abort ();
21674 }
21675
21676 /* Auto-select Thumb mode if it's the only available instruction set for the
21677 given architecture. */
21678
21679 static void
21680 autoselect_thumb_from_cpu_variant (void)
21681 {
21682 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21683 opcode_select (16);
21684 }
21685
21686 void
21687 md_begin (void)
21688 {
21689 unsigned mach;
21690 unsigned int i;
21691
21692 if ( (arm_ops_hsh = hash_new ()) == NULL
21693 || (arm_cond_hsh = hash_new ()) == NULL
21694 || (arm_shift_hsh = hash_new ()) == NULL
21695 || (arm_psr_hsh = hash_new ()) == NULL
21696 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21697 || (arm_reg_hsh = hash_new ()) == NULL
21698 || (arm_reloc_hsh = hash_new ()) == NULL
21699 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
21700 as_fatal (_("virtual memory exhausted"));
21701
21702 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
21703 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
21704 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
21705 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
21706 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
21707 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
21708 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
21709 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
21710 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
21711 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21712 (void *) (v7m_psrs + i));
21713 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
21714 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
21715 for (i = 0;
21716 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21717 i++)
21718 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
21719 (void *) (barrier_opt_names + i));
21720 #ifdef OBJ_ELF
21721 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
21722 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
21723 #endif
21724
21725 set_constant_flonums ();
21726
21727 /* Set the cpu variant based on the command-line options. We prefer
21728 -mcpu= over -march= if both are set (as for GCC); and we prefer
21729 -mfpu= over any other way of setting the floating point unit.
21730 Use of legacy options with new options are faulted. */
21731 if (legacy_cpu)
21732 {
21733 if (mcpu_cpu_opt || march_cpu_opt)
21734 as_bad (_("use of old and new-style options to set CPU type"));
21735
21736 mcpu_cpu_opt = legacy_cpu;
21737 }
21738 else if (!mcpu_cpu_opt)
21739 mcpu_cpu_opt = march_cpu_opt;
21740
21741 if (legacy_fpu)
21742 {
21743 if (mfpu_opt)
21744 as_bad (_("use of old and new-style options to set FPU type"));
21745
21746 mfpu_opt = legacy_fpu;
21747 }
21748 else if (!mfpu_opt)
21749 {
21750 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21751 || defined (TE_NetBSD) || defined (TE_VXWORKS))
21752 /* Some environments specify a default FPU. If they don't, infer it
21753 from the processor. */
21754 if (mcpu_fpu_opt)
21755 mfpu_opt = mcpu_fpu_opt;
21756 else
21757 mfpu_opt = march_fpu_opt;
21758 #else
21759 mfpu_opt = &fpu_default;
21760 #endif
21761 }
21762
21763 if (!mfpu_opt)
21764 {
21765 if (mcpu_cpu_opt != NULL)
21766 mfpu_opt = &fpu_default;
21767 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
21768 mfpu_opt = &fpu_arch_vfp_v2;
21769 else
21770 mfpu_opt = &fpu_arch_fpa;
21771 }
21772
21773 #ifdef CPU_DEFAULT
21774 if (!mcpu_cpu_opt)
21775 {
21776 mcpu_cpu_opt = &cpu_default;
21777 selected_cpu = cpu_default;
21778 }
21779 #else
21780 if (mcpu_cpu_opt)
21781 selected_cpu = *mcpu_cpu_opt;
21782 else
21783 mcpu_cpu_opt = &arm_arch_any;
21784 #endif
21785
21786 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21787
21788 autoselect_thumb_from_cpu_variant ();
21789
21790 arm_arch_used = thumb_arch_used = arm_arch_none;
21791
21792 #if defined OBJ_COFF || defined OBJ_ELF
21793 {
21794 unsigned int flags = 0;
21795
21796 #if defined OBJ_ELF
21797 flags = meabi_flags;
21798
21799 switch (meabi_flags)
21800 {
21801 case EF_ARM_EABI_UNKNOWN:
21802 #endif
21803 /* Set the flags in the private structure. */
21804 if (uses_apcs_26) flags |= F_APCS26;
21805 if (support_interwork) flags |= F_INTERWORK;
21806 if (uses_apcs_float) flags |= F_APCS_FLOAT;
21807 if (pic_code) flags |= F_PIC;
21808 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
21809 flags |= F_SOFT_FLOAT;
21810
21811 switch (mfloat_abi_opt)
21812 {
21813 case ARM_FLOAT_ABI_SOFT:
21814 case ARM_FLOAT_ABI_SOFTFP:
21815 flags |= F_SOFT_FLOAT;
21816 break;
21817
21818 case ARM_FLOAT_ABI_HARD:
21819 if (flags & F_SOFT_FLOAT)
21820 as_bad (_("hard-float conflicts with specified fpu"));
21821 break;
21822 }
21823
21824 /* Using pure-endian doubles (even if soft-float). */
21825 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
21826 flags |= F_VFP_FLOAT;
21827
21828 #if defined OBJ_ELF
21829 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
21830 flags |= EF_ARM_MAVERICK_FLOAT;
21831 break;
21832
21833 case EF_ARM_EABI_VER4:
21834 case EF_ARM_EABI_VER5:
21835 /* No additional flags to set. */
21836 break;
21837
21838 default:
21839 abort ();
21840 }
21841 #endif
21842 bfd_set_private_flags (stdoutput, flags);
21843
21844 /* We have run out flags in the COFF header to encode the
21845 status of ATPCS support, so instead we create a dummy,
21846 empty, debug section called .arm.atpcs. */
21847 if (atpcs)
21848 {
21849 asection * sec;
21850
21851 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21852
21853 if (sec != NULL)
21854 {
21855 bfd_set_section_flags
21856 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21857 bfd_set_section_size (stdoutput, sec, 0);
21858 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21859 }
21860 }
21861 }
21862 #endif
21863
21864 /* Record the CPU type as well. */
21865 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21866 mach = bfd_mach_arm_iWMMXt2;
21867 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
21868 mach = bfd_mach_arm_iWMMXt;
21869 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
21870 mach = bfd_mach_arm_XScale;
21871 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
21872 mach = bfd_mach_arm_ep9312;
21873 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
21874 mach = bfd_mach_arm_5TE;
21875 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
21876 {
21877 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21878 mach = bfd_mach_arm_5T;
21879 else
21880 mach = bfd_mach_arm_5;
21881 }
21882 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
21883 {
21884 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21885 mach = bfd_mach_arm_4T;
21886 else
21887 mach = bfd_mach_arm_4;
21888 }
21889 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
21890 mach = bfd_mach_arm_3M;
21891 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21892 mach = bfd_mach_arm_3;
21893 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21894 mach = bfd_mach_arm_2a;
21895 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21896 mach = bfd_mach_arm_2;
21897 else
21898 mach = bfd_mach_arm_unknown;
21899
21900 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21901 }
21902
21903 /* Command line processing. */
21904
21905 /* md_parse_option
21906 Invocation line includes a switch not recognized by the base assembler.
21907 See if it's a processor-specific option.
21908
21909 This routine is somewhat complicated by the need for backwards
21910 compatibility (since older releases of gcc can't be changed).
21911 The new options try to make the interface as compatible as
21912 possible with GCC.
21913
21914 New options (supported) are:
21915
21916 -mcpu=<cpu name> Assemble for selected processor
21917 -march=<architecture name> Assemble for selected architecture
21918 -mfpu=<fpu architecture> Assemble for selected FPU.
21919 -EB/-mbig-endian Big-endian
21920 -EL/-mlittle-endian Little-endian
21921 -k Generate PIC code
21922 -mthumb Start in Thumb mode
21923 -mthumb-interwork Code supports ARM/Thumb interworking
21924
21925 -m[no-]warn-deprecated Warn about deprecated features
21926
21927 For now we will also provide support for:
21928
21929 -mapcs-32 32-bit Program counter
21930 -mapcs-26 26-bit Program counter
21931 -macps-float Floats passed in FP registers
21932 -mapcs-reentrant Reentrant code
21933 -matpcs
21934 (sometime these will probably be replaced with -mapcs=<list of options>
21935 and -matpcs=<list of options>)
21936
21937 The remaining options are only supported for back-wards compatibility.
21938 Cpu variants, the arm part is optional:
21939 -m[arm]1 Currently not supported.
21940 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21941 -m[arm]3 Arm 3 processor
21942 -m[arm]6[xx], Arm 6 processors
21943 -m[arm]7[xx][t][[d]m] Arm 7 processors
21944 -m[arm]8[10] Arm 8 processors
21945 -m[arm]9[20][tdmi] Arm 9 processors
21946 -mstrongarm[110[0]] StrongARM processors
21947 -mxscale XScale processors
21948 -m[arm]v[2345[t[e]]] Arm architectures
21949 -mall All (except the ARM1)
21950 FP variants:
21951 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21952 -mfpe-old (No float load/store multiples)
21953 -mvfpxd VFP Single precision
21954 -mvfp All VFP
21955 -mno-fpu Disable all floating point instructions
21956
21957 The following CPU names are recognized:
21958 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21959 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21960 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21961 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21962 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21963 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21964 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
21965
21966 */
21967
21968 const char * md_shortopts = "m:k";
21969
21970 #ifdef ARM_BI_ENDIAN
21971 #define OPTION_EB (OPTION_MD_BASE + 0)
21972 #define OPTION_EL (OPTION_MD_BASE + 1)
21973 #else
21974 #if TARGET_BYTES_BIG_ENDIAN
21975 #define OPTION_EB (OPTION_MD_BASE + 0)
21976 #else
21977 #define OPTION_EL (OPTION_MD_BASE + 1)
21978 #endif
21979 #endif
21980 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
21981
21982 struct option md_longopts[] =
21983 {
21984 #ifdef OPTION_EB
21985 {"EB", no_argument, NULL, OPTION_EB},
21986 #endif
21987 #ifdef OPTION_EL
21988 {"EL", no_argument, NULL, OPTION_EL},
21989 #endif
21990 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
21991 {NULL, no_argument, NULL, 0}
21992 };
21993
21994 size_t md_longopts_size = sizeof (md_longopts);
21995
21996 struct arm_option_table
21997 {
21998 char *option; /* Option name to match. */
21999 char *help; /* Help information. */
22000 int *var; /* Variable to change. */
22001 int value; /* What to change it to. */
22002 char *deprecated; /* If non-null, print this message. */
22003 };
22004
22005 struct arm_option_table arm_opts[] =
22006 {
22007 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22008 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22009 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22010 &support_interwork, 1, NULL},
22011 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22012 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22013 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22014 1, NULL},
22015 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22016 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22017 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22018 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22019 NULL},
22020
22021 /* These are recognized by the assembler, but have no affect on code. */
22022 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22023 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22024
22025 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22026 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22027 &warn_on_deprecated, 0, NULL},
22028 {NULL, NULL, NULL, 0, NULL}
22029 };
22030
22031 struct arm_legacy_option_table
22032 {
22033 char *option; /* Option name to match. */
22034 const arm_feature_set **var; /* Variable to change. */
22035 const arm_feature_set value; /* What to change it to. */
22036 char *deprecated; /* If non-null, print this message. */
22037 };
22038
22039 const struct arm_legacy_option_table arm_legacy_opts[] =
22040 {
22041 /* DON'T add any new processors to this list -- we want the whole list
22042 to go away... Add them to the processors table instead. */
22043 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22044 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22045 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22046 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22047 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22048 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22049 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22050 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22051 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22052 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22053 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22054 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22055 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22056 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22057 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22058 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22059 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22060 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22061 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22062 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22063 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22064 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22065 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22066 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22067 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22068 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22069 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22070 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22071 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22072 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22073 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22074 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22075 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22076 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22077 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22078 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22079 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22080 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22081 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22082 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22083 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22084 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22085 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22086 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22087 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22088 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22089 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22090 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22091 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22092 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22093 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22094 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22095 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22096 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22097 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22098 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22099 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22100 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22101 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22102 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22103 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22104 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22105 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22106 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22107 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22108 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22109 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22110 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22111 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22112 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22113 N_("use -mcpu=strongarm110")},
22114 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22115 N_("use -mcpu=strongarm1100")},
22116 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22117 N_("use -mcpu=strongarm1110")},
22118 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22119 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22120 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22121
22122 /* Architecture variants -- don't add any more to this list either. */
22123 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22124 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22125 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22126 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22127 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22128 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22129 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22130 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22131 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22132 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22133 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22134 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22135 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22136 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22137 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22138 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22139 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22140 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22141
