gas/
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 #if defined __XSCALE__
101 #define CPU_DEFAULT ARM_ARCH_XSCALE
102 #else
103 #if defined __thumb__
104 #define CPU_DEFAULT ARM_ARCH_V5T
105 #endif
106 #endif
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 static arm_feature_set cpu_variant;
130 static arm_feature_set arm_arch_used;
131 static arm_feature_set thumb_arch_used;
132
133 /* Flags stored in private area of BFD structure. */
134 static int uses_apcs_26 = FALSE;
135 static int atpcs = FALSE;
136 static int support_interwork = FALSE;
137 static int uses_apcs_float = FALSE;
138 static int pic_code = FALSE;
139 static int fix_v4bx = FALSE;
140 /* Warn on using deprecated features. */
141 static int warn_on_deprecated = TRUE;
142
143
144 /* Variables that we set while parsing command-line options. Once all
145 options have been read we re-process these values to set the real
146 assembly flags. */
147 static const arm_feature_set *legacy_cpu = NULL;
148 static const arm_feature_set *legacy_fpu = NULL;
149
150 static const arm_feature_set *mcpu_cpu_opt = NULL;
151 static const arm_feature_set *mcpu_fpu_opt = NULL;
152 static const arm_feature_set *march_cpu_opt = NULL;
153 static const arm_feature_set *march_fpu_opt = NULL;
154 static const arm_feature_set *mfpu_opt = NULL;
155 static const arm_feature_set *object_arch = NULL;
156
157 /* Constants for known architecture features. */
158 static const arm_feature_set fpu_default = FPU_DEFAULT;
159 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
160 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
161 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
162 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
163 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
164 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
165 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
166 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
167
168 #ifdef CPU_DEFAULT
169 static const arm_feature_set cpu_default = CPU_DEFAULT;
170 #endif
171
172 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
174 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
175 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
176 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
177 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
178 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
179 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
180 static const arm_feature_set arm_ext_v4t_5 =
181 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
182 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
183 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
184 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
185 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
186 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
187 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
188 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
189 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
190 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
191 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
192 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
193 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
194 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
198 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
201
202 static const arm_feature_set arm_arch_any = ARM_ANY;
203 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
204 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
205 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
206
207 static const arm_feature_set arm_cext_iwmmxt2 =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
209 static const arm_feature_set arm_cext_iwmmxt =
210 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
211 static const arm_feature_set arm_cext_xscale =
212 ARM_FEATURE (0, ARM_CEXT_XSCALE);
213 static const arm_feature_set arm_cext_maverick =
214 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
215 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
216 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
217 static const arm_feature_set fpu_vfp_ext_v1xd =
218 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
219 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
220 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
221 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
222 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
223 static const arm_feature_set fpu_vfp_ext_d32 =
224 ARM_FEATURE (0, FPU_VFP_EXT_D32);
225 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
226 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
227 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
228 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
229 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
230 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
231
232 static int mfloat_abi_opt = -1;
233 /* Record user cpu selection for object attributes. */
234 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
235 /* Must be long enough to hold any of the names in arm_cpus. */
236 static char selected_cpu_name[16];
237 #ifdef OBJ_ELF
238 # ifdef EABI_DEFAULT
239 static int meabi_flags = EABI_DEFAULT;
240 # else
241 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
242 # endif
243
244 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
245
246 bfd_boolean
247 arm_is_eabi (void)
248 {
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
250 }
251 #endif
252
253 #ifdef OBJ_ELF
254 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
255 symbolS * GOT_symbol;
256 #endif
257
258 /* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262 static int thumb_mode = 0;
263 /* A value distinct from the possible values for thumb_mode that we
264 can use to record whether thumb_mode has been copied into the
265 tc_frag_data field of a frag. */
266 #define MODE_RECORDED (1 << 4)
267
268 /* Specifies the intrinsic IT insn behavior mode. */
269 enum implicit_it_mode
270 {
271 IMPLICIT_IT_MODE_NEVER = 0x00,
272 IMPLICIT_IT_MODE_ARM = 0x01,
273 IMPLICIT_IT_MODE_THUMB = 0x02,
274 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
275 };
276 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
277
278 /* If unified_syntax is true, we are processing the new unified
279 ARM/Thumb syntax. Important differences from the old ARM mode:
280
281 - Immediate operands do not require a # prefix.
282 - Conditional affixes always appear at the end of the
283 instruction. (For backward compatibility, those instructions
284 that formerly had them in the middle, continue to accept them
285 there.)
286 - The IT instruction may appear, and if it does is validated
287 against subsequent conditional affixes. It does not generate
288 machine code.
289
290 Important differences from the old Thumb mode:
291
292 - Immediate operands do not require a # prefix.
293 - Most of the V6T2 instructions are only available in unified mode.
294 - The .N and .W suffixes are recognized and honored (it is an error
295 if they cannot be honored).
296 - All instructions set the flags if and only if they have an 's' affix.
297 - Conditional affixes may be used. They are validated against
298 preceding IT instructions. Unlike ARM mode, you cannot use a
299 conditional affix except in the scope of an IT instruction. */
300
301 static bfd_boolean unified_syntax = FALSE;
302
303 enum neon_el_type
304 {
305 NT_invtype,
306 NT_untyped,
307 NT_integer,
308 NT_float,
309 NT_poly,
310 NT_signed,
311 NT_unsigned
312 };
313
314 struct neon_type_el
315 {
316 enum neon_el_type type;
317 unsigned size;
318 };
319
320 #define NEON_MAX_TYPE_ELS 4
321
322 struct neon_type
323 {
324 struct neon_type_el el[NEON_MAX_TYPE_ELS];
325 unsigned elems;
326 };
327
328 enum it_instruction_type
329 {
330 OUTSIDE_IT_INSN,
331 INSIDE_IT_INSN,
332 INSIDE_IT_LAST_INSN,
333 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
334 if inside, should be the last one. */
335 NEUTRAL_IT_INSN, /* This could be either inside or outside,
336 i.e. BKPT and NOP. */
337 IT_INSN /* The IT insn has been parsed. */
338 };
339
340 struct arm_it
341 {
342 const char * error;
343 unsigned long instruction;
344 int size;
345 int size_req;
346 int cond;
347 /* "uncond_value" is set to the value in place of the conditional field in
348 unconditional versions of the instruction, or -1 if nothing is
349 appropriate. */
350 int uncond_value;
351 struct neon_type vectype;
352 /* This does not indicate an actual NEON instruction, only that
353 the mnemonic accepts neon-style type suffixes. */
354 int is_neon;
355 /* Set to the opcode if the instruction needs relaxation.
356 Zero if the instruction is not relaxed. */
357 unsigned long relax;
358 struct
359 {
360 bfd_reloc_code_real_type type;
361 expressionS exp;
362 int pc_rel;
363 } reloc;
364
365 enum it_instruction_type it_insn_type;
366
367 struct
368 {
369 unsigned reg;
370 signed int imm;
371 struct neon_type_el vectype;
372 unsigned present : 1; /* Operand present. */
373 unsigned isreg : 1; /* Operand was a register. */
374 unsigned immisreg : 1; /* .imm field is a second register. */
375 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
376 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
377 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
378 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
379 instructions. This allows us to disambiguate ARM <-> vector insns. */
380 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
381 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
382 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
383 unsigned issingle : 1; /* Operand is VFP single-precision register. */
384 unsigned hasreloc : 1; /* Operand has relocation suffix. */
385 unsigned writeback : 1; /* Operand has trailing ! */
386 unsigned preind : 1; /* Preindexed address. */
387 unsigned postind : 1; /* Postindexed address. */
388 unsigned negative : 1; /* Index register was negated. */
389 unsigned shifted : 1; /* Shift applied to operation. */
390 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
391 } operands[6];
392 };
393
394 static struct arm_it inst;
395
396 #define NUM_FLOAT_VALS 8
397
398 const char * fp_const[] =
399 {
400 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
401 };
402
403 /* Number of littlenums required to hold an extended precision number. */
404 #define MAX_LITTLENUMS 6
405
406 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
407
408 #define FAIL (-1)
409 #define SUCCESS (0)
410
411 #define SUFF_S 1
412 #define SUFF_D 2
413 #define SUFF_E 3
414 #define SUFF_P 4
415
416 #define CP_T_X 0x00008000
417 #define CP_T_Y 0x00400000
418
419 #define CONDS_BIT 0x00100000
420 #define LOAD_BIT 0x00100000
421
422 #define DOUBLE_LOAD_FLAG 0x00000001
423
424 struct asm_cond
425 {
426 const char * template_name;
427 unsigned long value;
428 };
429
430 #define COND_ALWAYS 0xE
431
432 struct asm_psr
433 {
434 const char * template_name;
435 unsigned long field;
436 };
437
438 struct asm_barrier_opt
439 {
440 const char * template_name;
441 unsigned long value;
442 };
443
444 /* The bit that distinguishes CPSR and SPSR. */
445 #define SPSR_BIT (1 << 22)
446
447 /* The individual PSR flag bits. */
448 #define PSR_c (1 << 16)
449 #define PSR_x (1 << 17)
450 #define PSR_s (1 << 18)
451 #define PSR_f (1 << 19)
452
453 struct reloc_entry
454 {
455 char * name;
456 bfd_reloc_code_real_type reloc;
457 };
458
459 enum vfp_reg_pos
460 {
461 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
462 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
463 };
464
465 enum vfp_ldstm_type
466 {
467 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
468 };
469
470 /* Bits for DEFINED field in neon_typed_alias. */
471 #define NTA_HASTYPE 1
472 #define NTA_HASINDEX 2
473
474 struct neon_typed_alias
475 {
476 unsigned char defined;
477 unsigned char index;
478 struct neon_type_el eltype;
479 };
480
481 /* ARM register categories. This includes coprocessor numbers and various
482 architecture extensions' registers. */
483 enum arm_reg_type
484 {
485 REG_TYPE_RN,
486 REG_TYPE_CP,
487 REG_TYPE_CN,
488 REG_TYPE_FN,
489 REG_TYPE_VFS,
490 REG_TYPE_VFD,
491 REG_TYPE_NQ,
492 REG_TYPE_VFSD,
493 REG_TYPE_NDQ,
494 REG_TYPE_NSDQ,
495 REG_TYPE_VFC,
496 REG_TYPE_MVF,
497 REG_TYPE_MVD,
498 REG_TYPE_MVFX,
499 REG_TYPE_MVDX,
500 REG_TYPE_MVAX,
501 REG_TYPE_DSPSC,
502 REG_TYPE_MMXWR,
503 REG_TYPE_MMXWC,
504 REG_TYPE_MMXWCG,
505 REG_TYPE_XSCALE,
506 };
507
508 /* Structure for a hash table entry for a register.
509 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
510 information which states whether a vector type or index is specified (for a
511 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
512 struct reg_entry
513 {
514 const char * name;
515 unsigned char number;
516 unsigned char type;
517 unsigned char builtin;
518 struct neon_typed_alias * neon;
519 };
520
521 /* Diagnostics used when we don't get a register of the expected type. */
522 const char * const reg_expected_msgs[] =
523 {
524 N_("ARM register expected"),
525 N_("bad or missing co-processor number"),
526 N_("co-processor register expected"),
527 N_("FPA register expected"),
528 N_("VFP single precision register expected"),
529 N_("VFP/Neon double precision register expected"),
530 N_("Neon quad precision register expected"),
531 N_("VFP single or double precision register expected"),
532 N_("Neon double or quad precision register expected"),
533 N_("VFP single, double or Neon quad precision register expected"),
534 N_("VFP system register expected"),
535 N_("Maverick MVF register expected"),
536 N_("Maverick MVD register expected"),
537 N_("Maverick MVFX register expected"),
538 N_("Maverick MVDX register expected"),
539 N_("Maverick MVAX register expected"),
540 N_("Maverick DSPSC register expected"),
541 N_("iWMMXt data register expected"),
542 N_("iWMMXt control register expected"),
543 N_("iWMMXt scalar register expected"),
544 N_("XScale accumulator register expected"),
545 };
546
547 /* Some well known registers that we refer to directly elsewhere. */
548 #define REG_SP 13
549 #define REG_LR 14
550 #define REG_PC 15
551
552 /* ARM instructions take 4bytes in the object file, Thumb instructions
553 take 2: */
554 #define INSN_SIZE 4
555
556 struct asm_opcode
557 {
558 /* Basic string to match. */
559 const char * template_name;
560
561 /* Parameters to instruction. */
562 unsigned char operands[8];
563
564 /* Conditional tag - see opcode_lookup. */
565 unsigned int tag : 4;
566
567 /* Basic instruction code. */
568 unsigned int avalue : 28;
569
570 /* Thumb-format instruction code. */
571 unsigned int tvalue;
572
573 /* Which architecture variant provides this instruction. */
574 const arm_feature_set * avariant;
575 const arm_feature_set * tvariant;
576
577 /* Function to call to encode instruction in ARM format. */
578 void (* aencode) (void);
579
580 /* Function to call to encode instruction in Thumb format. */
581 void (* tencode) (void);
582 };
583
584 /* Defines for various bits that we will want to toggle. */
585 #define INST_IMMEDIATE 0x02000000
586 #define OFFSET_REG 0x02000000
587 #define HWOFFSET_IMM 0x00400000
588 #define SHIFT_BY_REG 0x00000010
589 #define PRE_INDEX 0x01000000
590 #define INDEX_UP 0x00800000
591 #define WRITE_BACK 0x00200000
592 #define LDM_TYPE_2_OR_3 0x00400000
593 #define CPSI_MMOD 0x00020000
594
595 #define LITERAL_MASK 0xf000f000
596 #define OPCODE_MASK 0xfe1fffff
597 #define V4_STR_BIT 0x00000020
598
599 #define T2_SUBS_PC_LR 0xf3de8f00
600
601 #define DATA_OP_SHIFT 21
602
603 #define T2_OPCODE_MASK 0xfe1fffff
604 #define T2_DATA_OP_SHIFT 21
605
606 /* Codes to distinguish the arithmetic instructions. */
607 #define OPCODE_AND 0
608 #define OPCODE_EOR 1
609 #define OPCODE_SUB 2
610 #define OPCODE_RSB 3
611 #define OPCODE_ADD 4
612 #define OPCODE_ADC 5
613 #define OPCODE_SBC 6
614 #define OPCODE_RSC 7
615 #define OPCODE_TST 8
616 #define OPCODE_TEQ 9
617 #define OPCODE_CMP 10
618 #define OPCODE_CMN 11
619 #define OPCODE_ORR 12
620 #define OPCODE_MOV 13
621 #define OPCODE_BIC 14
622 #define OPCODE_MVN 15
623
624 #define T2_OPCODE_AND 0
625 #define T2_OPCODE_BIC 1
626 #define T2_OPCODE_ORR 2
627 #define T2_OPCODE_ORN 3
628 #define T2_OPCODE_EOR 4
629 #define T2_OPCODE_ADD 8
630 #define T2_OPCODE_ADC 10
631 #define T2_OPCODE_SBC 11
632 #define T2_OPCODE_SUB 13
633 #define T2_OPCODE_RSB 14
634
635 #define T_OPCODE_MUL 0x4340
636 #define T_OPCODE_TST 0x4200
637 #define T_OPCODE_CMN 0x42c0
638 #define T_OPCODE_NEG 0x4240
639 #define T_OPCODE_MVN 0x43c0
640
641 #define T_OPCODE_ADD_R3 0x1800
642 #define T_OPCODE_SUB_R3 0x1a00
643 #define T_OPCODE_ADD_HI 0x4400
644 #define T_OPCODE_ADD_ST 0xb000
645 #define T_OPCODE_SUB_ST 0xb080
646 #define T_OPCODE_ADD_SP 0xa800
647 #define T_OPCODE_ADD_PC 0xa000
648 #define T_OPCODE_ADD_I8 0x3000
649 #define T_OPCODE_SUB_I8 0x3800
650 #define T_OPCODE_ADD_I3 0x1c00
651 #define T_OPCODE_SUB_I3 0x1e00
652
653 #define T_OPCODE_ASR_R 0x4100
654 #define T_OPCODE_LSL_R 0x4080
655 #define T_OPCODE_LSR_R 0x40c0
656 #define T_OPCODE_ROR_R 0x41c0
657 #define T_OPCODE_ASR_I 0x1000
658 #define T_OPCODE_LSL_I 0x0000
659 #define T_OPCODE_LSR_I 0x0800
660
661 #define T_OPCODE_MOV_I8 0x2000
662 #define T_OPCODE_CMP_I8 0x2800
663 #define T_OPCODE_CMP_LR 0x4280
664 #define T_OPCODE_MOV_HR 0x4600
665 #define T_OPCODE_CMP_HR 0x4500
666
667 #define T_OPCODE_LDR_PC 0x4800
668 #define T_OPCODE_LDR_SP 0x9800
669 #define T_OPCODE_STR_SP 0x9000
670 #define T_OPCODE_LDR_IW 0x6800
671 #define T_OPCODE_STR_IW 0x6000
672 #define T_OPCODE_LDR_IH 0x8800
673 #define T_OPCODE_STR_IH 0x8000
674 #define T_OPCODE_LDR_IB 0x7800
675 #define T_OPCODE_STR_IB 0x7000
676 #define T_OPCODE_LDR_RW 0x5800
677 #define T_OPCODE_STR_RW 0x5000
678 #define T_OPCODE_LDR_RH 0x5a00
679 #define T_OPCODE_STR_RH 0x5200
680 #define T_OPCODE_LDR_RB 0x5c00
681 #define T_OPCODE_STR_RB 0x5400
682
683 #define T_OPCODE_PUSH 0xb400
684 #define T_OPCODE_POP 0xbc00
685
686 #define T_OPCODE_BRANCH 0xe000
687
688 #define THUMB_SIZE 2 /* Size of thumb instruction. */
689 #define THUMB_PP_PC_LR 0x0100
690 #define THUMB_LOAD_BIT 0x0800
691 #define THUMB2_LOAD_BIT 0x00100000
692
693 #define BAD_ARGS _("bad arguments to instruction")
694 #define BAD_SP _("r13 not allowed here")
695 #define BAD_PC _("r15 not allowed here")
696 #define BAD_COND _("instruction cannot be conditional")
697 #define BAD_OVERLAP _("registers may not be the same")
698 #define BAD_HIREG _("lo register required")
699 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
700 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
701 #define BAD_BRANCH _("branch must be last instruction in IT block")
702 #define BAD_NOT_IT _("instruction not allowed in IT block")
703 #define BAD_FPU _("selected FPU does not support instruction")
704 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
705 #define BAD_IT_COND _("incorrect condition in IT block")
706 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
707 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
708
709 static struct hash_control * arm_ops_hsh;
710 static struct hash_control * arm_cond_hsh;
711 static struct hash_control * arm_shift_hsh;
712 static struct hash_control * arm_psr_hsh;
713 static struct hash_control * arm_v7m_psr_hsh;
714 static struct hash_control * arm_reg_hsh;
715 static struct hash_control * arm_reloc_hsh;
716 static struct hash_control * arm_barrier_opt_hsh;
717
718 /* Stuff needed to resolve the label ambiguity
719 As:
720 ...
721 label: <insn>
722 may differ from:
723 ...
724 label:
725 <insn> */
726
727 symbolS * last_label_seen;
728 static int label_is_thumb_function_name = FALSE;
729
730 /* Literal pool structure. Held on a per-section
731 and per-sub-section basis. */
732
733 #define MAX_LITERAL_POOL_SIZE 1024
734 typedef struct literal_pool
735 {
736 expressionS literals [MAX_LITERAL_POOL_SIZE];
737 unsigned int next_free_entry;
738 unsigned int id;
739 symbolS * symbol;
740 segT section;
741 subsegT sub_section;
742 struct literal_pool * next;
743 } literal_pool;
744
745 /* Pointer to a linked list of literal pools. */
746 literal_pool * list_of_pools = NULL;
747
748 #ifdef OBJ_ELF
749 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
750 #else
751 static struct current_it now_it;
752 #endif
753
754 static inline int
755 now_it_compatible (int cond)
756 {
757 return (cond & ~1) == (now_it.cc & ~1);
758 }
759
760 static inline int
761 conditional_insn (void)
762 {
763 return inst.cond != COND_ALWAYS;
764 }
765
766 static int in_it_block (void);
767
768 static int handle_it_state (void);
769
770 static void force_automatic_it_block_close (void);
771
772 static void it_fsm_post_encode (void);
773
774 #define set_it_insn_type(type) \
775 do \
776 { \
777 inst.it_insn_type = type; \
778 if (handle_it_state () == FAIL) \
779 return; \
780 } \
781 while (0)
782
783 #define set_it_insn_type_nonvoid(type, failret) \
784 do \
785 { \
786 inst.it_insn_type = type; \
787 if (handle_it_state () == FAIL) \
788 return failret; \
789 } \
790 while(0)
791
792 #define set_it_insn_type_last() \
793 do \
794 { \
795 if (inst.cond == COND_ALWAYS) \
796 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
797 else \
798 set_it_insn_type (INSIDE_IT_LAST_INSN); \
799 } \
800 while (0)
801
802 /* Pure syntax. */
803
804 /* This array holds the chars that always start a comment. If the
805 pre-processor is disabled, these aren't very useful. */
806 const char comment_chars[] = "@";
807
808 /* This array holds the chars that only start a comment at the beginning of
809 a line. If the line seems to have the form '# 123 filename'
810 .line and .file directives will appear in the pre-processed output. */
811 /* Note that input_file.c hand checks for '#' at the beginning of the
812 first line of the input file. This is because the compiler outputs
813 #NO_APP at the beginning of its output. */
814 /* Also note that comments like this one will always work. */
815 const char line_comment_chars[] = "#";
816
817 const char line_separator_chars[] = ";";
818
819 /* Chars that can be used to separate mant
820 from exp in floating point numbers. */
821 const char EXP_CHARS[] = "eE";
822
823 /* Chars that mean this number is a floating point constant. */
824 /* As in 0f12.456 */
825 /* or 0d1.2345e12 */
826
827 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
828
829 /* Prefix characters that indicate the start of an immediate
830 value. */
831 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
832
833 /* Separator character handling. */
834
835 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
836
837 static inline int
838 skip_past_char (char ** str, char c)
839 {
840 if (**str == c)
841 {
842 (*str)++;
843 return SUCCESS;
844 }
845 else
846 return FAIL;
847 }
848
849 #define skip_past_comma(str) skip_past_char (str, ',')
850
851 /* Arithmetic expressions (possibly involving symbols). */
852
853 /* Return TRUE if anything in the expression is a bignum. */
854
855 static int
856 walk_no_bignums (symbolS * sp)
857 {
858 if (symbol_get_value_expression (sp)->X_op == O_big)
859 return 1;
860
861 if (symbol_get_value_expression (sp)->X_add_symbol)
862 {
863 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
864 || (symbol_get_value_expression (sp)->X_op_symbol
865 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
866 }
867
868 return 0;
869 }
870
871 static int in_my_get_expression = 0;
872
873 /* Third argument to my_get_expression. */
874 #define GE_NO_PREFIX 0
875 #define GE_IMM_PREFIX 1
876 #define GE_OPT_PREFIX 2
877 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
878 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
879 #define GE_OPT_PREFIX_BIG 3
880
881 static int
882 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
883 {
884 char * save_in;
885 segT seg;
886
887 /* In unified syntax, all prefixes are optional. */
888 if (unified_syntax)
889 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
890 : GE_OPT_PREFIX;
891
892 switch (prefix_mode)
893 {
894 case GE_NO_PREFIX: break;
895 case GE_IMM_PREFIX:
896 if (!is_immediate_prefix (**str))
897 {
898 inst.error = _("immediate expression requires a # prefix");
899 return FAIL;
900 }
901 (*str)++;
902 break;
903 case GE_OPT_PREFIX:
904 case GE_OPT_PREFIX_BIG:
905 if (is_immediate_prefix (**str))
906 (*str)++;
907 break;
908 default: abort ();
909 }
910
911 memset (ep, 0, sizeof (expressionS));
912
913 save_in = input_line_pointer;
914 input_line_pointer = *str;
915 in_my_get_expression = 1;
916 seg = expression (ep);
917 in_my_get_expression = 0;
918
919 if (ep->X_op == O_illegal || ep->X_op == O_absent)
920 {
921 /* We found a bad or missing expression in md_operand(). */
922 *str = input_line_pointer;
923 input_line_pointer = save_in;
924 if (inst.error == NULL)
925 inst.error = (ep->X_op == O_absent
926 ? _("missing expression") :_("bad expression"));
927 return 1;
928 }
929
930 #ifdef OBJ_AOUT
931 if (seg != absolute_section
932 && seg != text_section
933 && seg != data_section
934 && seg != bss_section
935 && seg != undefined_section)
936 {
937 inst.error = _("bad segment");
938 *str = input_line_pointer;
939 input_line_pointer = save_in;
940 return 1;
941 }
942 #endif
943
944 /* Get rid of any bignums now, so that we don't generate an error for which
945 we can't establish a line number later on. Big numbers are never valid
946 in instructions, which is where this routine is always called. */
947 if (prefix_mode != GE_OPT_PREFIX_BIG
948 && (ep->X_op == O_big
949 || (ep->X_add_symbol
950 && (walk_no_bignums (ep->X_add_symbol)
951 || (ep->X_op_symbol
952 && walk_no_bignums (ep->X_op_symbol))))))
953 {
954 inst.error = _("invalid constant");
955 *str = input_line_pointer;
956 input_line_pointer = save_in;
957 return 1;
958 }
959
960 *str = input_line_pointer;
961 input_line_pointer = save_in;
962 return 0;
963 }
964
965 /* Turn a string in input_line_pointer into a floating point constant
966 of type TYPE, and store the appropriate bytes in *LITP. The number
967 of LITTLENUMS emitted is stored in *SIZEP. An error message is
968 returned, or NULL on OK.
