[PATCH 20/57][Arm][GAS] Add support for MVE instructions: vmaxnmv, vmaxnmav, vminnmv...
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ, /* Neon single, double or quad precision register */
6907 OP_RNSC, /* Neon scalar D[X] */
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
6924 OP_RMQ, /* MVE vector register. */
6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6926
6927 /* New operands for Armv8.1-M Mainline. */
6928 OP_LR, /* ARM LR register */
6929 OP_RRe, /* ARM register, only even numbered. */
6930 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6931 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6932
6933 OP_REGLST, /* ARM register list */
6934 OP_CLRMLST, /* CLRM register list */
6935 OP_VRSLST, /* VFP single-precision register list */
6936 OP_VRDLST, /* VFP double-precision register list */
6937 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6938 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6939 OP_NSTRLST, /* Neon element/structure list */
6940 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6941 OP_MSTRLST2, /* MVE vector list with two elements. */
6942 OP_MSTRLST4, /* MVE vector list with four elements. */
6943
6944 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6945 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6946 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6947 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6948 zero. */
6949 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6950 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6953 */
6954 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6955 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6956 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6957 OP_VMOV, /* Neon VMOV operands. */
6958 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6959 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6960 OP_RNDQMQ_Ibig,
6961 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6962 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6963 OP_VLDR, /* VLDR operand. */
6964
6965 OP_I0, /* immediate zero */
6966 OP_I7, /* immediate value 0 .. 7 */
6967 OP_I15, /* 0 .. 15 */
6968 OP_I16, /* 1 .. 16 */
6969 OP_I16z, /* 0 .. 16 */
6970 OP_I31, /* 0 .. 31 */
6971 OP_I31w, /* 0 .. 31, optional trailing ! */
6972 OP_I32, /* 1 .. 32 */
6973 OP_I32z, /* 0 .. 32 */
6974 OP_I63, /* 0 .. 63 */
6975 OP_I63s, /* -64 .. 63 */
6976 OP_I64, /* 1 .. 64 */
6977 OP_I64z, /* 0 .. 64 */
6978 OP_I255, /* 0 .. 255 */
6979
6980 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6981 OP_I7b, /* 0 .. 7 */
6982 OP_I15b, /* 0 .. 15 */
6983 OP_I31b, /* 0 .. 31 */
6984
6985 OP_SH, /* shifter operand */
6986 OP_SHG, /* shifter operand with possible group relocation */
6987 OP_ADDR, /* Memory address expression (any mode) */
6988 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6989 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6990 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6991 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6992 OP_EXP, /* arbitrary expression */
6993 OP_EXPi, /* same, with optional immediate prefix */
6994 OP_EXPr, /* same, with optional relocation suffix */
6995 OP_EXPs, /* same, with optional non-first operand relocation suffix */
6996 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6997 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6998 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6999
7000 OP_CPSF, /* CPS flags */
7001 OP_ENDI, /* Endianness specifier */
7002 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7003 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7004 OP_COND, /* conditional code */
7005 OP_TB, /* Table branch. */
7006
7007 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7008
7009 OP_RRnpc_I0, /* ARM register or literal 0 */
7010 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7011 OP_RR_EXi, /* ARM register or expression with imm prefix */
7012 OP_RF_IF, /* FPA register or immediate */
7013 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7014 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7015
7016 /* Optional operands. */
7017 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7018 OP_oI31b, /* 0 .. 31 */
7019 OP_oI32b, /* 1 .. 32 */
7020 OP_oI32z, /* 0 .. 32 */
7021 OP_oIffffb, /* 0 .. 65535 */
7022 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7023
7024 OP_oRR, /* ARM register */
7025 OP_oLR, /* ARM LR register */
7026 OP_oRRnpc, /* ARM register, not the PC */
7027 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7028 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7029 OP_oRND, /* Optional Neon double precision register */
7030 OP_oRNQ, /* Optional Neon quad precision register */
7031 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7032 OP_oRNDQ, /* Optional Neon double or quad precision register */
7033 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7034 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7035 register. */
7036 OP_oSHll, /* LSL immediate */
7037 OP_oSHar, /* ASR immediate */
7038 OP_oSHllar, /* LSL or ASR immediate */
7039 OP_oROR, /* ROR 0/8/16/24 */
7040 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7041
7042 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7043
7044 /* Some pre-defined mixed (ARM/THUMB) operands. */
7045 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7046 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7047 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7048
7049 OP_FIRST_OPTIONAL = OP_oI7b
7050 };
7051
7052 /* Generic instruction operand parser. This does no encoding and no
7053 semantic validation; it merely squirrels values away in the inst
7054 structure. Returns SUCCESS or FAIL depending on whether the
7055 specified grammar matched. */
7056 static int
7057 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7058 {
7059 unsigned const int *upat = pattern;
7060 char *backtrack_pos = 0;
7061 const char *backtrack_error = 0;
7062 int i, val = 0, backtrack_index = 0;
7063 enum arm_reg_type rtype;
7064 parse_operand_result result;
7065 unsigned int op_parse_code;
7066 bfd_boolean partial_match;
7067
7068 #define po_char_or_fail(chr) \
7069 do \
7070 { \
7071 if (skip_past_char (&str, chr) == FAIL) \
7072 goto bad_args; \
7073 } \
7074 while (0)
7075
7076 #define po_reg_or_fail(regtype) \
7077 do \
7078 { \
7079 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7080 & inst.operands[i].vectype); \
7081 if (val == FAIL) \
7082 { \
7083 first_error (_(reg_expected_msgs[regtype])); \
7084 goto failure; \
7085 } \
7086 inst.operands[i].reg = val; \
7087 inst.operands[i].isreg = 1; \
7088 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7089 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7090 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7091 || rtype == REG_TYPE_VFD \
7092 || rtype == REG_TYPE_NQ); \
7093 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7094 } \
7095 while (0)
7096
7097 #define po_reg_or_goto(regtype, label) \
7098 do \
7099 { \
7100 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7101 & inst.operands[i].vectype); \
7102 if (val == FAIL) \
7103 goto label; \
7104 \
7105 inst.operands[i].reg = val; \
7106 inst.operands[i].isreg = 1; \
7107 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7108 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7109 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7110 || rtype == REG_TYPE_VFD \
7111 || rtype == REG_TYPE_NQ); \
7112 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7113 } \
7114 while (0)
7115
7116 #define po_imm_or_fail(min, max, popt) \
7117 do \
7118 { \
7119 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7120 goto failure; \
7121 inst.operands[i].imm = val; \
7122 } \
7123 while (0)
7124
7125 #define po_scalar_or_goto(elsz, label, reg_type) \
7126 do \
7127 { \
7128 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7129 reg_type); \
7130 if (val == FAIL) \
7131 goto label; \
7132 inst.operands[i].reg = val; \
7133 inst.operands[i].isscalar = 1; \
7134 } \
7135 while (0)
7136
7137 #define po_misc_or_fail(expr) \
7138 do \
7139 { \
7140 if (expr) \
7141 goto failure; \
7142 } \
7143 while (0)
7144
7145 #define po_misc_or_fail_no_backtrack(expr) \
7146 do \
7147 { \
7148 result = expr; \
7149 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7150 backtrack_pos = 0; \
7151 if (result != PARSE_OPERAND_SUCCESS) \
7152 goto failure; \
7153 } \
7154 while (0)
7155
7156 #define po_barrier_or_imm(str) \
7157 do \
7158 { \
7159 val = parse_barrier (&str); \
7160 if (val == FAIL && ! ISALPHA (*str)) \
7161 goto immediate; \
7162 if (val == FAIL \
7163 /* ISB can only take SY as an option. */ \
7164 || ((inst.instruction & 0xf0) == 0x60 \
7165 && val != 0xf)) \
7166 { \
7167 inst.error = _("invalid barrier type"); \
7168 backtrack_pos = 0; \
7169 goto failure; \
7170 } \
7171 } \
7172 while (0)
7173
7174 skip_whitespace (str);
7175
7176 for (i = 0; upat[i] != OP_stop; i++)
7177 {
7178 op_parse_code = upat[i];
7179 if (op_parse_code >= 1<<16)
7180 op_parse_code = thumb ? (op_parse_code >> 16)
7181 : (op_parse_code & ((1<<16)-1));
7182
7183 if (op_parse_code >= OP_FIRST_OPTIONAL)
7184 {
7185 /* Remember where we are in case we need to backtrack. */
7186 backtrack_pos = str;
7187 backtrack_error = inst.error;
7188 backtrack_index = i;
7189 }
7190
7191 if (i > 0 && (i > 1 || inst.operands[0].present))
7192 po_char_or_fail (',');
7193
7194 switch (op_parse_code)
7195 {
7196 /* Registers */
7197 case OP_oRRnpc:
7198 case OP_oRRnpcsp:
7199 case OP_RRnpc:
7200 case OP_RRnpcsp:
7201 case OP_oRR:
7202 case OP_RRe:
7203 case OP_RRo:
7204 case OP_LR:
7205 case OP_oLR:
7206 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7207 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7208 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7209 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7210 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7211 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7212 case OP_oRND:
7213 case OP_RNDMQR:
7214 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7215 break;
7216 try_rndmq:
7217 case OP_RNDMQ:
7218 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7219 break;
7220 try_rnd:
7221 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7222 case OP_RVC:
7223 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7224 break;
7225 /* Also accept generic coprocessor regs for unknown registers. */
7226 coproc_reg:
7227 po_reg_or_fail (REG_TYPE_CN);
7228 break;
7229 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7230 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7231 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7232 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7233 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7234 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7235 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7236 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7237 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7238 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7239 case OP_oRNQ:
7240 case OP_RNQMQ:
7241 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7242 break;
7243 try_nq:
7244 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7245 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7246 case OP_RNDQMQR:
7247 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7248 break;
7249 try_rndqmq:
7250 case OP_oRNDQMQ:
7251 case OP_RNDQMQ:
7252 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7253 break;
7254 try_rndq:
7255 case OP_oRNDQ:
7256 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7257 case OP_RVSDMQ:
7258 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7259 break;
7260 try_rvsd:
7261 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7262 case OP_RVSD_COND:
7263 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7264 break;
7265 case OP_oRNSDQ:
7266 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7267 case OP_RNSDQMQR:
7268 po_reg_or_goto (REG_TYPE_RN, try_mq);
7269 break;
7270 try_mq:
7271 case OP_oRNSDQMQ:
7272 case OP_RNSDQMQ:
7273 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7274 break;
7275 try_nsdq2:
7276 po_reg_or_fail (REG_TYPE_NSDQ);
7277 inst.error = 0;
7278 break;
7279 case OP_RMQ:
7280 po_reg_or_fail (REG_TYPE_MQ);
7281 break;
7282 /* Neon scalar. Using an element size of 8 means that some invalid
7283 scalars are accepted here, so deal with those in later code. */
7284 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7285
7286 case OP_RNDQ_I0:
7287 {
7288 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7289 break;
7290 try_imm0:
7291 po_imm_or_fail (0, 0, TRUE);
7292 }
7293 break;
7294
7295 case OP_RVSD_I0:
7296 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7297 break;
7298
7299 case OP_RSVDMQ_FI0:
7300 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7301 break;
7302 try_rsvd_fi0:
7303 case OP_RSVD_FI0:
7304 {
7305 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7306 break;
7307 try_ifimm0:
7308 if (parse_ifimm_zero (&str))
7309 inst.operands[i].imm = 0;
7310 else
7311 {
7312 inst.error
7313 = _("only floating point zero is allowed as immediate value");
7314 goto failure;
7315 }
7316 }
7317 break;
7318
7319 case OP_RR_RNSC:
7320 {
7321 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7322 break;
7323 try_rr:
7324 po_reg_or_fail (REG_TYPE_RN);
7325 }
7326 break;
7327
7328 case OP_RNSDQ_RNSC_MQ:
7329 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7330 break;
7331 try_rnsdq_rnsc:
7332 case OP_RNSDQ_RNSC:
7333 {
7334 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7335 inst.error = 0;
7336 break;
7337 try_nsdq:
7338 po_reg_or_fail (REG_TYPE_NSDQ);
7339 inst.error = 0;
7340 }
7341 break;
7342
7343 case OP_RNSD_RNSC:
7344 {
7345 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7346 break;
7347 try_s_scalar:
7348 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7349 break;
7350 try_nsd:
7351 po_reg_or_fail (REG_TYPE_NSD);
7352 }
7353 break;
7354
7355 case OP_RNDQMQ_RNSC:
7356 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7357 break;
7358 try_rndq_rnsc:
7359 case OP_RNDQ_RNSC:
7360 {
7361 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7362 break;
7363 try_ndq:
7364 po_reg_or_fail (REG_TYPE_NDQ);
7365 }
7366 break;
7367
7368 case OP_RND_RNSC:
7369 {
7370 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7371 break;
7372 try_vfd:
7373 po_reg_or_fail (REG_TYPE_VFD);
7374 }
7375 break;
7376
7377 case OP_VMOV:
7378 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7379 not careful then bad things might happen. */
7380 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7381 break;
7382
7383 case OP_RNDQMQ_Ibig:
7384 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7385 break;
7386 try_rndq_ibig:
7387 case OP_RNDQ_Ibig:
7388 {
7389 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7390 break;
7391 try_immbig:
7392 /* There's a possibility of getting a 64-bit immediate here, so
7393 we need special handling. */
7394 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7395 == FAIL)
7396 {
7397 inst.error = _("immediate value is out of range");
7398 goto failure;
7399 }
7400 }
7401 break;
7402
7403 case OP_RNDQ_I63b:
7404 {
7405 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7406 break;
7407 try_shimm:
7408 po_imm_or_fail (0, 63, TRUE);
7409 }
7410 break;
7411
7412 case OP_RRnpcb:
7413 po_char_or_fail ('[');
7414 po_reg_or_fail (REG_TYPE_RN);
7415 po_char_or_fail (']');
7416 break;
7417
7418 case OP_RRnpctw:
7419 case OP_RRw:
7420 case OP_oRRw:
7421 po_reg_or_fail (REG_TYPE_RN);
7422 if (skip_past_char (&str, '!') == SUCCESS)
7423 inst.operands[i].writeback = 1;
7424 break;
7425
7426 /* Immediates */
7427 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7428 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7429 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7430 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7431 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7432 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7433 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7434 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7435 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7436 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7437 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7438 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7439
7440 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7441 case OP_oI7b:
7442 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7443 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7444 case OP_oI31b:
7445 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7446 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7447 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7448 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7449
7450 /* Immediate variants */
7451 case OP_oI255c:
7452 po_char_or_fail ('{');
7453 po_imm_or_fail (0, 255, TRUE);
7454 po_char_or_fail ('}');
7455 break;
7456
7457 case OP_I31w:
7458 /* The expression parser chokes on a trailing !, so we have
7459 to find it first and zap it. */
7460 {
7461 char *s = str;
7462 while (*s && *s != ',')
7463 s++;
7464 if (s[-1] == '!')
7465 {
7466 s[-1] = '\0';
7467 inst.operands[i].writeback = 1;
7468 }
7469 po_imm_or_fail (0, 31, TRUE);
7470 if (str == s - 1)
7471 str = s;
7472 }
7473 break;
7474
7475 /* Expressions */
7476 case OP_EXPi: EXPi:
7477 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7478 GE_OPT_PREFIX));
7479 break;
7480
7481 case OP_EXP:
7482 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7483 GE_NO_PREFIX));
7484 break;
7485
7486 case OP_EXPr: EXPr:
7487 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7488 GE_NO_PREFIX));
7489 if (inst.relocs[0].exp.X_op == O_symbol)
7490 {
7491 val = parse_reloc (&str);
7492 if (val == -1)
7493 {
7494 inst.error = _("unrecognized relocation suffix");
7495 goto failure;
7496 }
7497 else if (val != BFD_RELOC_UNUSED)
7498 {
7499 inst.operands[i].imm = val;
7500 inst.operands[i].hasreloc = 1;
7501 }
7502 }
7503 break;
7504
7505 case OP_EXPs:
7506 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7507 GE_NO_PREFIX));
7508 if (inst.relocs[i].exp.X_op == O_symbol)
7509 {
7510 inst.operands[i].hasreloc = 1;
7511 }
7512 else if (inst.relocs[i].exp.X_op == O_constant)
7513 {
7514 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7515 inst.operands[i].hasreloc = 0;
7516 }
7517 break;
7518
7519 /* Operand for MOVW or MOVT. */
7520 case OP_HALF:
7521 po_misc_or_fail (parse_half (&str));
7522 break;
7523
7524 /* Register or expression. */
7525 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7526 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7527
7528 /* Register or immediate. */
7529 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7530 I0: po_imm_or_fail (0, 0, FALSE); break;
7531
7532 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7533 IF:
7534 if (!is_immediate_prefix (*str))
7535 goto bad_args;
7536 str++;
7537 val = parse_fpa_immediate (&str);
7538 if (val == FAIL)
7539 goto failure;
7540 /* FPA immediates are encoded as registers 8-15.
7541 parse_fpa_immediate has already applied the offset. */
7542 inst.operands[i].reg = val;
7543 inst.operands[i].isreg = 1;
7544 break;
7545
7546 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7547 I32z: po_imm_or_fail (0, 32, FALSE); break;
7548
7549 /* Two kinds of register. */
7550 case OP_RIWR_RIWC:
7551 {
7552 struct reg_entry *rege = arm_reg_parse_multi (&str);
7553 if (!rege
7554 || (rege->type != REG_TYPE_MMXWR
7555 && rege->type != REG_TYPE_MMXWC
7556 && rege->type != REG_TYPE_MMXWCG))
7557 {
7558 inst.error = _("iWMMXt data or control register expected");
7559 goto failure;
7560 }
7561 inst.operands[i].reg = rege->number;
7562 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7563 }
7564 break;
7565
7566 case OP_RIWC_RIWG:
7567 {
7568 struct reg_entry *rege = arm_reg_parse_multi (&str);
7569 if (!rege
7570 || (rege->type != REG_TYPE_MMXWC
7571 && rege->type != REG_TYPE_MMXWCG))
7572 {
7573 inst.error = _("iWMMXt control register expected");
7574 goto failure;
7575 }
7576 inst.operands[i].reg = rege->number;
7577 inst.operands[i].isreg = 1;
7578 }
7579 break;
7580
7581 /* Misc */
7582 case OP_CPSF: val = parse_cps_flags (&str); break;
7583 case OP_ENDI: val = parse_endian_specifier (&str); break;
7584 case OP_oROR: val = parse_ror (&str); break;
7585 try_cond:
7586 case OP_COND: val = parse_cond (&str); break;
7587 case OP_oBARRIER_I15:
7588 po_barrier_or_imm (str); break;
7589 immediate:
7590 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7591 goto failure;
7592 break;
7593
7594 case OP_wPSR:
7595 case OP_rPSR:
7596 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7597 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7598 {
7599 inst.error = _("Banked registers are not available with this "
7600 "architecture.");
7601 goto failure;
7602 }
7603 break;
7604 try_psr:
7605 val = parse_psr (&str, op_parse_code == OP_wPSR);
7606 break;
7607
7608 case OP_VLDR:
7609 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7610 break;
7611 try_sysreg:
7612 val = parse_sys_vldr_vstr (&str);
7613 break;
7614
7615 case OP_APSR_RR:
7616 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7617 break;
7618 try_apsr:
7619 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7620 instruction). */
7621 if (strncasecmp (str, "APSR_", 5) == 0)
7622 {
7623 unsigned found = 0;
7624 str += 5;
7625 while (found < 15)
7626 switch (*str++)
7627 {
7628 case 'c': found = (found & 1) ? 16 : found | 1; break;
7629 case 'n': found = (found & 2) ? 16 : found | 2; break;
7630 case 'z': found = (found & 4) ? 16 : found | 4; break;
7631 case 'v': found = (found & 8) ? 16 : found | 8; break;
7632 default: found = 16;
7633 }
7634 if (found != 15)
7635 goto failure;
7636 inst.operands[i].isvec = 1;
7637 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7638 inst.operands[i].reg = REG_PC;
7639 }
7640 else
7641 goto failure;
7642 break;
7643
7644 case OP_TB:
7645 po_misc_or_fail (parse_tb (&str));
7646 break;
7647
7648 /* Register lists. */
7649 case OP_REGLST:
7650 val = parse_reg_list (&str, REGLIST_RN);
7651 if (*str == '^')
7652 {
7653 inst.operands[i].writeback = 1;
7654 str++;
7655 }
7656 break;
7657
7658 case OP_CLRMLST:
7659 val = parse_reg_list (&str, REGLIST_CLRM);
7660 break;
7661
7662 case OP_VRSLST:
7663 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7664 &partial_match);
7665 break;
7666
7667 case OP_VRDLST:
7668 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7669 &partial_match);
7670 break;
7671
7672 case OP_VRSDLST:
7673 /* Allow Q registers too. */
7674 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7675 REGLIST_NEON_D, &partial_match);
7676 if (val == FAIL)
7677 {
7678 inst.error = NULL;
7679 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7680 REGLIST_VFP_S, &partial_match);
7681 inst.operands[i].issingle = 1;
7682 }
7683 break;
7684
7685 case OP_VRSDVLST:
7686 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7687 REGLIST_VFP_D_VPR, &partial_match);
7688 if (val == FAIL && !partial_match)
7689 {
7690 inst.error = NULL;
7691 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7692 REGLIST_VFP_S_VPR, &partial_match);
7693 inst.operands[i].issingle = 1;
7694 }
7695 break;
7696
7697 case OP_NRDLST:
7698 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7699 REGLIST_NEON_D, &partial_match);
7700 break;
7701
7702 case OP_MSTRLST4:
7703 case OP_MSTRLST2:
7704 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7705 1, &inst.operands[i].vectype);
7706 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7707 goto failure;
7708 break;
7709 case OP_NSTRLST:
7710 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7711 0, &inst.operands[i].vectype);
7712 break;
7713
7714 /* Addressing modes */
7715 case OP_ADDRMVE:
7716 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7717 break;
7718
7719 case OP_ADDR:
7720 po_misc_or_fail (parse_address (&str, i));
7721 break;
7722
7723 case OP_ADDRGLDR:
7724 po_misc_or_fail_no_backtrack (
7725 parse_address_group_reloc (&str, i, GROUP_LDR));
7726 break;
7727
7728 case OP_ADDRGLDRS:
7729 po_misc_or_fail_no_backtrack (
7730 parse_address_group_reloc (&str, i, GROUP_LDRS));
7731 break;
7732
7733 case OP_ADDRGLDC:
7734 po_misc_or_fail_no_backtrack (
7735 parse_address_group_reloc (&str, i, GROUP_LDC));
7736 break;
7737
7738 case OP_SH:
7739 po_misc_or_fail (parse_shifter_operand (&str, i));
7740 break;
7741
7742 case OP_SHG:
7743 po_misc_or_fail_no_backtrack (
7744 parse_shifter_operand_group_reloc (&str, i));
7745 break;
7746
7747 case OP_oSHll:
7748 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7749 break;
7750
7751 case OP_oSHar:
7752 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7753 break;
7754
7755 case OP_oSHllar:
7756 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7757 break;
7758
7759 case OP_RMQRZ:
7760 case OP_oRMQRZ:
7761 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7762 break;
7763 try_rr_zr:
7764 po_reg_or_goto (REG_TYPE_RN, ZR);
7765 break;
7766 ZR:
7767 po_reg_or_fail (REG_TYPE_ZR);
7768 break;
7769
7770 default:
7771 as_fatal (_("unhandled operand code %d"), op_parse_code);
7772 }
7773
7774 /* Various value-based sanity checks and shared operations. We
7775 do not signal immediate failures for the register constraints;
7776 this allows a syntax error to take precedence. */
7777 switch (op_parse_code)
7778 {
7779 case OP_oRRnpc:
7780 case OP_RRnpc:
7781 case OP_RRnpcb:
7782 case OP_RRw:
7783 case OP_oRRw:
7784 case OP_RRnpc_I0:
7785 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7786 inst.error = BAD_PC;
7787 break;
7788
7789 case OP_oRRnpcsp:
7790 case OP_RRnpcsp:
7791 if (inst.operands[i].isreg)
7792 {
7793 if (inst.operands[i].reg == REG_PC)
7794 inst.error = BAD_PC;
7795 else if (inst.operands[i].reg == REG_SP
7796 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7797 relaxed since ARMv8-A. */
7798 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7799 {
7800 gas_assert (thumb);
7801 inst.error = BAD_SP;
7802 }
7803 }
7804 break;
7805
7806 case OP_RRnpctw:
7807 if (inst.operands[i].isreg
7808 && inst.operands[i].reg == REG_PC
7809 && (inst.operands[i].writeback || thumb))
7810 inst.error = BAD_PC;
7811 break;
7812
7813 case OP_RVSD_COND:
7814 case OP_VLDR:
7815 if (inst.operands[i].isreg)
7816 break;
7817 /* fall through. */
7818
7819 case OP_CPSF:
7820 case OP_ENDI:
7821 case OP_oROR:
7822 case OP_wPSR:
7823 case OP_rPSR:
7824 case OP_COND:
7825 case OP_oBARRIER_I15:
7826 case OP_REGLST:
7827 case OP_CLRMLST:
7828 case OP_VRSLST:
7829 case OP_VRDLST:
7830 case OP_VRSDLST:
7831 case OP_VRSDVLST:
7832 case OP_NRDLST:
7833 case OP_NSTRLST:
7834 case OP_MSTRLST2:
7835 case OP_MSTRLST4:
7836 if (val == FAIL)
7837 goto failure;
7838 inst.operands[i].imm = val;
7839 break;
7840
7841 case OP_LR:
7842 case OP_oLR:
7843 if (inst.operands[i].reg != REG_LR)
7844 inst.error = _("operand must be LR register");
7845 break;
7846
7847 case OP_RMQRZ:
7848 case OP_oRMQRZ:
7849 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7850 inst.error = BAD_PC;
7851 break;
7852
7853 case OP_RRe:
7854 if (inst.operands[i].isreg
7855 && (inst.operands[i].reg & 0x00000001) != 0)
7856 inst.error = BAD_ODD;
7857 break;
7858
7859 case OP_RRo:
7860 if (inst.operands[i].isreg)
7861 {
7862 if ((inst.operands[i].reg & 0x00000001) != 1)
7863 inst.error = BAD_EVEN;
7864 else if (inst.operands[i].reg == REG_SP)
7865 as_tsktsk (MVE_BAD_SP);
7866 else if (inst.operands[i].reg == REG_PC)
7867 inst.error = BAD_PC;
7868 }
7869 break;
7870
7871 default:
7872 break;
7873 }
7874
7875 /* If we get here, this operand was successfully parsed. */
7876 inst.operands[i].present = 1;
7877 continue;
7878
7879 bad_args:
7880 inst.error = BAD_ARGS;
7881
7882 failure:
7883 if (!backtrack_pos)
7884 {
7885 /* The parse routine should already have set inst.error, but set a
7886 default here just in case. */
7887 if (!inst.error)
7888 inst.error = BAD_SYNTAX;
7889 return FAIL;
7890 }
7891
7892 /* Do not backtrack over a trailing optional argument that
7893 absorbed some text. We will only fail again, with the
7894 'garbage following instruction' error message, which is
7895 probably less helpful than the current one. */
7896 if (backtrack_index == i && backtrack_pos != str
7897 && upat[i+1] == OP_stop)
7898 {
7899 if (!inst.error)
7900 inst.error = BAD_SYNTAX;
7901 return FAIL;
7902 }
7903
7904 /* Try again, skipping the optional argument at backtrack_pos. */
7905 str = backtrack_pos;
7906 inst.error = backtrack_error;
7907 inst.operands[backtrack_index].present = 0;
7908 i = backtrack_index;
7909 backtrack_pos = 0;
7910 }
7911
7912 /* Check that we have parsed all the arguments. */
7913 if (*str != '\0' && !inst.error)
7914 inst.error = _("garbage following instruction");
7915
7916 return inst.error ? FAIL : SUCCESS;
7917 }
7918
7919 #undef po_char_or_fail
7920 #undef po_reg_or_fail
7921 #undef po_reg_or_goto
7922 #undef po_imm_or_fail
7923 #undef po_scalar_or_fail
7924 #undef po_barrier_or_imm
7925
7926 /* Shorthand macro for instruction encoding functions issuing errors. */
7927 #define constraint(expr, err) \
7928 do \
7929 { \
7930 if (expr) \
7931 { \
7932 inst.error = err; \
7933 return; \
7934 } \
7935 } \
7936 while (0)
7937
7938 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7939 instructions are unpredictable if these registers are used. This
7940 is the BadReg predicate in ARM's Thumb-2 documentation.
7941
7942 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7943 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7944 #define reject_bad_reg(reg) \
7945 do \
7946 if (reg == REG_PC) \
7947 { \
7948 inst.error = BAD_PC; \
7949 return; \
7950 } \
7951 else if (reg == REG_SP \
7952 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7953 { \
7954 inst.error = BAD_SP; \
7955 return; \
7956 } \
7957 while (0)
7958
7959 /* If REG is R13 (the stack pointer), warn that its use is
7960 deprecated. */
7961 #define warn_deprecated_sp(reg) \
7962 do \
7963 if (warn_on_deprecated && reg == REG_SP) \
7964 as_tsktsk (_("use of r13 is deprecated")); \
7965 while (0)
7966
7967 /* Functions for operand encoding. ARM, then Thumb. */
7968
7969 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7970
7971 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7972
7973 The only binary encoding difference is the Coprocessor number. Coprocessor
7974 9 is used for half-precision calculations or conversions. The format of the
7975 instruction is the same as the equivalent Coprocessor 10 instruction that
7976 exists for Single-Precision operation. */
7977
7978 static void
7979 do_scalar_fp16_v82_encode (void)
7980 {
7981 if (inst.cond < COND_ALWAYS)
7982 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7983 " the behaviour is UNPREDICTABLE"));
7984 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7985 _(BAD_FP16));
7986
7987 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7988 mark_feature_used (&arm_ext_fp16);
7989 }
7990
7991 /* If VAL can be encoded in the immediate field of an ARM instruction,
7992 return the encoded form. Otherwise, return FAIL. */
7993
7994 static unsigned int
7995 encode_arm_immediate (unsigned int val)
7996 {
7997 unsigned int a, i;
7998
7999 if (val <= 0xff)
8000 return val;
8001
8002 for (i = 2; i < 32; i += 2)
8003 if ((a = rotate_left (val, i)) <= 0xff)
8004 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8005
8006 return FAIL;
8007 }
8008
8009 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8010 return the encoded form. Otherwise, return FAIL. */
8011 static unsigned int
8012 encode_thumb32_immediate (unsigned int val)
8013 {
8014 unsigned int a, i;
8015
8016 if (val <= 0xff)
8017 return val;
8018
8019 for (i = 1; i <= 24; i++)
8020 {
8021 a = val >> i;
8022 if ((val & ~(0xff << i)) == 0)
8023 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8024 }
8025
8026 a = val & 0xff;
8027 if (val == ((a << 16) | a))
8028 return 0x100 | a;
8029 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8030 return 0x300 | a;
8031
8032 a = val & 0xff00;
8033 if (val == ((a << 16) | a))
8034 return 0x200 | (a >> 8);
8035
8036 return FAIL;
8037 }
8038 /* Encode a VFP SP or DP register number into inst.instruction. */
8039
8040 static void
8041 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8042 {
8043 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8044 && reg > 15)
8045 {
8046 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8047 {
8048 if (thumb_mode)
8049 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8050 fpu_vfp_ext_d32);
8051 else
8052 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8053 fpu_vfp_ext_d32);
8054 }
8055 else
8056 {
8057 first_error (_("D register out of range for selected VFP version"));
8058 return;
8059 }
8060 }
8061
8062 switch (pos)
8063 {
8064 case VFP_REG_Sd:
8065 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8066 break;
8067
8068 case VFP_REG_Sn:
8069 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8070 break;
8071
8072 case VFP_REG_Sm:
8073 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8074 break;
8075
8076 case VFP_REG_Dd:
8077 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8078 break;
8079
8080 case VFP_REG_Dn:
8081 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8082 break;
8083
8084 case VFP_REG_Dm:
8085 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8086 break;
8087
8088 default:
8089 abort ();
8090 }
8091 }
8092
8093 /* Encode a <shift> in an ARM-format instruction. The immediate,
8094 if any, is handled by md_apply_fix. */
8095 static void
8096 encode_arm_shift (int i)
8097 {
8098 /* register-shifted register. */
8099 if (inst.operands[i].immisreg)
8100 {
8101 int op_index;
8102 for (op_index = 0; op_index <= i; ++op_index)
8103 {
8104 /* Check the operand only when it's presented. In pre-UAL syntax,
8105 if the destination register is the same as the first operand, two
8106 register form of the instruction can be used. */
8107 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8108 && inst.operands[op_index].reg == REG_PC)
8109 as_warn (UNPRED_REG ("r15"));
8110 }
8111
8112 if (inst.operands[i].imm == REG_PC)
8113 as_warn (UNPRED_REG ("r15"));
8114 }
8115
8116 if (inst.operands[i].shift_kind == SHIFT_RRX)
8117 inst.instruction |= SHIFT_ROR << 5;
8118 else
8119 {
8120 inst.instruction |= inst.operands[i].shift_kind << 5;
8121 if (inst.operands[i].immisreg)
8122 {
8123 inst.instruction |= SHIFT_BY_REG;
8124 inst.instruction |= inst.operands[i].imm << 8;
8125 }
8126 else
8127 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8128 }
8129 }
8130
8131 static void
8132 encode_arm_shifter_operand (int i)
8133 {
8134 if (inst.operands[i].isreg)
8135 {
8136 inst.instruction |= inst.operands[i].reg;
8137 encode_arm_shift (i);
8138 }
8139 else
8140 {
8141 inst.instruction |= INST_IMMEDIATE;
8142 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8143 inst.instruction |= inst.operands[i].imm;
8144 }
8145 }
8146
8147 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8148 static void
8149 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8150 {
8151 /* PR 14260:
8152 Generate an error if the operand is not a register. */
8153 constraint (!inst.operands[i].isreg,
8154 _("Instruction does not support =N addresses"));
8155
8156 inst.instruction |= inst.operands[i].reg << 16;
8157
8158 if (inst.operands[i].preind)
8159 {
8160 if (is_t)
8161 {
8162 inst.error = _("instruction does not accept preindexed addressing");
8163 return;
8164 }
8165 inst.instruction |= PRE_INDEX;
8166 if (inst.operands[i].writeback)
8167 inst.instruction |= WRITE_BACK;
8168
8169 }
8170 else if (inst.operands[i].postind)
8171 {
8172 gas_assert (inst.operands[i].writeback);
8173 if (is_t)
8174 inst.instruction |= WRITE_BACK;
8175 }
8176 else /* unindexed - only for coprocessor */
8177 {
8178 inst.error = _("instruction does not accept unindexed addressing");
8179 return;
8180 }
8181
8182 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8183 && (((inst.instruction & 0x000f0000) >> 16)
8184 == ((inst.instruction & 0x0000f000) >> 12)))
8185 as_warn ((inst.instruction & LOAD_BIT)
8186 ? _("destination register same as write-back base")
8187 : _("source register same as write-back base"));
8188 }
8189
8190 /* inst.operands[i] was set up by parse_address. Encode it into an
8191 ARM-format mode 2 load or store instruction. If is_t is true,
8192 reject forms that cannot be used with a T instruction (i.e. not
8193 post-indexed). */
8194 static void
8195 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8196 {
8197 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8198
8199 encode_arm_addr_mode_common (i, is_t);
8200
8201 if (inst.operands[i].immisreg)
8202 {
8203 constraint ((inst.operands[i].imm == REG_PC
8204 || (is_pc && inst.operands[i].writeback)),
8205 BAD_PC_ADDRESSING);
8206 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8207 inst.instruction |= inst.operands[i].imm;
8208 if (!inst.operands[i].negative)
8209 inst.instruction |= INDEX_UP;
8210 if (inst.operands[i].shifted)
8211 {
8212 if (inst.operands[i].shift_kind == SHIFT_RRX)
8213 inst.instruction |= SHIFT_ROR << 5;
8214 else
8215 {
8216 inst.instruction |= inst.operands[i].shift_kind << 5;
8217 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8218 }
8219 }
8220 }
8221 else /* immediate offset in inst.relocs[0] */
8222 {
8223 if (is_pc && !inst.relocs[0].pc_rel)
8224 {
8225 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8226
8227 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8228 cannot use PC in addressing.
8229 PC cannot be used in writeback addressing, either. */
8230 constraint ((is_t || inst.operands[i].writeback),
8231 BAD_PC_ADDRESSING);
8232
8233 /* Use of PC in str is deprecated for ARMv7. */
8234 if (warn_on_deprecated
8235 && !is_load
8236 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8237 as_tsktsk (_("use of PC in this instruction is deprecated"));
8238 }
8239
8240 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8241 {
8242 /* Prefer + for zero encoded value. */
8243 if (!inst.operands[i].negative)
8244 inst.instruction |= INDEX_UP;
8245 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8246 }
8247 }
8248 }
8249
8250 /* inst.operands[i] was set up by parse_address. Encode it into an
8251 ARM-format mode 3 load or store instruction. Reject forms that
8252 cannot be used with such instructions. If is_t is true, reject
8253 forms that cannot be used with a T instruction (i.e. not
8254 post-indexed). */
8255 static void
8256 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8257 {
8258 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8259 {
8260 inst.error = _("instruction does not accept scaled register index");
8261 return;
8262 }
8263
8264 encode_arm_addr_mode_common (i, is_t);
8265
8266 if (inst.operands[i].immisreg)
8267 {
8268 constraint ((inst.operands[i].imm == REG_PC
8269 || (is_t && inst.operands[i].reg == REG_PC)),
8270 BAD_PC_ADDRESSING);
8271 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8272 BAD_PC_WRITEBACK);
8273 inst.instruction |= inst.operands[i].imm;
8274 if (!inst.operands[i].negative)
8275 inst.instruction |= INDEX_UP;
8276 }
8277 else /* immediate offset in inst.relocs[0] */
8278 {
8279 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8280 && inst.operands[i].writeback),
8281 BAD_PC_WRITEBACK);
8282 inst.instruction |= HWOFFSET_IMM;
8283 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8284 {
8285 /* Prefer + for zero encoded value. */
8286 if (!inst.operands[i].negative)
8287 inst.instruction |= INDEX_UP;
8288
8289 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8290 }
8291 }
8292 }
8293
8294 /* Write immediate bits [7:0] to the following locations:
8295
8296 |28/24|23 19|18 16|15 4|3 0|
8297 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8298
8299 This function is used by VMOV/VMVN/VORR/VBIC. */
8300
8301 static void
8302 neon_write_immbits (unsigned immbits)
8303 {
8304 inst.instruction |= immbits & 0xf;
8305 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8306 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8307 }
8308
8309 /* Invert low-order SIZE bits of XHI:XLO. */
8310
8311 static void
8312 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8313 {
8314 unsigned immlo = xlo ? *xlo : 0;
8315 unsigned immhi = xhi ? *xhi : 0;
8316
8317 switch (size)
8318 {
8319 case 8:
8320 immlo = (~immlo) & 0xff;
8321 break;
8322
8323 case 16:
8324 immlo = (~immlo) & 0xffff;
8325 break;
8326
8327 case 64:
8328 immhi = (~immhi) & 0xffffffff;
8329 /* fall through. */
8330
8331 case 32:
8332 immlo = (~immlo) & 0xffffffff;
8333 break;
8334
8335 default:
8336 abort ();
8337 }
8338
8339 if (xlo)
8340 *xlo = immlo;
8341
8342 if (xhi)
8343 *xhi = immhi;
8344 }
8345
8346 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8347 A, B, C, D. */
8348
8349 static int
8350 neon_bits_same_in_bytes (unsigned imm)
8351 {
8352 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8353 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8354 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8355 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8356 }
8357
8358 /* For immediate of above form, return 0bABCD. */
8359
8360 static unsigned
8361 neon_squash_bits (unsigned imm)
8362 {
8363 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8364 | ((imm & 0x01000000) >> 21);
8365 }
8366
8367 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8368
8369 static unsigned
8370 neon_qfloat_bits (unsigned imm)
8371 {
8372 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8373 }
8374
8375 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8376 the instruction. *OP is passed as the initial value of the op field, and
8377 may be set to a different value depending on the constant (i.e.
8378 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8379 MVN). If the immediate looks like a repeated pattern then also
8380 try smaller element sizes. */
8381
8382 static int
8383 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8384 unsigned *immbits, int *op, int size,
8385 enum neon_el_type type)
8386 {
8387 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8388 float. */
8389 if (type == NT_float && !float_p)
8390 return FAIL;
8391
8392 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8393 {
8394 if (size != 32 || *op == 1)
8395 return FAIL;
8396 *immbits = neon_qfloat_bits (immlo);
8397 return 0xf;
8398 }
8399
8400 if (size == 64)
8401 {
8402 if (neon_bits_same_in_bytes (immhi)
8403 && neon_bits_same_in_bytes (immlo))
8404 {
8405 if (*op == 1)
8406 return FAIL;
8407 *immbits = (neon_squash_bits (immhi) << 4)
8408 | neon_squash_bits (immlo);
8409 *op = 1;
8410 return 0xe;
8411 }
8412
8413 if (immhi != immlo)
8414 return FAIL;
8415 }
8416
8417 if (size >= 32)
8418 {
8419 if (immlo == (immlo & 0x000000ff))
8420 {
8421 *immbits = immlo;
8422 return 0x0;
8423 }
8424 else if (immlo == (immlo & 0x0000ff00))
8425 {
8426 *immbits = immlo >> 8;
8427 return 0x2;
8428 }
8429 else if (immlo == (immlo & 0x00ff0000))
8430 {
8431 *immbits = immlo >> 16;
8432 return 0x4;
8433 }
8434 else if (immlo == (immlo & 0xff000000))
8435 {
8436 *immbits = immlo >> 24;
8437 return 0x6;
8438 }
8439 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8440 {
8441 *immbits = (immlo >> 8) & 0xff;
8442 return 0xc;
8443 }
8444 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8445 {
8446 *immbits = (immlo >> 16) & 0xff;
8447 return 0xd;
8448 }
8449
8450 if ((immlo & 0xffff) != (immlo >> 16))
8451 return FAIL;
8452 immlo &= 0xffff;
8453 }
8454
8455 if (size >= 16)
8456 {
8457 if (immlo == (immlo & 0x000000ff))
8458 {
8459 *immbits = immlo;
8460 return 0x8;
8461 }
8462 else if (immlo == (immlo & 0x0000ff00))
8463 {
8464 *immbits = immlo >> 8;
8465 return 0xa;
8466 }
8467
8468 if ((immlo & 0xff) != (immlo >> 8))
8469 return FAIL;
8470 immlo &= 0xff;
8471 }
8472
8473 if (immlo == (immlo & 0x000000ff))
8474 {
8475 /* Don't allow MVN with 8-bit immediate. */
8476 if (*op == 1)
8477 return FAIL;
8478 *immbits = immlo;
8479 return 0xe;
8480 }
8481
8482 return FAIL;
8483 }
8484
8485 #if defined BFD_HOST_64_BIT
8486 /* Returns TRUE if double precision value V may be cast
8487 to single precision without loss of accuracy. */
8488
8489 static bfd_boolean
8490 is_double_a_single (bfd_int64_t v)
8491 {
8492 int exp = (int)((v >> 52) & 0x7FF);
8493 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8494
8495 return (exp == 0 || exp == 0x7FF
8496 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8497 && (mantissa & 0x1FFFFFFFl) == 0;
8498 }
8499
8500 /* Returns a double precision value casted to single precision
8501 (ignoring the least significant bits in exponent and mantissa). */
8502
8503 static int
8504 double_to_single (bfd_int64_t v)
8505 {
8506 int sign = (int) ((v >> 63) & 1l);
8507 int exp = (int) ((v >> 52) & 0x7FF);
8508 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8509
8510 if (exp == 0x7FF)
8511 exp = 0xFF;
8512 else
8513 {
8514 exp = exp - 1023 + 127;
8515 if (exp >= 0xFF)
8516 {
8517 /* Infinity. */
8518 exp = 0x7F;
8519 mantissa = 0;
8520 }
8521 else if (exp < 0)
8522 {
8523 /* No denormalized numbers. */
8524 exp = 0;
8525 mantissa = 0;
8526 }
8527 }
8528 mantissa >>= 29;
8529 return (sign << 31) | (exp << 23) | mantissa;
8530 }
8531 #endif /* BFD_HOST_64_BIT */
8532
8533 enum lit_type
8534 {
8535 CONST_THUMB,
8536 CONST_ARM,
8537 CONST_VEC
8538 };
8539
8540 static void do_vfp_nsyn_opcode (const char *);
8541
8542 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8543 Determine whether it can be performed with a move instruction; if
8544 it can, convert inst.instruction to that move instruction and
8545 return TRUE; if it can't, convert inst.instruction to a literal-pool
8546 load and return FALSE. If this is not a valid thing to do in the
8547 current context, set inst.error and return TRUE.
8548
8549 inst.operands[i] describes the destination register. */
8550
8551 static bfd_boolean
8552 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8553 {
8554 unsigned long tbit;
8555 bfd_boolean thumb_p = (t == CONST_THUMB);
8556 bfd_boolean arm_p = (t == CONST_ARM);
8557
8558 if (thumb_p)
8559 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8560 else
8561 tbit = LOAD_BIT;
8562
8563 if ((inst.instruction & tbit) == 0)
8564 {
8565 inst.error = _("invalid pseudo operation");
8566 return TRUE;
8567 }
8568
8569 if (inst.relocs[0].exp.X_op != O_constant
8570 && inst.relocs[0].exp.X_op != O_symbol
8571 && inst.relocs[0].exp.X_op != O_big)
8572 {
8573 inst.error = _("constant expression expected");
8574 return TRUE;
8575 }
8576
8577 if (inst.relocs[0].exp.X_op == O_constant
8578 || inst.relocs[0].exp.X_op == O_big)
8579 {
8580 #if defined BFD_HOST_64_BIT
8581 bfd_int64_t v;
8582 #else
8583 offsetT v;
8584 #endif
8585 if (inst.relocs[0].exp.X_op == O_big)
8586 {
8587 LITTLENUM_TYPE w[X_PRECISION];
8588 LITTLENUM_TYPE * l;
8589
8590 if (inst.relocs[0].exp.X_add_number == -1)
8591 {
8592 gen_to_words (w, X_PRECISION, E_PRECISION);
8593 l = w;
8594 /* FIXME: Should we check words w[2..5] ? */
8595 }
8596 else
8597 l = generic_bignum;
8598
8599 #if defined BFD_HOST_64_BIT
8600 v =
8601 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8602 << LITTLENUM_NUMBER_OF_BITS)
8603 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8604 << LITTLENUM_NUMBER_OF_BITS)
8605 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8606 << LITTLENUM_NUMBER_OF_BITS)
8607 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8608 #else
8609 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8610 | (l[0] & LITTLENUM_MASK);
8611 #endif
8612 }
8613 else
8614 v = inst.relocs[0].exp.X_add_number;
8615
8616 if (!inst.operands[i].issingle)
8617 {
8618 if (thumb_p)
8619 {
8620 /* LDR should not use lead in a flag-setting instruction being
8621 chosen so we do not check whether movs can be used. */
8622
8623 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8624 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8625 && inst.operands[i].reg != 13
8626 && inst.operands[i].reg != 15)
8627 {
8628 /* Check if on thumb2 it can be done with a mov.w, mvn or
8629 movw instruction. */
8630 unsigned int newimm;
8631 bfd_boolean isNegated;
8632
8633 newimm = encode_thumb32_immediate (v);
8634 if (newimm != (unsigned int) FAIL)
8635 isNegated = FALSE;
8636 else
8637 {
8638 newimm = encode_thumb32_immediate (~v);
8639 if (newimm != (unsigned int) FAIL)
8640 isNegated = TRUE;
8641 }
8642
8643 /* The number can be loaded with a mov.w or mvn
8644 instruction. */
8645 if (newimm != (unsigned int) FAIL
8646 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8647 {
8648 inst.instruction = (0xf04f0000 /* MOV.W. */
8649 | (inst.operands[i].reg << 8));
8650 /* Change to MOVN. */
8651 inst.instruction |= (isNegated ? 0x200000 : 0);
8652 inst.instruction |= (newimm & 0x800) << 15;
8653 inst.instruction |= (newimm & 0x700) << 4;
8654 inst.instruction |= (newimm & 0x0ff);
8655 return TRUE;
8656 }
8657 /* The number can be loaded with a movw instruction. */
8658 else if ((v & ~0xFFFF) == 0
8659 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8660 {
8661 int imm = v & 0xFFFF;
8662
8663 inst.instruction = 0xf2400000; /* MOVW. */
8664 inst.instruction |= (inst.operands[i].reg << 8);
8665 inst.instruction |= (imm & 0xf000) << 4;
8666 inst.instruction |= (imm & 0x0800) << 15;
8667 inst.instruction |= (imm & 0x0700) << 4;
8668 inst.instruction |= (imm & 0x00ff);
8669 return TRUE;
8670 }
8671 }
8672 }
8673 else if (arm_p)
8674 {
8675 int value = encode_arm_immediate (v);
8676
8677 if (value != FAIL)
8678 {
8679 /* This can be done with a mov instruction. */
8680 inst.instruction &= LITERAL_MASK;
8681 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8682 inst.instruction |= value & 0xfff;
8683 return TRUE;
8684 }
8685
8686 value = encode_arm_immediate (~ v);
8687 if (value != FAIL)
8688 {
8689 /* This can be done with a mvn instruction. */
8690 inst.instruction &= LITERAL_MASK;
8691 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8692 inst.instruction |= value & 0xfff;
8693 return TRUE;
8694 }
8695 }
8696 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8697 {
8698 int op = 0;
8699 unsigned immbits = 0;
8700 unsigned immlo = inst.operands[1].imm;
8701 unsigned immhi = inst.operands[1].regisimm
8702 ? inst.operands[1].reg
8703 : inst.relocs[0].exp.X_unsigned
8704 ? 0
8705 : ((bfd_int64_t)((int) immlo)) >> 32;
8706 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8707 &op, 64, NT_invtype);
8708
8709 if (cmode == FAIL)
8710 {
8711 neon_invert_size (&immlo, &immhi, 64);
8712 op = !op;
8713 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8714 &op, 64, NT_invtype);
8715 }
8716
8717 if (cmode != FAIL)
8718 {
8719 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8720 | (1 << 23)
8721 | (cmode << 8)
8722 | (op << 5)
8723 | (1 << 4);
8724
8725 /* Fill other bits in vmov encoding for both thumb and arm. */
8726 if (thumb_mode)
8727 inst.instruction |= (0x7U << 29) | (0xF << 24);
8728 else
8729 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8730 neon_write_immbits (immbits);
8731 return TRUE;
8732 }
8733 }
8734 }
8735
8736 if (t == CONST_VEC)
8737 {
8738 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8739 if (inst.operands[i].issingle
8740 && is_quarter_float (inst.operands[1].imm)
8741 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8742 {
8743 inst.operands[1].imm =
8744 neon_qfloat_bits (v);
8745 do_vfp_nsyn_opcode ("fconsts");
8746 return TRUE;
8747 }
8748
8749 /* If our host does not support a 64-bit type then we cannot perform
8750 the following optimization. This mean that there will be a
8751 discrepancy between the output produced by an assembler built for
8752 a 32-bit-only host and the output produced from a 64-bit host, but
8753 this cannot be helped. */
8754 #if defined BFD_HOST_64_BIT
8755 else if (!inst.operands[1].issingle
8756 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8757 {
8758 if (is_double_a_single (v)
8759 && is_quarter_float (double_to_single (v)))
8760 {
8761 inst.operands[1].imm =
8762 neon_qfloat_bits (double_to_single (v));
8763 do_vfp_nsyn_opcode ("fconstd");
8764 return TRUE;
8765 }
8766 }
8767 #endif
8768 }
8769 }
8770
8771 if (add_to_lit_pool ((!inst.operands[i].isvec
8772 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8773 return TRUE;
8774
8775 inst.operands[1].reg = REG_PC;
8776 inst.operands[1].isreg = 1;
8777 inst.operands[1].preind = 1;
8778 inst.relocs[0].pc_rel = 1;
8779 inst.relocs[0].type = (thumb_p
8780 ? BFD_RELOC_ARM_THUMB_OFFSET
8781 : (mode_3
8782 ? BFD_RELOC_ARM_HWLITERAL
8783 : BFD_RELOC_ARM_LITERAL));
8784 return FALSE;
8785 }
8786
8787 /* inst.operands[i] was set up by parse_address. Encode it into an
8788 ARM-format instruction. Reject all forms which cannot be encoded
8789 into a coprocessor load/store instruction. If wb_ok is false,
8790 reject use of writeback; if unind_ok is false, reject use of
8791 unindexed addressing. If reloc_override is not 0, use it instead
8792 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8793 (in which case it is preserved). */
8794
8795 static int
8796 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8797 {
8798 if (!inst.operands[i].isreg)
8799 {
8800 /* PR 18256 */
8801 if (! inst.operands[0].isvec)
8802 {
8803 inst.error = _("invalid co-processor operand");
8804 return FAIL;
8805 }
8806 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8807 return SUCCESS;
8808 }
8809
8810 inst.instruction |= inst.operands[i].reg << 16;
8811
8812 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8813
8814 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8815 {
8816 gas_assert (!inst.operands[i].writeback);
8817 if (!unind_ok)
8818 {
8819 inst.error = _("instruction does not support unindexed addressing");
8820 return FAIL;
8821 }
8822 inst.instruction |= inst.operands[i].imm;
8823 inst.instruction |= INDEX_UP;
8824 return SUCCESS;
8825 }
8826
8827 if (inst.operands[i].preind)
8828 inst.instruction |= PRE_INDEX;
8829
8830 if (inst.operands[i].writeback)
8831 {
8832 if (inst.operands[i].reg == REG_PC)
8833 {
8834 inst.error = _("pc may not be used with write-back");
8835 return FAIL;
8836 }
8837 if (!wb_ok)
8838 {
8839 inst.error = _("instruction does not support writeback");
8840 return FAIL;
8841 }
8842 inst.instruction |= WRITE_BACK;
8843 }
8844
8845 if (reloc_override)
8846 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8847 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8848 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8849 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8850 {
8851 if (thumb_mode)
8852 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8853 else
8854 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8855 }
8856
8857 /* Prefer + for zero encoded value. */
8858 if (!inst.operands[i].negative)
8859 inst.instruction |= INDEX_UP;
8860
8861 return SUCCESS;
8862 }
8863
8864 /* Functions for instruction encoding, sorted by sub-architecture.
8865 First some generics; their names are taken from the conventional
8866 bit positions for register arguments in ARM format instructions. */
8867
8868 static void
8869 do_noargs (void)
8870 {
8871 }
8872
8873 static void
8874 do_rd (void)
8875 {
8876 inst.instruction |= inst.operands[0].reg << 12;
8877 }
8878
8879 static void
8880 do_rn (void)
8881 {
8882 inst.instruction |= inst.operands[0].reg << 16;
8883 }
8884
8885 static void
8886 do_rd_rm (void)
8887 {
8888 inst.instruction |= inst.operands[0].reg << 12;
8889 inst.instruction |= inst.operands[1].reg;
8890 }
8891
8892 static void
8893 do_rm_rn (void)
8894 {
8895 inst.instruction |= inst.operands[0].reg;
8896 inst.instruction |= inst.operands[1].reg << 16;
8897 }
8898
8899 static void
8900 do_rd_rn (void)
8901 {
8902 inst.instruction |= inst.operands[0].reg << 12;
8903 inst.instruction |= inst.operands[1].reg << 16;
8904 }
8905
8906 static void
8907 do_rn_rd (void)
8908 {
8909 inst.instruction |= inst.operands[0].reg << 16;
8910 inst.instruction |= inst.operands[1].reg << 12;
8911 }
8912
8913 static void
8914 do_tt (void)
8915 {
8916 inst.instruction |= inst.operands[0].reg << 8;
8917 inst.instruction |= inst.operands[1].reg << 16;
8918 }
8919
8920 static bfd_boolean
8921 check_obsolete (const arm_feature_set *feature, const char *msg)
8922 {
8923 if (ARM_CPU_IS_ANY (cpu_variant))
8924 {
8925 as_tsktsk ("%s", msg);
8926 return TRUE;
8927 }
8928 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8929 {
8930 as_bad ("%s", msg);
8931 return TRUE;
8932 }
8933
8934 return FALSE;
8935 }
8936
8937 static void
8938 do_rd_rm_rn (void)
8939 {
8940 unsigned Rn = inst.operands[2].reg;
8941 /* Enforce restrictions on SWP instruction. */
8942 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8943 {
8944 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8945 _("Rn must not overlap other operands"));
8946
8947 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8948 */
8949 if (!check_obsolete (&arm_ext_v8,
8950 _("swp{b} use is obsoleted for ARMv8 and later"))
8951 && warn_on_deprecated
8952 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8953 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8954 }
8955
8956 inst.instruction |= inst.operands[0].reg << 12;
8957 inst.instruction |= inst.operands[1].reg;
8958 inst.instruction |= Rn << 16;
8959 }
8960
8961 static void
8962 do_rd_rn_rm (void)
8963 {
8964 inst.instruction |= inst.operands[0].reg << 12;
8965 inst.instruction |= inst.operands[1].reg << 16;
8966 inst.instruction |= inst.operands[2].reg;
8967 }
8968
8969 static void
8970 do_rm_rd_rn (void)
8971 {
8972 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8973 constraint (((inst.relocs[0].exp.X_op != O_constant
8974 && inst.relocs[0].exp.X_op != O_illegal)
8975 || inst.relocs[0].exp.X_add_number != 0),
8976 BAD_ADDR_MODE);
8977 inst.instruction |= inst.operands[0].reg;
8978 inst.instruction |= inst.operands[1].reg << 12;
8979 inst.instruction |= inst.operands[2].reg << 16;
8980 }
8981
8982 static void
8983 do_imm0 (void)
8984 {
8985 inst.instruction |= inst.operands[0].imm;
8986 }
8987
8988 static void
8989 do_rd_cpaddr (void)
8990 {
8991 inst.instruction |= inst.operands[0].reg << 12;
8992 encode_arm_cp_address (1, TRUE, TRUE, 0);
8993 }
8994
8995 /* ARM instructions, in alphabetical order by function name (except
8996 that wrapper functions appear immediately after the function they
8997 wrap). */
8998
8999 /* This is a pseudo-op of the form "adr rd, label" to be converted
9000 into a relative address of the form "add rd, pc, #label-.-8". */
9001
9002 static void
9003 do_adr (void)
9004 {
9005 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9006
9007 /* Frag hacking will turn this into a sub instruction if the offset turns
9008 out to be negative. */
9009 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9010 inst.relocs[0].pc_rel = 1;
9011 inst.relocs[0].exp.X_add_number -= 8;
9012
9013 if (support_interwork
9014 && inst.relocs[0].exp.X_op == O_symbol
9015 && inst.relocs[0].exp.X_add_symbol != NULL
9016 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9017 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9018 inst.relocs[0].exp.X_add_number |= 1;
9019 }
9020
9021 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9022 into a relative address of the form:
9023 add rd, pc, #low(label-.-8)"
9024 add rd, rd, #high(label-.-8)" */
9025
9026 static void
9027 do_adrl (void)
9028 {
9029 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9030
9031 /* Frag hacking will turn this into a sub instruction if the offset turns
9032 out to be negative. */
9033 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9034 inst.relocs[0].pc_rel = 1;
9035 inst.size = INSN_SIZE * 2;
9036 inst.relocs[0].exp.X_add_number -= 8;
9037
9038 if (support_interwork
9039 && inst.relocs[0].exp.X_op == O_symbol
9040 && inst.relocs[0].exp.X_add_symbol != NULL
9041 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9042 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9043 inst.relocs[0].exp.X_add_number |= 1;
9044 }
9045
9046 static void
9047 do_arit (void)
9048 {
9049 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9050 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9051 THUMB1_RELOC_ONLY);
9052 if (!inst.operands[1].present)
9053 inst.operands[1].reg = inst.operands[0].reg;
9054 inst.instruction |= inst.operands[0].reg << 12;
9055 inst.instruction |= inst.operands[1].reg << 16;
9056 encode_arm_shifter_operand (2);
9057 }
9058
9059 static void
9060 do_barrier (void)
9061 {
9062 if (inst.operands[0].present)
9063 inst.instruction |= inst.operands[0].imm;
9064 else
9065 inst.instruction |= 0xf;
9066 }
9067
9068 static void
9069 do_bfc (void)
9070 {
9071 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9072 constraint (msb > 32, _("bit-field extends past end of register"));
9073 /* The instruction encoding stores the LSB and MSB,
9074 not the LSB and width. */
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].imm << 7;
9077 inst.instruction |= (msb - 1) << 16;
9078 }
9079
9080 static void
9081 do_bfi (void)
9082 {
9083 unsigned int msb;
9084
9085 /* #0 in second position is alternative syntax for bfc, which is
9086 the same instruction but with REG_PC in the Rm field. */
9087 if (!inst.operands[1].isreg)
9088 inst.operands[1].reg = REG_PC;
9089
9090 msb = inst.operands[2].imm + inst.operands[3].imm;
9091 constraint (msb > 32, _("bit-field extends past end of register"));
9092 /* The instruction encoding stores the LSB and MSB,
9093 not the LSB and width. */
9094 inst.instruction |= inst.operands[0].reg << 12;
9095 inst.instruction |= inst.operands[1].reg;
9096 inst.instruction |= inst.operands[2].imm << 7;
9097 inst.instruction |= (msb - 1) << 16;
9098 }
9099
9100 static void
9101 do_bfx (void)
9102 {
9103 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9104 _("bit-field extends past end of register"));
9105 inst.instruction |= inst.operands[0].reg << 12;
9106 inst.instruction |= inst.operands[1].reg;
9107 inst.instruction |= inst.operands[2].imm << 7;
9108 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9109 }
9110
9111 /* ARM V5 breakpoint instruction (argument parse)
9112 BKPT <16 bit unsigned immediate>
9113 Instruction is not conditional.
9114 The bit pattern given in insns[] has the COND_ALWAYS condition,
9115 and it is an error if the caller tried to override that. */
9116
9117 static void
9118 do_bkpt (void)
9119 {
9120 /* Top 12 of 16 bits to bits 19:8. */
9121 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9122
9123 /* Bottom 4 of 16 bits to bits 3:0. */
9124 inst.instruction |= inst.operands[0].imm & 0xf;
9125 }
9126
9127 static void
9128 encode_branch (int default_reloc)
9129 {
9130 if (inst.operands[0].hasreloc)
9131 {
9132 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9133 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9134 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9135 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9136 ? BFD_RELOC_ARM_PLT32
9137 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9138 }
9139 else
9140 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9141 inst.relocs[0].pc_rel = 1;
9142 }
9143
9144 static void
9145 do_branch (void)
9146 {
9147 #ifdef OBJ_ELF
9148 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9149 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9150 else
9151 #endif
9152 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9153 }
9154
9155 static void
9156 do_bl (void)
9157 {
9158 #ifdef OBJ_ELF
9159 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9160 {
9161 if (inst.cond == COND_ALWAYS)
9162 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9163 else
9164 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9165 }
9166 else
9167 #endif
9168 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9169 }
9170
9171 /* ARM V5 branch-link-exchange instruction (argument parse)
9172 BLX <target_addr> ie BLX(1)
9173 BLX{<condition>} <Rm> ie BLX(2)
9174 Unfortunately, there are two different opcodes for this mnemonic.
9175 So, the insns[].value is not used, and the code here zaps values
9176 into inst.instruction.
9177 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9178
9179 static void
9180 do_blx (void)
9181 {
9182 if (inst.operands[0].isreg)
9183 {
9184 /* Arg is a register; the opcode provided by insns[] is correct.
9185 It is not illegal to do "blx pc", just useless. */
9186 if (inst.operands[0].reg == REG_PC)
9187 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9188
9189 inst.instruction |= inst.operands[0].reg;
9190 }
9191 else
9192 {
9193 /* Arg is an address; this instruction cannot be executed
9194 conditionally, and the opcode must be adjusted.
9195 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9196 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9197 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9198 inst.instruction = 0xfa000000;
9199 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9200 }
9201 }
9202
9203 static void
9204 do_bx (void)
9205 {
9206 bfd_boolean want_reloc;
9207
9208 if (inst.operands[0].reg == REG_PC)
9209 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9210
9211 inst.instruction |= inst.operands[0].reg;
9212 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9213 it is for ARMv4t or earlier. */
9214 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9215 if (!ARM_FEATURE_ZERO (selected_object_arch)
9216 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9217 want_reloc = TRUE;
9218
9219 #ifdef OBJ_ELF
9220 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9221 #endif
9222 want_reloc = FALSE;
9223
9224 if (want_reloc)
9225 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9226 }
9227
9228
9229 /* ARM v5TEJ. Jump to Jazelle code. */
9230
9231 static void
9232 do_bxj (void)
9233 {
9234 if (inst.operands[0].reg == REG_PC)
9235 as_tsktsk (_("use of r15 in bxj is not really useful"));
9236
9237 inst.instruction |= inst.operands[0].reg;
9238 }
9239
9240 /* Co-processor data operation:
9241 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9242 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9243 static void
9244 do_cdp (void)
9245 {
9246 inst.instruction |= inst.operands[0].reg << 8;
9247 inst.instruction |= inst.operands[1].imm << 20;
9248 inst.instruction |= inst.operands[2].reg << 12;
9249 inst.instruction |= inst.operands[3].reg << 16;
9250 inst.instruction |= inst.operands[4].reg;
9251 inst.instruction |= inst.operands[5].imm << 5;
9252 }
9253
9254 static void
9255 do_cmp (void)
9256 {
9257 inst.instruction |= inst.operands[0].reg << 16;
9258 encode_arm_shifter_operand (1);
9259 }
9260
9261 /* Transfer between coprocessor and ARM registers.
9262 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9263 MRC2
9264 MCR{cond}
9265 MCR2
9266
9267 No special properties. */
9268
9269 struct deprecated_coproc_regs_s
9270 {
9271 unsigned cp;
9272 int opc1;
9273 unsigned crn;
9274 unsigned crm;
9275 int opc2;
9276 arm_feature_set deprecated;
9277 arm_feature_set obsoleted;
9278 const char *dep_msg;
9279 const char *obs_msg;
9280 };
9281
9282 #define DEPR_ACCESS_V8 \
9283 N_("This coprocessor register access is deprecated in ARMv8")
9284
9285 /* Table of all deprecated coprocessor registers. */
9286 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9287 {
9288 {15, 0, 7, 10, 5, /* CP15DMB. */
9289 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9290 DEPR_ACCESS_V8, NULL},
9291 {15, 0, 7, 10, 4, /* CP15DSB. */
9292 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9293 DEPR_ACCESS_V8, NULL},
9294 {15, 0, 7, 5, 4, /* CP15ISB. */
9295 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9296 DEPR_ACCESS_V8, NULL},
9297 {14, 6, 1, 0, 0, /* TEEHBR. */
9298 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9299 DEPR_ACCESS_V8, NULL},
9300 {14, 6, 0, 0, 0, /* TEECR. */
9301 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9302 DEPR_ACCESS_V8, NULL},
9303 };
9304
9305 #undef DEPR_ACCESS_V8
9306
9307 static const size_t deprecated_coproc_reg_count =
9308 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9309
9310 static void
9311 do_co_reg (void)
9312 {
9313 unsigned Rd;
9314 size_t i;
9315
9316 Rd = inst.operands[2].reg;
9317 if (thumb_mode)
9318 {
9319 if (inst.instruction == 0xee000010
9320 || inst.instruction == 0xfe000010)
9321 /* MCR, MCR2 */
9322 reject_bad_reg (Rd);
9323 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9324 /* MRC, MRC2 */
9325 constraint (Rd == REG_SP, BAD_SP);
9326 }
9327 else
9328 {
9329 /* MCR */
9330 if (inst.instruction == 0xe000010)
9331 constraint (Rd == REG_PC, BAD_PC);
9332 }
9333
9334 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9335 {
9336 const struct deprecated_coproc_regs_s *r =
9337 deprecated_coproc_regs + i;
9338
9339 if (inst.operands[0].reg == r->cp
9340 && inst.operands[1].imm == r->opc1
9341 && inst.operands[3].reg == r->crn
9342 && inst.operands[4].reg == r->crm
9343 && inst.operands[5].imm == r->opc2)
9344 {
9345 if (! ARM_CPU_IS_ANY (cpu_variant)
9346 && warn_on_deprecated
9347 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9348 as_tsktsk ("%s", r->dep_msg);
9349 }
9350 }
9351
9352 inst.instruction |= inst.operands[0].reg << 8;
9353 inst.instruction |= inst.operands[1].imm << 21;
9354 inst.instruction |= Rd << 12;
9355 inst.instruction |= inst.operands[3].reg << 16;
9356 inst.instruction |= inst.operands[4].reg;
9357 inst.instruction |= inst.operands[5].imm << 5;
9358 }
9359
9360 /* Transfer between coprocessor register and pair of ARM registers.
9361 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9362 MCRR2
9363 MRRC{cond}
9364 MRRC2
9365
9366 Two XScale instructions are special cases of these:
9367
9368 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9369 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9370
9371 Result unpredictable if Rd or Rn is R15. */
9372
9373 static void
9374 do_co_reg2c (void)
9375 {
9376 unsigned Rd, Rn;
9377
9378 Rd = inst.operands[2].reg;
9379 Rn = inst.operands[3].reg;
9380
9381 if (thumb_mode)
9382 {
9383 reject_bad_reg (Rd);
9384 reject_bad_reg (Rn);
9385 }
9386 else
9387 {
9388 constraint (Rd == REG_PC, BAD_PC);
9389 constraint (Rn == REG_PC, BAD_PC);
9390 }
9391
9392 /* Only check the MRRC{2} variants. */
9393 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9394 {
9395 /* If Rd == Rn, error that the operation is
9396 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9397 constraint (Rd == Rn, BAD_OVERLAP);
9398 }
9399
9400 inst.instruction |= inst.operands[0].reg << 8;
9401 inst.instruction |= inst.operands[1].imm << 4;
9402 inst.instruction |= Rd << 12;
9403 inst.instruction |= Rn << 16;
9404 inst.instruction |= inst.operands[4].reg;
9405 }
9406
9407 static void
9408 do_cpsi (void)
9409 {
9410 inst.instruction |= inst.operands[0].imm << 6;
9411 if (inst.operands[1].present)
9412 {
9413 inst.instruction |= CPSI_MMOD;
9414 inst.instruction |= inst.operands[1].imm;
9415 }
9416 }
9417
9418 static void
9419 do_dbg (void)
9420 {
9421 inst.instruction |= inst.operands[0].imm;
9422 }
9423
9424 static void
9425 do_div (void)
9426 {
9427 unsigned Rd, Rn, Rm;
9428
9429 Rd = inst.operands[0].reg;
9430 Rn = (inst.operands[1].present
9431 ? inst.operands[1].reg : Rd);
9432 Rm = inst.operands[2].reg;
9433
9434 constraint ((Rd == REG_PC), BAD_PC);
9435 constraint ((Rn == REG_PC), BAD_PC);
9436 constraint ((Rm == REG_PC), BAD_PC);
9437
9438 inst.instruction |= Rd << 16;
9439 inst.instruction |= Rn << 0;
9440 inst.instruction |= Rm << 8;
9441 }
9442
9443 static void
9444 do_it (void)
9445 {
9446 /* There is no IT instruction in ARM mode. We
9447 process it to do the validation as if in
9448 thumb mode, just in case the code gets
9449 assembled for thumb using the unified syntax. */
9450
9451 inst.size = 0;
9452 if (unified_syntax)
9453 {
9454 set_pred_insn_type (IT_INSN);
9455 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9456 now_pred.cc = inst.operands[0].imm;
9457 }
9458 }
9459
9460 /* If there is only one register in the register list,
9461 then return its register number. Otherwise return -1. */
9462 static int
9463 only_one_reg_in_list (int range)
9464 {
9465 int i = ffs (range) - 1;
9466 return (i > 15 || range != (1 << i)) ? -1 : i;
9467 }
9468
9469 static void
9470 encode_ldmstm(int from_push_pop_mnem)
9471 {
9472 int base_reg = inst.operands[0].reg;
9473 int range = inst.operands[1].imm;
9474 int one_reg;
9475
9476 inst.instruction |= base_reg << 16;
9477 inst.instruction |= range;
9478
9479 if (inst.operands[1].writeback)
9480 inst.instruction |= LDM_TYPE_2_OR_3;
9481
9482 if (inst.operands[0].writeback)
9483 {
9484 inst.instruction |= WRITE_BACK;
9485 /* Check for unpredictable uses of writeback. */
9486 if (inst.instruction & LOAD_BIT)
9487 {
9488 /* Not allowed in LDM type 2. */
9489 if ((inst.instruction & LDM_TYPE_2_OR_3)
9490 && ((range & (1 << REG_PC)) == 0))
9491 as_warn (_("writeback of base register is UNPREDICTABLE"));
9492 /* Only allowed if base reg not in list for other types. */
9493 else if (range & (1 << base_reg))
9494 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9495 }
9496 else /* STM. */
9497 {
9498 /* Not allowed for type 2. */
9499 if (inst.instruction & LDM_TYPE_2_OR_3)
9500 as_warn (_("writeback of base register is UNPREDICTABLE"));
9501 /* Only allowed if base reg not in list, or first in list. */
9502 else if ((range & (1 << base_reg))
9503 && (range & ((1 << base_reg) - 1)))
9504 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9505 }
9506 }
9507
9508 /* If PUSH/POP has only one register, then use the A2 encoding. */
9509 one_reg = only_one_reg_in_list (range);
9510 if (from_push_pop_mnem && one_reg >= 0)
9511 {
9512 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9513
9514 if (is_push && one_reg == 13 /* SP */)
9515 /* PR 22483: The A2 encoding cannot be used when
9516 pushing the stack pointer as this is UNPREDICTABLE. */
9517 return;
9518
9519 inst.instruction &= A_COND_MASK;
9520 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9521 inst.instruction |= one_reg << 12;
9522 }
9523 }
9524
9525 static void
9526 do_ldmstm (void)
9527 {
9528 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9529 }
9530
9531 /* ARMv5TE load-consecutive (argument parse)
9532 Mode is like LDRH.
9533
9534 LDRccD R, mode
9535 STRccD R, mode. */
9536
9537 static void
9538 do_ldrd (void)
9539 {
9540 constraint (inst.operands[0].reg % 2 != 0,
9541 _("first transfer register must be even"));
9542 constraint (inst.operands[1].present
9543 && inst.operands[1].reg != inst.operands[0].reg + 1,
9544 _("can only transfer two consecutive registers"));
9545 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9546 constraint (!inst.operands[2].isreg, _("'[' expected"));
9547
9548 if (!inst.operands[1].present)
9549 inst.operands[1].reg = inst.operands[0].reg + 1;
9550
9551 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9552 register and the first register written; we have to diagnose
9553 overlap between the base and the second register written here. */
9554
9555 if (inst.operands[2].reg == inst.operands[1].reg
9556 && (inst.operands[2].writeback || inst.operands[2].postind))
9557 as_warn (_("base register written back, and overlaps "
9558 "second transfer register"));
9559
9560 if (!(inst.instruction & V4_STR_BIT))
9561 {
9562 /* For an index-register load, the index register must not overlap the
9563 destination (even if not write-back). */
9564 if (inst.operands[2].immisreg
9565 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9566 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9567 as_warn (_("index register overlaps transfer register"));
9568 }
9569 inst.instruction |= inst.operands[0].reg << 12;
9570 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9571 }
9572
9573 static void
9574 do_ldrex (void)
9575 {
9576 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9577 || inst.operands[1].postind || inst.operands[1].writeback
9578 || inst.operands[1].immisreg || inst.operands[1].shifted
9579 || inst.operands[1].negative
9580 /* This can arise if the programmer has written
9581 strex rN, rM, foo
9582 or if they have mistakenly used a register name as the last
9583 operand, eg:
9584 strex rN, rM, rX
9585 It is very difficult to distinguish between these two cases
9586 because "rX" might actually be a label. ie the register
9587 name has been occluded by a symbol of the same name. So we
9588 just generate a general 'bad addressing mode' type error
9589 message and leave it up to the programmer to discover the
9590 true cause and fix their mistake. */
9591 || (inst.operands[1].reg == REG_PC),
9592 BAD_ADDR_MODE);
9593
9594 constraint (inst.relocs[0].exp.X_op != O_constant
9595 || inst.relocs[0].exp.X_add_number != 0,
9596 _("offset must be zero in ARM encoding"));
9597
9598 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9599
9600 inst.instruction |= inst.operands[0].reg << 12;
9601 inst.instruction |= inst.operands[1].reg << 16;
9602 inst.relocs[0].type = BFD_RELOC_UNUSED;
9603 }
9604
9605 static void
9606 do_ldrexd (void)
9607 {
9608 constraint (inst.operands[0].reg % 2 != 0,
9609 _("even register required"));
9610 constraint (inst.operands[1].present
9611 && inst.operands[1].reg != inst.operands[0].reg + 1,
9612 _("can only load two consecutive registers"));
9613 /* If op 1 were present and equal to PC, this function wouldn't
9614 have been called in the first place. */
9615 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9616
9617 inst.instruction |= inst.operands[0].reg << 12;
9618 inst.instruction |= inst.operands[2].reg << 16;
9619 }
9620
9621 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9622 which is not a multiple of four is UNPREDICTABLE. */
9623 static void
9624 check_ldr_r15_aligned (void)
9625 {
9626 constraint (!(inst.operands[1].immisreg)
9627 && (inst.operands[0].reg == REG_PC
9628 && inst.operands[1].reg == REG_PC
9629 && (inst.relocs[0].exp.X_add_number & 0x3)),
9630 _("ldr to register 15 must be 4-byte aligned"));
9631 }
9632
9633 static void
9634 do_ldst (void)
9635 {
9636 inst.instruction |= inst.operands[0].reg << 12;
9637 if (!inst.operands[1].isreg)
9638 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9639 return;
9640 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9641 check_ldr_r15_aligned ();
9642 }
9643
9644 static void
9645 do_ldstt (void)
9646 {
9647 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9648 reject [Rn,...]. */
9649 if (inst.operands[1].preind)
9650 {
9651 constraint (inst.relocs[0].exp.X_op != O_constant
9652 || inst.relocs[0].exp.X_add_number != 0,
9653 _("this instruction requires a post-indexed address"));
9654
9655 inst.operands[1].preind = 0;
9656 inst.operands[1].postind = 1;
9657 inst.operands[1].writeback = 1;
9658 }
9659 inst.instruction |= inst.operands[0].reg << 12;
9660 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9661 }
9662
9663 /* Halfword and signed-byte load/store operations. */
9664
9665 static void
9666 do_ldstv4 (void)
9667 {
9668 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9669 inst.instruction |= inst.operands[0].reg << 12;
9670 if (!inst.operands[1].isreg)
9671 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9672 return;
9673 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9674 }
9675
9676 static void
9677 do_ldsttv4 (void)
9678 {
9679 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9680 reject [Rn,...]. */
9681 if (inst.operands[1].preind)
9682 {
9683 constraint (inst.relocs[0].exp.X_op != O_constant
9684 || inst.relocs[0].exp.X_add_number != 0,
9685 _("this instruction requires a post-indexed address"));
9686
9687 inst.operands[1].preind = 0;
9688 inst.operands[1].postind = 1;
9689 inst.operands[1].writeback = 1;
9690 }
9691 inst.instruction |= inst.operands[0].reg << 12;
9692 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9693 }
9694
9695 /* Co-processor register load/store.
9696 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9697 static void
9698 do_lstc (void)
9699 {
9700 inst.instruction |= inst.operands[0].reg << 8;
9701 inst.instruction |= inst.operands[1].reg << 12;
9702 encode_arm_cp_address (2, TRUE, TRUE, 0);
9703 }
9704
9705 static void
9706 do_mlas (void)
9707 {
9708 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9709 if (inst.operands[0].reg == inst.operands[1].reg
9710 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9711 && !(inst.instruction & 0x00400000))
9712 as_tsktsk (_("Rd and Rm should be different in mla"));
9713
9714 inst.instruction |= inst.operands[0].reg << 16;
9715 inst.instruction |= inst.operands[1].reg;
9716 inst.instruction |= inst.operands[2].reg << 8;
9717 inst.instruction |= inst.operands[3].reg << 12;
9718 }
9719
9720 static void
9721 do_mov (void)
9722 {
9723 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9724 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9725 THUMB1_RELOC_ONLY);
9726 inst.instruction |= inst.operands[0].reg << 12;
9727 encode_arm_shifter_operand (1);
9728 }
9729
9730 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9731 static void
9732 do_mov16 (void)
9733 {
9734 bfd_vma imm;
9735 bfd_boolean top;
9736
9737 top = (inst.instruction & 0x00400000) != 0;
9738 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9739 _(":lower16: not allowed in this instruction"));
9740 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9741 _(":upper16: not allowed in this instruction"));
9742 inst.instruction |= inst.operands[0].reg << 12;
9743 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9744 {
9745 imm = inst.relocs[0].exp.X_add_number;
9746 /* The value is in two pieces: 0:11, 16:19. */
9747 inst.instruction |= (imm & 0x00000fff);
9748 inst.instruction |= (imm & 0x0000f000) << 4;
9749 }
9750 }
9751
9752 static int
9753 do_vfp_nsyn_mrs (void)
9754 {
9755 if (inst.operands[0].isvec)
9756 {
9757 if (inst.operands[1].reg != 1)
9758 first_error (_("operand 1 must be FPSCR"));
9759 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9760 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9761 do_vfp_nsyn_opcode ("fmstat");
9762 }
9763 else if (inst.operands[1].isvec)
9764 do_vfp_nsyn_opcode ("fmrx");
9765 else
9766 return FAIL;
9767
9768 return SUCCESS;
9769 }
9770
9771 static int
9772 do_vfp_nsyn_msr (void)
9773 {
9774 if (inst.operands[0].isvec)
9775 do_vfp_nsyn_opcode ("fmxr");
9776 else
9777 return FAIL;
9778
9779 return SUCCESS;
9780 }
9781
9782 static void
9783 do_vmrs (void)
9784 {
9785 unsigned Rt = inst.operands[0].reg;
9786
9787 if (thumb_mode && Rt == REG_SP)
9788 {
9789 inst.error = BAD_SP;
9790 return;
9791 }
9792
9793 /* MVFR2 is only valid at ARMv8-A. */
9794 if (inst.operands[1].reg == 5)
9795 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9796 _(BAD_FPU));
9797
9798 /* APSR_ sets isvec. All other refs to PC are illegal. */
9799 if (!inst.operands[0].isvec && Rt == REG_PC)
9800 {
9801 inst.error = BAD_PC;
9802 return;
9803 }
9804
9805 /* If we get through parsing the register name, we just insert the number
9806 generated into the instruction without further validation. */
9807 inst.instruction |= (inst.operands[1].reg << 16);
9808 inst.instruction |= (Rt << 12);
9809 }
9810
9811 static void
9812 do_vmsr (void)
9813 {
9814 unsigned Rt = inst.operands[1].reg;
9815
9816 if (thumb_mode)
9817 reject_bad_reg (Rt);
9818 else if (Rt == REG_PC)
9819 {
9820 inst.error = BAD_PC;
9821 return;
9822 }
9823
9824 /* MVFR2 is only valid for ARMv8-A. */
9825 if (inst.operands[0].reg == 5)
9826 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9827 _(BAD_FPU));
9828
9829 /* If we get through parsing the register name, we just insert the number
9830 generated into the instruction without further validation. */
9831 inst.instruction |= (inst.operands[0].reg << 16);
9832 inst.instruction |= (Rt << 12);
9833 }
9834
9835 static void
9836 do_mrs (void)
9837 {
9838 unsigned br;
9839
9840 if (do_vfp_nsyn_mrs () == SUCCESS)
9841 return;
9842
9843 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9844 inst.instruction |= inst.operands[0].reg << 12;
9845
9846 if (inst.operands[1].isreg)
9847 {
9848 br = inst.operands[1].reg;
9849 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9850 as_bad (_("bad register for mrs"));
9851 }
9852 else
9853 {
9854 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9855 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9856 != (PSR_c|PSR_f),
9857 _("'APSR', 'CPSR' or 'SPSR' expected"));
9858 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9859 }
9860
9861 inst.instruction |= br;
9862 }
9863
9864 /* Two possible forms:
9865 "{C|S}PSR_<field>, Rm",
9866 "{C|S}PSR_f, #expression". */
9867
9868 static void
9869 do_msr (void)
9870 {
9871 if (do_vfp_nsyn_msr () == SUCCESS)
9872 return;
9873
9874 inst.instruction |= inst.operands[0].imm;
9875 if (inst.operands[1].isreg)
9876 inst.instruction |= inst.operands[1].reg;
9877 else
9878 {
9879 inst.instruction |= INST_IMMEDIATE;
9880 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9881 inst.relocs[0].pc_rel = 0;
9882 }
9883 }
9884
9885 static void
9886 do_mul (void)
9887 {
9888 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9889
9890 if (!inst.operands[2].present)
9891 inst.operands[2].reg = inst.operands[0].reg;
9892 inst.instruction |= inst.operands[0].reg << 16;
9893 inst.instruction |= inst.operands[1].reg;
9894 inst.instruction |= inst.operands[2].reg << 8;
9895
9896 if (inst.operands[0].reg == inst.operands[1].reg
9897 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9898 as_tsktsk (_("Rd and Rm should be different in mul"));
9899 }
9900
9901 /* Long Multiply Parser
9902 UMULL RdLo, RdHi, Rm, Rs
9903 SMULL RdLo, RdHi, Rm, Rs
9904 UMLAL RdLo, RdHi, Rm, Rs
9905 SMLAL RdLo, RdHi, Rm, Rs. */
9906
9907 static void
9908 do_mull (void)
9909 {
9910 inst.instruction |= inst.operands[0].reg << 12;
9911 inst.instruction |= inst.operands[1].reg << 16;
9912 inst.instruction |= inst.operands[2].reg;
9913 inst.instruction |= inst.operands[3].reg << 8;
9914
9915 /* rdhi and rdlo must be different. */
9916 if (inst.operands[0].reg == inst.operands[1].reg)
9917 as_tsktsk (_("rdhi and rdlo must be different"));
9918
9919 /* rdhi, rdlo and rm must all be different before armv6. */
9920 if ((inst.operands[0].reg == inst.operands[2].reg
9921 || inst.operands[1].reg == inst.operands[2].reg)
9922 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9923 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9924 }
9925
9926 static void
9927 do_nop (void)
9928 {
9929 if (inst.operands[0].present
9930 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9931 {
9932 /* Architectural NOP hints are CPSR sets with no bits selected. */
9933 inst.instruction &= 0xf0000000;
9934 inst.instruction |= 0x0320f000;
9935 if (inst.operands[0].present)
9936 inst.instruction |= inst.operands[0].imm;
9937 }
9938 }
9939
9940 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9941 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9942 Condition defaults to COND_ALWAYS.