22142 /* Floating point variants -- don't add any more to this list either. */
22143 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22144 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22145 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22146 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22147 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22148
22149 {NULL, NULL, ARM_ARCH_NONE, NULL}
22150 };
22151
22152 struct arm_cpu_option_table
22153 {
22154 char *name;
22155 const arm_feature_set value;
22156 /* For some CPUs we assume an FPU unless the user explicitly sets
22157 -mfpu=... */
22158 const arm_feature_set default_fpu;
22159 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22160 case. */
22161 const char *canonical_name;
22162 };
22163
22164 /* This list should, at a minimum, contain all the cpu names
22165 recognized by GCC. */
22166 static const struct arm_cpu_option_table arm_cpus[] =
22167 {
22168 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22169 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22170 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22171 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22172 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22173 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22174 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22175 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22176 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22177 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22178 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22179 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22180 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22181 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22182 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22183 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22184 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22185 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22186 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22187 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22188 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22189 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22190 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22191 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22192 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22193 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22194 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22195 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22196 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22197 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22198 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22199 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22200 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22201 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22202 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22203 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22204 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22205 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22206 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22207 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22208 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22209 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22210 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22211 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22212 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22213 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22214 /* For V5 or later processors we default to using VFP; but the user
22215 should really set the FPU type explicitly. */
22216 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22217 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22218 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22219 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22220 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22221 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22222 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22223 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22224 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22225 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22226 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22227 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22228 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22229 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22230 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22231 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22232 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22233 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22234 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22235 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22236 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22237 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22238 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22239 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22240 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22241 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22242 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22243 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
22244 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
22245 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22246 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22247 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22248 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22249 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
22250 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22251 | FPU_NEON_EXT_V1),
22252 NULL},
22253 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22254 | FPU_NEON_EXT_V1),
22255 NULL},
22256 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
22257 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
22258 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, NULL},
22259 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
22260 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
22261 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
22262 /* ??? XSCALE is really an architecture. */
22263 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22264 /* ??? iwmmxt is not a processor. */
22265 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22266 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22267 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22268 /* Maverick */
22269 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22270 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22271 };
22272
22273 struct arm_arch_option_table
22274 {
22275 char *name;
22276 const arm_feature_set value;
22277 const arm_feature_set default_fpu;
22278 };
22279
22280 /* This list should, at a minimum, contain all the architecture names
22281 recognized by GCC. */
22282 static const struct arm_arch_option_table arm_archs[] =
22283 {
22284 {"all", ARM_ANY, FPU_ARCH_FPA},
22285 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22286 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22287 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22288 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22289 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22290 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22291 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22292 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22293 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22294 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22295 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22296 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22297 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22298 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22299 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22300 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22301 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22302 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22303 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22304 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22305 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22306 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22307 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22308 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22309 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22310 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22311 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22312 /* The official spelling of the ARMv7 profile variants is the dashed form.