969
970 Note that fp constants aren't represent in the normal way on the ARM.
971 In big endian mode, things are as expected. However, in little endian
972 mode fp constants are big-endian word-wise, and little-endian byte-wise
973 within the words. For example, (double) 1.1 in big endian mode is
974 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
975 the byte sequence 99 99 f1 3f 9a 99 99 99.
976
977 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
978
979 char *
980 md_atof (int type, char * litP, int * sizeP)
981 {
982 int prec;
983 LITTLENUM_TYPE words[MAX_LITTLENUMS];
984 char *t;
985 int i;
986
987 switch (type)
988 {
989 case 'f':
990 case 'F':
991 case 's':
992 case 'S':
993 prec = 2;
994 break;
995
996 case 'd':
997 case 'D':
998 case 'r':
999 case 'R':
1000 prec = 4;
1001 break;
1002
1003 case 'x':
1004 case 'X':
1005 prec = 5;
1006 break;
1007
1008 case 'p':
1009 case 'P':
1010 prec = 5;
1011 break;
1012
1013 default:
1014 *sizeP = 0;
1015 return _("Unrecognized or unsupported floating point constant");
1016 }
1017
1018 t = atof_ieee (input_line_pointer, type, words);
1019 if (t)
1020 input_line_pointer = t;
1021 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1022
1023 if (target_big_endian)
1024 {
1025 for (i = 0; i < prec; i++)
1026 {
1027 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1028 litP += sizeof (LITTLENUM_TYPE);
1029 }
1030 }
1031 else
1032 {
1033 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1034 for (i = prec - 1; i >= 0; i--)
1035 {
1036 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1037 litP += sizeof (LITTLENUM_TYPE);
1038 }
1039 else
1040 /* For a 4 byte float the order of elements in `words' is 1 0.
1041 For an 8 byte float the order is 1 0 3 2. */
1042 for (i = 0; i < prec; i += 2)
1043 {
1044 md_number_to_chars (litP, (valueT) words[i + 1],
1045 sizeof (LITTLENUM_TYPE));
1046 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1047 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1048 litP += 2 * sizeof (LITTLENUM_TYPE);
1049 }
1050 }
1051
1052 return NULL;
1053 }
1054
1055 /* We handle all bad expressions here, so that we can report the faulty
1056 instruction in the error message. */
1057 void
1058 md_operand (expressionS * exp)
1059 {
1060 if (in_my_get_expression)
1061 exp->X_op = O_illegal;
1062 }
1063
1064 /* Immediate values. */
1065
1066 /* Generic immediate-value read function for use in directives.
1067 Accepts anything that 'expression' can fold to a constant.
1068 *val receives the number. */
1069 #ifdef OBJ_ELF
1070 static int
1071 immediate_for_directive (int *val)
1072 {
1073 expressionS exp;
1074 exp.X_op = O_illegal;
1075
1076 if (is_immediate_prefix (*input_line_pointer))
1077 {
1078 input_line_pointer++;
1079 expression (&exp);
1080 }
1081
1082 if (exp.X_op != O_constant)
1083 {
1084 as_bad (_("expected #constant"));
1085 ignore_rest_of_line ();
1086 return FAIL;
1087 }
1088 *val = exp.X_add_number;
1089 return SUCCESS;
1090 }
1091 #endif
1092
1093 /* Register parsing. */
1094
1095 /* Generic register parser. CCP points to what should be the
1096 beginning of a register name. If it is indeed a valid register
1097 name, advance CCP over it and return the reg_entry structure;
1098 otherwise return NULL. Does not issue diagnostics. */
1099
1100 static struct reg_entry *
1101 arm_reg_parse_multi (char **ccp)
1102 {
1103 char *start = *ccp;
1104 char *p;
1105 struct reg_entry *reg;
1106
1107 #ifdef REGISTER_PREFIX
1108 if (*start != REGISTER_PREFIX)
1109 return NULL;
1110 start++;
1111 #endif
1112 #ifdef OPTIONAL_REGISTER_PREFIX
1113 if (*start == OPTIONAL_REGISTER_PREFIX)
1114 start++;
1115 #endif
1116
1117 p = start;
1118 if (!ISALPHA (*p) || !is_name_beginner (*p))
1119 return NULL;
1120
1121 do
1122 p++;
1123 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1124
1125 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1126
1127 if (!reg)
1128 return NULL;
1129
1130 *ccp = p;
1131 return reg;
1132 }
1133
1134 static int
1135 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1136 enum arm_reg_type type)
1137 {
1138 /* Alternative syntaxes are accepted for a few register classes. */
1139 switch (type)
1140 {
1141 case REG_TYPE_MVF:
1142 case REG_TYPE_MVD:
1143 case REG_TYPE_MVFX:
1144 case REG_TYPE_MVDX:
1145 /* Generic coprocessor register names are allowed for these. */
1146 if (reg && reg->type == REG_TYPE_CN)
1147 return reg->number;
1148 break;
1149
1150 case REG_TYPE_CP:
1151 /* For backward compatibility, a bare number is valid here. */
1152 {
1153 unsigned long processor = strtoul (start, ccp, 10);
1154 if (*ccp != start && processor <= 15)
1155 return processor;
1156 }
1157
1158 case REG_TYPE_MMXWC:
1159 /* WC includes WCG. ??? I'm not sure this is true for all
1160 instructions that take WC registers. */
1161 if (reg && reg->type == REG_TYPE_MMXWCG)
1162 return reg->number;
1163 break;
1164
1165 default:
1166 break;
1167 }
1168
1169 return FAIL;
1170 }
1171
1172 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1173 return value is the register number or FAIL. */
1174
1175 static int
1176 arm_reg_parse (char **ccp, enum arm_reg_type type)
1177 {
1178 char *start = *ccp;
1179 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1180 int ret;
1181
1182 /* Do not allow a scalar (reg+index) to parse as a register. */
1183 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1184 return FAIL;
1185
1186 if (reg && reg->type == type)
1187 return reg->number;
1188
1189 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1190 return ret;
1191
1192 *ccp = start;
1193 return FAIL;
1194 }
1195
1196 /* Parse a Neon type specifier. *STR should point at the leading '.'
1197 character. Does no verification at this stage that the type fits the opcode
1198 properly. E.g.,
1199
1200 .i32.i32.s16
1201 .s32.f32
1202 .u16
1203
1204 Can all be legally parsed by this function.
1205
1206 Fills in neon_type struct pointer with parsed information, and updates STR
1207 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1208 type, FAIL if not. */
1209
1210 static int
1211 parse_neon_type (struct neon_type *type, char **str)
1212 {
1213 char *ptr = *str;
1214
1215 if (type)
1216 type->elems = 0;
1217
1218 while (type->elems < NEON_MAX_TYPE_ELS)
1219 {
1220 enum neon_el_type thistype = NT_untyped;
1221 unsigned thissize = -1u;
1222
1223 if (*ptr != '.')
1224 break;
1225
1226 ptr++;
1227
1228 /* Just a size without an explicit type. */
1229 if (ISDIGIT (*ptr))
1230 goto parsesize;
1231
1232 switch (TOLOWER (*ptr))
1233 {
1234 case 'i': thistype = NT_integer; break;
1235 case 'f': thistype = NT_float; break;
1236 case 'p': thistype = NT_poly; break;
1237 case 's': thistype = NT_signed; break;
1238 case 'u': thistype = NT_unsigned; break;
1239 case 'd':
1240 thistype = NT_float;
1241 thissize = 64;
1242 ptr++;
1243 goto done;
1244 default:
1245 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1246 return FAIL;
1247 }
1248
1249 ptr++;
1250
1251 /* .f is an abbreviation for .f32. */
1252 if (thistype == NT_float && !ISDIGIT (*ptr))
1253 thissize = 32;
1254 else
1255 {
1256 parsesize:
1257 thissize = strtoul (ptr, &ptr, 10);
1258
1259 if (thissize != 8 && thissize != 16 && thissize != 32
1260 && thissize != 64)
1261 {
1262 as_bad (_("bad size %d in type specifier"), thissize);
1263 return FAIL;
1264 }
1265 }
1266
1267 done:
1268 if (type)
1269 {
1270 type->el[type->elems].type = thistype;
1271 type->el[type->elems].size = thissize;
1272 type->elems++;
1273 }
1274 }
1275
1276 /* Empty/missing type is not a successful parse. */
1277 if (type->elems == 0)
1278 return FAIL;
1279
1280 *str = ptr;
1281
1282 return SUCCESS;
1283 }
1284
1285 /* Errors may be set multiple times during parsing or bit encoding
1286 (particularly in the Neon bits), but usually the earliest error which is set
1287 will be the most meaningful. Avoid overwriting it with later (cascading)
1288 errors by calling this function. */
1289
1290 static void
1291 first_error (const char *err)
1292 {
1293 if (!inst.error)
1294 inst.error = err;
1295 }
1296
1297 /* Parse a single type, e.g. ".s32", leading period included. */
1298 static int
1299 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1300 {
1301 char *str = *ccp;
1302 struct neon_type optype;
1303
1304 if (*str == '.')
1305 {
1306 if (parse_neon_type (&optype, &str) == SUCCESS)
1307 {
1308 if (optype.elems == 1)
1309 *vectype = optype.el[0];
1310 else
1311 {
1312 first_error (_("only one type should be specified for operand"));
1313 return FAIL;
1314 }
1315 }
1316 else
1317 {
1318 first_error (_("vector type expected"));
1319 return FAIL;
1320 }
1321 }
1322 else
1323 return FAIL;
1324
1325 *ccp = str;
1326
1327 return SUCCESS;
1328 }
1329
1330 /* Special meanings for indices (which have a range of 0-7), which will fit into
1331 a 4-bit integer. */
1332
1333 #define NEON_ALL_LANES 15
1334 #define NEON_INTERLEAVE_LANES 14
1335
1336 /* Parse either a register or a scalar, with an optional type. Return the
1337 register number, and optionally fill in the actual type of the register
1338 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1339 type/index information in *TYPEINFO. */
1340
1341 static int
1342 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1343 enum arm_reg_type *rtype,
1344 struct neon_typed_alias *typeinfo)
1345 {
1346 char *str = *ccp;
1347 struct reg_entry *reg = arm_reg_parse_multi (&str);
1348 struct neon_typed_alias atype;
1349 struct neon_type_el parsetype;
1350
1351 atype.defined = 0;
1352 atype.index = -1;
1353 atype.eltype.type = NT_invtype;
1354 atype.eltype.size = -1;
1355
1356 /* Try alternate syntax for some types of register. Note these are mutually
1357 exclusive with the Neon syntax extensions. */
1358 if (reg == NULL)
1359 {
1360 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1361 if (altreg != FAIL)
1362 *ccp = str;
1363 if (typeinfo)
1364 *typeinfo = atype;
1365 return altreg;
1366 }
1367
1368 /* Undo polymorphism when a set of register types may be accepted. */
1369 if ((type == REG_TYPE_NDQ
1370 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1371 || (type == REG_TYPE_VFSD
1372 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1373 || (type == REG_TYPE_NSDQ
1374 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1375 || reg->type == REG_TYPE_NQ))
1376 || (type == REG_TYPE_MMXWC
1377 && (reg->type == REG_TYPE_MMXWCG)))
1378 type = (enum arm_reg_type) reg->type;
1379
1380 if (type != reg->type)
1381 return FAIL;
1382
1383 if (reg->neon)
1384 atype = *reg->neon;
1385
1386 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1387 {
1388 if ((atype.defined & NTA_HASTYPE) != 0)
1389 {
1390 first_error (_("can't redefine type for operand"));
1391 return FAIL;
1392 }
1393 atype.defined |= NTA_HASTYPE;
1394 atype.eltype = parsetype;
1395 }
1396
1397 if (skip_past_char (&str, '[') == SUCCESS)
1398 {
1399 if (type != REG_TYPE_VFD)
1400 {
1401 first_error (_("only D registers may be indexed"));
1402 return FAIL;
1403 }
1404
1405 if ((atype.defined & NTA_HASINDEX) != 0)
1406 {
1407 first_error (_("can't change index for operand"));
1408 return FAIL;
1409 }
1410
1411 atype.defined |= NTA_HASINDEX;
1412
1413 if (skip_past_char (&str, ']') == SUCCESS)
1414 atype.index = NEON_ALL_LANES;
1415 else
1416 {
1417 expressionS exp;
1418
1419 my_get_expression (&exp, &str, GE_NO_PREFIX);
1420
1421 if (exp.X_op != O_constant)
1422 {
1423 first_error (_("constant expression required"));
1424 return FAIL;
1425 }
1426
1427 if (skip_past_char (&str, ']') == FAIL)
1428 return FAIL;
1429
1430 atype.index = exp.X_add_number;
1431 }
1432 }
1433
1434 if (typeinfo)
1435 *typeinfo = atype;
1436
1437 if (rtype)
1438 *rtype = type;
1439
1440 *ccp = str;
1441
1442 return reg->number;
1443 }
1444
1445 /* Like arm_reg_parse, but allow allow the following extra features:
1446 - If RTYPE is non-zero, return the (possibly restricted) type of the
1447 register (e.g. Neon double or quad reg when either has been requested).
1448 - If this is a Neon vector type with additional type information, fill
1449 in the struct pointed to by VECTYPE (if non-NULL).
1450 This function will fault on encountering a scalar. */
1451
1452 static int
1453 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1454 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1455 {
1456 struct neon_typed_alias atype;
1457 char *str = *ccp;
1458 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1459
1460 if (reg == FAIL)
1461 return FAIL;
1462
1463 /* Do not allow a scalar (reg+index) to parse as a register. */
1464 if ((atype.defined & NTA_HASINDEX) != 0)
1465 {
1466 first_error (_("register operand expected, but got scalar"));
1467 return FAIL;
1468 }
1469
1470 if (vectype)
1471 *vectype = atype.eltype;
1472
1473 *ccp = str;
1474
1475 return reg;
1476 }
1477
1478 #define NEON_SCALAR_REG(X) ((X) >> 4)
1479 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1480
1481 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1482 have enough information to be able to do a good job bounds-checking. So, we
1483 just do easy checks here, and do further checks later. */
1484
1485 static int
1486 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1487 {
1488 int reg;
1489 char *str = *ccp;
1490 struct neon_typed_alias atype;
1491
1492 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1493
1494 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1495 return FAIL;
1496
1497 if (atype.index == NEON_ALL_LANES)
1498 {
1499 first_error (_("scalar must have an index"));
1500 return FAIL;
1501 }
1502 else if (atype.index >= 64 / elsize)
1503 {
1504 first_error (_("scalar index out of range"));
1505 return FAIL;
1506 }
1507
1508 if (type)
1509 *type = atype.eltype;
1510
1511 *ccp = str;
1512
1513 return reg * 16 + atype.index;
1514 }
1515
1516 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1517
1518 static long
1519 parse_reg_list (char ** strp)
1520 {
1521 char * str = * strp;
1522 long range = 0;
1523 int another_range;
1524
1525 /* We come back here if we get ranges concatenated by '+' or '|'. */
1526 do
1527 {
1528 another_range = 0;
1529
1530 if (*str == '{')
1531 {
1532 int in_range = 0;
1533 int cur_reg = -1;
1534
1535 str++;
1536 do
1537 {
1538 int reg;
1539
1540 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1541 {
1542 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1543 return FAIL;
1544 }
1545
1546 if (in_range)
1547 {
1548 int i;
1549
1550 if (reg <= cur_reg)
1551 {
1552 first_error (_("bad range in register list"));
1553 return FAIL;
1554 }
1555
1556 for (i = cur_reg + 1; i < reg; i++)
1557 {
1558 if (range & (1 << i))
1559 as_tsktsk
1560 (_("Warning: duplicated register (r%d) in register list"),
1561 i);
1562 else
1563 range |= 1 << i;
1564 }
1565 in_range = 0;
1566 }
1567
1568 if (range & (1 << reg))
1569 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1570 reg);
1571 else if (reg <= cur_reg)
1572 as_tsktsk (_("Warning: register range not in ascending order"));
1573
1574 range |= 1 << reg;
1575 cur_reg = reg;
1576 }
1577 while (skip_past_comma (&str) != FAIL
1578 || (in_range = 1, *str++ == '-'));
1579 str--;
1580
1581 if (*str++ != '}')
1582 {
1583 first_error (_("missing `}'"));
1584 return FAIL;
1585 }
1586 }
1587 else
1588 {
1589 expressionS exp;
1590
1591 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1592 return FAIL;
1593
1594 if (exp.X_op == O_constant)
1595 {
1596 if (exp.X_add_number
1597 != (exp.X_add_number & 0x0000ffff))
1598 {
1599 inst.error = _("invalid register mask");
1600 return FAIL;
1601 }
1602
1603 if ((range & exp.X_add_number) != 0)
1604 {
1605 int regno = range & exp.X_add_number;
1606
1607 regno &= -regno;
1608 regno = (1 << regno) - 1;
1609 as_tsktsk
1610 (_("Warning: duplicated register (r%d) in register list"),
1611 regno);
1612 }
1613
1614 range |= exp.X_add_number;
1615 }
1616 else
1617 {
1618 if (inst.reloc.type != 0)
1619 {
1620 inst.error = _("expression too complex");
1621 return FAIL;
1622 }
1623
1624 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1625 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1626 inst.reloc.pc_rel = 0;
1627 }
1628 }
1629
1630 if (*str == '|' || *str == '+')
1631 {
1632 str++;
1633 another_range = 1;
1634 }
1635 }
1636 while (another_range);
1637
1638 *strp = str;
1639 return range;
1640 }
1641
1642 /* Types of registers in a list. */
1643
1644 enum reg_list_els
1645 {
1646 REGLIST_VFP_S,
1647 REGLIST_VFP_D,
1648 REGLIST_NEON_D
1649 };
1650
1651 /* Parse a VFP register list. If the string is invalid return FAIL.
1652 Otherwise return the number of registers, and set PBASE to the first
1653 register. Parses registers of type ETYPE.
1654 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1655 - Q registers can be used to specify pairs of D registers
1656 - { } can be omitted from around a singleton register list
1657 FIXME: This is not implemented, as it would require backtracking in
1658 some cases, e.g.:
1659 vtbl.8 d3,d4,d5
1660 This could be done (the meaning isn't really ambiguous), but doesn't
1661 fit in well with the current parsing framework.
1662 - 32 D registers may be used (also true for VFPv3).
1663 FIXME: Types are ignored in these register lists, which is probably a
1664 bug. */
1665
1666 static int
1667 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1668 {
1669 char *str = *ccp;
1670 int base_reg;
1671 int new_base;
1672 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1673 int max_regs = 0;
1674 int count = 0;
1675 int warned = 0;
1676 unsigned long mask = 0;
1677 int i;
1678
1679 if (*str != '{')
1680 {
1681 inst.error = _("expecting {");
1682 return FAIL;
1683 }
1684
1685 str++;
1686
1687 switch (etype)
1688 {
1689 case REGLIST_VFP_S:
1690 regtype = REG_TYPE_VFS;
1691 max_regs = 32;
1692 break;
1693
1694 case REGLIST_VFP_D:
1695 regtype = REG_TYPE_VFD;
1696 break;
1697
1698 case REGLIST_NEON_D:
1699 regtype = REG_TYPE_NDQ;
1700 break;
1701 }
1702
1703 if (etype != REGLIST_VFP_S)
1704 {
1705 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1706 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1707 {
1708 max_regs = 32;
1709 if (thumb_mode)
1710 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1711 fpu_vfp_ext_d32);
1712 else
1713 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1714 fpu_vfp_ext_d32);
1715 }
1716 else
1717 max_regs = 16;
1718 }
1719
1720 base_reg = max_regs;
1721
1722 do
1723 {
1724 int setmask = 1, addregs = 1;
1725
1726 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1727
1728 if (new_base == FAIL)
1729 {
1730 first_error (_(reg_expected_msgs[regtype]));
1731 return FAIL;
1732 }
1733
1734 if (new_base >= max_regs)
1735 {
1736 first_error (_("register out of range in list"));
1737 return FAIL;
1738 }
1739
1740 /* Note: a value of 2 * n is returned for the register Q<n>. */
1741 if (regtype == REG_TYPE_NQ)
1742 {
1743 setmask = 3;
1744 addregs = 2;
1745 }
1746
1747 if (new_base < base_reg)
1748 base_reg = new_base;
1749
1750 if (mask & (setmask << new_base))
1751 {
1752 first_error (_("invalid register list"));
1753 return FAIL;
1754 }
1755
1756 if ((mask >> new_base) != 0 && ! warned)
1757 {
1758 as_tsktsk (_("register list not in ascending order"));
1759 warned = 1;
1760 }
1761
1762 mask |= setmask << new_base;
1763 count += addregs;
1764
1765 if (*str == '-') /* We have the start of a range expression */
1766 {
1767 int high_range;
1768
1769 str++;
1770
1771 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1772 == FAIL)
1773 {
1774 inst.error = gettext (reg_expected_msgs[regtype]);
1775 return FAIL;
1776 }
1777
1778 if (high_range >= max_regs)
1779 {
1780 first_error (_("register out of range in list"));
1781 return FAIL;
1782 }
1783
1784 if (regtype == REG_TYPE_NQ)
1785 high_range = high_range + 1;
1786
1787 if (high_range <= new_base)
1788 {
1789 inst.error = _("register range not in ascending order");
1790 return FAIL;
1791 }
1792
1793 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1794 {
1795 if (mask & (setmask << new_base))
1796 {
1797 inst.error = _("invalid register list");
1798 return FAIL;
1799 }
1800
1801 mask |= setmask << new_base;
1802 count += addregs;
1803 }
1804 }
1805 }
1806 while (skip_past_comma (&str) != FAIL);
1807
1808 str++;
1809
1810 /* Sanity check -- should have raised a parse error above. */
1811 if (count == 0 || count > max_regs)
1812 abort ();
1813
1814 *pbase = base_reg;
1815
1816 /* Final test -- the registers must be consecutive. */
1817 mask >>= base_reg;
1818 for (i = 0; i < count; i++)
1819 {
1820 if ((mask & (1u << i)) == 0)
1821 {
1822 inst.error = _("non-contiguous register range");
1823 return FAIL;
1824 }
1825 }
1826
1827 *ccp = str;
1828
1829 return count;
1830 }
1831
1832 /* True if two alias types are the same. */
1833
1834 static bfd_boolean
1835 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1836 {
1837 if (!a && !b)
1838 return TRUE;
1839
1840 if (!a || !b)
1841 return FALSE;
1842
1843 if (a->defined != b->defined)
1844 return FALSE;
1845
1846 if ((a->defined & NTA_HASTYPE) != 0
1847 && (a->eltype.type != b->eltype.type
1848 || a->eltype.size != b->eltype.size))
1849 return FALSE;
1850
1851 if ((a->defined & NTA_HASINDEX) != 0
1852 && (a->index != b->index))
1853 return FALSE;
1854
1855 return TRUE;
1856 }
1857
1858 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1859 The base register is put in *PBASE.
1860 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1861 the return value.