9943 Error if Rd, Rn or Rm are R15. */
9944
9945 static void
9946 do_pkhbt (void)
9947 {
9948 inst.instruction |= inst.operands[0].reg << 12;
9949 inst.instruction |= inst.operands[1].reg << 16;
9950 inst.instruction |= inst.operands[2].reg;
9951 if (inst.operands[3].present)
9952 encode_arm_shift (3);
9953 }
9954
9955 /* ARM V6 PKHTB (Argument Parse). */
9956
9957 static void
9958 do_pkhtb (void)
9959 {
9960 if (!inst.operands[3].present)
9961 {
9962 /* If the shift specifier is omitted, turn the instruction
9963 into pkhbt rd, rm, rn. */
9964 inst.instruction &= 0xfff00010;
9965 inst.instruction |= inst.operands[0].reg << 12;
9966 inst.instruction |= inst.operands[1].reg;
9967 inst.instruction |= inst.operands[2].reg << 16;
9968 }
9969 else
9970 {
9971 inst.instruction |= inst.operands[0].reg << 12;
9972 inst.instruction |= inst.operands[1].reg << 16;
9973 inst.instruction |= inst.operands[2].reg;
9974 encode_arm_shift (3);
9975 }
9976 }
9977
9978 /* ARMv5TE: Preload-Cache
9979 MP Extensions: Preload for write
9980
9981 PLD(W) <addr_mode>
9982
9983 Syntactically, like LDR with B=1, W=0, L=1. */
9984
9985 static void
9986 do_pld (void)
9987 {
9988 constraint (!inst.operands[0].isreg,
9989 _("'[' expected after PLD mnemonic"));
9990 constraint (inst.operands[0].postind,
9991 _("post-indexed expression used in preload instruction"));
9992 constraint (inst.operands[0].writeback,
9993 _("writeback used in preload instruction"));
9994 constraint (!inst.operands[0].preind,
9995 _("unindexed addressing used in preload instruction"));
9996 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9997 }
9998
9999 /* ARMv7: PLI <addr_mode> */
10000 static void
10001 do_pli (void)
10002 {
10003 constraint (!inst.operands[0].isreg,
10004 _("'[' expected after PLI mnemonic"));
10005 constraint (inst.operands[0].postind,
10006 _("post-indexed expression used in preload instruction"));
10007 constraint (inst.operands[0].writeback,
10008 _("writeback used in preload instruction"));
10009 constraint (!inst.operands[0].preind,
10010 _("unindexed addressing used in preload instruction"));
10011 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10012 inst.instruction &= ~PRE_INDEX;
10013 }
10014
10015 static void
10016 do_push_pop (void)
10017 {
10018 constraint (inst.operands[0].writeback,
10019 _("push/pop do not support {reglist}^"));
10020 inst.operands[1] = inst.operands[0];
10021 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10022 inst.operands[0].isreg = 1;
10023 inst.operands[0].writeback = 1;
10024 inst.operands[0].reg = REG_SP;
10025 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10026 }
10027
10028 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10029 word at the specified address and the following word
10030 respectively.
10031 Unconditionally executed.
10032 Error if Rn is R15. */
10033
10034 static void
10035 do_rfe (void)
10036 {
10037 inst.instruction |= inst.operands[0].reg << 16;
10038 if (inst.operands[0].writeback)
10039 inst.instruction |= WRITE_BACK;
10040 }
10041
10042 /* ARM V6 ssat (argument parse). */
10043
10044 static void
10045 do_ssat (void)
10046 {
10047 inst.instruction |= inst.operands[0].reg << 12;
10048 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10049 inst.instruction |= inst.operands[2].reg;
10050
10051 if (inst.operands[3].present)
10052 encode_arm_shift (3);
10053 }
10054
10055 /* ARM V6 usat (argument parse). */
10056
10057 static void
10058 do_usat (void)
10059 {
10060 inst.instruction |= inst.operands[0].reg << 12;
10061 inst.instruction |= inst.operands[1].imm << 16;
10062 inst.instruction |= inst.operands[2].reg;
10063
10064 if (inst.operands[3].present)
10065 encode_arm_shift (3);
10066 }
10067
10068 /* ARM V6 ssat16 (argument parse). */
10069
10070 static void
10071 do_ssat16 (void)
10072 {
10073 inst.instruction |= inst.operands[0].reg << 12;
10074 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10075 inst.instruction |= inst.operands[2].reg;
10076 }
10077
10078 static void
10079 do_usat16 (void)
10080 {
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
10084 }
10085
10086 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10087 preserving the other bits.
10088
10089 setend <endian_specifier>, where <endian_specifier> is either
10090 BE or LE. */
10091
10092 static void
10093 do_setend (void)
10094 {
10095 if (warn_on_deprecated
10096 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10097 as_tsktsk (_("setend use is deprecated for ARMv8"));
10098
10099 if (inst.operands[0].imm)
10100 inst.instruction |= 0x200;
10101 }
10102
10103 static void
10104 do_shift (void)
10105 {
10106 unsigned int Rm = (inst.operands[1].present
10107 ? inst.operands[1].reg
10108 : inst.operands[0].reg);
10109
10110 inst.instruction |= inst.operands[0].reg << 12;
10111 inst.instruction |= Rm;
10112 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10113 {
10114 inst.instruction |= inst.operands[2].reg << 8;
10115 inst.instruction |= SHIFT_BY_REG;
10116 /* PR 12854: Error on extraneous shifts. */
10117 constraint (inst.operands[2].shifted,
10118 _("extraneous shift as part of operand to shift insn"));
10119 }
10120 else
10121 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10122 }
10123
10124 static void
10125 do_smc (void)
10126 {
10127 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10128 inst.relocs[0].pc_rel = 0;
10129 }
10130
10131 static void
10132 do_hvc (void)
10133 {
10134 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10135 inst.relocs[0].pc_rel = 0;
10136 }
10137
10138 static void
10139 do_swi (void)
10140 {
10141 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10142 inst.relocs[0].pc_rel = 0;
10143 }
10144
10145 static void
10146 do_setpan (void)
10147 {
10148 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10149 _("selected processor does not support SETPAN instruction"));
10150
10151 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10152 }
10153
10154 static void
10155 do_t_setpan (void)
10156 {
10157 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10158 _("selected processor does not support SETPAN instruction"));
10159
10160 inst.instruction |= (inst.operands[0].imm << 3);
10161 }
10162
10163 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10164 SMLAxy{cond} Rd,Rm,Rs,Rn
10165 SMLAWy{cond} Rd,Rm,Rs,Rn
10166 Error if any register is R15. */
10167
10168 static void
10169 do_smla (void)
10170 {
10171 inst.instruction |= inst.operands[0].reg << 16;
10172 inst.instruction |= inst.operands[1].reg;
10173 inst.instruction |= inst.operands[2].reg << 8;
10174 inst.instruction |= inst.operands[3].reg << 12;
10175 }
10176
10177 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10178 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10179 Error if any register is R15.
10180 Warning if Rdlo == Rdhi. */
10181
10182 static void
10183 do_smlal (void)
10184 {
10185 inst.instruction |= inst.operands[0].reg << 12;
10186 inst.instruction |= inst.operands[1].reg << 16;
10187 inst.instruction |= inst.operands[2].reg;
10188 inst.instruction |= inst.operands[3].reg << 8;
10189
10190 if (inst.operands[0].reg == inst.operands[1].reg)
10191 as_tsktsk (_("rdhi and rdlo must be different"));
10192 }
10193
10194 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10195 SMULxy{cond} Rd,Rm,Rs
10196 Error if any register is R15. */
10197
10198 static void
10199 do_smul (void)
10200 {
10201 inst.instruction |= inst.operands[0].reg << 16;
10202 inst.instruction |= inst.operands[1].reg;
10203 inst.instruction |= inst.operands[2].reg << 8;
10204 }
10205
10206 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10207 the same for both ARM and Thumb-2. */
10208
10209 static void
10210 do_srs (void)
10211 {
10212 int reg;
10213
10214 if (inst.operands[0].present)
10215 {
10216 reg = inst.operands[0].reg;
10217 constraint (reg != REG_SP, _("SRS base register must be r13"));
10218 }
10219 else
10220 reg = REG_SP;
10221
10222 inst.instruction |= reg << 16;
10223 inst.instruction |= inst.operands[1].imm;
10224 if (inst.operands[0].writeback || inst.operands[1].writeback)
10225 inst.instruction |= WRITE_BACK;
10226 }
10227
10228 /* ARM V6 strex (argument parse). */
10229
10230 static void
10231 do_strex (void)
10232 {
10233 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10234 || inst.operands[2].postind || inst.operands[2].writeback
10235 || inst.operands[2].immisreg || inst.operands[2].shifted
10236 || inst.operands[2].negative
10237 /* See comment in do_ldrex(). */
10238 || (inst.operands[2].reg == REG_PC),
10239 BAD_ADDR_MODE);
10240
10241 constraint (inst.operands[0].reg == inst.operands[1].reg
10242 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10243
10244 constraint (inst.relocs[0].exp.X_op != O_constant
10245 || inst.relocs[0].exp.X_add_number != 0,
10246 _("offset must be zero in ARM encoding"));
10247
10248 inst.instruction |= inst.operands[0].reg << 12;
10249 inst.instruction |= inst.operands[1].reg;
10250 inst.instruction |= inst.operands[2].reg << 16;
10251 inst.relocs[0].type = BFD_RELOC_UNUSED;
10252 }
10253
10254 static void
10255 do_t_strexbh (void)
10256 {
10257 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10258 || inst.operands[2].postind || inst.operands[2].writeback
10259 || inst.operands[2].immisreg || inst.operands[2].shifted
10260 || inst.operands[2].negative,
10261 BAD_ADDR_MODE);
10262
10263 constraint (inst.operands[0].reg == inst.operands[1].reg
10264 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10265
10266 do_rm_rd_rn ();
10267 }
10268
10269 static void
10270 do_strexd (void)
10271 {
10272 constraint (inst.operands[1].reg % 2 != 0,
10273 _("even register required"));
10274 constraint (inst.operands[2].present
10275 && inst.operands[2].reg != inst.operands[1].reg + 1,
10276 _("can only store two consecutive registers"));
10277 /* If op 2 were present and equal to PC, this function wouldn't
10278 have been called in the first place. */
10279 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10280
10281 constraint (inst.operands[0].reg == inst.operands[1].reg
10282 || inst.operands[0].reg == inst.operands[1].reg + 1
10283 || inst.operands[0].reg == inst.operands[3].reg,
10284 BAD_OVERLAP);
10285
10286 inst.instruction |= inst.operands[0].reg << 12;
10287 inst.instruction |= inst.operands[1].reg;
10288 inst.instruction |= inst.operands[3].reg << 16;
10289 }
10290
10291 /* ARM V8 STRL. */
10292 static void
10293 do_stlex (void)
10294 {
10295 constraint (inst.operands[0].reg == inst.operands[1].reg
10296 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10297
10298 do_rd_rm_rn ();
10299 }
10300
10301 static void
10302 do_t_stlex (void)
10303 {
10304 constraint (inst.operands[0].reg == inst.operands[1].reg
10305 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10306
10307 do_rm_rd_rn ();
10308 }
10309
10310 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10311 extends it to 32-bits, and adds the result to a value in another
10312 register. You can specify a rotation by 0, 8, 16, or 24 bits
10313 before extracting the 16-bit value.
10314 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10315 Condition defaults to COND_ALWAYS.
10316 Error if any register uses R15. */
10317
10318 static void
10319 do_sxtah (void)
10320 {
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg << 16;
10323 inst.instruction |= inst.operands[2].reg;
10324 inst.instruction |= inst.operands[3].imm << 10;
10325 }
10326
10327 /* ARM V6 SXTH.
10328
10329 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10330 Condition defaults to COND_ALWAYS.
10331 Error if any register uses R15. */
10332
10333 static void
10334 do_sxth (void)
10335 {
10336 inst.instruction |= inst.operands[0].reg << 12;
10337 inst.instruction |= inst.operands[1].reg;
10338 inst.instruction |= inst.operands[2].imm << 10;
10339 }
10340 \f
10341 /* VFP instructions. In a logical order: SP variant first, monad
10342 before dyad, arithmetic then move then load/store. */
10343
10344 static void
10345 do_vfp_sp_monadic (void)
10346 {
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10348 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10349 _(BAD_FPU));
10350
10351 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10352 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10353 }
10354
10355 static void
10356 do_vfp_sp_dyadic (void)
10357 {
10358 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10359 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10360 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10361 }
10362
10363 static void
10364 do_vfp_sp_compare_z (void)
10365 {
10366 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10367 }
10368
10369 static void
10370 do_vfp_dp_sp_cvt (void)
10371 {
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10374 }
10375
10376 static void
10377 do_vfp_sp_dp_cvt (void)
10378 {
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10381 }
10382
10383 static void
10384 do_vfp_reg_from_sp (void)
10385 {
10386 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10387 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10388 _(BAD_FPU));
10389
10390 inst.instruction |= inst.operands[0].reg << 12;
10391 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10392 }
10393
10394 static void
10395 do_vfp_reg2_from_sp2 (void)
10396 {
10397 constraint (inst.operands[2].imm != 2,
10398 _("only two consecutive VFP SP registers allowed here"));
10399 inst.instruction |= inst.operands[0].reg << 12;
10400 inst.instruction |= inst.operands[1].reg << 16;
10401 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10402 }
10403
10404 static void
10405 do_vfp_sp_from_reg (void)
10406 {
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10409 _(BAD_FPU));
10410
10411 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10412 inst.instruction |= inst.operands[1].reg << 12;
10413 }
10414
10415 static void
10416 do_vfp_sp2_from_reg2 (void)
10417 {
10418 constraint (inst.operands[0].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
10420 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10421 inst.instruction |= inst.operands[1].reg << 12;
10422 inst.instruction |= inst.operands[2].reg << 16;
10423 }
10424
10425 static void
10426 do_vfp_sp_ldst (void)
10427 {
10428 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10429 encode_arm_cp_address (1, FALSE, TRUE, 0);
10430 }
10431
10432 static void
10433 do_vfp_dp_ldst (void)
10434 {
10435 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10436 encode_arm_cp_address (1, FALSE, TRUE, 0);
10437 }
10438
10439
10440 static void
10441 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10442 {
10443 if (inst.operands[0].writeback)
10444 inst.instruction |= WRITE_BACK;
10445 else
10446 constraint (ldstm_type != VFP_LDSTMIA,
10447 _("this addressing mode requires base-register writeback"));
10448 inst.instruction |= inst.operands[0].reg << 16;
10449 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10450 inst.instruction |= inst.operands[1].imm;
10451 }
10452
10453 static void
10454 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10455 {
10456 int count;
10457
10458 if (inst.operands[0].writeback)
10459 inst.instruction |= WRITE_BACK;
10460 else
10461 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10462 _("this addressing mode requires base-register writeback"));
10463
10464 inst.instruction |= inst.operands[0].reg << 16;
10465 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10466
10467 count = inst.operands[1].imm << 1;
10468 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10469 count += 1;
10470
10471 inst.instruction |= count;
10472 }
10473
10474 static void
10475 do_vfp_sp_ldstmia (void)
10476 {
10477 vfp_sp_ldstm (VFP_LDSTMIA);
10478 }
10479
10480 static void
10481 do_vfp_sp_ldstmdb (void)
10482 {
10483 vfp_sp_ldstm (VFP_LDSTMDB);
10484 }
10485
10486 static void
10487 do_vfp_dp_ldstmia (void)
10488 {
10489 vfp_dp_ldstm (VFP_LDSTMIA);
10490 }
10491
10492 static void
10493 do_vfp_dp_ldstmdb (void)
10494 {
10495 vfp_dp_ldstm (VFP_LDSTMDB);
10496 }
10497
10498 static void
10499 do_vfp_xp_ldstmia (void)
10500 {
10501 vfp_dp_ldstm (VFP_LDSTMIAX);
10502 }
10503
10504 static void
10505 do_vfp_xp_ldstmdb (void)
10506 {
10507 vfp_dp_ldstm (VFP_LDSTMDBX);
10508 }
10509
10510 static void
10511 do_vfp_dp_rd_rm (void)
10512 {
10513 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10514 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10515 _(BAD_FPU));
10516
10517 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10518 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10519 }
10520
10521 static void
10522 do_vfp_dp_rn_rd (void)
10523 {
10524 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10525 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10526 }
10527
10528 static void
10529 do_vfp_dp_rd_rn (void)
10530 {
10531 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10532 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10533 }
10534
10535 static void
10536 do_vfp_dp_rd_rn_rm (void)
10537 {
10538 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10539 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10540 _(BAD_FPU));
10541
10542 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10543 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10544 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10545 }
10546
10547 static void
10548 do_vfp_dp_rd (void)
10549 {
10550 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10551 }
10552
10553 static void
10554 do_vfp_dp_rm_rd_rn (void)
10555 {
10556 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10557 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10558 _(BAD_FPU));
10559
10560 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10561 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10562 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10563 }
10564
10565 /* VFPv3 instructions. */
10566 static void
10567 do_vfp_sp_const (void)
10568 {
10569 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10570 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10571 inst.instruction |= (inst.operands[1].imm & 0x0f);
10572 }
10573
10574 static void
10575 do_vfp_dp_const (void)
10576 {
10577 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10578 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10579 inst.instruction |= (inst.operands[1].imm & 0x0f);
10580 }
10581
10582 static void
10583 vfp_conv (int srcsize)
10584 {
10585 int immbits = srcsize - inst.operands[1].imm;
10586
10587 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10588 {
10589 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10590 i.e. immbits must be in range 0 - 16. */
10591 inst.error = _("immediate value out of range, expected range [0, 16]");
10592 return;
10593 }
10594 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10595 {
10596 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10597 i.e. immbits must be in range 0 - 31. */
10598 inst.error = _("immediate value out of range, expected range [1, 32]");
10599 return;
10600 }
10601
10602 inst.instruction |= (immbits & 1) << 5;
10603 inst.instruction |= (immbits >> 1);
10604 }
10605
10606 static void
10607 do_vfp_sp_conv_16 (void)
10608 {
10609 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10610 vfp_conv (16);
10611 }
10612
10613 static void
10614 do_vfp_dp_conv_16 (void)
10615 {
10616 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10617 vfp_conv (16);
10618 }
10619
10620 static void
10621 do_vfp_sp_conv_32 (void)
10622 {
10623 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10624 vfp_conv (32);
10625 }
10626
10627 static void
10628 do_vfp_dp_conv_32 (void)
10629 {
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10631 vfp_conv (32);
10632 }
10633 \f
10634 /* FPA instructions. Also in a logical order. */
10635
10636 static void
10637 do_fpa_cmp (void)
10638 {
10639 inst.instruction |= inst.operands[0].reg << 16;
10640 inst.instruction |= inst.operands[1].reg;
10641 }
10642
10643 static void
10644 do_fpa_ldmstm (void)
10645 {
10646 inst.instruction |= inst.operands[0].reg << 12;
10647 switch (inst.operands[1].imm)
10648 {
10649 case 1: inst.instruction |= CP_T_X; break;
10650 case 2: inst.instruction |= CP_T_Y; break;
10651 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10652 case 4: break;
10653 default: abort ();
10654 }
10655
10656 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10657 {
10658 /* The instruction specified "ea" or "fd", so we can only accept
10659 [Rn]{!}. The instruction does not really support stacking or
10660 unstacking, so we have to emulate these by setting appropriate
10661 bits and offsets. */
10662 constraint (inst.relocs[0].exp.X_op != O_constant
10663 || inst.relocs[0].exp.X_add_number != 0,
10664 _("this instruction does not support indexing"));
10665
10666 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10667 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10668
10669 if (!(inst.instruction & INDEX_UP))
10670 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10671
10672 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10673 {
10674 inst.operands[2].preind = 0;
10675 inst.operands[2].postind = 1;
10676 }
10677 }
10678
10679 encode_arm_cp_address (2, TRUE, TRUE, 0);
10680 }
10681 \f
10682 /* iWMMXt instructions: strictly in alphabetical order. */
10683
10684 static void
10685 do_iwmmxt_tandorc (void)
10686 {
10687 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10688 }
10689
10690 static void
10691 do_iwmmxt_textrc (void)
10692 {
10693 inst.instruction |= inst.operands[0].reg << 12;
10694 inst.instruction |= inst.operands[1].imm;
10695 }
10696
10697 static void
10698 do_iwmmxt_textrm (void)
10699 {
10700 inst.instruction |= inst.operands[0].reg << 12;
10701 inst.instruction |= inst.operands[1].reg << 16;
10702 inst.instruction |= inst.operands[2].imm;
10703 }
10704
10705 static void
10706 do_iwmmxt_tinsr (void)
10707 {
10708 inst.instruction |= inst.operands[0].reg << 16;
10709 inst.instruction |= inst.operands[1].reg << 12;
10710 inst.instruction |= inst.operands[2].imm;
10711 }
10712
10713 static void
10714 do_iwmmxt_tmia (void)
10715 {
10716 inst.instruction |= inst.operands[0].reg << 5;
10717 inst.instruction |= inst.operands[1].reg;
10718 inst.instruction |= inst.operands[2].reg << 12;
10719 }
10720
10721 static void
10722 do_iwmmxt_waligni (void)
10723 {
10724 inst.instruction |= inst.operands[0].reg << 12;
10725 inst.instruction |= inst.operands[1].reg << 16;
10726 inst.instruction |= inst.operands[2].reg;
10727 inst.instruction |= inst.operands[3].imm << 20;
10728 }
10729
10730 static void
10731 do_iwmmxt_wmerge (void)
10732 {
10733 inst.instruction |= inst.operands[0].reg << 12;
10734 inst.instruction |= inst.operands[1].reg << 16;
10735 inst.instruction |= inst.operands[2].reg;
10736 inst.instruction |= inst.operands[3].imm << 21;
10737 }
10738
10739 static void
10740 do_iwmmxt_wmov (void)
10741 {
10742 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10743 inst.instruction |= inst.operands[0].reg << 12;
10744 inst.instruction |= inst.operands[1].reg << 16;
10745 inst.instruction |= inst.operands[1].reg;
10746 }
10747
10748 static void
10749 do_iwmmxt_wldstbh (void)
10750 {
10751 int reloc;
10752 inst.instruction |= inst.operands[0].reg << 12;
10753 if (thumb_mode)
10754 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10755 else
10756 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10757 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10758 }
10759
10760 static void
10761 do_iwmmxt_wldstw (void)
10762 {
10763 /* RIWR_RIWC clears .isreg for a control register. */
10764 if (!inst.operands[0].isreg)
10765 {
10766 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10767 inst.instruction |= 0xf0000000;
10768 }
10769
10770 inst.instruction |= inst.operands[0].reg << 12;
10771 encode_arm_cp_address (1, TRUE, TRUE, 0);
10772 }
10773
10774 static void
10775 do_iwmmxt_wldstd (void)
10776 {
10777 inst.instruction |= inst.operands[0].reg << 12;
10778 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10779 && inst.operands[1].immisreg)
10780 {
10781 inst.instruction &= ~0x1a000ff;
10782 inst.instruction |= (0xfU << 28);
10783 if (inst.operands[1].preind)
10784 inst.instruction |= PRE_INDEX;
10785 if (!inst.operands[1].negative)
10786 inst.instruction |= INDEX_UP;
10787 if (inst.operands[1].writeback)
10788 inst.instruction |= WRITE_BACK;
10789 inst.instruction |= inst.operands[1].reg << 16;
10790 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10791 inst.instruction |= inst.operands[1].imm;
10792 }
10793 else
10794 encode_arm_cp_address (1, TRUE, FALSE, 0);
10795 }
10796
10797 static void
10798 do_iwmmxt_wshufh (void)
10799 {
10800 inst.instruction |= inst.operands[0].reg << 12;
10801 inst.instruction |= inst.operands[1].reg << 16;
10802 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10803 inst.instruction |= (inst.operands[2].imm & 0x0f);
10804 }
10805
10806 static void
10807 do_iwmmxt_wzero (void)
10808 {
10809 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10810 inst.instruction |= inst.operands[0].reg;
10811 inst.instruction |= inst.operands[0].reg << 12;
10812 inst.instruction |= inst.operands[0].reg << 16;
10813 }
10814
10815 static void
10816 do_iwmmxt_wrwrwr_or_imm5 (void)
10817 {
10818 if (inst.operands[2].isreg)
10819 do_rd_rn_rm ();
10820 else {
10821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10822 _("immediate operand requires iWMMXt2"));
10823 do_rd_rn ();
10824 if (inst.operands[2].imm == 0)
10825 {
10826 switch ((inst.instruction >> 20) & 0xf)
10827 {
10828 case 4:
10829 case 5:
10830 case 6:
10831 case 7:
10832 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10833 inst.operands[2].imm = 16;
10834 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10835 break;
10836 case 8:
10837 case 9:
10838 case 10:
10839 case 11:
10840 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10841 inst.operands[2].imm = 32;
10842 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10843 break;
10844 case 12:
10845 case 13:
10846 case 14:
10847 case 15:
10848 {
10849 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10850 unsigned long wrn;
10851 wrn = (inst.instruction >> 16) & 0xf;
10852 inst.instruction &= 0xff0fff0f;
10853 inst.instruction |= wrn;
10854 /* Bail out here; the instruction is now assembled. */
10855 return;
10856 }
10857 }
10858 }
10859 /* Map 32 -> 0, etc. */
10860 inst.operands[2].imm &= 0x1f;
10861 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10862 }
10863 }
10864 \f
10865 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10866 operations first, then control, shift, and load/store. */
10867
10868 /* Insns like "foo X,Y,Z". */
10869
10870 static void
10871 do_mav_triple (void)
10872 {
10873 inst.instruction |= inst.operands[0].reg << 16;
10874 inst.instruction |= inst.operands[1].reg;
10875 inst.instruction |= inst.operands[2].reg << 12;
10876 }
10877
10878 /* Insns like "foo W,X,Y,Z".
10879 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10880
10881 static void
10882 do_mav_quad (void)
10883 {
10884 inst.instruction |= inst.operands[0].reg << 5;
10885 inst.instruction |= inst.operands[1].reg << 12;
10886 inst.instruction |= inst.operands[2].reg << 16;
10887 inst.instruction |= inst.operands[3].reg;
10888 }
10889
10890 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10891 static void
10892 do_mav_dspsc (void)
10893 {
10894 inst.instruction |= inst.operands[1].reg << 12;
10895 }
10896
10897 /* Maverick shift immediate instructions.
10898 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10899 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10900
10901 static void
10902 do_mav_shift (void)
10903 {
10904 int imm = inst.operands[2].imm;
10905
10906 inst.instruction |= inst.operands[0].reg << 12;
10907 inst.instruction |= inst.operands[1].reg << 16;
10908
10909 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10910 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10911 Bit 4 should be 0. */
10912 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10913
10914 inst.instruction |= imm;
10915 }
10916 \f
10917 /* XScale instructions. Also sorted arithmetic before move. */
10918
10919 /* Xscale multiply-accumulate (argument parse)
10920 MIAcc acc0,Rm,Rs
10921 MIAPHcc acc0,Rm,Rs
10922 MIAxycc acc0,Rm,Rs. */
10923
10924 static void
10925 do_xsc_mia (void)
10926 {
10927 inst.instruction |= inst.operands[1].reg;
10928 inst.instruction |= inst.operands[2].reg << 12;
10929 }
10930
10931 /* Xscale move-accumulator-register (argument parse)
10932
10933 MARcc acc0,RdLo,RdHi. */
10934
10935 static void
10936 do_xsc_mar (void)
10937 {
10938 inst.instruction |= inst.operands[1].reg << 12;
10939 inst.instruction |= inst.operands[2].reg << 16;
10940 }
10941
10942 /* Xscale move-register-accumulator (argument parse)
10943
10944 MRAcc RdLo,RdHi,acc0. */
10945
10946 static void
10947 do_xsc_mra (void)
10948 {
10949 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10950 inst.instruction |= inst.operands[0].reg << 12;
10951 inst.instruction |= inst.operands[1].reg << 16;
10952 }
10953 \f
10954 /* Encoding functions relevant only to Thumb. */
10955
10956 /* inst.operands[i] is a shifted-register operand; encode
10957 it into inst.instruction in the format used by Thumb32. */
10958
10959 static void
10960 encode_thumb32_shifted_operand (int i)
10961 {
10962 unsigned int value = inst.relocs[0].exp.X_add_number;
10963 unsigned int shift = inst.operands[i].shift_kind;
10964
10965 constraint (inst.operands[i].immisreg,
10966 _("shift by register not allowed in thumb mode"));
10967 inst.instruction |= inst.operands[i].reg;
10968 if (shift == SHIFT_RRX)
10969 inst.instruction |= SHIFT_ROR << 4;
10970 else
10971 {
10972 constraint (inst.relocs[0].exp.X_op != O_constant,
10973 _("expression too complex"));
10974
10975 constraint (value > 32
10976 || (value == 32 && (shift == SHIFT_LSL
10977 || shift == SHIFT_ROR)),
10978 _("shift expression is too large"));
10979
10980 if (value == 0)
10981 shift = SHIFT_LSL;
10982 else if (value == 32)
10983 value = 0;
10984
10985 inst.instruction |= shift << 4;
10986 inst.instruction |= (value & 0x1c) << 10;
10987 inst.instruction |= (value & 0x03) << 6;
10988 }
10989 }
10990
10991
10992 /* inst.operands[i] was set up by parse_address. Encode it into a
10993 Thumb32 format load or store instruction. Reject forms that cannot
10994 be used with such instructions. If is_t is true, reject forms that
10995 cannot be used with a T instruction; if is_d is true, reject forms
10996 that cannot be used with a D instruction. If it is a store insn,
10997 reject PC in Rn. */
10998
10999 static void
11000 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11001 {
11002 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11003
11004 constraint (!inst.operands[i].isreg,
11005 _("Instruction does not support =N addresses"));
11006
11007 inst.instruction |= inst.operands[i].reg << 16;
11008 if (inst.operands[i].immisreg)
11009 {
11010 constraint (is_pc, BAD_PC_ADDRESSING);
11011 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11012 constraint (inst.operands[i].negative,
11013 _("Thumb does not support negative register indexing"));
11014 constraint (inst.operands[i].postind,
11015 _("Thumb does not support register post-indexing"));
11016 constraint (inst.operands[i].writeback,
11017 _("Thumb does not support register indexing with writeback"));
11018 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11019 _("Thumb supports only LSL in shifted register indexing"));
11020
11021 inst.instruction |= inst.operands[i].imm;
11022 if (inst.operands[i].shifted)
11023 {
11024 constraint (inst.relocs[0].exp.X_op != O_constant,
11025 _("expression too complex"));
11026 constraint (inst.relocs[0].exp.X_add_number < 0
11027 || inst.relocs[0].exp.X_add_number > 3,
11028 _("shift out of range"));
11029 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11030 }
11031 inst.relocs[0].type = BFD_RELOC_UNUSED;
11032 }
11033 else if (inst.operands[i].preind)
11034 {
11035 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11036 constraint (is_t && inst.operands[i].writeback,
11037 _("cannot use writeback with this instruction"));
11038 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11039 BAD_PC_ADDRESSING);
11040
11041 if (is_d)
11042 {
11043 inst.instruction |= 0x01000000;
11044 if (inst.operands[i].writeback)
11045 inst.instruction |= 0x00200000;
11046 }
11047 else
11048 {
11049 inst.instruction |= 0x00000c00;
11050 if (inst.operands[i].writeback)
11051 inst.instruction |= 0x00000100;
11052 }
11053 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11054 }
11055 else if (inst.operands[i].postind)
11056 {
11057 gas_assert (inst.operands[i].writeback);
11058 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11059 constraint (is_t, _("cannot use post-indexing with this instruction"));
11060
11061 if (is_d)
11062 inst.instruction |= 0x00200000;
11063 else
11064 inst.instruction |= 0x00000900;
11065 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11066 }
11067 else /* unindexed - only for coprocessor */
11068 inst.error = _("instruction does not accept unindexed addressing");
11069 }
11070
11071 /* Table of Thumb instructions which exist in both 16- and 32-bit
11072 encodings (the latter only in post-V6T2 cores). The index is the
11073 value used in the insns table below. When there is more than one
11074 possible 16-bit encoding for the instruction, this table always
11075 holds variant (1).
11076 Also contains several pseudo-instructions used during relaxation. */
11077 #define T16_32_TAB \
11078 X(_adc, 4140, eb400000), \
11079 X(_adcs, 4140, eb500000), \
11080 X(_add, 1c00, eb000000), \
11081 X(_adds, 1c00, eb100000), \
11082 X(_addi, 0000, f1000000), \
11083 X(_addis, 0000, f1100000), \
11084 X(_add_pc,000f, f20f0000), \
11085 X(_add_sp,000d, f10d0000), \
11086 X(_adr, 000f, f20f0000), \
11087 X(_and, 4000, ea000000), \
11088 X(_ands, 4000, ea100000), \
11089 X(_asr, 1000, fa40f000), \
11090 X(_asrs, 1000, fa50f000), \
11091 X(_b, e000, f000b000), \
11092 X(_bcond, d000, f0008000), \
11093 X(_bf, 0000, f040e001), \
11094 X(_bfcsel,0000, f000e001), \
11095 X(_bfx, 0000, f060e001), \
11096 X(_bfl, 0000, f000c001), \
11097 X(_bflx, 0000, f070e001), \
11098 X(_bic, 4380, ea200000), \
11099 X(_bics, 4380, ea300000), \
11100 X(_cmn, 42c0, eb100f00), \
11101 X(_cmp, 2800, ebb00f00), \
11102 X(_cpsie, b660, f3af8400), \
11103 X(_cpsid, b670, f3af8600), \
11104 X(_cpy, 4600, ea4f0000), \
11105 X(_dec_sp,80dd, f1ad0d00), \
11106 X(_dls, 0000, f040e001), \
11107 X(_eor, 4040, ea800000), \
11108 X(_eors, 4040, ea900000), \
11109 X(_inc_sp,00dd, f10d0d00), \
11110 X(_ldmia, c800, e8900000), \
11111 X(_ldr, 6800, f8500000), \
11112 X(_ldrb, 7800, f8100000), \
11113 X(_ldrh, 8800, f8300000), \
11114 X(_ldrsb, 5600, f9100000), \
11115 X(_ldrsh, 5e00, f9300000), \
11116 X(_ldr_pc,4800, f85f0000), \
11117 X(_ldr_pc2,4800, f85f0000), \
11118 X(_ldr_sp,9800, f85d0000), \
11119 X(_le, 0000, f00fc001), \
11120 X(_lsl, 0000, fa00f000), \
11121 X(_lsls, 0000, fa10f000), \
11122 X(_lsr, 0800, fa20f000), \
11123 X(_lsrs, 0800, fa30f000), \
11124 X(_mov, 2000, ea4f0000), \
11125 X(_movs, 2000, ea5f0000), \
11126 X(_mul, 4340, fb00f000), \
11127 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11128 X(_mvn, 43c0, ea6f0000), \
11129 X(_mvns, 43c0, ea7f0000), \
11130 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11131 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11132 X(_orr, 4300, ea400000), \
11133 X(_orrs, 4300, ea500000), \
11134 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11135 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11136 X(_rev, ba00, fa90f080), \
11137 X(_rev16, ba40, fa90f090), \
11138 X(_revsh, bac0, fa90f0b0), \
11139 X(_ror, 41c0, fa60f000), \
11140 X(_rors, 41c0, fa70f000), \
11141 X(_sbc, 4180, eb600000), \
11142 X(_sbcs, 4180, eb700000), \
11143 X(_stmia, c000, e8800000), \
11144 X(_str, 6000, f8400000), \
11145 X(_strb, 7000, f8000000), \
11146 X(_strh, 8000, f8200000), \
11147 X(_str_sp,9000, f84d0000), \
11148 X(_sub, 1e00, eba00000), \
11149 X(_subs, 1e00, ebb00000), \
11150 X(_subi, 8000, f1a00000), \
11151 X(_subis, 8000, f1b00000), \
11152 X(_sxtb, b240, fa4ff080), \
11153 X(_sxth, b200, fa0ff080), \
11154 X(_tst, 4200, ea100f00), \
11155 X(_uxtb, b2c0, fa5ff080), \
11156 X(_uxth, b280, fa1ff080), \
11157 X(_nop, bf00, f3af8000), \
11158 X(_yield, bf10, f3af8001), \
11159 X(_wfe, bf20, f3af8002), \
11160 X(_wfi, bf30, f3af8003), \
11161 X(_wls, 0000, f040c001), \
11162 X(_sev, bf40, f3af8004), \
11163 X(_sevl, bf50, f3af8005), \
11164 X(_udf, de00, f7f0a000)
11165
11166 /* To catch errors in encoding functions, the codes are all offset by
11167 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11168 as 16-bit instructions. */
11169 #define X(a,b,c) T_MNEM##a
11170 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11171 #undef X
11172
11173 #define X(a,b,c) 0x##b
11174 static const unsigned short thumb_op16[] = { T16_32_TAB };
11175 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11176 #undef X
11177
11178 #define X(a,b,c) 0x##c
11179 static const unsigned int thumb_op32[] = { T16_32_TAB };
11180 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11181 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11182 #undef X
11183 #undef T16_32_TAB
11184
11185 /* Thumb instruction encoders, in alphabetical order. */
11186
11187 /* ADDW or SUBW. */
11188
11189 static void
11190 do_t_add_sub_w (void)
11191 {
11192 int Rd, Rn;
11193
11194 Rd = inst.operands[0].reg;
11195 Rn = inst.operands[1].reg;
11196
11197 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11198 is the SP-{plus,minus}-immediate form of the instruction. */
11199 if (Rn == REG_SP)
11200 constraint (Rd == REG_PC, BAD_PC);
11201 else
11202 reject_bad_reg (Rd);
11203
11204 inst.instruction |= (Rn << 16) | (Rd << 8);
11205 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11206 }
11207
11208 /* Parse an add or subtract instruction. We get here with inst.instruction
11209 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11210
11211 static void
11212 do_t_add_sub (void)
11213 {
11214 int Rd, Rs, Rn;
11215
11216 Rd = inst.operands[0].reg;
11217 Rs = (inst.operands[1].present
11218 ? inst.operands[1].reg /* Rd, Rs, foo */
11219 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11220
11221 if (Rd == REG_PC)
11222 set_pred_insn_type_last ();
11223
11224 if (unified_syntax)
11225 {
11226 bfd_boolean flags;
11227 bfd_boolean narrow;
11228 int opcode;
11229
11230 flags = (inst.instruction == T_MNEM_adds
11231 || inst.instruction == T_MNEM_subs);
11232 if (flags)
11233 narrow = !in_pred_block ();
11234 else
11235 narrow = in_pred_block ();
11236 if (!inst.operands[2].isreg)
11237 {
11238 int add;
11239
11240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11241 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11242
11243 add = (inst.instruction == T_MNEM_add
11244 || inst.instruction == T_MNEM_adds);
11245 opcode = 0;
11246 if (inst.size_req != 4)
11247 {
11248 /* Attempt to use a narrow opcode, with relaxation if
11249 appropriate. */
11250 if (Rd == REG_SP && Rs == REG_SP && !flags)
11251 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11252 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11253 opcode = T_MNEM_add_sp;
11254 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11255 opcode = T_MNEM_add_pc;
11256 else if (Rd <= 7 && Rs <= 7 && narrow)
11257 {
11258 if (flags)
11259 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11260 else
11261 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11262 }
11263 if (opcode)
11264 {
11265 inst.instruction = THUMB_OP16(opcode);
11266 inst.instruction |= (Rd << 4) | Rs;
11267 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11268 || (inst.relocs[0].type
11269 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11270 {
11271 if (inst.size_req == 2)
11272 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11273 else
11274 inst.relax = opcode;
11275 }
11276 }
11277 else
11278 constraint (inst.size_req == 2, BAD_HIREG);
11279 }
11280 if (inst.size_req == 4
11281 || (inst.size_req != 2 && !opcode))
11282 {
11283 constraint ((inst.relocs[0].type
11284 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11285 && (inst.relocs[0].type
11286 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11287 THUMB1_RELOC_ONLY);
11288 if (Rd == REG_PC)
11289 {
11290 constraint (add, BAD_PC);
11291 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11292 _("only SUBS PC, LR, #const allowed"));
11293 constraint (inst.relocs[0].exp.X_op != O_constant,
11294 _("expression too complex"));
11295 constraint (inst.relocs[0].exp.X_add_number < 0
11296 || inst.relocs[0].exp.X_add_number > 0xff,
11297 _("immediate value out of range"));
11298 inst.instruction = T2_SUBS_PC_LR
11299 | inst.relocs[0].exp.X_add_number;
11300 inst.relocs[0].type = BFD_RELOC_UNUSED;
11301 return;
11302 }
11303 else if (Rs == REG_PC)
11304 {
11305 /* Always use addw/subw. */
11306 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11307 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11308 }
11309 else
11310 {
11311 inst.instruction = THUMB_OP32 (inst.instruction);
11312 inst.instruction = (inst.instruction & 0xe1ffffff)
11313 | 0x10000000;
11314 if (flags)
11315 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11316 else
11317 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11318 }
11319 inst.instruction |= Rd << 8;
11320 inst.instruction |= Rs << 16;
11321 }
11322 }
11323 else
11324 {
11325 unsigned int value = inst.relocs[0].exp.X_add_number;
11326 unsigned int shift = inst.operands[2].shift_kind;
11327
11328 Rn = inst.operands[2].reg;
11329 /* See if we can do this with a 16-bit instruction. */
11330 if (!inst.operands[2].shifted && inst.size_req != 4)
11331 {
11332 if (Rd > 7 || Rs > 7 || Rn > 7)
11333 narrow = FALSE;
11334
11335 if (narrow)
11336 {
11337 inst.instruction = ((inst.instruction == T_MNEM_adds
11338 || inst.instruction == T_MNEM_add)
11339 ? T_OPCODE_ADD_R3
11340 : T_OPCODE_SUB_R3);
11341 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11342 return;
11343 }
11344
11345 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11346 {
11347 /* Thumb-1 cores (except v6-M) require at least one high
11348 register in a narrow non flag setting add. */
11349 if (Rd > 7 || Rn > 7
11350 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11351 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11352 {
11353 if (Rd == Rn)
11354 {
11355 Rn = Rs;
11356 Rs = Rd;
11357 }
11358 inst.instruction = T_OPCODE_ADD_HI;
11359 inst.instruction |= (Rd & 8) << 4;
11360 inst.instruction |= (Rd & 7);
11361 inst.instruction |= Rn << 3;
11362 return;
11363 }
11364 }
11365 }
11366
11367 constraint (Rd == REG_PC, BAD_PC);
11368 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11369 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11370 constraint (Rs == REG_PC, BAD_PC);
11371 reject_bad_reg (Rn);
11372
11373 /* If we get here, it can't be done in 16 bits. */
11374 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11375 _("shift must be constant"));
11376 inst.instruction = THUMB_OP32 (inst.instruction);
11377 inst.instruction |= Rd << 8;
11378 inst.instruction |= Rs << 16;
11379 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11380 _("shift value over 3 not allowed in thumb mode"));
11381 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11382 _("only LSL shift allowed in thumb mode"));
11383 encode_thumb32_shifted_operand (2);
11384 }
11385 }
11386 else
11387 {
11388 constraint (inst.instruction == T_MNEM_adds
11389 || inst.instruction == T_MNEM_subs,
11390 BAD_THUMB32);
11391
11392 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11393 {
11394 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11395 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11396 BAD_HIREG);
11397
11398 inst.instruction = (inst.instruction == T_MNEM_add
11399 ? 0x0000 : 0x8000);
11400 inst.instruction |= (Rd << 4) | Rs;
11401 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11402 return;
11403 }
11404
11405 Rn = inst.operands[2].reg;
11406 constraint (inst.operands[2].shifted, _("unshifted register required"));
11407
11408 /* We now have Rd, Rs, and Rn set to registers. */
11409 if (Rd > 7 || Rs > 7 || Rn > 7)
11410 {
11411 /* Can't do this for SUB. */
11412 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11413 inst.instruction = T_OPCODE_ADD_HI;
11414 inst.instruction |= (Rd & 8) << 4;
11415 inst.instruction |= (Rd & 7);
11416 if (Rs == Rd)
11417 inst.instruction |= Rn << 3;
11418 else if (Rn == Rd)
11419 inst.instruction |= Rs << 3;
11420 else
11421 constraint (1, _("dest must overlap one source register"));
11422 }
11423 else
11424 {
11425 inst.instruction = (inst.instruction == T_MNEM_add
11426 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11427 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11428 }
11429 }
11430 }
11431
11432 static void
11433 do_t_adr (void)
11434 {
11435 unsigned Rd;
11436
11437 Rd = inst.operands[0].reg;
11438 reject_bad_reg (Rd);
11439
11440 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11441 {
11442 /* Defer to section relaxation. */
11443 inst.relax = inst.instruction;
11444 inst.instruction = THUMB_OP16 (inst.instruction);
11445 inst.instruction |= Rd << 4;
11446 }
11447 else if (unified_syntax && inst.size_req != 2)
11448 {
11449 /* Generate a 32-bit opcode. */
11450 inst.instruction = THUMB_OP32 (inst.instruction);
11451 inst.instruction |= Rd << 8;
11452 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11453 inst.relocs[0].pc_rel = 1;
11454 }
11455 else
11456 {
11457 /* Generate a 16-bit opcode. */
11458 inst.instruction = THUMB_OP16 (inst.instruction);
11459 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11460 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11461 inst.relocs[0].pc_rel = 1;
11462 inst.instruction |= Rd << 4;
11463 }
11464
11465 if (inst.relocs[0].exp.X_op == O_symbol
11466 && inst.relocs[0].exp.X_add_symbol != NULL
11467 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11468 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11469 inst.relocs[0].exp.X_add_number += 1;
11470 }
11471
11472 /* Arithmetic instructions for which there is just one 16-bit
11473 instruction encoding, and it allows only two low registers.
11474 For maximal compatibility with ARM syntax, we allow three register
11475 operands even when Thumb-32 instructions are not available, as long
11476 as the first two are identical. For instance, both "sbc r0,r1" and
11477 "sbc r0,r0,r1" are allowed. */
11478 static void
11479 do_t_arit3 (void)
11480 {
11481 int Rd, Rs, Rn;
11482
11483 Rd = inst.operands[0].reg;
11484 Rs = (inst.operands[1].present
11485 ? inst.operands[1].reg /* Rd, Rs, foo */
11486 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11487 Rn = inst.operands[2].reg;
11488
11489 reject_bad_reg (Rd);
11490 reject_bad_reg (Rs);
11491 if (inst.operands[2].isreg)
11492 reject_bad_reg (Rn);
11493
11494 if (unified_syntax)
11495 {
11496 if (!inst.operands[2].isreg)
11497 {
11498 /* For an immediate, we always generate a 32-bit opcode;
11499 section relaxation will shrink it later if possible. */
11500 inst.instruction = THUMB_OP32 (inst.instruction);
11501 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11502 inst.instruction |= Rd << 8;
11503 inst.instruction |= Rs << 16;
11504 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11505 }
11506 else
11507 {
11508 bfd_boolean narrow;
11509
11510 /* See if we can do this with a 16-bit instruction. */
11511 if (THUMB_SETS_FLAGS (inst.instruction))
11512 narrow = !in_pred_block ();
11513 else
11514 narrow = in_pred_block ();
11515
11516 if (Rd > 7 || Rn > 7 || Rs > 7)
11517 narrow = FALSE;
11518 if (inst.operands[2].shifted)
11519 narrow = FALSE;
11520 if (inst.size_req == 4)
11521 narrow = FALSE;
11522
11523 if (narrow
11524 && Rd == Rs)
11525 {
11526 inst.instruction = THUMB_OP16 (inst.instruction);
11527 inst.instruction |= Rd;
11528 inst.instruction |= Rn << 3;
11529 return;
11530 }
11531
11532 /* If we get here, it can't be done in 16 bits. */
11533 constraint (inst.operands[2].shifted
11534 && inst.operands[2].immisreg,
11535 _("shift must be constant"));
11536 inst.instruction = THUMB_OP32 (inst.instruction);
11537 inst.instruction |= Rd << 8;
11538 inst.instruction |= Rs << 16;
11539 encode_thumb32_shifted_operand (2);
11540 }
11541 }
11542 else
11543 {
11544 /* On its face this is a lie - the instruction does set the
11545 flags. However, the only supported mnemonic in this mode
11546 says it doesn't. */
11547 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11548
11549 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11550 _("unshifted register required"));
11551 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11552 constraint (Rd != Rs,
11553 _("dest and source1 must be the same register"));
11554
11555 inst.instruction = THUMB_OP16 (inst.instruction);
11556 inst.instruction |= Rd;
11557 inst.instruction |= Rn << 3;
11558 }
11559 }
11560
11561 /* Similarly, but for instructions where the arithmetic operation is
11562 commutative, so we can allow either of them to be different from
11563 the destination operand in a 16-bit instruction. For instance, all
11564 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11565 accepted. */
11566 static void
11567 do_t_arit3c (void)
11568 {
11569 int Rd, Rs, Rn;
11570
11571 Rd = inst.operands[0].reg;
11572 Rs = (inst.operands[1].present
11573 ? inst.operands[1].reg /* Rd, Rs, foo */
11574 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11575 Rn = inst.operands[2].reg;
11576
11577 reject_bad_reg (Rd);
11578 reject_bad_reg (Rs);
11579 if (inst.operands[2].isreg)
11580 reject_bad_reg (Rn);
11581
11582 if (unified_syntax)
11583 {
11584 if (!inst.operands[2].isreg)
11585 {
11586 /* For an immediate, we always generate a 32-bit opcode;
11587 section relaxation will shrink it later if possible. */
11588 inst.instruction = THUMB_OP32 (inst.instruction);
11589 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11590 inst.instruction |= Rd << 8;
11591 inst.instruction |= Rs << 16;
11592 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11593 }
11594 else
11595 {
11596 bfd_boolean narrow;
11597
11598 /* See if we can do this with a 16-bit instruction. */
11599 if (THUMB_SETS_FLAGS (inst.instruction))
11600 narrow = !in_pred_block ();
11601 else
11602 narrow = in_pred_block ();
11603
11604 if (Rd > 7 || Rn > 7 || Rs > 7)
11605 narrow = FALSE;
11606 if (inst.operands[2].shifted)
11607 narrow = FALSE;
11608 if (inst.size_req == 4)
11609 narrow = FALSE;
11610
11611 if (narrow)
11612 {
11613 if (Rd == Rs)
11614 {
11615 inst.instruction = THUMB_OP16 (inst.instruction);
11616 inst.instruction |= Rd;
11617 inst.instruction |= Rn << 3;
11618 return;
11619 }
11620 if (Rd == Rn)
11621 {
11622 inst.instruction = THUMB_OP16 (inst.instruction);
11623 inst.instruction |= Rd;
11624 inst.instruction |= Rs << 3;
11625 return;
11626 }
11627 }
11628
11629 /* If we get here, it can't be done in 16 bits. */
11630 constraint (inst.operands[2].shifted
11631 && inst.operands[2].immisreg,
11632 _("shift must be constant"));
11633 inst.instruction = THUMB_OP32 (inst.instruction);
11634 inst.instruction |= Rd << 8;
11635 inst.instruction |= Rs << 16;
11636 encode_thumb32_shifted_operand (2);
11637 }
11638 }
11639 else
11640 {
11641 /* On its face this is a lie - the instruction does set the
11642 flags. However, the only supported mnemonic in this mode
11643 says it doesn't. */
11644 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11645
11646 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11647 _("unshifted register required"));
11648 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11649
11650 inst.instruction = THUMB_OP16 (inst.instruction);
11651 inst.instruction |= Rd;
11652
11653 if (Rd == Rs)
11654 inst.instruction |= Rn << 3;
11655 else if (Rd == Rn)
11656 inst.instruction |= Rs << 3;
11657 else
11658 constraint (1, _("dest must overlap one source register"));
11659 }
11660 }
11661
11662 static void
11663 do_t_bfc (void)
11664 {
11665 unsigned Rd;
11666 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11667 constraint (msb > 32, _("bit-field extends past end of register"));
11668 /* The instruction encoding stores the LSB and MSB,
11669 not the LSB and width. */
11670 Rd = inst.operands[0].reg;
11671 reject_bad_reg (Rd);
11672 inst.instruction |= Rd << 8;
11673 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11674 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11675 inst.instruction |= msb - 1;
11676 }
11677
11678 static void
11679 do_t_bfi (void)
11680 {
11681 int Rd, Rn;
11682 unsigned int msb;
11683
11684 Rd = inst.operands[0].reg;
11685 reject_bad_reg (Rd);
11686
11687 /* #0 in second position is alternative syntax for bfc, which is
11688 the same instruction but with REG_PC in the Rm field. */
11689 if (!inst.operands[1].isreg)
11690 Rn = REG_PC;
11691 else
11692 {
11693 Rn = inst.operands[1].reg;
11694 reject_bad_reg (Rn);
11695 }
11696
11697 msb = inst.operands[2].imm + inst.operands[3].imm;
11698 constraint (msb > 32, _("bit-field extends past end of register"));
11699 /* The instruction encoding stores the LSB and MSB,
11700 not the LSB and width. */
11701 inst.instruction |= Rd << 8;
11702 inst.instruction |= Rn << 16;
11703 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11704 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11705 inst.instruction |= msb - 1;
11706 }
11707
11708 static void
11709 do_t_bfx (void)
11710 {
11711 unsigned Rd, Rn;
11712
11713 Rd = inst.operands[0].reg;
11714 Rn = inst.operands[1].reg;
11715
11716 reject_bad_reg (Rd);
11717 reject_bad_reg (Rn);
11718
11719 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11720 _("bit-field extends past end of register"));
11721 inst.instruction |= Rd << 8;
11722 inst.instruction |= Rn << 16;
11723 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11724 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11725 inst.instruction |= inst.operands[3].imm - 1;
11726 }
11727
11728 /* ARM V5 Thumb BLX (argument parse)
11729 BLX <target_addr> which is BLX(1)
11730 BLX <Rm> which is BLX(2)
11731 Unfortunately, there are two different opcodes for this mnemonic.
11732 So, the insns[].value is not used, and the code here zaps values
11733 into inst.instruction.
11734
11735 ??? How to take advantage of the additional two bits of displacement
11736 available in Thumb32 mode? Need new relocation? */
11737
11738 static void
11739 do_t_blx (void)
11740 {
11741 set_pred_insn_type_last ();
11742
11743 if (inst.operands[0].isreg)
11744 {
11745 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11746 /* We have a register, so this is BLX(2). */
11747 inst.instruction |= inst.operands[0].reg << 3;
11748 }
11749 else
11750 {
11751 /* No register. This must be BLX(1). */
11752 inst.instruction = 0xf000e800;
11753 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11754 }
11755 }
11756
11757 static void
11758 do_t_branch (void)
11759 {
11760 int opcode;
11761 int cond;
11762 bfd_reloc_code_real_type reloc;
11763
11764 cond = inst.cond;
11765 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11766
11767 if (in_pred_block ())
11768 {
11769 /* Conditional branches inside IT blocks are encoded as unconditional
11770 branches. */
11771 cond = COND_ALWAYS;
11772 }
11773 else
11774 cond = inst.cond;
11775
11776 if (cond != COND_ALWAYS)
11777 opcode = T_MNEM_bcond;
11778 else
11779 opcode = inst.instruction;
11780
11781 if (unified_syntax
11782 && (inst.size_req == 4
11783 || (inst.size_req != 2
11784 && (inst.operands[0].hasreloc
11785 || inst.relocs[0].exp.X_op == O_constant))))
11786 {
11787 inst.instruction = THUMB_OP32(opcode);
11788 if (cond == COND_ALWAYS)
11789 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11790 else
11791 {
11792 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11793 _("selected architecture does not support "
11794 "wide conditional branch instruction"));
11795
11796 gas_assert (cond != 0xF);
11797 inst.instruction |= cond << 22;
11798 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11799 }
11800 }
11801 else
11802 {
11803 inst.instruction = THUMB_OP16(opcode);
11804 if (cond == COND_ALWAYS)
11805 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11806 else
11807 {
11808 inst.instruction |= cond << 8;
11809 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11810 }
11811 /* Allow section relaxation. */
11812 if (unified_syntax && inst.size_req != 2)
11813 inst.relax = opcode;
11814 }
11815 inst.relocs[0].type = reloc;
11816 inst.relocs[0].pc_rel = 1;
11817 }
11818
11819 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11820 between the two is the maximum immediate allowed - which is passed in
11821 RANGE. */
11822 static void
11823 do_t_bkpt_hlt1 (int range)
11824 {
11825 constraint (inst.cond != COND_ALWAYS,
11826 _("instruction is always unconditional"));
11827 if (inst.operands[0].present)
11828 {
11829 constraint (inst.operands[0].imm > range,
11830 _("immediate value out of range"));
11831 inst.instruction |= inst.operands[0].imm;
11832 }
11833
11834 set_pred_insn_type (NEUTRAL_IT_INSN);
11835 }
11836
11837 static void
11838 do_t_hlt (void)
11839 {
11840 do_t_bkpt_hlt1 (63);
11841 }
11842
11843 static void
11844 do_t_bkpt (void)
11845 {
11846 do_t_bkpt_hlt1 (255);
11847 }
11848
11849 static void
11850 do_t_branch23 (void)
11851 {
11852 set_pred_insn_type_last ();
11853 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11854
11855 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11856 this file. We used to simply ignore the PLT reloc type here --
11857 the branch encoding is now needed to deal with TLSCALL relocs.
11858 So if we see a PLT reloc now, put it back to how it used to be to
11859 keep the preexisting behaviour. */
11860 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11861 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11862
11863 #if defined(OBJ_COFF)
11864 /* If the destination of the branch is a defined symbol which does not have
11865 the THUMB_FUNC attribute, then we must be calling a function which has
11866 the (interfacearm) attribute. We look for the Thumb entry point to that
11867 function and change the branch to refer to that function instead. */
11868 if ( inst.relocs[0].exp.X_op == O_symbol
11869 && inst.relocs[0].exp.X_add_symbol != NULL
11870 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11871 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11872 inst.relocs[0].exp.X_add_symbol
11873 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11874 #endif
11875 }
11876
11877 static void
11878 do_t_bx (void)
11879 {
11880 set_pred_insn_type_last ();
11881 inst.instruction |= inst.operands[0].reg << 3;
11882 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11883 should cause the alignment to be checked once it is known. This is
11884 because BX PC only works if the instruction is word aligned. */
11885 }
11886
11887 static void
11888 do_t_bxj (void)
11889 {
11890 int Rm;
11891
11892 set_pred_insn_type_last ();
11893 Rm = inst.operands[0].reg;
11894 reject_bad_reg (Rm);
11895 inst.instruction |= Rm << 16;
11896 }
11897
11898 static void
11899 do_t_clz (void)
11900 {
11901 unsigned Rd;
11902 unsigned Rm;
11903
11904 Rd = inst.operands[0].reg;
11905 Rm = inst.operands[1].reg;
11906
11907 reject_bad_reg (Rd);
11908 reject_bad_reg (Rm);
11909
11910 inst.instruction |= Rd << 8;
11911 inst.instruction |= Rm << 16;
11912 inst.instruction |= Rm;
11913 }
11914
11915 static void
11916 do_t_csdb (void)
11917 {
11918 set_pred_insn_type (OUTSIDE_PRED_INSN);
11919 }
11920
11921 static void
11922 do_t_cps (void)
11923 {
11924 set_pred_insn_type (OUTSIDE_PRED_INSN);
11925 inst.instruction |= inst.operands[0].imm;
11926 }
11927
11928 static void
11929 do_t_cpsi (void)
11930 {
11931 set_pred_insn_type (OUTSIDE_PRED_INSN);
11932 if (unified_syntax
11933 && (inst.operands[1].present || inst.size_req == 4)
11934 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11935 {
11936 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11937 inst.instruction = 0xf3af8000;
11938 inst.instruction |= imod << 9;
11939 inst.instruction |= inst.operands[0].imm << 5;
11940 if (inst.operands[1].present)
11941 inst.instruction |= 0x100 | inst.operands[1].imm;
11942 }
11943 else
11944 {
11945 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11946 && (inst.operands[0].imm & 4),
11947 _("selected processor does not support 'A' form "
11948 "of this instruction"));
11949 constraint (inst.operands[1].present || inst.size_req == 4,
11950 _("Thumb does not support the 2-argument "
11951 "form of this instruction"));
11952 inst.instruction |= inst.operands[0].imm;
11953 }
11954 }
11955
11956 /* THUMB CPY instruction (argument parse). */
11957
11958 static void
11959 do_t_cpy (void)
11960 {
11961 if (inst.size_req == 4)
11962 {
11963 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11964 inst.instruction |= inst.operands[0].reg << 8;
11965 inst.instruction |= inst.operands[1].reg;
11966 }
11967 else
11968 {
11969 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11970 inst.instruction |= (inst.operands[0].reg & 0x7);
11971 inst.instruction |= inst.operands[1].reg << 3;
11972 }
11973 }
11974
11975 static void
11976 do_t_cbz (void)
11977 {
11978 set_pred_insn_type (OUTSIDE_PRED_INSN);
11979 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11980 inst.instruction |= inst.operands[0].reg;
11981 inst.relocs[0].pc_rel = 1;
11982 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11983 }
11984
11985 static void
11986 do_t_dbg (void)
11987 {
11988 inst.instruction |= inst.operands[0].imm;
11989 }
11990
11991 static void
11992 do_t_div (void)
11993 {
11994 unsigned Rd, Rn, Rm;
11995
11996 Rd = inst.operands[0].reg;
11997 Rn = (inst.operands[1].present
11998 ? inst.operands[1].reg : Rd);
11999 Rm = inst.operands[2].reg;
12000
12001 reject_bad_reg (Rd);
12002 reject_bad_reg (Rn);
12003 reject_bad_reg (Rm);
12004
12005 inst.instruction |= Rd << 8;
12006 inst.instruction |= Rn << 16;
12007 inst.instruction |= Rm;
12008 }
12009
12010 static void
12011 do_t_hint (void)
12012 {
12013 if (unified_syntax && inst.size_req == 4)
12014 inst.instruction = THUMB_OP32 (inst.instruction);
12015 else
12016 inst.instruction = THUMB_OP16 (inst.instruction);
12017 }
12018
12019 static void
12020 do_t_it (void)
12021 {
12022 unsigned int cond = inst.operands[0].imm;
12023
12024 set_pred_insn_type (IT_INSN);
12025 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12026 now_pred.cc = cond;
12027 now_pred.warn_deprecated = FALSE;
12028 now_pred.type = SCALAR_PRED;
12029
12030 /* If the condition is a negative condition, invert the mask. */
12031 if ((cond & 0x1) == 0x0)
12032 {
12033 unsigned int mask = inst.instruction & 0x000f;
12034
12035 if ((mask & 0x7) == 0)
12036 {
12037 /* No conversion needed. */
12038 now_pred.block_length = 1;
12039 }
12040 else if ((mask & 0x3) == 0)
12041 {
12042 mask ^= 0x8;
12043 now_pred.block_length = 2;
12044 }
12045 else if ((mask & 0x1) == 0)
12046 {
12047 mask ^= 0xC;
12048 now_pred.block_length = 3;
12049 }
12050 else
12051 {
12052 mask ^= 0xE;
12053 now_pred.block_length = 4;
12054 }
12055
12056 inst.instruction &= 0xfff0;
12057 inst.instruction |= mask;
12058 }
12059
12060 inst.instruction |= cond << 4;
12061 }
12062
12063 /* Helper function used for both push/pop and ldm/stm. */
12064 static void
12065 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12066 bfd_boolean writeback)
12067 {
12068 bfd_boolean load, store;
12069
12070 gas_assert (base != -1 || !do_io);
12071 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12072 store = do_io && !load;
12073
12074 if (mask & (1 << 13))
12075 inst.error = _("SP not allowed in register list");
12076
12077 if (do_io && (mask & (1 << base)) != 0
12078 && writeback)
12079 inst.error = _("having the base register in the register list when "
12080 "using write back is UNPREDICTABLE");
12081
12082 if (load)
12083 {
12084 if (mask & (1 << 15))
12085 {
12086 if (mask & (1 << 14))
12087 inst.error = _("LR and PC should not both be in register list");
12088 else
12089 set_pred_insn_type_last ();
12090 }
12091 }
12092 else if (store)
12093 {
12094 if (mask & (1 << 15))
12095 inst.error = _("PC not allowed in register list");
12096 }
12097
12098 if (do_io && ((mask & (mask - 1)) == 0))
12099 {
12100 /* Single register transfers implemented as str/ldr. */
12101 if (writeback)
12102 {
12103 if (inst.instruction & (1 << 23))
12104 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12105 else
12106 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12107 }
12108 else
12109 {
12110 if (inst.instruction & (1 << 23))
12111 inst.instruction = 0x00800000; /* ia -> [base] */
12112 else
12113 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12114 }
12115
12116 inst.instruction |= 0xf8400000;
12117 if (load)
12118 inst.instruction |= 0x00100000;
12119
12120 mask = ffs (mask) - 1;
12121 mask <<= 12;
12122 }
12123 else if (writeback)
12124 inst.instruction |= WRITE_BACK;
12125
12126 inst.instruction |= mask;
12127 if (do_io)
12128 inst.instruction |= base << 16;
12129 }
12130
12131 static void
12132 do_t_ldmstm (void)
12133 {
12134 /* This really doesn't seem worth it. */
12135 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12136 _("expression too complex"));
12137 constraint (inst.operands[1].writeback,
12138 _("Thumb load/store multiple does not support {reglist}^"));
12139
12140 if (unified_syntax)
12141 {
12142 bfd_boolean narrow;
12143 unsigned mask;
12144
12145 narrow = FALSE;
12146 /* See if we can use a 16-bit instruction. */
12147 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12148 && inst.size_req != 4
12149 && !(inst.operands[1].imm & ~0xff))
12150 {
12151 mask = 1 << inst.operands[0].reg;
12152
12153 if (inst.operands[0].reg <= 7)
12154 {
12155 if (inst.instruction == T_MNEM_stmia
12156 ? inst.operands[0].writeback
12157 : (inst.operands[0].writeback
12158 == !(inst.operands[1].imm & mask)))
12159 {
12160 if (inst.instruction == T_MNEM_stmia
12161 && (inst.operands[1].imm & mask)
12162 && (inst.operands[1].imm & (mask - 1)))
12163 as_warn (_("value stored for r%d is UNKNOWN"),
12164 inst.operands[0].reg);
12165
12166 inst.instruction = THUMB_OP16 (inst.instruction);
12167 inst.instruction |= inst.operands[0].reg << 8;
12168 inst.instruction |= inst.operands[1].imm;
12169 narrow = TRUE;
12170 }
12171 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12172 {
12173 /* This means 1 register in reg list one of 3 situations:
12174 1. Instruction is stmia, but without writeback.
12175 2. lmdia without writeback, but with Rn not in
12176 reglist.
12177 3. ldmia with writeback, but with Rn in reglist.
12178 Case 3 is UNPREDICTABLE behaviour, so we handle
12179 case 1 and 2 which can be converted into a 16-bit
12180 str or ldr. The SP cases are handled below. */
12181 unsigned long opcode;
12182 /* First, record an error for Case 3. */
12183 if (inst.operands[1].imm & mask
12184 && inst.operands[0].writeback)
12185 inst.error =
12186 _("having the base register in the register list when "
12187 "using write back is UNPREDICTABLE");
12188
12189 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12190 : T_MNEM_ldr);
12191 inst.instruction = THUMB_OP16 (opcode);
12192 inst.instruction |= inst.operands[0].reg << 3;
12193 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12194 narrow = TRUE;
12195 }
12196 }
12197 else if (inst.operands[0] .reg == REG_SP)
12198 {
12199 if (inst.operands[0].writeback)
12200 {
12201 inst.instruction =
12202 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12203 ? T_MNEM_push : T_MNEM_pop);
12204 inst.instruction |= inst.operands[1].imm;
12205 narrow = TRUE;
12206 }
12207 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12208 {
12209 inst.instruction =
12210 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12211 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12212 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12213 narrow = TRUE;
12214 }
12215 }
12216 }
12217
12218 if (!narrow)
12219 {
12220 if (inst.instruction < 0xffff)
12221 inst.instruction = THUMB_OP32 (inst.instruction);
12222
12223 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12224 inst.operands[1].imm,
12225 inst.operands[0].writeback);
12226 }
12227 }
12228 else
12229 {
12230 constraint (inst.operands[0].reg > 7
12231 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12232 constraint (inst.instruction != T_MNEM_ldmia
12233 && inst.instruction != T_MNEM_stmia,
12234 _("Thumb-2 instruction only valid in unified syntax"));
12235 if (inst.instruction == T_MNEM_stmia)
12236 {
12237 if (!inst.operands[0].writeback)
12238 as_warn (_("this instruction will write back the base register"));
12239 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12240 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12241 as_warn (_("value stored for r%d is UNKNOWN"),
12242 inst.operands[0].reg);
12243 }
12244 else
12245 {
12246 if (!inst.operands[0].writeback
12247 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12248 as_warn (_("this instruction will write back the base register"));
12249 else if (inst.operands[0].writeback
12250 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12251 as_warn (_("this instruction will not write back the base register"));
12252 }
12253
12254 inst.instruction = THUMB_OP16 (inst.instruction);
12255 inst.instruction |= inst.operands[0].reg << 8;
12256 inst.instruction |= inst.operands[1].imm;
12257 }
12258 }
12259
12260 static void
12261 do_t_ldrex (void)
12262 {
12263 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12264 || inst.operands[1].postind || inst.operands[1].writeback
12265 || inst.operands[1].immisreg || inst.operands[1].shifted
12266 || inst.operands[1].negative,
12267 BAD_ADDR_MODE);
12268
12269 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12270
12271 inst.instruction |= inst.operands[0].reg << 12;
12272 inst.instruction |= inst.operands[1].reg << 16;
12273 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12274 }
12275
12276 static void
12277 do_t_ldrexd (void)
12278 {
12279 if (!inst.operands[1].present)
12280 {
12281 constraint (inst.operands[0].reg == REG_LR,
12282 _("r14 not allowed as first register "
12283 "when second register is omitted"));
12284 inst.operands[1].reg = inst.operands[0].reg + 1;
12285 }
12286 constraint (inst.operands[0].reg == inst.operands[1].reg,
12287 BAD_OVERLAP);
12288
12289 inst.instruction |= inst.operands[0].reg << 12;
12290 inst.instruction |= inst.operands[1].reg << 8;
12291 inst.instruction |= inst.operands[2].reg << 16;
12292 }
12293
12294 static void
12295 do_t_ldst (void)
12296 {
12297 unsigned long opcode;
12298 int Rn;
12299
12300 if (inst.operands[0].isreg
12301 && !inst.operands[0].preind
12302 && inst.operands[0].reg == REG_PC)
12303 set_pred_insn_type_last ();
12304
12305 opcode = inst.instruction;
12306 if (unified_syntax)
12307 {
12308 if (!inst.operands[1].isreg)
12309 {
12310 if (opcode <= 0xffff)
12311 inst.instruction = THUMB_OP32 (opcode);
12312 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12313 return;
12314 }
12315 if (inst.operands[1].isreg
12316 && !inst.operands[1].writeback
12317 && !inst.operands[1].shifted && !inst.operands[1].postind
12318 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12319 && opcode <= 0xffff
12320 && inst.size_req != 4)
12321 {
12322 /* Insn may have a 16-bit form. */
12323 Rn = inst.operands[1].reg;
12324 if (inst.operands[1].immisreg)
12325 {
12326 inst.instruction = THUMB_OP16 (opcode);
12327 /* [Rn, Rik] */
12328 if (Rn <= 7 && inst.operands[1].imm <= 7)
12329 goto op16;
12330 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12331 reject_bad_reg (inst.operands[1].imm);
12332 }
12333 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12334 && opcode != T_MNEM_ldrsb)
12335 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12336 || (Rn == REG_SP && opcode == T_MNEM_str))
12337 {
12338 /* [Rn, #const] */
12339 if (Rn > 7)
12340 {
12341 if (Rn == REG_PC)
12342 {
12343 if (inst.relocs[0].pc_rel)
12344 opcode = T_MNEM_ldr_pc2;
12345 else
12346 opcode = T_MNEM_ldr_pc;
12347 }
12348 else
12349 {
12350 if (opcode == T_MNEM_ldr)
12351 opcode = T_MNEM_ldr_sp;
12352 else
12353 opcode = T_MNEM_str_sp;
12354 }
12355 inst.instruction = inst.operands[0].reg << 8;
12356 }
12357 else
12358 {
12359 inst.instruction = inst.operands[0].reg;
12360 inst.instruction |= inst.operands[1].reg << 3;
12361 }
12362 inst.instruction |= THUMB_OP16 (opcode);
12363 if (inst.size_req == 2)
12364 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12365 else
12366 inst.relax = opcode;
12367 return;
12368 }
12369 }
12370 /* Definitely a 32-bit variant. */
12371
12372 /* Warning for Erratum 752419. */
12373 if (opcode == T_MNEM_ldr
12374 && inst.operands[0].reg == REG_SP
12375 && inst.operands[1].writeback == 1
12376 && !inst.operands[1].immisreg)
12377 {
12378 if (no_cpu_selected ()
12379 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12380 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12381 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12382 as_warn (_("This instruction may be unpredictable "
12383 "if executed on M-profile cores "
12384 "with interrupts enabled."));
12385 }
12386
12387 /* Do some validations regarding addressing modes. */
12388 if (inst.operands[1].immisreg)
12389 reject_bad_reg (inst.operands[1].imm);
12390
12391 constraint (inst.operands[1].writeback == 1
12392 && inst.operands[0].reg == inst.operands[1].reg,
12393 BAD_OVERLAP);
12394
12395 inst.instruction = THUMB_OP32 (opcode);
12396 inst.instruction |= inst.operands[0].reg << 12;
12397 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12398 check_ldr_r15_aligned ();
12399 return;
12400 }
12401
12402 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12403
12404 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12405 {
12406 /* Only [Rn,Rm] is acceptable. */
12407 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12408 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12409 || inst.operands[1].postind || inst.operands[1].shifted
12410 || inst.operands[1].negative,
12411 _("Thumb does not support this addressing mode"));
12412 inst.instruction = THUMB_OP16 (inst.instruction);
12413 goto op16;
12414 }
12415
12416 inst.instruction = THUMB_OP16 (inst.instruction);
12417 if (!inst.operands[1].isreg)
12418 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12419 return;
12420
12421 constraint (!inst.operands[1].preind
12422 || inst.operands[1].shifted
12423 || inst.operands[1].writeback,
12424 _("Thumb does not support this addressing mode"));
12425 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12426 {
12427 constraint (inst.instruction & 0x0600,
12428 _("byte or halfword not valid for base register"));
12429 constraint (inst.operands[1].reg == REG_PC
12430 && !(inst.instruction & THUMB_LOAD_BIT),
12431 _("r15 based store not allowed"));
12432 constraint (inst.operands[1].immisreg,
12433 _("invalid base register for register offset"));
12434
12435 if (inst.operands[1].reg == REG_PC)
12436 inst.instruction = T_OPCODE_LDR_PC;
12437 else if (inst.instruction & THUMB_LOAD_BIT)
12438 inst.instruction = T_OPCODE_LDR_SP;
12439 else
12440 inst.instruction = T_OPCODE_STR_SP;
12441
12442 inst.instruction |= inst.operands[0].reg << 8;
12443 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12444 return;
12445 }
12446
12447 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12448 if (!inst.operands[1].immisreg)
12449 {
12450 /* Immediate offset. */
12451 inst.instruction |= inst.operands[0].reg;
12452 inst.instruction |= inst.operands[1].reg << 3;
12453 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12454 return;
12455 }
12456
12457 /* Register offset. */
12458 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12459 constraint (inst.operands[1].negative,
12460 _("Thumb does not support this addressing mode"));
12461
12462 op16:
12463 switch (inst.instruction)
12464 {
12465 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12466 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12467 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12468 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12469 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12470 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12471 case 0x5600 /* ldrsb */:
12472 case 0x5e00 /* ldrsh */: break;
12473 default: abort ();
12474 }
12475
12476 inst.instruction |= inst.operands[0].reg;
12477 inst.instruction |= inst.operands[1].reg << 3;
12478 inst.instruction |= inst.operands[1].imm << 6;
12479 }
12480
12481 static void
12482 do_t_ldstd (void)
12483 {
12484 if (!inst.operands[1].present)
12485 {
12486 inst.operands[1].reg = inst.operands[0].reg + 1;
12487 constraint (inst.operands[0].reg == REG_LR,
12488 _("r14 not allowed here"));
12489 constraint (inst.operands[0].reg == REG_R12,
12490 _("r12 not allowed here"));
12491 }
12492
12493 if (inst.operands[2].writeback
12494 && (inst.operands[0].reg == inst.operands[2].reg
12495 || inst.operands[1].reg == inst.operands[2].reg))
12496 as_warn (_("base register written back, and overlaps "
12497 "one of transfer registers"));
12498
12499 inst.instruction |= inst.operands[0].reg << 12;
12500 inst.instruction |= inst.operands[1].reg << 8;
12501 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12502 }
12503
12504 static void
12505 do_t_ldstt (void)
12506 {
12507 inst.instruction |= inst.operands[0].reg << 12;
12508 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12509 }
12510
12511 static void
12512 do_t_mla (void)
12513 {
12514 unsigned Rd, Rn, Rm, Ra;
12515
12516 Rd = inst.operands[0].reg;
12517 Rn = inst.operands[1].reg;
12518 Rm = inst.operands[2].reg;
12519 Ra = inst.operands[3].reg;
12520
12521 reject_bad_reg (Rd);
12522 reject_bad_reg (Rn);
12523 reject_bad_reg (Rm);
12524 reject_bad_reg (Ra);
12525
12526 inst.instruction |= Rd << 8;
12527 inst.instruction |= Rn << 16;
12528 inst.instruction |= Rm;
12529 inst.instruction |= Ra << 12;
12530 }
12531
12532 static void
12533 do_t_mlal (void)
12534 {
12535 unsigned RdLo, RdHi, Rn, Rm;
12536
12537 RdLo = inst.operands[0].reg;
12538 RdHi = inst.operands[1].reg;
12539 Rn = inst.operands[2].reg;
12540 Rm = inst.operands[3].reg;
12541
12542 reject_bad_reg (RdLo);
12543 reject_bad_reg (RdHi);
12544 reject_bad_reg (Rn);
12545 reject_bad_reg (Rm);
12546
12547 inst.instruction |= RdLo << 12;
12548 inst.instruction |= RdHi << 8;
12549 inst.instruction |= Rn << 16;
12550 inst.instruction |= Rm;
12551 }
12552
12553 static void
12554 do_t_mov_cmp (void)
12555 {
12556 unsigned Rn, Rm;
12557
12558 Rn = inst.operands[0].reg;
12559 Rm = inst.operands[1].reg;
12560
12561 if (Rn == REG_PC)
12562 set_pred_insn_type_last ();
12563
12564 if (unified_syntax)
12565 {
12566 int r0off = (inst.instruction == T_MNEM_mov
12567 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12568 unsigned long opcode;
12569 bfd_boolean narrow;
12570 bfd_boolean low_regs;
12571
12572 low_regs = (Rn <= 7 && Rm <= 7);
12573 opcode = inst.instruction;
12574 if (in_pred_block ())
12575 narrow = opcode != T_MNEM_movs;
12576 else
12577 narrow = opcode != T_MNEM_movs || low_regs;
12578 if (inst.size_req == 4
12579 || inst.operands[1].shifted)
12580 narrow = FALSE;
12581
12582 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12583 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12584 && !inst.operands[1].shifted
12585 && Rn == REG_PC
12586 && Rm == REG_LR)
12587 {
12588 inst.instruction = T2_SUBS_PC_LR;
12589 return;
12590 }
12591
12592 if (opcode == T_MNEM_cmp)
12593 {
12594 constraint (Rn == REG_PC, BAD_PC);
12595 if (narrow)
12596 {
12597 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12598 but valid. */
12599 warn_deprecated_sp (Rm);
12600 /* R15 was documented as a valid choice for Rm in ARMv6,
12601 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12602 tools reject R15, so we do too. */
12603 constraint (Rm == REG_PC, BAD_PC);
12604 }
12605 else
12606 reject_bad_reg (Rm);
12607 }
12608 else if (opcode == T_MNEM_mov
12609 || opcode == T_MNEM_movs)
12610 {
12611 if (inst.operands[1].isreg)
12612 {
12613 if (opcode == T_MNEM_movs)
12614 {
12615 reject_bad_reg (Rn);
12616 reject_bad_reg (Rm);
12617 }
12618 else if (narrow)
12619 {
12620 /* This is mov.n. */
12621 if ((Rn == REG_SP || Rn == REG_PC)
12622 && (Rm == REG_SP || Rm == REG_PC))
12623 {
12624 as_tsktsk (_("Use of r%u as a source register is "
12625 "deprecated when r%u is the destination "
12626 "register."), Rm, Rn);
12627 }
12628 }
12629 else
12630 {
12631 /* This is mov.w. */
12632 constraint (Rn == REG_PC, BAD_PC);
12633 constraint (Rm == REG_PC, BAD_PC);
12634 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12635 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12636 }
12637 }
12638 else
12639 reject_bad_reg (Rn);
12640 }
12641
12642 if (!inst.operands[1].isreg)
12643 {
12644 /* Immediate operand. */
12645 if (!in_pred_block () && opcode == T_MNEM_mov)
12646 narrow = 0;
12647 if (low_regs && narrow)
12648 {
12649 inst.instruction = THUMB_OP16 (opcode);
12650 inst.instruction |= Rn << 8;
12651 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12652 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12653 {
12654 if (inst.size_req == 2)
12655 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12656 else
12657 inst.relax = opcode;
12658 }
12659 }
12660 else
12661 {
12662 constraint ((inst.relocs[0].type
12663 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12664 && (inst.relocs[0].type
12665 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12666 THUMB1_RELOC_ONLY);
12667
12668 inst.instruction = THUMB_OP32 (inst.instruction);
12669 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12670 inst.instruction |= Rn << r0off;
12671 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12672 }
12673 }
12674 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12675 && (inst.instruction == T_MNEM_mov
12676 || inst.instruction == T_MNEM_movs))
12677 {
12678 /* Register shifts are encoded as separate shift instructions. */
12679 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12680
12681 if (in_pred_block ())
12682 narrow = !flags;
12683 else
12684 narrow = flags;
12685
12686 if (inst.size_req == 4)
12687 narrow = FALSE;
12688
12689 if (!low_regs || inst.operands[1].imm > 7)
12690 narrow = FALSE;
12691
12692 if (Rn != Rm)
12693 narrow = FALSE;
12694
12695 switch (inst.operands[1].shift_kind)
12696 {
12697 case SHIFT_LSL:
12698 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12699 break;
12700 case SHIFT_ASR:
12701 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12702 break;
12703 case SHIFT_LSR:
12704 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12705 break;
12706 case SHIFT_ROR:
12707 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12708 break;
12709 default:
12710 abort ();
12711 }
12712
12713 inst.instruction = opcode;
12714 if (narrow)
12715 {
12716 inst.instruction |= Rn;
12717 inst.instruction |= inst.operands[1].imm << 3;
12718 }
12719 else
12720 {
12721 if (flags)
12722 inst.instruction |= CONDS_BIT;
12723
12724 inst.instruction |= Rn << 8;
12725 inst.instruction |= Rm << 16;
12726 inst.instruction |= inst.operands[1].imm;
12727 }
12728 }
12729 else if (!narrow)
12730 {
12731 /* Some mov with immediate shift have narrow variants.