22313 Accept the non-dashed form for compatibility with old toolchains. */
22314 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22315 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22316 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22317 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22318 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22319 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22320 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22321 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22322 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22323 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22324 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22325 };
22326
22327 /* ISA extensions in the co-processor space. */
22328 struct arm_option_cpu_value_table
22329 {
22330 char *name;
22331 const arm_feature_set value;
22332 };
22333
22334 static const struct arm_option_cpu_value_table arm_extensions[] =
22335 {
22336 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22337 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22338 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
22339 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
22340 {NULL, ARM_ARCH_NONE}
22341 };
22342
22343 /* This list should, at a minimum, contain all the fpu names
22344 recognized by GCC. */
22345 static const struct arm_option_cpu_value_table arm_fpus[] =
22346 {
22347 {"softfpa", FPU_NONE},
22348 {"fpe", FPU_ARCH_FPE},
22349 {"fpe2", FPU_ARCH_FPE},
22350 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22351 {"fpa", FPU_ARCH_FPA},
22352 {"fpa10", FPU_ARCH_FPA},
22353 {"fpa11", FPU_ARCH_FPA},
22354 {"arm7500fe", FPU_ARCH_FPA},
22355 {"softvfp", FPU_ARCH_VFP},
22356 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22357 {"vfp", FPU_ARCH_VFP_V2},
22358 {"vfp9", FPU_ARCH_VFP_V2},
22359 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22360 {"vfp10", FPU_ARCH_VFP_V2},
22361 {"vfp10-r0", FPU_ARCH_VFP_V1},
22362 {"vfpxd", FPU_ARCH_VFP_V1xD},
22363 {"vfpv2", FPU_ARCH_VFP_V2},
22364 {"vfpv3", FPU_ARCH_VFP_V3},
22365 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22366 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22367 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22368 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22369 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22370 {"arm1020t", FPU_ARCH_VFP_V1},
22371 {"arm1020e", FPU_ARCH_VFP_V2},
22372 {"arm1136jfs", FPU_ARCH_VFP_V2},
22373 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22374 {"maverick", FPU_ARCH_MAVERICK},
22375 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22376 {"neon-fp16", FPU_ARCH_NEON_FP16},
22377 {"vfpv4", FPU_ARCH_VFP_V4},
22378 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22379 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22380 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22381 {NULL, ARM_ARCH_NONE}
22382 };
22383
22384 struct arm_option_value_table
22385 {
22386 char *name;
22387 long value;
22388 };
22389
22390 static const struct arm_option_value_table arm_float_abis[] =
22391 {
22392 {"hard", ARM_FLOAT_ABI_HARD},
22393 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22394 {"soft", ARM_FLOAT_ABI_SOFT},
22395 {NULL, 0}
22396 };
22397
22398 #ifdef OBJ_ELF
22399 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22400 static const struct arm_option_value_table arm_eabis[] =
22401 {
22402 {"gnu", EF_ARM_EABI_UNKNOWN},
22403 {"4", EF_ARM_EABI_VER4},
22404 {"5", EF_ARM_EABI_VER5},
22405 {NULL, 0}
22406 };
22407 #endif
22408
22409 struct arm_long_option_table
22410 {
22411 char * option; /* Substring to match. */
22412 char * help; /* Help information. */
22413 int (* func) (char * subopt); /* Function to decode sub-option. */
22414 char * deprecated; /* If non-null, print this message. */
22415 };
22416
22417 static bfd_boolean
22418 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22419 {
22420 arm_feature_set *ext_set = (arm_feature_set *)
22421 xmalloc (sizeof (arm_feature_set));
22422
22423 /* Copy the feature set, so that we can modify it. */
22424 *ext_set = **opt_p;
22425 *opt_p = ext_set;
22426
22427 while (str != NULL && *str != 0)
22428 {
22429 const struct arm_option_cpu_value_table * opt;
22430 char * ext;
22431 int optlen;
22432
22433 if (*str != '+')
22434 {
22435 as_bad (_("invalid architectural extension"));
22436 return FALSE;
22437 }
22438
22439 str++;
22440 ext = strchr (str, '+');
22441
22442 if (ext != NULL)
22443 optlen = ext - str;
22444 else
22445 optlen = strlen (str);
22446
22447 if (optlen == 0)
22448 {
22449 as_bad (_("missing architectural extension"));
22450 return FALSE;
22451 }
22452
22453 for (opt = arm_extensions; opt->name != NULL; opt++)
22454 if (strncmp (opt->name, str, optlen) == 0)
22455 {
22456 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22457 break;
22458 }
22459
22460 if (opt->name == NULL)
22461 {
22462 as_bad (_("unknown architectural extension `%s'"), str);
22463 return FALSE;
22464 }
22465
22466 str = ext;