1862 The register stride (minus one) is put in bit 4 of the return value.
1863 Bits [6:5] encode the list length (minus one).
1864 The type of the list elements is put in *ELTYPE, if non-NULL. */
1865
1866 #define NEON_LANE(X) ((X) & 0xf)
1867 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1868 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1869
1870 static int
1871 parse_neon_el_struct_list (char **str, unsigned *pbase,
1872 struct neon_type_el *eltype)
1873 {
1874 char *ptr = *str;
1875 int base_reg = -1;
1876 int reg_incr = -1;
1877 int count = 0;
1878 int lane = -1;
1879 int leading_brace = 0;
1880 enum arm_reg_type rtype = REG_TYPE_NDQ;
1881 int addregs = 1;
1882 const char *const incr_error = _("register stride must be 1 or 2");
1883 const char *const type_error = _("mismatched element/structure types in list");
1884 struct neon_typed_alias firsttype;
1885
1886 if (skip_past_char (&ptr, '{') == SUCCESS)
1887 leading_brace = 1;
1888
1889 do
1890 {
1891 struct neon_typed_alias atype;
1892 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1893
1894 if (getreg == FAIL)
1895 {
1896 first_error (_(reg_expected_msgs[rtype]));
1897 return FAIL;
1898 }
1899
1900 if (base_reg == -1)
1901 {
1902 base_reg = getreg;
1903 if (rtype == REG_TYPE_NQ)
1904 {
1905 reg_incr = 1;
1906 addregs = 2;
1907 }
1908 firsttype = atype;
1909 }
1910 else if (reg_incr == -1)
1911 {
1912 reg_incr = getreg - base_reg;
1913 if (reg_incr < 1 || reg_incr > 2)
1914 {
1915 first_error (_(incr_error));
1916 return FAIL;
1917 }
1918 }
1919 else if (getreg != base_reg + reg_incr * count)
1920 {
1921 first_error (_(incr_error));
1922 return FAIL;
1923 }
1924
1925 if (! neon_alias_types_same (&atype, &firsttype))
1926 {
1927 first_error (_(type_error));
1928 return FAIL;
1929 }
1930
1931 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1932 modes. */
1933 if (ptr[0] == '-')
1934 {
1935 struct neon_typed_alias htype;
1936 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1937 if (lane == -1)
1938 lane = NEON_INTERLEAVE_LANES;
1939 else if (lane != NEON_INTERLEAVE_LANES)
1940 {
1941 first_error (_(type_error));
1942 return FAIL;
1943 }
1944 if (reg_incr == -1)
1945 reg_incr = 1;
1946 else if (reg_incr != 1)
1947 {
1948 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1949 return FAIL;
1950 }
1951 ptr++;
1952 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1953 if (hireg == FAIL)
1954 {
1955 first_error (_(reg_expected_msgs[rtype]));
1956 return FAIL;
1957 }
1958 if (! neon_alias_types_same (&htype, &firsttype))
1959 {
1960 first_error (_(type_error));
1961 return FAIL;
1962 }
1963 count += hireg + dregs - getreg;
1964 continue;
1965 }
1966
1967 /* If we're using Q registers, we can't use [] or [n] syntax. */
1968 if (rtype == REG_TYPE_NQ)
1969 {
1970 count += 2;
1971 continue;
1972 }
1973
1974 if ((atype.defined & NTA_HASINDEX) != 0)
1975 {
1976 if (lane == -1)
1977 lane = atype.index;
1978 else if (lane != atype.index)
1979 {
1980 first_error (_(type_error));
1981 return FAIL;
1982 }
1983 }
1984 else if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
1988 first_error (_(type_error));
1989 return FAIL;
1990 }
1991 count++;
1992 }
1993 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1994
1995 /* No lane set by [x]. We must be interleaving structures. */
1996 if (lane == -1)
1997 lane = NEON_INTERLEAVE_LANES;
1998
1999 /* Sanity check. */
2000 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2001 || (count > 1 && reg_incr == -1))
2002 {
2003 first_error (_("error parsing element/structure list"));
2004 return FAIL;
2005 }
2006
2007 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2008 {
2009 first_error (_("expected }"));
2010 return FAIL;
2011 }
2012
2013 if (reg_incr == -1)
2014 reg_incr = 1;
2015
2016 if (eltype)
2017 *eltype = firsttype.eltype;
2018
2019 *pbase = base_reg;
2020 *str = ptr;
2021
2022 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2023 }
2024
2025 /* Parse an explicit relocation suffix on an expression. This is
2026 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2027 arm_reloc_hsh contains no entries, so this function can only
2028 succeed if there is no () after the word. Returns -1 on error,
2029 BFD_RELOC_UNUSED if there wasn't any suffix. */
2030 static int
2031 parse_reloc (char **str)
2032 {
2033 struct reloc_entry *r;
2034 char *p, *q;
2035
2036 if (**str != '(')
2037 return BFD_RELOC_UNUSED;
2038
2039 p = *str + 1;
2040 q = p;
2041
2042 while (*q && *q != ')' && *q != ',')
2043 q++;
2044 if (*q != ')')
2045 return -1;
2046
2047 if ((r = (struct reloc_entry *)
2048 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2049 return -1;
2050
2051 *str = q + 1;
2052 return r->reloc;
2053 }
2054
2055 /* Directives: register aliases. */
2056
2057 static struct reg_entry *
2058 insert_reg_alias (char *str, int number, int type)
2059 {
2060 struct reg_entry *new_reg;
2061 const char *name;
2062
2063 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2064 {
2065 if (new_reg->builtin)
2066 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2067
2068 /* Only warn about a redefinition if it's not defined as the
2069 same register. */
2070 else if (new_reg->number != number || new_reg->type != type)
2071 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2072
2073 return NULL;
2074 }
2075
2076 name = xstrdup (str);
2077 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2078
2079 new_reg->name = name;
2080 new_reg->number = number;
2081 new_reg->type = type;
2082 new_reg->builtin = FALSE;
2083 new_reg->neon = NULL;
2084
2085 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2086 abort ();
2087
2088 return new_reg;
2089 }
2090
2091 static void
2092 insert_neon_reg_alias (char *str, int number, int type,
2093 struct neon_typed_alias *atype)
2094 {
2095 struct reg_entry *reg = insert_reg_alias (str, number, type);
2096
2097 if (!reg)
2098 {
2099 first_error (_("attempt to redefine typed alias"));
2100 return;
2101 }
2102
2103 if (atype)
2104 {
2105 reg->neon = (struct neon_typed_alias *)
2106 xmalloc (sizeof (struct neon_typed_alias));
2107 *reg->neon = *atype;
2108 }
2109 }
2110
2111 /* Look for the .req directive. This is of the form:
2112
2113 new_register_name .req existing_register_name
2114
2115 If we find one, or if it looks sufficiently like one that we want to
2116 handle any error here, return TRUE. Otherwise return FALSE. */
2117
2118 static bfd_boolean
2119 create_register_alias (char * newname, char *p)
2120 {
2121 struct reg_entry *old;
2122 char *oldname, *nbuf;
2123 size_t nlen;
2124
2125 /* The input scrubber ensures that whitespace after the mnemonic is
2126 collapsed to single spaces. */
2127 oldname = p;
2128 if (strncmp (oldname, " .req ", 6) != 0)
2129 return FALSE;
2130
2131 oldname += 6;
2132 if (*oldname == '\0')
2133 return FALSE;
2134
2135 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2136 if (!old)
2137 {
2138 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2139 return TRUE;
2140 }
2141
2142 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2143 the desired alias name, and p points to its end. If not, then
2144 the desired alias name is in the global original_case_string. */
2145 #ifdef TC_CASE_SENSITIVE
2146 nlen = p - newname;
2147 #else
2148 newname = original_case_string;
2149 nlen = strlen (newname);
2150 #endif
2151
2152 nbuf = (char *) alloca (nlen + 1);
2153 memcpy (nbuf, newname, nlen);
2154 nbuf[nlen] = '\0';
2155
2156 /* Create aliases under the new name as stated; an all-lowercase
2157 version of the new name; and an all-uppercase version of the new
2158 name. */
2159 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2160 {
2161 for (p = nbuf; *p; p++)
2162 *p = TOUPPER (*p);
2163
2164 if (strncmp (nbuf, newname, nlen))
2165 {
2166 /* If this attempt to create an additional alias fails, do not bother
2167 trying to create the all-lower case alias. We will fail and issue
2168 a second, duplicate error message. This situation arises when the
2169 programmer does something like:
2170 foo .req r0
2171 Foo .req r1
2172 The second .req creates the "Foo" alias but then fails to create
2173 the artificial FOO alias because it has already been created by the
2174 first .req. */
2175 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2176 return TRUE;
2177 }
2178
2179 for (p = nbuf; *p; p++)
2180 *p = TOLOWER (*p);
2181
2182 if (strncmp (nbuf, newname, nlen))
2183 insert_reg_alias (nbuf, old->number, old->type);
2184 }
2185
2186 return TRUE;
2187 }
2188
2189 /* Create a Neon typed/indexed register alias using directives, e.g.:
2190 X .dn d5.s32[1]
2191 Y .qn 6.s16
2192 Z .dn d7
2193 T .dn Z[0]
2194 These typed registers can be used instead of the types specified after the
2195 Neon mnemonic, so long as all operands given have types. Types can also be
2196 specified directly, e.g.:
2197 vadd d0.s32, d1.s32, d2.s32 */
2198
2199 static bfd_boolean
2200 create_neon_reg_alias (char *newname, char *p)
2201 {
2202 enum arm_reg_type basetype;
2203 struct reg_entry *basereg;
2204 struct reg_entry mybasereg;
2205 struct neon_type ntype;
2206 struct neon_typed_alias typeinfo;
2207 char *namebuf, *nameend;
2208 int namelen;
2209
2210 typeinfo.defined = 0;
2211 typeinfo.eltype.type = NT_invtype;
2212 typeinfo.eltype.size = -1;
2213 typeinfo.index = -1;
2214
2215 nameend = p;
2216
2217 if (strncmp (p, " .dn ", 5) == 0)
2218 basetype = REG_TYPE_VFD;
2219 else if (strncmp (p, " .qn ", 5) == 0)
2220 basetype = REG_TYPE_NQ;
2221 else
2222 return FALSE;
2223
2224 p += 5;
2225
2226 if (*p == '\0')
2227 return FALSE;
2228
2229 basereg = arm_reg_parse_multi (&p);
2230
2231 if (basereg && basereg->type != basetype)
2232 {
2233 as_bad (_("bad type for register"));
2234 return FALSE;
2235 }
2236
2237 if (basereg == NULL)
2238 {
2239 expressionS exp;
2240 /* Try parsing as an integer. */
2241 my_get_expression (&exp, &p, GE_NO_PREFIX);
2242 if (exp.X_op != O_constant)
2243 {
2244 as_bad (_("expression must be constant"));
2245 return FALSE;
2246 }
2247 basereg = &mybasereg;
2248 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2249 : exp.X_add_number;
2250 basereg->neon = 0;
2251 }
2252
2253 if (basereg->neon)
2254 typeinfo = *basereg->neon;
2255
2256 if (parse_neon_type (&ntype, &p) == SUCCESS)
2257 {
2258 /* We got a type. */
2259 if (typeinfo.defined & NTA_HASTYPE)
2260 {
2261 as_bad (_("can't redefine the type of a register alias"));
2262 return FALSE;
2263 }
2264
2265 typeinfo.defined |= NTA_HASTYPE;
2266 if (ntype.elems != 1)
2267 {
2268 as_bad (_("you must specify a single type only"));
2269 return FALSE;
2270 }
2271 typeinfo.eltype = ntype.el[0];
2272 }
2273
2274 if (skip_past_char (&p, '[') == SUCCESS)
2275 {
2276 expressionS exp;
2277 /* We got a scalar index. */
2278
2279 if (typeinfo.defined & NTA_HASINDEX)
2280 {
2281 as_bad (_("can't redefine the index of a scalar alias"));
2282 return FALSE;
2283 }
2284
2285 my_get_expression (&exp, &p, GE_NO_PREFIX);
2286
2287 if (exp.X_op != O_constant)
2288 {
2289 as_bad (_("scalar index must be constant"));
2290 return FALSE;
2291 }
2292
2293 typeinfo.defined |= NTA_HASINDEX;
2294 typeinfo.index = exp.X_add_number;
2295
2296 if (skip_past_char (&p, ']') == FAIL)
2297 {
2298 as_bad (_("expecting ]"));
2299 return FALSE;
2300 }
2301 }
2302
2303 namelen = nameend - newname;
2304 namebuf = (char *) alloca (namelen + 1);
2305 strncpy (namebuf, newname, namelen);
2306 namebuf[namelen] = '\0';
2307
2308 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2309 typeinfo.defined != 0 ? &typeinfo : NULL);
2310
2311 /* Insert name in all uppercase. */
2312 for (p = namebuf; *p; p++)
2313 *p = TOUPPER (*p);
2314
2315 if (strncmp (namebuf, newname, namelen))
2316 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2317 typeinfo.defined != 0 ? &typeinfo : NULL);
2318
2319 /* Insert name in all lowercase. */
2320 for (p = namebuf; *p; p++)
2321 *p = TOLOWER (*p);
2322
2323 if (strncmp (namebuf, newname, namelen))
2324 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2325 typeinfo.defined != 0 ? &typeinfo : NULL);
2326
2327 return TRUE;
2328 }
2329
2330 /* Should never be called, as .req goes between the alias and the
2331 register name, not at the beginning of the line. */
2332
2333 static void
2334 s_req (int a ATTRIBUTE_UNUSED)
2335 {
2336 as_bad (_("invalid syntax for .req directive"));
2337 }
2338
2339 static void
2340 s_dn (int a ATTRIBUTE_UNUSED)
2341 {
2342 as_bad (_("invalid syntax for .dn directive"));
2343 }
2344
2345 static void
2346 s_qn (int a ATTRIBUTE_UNUSED)
2347 {
2348 as_bad (_("invalid syntax for .qn directive"));
2349 }
2350
2351 /* The .unreq directive deletes an alias which was previously defined
2352 by .req. For example:
2353
2354 my_alias .req r11
2355 .unreq my_alias */
2356
2357 static void
2358 s_unreq (int a ATTRIBUTE_UNUSED)
2359 {
2360 char * name;
2361 char saved_char;
2362
2363 name = input_line_pointer;
2364
2365 while (*input_line_pointer != 0
2366 && *input_line_pointer != ' '
2367 && *input_line_pointer != '\n')
2368 ++input_line_pointer;
2369
2370 saved_char = *input_line_pointer;
2371 *input_line_pointer = 0;
2372
2373 if (!*name)
2374 as_bad (_("invalid syntax for .unreq directive"));
2375 else
2376 {
2377 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2378 name);
2379
2380 if (!reg)
2381 as_bad (_("unknown register alias '%s'"), name);
2382 else if (reg->builtin)
2383 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2384 name);
2385 else
2386 {
2387 char * p;
2388 char * nbuf;
2389
2390 hash_delete (arm_reg_hsh, name, FALSE);
2391 free ((char *) reg->name);
2392 if (reg->neon)
2393 free (reg->neon);
2394 free (reg);
2395
2396 /* Also locate the all upper case and all lower case versions.
2397 Do not complain if we cannot find one or the other as it
2398 was probably deleted above. */
2399
2400 nbuf = strdup (name);
2401 for (p = nbuf; *p; p++)
2402 *p = TOUPPER (*p);
2403 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2404 if (reg)
2405 {
2406 hash_delete (arm_reg_hsh, nbuf, FALSE);
2407 free ((char *) reg->name);
2408 if (reg->neon)
2409 free (reg->neon);
2410 free (reg);
2411 }
2412
2413 for (p = nbuf; *p; p++)
2414 *p = TOLOWER (*p);
2415 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2416 if (reg)
2417 {
2418 hash_delete (arm_reg_hsh, nbuf, FALSE);
2419 free ((char *) reg->name);
2420 if (reg->neon)
2421 free (reg->neon);
2422 free (reg);
2423 }
2424
2425 free (nbuf);
2426 }
2427 }
2428
2429 *input_line_pointer = saved_char;
2430 demand_empty_rest_of_line ();
2431 }
2432
2433 /* Directives: Instruction set selection. */
2434
2435 #ifdef OBJ_ELF
2436 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2437 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2438 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2439 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2440
2441 /* Create a new mapping symbol for the transition to STATE. */
2442
2443 static void
2444 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2445 {
2446 symbolS * symbolP;
2447 const char * symname;
2448 int type;
2449
2450 switch (state)
2451 {
2452 case MAP_DATA:
2453 symname = "$d";
2454 type = BSF_NO_FLAGS;
2455 break;
2456 case MAP_ARM:
2457 symname = "$a";
2458 type = BSF_NO_FLAGS;
2459 break;
2460 case MAP_THUMB:
2461 symname = "$t";
2462 type = BSF_NO_FLAGS;
2463 break;
2464 default:
2465 abort ();
2466 }
2467
2468 symbolP = symbol_new (symname, now_seg, value, frag);
2469 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2470
2471 switch (state)
2472 {
2473 case MAP_ARM:
2474 THUMB_SET_FUNC (symbolP, 0);
2475 ARM_SET_THUMB (symbolP, 0);
2476 ARM_SET_INTERWORK (symbolP, support_interwork);
2477 break;
2478
2479 case MAP_THUMB:
2480 THUMB_SET_FUNC (symbolP, 1);
2481 ARM_SET_THUMB (symbolP, 1);
2482 ARM_SET_INTERWORK (symbolP, support_interwork);
2483 break;
2484
2485 case MAP_DATA:
2486 default:
2487 break;
2488 }
2489
2490 /* Save the mapping symbols for future reference. Also check that
2491 we do not place two mapping symbols at the same offset within a
2492 frag. We'll handle overlap between frags in
2493 check_mapping_symbols. */
2494 if (value == 0)
2495 {
2496 know (frag->tc_frag_data.first_map == NULL);
2497 frag->tc_frag_data.first_map = symbolP;
2498 }
2499 if (frag->tc_frag_data.last_map != NULL)
2500 know (S_GET_VALUE (frag->tc_frag_data.last_map) < S_GET_VALUE (symbolP));
2501 frag->tc_frag_data.last_map = symbolP;
2502 }
2503
2504 /* We must sometimes convert a region marked as code to data during
2505 code alignment, if an odd number of bytes have to be padded. The
2506 code mapping symbol is pushed to an aligned address. */
2507
2508 static void
2509 insert_data_mapping_symbol (enum mstate state,
2510 valueT value, fragS *frag, offsetT bytes)
2511 {
2512 /* If there was already a mapping symbol, remove it. */
2513 if (frag->tc_frag_data.last_map != NULL
2514 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2515 {
2516 symbolS *symp = frag->tc_frag_data.last_map;
2517
2518 if (value == 0)
2519 {
2520 know (frag->tc_frag_data.first_map == symp);
2521 frag->tc_frag_data.first_map = NULL;
2522 }
2523 frag->tc_frag_data.last_map = NULL;
2524 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2525 }
2526
2527 make_mapping_symbol (MAP_DATA, value, frag);
2528 make_mapping_symbol (state, value + bytes, frag);
2529 }
2530
2531 static void mapping_state_2 (enum mstate state, int max_chars);
2532
2533 /* Set the mapping state to STATE. Only call this when about to
2534 emit some STATE bytes to the file. */
2535
2536 void
2537 mapping_state (enum mstate state)
2538 {
2539 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2540
2541 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2542
2543 if (mapstate == state)
2544 /* The mapping symbol has already been emitted.
2545 There is nothing else to do. */
2546 return;
2547 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2548 /* This case will be evaluated later in the next else. */
2549 return;
2550 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2551 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2552 {
2553 /* Only add the symbol if the offset is > 0:
2554 if we're at the first frag, check it's size > 0;
2555 if we're not at the first frag, then for sure
2556 the offset is > 0. */
2557 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2558 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2559
2560 if (add_symbol)
2561 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2562 }
2563
2564 mapping_state_2 (state, 0);
2565 #undef TRANSITION
2566 }
2567
2568 /* Same as mapping_state, but MAX_CHARS bytes have already been
2569 allocated. Put the mapping symbol that far back. */
2570
2571 static void
2572 mapping_state_2 (enum mstate state, int max_chars)
2573 {
2574 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2575
2576 if (!SEG_NORMAL (now_seg))
2577 return;
2578
2579 if (mapstate == state)
2580 /* The mapping symbol has already been emitted.
2581 There is nothing else to do. */
2582 return;
2583
2584 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2585 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2586 }
2587 #else
2588 #define mapping_state(x) ((void)0)
2589 #define mapping_state_2(x, y) ((void)0)
2590 #endif
2591
2592 /* Find the real, Thumb encoded start of a Thumb function. */
2593
2594 #ifdef OBJ_COFF
2595 static symbolS *
2596 find_real_start (symbolS * symbolP)
2597 {
2598 char * real_start;
2599 const char * name = S_GET_NAME (symbolP);
2600 symbolS * new_target;
2601
2602 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2603 #define STUB_NAME ".real_start_of"
2604
2605 if (name == NULL)
2606 abort ();
2607
2608 /* The compiler may generate BL instructions to local labels because
2609 it needs to perform a branch to a far away location. These labels
2610 do not have a corresponding ".real_start_of" label. We check
2611 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2612 the ".real_start_of" convention for nonlocal branches. */
2613 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2614 return symbolP;
2615
2616 real_start = ACONCAT ((STUB_NAME, name, NULL));
2617 new_target = symbol_find (real_start);
2618
2619 if (new_target == NULL)
2620 {
2621 as_warn (_("Failed to find real start of function: %s\n"), name);
2622 new_target = symbolP;
2623 }
2624
2625 return new_target;
2626 }
2627 #endif
2628
2629 static void
2630 opcode_select (int width)
2631 {
2632 switch (width)
2633 {
2634 case 16:
2635 if (! thumb_mode)
2636 {
2637 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2638 as_bad (_("selected processor does not support THUMB opcodes"));
2639
2640 thumb_mode = 1;
2641 /* No need to force the alignment, since we will have been
2642 coming from ARM mode, which is word-aligned. */
2643 record_alignment (now_seg, 1);
2644 }
2645 break;
2646
2647 case 32:
2648 if (thumb_mode)
2649 {
2650 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2651 as_bad (_("selected processor does not support ARM opcodes"));
2652
2653 thumb_mode = 0;
2654
2655 if (!need_pass_2)
2656 frag_align (2, 0, 0);
2657
2658 record_alignment (now_seg, 1);
2659 }
2660 break;
2661
2662 default:
2663 as_bad (_("invalid instruction size selected (%d)"), width);
2664 }
2665 }
2666
2667 static void
2668 s_arm (int ignore ATTRIBUTE_UNUSED)
2669 {
2670 opcode_select (32);
2671 demand_empty_rest_of_line ();
2672 }
2673
2674 static void
2675 s_thumb (int ignore ATTRIBUTE_UNUSED)
2676 {
2677 opcode_select (16);
2678 demand_empty_rest_of_line ();
2679 }
2680
2681 static void
2682 s_code (int unused ATTRIBUTE_UNUSED)
2683 {
2684 int temp;
2685
2686 temp = get_absolute_expression ();
2687 switch (temp)
2688 {
2689 case 16:
2690 case 32:
2691 opcode_select (temp);
2692 break;
2693
2694 default:
2695 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2696 }
2697 }
2698
2699 static void
2700 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2701 {
2702 /* If we are not already in thumb mode go into it, EVEN if
2703 the target processor does not support thumb instructions.
2704 This is used by gcc/config/arm/lib1funcs.asm for example
2705 to compile interworking support functions even if the
2706 target processor should not support interworking. */
2707 if (! thumb_mode)
2708 {
2709 thumb_mode = 2;
2710 record_alignment (now_seg, 1);
2711 }
2712
2713 demand_empty_rest_of_line ();
2714 }
2715
2716 static void
2717 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2718 {
2719 s_thumb (0);
2720
2721 /* The following label is the name/address of the start of a Thumb function.
2722 We need to know this for the interworking support. */
2723 label_is_thumb_function_name = TRUE;
2724 }
2725
2726 /* Perform a .set directive, but also mark the alias as
2727 being a thumb function. */
2728
2729 static void
2730 s_thumb_set (int equiv)
2731 {
2732 /* XXX the following is a duplicate of the code for s_set() in read.c
2733 We cannot just call that code as we need to get at the symbol that
2734 is created. */
2735 char * name;
2736 char delim;
2737 char * end_name;
2738 symbolS * symbolP;
2739
2740 /* Especial apologies for the random logic:
2741 This just grew, and could be parsed much more simply!
2742 Dean - in haste. */
2743 name = input_line_pointer;
2744 delim = get_symbol_end ();
2745 end_name = input_line_pointer;
2746 *end_name = delim;
2747
2748 if (*input_line_pointer != ',')
2749 {
2750 *end_name = 0;
2751 as_bad (_("expected comma after name \"%s\""), name);
2752 *end_name = delim;
2753 ignore_rest_of_line ();
2754 return;
2755 }
2756
2757 input_line_pointer++;
2758 *end_name = 0;
2759
2760 if (name[0] == '.' && name[1] == '\0')
2761 {
2762 /* XXX - this should not happen to .thumb_set. */
2763 abort ();
2764 }
2765
2766 if ((symbolP = symbol_find (name)) == NULL
2767 && (symbolP = md_undefined_symbol (name)) == NULL)
2768 {
2769 #ifndef NO_LISTING
2770 /* When doing symbol listings, play games with dummy fragments living
2771 outside the normal fragment chain to record the file and line info
2772 for this symbol. */
2773 if (listing & LISTING_SYMBOLS)
2774 {
2775 extern struct list_info_struct * listing_tail;
2776 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2777
2778 memset (dummy_frag, 0, sizeof (fragS));
2779 dummy_frag->fr_type = rs_fill;
2780 dummy_frag->line = listing_tail;
2781 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2782 dummy_frag->fr_symbol = symbolP;
2783 }
2784 else
2785 #endif
2786 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2787
2788 #ifdef OBJ_COFF
2789 /* "set" symbols are local unless otherwise specified. */
2790 SF_SET_LOCAL (symbolP);
2791 #endif /* OBJ_COFF */
2792 } /* Make a new symbol. */
2793
2794 symbol_table_insert (symbolP);
2795
2796 * end_name = delim;
2797
2798 if (equiv
2799 && S_IS_DEFINED (symbolP)
2800 && S_GET_SEGMENT (symbolP) != reg_section)
2801 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2802
2803 pseudo_set (symbolP);
2804
2805 demand_empty_rest_of_line ();
2806
2807 /* XXX Now we come to the Thumb specific bit of code. */
2808
2809 THUMB_SET_FUNC (symbolP, 1);
2810 ARM_SET_THUMB (symbolP, 1);
2811 #if defined OBJ_ELF || defined OBJ_COFF
2812 ARM_SET_INTERWORK (symbolP, support_interwork);
2813 #endif
2814 }
2815
2816 /* Directives: Mode selection. */
2817
2818 /* .syntax [unified|divided] - choose the new unified syntax
2819 (same for Arm and Thumb encoding, modulo slight differences in what
2820 can be represented) or the old divergent syntax for each mode. */
2821 static void
2822 s_syntax (int unused ATTRIBUTE_UNUSED)
2823 {
2824 char *name, delim;
2825
2826 name = input_line_pointer;
2827 delim = get_symbol_end ();
2828
2829 if (!strcasecmp (name, "unified"))
2830 unified_syntax = TRUE;
2831 else if (!strcasecmp (name, "divided"))
2832 unified_syntax = FALSE;
2833 else
2834 {
2835 as_bad (_("unrecognized syntax mode \"%s\""), name);
2836 return;
2837 }
2838 *input_line_pointer = delim;
2839 demand_empty_rest_of_line ();
2840 }
2841
2842 /* Directives: sectioning and alignment. */
2843
2844 /* Same as s_align_ptwo but align 0 => align 2. */
2845
2846 static void
2847 s_align (int unused ATTRIBUTE_UNUSED)
2848 {
2849 int temp;
2850 bfd_boolean fill_p;
2851 long temp_fill;
2852 long max_alignment = 15;
2853
2854 temp = get_absolute_expression ();
2855 if (temp > max_alignment)
2856 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2857 else if (temp < 0)
2858 {
2859 as_bad (_("alignment negative. 0 assumed."));
2860 temp = 0;
2861 }
2862
2863 if (*input_line_pointer == ',')
2864 {
2865 input_line_pointer++;
2866 temp_fill = get_absolute_expression ();
2867 fill_p = TRUE;
2868 }
2869 else
2870 {
2871 fill_p = FALSE;
2872 temp_fill = 0;
2873 }
2874
2875 if (!temp)
2876 temp = 2;
2877
2878 /* Only make a frag if we HAVE to. */
2879 if (temp && !need_pass_2)
2880 {
2881 if (!fill_p && subseg_text_p (now_seg))
2882 frag_align_code (temp, 0);
2883 else
2884 frag_align (temp, (int) temp_fill, 0);
2885 }
2886 demand_empty_rest_of_line ();
2887
2888 record_alignment (now_seg, temp);
2889 }
2890
2891 static void
2892 s_bss (int ignore ATTRIBUTE_UNUSED)
2893 {
2894 /* We don't support putting frags in the BSS segment, we fake it by
2895 marking in_bss, then looking at s_skip for clues. */
2896 subseg_set (bss_section, 0);
2897 demand_empty_rest_of_line ();
2898
2899 #ifdef md_elf_section_change_hook
2900 md_elf_section_change_hook ();
2901 #endif
2902 }
2903
2904 static void
2905 s_even (int ignore ATTRIBUTE_UNUSED)
2906 {
2907 /* Never make frag if expect extra pass. */
2908 if (!need_pass_2)
2909 frag_align (1, 0, 0);
2910
2911 record_alignment (now_seg, 1);
2912
2913 demand_empty_rest_of_line ();
2914 }
2915
2916 /* Directives: Literal pools. */
2917
2918 static literal_pool *
2919 find_literal_pool (void)
2920 {
2921 literal_pool * pool;
2922
2923 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2924 {
2925 if (pool->section == now_seg
2926 && pool->sub_section == now_subseg)
2927 break;
2928 }
2929
2930 return pool;
2931 }
2932
2933 static literal_pool *
2934 find_or_make_literal_pool (void)
2935 {
2936 /* Next literal pool ID number. */
2937 static unsigned int latest_pool_num = 1;
2938 literal_pool * pool;
2939
2940 pool = find_literal_pool ();
2941
2942 if (pool == NULL)
2943 {
2944 /* Create a new pool. */
2945 pool = (literal_pool *) xmalloc (sizeof (* pool));
2946 if (! pool)
2947 return NULL;
2948
2949 pool->next_free_entry = 0;
2950 pool->section = now_seg;
2951 pool->sub_section = now_subseg;
2952 pool->next = list_of_pools;
2953 pool->symbol = NULL;
2954
2955 /* Add it to the list. */
2956 list_of_pools = pool;
2957 }
2958
2959 /* New pools, and emptied pools, will have a NULL symbol. */
2960 if (pool->symbol == NULL)
2961 {
2962 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2963 (valueT) 0, &zero_address_frag);
2964 pool->id = latest_pool_num ++;
2965 }
2966
2967 /* Done. */
2968 return pool;
2969 }
2970
2971 /* Add the literal in the global 'inst'
2972 structure to the relevant literal pool. */
2973
2974 static int
2975 add_to_lit_pool (void)
2976 {
2977 literal_pool * pool;
2978 unsigned int entry;
2979
2980 pool = find_or_make_literal_pool ();
2981
2982 /* Check if this literal value is already in the pool. */
2983 for (entry = 0; entry < pool->next_free_entry; entry ++)
2984 {
2985 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2986 && (inst.reloc.exp.X_op == O_constant)
2987 && (pool->literals[entry].X_add_number
2988 == inst.reloc.exp.X_add_number)
2989 && (pool->literals[entry].X_unsigned
2990 == inst.reloc.exp.X_unsigned))
2991 break;
2992
2993 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2994 && (inst.reloc.exp.X_op == O_symbol)
2995 && (pool->literals[entry].X_add_number
2996 == inst.reloc.exp.X_add_number)
2997 && (pool->literals[entry].X_add_symbol
2998 == inst.reloc.exp.X_add_symbol)
2999 && (pool->literals[entry].X_op_symbol
3000 == inst.reloc.exp.X_op_symbol))
3001 break;
3002 }
3003
3004 /* Do we need to create a new entry? */
3005 if (entry == pool->next_free_entry)
3006 {
3007 if (entry >= MAX_LITERAL_POOL_SIZE)
3008 {
3009 inst.error = _("literal pool overflow");
3010 return FAIL;
3011 }
3012
3013 pool->literals[entry] = inst.reloc.exp;
3014 pool->next_free_entry += 1;
3015 }
3016
3017 inst.reloc.exp.X_op = O_symbol;
3018 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3019 inst.reloc.exp.X_add_symbol = pool->symbol;
3020
3021 return SUCCESS;
3022 }
3023
3024 /* Can't use symbol_new here, so have to create a symbol and then at
3025 a later date assign it a value. Thats what these functions do. */
3026
3027 static void
3028 symbol_locate (symbolS * symbolP,
3029 const char * name, /* It is copied, the caller can modify. */
3030 segT segment, /* Segment identifier (SEG_<something>). */
3031 valueT valu, /* Symbol value. */
3032 fragS * frag) /* Associated fragment. */
3033 {
3034 unsigned int name_length;
3035 char * preserved_copy_of_name;
3036
3037 name_length = strlen (name) + 1; /* +1 for \0. */
3038 obstack_grow (&notes, name, name_length);
3039 preserved_copy_of_name = (char *) obstack_finish (&notes);
3040
3041 #ifdef tc_canonicalize_symbol_name
3042 preserved_copy_of_name =
3043 tc_canonicalize_symbol_name (preserved_copy_of_name);
3044 #endif
3045
3046 S_SET_NAME (symbolP, preserved_copy_of_name);
3047
3048 S_SET_SEGMENT (symbolP, segment);
3049 S_SET_VALUE (symbolP, valu);
3050 symbol_clear_list_pointers (symbolP);
3051
3052 symbol_set_frag (symbolP, frag);
3053
3054 /* Link to end of symbol chain. */
3055 {
3056 extern int symbol_table_frozen;
3057
3058 if (symbol_table_frozen)
3059 abort ();
3060 }
3061
3062 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3063
3064 obj_symbol_new_hook (symbolP);
3065
3066 #ifdef tc_symbol_new_hook
3067 tc_symbol_new_hook (symbolP);
3068 #endif
3069
3070 #ifdef DEBUG_SYMS
3071 verify_symbol_chain (symbol_rootP, symbol_lastP);
3072 #endif /* DEBUG_SYMS */
3073 }
3074
3075
3076 static void
3077 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3078 {
3079 unsigned int entry;
3080 literal_pool * pool;
3081 char sym_name[20];
3082
3083 pool = find_literal_pool ();
3084 if (pool == NULL
3085 || pool->symbol == NULL
3086 || pool->next_free_entry == 0)
3087 return;
3088
3089 mapping_state (MAP_DATA);
3090
3091 /* Align pool as you have word accesses.
3092 Only make a frag if we have to. */
3093 if (!need_pass_2)
3094 frag_align (2, 0, 0);
3095
3096 record_alignment (now_seg, 2);
3097
3098 sprintf (sym_name, "$$lit_\002%x", pool->id);
3099
3100 symbol_locate (pool->symbol, sym_name, now_seg,
3101 (valueT) frag_now_fix (), frag_now);
3102 symbol_table_insert (pool->symbol);
3103
3104 ARM_SET_THUMB (pool->symbol, thumb_mode);
3105
3106 #if defined OBJ_COFF || defined OBJ_ELF
3107 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3108 #endif
3109
3110 for (entry = 0; entry < pool->next_free_entry; entry ++)
3111 /* First output the expression in the instruction to the pool. */
3112 emit_expr (&(pool->literals[entry]), 4); /* .word */
3113
3114 /* Mark the pool as empty. */
3115 pool->next_free_entry = 0;
3116 pool->symbol = NULL;
3117 }
3118
3119 #ifdef OBJ_ELF
3120 /* Forward declarations for functions below, in the MD interface
3121 section. */
3122 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3123 static valueT create_unwind_entry (int);
3124 static void start_unwind_section (const segT, int);
3125 static void add_unwind_opcode (valueT, int);
3126 static void flush_pending_unwind (void);
3127
3128 /* Directives: Data. */
3129
3130 static void
3131 s_arm_elf_cons (int nbytes)
3132 {
3133 expressionS exp;
3134
3135 #ifdef md_flush_pending_output
3136 md_flush_pending_output ();
3137 #endif
3138
3139 if (is_it_end_of_statement ())
3140 {
3141 demand_empty_rest_of_line ();
3142 return;
3143 }
3144
3145 #ifdef md_cons_align
3146 md_cons_align (nbytes);
3147 #endif
3148
3149 mapping_state (MAP_DATA);
3150 do
3151 {
3152 int reloc;
3153 char *base = input_line_pointer;
3154
3155 expression (& exp);
3156
3157 if (exp.X_op != O_symbol)
3158 emit_expr (&exp, (unsigned int) nbytes);
3159 else
3160 {
3161 char *before_reloc = input_line_pointer;
3162 reloc = parse_reloc (&input_line_pointer);
3163 if (reloc == -1)
3164 {
3165 as_bad (_("unrecognized relocation suffix"));
3166 ignore_rest_of_line ();
3167 return;
3168 }
3169 else if (reloc == BFD_RELOC_UNUSED)
3170 emit_expr (&exp, (unsigned int) nbytes);
3171 else
3172 {
3173 reloc_howto_type *howto = (reloc_howto_type *)
3174 bfd_reloc_type_lookup (stdoutput,
3175 (bfd_reloc_code_real_type) reloc);
3176 int size = bfd_get_reloc_size (howto);
3177
3178 if (reloc == BFD_RELOC_ARM_PLT32)
3179 {
3180 as_bad (_("(plt) is only valid on branch targets"));
3181 reloc = BFD_RELOC_UNUSED;
3182 size = 0;
3183 }
3184
3185 if (size > nbytes)
3186 as_bad (_("%s relocations do not fit in %d bytes"),
3187 howto->name, nbytes);
3188 else
3189 {
3190 /* We've parsed an expression stopping at O_symbol.
3191 But there may be more expression left now that we
3192 have parsed the relocation marker. Parse it again.
3193 XXX Surely there is a cleaner way to do this. */
3194 char *p = input_line_pointer;
3195 int offset;
3196 char *save_buf = (char *) alloca (input_line_pointer - base);
3197 memcpy (save_buf, base, input_line_pointer - base);
3198 memmove (base + (input_line_pointer - before_reloc),
3199 base, before_reloc - base);
3200
3201 input_line_pointer = base + (input_line_pointer-before_reloc);
3202 expression (&exp);
3203 memcpy (base, save_buf, p - base);
3204
3205 offset = nbytes - size;
3206 p = frag_more ((int) nbytes);
3207 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3208 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3209 }
3210 }
3211 }
3212 }
3213 while (*input_line_pointer++ == ',');
3214
3215 /* Put terminator back into stream. */
3216 input_line_pointer --;
3217 demand_empty_rest_of_line ();
3218 }
3219
3220 /* Emit an expression containing a 32-bit thumb instruction.
3221 Implementation based on put_thumb32_insn. */
3222
3223 static void
3224 emit_thumb32_expr (expressionS * exp)
3225 {
3226 expressionS exp_high = *exp;
3227
3228 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3229 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3230 exp->X_add_number &= 0xffff;
3231 emit_expr (exp, (unsigned int) THUMB_SIZE);
3232 }
3233
3234 /* Guess the instruction size based on the opcode. */
3235
3236 static int
3237 thumb_insn_size (int opcode)
3238 {
3239 if ((unsigned int) opcode < 0xe800u)
3240 return 2;
3241 else if ((unsigned int) opcode >= 0xe8000000u)
3242 return 4;
3243 else
3244 return 0;
3245 }
3246
3247 static bfd_boolean
3248 emit_insn (expressionS *exp, int nbytes)
3249 {
3250 int size = 0;
3251
3252 if (exp->X_op == O_constant)
3253 {
3254 size = nbytes;
3255
3256 if (size == 0)
3257 size = thumb_insn_size (exp->X_add_number);
3258
3259 if (size != 0)
3260 {
3261 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3262 {
3263 as_bad (_(".inst.n operand too big. "\
3264 "Use .inst.w instead"));
3265 size = 0;
3266 }
3267 else
3268 {
3269 if (now_it.state == AUTOMATIC_IT_BLOCK)
3270 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3271 else
3272 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3273
3274 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3275 emit_thumb32_expr (exp);
3276 else
3277 emit_expr (exp, (unsigned int) size);
3278
3279 it_fsm_post_encode ();
3280 }
3281 }
3282 else
3283 as_bad (_("cannot determine Thumb instruction size. " \
3284 "Use .inst.n/.inst.w instead"));
3285 }
3286 else
3287 as_bad (_("constant expression required"));
3288
3289 return (size != 0);
3290 }
3291
3292 /* Like s_arm_elf_cons but do not use md_cons_align and
3293 set the mapping state to MAP_ARM/MAP_THUMB. */
3294
3295 static void
3296 s_arm_elf_inst (int nbytes)
3297 {
3298 if (is_it_end_of_statement ())
3299 {
3300 demand_empty_rest_of_line ();
3301 return;
3302 }
3303
3304 /* Calling mapping_state () here will not change ARM/THUMB,
3305 but will ensure not to be in DATA state. */
3306
3307 if (thumb_mode)
3308 mapping_state (MAP_THUMB);
3309 else
3310 {
3311 if (nbytes != 0)
3312 {
3313 as_bad (_("width suffixes are invalid in ARM mode"));
3314 ignore_rest_of_line ();
3315 return;
3316 }
3317
3318 nbytes = 4;
3319
3320 mapping_state (MAP_ARM);
3321 }
3322
3323 do
3324 {
3325 expressionS exp;
3326
3327 expression (& exp);
3328
3329 if (! emit_insn (& exp, nbytes))
3330 {
3331 ignore_rest_of_line ();
3332 return;
3333 }
3334 }
3335 while (*input_line_pointer++ == ',');
3336
3337 /* Put terminator back into stream. */
3338 input_line_pointer --;
3339 demand_empty_rest_of_line ();
3340 }
3341
3342 /* Parse a .rel31 directive. */
3343
3344 static void
3345 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3346 {
3347 expressionS exp;
3348 char *p;
3349 valueT highbit;
3350
3351 highbit = 0;
3352 if (*input_line_pointer == '1')
3353 highbit = 0x80000000;
3354 else if (*input_line_pointer != '0')
3355 as_bad (_("expected 0 or 1"));
3356
3357 input_line_pointer++;
3358 if (*input_line_pointer != ',')
3359 as_bad (_("missing comma"));
3360 input_line_pointer++;
3361
3362 #ifdef md_flush_pending_output
3363 md_flush_pending_output ();
3364 #endif
3365
3366 #ifdef md_cons_align
3367 md_cons_align (4);
3368 #endif
3369
3370 mapping_state (MAP_DATA);
3371
3372 expression (&exp);
3373
3374 p = frag_more (4);
3375 md_number_to_chars (p, highbit, 4);
3376 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3377 BFD_RELOC_ARM_PREL31);
3378
3379 demand_empty_rest_of_line ();
3380 }
3381
3382 /* Directives: AEABI stack-unwind tables. */
3383
3384 /* Parse an unwind_fnstart directive. Simply records the current location. */
3385
3386 static void
3387 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3388 {
3389 demand_empty_rest_of_line ();
3390 if (unwind.proc_start)
3391 {
3392 as_bad (_("duplicate .fnstart directive"));
3393 return;
3394 }
3395
3396 /* Mark the start of the function. */
3397 unwind.proc_start = expr_build_dot ();
3398
3399 /* Reset the rest of the unwind info. */
3400 unwind.opcode_count = 0;
3401 unwind.table_entry = NULL;
3402 unwind.personality_routine = NULL;
3403 unwind.personality_index = -1;
3404 unwind.frame_size = 0;
3405 unwind.fp_offset = 0;
3406 unwind.fp_reg = REG_SP;
3407 unwind.fp_used = 0;
3408 unwind.sp_restored = 0;
3409 }
3410
3411
3412 /* Parse a handlerdata directive. Creates the exception handling table entry
3413 for the function. */
3414
3415 static void
3416 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3417 {
3418 demand_empty_rest_of_line ();
3419 if (!unwind.proc_start)
3420 as_bad (MISSING_FNSTART);
3421
3422 if (unwind.table_entry)
3423 as_bad (_("duplicate .handlerdata directive"));
3424
3425 create_unwind_entry (1);
3426 }
3427
3428 /* Parse an unwind_fnend directive. Generates the index table entry. */
3429
3430 static void
3431 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3432 {
3433 long where;
3434 char *ptr;
3435 valueT val;
3436 unsigned int marked_pr_dependency;
3437
3438 demand_empty_rest_of_line ();
3439
3440 if (!unwind.proc_start)
3441 {
3442 as_bad (_(".fnend directive without .fnstart"));
3443 return;
3444 }
3445
3446 /* Add eh table entry. */
3447 if (unwind.table_entry == NULL)
3448 val = create_unwind_entry (0);
3449 else
3450 val = 0;
3451
3452 /* Add index table entry. This is two words. */
3453 start_unwind_section (unwind.saved_seg, 1);
3454 frag_align (2, 0, 0);
3455 record_alignment (now_seg, 2);
3456
3457 ptr = frag_more (8);
3458 where = frag_now_fix () - 8;
3459
3460 /* Self relative offset of the function start. */
3461 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3462 BFD_RELOC_ARM_PREL31);
3463
3464 /* Indicate dependency on EHABI-defined personality routines to the
3465 linker, if it hasn't been done already. */
3466 marked_pr_dependency
3467 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3468 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3469 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3470 {
3471 static const char *const name[] =
3472 {
3473 "__aeabi_unwind_cpp_pr0",
3474 "__aeabi_unwind_cpp_pr1",
3475 "__aeabi_unwind_cpp_pr2"
3476 };
3477 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3478 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3479 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3480 |= 1 << unwind.personality_index;
3481 }
3482
3483 if (val)
3484 /* Inline exception table entry. */
3485 md_number_to_chars (ptr + 4, val, 4);
3486 else
3487 /* Self relative offset of the table entry. */
3488 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3489 BFD_RELOC_ARM_PREL31);
3490
3491 /* Restore the original section. */
3492 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3493
3494 unwind.proc_start = NULL;
3495 }
3496
3497
3498 /* Parse an unwind_cantunwind directive. */
3499
3500 static void
3501 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3502 {
3503 demand_empty_rest_of_line ();
3504 if (!unwind.proc_start)
3505 as_bad (MISSING_FNSTART);
3506
3507 if (unwind.personality_routine || unwind.personality_index != -1)
3508 as_bad (_("personality routine specified for cantunwind frame"));
3509
3510 unwind.personality_index = -2;
3511 }
3512
3513
3514 /* Parse a personalityindex directive. */
3515
3516 static void
3517 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3518 {
3519 expressionS exp;
3520
3521 if (!unwind.proc_start)
3522 as_bad (MISSING_FNSTART);
3523
3524 if (unwind.personality_routine || unwind.personality_index != -1)
3525 as_bad (_("duplicate .personalityindex directive"));
3526
3527 expression (&exp);
3528
3529 if (exp.X_op != O_constant
3530 || exp.X_add_number < 0 || exp.X_add_number > 15)
3531 {
3532 as_bad (_("bad personality routine number"));
3533 ignore_rest_of_line ();
3534 return;
3535 }
3536
3537 unwind.personality_index = exp.X_add_number;
3538
3539 demand_empty_rest_of_line ();
3540 }
3541
3542
3543 /* Parse a personality directive. */
3544
3545 static void
3546 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3547 {
3548 char *name, *p, c;
3549
3550 if (!unwind.proc_start)
3551 as_bad (MISSING_FNSTART);
3552
3553 if (unwind.personality_routine || unwind.personality_index != -1)
3554 as_bad (_("duplicate .personality directive"));
3555
3556 name = input_line_pointer;
3557 c = get_symbol_end ();
3558 p = input_line_pointer;
3559 unwind.personality_routine = symbol_find_or_make (name);
3560 *p = c;
3561 demand_empty_rest_of_line ();
3562 }
3563
3564
3565 /* Parse a directive saving core registers. */
3566
3567 static void
3568 s_arm_unwind_save_core (void)
3569 {
3570 valueT op;
3571 long range;
3572 int n;
3573
3574 range = parse_reg_list (&input_line_pointer);
3575 if (range == FAIL)
3576 {
3577 as_bad (_("expected register list"));
3578 ignore_rest_of_line ();
3579 return;
3580 }
3581
3582 demand_empty_rest_of_line ();
3583
3584 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3585 into .unwind_save {..., sp...}. We aren't bothered about the value of
3586 ip because it is clobbered by calls. */
3587 if (unwind.sp_restored && unwind.fp_reg == 12
3588 && (range & 0x3000) == 0x1000)
3589 {
3590 unwind.opcode_count--;
3591 unwind.sp_restored = 0;
3592 range = (range | 0x2000) & ~0x1000;
3593 unwind.pending_offset = 0;
3594 }
3595
3596 /* Pop r4-r15. */
3597 if (range & 0xfff0)
3598 {
3599 /* See if we can use the short opcodes. These pop a block of up to 8
3600 registers starting with r4, plus maybe r14. */
3601 for (n = 0; n < 8; n++)
3602 {
3603 /* Break at the first non-saved register. */
3604 if ((range & (1 << (n + 4))) == 0)
3605 break;
3606 }
3607 /* See if there are any other bits set. */
3608 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3609 {
3610 /* Use the long form. */
3611 op = 0x8000 | ((range >> 4) & 0xfff);
3612 add_unwind_opcode (op, 2);
3613 }
3614 else
3615 {
3616 /* Use the short form. */
3617 if (range & 0x4000)
3618 op = 0xa8; /* Pop r14. */
3619 else
3620 op = 0xa0; /* Do not pop r14. */
3621 op |= (n - 1);
3622 add_unwind_opcode (op, 1);
3623 }
3624 }
3625
3626 /* Pop r0-r3. */
3627 if (range & 0xf)
3628 {
3629 op = 0xb100 | (range & 0xf);
3630 add_unwind_opcode (op, 2);
3631 }
3632
3633 /* Record the number of bytes pushed. */
3634 for (n = 0; n < 16; n++)
3635 {
3636 if (range & (1 << n))
3637 unwind.frame_size += 4;
3638 }
3639 }
3640
3641
3642 /* Parse a directive saving FPA registers. */
3643
3644 static void
3645 s_arm_unwind_save_fpa (int reg)
3646 {
3647 expressionS exp;
3648 int num_regs;
3649 valueT op;
3650
3651 /* Get Number of registers to transfer. */
3652 if (skip_past_comma (&input_line_pointer) != FAIL)
3653 expression (&exp);
3654 else
3655 exp.X_op = O_illegal;
3656
3657 if (exp.X_op != O_constant)
3658 {
3659 as_bad (_("expected , <constant>"));
3660 ignore_rest_of_line ();
3661 return;
3662 }
3663
3664 num_regs = exp.X_add_number;
3665
3666 if (num_regs < 1 || num_regs > 4)
3667 {
3668 as_bad (_("number of registers must be in the range [1:4]"));
3669 ignore_rest_of_line ();
3670 return;
3671 }
3672
3673 demand_empty_rest_of_line ();
3674
3675 if (reg == 4)
3676 {
3677 /* Short form. */
3678 op = 0xb4 | (num_regs - 1);
3679 add_unwind_opcode (op, 1);
3680 }
3681 else
3682 {
3683 /* Long form. */
3684 op = 0xc800 | (reg << 4) | (num_regs - 1);
3685 add_unwind_opcode (op, 2);
3686 }
3687 unwind.frame_size += num_regs * 12;
3688 }
3689
3690
3691 /* Parse a directive saving VFP registers for ARMv6 and above. */
3692
3693 static void
3694 s_arm_unwind_save_vfp_armv6 (void)
3695 {
3696 int count;
3697 unsigned int start;
3698 valueT op;
3699 int num_vfpv3_regs = 0;
3700 int num_regs_below_16;
3701
3702 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3703 if (count == FAIL)
3704 {
3705 as_bad (_("expected register list"));
3706 ignore_rest_of_line ();
3707 return;
3708 }
3709
3710 demand_empty_rest_of_line ();
3711
3712 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3713 than FSTMX/FLDMX-style ones). */
3714
3715 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3716 if (start >= 16)
3717 num_vfpv3_regs = count;
3718 else if (start + count > 16)
3719 num_vfpv3_regs = start + count - 16;
3720
3721 if (num_vfpv3_regs > 0)
3722 {
3723 int start_offset = start > 16 ? start - 16 : 0;
3724 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3725 add_unwind_opcode (op, 2);
3726 }
3727
3728 /* Generate opcode for registers numbered in the range 0 .. 15. */
3729 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3730 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3731 if (num_regs_below_16 > 0)
3732 {
3733 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3734 add_unwind_opcode (op, 2);
3735 }
3736
3737 unwind.frame_size += count * 8;
3738 }
3739
3740
3741 /* Parse a directive saving VFP registers for pre-ARMv6. */
3742
3743 static void
3744 s_arm_unwind_save_vfp (void)
3745 {
3746 int count;
3747 unsigned int reg;
3748 valueT op;
3749
3750 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3751 if (count == FAIL)
3752 {
3753 as_bad (_("expected register list"));
3754 ignore_rest_of_line ();
3755 return;
3756 }
3757
3758 demand_empty_rest_of_line ();
3759
3760 if (reg == 8)
3761 {
3762 /* Short form. */
3763 op = 0xb8 | (count - 1);
3764 add_unwind_opcode (op, 1);
3765 }
3766 else
3767 {
3768 /* Long form. */
3769 op = 0xb300 | (reg << 4) | (count - 1);
3770 add_unwind_opcode (op, 2);
3771 }
3772 unwind.frame_size += count * 8 + 4;
3773 }
3774
3775
3776 /* Parse a directive saving iWMMXt data registers. */
3777
3778 static void
3779 s_arm_unwind_save_mmxwr (void)
3780 {
3781 int reg;
3782 int hi_reg;
3783 int i;
3784 unsigned mask = 0;
3785 valueT op;
3786
3787 if (*input_line_pointer == '{')
3788 input_line_pointer++;
3789
3790 do
3791 {
3792 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3793
3794 if (reg == FAIL)
3795 {
3796 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3797 goto error;
3798 }
3799
3800 if (mask >> reg)
3801 as_tsktsk (_("register list not in ascending order"));
3802 mask |= 1 << reg;
3803
3804 if (*input_line_pointer == '-')
3805 {
3806 input_line_pointer++;
3807 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3808 if (hi_reg == FAIL)
3809 {
3810 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3811 goto error;
3812 }
3813 else if (reg >= hi_reg)
3814 {
3815 as_bad (_("bad register range"));
3816 goto error;
3817 }
3818 for (; reg < hi_reg; reg++)
3819 mask |= 1 << reg;
3820 }
3821 }
3822 while (skip_past_comma (&input_line_pointer) != FAIL);
3823
3824 if (*input_line_pointer == '}')
3825 input_line_pointer++;
3826
3827 demand_empty_rest_of_line ();
3828
3829 /* Generate any deferred opcodes because we're going to be looking at
3830 the list. */
3831 flush_pending_unwind ();
3832
3833 for (i = 0; i < 16; i++)
3834 {
3835 if (mask & (1 << i))
3836 unwind.frame_size += 8;
3837 }
3838
3839 /* Attempt to combine with a previous opcode. We do this because gcc
3840 likes to output separate unwind directives for a single block of
3841 registers. */
3842 if (unwind.opcode_count > 0)
3843 {
3844 i = unwind.opcodes[unwind.opcode_count - 1];
3845 if ((i & 0xf8) == 0xc0)
3846 {
3847 i &= 7;
3848 /* Only merge if the blocks are contiguous. */
3849 if (i < 6)
3850 {
3851 if ((mask & 0xfe00) == (1 << 9))
3852 {
3853 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3854 unwind.opcode_count--;
3855 }
3856 }
3857 else if (i == 6 && unwind.opcode_count >= 2)
3858 {
3859 i = unwind.opcodes[unwind.opcode_count - 2];
3860 reg = i >> 4;
3861 i &= 0xf;
3862
3863 op = 0xffff << (reg - 1);
3864 if (reg > 0
3865 && ((mask & op) == (1u << (reg - 1))))
3866 {
3867 op = (1 << (reg + i + 1)) - 1;
3868 op &= ~((1 << reg) - 1);
3869 mask |= op;
3870 unwind.opcode_count -= 2;
3871 }
3872 }
3873 }
3874 }
3875
3876 hi_reg = 15;
3877 /* We want to generate opcodes in the order the registers have been
3878 saved, ie. descending order. */
3879 for (reg = 15; reg >= -1; reg--)
3880 {
3881 /* Save registers in blocks. */
3882 if (reg < 0
3883 || !(mask & (1 << reg)))
3884 {
3885 /* We found an unsaved reg. Generate opcodes to save the
3886 preceding block. */
3887 if (reg != hi_reg)
3888 {
3889 if (reg == 9)
3890 {
3891 /* Short form. */
3892 op = 0xc0 | (hi_reg - 10);
3893 add_unwind_opcode (op, 1);
3894 }
3895 else
3896 {
3897 /* Long form. */
3898 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3899 add_unwind_opcode (op, 2);
3900 }
3901 }
3902 hi_reg = reg - 1;
3903 }
3904 }
3905
3906 return;
3907 error:
3908 ignore_rest_of_line ();
3909 }
3910
3911 static void
3912 s_arm_unwind_save_mmxwcg (void)
3913 {
3914 int reg;
3915 int hi_reg;
3916 unsigned mask = 0;
3917 valueT op;
3918
3919 if (*input_line_pointer == '{')
3920 input_line_pointer++;
3921
3922 do
3923 {
3924 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3925
3926 if (reg == FAIL)
3927 {
3928 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3929 goto error;
3930 }
3931
3932 reg -= 8;
3933 if (mask >> reg)
3934 as_tsktsk (_("register list not in ascending order"));
3935 mask |= 1 << reg;
3936
3937 if (*input_line_pointer == '-')
3938 {
3939 input_line_pointer++;
3940 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3941 if (hi_reg == FAIL)
3942 {
3943 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3944 goto error;
3945 }
3946 else if (reg >= hi_reg)
3947 {
3948 as_bad (_("bad register range"));
3949 goto error;
3950 }
3951 for (; reg < hi_reg; reg++)
3952 mask |= 1 << reg;
3953 }
3954 }
3955 while (skip_past_comma (&input_line_pointer) != FAIL);
3956
3957 if (*input_line_pointer == '}')
3958 input_line_pointer++;
3959
3960 demand_empty_rest_of_line ();
3961
3962 /* Generate any deferred opcodes because we're going to be looking at
3963 the list. */
3964 flush_pending_unwind ();
3965
3966 for (reg = 0; reg < 16; reg++)
3967 {
3968 if (mask & (1 << reg))
3969 unwind.frame_size += 4;
3970 }
3971 op = 0xc700 | mask;
3972 add_unwind_opcode (op, 2);
3973 return;
3974 error:
3975 ignore_rest_of_line ();
3976 }
3977
3978
3979 /* Parse an unwind_save directive.