12732 Register shifts are handled above. */
12733 if (low_regs && inst.operands[1].shifted
12734 && (inst.instruction == T_MNEM_mov
12735 || inst.instruction == T_MNEM_movs))
12736 {
12737 if (in_pred_block ())
12738 narrow = (inst.instruction == T_MNEM_mov);
12739 else
12740 narrow = (inst.instruction == T_MNEM_movs);
12741 }
12742
12743 if (narrow)
12744 {
12745 switch (inst.operands[1].shift_kind)
12746 {
12747 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12748 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12749 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12750 default: narrow = FALSE; break;
12751 }
12752 }
12753
12754 if (narrow)
12755 {
12756 inst.instruction |= Rn;
12757 inst.instruction |= Rm << 3;
12758 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12759 }
12760 else
12761 {
12762 inst.instruction = THUMB_OP32 (inst.instruction);
12763 inst.instruction |= Rn << r0off;
12764 encode_thumb32_shifted_operand (1);
12765 }
12766 }
12767 else
12768 switch (inst.instruction)
12769 {
12770 case T_MNEM_mov:
12771 /* In v4t or v5t a move of two lowregs produces unpredictable
12772 results. Don't allow this. */
12773 if (low_regs)
12774 {
12775 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12776 "MOV Rd, Rs with two low registers is not "
12777 "permitted on this architecture");
12778 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12779 arm_ext_v6);
12780 }
12781
12782 inst.instruction = T_OPCODE_MOV_HR;
12783 inst.instruction |= (Rn & 0x8) << 4;
12784 inst.instruction |= (Rn & 0x7);
12785 inst.instruction |= Rm << 3;
12786 break;
12787
12788 case T_MNEM_movs:
12789 /* We know we have low registers at this point.
12790 Generate LSLS Rd, Rs, #0. */
12791 inst.instruction = T_OPCODE_LSL_I;
12792 inst.instruction |= Rn;
12793 inst.instruction |= Rm << 3;
12794 break;
12795
12796 case T_MNEM_cmp:
12797 if (low_regs)
12798 {
12799 inst.instruction = T_OPCODE_CMP_LR;
12800 inst.instruction |= Rn;
12801 inst.instruction |= Rm << 3;
12802 }
12803 else
12804 {
12805 inst.instruction = T_OPCODE_CMP_HR;
12806 inst.instruction |= (Rn & 0x8) << 4;
12807 inst.instruction |= (Rn & 0x7);
12808 inst.instruction |= Rm << 3;
12809 }
12810 break;
12811 }
12812 return;
12813 }
12814
12815 inst.instruction = THUMB_OP16 (inst.instruction);
12816
12817 /* PR 10443: Do not silently ignore shifted operands. */
12818 constraint (inst.operands[1].shifted,
12819 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12820
12821 if (inst.operands[1].isreg)
12822 {
12823 if (Rn < 8 && Rm < 8)
12824 {
12825 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12826 since a MOV instruction produces unpredictable results. */
12827 if (inst.instruction == T_OPCODE_MOV_I8)
12828 inst.instruction = T_OPCODE_ADD_I3;
12829 else
12830 inst.instruction = T_OPCODE_CMP_LR;
12831
12832 inst.instruction |= Rn;
12833 inst.instruction |= Rm << 3;
12834 }
12835 else
12836 {
12837 if (inst.instruction == T_OPCODE_MOV_I8)
12838 inst.instruction = T_OPCODE_MOV_HR;
12839 else
12840 inst.instruction = T_OPCODE_CMP_HR;
12841 do_t_cpy ();
12842 }
12843 }
12844 else
12845 {
12846 constraint (Rn > 7,
12847 _("only lo regs allowed with immediate"));
12848 inst.instruction |= Rn << 8;
12849 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12850 }
12851 }
12852
12853 static void
12854 do_t_mov16 (void)
12855 {
12856 unsigned Rd;
12857 bfd_vma imm;
12858 bfd_boolean top;
12859
12860 top = (inst.instruction & 0x00800000) != 0;
12861 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12862 {
12863 constraint (top, _(":lower16: not allowed in this instruction"));
12864 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12865 }
12866 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12867 {
12868 constraint (!top, _(":upper16: not allowed in this instruction"));
12869 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12870 }
12871
12872 Rd = inst.operands[0].reg;
12873 reject_bad_reg (Rd);
12874
12875 inst.instruction |= Rd << 8;
12876 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12877 {
12878 imm = inst.relocs[0].exp.X_add_number;
12879 inst.instruction |= (imm & 0xf000) << 4;
12880 inst.instruction |= (imm & 0x0800) << 15;
12881 inst.instruction |= (imm & 0x0700) << 4;
12882 inst.instruction |= (imm & 0x00ff);
12883 }
12884 }
12885
12886 static void
12887 do_t_mvn_tst (void)
12888 {
12889 unsigned Rn, Rm;
12890
12891 Rn = inst.operands[0].reg;
12892 Rm = inst.operands[1].reg;
12893
12894 if (inst.instruction == T_MNEM_cmp
12895 || inst.instruction == T_MNEM_cmn)
12896 constraint (Rn == REG_PC, BAD_PC);
12897 else
12898 reject_bad_reg (Rn);
12899 reject_bad_reg (Rm);
12900
12901 if (unified_syntax)
12902 {
12903 int r0off = (inst.instruction == T_MNEM_mvn
12904 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12905 bfd_boolean narrow;
12906
12907 if (inst.size_req == 4
12908 || inst.instruction > 0xffff
12909 || inst.operands[1].shifted
12910 || Rn > 7 || Rm > 7)
12911 narrow = FALSE;
12912 else if (inst.instruction == T_MNEM_cmn
12913 || inst.instruction == T_MNEM_tst)
12914 narrow = TRUE;
12915 else if (THUMB_SETS_FLAGS (inst.instruction))
12916 narrow = !in_pred_block ();
12917 else
12918 narrow = in_pred_block ();
12919
12920 if (!inst.operands[1].isreg)
12921 {
12922 /* For an immediate, we always generate a 32-bit opcode;
12923 section relaxation will shrink it later if possible. */
12924 if (inst.instruction < 0xffff)
12925 inst.instruction = THUMB_OP32 (inst.instruction);
12926 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12927 inst.instruction |= Rn << r0off;
12928 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12929 }
12930 else
12931 {
12932 /* See if we can do this with a 16-bit instruction. */
12933 if (narrow)
12934 {
12935 inst.instruction = THUMB_OP16 (inst.instruction);
12936 inst.instruction |= Rn;
12937 inst.instruction |= Rm << 3;
12938 }
12939 else
12940 {
12941 constraint (inst.operands[1].shifted
12942 && inst.operands[1].immisreg,
12943 _("shift must be constant"));
12944 if (inst.instruction < 0xffff)
12945 inst.instruction = THUMB_OP32 (inst.instruction);
12946 inst.instruction |= Rn << r0off;
12947 encode_thumb32_shifted_operand (1);
12948 }
12949 }
12950 }
12951 else
12952 {
12953 constraint (inst.instruction > 0xffff
12954 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12955 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12956 _("unshifted register required"));
12957 constraint (Rn > 7 || Rm > 7,
12958 BAD_HIREG);
12959
12960 inst.instruction = THUMB_OP16 (inst.instruction);
12961 inst.instruction |= Rn;
12962 inst.instruction |= Rm << 3;
12963 }
12964 }
12965
12966 static void
12967 do_t_mrs (void)
12968 {
12969 unsigned Rd;
12970
12971 if (do_vfp_nsyn_mrs () == SUCCESS)
12972 return;
12973
12974 Rd = inst.operands[0].reg;
12975 reject_bad_reg (Rd);
12976 inst.instruction |= Rd << 8;
12977
12978 if (inst.operands[1].isreg)
12979 {
12980 unsigned br = inst.operands[1].reg;
12981 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12982 as_bad (_("bad register for mrs"));
12983
12984 inst.instruction |= br & (0xf << 16);
12985 inst.instruction |= (br & 0x300) >> 4;
12986 inst.instruction |= (br & SPSR_BIT) >> 2;
12987 }
12988 else
12989 {
12990 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12991
12992 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12993 {
12994 /* PR gas/12698: The constraint is only applied for m_profile.
12995 If the user has specified -march=all, we want to ignore it as
12996 we are building for any CPU type, including non-m variants. */
12997 bfd_boolean m_profile =
12998 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12999 constraint ((flags != 0) && m_profile, _("selected processor does "
13000 "not support requested special purpose register"));
13001 }
13002 else
13003 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13004 devices). */
13005 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13006 _("'APSR', 'CPSR' or 'SPSR' expected"));
13007
13008 inst.instruction |= (flags & SPSR_BIT) >> 2;
13009 inst.instruction |= inst.operands[1].imm & 0xff;
13010 inst.instruction |= 0xf0000;
13011 }
13012 }
13013
13014 static void
13015 do_t_msr (void)
13016 {
13017 int flags;
13018 unsigned Rn;
13019
13020 if (do_vfp_nsyn_msr () == SUCCESS)
13021 return;
13022
13023 constraint (!inst.operands[1].isreg,
13024 _("Thumb encoding does not support an immediate here"));
13025
13026 if (inst.operands[0].isreg)
13027 flags = (int)(inst.operands[0].reg);
13028 else
13029 flags = inst.operands[0].imm;
13030
13031 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13032 {
13033 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13034
13035 /* PR gas/12698: The constraint is only applied for m_profile.
13036 If the user has specified -march=all, we want to ignore it as
13037 we are building for any CPU type, including non-m variants. */
13038 bfd_boolean m_profile =
13039 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13040 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13041 && (bits & ~(PSR_s | PSR_f)) != 0)
13042 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13043 && bits != PSR_f)) && m_profile,
13044 _("selected processor does not support requested special "
13045 "purpose register"));
13046 }
13047 else
13048 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13049 "requested special purpose register"));
13050
13051 Rn = inst.operands[1].reg;
13052 reject_bad_reg (Rn);
13053
13054 inst.instruction |= (flags & SPSR_BIT) >> 2;
13055 inst.instruction |= (flags & 0xf0000) >> 8;
13056 inst.instruction |= (flags & 0x300) >> 4;
13057 inst.instruction |= (flags & 0xff);
13058 inst.instruction |= Rn << 16;
13059 }
13060
13061 static void
13062 do_t_mul (void)
13063 {
13064 bfd_boolean narrow;
13065 unsigned Rd, Rn, Rm;
13066
13067 if (!inst.operands[2].present)
13068 inst.operands[2].reg = inst.operands[0].reg;
13069
13070 Rd = inst.operands[0].reg;
13071 Rn = inst.operands[1].reg;
13072 Rm = inst.operands[2].reg;
13073
13074 if (unified_syntax)
13075 {
13076 if (inst.size_req == 4
13077 || (Rd != Rn
13078 && Rd != Rm)
13079 || Rn > 7
13080 || Rm > 7)
13081 narrow = FALSE;
13082 else if (inst.instruction == T_MNEM_muls)
13083 narrow = !in_pred_block ();
13084 else
13085 narrow = in_pred_block ();
13086 }
13087 else
13088 {
13089 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13090 constraint (Rn > 7 || Rm > 7,
13091 BAD_HIREG);
13092 narrow = TRUE;
13093 }
13094
13095 if (narrow)
13096 {
13097 /* 16-bit MULS/Conditional MUL. */
13098 inst.instruction = THUMB_OP16 (inst.instruction);
13099 inst.instruction |= Rd;
13100
13101 if (Rd == Rn)
13102 inst.instruction |= Rm << 3;
13103 else if (Rd == Rm)
13104 inst.instruction |= Rn << 3;
13105 else
13106 constraint (1, _("dest must overlap one source register"));
13107 }
13108 else
13109 {
13110 constraint (inst.instruction != T_MNEM_mul,
13111 _("Thumb-2 MUL must not set flags"));
13112 /* 32-bit MUL. */
13113 inst.instruction = THUMB_OP32 (inst.instruction);
13114 inst.instruction |= Rd << 8;
13115 inst.instruction |= Rn << 16;
13116 inst.instruction |= Rm << 0;
13117
13118 reject_bad_reg (Rd);
13119 reject_bad_reg (Rn);
13120 reject_bad_reg (Rm);
13121 }
13122 }
13123
13124 static void
13125 do_t_mull (void)
13126 {
13127 unsigned RdLo, RdHi, Rn, Rm;
13128
13129 RdLo = inst.operands[0].reg;
13130 RdHi = inst.operands[1].reg;
13131 Rn = inst.operands[2].reg;
13132 Rm = inst.operands[3].reg;
13133
13134 reject_bad_reg (RdLo);
13135 reject_bad_reg (RdHi);
13136 reject_bad_reg (Rn);
13137 reject_bad_reg (Rm);
13138
13139 inst.instruction |= RdLo << 12;
13140 inst.instruction |= RdHi << 8;
13141 inst.instruction |= Rn << 16;
13142 inst.instruction |= Rm;
13143
13144 if (RdLo == RdHi)
13145 as_tsktsk (_("rdhi and rdlo must be different"));
13146 }
13147
13148 static void
13149 do_t_nop (void)
13150 {
13151 set_pred_insn_type (NEUTRAL_IT_INSN);
13152
13153 if (unified_syntax)
13154 {
13155 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13156 {
13157 inst.instruction = THUMB_OP32 (inst.instruction);
13158 inst.instruction |= inst.operands[0].imm;
13159 }
13160 else
13161 {
13162 /* PR9722: Check for Thumb2 availability before
13163 generating a thumb2 nop instruction. */
13164 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13165 {
13166 inst.instruction = THUMB_OP16 (inst.instruction);
13167 inst.instruction |= inst.operands[0].imm << 4;
13168 }
13169 else
13170 inst.instruction = 0x46c0;
13171 }
13172 }
13173 else
13174 {
13175 constraint (inst.operands[0].present,
13176 _("Thumb does not support NOP with hints"));
13177 inst.instruction = 0x46c0;
13178 }
13179 }
13180
13181 static void
13182 do_t_neg (void)
13183 {
13184 if (unified_syntax)
13185 {
13186 bfd_boolean narrow;
13187
13188 if (THUMB_SETS_FLAGS (inst.instruction))
13189 narrow = !in_pred_block ();
13190 else
13191 narrow = in_pred_block ();
13192 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13193 narrow = FALSE;
13194 if (inst.size_req == 4)
13195 narrow = FALSE;
13196
13197 if (!narrow)
13198 {
13199 inst.instruction = THUMB_OP32 (inst.instruction);
13200 inst.instruction |= inst.operands[0].reg << 8;
13201 inst.instruction |= inst.operands[1].reg << 16;
13202 }
13203 else
13204 {
13205 inst.instruction = THUMB_OP16 (inst.instruction);
13206 inst.instruction |= inst.operands[0].reg;
13207 inst.instruction |= inst.operands[1].reg << 3;
13208 }
13209 }
13210 else
13211 {
13212 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13213 BAD_HIREG);
13214 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13215
13216 inst.instruction = THUMB_OP16 (inst.instruction);
13217 inst.instruction |= inst.operands[0].reg;
13218 inst.instruction |= inst.operands[1].reg << 3;
13219 }
13220 }
13221
13222 static void
13223 do_t_orn (void)
13224 {
13225 unsigned Rd, Rn;
13226
13227 Rd = inst.operands[0].reg;
13228 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13229
13230 reject_bad_reg (Rd);
13231 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13232 reject_bad_reg (Rn);
13233
13234 inst.instruction |= Rd << 8;
13235 inst.instruction |= Rn << 16;
13236
13237 if (!inst.operands[2].isreg)
13238 {
13239 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13240 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13241 }
13242 else
13243 {
13244 unsigned Rm;
13245
13246 Rm = inst.operands[2].reg;
13247 reject_bad_reg (Rm);
13248
13249 constraint (inst.operands[2].shifted
13250 && inst.operands[2].immisreg,
13251 _("shift must be constant"));
13252 encode_thumb32_shifted_operand (2);
13253 }
13254 }
13255
13256 static void
13257 do_t_pkhbt (void)
13258 {
13259 unsigned Rd, Rn, Rm;
13260
13261 Rd = inst.operands[0].reg;
13262 Rn = inst.operands[1].reg;
13263 Rm = inst.operands[2].reg;
13264
13265 reject_bad_reg (Rd);
13266 reject_bad_reg (Rn);
13267 reject_bad_reg (Rm);
13268
13269 inst.instruction |= Rd << 8;
13270 inst.instruction |= Rn << 16;
13271 inst.instruction |= Rm;
13272 if (inst.operands[3].present)
13273 {
13274 unsigned int val = inst.relocs[0].exp.X_add_number;
13275 constraint (inst.relocs[0].exp.X_op != O_constant,
13276 _("expression too complex"));
13277 inst.instruction |= (val & 0x1c) << 10;
13278 inst.instruction |= (val & 0x03) << 6;
13279 }
13280 }
13281
13282 static void
13283 do_t_pkhtb (void)
13284 {
13285 if (!inst.operands[3].present)
13286 {
13287 unsigned Rtmp;
13288
13289 inst.instruction &= ~0x00000020;
13290
13291 /* PR 10168. Swap the Rm and Rn registers. */
13292 Rtmp = inst.operands[1].reg;
13293 inst.operands[1].reg = inst.operands[2].reg;
13294 inst.operands[2].reg = Rtmp;
13295 }
13296 do_t_pkhbt ();
13297 }
13298
13299 static void
13300 do_t_pld (void)
13301 {
13302 if (inst.operands[0].immisreg)
13303 reject_bad_reg (inst.operands[0].imm);
13304
13305 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13306 }
13307
13308 static void
13309 do_t_push_pop (void)
13310 {
13311 unsigned mask;
13312
13313 constraint (inst.operands[0].writeback,
13314 _("push/pop do not support {reglist}^"));
13315 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13316 _("expression too complex"));
13317
13318 mask = inst.operands[0].imm;
13319 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13320 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13321 else if (inst.size_req != 4
13322 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13323 ? REG_LR : REG_PC)))
13324 {
13325 inst.instruction = THUMB_OP16 (inst.instruction);
13326 inst.instruction |= THUMB_PP_PC_LR;
13327 inst.instruction |= mask & 0xff;
13328 }
13329 else if (unified_syntax)
13330 {
13331 inst.instruction = THUMB_OP32 (inst.instruction);
13332 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13333 }
13334 else
13335 {
13336 inst.error = _("invalid register list to push/pop instruction");
13337 return;
13338 }
13339 }
13340
13341 static void
13342 do_t_clrm (void)
13343 {
13344 if (unified_syntax)
13345 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13346 else
13347 {
13348 inst.error = _("invalid register list to push/pop instruction");
13349 return;
13350 }
13351 }
13352
13353 static void
13354 do_t_vscclrm (void)
13355 {
13356 if (inst.operands[0].issingle)
13357 {
13358 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13359 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13360 inst.instruction |= inst.operands[0].imm;
13361 }
13362 else
13363 {
13364 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13365 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13366 inst.instruction |= 1 << 8;
13367 inst.instruction |= inst.operands[0].imm << 1;
13368 }
13369 }
13370
13371 static void
13372 do_t_rbit (void)
13373 {
13374 unsigned Rd, Rm;
13375
13376 Rd = inst.operands[0].reg;
13377 Rm = inst.operands[1].reg;
13378
13379 reject_bad_reg (Rd);
13380 reject_bad_reg (Rm);
13381
13382 inst.instruction |= Rd << 8;
13383 inst.instruction |= Rm << 16;
13384 inst.instruction |= Rm;
13385 }
13386
13387 static void
13388 do_t_rev (void)
13389 {
13390 unsigned Rd, Rm;
13391
13392 Rd = inst.operands[0].reg;
13393 Rm = inst.operands[1].reg;
13394
13395 reject_bad_reg (Rd);
13396 reject_bad_reg (Rm);
13397
13398 if (Rd <= 7 && Rm <= 7
13399 && inst.size_req != 4)
13400 {
13401 inst.instruction = THUMB_OP16 (inst.instruction);
13402 inst.instruction |= Rd;
13403 inst.instruction |= Rm << 3;
13404 }
13405 else if (unified_syntax)
13406 {
13407 inst.instruction = THUMB_OP32 (inst.instruction);
13408 inst.instruction |= Rd << 8;
13409 inst.instruction |= Rm << 16;
13410 inst.instruction |= Rm;
13411 }
13412 else
13413 inst.error = BAD_HIREG;
13414 }
13415
13416 static void
13417 do_t_rrx (void)
13418 {
13419 unsigned Rd, Rm;
13420
13421 Rd = inst.operands[0].reg;
13422 Rm = inst.operands[1].reg;
13423
13424 reject_bad_reg (Rd);
13425 reject_bad_reg (Rm);
13426
13427 inst.instruction |= Rd << 8;
13428 inst.instruction |= Rm;
13429 }
13430
13431 static void
13432 do_t_rsb (void)
13433 {
13434 unsigned Rd, Rs;
13435
13436 Rd = inst.operands[0].reg;
13437 Rs = (inst.operands[1].present
13438 ? inst.operands[1].reg /* Rd, Rs, foo */
13439 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13440
13441 reject_bad_reg (Rd);
13442 reject_bad_reg (Rs);
13443 if (inst.operands[2].isreg)
13444 reject_bad_reg (inst.operands[2].reg);
13445
13446 inst.instruction |= Rd << 8;
13447 inst.instruction |= Rs << 16;
13448 if (!inst.operands[2].isreg)
13449 {
13450 bfd_boolean narrow;
13451
13452 if ((inst.instruction & 0x00100000) != 0)
13453 narrow = !in_pred_block ();
13454 else
13455 narrow = in_pred_block ();
13456
13457 if (Rd > 7 || Rs > 7)
13458 narrow = FALSE;
13459
13460 if (inst.size_req == 4 || !unified_syntax)
13461 narrow = FALSE;
13462
13463 if (inst.relocs[0].exp.X_op != O_constant
13464 || inst.relocs[0].exp.X_add_number != 0)
13465 narrow = FALSE;
13466
13467 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13468 relaxation, but it doesn't seem worth the hassle. */
13469 if (narrow)
13470 {
13471 inst.relocs[0].type = BFD_RELOC_UNUSED;
13472 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13473 inst.instruction |= Rs << 3;
13474 inst.instruction |= Rd;
13475 }
13476 else
13477 {
13478 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13479 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13480 }
13481 }
13482 else
13483 encode_thumb32_shifted_operand (2);
13484 }
13485
13486 static void
13487 do_t_setend (void)
13488 {
13489 if (warn_on_deprecated
13490 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13491 as_tsktsk (_("setend use is deprecated for ARMv8"));
13492
13493 set_pred_insn_type (OUTSIDE_PRED_INSN);
13494 if (inst.operands[0].imm)
13495 inst.instruction |= 0x8;
13496 }
13497
13498 static void
13499 do_t_shift (void)
13500 {
13501 if (!inst.operands[1].present)
13502 inst.operands[1].reg = inst.operands[0].reg;
13503
13504 if (unified_syntax)
13505 {
13506 bfd_boolean narrow;
13507 int shift_kind;
13508
13509 switch (inst.instruction)
13510 {
13511 case T_MNEM_asr:
13512 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13513 case T_MNEM_lsl:
13514 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13515 case T_MNEM_lsr:
13516 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13517 case T_MNEM_ror:
13518 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13519 default: abort ();
13520 }
13521
13522 if (THUMB_SETS_FLAGS (inst.instruction))
13523 narrow = !in_pred_block ();
13524 else
13525 narrow = in_pred_block ();
13526 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13527 narrow = FALSE;
13528 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13529 narrow = FALSE;
13530 if (inst.operands[2].isreg
13531 && (inst.operands[1].reg != inst.operands[0].reg
13532 || inst.operands[2].reg > 7))
13533 narrow = FALSE;
13534 if (inst.size_req == 4)
13535 narrow = FALSE;
13536
13537 reject_bad_reg (inst.operands[0].reg);
13538 reject_bad_reg (inst.operands[1].reg);
13539
13540 if (!narrow)
13541 {
13542 if (inst.operands[2].isreg)
13543 {
13544 reject_bad_reg (inst.operands[2].reg);
13545 inst.instruction = THUMB_OP32 (inst.instruction);
13546 inst.instruction |= inst.operands[0].reg << 8;
13547 inst.instruction |= inst.operands[1].reg << 16;
13548 inst.instruction |= inst.operands[2].reg;
13549
13550 /* PR 12854: Error on extraneous shifts. */
13551 constraint (inst.operands[2].shifted,
13552 _("extraneous shift as part of operand to shift insn"));
13553 }
13554 else
13555 {
13556 inst.operands[1].shifted = 1;
13557 inst.operands[1].shift_kind = shift_kind;
13558 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13559 ? T_MNEM_movs : T_MNEM_mov);
13560 inst.instruction |= inst.operands[0].reg << 8;
13561 encode_thumb32_shifted_operand (1);
13562 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13563 inst.relocs[0].type = BFD_RELOC_UNUSED;
13564 }
13565 }
13566 else
13567 {
13568 if (inst.operands[2].isreg)
13569 {
13570 switch (shift_kind)
13571 {
13572 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13573 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13574 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13575 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13576 default: abort ();
13577 }
13578
13579 inst.instruction |= inst.operands[0].reg;
13580 inst.instruction |= inst.operands[2].reg << 3;
13581
13582 /* PR 12854: Error on extraneous shifts. */
13583 constraint (inst.operands[2].shifted,
13584 _("extraneous shift as part of operand to shift insn"));
13585 }
13586 else
13587 {
13588 switch (shift_kind)
13589 {
13590 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13591 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13592 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13593 default: abort ();
13594 }
13595 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13596 inst.instruction |= inst.operands[0].reg;
13597 inst.instruction |= inst.operands[1].reg << 3;
13598 }
13599 }
13600 }
13601 else
13602 {
13603 constraint (inst.operands[0].reg > 7
13604 || inst.operands[1].reg > 7, BAD_HIREG);
13605 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13606
13607 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13608 {
13609 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13610 constraint (inst.operands[0].reg != inst.operands[1].reg,
13611 _("source1 and dest must be same register"));
13612
13613 switch (inst.instruction)
13614 {
13615 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13616 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13617 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13618 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13619 default: abort ();
13620 }
13621
13622 inst.instruction |= inst.operands[0].reg;
13623 inst.instruction |= inst.operands[2].reg << 3;
13624
13625 /* PR 12854: Error on extraneous shifts. */
13626 constraint (inst.operands[2].shifted,
13627 _("extraneous shift as part of operand to shift insn"));
13628 }
13629 else
13630 {
13631 switch (inst.instruction)
13632 {
13633 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13634 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13635 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13636 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13637 default: abort ();
13638 }
13639 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13640 inst.instruction |= inst.operands[0].reg;
13641 inst.instruction |= inst.operands[1].reg << 3;
13642 }
13643 }
13644 }
13645
13646 static void
13647 do_t_simd (void)
13648 {
13649 unsigned Rd, Rn, Rm;
13650
13651 Rd = inst.operands[0].reg;
13652 Rn = inst.operands[1].reg;
13653 Rm = inst.operands[2].reg;
13654
13655 reject_bad_reg (Rd);
13656 reject_bad_reg (Rn);
13657 reject_bad_reg (Rm);
13658
13659 inst.instruction |= Rd << 8;
13660 inst.instruction |= Rn << 16;
13661 inst.instruction |= Rm;
13662 }
13663
13664 static void
13665 do_t_simd2 (void)
13666 {
13667 unsigned Rd, Rn, Rm;
13668
13669 Rd = inst.operands[0].reg;
13670 Rm = inst.operands[1].reg;
13671 Rn = inst.operands[2].reg;
13672
13673 reject_bad_reg (Rd);
13674 reject_bad_reg (Rn);
13675 reject_bad_reg (Rm);
13676
13677 inst.instruction |= Rd << 8;
13678 inst.instruction |= Rn << 16;
13679 inst.instruction |= Rm;
13680 }
13681
13682 static void
13683 do_t_smc (void)
13684 {
13685 unsigned int value = inst.relocs[0].exp.X_add_number;
13686 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13687 _("SMC is not permitted on this architecture"));
13688 constraint (inst.relocs[0].exp.X_op != O_constant,
13689 _("expression too complex"));
13690 inst.relocs[0].type = BFD_RELOC_UNUSED;
13691 inst.instruction |= (value & 0xf000) >> 12;
13692 inst.instruction |= (value & 0x0ff0);
13693 inst.instruction |= (value & 0x000f) << 16;
13694 /* PR gas/15623: SMC instructions must be last in an IT block. */
13695 set_pred_insn_type_last ();
13696 }
13697
13698 static void
13699 do_t_hvc (void)
13700 {
13701 unsigned int value = inst.relocs[0].exp.X_add_number;
13702
13703 inst.relocs[0].type = BFD_RELOC_UNUSED;
13704 inst.instruction |= (value & 0x0fff);
13705 inst.instruction |= (value & 0xf000) << 4;
13706 }
13707
13708 static void
13709 do_t_ssat_usat (int bias)
13710 {
13711 unsigned Rd, Rn;
13712
13713 Rd = inst.operands[0].reg;
13714 Rn = inst.operands[2].reg;
13715
13716 reject_bad_reg (Rd);
13717 reject_bad_reg (Rn);
13718
13719 inst.instruction |= Rd << 8;
13720 inst.instruction |= inst.operands[1].imm - bias;
13721 inst.instruction |= Rn << 16;
13722
13723 if (inst.operands[3].present)
13724 {
13725 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13726
13727 inst.relocs[0].type = BFD_RELOC_UNUSED;
13728
13729 constraint (inst.relocs[0].exp.X_op != O_constant,
13730 _("expression too complex"));
13731
13732 if (shift_amount != 0)
13733 {
13734 constraint (shift_amount > 31,
13735 _("shift expression is too large"));
13736
13737 if (inst.operands[3].shift_kind == SHIFT_ASR)
13738 inst.instruction |= 0x00200000; /* sh bit. */
13739
13740 inst.instruction |= (shift_amount & 0x1c) << 10;
13741 inst.instruction |= (shift_amount & 0x03) << 6;
13742 }
13743 }
13744 }
13745
13746 static void
13747 do_t_ssat (void)
13748 {
13749 do_t_ssat_usat (1);
13750 }
13751
13752 static void
13753 do_t_ssat16 (void)
13754 {
13755 unsigned Rd, Rn;
13756
13757 Rd = inst.operands[0].reg;
13758 Rn = inst.operands[2].reg;
13759
13760 reject_bad_reg (Rd);
13761 reject_bad_reg (Rn);
13762
13763 inst.instruction |= Rd << 8;
13764 inst.instruction |= inst.operands[1].imm - 1;
13765 inst.instruction |= Rn << 16;
13766 }
13767
13768 static void
13769 do_t_strex (void)
13770 {
13771 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13772 || inst.operands[2].postind || inst.operands[2].writeback
13773 || inst.operands[2].immisreg || inst.operands[2].shifted
13774 || inst.operands[2].negative,
13775 BAD_ADDR_MODE);
13776
13777 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13778
13779 inst.instruction |= inst.operands[0].reg << 8;
13780 inst.instruction |= inst.operands[1].reg << 12;
13781 inst.instruction |= inst.operands[2].reg << 16;
13782 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13783 }
13784
13785 static void
13786 do_t_strexd (void)
13787 {
13788 if (!inst.operands[2].present)
13789 inst.operands[2].reg = inst.operands[1].reg + 1;
13790
13791 constraint (inst.operands[0].reg == inst.operands[1].reg
13792 || inst.operands[0].reg == inst.operands[2].reg
13793 || inst.operands[0].reg == inst.operands[3].reg,
13794 BAD_OVERLAP);
13795
13796 inst.instruction |= inst.operands[0].reg;
13797 inst.instruction |= inst.operands[1].reg << 12;
13798 inst.instruction |= inst.operands[2].reg << 8;
13799 inst.instruction |= inst.operands[3].reg << 16;
13800 }
13801
13802 static void
13803 do_t_sxtah (void)
13804 {
13805 unsigned Rd, Rn, Rm;
13806
13807 Rd = inst.operands[0].reg;
13808 Rn = inst.operands[1].reg;
13809 Rm = inst.operands[2].reg;
13810
13811 reject_bad_reg (Rd);
13812 reject_bad_reg (Rn);
13813 reject_bad_reg (Rm);
13814
13815 inst.instruction |= Rd << 8;
13816 inst.instruction |= Rn << 16;
13817 inst.instruction |= Rm;
13818 inst.instruction |= inst.operands[3].imm << 4;
13819 }
13820
13821 static void
13822 do_t_sxth (void)
13823 {
13824 unsigned Rd, Rm;
13825
13826 Rd = inst.operands[0].reg;
13827 Rm = inst.operands[1].reg;
13828
13829 reject_bad_reg (Rd);
13830 reject_bad_reg (Rm);
13831
13832 if (inst.instruction <= 0xffff
13833 && inst.size_req != 4
13834 && Rd <= 7 && Rm <= 7
13835 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13836 {
13837 inst.instruction = THUMB_OP16 (inst.instruction);
13838 inst.instruction |= Rd;
13839 inst.instruction |= Rm << 3;
13840 }
13841 else if (unified_syntax)
13842 {
13843 if (inst.instruction <= 0xffff)
13844 inst.instruction = THUMB_OP32 (inst.instruction);
13845 inst.instruction |= Rd << 8;
13846 inst.instruction |= Rm;
13847 inst.instruction |= inst.operands[2].imm << 4;
13848 }
13849 else
13850 {
13851 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13852 _("Thumb encoding does not support rotation"));
13853 constraint (1, BAD_HIREG);
13854 }
13855 }
13856
13857 static void
13858 do_t_swi (void)
13859 {
13860 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13861 }
13862
13863 static void
13864 do_t_tb (void)
13865 {
13866 unsigned Rn, Rm;
13867 int half;
13868
13869 half = (inst.instruction & 0x10) != 0;
13870 set_pred_insn_type_last ();
13871 constraint (inst.operands[0].immisreg,
13872 _("instruction requires register index"));
13873
13874 Rn = inst.operands[0].reg;
13875 Rm = inst.operands[0].imm;
13876
13877 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13878 constraint (Rn == REG_SP, BAD_SP);
13879 reject_bad_reg (Rm);
13880
13881 constraint (!half && inst.operands[0].shifted,
13882 _("instruction does not allow shifted index"));
13883 inst.instruction |= (Rn << 16) | Rm;
13884 }
13885
13886 static void
13887 do_t_udf (void)
13888 {
13889 if (!inst.operands[0].present)
13890 inst.operands[0].imm = 0;
13891
13892 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13893 {
13894 constraint (inst.size_req == 2,
13895 _("immediate value out of range"));
13896 inst.instruction = THUMB_OP32 (inst.instruction);
13897 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13898 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13899 }
13900 else
13901 {
13902 inst.instruction = THUMB_OP16 (inst.instruction);
13903 inst.instruction |= inst.operands[0].imm;
13904 }
13905
13906 set_pred_insn_type (NEUTRAL_IT_INSN);
13907 }
13908
13909
13910 static void
13911 do_t_usat (void)
13912 {
13913 do_t_ssat_usat (0);
13914 }
13915
13916 static void
13917 do_t_usat16 (void)
13918 {
13919 unsigned Rd, Rn;
13920
13921 Rd = inst.operands[0].reg;
13922 Rn = inst.operands[2].reg;
13923
13924 reject_bad_reg (Rd);
13925 reject_bad_reg (Rn);
13926
13927 inst.instruction |= Rd << 8;
13928 inst.instruction |= inst.operands[1].imm;
13929 inst.instruction |= Rn << 16;
13930 }
13931
13932 /* Checking the range of the branch offset (VAL) with NBITS bits
13933 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13934 static int
13935 v8_1_branch_value_check (int val, int nbits, int is_signed)
13936 {
13937 gas_assert (nbits > 0 && nbits <= 32);
13938 if (is_signed)
13939 {
13940 int cmp = (1 << (nbits - 1));
13941 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13942 return FAIL;
13943 }
13944 else
13945 {
13946 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13947 return FAIL;
13948 }
13949 return SUCCESS;
13950 }
13951
13952 /* For branches in Armv8.1-M Mainline. */
13953 static void
13954 do_t_branch_future (void)
13955 {
13956 unsigned long insn = inst.instruction;
13957
13958 inst.instruction = THUMB_OP32 (inst.instruction);
13959 if (inst.operands[0].hasreloc == 0)
13960 {
13961 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13962 as_bad (BAD_BRANCH_OFF);
13963
13964 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13965 }
13966 else
13967 {
13968 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13969 inst.relocs[0].pc_rel = 1;
13970 }
13971
13972 switch (insn)
13973 {
13974 case T_MNEM_bf:
13975 if (inst.operands[1].hasreloc == 0)
13976 {
13977 int val = inst.operands[1].imm;
13978 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13979 as_bad (BAD_BRANCH_OFF);
13980
13981 int immA = (val & 0x0001f000) >> 12;
13982 int immB = (val & 0x00000ffc) >> 2;
13983 int immC = (val & 0x00000002) >> 1;
13984 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13985 }
13986 else
13987 {
13988 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13989 inst.relocs[1].pc_rel = 1;
13990 }
13991 break;
13992
13993 case T_MNEM_bfl:
13994 if (inst.operands[1].hasreloc == 0)
13995 {
13996 int val = inst.operands[1].imm;
13997 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13998 as_bad (BAD_BRANCH_OFF);
13999
14000 int immA = (val & 0x0007f000) >> 12;
14001 int immB = (val & 0x00000ffc) >> 2;
14002 int immC = (val & 0x00000002) >> 1;
14003 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14004 }
14005 else
14006 {
14007 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14008 inst.relocs[1].pc_rel = 1;
14009 }
14010 break;
14011
14012 case T_MNEM_bfcsel:
14013 /* Operand 1. */
14014 if (inst.operands[1].hasreloc == 0)
14015 {
14016 int val = inst.operands[1].imm;
14017 int immA = (val & 0x00001000) >> 12;
14018 int immB = (val & 0x00000ffc) >> 2;
14019 int immC = (val & 0x00000002) >> 1;
14020 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14021 }
14022 else
14023 {
14024 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14025 inst.relocs[1].pc_rel = 1;
14026 }
14027
14028 /* Operand 2. */
14029 if (inst.operands[2].hasreloc == 0)
14030 {
14031 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14032 int val2 = inst.operands[2].imm;
14033 int val0 = inst.operands[0].imm & 0x1f;
14034 int diff = val2 - val0;
14035 if (diff == 4)
14036 inst.instruction |= 1 << 17; /* T bit. */
14037 else if (diff != 2)
14038 as_bad (_("out of range label-relative fixup value"));
14039 }
14040 else
14041 {
14042 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14043 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14044 inst.relocs[2].pc_rel = 1;
14045 }
14046
14047 /* Operand 3. */
14048 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14049 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14050 break;
14051
14052 case T_MNEM_bfx:
14053 case T_MNEM_bflx:
14054 inst.instruction |= inst.operands[1].reg << 16;
14055 break;
14056
14057 default: abort ();
14058 }
14059 }
14060
14061 /* Helper function for do_t_loloop to handle relocations. */
14062 static void
14063 v8_1_loop_reloc (int is_le)
14064 {
14065 if (inst.relocs[0].exp.X_op == O_constant)
14066 {
14067 int value = inst.relocs[0].exp.X_add_number;
14068 value = (is_le) ? -value : value;
14069
14070 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14071 as_bad (BAD_BRANCH_OFF);
14072
14073 int imml, immh;
14074
14075 immh = (value & 0x00000ffc) >> 2;
14076 imml = (value & 0x00000002) >> 1;
14077
14078 inst.instruction |= (imml << 11) | (immh << 1);
14079 }
14080 else
14081 {
14082 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14083 inst.relocs[0].pc_rel = 1;
14084 }
14085 }
14086
14087 /* To handle the Scalar Low Overhead Loop instructions
14088 in Armv8.1-M Mainline. */
14089 static void
14090 do_t_loloop (void)
14091 {
14092 unsigned long insn = inst.instruction;
14093
14094 set_pred_insn_type (OUTSIDE_PRED_INSN);
14095 inst.instruction = THUMB_OP32 (inst.instruction);
14096
14097 switch (insn)
14098 {
14099 case T_MNEM_le:
14100 /* le <label>. */
14101 if (!inst.operands[0].present)
14102 inst.instruction |= 1 << 21;
14103
14104 v8_1_loop_reloc (TRUE);
14105 break;
14106
14107 case T_MNEM_wls:
14108 v8_1_loop_reloc (FALSE);
14109 /* Fall through. */
14110 case T_MNEM_dls:
14111 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14112 inst.instruction |= (inst.operands[1].reg << 16);
14113 break;
14114
14115 default: abort();
14116 }
14117 }
14118
14119 /* MVE instruction encoder helpers. */
14120 #define M_MNEM_vabav 0xee800f01
14121 #define M_MNEM_vmladav 0xeef00e00
14122 #define M_MNEM_vmladava 0xeef00e20
14123 #define M_MNEM_vmladavx 0xeef01e00
14124 #define M_MNEM_vmladavax 0xeef01e20
14125 #define M_MNEM_vmlsdav 0xeef00e01
14126 #define M_MNEM_vmlsdava 0xeef00e21
14127 #define M_MNEM_vmlsdavx 0xeef01e01
14128 #define M_MNEM_vmlsdavax 0xeef01e21
14129 #define M_MNEM_vmullt 0xee011e00
14130 #define M_MNEM_vmullb 0xee010e00
14131 #define M_MNEM_vst20 0xfc801e00
14132 #define M_MNEM_vst21 0xfc801e20
14133 #define M_MNEM_vst40 0xfc801e01
14134 #define M_MNEM_vst41 0xfc801e21
14135 #define M_MNEM_vst42 0xfc801e41
14136 #define M_MNEM_vst43 0xfc801e61
14137 #define M_MNEM_vld20 0xfc901e00
14138 #define M_MNEM_vld21 0xfc901e20
14139 #define M_MNEM_vld40 0xfc901e01
14140 #define M_MNEM_vld41 0xfc901e21
14141 #define M_MNEM_vld42 0xfc901e41
14142 #define M_MNEM_vld43 0xfc901e61
14143 #define M_MNEM_vstrb 0xec000e00
14144 #define M_MNEM_vstrh 0xec000e10
14145 #define M_MNEM_vstrw 0xec000e40
14146 #define M_MNEM_vstrd 0xec000e50
14147 #define M_MNEM_vldrb 0xec100e00
14148 #define M_MNEM_vldrh 0xec100e10
14149 #define M_MNEM_vldrw 0xec100e40
14150 #define M_MNEM_vldrd 0xec100e50
14151 #define M_MNEM_vmovlt 0xeea01f40
14152 #define M_MNEM_vmovlb 0xeea00f40
14153 #define M_MNEM_vmovnt 0xfe311e81
14154 #define M_MNEM_vmovnb 0xfe310e81
14155 #define M_MNEM_vadc 0xee300f00
14156 #define M_MNEM_vadci 0xee301f00
14157 #define M_MNEM_vbrsr 0xfe011e60
14158 #define M_MNEM_vaddlv 0xee890f00
14159 #define M_MNEM_vaddlva 0xee890f20
14160 #define M_MNEM_vaddv 0xeef10f00
14161 #define M_MNEM_vaddva 0xeef10f20
14162 #define M_MNEM_vddup 0xee011f6e
14163 #define M_MNEM_vdwdup 0xee011f60
14164 #define M_MNEM_vidup 0xee010f6e
14165 #define M_MNEM_viwdup 0xee010f60
14166
14167 /* Neon instruction encoder helpers. */
14168
14169 /* Encodings for the different types for various Neon opcodes. */
14170
14171 /* An "invalid" code for the following tables. */
14172 #define N_INV -1u
14173
14174 struct neon_tab_entry
14175 {
14176 unsigned integer;
14177 unsigned float_or_poly;
14178 unsigned scalar_or_imm;
14179 };
14180
14181 /* Map overloaded Neon opcodes to their respective encodings. */
14182 #define NEON_ENC_TAB \
14183 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14184 X(vabdl, 0x0800700, N_INV, N_INV), \
14185 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14186 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14187 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14188 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14189 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14190 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14191 X(vaddl, 0x0800000, N_INV, N_INV), \
14192 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14193 X(vsubl, 0x0800200, N_INV, N_INV), \
14194 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14195 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14196 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14197 /* Register variants of the following two instructions are encoded as
14198 vcge / vcgt with the operands reversed. */ \
14199 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14200 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14201 X(vfma, N_INV, 0x0000c10, N_INV), \
14202 X(vfms, N_INV, 0x0200c10, N_INV), \
14203 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14204 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14205 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14206 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14207 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14208 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14209 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14210 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14211 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14212 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14213 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14214 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14215 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14216 X(vshl, 0x0000400, N_INV, 0x0800510), \
14217 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14218 X(vand, 0x0000110, N_INV, 0x0800030), \
14219 X(vbic, 0x0100110, N_INV, 0x0800030), \
14220 X(veor, 0x1000110, N_INV, N_INV), \
14221 X(vorn, 0x0300110, N_INV, 0x0800010), \
14222 X(vorr, 0x0200110, N_INV, 0x0800010), \
14223 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14224 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14225 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14226 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14227 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14228 X(vst1, 0x0000000, 0x0800000, N_INV), \
14229 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14230 X(vst2, 0x0000100, 0x0800100, N_INV), \
14231 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14232 X(vst3, 0x0000200, 0x0800200, N_INV), \
14233 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14234 X(vst4, 0x0000300, 0x0800300, N_INV), \
14235 X(vmovn, 0x1b20200, N_INV, N_INV), \
14236 X(vtrn, 0x1b20080, N_INV, N_INV), \
14237 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14238 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14239 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14240 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14241 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14242 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14243 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14244 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14245 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14246 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14247 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14248 X(vseleq, 0xe000a00, N_INV, N_INV), \
14249 X(vselvs, 0xe100a00, N_INV, N_INV), \
14250 X(vselge, 0xe200a00, N_INV, N_INV), \
14251 X(vselgt, 0xe300a00, N_INV, N_INV), \
14252 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14253 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14254 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14255 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14256 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14257 X(aes, 0x3b00300, N_INV, N_INV), \
14258 X(sha3op, 0x2000c00, N_INV, N_INV), \
14259 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14260 X(sha2op, 0x3ba0380, N_INV, N_INV)
14261
14262 enum neon_opc
14263 {
14264 #define X(OPC,I,F,S) N_MNEM_##OPC
14265 NEON_ENC_TAB
14266 #undef X
14267 };
14268
14269 static const struct neon_tab_entry neon_enc_tab[] =
14270 {
14271 #define X(OPC,I,F,S) { (I), (F), (S) }
14272 NEON_ENC_TAB
14273 #undef X
14274 };
14275
14276 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14277 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14278 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14279 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14280 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14281 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14282 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14283 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14284 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14285 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14286 #define NEON_ENC_SINGLE_(X) \
14287 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14288 #define NEON_ENC_DOUBLE_(X) \
14289 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14290 #define NEON_ENC_FPV8_(X) \
14291 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14292
14293 #define NEON_ENCODE(type, inst) \
14294 do \
14295 { \
14296 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14297 inst.is_neon = 1; \
14298 } \
14299 while (0)
14300
14301 #define check_neon_suffixes \
14302 do \
14303 { \
14304 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14305 { \
14306 as_bad (_("invalid neon suffix for non neon instruction")); \
14307 return; \
14308 } \
14309 } \
14310 while (0)
14311
14312 /* Define shapes for instruction operands. The following mnemonic characters
14313 are used in this table:
14314
14315 F - VFP S<n> register
14316 D - Neon D<n> register
14317 Q - Neon Q<n> register
14318 I - Immediate
14319 S - Scalar
14320 R - ARM register
14321 L - D<n> register list
14322
14323 This table is used to generate various data:
14324 - enumerations of the form NS_DDR to be used as arguments to
14325 neon_select_shape.
14326 - a table classifying shapes into single, double, quad, mixed.
14327 - a table used to drive neon_select_shape. */
14328
14329 #define NEON_SHAPE_DEF \
14330 X(4, (Q, R, R, I), QUAD), \
14331 X(4, (R, R, S, S), QUAD), \
14332 X(4, (S, S, R, R), QUAD), \
14333 X(3, (Q, R, I), QUAD), \
14334 X(3, (I, Q, Q), QUAD), \
14335 X(3, (I, Q, R), QUAD), \
14336 X(3, (R, Q, Q), QUAD), \
14337 X(3, (D, D, D), DOUBLE), \
14338 X(3, (Q, Q, Q), QUAD), \
14339 X(3, (D, D, I), DOUBLE), \
14340 X(3, (Q, Q, I), QUAD), \
14341 X(3, (D, D, S), DOUBLE), \
14342 X(3, (Q, Q, S), QUAD), \
14343 X(3, (Q, Q, R), QUAD), \
14344 X(3, (R, R, Q), QUAD), \
14345 X(2, (R, Q), QUAD), \
14346 X(2, (D, D), DOUBLE), \
14347 X(2, (Q, Q), QUAD), \
14348 X(2, (D, S), DOUBLE), \
14349 X(2, (Q, S), QUAD), \
14350 X(2, (D, R), DOUBLE), \
14351 X(2, (Q, R), QUAD), \
14352 X(2, (D, I), DOUBLE), \
14353 X(2, (Q, I), QUAD), \
14354 X(3, (D, L, D), DOUBLE), \
14355 X(2, (D, Q), MIXED), \
14356 X(2, (Q, D), MIXED), \
14357 X(3, (D, Q, I), MIXED), \
14358 X(3, (Q, D, I), MIXED), \
14359 X(3, (Q, D, D), MIXED), \
14360 X(3, (D, Q, Q), MIXED), \
14361 X(3, (Q, Q, D), MIXED), \
14362 X(3, (Q, D, S), MIXED), \
14363 X(3, (D, Q, S), MIXED), \
14364 X(4, (D, D, D, I), DOUBLE), \
14365 X(4, (Q, Q, Q, I), QUAD), \
14366 X(4, (D, D, S, I), DOUBLE), \
14367 X(4, (Q, Q, S, I), QUAD), \
14368 X(2, (F, F), SINGLE), \
14369 X(3, (F, F, F), SINGLE), \
14370 X(2, (F, I), SINGLE), \
14371 X(2, (F, D), MIXED), \
14372 X(2, (D, F), MIXED), \
14373 X(3, (F, F, I), MIXED), \
14374 X(4, (R, R, F, F), SINGLE), \
14375 X(4, (F, F, R, R), SINGLE), \
14376 X(3, (D, R, R), DOUBLE), \
14377 X(3, (R, R, D), DOUBLE), \
14378 X(2, (S, R), SINGLE), \
14379 X(2, (R, S), SINGLE), \
14380 X(2, (F, R), SINGLE), \
14381 X(2, (R, F), SINGLE), \
14382 /* Half float shape supported so far. */\
14383 X (2, (H, D), MIXED), \
14384 X (2, (D, H), MIXED), \
14385 X (2, (H, F), MIXED), \
14386 X (2, (F, H), MIXED), \
14387 X (2, (H, H), HALF), \
14388 X (2, (H, R), HALF), \
14389 X (2, (R, H), HALF), \
14390 X (2, (H, I), HALF), \
14391 X (3, (H, H, H), HALF), \
14392 X (3, (H, F, I), MIXED), \
14393 X (3, (F, H, I), MIXED), \
14394 X (3, (D, H, H), MIXED), \
14395 X (3, (D, H, S), MIXED)
14396
14397 #define S2(A,B) NS_##A##B
14398 #define S3(A,B,C) NS_##A##B##C
14399 #define S4(A,B,C,D) NS_##A##B##C##D
14400
14401 #define X(N, L, C) S##N L
14402
14403 enum neon_shape
14404 {
14405 NEON_SHAPE_DEF,
14406 NS_NULL
14407 };
14408
14409 #undef X
14410 #undef S2
14411 #undef S3
14412 #undef S4
14413
14414 enum neon_shape_class
14415 {
14416 SC_HALF,
14417 SC_SINGLE,
14418 SC_DOUBLE,
14419 SC_QUAD,
14420 SC_MIXED
14421 };
14422
14423 #define X(N, L, C) SC_##C
14424
14425 static enum neon_shape_class neon_shape_class[] =
14426 {
14427 NEON_SHAPE_DEF
14428 };
14429
14430 #undef X
14431
14432 enum neon_shape_el
14433 {
14434 SE_H,
14435 SE_F,
14436 SE_D,
14437 SE_Q,
14438 SE_I,
14439 SE_S,
14440 SE_R,
14441 SE_L
14442 };
14443
14444 /* Register widths of above. */
14445 static unsigned neon_shape_el_size[] =
14446 {
14447 16,
14448 32,
14449 64,
14450 128,
14451 0,
14452 32,
14453 32,
14454 0
14455 };
14456
14457 struct neon_shape_info
14458 {
14459 unsigned els;
14460 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14461 };
14462
14463 #define S2(A,B) { SE_##A, SE_##B }
14464 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14465 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14466
14467 #define X(N, L, C) { N, S##N L }
14468
14469 static struct neon_shape_info neon_shape_tab[] =
14470 {
14471 NEON_SHAPE_DEF
14472 };
14473
14474 #undef X
14475 #undef S2
14476 #undef S3
14477 #undef S4
14478
14479 /* Bit masks used in type checking given instructions.
14480 'N_EQK' means the type must be the same as (or based on in some way) the key
14481 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14482 set, various other bits can be set as well in order to modify the meaning of
14483 the type constraint. */
14484
14485 enum neon_type_mask
14486 {
14487 N_S8 = 0x0000001,
14488 N_S16 = 0x0000002,
14489 N_S32 = 0x0000004,
14490 N_S64 = 0x0000008,
14491 N_U8 = 0x0000010,
14492 N_U16 = 0x0000020,
14493 N_U32 = 0x0000040,
14494 N_U64 = 0x0000080,
14495 N_I8 = 0x0000100,
14496 N_I16 = 0x0000200,
14497 N_I32 = 0x0000400,
14498 N_I64 = 0x0000800,
14499 N_8 = 0x0001000,
14500 N_16 = 0x0002000,
14501 N_32 = 0x0004000,
14502 N_64 = 0x0008000,
14503 N_P8 = 0x0010000,
14504 N_P16 = 0x0020000,
14505 N_F16 = 0x0040000,
14506 N_F32 = 0x0080000,
14507 N_F64 = 0x0100000,
14508 N_P64 = 0x0200000,
14509 N_KEY = 0x1000000, /* Key element (main type specifier). */
14510 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14511 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14512 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14513 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14514 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14515 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14516 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14517 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14518 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14519 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14520 N_UTYP = 0,
14521 N_MAX_NONSPECIAL = N_P64
14522 };
14523
14524 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14525
14526 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14527 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14528 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14529 #define N_S_32 (N_S8 | N_S16 | N_S32)
14530 #define N_F_16_32 (N_F16 | N_F32)
14531 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14532 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14533 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14534 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14535 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14536 #define N_F_MVE (N_F16 | N_F32)
14537 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14538
14539 /* Pass this as the first type argument to neon_check_type to ignore types
14540 altogether. */
14541 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14542
14543 /* Select a "shape" for the current instruction (describing register types or
14544 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14545 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14546 function of operand parsing, so this function doesn't need to be called.
14547 Shapes should be listed in order of decreasing length. */
14548
14549 static enum neon_shape
14550 neon_select_shape (enum neon_shape shape, ...)
14551 {
14552 va_list ap;
14553 enum neon_shape first_shape = shape;
14554
14555 /* Fix missing optional operands. FIXME: we don't know at this point how
14556 many arguments we should have, so this makes the assumption that we have
14557 > 1. This is true of all current Neon opcodes, I think, but may not be
14558 true in the future. */
14559 if (!inst.operands[1].present)
14560 inst.operands[1] = inst.operands[0];
14561
14562 va_start (ap, shape);
14563
14564 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14565 {
14566 unsigned j;
14567 int matches = 1;
14568
14569 for (j = 0; j < neon_shape_tab[shape].els; j++)
14570 {
14571 if (!inst.operands[j].present)
14572 {
14573 matches = 0;
14574 break;
14575 }
14576
14577 switch (neon_shape_tab[shape].el[j])
14578 {
14579 /* If a .f16, .16, .u16, .s16 type specifier is given over
14580 a VFP single precision register operand, it's essentially
14581 means only half of the register is used.
14582
14583 If the type specifier is given after the mnemonics, the
14584 information is stored in inst.vectype. If the type specifier
14585 is given after register operand, the information is stored
14586 in inst.operands[].vectype.
14587
14588 When there is only one type specifier, and all the register
14589 operands are the same type of hardware register, the type
14590 specifier applies to all register operands.
14591
14592 If no type specifier is given, the shape is inferred from
14593 operand information.
14594
14595 for example:
14596 vadd.f16 s0, s1, s2: NS_HHH
14597 vabs.f16 s0, s1: NS_HH
14598 vmov.f16 s0, r1: NS_HR
14599 vmov.f16 r0, s1: NS_RH
14600 vcvt.f16 r0, s1: NS_RH
14601 vcvt.f16.s32 s2, s2, #29: NS_HFI
14602 vcvt.f16.s32 s2, s2: NS_HF
14603 */
14604 case SE_H:
14605 if (!(inst.operands[j].isreg
14606 && inst.operands[j].isvec
14607 && inst.operands[j].issingle
14608 && !inst.operands[j].isquad
14609 && ((inst.vectype.elems == 1
14610 && inst.vectype.el[0].size == 16)
14611 || (inst.vectype.elems > 1
14612 && inst.vectype.el[j].size == 16)
14613 || (inst.vectype.elems == 0
14614 && inst.operands[j].vectype.type != NT_invtype
14615 && inst.operands[j].vectype.size == 16))))
14616 matches = 0;
14617 break;
14618
14619 case SE_F:
14620 if (!(inst.operands[j].isreg
14621 && inst.operands[j].isvec
14622 && inst.operands[j].issingle
14623 && !inst.operands[j].isquad
14624 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14625 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14626 || (inst.vectype.elems == 0
14627 && (inst.operands[j].vectype.size == 32
14628 || inst.operands[j].vectype.type == NT_invtype)))))
14629 matches = 0;
14630 break;
14631
14632 case SE_D:
14633 if (!(inst.operands[j].isreg
14634 && inst.operands[j].isvec
14635 && !inst.operands[j].isquad
14636 && !inst.operands[j].issingle))
14637 matches = 0;
14638 break;
14639
14640 case SE_R:
14641 if (!(inst.operands[j].isreg
14642 && !inst.operands[j].isvec))
14643 matches = 0;
14644 break;
14645
14646 case SE_Q:
14647 if (!(inst.operands[j].isreg
14648 && inst.operands[j].isvec
14649 && inst.operands[j].isquad
14650 && !inst.operands[j].issingle))
14651 matches = 0;
14652 break;
14653
14654 case SE_I:
14655 if (!(!inst.operands[j].isreg
14656 && !inst.operands[j].isscalar))
14657 matches = 0;
14658 break;
14659
14660 case SE_S:
14661 if (!(!inst.operands[j].isreg
14662 && inst.operands[j].isscalar))
14663 matches = 0;
14664 break;
14665
14666 case SE_L:
14667 break;
14668 }
14669 if (!matches)
14670 break;
14671 }
14672 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14673 /* We've matched all the entries in the shape table, and we don't
14674 have any left over operands which have not been matched. */
14675 break;
14676 }
14677
14678 va_end (ap);
14679
14680 if (shape == NS_NULL && first_shape != NS_NULL)
14681 first_error (_("invalid instruction shape"));
14682
14683 return shape;
14684 }
14685
14686 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14687 means the Q bit should be set). */
14688
14689 static int
14690 neon_quad (enum neon_shape shape)
14691 {
14692 return neon_shape_class[shape] == SC_QUAD;
14693 }
14694
14695 static void
14696 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14697 unsigned *g_size)
14698 {
14699 /* Allow modification to be made to types which are constrained to be
14700 based on the key element, based on bits set alongside N_EQK. */
14701 if ((typebits & N_EQK) != 0)
14702 {
14703 if ((typebits & N_HLF) != 0)
14704 *g_size /= 2;
14705 else if ((typebits & N_DBL) != 0)
14706 *g_size *= 2;
14707 if ((typebits & N_SGN) != 0)
14708 *g_type = NT_signed;
14709 else if ((typebits & N_UNS) != 0)
14710 *g_type = NT_unsigned;
14711 else if ((typebits & N_INT) != 0)
14712 *g_type = NT_integer;
14713 else if ((typebits & N_FLT) != 0)
14714 *g_type = NT_float;
14715 else if ((typebits & N_SIZ) != 0)
14716 *g_type = NT_untyped;
14717 }
14718 }
14719
14720 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14721 operand type, i.e. the single type specified in a Neon instruction when it
14722 is the only one given. */
14723
14724 static struct neon_type_el
14725 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14726 {
14727 struct neon_type_el dest = *key;
14728
14729 gas_assert ((thisarg & N_EQK) != 0);
14730
14731 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14732
14733 return dest;
14734 }
14735
14736 /* Convert Neon type and size into compact bitmask representation. */
14737
14738 static enum neon_type_mask
14739 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14740 {
14741 switch (type)
14742 {
14743 case NT_untyped:
14744 switch (size)
14745 {
14746 case 8: return N_8;
14747 case 16: return N_16;
14748 case 32: return N_32;
14749 case 64: return N_64;
14750 default: ;
14751 }
14752 break;
14753
14754 case NT_integer:
14755 switch (size)
14756 {
14757 case 8: return N_I8;
14758 case 16: return N_I16;
14759 case 32: return N_I32;
14760 case 64: return N_I64;
14761 default: ;
14762 }
14763 break;
14764
14765 case NT_float:
14766 switch (size)
14767 {
14768 case 16: return N_F16;
14769 case 32: return N_F32;
14770 case 64: return N_F64;
14771 default: ;
14772 }
14773 break;
14774
14775 case NT_poly:
14776 switch (size)
14777 {
14778 case 8: return N_P8;
14779 case 16: return N_P16;
14780 case 64: return N_P64;
14781 default: ;
14782 }
14783 break;
14784
14785 case NT_signed:
14786 switch (size)
14787 {
14788 case 8: return N_S8;
14789 case 16: return N_S16;
14790 case 32: return N_S32;
14791 case 64: return N_S64;
14792 default: ;
14793 }
14794 break;
14795
14796 case NT_unsigned:
14797 switch (size)
14798 {
14799 case 8: return N_U8;
14800 case 16: return N_U16;
14801 case 32: return N_U32;
14802 case 64: return N_U64;
14803 default: ;
14804 }
14805 break;
14806
14807 default: ;
14808 }
14809
14810 return N_UTYP;
14811 }
14812
14813 /* Convert compact Neon bitmask type representation to a type and size. Only
14814 handles the case where a single bit is set in the mask. */
14815
14816 static int
14817 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14818 enum neon_type_mask mask)
14819 {
14820 if ((mask & N_EQK) != 0)
14821 return FAIL;
14822
14823 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14824 *size = 8;
14825 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14826 *size = 16;
14827 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14828 *size = 32;
14829 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14830 *size = 64;
14831 else
14832 return FAIL;
14833
14834 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14835 *type = NT_signed;
14836 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14837 *type = NT_unsigned;
14838 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14839 *type = NT_integer;
14840 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14841 *type = NT_untyped;
14842 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14843 *type = NT_poly;
14844 else if ((mask & (N_F_ALL)) != 0)
14845 *type = NT_float;
14846 else
14847 return FAIL;
14848
14849 return SUCCESS;
14850 }
14851
14852 /* Modify a bitmask of allowed types. This is only needed for type
14853 relaxation. */
14854
14855 static unsigned
14856 modify_types_allowed (unsigned allowed, unsigned mods)
14857 {
14858 unsigned size;
14859 enum neon_el_type type;
14860 unsigned destmask;
14861 int i;
14862
14863 destmask = 0;
14864
14865 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14866 {
14867 if (el_type_of_type_chk (&type, &size,
14868 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14869 {
14870 neon_modify_type_size (mods, &type, &size);
14871 destmask |= type_chk_of_el_type (type, size);
14872 }
14873 }
14874
14875 return destmask;
14876 }
14877
14878 /* Check type and return type classification.
14879 The manual states (paraphrase): If one datatype is given, it indicates the
14880 type given in:
14881 - the second operand, if there is one
14882 - the operand, if there is no second operand
14883 - the result, if there are no operands.
14884 This isn't quite good enough though, so we use a concept of a "key" datatype
14885 which is set on a per-instruction basis, which is the one which matters when
14886 only one data type is written.
14887 Note: this function has side-effects (e.g. filling in missing operands). All
14888 Neon instructions should call it before performing bit encoding. */
14889
14890 static struct neon_type_el
14891 neon_check_type (unsigned els, enum neon_shape ns, ...)
14892 {
14893 va_list ap;
14894 unsigned i, pass, key_el = 0;
14895 unsigned types[NEON_MAX_TYPE_ELS];
14896 enum neon_el_type k_type = NT_invtype;
14897 unsigned k_size = -1u;
14898 struct neon_type_el badtype = {NT_invtype, -1};
14899 unsigned key_allowed = 0;
14900
14901 /* Optional registers in Neon instructions are always (not) in operand 1.
14902 Fill in the missing operand here, if it was omitted. */
14903 if (els > 1 && !inst.operands[1].present)
14904 inst.operands[1] = inst.operands[0];
14905
14906 /* Suck up all the varargs. */
14907 va_start (ap, ns);
14908 for (i = 0; i < els; i++)
14909 {
14910 unsigned thisarg = va_arg (ap, unsigned);
14911 if (thisarg == N_IGNORE_TYPE)
14912 {
14913 va_end (ap);
14914 return badtype;
14915 }
14916 types[i] = thisarg;
14917 if ((thisarg & N_KEY) != 0)
14918 key_el = i;
14919 }
14920 va_end (ap);
14921
14922 if (inst.vectype.elems > 0)
14923 for (i = 0; i < els; i++)
14924 if (inst.operands[i].vectype.type != NT_invtype)
14925 {
14926 first_error (_("types specified in both the mnemonic and operands"));
14927 return badtype;
14928 }
14929
14930 /* Duplicate inst.vectype elements here as necessary.
14931 FIXME: No idea if this is exactly the same as the ARM assembler,
14932 particularly when an insn takes one register and one non-register
14933 operand. */
14934 if (inst.vectype.elems == 1 && els > 1)
14935 {
14936 unsigned j;
14937 inst.vectype.elems = els;
14938 inst.vectype.el[key_el] = inst.vectype.el[0];
14939 for (j = 0; j < els; j++)
14940 if (j != key_el)
14941 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14942 types[j]);
14943 }
14944 else if (inst.vectype.elems == 0 && els > 0)
14945 {
14946 unsigned j;
14947 /* No types were given after the mnemonic, so look for types specified
14948 after each operand. We allow some flexibility here; as long as the
14949 "key" operand has a type, we can infer the others. */
14950 for (j = 0; j < els; j++)
14951 if (inst.operands[j].vectype.type != NT_invtype)
14952 inst.vectype.el[j] = inst.operands[j].vectype;
14953
14954 if (inst.operands[key_el].vectype.type != NT_invtype)
14955 {
14956 for (j = 0; j < els; j++)
14957 if (inst.operands[j].vectype.type == NT_invtype)
14958 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14959 types[j]);
14960 }
14961 else
14962 {
14963 first_error (_("operand types can't be inferred"));
14964 return badtype;
14965 }
14966 }
14967 else if (inst.vectype.elems != els)
14968 {
14969 first_error (_("type specifier has the wrong number of parts"));
14970 return badtype;
14971 }
14972
14973 for (pass = 0; pass < 2; pass++)
14974 {
14975 for (i = 0; i < els; i++)
14976 {
14977 unsigned thisarg = types[i];
14978 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14979 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14980 enum neon_el_type g_type = inst.vectype.el[i].type;
14981 unsigned g_size = inst.vectype.el[i].size;
14982
14983 /* Decay more-specific signed & unsigned types to sign-insensitive
14984 integer types if sign-specific variants are unavailable. */
14985 if ((g_type == NT_signed || g_type == NT_unsigned)
14986 && (types_allowed & N_SU_ALL) == 0)
14987 g_type = NT_integer;
14988
14989 /* If only untyped args are allowed, decay any more specific types to
14990 them. Some instructions only care about signs for some element
14991 sizes, so handle that properly. */
14992 if (((types_allowed & N_UNT) == 0)
14993 && ((g_size == 8 && (types_allowed & N_8) != 0)
14994 || (g_size == 16 && (types_allowed & N_16) != 0)
14995 || (g_size == 32 && (types_allowed & N_32) != 0)
14996 || (g_size == 64 && (types_allowed & N_64) != 0)))
14997 g_type = NT_untyped;
14998
14999 if (pass == 0)
15000 {
15001 if ((thisarg & N_KEY) != 0)
15002 {
15003 k_type = g_type;
15004 k_size = g_size;
15005 key_allowed = thisarg & ~N_KEY;
15006
15007 /* Check architecture constraint on FP16 extension. */
15008 if (k_size == 16
15009 && k_type == NT_float
15010 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15011 {
15012 inst.error = _(BAD_FP16);
15013 return badtype;
15014 }
15015 }
15016 }
15017 else
15018 {
15019 if ((thisarg & N_VFP) != 0)
15020 {
15021 enum neon_shape_el regshape;
15022 unsigned regwidth, match;
15023
15024 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15025 if (ns == NS_NULL)
15026 {
15027 first_error (_("invalid instruction shape"));
15028 return badtype;
15029 }
15030 regshape = neon_shape_tab[ns].el[i];
15031 regwidth = neon_shape_el_size[regshape];
15032
15033 /* In VFP mode, operands must match register widths. If we
15034 have a key operand, use its width, else use the width of
15035 the current operand. */
15036 if (k_size != -1u)
15037 match = k_size;
15038 else
15039 match = g_size;
15040
15041 /* FP16 will use a single precision register. */
15042 if (regwidth == 32 && match == 16)
15043 {
15044 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15045 match = regwidth;
15046 else
15047 {
15048 inst.error = _(BAD_FP16);
15049 return badtype;
15050 }
15051 }
15052
15053 if (regwidth != match)
15054 {
15055 first_error (_("operand size must match register width"));
15056 return badtype;
15057 }
15058 }
15059
15060 if ((thisarg & N_EQK) == 0)
15061 {
15062 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15063
15064 if ((given_type & types_allowed) == 0)
15065 {
15066 first_error (BAD_SIMD_TYPE);
15067 return badtype;
15068 }
15069 }
15070 else
15071 {
15072 enum neon_el_type mod_k_type = k_type;
15073 unsigned mod_k_size = k_size;
15074 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15075 if (g_type != mod_k_type || g_size != mod_k_size)
15076 {
15077 first_error (_("inconsistent types in Neon instruction"));
15078 return badtype;
15079 }
15080 }
15081 }
15082 }
15083 }
15084
15085 return inst.vectype.el[key_el];
15086 }
15087
15088 /* Neon-style VFP instruction forwarding. */
15089
15090 /* Thumb VFP instructions have 0xE in the condition field. */
15091
15092 static void
15093 do_vfp_cond_or_thumb (void)
15094 {
15095 inst.is_neon = 1;
15096
15097 if (thumb_mode)
15098 inst.instruction |= 0xe0000000;
15099 else
15100 inst.instruction |= inst.cond << 28;
15101 }
15102
15103 /* Look up and encode a simple mnemonic, for use as a helper function for the
15104 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15105 etc. It is assumed that operand parsing has already been done, and that the
15106 operands are in the form expected by the given opcode (this isn't necessarily
15107 the same as the form in which they were parsed, hence some massaging must
15108 take place before this function is called).