22467 };
22468
22469 return TRUE;
22470 }
22471
22472 static bfd_boolean
22473 arm_parse_cpu (char * str)
22474 {
22475 const struct arm_cpu_option_table * opt;
22476 char * ext = strchr (str, '+');
22477 int optlen;
22478
22479 if (ext != NULL)
22480 optlen = ext - str;
22481 else
22482 optlen = strlen (str);
22483
22484 if (optlen == 0)
22485 {
22486 as_bad (_("missing cpu name `%s'"), str);
22487 return FALSE;
22488 }
22489
22490 for (opt = arm_cpus; opt->name != NULL; opt++)
22491 if (strncmp (opt->name, str, optlen) == 0)
22492 {
22493 mcpu_cpu_opt = &opt->value;
22494 mcpu_fpu_opt = &opt->default_fpu;
22495 if (opt->canonical_name)
22496 strcpy (selected_cpu_name, opt->canonical_name);
22497 else
22498 {
22499 int i;
22500
22501 for (i = 0; i < optlen; i++)
22502 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22503 selected_cpu_name[i] = 0;
22504 }
22505
22506 if (ext != NULL)
22507 return arm_parse_extension (ext, &mcpu_cpu_opt);
22508
22509 return TRUE;
22510 }
22511
22512 as_bad (_("unknown cpu `%s'"), str);
22513 return FALSE;
22514 }
22515
22516 static bfd_boolean
22517 arm_parse_arch (char * str)
22518 {
22519 const struct arm_arch_option_table *opt;
22520 char *ext = strchr (str, '+');
22521 int optlen;
22522
22523 if (ext != NULL)
22524 optlen = ext - str;
22525 else
22526 optlen = strlen (str);
22527
22528 if (optlen == 0)
22529 {
22530 as_bad (_("missing architecture name `%s'"), str);
22531 return FALSE;
22532 }
22533
22534 for (opt = arm_archs; opt->name != NULL; opt++)
22535 if (streq (opt->name, str))
22536 {
22537 march_cpu_opt = &opt->value;
22538 march_fpu_opt = &opt->default_fpu;
22539 strcpy (selected_cpu_name, opt->name);
22540
22541 if (ext != NULL)
22542 return arm_parse_extension (ext, &march_cpu_opt);
22543
22544 return TRUE;
22545 }
22546
22547 as_bad (_("unknown architecture `%s'\n"), str);
22548 return FALSE;
22549 }
22550
22551 static bfd_boolean
22552 arm_parse_fpu (char * str)
22553 {
22554 const struct arm_option_cpu_value_table * opt;
22555
22556 for (opt = arm_fpus; opt->name != NULL; opt++)
22557 if (streq (opt->name, str))
22558 {
22559 mfpu_opt = &opt->value;
22560 return TRUE;
22561 }
22562
22563 as_bad (_("unknown floating point format `%s'\n"), str);
22564 return FALSE;
22565 }
22566
22567 static bfd_boolean
22568 arm_parse_float_abi (char * str)
22569 {
22570 const struct arm_option_value_table * opt;
22571
22572 for (opt = arm_float_abis; opt->name != NULL; opt++)
22573 if (streq (opt->name, str))
22574 {
22575 mfloat_abi_opt = opt->value;
22576 return TRUE;
22577 }
22578
22579 as_bad (_("unknown floating point abi `%s'\n"), str);
22580 return FALSE;
22581 }
22582
22583 #ifdef OBJ_ELF
22584 static bfd_boolean
22585 arm_parse_eabi (char * str)
22586 {
22587 const struct arm_option_value_table *opt;
22588
22589 for (opt = arm_eabis; opt->name != NULL; opt++)
22590 if (streq (opt->name, str))
22591 {
22592 meabi_flags = opt->value;
22593 return TRUE;
22594 }
22595 as_bad (_("unknown EABI `%s'\n"), str);
22596 return FALSE;
22597 }
22598 #endif
22599
22600 static bfd_boolean
22601 arm_parse_it_mode (char * str)
22602 {
22603 bfd_boolean ret = TRUE;
22604
22605 if (streq ("arm", str))
22606 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22607 else if (streq ("thumb", str))
22608 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22609 else if (streq ("always", str))
22610 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22611 else if (streq ("never", str))
22612 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22613 else
22614 {
22615 as_bad (_("unknown implicit IT mode `%s', should be "\
22616 "arm, thumb, always, or never."), str);
22617 ret = FALSE;
22618 }
22619
22620 return ret;
22621 }
22622
22623 struct arm_long_option_table arm_long_opts[] =
22624 {
22625 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22626 arm_parse_cpu, NULL},
22627 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22628 arm_parse_arch, NULL},
22629 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22630 arm_parse_fpu, NULL},
22631 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22632 arm_parse_float_abi, NULL},
22633 #ifdef OBJ_ELF
22634 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
22635 arm_parse_eabi, NULL},
22636 #endif
22637 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22638 arm_parse_it_mode, NULL},
22639 {NULL, NULL, 0, NULL}
22640 };
22641
22642 int
22643 md_parse_option (int c, char * arg)
22644 {
22645 struct arm_option_table *opt;
22646 const struct arm_legacy_option_table *fopt;
22647 struct arm_long_option_table *lopt;
22648
22649 switch (c)
22650 {
22651 #ifdef OPTION_EB
22652 case OPTION_EB:
22653 target_big_endian = 1;
22654 break;
22655 #endif
22656
22657 #ifdef OPTION_EL
22658 case OPTION_EL:
22659 target_big_endian = 0;
22660 break;
22661 #endif
22662
22663 case OPTION_FIX_V4BX:
22664 fix_v4bx = TRUE;
22665 break;
22666
22667 case 'a':
22668 /* Listing option. Just ignore these, we don't support additional
22669 ones. */
22670 return 0;
22671
22672 default:
22673 for (opt = arm_opts; opt->option != NULL; opt++)
22674 {
22675 if (c == opt->option[0]
22676 && ((arg == NULL && opt->option[1] == 0)
22677 || streq (arg, opt->option + 1)))
22678 {
22679 /* If the option is deprecated, tell the user. */
22680 if (warn_on_deprecated && opt->deprecated != NULL)
22681 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22682 arg ? arg : "", _(opt->deprecated));
22683
22684 if (opt->var != NULL)
22685 *opt->var = opt->value;
22686
22687 return 1;
22688 }
22689 }
22690
22691 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22692 {
22693 if (c == fopt->option[0]
22694 && ((arg == NULL && fopt->option[1] == 0)
22695 || streq (arg, fopt->option + 1)))
22696 {
22697 /* If the option is deprecated, tell the user. */
22698 if (warn_on_deprecated && fopt->deprecated != NULL)
22699 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22700 arg ? arg : "", _(fopt->deprecated));
22701
22702 if (fopt->var != NULL)
22703 *fopt->var = &fopt->value;
22704
22705 return 1;
22706 }
22707 }
22708
22709 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22710 {
22711 /* These options are expected to have an argument. */
22712 if (c == lopt->option[0]
22713 && arg != NULL
22714 && strncmp (arg, lopt->option + 1,
22715 strlen (lopt->option + 1)) == 0)
22716 {
22717 /* If the option is deprecated, tell the user. */
22718 if (warn_on_deprecated && lopt->deprecated != NULL)
22719 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22720 _(lopt->deprecated));
22721
22722 /* Call the sup-option parser. */
22723 return lopt->func (arg + strlen (lopt->option) - 1);
22724 }
22725 }
22726
22727 return 0;
22728 }
22729
22730 return 1;
22731 }
22732
22733 void
22734 md_show_usage (FILE * fp)
22735 {
22736 struct arm_option_table *opt;
22737 struct arm_long_option_table *lopt;
22738
22739 fprintf (fp, _(" ARM-specific assembler options:\n"));
22740
22741 for (opt = arm_opts; opt->option != NULL; opt++)
22742 if (opt->help != NULL)
22743 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
22744
22745 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22746 if (lopt->help != NULL)
22747 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
22748
22749 #ifdef OPTION_EB
22750 fprintf (fp, _("\
22751 -EB assemble code for a big-endian cpu\n"));
22752 #endif
22753
22754 #ifdef OPTION_EL
22755 fprintf (fp, _("\
22756 -EL assemble code for a little-endian cpu\n"));
22757 #endif
22758
22759 fprintf (fp, _("\
22760 --fix-v4bx Allow BX in ARMv4 code\n"));
22761 }
22762
22763
22764 #ifdef OBJ_ELF
22765 typedef struct
22766 {
22767 int val;
22768 arm_feature_set flags;
22769 } cpu_arch_ver_table;
22770
22771 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22772 least features first. */
22773 static const cpu_arch_ver_table cpu_arch_ver[] =
22774 {
22775 {1, ARM_ARCH_V4},
22776 {2, ARM_ARCH_V4T},
22777 {3, ARM_ARCH_V5},
22778 {3, ARM_ARCH_V5T},
22779 {4, ARM_ARCH_V5TE},
22780 {5, ARM_ARCH_V5TEJ},
22781 {6, ARM_ARCH_V6},
22782 {7, ARM_ARCH_V6Z},
22783 {9, ARM_ARCH_V6K},
22784 {11, ARM_ARCH_V6M},
22785 {8, ARM_ARCH_V6T2},
22786 {10, ARM_ARCH_V7A},
22787 {10, ARM_ARCH_V7R},
22788 {10, ARM_ARCH_V7M},
22789 {0, ARM_ARCH_NONE}
22790 };
22791
22792 /* Set an attribute if it has not already been set by the user. */
22793 static void
22794 aeabi_set_attribute_int (int tag, int value)
22795 {
22796 if (tag < 1
22797 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22798 || !attributes_set_explicitly[tag])
22799 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22800 }
22801
22802 static void
22803 aeabi_set_attribute_string (int tag, const char *value)
22804 {
22805 if (tag < 1
22806 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22807 || !attributes_set_explicitly[tag])
22808 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22809 }
22810
22811 /* Set the public EABI object attributes. */
22812 static void
22813 aeabi_set_public_attributes (void)
22814 {
22815 int arch;
22816 arm_feature_set flags;
22817 arm_feature_set tmp;
22818 const cpu_arch_ver_table *p;
22819
22820 /* Choose the architecture based on the capabilities of the requested cpu
22821 (if any) and/or the instructions actually used. */
22822 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22823 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22824 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
22825 /*Allow the user to override the reported architecture. */
22826 if (object_arch)
22827 {
22828 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22829 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22830 }
22831
22832 tmp = flags;
22833 arch = 0;
22834 for (p = cpu_arch_ver; p->val; p++)
22835 {
22836 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22837 {
22838 arch = p->val;
22839 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22840 }
22841 }
22842
22843 /* The table lookup above finds the last architecture to contribute
22844 a new feature. Unfortunately, Tag13 is a subset of the union of
22845 v6T2 and v7-M, so it is never seen as contributing a new feature.