3980 If the argument is non-zero, this is a .vsave directive. */
3981
3982 static void
3983 s_arm_unwind_save (int arch_v6)
3984 {
3985 char *peek;
3986 struct reg_entry *reg;
3987 bfd_boolean had_brace = FALSE;
3988
3989 if (!unwind.proc_start)
3990 as_bad (MISSING_FNSTART);
3991
3992 /* Figure out what sort of save we have. */
3993 peek = input_line_pointer;
3994
3995 if (*peek == '{')
3996 {
3997 had_brace = TRUE;
3998 peek++;
3999 }
4000
4001 reg = arm_reg_parse_multi (&peek);
4002
4003 if (!reg)
4004 {
4005 as_bad (_("register expected"));
4006 ignore_rest_of_line ();
4007 return;
4008 }
4009
4010 switch (reg->type)
4011 {
4012 case REG_TYPE_FN:
4013 if (had_brace)
4014 {
4015 as_bad (_("FPA .unwind_save does not take a register list"));
4016 ignore_rest_of_line ();
4017 return;
4018 }
4019 input_line_pointer = peek;
4020 s_arm_unwind_save_fpa (reg->number);
4021 return;
4022
4023 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4024 case REG_TYPE_VFD:
4025 if (arch_v6)
4026 s_arm_unwind_save_vfp_armv6 ();
4027 else
4028 s_arm_unwind_save_vfp ();
4029 return;
4030 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4031 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4032
4033 default:
4034 as_bad (_(".unwind_save does not support this kind of register"));
4035 ignore_rest_of_line ();
4036 }
4037 }
4038
4039
4040 /* Parse an unwind_movsp directive. */
4041
4042 static void
4043 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4044 {
4045 int reg;
4046 valueT op;
4047 int offset;
4048
4049 if (!unwind.proc_start)
4050 as_bad (MISSING_FNSTART);
4051
4052 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4053 if (reg == FAIL)
4054 {
4055 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4056 ignore_rest_of_line ();
4057 return;
4058 }
4059
4060 /* Optional constant. */
4061 if (skip_past_comma (&input_line_pointer) != FAIL)
4062 {
4063 if (immediate_for_directive (&offset) == FAIL)
4064 return;
4065 }
4066 else
4067 offset = 0;
4068
4069 demand_empty_rest_of_line ();
4070
4071 if (reg == REG_SP || reg == REG_PC)
4072 {
4073 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4074 return;
4075 }
4076
4077 if (unwind.fp_reg != REG_SP)
4078 as_bad (_("unexpected .unwind_movsp directive"));
4079
4080 /* Generate opcode to restore the value. */
4081 op = 0x90 | reg;
4082 add_unwind_opcode (op, 1);
4083
4084 /* Record the information for later. */
4085 unwind.fp_reg = reg;
4086 unwind.fp_offset = unwind.frame_size - offset;
4087 unwind.sp_restored = 1;
4088 }
4089
4090 /* Parse an unwind_pad directive. */
4091
4092 static void
4093 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4094 {
4095 int offset;
4096
4097 if (!unwind.proc_start)
4098 as_bad (MISSING_FNSTART);
4099
4100 if (immediate_for_directive (&offset) == FAIL)
4101 return;
4102
4103 if (offset & 3)
4104 {
4105 as_bad (_("stack increment must be multiple of 4"));
4106 ignore_rest_of_line ();
4107 return;
4108 }
4109
4110 /* Don't generate any opcodes, just record the details for later. */
4111 unwind.frame_size += offset;
4112 unwind.pending_offset += offset;
4113
4114 demand_empty_rest_of_line ();
4115 }
4116
4117 /* Parse an unwind_setfp directive. */
4118
4119 static void
4120 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4121 {
4122 int sp_reg;
4123 int fp_reg;
4124 int offset;
4125
4126 if (!unwind.proc_start)
4127 as_bad (MISSING_FNSTART);
4128
4129 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4130 if (skip_past_comma (&input_line_pointer) == FAIL)
4131 sp_reg = FAIL;
4132 else
4133 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4134
4135 if (fp_reg == FAIL || sp_reg == FAIL)
4136 {
4137 as_bad (_("expected <reg>, <reg>"));
4138 ignore_rest_of_line ();
4139 return;
4140 }
4141
4142 /* Optional constant. */
4143 if (skip_past_comma (&input_line_pointer) != FAIL)
4144 {
4145 if (immediate_for_directive (&offset) == FAIL)
4146 return;
4147 }
4148 else
4149 offset = 0;
4150
4151 demand_empty_rest_of_line ();
4152
4153 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4154 {
4155 as_bad (_("register must be either sp or set by a previous"
4156 "unwind_movsp directive"));
4157 return;
4158 }
4159
4160 /* Don't generate any opcodes, just record the information for later. */
4161 unwind.fp_reg = fp_reg;
4162 unwind.fp_used = 1;
4163 if (sp_reg == REG_SP)
4164 unwind.fp_offset = unwind.frame_size - offset;
4165 else
4166 unwind.fp_offset -= offset;
4167 }
4168
4169 /* Parse an unwind_raw directive. */
4170
4171 static void
4172 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4173 {
4174 expressionS exp;
4175 /* This is an arbitrary limit. */
4176 unsigned char op[16];
4177 int count;
4178
4179 if (!unwind.proc_start)
4180 as_bad (MISSING_FNSTART);
4181
4182 expression (&exp);
4183 if (exp.X_op == O_constant
4184 && skip_past_comma (&input_line_pointer) != FAIL)
4185 {
4186 unwind.frame_size += exp.X_add_number;
4187 expression (&exp);
4188 }
4189 else
4190 exp.X_op = O_illegal;
4191
4192 if (exp.X_op != O_constant)
4193 {
4194 as_bad (_("expected <offset>, <opcode>"));
4195 ignore_rest_of_line ();
4196 return;
4197 }
4198
4199 count = 0;
4200
4201 /* Parse the opcode. */
4202 for (;;)
4203 {
4204 if (count >= 16)
4205 {
4206 as_bad (_("unwind opcode too long"));
4207 ignore_rest_of_line ();
4208 }
4209 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4210 {
4211 as_bad (_("invalid unwind opcode"));
4212 ignore_rest_of_line ();
4213 return;
4214 }
4215 op[count++] = exp.X_add_number;
4216
4217 /* Parse the next byte. */
4218 if (skip_past_comma (&input_line_pointer) == FAIL)
4219 break;
4220
4221 expression (&exp);
4222 }
4223
4224 /* Add the opcode bytes in reverse order. */
4225 while (count--)
4226 add_unwind_opcode (op[count], 1);
4227
4228 demand_empty_rest_of_line ();
4229 }
4230
4231
4232 /* Parse a .eabi_attribute directive. */
4233
4234 static void
4235 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4236 {
4237 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4238
4239 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4240 attributes_set_explicitly[tag] = 1;
4241 }
4242 #endif /* OBJ_ELF */
4243
4244 static void s_arm_arch (int);
4245 static void s_arm_object_arch (int);
4246 static void s_arm_cpu (int);
4247 static void s_arm_fpu (int);
4248
4249 #ifdef TE_PE
4250
4251 static void
4252 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4253 {
4254 expressionS exp;
4255
4256 do
4257 {
4258 expression (&exp);
4259 if (exp.X_op == O_symbol)
4260 exp.X_op = O_secrel;
4261
4262 emit_expr (&exp, 4);
4263 }
4264 while (*input_line_pointer++ == ',');
4265
4266 input_line_pointer--;
4267 demand_empty_rest_of_line ();
4268 }
4269 #endif /* TE_PE */
4270
4271 /* This table describes all the machine specific pseudo-ops the assembler
4272 has to support. The fields are:
4273 pseudo-op name without dot
4274 function to call to execute this pseudo-op
4275 Integer arg to pass to the function. */
4276
4277 const pseudo_typeS md_pseudo_table[] =
4278 {
4279 /* Never called because '.req' does not start a line. */
4280 { "req", s_req, 0 },
4281 /* Following two are likewise never called. */
4282 { "dn", s_dn, 0 },
4283 { "qn", s_qn, 0 },
4284 { "unreq", s_unreq, 0 },
4285 { "bss", s_bss, 0 },
4286 { "align", s_align, 0 },
4287 { "arm", s_arm, 0 },
4288 { "thumb", s_thumb, 0 },
4289 { "code", s_code, 0 },
4290 { "force_thumb", s_force_thumb, 0 },
4291 { "thumb_func", s_thumb_func, 0 },
4292 { "thumb_set", s_thumb_set, 0 },
4293 { "even", s_even, 0 },
4294 { "ltorg", s_ltorg, 0 },
4295 { "pool", s_ltorg, 0 },
4296 { "syntax", s_syntax, 0 },
4297 { "cpu", s_arm_cpu, 0 },
4298 { "arch", s_arm_arch, 0 },
4299 { "object_arch", s_arm_object_arch, 0 },
4300 { "fpu", s_arm_fpu, 0 },
4301 #ifdef OBJ_ELF
4302 { "word", s_arm_elf_cons, 4 },
4303 { "long", s_arm_elf_cons, 4 },
4304 { "inst.n", s_arm_elf_inst, 2 },
4305 { "inst.w", s_arm_elf_inst, 4 },
4306 { "inst", s_arm_elf_inst, 0 },
4307 { "rel31", s_arm_rel31, 0 },
4308 { "fnstart", s_arm_unwind_fnstart, 0 },
4309 { "fnend", s_arm_unwind_fnend, 0 },
4310 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4311 { "personality", s_arm_unwind_personality, 0 },
4312 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4313 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4314 { "save", s_arm_unwind_save, 0 },
4315 { "vsave", s_arm_unwind_save, 1 },
4316 { "movsp", s_arm_unwind_movsp, 0 },
4317 { "pad", s_arm_unwind_pad, 0 },
4318 { "setfp", s_arm_unwind_setfp, 0 },
4319 { "unwind_raw", s_arm_unwind_raw, 0 },
4320 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4321 #else
4322 { "word", cons, 4},
4323
4324 /* These are used for dwarf. */
4325 {"2byte", cons, 2},
4326 {"4byte", cons, 4},
4327 {"8byte", cons, 8},
4328 /* These are used for dwarf2. */
4329 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4330 { "loc", dwarf2_directive_loc, 0 },
4331 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4332 #endif
4333 { "extend", float_cons, 'x' },
4334 { "ldouble", float_cons, 'x' },
4335 { "packed", float_cons, 'p' },
4336 #ifdef TE_PE
4337 {"secrel32", pe_directive_secrel, 0},
4338 #endif
4339 { 0, 0, 0 }
4340 };
4341 \f
4342 /* Parser functions used exclusively in instruction operands. */
4343
4344 /* Generic immediate-value read function for use in insn parsing.
4345 STR points to the beginning of the immediate (the leading #);
4346 VAL receives the value; if the value is outside [MIN, MAX]
4347 issue an error. PREFIX_OPT is true if the immediate prefix is
4348 optional. */
4349
4350 static int
4351 parse_immediate (char **str, int *val, int min, int max,
4352 bfd_boolean prefix_opt)
4353 {
4354 expressionS exp;
4355 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4356 if (exp.X_op != O_constant)
4357 {
4358 inst.error = _("constant expression required");
4359 return FAIL;
4360 }
4361
4362 if (exp.X_add_number < min || exp.X_add_number > max)
4363 {
4364 inst.error = _("immediate value out of range");
4365 return FAIL;
4366 }
4367
4368 *val = exp.X_add_number;
4369 return SUCCESS;
4370 }
4371
4372 /* Less-generic immediate-value read function with the possibility of loading a
4373 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4374 instructions. Puts the result directly in inst.operands[i]. */
4375
4376 static int
4377 parse_big_immediate (char **str, int i)
4378 {
4379 expressionS exp;
4380 char *ptr = *str;
4381
4382 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4383
4384 if (exp.X_op == O_constant)
4385 {
4386 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4387 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4388 O_constant. We have to be careful not to break compilation for
4389 32-bit X_add_number, though. */
4390 if ((exp.X_add_number & ~0xffffffffl) != 0)
4391 {
4392 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4393 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4394 inst.operands[i].regisimm = 1;
4395 }
4396 }
4397 else if (exp.X_op == O_big
4398 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4399 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4400 {
4401 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4402 /* Bignums have their least significant bits in
4403 generic_bignum[0]. Make sure we put 32 bits in imm and
4404 32 bits in reg, in a (hopefully) portable way. */
4405 gas_assert (parts != 0);
4406 inst.operands[i].imm = 0;
4407 for (j = 0; j < parts; j++, idx++)
4408 inst.operands[i].imm |= generic_bignum[idx]
4409 << (LITTLENUM_NUMBER_OF_BITS * j);
4410 inst.operands[i].reg = 0;
4411 for (j = 0; j < parts; j++, idx++)
4412 inst.operands[i].reg |= generic_bignum[idx]
4413 << (LITTLENUM_NUMBER_OF_BITS * j);
4414 inst.operands[i].regisimm = 1;
4415 }
4416 else
4417 return FAIL;
4418
4419 *str = ptr;
4420
4421 return SUCCESS;
4422 }
4423
4424 /* Returns the pseudo-register number of an FPA immediate constant,
4425 or FAIL if there isn't a valid constant here. */
4426
4427 static int
4428 parse_fpa_immediate (char ** str)
4429 {
4430 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4431 char * save_in;
4432 expressionS exp;
4433 int i;
4434 int j;
4435
4436 /* First try and match exact strings, this is to guarantee
4437 that some formats will work even for cross assembly. */
4438
4439 for (i = 0; fp_const[i]; i++)
4440 {
4441 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4442 {
4443 char *start = *str;
4444
4445 *str += strlen (fp_const[i]);
4446 if (is_end_of_line[(unsigned char) **str])
4447 return i + 8;
4448 *str = start;
4449 }
4450 }
4451
4452 /* Just because we didn't get a match doesn't mean that the constant
4453 isn't valid, just that it is in a format that we don't
4454 automatically recognize. Try parsing it with the standard
4455 expression routines. */
4456
4457 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4458
4459 /* Look for a raw floating point number. */
4460 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4461 && is_end_of_line[(unsigned char) *save_in])
4462 {
4463 for (i = 0; i < NUM_FLOAT_VALS; i++)
4464 {
4465 for (j = 0; j < MAX_LITTLENUMS; j++)
4466 {
4467 if (words[j] != fp_values[i][j])
4468 break;
4469 }
4470
4471 if (j == MAX_LITTLENUMS)
4472 {
4473 *str = save_in;
4474 return i + 8;
4475 }
4476 }
4477 }
4478
4479 /* Try and parse a more complex expression, this will probably fail
4480 unless the code uses a floating point prefix (eg "0f"). */
4481 save_in = input_line_pointer;
4482 input_line_pointer = *str;
4483 if (expression (&exp) == absolute_section
4484 && exp.X_op == O_big
4485 && exp.X_add_number < 0)
4486 {
4487 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4488 Ditto for 15. */
4489 if (gen_to_words (words, 5, (long) 15) == 0)
4490 {
4491 for (i = 0; i < NUM_FLOAT_VALS; i++)
4492 {
4493 for (j = 0; j < MAX_LITTLENUMS; j++)
4494 {
4495 if (words[j] != fp_values[i][j])
4496 break;
4497 }
4498
4499 if (j == MAX_LITTLENUMS)
4500 {
4501 *str = input_line_pointer;
4502 input_line_pointer = save_in;
4503 return i + 8;
4504 }
4505 }
4506 }
4507 }
4508
4509 *str = input_line_pointer;
4510 input_line_pointer = save_in;
4511 inst.error = _("invalid FPA immediate expression");
4512 return FAIL;
4513 }
4514
4515 /* Returns 1 if a number has "quarter-precision" float format
4516 0baBbbbbbc defgh000 00000000 00000000. */
4517
4518 static int
4519 is_quarter_float (unsigned imm)
4520 {
4521 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4522 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4523 }
4524
4525 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4526 0baBbbbbbc defgh000 00000000 00000000.
4527 The zero and minus-zero cases need special handling, since they can't be
4528 encoded in the "quarter-precision" float format, but can nonetheless be
4529 loaded as integer constants. */
4530
4531 static unsigned
4532 parse_qfloat_immediate (char **ccp, int *immed)
4533 {
4534 char *str = *ccp;
4535 char *fpnum;
4536 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4537 int found_fpchar = 0;
4538
4539 skip_past_char (&str, '#');
4540
4541 /* We must not accidentally parse an integer as a floating-point number. Make
4542 sure that the value we parse is not an integer by checking for special
4543 characters '.' or 'e'.
4544 FIXME: This is a horrible hack, but doing better is tricky because type
4545 information isn't in a very usable state at parse time. */
4546 fpnum = str;
4547 skip_whitespace (fpnum);
4548
4549 if (strncmp (fpnum, "0x", 2) == 0)
4550 return FAIL;
4551 else
4552 {
4553 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4554 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4555 {
4556 found_fpchar = 1;
4557 break;
4558 }
4559
4560 if (!found_fpchar)
4561 return FAIL;
4562 }
4563
4564 if ((str = atof_ieee (str, 's', words)) != NULL)
4565 {
4566 unsigned fpword = 0;
4567 int i;
4568
4569 /* Our FP word must be 32 bits (single-precision FP). */
4570 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4571 {
4572 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4573 fpword |= words[i];
4574 }
4575
4576 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4577 *immed = fpword;
4578 else
4579 return FAIL;
4580
4581 *ccp = str;
4582
4583 return SUCCESS;
4584 }
4585
4586 return FAIL;
4587 }
4588
4589 /* Shift operands. */
4590 enum shift_kind
4591 {
4592 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4593 };
4594
4595 struct asm_shift_name
4596 {
4597 const char *name;
4598 enum shift_kind kind;
4599 };
4600
4601 /* Third argument to parse_shift. */
4602 enum parse_shift_mode
4603 {
4604 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4605 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4606 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4607 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4608 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4609 };
4610
4611 /* Parse a <shift> specifier on an ARM data processing instruction.
4612 This has three forms:
4613
4614 (LSL|LSR|ASL|ASR|ROR) Rs
4615 (LSL|LSR|ASL|ASR|ROR) #imm
4616 RRX
4617
4618 Note that ASL is assimilated to LSL in the instruction encoding, and
4619 RRX to ROR #0 (which cannot be written as such). */
4620
4621 static int
4622 parse_shift (char **str, int i, enum parse_shift_mode mode)
4623 {
4624 const struct asm_shift_name *shift_name;
4625 enum shift_kind shift;
4626 char *s = *str;
4627 char *p = s;
4628 int reg;
4629
4630 for (p = *str; ISALPHA (*p); p++)
4631 ;
4632
4633 if (p == *str)
4634 {
4635 inst.error = _("shift expression expected");
4636 return FAIL;
4637 }
4638
4639 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4640 p - *str);
4641
4642 if (shift_name == NULL)
4643 {
4644 inst.error = _("shift expression expected");
4645 return FAIL;
4646 }
4647
4648 shift = shift_name->kind;
4649
4650 switch (mode)
4651 {
4652 case NO_SHIFT_RESTRICT:
4653 case SHIFT_IMMEDIATE: break;
4654
4655 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4656 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4657 {
4658 inst.error = _("'LSL' or 'ASR' required");
4659 return FAIL;
4660 }
4661 break;
4662
4663 case SHIFT_LSL_IMMEDIATE:
4664 if (shift != SHIFT_LSL)
4665 {
4666 inst.error = _("'LSL' required");
4667 return FAIL;
4668 }
4669 break;
4670
4671 case SHIFT_ASR_IMMEDIATE:
4672 if (shift != SHIFT_ASR)
4673 {
4674 inst.error = _("'ASR' required");
4675 return FAIL;
4676 }
4677 break;
4678
4679 default: abort ();
4680 }
4681
4682 if (shift != SHIFT_RRX)
4683 {
4684 /* Whitespace can appear here if the next thing is a bare digit. */
4685 skip_whitespace (p);
4686
4687 if (mode == NO_SHIFT_RESTRICT
4688 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4689 {
4690 inst.operands[i].imm = reg;
4691 inst.operands[i].immisreg = 1;
4692 }
4693 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4694 return FAIL;
4695 }
4696 inst.operands[i].shift_kind = shift;
4697 inst.operands[i].shifted = 1;
4698 *str = p;
4699 return SUCCESS;
4700 }
4701
4702 /* Parse a <shifter_operand> for an ARM data processing instruction:
4703
4704 #<immediate>
4705 #<immediate>, <rotate>
4706 <Rm>
4707 <Rm>, <shift>
4708
4709 where <shift> is defined by parse_shift above, and <rotate> is a
4710 multiple of 2 between 0 and 30. Validation of immediate operands
4711 is deferred to md_apply_fix. */
4712
4713 static int
4714 parse_shifter_operand (char **str, int i)
4715 {
4716 int value;
4717 expressionS exp;
4718
4719 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4720 {
4721 inst.operands[i].reg = value;
4722 inst.operands[i].isreg = 1;
4723
4724 /* parse_shift will override this if appropriate */
4725 inst.reloc.exp.X_op = O_constant;
4726 inst.reloc.exp.X_add_number = 0;
4727
4728 if (skip_past_comma (str) == FAIL)
4729 return SUCCESS;
4730
4731 /* Shift operation on register. */
4732 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4733 }
4734
4735 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4736 return FAIL;
4737
4738 if (skip_past_comma (str) == SUCCESS)
4739 {
4740 /* #x, y -- ie explicit rotation by Y. */
4741 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4742 return FAIL;
4743
4744 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4745 {
4746 inst.error = _("constant expression expected");
4747 return FAIL;
4748 }
4749
4750 value = exp.X_add_number;
4751 if (value < 0 || value > 30 || value % 2 != 0)
4752 {
4753 inst.error = _("invalid rotation");
4754 return FAIL;
4755 }
4756 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4757 {
4758 inst.error = _("invalid constant");
4759 return FAIL;
4760 }
4761
4762 /* Convert to decoded value. md_apply_fix will put it back. */
4763 inst.reloc.exp.X_add_number
4764 = (((inst.reloc.exp.X_add_number << (32 - value))
4765 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4766 }
4767
4768 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4769 inst.reloc.pc_rel = 0;
4770 return SUCCESS;
4771 }
4772
4773 /* Group relocation information. Each entry in the table contains the
4774 textual name of the relocation as may appear in assembler source
4775 and must end with a colon.