15109 Checks current arch version against that in the looked-up opcode. */
15110
15111 static void
15112 do_vfp_nsyn_opcode (const char *opname)
15113 {
15114 const struct asm_opcode *opcode;
15115
15116 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15117
15118 if (!opcode)
15119 abort ();
15120
15121 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15122 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15123 _(BAD_FPU));
15124
15125 inst.is_neon = 1;
15126
15127 if (thumb_mode)
15128 {
15129 inst.instruction = opcode->tvalue;
15130 opcode->tencode ();
15131 }
15132 else
15133 {
15134 inst.instruction = (inst.cond << 28) | opcode->avalue;
15135 opcode->aencode ();
15136 }
15137 }
15138
15139 static void
15140 do_vfp_nsyn_add_sub (enum neon_shape rs)
15141 {
15142 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15143
15144 if (rs == NS_FFF || rs == NS_HHH)
15145 {
15146 if (is_add)
15147 do_vfp_nsyn_opcode ("fadds");
15148 else
15149 do_vfp_nsyn_opcode ("fsubs");
15150
15151 /* ARMv8.2 fp16 instruction. */
15152 if (rs == NS_HHH)
15153 do_scalar_fp16_v82_encode ();
15154 }
15155 else
15156 {
15157 if (is_add)
15158 do_vfp_nsyn_opcode ("faddd");
15159 else
15160 do_vfp_nsyn_opcode ("fsubd");
15161 }
15162 }
15163
15164 /* Check operand types to see if this is a VFP instruction, and if so call
15165 PFN (). */
15166
15167 static int
15168 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15169 {
15170 enum neon_shape rs;
15171 struct neon_type_el et;
15172
15173 switch (args)
15174 {
15175 case 2:
15176 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15177 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15178 break;
15179
15180 case 3:
15181 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15182 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15183 N_F_ALL | N_KEY | N_VFP);
15184 break;
15185
15186 default:
15187 abort ();
15188 }
15189
15190 if (et.type != NT_invtype)
15191 {
15192 pfn (rs);
15193 return SUCCESS;
15194 }
15195
15196 inst.error = NULL;
15197 return FAIL;
15198 }
15199
15200 static void
15201 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15202 {
15203 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15204
15205 if (rs == NS_FFF || rs == NS_HHH)
15206 {
15207 if (is_mla)
15208 do_vfp_nsyn_opcode ("fmacs");
15209 else
15210 do_vfp_nsyn_opcode ("fnmacs");
15211
15212 /* ARMv8.2 fp16 instruction. */
15213 if (rs == NS_HHH)
15214 do_scalar_fp16_v82_encode ();
15215 }
15216 else
15217 {
15218 if (is_mla)
15219 do_vfp_nsyn_opcode ("fmacd");
15220 else
15221 do_vfp_nsyn_opcode ("fnmacd");
15222 }
15223 }
15224
15225 static void
15226 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15227 {
15228 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15229
15230 if (rs == NS_FFF || rs == NS_HHH)
15231 {
15232 if (is_fma)
15233 do_vfp_nsyn_opcode ("ffmas");
15234 else
15235 do_vfp_nsyn_opcode ("ffnmas");
15236
15237 /* ARMv8.2 fp16 instruction. */
15238 if (rs == NS_HHH)
15239 do_scalar_fp16_v82_encode ();
15240 }
15241 else
15242 {
15243 if (is_fma)
15244 do_vfp_nsyn_opcode ("ffmad");
15245 else
15246 do_vfp_nsyn_opcode ("ffnmad");
15247 }
15248 }
15249
15250 static void
15251 do_vfp_nsyn_mul (enum neon_shape rs)
15252 {
15253 if (rs == NS_FFF || rs == NS_HHH)
15254 {
15255 do_vfp_nsyn_opcode ("fmuls");
15256
15257 /* ARMv8.2 fp16 instruction. */
15258 if (rs == NS_HHH)
15259 do_scalar_fp16_v82_encode ();
15260 }
15261 else
15262 do_vfp_nsyn_opcode ("fmuld");
15263 }
15264
15265 static void
15266 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15267 {
15268 int is_neg = (inst.instruction & 0x80) != 0;
15269 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15270
15271 if (rs == NS_FF || rs == NS_HH)
15272 {
15273 if (is_neg)
15274 do_vfp_nsyn_opcode ("fnegs");
15275 else
15276 do_vfp_nsyn_opcode ("fabss");
15277
15278 /* ARMv8.2 fp16 instruction. */
15279 if (rs == NS_HH)
15280 do_scalar_fp16_v82_encode ();
15281 }
15282 else
15283 {
15284 if (is_neg)
15285 do_vfp_nsyn_opcode ("fnegd");
15286 else
15287 do_vfp_nsyn_opcode ("fabsd");
15288 }
15289 }
15290
15291 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15292 insns belong to Neon, and are handled elsewhere. */
15293
15294 static void
15295 do_vfp_nsyn_ldm_stm (int is_dbmode)
15296 {
15297 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15298 if (is_ldm)
15299 {
15300 if (is_dbmode)
15301 do_vfp_nsyn_opcode ("fldmdbs");
15302 else
15303 do_vfp_nsyn_opcode ("fldmias");
15304 }
15305 else
15306 {
15307 if (is_dbmode)
15308 do_vfp_nsyn_opcode ("fstmdbs");
15309 else
15310 do_vfp_nsyn_opcode ("fstmias");
15311 }
15312 }
15313
15314 static void
15315 do_vfp_nsyn_sqrt (void)
15316 {
15317 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15318 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15319
15320 if (rs == NS_FF || rs == NS_HH)
15321 {
15322 do_vfp_nsyn_opcode ("fsqrts");
15323
15324 /* ARMv8.2 fp16 instruction. */
15325 if (rs == NS_HH)
15326 do_scalar_fp16_v82_encode ();
15327 }
15328 else
15329 do_vfp_nsyn_opcode ("fsqrtd");
15330 }
15331
15332 static void
15333 do_vfp_nsyn_div (void)
15334 {
15335 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15336 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15337 N_F_ALL | N_KEY | N_VFP);
15338
15339 if (rs == NS_FFF || rs == NS_HHH)
15340 {
15341 do_vfp_nsyn_opcode ("fdivs");
15342
15343 /* ARMv8.2 fp16 instruction. */
15344 if (rs == NS_HHH)
15345 do_scalar_fp16_v82_encode ();
15346 }
15347 else
15348 do_vfp_nsyn_opcode ("fdivd");
15349 }
15350
15351 static void
15352 do_vfp_nsyn_nmul (void)
15353 {
15354 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15355 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15356 N_F_ALL | N_KEY | N_VFP);
15357
15358 if (rs == NS_FFF || rs == NS_HHH)
15359 {
15360 NEON_ENCODE (SINGLE, inst);
15361 do_vfp_sp_dyadic ();
15362
15363 /* ARMv8.2 fp16 instruction. */
15364 if (rs == NS_HHH)
15365 do_scalar_fp16_v82_encode ();
15366 }
15367 else
15368 {
15369 NEON_ENCODE (DOUBLE, inst);
15370 do_vfp_dp_rd_rn_rm ();
15371 }
15372 do_vfp_cond_or_thumb ();
15373
15374 }
15375
15376 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15377 (0, 1, 2, 3). */
15378
15379 static unsigned
15380 neon_logbits (unsigned x)
15381 {
15382 return ffs (x) - 4;
15383 }
15384
15385 #define LOW4(R) ((R) & 0xf)
15386 #define HI1(R) (((R) >> 4) & 1)
15387
15388 static unsigned
15389 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15390 {
15391 switch (et.type)
15392 {
15393 default:
15394 first_error (BAD_EL_TYPE);
15395 return 0;
15396 case NT_float:
15397 switch (inst.operands[0].imm)
15398 {
15399 default:
15400 first_error (_("invalid condition"));
15401 return 0;
15402 case 0x0:
15403 /* eq. */
15404 return 0;
15405 case 0x1:
15406 /* ne. */
15407 return 1;
15408 case 0xa:
15409 /* ge/ */
15410 return 4;
15411 case 0xb:
15412 /* lt. */
15413 return 5;
15414 case 0xc:
15415 /* gt. */
15416 return 6;
15417 case 0xd:
15418 /* le. */
15419 return 7;
15420 }
15421 case NT_integer:
15422 /* only accept eq and ne. */
15423 if (inst.operands[0].imm > 1)
15424 {
15425 first_error (_("invalid condition"));
15426 return 0;
15427 }
15428 return inst.operands[0].imm;
15429 case NT_unsigned:
15430 if (inst.operands[0].imm == 0x2)
15431 return 2;
15432 else if (inst.operands[0].imm == 0x8)
15433 return 3;
15434 else
15435 {
15436 first_error (_("invalid condition"));
15437 return 0;
15438 }
15439 case NT_signed:
15440 switch (inst.operands[0].imm)
15441 {
15442 default:
15443 first_error (_("invalid condition"));
15444 return 0;
15445 case 0xa:
15446 /* ge. */
15447 return 4;
15448 case 0xb:
15449 /* lt. */
15450 return 5;
15451 case 0xc:
15452 /* gt. */
15453 return 6;
15454 case 0xd:
15455 /* le. */
15456 return 7;
15457 }
15458 }
15459 /* Should be unreachable. */
15460 abort ();
15461 }
15462
15463 static void
15464 do_mve_vpt (void)
15465 {
15466 /* We are dealing with a vector predicated block. */
15467 if (inst.operands[0].present)
15468 {
15469 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15470 struct neon_type_el et
15471 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15472 N_EQK);
15473
15474 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15475
15476 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15477
15478 if (et.type == NT_invtype)
15479 return;
15480
15481 if (et.type == NT_float)
15482 {
15483 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15484 BAD_FPU);
15485 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15486 inst.instruction |= (et.size == 16) << 28;
15487 inst.instruction |= 0x3 << 20;
15488 }
15489 else
15490 {
15491 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15492 BAD_EL_TYPE);
15493 inst.instruction |= 1 << 28;
15494 inst.instruction |= neon_logbits (et.size) << 20;
15495 }
15496
15497 if (inst.operands[2].isquad)
15498 {
15499 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15500 inst.instruction |= LOW4 (inst.operands[2].reg);
15501 inst.instruction |= (fcond & 0x2) >> 1;
15502 }
15503 else
15504 {
15505 if (inst.operands[2].reg == REG_SP)
15506 as_tsktsk (MVE_BAD_SP);
15507 inst.instruction |= 1 << 6;
15508 inst.instruction |= (fcond & 0x2) << 4;
15509 inst.instruction |= inst.operands[2].reg;
15510 }
15511 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15512 inst.instruction |= (fcond & 0x4) << 10;
15513 inst.instruction |= (fcond & 0x1) << 7;
15514
15515 }
15516 set_pred_insn_type (VPT_INSN);
15517 now_pred.cc = 0;
15518 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15519 | ((inst.instruction & 0xe000) >> 13);
15520 now_pred.warn_deprecated = FALSE;
15521 now_pred.type = VECTOR_PRED;
15522 inst.is_neon = 1;
15523 }
15524
15525 static void
15526 do_mve_vcmp (void)
15527 {
15528 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15529 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15530 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15531 if (!inst.operands[2].present)
15532 first_error (_("MVE vector or ARM register expected"));
15533 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15534
15535 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15536 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15537 && inst.operands[1].isquad)
15538 {
15539 inst.instruction = N_MNEM_vcmp;
15540 inst.cond = 0x10;
15541 }
15542
15543 if (inst.cond > COND_ALWAYS)
15544 inst.pred_insn_type = INSIDE_VPT_INSN;
15545 else
15546 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15547
15548 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15549 struct neon_type_el et
15550 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15551 N_EQK);
15552
15553 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15554 && !inst.operands[2].iszr, BAD_PC);
15555
15556 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15557
15558 inst.instruction = 0xee010f00;
15559 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15560 inst.instruction |= (fcond & 0x4) << 10;
15561 inst.instruction |= (fcond & 0x1) << 7;
15562 if (et.type == NT_float)
15563 {
15564 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15565 BAD_FPU);
15566 inst.instruction |= (et.size == 16) << 28;
15567 inst.instruction |= 0x3 << 20;
15568 }
15569 else
15570 {
15571 inst.instruction |= 1 << 28;
15572 inst.instruction |= neon_logbits (et.size) << 20;
15573 }
15574 if (inst.operands[2].isquad)
15575 {
15576 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15577 inst.instruction |= (fcond & 0x2) >> 1;
15578 inst.instruction |= LOW4 (inst.operands[2].reg);
15579 }
15580 else
15581 {
15582 if (inst.operands[2].reg == REG_SP)
15583 as_tsktsk (MVE_BAD_SP);
15584 inst.instruction |= 1 << 6;
15585 inst.instruction |= (fcond & 0x2) << 4;
15586 inst.instruction |= inst.operands[2].reg;
15587 }
15588
15589 inst.is_neon = 1;
15590 return;
15591 }
15592
15593 static void
15594 do_mve_vmaxa_vmina (void)
15595 {
15596 if (inst.cond > COND_ALWAYS)
15597 inst.pred_insn_type = INSIDE_VPT_INSN;
15598 else
15599 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15600
15601 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15602 struct neon_type_el et
15603 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15604
15605 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15606 inst.instruction |= neon_logbits (et.size) << 18;
15607 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15608 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15609 inst.instruction |= LOW4 (inst.operands[1].reg);
15610 inst.is_neon = 1;
15611 }
15612
15613 static void
15614 do_mve_vfmas (void)
15615 {
15616 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15617 struct neon_type_el et
15618 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15619
15620 if (inst.cond > COND_ALWAYS)
15621 inst.pred_insn_type = INSIDE_VPT_INSN;
15622 else
15623 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15624
15625 if (inst.operands[2].reg == REG_SP)
15626 as_tsktsk (MVE_BAD_SP);
15627 else if (inst.operands[2].reg == REG_PC)
15628 as_tsktsk (MVE_BAD_PC);
15629
15630 inst.instruction |= (et.size == 16) << 28;
15631 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15632 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15633 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15634 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15635 inst.instruction |= inst.operands[2].reg;
15636 inst.is_neon = 1;
15637 }
15638
15639 static void
15640 do_mve_viddup (void)
15641 {
15642 if (inst.cond > COND_ALWAYS)
15643 inst.pred_insn_type = INSIDE_VPT_INSN;
15644 else
15645 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15646
15647 unsigned imm = inst.relocs[0].exp.X_add_number;
15648 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15649 _("immediate must be either 1, 2, 4 or 8"));
15650
15651 enum neon_shape rs;
15652 struct neon_type_el et;
15653 unsigned Rm;
15654 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15655 {
15656 rs = neon_select_shape (NS_QRI, NS_NULL);
15657 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15658 Rm = 7;
15659 }
15660 else
15661 {
15662 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15663 if (inst.operands[2].reg == REG_SP)
15664 as_tsktsk (MVE_BAD_SP);
15665 else if (inst.operands[2].reg == REG_PC)
15666 first_error (BAD_PC);
15667
15668 rs = neon_select_shape (NS_QRRI, NS_NULL);
15669 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15670 Rm = inst.operands[2].reg >> 1;
15671 }
15672 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15673 inst.instruction |= neon_logbits (et.size) << 20;
15674 inst.instruction |= inst.operands[1].reg << 16;
15675 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15676 inst.instruction |= (imm > 2) << 7;
15677 inst.instruction |= Rm << 1;
15678 inst.instruction |= (imm == 2 || imm == 8);
15679 inst.is_neon = 1;
15680 }
15681
15682 static void
15683 do_mve_vmaxnma_vminnma (void)
15684 {
15685 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15686 struct neon_type_el et
15687 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15688
15689 if (inst.cond > COND_ALWAYS)
15690 inst.pred_insn_type = INSIDE_VPT_INSN;
15691 else
15692 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15693
15694 inst.instruction |= (et.size == 16) << 28;
15695 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15696 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15697 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15698 inst.instruction |= LOW4 (inst.operands[1].reg);
15699 inst.is_neon = 1;
15700 }
15701
15702 static void
15703 do_mve_vcmul (void)
15704 {
15705 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15706 struct neon_type_el et
15707 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15708
15709 if (inst.cond > COND_ALWAYS)
15710 inst.pred_insn_type = INSIDE_VPT_INSN;
15711 else
15712 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15713
15714 unsigned rot = inst.relocs[0].exp.X_add_number;
15715 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15716 _("immediate out of range"));
15717
15718 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15719 || inst.operands[0].reg == inst.operands[2].reg))
15720 as_tsktsk (BAD_MVE_SRCDEST);
15721
15722 inst.instruction |= (et.size == 32) << 28;
15723 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15724 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15725 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15726 inst.instruction |= (rot > 90) << 12;
15727 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15728 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15729 inst.instruction |= LOW4 (inst.operands[2].reg);
15730 inst.instruction |= (rot == 90 || rot == 270);
15731 inst.is_neon = 1;
15732 }
15733
15734 static void
15735 do_vfp_nsyn_cmp (void)
15736 {
15737 enum neon_shape rs;
15738 if (!inst.operands[0].isreg)
15739 {
15740 do_mve_vcmp ();
15741 return;
15742 }
15743 else
15744 {
15745 constraint (inst.operands[2].present, BAD_SYNTAX);
15746 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15747 BAD_FPU);
15748 }
15749
15750 if (inst.operands[1].isreg)
15751 {
15752 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15753 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15754
15755 if (rs == NS_FF || rs == NS_HH)
15756 {
15757 NEON_ENCODE (SINGLE, inst);
15758 do_vfp_sp_monadic ();
15759 }
15760 else
15761 {
15762 NEON_ENCODE (DOUBLE, inst);
15763 do_vfp_dp_rd_rm ();
15764 }
15765 }
15766 else
15767 {
15768 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15769 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15770
15771 switch (inst.instruction & 0x0fffffff)
15772 {
15773 case N_MNEM_vcmp:
15774 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15775 break;
15776 case N_MNEM_vcmpe:
15777 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15778 break;
15779 default:
15780 abort ();
15781 }
15782
15783 if (rs == NS_FI || rs == NS_HI)
15784 {
15785 NEON_ENCODE (SINGLE, inst);
15786 do_vfp_sp_compare_z ();
15787 }
15788 else
15789 {
15790 NEON_ENCODE (DOUBLE, inst);
15791 do_vfp_dp_rd ();
15792 }
15793 }
15794 do_vfp_cond_or_thumb ();
15795
15796 /* ARMv8.2 fp16 instruction. */
15797 if (rs == NS_HI || rs == NS_HH)
15798 do_scalar_fp16_v82_encode ();
15799 }
15800
15801 static void
15802 nsyn_insert_sp (void)
15803 {
15804 inst.operands[1] = inst.operands[0];
15805 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15806 inst.operands[0].reg = REG_SP;
15807 inst.operands[0].isreg = 1;
15808 inst.operands[0].writeback = 1;
15809 inst.operands[0].present = 1;
15810 }
15811
15812 static void
15813 do_vfp_nsyn_push (void)
15814 {
15815 nsyn_insert_sp ();
15816
15817 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15818 _("register list must contain at least 1 and at most 16 "
15819 "registers"));
15820
15821 if (inst.operands[1].issingle)
15822 do_vfp_nsyn_opcode ("fstmdbs");
15823 else
15824 do_vfp_nsyn_opcode ("fstmdbd");
15825 }
15826
15827 static void
15828 do_vfp_nsyn_pop (void)
15829 {
15830 nsyn_insert_sp ();
15831
15832 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15833 _("register list must contain at least 1 and at most 16 "
15834 "registers"));
15835
15836 if (inst.operands[1].issingle)
15837 do_vfp_nsyn_opcode ("fldmias");
15838 else
15839 do_vfp_nsyn_opcode ("fldmiad");
15840 }
15841
15842 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15843 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15844
15845 static void
15846 neon_dp_fixup (struct arm_it* insn)
15847 {
15848 unsigned int i = insn->instruction;
15849 insn->is_neon = 1;
15850
15851 if (thumb_mode)
15852 {
15853 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15854 if (i & (1 << 24))
15855 i |= 1 << 28;
15856
15857 i &= ~(1 << 24);
15858
15859 i |= 0xef000000;
15860 }
15861 else
15862 i |= 0xf2000000;
15863
15864 insn->instruction = i;
15865 }
15866
15867 static void
15868 mve_encode_qqr (int size, int U, int fp)
15869 {
15870 if (inst.operands[2].reg == REG_SP)
15871 as_tsktsk (MVE_BAD_SP);
15872 else if (inst.operands[2].reg == REG_PC)
15873 as_tsktsk (MVE_BAD_PC);
15874
15875 if (fp)
15876 {
15877 /* vadd. */
15878 if (((unsigned)inst.instruction) == 0xd00)
15879 inst.instruction = 0xee300f40;
15880 /* vsub. */
15881 else if (((unsigned)inst.instruction) == 0x200d00)
15882 inst.instruction = 0xee301f40;
15883
15884 /* Setting size which is 1 for F16 and 0 for F32. */
15885 inst.instruction |= (size == 16) << 28;
15886 }
15887 else
15888 {
15889 /* vadd. */
15890 if (((unsigned)inst.instruction) == 0x800)
15891 inst.instruction = 0xee010f40;
15892 /* vsub. */
15893 else if (((unsigned)inst.instruction) == 0x1000800)
15894 inst.instruction = 0xee011f40;
15895 /* vhadd. */
15896 else if (((unsigned)inst.instruction) == 0)
15897 inst.instruction = 0xee000f40;
15898 /* vhsub. */
15899 else if (((unsigned)inst.instruction) == 0x200)
15900 inst.instruction = 0xee001f40;
15901
15902 /* Set U-bit. */
15903 inst.instruction |= U << 28;
15904
15905 /* Setting bits for size. */
15906 inst.instruction |= neon_logbits (size) << 20;
15907 }
15908 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15909 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15910 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15911 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15912 inst.instruction |= inst.operands[2].reg;
15913 inst.is_neon = 1;
15914 }
15915
15916 static void
15917 mve_encode_rqq (unsigned bit28, unsigned size)
15918 {
15919 inst.instruction |= bit28 << 28;
15920 inst.instruction |= neon_logbits (size) << 20;
15921 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15922 inst.instruction |= inst.operands[0].reg << 12;
15923 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15924 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15925 inst.instruction |= LOW4 (inst.operands[2].reg);
15926 inst.is_neon = 1;
15927 }
15928
15929 static void
15930 mve_encode_qqq (int ubit, int size)
15931 {
15932
15933 inst.instruction |= (ubit != 0) << 28;
15934 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15935 inst.instruction |= neon_logbits (size) << 20;
15936 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15937 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15938 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15939 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15940 inst.instruction |= LOW4 (inst.operands[2].reg);
15941
15942 inst.is_neon = 1;
15943 }
15944
15945 static void
15946 mve_encode_rq (unsigned bit28, unsigned size)
15947 {
15948 inst.instruction |= bit28 << 28;
15949 inst.instruction |= neon_logbits (size) << 18;
15950 inst.instruction |= inst.operands[0].reg << 12;
15951 inst.instruction |= LOW4 (inst.operands[1].reg);
15952 inst.is_neon = 1;
15953 }
15954
15955 /* Encode insns with bit pattern:
15956
15957 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15958 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
15959
15960 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15961 different meaning for some instruction. */
15962
15963 static void
15964 neon_three_same (int isquad, int ubit, int size)
15965 {
15966 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15967 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15968 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15969 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15970 inst.instruction |= LOW4 (inst.operands[2].reg);
15971 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15972 inst.instruction |= (isquad != 0) << 6;
15973 inst.instruction |= (ubit != 0) << 24;
15974 if (size != -1)
15975 inst.instruction |= neon_logbits (size) << 20;
15976
15977 neon_dp_fixup (&inst);
15978 }
15979
15980 /* Encode instructions of the form:
15981
15982 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15983 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
15984
15985 Don't write size if SIZE == -1. */
15986
15987 static void
15988 neon_two_same (int qbit, int ubit, int size)
15989 {
15990 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15991 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15992 inst.instruction |= LOW4 (inst.operands[1].reg);
15993 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15994 inst.instruction |= (qbit != 0) << 6;
15995 inst.instruction |= (ubit != 0) << 24;
15996
15997 if (size != -1)
15998 inst.instruction |= neon_logbits (size) << 18;
15999
16000 neon_dp_fixup (&inst);
16001 }
16002
16003 enum vfp_or_neon_is_neon_bits
16004 {
16005 NEON_CHECK_CC = 1,
16006 NEON_CHECK_ARCH = 2,
16007 NEON_CHECK_ARCH8 = 4
16008 };
16009
16010 /* Call this function if an instruction which may have belonged to the VFP or
16011 Neon instruction sets, but turned out to be a Neon instruction (due to the
16012 operand types involved, etc.). We have to check and/or fix-up a couple of
16013 things:
16014
16015 - Make sure the user hasn't attempted to make a Neon instruction
16016 conditional.
16017 - Alter the value in the condition code field if necessary.
16018 - Make sure that the arch supports Neon instructions.
16019
16020 Which of these operations take place depends on bits from enum
16021 vfp_or_neon_is_neon_bits.
16022
16023 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16024 current instruction's condition is COND_ALWAYS, the condition field is
16025 changed to inst.uncond_value. This is necessary because instructions shared
16026 between VFP and Neon may be conditional for the VFP variants only, and the
16027 unconditional Neon version must have, e.g., 0xF in the condition field. */
16028
16029 static int
16030 vfp_or_neon_is_neon (unsigned check)
16031 {
16032 /* Conditions are always legal in Thumb mode (IT blocks). */
16033 if (!thumb_mode && (check & NEON_CHECK_CC))
16034 {
16035 if (inst.cond != COND_ALWAYS)
16036 {
16037 first_error (_(BAD_COND));
16038 return FAIL;
16039 }
16040 if (inst.uncond_value != -1)
16041 inst.instruction |= inst.uncond_value << 28;
16042 }
16043
16044
16045 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16046 || ((check & NEON_CHECK_ARCH8)
16047 && !mark_feature_used (&fpu_neon_ext_armv8)))
16048 {
16049 first_error (_(BAD_FPU));
16050 return FAIL;
16051 }
16052
16053 return SUCCESS;
16054 }
16055
16056 static int
16057 check_simd_pred_availability (int fp, unsigned check)
16058 {
16059 if (inst.cond > COND_ALWAYS)
16060 {
16061 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16062 {
16063 inst.error = BAD_FPU;
16064 return 1;
16065 }
16066 inst.pred_insn_type = INSIDE_VPT_INSN;
16067 }
16068 else if (inst.cond < COND_ALWAYS)
16069 {
16070 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16071 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16072 else if (vfp_or_neon_is_neon (check) == FAIL)
16073 return 2;
16074 }
16075 else
16076 {
16077 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16078 && vfp_or_neon_is_neon (check) == FAIL)
16079 return 3;
16080
16081 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16082 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16083 }
16084 return 0;
16085 }
16086
16087 /* Neon instruction encoders, in approximate order of appearance. */
16088
16089 static void
16090 do_neon_dyadic_i_su (void)
16091 {
16092 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16093 return;
16094
16095 enum neon_shape rs;
16096 struct neon_type_el et;
16097 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16098 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16099 else
16100 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16101
16102 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16103
16104
16105 if (rs != NS_QQR)
16106 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16107 else
16108 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16109 }
16110
16111 static void
16112 do_neon_dyadic_i64_su (void)
16113 {
16114 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16115 struct neon_type_el et = neon_check_type (3, rs,
16116 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16117 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16118 }
16119
16120 static void
16121 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16122 unsigned immbits)
16123 {
16124 unsigned size = et.size >> 3;
16125 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16126 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16127 inst.instruction |= LOW4 (inst.operands[1].reg);
16128 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16129 inst.instruction |= (isquad != 0) << 6;
16130 inst.instruction |= immbits << 16;
16131 inst.instruction |= (size >> 3) << 7;
16132 inst.instruction |= (size & 0x7) << 19;
16133 if (write_ubit)
16134 inst.instruction |= (uval != 0) << 24;
16135
16136 neon_dp_fixup (&inst);
16137 }
16138
16139 static void
16140 do_neon_shl_imm (void)
16141 {
16142 if (!inst.operands[2].isreg)
16143 {
16144 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16145 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16146 int imm = inst.operands[2].imm;
16147
16148 constraint (imm < 0 || (unsigned)imm >= et.size,
16149 _("immediate out of range for shift"));
16150 NEON_ENCODE (IMMED, inst);
16151 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16152 }
16153 else
16154 {
16155 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16156 struct neon_type_el et = neon_check_type (3, rs,
16157 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16158 unsigned int tmp;
16159
16160 /* VSHL/VQSHL 3-register variants have syntax such as:
16161 vshl.xx Dd, Dm, Dn
16162 whereas other 3-register operations encoded by neon_three_same have
16163 syntax like:
16164 vadd.xx Dd, Dn, Dm
16165 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16166 here. */
16167 tmp = inst.operands[2].reg;
16168 inst.operands[2].reg = inst.operands[1].reg;
16169 inst.operands[1].reg = tmp;
16170 NEON_ENCODE (INTEGER, inst);
16171 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16172 }
16173 }
16174
16175 static void
16176 do_neon_qshl_imm (void)
16177 {
16178 if (!inst.operands[2].isreg)
16179 {
16180 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16181 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16182 int imm = inst.operands[2].imm;
16183
16184 constraint (imm < 0 || (unsigned)imm >= et.size,
16185 _("immediate out of range for shift"));
16186 NEON_ENCODE (IMMED, inst);
16187 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16188 }
16189 else
16190 {
16191 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16192 struct neon_type_el et = neon_check_type (3, rs,
16193 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16194 unsigned int tmp;
16195
16196 /* See note in do_neon_shl_imm. */
16197 tmp = inst.operands[2].reg;
16198 inst.operands[2].reg = inst.operands[1].reg;
16199 inst.operands[1].reg = tmp;
16200 NEON_ENCODE (INTEGER, inst);
16201 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16202 }
16203 }
16204
16205 static void
16206 do_neon_rshl (void)
16207 {
16208 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16209 struct neon_type_el et = neon_check_type (3, rs,
16210 N_EQK, N_EQK, N_SU_ALL | N_KEY);
16211 unsigned int tmp;
16212
16213 tmp = inst.operands[2].reg;
16214 inst.operands[2].reg = inst.operands[1].reg;
16215 inst.operands[1].reg = tmp;
16216 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16217 }
16218
16219 static int
16220 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16221 {
16222 /* Handle .I8 pseudo-instructions. */
16223 if (size == 8)
16224 {
16225 /* Unfortunately, this will make everything apart from zero out-of-range.
16226 FIXME is this the intended semantics? There doesn't seem much point in
16227 accepting .I8 if so. */
16228 immediate |= immediate << 8;
16229 size = 16;
16230 }
16231
16232 if (size >= 32)
16233 {
16234 if (immediate == (immediate & 0x000000ff))
16235 {
16236 *immbits = immediate;
16237 return 0x1;
16238 }
16239 else if (immediate == (immediate & 0x0000ff00))
16240 {
16241 *immbits = immediate >> 8;
16242 return 0x3;
16243 }
16244 else if (immediate == (immediate & 0x00ff0000))
16245 {
16246 *immbits = immediate >> 16;
16247 return 0x5;
16248 }
16249 else if (immediate == (immediate & 0xff000000))
16250 {
16251 *immbits = immediate >> 24;
16252 return 0x7;
16253 }
16254 if ((immediate & 0xffff) != (immediate >> 16))
16255 goto bad_immediate;
16256 immediate &= 0xffff;
16257 }
16258
16259 if (immediate == (immediate & 0x000000ff))
16260 {
16261 *immbits = immediate;
16262 return 0x9;
16263 }
16264 else if (immediate == (immediate & 0x0000ff00))
16265 {
16266 *immbits = immediate >> 8;
16267 return 0xb;
16268 }
16269
16270 bad_immediate:
16271 first_error (_("immediate value out of range"));
16272 return FAIL;
16273 }
16274
16275 static void
16276 do_neon_logic (void)
16277 {
16278 if (inst.operands[2].present && inst.operands[2].isreg)
16279 {
16280 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16281 if (rs == NS_QQQ
16282 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16283 == FAIL)
16284 return;
16285 else if (rs != NS_QQQ
16286 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16287 first_error (BAD_FPU);
16288
16289 neon_check_type (3, rs, N_IGNORE_TYPE);
16290 /* U bit and size field were set as part of the bitmask. */
16291 NEON_ENCODE (INTEGER, inst);
16292 neon_three_same (neon_quad (rs), 0, -1);
16293 }
16294 else
16295 {
16296 const int three_ops_form = (inst.operands[2].present
16297 && !inst.operands[2].isreg);
16298 const int immoperand = (three_ops_form ? 2 : 1);
16299 enum neon_shape rs = (three_ops_form
16300 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16301 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16302 /* Because neon_select_shape makes the second operand a copy of the first
16303 if the second operand is not present. */
16304 if (rs == NS_QQI
16305 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16306 == FAIL)
16307 return;
16308 else if (rs != NS_QQI
16309 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16310 first_error (BAD_FPU);
16311
16312 struct neon_type_el et;
16313 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16314 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16315 else
16316 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16317 | N_KEY, N_EQK);
16318
16319 if (et.type == NT_invtype)
16320 return;
16321 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16322 unsigned immbits;
16323 int cmode;
16324
16325
16326 if (three_ops_form)
16327 constraint (inst.operands[0].reg != inst.operands[1].reg,
16328 _("first and second operands shall be the same register"));
16329
16330 NEON_ENCODE (IMMED, inst);
16331
16332 immbits = inst.operands[immoperand].imm;
16333 if (et.size == 64)
16334 {
16335 /* .i64 is a pseudo-op, so the immediate must be a repeating
16336 pattern. */
16337 if (immbits != (inst.operands[immoperand].regisimm ?
16338 inst.operands[immoperand].reg : 0))
16339 {
16340 /* Set immbits to an invalid constant. */
16341 immbits = 0xdeadbeef;
16342 }
16343 }
16344
16345 switch (opcode)
16346 {
16347 case N_MNEM_vbic:
16348 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16349 break;
16350
16351 case N_MNEM_vorr:
16352 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16353 break;
16354
16355 case N_MNEM_vand:
16356 /* Pseudo-instruction for VBIC. */
16357 neon_invert_size (&immbits, 0, et.size);
16358 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16359 break;
16360
16361 case N_MNEM_vorn:
16362 /* Pseudo-instruction for VORR. */
16363 neon_invert_size (&immbits, 0, et.size);
16364 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16365 break;
16366
16367 default:
16368 abort ();
16369 }
16370
16371 if (cmode == FAIL)
16372 return;
16373
16374 inst.instruction |= neon_quad (rs) << 6;
16375 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16376 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16377 inst.instruction |= cmode << 8;
16378 neon_write_immbits (immbits);
16379
16380 neon_dp_fixup (&inst);
16381 }
16382 }
16383
16384 static void
16385 do_neon_bitfield (void)
16386 {
16387 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16388 neon_check_type (3, rs, N_IGNORE_TYPE);
16389 neon_three_same (neon_quad (rs), 0, -1);
16390 }
16391
16392 static void
16393 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16394 unsigned destbits)
16395 {
16396 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16397 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16398 types | N_KEY);
16399 if (et.type == NT_float)
16400 {
16401 NEON_ENCODE (FLOAT, inst);
16402 if (rs == NS_QQR)
16403 mve_encode_qqr (et.size, 0, 1);
16404 else
16405 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16406 }
16407 else
16408 {
16409 NEON_ENCODE (INTEGER, inst);
16410 if (rs == NS_QQR)
16411 mve_encode_qqr (et.size, 0, 0);
16412 else
16413 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16414 }
16415 }
16416
16417
16418 static void
16419 do_neon_dyadic_if_su_d (void)
16420 {
16421 /* This version only allow D registers, but that constraint is enforced during
16422 operand parsing so we don't need to do anything extra here. */
16423 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16424 }
16425
16426 static void
16427 do_neon_dyadic_if_i_d (void)
16428 {
16429 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16430 affected if we specify unsigned args. */
16431 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16432 }
16433
16434 static void
16435 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16436 {
16437 constraint (size < 32, BAD_ADDR_MODE);
16438 constraint (size != elsize, BAD_EL_TYPE);
16439 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16440 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16441 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16442 _("destination register and offset register may not be the"
16443 " same"));
16444
16445 int imm = inst.relocs[0].exp.X_add_number;
16446 int add = 1;
16447 if (imm < 0)
16448 {
16449 add = 0;
16450 imm = -imm;
16451 }
16452 constraint ((imm % (size / 8) != 0)
16453 || imm > (0x7f << neon_logbits (size)),
16454 (size == 32) ? _("immediate must be a multiple of 4 in the"
16455 " range of +/-[0,508]")
16456 : _("immediate must be a multiple of 8 in the"
16457 " range of +/-[0,1016]"));
16458 inst.instruction |= 0x11 << 24;
16459 inst.instruction |= add << 23;
16460 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16461 inst.instruction |= inst.operands[1].writeback << 21;
16462 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16463 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16464 inst.instruction |= 1 << 12;
16465 inst.instruction |= (size == 64) << 8;
16466 inst.instruction &= 0xffffff00;
16467 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16468 inst.instruction |= imm >> neon_logbits (size);
16469 }
16470
16471 static void
16472 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16473 {
16474 unsigned os = inst.operands[1].imm >> 5;
16475 constraint (os != 0 && size == 8,
16476 _("can not shift offsets when accessing less than half-word"));
16477 constraint (os && os != neon_logbits (size),
16478 _("shift immediate must be 1, 2 or 3 for half-word, word"
16479 " or double-word accesses respectively"));
16480 if (inst.operands[1].reg == REG_PC)
16481 as_tsktsk (MVE_BAD_PC);
16482
16483 switch (size)
16484 {
16485 case 8:
16486 constraint (elsize >= 64, BAD_EL_TYPE);
16487 break;
16488 case 16:
16489 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16490 break;
16491 case 32:
16492 case 64:
16493 constraint (elsize != size, BAD_EL_TYPE);
16494 break;
16495 default:
16496 break;
16497 }
16498 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16499 BAD_ADDR_MODE);
16500 if (load)
16501 {
16502 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16503 _("destination register and offset register may not be"
16504 " the same"));
16505 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16506 BAD_EL_TYPE);
16507 constraint (inst.vectype.el[0].type != NT_unsigned
16508 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16509 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16510 }
16511 else
16512 {
16513 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16514 }
16515
16516 inst.instruction |= 1 << 23;
16517 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16518 inst.instruction |= inst.operands[1].reg << 16;
16519 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16520 inst.instruction |= neon_logbits (elsize) << 7;
16521 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16522 inst.instruction |= LOW4 (inst.operands[1].imm);
16523 inst.instruction |= !!os;
16524 }
16525
16526 static void
16527 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16528 {
16529 enum neon_el_type type = inst.vectype.el[0].type;
16530
16531 constraint (size >= 64, BAD_ADDR_MODE);
16532 switch (size)
16533 {
16534 case 16:
16535 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16536 break;
16537 case 32:
16538 constraint (elsize != size, BAD_EL_TYPE);
16539 break;
16540 default:
16541 break;
16542 }
16543 if (load)
16544 {
16545 constraint (elsize != size && type != NT_unsigned
16546 && type != NT_signed, BAD_EL_TYPE);
16547 }
16548 else
16549 {
16550 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16551 }
16552
16553 int imm = inst.relocs[0].exp.X_add_number;
16554 int add = 1;
16555 if (imm < 0)
16556 {
16557 add = 0;
16558 imm = -imm;
16559 }
16560
16561 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16562 {
16563 switch (size)
16564 {
16565 case 8:
16566 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16567 break;
16568 case 16:
16569 constraint (1, _("immediate must be a multiple of 2 in the"
16570 " range of +/-[0,254]"));
16571 break;
16572 case 32:
16573 constraint (1, _("immediate must be a multiple of 4 in the"
16574 " range of +/-[0,508]"));
16575 break;
16576 }
16577 }
16578
16579 if (size != elsize)
16580 {
16581 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16582 constraint (inst.operands[0].reg > 14,
16583 _("MVE vector register in the range [Q0..Q7] expected"));
16584 inst.instruction |= (load && type == NT_unsigned) << 28;
16585 inst.instruction |= (size == 16) << 19;
16586 inst.instruction |= neon_logbits (elsize) << 7;
16587 }
16588 else
16589 {
16590 if (inst.operands[1].reg == REG_PC)
16591 as_tsktsk (MVE_BAD_PC);
16592 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16593 as_tsktsk (MVE_BAD_SP);
16594 inst.instruction |= 1 << 12;
16595 inst.instruction |= neon_logbits (size) << 7;
16596 }
16597 inst.instruction |= inst.operands[1].preind << 24;
16598 inst.instruction |= add << 23;
16599 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16600 inst.instruction |= inst.operands[1].writeback << 21;
16601 inst.instruction |= inst.operands[1].reg << 16;
16602 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16603 inst.instruction &= 0xffffff80;
16604 inst.instruction |= imm >> neon_logbits (size);
16605
16606 }
16607
16608 static void
16609 do_mve_vstr_vldr (void)
16610 {
16611 unsigned size;
16612 int load = 0;
16613
16614 if (inst.cond > COND_ALWAYS)
16615 inst.pred_insn_type = INSIDE_VPT_INSN;
16616 else
16617 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16618
16619 switch (inst.instruction)
16620 {
16621 default:
16622 gas_assert (0);
16623 break;
16624 case M_MNEM_vldrb:
16625 load = 1;
16626 /* fall through. */
16627 case M_MNEM_vstrb:
16628 size = 8;
16629 break;
16630 case M_MNEM_vldrh:
16631 load = 1;
16632 /* fall through. */
16633 case M_MNEM_vstrh:
16634 size = 16;
16635 break;
16636 case M_MNEM_vldrw:
16637 load = 1;
16638 /* fall through. */
16639 case M_MNEM_vstrw:
16640 size = 32;
16641 break;
16642 case M_MNEM_vldrd:
16643 load = 1;
16644 /* fall through. */
16645 case M_MNEM_vstrd:
16646 size = 64;
16647 break;
16648 }
16649 unsigned elsize = inst.vectype.el[0].size;
16650
16651 if (inst.operands[1].isquad)
16652 {
16653 /* We are dealing with [Q, imm]{!} cases. */
16654 do_mve_vstr_vldr_QI (size, elsize, load);
16655 }
16656 else
16657 {
16658 if (inst.operands[1].immisreg == 2)
16659 {
16660 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16661 do_mve_vstr_vldr_RQ (size, elsize, load);
16662 }
16663 else if (!inst.operands[1].immisreg)
16664 {
16665 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16666 do_mve_vstr_vldr_RI (size, elsize, load);
16667 }
16668 else
16669 constraint (1, BAD_ADDR_MODE);
16670 }
16671
16672 inst.is_neon = 1;
16673 }
16674
16675 static void
16676 do_mve_vst_vld (void)
16677 {
16678 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16679 return;
16680
16681 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16682 || inst.relocs[0].exp.X_add_number != 0
16683 || inst.operands[1].immisreg != 0,
16684 BAD_ADDR_MODE);
16685 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16686 if (inst.operands[1].reg == REG_PC)
16687 as_tsktsk (MVE_BAD_PC);
16688 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16689 as_tsktsk (MVE_BAD_SP);
16690
16691
16692 /* These instructions are one of the "exceptions" mentioned in
16693 handle_pred_state. They are MVE instructions that are not VPT compatible
16694 and do not accept a VPT code, thus appending such a code is a syntax
16695 error. */
16696 if (inst.cond > COND_ALWAYS)
16697 first_error (BAD_SYNTAX);
16698 /* If we append a scalar condition code we can set this to
16699 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16700 else if (inst.cond < COND_ALWAYS)
16701 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16702 else
16703 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16704
16705 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16706 inst.instruction |= inst.operands[1].writeback << 21;
16707 inst.instruction |= inst.operands[1].reg << 16;
16708 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16709 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16710 inst.is_neon = 1;
16711 }
16712
16713 static void
16714 do_mve_vaddlv (void)
16715 {
16716 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16717 struct neon_type_el et
16718 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16719
16720 if (et.type == NT_invtype)
16721 first_error (BAD_EL_TYPE);
16722
16723 if (inst.cond > COND_ALWAYS)
16724 inst.pred_insn_type = INSIDE_VPT_INSN;
16725 else
16726 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16727
16728 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16729
16730 inst.instruction |= (et.type == NT_unsigned) << 28;
16731 inst.instruction |= inst.operands[1].reg << 19;
16732 inst.instruction |= inst.operands[0].reg << 12;
16733 inst.instruction |= inst.operands[2].reg;
16734 inst.is_neon = 1;
16735 }
16736
16737 static void
16738 do_neon_dyadic_if_su (void)
16739 {
16740 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16741 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16742 N_SUF_32 | N_KEY);
16743
16744 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
16745 || inst.instruction == ((unsigned) N_MNEM_vmin))
16746 && et.type == NT_float
16747 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
16748
16749 if (check_simd_pred_availability (et.type == NT_float,
16750 NEON_CHECK_ARCH | NEON_CHECK_CC))
16751 return;
16752
16753 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16754 }
16755
16756 static void
16757 do_neon_addsub_if_i (void)
16758 {
16759 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16760 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16761 return;
16762
16763 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16764 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16765 N_EQK, N_IF_32 | N_I64 | N_KEY);
16766
16767 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16768 /* If we are parsing Q registers and the element types match MVE, which NEON
16769 also supports, then we must check whether this is an instruction that can
16770 be used by both MVE/NEON. This distinction can be made based on whether
16771 they are predicated or not. */
16772 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16773 {
16774 if (check_simd_pred_availability (et.type == NT_float,
16775 NEON_CHECK_ARCH | NEON_CHECK_CC))
16776 return;
16777 }
16778 else
16779 {
16780 /* If they are either in a D register or are using an unsupported. */
16781 if (rs != NS_QQR
16782 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16783 return;
16784 }
16785
16786 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16787 affected if we specify unsigned args. */
16788 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
16789 }
16790
16791 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16792 result to be:
16793 V<op> A,B (A is operand 0, B is operand 2)
16794 to mean:
16795 V<op> A,B,A
16796 not:
16797 V<op> A,B,B
16798 so handle that case specially. */
16799
16800 static void
16801 neon_exchange_operands (void)
16802 {
16803 if (inst.operands[1].present)
16804 {
16805 void *scratch = xmalloc (sizeof (inst.operands[0]));
16806
16807 /* Swap operands[1] and operands[2]. */
16808 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16809 inst.operands[1] = inst.operands[2];
16810 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
16811 free (scratch);
16812 }
16813 else
16814 {
16815 inst.operands[1] = inst.operands[2];
16816 inst.operands[2] = inst.operands[0];
16817 }
16818 }
16819
16820 static void
16821 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16822 {
16823 if (inst.operands[2].isreg)
16824 {
16825 if (invert)
16826 neon_exchange_operands ();
16827 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
16828 }
16829 else
16830 {
16831 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16832 struct neon_type_el et = neon_check_type (2, rs,
16833 N_EQK | N_SIZ, immtypes | N_KEY);
16834
16835 NEON_ENCODE (IMMED, inst);
16836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16837 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16838 inst.instruction |= LOW4 (inst.operands[1].reg);
16839 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16840 inst.instruction |= neon_quad (rs) << 6;
16841 inst.instruction |= (et.type == NT_float) << 10;
16842 inst.instruction |= neon_logbits (et.size) << 18;
16843
16844 neon_dp_fixup (&inst);
16845 }
16846 }
16847
16848 static void
16849 do_neon_cmp (void)
16850 {
16851 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
16852 }
16853
16854 static void
16855 do_neon_cmp_inv (void)
16856 {
16857 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
16858 }
16859
16860 static void
16861 do_neon_ceq (void)
16862 {
16863 neon_compare (N_IF_32, N_IF_32, FALSE);
16864 }
16865
16866 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
16867 scalars, which are encoded in 5 bits, M : Rm.
16868 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16869 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
16870 index in M.
16871
16872 Dot Product instructions are similar to multiply instructions except elsize
16873 should always be 32.
16874
16875 This function translates SCALAR, which is GAS's internal encoding of indexed
16876 scalar register, to raw encoding. There is also register and index range
16877 check based on ELSIZE. */
16878
16879 static unsigned
16880 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16881 {
16882 unsigned regno = NEON_SCALAR_REG (scalar);
16883 unsigned elno = NEON_SCALAR_INDEX (scalar);
16884
16885 switch (elsize)
16886 {
16887 case 16:
16888 if (regno > 7 || elno > 3)
16889 goto bad_scalar;
16890 return regno | (elno << 3);
16891
16892 case 32:
16893 if (regno > 15 || elno > 1)
16894 goto bad_scalar;
16895 return regno | (elno << 4);
16896
16897 default:
16898 bad_scalar:
16899 first_error (_("scalar out of range for multiply instruction"));
16900 }
16901
16902 return 0;
16903 }
16904
16905 /* Encode multiply / multiply-accumulate scalar instructions. */
16906
16907 static void
16908 neon_mul_mac (struct neon_type_el et, int ubit)
16909 {
16910 unsigned scalar;
16911
16912 /* Give a more helpful error message if we have an invalid type. */
16913 if (et.type == NT_invtype)
16914 return;
16915
16916 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
16917 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16918 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16919 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16920 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16921 inst.instruction |= LOW4 (scalar);
16922 inst.instruction |= HI1 (scalar) << 5;
16923 inst.instruction |= (et.type == NT_float) << 8;
16924 inst.instruction |= neon_logbits (et.size) << 20;
16925 inst.instruction |= (ubit != 0) << 24;
16926
16927 neon_dp_fixup (&inst);
16928 }
16929
16930 static void
16931 do_neon_mac_maybe_scalar (void)
16932 {
16933 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16934 return;
16935
16936 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16937 return;
16938
16939 if (inst.operands[2].isscalar)
16940 {
16941 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16942 struct neon_type_el et = neon_check_type (3, rs,
16943 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
16944 NEON_ENCODE (SCALAR, inst);
16945 neon_mul_mac (et, neon_quad (rs));
16946 }
16947 else
16948 {
16949 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16950 affected if we specify unsigned args. */
16951 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16952 }
16953 }
16954
16955 static void
16956 do_neon_fmac (void)
16957 {
16958 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
16959 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
16960 return;
16961
16962 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
16963 return;
16964
16965 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
16966 {
16967 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16968 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
16969 N_EQK);
16970
16971 if (rs == NS_QQR)
16972 {
16973 if (inst.operands[2].reg == REG_SP)
16974 as_tsktsk (MVE_BAD_SP);
16975 else if (inst.operands[2].reg == REG_PC)
16976 as_tsktsk (MVE_BAD_PC);
16977
16978 inst.instruction = 0xee310e40;
16979 inst.instruction |= (et.size == 16) << 28;
16980 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16981 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16982 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16983 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
16984 inst.instruction |= inst.operands[2].reg;
16985 inst.is_neon = 1;
16986 return;
16987 }
16988 }
16989 else
16990 {
16991 constraint (!inst.operands[2].isvec, BAD_FPU);
16992 }
16993
16994 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16995 }
16996
16997 static void
16998 do_neon_tst (void)
16999 {
17000 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17001 struct neon_type_el et = neon_check_type (3, rs,
17002 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17003 neon_three_same (neon_quad (rs), 0, et.size);
17004 }
17005
17006 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17007 same types as the MAC equivalents. The polynomial type for this instruction
17008 is encoded the same as the integer type. */
17009
17010 static void
17011 do_neon_mul (void)
17012 {
17013 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17014 return;
17015
17016 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17017 return;
17018
17019 if (inst.operands[2].isscalar)
17020 do_neon_mac_maybe_scalar ();
17021 else
17022 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17023 }
17024
17025 static void
17026 do_neon_qdmulh (void)
17027 {
17028 if (inst.operands[2].isscalar)
17029 {
17030 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17031 struct neon_type_el et = neon_check_type (3, rs,
17032 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17033 NEON_ENCODE (SCALAR, inst);
17034 neon_mul_mac (et, neon_quad (rs));
17035 }
17036 else
17037 {
17038 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17039 struct neon_type_el et = neon_check_type (3, rs,
17040 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17041 NEON_ENCODE (INTEGER, inst);
17042 /* The U bit (rounding) comes from bit mask. */
17043 neon_three_same (neon_quad (rs), 0, et.size);
17044 }
17045 }
17046
17047 static void
17048 do_mve_vaddv (void)
17049 {
17050 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17051 struct neon_type_el et
17052 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17053
17054 if (et.type == NT_invtype)
17055 first_error (BAD_EL_TYPE);
17056
17057 if (inst.cond > COND_ALWAYS)
17058 inst.pred_insn_type = INSIDE_VPT_INSN;
17059 else
17060 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17061
17062 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17063
17064 mve_encode_rq (et.type == NT_unsigned, et.size);
17065 }
17066
17067 static void
17068 do_mve_vhcadd (void)
17069 {
17070 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17071 struct neon_type_el et
17072 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17073
17074 if (inst.cond > COND_ALWAYS)
17075 inst.pred_insn_type = INSIDE_VPT_INSN;
17076 else
17077 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17078
17079 unsigned rot = inst.relocs[0].exp.X_add_number;
17080 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17081
17082 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17083 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17084 "operand makes instruction UNPREDICTABLE"));
17085
17086 mve_encode_qqq (0, et.size);
17087 inst.instruction |= (rot == 270) << 12;
17088 inst.is_neon = 1;
17089 }
17090
17091 static void
17092 do_mve_vadc (void)
17093 {
17094 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17095 struct neon_type_el et
17096 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17097
17098 if (et.type == NT_invtype)
17099 first_error (BAD_EL_TYPE);
17100
17101 if (inst.cond > COND_ALWAYS)
17102 inst.pred_insn_type = INSIDE_VPT_INSN;
17103 else
17104 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17105
17106 mve_encode_qqq (0, 64);
17107 }
17108
17109 static void
17110 do_mve_vbrsr (void)
17111 {
17112 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17113 struct neon_type_el et
17114 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17115
17116 if (inst.cond > COND_ALWAYS)
17117 inst.pred_insn_type = INSIDE_VPT_INSN;
17118 else
17119 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17120
17121 mve_encode_qqr (et.size, 0, 0);
17122 }
17123
17124 static void
17125 do_mve_vsbc (void)
17126 {
17127 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17128
17129 if (inst.cond > COND_ALWAYS)
17130 inst.pred_insn_type = INSIDE_VPT_INSN;
17131 else
17132 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17133
17134 mve_encode_qqq (1, 64);
17135 }
17136
17137 static void
17138 do_mve_vmull (void)
17139 {
17140
17141 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17142 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17143 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17144 && inst.cond == COND_ALWAYS
17145 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17146 {
17147 if (rs == NS_QQQ)
17148 {
17149
17150 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17151 N_SUF_32 | N_F64 | N_P8
17152 | N_P16 | N_I_MVE | N_KEY);
17153 if (((et.type == NT_poly) && et.size == 8
17154 && ARM_CPU_IS_ANY (cpu_variant))
17155 || (et.type == NT_integer) || (et.type == NT_float))
17156 goto neon_vmul;
17157 }
17158 else
17159 goto neon_vmul;
17160 }
17161
17162 constraint (rs != NS_QQQ, BAD_FPU);
17163 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17164 N_SU_32 | N_P8 | N_P16 | N_KEY);
17165
17166 /* We are dealing with MVE's vmullt. */
17167 if (et.size == 32
17168 && (inst.operands[0].reg == inst.operands[1].reg
17169 || inst.operands[0].reg == inst.operands[2].reg))
17170 as_tsktsk (BAD_MVE_SRCDEST);
17171
17172 if (inst.cond > COND_ALWAYS)
17173 inst.pred_insn_type = INSIDE_VPT_INSN;
17174 else
17175 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17176
17177 if (et.type == NT_poly)
17178 mve_encode_qqq (neon_logbits (et.size), 64);
17179 else
17180 mve_encode_qqq (et.type == NT_unsigned, et.size);
17181
17182 return;
17183
17184 neon_vmul:
17185 inst.instruction = N_MNEM_vmul;
17186 inst.cond = 0xb;
17187 if (thumb_mode)
17188 inst.pred_insn_type = INSIDE_IT_INSN;
17189 do_neon_mul ();
17190 }
17191
17192 static void
17193 do_mve_vabav (void)
17194 {
17195 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17196
17197 if (rs == NS_NULL)
17198 return;
17199
17200 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17201 return;
17202
17203 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17204 | N_S16 | N_S32 | N_U8 | N_U16
17205 | N_U32);
17206
17207 if (inst.cond > COND_ALWAYS)
17208 inst.pred_insn_type = INSIDE_VPT_INSN;
17209 else
17210 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17211
17212 mve_encode_rqq (et.type == NT_unsigned, et.size);
17213 }
17214
17215 static void
17216 do_mve_vmladav (void)
17217 {
17218 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17219 struct neon_type_el et = neon_check_type (3, rs,
17220 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17221
17222 if (et.type == NT_unsigned
17223 && (inst.instruction == M_MNEM_vmladavx
17224 || inst.instruction == M_MNEM_vmladavax
17225 || inst.instruction == M_MNEM_vmlsdav
17226 || inst.instruction == M_MNEM_vmlsdava
17227 || inst.instruction == M_MNEM_vmlsdavx
17228 || inst.instruction == M_MNEM_vmlsdavax))
17229 first_error (BAD_SIMD_TYPE);
17230
17231 constraint (inst.operands[2].reg > 14,
17232 _("MVE vector register in the range [Q0..Q7] expected"));
17233
17234 if (inst.cond > COND_ALWAYS)
17235 inst.pred_insn_type = INSIDE_VPT_INSN;
17236 else
17237 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17238
17239 if (inst.instruction == M_MNEM_vmlsdav
17240 || inst.instruction == M_MNEM_vmlsdava
17241 || inst.instruction == M_MNEM_vmlsdavx
17242 || inst.instruction == M_MNEM_vmlsdavax)
17243 inst.instruction |= (et.size == 8) << 28;
17244 else
17245 inst.instruction |= (et.size == 8) << 8;
17246
17247 mve_encode_rqq (et.type == NT_unsigned, 64);
17248 inst.instruction |= (et.size == 32) << 16;
17249 }
17250
17251 static void
17252 do_mve_vmaxnmv (void)
17253 {
17254 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17255 struct neon_type_el et
17256 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17257
17258 if (inst.cond > COND_ALWAYS)
17259 inst.pred_insn_type = INSIDE_VPT_INSN;
17260 else
17261 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17262
17263 if (inst.operands[0].reg == REG_SP)
17264 as_tsktsk (MVE_BAD_SP);
17265 else if (inst.operands[0].reg == REG_PC)
17266 as_tsktsk (MVE_BAD_PC);
17267
17268 mve_encode_rq (et.size == 16, 64);
17269 }
17270
17271 static void
17272 do_neon_qrdmlah (void)
17273 {
17274 /* Check we're on the correct architecture. */
17275 if (!mark_feature_used (&fpu_neon_ext_armv8))
17276 inst.error =
17277 _("instruction form not available on this architecture.");
17278 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17279 {
17280 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17281 record_feature_use (&fpu_neon_ext_v8_1);
17282 }
17283
17284 if (inst.operands[2].isscalar)
17285 {
17286 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17287 struct neon_type_el et = neon_check_type (3, rs,
17288 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17289 NEON_ENCODE (SCALAR, inst);
17290 neon_mul_mac (et, neon_quad (rs));
17291 }
17292 else
17293 {
17294 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17295 struct neon_type_el et = neon_check_type (3, rs,
17296 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17297 NEON_ENCODE (INTEGER, inst);
17298 /* The U bit (rounding) comes from bit mask. */
17299 neon_three_same (neon_quad (rs), 0, et.size);
17300 }
17301 }
17302
17303 static void
17304 do_neon_fcmp_absolute (void)
17305 {
17306 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17307 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17308 N_F_16_32 | N_KEY);
17309 /* Size field comes from bit mask. */
17310 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17311 }
17312
17313 static void
17314 do_neon_fcmp_absolute_inv (void)
17315 {
17316 neon_exchange_operands ();
17317 do_neon_fcmp_absolute ();
17318 }
17319
17320 static void
17321 do_neon_step (void)
17322 {
17323 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17324 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17325 N_F_16_32 | N_KEY);
17326 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17327 }
17328
17329 static void
17330 do_neon_abs_neg (void)
17331 {
17332 enum neon_shape rs;
17333 struct neon_type_el et;
17334
17335 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17336 return;
17337
17338 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17339 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17340
17341 if (check_simd_pred_availability (et.type == NT_float,
17342 NEON_CHECK_ARCH | NEON_CHECK_CC))
17343 return;
17344
17345 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17346 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17347 inst.instruction |= LOW4 (inst.operands[1].reg);
17348 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17349 inst.instruction |= neon_quad (rs) << 6;
17350 inst.instruction |= (et.type == NT_float) << 10;
17351 inst.instruction |= neon_logbits (et.size) << 18;
17352
17353 neon_dp_fixup (&inst);
17354 }
17355
17356 static void
17357 do_neon_sli (void)
17358 {
17359 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17360 struct neon_type_el et = neon_check_type (2, rs,
17361 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17362 int imm = inst.operands[2].imm;
17363 constraint (imm < 0 || (unsigned)imm >= et.size,
17364 _("immediate out of range for insert"));
17365 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17366 }
17367
17368 static void
17369 do_neon_sri (void)
17370 {
17371 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17372 struct neon_type_el et = neon_check_type (2, rs,
17373 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17374 int imm = inst.operands[2].imm;
17375 constraint (imm < 1 || (unsigned)imm > et.size,
17376 _("immediate out of range for insert"));
17377 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17378 }
17379
17380 static void
17381 do_neon_qshlu_imm (void)
17382 {
17383 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17384 struct neon_type_el et = neon_check_type (2, rs,
17385 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17386 int imm = inst.operands[2].imm;
17387 constraint (imm < 0 || (unsigned)imm >= et.size,
17388 _("immediate out of range for shift"));
17389 /* Only encodes the 'U present' variant of the instruction.
17390 In this case, signed types have OP (bit 8) set to 0.
17391 Unsigned types have OP set to 1. */
17392 inst.instruction |= (et.type == NT_unsigned) << 8;
17393 /* The rest of the bits are the same as other immediate shifts. */
17394 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17395 }
17396
17397 static void
17398 do_neon_qmovn (void)
17399 {
17400 struct neon_type_el et = neon_check_type (2, NS_DQ,
17401 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17402 /* Saturating move where operands can be signed or unsigned, and the
17403 destination has the same signedness. */
17404 NEON_ENCODE (INTEGER, inst);
17405 if (et.type == NT_unsigned)
17406 inst.instruction |= 0xc0;
17407 else
17408 inst.instruction |= 0x80;
17409 neon_two_same (0, 1, et.size / 2);
17410 }
17411
17412 static void
17413 do_neon_qmovun (void)
17414 {
17415 struct neon_type_el et = neon_check_type (2, NS_DQ,
17416 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17417 /* Saturating move with unsigned results. Operands must be signed. */
17418 NEON_ENCODE (INTEGER, inst);
17419 neon_two_same (0, 1, et.size / 2);
17420 }
17421
17422 static void
17423 do_neon_rshift_sat_narrow (void)
17424 {
17425 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17426 or unsigned. If operands are unsigned, results must also be unsigned. */
17427 struct neon_type_el et = neon_check_type (2, NS_DQI,
17428 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17429 int imm = inst.operands[2].imm;
17430 /* This gets the bounds check, size encoding and immediate bits calculation
17431 right. */
17432 et.size /= 2;
17433
17434 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17435 VQMOVN.I<size> <Dd>, <Qm>. */
17436 if (imm == 0)
17437 {
17438 inst.operands[2].present = 0;
17439 inst.instruction = N_MNEM_vqmovn;
17440 do_neon_qmovn ();
17441 return;
17442 }
17443
17444 constraint (imm < 1 || (unsigned)imm > et.size,
17445 _("immediate out of range"));
17446 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17447 }
17448
17449 static void
17450 do_neon_rshift_sat_narrow_u (void)
17451 {
17452 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17453 or unsigned. If operands are unsigned, results must also be unsigned. */
17454 struct neon_type_el et = neon_check_type (2, NS_DQI,
17455 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17456 int imm = inst.operands[2].imm;
17457 /* This gets the bounds check, size encoding and immediate bits calculation
17458 right. */
17459 et.size /= 2;
17460
17461 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17462 VQMOVUN.I<size> <Dd>, <Qm>. */
17463 if (imm == 0)
17464 {
17465 inst.operands[2].present = 0;
17466 inst.instruction = N_MNEM_vqmovun;
17467 do_neon_qmovun ();
17468 return;
17469 }
17470
17471 constraint (imm < 1 || (unsigned)imm > et.size,
17472 _("immediate out of range"));
17473 /* FIXME: The manual is kind of unclear about what value U should have in
17474 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17475 must be 1. */
17476 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17477 }
17478
17479 static void
17480 do_neon_movn (void)
17481 {
17482 struct neon_type_el et = neon_check_type (2, NS_DQ,
17483 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17484 NEON_ENCODE (INTEGER, inst);
17485 neon_two_same (0, 1, et.size / 2);
17486 }
17487
17488 static void
17489 do_neon_rshift_narrow (void)
17490 {
17491 struct neon_type_el et = neon_check_type (2, NS_DQI,
17492 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17493 int imm = inst.operands[2].imm;
17494 /* This gets the bounds check, size encoding and immediate bits calculation
17495 right. */
17496 et.size /= 2;
17497
17498 /* If immediate is zero then we are a pseudo-instruction for
17499 VMOVN.I<size> <Dd>, <Qm> */
17500 if (imm == 0)
17501 {
17502 inst.operands[2].present = 0;
17503 inst.instruction = N_MNEM_vmovn;
17504 do_neon_movn ();
17505 return;
17506 }
17507
17508 constraint (imm < 1 || (unsigned)imm > et.size,
17509 _("immediate out of range for narrowing operation"));
17510 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17511 }
17512
17513 static void
17514 do_neon_shll (void)
17515 {
17516 /* FIXME: Type checking when lengthening. */
17517 struct neon_type_el et = neon_check_type (2, NS_QDI,
17518 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17519 unsigned imm = inst.operands[2].imm;
17520
17521 if (imm == et.size)
17522 {
17523 /* Maximum shift variant. */
17524 NEON_ENCODE (INTEGER, inst);
17525 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17526 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17527 inst.instruction |= LOW4 (inst.operands[1].reg);
17528 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17529 inst.instruction |= neon_logbits (et.size) << 18;
17530
17531 neon_dp_fixup (&inst);
17532 }
17533 else
17534 {
17535 /* A more-specific type check for non-max versions. */
17536 et = neon_check_type (2, NS_QDI,
17537 N_EQK | N_DBL, N_SU_32 | N_KEY);
17538 NEON_ENCODE (IMMED, inst);
17539 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17540 }
17541 }
17542
17543 /* Check the various types for the VCVT instruction, and return which version
17544 the current instruction is. */
17545
17546 #define CVT_FLAVOUR_VAR \
17547 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17548 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17549 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17550 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17551 /* Half-precision conversions. */ \
17552 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17553 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17554 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17555 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17556 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17557 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17558 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17559 Compared with single/double precision variants, only the co-processor \
17560 field is different, so the encoding flow is reused here. */ \
17561 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17562 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17563 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17564 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17565 /* VFP instructions. */ \
17566 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17567 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17568 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17569 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17570 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17571 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17572 /* VFP instructions with bitshift. */ \
17573 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17574 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17575 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17576 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17577 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17578 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17579 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17580 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17581
17582 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17583 neon_cvt_flavour_##C,
17584
17585 /* The different types of conversions we can do. */
17586 enum neon_cvt_flavour
17587 {
17588 CVT_FLAVOUR_VAR
17589 neon_cvt_flavour_invalid,
17590 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17591 };
17592
17593 #undef CVT_VAR
17594
17595 static enum neon_cvt_flavour
17596 get_neon_cvt_flavour (enum neon_shape rs)
17597 {
17598 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17599 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17600 if (et.type != NT_invtype) \
17601 { \
17602 inst.error = NULL; \
17603 return (neon_cvt_flavour_##C); \
17604 }
17605
17606 struct neon_type_el et;
17607 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
17608 || rs == NS_FF) ? N_VFP : 0;
17609 /* The instruction versions which take an immediate take one register
17610 argument, which is extended to the width of the full register. Thus the
17611 "source" and "destination" registers must have the same width. Hack that
17612 here by making the size equal to the key (wider, in this case) operand. */
17613 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
17614
17615 CVT_FLAVOUR_VAR;
17616
17617 return neon_cvt_flavour_invalid;
17618 #undef CVT_VAR
17619 }
17620
17621 enum neon_cvt_mode
17622 {
17623 neon_cvt_mode_a,
17624 neon_cvt_mode_n,
17625 neon_cvt_mode_p,
17626 neon_cvt_mode_m,
17627 neon_cvt_mode_z,
17628 neon_cvt_mode_x,
17629 neon_cvt_mode_r
17630 };
17631
17632 /* Neon-syntax VFP conversions. */
17633
17634 static void
17635 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
17636 {
17637 const char *opname = 0;
17638
17639 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17640 || rs == NS_FHI || rs == NS_HFI)
17641 {
17642 /* Conversions with immediate bitshift. */
17643 const char *enc[] =
17644 {
17645 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17646 CVT_FLAVOUR_VAR
17647 NULL
17648 #undef CVT_VAR
17649 };
17650
17651 if (flavour < (int) ARRAY_SIZE (enc))
17652 {
17653 opname = enc[flavour];
17654 constraint (inst.operands[0].reg != inst.operands[1].reg,
17655 _("operands 0 and 1 must be the same register"));
17656 inst.operands[1] = inst.operands[2];
17657 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17658 }
17659 }
17660 else
17661 {
17662 /* Conversions without bitshift. */
17663 const char *enc[] =
17664 {
17665 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17666 CVT_FLAVOUR_VAR
17667 NULL
17668 #undef CVT_VAR
17669 };
17670
17671 if (flavour < (int) ARRAY_SIZE (enc))
17672 opname = enc[flavour];
17673 }
17674
17675 if (opname)
17676 do_vfp_nsyn_opcode (opname);
17677
17678 /* ARMv8.2 fp16 VCVT instruction. */
17679 if (flavour == neon_cvt_flavour_s32_f16
17680 || flavour == neon_cvt_flavour_u32_f16
17681 || flavour == neon_cvt_flavour_f16_u32
17682 || flavour == neon_cvt_flavour_f16_s32)
17683 do_scalar_fp16_v82_encode ();
17684 }
17685
17686 static void
17687 do_vfp_nsyn_cvtz (void)
17688 {
17689 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
17690 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17691 const char *enc[] =
17692 {
17693 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17694 CVT_FLAVOUR_VAR
17695 NULL
17696 #undef CVT_VAR
17697 };
17698
17699 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
17700 do_vfp_nsyn_opcode (enc[flavour]);
17701 }
17702
17703 static void
17704 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
17705 enum neon_cvt_mode mode)
17706 {
17707 int sz, op;
17708 int rm;
17709
17710 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17711 D register operands. */
17712 if (flavour == neon_cvt_flavour_s32_f64
17713 || flavour == neon_cvt_flavour_u32_f64)
17714 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17715 _(BAD_FPU));
17716
17717 if (flavour == neon_cvt_flavour_s32_f16
17718 || flavour == neon_cvt_flavour_u32_f16)
17719 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17720 _(BAD_FP16));
17721
17722 set_pred_insn_type (OUTSIDE_PRED_INSN);
17723
17724 switch (flavour)
17725 {
17726 case neon_cvt_flavour_s32_f64:
17727 sz = 1;
17728 op = 1;
17729 break;
17730 case neon_cvt_flavour_s32_f32:
17731 sz = 0;
17732 op = 1;
17733 break;
17734 case neon_cvt_flavour_s32_f16:
17735 sz = 0;
17736 op = 1;
17737 break;
17738 case neon_cvt_flavour_u32_f64:
17739 sz = 1;
17740 op = 0;
17741 break;
17742 case neon_cvt_flavour_u32_f32:
17743 sz = 0;
17744 op = 0;
17745 break;
17746 case neon_cvt_flavour_u32_f16:
17747 sz = 0;
17748 op = 0;
17749 break;
17750 default:
17751 first_error (_("invalid instruction shape"));
17752 return;
17753 }
17754
17755 switch (mode)
17756 {
17757 case neon_cvt_mode_a: rm = 0; break;
17758 case neon_cvt_mode_n: rm = 1; break;
17759 case neon_cvt_mode_p: rm = 2; break;
17760 case neon_cvt_mode_m: rm = 3; break;
17761 default: first_error (_("invalid rounding mode")); return;
17762 }
17763
17764 NEON_ENCODE (FPV8, inst);
17765 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17766 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17767 inst.instruction |= sz << 8;
17768
17769 /* ARMv8.2 fp16 VCVT instruction. */
17770 if (flavour == neon_cvt_flavour_s32_f16
17771 ||flavour == neon_cvt_flavour_u32_f16)
17772 do_scalar_fp16_v82_encode ();
17773 inst.instruction |= op << 7;
17774 inst.instruction |= rm << 16;
17775 inst.instruction |= 0xf0000000;
17776 inst.is_neon = TRUE;
17777 }
17778
17779 static void
17780 do_neon_cvt_1 (enum neon_cvt_mode mode)
17781 {
17782 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
17783 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17784 NS_FH, NS_HF, NS_FHI, NS_HFI,
17785 NS_NULL);
17786 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17787
17788 if (flavour == neon_cvt_flavour_invalid)
17789 return;
17790
17791 /* PR11109: Handle round-to-zero for VCVT conversions. */
17792 if (mode == neon_cvt_mode_z
17793 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
17794 && (flavour == neon_cvt_flavour_s16_f16
17795 || flavour == neon_cvt_flavour_u16_f16
17796 || flavour == neon_cvt_flavour_s32_f32
17797 || flavour == neon_cvt_flavour_u32_f32
17798 || flavour == neon_cvt_flavour_s32_f64
17799 || flavour == neon_cvt_flavour_u32_f64)
17800 && (rs == NS_FD || rs == NS_FF))
17801 {
17802 do_vfp_nsyn_cvtz ();
17803 return;
17804 }
17805
17806 /* ARMv8.2 fp16 VCVT conversions. */
17807 if (mode == neon_cvt_mode_z
17808 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17809 && (flavour == neon_cvt_flavour_s32_f16
17810 || flavour == neon_cvt_flavour_u32_f16)
17811 && (rs == NS_FH))
17812 {
17813 do_vfp_nsyn_cvtz ();
17814 do_scalar_fp16_v82_encode ();
17815 return;
17816 }
17817
17818 /* VFP rather than Neon conversions. */
17819 if (flavour >= neon_cvt_flavour_first_fp)
17820 {
17821 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17822 do_vfp_nsyn_cvt (rs, flavour);
17823 else
17824 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17825
17826 return;
17827 }
17828
17829 switch (rs)
17830 {
17831 case NS_QQI:
17832 if (mode == neon_cvt_mode_z
17833 && (flavour == neon_cvt_flavour_f16_s16
17834 || flavour == neon_cvt_flavour_f16_u16
17835 || flavour == neon_cvt_flavour_s16_f16
17836 || flavour == neon_cvt_flavour_u16_f16
17837 || flavour == neon_cvt_flavour_f32_u32
17838 || flavour == neon_cvt_flavour_f32_s32
17839 || flavour == neon_cvt_flavour_s32_f32
17840 || flavour == neon_cvt_flavour_u32_f32))
17841 {
17842 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17843 return;
17844 }
17845 else if (mode == neon_cvt_mode_n)
17846 {
17847 /* We are dealing with vcvt with the 'ne' condition. */
17848 inst.cond = 0x1;
17849 inst.instruction = N_MNEM_vcvt;
17850 do_neon_cvt_1 (neon_cvt_mode_z);
17851 return;
17852 }
17853 /* fall through. */
17854 case NS_DDI:
17855 {
17856 unsigned immbits;
17857 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17858 0x0000100, 0x1000100, 0x0, 0x1000000};
17859
17860 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17861 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17862 return;
17863
17864 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17865 {
17866 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17867 _("immediate value out of range"));
17868 switch (flavour)
17869 {
17870 case neon_cvt_flavour_f16_s16:
17871 case neon_cvt_flavour_f16_u16:
17872 case neon_cvt_flavour_s16_f16:
17873 case neon_cvt_flavour_u16_f16:
17874 constraint (inst.operands[2].imm > 16,
17875 _("immediate value out of range"));
17876 break;
17877 case neon_cvt_flavour_f32_u32:
17878 case neon_cvt_flavour_f32_s32:
17879 case neon_cvt_flavour_s32_f32:
17880 case neon_cvt_flavour_u32_f32:
17881 constraint (inst.operands[2].imm > 32,
17882 _("immediate value out of range"));
17883 break;
17884 default:
17885 inst.error = BAD_FPU;
17886 return;
17887 }
17888 }
17889
17890 /* Fixed-point conversion with #0 immediate is encoded as an
17891 integer conversion. */
17892 if (inst.operands[2].present && inst.operands[2].imm == 0)
17893 goto int_encode;
17894 NEON_ENCODE (IMMED, inst);
17895 if (flavour != neon_cvt_flavour_invalid)
17896 inst.instruction |= enctab[flavour];
17897 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17898 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17899 inst.instruction |= LOW4 (inst.operands[1].reg);
17900 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17901 inst.instruction |= neon_quad (rs) << 6;
17902 inst.instruction |= 1 << 21;
17903 if (flavour < neon_cvt_flavour_s16_f16)
17904 {
17905 inst.instruction |= 1 << 21;
17906 immbits = 32 - inst.operands[2].imm;
17907 inst.instruction |= immbits << 16;
17908 }
17909 else
17910 {
17911 inst.instruction |= 3 << 20;
17912 immbits = 16 - inst.operands[2].imm;
17913 inst.instruction |= immbits << 16;
17914 inst.instruction &= ~(1 << 9);
17915 }
17916
17917 neon_dp_fixup (&inst);
17918 }
17919 break;
17920
17921 case NS_QQ:
17922 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17923 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17924 && (flavour == neon_cvt_flavour_s16_f16
17925 || flavour == neon_cvt_flavour_u16_f16
17926 || flavour == neon_cvt_flavour_s32_f32
17927 || flavour == neon_cvt_flavour_u32_f32))
17928 {
17929 if (check_simd_pred_availability (1,
17930 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17931 return;
17932 }
17933 else if (mode == neon_cvt_mode_z
17934 && (flavour == neon_cvt_flavour_f16_s16
17935 || flavour == neon_cvt_flavour_f16_u16
17936 || flavour == neon_cvt_flavour_s16_f16
17937 || flavour == neon_cvt_flavour_u16_f16
17938 || flavour == neon_cvt_flavour_f32_u32
17939 || flavour == neon_cvt_flavour_f32_s32
17940 || flavour == neon_cvt_flavour_s32_f32
17941 || flavour == neon_cvt_flavour_u32_f32))
17942 {
17943 if (check_simd_pred_availability (1,
17944 NEON_CHECK_CC | NEON_CHECK_ARCH))
17945 return;
17946 }
17947 /* fall through. */
17948 case NS_DD:
17949 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17950 {
17951
17952 NEON_ENCODE (FLOAT, inst);
17953 if (check_simd_pred_availability (1,
17954 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17955 return;
17956
17957 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17958 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17959 inst.instruction |= LOW4 (inst.operands[1].reg);
17960 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17961 inst.instruction |= neon_quad (rs) << 6;
17962 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17963 || flavour == neon_cvt_flavour_u32_f32) << 7;
17964 inst.instruction |= mode << 8;
17965 if (flavour == neon_cvt_flavour_u16_f16
17966 || flavour == neon_cvt_flavour_s16_f16)
17967 /* Mask off the original size bits and reencode them. */
17968 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17969
17970 if (thumb_mode)
17971 inst.instruction |= 0xfc000000;
17972 else
17973 inst.instruction |= 0xf0000000;
17974 }
17975 else
17976 {
17977 int_encode:
17978 {
17979 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
17980 0x100, 0x180, 0x0, 0x080};
17981
17982 NEON_ENCODE (INTEGER, inst);
17983
17984 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17985 {
17986 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17987 return;
17988 }
17989
17990 if (flavour != neon_cvt_flavour_invalid)
17991 inst.instruction |= enctab[flavour];
17992
17993 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17994 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17995 inst.instruction |= LOW4 (inst.operands[1].reg);
17996 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17997 inst.instruction |= neon_quad (rs) << 6;
17998 if (flavour >= neon_cvt_flavour_s16_f16
17999 && flavour <= neon_cvt_flavour_f16_u16)
18000 /* Half precision. */
18001 inst.instruction |= 1 << 18;
18002 else
18003 inst.instruction |= 2 << 18;
18004
18005 neon_dp_fixup (&inst);
18006 }
18007 }
18008 break;
18009
18010 /* Half-precision conversions for Advanced SIMD -- neon. */
18011 case NS_QD:
18012 case NS_DQ:
18013 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18014 return;
18015
18016 if ((rs == NS_DQ)
18017 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18018 {
18019 as_bad (_("operand size must match register width"));
18020 break;
18021 }
18022
18023 if ((rs == NS_QD)
18024 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18025 {
18026 as_bad (_("operand size must match register width"));
18027 break;
18028 }
18029
18030 if (rs == NS_DQ)
18031 inst.instruction = 0x3b60600;
18032 else
18033 inst.instruction = 0x3b60700;
18034
18035 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18036 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18037 inst.instruction |= LOW4 (inst.operands[1].reg);
18038 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18039 neon_dp_fixup (&inst);
18040 break;
18041
18042 default:
18043 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18044 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18045 do_vfp_nsyn_cvt (rs, flavour);
18046 else
18047 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18048 }
18049 }
18050
18051 static void
18052 do_neon_cvtr (void)
18053 {
18054 do_neon_cvt_1 (neon_cvt_mode_x);
18055 }
18056
18057 static void
18058 do_neon_cvt (void)
18059 {
18060 do_neon_cvt_1 (neon_cvt_mode_z);
18061 }
18062
18063 static void
18064 do_neon_cvta (void)
18065 {
18066 do_neon_cvt_1 (neon_cvt_mode_a);
18067 }
18068
18069 static void
18070 do_neon_cvtn (void)
18071 {
18072 do_neon_cvt_1 (neon_cvt_mode_n);
18073 }
18074
18075 static void
18076 do_neon_cvtp (void)
18077 {
18078 do_neon_cvt_1 (neon_cvt_mode_p);
18079 }
18080
18081 static void
18082 do_neon_cvtm (void)
18083 {
18084 do_neon_cvt_1 (neon_cvt_mode_m);
18085 }
18086
18087 static void
18088 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
18089 {
18090 if (is_double)
18091 mark_feature_used (&fpu_vfp_ext_armv8);
18092
18093 encode_arm_vfp_reg (inst.operands[0].reg,
18094 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18095 encode_arm_vfp_reg (inst.operands[1].reg,
18096 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18097 inst.instruction |= to ? 0x10000 : 0;
18098 inst.instruction |= t ? 0x80 : 0;
18099 inst.instruction |= is_double ? 0x100 : 0;
18100 do_vfp_cond_or_thumb ();
18101 }
18102
18103 static void
18104 do_neon_cvttb_1 (bfd_boolean t)
18105 {
18106 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
18107 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
18108
18109 if (rs == NS_NULL)
18110 return;
18111 else if (rs == NS_QQ || rs == NS_QQI)
18112 {
18113 int single_to_half = 0;
18114 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18115 return;
18116
18117 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18118
18119 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18120 && (flavour == neon_cvt_flavour_u16_f16
18121 || flavour == neon_cvt_flavour_s16_f16
18122 || flavour == neon_cvt_flavour_f16_s16
18123 || flavour == neon_cvt_flavour_f16_u16
18124 || flavour == neon_cvt_flavour_u32_f32
18125 || flavour == neon_cvt_flavour_s32_f32
18126 || flavour == neon_cvt_flavour_f32_s32
18127 || flavour == neon_cvt_flavour_f32_u32))
18128 {
18129 inst.cond = 0xf;
18130 inst.instruction = N_MNEM_vcvt;
18131 set_pred_insn_type (INSIDE_VPT_INSN);
18132 do_neon_cvt_1 (neon_cvt_mode_z);
18133 return;
18134 }
18135 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18136 single_to_half = 1;
18137 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18138 {
18139 first_error (BAD_FPU);
18140 return;
18141 }
18142
18143 inst.instruction = 0xee3f0e01;
18144 inst.instruction |= single_to_half << 28;
18145 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18146 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18147 inst.instruction |= t << 12;
18148 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18149 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18150 inst.is_neon = 1;
18151 }
18152 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18153 {
18154 inst.error = NULL;
18155 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18156 }
18157 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18158 {
18159 inst.error = NULL;
18160 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18161 }
18162 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18163 {
18164 /* The VCVTB and VCVTT instructions with D-register operands
18165 don't work for SP only targets. */
18166 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18167 _(BAD_FPU));
18168
18169 inst.error = NULL;
18170 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18171 }
18172 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18173 {
18174 /* The VCVTB and VCVTT instructions with D-register operands
18175 don't work for SP only targets. */
18176 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18177 _(BAD_FPU));
18178
18179 inst.error = NULL;
18180 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18181 }
18182 else
18183 return;
18184 }
18185
18186 static void
18187 do_neon_cvtb (void)
18188 {
18189 do_neon_cvttb_1 (FALSE);
18190 }
18191
18192
18193 static void
18194 do_neon_cvtt (void)
18195 {
18196 do_neon_cvttb_1 (TRUE);
18197 }
18198
18199 static void
18200 neon_move_immediate (void)
18201 {
18202 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18203 struct neon_type_el et = neon_check_type (2, rs,
18204 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
18205 unsigned immlo, immhi = 0, immbits;
18206 int op, cmode, float_p;
18207
18208 constraint (et.type == NT_invtype,
18209 _("operand size must be specified for immediate VMOV"));
18210
18211 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18212 op = (inst.instruction & (1 << 5)) != 0;
18213
18214 immlo = inst.operands[1].imm;
18215 if (inst.operands[1].regisimm)
18216 immhi = inst.operands[1].reg;
18217
18218 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
18219 _("immediate has bits set outside the operand size"));
18220
18221 float_p = inst.operands[1].immisfloat;
18222
18223 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
18224 et.size, et.type)) == FAIL)
18225 {
18226 /* Invert relevant bits only. */
18227 neon_invert_size (&immlo, &immhi, et.size);
18228 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18229 with one or the other; those cases are caught by
18230 neon_cmode_for_move_imm. */
18231 op = !op;
18232 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18233 &op, et.size, et.type)) == FAIL)
18234 {
18235 first_error (_("immediate out of range"));
18236 return;
18237 }
18238 }
18239
18240 inst.instruction &= ~(1 << 5);
18241 inst.instruction |= op << 5;
18242
18243 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18244 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18245 inst.instruction |= neon_quad (rs) << 6;
18246 inst.instruction |= cmode << 8;
18247
18248 neon_write_immbits (immbits);
18249 }
18250
18251 static void
18252 do_neon_mvn (void)
18253 {
18254 if (inst.operands[1].isreg)
18255 {
18256 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18257
18258 NEON_ENCODE (INTEGER, inst);
18259 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18260 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18261 inst.instruction |= LOW4 (inst.operands[1].reg);
18262 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18263 inst.instruction |= neon_quad (rs) << 6;
18264 }
18265 else
18266 {
18267 NEON_ENCODE (IMMED, inst);
18268 neon_move_immediate ();
18269 }
18270
18271 neon_dp_fixup (&inst);
18272 }
18273
18274 /* Encode instructions of form:
18275
18276 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18277 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18278
18279 static void
18280 neon_mixed_length (struct neon_type_el et, unsigned size)
18281 {
18282 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18283 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18284 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18285 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18286 inst.instruction |= LOW4 (inst.operands[2].reg);
18287 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18288 inst.instruction |= (et.type == NT_unsigned) << 24;
18289 inst.instruction |= neon_logbits (size) << 20;
18290
18291 neon_dp_fixup (&inst);
18292 }
18293
18294 static void
18295 do_neon_dyadic_long (void)
18296 {
18297 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18298 if (rs == NS_QDD)
18299 {
18300 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18301 return;
18302
18303 NEON_ENCODE (INTEGER, inst);
18304 /* FIXME: Type checking for lengthening op. */
18305 struct neon_type_el et = neon_check_type (3, NS_QDD,
18306 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18307 neon_mixed_length (et, et.size);
18308 }
18309 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18310 && (inst.cond == 0xf || inst.cond == 0x10))
18311 {
18312 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18313 in an IT block with le/lt conditions. */
18314
18315 if (inst.cond == 0xf)
18316 inst.cond = 0xb;
18317 else if (inst.cond == 0x10)
18318 inst.cond = 0xd;
18319
18320 inst.pred_insn_type = INSIDE_IT_INSN;
18321
18322 if (inst.instruction == N_MNEM_vaddl)
18323 {
18324 inst.instruction = N_MNEM_vadd;
18325 do_neon_addsub_if_i ();
18326 }
18327 else if (inst.instruction == N_MNEM_vsubl)
18328 {
18329 inst.instruction = N_MNEM_vsub;
18330 do_neon_addsub_if_i ();
18331 }
18332 else if (inst.instruction == N_MNEM_vabdl)
18333 {
18334 inst.instruction = N_MNEM_vabd;
18335 do_neon_dyadic_if_su ();
18336 }
18337 }
18338 else
18339 first_error (BAD_FPU);
18340 }
18341
18342 static void
18343 do_neon_abal (void)
18344 {
18345 struct neon_type_el et = neon_check_type (3, NS_QDD,
18346 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18347 neon_mixed_length (et, et.size);
18348 }
18349
18350 static void
18351 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18352 {
18353 if (inst.operands[2].isscalar)
18354 {
18355 struct neon_type_el et = neon_check_type (3, NS_QDS,
18356 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18357 NEON_ENCODE (SCALAR, inst);
18358 neon_mul_mac (et, et.type == NT_unsigned);
18359 }
18360 else
18361 {
18362 struct neon_type_el et = neon_check_type (3, NS_QDD,
18363 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18364 NEON_ENCODE (INTEGER, inst);
18365 neon_mixed_length (et, et.size);
18366 }
18367 }
18368
18369 static void
18370 do_neon_mac_maybe_scalar_long (void)
18371 {
18372 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18373 }
18374
18375 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18376 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18377
18378 static unsigned
18379 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18380 {
18381 unsigned regno = NEON_SCALAR_REG (scalar);
18382 unsigned elno = NEON_SCALAR_INDEX (scalar);
18383
18384 if (quad_p)
18385 {
18386 if (regno > 7 || elno > 3)
18387 goto bad_scalar;
18388
18389 return ((regno & 0x7)
18390 | ((elno & 0x1) << 3)
18391 | (((elno >> 1) & 0x1) << 5));
18392 }
18393 else
18394 {
18395 if (regno > 15 || elno > 1)
18396 goto bad_scalar;
18397
18398 return (((regno & 0x1) << 5)
18399 | ((regno >> 1) & 0x7)
18400 | ((elno & 0x1) << 3));
18401 }
18402
18403 bad_scalar:
18404 first_error (_("scalar out of range for multiply instruction"));
18405 return 0;
18406 }
18407
18408 static void
18409 do_neon_fmac_maybe_scalar_long (int subtype)
18410 {
18411 enum neon_shape rs;
18412 int high8;
18413 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18414 field (bits[21:20]) has different meaning. For scalar index variant, it's
18415 used to differentiate add and subtract, otherwise it's with fixed value
18416 0x2. */
18417 int size = -1;
18418
18419 if (inst.cond != COND_ALWAYS)
18420 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18421 "behaviour is UNPREDICTABLE"));
18422
18423 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18424 _(BAD_FP16));
18425
18426 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18427 _(BAD_FPU));
18428
18429 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18430 be a scalar index register. */
18431 if (inst.operands[2].isscalar)
18432 {
18433 high8 = 0xfe000000;
18434 if (subtype)
18435 size = 16;
18436 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18437 }
18438 else
18439 {
18440 high8 = 0xfc000000;
18441 size = 32;
18442 if (subtype)
18443 inst.instruction |= (0x1 << 23);
18444 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18445 }
18446
18447 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18448
18449 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18450 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18451 so we simply pass -1 as size. */
18452 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18453 neon_three_same (quad_p, 0, size);
18454
18455 /* Undo neon_dp_fixup. Redo the high eight bits. */
18456 inst.instruction &= 0x00ffffff;
18457 inst.instruction |= high8;
18458
18459 #define LOW1(R) ((R) & 0x1)
18460 #define HI4(R) (((R) >> 1) & 0xf)
18461 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18462 whether the instruction is in Q form and whether Vm is a scalar indexed
18463 operand. */
18464 if (inst.operands[2].isscalar)
18465 {
18466 unsigned rm
18467 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18468 inst.instruction &= 0xffffffd0;
18469 inst.instruction |= rm;
18470
18471 if (!quad_p)
18472 {
18473 /* Redo Rn as well. */
18474 inst.instruction &= 0xfff0ff7f;
18475 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18476 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18477 }
18478 }
18479 else if (!quad_p)
18480 {
18481 /* Redo Rn and Rm. */
18482 inst.instruction &= 0xfff0ff50;
18483 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18484 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18485 inst.instruction |= HI4 (inst.operands[2].reg);
18486 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18487 }
18488 }
18489
18490 static void
18491 do_neon_vfmal (void)
18492 {
18493 return do_neon_fmac_maybe_scalar_long (0);
18494 }
18495
18496 static void
18497 do_neon_vfmsl (void)
18498 {
18499 return do_neon_fmac_maybe_scalar_long (1);
18500 }
18501
18502 static void
18503 do_neon_dyadic_wide (void)
18504 {
18505 struct neon_type_el et = neon_check_type (3, NS_QQD,
18506 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18507 neon_mixed_length (et, et.size);
18508 }
18509
18510 static void
18511 do_neon_dyadic_narrow (void)
18512 {
18513 struct neon_type_el et = neon_check_type (3, NS_QDD,
18514 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18515 /* Operand sign is unimportant, and the U bit is part of the opcode,
18516 so force the operand type to integer. */
18517 et.type = NT_integer;
18518 neon_mixed_length (et, et.size / 2);
18519 }
18520
18521 static void
18522 do_neon_mul_sat_scalar_long (void)
18523 {
18524 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18525 }
18526
18527 static void
18528 do_neon_vmull (void)
18529 {
18530 if (inst.operands[2].isscalar)
18531 do_neon_mac_maybe_scalar_long ();
18532 else
18533 {
18534 struct neon_type_el et = neon_check_type (3, NS_QDD,
18535 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
18536
18537 if (et.type == NT_poly)
18538 NEON_ENCODE (POLY, inst);
18539 else
18540 NEON_ENCODE (INTEGER, inst);
18541
18542 /* For polynomial encoding the U bit must be zero, and the size must
18543 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18544 obviously, as 0b10). */
18545 if (et.size == 64)
18546 {
18547 /* Check we're on the correct architecture. */
18548 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18549 inst.error =
18550 _("Instruction form not available on this architecture.");
18551
18552 et.size = 32;
18553 }
18554
18555 neon_mixed_length (et, et.size);
18556 }
18557 }
18558
18559 static void
18560 do_neon_ext (void)
18561 {
18562 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
18563 struct neon_type_el et = neon_check_type (3, rs,
18564 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18565 unsigned imm = (inst.operands[3].imm * et.size) / 8;
18566
18567 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18568 _("shift out of range"));
18569 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18570 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18571 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18572 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18573 inst.instruction |= LOW4 (inst.operands[2].reg);
18574 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18575 inst.instruction |= neon_quad (rs) << 6;
18576 inst.instruction |= imm << 8;
18577
18578 neon_dp_fixup (&inst);
18579 }
18580
18581 static void
18582 do_neon_rev (void)
18583 {
18584 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18585 struct neon_type_el et = neon_check_type (2, rs,
18586 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18587 unsigned op = (inst.instruction >> 7) & 3;
18588 /* N (width of reversed regions) is encoded as part of the bitmask. We
18589 extract it here to check the elements to be reversed are smaller.