22846 We can not search for the last entry which is entirely used,
22847 because if no CPU is specified we build up only those flags
22848 actually used. Perhaps we should separate out the specified
22849 and implicit cases. Avoid taking this path for -march=all by
22850 checking for contradictory v7-A / v7-M features. */
22851 if (arch == 10
22852 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
22853 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
22854 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
22855 arch = 13;
22856
22857 /* Tag_CPU_name. */
22858 if (selected_cpu_name[0])
22859 {
22860 char *q;
22861
22862 q = selected_cpu_name;
22863 if (strncmp (q, "armv", 4) == 0)
22864 {
22865 int i;
22866
22867 q += 4;
22868 for (i = 0; q[i]; i++)
22869 q[i] = TOUPPER (q[i]);
22870 }
22871 aeabi_set_attribute_string (Tag_CPU_name, q);
22872 }
22873
22874 /* Tag_CPU_arch. */
22875 aeabi_set_attribute_int (Tag_CPU_arch, arch);
22876
22877 /* Tag_CPU_arch_profile. */
22878 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
22879 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
22880 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
22881 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
22882 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
22883 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
22884
22885 /* Tag_ARM_ISA_use. */
22886 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22887 || arch == 0)
22888 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
22889
22890 /* Tag_THUMB_ISA_use. */
22891 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22892 || arch == 0)
22893 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22894 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
22895
22896 /* Tag_VFP_arch. */
22897 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22898 aeabi_set_attribute_int (Tag_VFP_arch,
22899 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22900 ? 5 : 6);
22901 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
22902 aeabi_set_attribute_int (Tag_VFP_arch, 3);
22903 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
22904 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22905 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22906 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22907 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22908 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22909 aeabi_set_attribute_int (Tag_VFP_arch, 1);
22910
22911 /* Tag_ABI_HardFP_use. */
22912 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
22913 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
22914 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
22915
22916 /* Tag_WMMX_arch. */
22917 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22918 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22919 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22920 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
22921
22922 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
22923 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
22924 aeabi_set_attribute_int
22925 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22926 ? 2 : 1));
22927
22928 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
22929 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
22930 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
22931
22932 /* Tag_DIV_use. */
22933 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
22934 aeabi_set_attribute_int (Tag_DIV_use, 0);
22935 /* Fill this in when gas supports v7a sdiv/udiv.
22936 else if (... v7a with div extension used ...)
22937 aeabi_set_attribute_int (Tag_DIV_use, 2); */
22938 else
22939 aeabi_set_attribute_int (Tag_DIV_use, 1);
22940 }
22941
22942 /* Add the default contents for the .ARM.attributes section. */
22943 void
22944 arm_md_end (void)
22945 {
22946 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22947 return;
22948
22949 aeabi_set_public_attributes ();
22950 }
22951 #endif /* OBJ_ELF */
22952
22953
22954 /* Parse a .cpu directive. */
22955
22956 static void
22957 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22958 {
22959 const struct arm_cpu_option_table *opt;
22960 char *name;
22961 char saved_char;
22962
22963 name = input_line_pointer;
22964 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22965 input_line_pointer++;
22966 saved_char = *input_line_pointer;
22967 *input_line_pointer = 0;
22968
22969 /* Skip the first "all" entry. */
22970 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22971 if (streq (opt->name, name))
22972 {
22973 mcpu_cpu_opt = &opt->value;
22974 selected_cpu = opt->value;
22975 if (opt->canonical_name)
22976 strcpy (selected_cpu_name, opt->canonical_name);
22977 else
22978 {
22979 int i;
22980 for (i = 0; opt->name[i]; i++)
22981 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22982 selected_cpu_name[i] = 0;
22983 }
22984 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22985 *input_line_pointer = saved_char;
22986 demand_empty_rest_of_line ();
22987 return;
22988 }
22989 as_bad (_("unknown cpu `%s'"), name);
22990 *input_line_pointer = saved_char;
22991 ignore_rest_of_line ();
22992 }
22993
22994
22995 /* Parse a .arch directive. */
22996
22997 static void
22998 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22999 {
23000 const struct arm_arch_option_table *opt;
23001 char saved_char;
23002 char *name;
23003
23004 name = input_line_pointer;
23005 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23006 input_line_pointer++;
23007 saved_char = *input_line_pointer;
23008 *input_line_pointer = 0;
23009
23010 /* Skip the first "all" entry. */
23011 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23012 if (streq (opt->name, name))
23013 {
23014 mcpu_cpu_opt = &opt->value;
23015 selected_cpu = opt->value;
23016 strcpy (selected_cpu_name, opt->name);
23017 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23018 *input_line_pointer = saved_char;
23019 demand_empty_rest_of_line ();
23020 return;
23021 }
23022
23023 as_bad (_("unknown architecture `%s'\n"), name);
23024 *input_line_pointer = saved_char;
23025 ignore_rest_of_line ();
23026 }
23027
23028
23029 /* Parse a .object_arch directive. */
23030
23031 static void
23032 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23033 {
23034 const struct arm_arch_option_table *opt;
23035 char saved_char;
23036 char *name;
23037
23038 name = input_line_pointer;
23039 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23040 input_line_pointer++;
23041 saved_char = *input_line_pointer;
23042 *input_line_pointer = 0;
23043
23044 /* Skip the first "all" entry. */
23045 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23046 if (streq (opt->name, name))
23047 {
23048 object_arch = &opt->value;
23049 *input_line_pointer = saved_char;
23050 demand_empty_rest_of_line ();
23051 return;
23052 }
23053
23054 as_bad (_("unknown architecture `%s'\n"), name);
23055 *input_line_pointer = saved_char;
23056 ignore_rest_of_line ();
23057 }
23058
23059 /* Parse a .fpu directive. */
23060
23061 static void
23062 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23063 {
23064 const struct arm_option_cpu_value_table *opt;
23065 char saved_char;
23066 char *name;
23067
23068 name = input_line_pointer;
23069 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23070 input_line_pointer++;
23071 saved_char = *input_line_pointer;
23072 *input_line_pointer = 0;
23073
23074 for (opt = arm_fpus; opt->name != NULL; opt++)
23075 if (streq (opt->name, name))
23076 {
23077 mfpu_opt = &opt->value;
23078 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23079 *input_line_pointer = saved_char;
23080 demand_empty_rest_of_line ();
23081 return;
23082 }
23083
23084 as_bad (_("unknown floating point format `%s'\n"), name);
23085 *input_line_pointer = saved_char;
23086 ignore_rest_of_line ();
23087 }
23088
23089 /* Copy symbol information. */
23090
23091 void
23092 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23093 {
23094 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23095 }
23096
23097 #ifdef OBJ_ELF
23098 /* Given a symbolic attribute NAME, return the proper integer value.