4776 Along with this textual name are the relocation codes to be used if
4777 the corresponding instruction is an ALU instruction (ADD or SUB only),
4778 an LDR, an LDRS, or an LDC. */
4779
4780 struct group_reloc_table_entry
4781 {
4782 const char *name;
4783 int alu_code;
4784 int ldr_code;
4785 int ldrs_code;
4786 int ldc_code;
4787 };
4788
4789 typedef enum
4790 {
4791 /* Varieties of non-ALU group relocation. */
4792
4793 GROUP_LDR,
4794 GROUP_LDRS,
4795 GROUP_LDC
4796 } group_reloc_type;
4797
4798 static struct group_reloc_table_entry group_reloc_table[] =
4799 { /* Program counter relative: */
4800 { "pc_g0_nc",
4801 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4802 0, /* LDR */
4803 0, /* LDRS */
4804 0 }, /* LDC */
4805 { "pc_g0",
4806 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4807 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4808 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4809 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4810 { "pc_g1_nc",
4811 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4812 0, /* LDR */
4813 0, /* LDRS */
4814 0 }, /* LDC */
4815 { "pc_g1",
4816 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4817 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4818 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4819 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4820 { "pc_g2",
4821 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4822 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4823 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4824 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4825 /* Section base relative */
4826 { "sb_g0_nc",
4827 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4828 0, /* LDR */
4829 0, /* LDRS */
4830 0 }, /* LDC */
4831 { "sb_g0",
4832 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4833 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4834 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4835 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4836 { "sb_g1_nc",
4837 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4838 0, /* LDR */
4839 0, /* LDRS */
4840 0 }, /* LDC */
4841 { "sb_g1",
4842 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4843 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4844 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4845 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4846 { "sb_g2",
4847 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4848 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4849 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4850 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4851
4852 /* Given the address of a pointer pointing to the textual name of a group
4853 relocation as may appear in assembler source, attempt to find its details
4854 in group_reloc_table. The pointer will be updated to the character after
4855 the trailing colon. On failure, FAIL will be returned; SUCCESS
4856 otherwise. On success, *entry will be updated to point at the relevant
4857 group_reloc_table entry. */
4858
4859 static int
4860 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4861 {
4862 unsigned int i;
4863 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4864 {
4865 int length = strlen (group_reloc_table[i].name);
4866
4867 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4868 && (*str)[length] == ':')
4869 {
4870 *out = &group_reloc_table[i];
4871 *str += (length + 1);
4872 return SUCCESS;
4873 }
4874 }
4875
4876 return FAIL;
4877 }
4878
4879 /* Parse a <shifter_operand> for an ARM data processing instruction
4880 (as for parse_shifter_operand) where group relocations are allowed:
4881
4882 #<immediate>
4883 #<immediate>, <rotate>
4884 #:<group_reloc>:<expression>
4885 <Rm>
4886 <Rm>, <shift>
4887
4888 where <group_reloc> is one of the strings defined in group_reloc_table.
4889 The hashes are optional.
4890
4891 Everything else is as for parse_shifter_operand. */
4892
4893 static parse_operand_result
4894 parse_shifter_operand_group_reloc (char **str, int i)
4895 {
4896 /* Determine if we have the sequence of characters #: or just :
4897 coming next. If we do, then we check for a group relocation.
4898 If we don't, punt the whole lot to parse_shifter_operand. */
4899
4900 if (((*str)[0] == '#' && (*str)[1] == ':')
4901 || (*str)[0] == ':')
4902 {
4903 struct group_reloc_table_entry *entry;
4904
4905 if ((*str)[0] == '#')
4906 (*str) += 2;
4907 else
4908 (*str)++;
4909
4910 /* Try to parse a group relocation. Anything else is an error. */
4911 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4912 {
4913 inst.error = _("unknown group relocation");
4914 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4915 }
4916
4917 /* We now have the group relocation table entry corresponding to
4918 the name in the assembler source. Next, we parse the expression. */
4919 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4920 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4921
4922 /* Record the relocation type (always the ALU variant here). */
4923 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
4924 gas_assert (inst.reloc.type != 0);
4925
4926 return PARSE_OPERAND_SUCCESS;
4927 }
4928 else
4929 return parse_shifter_operand (str, i) == SUCCESS
4930 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4931
4932 /* Never reached. */
4933 }
4934
4935 /* Parse all forms of an ARM address expression. Information is written
4936 to inst.operands[i] and/or inst.reloc.
4937
4938 Preindexed addressing (.preind=1):
4939
4940 [Rn, #offset] .reg=Rn .reloc.exp=offset
4941 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4942 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4943 .shift_kind=shift .reloc.exp=shift_imm
4944
4945 These three may have a trailing ! which causes .writeback to be set also.
4946
4947 Postindexed addressing (.postind=1, .writeback=1):
4948
4949 [Rn], #offset .reg=Rn .reloc.exp=offset
4950 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4951 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4952 .shift_kind=shift .reloc.exp=shift_imm
4953
4954 Unindexed addressing (.preind=0, .postind=0):
4955
4956 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4957
4958 Other:
4959
4960 [Rn]{!} shorthand for [Rn,#0]{!}
4961 =immediate .isreg=0 .reloc.exp=immediate
4962 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4963
4964 It is the caller's responsibility to check for addressing modes not
4965 supported by the instruction, and to set inst.reloc.type. */
4966
4967 static parse_operand_result
4968 parse_address_main (char **str, int i, int group_relocations,
4969 group_reloc_type group_type)
4970 {
4971 char *p = *str;
4972 int reg;
4973
4974 if (skip_past_char (&p, '[') == FAIL)
4975 {
4976 if (skip_past_char (&p, '=') == FAIL)
4977 {
4978 /* Bare address - translate to PC-relative offset. */
4979 inst.reloc.pc_rel = 1;
4980 inst.operands[i].reg = REG_PC;
4981 inst.operands[i].isreg = 1;
4982 inst.operands[i].preind = 1;
4983 }
4984 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
4985
4986 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4987 return PARSE_OPERAND_FAIL;
4988
4989 *str = p;
4990 return PARSE_OPERAND_SUCCESS;
4991 }
4992
4993 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4994 {
4995 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4996 return PARSE_OPERAND_FAIL;
4997 }
4998 inst.operands[i].reg = reg;
4999 inst.operands[i].isreg = 1;
5000
5001 if (skip_past_comma (&p) == SUCCESS)
5002 {
5003 inst.operands[i].preind = 1;
5004
5005 if (*p == '+') p++;
5006 else if (*p == '-') p++, inst.operands[i].negative = 1;
5007
5008 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5009 {
5010 inst.operands[i].imm = reg;
5011 inst.operands[i].immisreg = 1;
5012
5013 if (skip_past_comma (&p) == SUCCESS)
5014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5015 return PARSE_OPERAND_FAIL;
5016 }
5017 else if (skip_past_char (&p, ':') == SUCCESS)
5018 {
5019 /* FIXME: '@' should be used here, but it's filtered out by generic
5020 code before we get to see it here. This may be subject to
5021 change. */
5022 expressionS exp;
5023 my_get_expression (&exp, &p, GE_NO_PREFIX);
5024 if (exp.X_op != O_constant)
5025 {
5026 inst.error = _("alignment must be constant");
5027 return PARSE_OPERAND_FAIL;
5028 }
5029 inst.operands[i].imm = exp.X_add_number << 8;
5030 inst.operands[i].immisalign = 1;
5031 /* Alignments are not pre-indexes. */
5032 inst.operands[i].preind = 0;
5033 }
5034 else
5035 {
5036 if (inst.operands[i].negative)
5037 {
5038 inst.operands[i].negative = 0;
5039 p--;
5040 }
5041
5042 if (group_relocations
5043 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5044 {
5045 struct group_reloc_table_entry *entry;
5046
5047 /* Skip over the #: or : sequence. */
5048 if (*p == '#')
5049 p += 2;
5050 else
5051 p++;
5052
5053 /* Try to parse a group relocation. Anything else is an
5054 error. */
5055 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5056 {
5057 inst.error = _("unknown group relocation");
5058 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5059 }
5060
5061 /* We now have the group relocation table entry corresponding to
5062 the name in the assembler source. Next, we parse the
5063 expression. */
5064 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5065 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5066
5067 /* Record the relocation type. */
5068 switch (group_type)
5069 {
5070 case GROUP_LDR:
5071 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5072 break;
5073
5074 case GROUP_LDRS:
5075 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5076 break;
5077
5078 case GROUP_LDC:
5079 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5080 break;
5081
5082 default:
5083 gas_assert (0);
5084 }
5085
5086 if (inst.reloc.type == 0)
5087 {
5088 inst.error = _("this group relocation is not allowed on this instruction");
5089 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5090 }
5091 }
5092 else
5093 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5094 return PARSE_OPERAND_FAIL;
5095 }
5096 }
5097
5098 if (skip_past_char (&p, ']') == FAIL)
5099 {
5100 inst.error = _("']' expected");
5101 return PARSE_OPERAND_FAIL;
5102 }
5103
5104 if (skip_past_char (&p, '!') == SUCCESS)
5105 inst.operands[i].writeback = 1;
5106
5107 else if (skip_past_comma (&p) == SUCCESS)
5108 {
5109 if (skip_past_char (&p, '{') == SUCCESS)
5110 {
5111 /* [Rn], {expr} - unindexed, with option */
5112 if (parse_immediate (&p, &inst.operands[i].imm,
5113 0, 255, TRUE) == FAIL)
5114 return PARSE_OPERAND_FAIL;
5115
5116 if (skip_past_char (&p, '}') == FAIL)
5117 {
5118 inst.error = _("'}' expected at end of 'option' field");
5119 return PARSE_OPERAND_FAIL;
5120 }
5121 if (inst.operands[i].preind)
5122 {
5123 inst.error = _("cannot combine index with option");
5124 return PARSE_OPERAND_FAIL;
5125 }
5126 *str = p;
5127 return PARSE_OPERAND_SUCCESS;
5128 }
5129 else
5130 {
5131 inst.operands[i].postind = 1;
5132 inst.operands[i].writeback = 1;
5133
5134 if (inst.operands[i].preind)
5135 {
5136 inst.error = _("cannot combine pre- and post-indexing");
5137 return PARSE_OPERAND_FAIL;
5138 }
5139
5140 if (*p == '+') p++;
5141 else if (*p == '-') p++, inst.operands[i].negative = 1;
5142
5143 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5144 {
5145 /* We might be using the immediate for alignment already. If we
5146 are, OR the register number into the low-order bits. */
5147 if (inst.operands[i].immisalign)
5148 inst.operands[i].imm |= reg;
5149 else
5150 inst.operands[i].imm = reg;
5151 inst.operands[i].immisreg = 1;
5152
5153 if (skip_past_comma (&p) == SUCCESS)
5154 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5155 return PARSE_OPERAND_FAIL;
5156 }
5157 else
5158 {
5159 if (inst.operands[i].negative)
5160 {
5161 inst.operands[i].negative = 0;
5162 p--;
5163 }
5164 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5165 return PARSE_OPERAND_FAIL;
5166 }
5167 }
5168 }
5169
5170 /* If at this point neither .preind nor .postind is set, we have a
5171 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5172 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5173 {
5174 inst.operands[i].preind = 1;
5175 inst.reloc.exp.X_op = O_constant;
5176 inst.reloc.exp.X_add_number = 0;
5177 }
5178 *str = p;
5179 return PARSE_OPERAND_SUCCESS;
5180 }
5181
5182 static int
5183 parse_address (char **str, int i)
5184 {
5185 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5186 ? SUCCESS : FAIL;
5187 }
5188
5189 static parse_operand_result
5190 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5191 {
5192 return parse_address_main (str, i, 1, type);
5193 }
5194
5195 /* Parse an operand for a MOVW or MOVT instruction. */
5196 static int
5197 parse_half (char **str)
5198 {
5199 char * p;
5200
5201 p = *str;
5202 skip_past_char (&p, '#');
5203 if (strncasecmp (p, ":lower16:", 9) == 0)
5204 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5205 else if (strncasecmp (p, ":upper16:", 9) == 0)
5206 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5207
5208 if (inst.reloc.type != BFD_RELOC_UNUSED)
5209 {
5210 p += 9;
5211 skip_whitespace (p);
5212 }
5213
5214 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5215 return FAIL;
5216
5217 if (inst.reloc.type == BFD_RELOC_UNUSED)
5218 {
5219 if (inst.reloc.exp.X_op != O_constant)
5220 {
5221 inst.error = _("constant expression expected");
5222 return FAIL;
5223 }
5224 if (inst.reloc.exp.X_add_number < 0
5225 || inst.reloc.exp.X_add_number > 0xffff)
5226 {
5227 inst.error = _("immediate value out of range");
5228 return FAIL;
5229 }
5230 }
5231 *str = p;
5232 return SUCCESS;
5233 }
5234
5235 /* Miscellaneous. */
5236
5237 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5238 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5239 static int
5240 parse_psr (char **str)
5241 {
5242 char *p;
5243 unsigned long psr_field;
5244 const struct asm_psr *psr;
5245 char *start;
5246
5247 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5248 feature for ease of use and backwards compatibility. */
5249 p = *str;
5250 if (strncasecmp (p, "SPSR", 4) == 0)
5251 psr_field = SPSR_BIT;
5252 else if (strncasecmp (p, "CPSR", 4) == 0)
5253 psr_field = 0;
5254 else
5255 {
5256 start = p;
5257 do
5258 p++;
5259 while (ISALNUM (*p) || *p == '_');
5260
5261 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5262 p - start);
5263 if (!psr)
5264 return FAIL;
5265
5266 *str = p;
5267 return psr->field;
5268 }
5269
5270 p += 4;
5271 if (*p == '_')
5272 {
5273 /* A suffix follows. */
5274 p++;
5275 start = p;
5276
5277 do
5278 p++;
5279 while (ISALNUM (*p) || *p == '_');
5280
5281 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5282 p - start);
5283 if (!psr)
5284 goto error;
5285
5286 psr_field |= psr->field;
5287 }
5288 else
5289 {
5290 if (ISALNUM (*p))
5291 goto error; /* Garbage after "[CS]PSR". */
5292
5293 psr_field |= (PSR_c | PSR_f);
5294 }
5295 *str = p;
5296 return psr_field;
5297
5298 error:
5299 inst.error = _("flag for {c}psr instruction expected");
5300 return FAIL;
5301 }
5302
5303 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5304 value suitable for splatting into the AIF field of the instruction. */
5305
5306 static int
5307 parse_cps_flags (char **str)
5308 {
5309 int val = 0;
5310 int saw_a_flag = 0;
5311 char *s = *str;
5312
5313 for (;;)
5314 switch (*s++)
5315 {
5316 case '\0': case ',':
5317 goto done;
5318
5319 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5320 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5321 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5322
5323 default:
5324 inst.error = _("unrecognized CPS flag");
5325 return FAIL;
5326 }
5327
5328 done:
5329 if (saw_a_flag == 0)
5330 {
5331 inst.error = _("missing CPS flags");
5332 return FAIL;
5333 }
5334
5335 *str = s - 1;
5336 return val;
5337 }
5338
5339 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5340 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5341
5342 static int
5343 parse_endian_specifier (char **str)
5344 {
5345 int little_endian;
5346 char *s = *str;
5347
5348 if (strncasecmp (s, "BE", 2))
5349 little_endian = 0;
5350 else if (strncasecmp (s, "LE", 2))
5351 little_endian = 1;
5352 else
5353 {
5354 inst.error = _("valid endian specifiers are be or le");
5355 return FAIL;
5356 }
5357
5358 if (ISALNUM (s[2]) || s[2] == '_')
5359 {
5360 inst.error = _("valid endian specifiers are be or le");
5361 return FAIL;
5362 }
5363
5364 *str = s + 2;
5365 return little_endian;
5366 }
5367
5368 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5369 value suitable for poking into the rotate field of an sxt or sxta
5370 instruction, or FAIL on error. */
5371
5372 static int
5373 parse_ror (char **str)
5374 {
5375 int rot;
5376 char *s = *str;
5377
5378 if (strncasecmp (s, "ROR", 3) == 0)
5379 s += 3;
5380 else
5381 {
5382 inst.error = _("missing rotation field after comma");
5383 return FAIL;
5384 }
5385
5386 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5387 return FAIL;
5388
5389 switch (rot)
5390 {
5391 case 0: *str = s; return 0x0;
5392 case 8: *str = s; return 0x1;
5393 case 16: *str = s; return 0x2;
5394 case 24: *str = s; return 0x3;
5395
5396 default:
5397 inst.error = _("rotation can only be 0, 8, 16, or 24");
5398 return FAIL;
5399 }
5400 }
5401
5402 /* Parse a conditional code (from conds[] below). The value returned is in the
5403 range 0 .. 14, or FAIL. */
5404 static int
5405 parse_cond (char **str)
5406 {
5407 char *q;
5408 const struct asm_cond *c;
5409 int n;
5410 /* Condition codes are always 2 characters, so matching up to
5411 3 characters is sufficient. */
5412 char cond[3];
5413
5414 q = *str;
5415 n = 0;
5416 while (ISALPHA (*q) && n < 3)
5417 {
5418 cond[n] = TOLOWER (*q);
5419 q++;
5420 n++;
5421 }
5422
5423 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5424 if (!c)
5425 {
5426 inst.error = _("condition required");
5427 return FAIL;
5428 }
5429
5430 *str = q;
5431 return c->value;
5432 }
5433
5434 /* Parse an option for a barrier instruction. Returns the encoding for the
5435 option, or FAIL. */
5436 static int
5437 parse_barrier (char **str)
5438 {
5439 char *p, *q;
5440 const struct asm_barrier_opt *o;
5441
5442 p = q = *str;
5443 while (ISALPHA (*q))
5444 q++;
5445
5446 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5447 q - p);
5448 if (!o)
5449 return FAIL;
5450
5451 *str = q;
5452 return o->value;
5453 }
5454
5455 /* Parse the operands of a table branch instruction. Similar to a memory
5456 operand. */
5457 static int
5458 parse_tb (char **str)
5459 {
5460 char * p = *str;
5461 int reg;
5462
5463 if (skip_past_char (&p, '[') == FAIL)
5464 {
5465 inst.error = _("'[' expected");
5466 return FAIL;
5467 }
5468
5469 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5470 {
5471 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5472 return FAIL;
5473 }
5474 inst.operands[0].reg = reg;
5475
5476 if (skip_past_comma (&p) == FAIL)
5477 {
5478 inst.error = _("',' expected");
5479 return FAIL;
5480 }
5481
5482 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5483 {
5484 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5485 return FAIL;
5486 }
5487 inst.operands[0].imm = reg;
5488
5489 if (skip_past_comma (&p) == SUCCESS)
5490 {
5491 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5492 return FAIL;
5493 if (inst.reloc.exp.X_add_number != 1)
5494 {
5495 inst.error = _("invalid shift");
5496 return FAIL;
5497 }
5498 inst.operands[0].shifted = 1;
5499 }
5500
5501 if (skip_past_char (&p, ']') == FAIL)
5502 {
5503 inst.error = _("']' expected");
5504 return FAIL;
5505 }
5506 *str = p;
5507 return SUCCESS;
5508 }
5509
5510 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5511 information on the types the operands can take and how they are encoded.
5512 Up to four operands may be read; this function handles setting the
5513 ".present" field for each read operand itself.