18590 Otherwise we'd get a reserved instruction. */
18591 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
18592 gas_assert (elsize != 0);
18593 constraint (et.size >= elsize,
18594 _("elements must be smaller than reversal region"));
18595 neon_two_same (neon_quad (rs), 1, et.size);
18596 }
18597
18598 static void
18599 do_neon_dup (void)
18600 {
18601 if (inst.operands[1].isscalar)
18602 {
18603 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18604 BAD_FPU);
18605 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
18606 struct neon_type_el et = neon_check_type (2, rs,
18607 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18608 unsigned sizebits = et.size >> 3;
18609 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
18610 int logsize = neon_logbits (et.size);
18611 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
18612
18613 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
18614 return;
18615
18616 NEON_ENCODE (SCALAR, inst);
18617 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18618 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18619 inst.instruction |= LOW4 (dm);
18620 inst.instruction |= HI1 (dm) << 5;
18621 inst.instruction |= neon_quad (rs) << 6;
18622 inst.instruction |= x << 17;
18623 inst.instruction |= sizebits << 16;
18624
18625 neon_dp_fixup (&inst);
18626 }
18627 else
18628 {
18629 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18630 struct neon_type_el et = neon_check_type (2, rs,
18631 N_8 | N_16 | N_32 | N_KEY, N_EQK);
18632 if (rs == NS_QR)
18633 {
18634 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
18635 return;
18636 }
18637 else
18638 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
18639 BAD_FPU);
18640
18641 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18642 {
18643 if (inst.operands[1].reg == REG_SP)
18644 as_tsktsk (MVE_BAD_SP);
18645 else if (inst.operands[1].reg == REG_PC)
18646 as_tsktsk (MVE_BAD_PC);
18647 }
18648
18649 /* Duplicate ARM register to lanes of vector. */
18650 NEON_ENCODE (ARMREG, inst);
18651 switch (et.size)
18652 {
18653 case 8: inst.instruction |= 0x400000; break;
18654 case 16: inst.instruction |= 0x000020; break;
18655 case 32: inst.instruction |= 0x000000; break;
18656 default: break;
18657 }
18658 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18659 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18660 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
18661 inst.instruction |= neon_quad (rs) << 21;
18662 /* The encoding for this instruction is identical for the ARM and Thumb
18663 variants, except for the condition field. */
18664 do_vfp_cond_or_thumb ();
18665 }
18666 }
18667
18668 static void
18669 do_mve_mov (int toQ)
18670 {
18671 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18672 return;
18673 if (inst.cond > COND_ALWAYS)
18674 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18675
18676 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18677 if (toQ)
18678 {
18679 Q0 = 0;
18680 Q1 = 1;
18681 Rt = 2;
18682 Rt2 = 3;
18683 }
18684
18685 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18686 _("Index one must be [2,3] and index two must be two less than"
18687 " index one."));
18688 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18689 _("General purpose registers may not be the same"));
18690 constraint (inst.operands[Rt].reg == REG_SP
18691 || inst.operands[Rt2].reg == REG_SP,
18692 BAD_SP);
18693 constraint (inst.operands[Rt].reg == REG_PC
18694 || inst.operands[Rt2].reg == REG_PC,
18695 BAD_PC);
18696
18697 inst.instruction = 0xec000f00;
18698 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18699 inst.instruction |= !!toQ << 20;
18700 inst.instruction |= inst.operands[Rt2].reg << 16;
18701 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18702 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18703 inst.instruction |= inst.operands[Rt].reg;
18704 }
18705
18706 static void
18707 do_mve_movn (void)
18708 {
18709 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18710 return;
18711
18712 if (inst.cond > COND_ALWAYS)
18713 inst.pred_insn_type = INSIDE_VPT_INSN;
18714 else
18715 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18716
18717 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18718 | N_KEY);
18719
18720 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18721 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18722 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18723 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18724 inst.instruction |= LOW4 (inst.operands[1].reg);
18725 inst.is_neon = 1;
18726
18727 }
18728
18729 /* VMOV has particularly many variations. It can be one of:
18730 0. VMOV<c><q> <Qd>, <Qm>
18731 1. VMOV<c><q> <Dd>, <Dm>
18732 (Register operations, which are VORR with Rm = Rn.)
18733 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18734 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18735 (Immediate loads.)
18736 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18737 (ARM register to scalar.)
18738 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18739 (Two ARM registers to vector.)
18740 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18741 (Scalar to ARM register.)
18742 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18743 (Vector to two ARM registers.)
18744 8. VMOV.F32 <Sd>, <Sm>
18745 9. VMOV.F64 <Dd>, <Dm>
18746 (VFP register moves.)
18747 10. VMOV.F32 <Sd>, #imm
18748 11. VMOV.F64 <Dd>, #imm
18749 (VFP float immediate load.)
18750 12. VMOV <Rd>, <Sm>
18751 (VFP single to ARM reg.)
18752 13. VMOV <Sd>, <Rm>
18753 (ARM reg to VFP single.)
18754 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18755 (Two ARM regs to two VFP singles.)
18756 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18757 (Two VFP singles to two ARM regs.)
18758 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18759 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18760 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18761 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
18762
18763 These cases can be disambiguated using neon_select_shape, except cases 1/9
18764 and 3/11 which depend on the operand type too.
18765
18766 All the encoded bits are hardcoded by this function.
18767
18768 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18769 Cases 5, 7 may be used with VFPv2 and above.
18770
18771 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
18772 can specify a type where it doesn't make sense to, and is ignored). */
18773
18774 static void
18775 do_neon_mov (void)
18776 {
18777 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18778 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18779 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18780 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18781 NS_NULL);
18782 struct neon_type_el et;
18783 const char *ldconst = 0;
18784
18785 switch (rs)
18786 {
18787 case NS_DD: /* case 1/9. */
18788 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18789 /* It is not an error here if no type is given. */
18790 inst.error = NULL;
18791 if (et.type == NT_float && et.size == 64)
18792 {
18793 do_vfp_nsyn_opcode ("fcpyd");
18794 break;
18795 }
18796 /* fall through. */
18797
18798 case NS_QQ: /* case 0/1. */
18799 {
18800 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18801 return;
18802 /* The architecture manual I have doesn't explicitly state which
18803 value the U bit should have for register->register moves, but
18804 the equivalent VORR instruction has U = 0, so do that. */
18805 inst.instruction = 0x0200110;
18806 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18807 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18808 inst.instruction |= LOW4 (inst.operands[1].reg);
18809 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18810 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18811 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18812 inst.instruction |= neon_quad (rs) << 6;
18813
18814 neon_dp_fixup (&inst);
18815 }
18816 break;
18817
18818 case NS_DI: /* case 3/11. */
18819 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18820 inst.error = NULL;
18821 if (et.type == NT_float && et.size == 64)
18822 {
18823 /* case 11 (fconstd). */
18824 ldconst = "fconstd";
18825 goto encode_fconstd;
18826 }
18827 /* fall through. */
18828
18829 case NS_QI: /* case 2/3. */
18830 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18831 return;
18832 inst.instruction = 0x0800010;
18833 neon_move_immediate ();
18834 neon_dp_fixup (&inst);
18835 break;
18836
18837 case NS_SR: /* case 4. */
18838 {
18839 unsigned bcdebits = 0;
18840 int logsize;
18841 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18842 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
18843
18844 /* .<size> is optional here, defaulting to .32. */
18845 if (inst.vectype.elems == 0
18846 && inst.operands[0].vectype.type == NT_invtype
18847 && inst.operands[1].vectype.type == NT_invtype)
18848 {
18849 inst.vectype.el[0].type = NT_untyped;
18850 inst.vectype.el[0].size = 32;
18851 inst.vectype.elems = 1;
18852 }
18853
18854 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18855 logsize = neon_logbits (et.size);
18856
18857 if (et.size != 32)
18858 {
18859 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18860 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18861 return;
18862 }
18863 else
18864 {
18865 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18866 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18867 _(BAD_FPU));
18868 }
18869
18870 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18871 {
18872 if (inst.operands[1].reg == REG_SP)
18873 as_tsktsk (MVE_BAD_SP);
18874 else if (inst.operands[1].reg == REG_PC)
18875 as_tsktsk (MVE_BAD_PC);
18876 }
18877 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18878
18879 constraint (et.type == NT_invtype, _("bad type for scalar"));
18880 constraint (x >= size / et.size, _("scalar index out of range"));
18881
18882
18883 switch (et.size)
18884 {
18885 case 8: bcdebits = 0x8; break;
18886 case 16: bcdebits = 0x1; break;
18887 case 32: bcdebits = 0x0; break;
18888 default: ;
18889 }
18890
18891 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18892
18893 inst.instruction = 0xe000b10;
18894 do_vfp_cond_or_thumb ();
18895 inst.instruction |= LOW4 (dn) << 16;
18896 inst.instruction |= HI1 (dn) << 7;
18897 inst.instruction |= inst.operands[1].reg << 12;
18898 inst.instruction |= (bcdebits & 3) << 5;
18899 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18900 inst.instruction |= (x >> (3-logsize)) << 16;
18901 }
18902 break;
18903
18904 case NS_DRR: /* case 5 (fmdrr). */
18905 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18906 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18907 _(BAD_FPU));
18908
18909 inst.instruction = 0xc400b10;
18910 do_vfp_cond_or_thumb ();
18911 inst.instruction |= LOW4 (inst.operands[0].reg);
18912 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18913 inst.instruction |= inst.operands[1].reg << 12;
18914 inst.instruction |= inst.operands[2].reg << 16;
18915 break;
18916
18917 case NS_RS: /* case 6. */
18918 {
18919 unsigned logsize;
18920 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18921 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18922 unsigned abcdebits = 0;
18923
18924 /* .<dt> is optional here, defaulting to .32. */
18925 if (inst.vectype.elems == 0
18926 && inst.operands[0].vectype.type == NT_invtype
18927 && inst.operands[1].vectype.type == NT_invtype)
18928 {
18929 inst.vectype.el[0].type = NT_untyped;
18930 inst.vectype.el[0].size = 32;
18931 inst.vectype.elems = 1;
18932 }
18933
18934 et = neon_check_type (2, NS_NULL,
18935 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
18936 logsize = neon_logbits (et.size);
18937
18938 if (et.size != 32)
18939 {
18940 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18941 && vfp_or_neon_is_neon (NEON_CHECK_CC
18942 | NEON_CHECK_ARCH) == FAIL)
18943 return;
18944 }
18945 else
18946 {
18947 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18948 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18949 _(BAD_FPU));
18950 }
18951
18952 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18953 {
18954 if (inst.operands[0].reg == REG_SP)
18955 as_tsktsk (MVE_BAD_SP);
18956 else if (inst.operands[0].reg == REG_PC)
18957 as_tsktsk (MVE_BAD_PC);
18958 }
18959
18960 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18961
18962 constraint (et.type == NT_invtype, _("bad type for scalar"));
18963 constraint (x >= size / et.size, _("scalar index out of range"));
18964
18965 switch (et.size)
18966 {
18967 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18968 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18969 case 32: abcdebits = 0x00; break;
18970 default: ;
18971 }
18972
18973 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18974 inst.instruction = 0xe100b10;
18975 do_vfp_cond_or_thumb ();
18976 inst.instruction |= LOW4 (dn) << 16;
18977 inst.instruction |= HI1 (dn) << 7;
18978 inst.instruction |= inst.operands[0].reg << 12;
18979 inst.instruction |= (abcdebits & 3) << 5;
18980 inst.instruction |= (abcdebits >> 2) << 21;
18981 inst.instruction |= (x >> (3-logsize)) << 16;
18982 }
18983 break;
18984
18985 case NS_RRD: /* case 7 (fmrrd). */
18986 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18987 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18988 _(BAD_FPU));
18989
18990 inst.instruction = 0xc500b10;
18991 do_vfp_cond_or_thumb ();
18992 inst.instruction |= inst.operands[0].reg << 12;
18993 inst.instruction |= inst.operands[1].reg << 16;
18994 inst.instruction |= LOW4 (inst.operands[2].reg);
18995 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18996 break;
18997
18998 case NS_FF: /* case 8 (fcpys). */
18999 do_vfp_nsyn_opcode ("fcpys");
19000 break;
19001
19002 case NS_HI:
19003 case NS_FI: /* case 10 (fconsts). */
19004 ldconst = "fconsts";
19005 encode_fconstd:
19006 if (!inst.operands[1].immisfloat)
19007 {
19008 unsigned new_imm;
19009 /* Immediate has to fit in 8 bits so float is enough. */
19010 float imm = (float) inst.operands[1].imm;
19011 memcpy (&new_imm, &imm, sizeof (float));
19012 /* But the assembly may have been written to provide an integer
19013 bit pattern that equates to a float, so check that the
19014 conversion has worked. */
19015 if (is_quarter_float (new_imm))
19016 {
19017 if (is_quarter_float (inst.operands[1].imm))
19018 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19019
19020 inst.operands[1].imm = new_imm;
19021 inst.operands[1].immisfloat = 1;
19022 }
19023 }
19024
19025 if (is_quarter_float (inst.operands[1].imm))
19026 {
19027 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19028 do_vfp_nsyn_opcode (ldconst);
19029
19030 /* ARMv8.2 fp16 vmov.f16 instruction. */
19031 if (rs == NS_HI)
19032 do_scalar_fp16_v82_encode ();
19033 }
19034 else
19035 first_error (_("immediate out of range"));
19036 break;
19037
19038 case NS_RH:
19039 case NS_RF: /* case 12 (fmrs). */
19040 do_vfp_nsyn_opcode ("fmrs");
19041 /* ARMv8.2 fp16 vmov.f16 instruction. */
19042 if (rs == NS_RH)
19043 do_scalar_fp16_v82_encode ();
19044 break;
19045
19046 case NS_HR:
19047 case NS_FR: /* case 13 (fmsr). */
19048 do_vfp_nsyn_opcode ("fmsr");
19049 /* ARMv8.2 fp16 vmov.f16 instruction. */
19050 if (rs == NS_HR)
19051 do_scalar_fp16_v82_encode ();
19052 break;
19053
19054 case NS_RRSS:
19055 do_mve_mov (0);
19056 break;
19057 case NS_SSRR:
19058 do_mve_mov (1);
19059 break;
19060
19061 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19062 (one of which is a list), but we have parsed four. Do some fiddling to
19063 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19064 expect. */
19065 case NS_RRFF: /* case 14 (fmrrs). */
19066 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19067 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19068 _(BAD_FPU));
19069 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
19070 _("VFP registers must be adjacent"));
19071 inst.operands[2].imm = 2;
19072 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19073 do_vfp_nsyn_opcode ("fmrrs");
19074 break;
19075
19076 case NS_FFRR: /* case 15 (fmsrr). */
19077 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19078 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19079 _(BAD_FPU));
19080 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
19081 _("VFP registers must be adjacent"));
19082 inst.operands[1] = inst.operands[2];
19083 inst.operands[2] = inst.operands[3];
19084 inst.operands[0].imm = 2;
19085 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19086 do_vfp_nsyn_opcode ("fmsrr");
19087 break;
19088
19089 case NS_NULL:
19090 /* neon_select_shape has determined that the instruction
19091 shape is wrong and has already set the error message. */
19092 break;
19093
19094 default:
19095 abort ();
19096 }
19097 }
19098
19099 static void
19100 do_mve_movl (void)
19101 {
19102 if (!(inst.operands[0].present && inst.operands[0].isquad
19103 && inst.operands[1].present && inst.operands[1].isquad
19104 && !inst.operands[2].present))
19105 {
19106 inst.instruction = 0;
19107 inst.cond = 0xb;
19108 if (thumb_mode)
19109 set_pred_insn_type (INSIDE_IT_INSN);
19110 do_neon_mov ();
19111 return;
19112 }
19113
19114 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19115 return;
19116
19117 if (inst.cond != COND_ALWAYS)
19118 inst.pred_insn_type = INSIDE_VPT_INSN;
19119
19120 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19121 | N_S16 | N_U16 | N_KEY);
19122
19123 inst.instruction |= (et.type == NT_unsigned) << 28;
19124 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19125 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19126 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19127 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19128 inst.instruction |= LOW4 (inst.operands[1].reg);
19129 inst.is_neon = 1;
19130 }
19131
19132 static void
19133 do_neon_rshift_round_imm (void)
19134 {
19135 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19136 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19137 int imm = inst.operands[2].imm;
19138
19139 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19140 if (imm == 0)
19141 {
19142 inst.operands[2].present = 0;
19143 do_neon_mov ();
19144 return;
19145 }
19146
19147 constraint (imm < 1 || (unsigned)imm > et.size,
19148 _("immediate out of range for shift"));
19149 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
19150 et.size - imm);
19151 }
19152
19153 static void
19154 do_neon_movhf (void)
19155 {
19156 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19157 constraint (rs != NS_HH, _("invalid suffix"));
19158
19159 if (inst.cond != COND_ALWAYS)
19160 {
19161 if (thumb_mode)
19162 {
19163 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19164 " the behaviour is UNPREDICTABLE"));
19165 }
19166 else
19167 {
19168 inst.error = BAD_COND;
19169 return;
19170 }
19171 }
19172
19173 do_vfp_sp_monadic ();
19174
19175 inst.is_neon = 1;
19176 inst.instruction |= 0xf0000000;
19177 }
19178
19179 static void
19180 do_neon_movl (void)
19181 {
19182 struct neon_type_el et = neon_check_type (2, NS_QD,
19183 N_EQK | N_DBL, N_SU_32 | N_KEY);
19184 unsigned sizebits = et.size >> 3;
19185 inst.instruction |= sizebits << 19;
19186 neon_two_same (0, et.type == NT_unsigned, -1);
19187 }
19188
19189 static void
19190 do_neon_trn (void)
19191 {
19192 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19193 struct neon_type_el et = neon_check_type (2, rs,
19194 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19195 NEON_ENCODE (INTEGER, inst);
19196 neon_two_same (neon_quad (rs), 1, et.size);
19197 }
19198
19199 static void
19200 do_neon_zip_uzp (void)
19201 {
19202 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19203 struct neon_type_el et = neon_check_type (2, rs,
19204 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19205 if (rs == NS_DD && et.size == 32)
19206 {
19207 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19208 inst.instruction = N_MNEM_vtrn;
19209 do_neon_trn ();
19210 return;
19211 }
19212 neon_two_same (neon_quad (rs), 1, et.size);
19213 }
19214
19215 static void
19216 do_neon_sat_abs_neg (void)
19217 {
19218 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19219 struct neon_type_el et = neon_check_type (2, rs,
19220 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19221 neon_two_same (neon_quad (rs), 1, et.size);
19222 }
19223
19224 static void
19225 do_neon_pair_long (void)
19226 {
19227 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19228 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19229 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19230 inst.instruction |= (et.type == NT_unsigned) << 7;
19231 neon_two_same (neon_quad (rs), 1, et.size);
19232 }
19233
19234 static void
19235 do_neon_recip_est (void)
19236 {
19237 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19238 struct neon_type_el et = neon_check_type (2, rs,
19239 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
19240 inst.instruction |= (et.type == NT_float) << 8;
19241 neon_two_same (neon_quad (rs), 1, et.size);
19242 }
19243
19244 static void
19245 do_neon_cls (void)
19246 {
19247 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19248 return;
19249
19250 enum neon_shape rs;
19251 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19252 rs = neon_select_shape (NS_QQ, NS_NULL);
19253 else
19254 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19255
19256 struct neon_type_el et = neon_check_type (2, rs,
19257 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19258 neon_two_same (neon_quad (rs), 1, et.size);
19259 }
19260
19261 static void
19262 do_neon_clz (void)
19263 {
19264 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19265 return;
19266
19267 enum neon_shape rs;
19268 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19269 rs = neon_select_shape (NS_QQ, NS_NULL);
19270 else
19271 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19272
19273 struct neon_type_el et = neon_check_type (2, rs,
19274 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
19275 neon_two_same (neon_quad (rs), 1, et.size);
19276 }
19277
19278 static void
19279 do_neon_cnt (void)
19280 {
19281 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19282 struct neon_type_el et = neon_check_type (2, rs,
19283 N_EQK | N_INT, N_8 | N_KEY);
19284 neon_two_same (neon_quad (rs), 1, et.size);
19285 }
19286
19287 static void
19288 do_neon_swp (void)
19289 {
19290 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19291 neon_two_same (neon_quad (rs), 1, -1);
19292 }
19293
19294 static void
19295 do_neon_tbl_tbx (void)
19296 {
19297 unsigned listlenbits;
19298 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19299
19300 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19301 {
19302 first_error (_("bad list length for table lookup"));
19303 return;
19304 }
19305
19306 listlenbits = inst.operands[1].imm - 1;
19307 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19308 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19309 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19310 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19311 inst.instruction |= LOW4 (inst.operands[2].reg);
19312 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19313 inst.instruction |= listlenbits << 8;
19314
19315 neon_dp_fixup (&inst);
19316 }
19317
19318 static void
19319 do_neon_ldm_stm (void)
19320 {
19321 /* P, U and L bits are part of bitmask. */
19322 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19323 unsigned offsetbits = inst.operands[1].imm * 2;
19324
19325 if (inst.operands[1].issingle)
19326 {
19327 do_vfp_nsyn_ldm_stm (is_dbmode);
19328 return;
19329 }
19330
19331 constraint (is_dbmode && !inst.operands[0].writeback,
19332 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19333
19334 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19335 _("register list must contain at least 1 and at most 16 "
19336 "registers"));
19337
19338 inst.instruction |= inst.operands[0].reg << 16;
19339 inst.instruction |= inst.operands[0].writeback << 21;
19340 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19341 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19342
19343 inst.instruction |= offsetbits;
19344
19345 do_vfp_cond_or_thumb ();
19346 }
19347
19348 static void
19349 do_neon_ldr_str (void)
19350 {
19351 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19352
19353 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19354 And is UNPREDICTABLE in thumb mode. */
19355 if (!is_ldr
19356 && inst.operands[1].reg == REG_PC
19357 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19358 {
19359 if (thumb_mode)
19360 inst.error = _("Use of PC here is UNPREDICTABLE");
19361 else if (warn_on_deprecated)
19362 as_tsktsk (_("Use of PC here is deprecated"));
19363 }
19364
19365 if (inst.operands[0].issingle)
19366 {
19367 if (is_ldr)
19368 do_vfp_nsyn_opcode ("flds");
19369 else
19370 do_vfp_nsyn_opcode ("fsts");
19371
19372 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19373 if (inst.vectype.el[0].size == 16)
19374 do_scalar_fp16_v82_encode ();
19375 }
19376 else
19377 {
19378 if (is_ldr)
19379 do_vfp_nsyn_opcode ("fldd");
19380 else
19381 do_vfp_nsyn_opcode ("fstd");
19382 }
19383 }
19384
19385 static void
19386 do_t_vldr_vstr_sysreg (void)
19387 {
19388 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19389 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19390
19391 /* Use of PC is UNPREDICTABLE. */
19392 if (inst.operands[1].reg == REG_PC)
19393 inst.error = _("Use of PC here is UNPREDICTABLE");
19394
19395 if (inst.operands[1].immisreg)
19396 inst.error = _("instruction does not accept register index");
19397
19398 if (!inst.operands[1].isreg)
19399 inst.error = _("instruction does not accept PC-relative addressing");
19400
19401 if (abs (inst.operands[1].imm) >= (1 << 7))
19402 inst.error = _("immediate value out of range");
19403
19404 inst.instruction = 0xec000f80;
19405 if (is_vldr)
19406 inst.instruction |= 1 << sysreg_vldr_bitno;
19407 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19408 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19409 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19410 }
19411
19412 static void
19413 do_vldr_vstr (void)
19414 {
19415 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19416
19417 /* VLDR/VSTR (System Register). */
19418 if (sysreg_op)
19419 {
19420 if (!mark_feature_used (&arm_ext_v8_1m_main))
19421 as_bad (_("Instruction not permitted on this architecture"));
19422
19423 do_t_vldr_vstr_sysreg ();
19424 }
19425 /* VLDR/VSTR. */
19426 else
19427 {
19428 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19429 as_bad (_("Instruction not permitted on this architecture"));
19430 do_neon_ldr_str ();
19431 }
19432 }
19433
19434 /* "interleave" version also handles non-interleaving register VLD1/VST1
19435 instructions. */
19436
19437 static void
19438 do_neon_ld_st_interleave (void)
19439 {
19440 struct neon_type_el et = neon_check_type (1, NS_NULL,
19441 N_8 | N_16 | N_32 | N_64);
19442 unsigned alignbits = 0;
19443 unsigned idx;
19444 /* The bits in this table go:
19445 0: register stride of one (0) or two (1)
19446 1,2: register list length, minus one (1, 2, 3, 4).
19447 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19448 We use -1 for invalid entries. */
19449 const int typetable[] =
19450 {
19451 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19452 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19453 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19454 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19455 };
19456 int typebits;
19457
19458 if (et.type == NT_invtype)
19459 return;
19460
19461 if (inst.operands[1].immisalign)
19462 switch (inst.operands[1].imm >> 8)
19463 {
19464 case 64: alignbits = 1; break;
19465 case 128:
19466 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19467 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19468 goto bad_alignment;
19469 alignbits = 2;
19470 break;
19471 case 256:
19472 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19473 goto bad_alignment;
19474 alignbits = 3;
19475 break;
19476 default:
19477 bad_alignment:
19478 first_error (_("bad alignment"));
19479 return;
19480 }
19481
19482 inst.instruction |= alignbits << 4;
19483 inst.instruction |= neon_logbits (et.size) << 6;
19484
19485 /* Bits [4:6] of the immediate in a list specifier encode register stride
19486 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19487 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19488 up the right value for "type" in a table based on this value and the given
19489 list style, then stick it back. */
19490 idx = ((inst.operands[0].imm >> 4) & 7)
19491 | (((inst.instruction >> 8) & 3) << 3);
19492
19493 typebits = typetable[idx];
19494
19495 constraint (typebits == -1, _("bad list type for instruction"));
19496 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19497 BAD_EL_TYPE);
19498
19499 inst.instruction &= ~0xf00;
19500 inst.instruction |= typebits << 8;
19501 }
19502
19503 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19504 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19505 otherwise. The variable arguments are a list of pairs of legal (size, align)
19506 values, terminated with -1. */
19507
19508 static int
19509 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19510 {
19511 va_list ap;
19512 int result = FAIL, thissize, thisalign;
19513
19514 if (!inst.operands[1].immisalign)
19515 {
19516 *do_alignment = 0;
19517 return SUCCESS;
19518 }
19519
19520 va_start (ap, do_alignment);
19521
19522 do
19523 {
19524 thissize = va_arg (ap, int);
19525 if (thissize == -1)
19526 break;
19527 thisalign = va_arg (ap, int);
19528
19529 if (size == thissize && align == thisalign)
19530 result = SUCCESS;
19531 }
19532 while (result != SUCCESS);
19533
19534 va_end (ap);
19535
19536 if (result == SUCCESS)
19537 *do_alignment = 1;
19538 else
19539 first_error (_("unsupported alignment for instruction"));
19540
19541 return result;
19542 }
19543
19544 static void
19545 do_neon_ld_st_lane (void)
19546 {
19547 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19548 int align_good, do_alignment = 0;
19549 int logsize = neon_logbits (et.size);
19550 int align = inst.operands[1].imm >> 8;
19551 int n = (inst.instruction >> 8) & 3;
19552 int max_el = 64 / et.size;
19553
19554 if (et.type == NT_invtype)
19555 return;
19556
19557 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
19558 _("bad list length"));
19559 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
19560 _("scalar index out of range"));
19561 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
19562 && et.size == 8,
19563 _("stride of 2 unavailable when element size is 8"));
19564
19565 switch (n)
19566 {
19567 case 0: /* VLD1 / VST1. */
19568 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
19569 32, 32, -1);
19570 if (align_good == FAIL)
19571 return;
19572 if (do_alignment)
19573 {
19574 unsigned alignbits = 0;
19575 switch (et.size)
19576 {
19577 case 16: alignbits = 0x1; break;
19578 case 32: alignbits = 0x3; break;
19579 default: ;
19580 }
19581 inst.instruction |= alignbits << 4;
19582 }
19583 break;
19584
19585 case 1: /* VLD2 / VST2. */
19586 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19587 16, 32, 32, 64, -1);
19588 if (align_good == FAIL)
19589 return;
19590 if (do_alignment)
19591 inst.instruction |= 1 << 4;
19592 break;
19593
19594 case 2: /* VLD3 / VST3. */
19595 constraint (inst.operands[1].immisalign,
19596 _("can't use alignment with this instruction"));
19597 break;
19598
19599 case 3: /* VLD4 / VST4. */
19600 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19601 16, 64, 32, 64, 32, 128, -1);
19602 if (align_good == FAIL)
19603 return;
19604 if (do_alignment)
19605 {
19606 unsigned alignbits = 0;
19607 switch (et.size)
19608 {
19609 case 8: alignbits = 0x1; break;
19610 case 16: alignbits = 0x1; break;
19611 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19612 default: ;
19613 }
19614 inst.instruction |= alignbits << 4;
19615 }
19616 break;
19617
19618 default: ;
19619 }
19620
19621 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19622 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19623 inst.instruction |= 1 << (4 + logsize);
19624
19625 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19626 inst.instruction |= logsize << 10;
19627 }
19628
19629 /* Encode single n-element structure to all lanes VLD<n> instructions. */
19630
19631 static void
19632 do_neon_ld_dup (void)
19633 {
19634 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19635 int align_good, do_alignment = 0;
19636
19637 if (et.type == NT_invtype)
19638 return;
19639
19640 switch ((inst.instruction >> 8) & 3)
19641 {
19642 case 0: /* VLD1. */
19643 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
19644 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19645 &do_alignment, 16, 16, 32, 32, -1);
19646 if (align_good == FAIL)
19647 return;
19648 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
19649 {
19650 case 1: break;
19651 case 2: inst.instruction |= 1 << 5; break;
19652 default: first_error (_("bad list length")); return;
19653 }
19654 inst.instruction |= neon_logbits (et.size) << 6;
19655 break;
19656
19657 case 1: /* VLD2. */
19658 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19659 &do_alignment, 8, 16, 16, 32, 32, 64,
19660 -1);
19661 if (align_good == FAIL)
19662 return;
19663 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
19664 _("bad list length"));
19665 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19666 inst.instruction |= 1 << 5;
19667 inst.instruction |= neon_logbits (et.size) << 6;
19668 break;
19669
19670 case 2: /* VLD3. */
19671 constraint (inst.operands[1].immisalign,
19672 _("can't use alignment with this instruction"));
19673 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
19674 _("bad list length"));
19675 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19676 inst.instruction |= 1 << 5;
19677 inst.instruction |= neon_logbits (et.size) << 6;
19678 break;
19679
19680 case 3: /* VLD4. */
19681 {
19682 int align = inst.operands[1].imm >> 8;
19683 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19684 16, 64, 32, 64, 32, 128, -1);
19685 if (align_good == FAIL)
19686 return;
19687 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19688 _("bad list length"));
19689 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19690 inst.instruction |= 1 << 5;
19691 if (et.size == 32 && align == 128)
19692 inst.instruction |= 0x3 << 6;
19693 else
19694 inst.instruction |= neon_logbits (et.size) << 6;
19695 }
19696 break;
19697
19698 default: ;
19699 }
19700
19701 inst.instruction |= do_alignment << 4;
19702 }
19703
19704 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19705 apart from bits [11:4]. */
19706
19707 static void
19708 do_neon_ldx_stx (void)
19709 {
19710 if (inst.operands[1].isreg)
19711 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19712
19713 switch (NEON_LANE (inst.operands[0].imm))
19714 {
19715 case NEON_INTERLEAVE_LANES:
19716 NEON_ENCODE (INTERLV, inst);
19717 do_neon_ld_st_interleave ();
19718 break;
19719
19720 case NEON_ALL_LANES:
19721 NEON_ENCODE (DUP, inst);
19722 if (inst.instruction == N_INV)
19723 {
19724 first_error ("only loads support such operands");
19725 break;
19726 }
19727 do_neon_ld_dup ();
19728 break;
19729
19730 default:
19731 NEON_ENCODE (LANE, inst);
19732 do_neon_ld_st_lane ();
19733 }
19734
19735 /* L bit comes from bit mask. */
19736 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19737 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19738 inst.instruction |= inst.operands[1].reg << 16;
19739
19740 if (inst.operands[1].postind)
19741 {
19742 int postreg = inst.operands[1].imm & 0xf;
19743 constraint (!inst.operands[1].immisreg,
19744 _("post-index must be a register"));
19745 constraint (postreg == 0xd || postreg == 0xf,
19746 _("bad register for post-index"));
19747 inst.instruction |= postreg;
19748 }
19749 else
19750 {
19751 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
19752 constraint (inst.relocs[0].exp.X_op != O_constant
19753 || inst.relocs[0].exp.X_add_number != 0,
19754 BAD_ADDR_MODE);
19755
19756 if (inst.operands[1].writeback)
19757 {
19758 inst.instruction |= 0xd;
19759 }
19760 else
19761 inst.instruction |= 0xf;
19762 }
19763
19764 if (thumb_mode)
19765 inst.instruction |= 0xf9000000;
19766 else
19767 inst.instruction |= 0xf4000000;
19768 }
19769
19770 /* FP v8. */
19771 static void
19772 do_vfp_nsyn_fpv8 (enum neon_shape rs)
19773 {
19774 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19775 D register operands. */
19776 if (neon_shape_class[rs] == SC_DOUBLE)
19777 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19778 _(BAD_FPU));
19779
19780 NEON_ENCODE (FPV8, inst);
19781
19782 if (rs == NS_FFF || rs == NS_HHH)
19783 {
19784 do_vfp_sp_dyadic ();
19785
19786 /* ARMv8.2 fp16 instruction. */
19787 if (rs == NS_HHH)
19788 do_scalar_fp16_v82_encode ();
19789 }
19790 else
19791 do_vfp_dp_rd_rn_rm ();
19792
19793 if (rs == NS_DDD)
19794 inst.instruction |= 0x100;
19795
19796 inst.instruction |= 0xf0000000;
19797 }
19798
19799 static void
19800 do_vsel (void)
19801 {
19802 set_pred_insn_type (OUTSIDE_PRED_INSN);
19803
19804 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19805 first_error (_("invalid instruction shape"));
19806 }
19807
19808 static void
19809 do_vmaxnm (void)
19810 {
19811 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19812 set_pred_insn_type (OUTSIDE_PRED_INSN);
19813
19814 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19815 return;
19816
19817 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
19818 return;
19819
19820 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
19821 }
19822
19823 static void
19824 do_vrint_1 (enum neon_cvt_mode mode)
19825 {
19826 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
19827 struct neon_type_el et;
19828
19829 if (rs == NS_NULL)
19830 return;
19831
19832 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19833 D register operands. */
19834 if (neon_shape_class[rs] == SC_DOUBLE)
19835 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19836 _(BAD_FPU));
19837
19838 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19839 | N_VFP);
19840 if (et.type != NT_invtype)
19841 {
19842 /* VFP encodings. */
19843 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19844 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
19845 set_pred_insn_type (OUTSIDE_PRED_INSN);
19846
19847 NEON_ENCODE (FPV8, inst);
19848 if (rs == NS_FF || rs == NS_HH)
19849 do_vfp_sp_monadic ();
19850 else
19851 do_vfp_dp_rd_rm ();
19852
19853 switch (mode)
19854 {
19855 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19856 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19857 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19858 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19859 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19860 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19861 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19862 default: abort ();
19863 }
19864
19865 inst.instruction |= (rs == NS_DD) << 8;
19866 do_vfp_cond_or_thumb ();
19867
19868 /* ARMv8.2 fp16 vrint instruction. */
19869 if (rs == NS_HH)
19870 do_scalar_fp16_v82_encode ();
19871 }
19872 else
19873 {
19874 /* Neon encodings (or something broken...). */
19875 inst.error = NULL;
19876 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
19877
19878 if (et.type == NT_invtype)
19879 return;
19880
19881 set_pred_insn_type (OUTSIDE_PRED_INSN);
19882 NEON_ENCODE (FLOAT, inst);
19883
19884 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19885 return;
19886
19887 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19888 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19889 inst.instruction |= LOW4 (inst.operands[1].reg);
19890 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19891 inst.instruction |= neon_quad (rs) << 6;
19892 /* Mask off the original size bits and reencode them. */
19893 inst.instruction = ((inst.instruction & 0xfff3ffff)
19894 | neon_logbits (et.size) << 18);
19895
19896 switch (mode)
19897 {
19898 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19899 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19900 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19901 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19902 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19903 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19904 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19905 default: abort ();
19906 }
19907
19908 if (thumb_mode)
19909 inst.instruction |= 0xfc000000;
19910 else
19911 inst.instruction |= 0xf0000000;
19912 }
19913 }
19914
19915 static void
19916 do_vrintx (void)
19917 {
19918 do_vrint_1 (neon_cvt_mode_x);
19919 }
19920
19921 static void
19922 do_vrintz (void)
19923 {
19924 do_vrint_1 (neon_cvt_mode_z);
19925 }
19926
19927 static void
19928 do_vrintr (void)
19929 {
19930 do_vrint_1 (neon_cvt_mode_r);
19931 }
19932
19933 static void
19934 do_vrinta (void)
19935 {
19936 do_vrint_1 (neon_cvt_mode_a);
19937 }
19938
19939 static void
19940 do_vrintn (void)
19941 {
19942 do_vrint_1 (neon_cvt_mode_n);
19943 }
19944
19945 static void
19946 do_vrintp (void)
19947 {
19948 do_vrint_1 (neon_cvt_mode_p);
19949 }
19950
19951 static void
19952 do_vrintm (void)
19953 {
19954 do_vrint_1 (neon_cvt_mode_m);
19955 }
19956
19957 static unsigned
19958 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19959 {
19960 unsigned regno = NEON_SCALAR_REG (opnd);
19961 unsigned elno = NEON_SCALAR_INDEX (opnd);
19962
19963 if (elsize == 16 && elno < 2 && regno < 16)
19964 return regno | (elno << 4);
19965 else if (elsize == 32 && elno == 0)
19966 return regno;
19967
19968 first_error (_("scalar out of range"));
19969 return 0;
19970 }
19971
19972 static void
19973 do_vcmla (void)
19974 {
19975 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
19976 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
19977 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
19978 constraint (inst.relocs[0].exp.X_op != O_constant,
19979 _("expression too complex"));
19980 unsigned rot = inst.relocs[0].exp.X_add_number;
19981 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
19982 _("immediate out of range"));
19983 rot /= 90;
19984
19985 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
19986 return;
19987
19988 if (inst.operands[2].isscalar)
19989 {
19990 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19991 first_error (_("invalid instruction shape"));
19992 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
19993 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19994 N_KEY | N_F16 | N_F32).size;
19995 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
19996 inst.is_neon = 1;
19997 inst.instruction = 0xfe000800;
19998 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19999 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20000 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20001 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20002 inst.instruction |= LOW4 (m);
20003 inst.instruction |= HI1 (m) << 5;
20004 inst.instruction |= neon_quad (rs) << 6;
20005 inst.instruction |= rot << 20;
20006 inst.instruction |= (size == 32) << 23;
20007 }
20008 else
20009 {
20010 enum neon_shape rs;
20011 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20012 rs = neon_select_shape (NS_QQQI, NS_NULL);
20013 else
20014 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20015
20016 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20017 N_KEY | N_F16 | N_F32).size;
20018 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20019 && (inst.operands[0].reg == inst.operands[1].reg
20020 || inst.operands[0].reg == inst.operands[2].reg))
20021 as_tsktsk (BAD_MVE_SRCDEST);
20022
20023 neon_three_same (neon_quad (rs), 0, -1);
20024 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20025 inst.instruction |= 0xfc200800;
20026 inst.instruction |= rot << 23;
20027 inst.instruction |= (size == 32) << 20;
20028 }
20029 }
20030
20031 static void
20032 do_vcadd (void)
20033 {
20034 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20035 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20036 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20037 constraint (inst.relocs[0].exp.X_op != O_constant,
20038 _("expression too complex"));
20039
20040 unsigned rot = inst.relocs[0].exp.X_add_number;
20041 constraint (rot != 90 && rot != 270, _("immediate out of range"));
20042 enum neon_shape rs;
20043 struct neon_type_el et;
20044 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20045 {
20046 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20047 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20048 }
20049 else
20050 {
20051 rs = neon_select_shape (NS_QQQI, NS_NULL);
20052 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20053 | N_I16 | N_I32);
20054 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20055 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20056 "operand makes instruction UNPREDICTABLE"));
20057 }
20058
20059 if (et.type == NT_invtype)
20060 return;
20061
20062 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20063 | NEON_CHECK_CC))
20064 return;
20065
20066 if (et.type == NT_float)
20067 {
20068 neon_three_same (neon_quad (rs), 0, -1);
20069 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20070 inst.instruction |= 0xfc800800;
20071 inst.instruction |= (rot == 270) << 24;
20072 inst.instruction |= (et.size == 32) << 20;
20073 }
20074 else
20075 {
20076 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20077 inst.instruction = 0xfe000f00;
20078 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20079 inst.instruction |= neon_logbits (et.size) << 20;
20080 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20081 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20082 inst.instruction |= (rot == 270) << 12;
20083 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20084 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20085 inst.instruction |= LOW4 (inst.operands[2].reg);
20086 inst.is_neon = 1;
20087 }
20088 }
20089
20090 /* Dot Product instructions encoding support. */
20091
20092 static void
20093 do_neon_dotproduct (int unsigned_p)
20094 {
20095 enum neon_shape rs;
20096 unsigned scalar_oprd2 = 0;
20097 int high8;
20098
20099 if (inst.cond != COND_ALWAYS)
20100 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20101 "is UNPREDICTABLE"));
20102
20103 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20104 _(BAD_FPU));
20105
20106 /* Dot Product instructions are in three-same D/Q register format or the third
20107 operand can be a scalar index register. */
20108 if (inst.operands[2].isscalar)
20109 {
20110 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20111 high8 = 0xfe000000;
20112 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20113 }
20114 else
20115 {
20116 high8 = 0xfc000000;
20117 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20118 }
20119
20120 if (unsigned_p)
20121 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20122 else
20123 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20124
20125 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20126 Product instruction, so we pass 0 as the "ubit" parameter. And the
20127 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20128 neon_three_same (neon_quad (rs), 0, 32);
20129
20130 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20131 different NEON three-same encoding. */
20132 inst.instruction &= 0x00ffffff;
20133 inst.instruction |= high8;
20134 /* Encode 'U' bit which indicates signedness. */
20135 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20136 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20137 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20138 the instruction encoding. */
20139 if (inst.operands[2].isscalar)
20140 {
20141 inst.instruction &= 0xffffffd0;
20142 inst.instruction |= LOW4 (scalar_oprd2);
20143 inst.instruction |= HI1 (scalar_oprd2) << 5;
20144 }
20145 }
20146
20147 /* Dot Product instructions for signed integer. */
20148
20149 static void
20150 do_neon_dotproduct_s (void)
20151 {
20152 return do_neon_dotproduct (0);
20153 }
20154
20155 /* Dot Product instructions for unsigned integer. */
20156
20157 static void
20158 do_neon_dotproduct_u (void)
20159 {
20160 return do_neon_dotproduct (1);
20161 }
20162
20163 /* Crypto v1 instructions. */
20164 static void
20165 do_crypto_2op_1 (unsigned elttype, int op)
20166 {
20167 set_pred_insn_type (OUTSIDE_PRED_INSN);
20168
20169 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20170 == NT_invtype)
20171 return;
20172
20173 inst.error = NULL;
20174
20175 NEON_ENCODE (INTEGER, inst);
20176 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20177 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20178 inst.instruction |= LOW4 (inst.operands[1].reg);
20179 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20180 if (op != -1)
20181 inst.instruction |= op << 6;
20182
20183 if (thumb_mode)
20184 inst.instruction |= 0xfc000000;
20185 else
20186 inst.instruction |= 0xf0000000;
20187 }
20188
20189 static void
20190 do_crypto_3op_1 (int u, int op)
20191 {
20192 set_pred_insn_type (OUTSIDE_PRED_INSN);
20193
20194 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20195 N_32 | N_UNT | N_KEY).type == NT_invtype)
20196 return;
20197
20198 inst.error = NULL;
20199
20200 NEON_ENCODE (INTEGER, inst);
20201 neon_three_same (1, u, 8 << op);
20202 }
20203
20204 static void
20205 do_aese (void)
20206 {
20207 do_crypto_2op_1 (N_8, 0);
20208 }
20209
20210 static void
20211 do_aesd (void)
20212 {
20213 do_crypto_2op_1 (N_8, 1);
20214 }
20215
20216 static void
20217 do_aesmc (void)
20218 {
20219 do_crypto_2op_1 (N_8, 2);
20220 }
20221
20222 static void
20223 do_aesimc (void)
20224 {
20225 do_crypto_2op_1 (N_8, 3);
20226 }
20227
20228 static void
20229 do_sha1c (void)
20230 {
20231 do_crypto_3op_1 (0, 0);
20232 }
20233
20234 static void
20235 do_sha1p (void)
20236 {
20237 do_crypto_3op_1 (0, 1);
20238 }
20239
20240 static void
20241 do_sha1m (void)
20242 {
20243 do_crypto_3op_1 (0, 2);
20244 }
20245
20246 static void
20247 do_sha1su0 (void)
20248 {
20249 do_crypto_3op_1 (0, 3);
20250 }
20251
20252 static void
20253 do_sha256h (void)
20254 {
20255 do_crypto_3op_1 (1, 0);
20256 }
20257
20258 static void
20259 do_sha256h2 (void)
20260 {
20261 do_crypto_3op_1 (1, 1);
20262 }
20263
20264 static void
20265 do_sha256su1 (void)
20266 {
20267 do_crypto_3op_1 (1, 2);
20268 }
20269
20270 static void
20271 do_sha1h (void)
20272 {
20273 do_crypto_2op_1 (N_32, -1);
20274 }
20275
20276 static void
20277 do_sha1su1 (void)
20278 {
20279 do_crypto_2op_1 (N_32, 0);
20280 }
20281
20282 static void
20283 do_sha256su0 (void)
20284 {
20285 do_crypto_2op_1 (N_32, 1);
20286 }
20287
20288 static void
20289 do_crc32_1 (unsigned int poly, unsigned int sz)
20290 {
20291 unsigned int Rd = inst.operands[0].reg;
20292 unsigned int Rn = inst.operands[1].reg;
20293 unsigned int Rm = inst.operands[2].reg;
20294
20295 set_pred_insn_type (OUTSIDE_PRED_INSN);
20296 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20297 inst.instruction |= LOW4 (Rn) << 16;
20298 inst.instruction |= LOW4 (Rm);
20299 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20300 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20301
20302 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20303 as_warn (UNPRED_REG ("r15"));
20304 }
20305
20306 static void
20307 do_crc32b (void)
20308 {
20309 do_crc32_1 (0, 0);
20310 }
20311
20312 static void
20313 do_crc32h (void)
20314 {
20315 do_crc32_1 (0, 1);
20316 }
20317
20318 static void
20319 do_crc32w (void)
20320 {
20321 do_crc32_1 (0, 2);
20322 }
20323
20324 static void
20325 do_crc32cb (void)
20326 {
20327 do_crc32_1 (1, 0);
20328 }
20329
20330 static void
20331 do_crc32ch (void)
20332 {
20333 do_crc32_1 (1, 1);
20334 }
20335
20336 static void
20337 do_crc32cw (void)
20338 {
20339 do_crc32_1 (1, 2);
20340 }
20341
20342 static void
20343 do_vjcvt (void)
20344 {
20345 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20346 _(BAD_FPU));
20347 neon_check_type (2, NS_FD, N_S32, N_F64);
20348 do_vfp_sp_dp_cvt ();
20349 do_vfp_cond_or_thumb ();
20350 }
20351
20352 \f
20353 /* Overall per-instruction processing. */
20354
20355 /* We need to be able to fix up arbitrary expressions in some statements.
20356 This is so that we can handle symbols that are an arbitrary distance from
20357 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20358 which returns part of an address in a form which will be valid for
20359 a data instruction. We do this by pushing the expression into a symbol
20360 in the expr_section, and creating a fix for that. */
20361
20362 static void
20363 fix_new_arm (fragS * frag,
20364 int where,
20365 short int size,
20366 expressionS * exp,
20367 int pc_rel,
20368 int reloc)
20369 {
20370 fixS * new_fix;
20371
20372 switch (exp->X_op)
20373 {
20374 case O_constant:
20375 if (pc_rel)
20376 {
20377 /* Create an absolute valued symbol, so we have something to
20378 refer to in the object file. Unfortunately for us, gas's
20379 generic expression parsing will already have folded out
20380 any use of .set foo/.type foo %function that may have
20381 been used to set type information of the target location,
20382 that's being specified symbolically. We have to presume
20383 the user knows what they are doing. */
20384 char name[16 + 8];
20385 symbolS *symbol;
20386
20387 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20388
20389 symbol = symbol_find_or_make (name);
20390 S_SET_SEGMENT (symbol, absolute_section);
20391 symbol_set_frag (symbol, &zero_address_frag);
20392 S_SET_VALUE (symbol, exp->X_add_number);
20393 exp->X_op = O_symbol;
20394 exp->X_add_symbol = symbol;
20395 exp->X_add_number = 0;
20396 }
20397 /* FALLTHROUGH */
20398 case O_symbol:
20399 case O_add:
20400 case O_subtract:
20401 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20402 (enum bfd_reloc_code_real) reloc);
20403 break;
20404
20405 default:
20406 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20407 pc_rel, (enum bfd_reloc_code_real) reloc);
20408 break;
20409 }
20410
20411 /* Mark whether the fix is to a THUMB instruction, or an ARM
20412 instruction. */
20413 new_fix->tc_fix_data = thumb_mode;
20414 }
20415
20416 /* Create a frg for an instruction requiring relaxation. */
20417 static void
20418 output_relax_insn (void)
20419 {
20420 char * to;
20421 symbolS *sym;
20422 int offset;
20423
20424 /* The size of the instruction is unknown, so tie the debug info to the
20425 start of the instruction. */
20426 dwarf2_emit_insn (0);
20427
20428 switch (inst.relocs[0].exp.X_op)
20429 {
20430 case O_symbol:
20431 sym = inst.relocs[0].exp.X_add_symbol;
20432 offset = inst.relocs[0].exp.X_add_number;
20433 break;
20434 case O_constant:
20435 sym = NULL;
20436 offset = inst.relocs[0].exp.X_add_number;
20437 break;
20438 default:
20439 sym = make_expr_symbol (&inst.relocs[0].exp);
20440 offset = 0;
20441 break;
20442 }
20443 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20444 inst.relax, sym, offset, NULL/*offset, opcode*/);
20445 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20446 }
20447
20448 /* Write a 32-bit thumb instruction to buf. */
20449 static void
20450 put_thumb32_insn (char * buf, unsigned long insn)
20451 {
20452 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20453 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20454 }
20455
20456 static void
20457 output_inst (const char * str)
20458 {
20459 char * to = NULL;
20460
20461 if (inst.error)
20462 {
20463 as_bad ("%s -- `%s'", inst.error, str);
20464 return;
20465 }
20466 if (inst.relax)
20467 {
20468 output_relax_insn ();
20469 return;
20470 }
20471 if (inst.size == 0)
20472 return;
20473
20474 to = frag_more (inst.size);
20475 /* PR 9814: Record the thumb mode into the current frag so that we know
20476 what type of NOP padding to use, if necessary. We override any previous
20477 setting so that if the mode has changed then the NOPS that we use will
20478 match the encoding of the last instruction in the frag. */
20479 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20480
20481 if (thumb_mode && (inst.size > THUMB_SIZE))
20482 {
20483 gas_assert (inst.size == (2 * THUMB_SIZE));
20484 put_thumb32_insn (to, inst.instruction);
20485 }
20486 else if (inst.size > INSN_SIZE)
20487 {
20488 gas_assert (inst.size == (2 * INSN_SIZE));
20489 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20490 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20491 }
20492 else
20493 md_number_to_chars (to, inst.instruction, inst.size);
20494
20495 int r;
20496 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20497 {
20498 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20499 fix_new_arm (frag_now, to - frag_now->fr_literal,
20500 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20501 inst.relocs[r].type);
20502 }
20503
20504 dwarf2_emit_insn (inst.size);
20505 }
20506
20507 static char *
20508 output_it_inst (int cond, int mask, char * to)
20509 {
20510 unsigned long instruction = 0xbf00;
20511
20512 mask &= 0xf;
20513 instruction |= mask;
20514 instruction |= cond << 4;
20515
20516 if (to == NULL)
20517 {
20518 to = frag_more (2);
20519 #ifdef OBJ_ELF
20520 dwarf2_emit_insn (2);
20521 #endif
20522 }
20523
20524 md_number_to_chars (to, instruction, 2);
20525
20526 return to;
20527 }
20528
20529 /* Tag values used in struct asm_opcode's tag field. */
20530 enum opcode_tag
20531 {
20532 OT_unconditional, /* Instruction cannot be conditionalized.
20533 The ARM condition field is still 0xE. */
20534 OT_unconditionalF, /* Instruction cannot be conditionalized
20535 and carries 0xF in its ARM condition field. */
20536 OT_csuffix, /* Instruction takes a conditional suffix. */
20537 OT_csuffixF, /* Some forms of the instruction take a scalar
20538 conditional suffix, others place 0xF where the
20539 condition field would be, others take a vector
20540 conditional suffix. */
20541 OT_cinfix3, /* Instruction takes a conditional infix,
20542 beginning at character index 3. (In
20543 unified mode, it becomes a suffix.) */
20544 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20545 tsts, cmps, cmns, and teqs. */
20546 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20547 character index 3, even in unified mode. Used for
20548 legacy instructions where suffix and infix forms
20549 may be ambiguous. */
20550 OT_csuf_or_in3, /* Instruction takes either a conditional
20551 suffix or an infix at character index 3. */
20552 OT_odd_infix_unc, /* This is the unconditional variant of an
20553 instruction that takes a conditional infix
20554 at an unusual position. In unified mode,
20555 this variant will accept a suffix. */
20556 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20557 are the conditional variants of instructions that
20558 take conditional infixes in unusual positions.
20559 The infix appears at character index
20560 (tag - OT_odd_infix_0). These are not accepted
20561 in unified mode. */
20562 };
20563
20564 /* Subroutine of md_assemble, responsible for looking up the primary
20565 opcode from the mnemonic the user wrote. STR points to the
20566 beginning of the mnemonic.
20567
20568 This is not simply a hash table lookup, because of conditional
20569 variants. Most instructions have conditional variants, which are
20570 expressed with a _conditional affix_ to the mnemonic. If we were
20571 to encode each conditional variant as a literal string in the opcode
20572 table, it would have approximately 20,000 entries.
20573
20574 Most mnemonics take this affix as a suffix, and in unified syntax,
20575 'most' is upgraded to 'all'. However, in the divided syntax, some
20576 instructions take the affix as an infix, notably the s-variants of
20577 the arithmetic instructions. Of those instructions, all but six
20578 have the infix appear after the third character of the mnemonic.
20579
20580 Accordingly, the algorithm for looking up primary opcodes given
20581 an identifier is:
20582
20583 1. Look up the identifier in the opcode table.
20584 If we find a match, go to step U.
20585
20586 2. Look up the last two characters of the identifier in the
20587 conditions table. If we find a match, look up the first N-2
20588 characters of the identifier in the opcode table. If we
20589 find a match, go to step CE.
20590
20591 3. Look up the fourth and fifth characters of the identifier in
20592 the conditions table. If we find a match, extract those
20593 characters from the identifier, and look up the remaining
20594 characters in the opcode table. If we find a match, go
20595 to step CM.
20596
20597 4. Fail.
20598
20599 U. Examine the tag field of the opcode structure, in case this is
20600 one of the six instructions with its conditional infix in an
20601 unusual place. If it is, the tag tells us where to find the
20602 infix; look it up in the conditions table and set inst.cond
20603 accordingly. Otherwise, this is an unconditional instruction.
20604 Again set inst.cond accordingly. Return the opcode structure.
20605
20606 CE. Examine the tag field to make sure this is an instruction that
20607 should receive a conditional suffix. If it is not, fail.
20608 Otherwise, set inst.cond from the suffix we already looked up,
20609 and return the opcode structure.
20610
20611 CM. Examine the tag field to make sure this is an instruction that
20612 should receive a conditional infix after the third character.
20613 If it is not, fail. Otherwise, undo the edits to the current
20614 line of input and proceed as for case CE. */
20615
20616 static const struct asm_opcode *
20617 opcode_lookup (char **str)
20618 {
20619 char *end, *base;
20620 char *affix;
20621 const struct asm_opcode *opcode;
20622 const struct asm_cond *cond;
20623 char save[2];
20624
20625 /* Scan up to the end of the mnemonic, which must end in white space,
20626 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20627 for (base = end = *str; *end != '\0'; end++)
20628 if (*end == ' ' || *end == '.')
20629 break;
20630
20631 if (end == base)
20632 return NULL;
20633
20634 /* Handle a possible width suffix and/or Neon type suffix. */
20635 if (end[0] == '.')
20636 {
20637 int offset = 2;
20638
20639 /* The .w and .n suffixes are only valid if the unified syntax is in
20640 use. */
20641 if (unified_syntax && end[1] == 'w')
20642 inst.size_req = 4;
20643 else if (unified_syntax && end[1] == 'n')
20644 inst.size_req = 2;
20645 else
20646 offset = 0;
20647
20648 inst.vectype.elems = 0;
20649
20650 *str = end + offset;
20651
20652 if (end[offset] == '.')
20653 {
20654 /* See if we have a Neon type suffix (possible in either unified or
20655 non-unified ARM syntax mode). */
20656 if (parse_neon_type (&inst.vectype, str) == FAIL)
20657 return NULL;
20658 }
20659 else if (end[offset] != '\0' && end[offset] != ' ')
20660 return NULL;
20661 }
20662 else
20663 *str = end;
20664
20665 /* Look for unaffixed or special-case affixed mnemonic. */
20666 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20667 end - base);
20668 if (opcode)
20669 {
20670 /* step U */
20671 if (opcode->tag < OT_odd_infix_0)
20672 {
20673 inst.cond = COND_ALWAYS;
20674 return opcode;
20675 }
20676
20677 if (warn_on_deprecated && unified_syntax)
20678 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20679 affix = base + (opcode->tag - OT_odd_infix_0);
20680 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20681 gas_assert (cond);
20682
20683 inst.cond = cond->value;
20684 return opcode;
20685 }
20686 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20687 {
20688 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20689 */
20690 if (end - base < 2)
20691 return NULL;
20692 affix = end - 1;
20693 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20694 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20695 affix - base);
20696 /* If this opcode can not be vector predicated then don't accept it with a
20697 vector predication code. */
20698 if (opcode && !opcode->mayBeVecPred)
20699 opcode = NULL;
20700 }
20701 if (!opcode || !cond)
20702 {
20703 /* Cannot have a conditional suffix on a mnemonic of less than two
20704 characters. */
20705 if (end - base < 3)
20706 return NULL;
20707
20708 /* Look for suffixed mnemonic. */
20709 affix = end - 2;
20710 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20711 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20712 affix - base);
20713 }
20714
20715 if (opcode && cond)
20716 {
20717 /* step CE */
20718 switch (opcode->tag)
20719 {
20720 case OT_cinfix3_legacy:
20721 /* Ignore conditional suffixes matched on infix only mnemonics. */
20722 break;
20723
20724 case OT_cinfix3:
20725 case OT_cinfix3_deprecated:
20726 case OT_odd_infix_unc:
20727 if (!unified_syntax)
20728 return NULL;
20729 /* Fall through. */
20730
20731 case OT_csuffix:
20732 case OT_csuffixF:
20733 case OT_csuf_or_in3:
20734 inst.cond = cond->value;
20735 return opcode;
20736
20737 case OT_unconditional:
20738 case OT_unconditionalF:
20739 if (thumb_mode)
20740 inst.cond = cond->value;
20741 else
20742 {
20743 /* Delayed diagnostic. */
20744 inst.error = BAD_COND;
20745 inst.cond = COND_ALWAYS;
20746 }
20747 return opcode;
20748
20749 default:
20750 return NULL;
20751 }
20752 }
20753
20754 /* Cannot have a usual-position infix on a mnemonic of less than
20755 six characters (five would be a suffix). */
20756 if (end - base < 6)
20757 return NULL;
20758
20759 /* Look for infixed mnemonic in the usual position. */
20760 affix = base + 3;
20761 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20762 if (!cond)
20763 return NULL;
20764
20765 memcpy (save, affix, 2);
20766 memmove (affix, affix + 2, (end - affix) - 2);
20767 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20768 (end - base) - 2);
20769 memmove (affix + 2, affix, (end - affix) - 2);
20770 memcpy (affix, save, 2);
20771
20772 if (opcode
20773 && (opcode->tag == OT_cinfix3
20774 || opcode->tag == OT_cinfix3_deprecated
20775 || opcode->tag == OT_csuf_or_in3
20776 || opcode->tag == OT_cinfix3_legacy))
20777 {
20778 /* Step CM. */
20779 if (warn_on_deprecated && unified_syntax
20780 && (opcode->tag == OT_cinfix3
20781 || opcode->tag == OT_cinfix3_deprecated))
20782 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20783
20784 inst.cond = cond->value;
20785 return opcode;
20786 }
20787
20788 return NULL;
20789 }
20790
20791 /* This function generates an initial IT instruction, leaving its block
20792 virtually open for the new instructions. Eventually,
20793 the mask will be updated by now_pred_add_mask () each time
20794 a new instruction needs to be included in the IT block.
20795 Finally, the block is closed with close_automatic_it_block ().
20796 The block closure can be requested either from md_assemble (),
20797 a tencode (), or due to a label hook. */
20798
20799 static void
20800 new_automatic_it_block (int cond)
20801 {
20802 now_pred.state = AUTOMATIC_PRED_BLOCK;
20803 now_pred.mask = 0x18;
20804 now_pred.cc = cond;
20805 now_pred.block_length = 1;
20806 mapping_state (MAP_THUMB);
20807 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20808 now_pred.warn_deprecated = FALSE;
20809 now_pred.insn_cond = TRUE;
20810 }
20811
20812 /* Close an automatic IT block.
20813 See comments in new_automatic_it_block (). */
20814
20815 static void
20816 close_automatic_it_block (void)
20817 {
20818 now_pred.mask = 0x10;
20819 now_pred.block_length = 0;
20820 }
20821
20822 /* Update the mask of the current automatically-generated IT
20823 instruction. See comments in new_automatic_it_block (). */
20824
20825 static void
20826 now_pred_add_mask (int cond)
20827 {
20828 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20829 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
20830 | ((bitvalue) << (nbit)))
20831 const int resulting_bit = (cond & 1);
20832
20833 now_pred.mask &= 0xf;
20834 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20835 resulting_bit,
20836 (5 - now_pred.block_length));
20837 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20838 1,
20839 ((5 - now_pred.block_length) - 1));
20840 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
20841
20842 #undef CLEAR_BIT
20843 #undef SET_BIT_VALUE
20844 }
20845
20846 /* The IT blocks handling machinery is accessed through the these functions:
20847 it_fsm_pre_encode () from md_assemble ()
20848 set_pred_insn_type () optional, from the tencode functions
20849 set_pred_insn_type_last () ditto
20850 in_pred_block () ditto
20851 it_fsm_post_encode () from md_assemble ()
20852 force_automatic_it_block_close () from label handling functions
20853
20854 Rationale:
20855 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
20856 initializing the IT insn type with a generic initial value depending
20857 on the inst.condition.
20858 2) During the tencode function, two things may happen:
20859 a) The tencode function overrides the IT insn type by
20860 calling either set_pred_insn_type (type) or
20861 set_pred_insn_type_last ().
20862 b) The tencode function queries the IT block state by
20863 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
20864
20865 Both set_pred_insn_type and in_pred_block run the internal FSM state
20866 handling function (handle_pred_state), because: a) setting the IT insn
20867 type may incur in an invalid state (exiting the function),
20868 and b) querying the state requires the FSM to be updated.
20869 Specifically we want to avoid creating an IT block for conditional
20870 branches, so it_fsm_pre_encode is actually a guess and we can't
20871 determine whether an IT block is required until the tencode () routine
20872 has decided what type of instruction this actually it.
20873 Because of this, if set_pred_insn_type and in_pred_block have to be
20874 used, set_pred_insn_type has to be called first.
20875
20876 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20877 that determines the insn IT type depending on the inst.cond code.
20878 When a tencode () routine encodes an instruction that can be
20879 either outside an IT block, or, in the case of being inside, has to be
20880 the last one, set_pred_insn_type_last () will determine the proper
20881 IT instruction type based on the inst.cond code. Otherwise,
20882 set_pred_insn_type can be called for overriding that logic or
20883 for covering other cases.
20884
20885 Calling handle_pred_state () may not transition the IT block state to
20886 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
20887 still queried. Instead, if the FSM determines that the state should
20888 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
20889 after the tencode () function: that's what it_fsm_post_encode () does.
20890
20891 Since in_pred_block () calls the state handling function to get an
20892 updated state, an error may occur (due to invalid insns combination).
20893 In that case, inst.error is set.
20894 Therefore, inst.error has to be checked after the execution of
20895 the tencode () routine.
20896
20897 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
20898 any pending state change (if any) that didn't take place in
20899 handle_pred_state () as explained above. */
20900
20901 static void
20902 it_fsm_pre_encode (void)
20903 {
20904 if (inst.cond != COND_ALWAYS)
20905 inst.pred_insn_type = INSIDE_IT_INSN;
20906 else
20907 inst.pred_insn_type = OUTSIDE_PRED_INSN;
20908
20909 now_pred.state_handled = 0;
20910 }
20911
20912 /* IT state FSM handling function. */
20913 /* MVE instructions and non-MVE instructions are handled differently because of
20914 the introduction of VPT blocks.
20915 Specifications say that any non-MVE instruction inside a VPT block is
20916 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20917 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
20918 few exceptions we have MVE_UNPREDICABLE_INSN.
20919 The error messages provided depending on the different combinations possible
20920 are described in the cases below:
20921 For 'most' MVE instructions:
20922 1) In an IT block, with an IT code: syntax error
20923 2) In an IT block, with a VPT code: error: must be in a VPT block
20924 3) In an IT block, with no code: warning: UNPREDICTABLE
20925 4) In a VPT block, with an IT code: syntax error
20926 5) In a VPT block, with a VPT code: OK!
20927 6) In a VPT block, with no code: error: missing code
20928 7) Outside a pred block, with an IT code: error: syntax error
20929 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20930 9) Outside a pred block, with no code: OK!
20931 For non-MVE instructions:
20932 10) In an IT block, with an IT code: OK!
20933 11) In an IT block, with a VPT code: syntax error
20934 12) In an IT block, with no code: error: missing code
20935 13) In a VPT block, with an IT code: error: should be in an IT block
20936 14) In a VPT block, with a VPT code: syntax error
20937 15) In a VPT block, with no code: UNPREDICTABLE
20938 16) Outside a pred block, with an IT code: error: should be in an IT block
20939 17) Outside a pred block, with a VPT code: syntax error
20940 18) Outside a pred block, with no code: OK!
20941 */
20942
20943
20944 static int
20945 handle_pred_state (void)
20946 {
20947 now_pred.state_handled = 1;
20948 now_pred.insn_cond = FALSE;
20949
20950 switch (now_pred.state)
20951 {
20952 case OUTSIDE_PRED_BLOCK:
20953 switch (inst.pred_insn_type)
20954 {
20955 case MVE_UNPREDICABLE_INSN:
20956 case MVE_OUTSIDE_PRED_INSN:
20957 if (inst.cond < COND_ALWAYS)
20958 {
20959 /* Case 7: Outside a pred block, with an IT code: error: syntax
20960 error. */
20961 inst.error = BAD_SYNTAX;
20962 return FAIL;
20963 }
20964 /* Case 9: Outside a pred block, with no code: OK! */
20965 break;
20966 case OUTSIDE_PRED_INSN:
20967 if (inst.cond > COND_ALWAYS)
20968 {
20969 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20970 */
20971 inst.error = BAD_SYNTAX;
20972 return FAIL;
20973 }
20974 /* Case 18: Outside a pred block, with no code: OK! */
20975 break;
20976
20977 case INSIDE_VPT_INSN:
20978 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20979 a VPT block. */
20980 inst.error = BAD_OUT_VPT;
20981 return FAIL;
20982
20983 case INSIDE_IT_INSN:
20984 case INSIDE_IT_LAST_INSN:
20985 if (inst.cond < COND_ALWAYS)
20986 {
20987 /* Case 16: Outside a pred block, with an IT code: error: should
20988 be in an IT block. */
20989 if (thumb_mode == 0)
20990 {
20991 if (unified_syntax
20992 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
20993 as_tsktsk (_("Warning: conditional outside an IT block"\
20994 " for Thumb."));
20995 }
20996 else
20997 {
20998 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
20999 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21000 {
21001 /* Automatically generate the IT instruction. */
21002 new_automatic_it_block (inst.cond);
21003 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21004 close_automatic_it_block ();
21005 }
21006 else
21007 {
21008 inst.error = BAD_OUT_IT;
21009 return FAIL;
21010 }
21011 }
21012 break;
21013 }
21014 else if (inst.cond > COND_ALWAYS)
21015 {
21016 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21017 */
21018 inst.error = BAD_SYNTAX;
21019 return FAIL;
21020 }
21021 else
21022 gas_assert (0);
21023 case IF_INSIDE_IT_LAST_INSN:
21024 case NEUTRAL_IT_INSN:
21025 break;
21026
21027 case VPT_INSN:
21028 if (inst.cond != COND_ALWAYS)
21029 first_error (BAD_SYNTAX);
21030 now_pred.state = MANUAL_PRED_BLOCK;
21031 now_pred.block_length = 0;
21032 now_pred.type = VECTOR_PRED;
21033 now_pred.cc = 0;
21034 break;
21035 case IT_INSN:
21036 now_pred.state = MANUAL_PRED_BLOCK;
21037 now_pred.block_length = 0;
21038 now_pred.type = SCALAR_PRED;
21039 break;
21040 }
21041 break;
21042
21043 case AUTOMATIC_PRED_BLOCK:
21044 /* Three things may happen now:
21045 a) We should increment current it block size;
21046 b) We should close current it block (closing insn or 4 insns);
21047 c) We should close current it block and start a new one (due
21048 to incompatible conditions or
21049 4 insns-length block reached). */
21050
21051 switch (inst.pred_insn_type)
21052 {
21053 case INSIDE_VPT_INSN:
21054 case VPT_INSN:
21055 case MVE_UNPREDICABLE_INSN:
21056 case MVE_OUTSIDE_PRED_INSN:
21057 gas_assert (0);
21058 case OUTSIDE_PRED_INSN:
21059 /* The closure of the block shall happen immediately,
21060 so any in_pred_block () call reports the block as closed. */
21061 force_automatic_it_block_close ();
21062 break;
21063
21064 case INSIDE_IT_INSN:
21065 case INSIDE_IT_LAST_INSN:
21066 case IF_INSIDE_IT_LAST_INSN:
21067 now_pred.block_length++;
21068
21069 if (now_pred.block_length > 4
21070 || !now_pred_compatible (inst.cond))
21071 {
21072 force_automatic_it_block_close ();
21073 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
21074 new_automatic_it_block (inst.cond);
21075 }
21076 else
21077 {
21078 now_pred.insn_cond = TRUE;
21079 now_pred_add_mask (inst.cond);
21080 }
21081
21082 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21083 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21084 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
21085 close_automatic_it_block ();
21086 break;
21087
21088 case NEUTRAL_IT_INSN:
21089 now_pred.block_length++;
21090 now_pred.insn_cond = TRUE;
21091
21092 if (now_pred.block_length > 4)
21093 force_automatic_it_block_close ();
21094 else
21095 now_pred_add_mask (now_pred.cc & 1);
21096 break;
21097
21098 case IT_INSN:
21099 close_automatic_it_block ();
21100 now_pred.state = MANUAL_PRED_BLOCK;
21101 break;
21102 }
21103 break;
21104
21105 case MANUAL_PRED_BLOCK:
21106 {
21107 int cond, is_last;
21108 if (now_pred.type == SCALAR_PRED)
21109 {
21110 /* Check conditional suffixes. */
21111 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21112 now_pred.mask <<= 1;
21113 now_pred.mask &= 0x1f;
21114 is_last = (now_pred.mask == 0x10);
21115 }
21116 else
21117 {
21118 now_pred.cc ^= (now_pred.mask >> 4);
21119 cond = now_pred.cc + 0xf;
21120 now_pred.mask <<= 1;
21121 now_pred.mask &= 0x1f;
21122 is_last = now_pred.mask == 0x10;
21123 }
21124 now_pred.insn_cond = TRUE;
21125
21126 switch (inst.pred_insn_type)
21127 {
21128 case OUTSIDE_PRED_INSN:
21129 if (now_pred.type == SCALAR_PRED)
21130 {
21131 if (inst.cond == COND_ALWAYS)
21132 {
21133 /* Case 12: In an IT block, with no code: error: missing
21134 code. */
21135 inst.error = BAD_NOT_IT;
21136 return FAIL;
21137 }
21138 else if (inst.cond > COND_ALWAYS)
21139 {
21140 /* Case 11: In an IT block, with a VPT code: syntax error.
21141 */
21142 inst.error = BAD_SYNTAX;
21143 return FAIL;
21144 }
21145 else if (thumb_mode)
21146 {
21147 /* This is for some special cases where a non-MVE
21148 instruction is not allowed in an IT block, such as cbz,
21149 but are put into one with a condition code.
21150 You could argue this should be a syntax error, but we
21151 gave the 'not allowed in IT block' diagnostic in the
21152 past so we will keep doing so. */
21153 inst.error = BAD_NOT_IT;
21154 return FAIL;
21155 }
21156 break;
21157 }
21158 else
21159 {
21160 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21161 as_tsktsk (MVE_NOT_VPT);
21162 return SUCCESS;
21163 }
21164 case MVE_OUTSIDE_PRED_INSN:
21165 if (now_pred.type == SCALAR_PRED)
21166 {
21167 if (inst.cond == COND_ALWAYS)
21168 {
21169 /* Case 3: In an IT block, with no code: warning:
21170 UNPREDICTABLE. */
21171 as_tsktsk (MVE_NOT_IT);
21172 return SUCCESS;
21173 }
21174 else if (inst.cond < COND_ALWAYS)
21175 {
21176 /* Case 1: In an IT block, with an IT code: syntax error.
21177 */
21178 inst.error = BAD_SYNTAX;
21179 return FAIL;
21180 }
21181 else
21182 gas_assert (0);
21183 }
21184 else
21185 {
21186 if (inst.cond < COND_ALWAYS)
21187 {
21188 /* Case 4: In a VPT block, with an IT code: syntax error.
21189 */
21190 inst.error = BAD_SYNTAX;
21191 return FAIL;
21192 }
21193 else if (inst.cond == COND_ALWAYS)
21194 {
21195 /* Case 6: In a VPT block, with no code: error: missing
21196 code. */
21197 inst.error = BAD_NOT_VPT;
21198 return FAIL;
21199 }
21200 else
21201 {
21202 gas_assert (0);
21203 }
21204 }
21205 case MVE_UNPREDICABLE_INSN:
21206 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21207 return SUCCESS;
21208 case INSIDE_IT_INSN:
21209 if (inst.cond > COND_ALWAYS)
21210 {
21211 /* Case 11: In an IT block, with a VPT code: syntax error. */
21212 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21213 inst.error = BAD_SYNTAX;
21214 return FAIL;
21215 }
21216 else if (now_pred.type == SCALAR_PRED)
21217 {
21218 /* Case 10: In an IT block, with an IT code: OK! */
21219 if (cond != inst.cond)
21220 {
21221 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21222 BAD_VPT_COND;
21223 return FAIL;
21224 }
21225 }
21226 else
21227 {
21228 /* Case 13: In a VPT block, with an IT code: error: should be
21229 in an IT block. */
21230 inst.error = BAD_OUT_IT;
21231 return FAIL;
21232 }
21233 break;
21234
21235 case INSIDE_VPT_INSN:
21236 if (now_pred.type == SCALAR_PRED)
21237 {
21238 /* Case 2: In an IT block, with a VPT code: error: must be in a
21239 VPT block. */
21240 inst.error = BAD_OUT_VPT;
21241 return FAIL;
21242 }
21243 /* Case 5: In a VPT block, with a VPT code: OK! */
21244 else if (cond != inst.cond)
21245 {
21246 inst.error = BAD_VPT_COND;
21247 return FAIL;
21248 }
21249 break;
21250 case INSIDE_IT_LAST_INSN:
21251 case IF_INSIDE_IT_LAST_INSN:
21252 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21253 {
21254 /* Case 4: In a VPT block, with an IT code: syntax error. */
21255 /* Case 11: In an IT block, with a VPT code: syntax error. */
21256 inst.error = BAD_SYNTAX;
21257 return FAIL;
21258 }
21259 else if (cond != inst.cond)
21260 {
21261 inst.error = BAD_IT_COND;
21262 return FAIL;
21263 }
21264 if (!is_last)
21265 {
21266 inst.error = BAD_BRANCH;
21267 return FAIL;
21268 }
21269 break;
21270
21271 case NEUTRAL_IT_INSN:
21272 /* The BKPT instruction is unconditional even in a IT or VPT
21273 block. */
21274 break;
21275
21276 case IT_INSN:
21277 if (now_pred.type == SCALAR_PRED)
21278 {
21279 inst.error = BAD_IT_IT;
21280 return FAIL;
21281 }
21282 /* fall through. */
21283 case VPT_INSN:
21284 if (inst.cond == COND_ALWAYS)
21285 {
21286 /* Executing a VPT/VPST instruction inside an IT block or a
21287 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21288 */
21289 if (now_pred.type == SCALAR_PRED)
21290 as_tsktsk (MVE_NOT_IT);
21291 else
21292 as_tsktsk (MVE_NOT_VPT);
21293 return SUCCESS;
21294 }
21295 else
21296 {
21297 /* VPT/VPST do not accept condition codes. */
21298 inst.error = BAD_SYNTAX;
21299 return FAIL;
21300 }
21301 }
21302 }
21303 break;
21304 }
21305
21306 return SUCCESS;
21307 }
21308
21309 struct depr_insn_mask
21310 {
21311 unsigned long pattern;
21312 unsigned long mask;
21313 const char* description;
21314 };
21315
21316 /* List of 16-bit instruction patterns deprecated in an IT block in
21317 ARMv8. */
21318 static const struct depr_insn_mask depr_it_insns[] = {
21319 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21320 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21321 { 0xa000, 0xb800, N_("ADR") },
21322 { 0x4800, 0xf800, N_("Literal loads") },
21323 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21324 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21325 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21326 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21327 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21328 { 0, 0, NULL }
21329 };
21330
21331 static void
21332 it_fsm_post_encode (void)
21333 {
21334 int is_last;
21335
21336 if (!now_pred.state_handled)
21337 handle_pred_state ();
21338
21339 if (now_pred.insn_cond
21340 && !now_pred.warn_deprecated
21341 && warn_on_deprecated
21342 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21343 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
21344 {
21345 if (inst.instruction >= 0x10000)
21346 {
21347 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21348 "performance deprecated in ARMv8-A and ARMv8-R"));
21349 now_pred.warn_deprecated = TRUE;
21350 }
21351 else
21352 {
21353 const struct depr_insn_mask *p = depr_it_insns;
21354
21355 while (p->mask != 0)
21356 {
21357 if ((inst.instruction & p->mask) == p->pattern)
21358 {
21359 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21360 "instructions of the following class are "
21361 "performance deprecated in ARMv8-A and "
21362 "ARMv8-R: %s"), p->description);
21363 now_pred.warn_deprecated = TRUE;
21364 break;
21365 }
21366
21367 ++p;
21368 }
21369 }
21370
21371 if (now_pred.block_length > 1)
21372 {
21373 as_tsktsk (_("IT blocks containing more than one conditional "
21374 "instruction are performance deprecated in ARMv8-A and "
21375 "ARMv8-R"));
21376 now_pred.warn_deprecated = TRUE;
21377 }
21378 }
21379
21380 is_last = (now_pred.mask == 0x10);
21381 if (is_last)
21382 {
21383 now_pred.state = OUTSIDE_PRED_BLOCK;
21384 now_pred.mask = 0;
21385 }
21386 }
21387
21388 static void
21389 force_automatic_it_block_close (void)
21390 {
21391 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21392 {
21393 close_automatic_it_block ();
21394 now_pred.state = OUTSIDE_PRED_BLOCK;
21395 now_pred.mask = 0;
21396 }
21397 }
21398
21399 static int
21400 in_pred_block (void)
21401 {
21402 if (!now_pred.state_handled)
21403 handle_pred_state ();
21404
21405 return now_pred.state != OUTSIDE_PRED_BLOCK;
21406 }
21407
21408 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21409 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21410 here, hence the "known" in the function name. */
21411
21412 static bfd_boolean
21413 known_t32_only_insn (const struct asm_opcode *opcode)
21414 {
21415 /* Original Thumb-1 wide instruction. */
21416 if (opcode->tencode == do_t_blx
21417 || opcode->tencode == do_t_branch23
21418 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21419 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21420 return TRUE;
21421
21422 /* Wide-only instruction added to ARMv8-M Baseline. */
21423 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21424 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21425 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21426 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21427 return TRUE;
21428
21429 return FALSE;
21430 }
21431
21432 /* Whether wide instruction variant can be used if available for a valid OPCODE
21433 in ARCH. */
21434
21435 static bfd_boolean
21436 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21437 {
21438 if (known_t32_only_insn (opcode))
21439 return TRUE;
21440
21441 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21442 of variant T3 of B.W is checked in do_t_branch. */
21443 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21444 && opcode->tencode == do_t_branch)
21445 return TRUE;
21446
21447 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21448 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21449 && opcode->tencode == do_t_mov_cmp
21450 /* Make sure CMP instruction is not affected. */
21451 && opcode->aencode == do_mov)
21452 return TRUE;
21453
21454 /* Wide instruction variants of all instructions with narrow *and* wide
21455 variants become available with ARMv6t2. Other opcodes are either
21456 narrow-only or wide-only and are thus available if OPCODE is valid. */
21457 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21458 return TRUE;
21459
21460 /* OPCODE with narrow only instruction variant or wide variant not
21461 available. */
21462 return FALSE;
21463 }
21464
21465 void
21466 md_assemble (char *str)
21467 {
21468 char *p = str;
21469 const struct asm_opcode * opcode;
21470
21471 /* Align the previous label if needed. */
21472 if (last_label_seen != NULL)
21473 {
21474 symbol_set_frag (last_label_seen, frag_now);
21475 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21476 S_SET_SEGMENT (last_label_seen, now_seg);
21477 }
21478
21479 memset (&inst, '\0', sizeof (inst));
21480 int r;
21481 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21482 inst.relocs[r].type = BFD_RELOC_UNUSED;
21483
21484 opcode = opcode_lookup (&p);
21485 if (!opcode)
21486 {
21487 /* It wasn't an instruction, but it might be a register alias of
21488 the form alias .req reg, or a Neon .dn/.qn directive. */
21489 if (! create_register_alias (str, p)
21490 && ! create_neon_reg_alias (str, p))
21491 as_bad (_("bad instruction `%s'"), str);
21492
21493 return;
21494 }
21495
21496 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21497 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21498
21499 /* The value which unconditional instructions should have in place of the
21500 condition field. */
21501 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21502
21503 if (thumb_mode)
21504 {
21505 arm_feature_set variant;
21506
21507 variant = cpu_variant;
21508 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21509 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21510 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21511 /* Check that this instruction is supported for this CPU. */
21512 if (!opcode->tvariant
21513 || (thumb_mode == 1
21514 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21515 {
21516 if (opcode->tencode == do_t_swi)
21517 as_bad (_("SVC is not permitted on this architecture"));
21518 else
21519 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21520 return;
21521 }
21522 if (inst.cond != COND_ALWAYS && !unified_syntax
21523 && opcode->tencode != do_t_branch)
21524 {
21525 as_bad (_("Thumb does not support conditional execution"));
21526 return;
21527 }
21528
21529 /* Two things are addressed here:
21530 1) Implicit require narrow instructions on Thumb-1.