23099 Returns -1 if the attribute is not known. */
23100
23101 int
23102 arm_convert_symbolic_attribute (const char *name)
23103 {
23104 static const struct
23105 {
23106 const char * name;
23107 const int tag;
23108 }
23109 attribute_table[] =
23110 {
23111 /* When you modify this table you should
23112 also modify the list in doc/c-arm.texi. */
23113 #define T(tag) {#tag, tag}
23114 T (Tag_CPU_raw_name),
23115 T (Tag_CPU_name),
23116 T (Tag_CPU_arch),
23117 T (Tag_CPU_arch_profile),
23118 T (Tag_ARM_ISA_use),
23119 T (Tag_THUMB_ISA_use),
23120 T (Tag_FP_arch),
23121 T (Tag_VFP_arch),
23122 T (Tag_WMMX_arch),
23123 T (Tag_Advanced_SIMD_arch),
23124 T (Tag_PCS_config),
23125 T (Tag_ABI_PCS_R9_use),
23126 T (Tag_ABI_PCS_RW_data),
23127 T (Tag_ABI_PCS_RO_data),
23128 T (Tag_ABI_PCS_GOT_use),
23129 T (Tag_ABI_PCS_wchar_t),
23130 T (Tag_ABI_FP_rounding),
23131 T (Tag_ABI_FP_denormal),
23132 T (Tag_ABI_FP_exceptions),
23133 T (Tag_ABI_FP_user_exceptions),
23134 T (Tag_ABI_FP_number_model),
23135 T (Tag_ABI_align_needed),
23136 T (Tag_ABI_align8_needed),
23137 T (Tag_ABI_align_preserved),
23138 T (Tag_ABI_align8_preserved),
23139 T (Tag_ABI_enum_size),
23140 T (Tag_ABI_HardFP_use),
23141 T (Tag_ABI_VFP_args),
23142 T (Tag_ABI_WMMX_args),
23143 T (Tag_ABI_optimization_goals),
23144 T (Tag_ABI_FP_optimization_goals),
23145 T (Tag_compatibility),
23146 T (Tag_CPU_unaligned_access),
23147 T (Tag_FP_HP_extension),
23148 T (Tag_VFP_HP_extension),
23149 T (Tag_ABI_FP_16bit_format),
23150 T (Tag_MPextension_use),
23151 T (Tag_DIV_use),
23152 T (Tag_nodefaults),
23153 T (Tag_also_compatible_with),
23154 T (Tag_conformance),
23155 T (Tag_T2EE_use),
23156 T (Tag_Virtualization_use),
23157 /* We deliberately do not include Tag_MPextension_use_legacy. */
23158 #undef T
23159 };
23160 unsigned int i;
23161
23162 if (name == NULL)
23163 return -1;
23164
23165 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
23166 if (streq (name, attribute_table[i].name))
23167 return attribute_table[i].tag;
23168
23169 return -1;
23170 }
23171
23172
23173 /* Apply sym value for relocations only in the case that
23174 they are for local symbols and you have the respective
23175 architectural feature for blx and simple switches. */
23176 int
23177 arm_apply_sym_value (struct fix * fixP)
23178 {
23179 if (fixP->fx_addsy
23180 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23181 && !S_IS_EXTERNAL (fixP->fx_addsy))
23182 {
23183 switch (fixP->fx_r_type)
23184 {
23185 case BFD_RELOC_ARM_PCREL_BLX:
23186 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23187 if (ARM_IS_FUNC (fixP->fx_addsy))
23188 return 1;
23189 break;
23190
23191 case BFD_RELOC_ARM_PCREL_CALL:
23192 case BFD_RELOC_THUMB_PCREL_BLX:
23193 if (THUMB_IS_FUNC (fixP->fx_addsy))
23194 return 1;
23195 break;
23196
23197 default:
23198 break;
23199 }
23200
23201 }
23202 return 0;
23203 }
23204 #endif /* OBJ_ELF */
This page took 0.607586 seconds and 5 git commands to generate.