5514 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5515 else returns FAIL. */
5516
5517 static int
5518 parse_neon_mov (char **str, int *which_operand)
5519 {
5520 int i = *which_operand, val;
5521 enum arm_reg_type rtype;
5522 char *ptr = *str;
5523 struct neon_type_el optype;
5524
5525 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5526 {
5527 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5528 inst.operands[i].reg = val;
5529 inst.operands[i].isscalar = 1;
5530 inst.operands[i].vectype = optype;
5531 inst.operands[i++].present = 1;
5532
5533 if (skip_past_comma (&ptr) == FAIL)
5534 goto wanted_comma;
5535
5536 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5537 goto wanted_arm;
5538
5539 inst.operands[i].reg = val;
5540 inst.operands[i].isreg = 1;
5541 inst.operands[i].present = 1;
5542 }
5543 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5544 != FAIL)
5545 {
5546 /* Cases 0, 1, 2, 3, 5 (D only). */
5547 if (skip_past_comma (&ptr) == FAIL)
5548 goto wanted_comma;
5549
5550 inst.operands[i].reg = val;
5551 inst.operands[i].isreg = 1;
5552 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5553 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5554 inst.operands[i].isvec = 1;
5555 inst.operands[i].vectype = optype;
5556 inst.operands[i++].present = 1;
5557
5558 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5559 {
5560 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5561 Case 13: VMOV <Sd>, <Rm> */
5562 inst.operands[i].reg = val;
5563 inst.operands[i].isreg = 1;
5564 inst.operands[i].present = 1;
5565
5566 if (rtype == REG_TYPE_NQ)
5567 {
5568 first_error (_("can't use Neon quad register here"));
5569 return FAIL;
5570 }
5571 else if (rtype != REG_TYPE_VFS)
5572 {
5573 i++;
5574 if (skip_past_comma (&ptr) == FAIL)
5575 goto wanted_comma;
5576 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5577 goto wanted_arm;
5578 inst.operands[i].reg = val;
5579 inst.operands[i].isreg = 1;
5580 inst.operands[i].present = 1;
5581 }
5582 }
5583 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5584 &optype)) != FAIL)
5585 {
5586 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5587 Case 1: VMOV<c><q> <Dd>, <Dm>
5588 Case 8: VMOV.F32 <Sd>, <Sm>
5589 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5590
5591 inst.operands[i].reg = val;
5592 inst.operands[i].isreg = 1;
5593 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5594 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5595 inst.operands[i].isvec = 1;
5596 inst.operands[i].vectype = optype;
5597 inst.operands[i].present = 1;
5598
5599 if (skip_past_comma (&ptr) == SUCCESS)
5600 {
5601 /* Case 15. */
5602 i++;
5603
5604 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5605 goto wanted_arm;
5606
5607 inst.operands[i].reg = val;
5608 inst.operands[i].isreg = 1;
5609 inst.operands[i++].present = 1;
5610
5611 if (skip_past_comma (&ptr) == FAIL)
5612 goto wanted_comma;
5613
5614 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5615 goto wanted_arm;
5616
5617 inst.operands[i].reg = val;
5618 inst.operands[i].isreg = 1;
5619 inst.operands[i++].present = 1;
5620 }
5621 }
5622 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5623 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5624 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5625 Case 10: VMOV.F32 <Sd>, #<imm>
5626 Case 11: VMOV.F64 <Dd>, #<imm> */
5627 inst.operands[i].immisfloat = 1;
5628 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5629 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5630 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5631 ;
5632 else
5633 {
5634 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5635 return FAIL;
5636 }
5637 }
5638 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5639 {
5640 /* Cases 6, 7. */
5641 inst.operands[i].reg = val;
5642 inst.operands[i].isreg = 1;
5643 inst.operands[i++].present = 1;
5644
5645 if (skip_past_comma (&ptr) == FAIL)
5646 goto wanted_comma;
5647
5648 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5649 {
5650 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5651 inst.operands[i].reg = val;
5652 inst.operands[i].isscalar = 1;
5653 inst.operands[i].present = 1;
5654 inst.operands[i].vectype = optype;
5655 }
5656 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5657 {
5658 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5659 inst.operands[i].reg = val;
5660 inst.operands[i].isreg = 1;
5661 inst.operands[i++].present = 1;
5662
5663 if (skip_past_comma (&ptr) == FAIL)
5664 goto wanted_comma;
5665
5666 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5667 == FAIL)
5668 {
5669 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5670 return FAIL;
5671 }
5672
5673 inst.operands[i].reg = val;
5674 inst.operands[i].isreg = 1;
5675 inst.operands[i].isvec = 1;
5676 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5677 inst.operands[i].vectype = optype;
5678 inst.operands[i].present = 1;
5679
5680 if (rtype == REG_TYPE_VFS)
5681 {
5682 /* Case 14. */
5683 i++;
5684 if (skip_past_comma (&ptr) == FAIL)
5685 goto wanted_comma;
5686 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5687 &optype)) == FAIL)
5688 {
5689 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5690 return FAIL;
5691 }
5692 inst.operands[i].reg = val;
5693 inst.operands[i].isreg = 1;
5694 inst.operands[i].isvec = 1;
5695 inst.operands[i].issingle = 1;
5696 inst.operands[i].vectype = optype;
5697 inst.operands[i].present = 1;
5698 }
5699 }
5700 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5701 != FAIL)
5702 {
5703 /* Case 13. */
5704 inst.operands[i].reg = val;
5705 inst.operands[i].isreg = 1;
5706 inst.operands[i].isvec = 1;
5707 inst.operands[i].issingle = 1;
5708 inst.operands[i].vectype = optype;
5709 inst.operands[i++].present = 1;
5710 }
5711 }
5712 else
5713 {
5714 first_error (_("parse error"));
5715 return FAIL;
5716 }
5717
5718 /* Successfully parsed the operands. Update args. */
5719 *which_operand = i;
5720 *str = ptr;
5721 return SUCCESS;
5722
5723 wanted_comma:
5724 first_error (_("expected comma"));
5725 return FAIL;
5726
5727 wanted_arm:
5728 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5729 return FAIL;
5730 }
5731
5732 /* Matcher codes for parse_operands. */
5733 enum operand_parse_code
5734 {
5735 OP_stop, /* end of line */
5736
5737 OP_RR, /* ARM register */
5738 OP_RRnpc, /* ARM register, not r15 */
5739 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5740 OP_RRw, /* ARM register, not r15, optional trailing ! */
5741 OP_RCP, /* Coprocessor number */
5742 OP_RCN, /* Coprocessor register */
5743 OP_RF, /* FPA register */
5744 OP_RVS, /* VFP single precision register */
5745 OP_RVD, /* VFP double precision register (0..15) */
5746 OP_RND, /* Neon double precision register (0..31) */
5747 OP_RNQ, /* Neon quad precision register */
5748 OP_RVSD, /* VFP single or double precision register */
5749 OP_RNDQ, /* Neon double or quad precision register */
5750 OP_RNSDQ, /* Neon single, double or quad precision register */
5751 OP_RNSC, /* Neon scalar D[X] */
5752 OP_RVC, /* VFP control register */
5753 OP_RMF, /* Maverick F register */
5754 OP_RMD, /* Maverick D register */
5755 OP_RMFX, /* Maverick FX register */
5756 OP_RMDX, /* Maverick DX register */
5757 OP_RMAX, /* Maverick AX register */
5758 OP_RMDS, /* Maverick DSPSC register */
5759 OP_RIWR, /* iWMMXt wR register */
5760 OP_RIWC, /* iWMMXt wC register */
5761 OP_RIWG, /* iWMMXt wCG register */
5762 OP_RXA, /* XScale accumulator register */
5763
5764 OP_REGLST, /* ARM register list */
5765 OP_VRSLST, /* VFP single-precision register list */
5766 OP_VRDLST, /* VFP double-precision register list */
5767 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5768 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5769 OP_NSTRLST, /* Neon element/structure list */
5770
5771 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5772 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5773 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5774 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5775 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5776 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5777 OP_VMOV, /* Neon VMOV operands. */
5778 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5779 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5780 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5781
5782 OP_I0, /* immediate zero */
5783 OP_I7, /* immediate value 0 .. 7 */
5784 OP_I15, /* 0 .. 15 */
5785 OP_I16, /* 1 .. 16 */
5786 OP_I16z, /* 0 .. 16 */
5787 OP_I31, /* 0 .. 31 */
5788 OP_I31w, /* 0 .. 31, optional trailing ! */
5789 OP_I32, /* 1 .. 32 */
5790 OP_I32z, /* 0 .. 32 */
5791 OP_I63, /* 0 .. 63 */
5792 OP_I63s, /* -64 .. 63 */
5793 OP_I64, /* 1 .. 64 */
5794 OP_I64z, /* 0 .. 64 */
5795 OP_I255, /* 0 .. 255 */
5796
5797 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5798 OP_I7b, /* 0 .. 7 */
5799 OP_I15b, /* 0 .. 15 */
5800 OP_I31b, /* 0 .. 31 */
5801
5802 OP_SH, /* shifter operand */
5803 OP_SHG, /* shifter operand with possible group relocation */
5804 OP_ADDR, /* Memory address expression (any mode) */
5805 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5806 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5807 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5808 OP_EXP, /* arbitrary expression */
5809 OP_EXPi, /* same, with optional immediate prefix */
5810 OP_EXPr, /* same, with optional relocation suffix */
5811 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5812
5813 OP_CPSF, /* CPS flags */
5814 OP_ENDI, /* Endianness specifier */
5815 OP_PSR, /* CPSR/SPSR mask for msr */
5816 OP_COND, /* conditional code */
5817 OP_TB, /* Table branch. */
5818
5819 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5820 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5821
5822 OP_RRnpc_I0, /* ARM register or literal 0 */
5823 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5824 OP_RR_EXi, /* ARM register or expression with imm prefix */
5825 OP_RF_IF, /* FPA register or immediate */
5826 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5827 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5828
5829 /* Optional operands. */
5830 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5831 OP_oI31b, /* 0 .. 31 */
5832 OP_oI32b, /* 1 .. 32 */
5833 OP_oIffffb, /* 0 .. 65535 */
5834 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5835
5836 OP_oRR, /* ARM register */
5837 OP_oRRnpc, /* ARM register, not the PC */
5838 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5839 OP_oRND, /* Optional Neon double precision register */
5840 OP_oRNQ, /* Optional Neon quad precision register */
5841 OP_oRNDQ, /* Optional Neon double or quad precision register */
5842 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5843 OP_oSHll, /* LSL immediate */
5844 OP_oSHar, /* ASR immediate */
5845 OP_oSHllar, /* LSL or ASR immediate */
5846 OP_oROR, /* ROR 0/8/16/24 */
5847 OP_oBARRIER, /* Option argument for a barrier instruction. */
5848
5849 OP_FIRST_OPTIONAL = OP_oI7b
5850 };
5851
5852 /* Generic instruction operand parser. This does no encoding and no
5853 semantic validation; it merely squirrels values away in the inst
5854 structure. Returns SUCCESS or FAIL depending on whether the
5855 specified grammar matched. */
5856 static int
5857 parse_operands (char *str, const unsigned char *pattern)
5858 {
5859 unsigned const char *upat = pattern;
5860 char *backtrack_pos = 0;
5861 const char *backtrack_error = 0;
5862 int i, val, backtrack_index = 0;
5863 enum arm_reg_type rtype;
5864 parse_operand_result result;
5865
5866 #define po_char_or_fail(chr) \
5867 do \
5868 { \
5869 if (skip_past_char (&str, chr) == FAIL) \
5870 goto bad_args; \
5871 } \
5872 while (0)
5873
5874 #define po_reg_or_fail(regtype) \
5875 do \
5876 { \
5877 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5878 & inst.operands[i].vectype); \
5879 if (val == FAIL) \
5880 { \
5881 first_error (_(reg_expected_msgs[regtype])); \
5882 goto failure; \
5883 } \
5884 inst.operands[i].reg = val; \
5885 inst.operands[i].isreg = 1; \
5886 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5887 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5888 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5889 || rtype == REG_TYPE_VFD \
5890 || rtype == REG_TYPE_NQ); \
5891 } \
5892 while (0)
5893
5894 #define po_reg_or_goto(regtype, label) \
5895 do \
5896 { \
5897 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5898 & inst.operands[i].vectype); \
5899 if (val == FAIL) \
5900 goto label; \
5901 \
5902 inst.operands[i].reg = val; \
5903 inst.operands[i].isreg = 1; \
5904 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5905 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5906 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5907 || rtype == REG_TYPE_VFD \
5908 || rtype == REG_TYPE_NQ); \
5909 } \
5910 while (0)
5911
5912 #define po_imm_or_fail(min, max, popt) \
5913 do \
5914 { \
5915 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5916 goto failure; \
5917 inst.operands[i].imm = val; \
5918 } \
5919 while (0)
5920
5921 #define po_scalar_or_goto(elsz, label) \
5922 do \
5923 { \
5924 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5925 if (val == FAIL) \
5926 goto label; \
5927 inst.operands[i].reg = val; \
5928 inst.operands[i].isscalar = 1; \
5929 } \
5930 while (0)
5931
5932 #define po_misc_or_fail(expr) \
5933 do \
5934 { \
5935 if (expr) \
5936 goto failure; \
5937 } \
5938 while (0)
5939
5940 #define po_misc_or_fail_no_backtrack(expr) \
5941 do \
5942 { \
5943 result = expr; \
5944 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5945 backtrack_pos = 0; \
5946 if (result != PARSE_OPERAND_SUCCESS) \
5947 goto failure; \
5948 } \
5949 while (0)
5950
5951 skip_whitespace (str);
5952
5953 for (i = 0; upat[i] != OP_stop; i++)
5954 {
5955 if (upat[i] >= OP_FIRST_OPTIONAL)
5956 {
5957 /* Remember where we are in case we need to backtrack. */
5958 gas_assert (!backtrack_pos);
5959 backtrack_pos = str;
5960 backtrack_error = inst.error;
5961 backtrack_index = i;
5962 }
5963
5964 if (i > 0 && (i > 1 || inst.operands[0].present))
5965 po_char_or_fail (',');
5966
5967 switch (upat[i])
5968 {
5969 /* Registers */
5970 case OP_oRRnpc:
5971 case OP_RRnpc:
5972 case OP_oRR:
5973 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5974 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5975 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5976 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5977 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5978 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5979 case OP_oRND:
5980 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5981 case OP_RVC:
5982 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5983 break;
5984 /* Also accept generic coprocessor regs for unknown registers. */
5985 coproc_reg:
5986 po_reg_or_fail (REG_TYPE_CN);
5987 break;
5988 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5989 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5990 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5991 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5992 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5993 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5994 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5995 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5996 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5997 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5998 case OP_oRNQ:
5999 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6000 case OP_oRNDQ:
6001 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6002 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6003 case OP_oRNSDQ:
6004 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6005
6006 /* Neon scalar. Using an element size of 8 means that some invalid
6007 scalars are accepted here, so deal with those in later code. */
6008 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6009
6010 case OP_RNDQ_I0:
6011 {
6012 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6013 break;
6014 try_imm0:
6015 po_imm_or_fail (0, 0, TRUE);
6016 }
6017 break;
6018
6019 case OP_RVSD_I0:
6020 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6021 break;
6022
6023 case OP_RR_RNSC:
6024 {
6025 po_scalar_or_goto (8, try_rr);
6026 break;
6027 try_rr:
6028 po_reg_or_fail (REG_TYPE_RN);
6029 }
6030 break;
6031
6032 case OP_RNSDQ_RNSC:
6033 {
6034 po_scalar_or_goto (8, try_nsdq);
6035 break;
6036 try_nsdq:
6037 po_reg_or_fail (REG_TYPE_NSDQ);
6038 }
6039 break;
6040
6041 case OP_RNDQ_RNSC:
6042 {
6043 po_scalar_or_goto (8, try_ndq);
6044 break;
6045 try_ndq:
6046 po_reg_or_fail (REG_TYPE_NDQ);
6047 }
6048 break;
6049
6050 case OP_RND_RNSC:
6051 {
6052 po_scalar_or_goto (8, try_vfd);
6053 break;
6054 try_vfd:
6055 po_reg_or_fail (REG_TYPE_VFD);
6056 }
6057 break;
6058
6059 case OP_VMOV:
6060 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6061 not careful then bad things might happen. */
6062 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6063 break;
6064
6065 case OP_RNDQ_Ibig:
6066 {
6067 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6068 break;
6069 try_immbig:
6070 /* There's a possibility of getting a 64-bit immediate here, so
6071 we need special handling. */
6072 if (parse_big_immediate (&str, i) == FAIL)
6073 {
6074 inst.error = _("immediate value is out of range");
6075 goto failure;
6076 }
6077 }
6078 break;
6079
6080 case OP_RNDQ_I63b:
6081 {
6082 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6083 break;
6084 try_shimm:
6085 po_imm_or_fail (0, 63, TRUE);
6086 }
6087 break;
6088
6089 case OP_RRnpcb:
6090 po_char_or_fail ('[');
6091 po_reg_or_fail (REG_TYPE_RN);
6092 po_char_or_fail (']');
6093 break;
6094
6095 case OP_RRw:
6096 case OP_oRRw:
6097 po_reg_or_fail (REG_TYPE_RN);
6098 if (skip_past_char (&str, '!') == SUCCESS)
6099 inst.operands[i].writeback = 1;
6100 break;
6101
6102 /* Immediates */
6103 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6104 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6105 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6106 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6107 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6108 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6109 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6110 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6111 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6112 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6113 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6114 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6115
6116 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6117 case OP_oI7b:
6118 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6119 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6120 case OP_oI31b:
6121 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6122 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6123 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6124
6125 /* Immediate variants */
6126 case OP_oI255c:
6127 po_char_or_fail ('{');
6128 po_imm_or_fail (0, 255, TRUE);
6129 po_char_or_fail ('}');
6130 break;
6131
6132 case OP_I31w:
6133 /* The expression parser chokes on a trailing !, so we have
6134 to find it first and zap it. */
6135 {
6136 char *s = str;
6137 while (*s && *s != ',')
6138 s++;
6139 if (s[-1] == '!')
6140 {
6141 s[-1] = '\0';
6142 inst.operands[i].writeback = 1;
6143 }
6144 po_imm_or_fail (0, 31, TRUE);
6145 if (str == s - 1)
6146 str = s;
6147 }
6148 break;
6149
6150 /* Expressions */
6151 case OP_EXPi: EXPi:
6152 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6153 GE_OPT_PREFIX));
6154 break;
6155
6156 case OP_EXP:
6157 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6158 GE_NO_PREFIX));
6159 break;
6160
6161 case OP_EXPr: EXPr:
6162 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6163 GE_NO_PREFIX));
6164 if (inst.reloc.exp.X_op == O_symbol)
6165 {
6166 val = parse_reloc (&str);
6167 if (val == -1)
6168 {
6169 inst.error = _("unrecognized relocation suffix");
6170 goto failure;
6171 }
6172 else if (val != BFD_RELOC_UNUSED)
6173 {
6174 inst.operands[i].imm = val;
6175 inst.operands[i].hasreloc = 1;
6176 }
6177 }
6178 break;
6179
6180 /* Operand for MOVW or MOVT. */
6181 case OP_HALF:
6182 po_misc_or_fail (parse_half (&str));
6183 break;
6184
6185 /* Register or expression. */
6186 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6187 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6188
6189 /* Register or immediate. */
6190 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6191 I0: po_imm_or_fail (0, 0, FALSE); break;
6192
6193 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6194 IF:
6195 if (!is_immediate_prefix (*str))
6196 goto bad_args;
6197 str++;
6198 val = parse_fpa_immediate (&str);
6199 if (val == FAIL)
6200 goto failure;
6201 /* FPA immediates are encoded as registers 8-15.
6202 parse_fpa_immediate has already applied the offset. */
6203 inst.operands[i].reg = val;
6204 inst.operands[i].isreg = 1;
6205 break;
6206
6207 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6208 I32z: po_imm_or_fail (0, 32, FALSE); break;
6209
6210 /* Two kinds of register. */
6211 case OP_RIWR_RIWC:
6212 {
6213 struct reg_entry *rege = arm_reg_parse_multi (&str);
6214 if (!rege
6215 || (rege->type != REG_TYPE_MMXWR
6216 && rege->type != REG_TYPE_MMXWC
6217 && rege->type != REG_TYPE_MMXWCG))
6218 {
6219 inst.error = _("iWMMXt data or control register expected");
6220 goto failure;
6221 }
6222 inst.operands[i].reg = rege->number;
6223 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6224 }
6225 break;
6226
6227 case OP_RIWC_RIWG:
6228 {
6229 struct reg_entry *rege = arm_reg_parse_multi (&str);
6230 if (!rege
6231 || (rege->type != REG_TYPE_MMXWC
6232 && rege->type != REG_TYPE_MMXWCG))
6233 {
6234 inst.error = _("iWMMXt control register expected");
6235 goto failure;
6236 }
6237 inst.operands[i].reg = rege->number;
6238 inst.operands[i].isreg = 1;
6239 }
6240 break;
6241
6242 /* Misc */
6243 case OP_CPSF: val = parse_cps_flags (&str); break;
6244 case OP_ENDI: val = parse_endian_specifier (&str); break;
6245 case OP_oROR: val = parse_ror (&str); break;
6246 case OP_PSR: val = parse_psr (&str); break;
6247 case OP_COND: val = parse_cond (&str); break;
6248 case OP_oBARRIER:val = parse_barrier (&str); break;
6249
6250 case OP_RVC_PSR:
6251 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6252 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6253 break;
6254 try_psr:
6255 val = parse_psr (&str);
6256 break;
6257
6258 case OP_APSR_RR:
6259 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6260 break;
6261 try_apsr:
6262 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6263 instruction). */
6264 if (strncasecmp (str, "APSR_", 5) == 0)
6265 {
6266 unsigned found = 0;
6267 str += 5;
6268 while (found < 15)
6269 switch (*str++)
6270 {
6271 case 'c': found = (found & 1) ? 16 : found | 1; break;
6272 case 'n': found = (found & 2) ? 16 : found | 2; break;
6273 case 'z': found = (found & 4) ? 16 : found | 4; break;
6274 case 'v': found = (found & 8) ? 16 : found | 8; break;
6275 default: found = 16;
6276 }
6277 if (found != 15)
6278 goto failure;
6279 inst.operands[i].isvec = 1;
6280 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6281 inst.operands[i].reg = REG_PC;
6282 }
6283 else
6284 goto failure;
6285 break;
6286
6287 case OP_TB:
6288 po_misc_or_fail (parse_tb (&str));
6289 break;
6290
6291 /* Register lists. */
6292 case OP_REGLST:
6293 val = parse_reg_list (&str);
6294 if (*str == '^')
6295 {
6296 inst.operands[1].writeback = 1;
6297 str++;
6298 }
6299 break;
6300
6301 case OP_VRSLST:
6302 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6303 break;
6304
6305 case OP_VRDLST:
6306 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6307 break;
6308
6309 case OP_VRSDLST:
6310 /* Allow Q registers too. */
6311 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6312 REGLIST_NEON_D);
6313 if (val == FAIL)
6314 {
6315 inst.error = NULL;
6316 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6317 REGLIST_VFP_S);
6318 inst.operands[i].issingle = 1;
6319 }
6320 break;
6321
6322 case OP_NRDLST:
6323 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6324 REGLIST_NEON_D);
6325 break;
6326
6327 case OP_NSTRLST:
6328 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6329 &inst.operands[i].vectype);
6330 break;
6331
6332 /* Addressing modes */
6333 case OP_ADDR:
6334 po_misc_or_fail (parse_address (&str, i));
6335 break;
6336
6337 case OP_ADDRGLDR:
6338 po_misc_or_fail_no_backtrack (
6339 parse_address_group_reloc (&str, i, GROUP_LDR));
6340 break;
6341
6342 case OP_ADDRGLDRS:
6343 po_misc_or_fail_no_backtrack (
6344 parse_address_group_reloc (&str, i, GROUP_LDRS));
6345 break;
6346
6347 case OP_ADDRGLDC:
6348 po_misc_or_fail_no_backtrack (
6349 parse_address_group_reloc (&str, i, GROUP_LDC));
6350 break;
6351
6352 case OP_SH:
6353 po_misc_or_fail (parse_shifter_operand (&str, i));
6354 break;
6355
6356 case OP_SHG:
6357 po_misc_or_fail_no_backtrack (
6358 parse_shifter_operand_group_reloc (&str, i));
6359 break;
6360
6361 case OP_oSHll:
6362 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6363 break;
6364
6365 case OP_oSHar:
6366 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6367 break;
6368
6369 case OP_oSHllar:
6370 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6371 break;
6372
6373 default:
6374 as_fatal (_("unhandled operand code %d"), upat[i]);
6375 }
6376
6377 /* Various value-based sanity checks and shared operations. We
6378 do not signal immediate failures for the register constraints;
6379 this allows a syntax error to take precedence. */
6380 switch (upat[i])
6381 {
6382 case OP_oRRnpc:
6383 case OP_RRnpc:
6384 case OP_RRnpcb:
6385 case OP_RRw:
6386 case OP_oRRw:
6387 case OP_RRnpc_I0:
6388 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6389 inst.error = BAD_PC;
6390 break;
6391
6392 case OP_CPSF:
6393 case OP_ENDI:
6394 case OP_oROR:
6395 case OP_PSR:
6396 case OP_RVC_PSR:
6397 case OP_COND:
6398 case OP_oBARRIER:
6399 case OP_REGLST:
6400 case OP_VRSLST:
6401 case OP_VRDLST:
6402 case OP_VRSDLST:
6403 case OP_NRDLST:
6404 case OP_NSTRLST:
6405 if (val == FAIL)
6406 goto failure;
6407 inst.operands[i].imm = val;
6408 break;
6409
6410 default:
6411 break;
6412 }
6413
6414 /* If we get here, this operand was successfully parsed. */
6415 inst.operands[i].present = 1;
6416 continue;
6417
6418 bad_args:
6419 inst.error = BAD_ARGS;
6420
6421 failure:
6422 if (!backtrack_pos)
6423 {
6424 /* The parse routine should already have set inst.error, but set a
6425 default here just in case. */
6426 if (!inst.error)
6427 inst.error = _("syntax error");
6428 return FAIL;
6429 }
6430
6431 /* Do not backtrack over a trailing optional argument that
6432 absorbed some text. We will only fail again, with the
6433 'garbage following instruction' error message, which is
6434 probably less helpful than the current one. */
6435 if (backtrack_index == i && backtrack_pos != str
6436 && upat[i+1] == OP_stop)
6437 {
6438 if (!inst.error)
6439 inst.error = _("syntax error");
6440 return FAIL;
6441 }
6442
6443 /* Try again, skipping the optional argument at backtrack_pos. */
6444 str = backtrack_pos;
6445 inst.error = backtrack_error;
6446 inst.operands[backtrack_index].present = 0;
6447 i = backtrack_index;
6448 backtrack_pos = 0;
6449 }
6450
6451 /* Check that we have parsed all the arguments. */
6452 if (*str != '\0' && !inst.error)
6453 inst.error = _("garbage following instruction");
6454
6455 return inst.error ? FAIL : SUCCESS;
6456 }
6457
6458 #undef po_char_or_fail
6459 #undef po_reg_or_fail
6460 #undef po_reg_or_goto
6461 #undef po_imm_or_fail
6462 #undef po_scalar_or_fail
6463
6464 /* Shorthand macro for instruction encoding functions issuing errors. */
6465 #define constraint(expr, err) \
6466 do \
6467 { \
6468 if (expr) \
6469 { \
6470 inst.error = err; \
6471 return; \
6472 } \
6473 } \
6474 while (0)
6475
6476 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6477 instructions are unpredictable if these registers are used. This
6478 is the BadReg predicate in ARM's Thumb-2 documentation. */
6479 #define reject_bad_reg(reg) \
6480 do \
6481 if (reg == REG_SP || reg == REG_PC) \
6482 { \
6483 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6484 return; \
6485 } \
6486 while (0)
6487
6488 /* If REG is R13 (the stack pointer), warn that its use is
6489 deprecated. */
6490 #define warn_deprecated_sp(reg) \
6491 do \
6492 if (warn_on_deprecated && reg == REG_SP) \
6493 as_warn (_("use of r13 is deprecated")); \
6494 while (0)
6495
6496 /* Functions for operand encoding. ARM, then Thumb. */
6497
6498 #define rotate_left(v, n) (v << n | v >> (32 - n))
6499
6500 /* If VAL can be encoded in the immediate field of an ARM instruction,
6501 return the encoded form. Otherwise, return FAIL. */
6502
6503 static unsigned int
6504 encode_arm_immediate (unsigned int val)
6505 {
6506 unsigned int a, i;
6507
6508 for (i = 0; i < 32; i += 2)
6509 if ((a = rotate_left (val, i)) <= 0xff)
6510 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6511
6512 return FAIL;
6513 }
6514
6515 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6516 return the encoded form. Otherwise, return FAIL. */
6517 static unsigned int
6518 encode_thumb32_immediate (unsigned int val)
6519 {
6520 unsigned int a, i;
6521
6522 if (val <= 0xff)
6523 return val;
6524
6525 for (i = 1; i <= 24; i++)
6526 {
6527 a = val >> i;
6528 if ((val & ~(0xff << i)) == 0)
6529 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6530 }
6531
6532 a = val & 0xff;
6533 if (val == ((a << 16) | a))
6534 return 0x100 | a;
6535 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6536 return 0x300 | a;
6537
6538 a = val & 0xff00;
6539 if (val == ((a << 16) | a))
6540 return 0x200 | (a >> 8);
6541
6542 return FAIL;
6543 }
6544 /* Encode a VFP SP or DP register number into inst.instruction. */
6545
6546 static void
6547 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6548 {
6549 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6550 && reg > 15)
6551 {
6552 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6553 {
6554 if (thumb_mode)
6555 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6556 fpu_vfp_ext_d32);
6557 else
6558 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6559 fpu_vfp_ext_d32);
6560 }
6561 else
6562 {
6563 first_error (_("D register out of range for selected VFP version"));
6564 return;
6565 }
6566 }
6567
6568 switch (pos)
6569 {
6570 case VFP_REG_Sd:
6571 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6572 break;
6573
6574 case VFP_REG_Sn:
6575 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6576 break;
6577
6578 case VFP_REG_Sm:
6579 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6580 break;
6581
6582 case VFP_REG_Dd:
6583 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6584 break;
6585
6586 case VFP_REG_Dn:
6587 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6588 break;
6589
6590 case VFP_REG_Dm:
6591 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6592 break;
6593
6594 default:
6595 abort ();
6596 }
6597 }
6598
6599 /* Encode a <shift> in an ARM-format instruction. The immediate,
6600 if any, is handled by md_apply_fix. */
6601 static void
6602 encode_arm_shift (int i)
6603 {
6604 if (inst.operands[i].shift_kind == SHIFT_RRX)
6605 inst.instruction |= SHIFT_ROR << 5;
6606 else
6607 {
6608 inst.instruction |= inst.operands[i].shift_kind << 5;
6609 if (inst.operands[i].immisreg)
6610 {
6611 inst.instruction |= SHIFT_BY_REG;
6612 inst.instruction |= inst.operands[i].imm << 8;
6613 }
6614 else
6615 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6616 }
6617 }
6618
6619 static void
6620 encode_arm_shifter_operand (int i)
6621 {
6622 if (inst.operands[i].isreg)
6623 {
6624 inst.instruction |= inst.operands[i].reg;
6625 encode_arm_shift (i);
6626 }
6627 else
6628 inst.instruction |= INST_IMMEDIATE;
6629 }
6630
6631 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6632 static void
6633 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6634 {
6635 gas_assert (inst.operands[i].isreg);
6636 inst.instruction |= inst.operands[i].reg << 16;
6637
6638 if (inst.operands[i].preind)
6639 {
6640 if (is_t)
6641 {
6642 inst.error = _("instruction does not accept preindexed addressing");
6643 return;
6644 }
6645 inst.instruction |= PRE_INDEX;
6646 if (inst.operands[i].writeback)
6647 inst.instruction |= WRITE_BACK;
6648
6649 }
6650 else if (inst.operands[i].postind)
6651 {
6652 gas_assert (inst.operands[i].writeback);
6653 if (is_t)
6654 inst.instruction |= WRITE_BACK;
6655 }
6656 else /* unindexed - only for coprocessor */
6657 {
6658 inst.error = _("instruction does not accept unindexed addressing");
6659 return;
6660 }
6661
6662 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6663 && (((inst.instruction & 0x000f0000) >> 16)
6664 == ((inst.instruction & 0x0000f000) >> 12)))
6665 as_warn ((inst.instruction & LOAD_BIT)
6666 ? _("destination register same as write-back base")
6667 : _("source register same as write-back base"));
6668 }
6669
6670 /* inst.operands[i] was set up by parse_address. Encode it into an
6671 ARM-format mode 2 load or store instruction. If is_t is true,
6672 reject forms that cannot be used with a T instruction (i.e. not
6673 post-indexed). */
6674 static void
6675 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6676 {
6677 encode_arm_addr_mode_common (i, is_t);
6678
6679 if (inst.operands[i].immisreg)
6680 {
6681 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6682 inst.instruction |= inst.operands[i].imm;
6683 if (!inst.operands[i].negative)
6684 inst.instruction |= INDEX_UP;
6685 if (inst.operands[i].shifted)
6686 {
6687 if (inst.operands[i].shift_kind == SHIFT_RRX)
6688 inst.instruction |= SHIFT_ROR << 5;
6689 else
6690 {
6691 inst.instruction |= inst.operands[i].shift_kind << 5;
6692 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6693 }
6694 }
6695 }
6696 else /* immediate offset in inst.reloc */
6697 {
6698 if (inst.reloc.type == BFD_RELOC_UNUSED)
6699 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6700 }
6701 }
6702
6703 /* inst.operands[i] was set up by parse_address. Encode it into an
6704 ARM-format mode 3 load or store instruction. Reject forms that
6705 cannot be used with such instructions. If is_t is true, reject
6706 forms that cannot be used with a T instruction (i.e. not
6707 post-indexed). */
6708 static void
6709 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6710 {
6711 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6712 {
6713 inst.error = _("instruction does not accept scaled register index");
6714 return;
6715 }
6716
6717 encode_arm_addr_mode_common (i, is_t);
6718
6719 if (inst.operands[i].immisreg)
6720 {
6721 inst.instruction |= inst.operands[i].imm;
6722 if (!inst.operands[i].negative)
6723 inst.instruction |= INDEX_UP;
6724 }
6725 else /* immediate offset in inst.reloc */
6726 {
6727 inst.instruction |= HWOFFSET_IMM;
6728 if (inst.reloc.type == BFD_RELOC_UNUSED)
6729 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6730 }
6731 }
6732
6733 /* inst.operands[i] was set up by parse_address. Encode it into an
6734 ARM-format instruction. Reject all forms which cannot be encoded
6735 into a coprocessor load/store instruction. If wb_ok is false,
6736 reject use of writeback; if unind_ok is false, reject use of
6737 unindexed addressing. If reloc_override is not 0, use it instead
6738 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6739 (in which case it is preserved). */
6740
6741 static int
6742 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6743 {
6744 inst.instruction |= inst.operands[i].reg << 16;
6745
6746 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6747
6748 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6749 {
6750 gas_assert (!inst.operands[i].writeback);
6751 if (!unind_ok)
6752 {
6753 inst.error = _("instruction does not support unindexed addressing");
6754 return FAIL;
6755 }
6756 inst.instruction |= inst.operands[i].imm;
6757 inst.instruction |= INDEX_UP;
6758 return SUCCESS;
6759 }
6760
6761 if (inst.operands[i].preind)
6762 inst.instruction |= PRE_INDEX;
6763
6764 if (inst.operands[i].writeback)
6765 {
6766 if (inst.operands[i].reg == REG_PC)
6767 {
6768 inst.error = _("pc may not be used with write-back");
6769 return FAIL;
6770 }
6771 if (!wb_ok)
6772 {
6773 inst.error = _("instruction does not support writeback");
6774 return FAIL;
6775 }
6776 inst.instruction |= WRITE_BACK;
6777 }
6778
6779 if (reloc_override)
6780 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
6781 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6782 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6783 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6784 {
6785 if (thumb_mode)
6786 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6787 else
6788 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6789 }
6790
6791 return SUCCESS;
6792 }
6793
6794 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6795 Determine whether it can be performed with a move instruction; if
6796 it can, convert inst.instruction to that move instruction and
6797 return TRUE; if it can't, convert inst.instruction to a literal-pool
6798 load and return FALSE. If this is not a valid thing to do in the
6799 current context, set inst.error and return TRUE.