21531 This avoids relaxation accidentally introducing Thumb-2
21532 instructions.
21533 2) Reject wide instructions in non Thumb-2 cores.
21534
21535 Only instructions with narrow and wide variants need to be handled
21536 but selecting all non wide-only instructions is easier. */
21537 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
21538 && !t32_insn_ok (variant, opcode))
21539 {
21540 if (inst.size_req == 0)
21541 inst.size_req = 2;
21542 else if (inst.size_req == 4)
21543 {
21544 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21545 as_bad (_("selected processor does not support 32bit wide "
21546 "variant of instruction `%s'"), str);
21547 else
21548 as_bad (_("selected processor does not support `%s' in "
21549 "Thumb-2 mode"), str);
21550 return;
21551 }
21552 }
21553
21554 inst.instruction = opcode->tvalue;
21555
21556 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
21557 {
21558 /* Prepare the pred_insn_type for those encodings that don't set
21559 it. */
21560 it_fsm_pre_encode ();
21561
21562 opcode->tencode ();
21563
21564 it_fsm_post_encode ();
21565 }
21566
21567 if (!(inst.error || inst.relax))
21568 {
21569 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
21570 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21571 if (inst.size_req && inst.size_req != inst.size)
21572 {
21573 as_bad (_("cannot honor width suffix -- `%s'"), str);
21574 return;
21575 }
21576 }
21577
21578 /* Something has gone badly wrong if we try to relax a fixed size
21579 instruction. */
21580 gas_assert (inst.size_req == 0 || !inst.relax);
21581
21582 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21583 *opcode->tvariant);
21584 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21585 set those bits when Thumb-2 32-bit instructions are seen. The impact
21586 of relaxable instructions will be considered later after we finish all
21587 relaxation. */
21588 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21589 variant = arm_arch_none;
21590 else
21591 variant = cpu_variant;
21592 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
21593 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21594 arm_ext_v6t2);
21595
21596 check_neon_suffixes;
21597
21598 if (!inst.error)
21599 {
21600 mapping_state (MAP_THUMB);
21601 }
21602 }
21603 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21604 {
21605 bfd_boolean is_bx;
21606
21607 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21608 is_bx = (opcode->aencode == do_bx);
21609
21610 /* Check that this instruction is supported for this CPU. */
21611 if (!(is_bx && fix_v4bx)
21612 && !(opcode->avariant &&
21613 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
21614 {
21615 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
21616 return;
21617 }
21618 if (inst.size_req)
21619 {
21620 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21621 return;
21622 }
21623
21624 inst.instruction = opcode->avalue;
21625 if (opcode->tag == OT_unconditionalF)
21626 inst.instruction |= 0xFU << 28;
21627 else
21628 inst.instruction |= inst.cond << 28;
21629 inst.size = INSN_SIZE;
21630 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
21631 {
21632 it_fsm_pre_encode ();
21633 opcode->aencode ();
21634 it_fsm_post_encode ();
21635 }
21636 /* Arm mode bx is marked as both v4T and v5 because it's still required
21637 on a hypothetical non-thumb v5 core. */
21638 if (is_bx)
21639 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
21640 else
21641 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21642 *opcode->avariant);
21643
21644 check_neon_suffixes;
21645
21646 if (!inst.error)
21647 {
21648 mapping_state (MAP_ARM);
21649 }
21650 }
21651 else
21652 {
21653 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21654 "-- `%s'"), str);
21655 return;
21656 }
21657 output_inst (str);
21658 }
21659
21660 static void
21661 check_pred_blocks_finished (void)
21662 {
21663 #ifdef OBJ_ELF
21664 asection *sect;
21665
21666 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
21667 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21668 == MANUAL_PRED_BLOCK)
21669 {
21670 if (now_pred.type == SCALAR_PRED)
21671 as_warn (_("section '%s' finished with an open IT block."),
21672 sect->name);
21673 else
21674 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21675 sect->name);
21676 }
21677 #else
21678 if (now_pred.state == MANUAL_PRED_BLOCK)
21679 {
21680 if (now_pred.type == SCALAR_PRED)
21681 as_warn (_("file finished with an open IT block."));
21682 else
21683 as_warn (_("file finished with an open VPT/VPST block."));
21684 }
21685 #endif
21686 }
21687
21688 /* Various frobbings of labels and their addresses. */
21689
21690 void
21691 arm_start_line_hook (void)
21692 {
21693 last_label_seen = NULL;
21694 }
21695
21696 void
21697 arm_frob_label (symbolS * sym)
21698 {
21699 last_label_seen = sym;
21700
21701 ARM_SET_THUMB (sym, thumb_mode);
21702
21703 #if defined OBJ_COFF || defined OBJ_ELF
21704 ARM_SET_INTERWORK (sym, support_interwork);
21705 #endif
21706
21707 force_automatic_it_block_close ();
21708
21709 /* Note - do not allow local symbols (.Lxxx) to be labelled
21710 as Thumb functions. This is because these labels, whilst
21711 they exist inside Thumb code, are not the entry points for
21712 possible ARM->Thumb calls. Also, these labels can be used
21713 as part of a computed goto or switch statement. eg gcc
21714 can generate code that looks like this:
21715
21716 ldr r2, [pc, .Laaa]
21717 lsl r3, r3, #2
21718 ldr r2, [r3, r2]
21719 mov pc, r2
21720
21721 .Lbbb: .word .Lxxx
21722 .Lccc: .word .Lyyy
21723 ..etc...
21724 .Laaa: .word Lbbb
21725
21726 The first instruction loads the address of the jump table.
21727 The second instruction converts a table index into a byte offset.
21728 The third instruction gets the jump address out of the table.
21729 The fourth instruction performs the jump.
21730
21731 If the address stored at .Laaa is that of a symbol which has the
21732 Thumb_Func bit set, then the linker will arrange for this address
21733 to have the bottom bit set, which in turn would mean that the
21734 address computation performed by the third instruction would end
21735 up with the bottom bit set. Since the ARM is capable of unaligned
21736 word loads, the instruction would then load the incorrect address
21737 out of the jump table, and chaos would ensue. */
21738 if (label_is_thumb_function_name
21739 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21740 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
21741 {
21742 /* When the address of a Thumb function is taken the bottom
21743 bit of that address should be set. This will allow
21744 interworking between Arm and Thumb functions to work
21745 correctly. */
21746
21747 THUMB_SET_FUNC (sym, 1);
21748
21749 label_is_thumb_function_name = FALSE;
21750 }
21751
21752 dwarf2_emit_label (sym);
21753 }
21754
21755 bfd_boolean
21756 arm_data_in_code (void)
21757 {
21758 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
21759 {
21760 *input_line_pointer = '/';
21761 input_line_pointer += 5;
21762 *input_line_pointer = 0;
21763 return TRUE;
21764 }
21765
21766 return FALSE;
21767 }
21768
21769 char *
21770 arm_canonicalize_symbol_name (char * name)
21771 {
21772 int len;
21773
21774 if (thumb_mode && (len = strlen (name)) > 5
21775 && streq (name + len - 5, "/data"))
21776 *(name + len - 5) = 0;
21777
21778 return name;
21779 }
21780 \f
21781 /* Table of all register names defined by default. The user can
21782 define additional names with .req. Note that all register names
21783 should appear in both upper and lowercase variants. Some registers
21784 also have mixed-case names. */
21785
21786 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
21787 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
21788 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
21789 #define REGSET(p,t) \
21790 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21791 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21792 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21793 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
21794 #define REGSETH(p,t) \
21795 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21796 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21797 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21798 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21799 #define REGSET2(p,t) \
21800 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21801 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21802 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21803 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
21804 #define SPLRBANK(base,bank,t) \
21805 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21806 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21807 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21808 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21809 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21810 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
21811
21812 static const struct reg_entry reg_names[] =
21813 {
21814 /* ARM integer registers. */
21815 REGSET(r, RN), REGSET(R, RN),
21816
21817 /* ATPCS synonyms. */
21818 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21819 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21820 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
21821
21822 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21823 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21824 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
21825
21826 /* Well-known aliases. */
21827 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21828 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21829
21830 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21831 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21832
21833 /* Defining the new Zero register from ARMv8.1-M. */
21834 REGDEF(zr,15,ZR),
21835 REGDEF(ZR,15,ZR),
21836
21837 /* Coprocessor numbers. */
21838 REGSET(p, CP), REGSET(P, CP),
21839
21840 /* Coprocessor register numbers. The "cr" variants are for backward
21841 compatibility. */
21842 REGSET(c, CN), REGSET(C, CN),
21843 REGSET(cr, CN), REGSET(CR, CN),
21844
21845 /* ARM banked registers. */
21846 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21847 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21848 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21849 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21850 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21851 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21852 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21853
21854 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21855 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21856 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21857 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21858 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
21859 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
21860 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21861 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21862
21863 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21864 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21865 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21866 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21867 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21868 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21869 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
21870 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
21871 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21872
21873 /* FPA registers. */
21874 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21875 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21876
21877 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21878 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21879
21880 /* VFP SP registers. */
21881 REGSET(s,VFS), REGSET(S,VFS),
21882 REGSETH(s,VFS), REGSETH(S,VFS),
21883
21884 /* VFP DP Registers. */
21885 REGSET(d,VFD), REGSET(D,VFD),
21886 /* Extra Neon DP registers. */
21887 REGSETH(d,VFD), REGSETH(D,VFD),
21888
21889 /* Neon QP registers. */
21890 REGSET2(q,NQ), REGSET2(Q,NQ),
21891
21892 /* VFP control registers. */
21893 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21894 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
21895 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21896 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21897 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21898 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
21899 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
21900
21901 /* Maverick DSP coprocessor registers. */
21902 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21903 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21904
21905 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21906 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21907 REGDEF(dspsc,0,DSPSC),
21908
21909 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21910 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21911 REGDEF(DSPSC,0,DSPSC),
21912
21913 /* iWMMXt data registers - p0, c0-15. */
21914 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21915
21916 /* iWMMXt control registers - p1, c0-3. */
21917 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21918 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21919 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21920 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21921
21922 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21923 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21924 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21925 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21926 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21927
21928 /* XScale accumulator registers. */
21929 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21930 };
21931 #undef REGDEF
21932 #undef REGNUM
21933 #undef REGSET
21934
21935 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21936 within psr_required_here. */
21937 static const struct asm_psr psrs[] =
21938 {
21939 /* Backward compatibility notation. Note that "all" is no longer
21940 truly all possible PSR bits. */
21941 {"all", PSR_c | PSR_f},
21942 {"flg", PSR_f},
21943 {"ctl", PSR_c},
21944
21945 /* Individual flags. */
21946 {"f", PSR_f},
21947 {"c", PSR_c},
21948 {"x", PSR_x},
21949 {"s", PSR_s},
21950
21951 /* Combinations of flags. */
21952 {"fs", PSR_f | PSR_s},
21953 {"fx", PSR_f | PSR_x},
21954 {"fc", PSR_f | PSR_c},
21955 {"sf", PSR_s | PSR_f},
21956 {"sx", PSR_s | PSR_x},
21957 {"sc", PSR_s | PSR_c},
21958 {"xf", PSR_x | PSR_f},
21959 {"xs", PSR_x | PSR_s},
21960 {"xc", PSR_x | PSR_c},
21961 {"cf", PSR_c | PSR_f},
21962 {"cs", PSR_c | PSR_s},
21963 {"cx", PSR_c | PSR_x},
21964 {"fsx", PSR_f | PSR_s | PSR_x},
21965 {"fsc", PSR_f | PSR_s | PSR_c},
21966 {"fxs", PSR_f | PSR_x | PSR_s},
21967 {"fxc", PSR_f | PSR_x | PSR_c},
21968 {"fcs", PSR_f | PSR_c | PSR_s},
21969 {"fcx", PSR_f | PSR_c | PSR_x},
21970 {"sfx", PSR_s | PSR_f | PSR_x},
21971 {"sfc", PSR_s | PSR_f | PSR_c},
21972 {"sxf", PSR_s | PSR_x | PSR_f},
21973 {"sxc", PSR_s | PSR_x | PSR_c},
21974 {"scf", PSR_s | PSR_c | PSR_f},
21975 {"scx", PSR_s | PSR_c | PSR_x},
21976 {"xfs", PSR_x | PSR_f | PSR_s},
21977 {"xfc", PSR_x | PSR_f | PSR_c},
21978 {"xsf", PSR_x | PSR_s | PSR_f},
21979 {"xsc", PSR_x | PSR_s | PSR_c},
21980 {"xcf", PSR_x | PSR_c | PSR_f},
21981 {"xcs", PSR_x | PSR_c | PSR_s},
21982 {"cfs", PSR_c | PSR_f | PSR_s},
21983 {"cfx", PSR_c | PSR_f | PSR_x},
21984 {"csf", PSR_c | PSR_s | PSR_f},
21985 {"csx", PSR_c | PSR_s | PSR_x},
21986 {"cxf", PSR_c | PSR_x | PSR_f},
21987 {"cxs", PSR_c | PSR_x | PSR_s},
21988 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
21989 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
21990 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
21991 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
21992 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
21993 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
21994 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
21995 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
21996 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
21997 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
21998 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
21999 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22000 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22001 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22002 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22003 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22004 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22005 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22006 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22007 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22008 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22009 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22010 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22011 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22012 };
22013
22014 /* Table of V7M psr names. */
22015 static const struct asm_psr v7m_psrs[] =
22016 {
22017 {"apsr", 0x0 }, {"APSR", 0x0 },
22018 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22019 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22020 {"psr", 0x3 }, {"PSR", 0x3 },
22021 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22022 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22023 {"epsr", 0x6 }, {"EPSR", 0x6 },
22024 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22025 {"msp", 0x8 }, {"MSP", 0x8 },
22026 {"psp", 0x9 }, {"PSP", 0x9 },
22027 {"msplim", 0xa }, {"MSPLIM", 0xa },
22028 {"psplim", 0xb }, {"PSPLIM", 0xb },
22029 {"primask", 0x10}, {"PRIMASK", 0x10},
22030 {"basepri", 0x11}, {"BASEPRI", 0x11},
22031 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
22032 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22033 {"control", 0x14}, {"CONTROL", 0x14},
22034 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22035 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22036 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22037 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22038 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22039 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22040 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22041 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22042 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
22043 };
22044
22045 /* Table of all shift-in-operand names. */
22046 static const struct asm_shift_name shift_names [] =
22047 {
22048 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22049 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22050 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22051 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22052 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
22053 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22054 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
22055 };
22056
22057 /* Table of all explicit relocation names. */
22058 #ifdef OBJ_ELF
22059 static struct reloc_entry reloc_names[] =
22060 {
22061 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22062 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22063 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22064 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22065 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22066 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22067 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22068 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22069 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22070 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
22071 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
22072 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22073 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
22074 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
22075 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
22076 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
22077 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
22078 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22079 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22080 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22081 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22082 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22083 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
22084 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22085 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22086 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22087 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
22088 };
22089 #endif
22090
22091 /* Table of all conditional affixes. */
22092 static const struct asm_cond conds[] =
22093 {
22094 {"eq", 0x0},
22095 {"ne", 0x1},
22096 {"cs", 0x2}, {"hs", 0x2},
22097 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22098 {"mi", 0x4},
22099 {"pl", 0x5},
22100 {"vs", 0x6},
22101 {"vc", 0x7},
22102 {"hi", 0x8},
22103 {"ls", 0x9},
22104 {"ge", 0xa},
22105 {"lt", 0xb},
22106 {"gt", 0xc},
22107 {"le", 0xd},
22108 {"al", 0xe}
22109 };
22110 static const struct asm_cond vconds[] =
22111 {
22112 {"t", 0xf},
22113 {"e", 0x10}
22114 };
22115
22116 #define UL_BARRIER(L,U,CODE,FEAT) \
22117 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22118 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22119
22120 static struct asm_barrier_opt barrier_opt_names[] =
22121 {
22122 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22123 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22124 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22125 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22126 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22127 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22128 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22129 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22130 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22131 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22132 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22133 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22134 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22135 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22136 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22137 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
22138 };
22139
22140 #undef UL_BARRIER
22141
22142 /* Table of ARM-format instructions. */
22143
22144 /* Macros for gluing together operand strings. N.B. In all cases
22145 other than OPS0, the trailing OP_stop comes from default
22146 zero-initialization of the unspecified elements of the array. */
22147 #define OPS0() { OP_stop, }
22148 #define OPS1(a) { OP_##a, }
22149 #define OPS2(a,b) { OP_##a,OP_##b, }
22150 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22151 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22152 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22153 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22154
22155 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22156 This is useful when mixing operands for ARM and THUMB, i.e. using the
22157 MIX_ARM_THUMB_OPERANDS macro.
22158 In order to use these macros, prefix the number of operands with _
22159 e.g. _3. */
22160 #define OPS_1(a) { a, }
22161 #define OPS_2(a,b) { a,b, }
22162 #define OPS_3(a,b,c) { a,b,c, }
22163 #define OPS_4(a,b,c,d) { a,b,c,d, }
22164 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22165 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22166
22167 /* These macros abstract out the exact format of the mnemonic table and
22168 save some repeated characters. */
22169
22170 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22171 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22172 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22173 THUMB_VARIANT, do_##ae, do_##te, 0 }
22174
22175 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22176 a T_MNEM_xyz enumerator. */
22177 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22178 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22179 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22180 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22181
22182 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22183 infix after the third character. */
22184 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22185 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22186 THUMB_VARIANT, do_##ae, do_##te, 0 }
22187 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22188 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22189 THUMB_VARIANT, do_##ae, do_##te, 0 }
22190 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22191 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22192 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22193 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22194 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22195 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22196 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22197 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22198
22199 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22200 field is still 0xE. Many of the Thumb variants can be executed
22201 conditionally, so this is checked separately. */
22202 #define TUE(mnem, op, top, nops, ops, ae, te) \
22203 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22204 THUMB_VARIANT, do_##ae, do_##te, 0 }
22205
22206 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22207 Used by mnemonics that have very minimal differences in the encoding for
22208 ARM and Thumb variants and can be handled in a common function. */
22209 #define TUEc(mnem, op, top, nops, ops, en) \
22210 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22211 THUMB_VARIANT, do_##en, do_##en, 0 }
22212
22213 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22214 condition code field. */
22215 #define TUF(mnem, op, top, nops, ops, ae, te) \
22216 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22217 THUMB_VARIANT, do_##ae, do_##te, 0 }
22218
22219 /* ARM-only variants of all the above. */
22220 #define CE(mnem, op, nops, ops, ae) \
22221 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22222
22223 #define C3(mnem, op, nops, ops, ae) \
22224 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22225
22226 /* Thumb-only variants of TCE and TUE. */
22227 #define ToC(mnem, top, nops, ops, te) \
22228 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22229 do_##te, 0 }
22230
22231 #define ToU(mnem, top, nops, ops, te) \
22232 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22233 NULL, do_##te, 0 }
22234
22235 /* T_MNEM_xyz enumerator variants of ToC. */
22236 #define toC(mnem, top, nops, ops, te) \
22237 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22238 do_##te, 0 }
22239
22240 /* T_MNEM_xyz enumerator variants of ToU. */
22241 #define toU(mnem, top, nops, ops, te) \
22242 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22243 NULL, do_##te, 0 }
22244
22245 /* Legacy mnemonics that always have conditional infix after the third
22246 character. */
22247 #define CL(mnem, op, nops, ops, ae) \
22248 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22249 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22250
22251 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22252 #define cCE(mnem, op, nops, ops, ae) \
22253 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22254
22255 /* mov instructions that are shared between coprocessor and MVE. */
22256 #define mcCE(mnem, op, nops, ops, ae) \
22257 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22258
22259 /* Legacy coprocessor instructions where conditional infix and conditional
22260 suffix are ambiguous. For consistency this includes all FPA instructions,
22261 not just the potentially ambiguous ones. */
22262 #define cCL(mnem, op, nops, ops, ae) \
22263 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22264 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22265
22266 /* Coprocessor, takes either a suffix or a position-3 infix
22267 (for an FPA corner case). */
22268 #define C3E(mnem, op, nops, ops, ae) \
22269 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22270 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22271
22272 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22273 { m1 #m2 m3, OPS##nops ops, \
22274 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22275 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22276
22277 #define CM(m1, m2, op, nops, ops, ae) \
22278 xCM_ (m1, , m2, op, nops, ops, ae), \
22279 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22280 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22281 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22282 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22283 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22284 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22285 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22286 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22287 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22288 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22289 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22290 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22291 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22292 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22293 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22294 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22295 xCM_ (m1, le, m2, op, nops, ops, ae), \
22296 xCM_ (m1, al, m2, op, nops, ops, ae)
22297
22298 #define UE(mnem, op, nops, ops, ae) \
22299 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22300
22301 #define UF(mnem, op, nops, ops, ae) \
22302 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22303
22304 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22305 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22306 use the same encoding function for each. */
22307 #define NUF(mnem, op, nops, ops, enc) \
22308 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22309 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22310
22311 /* Neon data processing, version which indirects through neon_enc_tab for
22312 the various overloaded versions of opcodes. */
22313 #define nUF(mnem, op, nops, ops, enc) \
22314 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22315 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22316
22317 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22318 version. */
22319 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22320 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22321 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22322
22323 #define NCE(mnem, op, nops, ops, enc) \
22324 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22325
22326 #define NCEF(mnem, op, nops, ops, enc) \
22327 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22328
22329 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22330 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22331 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22332 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22333
22334 #define nCE(mnem, op, nops, ops, enc) \
22335 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22336
22337 #define nCEF(mnem, op, nops, ops, enc) \
22338 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22339
22340 /* */
22341 #define mCEF(mnem, op, nops, ops, enc) \
22342 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22343 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22344
22345
22346 /* nCEF but for MVE predicated instructions. */
22347 #define mnCEF(mnem, op, nops, ops, enc) \
22348 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22349
22350 /* nCE but for MVE predicated instructions. */
22351 #define mnCE(mnem, op, nops, ops, enc) \
22352 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22353
22354 /* NUF but for potentially MVE predicated instructions. */
22355 #define MNUF(mnem, op, nops, ops, enc) \
22356 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22357 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22358
22359 /* nUF but for potentially MVE predicated instructions. */
22360 #define mnUF(mnem, op, nops, ops, enc) \
22361 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22362 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22363
22364 /* ToC but for potentially MVE predicated instructions. */
22365 #define mToC(mnem, top, nops, ops, te) \
22366 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22367 do_##te, 1 }
22368
22369 /* NCE but for MVE predicated instructions. */
22370 #define MNCE(mnem, op, nops, ops, enc) \
22371 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22372
22373 /* NCEF but for MVE predicated instructions. */
22374 #define MNCEF(mnem, op, nops, ops, enc) \
22375 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22376 #define do_0 0
22377
22378 static const struct asm_opcode insns[] =
22379 {
22380 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22381 #define THUMB_VARIANT & arm_ext_v4t
22382 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22383 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22384 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22385 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22386 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22387 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22388 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22389 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22390 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22391 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22392 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22393 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22394 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22395 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22396 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22397 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22398
22399 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22400 for setting PSR flag bits. They are obsolete in V6 and do not
22401 have Thumb equivalents. */
22402 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22403 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22404 CL("tstp", 110f000, 2, (RR, SH), cmp),
22405 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22406 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22407 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22408 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22409 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22410 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22411
22412 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22413 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22414 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22415 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22416
22417 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22418 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22419 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22420 OP_RRnpc),
22421 OP_ADDRGLDR),ldst, t_ldst),
22422 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22423
22424 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22425 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22426 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22427 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22428 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22429 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22430
22431 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22432 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22433
22434 /* Pseudo ops. */
22435 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22436 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22437 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22438 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22439
22440 /* Thumb-compatibility pseudo ops. */
22441 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22442 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22443 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22444 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22445 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22446 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22447 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22448 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22449 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22450 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22451 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22452 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22453
22454 /* These may simplify to neg. */
22455 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22456 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22457
22458 #undef THUMB_VARIANT
22459 #define THUMB_VARIANT & arm_ext_os
22460
22461 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22462 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22463
22464 #undef THUMB_VARIANT
22465 #define THUMB_VARIANT & arm_ext_v6
22466
22467 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
22468
22469 /* V1 instructions with no Thumb analogue prior to V6T2. */
22470 #undef THUMB_VARIANT
22471 #define THUMB_VARIANT & arm_ext_v6t2
22472
22473 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22474 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22475 CL("teqp", 130f000, 2, (RR, SH), cmp),
22476
22477 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22478 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22479 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22480 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22481
22482 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22483 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22484
22485 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22486 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22487
22488 /* V1 instructions with no Thumb analogue at all. */
22489 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22490 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22491
22492 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22493 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22494 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22495 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22496 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22497 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22498 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22499 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22500
22501 #undef ARM_VARIANT
22502 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22503 #undef THUMB_VARIANT
22504 #define THUMB_VARIANT & arm_ext_v4t
22505
22506 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22507 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22508
22509 #undef THUMB_VARIANT
22510 #define THUMB_VARIANT & arm_ext_v6t2
22511
22512 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22513 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22514
22515 /* Generic coprocessor instructions. */
22516 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22517 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22518 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22519 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22520 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22521 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22522 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22523
22524 #undef ARM_VARIANT
22525 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22526
22527 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22528 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22529
22530 #undef ARM_VARIANT
22531 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22532 #undef THUMB_VARIANT
22533 #define THUMB_VARIANT & arm_ext_msr
22534
22535 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22536 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
22537
22538 #undef ARM_VARIANT
22539 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22540 #undef THUMB_VARIANT
22541 #define THUMB_VARIANT & arm_ext_v6t2
22542
22543 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22544 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22545 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22546 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22547 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22548 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22549 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22550 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22551
22552 #undef ARM_VARIANT
22553 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22554 #undef THUMB_VARIANT
22555 #define THUMB_VARIANT & arm_ext_v4t
22556
22557 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22558 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22559 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22560 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22561 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22562 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22563
22564 #undef ARM_VARIANT
22565 #define ARM_VARIANT & arm_ext_v4t_5
22566
22567 /* ARM Architecture 4T. */
22568 /* Note: bx (and blx) are required on V5, even if the processor does
22569 not support Thumb. */
22570 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
22571
22572 #undef ARM_VARIANT
22573 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22574 #undef THUMB_VARIANT
22575 #define THUMB_VARIANT & arm_ext_v5t
22576
22577 /* Note: blx has 2 variants; the .value coded here is for
22578 BLX(2). Only this variant has conditional execution. */
22579 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22580 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
22581
22582 #undef THUMB_VARIANT
22583 #define THUMB_VARIANT & arm_ext_v6t2
22584
22585 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22586 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22587 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22588 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22589 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22590 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22591 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22592 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22593
22594 #undef ARM_VARIANT
22595 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22596 #undef THUMB_VARIANT
22597 #define THUMB_VARIANT & arm_ext_v5exp
22598
22599 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22600 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22601 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22602 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22603
22604 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22605 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22606
22607 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22608 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22609 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22610 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22611
22612 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22613 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22614 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22615 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22616
22617 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22618 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22619
22620 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22621 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22622 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22623 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22624
22625 #undef ARM_VARIANT
22626 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22627 #undef THUMB_VARIANT
22628 #define THUMB_VARIANT & arm_ext_v6t2
22629
22630 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
22631 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22632 ldrd, t_ldstd),
22633 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22634 ADDRGLDRS), ldrd, t_ldstd),
22635
22636 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22637 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22638
22639 #undef ARM_VARIANT
22640 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22641
22642 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
22643
22644 #undef ARM_VARIANT
22645 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22646 #undef THUMB_VARIANT
22647 #define THUMB_VARIANT & arm_ext_v6
22648
22649 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22650 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22651 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22652 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22653 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22654 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22655 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22656 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22657 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22658 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
22659
22660 #undef THUMB_VARIANT
22661 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22662
22663 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22664 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22665 strex, t_strex),
22666 #undef THUMB_VARIANT
22667 #define THUMB_VARIANT & arm_ext_v6t2
22668
22669 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22670 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22671
22672 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22673 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
22674
22675 /* ARM V6 not included in V7M. */
22676 #undef THUMB_VARIANT
22677 #define THUMB_VARIANT & arm_ext_v6_notm
22678 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22679 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22680 UF(rfeib, 9900a00, 1, (RRw), rfe),
22681 UF(rfeda, 8100a00, 1, (RRw), rfe),
22682 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22683 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22684 UF(rfefa, 8100a00, 1, (RRw), rfe),
22685 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22686 UF(rfeed, 9900a00, 1, (RRw), rfe),
22687 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22688 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22689 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22690 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
22691 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
22692 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
22693 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
22694 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22695 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22696 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
22697
22698 /* ARM V6 not included in V7M (eg. integer SIMD). */
22699 #undef THUMB_VARIANT
22700 #define THUMB_VARIANT & arm_ext_v6_dsp
22701 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22702 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22703 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22704 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22705 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22706 /* Old name for QASX. */
22707 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22708 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22709 /* Old name for QSAX. */
22710 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22711 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22712 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22713 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22714 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22715 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22716 /* Old name for SASX. */
22717 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22718 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22719 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22720 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22721 /* Old name for SHASX. */
22722 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22723 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22724 /* Old name for SHSAX. */
22725 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22726 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22727 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22728 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22729 /* Old name for SSAX. */
22730 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22731 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22732 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22733 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22734 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22735 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22736 /* Old name for UASX. */
22737 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22738 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22739 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22740 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22741 /* Old name for UHASX. */
22742 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22743 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22744 /* Old name for UHSAX. */
22745 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22746 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22747 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22748 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22749 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22750 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22751 /* Old name for UQASX. */
22752 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22753 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22754 /* Old name for UQSAX. */
22755 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22756 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22757 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22758 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22759 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22760 /* Old name for USAX. */
22761 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22762 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22763 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22764 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22765 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22766 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22767 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22768 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22769 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22770 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22771 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22772 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22773 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22774 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22775 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22776 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22777 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22778 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22779 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22780 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22781 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22782 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22783 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22784 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22785 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22786 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22787 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22788 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22789 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22790 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22791 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22792 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22793 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22794 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
22795
22796 #undef ARM_VARIANT
22797 #define ARM_VARIANT & arm_ext_v6k_v6t2
22798 #undef THUMB_VARIANT
22799 #define THUMB_VARIANT & arm_ext_v6k_v6t2
22800
22801 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22802 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22803 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22804 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
22805
22806 #undef THUMB_VARIANT
22807 #define THUMB_VARIANT & arm_ext_v6_notm
22808 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22809 ldrexd, t_ldrexd),
22810 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22811 RRnpcb), strexd, t_strexd),
22812
22813 #undef THUMB_VARIANT
22814 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22815 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22816 rd_rn, rd_rn),
22817 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22818 rd_rn, rd_rn),
22819 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22820 strex, t_strexbh),
22821 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22822 strex, t_strexbh),
22823 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
22824
22825 #undef ARM_VARIANT
22826 #define ARM_VARIANT & arm_ext_sec
22827 #undef THUMB_VARIANT
22828 #define THUMB_VARIANT & arm_ext_sec
22829
22830 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
22831
22832 #undef ARM_VARIANT
22833 #define ARM_VARIANT & arm_ext_virt
22834 #undef THUMB_VARIANT
22835 #define THUMB_VARIANT & arm_ext_virt
22836
22837 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22838 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22839
22840 #undef ARM_VARIANT
22841 #define ARM_VARIANT & arm_ext_pan
22842 #undef THUMB_VARIANT
22843 #define THUMB_VARIANT & arm_ext_pan
22844
22845 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22846
22847 #undef ARM_VARIANT
22848 #define ARM_VARIANT & arm_ext_v6t2
22849 #undef THUMB_VARIANT
22850 #define THUMB_VARIANT & arm_ext_v6t2
22851
22852 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22853 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22854 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22855 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22856
22857 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22858 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
22859
22860 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22861 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22862 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22863 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22864
22865 #undef ARM_VARIANT
22866 #define ARM_VARIANT & arm_ext_v3
22867 #undef THUMB_VARIANT
22868 #define THUMB_VARIANT & arm_ext_v6t2
22869
22870 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
22871 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22872 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
22873
22874 #undef ARM_VARIANT
22875 #define ARM_VARIANT & arm_ext_v6t2
22876 #undef THUMB_VARIANT
22877 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22878 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22879 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22880
22881 /* Thumb-only instructions. */
22882 #undef ARM_VARIANT
22883 #define ARM_VARIANT NULL
22884 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22885 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
22886
22887 /* ARM does not really have an IT instruction, so always allow it.
22888 The opcode is copied from Thumb in order to allow warnings in
22889 -mimplicit-it=[never | arm] modes. */
22890 #undef ARM_VARIANT
22891 #define ARM_VARIANT & arm_ext_v1
22892 #undef THUMB_VARIANT
22893 #define THUMB_VARIANT & arm_ext_v6t2
22894
22895 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22896 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22897 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22898 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22899 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22900 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22901 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22902 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22903 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22904 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22905 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22906 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22907 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22908 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22909 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
22910 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
22911 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22912 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
22913
22914 /* Thumb2 only instructions. */
22915 #undef ARM_VARIANT
22916 #define ARM_VARIANT NULL
22917
22918 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22919 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22920 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22921 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22922 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22923 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
22924
22925 /* Hardware division instructions. */
22926 #undef ARM_VARIANT
22927 #define ARM_VARIANT & arm_ext_adiv
22928 #undef THUMB_VARIANT
22929 #define THUMB_VARIANT & arm_ext_div
22930
22931 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22932 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
22933
22934 /* ARM V6M/V7 instructions. */
22935 #undef ARM_VARIANT
22936 #define ARM_VARIANT & arm_ext_barrier
22937 #undef THUMB_VARIANT
22938 #define THUMB_VARIANT & arm_ext_barrier
22939
22940 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22941 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22942 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
22943
22944 /* ARM V7 instructions. */
22945 #undef ARM_VARIANT
22946 #define ARM_VARIANT & arm_ext_v7
22947 #undef THUMB_VARIANT
22948 #define THUMB_VARIANT & arm_ext_v7
22949
22950 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22951 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
22952
22953 #undef ARM_VARIANT
22954 #define ARM_VARIANT & arm_ext_mp
22955 #undef THUMB_VARIANT
22956 #define THUMB_VARIANT & arm_ext_mp
22957
22958 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22959
22960 /* AArchv8 instructions. */
22961 #undef ARM_VARIANT
22962 #define ARM_VARIANT & arm_ext_v8
22963
22964 /* Instructions shared between armv8-a and armv8-m. */
22965 #undef THUMB_VARIANT
22966 #define THUMB_VARIANT & arm_ext_atomics
22967
22968 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22969 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22970 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22971 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22972 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22973 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22974 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22975 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
22976 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22977 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
22978 stlex, t_stlex),
22979 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
22980 stlex, t_stlex),
22981 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
22982 stlex, t_stlex),
22983 #undef THUMB_VARIANT
22984 #define THUMB_VARIANT & arm_ext_v8
22985
22986 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
22987 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
22988 ldrexd, t_ldrexd),
22989 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
22990 strexd, t_strexd),
22991
22992 /* Defined in V8 but is in undefined encoding space for earlier
22993 architectures. However earlier architectures are required to treat
22994 this instuction as a semihosting trap as well. Hence while not explicitly
22995 defined as such, it is in fact correct to define the instruction for all
22996 architectures. */
22997 #undef THUMB_VARIANT
22998 #define THUMB_VARIANT & arm_ext_v1
22999 #undef ARM_VARIANT
23000 #define ARM_VARIANT & arm_ext_v1
23001 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23002
23003 /* ARMv8 T32 only. */
23004 #undef ARM_VARIANT
23005 #define ARM_VARIANT NULL
23006 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23007 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23008 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23009
23010 /* FP for ARMv8. */
23011 #undef ARM_VARIANT
23012 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23013 #undef THUMB_VARIANT
23014 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
23015
23016 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23017 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23018 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23019 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
23020 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23021 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
23022 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
23023 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
23024 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
23025 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
23026 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
23027
23028 /* Crypto v1 extensions. */
23029 #undef ARM_VARIANT
23030 #define ARM_VARIANT & fpu_crypto_ext_armv8
23031 #undef THUMB_VARIANT
23032 #define THUMB_VARIANT & fpu_crypto_ext_armv8
23033
23034 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23035 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23036 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23037 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
23038 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23039 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23040 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23041 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23042 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23043 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23044 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
23045 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23046 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23047 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
23048
23049 #undef ARM_VARIANT
23050 #define ARM_VARIANT & crc_ext_armv8
23051 #undef THUMB_VARIANT
23052 #define THUMB_VARIANT & crc_ext_armv8
23053 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23054 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23055 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23056 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23057 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23058 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23059
23060 /* ARMv8.2 RAS extension. */
23061 #undef ARM_VARIANT
23062 #define ARM_VARIANT & arm_ext_ras
23063 #undef THUMB_VARIANT
23064 #define THUMB_VARIANT & arm_ext_ras
23065 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23066
23067 #undef ARM_VARIANT
23068 #define ARM_VARIANT & arm_ext_v8_3
23069 #undef THUMB_VARIANT
23070 #define THUMB_VARIANT & arm_ext_v8_3
23071 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23072
23073 #undef ARM_VARIANT
23074 #define ARM_VARIANT & fpu_neon_ext_dotprod
23075 #undef THUMB_VARIANT
23076 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23077 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23078 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23079
23080 #undef ARM_VARIANT
23081 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23082 #undef THUMB_VARIANT
23083 #define THUMB_VARIANT NULL
23084
23085 cCE("wfs", e200110, 1, (RR), rd),
23086 cCE("rfs", e300110, 1, (RR), rd),
23087 cCE("wfc", e400110, 1, (RR), rd),
23088 cCE("rfc", e500110, 1, (RR), rd),
23089
23090 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23091 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23092 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23093 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23094
23095 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23096 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23097 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23098 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23099
23100 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23101 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23102 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23103 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23104 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23105 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23106 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23107 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23108 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23109 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23110 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23111 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23112
23113 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23114 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23115 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23116 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23117 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23118 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23119 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23120 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23121 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23122 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23123 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23124 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23125
23126 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23127 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23128 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23129 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23130 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23131 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23132 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23133 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23134 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23135 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23136 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23137 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23138
23139 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23140 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23141 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23142 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23143 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23144 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23145 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23146 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23147 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23148 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23149 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23150 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23151
23152 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23153 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23154 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23155 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23156 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23157 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23158 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23159 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23160 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23161 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23162 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23163 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23164
23165 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23166 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23167 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23168 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23169 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23170 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23171 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23172 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23173 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23174 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23175 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23176 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23177
23178 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23179 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23180 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23181 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23182 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23183 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23184 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23185 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23186 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23187 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23188 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23189 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23190
23191 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23192 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23193 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23194 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23195 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23196 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23197 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23198 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23199 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23200 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23201 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23202 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23203
23204 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23205 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23206 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23207 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23208 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23209 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23210 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23211 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23212 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23213 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23214 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23215 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23216
23217 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23218 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23219 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23220 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23221 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23222 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23223 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23224 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23225 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23226 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23227 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23228 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23229
23230 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23231 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23232 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23233 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23234 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23235 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23236 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23237 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23238 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23239 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23240 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23241 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23242
23243 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23244 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23245 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23246 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23247 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23248 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23249 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23250 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23251 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23252 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23253 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23254 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23255
23256 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23257 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23258 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23259 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23260 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23261 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23262 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23263 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23264 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23265 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23266 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23267 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23268
23269 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23270 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23271 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23272 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23273 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23274 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23275 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23276 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23277 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23278 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23279 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23280 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23281
23282 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23283 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23284 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23285 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23286 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23287 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23288 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23289 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23290 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23291 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23292 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23293 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23294
23295 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23296 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23297 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23298 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23299 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23300 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23301 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23302 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23303 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23304 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23305 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23306 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23307
23308 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23309 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23310 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23311 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23312 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23313 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23314 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23315 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23316 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23317 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23318 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23319 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23320
23321 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23322 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23323 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23324 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23325 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23326 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23327 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23328 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23329 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23330 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23331 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23332 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23333
23334 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23335 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23336 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23337 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23338 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23339 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23340 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23341 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23342 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23343 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23344 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23345 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23346
23347 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23348 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23349 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23350 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23351 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23352 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23353 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23354 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23355 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23356 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23357 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23358 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23359
23360 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23361 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23362 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23363 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23364 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23365 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23366 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23367 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23368 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23369 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23370 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23371 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23372
23373 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23374 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23375 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23376 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23377 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23378 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23379 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23380 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23381 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23382 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23383 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23384 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23385
23386 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23387 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23388 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23389 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23390 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23391 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23392 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23393 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23394 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23395 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23396 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23397 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23398
23399 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23400 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23401 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23402 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23403 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23404 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23405 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23406 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23407 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23408 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23409 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23410 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23411
23412 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23413 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23414 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23415 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23416 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23417 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23418 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23419 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23420 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23421 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23422 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23423 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23424
23425 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23426 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23427 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23428 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23429 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23430 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23431 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23432 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23433 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23434 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23435 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23436 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23437
23438 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23439 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23440 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23441 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23442 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23443 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23444 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23445 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23446 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23447 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23448 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23449 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23450
23451 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23452 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23453 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23454 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23455 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23456 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23457 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23458 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23459 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23460 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23461 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23462 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23463
23464 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23465 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23466 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23467 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23468 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23469 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23470 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23471 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23472 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23473 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23474 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23475 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23476
23477 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23478 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23479 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23480 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23481
23482 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23483 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23484 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23485 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23486 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23487 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23488 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23489 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23490 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23491 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23492 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23493 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23494
23495 /* The implementation of the FIX instruction is broken on some
23496 assemblers, in that it accepts a precision specifier as well as a
23497 rounding specifier, despite the fact that this is meaningless.
23498 To be more compatible, we accept it as well, though of course it
23499 does not set any bits. */
23500 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23501 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23502 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23503 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23504 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23505 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23506 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23507 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23508 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23509 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23510 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23511 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23512 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23513
23514 /* Instructions that were new with the real FPA, call them V2. */
23515 #undef ARM_VARIANT
23516 #define ARM_VARIANT & fpu_fpa_ext_v2
23517
23518 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23519 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23520 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23521 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23522 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23523 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23524
23525 #undef ARM_VARIANT
23526 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23527
23528 /* Moves and type conversions. */
23529 cCE("fmstat", ef1fa10, 0, (), noargs),
23530 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23531 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
23532 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23533 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23534 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23535 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23536 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23537 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23538 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23539 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
23540
23541 /* Memory operations. */
23542 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23543 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23544 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23545 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23546 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23547 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23548 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23549 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23550 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23551 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23552 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23553 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23554 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23555 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23556 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23557 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23558 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23559 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23560
23561 /* Monadic operations. */
23562 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23563 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23564 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
23565
23566 /* Dyadic operations. */
23567 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23568 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23569 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23570 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23571 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23572 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23573 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23574 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23575 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23576
23577 /* Comparisons. */
23578 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23579 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23580 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23581 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
23582
23583 /* Double precision load/store are still present on single precision
23584 implementations. */
23585 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23586 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23587 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23588 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23589 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23590 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23591 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23592 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23593 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23594 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23595
23596 #undef ARM_VARIANT
23597 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23598
23599 /* Moves and type conversions. */
23600 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23601 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23602 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23603 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23604 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23605 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23606 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23607 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23608 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23609 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23610 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23611 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23612
23613 /* Monadic operations. */
23614 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23615 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23616 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23617
23618 /* Dyadic operations. */
23619 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23620 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23621 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23622 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23623 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23624 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23625 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23626 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23627 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23628
23629 /* Comparisons. */
23630 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23631 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23632 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23633 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
23634
23635 /* Instructions which may belong to either the Neon or VFP instruction sets.
23636 Individual encoder functions perform additional architecture checks. */
23637 #undef ARM_VARIANT
23638 #define ARM_VARIANT & fpu_vfp_ext_v1xd
23639 #undef THUMB_VARIANT
23640 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
23641
23642 /* These mnemonics are unique to VFP. */
23643 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23644 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
23645 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23646 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23647 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23648 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23649 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23650 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23651
23652 /* Mnemonics shared by Neon and VFP. */
23653 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23654 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23655 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23656
23657 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23658 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23659 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23660 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23661 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23662 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23663
23664 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
23665 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
23666 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23667 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
23668
23669
23670 /* NOTE: All VMOV encoding is special-cased! */
23671 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23672
23673 #undef THUMB_VARIANT
23674 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23675 by different feature bits. Since we are setting the Thumb guard, we can
23676 require Thumb-1 which makes it a nop guard and set the right feature bit in
23677 do_vldr_vstr (). */
23678 #define THUMB_VARIANT & arm_ext_v4t
23679 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23680 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23681
23682 #undef ARM_VARIANT
23683 #define ARM_VARIANT & arm_ext_fp16
23684 #undef THUMB_VARIANT
23685 #define THUMB_VARIANT & arm_ext_fp16
23686 /* New instructions added from v8.2, allowing the extraction and insertion of
23687 the upper 16 bits of a 32-bit vector register. */
23688 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23689 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23690
23691 /* New backported fma/fms instructions optional in v8.2. */
23692 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23693 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23694
23695 #undef THUMB_VARIANT
23696 #define THUMB_VARIANT & fpu_neon_ext_v1
23697 #undef ARM_VARIANT
23698 #define ARM_VARIANT & fpu_neon_ext_v1
23699
23700 /* Data processing with three registers of the same length. */
23701 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23702 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23703 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
23704 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23705 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23706 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23707 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23708 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23709 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23710 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23711 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23712 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23713 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23714 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23715 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23716 /* If not immediate, fall back to neon_dyadic_i64_su.
23717 shl_imm should accept I8 I16 I32 I64,
23718 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
23719 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23720 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23721 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23722 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
23723 /* Logic ops, types optional & ignored. */
23724 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23725 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23726 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23727 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23728 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
23729 /* Bitfield ops, untyped. */
23730 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23731 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23732 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23733 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23734 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23735 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23736 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
23737 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23738 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23739 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23740 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23741 back to neon_dyadic_if_su. */
23742 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23743 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23744 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23745 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23746 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23747 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23748 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23749 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23750 /* Comparison. Type I8 I16 I32 F32. */
23751 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23752 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
23753 /* As above, D registers only. */
23754 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23755 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23756 /* Int and float variants, signedness unimportant. */
23757 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23758 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23759 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
23760 /* Add/sub take types I8 I16 I32 I64 F32. */
23761 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23762 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23763 /* vtst takes sizes 8, 16, 32. */
23764 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23765 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23766 /* VMUL takes I8 I16 I32 F32 P8. */
23767 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
23768 /* VQD{R}MULH takes S16 S32. */
23769 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23770 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23771 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23772 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23773 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23774 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23775 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23776 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23777 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23778 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23779 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23780 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23781 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23782 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23783 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23784 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23785 /* ARM v8.1 extension. */
23786 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23787 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23788 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23789 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23790
23791 /* Two address, int/float. Types S8 S16 S32 F32. */
23792 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
23793 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23794
23795 /* Data processing with two registers and a shift amount. */
23796 /* Right shifts, and variants with rounding.
23797 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23798 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23799 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23800 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23801 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23802 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23803 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23804 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23805 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23806 /* Shift and insert. Sizes accepted 8 16 32 64. */
23807 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23808 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23809 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23810 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23811 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23812 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23813 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23814 /* Right shift immediate, saturating & narrowing, with rounding variants.
23815 Types accepted S16 S32 S64 U16 U32 U64. */
23816 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23817 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23818 /* As above, unsigned. Types accepted S16 S32 S64. */
23819 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23820 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23821 /* Right shift narrowing. Types accepted I16 I32 I64. */
23822 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23823 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23824 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
23825 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
23826 /* CVT with optional immediate for fixed-point variant. */
23827 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
23828
23829 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23830 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
23831
23832 /* Data processing, three registers of different lengths. */
23833 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23834 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
23835 /* If not scalar, fall back to neon_dyadic_long.
23836 Vector types as above, scalar types S16 S32 U16 U32. */
23837 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23838 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23839 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23840 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23841 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23842 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23843 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23844 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23845 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23846 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23847 /* Saturating doubling multiplies. Types S16 S32. */
23848 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23849 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23850 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23851 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23852 S16 S32 U16 U32. */
23853 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
23854
23855 /* Extract. Size 8. */
23856 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23857 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
23858
23859 /* Two registers, miscellaneous. */
23860 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23861 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23862 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23863 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23864 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23865 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23866 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23867 /* Vector replicate. Sizes 8 16 32. */
23868 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
23869 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23870 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23871 /* VMOVN. Types I16 I32 I64. */
23872 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
23873 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
23874 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
23875 /* VQMOVUN. Types S16 S32 S64. */
23876 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
23877 /* VZIP / VUZP. Sizes 8 16 32. */
23878 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23879 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23880 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23881 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23882 /* VQABS / VQNEG. Types S8 S16 S32. */
23883 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23884 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23885 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23886 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23887 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23888 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23889 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23890 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23891 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
23892 /* Reciprocal estimates. Types U32 F16 F32. */
23893 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23894 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23895 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23896 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23897 /* VCLS. Types S8 S16 S32. */
23898 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23899 /* VCLZ. Types I8 I16 I32. */
23900 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23901 /* VCNT. Size 8. */
23902 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23903 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23904 /* Two address, untyped. */
23905 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23906 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23907 /* VTRN. Sizes 8 16 32. */
23908 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23909 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
23910
23911 /* Table lookup. Size 8. */
23912 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23913 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23914
23915 #undef THUMB_VARIANT
23916 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23917 #undef ARM_VARIANT
23918 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23919
23920 /* Neon element/structure load/store. */
23921 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23922 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23923 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23924 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23925 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23926 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23927 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23928 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23929
23930 #undef THUMB_VARIANT
23931 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
23932 #undef ARM_VARIANT
23933 #define ARM_VARIANT & fpu_vfp_ext_v3xd
23934 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23935 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23936 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23937 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23938 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23939 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23940 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23941 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23942 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23943
23944 #undef THUMB_VARIANT
23945 #define THUMB_VARIANT & fpu_vfp_ext_v3
23946 #undef ARM_VARIANT
23947 #define ARM_VARIANT & fpu_vfp_ext_v3
23948
23949 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
23950 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23951 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23952 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23953 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23954 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23955 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23956 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23957 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23958
23959 #undef ARM_VARIANT
23960 #define ARM_VARIANT & fpu_vfp_ext_fma
23961 #undef THUMB_VARIANT
23962 #define THUMB_VARIANT & fpu_vfp_ext_fma
23963 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
23964 VFP FMA variant; NEON and VFP FMA always includes the NEON
23965 FMA instructions. */
23966 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
23967 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
23968
23969 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23970 the v form should always be used. */
23971 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23972 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23973 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23974 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23975 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23976 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23977
23978 #undef THUMB_VARIANT
23979 #undef ARM_VARIANT
23980 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23981
23982 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23983 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23984 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23985 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23986 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23987 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23988 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
23989 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
23990
23991 #undef ARM_VARIANT
23992 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23993
23994 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
23995 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
23996 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
23997 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
23998 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
23999 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24000 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24001 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24002 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
24003 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24004 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24005 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24006 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24007 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24008 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24009 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24010 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24011 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24012 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24013 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24014 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24015 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24016 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24017 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24018 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24019 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24020 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24021 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24022 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
24023 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24024 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24025 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24026 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24027 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24028 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24029 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24030 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24031 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24032 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24033 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24034 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24035 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24036 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24037 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24038 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24039 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24040 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
24041 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24042 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24043 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24044 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24045 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24046 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24047 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24048 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24049 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24050 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24051 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24052 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24053 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24054 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24055 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24056 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24057 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24058 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24059 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24060 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24061 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24062 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24063 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24064 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24065 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24066 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24067 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24068 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24069 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24070 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24071 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24072 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24073 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24074 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24075 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24076 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24077 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24078 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24079 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24080 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24081 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24082 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24083 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24084 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24085 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24086 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24087 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24088 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24089 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24090 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24091 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24092 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24093 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24094 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24095 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24096 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24097 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24098 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24099 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24100 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24101 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24102 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24103 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24104 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24105 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24106 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24107 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24108 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24109 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24110 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24111 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24112 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24113 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24114 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24115 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24116 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24117 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24118 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24119 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24120 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24121 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24122 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24123 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24124 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24125 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24126 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24127 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24128 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24129 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24130 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24131 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24132 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24133 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24134 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24135 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24136 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24137 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24138 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24139 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24140 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24141 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24142 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24143 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24144 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24145 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24146 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24147 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24148 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24149 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24150 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24151 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24152 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24153 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24154 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24155 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
24156
24157 #undef ARM_VARIANT
24158 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24159
24160 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24161 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24162 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24163 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24164 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24165 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24166 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24167 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24168 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24169 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24170 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24171 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24172 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24173 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24174 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24175 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24176 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24177 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24178 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24179 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24180 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24181 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24182 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24183 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24184 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24185 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24186 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24187 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24188 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24189 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24190 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24191 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24192 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24193 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24194 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24195 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24196 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24197 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24198 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24199 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24200 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24201 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24202 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24203 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24204 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24205 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24206 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24207 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24208 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24209 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24210 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24211 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24212 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24213 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24214 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24215 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24216 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24217
24218 #undef ARM_VARIANT
24219 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24220
24221 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24222 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24223 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24224 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24225 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24226 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24227 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24228 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24229 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24230 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24231 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24232 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24233 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24234 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
24235 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24236 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24237 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24238 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24239 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24240 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24241 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24242 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24243 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24244 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
24245 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24246 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24247 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24248 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
24249 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24250 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
24251 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24252 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24253 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24254 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
24255 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24256 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24257 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24258 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24259 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24260 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
24261 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24262 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
24263 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24264 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
24265 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24266 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24267 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24268 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24269 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24270 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24271 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24272 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24273 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24274 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24275 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24276 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24277 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24278 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24279 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24280 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24281 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24282 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24283 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24284 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24285 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24286 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24287 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24288 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24289 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24290 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24291 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24292 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24293 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24294 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24295 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24296 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24297
24298 /* ARMv8.5-A instructions. */
24299 #undef ARM_VARIANT
24300 #define ARM_VARIANT & arm_ext_sb
24301 #undef THUMB_VARIANT
24302 #define THUMB_VARIANT & arm_ext_sb
24303 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24304
24305 #undef ARM_VARIANT
24306 #define ARM_VARIANT & arm_ext_predres
24307 #undef THUMB_VARIANT
24308 #define THUMB_VARIANT & arm_ext_predres
24309 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24310 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24311 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24312
24313 /* ARMv8-M instructions. */
24314 #undef ARM_VARIANT
24315 #define ARM_VARIANT NULL
24316 #undef THUMB_VARIANT
24317 #define THUMB_VARIANT & arm_ext_v8m
24318 ToU("sg", e97fe97f, 0, (), noargs),
24319 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24320 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24321 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24322 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24323 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24324 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
24325
24326 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24327 instructions behave as nop if no VFP is present. */
24328 #undef THUMB_VARIANT
24329 #define THUMB_VARIANT & arm_ext_v8m_main
24330 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24331 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
24332
24333 /* Armv8.1-M Mainline instructions. */
24334 #undef THUMB_VARIANT
24335 #define THUMB_VARIANT & arm_ext_v8_1m_main
24336 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
24337 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
24338 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
24339 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
24340 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24341
24342 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24343 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24344 toU("le", _le, 2, (oLR, EXP), t_loloop),
24345
24346 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24347 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24348
24349 #undef THUMB_VARIANT
24350 #define THUMB_VARIANT & mve_ext
24351
24352 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24353 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24354 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24355 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24356 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24357 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24358 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24359 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24360 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24361 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24362 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24363 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24364 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24365 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24366 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24367
24368 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24369 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24370 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24371 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24372 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24373 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24374 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24375 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24376 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24377 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24378 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24379 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24380 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24381 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24382 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24383
24384 /* MVE and MVE FP only. */
24385 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
24386 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24387 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24388 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24389 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24390 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24391 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24392 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24393 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24394 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24395 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24396 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24397 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24398 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24399 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24400 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24401 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24402
24403 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24404 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24405 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24406 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24407 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24408 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24409 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24410 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24411 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24412 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24413 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24414 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24415 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24416 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24417 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24418 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24419 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24420 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24421 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24422 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24423
24424 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24425 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24426 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24427 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24428 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24429 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24430 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24431 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24432 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24433 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24434 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24435 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24436 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24437
24438 #undef THUMB_VARIANT
24439 #define THUMB_VARIANT & mve_fp_ext
24440 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
24441 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
24442 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24443 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24444 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
24445 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
24446 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
24447 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
24448
24449 #undef ARM_VARIANT
24450 #define ARM_VARIANT & fpu_vfp_ext_v1
24451 #undef THUMB_VARIANT
24452 #define THUMB_VARIANT & arm_ext_v6t2
24453
24454 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24455
24456 #undef ARM_VARIANT
24457 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24458
24459 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24460 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24461 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24462 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24463
24464 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24465 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24466 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24467
24468 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24469 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24470
24471 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24472 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24473
24474 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24475 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24476
24477 #undef ARM_VARIANT
24478 #define ARM_VARIANT & fpu_vfp_ext_v2
24479
24480 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24481 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24482 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24483 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24484
24485 #undef ARM_VARIANT
24486 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24487 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
24488 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
24489 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
24490 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
24491 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24492 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
24493
24494 #undef ARM_VARIANT
24495 #define ARM_VARIANT & fpu_neon_ext_v1
24496 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24497 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
24498 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24499 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
24500 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24501 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24502 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24503 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
24504 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
24505 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
24506 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
24507 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
24508 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24509 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
24510 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
24511 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24512 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
24513
24514 #undef ARM_VARIANT
24515 #define ARM_VARIANT & arm_ext_v8_3
24516 #undef THUMB_VARIANT
24517 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24518 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
24519 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
24520 };
24521 #undef ARM_VARIANT
24522 #undef THUMB_VARIANT
24523 #undef TCE
24524 #undef TUE
24525 #undef TUF
24526 #undef TCC
24527 #undef cCE
24528 #undef cCL
24529 #undef C3E
24530 #undef C3
24531 #undef CE
24532 #undef CM
24533 #undef CL
24534 #undef UE
24535 #undef UF
24536 #undef UT
24537 #undef NUF
24538 #undef nUF
24539 #undef NCE
24540 #undef nCE
24541 #undef OPS0
24542 #undef OPS1
24543 #undef OPS2
24544 #undef OPS3
24545 #undef OPS4
24546 #undef OPS5
24547 #undef OPS6
24548 #undef do_0
24549 #undef ToC
24550 #undef toC
24551 #undef ToU
24552 #undef toU
24553 \f
24554 /* MD interface: bits in the object file. */
24555
24556 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24557 for use in the a.out file, and stores them in the array pointed to by buf.
24558 This knows about the endian-ness of the target machine and does
24559 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24560 2 (short) and 4 (long) Floating numbers are put out as a series of
24561 LITTLENUMS (shorts, here at least). */
24562
24563 void
24564 md_number_to_chars (char * buf, valueT val, int n)
24565 {
24566 if (target_big_endian)
24567 number_to_chars_bigendian (buf, val, n);
24568 else
24569 number_to_chars_littleendian (buf, val, n);
24570 }
24571
24572 static valueT
24573 md_chars_to_number (char * buf, int n)
24574 {
24575 valueT result = 0;
24576 unsigned char * where = (unsigned char *) buf;
24577
24578 if (target_big_endian)
24579 {
24580 while (n--)
24581 {
24582 result <<= 8;
24583 result |= (*where++ & 255);
24584 }
24585 }
24586 else
24587 {
24588 while (n--)
24589 {
24590 result <<= 8;
24591 result |= (where[n] & 255);
24592 }
24593 }
24594
24595 return result;
24596 }
24597
24598 /* MD interface: Sections. */
24599
24600 /* Calculate the maximum variable size (i.e., excluding fr_fix)
24601 that an rs_machine_dependent frag may reach. */
24602
24603 unsigned int
24604 arm_frag_max_var (fragS *fragp)
24605 {
24606 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24607 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24608
24609 Note that we generate relaxable instructions even for cases that don't
24610 really need it, like an immediate that's a trivial constant. So we're
24611 overestimating the instruction size for some of those cases. Rather
24612 than putting more intelligence here, it would probably be better to
24613 avoid generating a relaxation frag in the first place when it can be
24614 determined up front that a short instruction will suffice. */
24615
24616 gas_assert (fragp->fr_type == rs_machine_dependent);
24617 return INSN_SIZE;
24618 }
24619
24620 /* Estimate the size of a frag before relaxing. Assume everything fits in
24621 2 bytes. */
24622
24623 int
24624 md_estimate_size_before_relax (fragS * fragp,
24625 segT segtype ATTRIBUTE_UNUSED)
24626 {
24627 fragp->fr_var = 2;
24628 return 2;
24629 }
24630
24631 /* Convert a machine dependent frag. */
24632
24633 void
24634 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24635 {
24636 unsigned long insn;
24637 unsigned long old_op;
24638 char *buf;
24639 expressionS exp;
24640 fixS *fixp;
24641 int reloc_type;
24642 int pc_rel;
24643 int opcode;
24644
24645 buf = fragp->fr_literal + fragp->fr_fix;
24646
24647 old_op = bfd_get_16(abfd, buf);
24648 if (fragp->fr_symbol)
24649 {
24650 exp.X_op = O_symbol;
24651 exp.X_add_symbol = fragp->fr_symbol;
24652 }
24653 else
24654 {
24655 exp.X_op = O_constant;
24656 }
24657 exp.X_add_number = fragp->fr_offset;
24658 opcode = fragp->fr_subtype;
24659 switch (opcode)
24660 {
24661 case T_MNEM_ldr_pc:
24662 case T_MNEM_ldr_pc2:
24663 case T_MNEM_ldr_sp:
24664 case T_MNEM_str_sp:
24665 case T_MNEM_ldr:
24666 case T_MNEM_ldrb:
24667 case T_MNEM_ldrh:
24668 case T_MNEM_str:
24669 case T_MNEM_strb:
24670 case T_MNEM_strh:
24671 if (fragp->fr_var == 4)
24672 {
24673 insn = THUMB_OP32 (opcode);
24674 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24675 {
24676 insn |= (old_op & 0x700) << 4;
24677 }
24678 else
24679 {
24680 insn |= (old_op & 7) << 12;
24681 insn |= (old_op & 0x38) << 13;
24682 }
24683 insn |= 0x00000c00;
24684 put_thumb32_insn (buf, insn);
24685 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24686 }
24687 else
24688 {
24689 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24690 }
24691 pc_rel = (opcode == T_MNEM_ldr_pc2);
24692 break;
24693 case T_MNEM_adr:
24694 if (fragp->fr_var == 4)
24695 {
24696 insn = THUMB_OP32 (opcode);
24697 insn |= (old_op & 0xf0) << 4;
24698 put_thumb32_insn (buf, insn);
24699 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24700 }
24701 else
24702 {
24703 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24704 exp.X_add_number -= 4;
24705 }
24706 pc_rel = 1;
24707 break;
24708 case T_MNEM_mov:
24709 case T_MNEM_movs:
24710 case T_MNEM_cmp:
24711 case T_MNEM_cmn:
24712 if (fragp->fr_var == 4)
24713 {
24714 int r0off = (opcode == T_MNEM_mov
24715 || opcode == T_MNEM_movs) ? 0 : 8;
24716 insn = THUMB_OP32 (opcode);
24717 insn = (insn & 0xe1ffffff) | 0x10000000;
24718 insn |= (old_op & 0x700) << r0off;
24719 put_thumb32_insn (buf, insn);
24720 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24721 }
24722 else
24723 {
24724 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24725 }
24726 pc_rel = 0;
24727 break;
24728 case T_MNEM_b:
24729 if (fragp->fr_var == 4)
24730 {
24731 insn = THUMB_OP32(opcode);
24732 put_thumb32_insn (buf, insn);
24733 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24734 }
24735 else
24736 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24737 pc_rel = 1;
24738 break;
24739 case T_MNEM_bcond:
24740 if (fragp->fr_var == 4)
24741 {
24742 insn = THUMB_OP32(opcode);
24743 insn |= (old_op & 0xf00) << 14;
24744 put_thumb32_insn (buf, insn);
24745 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24746 }
24747 else
24748 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24749 pc_rel = 1;
24750 break;
24751 case T_MNEM_add_sp:
24752 case T_MNEM_add_pc:
24753 case T_MNEM_inc_sp:
24754 case T_MNEM_dec_sp:
24755 if (fragp->fr_var == 4)
24756 {
24757 /* ??? Choose between add and addw. */
24758 insn = THUMB_OP32 (opcode);
24759 insn |= (old_op & 0xf0) << 4;
24760 put_thumb32_insn (buf, insn);
24761 if (opcode == T_MNEM_add_pc)
24762 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24763 else
24764 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24765 }
24766 else
24767 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24768 pc_rel = 0;
24769 break;
24770
24771 case T_MNEM_addi:
24772 case T_MNEM_addis:
24773 case T_MNEM_subi:
24774 case T_MNEM_subis:
24775 if (fragp->fr_var == 4)
24776 {
24777 insn = THUMB_OP32 (opcode);
24778 insn |= (old_op & 0xf0) << 4;
24779 insn |= (old_op & 0xf) << 16;
24780 put_thumb32_insn (buf, insn);
24781 if (insn & (1 << 20))
24782 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24783 else
24784 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24785 }
24786 else
24787 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24788 pc_rel = 0;
24789 break;
24790 default:
24791 abort ();
24792 }
24793 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
24794 (enum bfd_reloc_code_real) reloc_type);
24795 fixp->fx_file = fragp->fr_file;
24796 fixp->fx_line = fragp->fr_line;
24797 fragp->fr_fix += fragp->fr_var;
24798
24799 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24800 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24801 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24802 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
24803 }
24804
24805 /* Return the size of a relaxable immediate operand instruction.
24806 SHIFT and SIZE specify the form of the allowable immediate. */
24807 static int
24808 relax_immediate (fragS *fragp, int size, int shift)
24809 {
24810 offsetT offset;
24811 offsetT mask;
24812 offsetT low;
24813
24814 /* ??? Should be able to do better than this. */
24815 if (fragp->fr_symbol)
24816 return 4;
24817
24818 low = (1 << shift) - 1;
24819 mask = (1 << (shift + size)) - (1 << shift);
24820 offset = fragp->fr_offset;
24821 /* Force misaligned offsets to 32-bit variant. */
24822 if (offset & low)
24823 return 4;
24824 if (offset & ~mask)
24825 return 4;
24826 return 2;
24827 }
24828
24829 /* Get the address of a symbol during relaxation. */
24830 static addressT
24831 relaxed_symbol_addr (fragS *fragp, long stretch)
24832 {
24833 fragS *sym_frag;
24834 addressT addr;
24835 symbolS *sym;
24836
24837 sym = fragp->fr_symbol;
24838 sym_frag = symbol_get_frag (sym);
24839 know (S_GET_SEGMENT (sym) != absolute_section
24840 || sym_frag == &zero_address_frag);
24841 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24842
24843 /* If frag has yet to be reached on this pass, assume it will
24844 move by STRETCH just as we did. If this is not so, it will
24845 be because some frag between grows, and that will force
24846 another pass. */
24847
24848 if (stretch != 0
24849 && sym_frag->relax_marker != fragp->relax_marker)
24850 {
24851 fragS *f;
24852
24853 /* Adjust stretch for any alignment frag. Note that if have
24854 been expanding the earlier code, the symbol may be
24855 defined in what appears to be an earlier frag. FIXME:
24856 This doesn't handle the fr_subtype field, which specifies
24857 a maximum number of bytes to skip when doing an
24858 alignment. */
24859 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24860 {
24861 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24862 {
24863 if (stretch < 0)
24864 stretch = - ((- stretch)
24865 & ~ ((1 << (int) f->fr_offset) - 1));
24866 else
24867 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24868 if (stretch == 0)
24869 break;
24870 }
24871 }
24872 if (f != NULL)
24873 addr += stretch;
24874 }
24875
24876 return addr;
24877 }
24878
24879 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
24880 load. */
24881 static int
24882 relax_adr (fragS *fragp, asection *sec, long stretch)
24883 {
24884 addressT addr;
24885 offsetT val;
24886
24887 /* Assume worst case for symbols not known to be in the same section. */
24888 if (fragp->fr_symbol == NULL
24889 || !S_IS_DEFINED (fragp->fr_symbol)
24890 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24891 || S_IS_WEAK (fragp->fr_symbol))
24892 return 4;
24893
24894 val = relaxed_symbol_addr (fragp, stretch);
24895 addr = fragp->fr_address + fragp->fr_fix;
24896 addr = (addr + 4) & ~3;
24897 /* Force misaligned targets to 32-bit variant. */
24898 if (val & 3)
24899 return 4;
24900 val -= addr;
24901 if (val < 0 || val > 1020)
24902 return 4;
24903 return 2;
24904 }
24905
24906 /* Return the size of a relaxable add/sub immediate instruction. */
24907 static int
24908 relax_addsub (fragS *fragp, asection *sec)
24909 {
24910 char *buf;
24911 int op;
24912
24913 buf = fragp->fr_literal + fragp->fr_fix;
24914 op = bfd_get_16(sec->owner, buf);
24915 if ((op & 0xf) == ((op >> 4) & 0xf))
24916 return relax_immediate (fragp, 8, 0);
24917 else
24918 return relax_immediate (fragp, 3, 0);
24919 }
24920
24921 /* Return TRUE iff the definition of symbol S could be pre-empted
24922 (overridden) at link or load time. */
24923 static bfd_boolean
24924 symbol_preemptible (symbolS *s)
24925 {
24926 /* Weak symbols can always be pre-empted. */
24927 if (S_IS_WEAK (s))
24928 return TRUE;
24929
24930 /* Non-global symbols cannot be pre-empted. */
24931 if (! S_IS_EXTERNAL (s))
24932 return FALSE;
24933
24934 #ifdef OBJ_ELF
24935 /* In ELF, a global symbol can be marked protected, or private. In that
24936 case it can't be pre-empted (other definitions in the same link unit
24937 would violate the ODR). */
24938 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24939 return FALSE;
24940 #endif
24941
24942 /* Other global symbols might be pre-empted. */
24943 return TRUE;
24944 }
24945
24946 /* Return the size of a relaxable branch instruction. BITS is the
24947 size of the offset field in the narrow instruction. */
24948
24949 static int
24950 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
24951 {
24952 addressT addr;
24953 offsetT val;
24954 offsetT limit;
24955
24956 /* Assume worst case for symbols not known to be in the same section. */
24957 if (!S_IS_DEFINED (fragp->fr_symbol)
24958 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24959 || S_IS_WEAK (fragp->fr_symbol))
24960 return 4;
24961
24962 #ifdef OBJ_ELF
24963 /* A branch to a function in ARM state will require interworking. */
24964 if (S_IS_DEFINED (fragp->fr_symbol)
24965 && ARM_IS_FUNC (fragp->fr_symbol))
24966 return 4;
24967 #endif
24968
24969 if (symbol_preemptible (fragp->fr_symbol))
24970 return 4;
24971
24972 val = relaxed_symbol_addr (fragp, stretch);
24973 addr = fragp->fr_address + fragp->fr_fix + 4;
24974 val -= addr;
24975
24976 /* Offset is a signed value *2 */
24977 limit = 1 << bits;
24978 if (val >= limit || val < -limit)
24979 return 4;
24980 return 2;
24981 }
24982
24983
24984 /* Relax a machine dependent frag. This returns the amount by which
24985 the current size of the frag should change. */
24986
24987 int
24988 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
24989 {
24990 int oldsize;
24991 int newsize;
24992
24993 oldsize = fragp->fr_var;
24994 switch (fragp->fr_subtype)
24995 {
24996 case T_MNEM_ldr_pc2:
24997 newsize = relax_adr (fragp, sec, stretch);
24998 break;
24999 case T_MNEM_ldr_pc:
25000 case T_MNEM_ldr_sp:
25001 case T_MNEM_str_sp:
25002 newsize = relax_immediate (fragp, 8, 2);
25003 break;
25004 case T_MNEM_ldr:
25005 case T_MNEM_str:
25006 newsize = relax_immediate (fragp, 5, 2);
25007 break;
25008 case T_MNEM_ldrh:
25009 case T_MNEM_strh:
25010 newsize = relax_immediate (fragp, 5, 1);
25011 break;
25012 case T_MNEM_ldrb:
25013 case T_MNEM_strb:
25014 newsize = relax_immediate (fragp, 5, 0);
25015 break;
25016 case T_MNEM_adr:
25017 newsize = relax_adr (fragp, sec, stretch);
25018 break;
25019 case T_MNEM_mov:
25020 case T_MNEM_movs:
25021 case T_MNEM_cmp:
25022 case T_MNEM_cmn:
25023 newsize = relax_immediate (fragp, 8, 0);
25024 break;
25025 case T_MNEM_b:
25026 newsize = relax_branch (fragp, sec, 11, stretch);
25027 break;
25028 case T_MNEM_bcond:
25029 newsize = relax_branch (fragp, sec, 8, stretch);
25030 break;
25031 case T_MNEM_add_sp:
25032 case T_MNEM_add_pc:
25033 newsize = relax_immediate (fragp, 8, 2);
25034 break;
25035 case T_MNEM_inc_sp:
25036 case T_MNEM_dec_sp:
25037 newsize = relax_immediate (fragp, 7, 2);
25038 break;
25039 case T_MNEM_addi:
25040 case T_MNEM_addis:
25041 case T_MNEM_subi:
25042 case T_MNEM_subis:
25043 newsize = relax_addsub (fragp, sec);
25044 break;
25045 default:
25046 abort ();
25047 }
25048
25049 fragp->fr_var = newsize;
25050 /* Freeze wide instructions that are at or before the same location as
25051 in the previous pass. This avoids infinite loops.
25052 Don't freeze them unconditionally because targets may be artificially
25053 misaligned by the expansion of preceding frags. */
25054 if (stretch <= 0 && newsize > 2)
25055 {
25056 md_convert_frag (sec->owner, sec, fragp);
25057 frag_wane (fragp);
25058 }
25059
25060 return newsize - oldsize;
25061 }
25062
25063 /* Round up a section size to the appropriate boundary. */
25064
25065 valueT
25066 md_section_align (segT segment ATTRIBUTE_UNUSED,
25067 valueT size)
25068 {
25069 return size;
25070 }
25071
25072 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25073 of an rs_align_code fragment. */
25074
25075 void
25076 arm_handle_align (fragS * fragP)
25077 {
25078 static unsigned char const arm_noop[2][2][4] =
25079 {
25080 { /* ARMv1 */
25081 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25082 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25083 },
25084 { /* ARMv6k */
25085 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25086 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25087 },
25088 };
25089 static unsigned char const thumb_noop[2][2][2] =
25090 {
25091 { /* Thumb-1 */
25092 {0xc0, 0x46}, /* LE */
25093 {0x46, 0xc0}, /* BE */
25094 },
25095 { /* Thumb-2 */
25096 {0x00, 0xbf}, /* LE */
25097 {0xbf, 0x00} /* BE */
25098 }
25099 };
25100 static unsigned char const wide_thumb_noop[2][4] =
25101 { /* Wide Thumb-2 */
25102 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25103 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25104 };
25105
25106 unsigned bytes, fix, noop_size;
25107 char * p;
25108 const unsigned char * noop;
25109 const unsigned char *narrow_noop = NULL;
25110 #ifdef OBJ_ELF
25111 enum mstate state;
25112 #endif
25113
25114 if (fragP->fr_type != rs_align_code)
25115 return;
25116
25117 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25118 p = fragP->fr_literal + fragP->fr_fix;
25119 fix = 0;
25120
25121 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25122 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
25123
25124 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
25125
25126 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
25127 {
25128 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25129 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
25130 {
25131 narrow_noop = thumb_noop[1][target_big_endian];
25132 noop = wide_thumb_noop[target_big_endian];
25133 }
25134 else
25135 noop = thumb_noop[0][target_big_endian];
25136 noop_size = 2;
25137 #ifdef OBJ_ELF
25138 state = MAP_THUMB;
25139 #endif
25140 }
25141 else
25142 {
25143 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25144 ? selected_cpu : arm_arch_none,
25145 arm_ext_v6k) != 0]
25146 [target_big_endian];
25147 noop_size = 4;
25148 #ifdef OBJ_ELF
25149 state = MAP_ARM;
25150 #endif
25151 }
25152
25153 fragP->fr_var = noop_size;
25154
25155 if (bytes & (noop_size - 1))
25156 {
25157 fix = bytes & (noop_size - 1);
25158 #ifdef OBJ_ELF
25159 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25160 #endif
25161 memset (p, 0, fix);
25162 p += fix;
25163 bytes -= fix;
25164 }
25165
25166 if (narrow_noop)
25167 {
25168 if (bytes & noop_size)
25169 {
25170 /* Insert a narrow noop. */
25171 memcpy (p, narrow_noop, noop_size);
25172 p += noop_size;
25173 bytes -= noop_size;
25174 fix += noop_size;
25175 }
25176
25177 /* Use wide noops for the remainder */
25178 noop_size = 4;
25179 }
25180
25181 while (bytes >= noop_size)
25182 {
25183 memcpy (p, noop, noop_size);
25184 p += noop_size;
25185 bytes -= noop_size;
25186 fix += noop_size;
25187 }
25188
25189 fragP->fr_fix += fix;
25190 }
25191
25192 /* Called from md_do_align. Used to create an alignment
25193 frag in a code section. */
25194
25195 void
25196 arm_frag_align_code (int n, int max)
25197 {
25198 char * p;
25199
25200 /* We assume that there will never be a requirement
25201 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25202 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
25203 {
25204 char err_msg[128];
25205
25206 sprintf (err_msg,
25207 _("alignments greater than %d bytes not supported in .text sections."),
25208 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
25209 as_fatal ("%s", err_msg);
25210 }
25211
25212 p = frag_var (rs_align_code,
25213 MAX_MEM_FOR_RS_ALIGN_CODE,
25214 1,
25215 (relax_substateT) max,
25216 (symbolS *) NULL,
25217 (offsetT) n,
25218 (char *) NULL);
25219 *p = 0;
25220 }
25221
25222 /* Perform target specific initialisation of a frag.
25223 Note - despite the name this initialisation is not done when the frag
25224 is created, but only when its type is assigned. A frag can be created
25225 and used a long time before its type is set, so beware of assuming that
25226 this initialisation is performed first. */
25227
25228 #ifndef OBJ_ELF
25229 void
25230 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25231 {
25232 /* Record whether this frag is in an ARM or a THUMB area. */
25233 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25234 }
25235
25236 #else /* OBJ_ELF is defined. */
25237 void
25238 arm_init_frag (fragS * fragP, int max_chars)
25239 {
25240 bfd_boolean frag_thumb_mode;
25241
25242 /* If the current ARM vs THUMB mode has not already
25243 been recorded into this frag then do so now. */
25244 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
25245 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25246
25247 /* PR 21809: Do not set a mapping state for debug sections
25248 - it just confuses other tools. */
25249 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25250 return;
25251
25252 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
25253
25254 /* Record a mapping symbol for alignment frags. We will delete this
25255 later if the alignment ends up empty. */
25256 switch (fragP->fr_type)
25257 {
25258 case rs_align:
25259 case rs_align_test:
25260 case rs_fill:
25261 mapping_state_2 (MAP_DATA, max_chars);
25262 break;
25263 case rs_align_code:
25264 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
25265 break;
25266 default:
25267 break;
25268 }
25269 }
25270
25271 /* When we change sections we need to issue a new mapping symbol. */
25272
25273 void
25274 arm_elf_change_section (void)
25275 {
25276 /* Link an unlinked unwind index table section to the .text section. */
25277 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25278 && elf_linked_to_section (now_seg) == NULL)
25279 elf_linked_to_section (now_seg) = text_section;
25280 }
25281
25282 int
25283 arm_elf_section_type (const char * str, size_t len)
25284 {
25285 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25286 return SHT_ARM_EXIDX;
25287
25288 return -1;
25289 }
25290 \f
25291 /* Code to deal with unwinding tables. */
25292
25293 static void add_unwind_adjustsp (offsetT);
25294
25295 /* Generate any deferred unwind frame offset. */
25296
25297 static void
25298 flush_pending_unwind (void)
25299 {
25300 offsetT offset;
25301
25302 offset = unwind.pending_offset;
25303 unwind.pending_offset = 0;
25304 if (offset != 0)
25305 add_unwind_adjustsp (offset);
25306 }
25307
25308 /* Add an opcode to this list for this function. Two-byte opcodes should
25309 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25310 order. */
25311
25312 static void
25313 add_unwind_opcode (valueT op, int length)
25314 {
25315 /* Add any deferred stack adjustment. */
25316 if (unwind.pending_offset)
25317 flush_pending_unwind ();
25318
25319 unwind.sp_restored = 0;
25320
25321 if (unwind.opcode_count + length > unwind.opcode_alloc)
25322 {
25323 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25324 if (unwind.opcodes)
25325 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25326 unwind.opcode_alloc);
25327 else
25328 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
25329 }
25330 while (length > 0)
25331 {
25332 length--;
25333 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25334 op >>= 8;
25335 unwind.opcode_count++;
25336 }
25337 }
25338
25339 /* Add unwind opcodes to adjust the stack pointer. */
25340
25341 static void
25342 add_unwind_adjustsp (offsetT offset)
25343 {
25344 valueT op;
25345
25346 if (offset > 0x200)
25347 {
25348 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25349 char bytes[5];
25350 int n;
25351 valueT o;
25352
25353 /* Long form: 0xb2, uleb128. */
25354 /* This might not fit in a word so add the individual bytes,
25355 remembering the list is built in reverse order. */
25356 o = (valueT) ((offset - 0x204) >> 2);
25357 if (o == 0)
25358 add_unwind_opcode (0, 1);
25359
25360 /* Calculate the uleb128 encoding of the offset. */
25361 n = 0;
25362 while (o)
25363 {
25364 bytes[n] = o & 0x7f;
25365 o >>= 7;
25366 if (o)
25367 bytes[n] |= 0x80;
25368 n++;
25369 }
25370 /* Add the insn. */
25371 for (; n; n--)
25372 add_unwind_opcode (bytes[n - 1], 1);
25373 add_unwind_opcode (0xb2, 1);
25374 }
25375 else if (offset > 0x100)
25376 {
25377 /* Two short opcodes. */
25378 add_unwind_opcode (0x3f, 1);
25379 op = (offset - 0x104) >> 2;
25380 add_unwind_opcode (op, 1);
25381 }
25382 else if (offset > 0)
25383 {
25384 /* Short opcode. */
25385 op = (offset - 4) >> 2;
25386 add_unwind_opcode (op, 1);
25387 }
25388 else if (offset < 0)
25389 {
25390 offset = -offset;
25391 while (offset > 0x100)
25392 {
25393 add_unwind_opcode (0x7f, 1);
25394 offset -= 0x100;
25395 }
25396 op = ((offset - 4) >> 2) | 0x40;
25397 add_unwind_opcode (op, 1);
25398 }
25399 }
25400
25401 /* Finish the list of unwind opcodes for this function. */
25402
25403 static void
25404 finish_unwind_opcodes (void)
25405 {
25406 valueT op;
25407
25408 if (unwind.fp_used)
25409 {
25410 /* Adjust sp as necessary. */
25411 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25412 flush_pending_unwind ();
25413
25414 /* After restoring sp from the frame pointer. */
25415 op = 0x90 | unwind.fp_reg;
25416 add_unwind_opcode (op, 1);
25417 }
25418 else
25419 flush_pending_unwind ();
25420 }
25421
25422
25423 /* Start an exception table entry. If idx is nonzero this is an index table
25424 entry. */
25425
25426 static void
25427 start_unwind_section (const segT text_seg, int idx)
25428 {
25429 const char * text_name;
25430 const char * prefix;
25431 const char * prefix_once;
25432 const char * group_name;
25433 char * sec_name;
25434 int type;
25435 int flags;
25436 int linkonce;
25437
25438 if (idx)
25439 {
25440 prefix = ELF_STRING_ARM_unwind;
25441 prefix_once = ELF_STRING_ARM_unwind_once;
25442 type = SHT_ARM_EXIDX;
25443 }
25444 else
25445 {
25446 prefix = ELF_STRING_ARM_unwind_info;
25447 prefix_once = ELF_STRING_ARM_unwind_info_once;
25448 type = SHT_PROGBITS;
25449 }
25450
25451 text_name = segment_name (text_seg);
25452 if (streq (text_name, ".text"))
25453 text_name = "";
25454
25455 if (strncmp (text_name, ".gnu.linkonce.t.",
25456 strlen (".gnu.linkonce.t.")) == 0)
25457 {
25458 prefix = prefix_once;
25459 text_name += strlen (".gnu.linkonce.t.");
25460 }
25461
25462 sec_name = concat (prefix, text_name, (char *) NULL);
25463
25464 flags = SHF_ALLOC;
25465 linkonce = 0;
25466 group_name = 0;
25467
25468 /* Handle COMDAT group. */
25469 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
25470 {
25471 group_name = elf_group_name (text_seg);
25472 if (group_name == NULL)
25473 {
25474 as_bad (_("Group section `%s' has no group signature"),
25475 segment_name (text_seg));
25476 ignore_rest_of_line ();
25477 return;
25478 }
25479 flags |= SHF_GROUP;
25480 linkonce = 1;
25481 }
25482
25483 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
25484 linkonce, 0);
25485
25486 /* Set the section link for index tables. */
25487 if (idx)
25488 elf_linked_to_section (now_seg) = text_seg;
25489 }
25490
25491
25492 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25493 personality routine data. Returns zero, or the index table value for
25494 an inline entry. */
25495
25496 static valueT
25497 create_unwind_entry (int have_data)
25498 {
25499 int size;
25500 addressT where;
25501 char *ptr;
25502 /* The current word of data. */
25503 valueT data;
25504 /* The number of bytes left in this word. */
25505 int n;
25506
25507 finish_unwind_opcodes ();
25508
25509 /* Remember the current text section. */
25510 unwind.saved_seg = now_seg;
25511 unwind.saved_subseg = now_subseg;
25512
25513 start_unwind_section (now_seg, 0);
25514
25515 if (unwind.personality_routine == NULL)
25516 {
25517 if (unwind.personality_index == -2)
25518 {
25519 if (have_data)
25520 as_bad (_("handlerdata in cantunwind frame"));
25521 return 1; /* EXIDX_CANTUNWIND. */
25522 }
25523
25524 /* Use a default personality routine if none is specified. */
25525 if (unwind.personality_index == -1)
25526 {
25527 if (unwind.opcode_count > 3)
25528 unwind.personality_index = 1;
25529 else
25530 unwind.personality_index = 0;
25531 }
25532
25533 /* Space for the personality routine entry. */
25534 if (unwind.personality_index == 0)
25535 {
25536 if (unwind.opcode_count > 3)
25537 as_bad (_("too many unwind opcodes for personality routine 0"));
25538
25539 if (!have_data)
25540 {
25541 /* All the data is inline in the index table. */
25542 data = 0x80;
25543 n = 3;
25544 while (unwind.opcode_count > 0)
25545 {
25546 unwind.opcode_count--;
25547 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25548 n--;
25549 }
25550
25551 /* Pad with "finish" opcodes. */
25552 while (n--)
25553 data = (data << 8) | 0xb0;
25554
25555 return data;
25556 }
25557 size = 0;
25558 }
25559 else
25560 /* We get two opcodes "free" in the first word. */
25561 size = unwind.opcode_count - 2;
25562 }
25563 else
25564 {
25565 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25566 if (unwind.personality_index != -1)
25567 {
25568 as_bad (_("attempt to recreate an unwind entry"));
25569 return 1;
25570 }
25571
25572 /* An extra byte is required for the opcode count. */
25573 size = unwind.opcode_count + 1;
25574 }
25575
25576 size = (size + 3) >> 2;
25577 if (size > 0xff)
25578 as_bad (_("too many unwind opcodes"));
25579
25580 frag_align (2, 0, 0);
25581 record_alignment (now_seg, 2);
25582 unwind.table_entry = expr_build_dot ();
25583
25584 /* Allocate the table entry. */
25585 ptr = frag_more ((size << 2) + 4);
25586 /* PR 13449: Zero the table entries in case some of them are not used. */
25587 memset (ptr, 0, (size << 2) + 4);
25588 where = frag_now_fix () - ((size << 2) + 4);
25589
25590 switch (unwind.personality_index)
25591 {
25592 case -1:
25593 /* ??? Should this be a PLT generating relocation? */
25594 /* Custom personality routine. */
25595 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25596 BFD_RELOC_ARM_PREL31);
25597
25598 where += 4;
25599 ptr += 4;
25600
25601 /* Set the first byte to the number of additional words. */
25602 data = size > 0 ? size - 1 : 0;
25603 n = 3;
25604 break;
25605
25606 /* ABI defined personality routines. */
25607 case 0:
25608 /* Three opcodes bytes are packed into the first word. */
25609 data = 0x80;
25610 n = 3;
25611 break;
25612
25613 case 1:
25614 case 2:
25615 /* The size and first two opcode bytes go in the first word. */
25616 data = ((0x80 + unwind.personality_index) << 8) | size;
25617 n = 2;
25618 break;
25619
25620 default:
25621 /* Should never happen. */
25622 abort ();
25623 }
25624
25625 /* Pack the opcodes into words (MSB first), reversing the list at the same
25626 time. */
25627 while (unwind.opcode_count > 0)
25628 {
25629 if (n == 0)
25630 {
25631 md_number_to_chars (ptr, data, 4);
25632 ptr += 4;
25633 n = 4;
25634 data = 0;
25635 }
25636 unwind.opcode_count--;
25637 n--;
25638 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25639 }
25640
25641 /* Finish off the last word. */
25642 if (n < 4)
25643 {
25644 /* Pad with "finish" opcodes. */
25645 while (n--)
25646 data = (data << 8) | 0xb0;
25647
25648 md_number_to_chars (ptr, data, 4);
25649 }
25650
25651 if (!have_data)
25652 {
25653 /* Add an empty descriptor if there is no user-specified data. */
25654 ptr = frag_more (4);
25655 md_number_to_chars (ptr, 0, 4);
25656 }
25657
25658 return 0;
25659 }
25660
25661
25662 /* Initialize the DWARF-2 unwind information for this procedure. */
25663
25664 void
25665 tc_arm_frame_initial_instructions (void)
25666 {
25667 cfi_add_CFA_def_cfa (REG_SP, 0);
25668 }
25669 #endif /* OBJ_ELF */
25670
25671 /* Convert REGNAME to a DWARF-2 register number. */
25672
25673 int
25674 tc_arm_regname_to_dw2regnum (char *regname)
25675 {
25676 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
25677 if (reg != FAIL)
25678 return reg;
25679
25680 /* PR 16694: Allow VFP registers as well. */
25681 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25682 if (reg != FAIL)
25683 return 64 + reg;
25684
25685 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25686 if (reg != FAIL)
25687 return reg + 256;
25688
25689 return FAIL;
25690 }
25691
25692 #ifdef TE_PE
25693 void
25694 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
25695 {
25696 expressionS exp;
25697
25698 exp.X_op = O_secrel;
25699 exp.X_add_symbol = symbol;
25700 exp.X_add_number = 0;
25701 emit_expr (&exp, size);
25702 }
25703 #endif
25704
25705 /* MD interface: Symbol and relocation handling. */
25706
25707 /* Return the address within the segment that a PC-relative fixup is
25708 relative to. For ARM, PC-relative fixups applied to instructions
25709 are generally relative to the location of the fixup plus 8 bytes.
25710 Thumb branches are offset by 4, and Thumb loads relative to PC
25711 require special handling. */
25712
25713 long
25714 md_pcrel_from_section (fixS * fixP, segT seg)
25715 {
25716 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25717
25718 /* If this is pc-relative and we are going to emit a relocation
25719 then we just want to put out any pipeline compensation that the linker
25720 will need. Otherwise we want to use the calculated base.
25721 For WinCE we skip the bias for externals as well, since this
25722 is how the MS ARM-CE assembler behaves and we want to be compatible. */
25723 if (fixP->fx_pcrel
25724 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
25725 || (arm_force_relocation (fixP)
25726 #ifdef TE_WINCE
25727 && !S_IS_EXTERNAL (fixP->fx_addsy)
25728 #endif
25729 )))
25730 base = 0;
25731
25732
25733 switch (fixP->fx_r_type)
25734 {
25735 /* PC relative addressing on the Thumb is slightly odd as the
25736 bottom two bits of the PC are forced to zero for the
25737 calculation. This happens *after* application of the
25738 pipeline offset. However, Thumb adrl already adjusts for
25739 this, so we need not do it again. */
25740 case BFD_RELOC_ARM_THUMB_ADD:
25741 return base & ~3;
25742
25743 case BFD_RELOC_ARM_THUMB_OFFSET:
25744 case BFD_RELOC_ARM_T32_OFFSET_IMM:
25745 case BFD_RELOC_ARM_T32_ADD_PC12:
25746 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
25747 return (base + 4) & ~3;
25748
25749 /* Thumb branches are simply offset by +4. */
25750 case BFD_RELOC_THUMB_PCREL_BRANCH5:
25751 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25752 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25753 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25754 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25755 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25756 case BFD_RELOC_THUMB_PCREL_BFCSEL:
25757 case BFD_RELOC_ARM_THUMB_BF17:
25758 case BFD_RELOC_ARM_THUMB_BF19:
25759 case BFD_RELOC_ARM_THUMB_BF13:
25760 case BFD_RELOC_ARM_THUMB_LOOP12:
25761 return base + 4;
25762
25763 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25764 if (fixP->fx_addsy
25765 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25766 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25767 && ARM_IS_FUNC (fixP->fx_addsy)
25768 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25769 base = fixP->fx_where + fixP->fx_frag->fr_address;
25770 return base + 4;
25771
25772 /* BLX is like branches above, but forces the low two bits of PC to
25773 zero. */
25774 case BFD_RELOC_THUMB_PCREL_BLX:
25775 if (fixP->fx_addsy
25776 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25777 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25778 && THUMB_IS_FUNC (fixP->fx_addsy)
25779 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25780 base = fixP->fx_where + fixP->fx_frag->fr_address;
25781 return (base + 4) & ~3;
25782
25783 /* ARM mode branches are offset by +8. However, the Windows CE
25784 loader expects the relocation not to take this into account. */
25785 case BFD_RELOC_ARM_PCREL_BLX:
25786 if (fixP->fx_addsy
25787 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25788 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25789 && ARM_IS_FUNC (fixP->fx_addsy)
25790 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25791 base = fixP->fx_where + fixP->fx_frag->fr_address;
25792 return base + 8;
25793
25794 case BFD_RELOC_ARM_PCREL_CALL:
25795 if (fixP->fx_addsy
25796 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25797 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25798 && THUMB_IS_FUNC (fixP->fx_addsy)
25799 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25800 base = fixP->fx_where + fixP->fx_frag->fr_address;
25801 return base + 8;
25802
25803 case BFD_RELOC_ARM_PCREL_BRANCH:
25804 case BFD_RELOC_ARM_PCREL_JUMP:
25805 case BFD_RELOC_ARM_PLT32:
25806 #ifdef TE_WINCE
25807 /* When handling fixups immediately, because we have already
25808 discovered the value of a symbol, or the address of the frag involved
25809 we must account for the offset by +8, as the OS loader will never see the reloc.
25810 see fixup_segment() in write.c
25811 The S_IS_EXTERNAL test handles the case of global symbols.
25812 Those need the calculated base, not just the pipe compensation the linker will need. */
25813 if (fixP->fx_pcrel
25814 && fixP->fx_addsy != NULL
25815 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25816 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25817 return base + 8;
25818 return base;
25819 #else
25820 return base + 8;
25821 #endif
25822
25823
25824 /* ARM mode loads relative to PC are also offset by +8. Unlike
25825 branches, the Windows CE loader *does* expect the relocation
25826 to take this into account. */
25827 case BFD_RELOC_ARM_OFFSET_IMM:
25828 case BFD_RELOC_ARM_OFFSET_IMM8:
25829 case BFD_RELOC_ARM_HWLITERAL:
25830 case BFD_RELOC_ARM_LITERAL:
25831 case BFD_RELOC_ARM_CP_OFF_IMM:
25832 return base + 8;
25833
25834
25835 /* Other PC-relative relocations are un-offset. */
25836 default:
25837 return base;
25838 }
25839 }
25840
25841 static bfd_boolean flag_warn_syms = TRUE;
25842
25843 bfd_boolean
25844 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
25845 {
25846 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25847 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25848 does mean that the resulting code might be very confusing to the reader.
25849 Also this warning can be triggered if the user omits an operand before
25850 an immediate address, eg:
25851
25852 LDR =foo
25853
25854 GAS treats this as an assignment of the value of the symbol foo to a
25855 symbol LDR, and so (without this code) it will not issue any kind of
25856 warning or error message.
25857
25858 Note - ARM instructions are case-insensitive but the strings in the hash
25859 table are all stored in lower case, so we must first ensure that name is
25860 lower case too. */
25861 if (flag_warn_syms && arm_ops_hsh)
25862 {
25863 char * nbuf = strdup (name);
25864 char * p;
25865
25866 for (p = nbuf; *p; p++)
25867 *p = TOLOWER (*p);
25868 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25869 {
25870 static struct hash_control * already_warned = NULL;
25871
25872 if (already_warned == NULL)
25873 already_warned = hash_new ();
25874 /* Only warn about the symbol once. To keep the code
25875 simple we let hash_insert do the lookup for us. */
25876 if (hash_insert (already_warned, nbuf, NULL) == NULL)
25877 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
25878 }
25879 else
25880 free (nbuf);
25881 }
25882
25883 return FALSE;
25884 }
25885
25886 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25887 Otherwise we have no need to default values of symbols. */
25888
25889 symbolS *
25890 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25891 {
25892 #ifdef OBJ_ELF
25893 if (name[0] == '_' && name[1] == 'G'
25894 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25895 {
25896 if (!GOT_symbol)
25897 {
25898 if (symbol_find (name))
25899 as_bad (_("GOT already in the symbol table"));
25900
25901 GOT_symbol = symbol_new (name, undefined_section,
25902 (valueT) 0, & zero_address_frag);
25903 }
25904
25905 return GOT_symbol;
25906 }
25907 #endif
25908
25909 return NULL;
25910 }
25911
25912 /* Subroutine of md_apply_fix. Check to see if an immediate can be
25913 computed as two separate immediate values, added together. We
25914 already know that this value cannot be computed by just one ARM
25915 instruction. */
25916
25917 static unsigned int
25918 validate_immediate_twopart (unsigned int val,
25919 unsigned int * highpart)
25920 {
25921 unsigned int a;
25922 unsigned int i;
25923
25924 for (i = 0; i < 32; i += 2)
25925 if (((a = rotate_left (val, i)) & 0xff) != 0)
25926 {
25927 if (a & 0xff00)
25928 {
25929 if (a & ~ 0xffff)
25930 continue;
25931 * highpart = (a >> 8) | ((i + 24) << 7);
25932 }
25933 else if (a & 0xff0000)
25934 {
25935 if (a & 0xff000000)
25936 continue;
25937 * highpart = (a >> 16) | ((i + 16) << 7);
25938 }
25939 else
25940 {
25941 gas_assert (a & 0xff000000);
25942 * highpart = (a >> 24) | ((i + 8) << 7);
25943 }
25944
25945 return (a & 0xff) | (i << 7);
25946 }
25947
25948 return FAIL;
25949 }
25950
25951 static int
25952 validate_offset_imm (unsigned int val, int hwse)
25953 {
25954 if ((hwse && val > 255) || val > 4095)
25955 return FAIL;
25956 return val;
25957 }
25958
25959 /* Subroutine of md_apply_fix. Do those data_ops which can take a
25960 negative immediate constant by altering the instruction. A bit of
25961 a hack really.
25962 MOV <-> MVN
25963 AND <-> BIC
25964 ADC <-> SBC
25965 by inverting the second operand, and
25966 ADD <-> SUB
25967 CMP <-> CMN
25968 by negating the second operand. */
25969
25970 static int
25971 negate_data_op (unsigned long * instruction,
25972 unsigned long value)
25973 {
25974 int op, new_inst;
25975 unsigned long negated, inverted;
25976
25977 negated = encode_arm_immediate (-value);
25978 inverted = encode_arm_immediate (~value);
25979
25980 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
25981 switch (op)
25982 {
25983 /* First negates. */
25984 case OPCODE_SUB: /* ADD <-> SUB */
25985 new_inst = OPCODE_ADD;
25986 value = negated;
25987 break;
25988
25989 case OPCODE_ADD:
25990 new_inst = OPCODE_SUB;
25991 value = negated;
25992 break;
25993
25994 case OPCODE_CMP: /* CMP <-> CMN */
25995 new_inst = OPCODE_CMN;
25996 value = negated;
25997 break;
25998
25999 case OPCODE_CMN:
26000 new_inst = OPCODE_CMP;
26001 value = negated;
26002 break;
26003
26004 /* Now Inverted ops. */
26005 case OPCODE_MOV: /* MOV <-> MVN */
26006 new_inst = OPCODE_MVN;
26007 value = inverted;
26008 break;
26009
26010 case OPCODE_MVN:
26011 new_inst = OPCODE_MOV;
26012 value = inverted;
26013 break;
26014
26015 case OPCODE_AND: /* AND <-> BIC */
26016 new_inst = OPCODE_BIC;
26017 value = inverted;
26018 break;
26019
26020 case OPCODE_BIC:
26021 new_inst = OPCODE_AND;
26022 value = inverted;
26023 break;
26024
26025 case OPCODE_ADC: /* ADC <-> SBC */
26026 new_inst = OPCODE_SBC;
26027 value = inverted;
26028 break;
26029
26030 case OPCODE_SBC:
26031 new_inst = OPCODE_ADC;
26032 value = inverted;
26033 break;
26034
26035 /* We cannot do anything. */
26036 default:
26037 return FAIL;
26038 }
26039
26040 if (value == (unsigned) FAIL)
26041 return FAIL;
26042
26043 *instruction &= OPCODE_MASK;
26044 *instruction |= new_inst << DATA_OP_SHIFT;
26045 return value;
26046 }
26047
26048 /* Like negate_data_op, but for Thumb-2. */
26049
26050 static unsigned int
26051 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
26052 {
26053 int op, new_inst;
26054 int rd;
26055 unsigned int negated, inverted;
26056
26057 negated = encode_thumb32_immediate (-value);
26058 inverted = encode_thumb32_immediate (~value);
26059
26060 rd = (*instruction >> 8) & 0xf;
26061 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26062 switch (op)
26063 {
26064 /* ADD <-> SUB. Includes CMP <-> CMN. */
26065 case T2_OPCODE_SUB:
26066 new_inst = T2_OPCODE_ADD;
26067 value = negated;
26068 break;
26069
26070 case T2_OPCODE_ADD:
26071 new_inst = T2_OPCODE_SUB;
26072 value = negated;
26073 break;
26074
26075 /* ORR <-> ORN. Includes MOV <-> MVN. */
26076 case T2_OPCODE_ORR:
26077 new_inst = T2_OPCODE_ORN;
26078 value = inverted;
26079 break;
26080
26081 case T2_OPCODE_ORN:
26082 new_inst = T2_OPCODE_ORR;
26083 value = inverted;
26084 break;
26085
26086 /* AND <-> BIC. TST has no inverted equivalent. */
26087 case T2_OPCODE_AND:
26088 new_inst = T2_OPCODE_BIC;
26089 if (rd == 15)
26090 value = FAIL;
26091 else
26092 value = inverted;
26093 break;
26094
26095 case T2_OPCODE_BIC:
26096 new_inst = T2_OPCODE_AND;
26097 value = inverted;
26098 break;
26099
26100 /* ADC <-> SBC */
26101 case T2_OPCODE_ADC:
26102 new_inst = T2_OPCODE_SBC;
26103 value = inverted;
26104 break;
26105
26106 case T2_OPCODE_SBC:
26107 new_inst = T2_OPCODE_ADC;
26108 value = inverted;
26109 break;
26110
26111 /* We cannot do anything. */
26112 default:
26113 return FAIL;
26114 }
26115
26116 if (value == (unsigned int)FAIL)
26117 return FAIL;
26118
26119 *instruction &= T2_OPCODE_MASK;
26120 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26121 return value;
26122 }
26123
26124 /* Read a 32-bit thumb instruction from buf. */
26125
26126 static unsigned long
26127 get_thumb32_insn (char * buf)
26128 {
26129 unsigned long insn;
26130 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26131 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26132
26133 return insn;
26134 }
26135
26136 /* We usually want to set the low bit on the address of thumb function
26137 symbols. In particular .word foo - . should have the low bit set.
26138 Generic code tries to fold the difference of two symbols to
26139 a constant. Prevent this and force a relocation when the first symbols
26140 is a thumb function. */
26141
26142 bfd_boolean
26143 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26144 {
26145 if (op == O_subtract
26146 && l->X_op == O_symbol
26147 && r->X_op == O_symbol
26148 && THUMB_IS_FUNC (l->X_add_symbol))
26149 {
26150 l->X_op = O_subtract;
26151 l->X_op_symbol = r->X_add_symbol;
26152 l->X_add_number -= r->X_add_number;
26153 return TRUE;
26154 }
26155
26156 /* Process as normal. */
26157 return FALSE;
26158 }
26159
26160 /* Encode Thumb2 unconditional branches and calls. The encoding
26161 for the 2 are identical for the immediate values. */
26162
26163 static void
26164 encode_thumb2_b_bl_offset (char * buf, offsetT value)
26165 {
26166 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26167 offsetT newval;
26168 offsetT newval2;
26169 addressT S, I1, I2, lo, hi;
26170
26171 S = (value >> 24) & 0x01;
26172 I1 = (value >> 23) & 0x01;
26173 I2 = (value >> 22) & 0x01;
26174 hi = (value >> 12) & 0x3ff;
26175 lo = (value >> 1) & 0x7ff;
26176 newval = md_chars_to_number (buf, THUMB_SIZE);
26177 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26178 newval |= (S << 10) | hi;
26179 newval2 &= ~T2I1I2MASK;
26180 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26181 md_number_to_chars (buf, newval, THUMB_SIZE);
26182 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26183 }
26184
26185 void
26186 md_apply_fix (fixS * fixP,
26187 valueT * valP,
26188 segT seg)
26189 {
26190 offsetT value = * valP;
26191 offsetT newval;
26192 unsigned int newimm;
26193 unsigned long temp;
26194 int sign;
26195 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
26196
26197 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
26198
26199 /* Note whether this will delete the relocation. */
26200
26201 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26202 fixP->fx_done = 1;
26203
26204 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26205 consistency with the behaviour on 32-bit hosts. Remember value
26206 for emit_reloc. */
26207 value &= 0xffffffff;
26208 value ^= 0x80000000;
26209 value -= 0x80000000;
26210
26211 *valP = value;
26212 fixP->fx_addnumber = value;
26213
26214 /* Same treatment for fixP->fx_offset. */
26215 fixP->fx_offset &= 0xffffffff;
26216 fixP->fx_offset ^= 0x80000000;
26217 fixP->fx_offset -= 0x80000000;
26218
26219 switch (fixP->fx_r_type)
26220 {
26221 case BFD_RELOC_NONE:
26222 /* This will need to go in the object file. */
26223 fixP->fx_done = 0;
26224 break;
26225
26226 case BFD_RELOC_ARM_IMMEDIATE:
26227 /* We claim that this fixup has been processed here,
26228 even if in fact we generate an error because we do
26229 not have a reloc for it, so tc_gen_reloc will reject it. */
26230 fixP->fx_done = 1;
26231
26232 if (fixP->fx_addsy)
26233 {
26234 const char *msg = 0;
26235
26236 if (! S_IS_DEFINED (fixP->fx_addsy))
26237 msg = _("undefined symbol %s used as an immediate value");
26238 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26239 msg = _("symbol %s is in a different section");
26240 else if (S_IS_WEAK (fixP->fx_addsy))
26241 msg = _("symbol %s is weak and may be overridden later");
26242
26243 if (msg)
26244 {
26245 as_bad_where (fixP->fx_file, fixP->fx_line,
26246 msg, S_GET_NAME (fixP->fx_addsy));
26247 break;
26248 }
26249 }
26250
26251 temp = md_chars_to_number (buf, INSN_SIZE);
26252
26253 /* If the offset is negative, we should use encoding A2 for ADR. */
26254 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26255 newimm = negate_data_op (&temp, value);
26256 else
26257 {
26258 newimm = encode_arm_immediate (value);
26259
26260 /* If the instruction will fail, see if we can fix things up by
26261 changing the opcode. */
26262 if (newimm == (unsigned int) FAIL)
26263 newimm = negate_data_op (&temp, value);
26264 /* MOV accepts both ARM modified immediate (A1 encoding) and
26265 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26266 When disassembling, MOV is preferred when there is no encoding
26267 overlap. */
26268 if (newimm == (unsigned int) FAIL
26269 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26270 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26271 && !((temp >> SBIT_SHIFT) & 0x1)
26272 && value >= 0 && value <= 0xffff)
26273 {
26274 /* Clear bits[23:20] to change encoding from A1 to A2. */
26275 temp &= 0xff0fffff;
26276 /* Encoding high 4bits imm. Code below will encode the remaining
26277 low 12bits. */
26278 temp |= (value & 0x0000f000) << 4;
26279 newimm = value & 0x00000fff;
26280 }
26281 }
26282
26283 if (newimm == (unsigned int) FAIL)
26284 {
26285 as_bad_where (fixP->fx_file, fixP->fx_line,
26286 _("invalid constant (%lx) after fixup"),
26287 (unsigned long) value);
26288 break;
26289 }
26290
26291 newimm |= (temp & 0xfffff000);
26292 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26293 break;
26294
26295 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26296 {
26297 unsigned int highpart = 0;
26298 unsigned int newinsn = 0xe1a00000; /* nop. */
26299
26300 if (fixP->fx_addsy)
26301 {
26302 const char *msg = 0;
26303
26304 if (! S_IS_DEFINED (fixP->fx_addsy))
26305 msg = _("undefined symbol %s used as an immediate value");
26306 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26307 msg = _("symbol %s is in a different section");
26308 else if (S_IS_WEAK (fixP->fx_addsy))
26309 msg = _("symbol %s is weak and may be overridden later");
26310
26311 if (msg)
26312 {
26313 as_bad_where (fixP->fx_file, fixP->fx_line,
26314 msg, S_GET_NAME (fixP->fx_addsy));
26315 break;
26316 }
26317 }
26318
26319 newimm = encode_arm_immediate (value);
26320 temp = md_chars_to_number (buf, INSN_SIZE);
26321
26322 /* If the instruction will fail, see if we can fix things up by
26323 changing the opcode. */
26324 if (newimm == (unsigned int) FAIL
26325 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26326 {
26327 /* No ? OK - try using two ADD instructions to generate
26328 the value. */
26329 newimm = validate_immediate_twopart (value, & highpart);
26330
26331 /* Yes - then make sure that the second instruction is
26332 also an add. */
26333 if (newimm != (unsigned int) FAIL)
26334 newinsn = temp;
26335 /* Still No ? Try using a negated value. */
26336 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26337 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26338 /* Otherwise - give up. */
26339 else
26340 {
26341 as_bad_where (fixP->fx_file, fixP->fx_line,
26342 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26343 (long) value);
26344 break;
26345 }
26346
26347 /* Replace the first operand in the 2nd instruction (which
26348 is the PC) with the destination register. We have
26349 already added in the PC in the first instruction and we
26350 do not want to do it again. */
26351 newinsn &= ~ 0xf0000;
26352 newinsn |= ((newinsn & 0x0f000) << 4);
26353 }
26354
26355 newimm |= (temp & 0xfffff000);
26356 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26357
26358 highpart |= (newinsn & 0xfffff000);
26359 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26360 }
26361 break;
26362
26363 case BFD_RELOC_ARM_OFFSET_IMM:
26364 if (!fixP->fx_done && seg->use_rela_p)
26365 value = 0;
26366 /* Fall through. */
26367
26368 case BFD_RELOC_ARM_LITERAL:
26369 sign = value > 0;
26370
26371 if (value < 0)
26372 value = - value;
26373
26374 if (validate_offset_imm (value, 0) == FAIL)
26375 {
26376 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26377 as_bad_where (fixP->fx_file, fixP->fx_line,
26378 _("invalid literal constant: pool needs to be closer"));
26379 else
26380 as_bad_where (fixP->fx_file, fixP->fx_line,
26381 _("bad immediate value for offset (%ld)"),
26382 (long) value);
26383 break;
26384 }
26385
26386 newval = md_chars_to_number (buf, INSN_SIZE);
26387 if (value == 0)
26388 newval &= 0xfffff000;
26389 else
26390 {
26391 newval &= 0xff7ff000;
26392 newval |= value | (sign ? INDEX_UP : 0);
26393 }
26394 md_number_to_chars (buf, newval, INSN_SIZE);
26395 break;
26396
26397 case BFD_RELOC_ARM_OFFSET_IMM8:
26398 case BFD_RELOC_ARM_HWLITERAL:
26399 sign = value > 0;
26400
26401 if (value < 0)
26402 value = - value;
26403
26404 if (validate_offset_imm (value, 1) == FAIL)
26405 {
26406 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26407 as_bad_where (fixP->fx_file, fixP->fx_line,
26408 _("invalid literal constant: pool needs to be closer"));
26409 else
26410 as_bad_where (fixP->fx_file, fixP->fx_line,
26411 _("bad immediate value for 8-bit offset (%ld)"),
26412 (long) value);
26413 break;
26414 }
26415
26416 newval = md_chars_to_number (buf, INSN_SIZE);
26417 if (value == 0)
26418 newval &= 0xfffff0f0;
26419 else
26420 {
26421 newval &= 0xff7ff0f0;
26422 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26423 }
26424 md_number_to_chars (buf, newval, INSN_SIZE);
26425 break;
26426
26427 case BFD_RELOC_ARM_T32_OFFSET_U8:
26428 if (value < 0 || value > 1020 || value % 4 != 0)
26429 as_bad_where (fixP->fx_file, fixP->fx_line,
26430 _("bad immediate value for offset (%ld)"), (long) value);
26431 value /= 4;
26432
26433 newval = md_chars_to_number (buf+2, THUMB_SIZE);
26434 newval |= value;
26435 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26436 break;
26437
26438 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26439 /* This is a complicated relocation used for all varieties of Thumb32
26440 load/store instruction with immediate offset:
26441
26442 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26443 *4, optional writeback(W)
26444 (doubleword load/store)
26445
26446 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26447 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26448 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26449 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26450 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26451
26452 Uppercase letters indicate bits that are already encoded at
26453 this point. Lowercase letters are our problem. For the
26454 second block of instructions, the secondary opcode nybble
26455 (bits 8..11) is present, and bit 23 is zero, even if this is
26456 a PC-relative operation. */
26457 newval = md_chars_to_number (buf, THUMB_SIZE);
26458 newval <<= 16;
26459 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
26460
26461 if ((newval & 0xf0000000) == 0xe0000000)
26462 {
26463 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26464 if (value >= 0)
26465 newval |= (1 << 23);
26466 else
26467 value = -value;
26468 if (value % 4 != 0)
26469 {
26470 as_bad_where (fixP->fx_file, fixP->fx_line,
26471 _("offset not a multiple of 4"));
26472 break;
26473 }
26474 value /= 4;
26475 if (value > 0xff)
26476 {
26477 as_bad_where (fixP->fx_file, fixP->fx_line,
26478 _("offset out of range"));
26479 break;
26480 }
26481 newval &= ~0xff;
26482 }
26483 else if ((newval & 0x000f0000) == 0x000f0000)
26484 {
26485 /* PC-relative, 12-bit offset. */
26486 if (value >= 0)
26487 newval |= (1 << 23);
26488 else
26489 value = -value;
26490 if (value > 0xfff)
26491 {
26492 as_bad_where (fixP->fx_file, fixP->fx_line,
26493 _("offset out of range"));
26494 break;
26495 }
26496 newval &= ~0xfff;
26497 }
26498 else if ((newval & 0x00000100) == 0x00000100)
26499 {
26500 /* Writeback: 8-bit, +/- offset. */
26501 if (value >= 0)
26502 newval |= (1 << 9);
26503 else
26504 value = -value;
26505 if (value > 0xff)
26506 {
26507 as_bad_where (fixP->fx_file, fixP->fx_line,
26508 _("offset out of range"));
26509 break;
26510 }
26511 newval &= ~0xff;
26512 }
26513 else if ((newval & 0x00000f00) == 0x00000e00)
26514 {
26515 /* T-instruction: positive 8-bit offset. */
26516 if (value < 0 || value > 0xff)
26517 {
26518 as_bad_where (fixP->fx_file, fixP->fx_line,
26519 _("offset out of range"));
26520 break;
26521 }
26522 newval &= ~0xff;
26523 newval |= value;
26524 }
26525 else
26526 {
26527 /* Positive 12-bit or negative 8-bit offset. */
26528 int limit;
26529 if (value >= 0)
26530 {
26531 newval |= (1 << 23);
26532 limit = 0xfff;
26533 }
26534 else
26535 {
26536 value = -value;
26537 limit = 0xff;
26538 }
26539 if (value > limit)
26540 {
26541 as_bad_where (fixP->fx_file, fixP->fx_line,
26542 _("offset out of range"));
26543 break;
26544 }
26545 newval &= ~limit;
26546 }
26547
26548 newval |= value;
26549 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26550 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26551 break;
26552
26553 case BFD_RELOC_ARM_SHIFT_IMM:
26554 newval = md_chars_to_number (buf, INSN_SIZE);
26555 if (((unsigned long) value) > 32
26556 || (value == 32
26557 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26558 {
26559 as_bad_where (fixP->fx_file, fixP->fx_line,
26560 _("shift expression is too large"));
26561 break;
26562 }
26563
26564 if (value == 0)
26565 /* Shifts of zero must be done as lsl. */
26566 newval &= ~0x60;
26567 else if (value == 32)
26568 value = 0;
26569 newval &= 0xfffff07f;
26570 newval |= (value & 0x1f) << 7;
26571 md_number_to_chars (buf, newval, INSN_SIZE);
26572 break;
26573
26574 case BFD_RELOC_ARM_T32_IMMEDIATE:
26575 case BFD_RELOC_ARM_T32_ADD_IMM:
26576 case BFD_RELOC_ARM_T32_IMM12:
26577 case BFD_RELOC_ARM_T32_ADD_PC12:
26578 /* We claim that this fixup has been processed here,
26579 even if in fact we generate an error because we do
26580 not have a reloc for it, so tc_gen_reloc will reject it. */
26581 fixP->fx_done = 1;
26582
26583 if (fixP->fx_addsy
26584 && ! S_IS_DEFINED (fixP->fx_addsy))
26585 {
26586 as_bad_where (fixP->fx_file, fixP->fx_line,
26587 _("undefined symbol %s used as an immediate value"),
26588 S_GET_NAME (fixP->fx_addsy));
26589 break;
26590 }
26591
26592 newval = md_chars_to_number (buf, THUMB_SIZE);
26593 newval <<= 16;
26594 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
26595
26596 newimm = FAIL;
26597 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26598 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26599 Thumb2 modified immediate encoding (T2). */
26600 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
26601 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26602 {
26603 newimm = encode_thumb32_immediate (value);
26604 if (newimm == (unsigned int) FAIL)
26605 newimm = thumb32_negate_data_op (&newval, value);
26606 }
26607 if (newimm == (unsigned int) FAIL)
26608 {
26609 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
26610 {
26611 /* Turn add/sum into addw/subw. */
26612 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26613 newval = (newval & 0xfeffffff) | 0x02000000;
26614 /* No flat 12-bit imm encoding for addsw/subsw. */
26615 if ((newval & 0x00100000) == 0)
26616 {
26617 /* 12 bit immediate for addw/subw. */
26618 if (value < 0)
26619 {
26620 value = -value;
26621 newval ^= 0x00a00000;
26622 }
26623 if (value > 0xfff)
26624 newimm = (unsigned int) FAIL;
26625 else
26626 newimm = value;
26627 }
26628 }
26629 else
26630 {
26631 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26632 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26633 disassembling, MOV is preferred when there is no encoding
26634 overlap. */
26635 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
26636 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26637 but with the Rn field [19:16] set to 1111. */
26638 && (((newval >> 16) & 0xf) == 0xf)
26639 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26640 && !((newval >> T2_SBIT_SHIFT) & 0x1)
26641 && value >= 0 && value <= 0xffff)
26642 {
26643 /* Toggle bit[25] to change encoding from T2 to T3. */
26644 newval ^= 1 << 25;
26645 /* Clear bits[19:16]. */
26646 newval &= 0xfff0ffff;
26647 /* Encoding high 4bits imm. Code below will encode the
26648 remaining low 12bits. */
26649 newval |= (value & 0x0000f000) << 4;
26650 newimm = value & 0x00000fff;
26651 }
26652 }
26653 }
26654
26655 if (newimm == (unsigned int)FAIL)
26656 {
26657 as_bad_where (fixP->fx_file, fixP->fx_line,
26658 _("invalid constant (%lx) after fixup"),
26659 (unsigned long) value);
26660 break;
26661 }
26662
26663 newval |= (newimm & 0x800) << 15;
26664 newval |= (newimm & 0x700) << 4;
26665 newval |= (newimm & 0x0ff);
26666
26667 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26668 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26669 break;
26670
26671 case BFD_RELOC_ARM_SMC:
26672 if (((unsigned long) value) > 0xffff)
26673 as_bad_where (fixP->fx_file, fixP->fx_line,
26674 _("invalid smc expression"));
26675 newval = md_chars_to_number (buf, INSN_SIZE);
26676 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26677 md_number_to_chars (buf, newval, INSN_SIZE);
26678 break;
26679
26680 case BFD_RELOC_ARM_HVC:
26681 if (((unsigned long) value) > 0xffff)
26682 as_bad_where (fixP->fx_file, fixP->fx_line,
26683 _("invalid hvc expression"));
26684 newval = md_chars_to_number (buf, INSN_SIZE);
26685 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26686 md_number_to_chars (buf, newval, INSN_SIZE);
26687 break;
26688
26689 case BFD_RELOC_ARM_SWI:
26690 if (fixP->tc_fix_data != 0)
26691 {
26692 if (((unsigned long) value) > 0xff)
26693 as_bad_where (fixP->fx_file, fixP->fx_line,
26694 _("invalid swi expression"));
26695 newval = md_chars_to_number (buf, THUMB_SIZE);
26696 newval |= value;
26697 md_number_to_chars (buf, newval, THUMB_SIZE);
26698 }
26699 else
26700 {
26701 if (((unsigned long) value) > 0x00ffffff)
26702 as_bad_where (fixP->fx_file, fixP->fx_line,
26703 _("invalid swi expression"));
26704 newval = md_chars_to_number (buf, INSN_SIZE);
26705 newval |= value;
26706 md_number_to_chars (buf, newval, INSN_SIZE);
26707 }
26708 break;
26709
26710 case BFD_RELOC_ARM_MULTI:
26711 if (((unsigned long) value) > 0xffff)
26712 as_bad_where (fixP->fx_file, fixP->fx_line,
26713 _("invalid expression in load/store multiple"));
26714 newval = value | md_chars_to_number (buf, INSN_SIZE);
26715 md_number_to_chars (buf, newval, INSN_SIZE);
26716 break;
26717
26718 #ifdef OBJ_ELF
26719 case BFD_RELOC_ARM_PCREL_CALL:
26720
26721 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26722 && fixP->fx_addsy
26723 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26724 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26725 && THUMB_IS_FUNC (fixP->fx_addsy))
26726 /* Flip the bl to blx. This is a simple flip
26727 bit here because we generate PCREL_CALL for
26728 unconditional bls. */
26729 {
26730 newval = md_chars_to_number (buf, INSN_SIZE);
26731 newval = newval | 0x10000000;
26732 md_number_to_chars (buf, newval, INSN_SIZE);
26733 temp = 1;
26734 fixP->fx_done = 1;
26735 }
26736 else
26737 temp = 3;
26738 goto arm_branch_common;
26739
26740 case BFD_RELOC_ARM_PCREL_JUMP:
26741 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26742 && fixP->fx_addsy
26743 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26744 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26745 && THUMB_IS_FUNC (fixP->fx_addsy))
26746 {
26747 /* This would map to a bl<cond>, b<cond>,
26748 b<always> to a Thumb function. We
26749 need to force a relocation for this particular
26750 case. */
26751 newval = md_chars_to_number (buf, INSN_SIZE);
26752 fixP->fx_done = 0;
26753 }
26754 /* Fall through. */
26755
26756 case BFD_RELOC_ARM_PLT32:
26757 #endif
26758 case BFD_RELOC_ARM_PCREL_BRANCH:
26759 temp = 3;
26760 goto arm_branch_common;
26761
26762 case BFD_RELOC_ARM_PCREL_BLX:
26763
26764 temp = 1;
26765 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26766 && fixP->fx_addsy
26767 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26768 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26769 && ARM_IS_FUNC (fixP->fx_addsy))
26770 {
26771 /* Flip the blx to a bl and warn. */
26772 const char *name = S_GET_NAME (fixP->fx_addsy);
26773 newval = 0xeb000000;
26774 as_warn_where (fixP->fx_file, fixP->fx_line,
26775 _("blx to '%s' an ARM ISA state function changed to bl"),
26776 name);
26777 md_number_to_chars (buf, newval, INSN_SIZE);
26778 temp = 3;
26779 fixP->fx_done = 1;
26780 }
26781
26782 #ifdef OBJ_ELF
26783 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
26784 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
26785 #endif
26786
26787 arm_branch_common:
26788 /* We are going to store value (shifted right by two) in the
26789 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26790 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
26791 also be clear. */
26792 if (value & temp)
26793 as_bad_where (fixP->fx_file, fixP->fx_line,
26794 _("misaligned branch destination"));
26795 if ((value & (offsetT)0xfe000000) != (offsetT)0
26796 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
26797 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26798
26799 if (fixP->fx_done || !seg->use_rela_p)
26800 {
26801 newval = md_chars_to_number (buf, INSN_SIZE);
26802 newval |= (value >> 2) & 0x00ffffff;
26803 /* Set the H bit on BLX instructions. */
26804 if (temp == 1)
26805 {
26806 if (value & 2)
26807 newval |= 0x01000000;
26808 else
26809 newval &= ~0x01000000;
26810 }
26811 md_number_to_chars (buf, newval, INSN_SIZE);
26812 }
26813 break;
26814
26815 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26816 /* CBZ can only branch forward. */
26817
26818 /* Attempts to use CBZ to branch to the next instruction
26819 (which, strictly speaking, are prohibited) will be turned into
26820 no-ops.
26821
26822 FIXME: It may be better to remove the instruction completely and
26823 perform relaxation. */
26824 if (value == -2)
26825 {
26826 newval = md_chars_to_number (buf, THUMB_SIZE);
26827 newval = 0xbf00; /* NOP encoding T1 */
26828 md_number_to_chars (buf, newval, THUMB_SIZE);
26829 }
26830 else
26831 {
26832 if (value & ~0x7e)
26833 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26834
26835 if (fixP->fx_done || !seg->use_rela_p)
26836 {
26837 newval = md_chars_to_number (buf, THUMB_SIZE);
26838 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26839 md_number_to_chars (buf, newval, THUMB_SIZE);
26840 }
26841 }
26842 break;
26843
26844 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
26845 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
26846 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26847
26848 if (fixP->fx_done || !seg->use_rela_p)
26849 {
26850 newval = md_chars_to_number (buf, THUMB_SIZE);
26851 newval |= (value & 0x1ff) >> 1;
26852 md_number_to_chars (buf, newval, THUMB_SIZE);
26853 }
26854 break;
26855
26856 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
26857 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
26858 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26859
26860 if (fixP->fx_done || !seg->use_rela_p)
26861 {
26862 newval = md_chars_to_number (buf, THUMB_SIZE);
26863 newval |= (value & 0xfff) >> 1;
26864 md_number_to_chars (buf, newval, THUMB_SIZE);
26865 }
26866 break;
26867
26868 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26869 if (fixP->fx_addsy
26870 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26871 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26872 && ARM_IS_FUNC (fixP->fx_addsy)
26873 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26874 {
26875 /* Force a relocation for a branch 20 bits wide. */
26876 fixP->fx_done = 0;
26877 }
26878 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
26879 as_bad_where (fixP->fx_file, fixP->fx_line,
26880 _("conditional branch out of range"));
26881
26882 if (fixP->fx_done || !seg->use_rela_p)
26883 {
26884 offsetT newval2;
26885 addressT S, J1, J2, lo, hi;
26886
26887 S = (value & 0x00100000) >> 20;
26888 J2 = (value & 0x00080000) >> 19;
26889 J1 = (value & 0x00040000) >> 18;
26890 hi = (value & 0x0003f000) >> 12;
26891 lo = (value & 0x00000ffe) >> 1;
26892
26893 newval = md_chars_to_number (buf, THUMB_SIZE);
26894 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26895 newval |= (S << 10) | hi;
26896 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26897 md_number_to_chars (buf, newval, THUMB_SIZE);
26898 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26899 }
26900 break;
26901
26902 case BFD_RELOC_THUMB_PCREL_BLX:
26903 /* If there is a blx from a thumb state function to
26904 another thumb function flip this to a bl and warn
26905 about it. */
26906
26907 if (fixP->fx_addsy
26908 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26909 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26910 && THUMB_IS_FUNC (fixP->fx_addsy))
26911 {
26912 const char *name = S_GET_NAME (fixP->fx_addsy);
26913 as_warn_where (fixP->fx_file, fixP->fx_line,
26914 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26915 name);
26916 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26917 newval = newval | 0x1000;
26918 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26919 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26920 fixP->fx_done = 1;
26921 }
26922
26923
26924 goto thumb_bl_common;
26925
26926 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26927 /* A bl from Thumb state ISA to an internal ARM state function
26928 is converted to a blx. */
26929 if (fixP->fx_addsy
26930 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26931 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26932 && ARM_IS_FUNC (fixP->fx_addsy)
26933 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26934 {
26935 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26936 newval = newval & ~0x1000;
26937 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26938 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26939 fixP->fx_done = 1;
26940 }
26941
26942 thumb_bl_common:
26943
26944 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26945 /* For a BLX instruction, make sure that the relocation is rounded up
26946 to a word boundary. This follows the semantics of the instruction
26947 which specifies that bit 1 of the target address will come from bit
26948 1 of the base address. */
26949 value = (value + 3) & ~ 3;
26950
26951 #ifdef OBJ_ELF
26952 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26953 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26954 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26955 #endif
26956
26957 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26958 {
26959 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
26960 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26961 else if ((value & ~0x1ffffff)
26962 && ((value & ~0x1ffffff) != ~0x1ffffff))
26963 as_bad_where (fixP->fx_file, fixP->fx_line,
26964 _("Thumb2 branch out of range"));
26965 }
26966
26967 if (fixP->fx_done || !seg->use_rela_p)
26968 encode_thumb2_b_bl_offset (buf, value);
26969
26970 break;
26971
26972 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26973 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
26974 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26975
26976 if (fixP->fx_done || !seg->use_rela_p)
26977 encode_thumb2_b_bl_offset (buf, value);
26978
26979 break;
26980
26981 case BFD_RELOC_8:
26982 if (fixP->fx_done || !seg->use_rela_p)
26983 *buf = value;
26984 break;
26985
26986 case BFD_RELOC_16:
26987 if (fixP->fx_done || !seg->use_rela_p)
26988 md_number_to_chars (buf, value, 2);
26989 break;
26990
26991 #ifdef OBJ_ELF
26992 case BFD_RELOC_ARM_TLS_CALL:
26993 case BFD_RELOC_ARM_THM_TLS_CALL:
26994 case BFD_RELOC_ARM_TLS_DESCSEQ:
26995 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
26996 case BFD_RELOC_ARM_TLS_GOTDESC:
26997 case BFD_RELOC_ARM_TLS_GD32:
26998 case BFD_RELOC_ARM_TLS_LE32:
26999 case BFD_RELOC_ARM_TLS_IE32:
27000 case BFD_RELOC_ARM_TLS_LDM32:
27001 case BFD_RELOC_ARM_TLS_LDO32:
27002 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27003 break;
27004
27005 /* Same handling as above, but with the arm_fdpic guard. */
27006 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27007 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27008 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27009 if (arm_fdpic)
27010 {
27011 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27012 }
27013 else
27014 {
27015 as_bad_where (fixP->fx_file, fixP->fx_line,
27016 _("Relocation supported only in FDPIC mode"));
27017 }
27018 break;
27019
27020 case BFD_RELOC_ARM_GOT32:
27021 case BFD_RELOC_ARM_GOTOFF:
27022 break;
27023
27024 case BFD_RELOC_ARM_GOT_PREL:
27025 if (fixP->fx_done || !seg->use_rela_p)
27026 md_number_to_chars (buf, value, 4);
27027 break;
27028
27029 case BFD_RELOC_ARM_TARGET2:
27030 /* TARGET2 is not partial-inplace, so we need to write the
27031 addend here for REL targets, because it won't be written out
27032 during reloc processing later. */
27033 if (fixP->fx_done || !seg->use_rela_p)
27034 md_number_to_chars (buf, fixP->fx_offset, 4);
27035 break;
27036
27037 /* Relocations for FDPIC. */
27038 case BFD_RELOC_ARM_GOTFUNCDESC:
27039 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27040 case BFD_RELOC_ARM_FUNCDESC:
27041 if (arm_fdpic)
27042 {
27043 if (fixP->fx_done || !seg->use_rela_p)
27044 md_number_to_chars (buf, 0, 4);
27045 }
27046 else
27047 {
27048 as_bad_where (fixP->fx_file, fixP->fx_line,
27049 _("Relocation supported only in FDPIC mode"));
27050 }
27051 break;
27052 #endif
27053
27054 case BFD_RELOC_RVA:
27055 case BFD_RELOC_32:
27056 case BFD_RELOC_ARM_TARGET1:
27057 case BFD_RELOC_ARM_ROSEGREL32:
27058 case BFD_RELOC_ARM_SBREL32:
27059 case BFD_RELOC_32_PCREL:
27060 #ifdef TE_PE
27061 case BFD_RELOC_32_SECREL:
27062 #endif
27063 if (fixP->fx_done || !seg->use_rela_p)
27064 #ifdef TE_WINCE
27065 /* For WinCE we only do this for pcrel fixups. */
27066 if (fixP->fx_done || fixP->fx_pcrel)
27067 #endif
27068 md_number_to_chars (buf, value, 4);
27069 break;
27070
27071 #ifdef OBJ_ELF
27072 case BFD_RELOC_ARM_PREL31:
27073 if (fixP->fx_done || !seg->use_rela_p)
27074 {
27075 newval = md_chars_to_number (buf, 4) & 0x80000000;
27076 if ((value ^ (value >> 1)) & 0x40000000)
27077 {
27078 as_bad_where (fixP->fx_file, fixP->fx_line,
27079 _("rel31 relocation overflow"));
27080 }
27081 newval |= value & 0x7fffffff;
27082 md_number_to_chars (buf, newval, 4);
27083 }
27084 break;
27085 #endif
27086
27087 case BFD_RELOC_ARM_CP_OFF_IMM:
27088 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27089 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
27090 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27091 newval = md_chars_to_number (buf, INSN_SIZE);
27092 else
27093 newval = get_thumb32_insn (buf);
27094 if ((newval & 0x0f200f00) == 0x0d000900)
27095 {
27096 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27097 has permitted values that are multiples of 2, in the range 0
27098 to 510. */
27099 if (value < -510 || value > 510 || (value & 1))
27100 as_bad_where (fixP->fx_file, fixP->fx_line,
27101 _("co-processor offset out of range"));
27102 }
27103 else if ((newval & 0xfe001f80) == 0xec000f80)
27104 {
27105 if (value < -511 || value > 512 || (value & 3))
27106 as_bad_where (fixP->fx_file, fixP->fx_line,
27107 _("co-processor offset out of range"));
27108 }
27109 else if (value < -1023 || value > 1023 || (value & 3))
27110 as_bad_where (fixP->fx_file, fixP->fx_line,
27111 _("co-processor offset out of range"));
27112 cp_off_common:
27113 sign = value > 0;
27114 if (value < 0)
27115 value = -value;
27116 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27117 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27118 newval = md_chars_to_number (buf, INSN_SIZE);
27119 else
27120 newval = get_thumb32_insn (buf);
27121 if (value == 0)
27122 {
27123 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27124 newval &= 0xffffff80;
27125 else
27126 newval &= 0xffffff00;
27127 }
27128 else
27129 {
27130 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27131 newval &= 0xff7fff80;
27132 else
27133 newval &= 0xff7fff00;
27134 if ((newval & 0x0f200f00) == 0x0d000900)
27135 {
27136 /* This is a fp16 vstr/vldr.
27137
27138 It requires the immediate offset in the instruction is shifted
27139 left by 1 to be a half-word offset.
27140
27141 Here, left shift by 1 first, and later right shift by 2
27142 should get the right offset. */
27143 value <<= 1;
27144 }
27145 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27146 }
27147 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27148 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27149 md_number_to_chars (buf, newval, INSN_SIZE);
27150 else
27151 put_thumb32_insn (buf, newval);
27152 break;
27153
27154 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
27155 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
27156 if (value < -255 || value > 255)
27157 as_bad_where (fixP->fx_file, fixP->fx_line,
27158 _("co-processor offset out of range"));
27159 value *= 4;
27160 goto cp_off_common;
27161
27162 case BFD_RELOC_ARM_THUMB_OFFSET:
27163 newval = md_chars_to_number (buf, THUMB_SIZE);
27164 /* Exactly what ranges, and where the offset is inserted depends
27165 on the type of instruction, we can establish this from the
27166 top 4 bits. */
27167 switch (newval >> 12)
27168 {
27169 case 4: /* PC load. */
27170 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27171 forced to zero for these loads; md_pcrel_from has already
27172 compensated for this. */
27173 if (value & 3)
27174 as_bad_where (fixP->fx_file, fixP->fx_line,
27175 _("invalid offset, target not word aligned (0x%08lX)"),
27176 (((unsigned long) fixP->fx_frag->fr_address
27177 + (unsigned long) fixP->fx_where) & ~3)
27178 + (unsigned long) value);
27179
27180 if (value & ~0x3fc)
27181 as_bad_where (fixP->fx_file, fixP->fx_line,
27182 _("invalid offset, value too big (0x%08lX)"),
27183 (long) value);
27184
27185 newval |= value >> 2;
27186 break;
27187
27188 case 9: /* SP load/store. */
27189 if (value & ~0x3fc)
27190 as_bad_where (fixP->fx_file, fixP->fx_line,
27191 _("invalid offset, value too big (0x%08lX)"),
27192 (long) value);
27193 newval |= value >> 2;
27194 break;
27195
27196 case 6: /* Word load/store. */
27197 if (value & ~0x7c)
27198 as_bad_where (fixP->fx_file, fixP->fx_line,
27199 _("invalid offset, value too big (0x%08lX)"),
27200 (long) value);
27201 newval |= value << 4; /* 6 - 2. */
27202 break;
27203
27204 case 7: /* Byte load/store. */
27205 if (value & ~0x1f)
27206 as_bad_where (fixP->fx_file, fixP->fx_line,
27207 _("invalid offset, value too big (0x%08lX)"),
27208 (long) value);
27209 newval |= value << 6;
27210 break;
27211
27212 case 8: /* Halfword load/store. */
27213 if (value & ~0x3e)
27214 as_bad_where (fixP->fx_file, fixP->fx_line,
27215 _("invalid offset, value too big (0x%08lX)"),
27216 (long) value);
27217 newval |= value << 5; /* 6 - 1. */
27218 break;
27219
27220 default:
27221 as_bad_where (fixP->fx_file, fixP->fx_line,
27222 "Unable to process relocation for thumb opcode: %lx",
27223 (unsigned long) newval);
27224 break;
27225 }
27226 md_number_to_chars (buf, newval, THUMB_SIZE);
27227 break;
27228
27229 case BFD_RELOC_ARM_THUMB_ADD:
27230 /* This is a complicated relocation, since we use it for all of
27231 the following immediate relocations:
27232
27233 3bit ADD/SUB
27234 8bit ADD/SUB
27235 9bit ADD/SUB SP word-aligned
27236 10bit ADD PC/SP word-aligned
27237
27238 The type of instruction being processed is encoded in the
27239 instruction field:
27240
27241 0x8000 SUB
27242 0x00F0 Rd
27243 0x000F Rs
27244 */
27245 newval = md_chars_to_number (buf, THUMB_SIZE);
27246 {
27247 int rd = (newval >> 4) & 0xf;
27248 int rs = newval & 0xf;
27249 int subtract = !!(newval & 0x8000);
27250
27251 /* Check for HI regs, only very restricted cases allowed:
27252 Adjusting SP, and using PC or SP to get an address. */
27253 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27254 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27255 as_bad_where (fixP->fx_file, fixP->fx_line,
27256 _("invalid Hi register with immediate"));
27257
27258 /* If value is negative, choose the opposite instruction. */
27259 if (value < 0)
27260 {
27261 value = -value;
27262 subtract = !subtract;
27263 if (value < 0)
27264 as_bad_where (fixP->fx_file, fixP->fx_line,
27265 _("immediate value out of range"));
27266 }
27267
27268 if (rd == REG_SP)
27269 {
27270 if (value & ~0x1fc)
27271 as_bad_where (fixP->fx_file, fixP->fx_line,
27272 _("invalid immediate for stack address calculation"));
27273 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27274 newval |= value >> 2;
27275 }
27276 else if (rs == REG_PC || rs == REG_SP)
27277 {
27278 /* PR gas/18541. If the addition is for a defined symbol
27279 within range of an ADR instruction then accept it. */
27280 if (subtract
27281 && value == 4
27282 && fixP->fx_addsy != NULL)
27283 {
27284 subtract = 0;
27285
27286 if (! S_IS_DEFINED (fixP->fx_addsy)
27287 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27288 || S_IS_WEAK (fixP->fx_addsy))
27289 {
27290 as_bad_where (fixP->fx_file, fixP->fx_line,
27291 _("address calculation needs a strongly defined nearby symbol"));
27292 }
27293 else
27294 {
27295 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27296
27297 /* Round up to the next 4-byte boundary. */
27298 if (v & 3)
27299 v = (v + 3) & ~ 3;
27300 else
27301 v += 4;
27302 v = S_GET_VALUE (fixP->fx_addsy) - v;
27303
27304 if (v & ~0x3fc)
27305 {
27306 as_bad_where (fixP->fx_file, fixP->fx_line,
27307 _("symbol too far away"));
27308 }
27309 else
27310 {
27311 fixP->fx_done = 1;
27312 value = v;
27313 }
27314 }
27315 }
27316
27317 if (subtract || value & ~0x3fc)
27318 as_bad_where (fixP->fx_file, fixP->fx_line,
27319 _("invalid immediate for address calculation (value = 0x%08lX)"),
27320 (unsigned long) (subtract ? - value : value));
27321 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27322 newval |= rd << 8;
27323 newval |= value >> 2;
27324 }
27325 else if (rs == rd)
27326 {
27327 if (value & ~0xff)
27328 as_bad_where (fixP->fx_file, fixP->fx_line,
27329 _("immediate value out of range"));
27330 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27331 newval |= (rd << 8) | value;
27332 }
27333 else
27334 {
27335 if (value & ~0x7)
27336 as_bad_where (fixP->fx_file, fixP->fx_line,
27337 _("immediate value out of range"));
27338 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27339 newval |= rd | (rs << 3) | (value << 6);
27340 }
27341 }
27342 md_number_to_chars (buf, newval, THUMB_SIZE);
27343 break;
27344
27345 case BFD_RELOC_ARM_THUMB_IMM:
27346 newval = md_chars_to_number (buf, THUMB_SIZE);
27347 if (value < 0 || value > 255)
27348 as_bad_where (fixP->fx_file, fixP->fx_line,
27349 _("invalid immediate: %ld is out of range"),
27350 (long) value);
27351 newval |= value;
27352 md_number_to_chars (buf, newval, THUMB_SIZE);
27353 break;
27354
27355 case BFD_RELOC_ARM_THUMB_SHIFT:
27356 /* 5bit shift value (0..32). LSL cannot take 32. */
27357 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27358 temp = newval & 0xf800;
27359 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27360 as_bad_where (fixP->fx_file, fixP->fx_line,
27361 _("invalid shift value: %ld"), (long) value);
27362 /* Shifts of zero must be encoded as LSL. */
27363 if (value == 0)
27364 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27365 /* Shifts of 32 are encoded as zero. */
27366 else if (value == 32)
27367 value = 0;
27368 newval |= value << 6;
27369 md_number_to_chars (buf, newval, THUMB_SIZE);
27370 break;
27371
27372 case BFD_RELOC_VTABLE_INHERIT:
27373 case BFD_RELOC_VTABLE_ENTRY:
27374 fixP->fx_done = 0;
27375 return;
27376
27377 case BFD_RELOC_ARM_MOVW:
27378 case BFD_RELOC_ARM_MOVT:
27379 case BFD_RELOC_ARM_THUMB_MOVW:
27380 case BFD_RELOC_ARM_THUMB_MOVT:
27381 if (fixP->fx_done || !seg->use_rela_p)
27382 {
27383 /* REL format relocations are limited to a 16-bit addend. */
27384 if (!fixP->fx_done)
27385 {
27386 if (value < -0x8000 || value > 0x7fff)
27387 as_bad_where (fixP->fx_file, fixP->fx_line,
27388 _("offset out of range"));
27389 }
27390 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27391 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27392 {
27393 value >>= 16;
27394 }
27395
27396 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27397 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27398 {
27399 newval = get_thumb32_insn (buf);
27400 newval &= 0xfbf08f00;
27401 newval |= (value & 0xf000) << 4;
27402 newval |= (value & 0x0800) << 15;
27403 newval |= (value & 0x0700) << 4;
27404 newval |= (value & 0x00ff);
27405 put_thumb32_insn (buf, newval);
27406 }
27407 else
27408 {
27409 newval = md_chars_to_number (buf, 4);
27410 newval &= 0xfff0f000;
27411 newval |= value & 0x0fff;
27412 newval |= (value & 0xf000) << 4;
27413 md_number_to_chars (buf, newval, 4);
27414 }
27415 }
27416 return;
27417
27418 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27419 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27420 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27421 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27422 gas_assert (!fixP->fx_done);
27423 {
27424 bfd_vma insn;
27425 bfd_boolean is_mov;
27426 bfd_vma encoded_addend = value;
27427
27428 /* Check that addend can be encoded in instruction. */
27429 if (!seg->use_rela_p && (value < 0 || value > 255))
27430 as_bad_where (fixP->fx_file, fixP->fx_line,
27431 _("the offset 0x%08lX is not representable"),
27432 (unsigned long) encoded_addend);
27433
27434 /* Extract the instruction. */
27435 insn = md_chars_to_number (buf, THUMB_SIZE);
27436 is_mov = (insn & 0xf800) == 0x2000;
27437
27438 /* Encode insn. */
27439 if (is_mov)
27440 {
27441 if (!seg->use_rela_p)
27442 insn |= encoded_addend;
27443 }
27444 else
27445 {
27446 int rd, rs;
27447
27448 /* Extract the instruction. */
27449 /* Encoding is the following
27450 0x8000 SUB
27451 0x00F0 Rd
27452 0x000F Rs
27453 */
27454 /* The following conditions must be true :
27455 - ADD
27456 - Rd == Rs
27457 - Rd <= 7
27458 */
27459 rd = (insn >> 4) & 0xf;
27460 rs = insn & 0xf;
27461 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27462 as_bad_where (fixP->fx_file, fixP->fx_line,
27463 _("Unable to process relocation for thumb opcode: %lx"),
27464 (unsigned long) insn);
27465
27466 /* Encode as ADD immediate8 thumb 1 code. */
27467 insn = 0x3000 | (rd << 8);
27468
27469 /* Place the encoded addend into the first 8 bits of the
27470 instruction. */
27471 if (!seg->use_rela_p)
27472 insn |= encoded_addend;
27473 }
27474
27475 /* Update the instruction. */
27476 md_number_to_chars (buf, insn, THUMB_SIZE);
27477 }
27478 break;
27479
27480 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27481 case BFD_RELOC_ARM_ALU_PC_G0:
27482 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27483 case BFD_RELOC_ARM_ALU_PC_G1:
27484 case BFD_RELOC_ARM_ALU_PC_G2:
27485 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27486 case BFD_RELOC_ARM_ALU_SB_G0:
27487 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27488 case BFD_RELOC_ARM_ALU_SB_G1:
27489 case BFD_RELOC_ARM_ALU_SB_G2:
27490 gas_assert (!fixP->fx_done);
27491 if (!seg->use_rela_p)
27492 {
27493 bfd_vma insn;
27494 bfd_vma encoded_addend;
27495 bfd_vma addend_abs = llabs (value);
27496
27497 /* Check that the absolute value of the addend can be
27498 expressed as an 8-bit constant plus a rotation. */
27499 encoded_addend = encode_arm_immediate (addend_abs);
27500 if (encoded_addend == (unsigned int) FAIL)
27501 as_bad_where (fixP->fx_file, fixP->fx_line,
27502 _("the offset 0x%08lX is not representable"),
27503 (unsigned long) addend_abs);
27504
27505 /* Extract the instruction. */
27506 insn = md_chars_to_number (buf, INSN_SIZE);
27507
27508 /* If the addend is positive, use an ADD instruction.
27509 Otherwise use a SUB. Take care not to destroy the S bit. */
27510 insn &= 0xff1fffff;
27511 if (value < 0)
27512 insn |= 1 << 22;
27513 else
27514 insn |= 1 << 23;
27515
27516 /* Place the encoded addend into the first 12 bits of the
27517 instruction. */
27518 insn &= 0xfffff000;
27519 insn |= encoded_addend;
27520
27521 /* Update the instruction. */
27522 md_number_to_chars (buf, insn, INSN_SIZE);
27523 }
27524 break;
27525
27526 case BFD_RELOC_ARM_LDR_PC_G0:
27527 case BFD_RELOC_ARM_LDR_PC_G1:
27528 case BFD_RELOC_ARM_LDR_PC_G2:
27529 case BFD_RELOC_ARM_LDR_SB_G0:
27530 case BFD_RELOC_ARM_LDR_SB_G1:
27531 case BFD_RELOC_ARM_LDR_SB_G2:
27532 gas_assert (!fixP->fx_done);
27533 if (!seg->use_rela_p)
27534 {
27535 bfd_vma insn;
27536 bfd_vma addend_abs = llabs (value);
27537
27538 /* Check that the absolute value of the addend can be
27539 encoded in 12 bits. */
27540 if (addend_abs >= 0x1000)
27541 as_bad_where (fixP->fx_file, fixP->fx_line,
27542 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27543 (unsigned long) addend_abs);
27544
27545 /* Extract the instruction. */
27546 insn = md_chars_to_number (buf, INSN_SIZE);
27547
27548 /* If the addend is negative, clear bit 23 of the instruction.
27549 Otherwise set it. */
27550 if (value < 0)
27551 insn &= ~(1 << 23);
27552 else
27553 insn |= 1 << 23;
27554
27555 /* Place the absolute value of the addend into the first 12 bits
27556 of the instruction. */
27557 insn &= 0xfffff000;
27558 insn |= addend_abs;
27559
27560 /* Update the instruction. */
27561 md_number_to_chars (buf, insn, INSN_SIZE);
27562 }
27563 break;
27564
27565 case BFD_RELOC_ARM_LDRS_PC_G0:
27566 case BFD_RELOC_ARM_LDRS_PC_G1:
27567 case BFD_RELOC_ARM_LDRS_PC_G2:
27568 case BFD_RELOC_ARM_LDRS_SB_G0:
27569 case BFD_RELOC_ARM_LDRS_SB_G1:
27570 case BFD_RELOC_ARM_LDRS_SB_G2:
27571 gas_assert (!fixP->fx_done);
27572 if (!seg->use_rela_p)
27573 {
27574 bfd_vma insn;
27575 bfd_vma addend_abs = llabs (value);
27576
27577 /* Check that the absolute value of the addend can be
27578 encoded in 8 bits. */
27579 if (addend_abs >= 0x100)
27580 as_bad_where (fixP->fx_file, fixP->fx_line,
27581 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27582 (unsigned long) addend_abs);
27583
27584 /* Extract the instruction. */
27585 insn = md_chars_to_number (buf, INSN_SIZE);
27586
27587 /* If the addend is negative, clear bit 23 of the instruction.
27588 Otherwise set it. */
27589 if (value < 0)
27590 insn &= ~(1 << 23);
27591 else
27592 insn |= 1 << 23;
27593
27594 /* Place the first four bits of the absolute value of the addend
27595 into the first 4 bits of the instruction, and the remaining
27596 four into bits 8 .. 11. */
27597 insn &= 0xfffff0f0;
27598 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27599
27600 /* Update the instruction. */
27601 md_number_to_chars (buf, insn, INSN_SIZE);
27602 }
27603 break;
27604
27605 case BFD_RELOC_ARM_LDC_PC_G0:
27606 case BFD_RELOC_ARM_LDC_PC_G1:
27607 case BFD_RELOC_ARM_LDC_PC_G2:
27608 case BFD_RELOC_ARM_LDC_SB_G0:
27609 case BFD_RELOC_ARM_LDC_SB_G1:
27610 case BFD_RELOC_ARM_LDC_SB_G2:
27611 gas_assert (!fixP->fx_done);
27612 if (!seg->use_rela_p)
27613 {
27614 bfd_vma insn;
27615 bfd_vma addend_abs = llabs (value);
27616
27617 /* Check that the absolute value of the addend is a multiple of
27618 four and, when divided by four, fits in 8 bits. */
27619 if (addend_abs & 0x3)
27620 as_bad_where (fixP->fx_file, fixP->fx_line,
27621 _("bad offset 0x%08lX (must be word-aligned)"),
27622 (unsigned long) addend_abs);
27623
27624 if ((addend_abs >> 2) > 0xff)
27625 as_bad_where (fixP->fx_file, fixP->fx_line,
27626 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27627 (unsigned long) addend_abs);
27628
27629 /* Extract the instruction. */
27630 insn = md_chars_to_number (buf, INSN_SIZE);
27631
27632 /* If the addend is negative, clear bit 23 of the instruction.
27633 Otherwise set it. */
27634 if (value < 0)
27635 insn &= ~(1 << 23);
27636 else
27637 insn |= 1 << 23;
27638
27639 /* Place the addend (divided by four) into the first eight
27640 bits of the instruction. */
27641 insn &= 0xfffffff0;
27642 insn |= addend_abs >> 2;
27643
27644 /* Update the instruction. */
27645 md_number_to_chars (buf, insn, INSN_SIZE);
27646 }
27647 break;
27648
27649 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27650 if (fixP->fx_addsy
27651 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27652 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27653 && ARM_IS_FUNC (fixP->fx_addsy)
27654 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27655 {
27656 /* Force a relocation for a branch 5 bits wide. */
27657 fixP->fx_done = 0;
27658 }
27659 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27660 as_bad_where (fixP->fx_file, fixP->fx_line,
27661 BAD_BRANCH_OFF);
27662
27663 if (fixP->fx_done || !seg->use_rela_p)
27664 {
27665 addressT boff = value >> 1;
27666
27667 newval = md_chars_to_number (buf, THUMB_SIZE);
27668 newval |= (boff << 7);
27669 md_number_to_chars (buf, newval, THUMB_SIZE);
27670 }
27671 break;
27672
27673 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27674 if (fixP->fx_addsy
27675 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27676 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27677 && ARM_IS_FUNC (fixP->fx_addsy)
27678 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27679 {
27680 fixP->fx_done = 0;
27681 }
27682 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27683 as_bad_where (fixP->fx_file, fixP->fx_line,
27684 _("branch out of range"));
27685
27686 if (fixP->fx_done || !seg->use_rela_p)
27687 {
27688 newval = md_chars_to_number (buf, THUMB_SIZE);
27689
27690 addressT boff = ((newval & 0x0780) >> 7) << 1;
27691 addressT diff = value - boff;
27692
27693 if (diff == 4)
27694 {
27695 newval |= 1 << 1; /* T bit. */
27696 }
27697 else if (diff != 2)
27698 {
27699 as_bad_where (fixP->fx_file, fixP->fx_line,
27700 _("out of range label-relative fixup value"));
27701 }
27702 md_number_to_chars (buf, newval, THUMB_SIZE);
27703 }
27704 break;
27705
27706 case BFD_RELOC_ARM_THUMB_BF17:
27707 if (fixP->fx_addsy
27708 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27709 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27710 && ARM_IS_FUNC (fixP->fx_addsy)
27711 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27712 {
27713 /* Force a relocation for a branch 17 bits wide. */
27714 fixP->fx_done = 0;
27715 }
27716
27717 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27718 as_bad_where (fixP->fx_file, fixP->fx_line,
27719 BAD_BRANCH_OFF);
27720
27721 if (fixP->fx_done || !seg->use_rela_p)
27722 {
27723 offsetT newval2;
27724 addressT immA, immB, immC;
27725
27726 immA = (value & 0x0001f000) >> 12;
27727 immB = (value & 0x00000ffc) >> 2;
27728 immC = (value & 0x00000002) >> 1;
27729
27730 newval = md_chars_to_number (buf, THUMB_SIZE);
27731 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27732 newval |= immA;
27733 newval2 |= (immC << 11) | (immB << 1);
27734 md_number_to_chars (buf, newval, THUMB_SIZE);
27735 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27736 }
27737 break;
27738
27739 case BFD_RELOC_ARM_THUMB_BF19:
27740 if (fixP->fx_addsy
27741 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27742 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27743 && ARM_IS_FUNC (fixP->fx_addsy)
27744 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27745 {
27746 /* Force a relocation for a branch 19 bits wide. */
27747 fixP->fx_done = 0;
27748 }
27749
27750 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27751 as_bad_where (fixP->fx_file, fixP->fx_line,
27752 BAD_BRANCH_OFF);
27753
27754 if (fixP->fx_done || !seg->use_rela_p)
27755 {
27756 offsetT newval2;
27757 addressT immA, immB, immC;
27758
27759 immA = (value & 0x0007f000) >> 12;
27760 immB = (value & 0x00000ffc) >> 2;
27761 immC = (value & 0x00000002) >> 1;
27762
27763 newval = md_chars_to_number (buf, THUMB_SIZE);
27764 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27765 newval |= immA;
27766 newval2 |= (immC << 11) | (immB << 1);
27767 md_number_to_chars (buf, newval, THUMB_SIZE);
27768 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27769 }
27770 break;
27771
27772 case BFD_RELOC_ARM_THUMB_BF13:
27773 if (fixP->fx_addsy
27774 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27775 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27776 && ARM_IS_FUNC (fixP->fx_addsy)
27777 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27778 {
27779 /* Force a relocation for a branch 13 bits wide. */
27780 fixP->fx_done = 0;
27781 }
27782
27783 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27784 as_bad_where (fixP->fx_file, fixP->fx_line,
27785 BAD_BRANCH_OFF);
27786
27787 if (fixP->fx_done || !seg->use_rela_p)
27788 {
27789 offsetT newval2;
27790 addressT immA, immB, immC;
27791
27792 immA = (value & 0x00001000) >> 12;
27793 immB = (value & 0x00000ffc) >> 2;
27794 immC = (value & 0x00000002) >> 1;
27795
27796 newval = md_chars_to_number (buf, THUMB_SIZE);
27797 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27798 newval |= immA;
27799 newval2 |= (immC << 11) | (immB << 1);
27800 md_number_to_chars (buf, newval, THUMB_SIZE);
27801 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27802 }
27803 break;
27804
27805 case BFD_RELOC_ARM_THUMB_LOOP12:
27806 if (fixP->fx_addsy
27807 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27808 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27809 && ARM_IS_FUNC (fixP->fx_addsy)
27810 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27811 {
27812 /* Force a relocation for a branch 12 bits wide. */
27813 fixP->fx_done = 0;
27814 }
27815
27816 bfd_vma insn = get_thumb32_insn (buf);
27817 /* le lr, <label> or le <label> */
27818 if (((insn & 0xffffffff) == 0xf00fc001)
27819 || ((insn & 0xffffffff) == 0xf02fc001))
27820 value = -value;
27821
27822 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27823 as_bad_where (fixP->fx_file, fixP->fx_line,
27824 BAD_BRANCH_OFF);
27825 if (fixP->fx_done || !seg->use_rela_p)
27826 {
27827 addressT imml, immh;
27828
27829 immh = (value & 0x00000ffc) >> 2;
27830 imml = (value & 0x00000002) >> 1;
27831
27832 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27833 newval |= (imml << 11) | (immh << 1);
27834 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27835 }
27836 break;
27837
27838 case BFD_RELOC_ARM_V4BX:
27839 /* This will need to go in the object file. */
27840 fixP->fx_done = 0;
27841 break;
27842
27843 case BFD_RELOC_UNUSED:
27844 default:
27845 as_bad_where (fixP->fx_file, fixP->fx_line,
27846 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27847 }
27848 }
27849
27850 /* Translate internal representation of relocation info to BFD target
27851 format. */
27852
27853 arelent *
27854 tc_gen_reloc (asection *section, fixS *fixp)
27855 {
27856 arelent * reloc;
27857 bfd_reloc_code_real_type code;
27858
27859 reloc = XNEW (arelent);
27860
27861 reloc->sym_ptr_ptr = XNEW (asymbol *);
27862 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27863 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
27864
27865 if (fixp->fx_pcrel)
27866 {
27867 if (section->use_rela_p)
27868 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27869 else
27870 fixp->fx_offset = reloc->address;
27871 }
27872 reloc->addend = fixp->fx_offset;
27873
27874 switch (fixp->fx_r_type)
27875 {
27876 case BFD_RELOC_8:
27877 if (fixp->fx_pcrel)
27878 {
27879 code = BFD_RELOC_8_PCREL;
27880 break;
27881 }
27882 /* Fall through. */
27883
27884 case BFD_RELOC_16:
27885 if (fixp->fx_pcrel)
27886 {
27887 code = BFD_RELOC_16_PCREL;
27888 break;
27889 }
27890 /* Fall through. */
27891
27892 case BFD_RELOC_32:
27893 if (fixp->fx_pcrel)
27894 {
27895 code = BFD_RELOC_32_PCREL;
27896 break;
27897 }
27898 /* Fall through. */
27899
27900 case BFD_RELOC_ARM_MOVW:
27901 if (fixp->fx_pcrel)
27902 {
27903 code = BFD_RELOC_ARM_MOVW_PCREL;
27904 break;
27905 }
27906 /* Fall through. */
27907
27908 case BFD_RELOC_ARM_MOVT:
27909 if (fixp->fx_pcrel)
27910 {
27911 code = BFD_RELOC_ARM_MOVT_PCREL;
27912 break;
27913 }
27914 /* Fall through. */
27915
27916 case BFD_RELOC_ARM_THUMB_MOVW:
27917 if (fixp->fx_pcrel)
27918 {
27919 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27920 break;
27921 }
27922 /* Fall through. */
27923
27924 case BFD_RELOC_ARM_THUMB_MOVT:
27925 if (fixp->fx_pcrel)
27926 {
27927 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27928 break;
27929 }
27930 /* Fall through. */
27931
27932 case BFD_RELOC_NONE:
27933 case BFD_RELOC_ARM_PCREL_BRANCH:
27934 case BFD_RELOC_ARM_PCREL_BLX:
27935 case BFD_RELOC_RVA:
27936 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27937 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27938 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27939 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27940 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27941 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27942 case BFD_RELOC_VTABLE_ENTRY:
27943 case BFD_RELOC_VTABLE_INHERIT:
27944 #ifdef TE_PE
27945 case BFD_RELOC_32_SECREL:
27946 #endif
27947 code = fixp->fx_r_type;
27948 break;
27949
27950 case BFD_RELOC_THUMB_PCREL_BLX:
27951 #ifdef OBJ_ELF
27952 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27953 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27954 else
27955 #endif
27956 code = BFD_RELOC_THUMB_PCREL_BLX;
27957 break;
27958
27959 case BFD_RELOC_ARM_LITERAL:
27960 case BFD_RELOC_ARM_HWLITERAL:
27961 /* If this is called then the a literal has
27962 been referenced across a section boundary. */
27963 as_bad_where (fixp->fx_file, fixp->fx_line,
27964 _("literal referenced across section boundary"));
27965 return NULL;
27966
27967 #ifdef OBJ_ELF
27968 case BFD_RELOC_ARM_TLS_CALL:
27969 case BFD_RELOC_ARM_THM_TLS_CALL:
27970 case BFD_RELOC_ARM_TLS_DESCSEQ:
27971 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27972 case BFD_RELOC_ARM_GOT32:
27973 case BFD_RELOC_ARM_GOTOFF:
27974 case BFD_RELOC_ARM_GOT_PREL:
27975 case BFD_RELOC_ARM_PLT32:
27976 case BFD_RELOC_ARM_TARGET1:
27977 case BFD_RELOC_ARM_ROSEGREL32:
27978 case BFD_RELOC_ARM_SBREL32:
27979 case BFD_RELOC_ARM_PREL31:
27980 case BFD_RELOC_ARM_TARGET2:
27981 case BFD_RELOC_ARM_TLS_LDO32:
27982 case BFD_RELOC_ARM_PCREL_CALL:
27983 case BFD_RELOC_ARM_PCREL_JUMP:
27984 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27985 case BFD_RELOC_ARM_ALU_PC_G0:
27986 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27987 case BFD_RELOC_ARM_ALU_PC_G1:
27988 case BFD_RELOC_ARM_ALU_PC_G2:
27989 case BFD_RELOC_ARM_LDR_PC_G0:
27990 case BFD_RELOC_ARM_LDR_PC_G1:
27991 case BFD_RELOC_ARM_LDR_PC_G2:
27992 case BFD_RELOC_ARM_LDRS_PC_G0:
27993 case BFD_RELOC_ARM_LDRS_PC_G1:
27994 case BFD_RELOC_ARM_LDRS_PC_G2:
27995 case BFD_RELOC_ARM_LDC_PC_G0:
27996 case BFD_RELOC_ARM_LDC_PC_G1:
27997 case BFD_RELOC_ARM_LDC_PC_G2:
27998 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27999 case BFD_RELOC_ARM_ALU_SB_G0:
28000 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28001 case BFD_RELOC_ARM_ALU_SB_G1:
28002 case BFD_RELOC_ARM_ALU_SB_G2:
28003 case BFD_RELOC_ARM_LDR_SB_G0:
28004 case BFD_RELOC_ARM_LDR_SB_G1:
28005 case BFD_RELOC_ARM_LDR_SB_G2:
28006 case BFD_RELOC_ARM_LDRS_SB_G0:
28007 case BFD_RELOC_ARM_LDRS_SB_G1:
28008 case BFD_RELOC_ARM_LDRS_SB_G2:
28009 case BFD_RELOC_ARM_LDC_SB_G0:
28010 case BFD_RELOC_ARM_LDC_SB_G1:
28011 case BFD_RELOC_ARM_LDC_SB_G2:
28012 case BFD_RELOC_ARM_V4BX:
28013 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28014 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28015 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28016 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28017 case BFD_RELOC_ARM_GOTFUNCDESC:
28018 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28019 case BFD_RELOC_ARM_FUNCDESC:
28020 case BFD_RELOC_ARM_THUMB_BF17:
28021 case BFD_RELOC_ARM_THUMB_BF19:
28022 case BFD_RELOC_ARM_THUMB_BF13:
28023 code = fixp->fx_r_type;
28024 break;
28025
28026 case BFD_RELOC_ARM_TLS_GOTDESC:
28027 case BFD_RELOC_ARM_TLS_GD32:
28028 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28029 case BFD_RELOC_ARM_TLS_LE32:
28030 case BFD_RELOC_ARM_TLS_IE32:
28031 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28032 case BFD_RELOC_ARM_TLS_LDM32:
28033 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28034 /* BFD will include the symbol's address in the addend.
28035 But we don't want that, so subtract it out again here. */
28036 if (!S_IS_COMMON (fixp->fx_addsy))
28037 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28038 code = fixp->fx_r_type;
28039 break;
28040 #endif
28041
28042 case BFD_RELOC_ARM_IMMEDIATE:
28043 as_bad_where (fixp->fx_file, fixp->fx_line,
28044 _("internal relocation (type: IMMEDIATE) not fixed up"));
28045 return NULL;
28046
28047 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28048 as_bad_where (fixp->fx_file, fixp->fx_line,
28049 _("ADRL used for a symbol not defined in the same file"));
28050 return NULL;
28051
28052 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28053 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28054 case BFD_RELOC_ARM_THUMB_LOOP12:
28055 as_bad_where (fixp->fx_file, fixp->fx_line,
28056 _("%s used for a symbol not defined in the same file"),
28057 bfd_get_reloc_code_name (fixp->fx_r_type));
28058 return NULL;
28059
28060 case BFD_RELOC_ARM_OFFSET_IMM:
28061 if (section->use_rela_p)
28062 {
28063 code = fixp->fx_r_type;
28064 break;
28065 }
28066
28067 if (fixp->fx_addsy != NULL
28068 && !S_IS_DEFINED (fixp->fx_addsy)
28069 && S_IS_LOCAL (fixp->fx_addsy))
28070 {
28071 as_bad_where (fixp->fx_file, fixp->fx_line,
28072 _("undefined local label `%s'"),
28073 S_GET_NAME (fixp->fx_addsy));
28074 return NULL;
28075 }
28076
28077 as_bad_where (fixp->fx_file, fixp->fx_line,
28078 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28079 return NULL;
28080
28081 default:
28082 {
28083 const char * type;
28084
28085 switch (fixp->fx_r_type)
28086 {
28087 case BFD_RELOC_NONE: type = "NONE"; break;
28088 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28089 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
28090 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
28091 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28092 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28093 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
28094 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
28095 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
28096 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28097 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28098 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28099 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28100 default: type = _("<unknown>"); break;
28101 }
28102 as_bad_where (fixp->fx_file, fixp->fx_line,
28103 _("cannot represent %s relocation in this object file format"),
28104 type);
28105 return NULL;
28106 }
28107 }
28108
28109 #ifdef OBJ_ELF
28110 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28111 && GOT_symbol
28112 && fixp->fx_addsy == GOT_symbol)
28113 {
28114 code = BFD_RELOC_ARM_GOTPC;
28115 reloc->addend = fixp->fx_offset = reloc->address;
28116 }
28117 #endif
28118
28119 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
28120
28121 if (reloc->howto == NULL)
28122 {
28123 as_bad_where (fixp->fx_file, fixp->fx_line,
28124 _("cannot represent %s relocation in this object file format"),
28125 bfd_get_reloc_code_name (code));
28126 return NULL;
28127 }
28128
28129 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28130 vtable entry to be used in the relocation's section offset. */
28131 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28132 reloc->address = fixp->fx_offset;
28133
28134 return reloc;
28135 }
28136
28137 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28138
28139 void
28140 cons_fix_new_arm (fragS * frag,
28141 int where,
28142 int size,
28143 expressionS * exp,
28144 bfd_reloc_code_real_type reloc)
28145 {
28146 int pcrel = 0;
28147
28148 /* Pick a reloc.
28149 FIXME: @@ Should look at CPU word size. */
28150 switch (size)
28151 {
28152 case 1:
28153 reloc = BFD_RELOC_8;
28154 break;
28155 case 2:
28156 reloc = BFD_RELOC_16;
28157 break;
28158 case 4:
28159 default:
28160 reloc = BFD_RELOC_32;
28161 break;
28162 case 8:
28163 reloc = BFD_RELOC_64;
28164 break;
28165 }
28166
28167 #ifdef TE_PE
28168 if (exp->X_op == O_secrel)
28169 {
28170 exp->X_op = O_symbol;
28171 reloc = BFD_RELOC_32_SECREL;
28172 }
28173 #endif
28174
28175 fix_new_exp (frag, where, size, exp, pcrel, reloc);
28176 }
28177
28178 #if defined (OBJ_COFF)
28179 void
28180 arm_validate_fix (fixS * fixP)
28181 {
28182 /* If the destination of the branch is a defined symbol which does not have
28183 the THUMB_FUNC attribute, then we must be calling a function which has
28184 the (interfacearm) attribute. We look for the Thumb entry point to that
28185 function and change the branch to refer to that function instead. */
28186 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28187 && fixP->fx_addsy != NULL
28188 && S_IS_DEFINED (fixP->fx_addsy)
28189 && ! THUMB_IS_FUNC (fixP->fx_addsy))
28190 {
28191 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
28192 }
28193 }
28194 #endif
28195
28196
28197 int
28198 arm_force_relocation (struct fix * fixp)
28199 {
28200 #if defined (OBJ_COFF) && defined (TE_PE)
28201 if (fixp->fx_r_type == BFD_RELOC_RVA)
28202 return 1;
28203 #endif
28204
28205 /* In case we have a call or a branch to a function in ARM ISA mode from
28206 a thumb function or vice-versa force the relocation. These relocations
28207 are cleared off for some cores that might have blx and simple transformations
28208 are possible. */
28209
28210 #ifdef OBJ_ELF
28211 switch (fixp->fx_r_type)
28212 {
28213 case BFD_RELOC_ARM_PCREL_JUMP:
28214 case BFD_RELOC_ARM_PCREL_CALL:
28215 case BFD_RELOC_THUMB_PCREL_BLX:
28216 if (THUMB_IS_FUNC (fixp->fx_addsy))
28217 return 1;
28218 break;
28219
28220 case BFD_RELOC_ARM_PCREL_BLX:
28221 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28222 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28223 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28224 if (ARM_IS_FUNC (fixp->fx_addsy))
28225 return 1;
28226 break;
28227
28228 default:
28229 break;
28230 }
28231 #endif
28232
28233 /* Resolve these relocations even if the symbol is extern or weak.
28234 Technically this is probably wrong due to symbol preemption.
28235 In practice these relocations do not have enough range to be useful
28236 at dynamic link time, and some code (e.g. in the Linux kernel)
28237 expects these references to be resolved. */
28238 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28239 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
28240 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
28241 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
28242 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28243 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28244 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
28245 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
28246 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28247 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
28248 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28249 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28250 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28251 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
28252 return 0;
28253
28254 /* Always leave these relocations for the linker. */
28255 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28256 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28257 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28258 return 1;
28259
28260 /* Always generate relocations against function symbols. */
28261 if (fixp->fx_r_type == BFD_RELOC_32
28262 && fixp->fx_addsy
28263 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28264 return 1;
28265
28266 return generic_force_reloc (fixp);
28267 }
28268
28269 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28270 /* Relocations against function names must be left unadjusted,
28271 so that the linker can use this information to generate interworking
28272 stubs. The MIPS version of this function
28273 also prevents relocations that are mips-16 specific, but I do not
28274 know why it does this.
28275
28276 FIXME:
28277 There is one other problem that ought to be addressed here, but
28278 which currently is not: Taking the address of a label (rather
28279 than a function) and then later jumping to that address. Such
28280 addresses also ought to have their bottom bit set (assuming that
28281 they reside in Thumb code), but at the moment they will not. */
28282
28283 bfd_boolean
28284 arm_fix_adjustable (fixS * fixP)
28285 {
28286 if (fixP->fx_addsy == NULL)
28287 return 1;
28288
28289 /* Preserve relocations against symbols with function type. */
28290 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
28291 return FALSE;
28292
28293 if (THUMB_IS_FUNC (fixP->fx_addsy)
28294 && fixP->fx_subsy == NULL)
28295 return FALSE;
28296
28297 /* We need the symbol name for the VTABLE entries. */
28298 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28299 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28300 return FALSE;
28301
28302 /* Don't allow symbols to be discarded on GOT related relocs. */
28303 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28304 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28305 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28306 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
28307 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
28308 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28309 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
28310 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
28311 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
28312 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
28313 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
28314 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28315 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28316 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28317 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28318 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
28319 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
28320 return FALSE;
28321
28322 /* Similarly for group relocations. */
28323 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28324 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28325 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28326 return FALSE;
28327
28328 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28329 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28330 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28331 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28332 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28333 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28334 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28335 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28336 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
28337 return FALSE;
28338
28339 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28340 offsets, so keep these symbols. */
28341 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28342 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28343 return FALSE;
28344
28345 return TRUE;
28346 }
28347 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28348
28349 #ifdef OBJ_ELF
28350 const char *
28351 elf32_arm_target_format (void)
28352 {
28353 #ifdef TE_SYMBIAN
28354 return (target_big_endian
28355 ? "elf32-bigarm-symbian"
28356 : "elf32-littlearm-symbian");
28357 #elif defined (TE_VXWORKS)
28358 return (target_big_endian
28359 ? "elf32-bigarm-vxworks"
28360 : "elf32-littlearm-vxworks");
28361 #elif defined (TE_NACL)
28362 return (target_big_endian
28363 ? "elf32-bigarm-nacl"
28364 : "elf32-littlearm-nacl");
28365 #else
28366 if (arm_fdpic)
28367 {
28368 if (target_big_endian)
28369 return "elf32-bigarm-fdpic";
28370 else
28371 return "elf32-littlearm-fdpic";
28372 }
28373 else
28374 {
28375 if (target_big_endian)
28376 return "elf32-bigarm";
28377 else
28378 return "elf32-littlearm";
28379 }
28380 #endif
28381 }
28382
28383 void
28384 armelf_frob_symbol (symbolS * symp,
28385 int * puntp)
28386 {
28387 elf_frob_symbol (symp, puntp);
28388 }
28389 #endif
28390
28391 /* MD interface: Finalization. */
28392
28393 void
28394 arm_cleanup (void)
28395 {
28396 literal_pool * pool;
28397
28398 /* Ensure that all the predication blocks are properly closed. */
28399 check_pred_blocks_finished ();
28400
28401 for (pool = list_of_pools; pool; pool = pool->next)
28402 {
28403 /* Put it at the end of the relevant section. */
28404 subseg_set (pool->section, pool->sub_section);
28405 #ifdef OBJ_ELF
28406 arm_elf_change_section ();
28407 #endif
28408 s_ltorg (0);
28409 }
28410 }
28411
28412 #ifdef OBJ_ELF
28413 /* Remove any excess mapping symbols generated for alignment frags in
28414 SEC. We may have created a mapping symbol before a zero byte
28415 alignment; remove it if there's a mapping symbol after the
28416 alignment. */
28417 static void
28418 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28419 void *dummy ATTRIBUTE_UNUSED)
28420 {
28421 segment_info_type *seginfo = seg_info (sec);
28422 fragS *fragp;
28423
28424 if (seginfo == NULL || seginfo->frchainP == NULL)
28425 return;
28426
28427 for (fragp = seginfo->frchainP->frch_root;
28428 fragp != NULL;
28429 fragp = fragp->fr_next)
28430 {
28431 symbolS *sym = fragp->tc_frag_data.last_map;
28432 fragS *next = fragp->fr_next;
28433
28434 /* Variable-sized frags have been converted to fixed size by
28435 this point. But if this was variable-sized to start with,
28436 there will be a fixed-size frag after it. So don't handle
28437 next == NULL. */
28438 if (sym == NULL || next == NULL)
28439 continue;
28440
28441 if (S_GET_VALUE (sym) < next->fr_address)
28442 /* Not at the end of this frag. */
28443 continue;
28444 know (S_GET_VALUE (sym) == next->fr_address);
28445
28446 do
28447 {
28448 if (next->tc_frag_data.first_map != NULL)
28449 {
28450 /* Next frag starts with a mapping symbol. Discard this
28451 one. */
28452 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28453 break;
28454 }
28455
28456 if (next->fr_next == NULL)
28457 {
28458 /* This mapping symbol is at the end of the section. Discard
28459 it. */
28460 know (next->fr_fix == 0 && next->fr_var == 0);
28461 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28462 break;
28463 }
28464
28465 /* As long as we have empty frags without any mapping symbols,
28466 keep looking. */
28467 /* If the next frag is non-empty and does not start with a
28468 mapping symbol, then this mapping symbol is required. */
28469 if (next->fr_address != next->fr_next->fr_address)
28470 break;
28471
28472 next = next->fr_next;
28473 }
28474 while (next != NULL);
28475 }
28476 }
28477 #endif
28478
28479 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28480 ARM ones. */
28481
28482 void
28483 arm_adjust_symtab (void)
28484 {
28485 #ifdef OBJ_COFF
28486 symbolS * sym;
28487
28488 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28489 {
28490 if (ARM_IS_THUMB (sym))
28491 {
28492 if (THUMB_IS_FUNC (sym))
28493 {
28494 /* Mark the symbol as a Thumb function. */
28495 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
28496 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
28497 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
28498
28499 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
28500 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
28501 else
28502 as_bad (_("%s: unexpected function type: %d"),
28503 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
28504 }
28505 else switch (S_GET_STORAGE_CLASS (sym))
28506 {
28507 case C_EXT:
28508 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
28509 break;
28510 case C_STAT:
28511 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
28512 break;
28513 case C_LABEL:
28514 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
28515 break;
28516 default:
28517 /* Do nothing. */
28518 break;
28519 }
28520 }
28521
28522 if (ARM_IS_INTERWORK (sym))
28523 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
28524 }
28525 #endif
28526 #ifdef OBJ_ELF
28527 symbolS * sym;
28528 char bind;
28529
28530 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28531 {
28532 if (ARM_IS_THUMB (sym))
28533 {
28534 elf_symbol_type * elf_sym;
28535
28536 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28537 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
28538
28539 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28540 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
28541 {
28542 /* If it's a .thumb_func, declare it as so,
28543 otherwise tag label as .code 16. */
28544 if (THUMB_IS_FUNC (sym))
28545 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28546 ST_BRANCH_TO_THUMB);
28547 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28548 elf_sym->internal_elf_sym.st_info =
28549 ELF_ST_INFO (bind, STT_ARM_16BIT);
28550 }
28551 }
28552 }
28553
28554 /* Remove any overlapping mapping symbols generated by alignment frags. */
28555 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
28556 /* Now do generic ELF adjustments. */
28557 elf_adjust_symtab ();
28558 #endif
28559 }
28560
28561 /* MD interface: Initialization. */
28562
28563 static void
28564 set_constant_flonums (void)
28565 {
28566 int i;
28567
28568 for (i = 0; i < NUM_FLOAT_VALS; i++)
28569 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28570 abort ();
28571 }
28572
28573 /* Auto-select Thumb mode if it's the only available instruction set for the
28574 given architecture. */
28575
28576 static void
28577 autoselect_thumb_from_cpu_variant (void)
28578 {
28579 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28580 opcode_select (16);
28581 }
28582
28583 void
28584 md_begin (void)
28585 {
28586 unsigned mach;
28587 unsigned int i;
28588
28589 if ( (arm_ops_hsh = hash_new ()) == NULL
28590 || (arm_cond_hsh = hash_new ()) == NULL
28591 || (arm_vcond_hsh = hash_new ()) == NULL
28592 || (arm_shift_hsh = hash_new ()) == NULL
28593 || (arm_psr_hsh = hash_new ()) == NULL
28594 || (arm_v7m_psr_hsh = hash_new ()) == NULL
28595 || (arm_reg_hsh = hash_new ()) == NULL
28596 || (arm_reloc_hsh = hash_new ()) == NULL
28597 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
28598 as_fatal (_("virtual memory exhausted"));
28599
28600 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
28601 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
28602 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
28603 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
28604 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28605 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
28606 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
28607 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
28608 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
28609 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
28610 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
28611 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
28612 (void *) (v7m_psrs + i));
28613 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
28614 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
28615 for (i = 0;
28616 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28617 i++)
28618 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
28619 (void *) (barrier_opt_names + i));
28620 #ifdef OBJ_ELF
28621 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28622 {
28623 struct reloc_entry * entry = reloc_names + i;
28624
28625 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28626 /* This makes encode_branch() use the EABI versions of this relocation. */
28627 entry->reloc = BFD_RELOC_UNUSED;
28628
28629 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28630 }
28631 #endif
28632
28633 set_constant_flonums ();
28634
28635 /* Set the cpu variant based on the command-line options. We prefer
28636 -mcpu= over -march= if both are set (as for GCC); and we prefer
28637 -mfpu= over any other way of setting the floating point unit.
28638 Use of legacy options with new options are faulted. */
28639 if (legacy_cpu)
28640 {
28641 if (mcpu_cpu_opt || march_cpu_opt)
28642 as_bad (_("use of old and new-style options to set CPU type"));
28643
28644 selected_arch = *legacy_cpu;
28645 }
28646 else if (mcpu_cpu_opt)
28647 {
28648 selected_arch = *mcpu_cpu_opt;
28649 selected_ext = *mcpu_ext_opt;
28650 }
28651 else if (march_cpu_opt)
28652 {
28653 selected_arch = *march_cpu_opt;
28654 selected_ext = *march_ext_opt;
28655 }
28656 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28657
28658 if (legacy_fpu)
28659 {
28660 if (mfpu_opt)
28661 as_bad (_("use of old and new-style options to set FPU type"));
28662
28663 selected_fpu = *legacy_fpu;
28664 }
28665 else if (mfpu_opt)
28666 selected_fpu = *mfpu_opt;
28667 else
28668 {
28669 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28670 || defined (TE_NetBSD) || defined (TE_VXWORKS))
28671 /* Some environments specify a default FPU. If they don't, infer it
28672 from the processor. */
28673 if (mcpu_fpu_opt)
28674 selected_fpu = *mcpu_fpu_opt;
28675 else if (march_fpu_opt)
28676 selected_fpu = *march_fpu_opt;
28677 #else
28678 selected_fpu = fpu_default;
28679 #endif
28680 }
28681
28682 if (ARM_FEATURE_ZERO (selected_fpu))
28683 {
28684 if (!no_cpu_selected ())
28685 selected_fpu = fpu_default;
28686 else
28687 selected_fpu = fpu_arch_fpa;
28688 }
28689
28690 #ifdef CPU_DEFAULT
28691 if (ARM_FEATURE_ZERO (selected_arch))
28692 {
28693 selected_arch = cpu_default;
28694 selected_cpu = selected_arch;
28695 }
28696 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28697 #else
28698 /* Autodection of feature mode: allow all features in cpu_variant but leave
28699 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28700 after all instruction have been processed and we can decide what CPU
28701 should be selected. */
28702 if (ARM_FEATURE_ZERO (selected_arch))
28703 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28704 else
28705 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28706 #endif
28707
28708 autoselect_thumb_from_cpu_variant ();
28709
28710 arm_arch_used = thumb_arch_used = arm_arch_none;
28711
28712 #if defined OBJ_COFF || defined OBJ_ELF
28713 {
28714 unsigned int flags = 0;
28715
28716 #if defined OBJ_ELF
28717 flags = meabi_flags;
28718
28719 switch (meabi_flags)
28720 {
28721 case EF_ARM_EABI_UNKNOWN:
28722 #endif
28723 /* Set the flags in the private structure. */
28724 if (uses_apcs_26) flags |= F_APCS26;
28725 if (support_interwork) flags |= F_INTERWORK;
28726 if (uses_apcs_float) flags |= F_APCS_FLOAT;
28727 if (pic_code) flags |= F_PIC;
28728 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
28729 flags |= F_SOFT_FLOAT;
28730
28731 switch (mfloat_abi_opt)
28732 {
28733 case ARM_FLOAT_ABI_SOFT:
28734 case ARM_FLOAT_ABI_SOFTFP:
28735 flags |= F_SOFT_FLOAT;
28736 break;
28737
28738 case ARM_FLOAT_ABI_HARD:
28739 if (flags & F_SOFT_FLOAT)
28740 as_bad (_("hard-float conflicts with specified fpu"));
28741 break;
28742 }
28743
28744 /* Using pure-endian doubles (even if soft-float). */
28745 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
28746 flags |= F_VFP_FLOAT;
28747
28748 #if defined OBJ_ELF
28749 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
28750 flags |= EF_ARM_MAVERICK_FLOAT;
28751 break;
28752
28753 case EF_ARM_EABI_VER4:
28754 case EF_ARM_EABI_VER5:
28755 /* No additional flags to set. */
28756 break;
28757
28758 default:
28759 abort ();
28760 }
28761 #endif
28762 bfd_set_private_flags (stdoutput, flags);
28763
28764 /* We have run out flags in the COFF header to encode the
28765 status of ATPCS support, so instead we create a dummy,
28766 empty, debug section called .arm.atpcs. */
28767 if (atpcs)
28768 {
28769 asection * sec;
28770
28771 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28772
28773 if (sec != NULL)
28774 {
28775 bfd_set_section_flags
28776 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28777 bfd_set_section_size (stdoutput, sec, 0);
28778 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28779 }
28780 }
28781 }
28782 #endif
28783
28784 /* Record the CPU type as well. */
28785 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28786 mach = bfd_mach_arm_iWMMXt2;
28787 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
28788 mach = bfd_mach_arm_iWMMXt;
28789 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
28790 mach = bfd_mach_arm_XScale;
28791 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
28792 mach = bfd_mach_arm_ep9312;
28793 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
28794 mach = bfd_mach_arm_5TE;
28795 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
28796 {
28797 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28798 mach = bfd_mach_arm_5T;
28799 else
28800 mach = bfd_mach_arm_5;
28801 }
28802 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
28803 {
28804 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28805 mach = bfd_mach_arm_4T;
28806 else
28807 mach = bfd_mach_arm_4;
28808 }
28809 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
28810 mach = bfd_mach_arm_3M;
28811 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28812 mach = bfd_mach_arm_3;
28813 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28814 mach = bfd_mach_arm_2a;
28815 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28816 mach = bfd_mach_arm_2;
28817 else
28818 mach = bfd_mach_arm_unknown;
28819
28820 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28821 }
28822
28823 /* Command line processing. */
28824
28825 /* md_parse_option
28826 Invocation line includes a switch not recognized by the base assembler.
28827 See if it's a processor-specific option.
28828
28829 This routine is somewhat complicated by the need for backwards
28830 compatibility (since older releases of gcc can't be changed).
28831 The new options try to make the interface as compatible as
28832 possible with GCC.
28833
28834 New options (supported) are:
28835
28836 -mcpu=<cpu name> Assemble for selected processor
28837 -march=<architecture name> Assemble for selected architecture
28838 -mfpu=<fpu architecture> Assemble for selected FPU.
28839 -EB/-mbig-endian Big-endian
28840 -EL/-mlittle-endian Little-endian
28841 -k Generate PIC code
28842 -mthumb Start in Thumb mode
28843 -mthumb-interwork Code supports ARM/Thumb interworking
28844
28845 -m[no-]warn-deprecated Warn about deprecated features
28846 -m[no-]warn-syms Warn when symbols match instructions
28847
28848 For now we will also provide support for:
28849
28850 -mapcs-32 32-bit Program counter
28851 -mapcs-26 26-bit Program counter
28852 -macps-float Floats passed in FP registers
28853 -mapcs-reentrant Reentrant code
28854 -matpcs
28855 (sometime these will probably be replaced with -mapcs=<list of options>
28856 and -matpcs=<list of options>)
28857
28858 The remaining options are only supported for back-wards compatibility.
28859 Cpu variants, the arm part is optional:
28860 -m[arm]1 Currently not supported.
28861 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28862 -m[arm]3 Arm 3 processor
28863 -m[arm]6[xx], Arm 6 processors
28864 -m[arm]7[xx][t][[d]m] Arm 7 processors
28865 -m[arm]8[10] Arm 8 processors
28866 -m[arm]9[20][tdmi] Arm 9 processors
28867 -mstrongarm[110[0]] StrongARM processors
28868 -mxscale XScale processors
28869 -m[arm]v[2345[t[e]]] Arm architectures
28870 -mall All (except the ARM1)
28871 FP variants:
28872 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28873 -mfpe-old (No float load/store multiples)
28874 -mvfpxd VFP Single precision
28875 -mvfp All VFP
28876 -mno-fpu Disable all floating point instructions
28877
28878 The following CPU names are recognized:
28879 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28880 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28881 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28882 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28883 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28884 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28885 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
28886
28887 */
28888
28889 const char * md_shortopts = "m:k";
28890
28891 #ifdef ARM_BI_ENDIAN
28892 #define OPTION_EB (OPTION_MD_BASE + 0)
28893 #define OPTION_EL (OPTION_MD_BASE + 1)
28894 #else
28895 #if TARGET_BYTES_BIG_ENDIAN
28896 #define OPTION_EB (OPTION_MD_BASE + 0)
28897 #else
28898 #define OPTION_EL (OPTION_MD_BASE + 1)
28899 #endif
28900 #endif
28901 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
28902 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
28903
28904 struct option md_longopts[] =
28905 {
28906 #ifdef OPTION_EB
28907 {"EB", no_argument, NULL, OPTION_EB},
28908 #endif
28909 #ifdef OPTION_EL
28910 {"EL", no_argument, NULL, OPTION_EL},
28911 #endif
28912 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
28913 #ifdef OBJ_ELF
28914 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28915 #endif
28916 {NULL, no_argument, NULL, 0}
28917 };
28918
28919 size_t md_longopts_size = sizeof (md_longopts);
28920
28921 struct arm_option_table
28922 {
28923 const char * option; /* Option name to match. */
28924 const char * help; /* Help information. */
28925 int * var; /* Variable to change. */
28926 int value; /* What to change it to. */
28927 const char * deprecated; /* If non-null, print this message. */
28928 };
28929
28930 struct arm_option_table arm_opts[] =
28931 {
28932 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28933 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28934 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28935 &support_interwork, 1, NULL},
28936 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28937 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28938 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28939 1, NULL},
28940 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28941 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28942 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28943 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28944 NULL},
28945
28946 /* These are recognized by the assembler, but have no affect on code. */
28947 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28948 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
28949
28950 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28951 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28952 &warn_on_deprecated, 0, NULL},
28953 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28954 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
28955 {NULL, NULL, NULL, 0, NULL}
28956 };
28957
28958 struct arm_legacy_option_table
28959 {
28960 const char * option; /* Option name to match. */
28961 const arm_feature_set ** var; /* Variable to change. */
28962 const arm_feature_set value; /* What to change it to. */
28963 const char * deprecated; /* If non-null, print this message. */
28964 };
28965
28966 const struct arm_legacy_option_table arm_legacy_opts[] =
28967 {
28968 /* DON'T add any new processors to this list -- we want the whole list
28969 to go away... Add them to the processors table instead. */
28970 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28971 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28972 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28973 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28974 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28975 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28976 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28977 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28978 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28979 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28980 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28981 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28982 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28983 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28984 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28985 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28986 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28987 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28988 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28989 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28990 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28991 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28992 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28993 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28994 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28995 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28996 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28997 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28998 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28999 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29000 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29001 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29002 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29003 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29004 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29005 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29006 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29007 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29008 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29009 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29010 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29011 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29012 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29013 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29014 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29015 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29016 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29017 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29018 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29019 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29020 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29021 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29022 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29023 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29024 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29025 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29026 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29027 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29028 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29029 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29030 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29031 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29032 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29033 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29034 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29035 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29036 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29037 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29038 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29039 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
29040 N_("use -mcpu=strongarm110")},
29041 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
29042 N_("use -mcpu=strongarm1100")},
29043 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
29044 N_("use -mcpu=strongarm1110")},
29045 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29046 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29047 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
29048
29049 /* Architecture variants -- don't add any more to this list either. */
29050 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29051 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29052 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29053 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29054 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29055 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29056 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29057 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29058 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29059 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29060 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29061 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29062 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29063 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29064 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29065 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29066 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29067 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29068
29069 /* Floating point variants -- don't add any more to this list either. */
29070 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29071 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29072 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29073 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
29074 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
29075
29076 {NULL, NULL, ARM_ARCH_NONE, NULL}
29077 };
29078
29079 struct arm_cpu_option_table
29080 {
29081 const char * name;
29082 size_t name_len;
29083 const arm_feature_set value;
29084 const arm_feature_set ext;
29085 /* For some CPUs we assume an FPU unless the user explicitly sets
29086 -mfpu=... */
29087 const arm_feature_set default_fpu;
29088 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29089 case. */
29090 const char * canonical_name;
29091 };
29092
29093 /* This list should, at a minimum, contain all the cpu names
29094 recognized by GCC. */
29095 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
29096
29097 static const struct arm_cpu_option_table arm_cpus[] =
29098 {
29099 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29100 ARM_ARCH_NONE,
29101 FPU_ARCH_FPA),
29102 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29103 ARM_ARCH_NONE,
29104 FPU_ARCH_FPA),
29105 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29106 ARM_ARCH_NONE,
29107 FPU_ARCH_FPA),
29108 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29109 ARM_ARCH_NONE,
29110 FPU_ARCH_FPA),
29111 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29112 ARM_ARCH_NONE,
29113 FPU_ARCH_FPA),
29114 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29115 ARM_ARCH_NONE,
29116 FPU_ARCH_FPA),
29117 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29118 ARM_ARCH_NONE,
29119 FPU_ARCH_FPA),
29120 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29121 ARM_ARCH_NONE,
29122 FPU_ARCH_FPA),
29123 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29124 ARM_ARCH_NONE,
29125 FPU_ARCH_FPA),
29126 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29127 ARM_ARCH_NONE,
29128 FPU_ARCH_FPA),
29129 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29130 ARM_ARCH_NONE,
29131 FPU_ARCH_FPA),
29132 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29133 ARM_ARCH_NONE,
29134 FPU_ARCH_FPA),
29135 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29136 ARM_ARCH_NONE,
29137 FPU_ARCH_FPA),
29138 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29139 ARM_ARCH_NONE,
29140 FPU_ARCH_FPA),
29141 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29142 ARM_ARCH_NONE,
29143 FPU_ARCH_FPA),
29144 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29145 ARM_ARCH_NONE,
29146 FPU_ARCH_FPA),
29147 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29148 ARM_ARCH_NONE,
29149 FPU_ARCH_FPA),
29150 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29151 ARM_ARCH_NONE,
29152 FPU_ARCH_FPA),
29153 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29154 ARM_ARCH_NONE,
29155 FPU_ARCH_FPA),
29156 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29157 ARM_ARCH_NONE,
29158 FPU_ARCH_FPA),
29159 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29160 ARM_ARCH_NONE,
29161 FPU_ARCH_FPA),
29162 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29163 ARM_ARCH_NONE,
29164 FPU_ARCH_FPA),
29165 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29166 ARM_ARCH_NONE,
29167 FPU_ARCH_FPA),
29168 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29169 ARM_ARCH_NONE,
29170 FPU_ARCH_FPA),
29171 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29172 ARM_ARCH_NONE,
29173 FPU_ARCH_FPA),
29174 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29175 ARM_ARCH_NONE,
29176 FPU_ARCH_FPA),
29177 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29178 ARM_ARCH_NONE,
29179 FPU_ARCH_FPA),
29180 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29181 ARM_ARCH_NONE,
29182 FPU_ARCH_FPA),
29183 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29184 ARM_ARCH_NONE,
29185 FPU_ARCH_FPA),
29186 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29187 ARM_ARCH_NONE,
29188 FPU_ARCH_FPA),
29189 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29190 ARM_ARCH_NONE,
29191 FPU_ARCH_FPA),
29192 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29193 ARM_ARCH_NONE,
29194 FPU_ARCH_FPA),
29195 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29196 ARM_ARCH_NONE,
29197 FPU_ARCH_FPA),
29198 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29199 ARM_ARCH_NONE,
29200 FPU_ARCH_FPA),
29201 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29202 ARM_ARCH_NONE,
29203 FPU_ARCH_FPA),
29204 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29205 ARM_ARCH_NONE,
29206 FPU_ARCH_FPA),
29207 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29208 ARM_ARCH_NONE,
29209 FPU_ARCH_FPA),
29210 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29211 ARM_ARCH_NONE,
29212 FPU_ARCH_FPA),
29213 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29214 ARM_ARCH_NONE,
29215 FPU_ARCH_FPA),
29216 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29217 ARM_ARCH_NONE,
29218 FPU_ARCH_FPA),
29219 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29220 ARM_ARCH_NONE,
29221 FPU_ARCH_FPA),
29222 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29223 ARM_ARCH_NONE,
29224 FPU_ARCH_FPA),
29225 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29226 ARM_ARCH_NONE,
29227 FPU_ARCH_FPA),
29228 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29229 ARM_ARCH_NONE,
29230 FPU_ARCH_FPA),
29231 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29232 ARM_ARCH_NONE,
29233 FPU_ARCH_FPA),
29234 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29235 ARM_ARCH_NONE,
29236 FPU_ARCH_FPA),
29237
29238 /* For V5 or later processors we default to using VFP; but the user
29239 should really set the FPU type explicitly. */
29240 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29241 ARM_ARCH_NONE,
29242 FPU_ARCH_VFP_V2),
29243 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29244 ARM_ARCH_NONE,
29245 FPU_ARCH_VFP_V2),
29246 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29247 ARM_ARCH_NONE,
29248 FPU_ARCH_VFP_V2),
29249 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29250 ARM_ARCH_NONE,
29251 FPU_ARCH_VFP_V2),
29252 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29253 ARM_ARCH_NONE,
29254 FPU_ARCH_VFP_V2),
29255 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29256 ARM_ARCH_NONE,
29257 FPU_ARCH_VFP_V2),
29258 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29259 ARM_ARCH_NONE,
29260 FPU_ARCH_VFP_V2),
29261 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29262 ARM_ARCH_NONE,
29263 FPU_ARCH_VFP_V2),
29264 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29265 ARM_ARCH_NONE,
29266 FPU_ARCH_VFP_V2),
29267 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29268 ARM_ARCH_NONE,
29269 FPU_ARCH_VFP_V2),
29270 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29271 ARM_ARCH_NONE,
29272 FPU_ARCH_VFP_V2),
29273 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29274 ARM_ARCH_NONE,
29275 FPU_ARCH_VFP_V2),
29276 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29277 ARM_ARCH_NONE,
29278 FPU_ARCH_VFP_V1),
29279 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29280 ARM_ARCH_NONE,
29281 FPU_ARCH_VFP_V1),
29282 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29283 ARM_ARCH_NONE,
29284 FPU_ARCH_VFP_V2),
29285 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29286 ARM_ARCH_NONE,
29287 FPU_ARCH_VFP_V2),
29288 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29289 ARM_ARCH_NONE,
29290 FPU_ARCH_VFP_V1),
29291 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29292 ARM_ARCH_NONE,
29293 FPU_ARCH_VFP_V2),
29294 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29295 ARM_ARCH_NONE,
29296 FPU_ARCH_VFP_V2),
29297 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29298 ARM_ARCH_NONE,
29299 FPU_ARCH_VFP_V2),
29300 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29301 ARM_ARCH_NONE,
29302 FPU_ARCH_VFP_V2),
29303 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29304 ARM_ARCH_NONE,
29305 FPU_ARCH_VFP_V2),
29306 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29307 ARM_ARCH_NONE,
29308 FPU_ARCH_VFP_V2),
29309 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29310 ARM_ARCH_NONE,
29311 FPU_ARCH_VFP_V2),
29312 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29313 ARM_ARCH_NONE,
29314 FPU_ARCH_VFP_V2),
29315 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29316 ARM_ARCH_NONE,
29317 FPU_ARCH_VFP_V2),
29318 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29319 ARM_ARCH_NONE,
29320 FPU_NONE),
29321 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29322 ARM_ARCH_NONE,
29323 FPU_NONE),
29324 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29325 ARM_ARCH_NONE,
29326 FPU_ARCH_VFP_V2),
29327 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29328 ARM_ARCH_NONE,
29329 FPU_ARCH_VFP_V2),
29330 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29331 ARM_ARCH_NONE,
29332 FPU_ARCH_VFP_V2),
29333 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29334 ARM_ARCH_NONE,
29335 FPU_NONE),
29336 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29337 ARM_ARCH_NONE,
29338 FPU_NONE),
29339 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29340 ARM_ARCH_NONE,
29341 FPU_ARCH_VFP_V2),
29342 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29343 ARM_ARCH_NONE,
29344 FPU_NONE),
29345 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29346 ARM_ARCH_NONE,
29347 FPU_ARCH_VFP_V2),
29348 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29349 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29350 FPU_NONE),
29351 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29352 ARM_ARCH_NONE,
29353 FPU_ARCH_NEON_VFP_V4),
29354 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29355 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29356 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29357 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29358 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29359 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29360 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29361 ARM_ARCH_NONE,
29362 FPU_ARCH_NEON_VFP_V4),
29363 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29364 ARM_ARCH_NONE,
29365 FPU_ARCH_NEON_VFP_V4),
29366 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29367 ARM_ARCH_NONE,
29368 FPU_ARCH_NEON_VFP_V4),
29369 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29370 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29371 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29372 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29373 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29374 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29375 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29376 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29377 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29378 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29379 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29380 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29381 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29382 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29383 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29384 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29385 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29386 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29387 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29388 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29389 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29390 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29391 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29392 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29393 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29394 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29395 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29396 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29397 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29398 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29399 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29400 ARM_ARCH_NONE,
29401 FPU_NONE),
29402 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29403 ARM_ARCH_NONE,
29404 FPU_ARCH_VFP_V3D16),
29405 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29406 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29407 FPU_NONE),
29408 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29409 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29410 FPU_ARCH_VFP_V3D16),
29411 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29412 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29413 FPU_ARCH_VFP_V3D16),
29414 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29415 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29416 FPU_ARCH_NEON_VFP_ARMV8),
29417 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29418 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29419 FPU_NONE),
29420 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29421 ARM_ARCH_NONE,
29422 FPU_NONE),
29423 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29424 ARM_ARCH_NONE,
29425 FPU_NONE),
29426 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29427 ARM_ARCH_NONE,
29428 FPU_NONE),
29429 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29430 ARM_ARCH_NONE,
29431 FPU_NONE),
29432 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29433 ARM_ARCH_NONE,
29434 FPU_NONE),
29435 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29436 ARM_ARCH_NONE,
29437 FPU_NONE),
29438 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29439 ARM_ARCH_NONE,
29440 FPU_NONE),
29441 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29442 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29443 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29444 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29445 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29446 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29447 /* ??? XSCALE is really an architecture. */
29448 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29449 ARM_ARCH_NONE,
29450 FPU_ARCH_VFP_V2),
29451
29452 /* ??? iwmmxt is not a processor. */
29453 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29454 ARM_ARCH_NONE,
29455 FPU_ARCH_VFP_V2),
29456 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29457 ARM_ARCH_NONE,
29458 FPU_ARCH_VFP_V2),
29459 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29460 ARM_ARCH_NONE,
29461 FPU_ARCH_VFP_V2),
29462
29463 /* Maverick. */
29464 ARM_CPU_OPT ("ep9312", "ARM920T",
29465 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29466 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29467
29468 /* Marvell processors. */
29469 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29470 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29471 FPU_ARCH_VFP_V3D16),
29472 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29473 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29474 FPU_ARCH_NEON_VFP_V4),
29475
29476 /* APM X-Gene family. */
29477 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
29478 ARM_ARCH_NONE,
29479 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29480 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
29481 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29482 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29483
29484 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29485 };
29486 #undef ARM_CPU_OPT
29487
29488 struct arm_ext_table
29489 {
29490 const char * name;
29491 size_t name_len;
29492 const arm_feature_set merge;
29493 const arm_feature_set clear;
29494 };
29495
29496 struct arm_arch_option_table
29497 {
29498 const char * name;
29499 size_t name_len;
29500 const arm_feature_set value;
29501 const arm_feature_set default_fpu;
29502 const struct arm_ext_table * ext_table;
29503 };
29504
29505 /* Used to add support for +E and +noE extension. */
29506 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29507 /* Used to add support for a +E extension. */
29508 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29509 /* Used to add support for a +noE extension. */
29510 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29511
29512 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29513 ~0 & ~FPU_ENDIAN_PURE)
29514
29515 static const struct arm_ext_table armv5te_ext_table[] =
29516 {
29517 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
29518 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29519 };
29520
29521 static const struct arm_ext_table armv7_ext_table[] =
29522 {
29523 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29524 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29525 };
29526
29527 static const struct arm_ext_table armv7ve_ext_table[] =
29528 {
29529 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29530 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29531 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29532 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29533 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29534 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29535 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29536
29537 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29538 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29539
29540 /* Aliases for +simd. */
29541 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29542
29543 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29544 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29545 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29546
29547 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29548 };
29549
29550 static const struct arm_ext_table armv7a_ext_table[] =
29551 {
29552 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29553 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29554 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29555 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29556 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29557 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29558 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29559
29560 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29561 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29562
29563 /* Aliases for +simd. */
29564 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29565 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29566
29567 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29568 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29569
29570 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29571 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29572 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29573 };
29574
29575 static const struct arm_ext_table armv7r_ext_table[] =
29576 {
29577 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29578 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29579 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29580 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29581 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29582 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29583 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29584 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29585 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29586 };
29587
29588 static const struct arm_ext_table armv7em_ext_table[] =
29589 {
29590 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29591 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29592 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29593 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29594 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29595 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29596 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29597 };
29598
29599 static const struct arm_ext_table armv8a_ext_table[] =
29600 {
29601 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29602 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29603 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29604 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29605
29606 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29607 should use the +simd option to turn on FP. */
29608 ARM_REMOVE ("fp", ALL_FP),
29609 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29610 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29611 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29612 };
29613
29614
29615 static const struct arm_ext_table armv81a_ext_table[] =
29616 {
29617 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29618 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29619 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29620
29621 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29622 should use the +simd option to turn on FP. */
29623 ARM_REMOVE ("fp", ALL_FP),
29624 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29625 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29626 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29627 };
29628
29629 static const struct arm_ext_table armv82a_ext_table[] =
29630 {
29631 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29632 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29633 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29634 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29635 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29636 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29637
29638 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29639 should use the +simd option to turn on FP. */
29640 ARM_REMOVE ("fp", ALL_FP),
29641 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29642 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29643 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29644 };
29645
29646 static const struct arm_ext_table armv84a_ext_table[] =
29647 {
29648 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29649 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29650 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29651 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29652
29653 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29654 should use the +simd option to turn on FP. */
29655 ARM_REMOVE ("fp", ALL_FP),
29656 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29657 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29658 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29659 };
29660
29661 static const struct arm_ext_table armv85a_ext_table[] =
29662 {
29663 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29664 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29665 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29666 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29667
29668 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29669 should use the +simd option to turn on FP. */
29670 ARM_REMOVE ("fp", ALL_FP),
29671 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29672 };
29673
29674 static const struct arm_ext_table armv8m_main_ext_table[] =
29675 {
29676 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29677 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29678 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29679 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29680 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29681 };
29682
29683 static const struct arm_ext_table armv8_1m_main_ext_table[] =
29684 {
29685 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29686 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29687 ARM_EXT ("fp",
29688 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29689 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29690 ALL_FP),
29691 ARM_ADD ("fp.dp",
29692 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29693 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29694 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29695 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29696 ARM_ADD ("mve.fp",
29697 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29698 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29699 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29700 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29701 };
29702
29703 static const struct arm_ext_table armv8r_ext_table[] =
29704 {
29705 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29706 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29707 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29708 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29709 ARM_REMOVE ("fp", ALL_FP),
29710 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29711 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29712 };
29713
29714 /* This list should, at a minimum, contain all the architecture names
29715 recognized by GCC. */
29716 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29717 #define ARM_ARCH_OPT2(N, V, DF, ext) \
29718 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
29719
29720 static const struct arm_arch_option_table arm_archs[] =
29721 {
29722 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29723 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29724 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29725 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29726 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29727 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29728 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29729 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29730 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29731 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29732 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29733 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29734 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29735 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
29736 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29737 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29738 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29739 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29740 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29741 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29742 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
29743 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29744 kept to preserve existing behaviour. */
29745 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29746 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29747 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29748 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29749 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
29750 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29751 kept to preserve existing behaviour. */
29752 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29753 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29754 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29755 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
29756 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
29757 /* The official spelling of the ARMv7 profile variants is the dashed form.
29758 Accept the non-dashed form for compatibility with old toolchains. */
29759 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29760 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29761 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29762 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29763 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29764 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29765 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29766 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
29767 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
29768 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29769 armv8m_main),
29770 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29771 armv8_1m_main),
29772 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29773 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29774 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29775 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29776 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29777 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29778 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
29779 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29780 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29781 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
29782 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29783 };
29784 #undef ARM_ARCH_OPT
29785
29786 /* ISA extensions in the co-processor and main instruction set space. */
29787
29788 struct arm_option_extension_value_table
29789 {
29790 const char * name;
29791 size_t name_len;
29792 const arm_feature_set merge_value;
29793 const arm_feature_set clear_value;
29794 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29795 indicates that an extension is available for all architectures while
29796 ARM_ANY marks an empty entry. */
29797 const arm_feature_set allowed_archs[2];
29798 };
29799
29800 /* The following table must be in alphabetical order with a NULL last entry. */
29801
29802 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29803 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
29804
29805 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
29806 use the context sensitive approach using arm_ext_table's. */
29807 static const struct arm_option_extension_value_table arm_extensions[] =
29808 {
29809 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29810 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29811 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29812 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29813 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29814 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29815 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29816 ARM_ARCH_V8_2A),
29817 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29818 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29819 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
29820 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29821 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29822 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29823 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29824 ARM_ARCH_V8_2A),
29825 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29826 | ARM_EXT2_FP16_FML),
29827 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29828 | ARM_EXT2_FP16_FML),
29829 ARM_ARCH_V8_2A),
29830 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29831 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29832 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29833 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29834 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29835 Thumb divide instruction. Due to this having the same name as the
29836 previous entry, this will be ignored when doing command-line parsing and
29837 only considered by build attribute selection code. */
29838 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29839 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29840 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
29841 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
29842 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
29843 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
29844 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
29845 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
29846 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29847 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29848 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29849 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29850 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29851 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29852 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29853 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
29854 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29855 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
29856 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29857 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29858 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29859 ARM_ARCH_V8A),
29860 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29861 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
29862 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29863 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29864 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
29865 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29866 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29867 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29868 ARM_ARCH_V8A),
29869 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29870 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29871 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29872 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29873 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29874 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29875 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29876 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29877 | ARM_EXT_DIV),
29878 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29879 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29880 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
29881 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29882 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
29883 };
29884 #undef ARM_EXT_OPT
29885
29886 /* ISA floating-point and Advanced SIMD extensions. */
29887 struct arm_option_fpu_value_table
29888 {
29889 const char * name;
29890 const arm_feature_set value;
29891 };
29892
29893 /* This list should, at a minimum, contain all the fpu names
29894 recognized by GCC. */
29895 static const struct arm_option_fpu_value_table arm_fpus[] =
29896 {
29897 {"softfpa", FPU_NONE},
29898 {"fpe", FPU_ARCH_FPE},
29899 {"fpe2", FPU_ARCH_FPE},
29900 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29901 {"fpa", FPU_ARCH_FPA},
29902 {"fpa10", FPU_ARCH_FPA},
29903 {"fpa11", FPU_ARCH_FPA},
29904 {"arm7500fe", FPU_ARCH_FPA},
29905 {"softvfp", FPU_ARCH_VFP},
29906 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29907 {"vfp", FPU_ARCH_VFP_V2},
29908 {"vfp9", FPU_ARCH_VFP_V2},
29909 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
29910 {"vfp10", FPU_ARCH_VFP_V2},
29911 {"vfp10-r0", FPU_ARCH_VFP_V1},
29912 {"vfpxd", FPU_ARCH_VFP_V1xD},
29913 {"vfpv2", FPU_ARCH_VFP_V2},
29914 {"vfpv3", FPU_ARCH_VFP_V3},
29915 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
29916 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
29917 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29918 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29919 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
29920 {"arm1020t", FPU_ARCH_VFP_V1},
29921 {"arm1020e", FPU_ARCH_VFP_V2},
29922 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
29923 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29924 {"maverick", FPU_ARCH_MAVERICK},
29925 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29926 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29927 {"neon-fp16", FPU_ARCH_NEON_FP16},
29928 {"vfpv4", FPU_ARCH_VFP_V4},
29929 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
29930 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
29931 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29932 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
29933 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
29934 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29935 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29936 {"crypto-neon-fp-armv8",
29937 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
29938 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
29939 {"crypto-neon-fp-armv8.1",
29940 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
29941 {NULL, ARM_ARCH_NONE}
29942 };
29943
29944 struct arm_option_value_table
29945 {
29946 const char *name;
29947 long value;
29948 };
29949
29950 static const struct arm_option_value_table arm_float_abis[] =
29951 {
29952 {"hard", ARM_FLOAT_ABI_HARD},
29953 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29954 {"soft", ARM_FLOAT_ABI_SOFT},
29955 {NULL, 0}
29956 };
29957
29958 #ifdef OBJ_ELF
29959 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
29960 static const struct arm_option_value_table arm_eabis[] =
29961 {
29962 {"gnu", EF_ARM_EABI_UNKNOWN},
29963 {"4", EF_ARM_EABI_VER4},
29964 {"5", EF_ARM_EABI_VER5},
29965 {NULL, 0}
29966 };
29967 #endif
29968
29969 struct arm_long_option_table
29970 {
29971 const char * option; /* Substring to match. */
29972 const char * help; /* Help information. */
29973 int (* func) (const char * subopt); /* Function to decode sub-option. */
29974 const char * deprecated; /* If non-null, print this message. */
29975 };
29976
29977 static bfd_boolean
29978 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
29979 arm_feature_set *ext_set,
29980 const struct arm_ext_table *ext_table)
29981 {
29982 /* We insist on extensions being specified in alphabetical order, and with
29983 extensions being added before being removed. We achieve this by having
29984 the global ARM_EXTENSIONS table in alphabetical order, and using the
29985 ADDING_VALUE variable to indicate whether we are adding an extension (1)
29986 or removing it (0) and only allowing it to change in the order
29987 -1 -> 1 -> 0. */
29988 const struct arm_option_extension_value_table * opt = NULL;
29989 const arm_feature_set arm_any = ARM_ANY;
29990 int adding_value = -1;
29991
29992 while (str != NULL && *str != 0)
29993 {
29994 const char *ext;
29995 size_t len;
29996
29997 if (*str != '+')
29998 {
29999 as_bad (_("invalid architectural extension"));
30000 return FALSE;
30001 }
30002
30003 str++;
30004 ext = strchr (str, '+');
30005
30006 if (ext != NULL)
30007 len = ext - str;
30008 else
30009 len = strlen (str);
30010
30011 if (len >= 2 && strncmp (str, "no", 2) == 0)
30012 {
30013 if (adding_value != 0)
30014 {
30015 adding_value = 0;
30016 opt = arm_extensions;
30017 }
30018
30019 len -= 2;
30020 str += 2;
30021 }
30022 else if (len > 0)
30023 {
30024 if (adding_value == -1)
30025 {
30026 adding_value = 1;
30027 opt = arm_extensions;
30028 }
30029 else if (adding_value != 1)
30030 {
30031 as_bad (_("must specify extensions to add before specifying "
30032 "those to remove"));
30033 return FALSE;
30034 }
30035 }
30036
30037 if (len == 0)
30038 {
30039 as_bad (_("missing architectural extension"));
30040 return FALSE;
30041 }
30042
30043 gas_assert (adding_value != -1);
30044 gas_assert (opt != NULL);
30045
30046 if (ext_table != NULL)
30047 {
30048 const struct arm_ext_table * ext_opt = ext_table;
30049 bfd_boolean found = FALSE;
30050 for (; ext_opt->name != NULL; ext_opt++)
30051 if (ext_opt->name_len == len
30052 && strncmp (ext_opt->name, str, len) == 0)
30053 {
30054 if (adding_value)
30055 {
30056 if (ARM_FEATURE_ZERO (ext_opt->merge))
30057 /* TODO: Option not supported. When we remove the
30058 legacy table this case should error out. */
30059 continue;
30060
30061 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30062 }
30063 else
30064 {
30065 if (ARM_FEATURE_ZERO (ext_opt->clear))
30066 /* TODO: Option not supported. When we remove the
30067 legacy table this case should error out. */
30068 continue;
30069 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30070 }
30071 found = TRUE;
30072 break;
30073 }
30074 if (found)
30075 {
30076 str = ext;
30077 continue;
30078 }
30079 }
30080
30081 /* Scan over the options table trying to find an exact match. */
30082 for (; opt->name != NULL; opt++)
30083 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30084 {
30085 int i, nb_allowed_archs =
30086 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30087 /* Check we can apply the extension to this architecture. */
30088 for (i = 0; i < nb_allowed_archs; i++)
30089 {
30090 /* Empty entry. */
30091 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30092 continue;
30093 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
30094 break;
30095 }
30096 if (i == nb_allowed_archs)
30097 {
30098 as_bad (_("extension does not apply to the base architecture"));
30099 return FALSE;
30100 }
30101
30102 /* Add or remove the extension. */
30103 if (adding_value)
30104 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
30105 else
30106 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
30107
30108 /* Allowing Thumb division instructions for ARMv7 in autodetection
30109 rely on this break so that duplicate extensions (extensions
30110 with the same name as a previous extension in the list) are not
30111 considered for command-line parsing. */
30112 break;
30113 }
30114
30115 if (opt->name == NULL)
30116 {
30117 /* Did we fail to find an extension because it wasn't specified in
30118 alphabetical order, or because it does not exist? */
30119
30120 for (opt = arm_extensions; opt->name != NULL; opt++)
30121 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30122 break;
30123
30124 if (opt->name == NULL)
30125 as_bad (_("unknown architectural extension `%s'"), str);
30126 else
30127 as_bad (_("architectural extensions must be specified in "
30128 "alphabetical order"));
30129
30130 return FALSE;
30131 }
30132 else
30133 {
30134 /* We should skip the extension we've just matched the next time
30135 round. */
30136 opt++;
30137 }
30138
30139 str = ext;
30140 };
30141
30142 return TRUE;
30143 }
30144
30145 static bfd_boolean
30146 arm_parse_cpu (const char *str)
30147 {
30148 const struct arm_cpu_option_table *opt;
30149 const char *ext = strchr (str, '+');
30150 size_t len;
30151
30152 if (ext != NULL)
30153 len = ext - str;
30154 else
30155 len = strlen (str);
30156
30157 if (len == 0)
30158 {
30159 as_bad (_("missing cpu name `%s'"), str);
30160 return FALSE;
30161 }
30162
30163 for (opt = arm_cpus; opt->name != NULL; opt++)
30164 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30165 {
30166 mcpu_cpu_opt = &opt->value;
30167 if (mcpu_ext_opt == NULL)
30168 mcpu_ext_opt = XNEW (arm_feature_set);
30169 *mcpu_ext_opt = opt->ext;
30170 mcpu_fpu_opt = &opt->default_fpu;
30171 if (opt->canonical_name)
30172 {
30173 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30174 strcpy (selected_cpu_name, opt->canonical_name);
30175 }
30176 else
30177 {
30178 size_t i;
30179
30180 if (len >= sizeof selected_cpu_name)
30181 len = (sizeof selected_cpu_name) - 1;
30182
30183 for (i = 0; i < len; i++)
30184 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30185 selected_cpu_name[i] = 0;
30186 }
30187
30188 if (ext != NULL)
30189 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
30190
30191 return TRUE;
30192 }
30193
30194 as_bad (_("unknown cpu `%s'"), str);
30195 return FALSE;
30196 }
30197
30198 static bfd_boolean
30199 arm_parse_arch (const char *str)
30200 {
30201 const struct arm_arch_option_table *opt;
30202 const char *ext = strchr (str, '+');
30203 size_t len;
30204
30205 if (ext != NULL)
30206 len = ext - str;
30207 else
30208 len = strlen (str);
30209
30210 if (len == 0)
30211 {
30212 as_bad (_("missing architecture name `%s'"), str);
30213 return FALSE;
30214 }
30215
30216 for (opt = arm_archs; opt->name != NULL; opt++)
30217 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30218 {
30219 march_cpu_opt = &opt->value;
30220 if (march_ext_opt == NULL)
30221 march_ext_opt = XNEW (arm_feature_set);
30222 *march_ext_opt = arm_arch_none;
30223 march_fpu_opt = &opt->default_fpu;
30224 strcpy (selected_cpu_name, opt->name);
30225
30226 if (ext != NULL)
30227 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30228 opt->ext_table);
30229
30230 return TRUE;
30231 }
30232
30233 as_bad (_("unknown architecture `%s'\n"), str);
30234 return FALSE;
30235 }
30236
30237 static bfd_boolean
30238 arm_parse_fpu (const char * str)
30239 {
30240 const struct arm_option_fpu_value_table * opt;
30241
30242 for (opt = arm_fpus; opt->name != NULL; opt++)
30243 if (streq (opt->name, str))
30244 {
30245 mfpu_opt = &opt->value;
30246 return TRUE;
30247 }
30248
30249 as_bad (_("unknown floating point format `%s'\n"), str);
30250 return FALSE;
30251 }
30252
30253 static bfd_boolean
30254 arm_parse_float_abi (const char * str)
30255 {
30256 const struct arm_option_value_table * opt;
30257
30258 for (opt = arm_float_abis; opt->name != NULL; opt++)
30259 if (streq (opt->name, str))
30260 {
30261 mfloat_abi_opt = opt->value;
30262 return TRUE;
30263 }
30264
30265 as_bad (_("unknown floating point abi `%s'\n"), str);
30266 return FALSE;
30267 }
30268
30269 #ifdef OBJ_ELF
30270 static bfd_boolean
30271 arm_parse_eabi (const char * str)
30272 {
30273 const struct arm_option_value_table *opt;
30274
30275 for (opt = arm_eabis; opt->name != NULL; opt++)
30276 if (streq (opt->name, str))
30277 {
30278 meabi_flags = opt->value;
30279 return TRUE;
30280 }
30281 as_bad (_("unknown EABI `%s'\n"), str);
30282 return FALSE;
30283 }
30284 #endif
30285
30286 static bfd_boolean
30287 arm_parse_it_mode (const char * str)
30288 {
30289 bfd_boolean ret = TRUE;
30290
30291 if (streq ("arm", str))
30292 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30293 else if (streq ("thumb", str))
30294 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30295 else if (streq ("always", str))
30296 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30297 else if (streq ("never", str))
30298 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30299 else
30300 {
30301 as_bad (_("unknown implicit IT mode `%s', should be "\
30302 "arm, thumb, always, or never."), str);
30303 ret = FALSE;
30304 }
30305
30306 return ret;
30307 }
30308
30309 static bfd_boolean
30310 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
30311 {
30312 codecomposer_syntax = TRUE;
30313 arm_comment_chars[0] = ';';
30314 arm_line_separator_chars[0] = 0;
30315 return TRUE;
30316 }
30317
30318 struct arm_long_option_table arm_long_opts[] =
30319 {
30320 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30321 arm_parse_cpu, NULL},
30322 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30323 arm_parse_arch, NULL},
30324 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30325 arm_parse_fpu, NULL},
30326 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30327 arm_parse_float_abi, NULL},
30328 #ifdef OBJ_ELF
30329 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30330 arm_parse_eabi, NULL},
30331 #endif
30332 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30333 arm_parse_it_mode, NULL},
30334 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30335 arm_ccs_mode, NULL},
30336 {NULL, NULL, 0, NULL}
30337 };
30338
30339 int
30340 md_parse_option (int c, const char * arg)
30341 {
30342 struct arm_option_table *opt;
30343 const struct arm_legacy_option_table *fopt;
30344 struct arm_long_option_table *lopt;
30345
30346 switch (c)
30347 {
30348 #ifdef OPTION_EB
30349 case OPTION_EB:
30350 target_big_endian = 1;
30351 break;
30352 #endif
30353
30354 #ifdef OPTION_EL
30355 case OPTION_EL:
30356 target_big_endian = 0;
30357 break;
30358 #endif
30359
30360 case OPTION_FIX_V4BX:
30361 fix_v4bx = TRUE;
30362 break;
30363
30364 #ifdef OBJ_ELF
30365 case OPTION_FDPIC:
30366 arm_fdpic = TRUE;
30367 break;
30368 #endif /* OBJ_ELF */
30369
30370 case 'a':
30371 /* Listing option. Just ignore these, we don't support additional
30372 ones. */
30373 return 0;
30374
30375 default:
30376 for (opt = arm_opts; opt->option != NULL; opt++)
30377 {
30378 if (c == opt->option[0]
30379 && ((arg == NULL && opt->option[1] == 0)
30380 || streq (arg, opt->option + 1)))
30381 {
30382 /* If the option is deprecated, tell the user. */
30383 if (warn_on_deprecated && opt->deprecated != NULL)
30384 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30385 arg ? arg : "", _(opt->deprecated));
30386
30387 if (opt->var != NULL)
30388 *opt->var = opt->value;
30389
30390 return 1;
30391 }
30392 }
30393
30394 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30395 {
30396 if (c == fopt->option[0]
30397 && ((arg == NULL && fopt->option[1] == 0)
30398 || streq (arg, fopt->option + 1)))
30399 {
30400 /* If the option is deprecated, tell the user. */
30401 if (warn_on_deprecated && fopt->deprecated != NULL)
30402 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30403 arg ? arg : "", _(fopt->deprecated));
30404
30405 if (fopt->var != NULL)
30406 *fopt->var = &fopt->value;
30407
30408 return 1;
30409 }
30410 }
30411
30412 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30413 {
30414 /* These options are expected to have an argument. */
30415 if (c == lopt->option[0]
30416 && arg != NULL
30417 && strncmp (arg, lopt->option + 1,
30418 strlen (lopt->option + 1)) == 0)
30419 {
30420 /* If the option is deprecated, tell the user. */
30421 if (warn_on_deprecated && lopt->deprecated != NULL)
30422 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30423 _(lopt->deprecated));
30424
30425 /* Call the sup-option parser. */
30426 return lopt->func (arg + strlen (lopt->option) - 1);
30427 }
30428 }
30429
30430 return 0;
30431 }
30432
30433 return 1;
30434 }
30435
30436 void
30437 md_show_usage (FILE * fp)
30438 {
30439 struct arm_option_table *opt;
30440 struct arm_long_option_table *lopt;
30441
30442 fprintf (fp, _(" ARM-specific assembler options:\n"));
30443
30444 for (opt = arm_opts; opt->option != NULL; opt++)
30445 if (opt->help != NULL)
30446 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
30447
30448 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30449 if (lopt->help != NULL)
30450 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
30451
30452 #ifdef OPTION_EB
30453 fprintf (fp, _("\
30454 -EB assemble code for a big-endian cpu\n"));
30455 #endif
30456
30457 #ifdef OPTION_EL
30458 fprintf (fp, _("\
30459 -EL assemble code for a little-endian cpu\n"));
30460 #endif
30461
30462 fprintf (fp, _("\
30463 --fix-v4bx Allow BX in ARMv4 code\n"));
30464
30465 #ifdef OBJ_ELF
30466 fprintf (fp, _("\
30467 --fdpic generate an FDPIC object file\n"));
30468 #endif /* OBJ_ELF */
30469 }
30470
30471 #ifdef OBJ_ELF
30472
30473 typedef struct
30474 {
30475 int val;
30476 arm_feature_set flags;
30477 } cpu_arch_ver_table;
30478
30479 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30480 chronologically for architectures, with an exception for ARMv6-M and
30481 ARMv6S-M due to legacy reasons. No new architecture should have a
30482 special case. This allows for build attribute selection results to be
30483 stable when new architectures are added. */
30484 static const cpu_arch_ver_table cpu_arch_ver[] =
30485 {
30486 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
30487 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
30488 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
30489 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
30490 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
30491 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
30492 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
30493 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
30494 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
30495 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
30496 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
30497 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
30498 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
30499 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
30500 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
30501 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
30502 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
30503 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
30504 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
30505 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
30506 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
30507 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
30508 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
30509 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
30510
30511 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30512 always selected build attributes to match those of ARMv6-M
30513 (resp. ARMv6S-M). However, due to these architectures being a strict
30514 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30515 would be selected when fully respecting chronology of architectures.
30516 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30517 move them before ARMv7 architectures. */
30518 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
30519 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
30520
30521 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30522 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30523 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30524 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30525 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30526 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30527 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30528 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30529 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30530 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30531 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30532 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30533 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30534 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30535 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30536 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30537 {-1, ARM_ARCH_NONE}
30538 };
30539
30540 /* Set an attribute if it has not already been set by the user. */
30541
30542 static void
30543 aeabi_set_attribute_int (int tag, int value)
30544 {
30545 if (tag < 1
30546 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30547 || !attributes_set_explicitly[tag])
30548 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30549 }
30550
30551 static void
30552 aeabi_set_attribute_string (int tag, const char *value)
30553 {
30554 if (tag < 1
30555 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30556 || !attributes_set_explicitly[tag])
30557 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30558 }
30559
30560 /* Return whether features in the *NEEDED feature set are available via
30561 extensions for the architecture whose feature set is *ARCH_FSET. */
30562
30563 static bfd_boolean
30564 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30565 const arm_feature_set *needed)
30566 {
30567 int i, nb_allowed_archs;
30568 arm_feature_set ext_fset;
30569 const struct arm_option_extension_value_table *opt;
30570
30571 ext_fset = arm_arch_none;
30572 for (opt = arm_extensions; opt->name != NULL; opt++)
30573 {
30574 /* Extension does not provide any feature we need. */
30575 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30576 continue;
30577
30578 nb_allowed_archs =
30579 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30580 for (i = 0; i < nb_allowed_archs; i++)
30581 {
30582 /* Empty entry. */
30583 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30584 break;
30585
30586 /* Extension is available, add it. */
30587 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30588 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30589 }
30590 }
30591
30592 /* Can we enable all features in *needed? */
30593 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30594 }
30595
30596 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30597 a given architecture feature set *ARCH_EXT_FSET including extension feature
30598 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30599 - if true, check for an exact match of the architecture modulo extensions;
30600 - otherwise, select build attribute value of the first superset
30601 architecture released so that results remains stable when new architectures
30602 are added.
30603 For -march/-mcpu=all the build attribute value of the most featureful
30604 architecture is returned. Tag_CPU_arch_profile result is returned in
30605 PROFILE. */
30606
30607 static int
30608 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30609 const arm_feature_set *ext_fset,
30610 char *profile, int exact_match)
30611 {
30612 arm_feature_set arch_fset;
30613 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30614
30615 /* Select most featureful architecture with all its extensions if building
30616 for -march=all as the feature sets used to set build attributes. */
30617 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30618 {
30619 /* Force revisiting of decision for each new architecture. */
30620 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
30621 *profile = 'A';
30622 return TAG_CPU_ARCH_V8;
30623 }
30624
30625 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30626
30627 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30628 {
30629 arm_feature_set known_arch_fset;
30630
30631 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30632 if (exact_match)
30633 {
30634 /* Base architecture match user-specified architecture and
30635 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30636 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30637 {
30638 p_ver_ret = p_ver;
30639 goto found;
30640 }
30641 /* Base architecture match user-specified architecture only
30642 (eg. ARMv6-M in the same case as above). Record it in case we
30643 find a match with above condition. */
30644 else if (p_ver_ret == NULL
30645 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30646 p_ver_ret = p_ver;
30647 }
30648 else
30649 {
30650
30651 /* Architecture has all features wanted. */
30652 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30653 {
30654 arm_feature_set added_fset;
30655
30656 /* Compute features added by this architecture over the one
30657 recorded in p_ver_ret. */
30658 if (p_ver_ret != NULL)
30659 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30660 p_ver_ret->flags);
30661 /* First architecture that match incl. with extensions, or the
30662 only difference in features over the recorded match is
30663 features that were optional and are now mandatory. */
30664 if (p_ver_ret == NULL
30665 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30666 {
30667 p_ver_ret = p_ver;
30668 goto found;
30669 }
30670 }
30671 else if (p_ver_ret == NULL)
30672 {
30673 arm_feature_set needed_ext_fset;
30674
30675 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30676
30677 /* Architecture has all features needed when using some
30678 extensions. Record it and continue searching in case there
30679 exist an architecture providing all needed features without
30680 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30681 OS extension). */
30682 if (have_ext_for_needed_feat_p (&known_arch_fset,
30683 &needed_ext_fset))
30684 p_ver_ret = p_ver;
30685 }
30686 }
30687 }
30688
30689 if (p_ver_ret == NULL)
30690 return -1;
30691
30692 found:
30693 /* Tag_CPU_arch_profile. */
30694 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30695 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30696 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30697 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30698 *profile = 'A';
30699 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30700 *profile = 'R';
30701 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30702 *profile = 'M';
30703 else
30704 *profile = '\0';
30705 return p_ver_ret->val;
30706 }
30707
30708 /* Set the public EABI object attributes. */
30709
30710 static void
30711 aeabi_set_public_attributes (void)
30712 {
30713 char profile = '\0';
30714 int arch = -1;
30715 int virt_sec = 0;
30716 int fp16_optional = 0;
30717 int skip_exact_match = 0;
30718 arm_feature_set flags, flags_arch, flags_ext;
30719
30720 /* Autodetection mode, choose the architecture based the instructions
30721 actually used. */
30722 if (no_cpu_selected ())
30723 {
30724 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
30725
30726 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30727 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
30728
30729 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30730 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
30731
30732 /* Code run during relaxation relies on selected_cpu being set. */
30733 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30734 flags_ext = arm_arch_none;
30735 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30736 selected_ext = flags_ext;
30737 selected_cpu = flags;
30738 }
30739 /* Otherwise, choose the architecture based on the capabilities of the
30740 requested cpu. */
30741 else
30742 {
30743 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30744 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30745 flags_ext = selected_ext;
30746 flags = selected_cpu;
30747 }
30748 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
30749
30750 /* Allow the user to override the reported architecture. */
30751 if (!ARM_FEATURE_ZERO (selected_object_arch))
30752 {
30753 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
30754 flags_ext = arm_arch_none;
30755 }
30756 else
30757 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
30758
30759 /* When this function is run again after relaxation has happened there is no
30760 way to determine whether an architecture or CPU was specified by the user:
30761 - selected_cpu is set above for relaxation to work;
30762 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30763 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30764 Therefore, if not in -march=all case we first try an exact match and fall
30765 back to autodetection. */
30766 if (!skip_exact_match)
30767 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30768 if (arch == -1)
30769 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30770 if (arch == -1)
30771 as_bad (_("no architecture contains all the instructions used\n"));
30772
30773 /* Tag_CPU_name. */
30774 if (selected_cpu_name[0])
30775 {
30776 char *q;
30777
30778 q = selected_cpu_name;
30779 if (strncmp (q, "armv", 4) == 0)
30780 {
30781 int i;
30782
30783 q += 4;
30784 for (i = 0; q[i]; i++)
30785 q[i] = TOUPPER (q[i]);
30786 }
30787 aeabi_set_attribute_string (Tag_CPU_name, q);
30788 }
30789
30790 /* Tag_CPU_arch. */
30791 aeabi_set_attribute_int (Tag_CPU_arch, arch);
30792
30793 /* Tag_CPU_arch_profile. */
30794 if (profile != '\0')
30795 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
30796
30797 /* Tag_DSP_extension. */
30798 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
30799 aeabi_set_attribute_int (Tag_DSP_extension, 1);
30800
30801 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30802 /* Tag_ARM_ISA_use. */
30803 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
30804 || ARM_FEATURE_ZERO (flags_arch))
30805 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
30806
30807 /* Tag_THUMB_ISA_use. */
30808 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
30809 || ARM_FEATURE_ZERO (flags_arch))
30810 {
30811 int thumb_isa_use;
30812
30813 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30814 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
30815 thumb_isa_use = 3;
30816 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30817 thumb_isa_use = 2;
30818 else
30819 thumb_isa_use = 1;
30820 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30821 }
30822
30823 /* Tag_VFP_arch. */
30824 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30825 aeabi_set_attribute_int (Tag_VFP_arch,
30826 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30827 ? 7 : 8);
30828 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
30829 aeabi_set_attribute_int (Tag_VFP_arch,
30830 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30831 ? 5 : 6);
30832 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
30833 {
30834 fp16_optional = 1;
30835 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30836 }
30837 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
30838 {
30839 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30840 fp16_optional = 1;
30841 }
30842 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30843 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30844 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
30845 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
30846 aeabi_set_attribute_int (Tag_VFP_arch, 1);
30847
30848 /* Tag_ABI_HardFP_use. */
30849 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30850 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30851 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30852
30853 /* Tag_WMMX_arch. */
30854 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30855 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30856 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30857 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
30858
30859 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
30860 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30861 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30862 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
30863 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30864 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30865 {
30866 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30867 {
30868 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30869 }
30870 else
30871 {
30872 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30873 fp16_optional = 1;
30874 }
30875 }
30876
30877 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30878 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30879 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30880 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30881
30882 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
30883 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
30884 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
30885
30886 /* Tag_DIV_use.
30887
30888 We set Tag_DIV_use to two when integer divide instructions have been used
30889 in ARM state, or when Thumb integer divide instructions have been used,
30890 but we have no architecture profile set, nor have we any ARM instructions.
30891
30892 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30893 by the base architecture.
30894
30895 For new architectures we will have to check these tests. */
30896 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
30897 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30898 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
30899 aeabi_set_attribute_int (Tag_DIV_use, 0);
30900 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30901 || (profile == '\0'
30902 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30903 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
30904 aeabi_set_attribute_int (Tag_DIV_use, 2);
30905
30906 /* Tag_MP_extension_use. */
30907 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30908 aeabi_set_attribute_int (Tag_MPextension_use, 1);
30909
30910 /* Tag Virtualization_use. */
30911 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
30912 virt_sec |= 1;
30913 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30914 virt_sec |= 2;
30915 if (virt_sec != 0)
30916 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
30917 }
30918
30919 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
30920 finished and free extension feature bits which will not be used anymore. */
30921
30922 void
30923 arm_md_post_relax (void)
30924 {
30925 aeabi_set_public_attributes ();
30926 XDELETE (mcpu_ext_opt);
30927 mcpu_ext_opt = NULL;
30928 XDELETE (march_ext_opt);
30929 march_ext_opt = NULL;
30930 }
30931
30932 /* Add the default contents for the .ARM.attributes section. */
30933
30934 void
30935 arm_md_end (void)
30936 {
30937 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30938 return;
30939
30940 aeabi_set_public_attributes ();
30941 }
30942 #endif /* OBJ_ELF */
30943
30944 /* Parse a .cpu directive. */
30945
30946 static void
30947 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30948 {
30949 const struct arm_cpu_option_table *opt;
30950 char *name;
30951 char saved_char;
30952
30953 name = input_line_pointer;
30954 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30955 input_line_pointer++;
30956 saved_char = *input_line_pointer;
30957 *input_line_pointer = 0;
30958
30959 /* Skip the first "all" entry. */
30960 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30961 if (streq (opt->name, name))
30962 {
30963 selected_arch = opt->value;
30964 selected_ext = opt->ext;
30965 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30966 if (opt->canonical_name)
30967 strcpy (selected_cpu_name, opt->canonical_name);
30968 else
30969 {
30970 int i;
30971 for (i = 0; opt->name[i]; i++)
30972 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30973
30974 selected_cpu_name[i] = 0;
30975 }
30976 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30977
30978 *input_line_pointer = saved_char;
30979 demand_empty_rest_of_line ();
30980 return;
30981 }
30982 as_bad (_("unknown cpu `%s'"), name);
30983 *input_line_pointer = saved_char;
30984 ignore_rest_of_line ();
30985 }
30986
30987 /* Parse a .arch directive. */
30988
30989 static void
30990 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
30991 {
30992 const struct arm_arch_option_table *opt;
30993 char saved_char;
30994 char *name;
30995
30996 name = input_line_pointer;
30997 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30998 input_line_pointer++;
30999 saved_char = *input_line_pointer;
31000 *input_line_pointer = 0;
31001
31002 /* Skip the first "all" entry. */
31003 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31004 if (streq (opt->name, name))
31005 {
31006 selected_arch = opt->value;
31007 selected_ext = arm_arch_none;
31008 selected_cpu = selected_arch;
31009 strcpy (selected_cpu_name, opt->name);
31010 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31011 *input_line_pointer = saved_char;
31012 demand_empty_rest_of_line ();
31013 return;
31014 }
31015
31016 as_bad (_("unknown architecture `%s'\n"), name);
31017 *input_line_pointer = saved_char;
31018 ignore_rest_of_line ();
31019 }
31020
31021 /* Parse a .object_arch directive. */
31022
31023 static void
31024 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31025 {
31026 const struct arm_arch_option_table *opt;
31027 char saved_char;
31028 char *name;
31029
31030 name = input_line_pointer;
31031 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31032 input_line_pointer++;
31033 saved_char = *input_line_pointer;
31034 *input_line_pointer = 0;
31035
31036 /* Skip the first "all" entry. */
31037 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31038 if (streq (opt->name, name))
31039 {
31040 selected_object_arch = opt->value;
31041 *input_line_pointer = saved_char;
31042 demand_empty_rest_of_line ();
31043 return;
31044 }
31045
31046 as_bad (_("unknown architecture `%s'\n"), name);
31047 *input_line_pointer = saved_char;
31048 ignore_rest_of_line ();
31049 }
31050
31051 /* Parse a .arch_extension directive. */
31052
31053 static void
31054 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31055 {
31056 const struct arm_option_extension_value_table *opt;
31057 char saved_char;
31058 char *name;
31059 int adding_value = 1;
31060
31061 name = input_line_pointer;
31062 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31063 input_line_pointer++;
31064 saved_char = *input_line_pointer;
31065 *input_line_pointer = 0;
31066
31067 if (strlen (name) >= 2
31068 && strncmp (name, "no", 2) == 0)
31069 {
31070 adding_value = 0;
31071 name += 2;
31072 }
31073
31074 for (opt = arm_extensions; opt->name != NULL; opt++)
31075 if (streq (opt->name, name))
31076 {
31077 int i, nb_allowed_archs =
31078 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31079 for (i = 0; i < nb_allowed_archs; i++)
31080 {
31081 /* Empty entry. */
31082 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
31083 continue;
31084 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
31085 break;
31086 }
31087
31088 if (i == nb_allowed_archs)
31089 {
31090 as_bad (_("architectural extension `%s' is not allowed for the "
31091 "current base architecture"), name);
31092 break;
31093 }
31094
31095 if (adding_value)
31096 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
31097 opt->merge_value);
31098 else
31099 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
31100
31101 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31102 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31103 *input_line_pointer = saved_char;
31104 demand_empty_rest_of_line ();
31105 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31106 on this return so that duplicate extensions (extensions with the
31107 same name as a previous extension in the list) are not considered
31108 for command-line parsing. */
31109 return;
31110 }
31111
31112 if (opt->name == NULL)
31113 as_bad (_("unknown architecture extension `%s'\n"), name);
31114
31115 *input_line_pointer = saved_char;
31116 ignore_rest_of_line ();
31117 }
31118
31119 /* Parse a .fpu directive. */
31120
31121 static void
31122 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31123 {
31124 const struct arm_option_fpu_value_table *opt;
31125 char saved_char;
31126 char *name;
31127
31128 name = input_line_pointer;
31129 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31130 input_line_pointer++;
31131 saved_char = *input_line_pointer;
31132 *input_line_pointer = 0;
31133
31134 for (opt = arm_fpus; opt->name != NULL; opt++)
31135 if (streq (opt->name, name))
31136 {
31137 selected_fpu = opt->value;
31138 #ifndef CPU_DEFAULT
31139 if (no_cpu_selected ())
31140 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31141 else
31142 #endif
31143 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31144 *input_line_pointer = saved_char;
31145 demand_empty_rest_of_line ();
31146 return;
31147 }
31148
31149 as_bad (_("unknown floating point format `%s'\n"), name);
31150 *input_line_pointer = saved_char;
31151 ignore_rest_of_line ();
31152 }
31153
31154 /* Copy symbol information. */
31155
31156 void
31157 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31158 {
31159 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31160 }
31161
31162 #ifdef OBJ_ELF
31163 /* Given a symbolic attribute NAME, return the proper integer value.
31164 Returns -1 if the attribute is not known. */
31165
31166 int
31167 arm_convert_symbolic_attribute (const char *name)
31168 {
31169 static const struct
31170 {
31171 const char * name;
31172 const int tag;
31173 }
31174 attribute_table[] =
31175 {
31176 /* When you modify this table you should
31177 also modify the list in doc/c-arm.texi. */
31178 #define T(tag) {#tag, tag}
31179 T (Tag_CPU_raw_name),
31180 T (Tag_CPU_name),
31181 T (Tag_CPU_arch),
31182 T (Tag_CPU_arch_profile),
31183 T (Tag_ARM_ISA_use),
31184 T (Tag_THUMB_ISA_use),
31185 T (Tag_FP_arch),
31186 T (Tag_VFP_arch),
31187 T (Tag_WMMX_arch),
31188 T (Tag_Advanced_SIMD_arch),
31189 T (Tag_PCS_config),
31190 T (Tag_ABI_PCS_R9_use),
31191 T (Tag_ABI_PCS_RW_data),
31192 T (Tag_ABI_PCS_RO_data),
31193 T (Tag_ABI_PCS_GOT_use),
31194 T (Tag_ABI_PCS_wchar_t),
31195 T (Tag_ABI_FP_rounding),
31196 T (Tag_ABI_FP_denormal),
31197 T (Tag_ABI_FP_exceptions),
31198 T (Tag_ABI_FP_user_exceptions),
31199 T (Tag_ABI_FP_number_model),
31200 T (Tag_ABI_align_needed),
31201 T (Tag_ABI_align8_needed),
31202 T (Tag_ABI_align_preserved),
31203 T (Tag_ABI_align8_preserved),
31204 T (Tag_ABI_enum_size),
31205 T (Tag_ABI_HardFP_use),
31206 T (Tag_ABI_VFP_args),
31207 T (Tag_ABI_WMMX_args),
31208 T (Tag_ABI_optimization_goals),
31209 T (Tag_ABI_FP_optimization_goals),
31210 T (Tag_compatibility),
31211 T (Tag_CPU_unaligned_access),
31212 T (Tag_FP_HP_extension),
31213 T (Tag_VFP_HP_extension),
31214 T (Tag_ABI_FP_16bit_format),
31215 T (Tag_MPextension_use),
31216 T (Tag_DIV_use),
31217 T (Tag_nodefaults),
31218 T (Tag_also_compatible_with),
31219 T (Tag_conformance),
31220 T (Tag_T2EE_use),
31221 T (Tag_Virtualization_use),
31222 T (Tag_DSP_extension),
31223 T (Tag_MVE_arch),
31224 /* We deliberately do not include Tag_MPextension_use_legacy. */
31225 #undef T
31226 };
31227 unsigned int i;
31228
31229 if (name == NULL)
31230 return -1;
31231
31232 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
31233 if (streq (name, attribute_table[i].name))
31234 return attribute_table[i].tag;
31235
31236 return -1;
31237 }
31238
31239 /* Apply sym value for relocations only in the case that they are for
31240 local symbols in the same segment as the fixup and you have the
31241 respective architectural feature for blx and simple switches. */
31242
31243 int
31244 arm_apply_sym_value (struct fix * fixP, segT this_seg)
31245 {
31246 if (fixP->fx_addsy
31247 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
31248 /* PR 17444: If the local symbol is in a different section then a reloc
31249 will always be generated for it, so applying the symbol value now
31250 will result in a double offset being stored in the relocation. */
31251 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
31252 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
31253 {
31254 switch (fixP->fx_r_type)
31255 {
31256 case BFD_RELOC_ARM_PCREL_BLX:
31257 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31258 if (ARM_IS_FUNC (fixP->fx_addsy))
31259 return 1;
31260 break;
31261
31262 case BFD_RELOC_ARM_PCREL_CALL:
31263 case BFD_RELOC_THUMB_PCREL_BLX:
31264 if (THUMB_IS_FUNC (fixP->fx_addsy))
31265 return 1;
31266 break;
31267
31268 default:
31269 break;
31270 }
31271
31272 }
31273 return 0;
31274 }
31275 #endif /* OBJ_ELF */
This page took 0.894548 seconds and 5 git commands to generate.