6800
6801 inst.operands[i] describes the destination register. */
6802
6803 static bfd_boolean
6804 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6805 {
6806 unsigned long tbit;
6807
6808 if (thumb_p)
6809 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6810 else
6811 tbit = LOAD_BIT;
6812
6813 if ((inst.instruction & tbit) == 0)
6814 {
6815 inst.error = _("invalid pseudo operation");
6816 return TRUE;
6817 }
6818 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6819 {
6820 inst.error = _("constant expression expected");
6821 return TRUE;
6822 }
6823 if (inst.reloc.exp.X_op == O_constant)
6824 {
6825 if (thumb_p)
6826 {
6827 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6828 {
6829 /* This can be done with a mov(1) instruction. */
6830 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6831 inst.instruction |= inst.reloc.exp.X_add_number;
6832 return TRUE;
6833 }
6834 }
6835 else
6836 {
6837 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6838 if (value != FAIL)
6839 {
6840 /* This can be done with a mov instruction. */
6841 inst.instruction &= LITERAL_MASK;
6842 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6843 inst.instruction |= value & 0xfff;
6844 return TRUE;
6845 }
6846
6847 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6848 if (value != FAIL)
6849 {
6850 /* This can be done with a mvn instruction. */
6851 inst.instruction &= LITERAL_MASK;
6852 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6853 inst.instruction |= value & 0xfff;
6854 return TRUE;
6855 }
6856 }
6857 }
6858
6859 if (add_to_lit_pool () == FAIL)
6860 {
6861 inst.error = _("literal pool insertion failed");
6862 return TRUE;
6863 }
6864 inst.operands[1].reg = REG_PC;
6865 inst.operands[1].isreg = 1;
6866 inst.operands[1].preind = 1;
6867 inst.reloc.pc_rel = 1;
6868 inst.reloc.type = (thumb_p
6869 ? BFD_RELOC_ARM_THUMB_OFFSET
6870 : (mode_3
6871 ? BFD_RELOC_ARM_HWLITERAL
6872 : BFD_RELOC_ARM_LITERAL));
6873 return FALSE;
6874 }
6875
6876 /* Functions for instruction encoding, sorted by sub-architecture.
6877 First some generics; their names are taken from the conventional
6878 bit positions for register arguments in ARM format instructions. */
6879
6880 static void
6881 do_noargs (void)
6882 {
6883 }
6884
6885 static void
6886 do_rd (void)
6887 {
6888 inst.instruction |= inst.operands[0].reg << 12;
6889 }
6890
6891 static void
6892 do_rd_rm (void)
6893 {
6894 inst.instruction |= inst.operands[0].reg << 12;
6895 inst.instruction |= inst.operands[1].reg;
6896 }
6897
6898 static void
6899 do_rd_rn (void)
6900 {
6901 inst.instruction |= inst.operands[0].reg << 12;
6902 inst.instruction |= inst.operands[1].reg << 16;
6903 }
6904
6905 static void
6906 do_rn_rd (void)
6907 {
6908 inst.instruction |= inst.operands[0].reg << 16;
6909 inst.instruction |= inst.operands[1].reg << 12;
6910 }
6911
6912 static void
6913 do_rd_rm_rn (void)
6914 {
6915 unsigned Rn = inst.operands[2].reg;
6916 /* Enforce restrictions on SWP instruction. */
6917 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6918 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6919 _("Rn must not overlap other operands"));
6920 inst.instruction |= inst.operands[0].reg << 12;
6921 inst.instruction |= inst.operands[1].reg;
6922 inst.instruction |= Rn << 16;
6923 }
6924
6925 static void
6926 do_rd_rn_rm (void)
6927 {
6928 inst.instruction |= inst.operands[0].reg << 12;
6929 inst.instruction |= inst.operands[1].reg << 16;
6930 inst.instruction |= inst.operands[2].reg;
6931 }
6932
6933 static void
6934 do_rm_rd_rn (void)
6935 {
6936 inst.instruction |= inst.operands[0].reg;
6937 inst.instruction |= inst.operands[1].reg << 12;
6938 inst.instruction |= inst.operands[2].reg << 16;
6939 }
6940
6941 static void
6942 do_imm0 (void)
6943 {
6944 inst.instruction |= inst.operands[0].imm;
6945 }
6946
6947 static void
6948 do_rd_cpaddr (void)
6949 {
6950 inst.instruction |= inst.operands[0].reg << 12;
6951 encode_arm_cp_address (1, TRUE, TRUE, 0);
6952 }
6953
6954 /* ARM instructions, in alphabetical order by function name (except
6955 that wrapper functions appear immediately after the function they
6956 wrap). */
6957
6958 /* This is a pseudo-op of the form "adr rd, label" to be converted
6959 into a relative address of the form "add rd, pc, #label-.-8". */
6960
6961 static void
6962 do_adr (void)
6963 {
6964 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6965
6966 /* Frag hacking will turn this into a sub instruction if the offset turns
6967 out to be negative. */
6968 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6969 inst.reloc.pc_rel = 1;
6970 inst.reloc.exp.X_add_number -= 8;
6971 }
6972
6973 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6974 into a relative address of the form:
6975 add rd, pc, #low(label-.-8)"
6976 add rd, rd, #high(label-.-8)" */
6977
6978 static void
6979 do_adrl (void)
6980 {
6981 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6982
6983 /* Frag hacking will turn this into a sub instruction if the offset turns
6984 out to be negative. */
6985 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6986 inst.reloc.pc_rel = 1;
6987 inst.size = INSN_SIZE * 2;
6988 inst.reloc.exp.X_add_number -= 8;
6989 }
6990
6991 static void
6992 do_arit (void)
6993 {
6994 if (!inst.operands[1].present)
6995 inst.operands[1].reg = inst.operands[0].reg;
6996 inst.instruction |= inst.operands[0].reg << 12;
6997 inst.instruction |= inst.operands[1].reg << 16;
6998 encode_arm_shifter_operand (2);
6999 }
7000
7001 static void
7002 do_barrier (void)
7003 {
7004 if (inst.operands[0].present)
7005 {
7006 constraint ((inst.instruction & 0xf0) != 0x40
7007 && inst.operands[0].imm != 0xf,
7008 _("bad barrier type"));
7009 inst.instruction |= inst.operands[0].imm;
7010 }
7011 else
7012 inst.instruction |= 0xf;
7013 }
7014
7015 static void
7016 do_bfc (void)
7017 {
7018 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7019 constraint (msb > 32, _("bit-field extends past end of register"));
7020 /* The instruction encoding stores the LSB and MSB,
7021 not the LSB and width. */
7022 inst.instruction |= inst.operands[0].reg << 12;
7023 inst.instruction |= inst.operands[1].imm << 7;
7024 inst.instruction |= (msb - 1) << 16;
7025 }
7026
7027 static void
7028 do_bfi (void)
7029 {
7030 unsigned int msb;
7031
7032 /* #0 in second position is alternative syntax for bfc, which is
7033 the same instruction but with REG_PC in the Rm field. */
7034 if (!inst.operands[1].isreg)
7035 inst.operands[1].reg = REG_PC;
7036
7037 msb = inst.operands[2].imm + inst.operands[3].imm;
7038 constraint (msb > 32, _("bit-field extends past end of register"));
7039 /* The instruction encoding stores the LSB and MSB,
7040 not the LSB and width. */
7041 inst.instruction |= inst.operands[0].reg << 12;
7042 inst.instruction |= inst.operands[1].reg;
7043 inst.instruction |= inst.operands[2].imm << 7;
7044 inst.instruction |= (msb - 1) << 16;
7045 }
7046
7047 static void
7048 do_bfx (void)
7049 {
7050 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7051 _("bit-field extends past end of register"));
7052 inst.instruction |= inst.operands[0].reg << 12;
7053 inst.instruction |= inst.operands[1].reg;
7054 inst.instruction |= inst.operands[2].imm << 7;
7055 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7056 }
7057
7058 /* ARM V5 breakpoint instruction (argument parse)
7059 BKPT <16 bit unsigned immediate>
7060 Instruction is not conditional.
7061 The bit pattern given in insns[] has the COND_ALWAYS condition,
7062 and it is an error if the caller tried to override that. */
7063
7064 static void
7065 do_bkpt (void)
7066 {
7067 /* Top 12 of 16 bits to bits 19:8. */
7068 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7069
7070 /* Bottom 4 of 16 bits to bits 3:0. */
7071 inst.instruction |= inst.operands[0].imm & 0xf;
7072 }
7073
7074 static void
7075 encode_branch (int default_reloc)
7076 {
7077 if (inst.operands[0].hasreloc)
7078 {
7079 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7080 _("the only suffix valid here is '(plt)'"));
7081 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7082 }
7083 else
7084 {
7085 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7086 }
7087 inst.reloc.pc_rel = 1;
7088 }
7089
7090 static void
7091 do_branch (void)
7092 {
7093 #ifdef OBJ_ELF
7094 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7095 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7096 else
7097 #endif
7098 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7099 }
7100
7101 static void
7102 do_bl (void)
7103 {
7104 #ifdef OBJ_ELF
7105 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7106 {
7107 if (inst.cond == COND_ALWAYS)
7108 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7109 else
7110 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7111 }
7112 else
7113 #endif
7114 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7115 }
7116
7117 /* ARM V5 branch-link-exchange instruction (argument parse)
7118 BLX <target_addr> ie BLX(1)
7119 BLX{<condition>} <Rm> ie BLX(2)
7120 Unfortunately, there are two different opcodes for this mnemonic.
7121 So, the insns[].value is not used, and the code here zaps values
7122 into inst.instruction.
7123 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7124
7125 static void
7126 do_blx (void)
7127 {
7128 if (inst.operands[0].isreg)
7129 {
7130 /* Arg is a register; the opcode provided by insns[] is correct.
7131 It is not illegal to do "blx pc", just useless. */
7132 if (inst.operands[0].reg == REG_PC)
7133 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7134
7135 inst.instruction |= inst.operands[0].reg;
7136 }
7137 else
7138 {
7139 /* Arg is an address; this instruction cannot be executed
7140 conditionally, and the opcode must be adjusted.
7141 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7142 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7143 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7144 inst.instruction = 0xfa000000;
7145 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7146 }
7147 }
7148
7149 static void
7150 do_bx (void)
7151 {
7152 bfd_boolean want_reloc;
7153
7154 if (inst.operands[0].reg == REG_PC)
7155 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7156
7157 inst.instruction |= inst.operands[0].reg;
7158 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7159 it is for ARMv4t or earlier. */
7160 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7161 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7162 want_reloc = TRUE;
7163
7164 #ifdef OBJ_ELF
7165 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7166 #endif
7167 want_reloc = FALSE;
7168
7169 if (want_reloc)
7170 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7171 }
7172
7173
7174 /* ARM v5TEJ. Jump to Jazelle code. */
7175
7176 static void
7177 do_bxj (void)
7178 {
7179 if (inst.operands[0].reg == REG_PC)
7180 as_tsktsk (_("use of r15 in bxj is not really useful"));
7181
7182 inst.instruction |= inst.operands[0].reg;
7183 }
7184
7185 /* Co-processor data operation:
7186 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7187 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7188 static void
7189 do_cdp (void)
7190 {
7191 inst.instruction |= inst.operands[0].reg << 8;
7192 inst.instruction |= inst.operands[1].imm << 20;
7193 inst.instruction |= inst.operands[2].reg << 12;
7194 inst.instruction |= inst.operands[3].reg << 16;
7195 inst.instruction |= inst.operands[4].reg;
7196 inst.instruction |= inst.operands[5].imm << 5;
7197 }
7198
7199 static void
7200 do_cmp (void)
7201 {
7202 inst.instruction |= inst.operands[0].reg << 16;
7203 encode_arm_shifter_operand (1);
7204 }
7205
7206 /* Transfer between coprocessor and ARM registers.
7207 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7208 MRC2
7209 MCR{cond}
7210 MCR2
7211
7212 No special properties. */
7213
7214 static void
7215 do_co_reg (void)
7216 {
7217 unsigned Rd;
7218
7219 Rd = inst.operands[2].reg;
7220 if (thumb_mode)
7221 {
7222 if (inst.instruction == 0xee000010
7223 || inst.instruction == 0xfe000010)
7224 /* MCR, MCR2 */
7225 reject_bad_reg (Rd);
7226 else
7227 /* MRC, MRC2 */
7228 constraint (Rd == REG_SP, BAD_SP);
7229 }
7230 else
7231 {
7232 /* MCR */
7233 if (inst.instruction == 0xe000010)
7234 constraint (Rd == REG_PC, BAD_PC);
7235 }
7236
7237
7238 inst.instruction |= inst.operands[0].reg << 8;
7239 inst.instruction |= inst.operands[1].imm << 21;
7240 inst.instruction |= Rd << 12;
7241 inst.instruction |= inst.operands[3].reg << 16;
7242 inst.instruction |= inst.operands[4].reg;
7243 inst.instruction |= inst.operands[5].imm << 5;
7244 }
7245
7246 /* Transfer between coprocessor register and pair of ARM registers.
7247 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7248 MCRR2
7249 MRRC{cond}
7250 MRRC2
7251
7252 Two XScale instructions are special cases of these:
7253
7254 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7255 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7256
7257 Result unpredictable if Rd or Rn is R15. */
7258
7259 static void
7260 do_co_reg2c (void)
7261 {
7262 unsigned Rd, Rn;
7263
7264 Rd = inst.operands[2].reg;
7265 Rn = inst.operands[3].reg;
7266
7267 if (thumb_mode)
7268 {
7269 reject_bad_reg (Rd);
7270 reject_bad_reg (Rn);
7271 }
7272 else
7273 {
7274 constraint (Rd == REG_PC, BAD_PC);
7275 constraint (Rn == REG_PC, BAD_PC);
7276 }
7277
7278 inst.instruction |= inst.operands[0].reg << 8;
7279 inst.instruction |= inst.operands[1].imm << 4;
7280 inst.instruction |= Rd << 12;
7281 inst.instruction |= Rn << 16;
7282 inst.instruction |= inst.operands[4].reg;
7283 }
7284
7285 static void
7286 do_cpsi (void)
7287 {
7288 inst.instruction |= inst.operands[0].imm << 6;
7289 if (inst.operands[1].present)
7290 {
7291 inst.instruction |= CPSI_MMOD;
7292 inst.instruction |= inst.operands[1].imm;
7293 }
7294 }
7295
7296 static void
7297 do_dbg (void)
7298 {
7299 inst.instruction |= inst.operands[0].imm;
7300 }
7301
7302 static void
7303 do_it (void)
7304 {
7305 /* There is no IT instruction in ARM mode. We
7306 process it to do the validation as if in
7307 thumb mode, just in case the code gets
7308 assembled for thumb using the unified syntax. */
7309
7310 inst.size = 0;
7311 if (unified_syntax)
7312 {
7313 set_it_insn_type (IT_INSN);
7314 now_it.mask = (inst.instruction & 0xf) | 0x10;
7315 now_it.cc = inst.operands[0].imm;
7316 }
7317 }
7318
7319 static void
7320 do_ldmstm (void)
7321 {
7322 int base_reg = inst.operands[0].reg;
7323 int range = inst.operands[1].imm;
7324
7325 inst.instruction |= base_reg << 16;
7326 inst.instruction |= range;
7327
7328 if (inst.operands[1].writeback)
7329 inst.instruction |= LDM_TYPE_2_OR_3;
7330
7331 if (inst.operands[0].writeback)
7332 {
7333 inst.instruction |= WRITE_BACK;
7334 /* Check for unpredictable uses of writeback. */
7335 if (inst.instruction & LOAD_BIT)
7336 {
7337 /* Not allowed in LDM type 2. */
7338 if ((inst.instruction & LDM_TYPE_2_OR_3)
7339 && ((range & (1 << REG_PC)) == 0))
7340 as_warn (_("writeback of base register is UNPREDICTABLE"));
7341 /* Only allowed if base reg not in list for other types. */
7342 else if (range & (1 << base_reg))
7343 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7344 }
7345 else /* STM. */
7346 {
7347 /* Not allowed for type 2. */
7348 if (inst.instruction & LDM_TYPE_2_OR_3)
7349 as_warn (_("writeback of base register is UNPREDICTABLE"));
7350 /* Only allowed if base reg not in list, or first in list. */
7351 else if ((range & (1 << base_reg))
7352 && (range & ((1 << base_reg) - 1)))
7353 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7354 }
7355 }
7356 }
7357
7358 /* ARMv5TE load-consecutive (argument parse)
7359 Mode is like LDRH.
7360
7361 LDRccD R, mode
7362 STRccD R, mode. */
7363
7364 static void
7365 do_ldrd (void)
7366 {
7367 constraint (inst.operands[0].reg % 2 != 0,
7368 _("first destination register must be even"));
7369 constraint (inst.operands[1].present
7370 && inst.operands[1].reg != inst.operands[0].reg + 1,
7371 _("can only load two consecutive registers"));
7372 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7373 constraint (!inst.operands[2].isreg, _("'[' expected"));
7374
7375 if (!inst.operands[1].present)
7376 inst.operands[1].reg = inst.operands[0].reg + 1;
7377
7378 if (inst.instruction & LOAD_BIT)
7379 {
7380 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7381 register and the first register written; we have to diagnose
7382 overlap between the base and the second register written here. */
7383
7384 if (inst.operands[2].reg == inst.operands[1].reg
7385 && (inst.operands[2].writeback || inst.operands[2].postind))
7386 as_warn (_("base register written back, and overlaps "
7387 "second destination register"));
7388
7389 /* For an index-register load, the index register must not overlap the
7390 destination (even if not write-back). */
7391 else if (inst.operands[2].immisreg
7392 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7393 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7394 as_warn (_("index register overlaps destination register"));
7395 }
7396
7397 inst.instruction |= inst.operands[0].reg << 12;
7398 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7399 }
7400
7401 static void
7402 do_ldrex (void)
7403 {
7404 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7405 || inst.operands[1].postind || inst.operands[1].writeback
7406 || inst.operands[1].immisreg || inst.operands[1].shifted
7407 || inst.operands[1].negative
7408 /* This can arise if the programmer has written
7409 strex rN, rM, foo
7410 or if they have mistakenly used a register name as the last
7411 operand, eg:
7412 strex rN, rM, rX
7413 It is very difficult to distinguish between these two cases
7414 because "rX" might actually be a label. ie the register
7415 name has been occluded by a symbol of the same name. So we
7416 just generate a general 'bad addressing mode' type error
7417 message and leave it up to the programmer to discover the
7418 true cause and fix their mistake. */
7419 || (inst.operands[1].reg == REG_PC),
7420 BAD_ADDR_MODE);
7421
7422 constraint (inst.reloc.exp.X_op != O_constant
7423 || inst.reloc.exp.X_add_number != 0,
7424 _("offset must be zero in ARM encoding"));
7425
7426 inst.instruction |= inst.operands[0].reg << 12;
7427 inst.instruction |= inst.operands[1].reg << 16;
7428 inst.reloc.type = BFD_RELOC_UNUSED;
7429 }
7430
7431 static void
7432 do_ldrexd (void)
7433 {
7434 constraint (inst.operands[0].reg % 2 != 0,
7435 _("even register required"));
7436 constraint (inst.operands[1].present
7437 && inst.operands[1].reg != inst.operands[0].reg + 1,
7438 _("can only load two consecutive registers"));
7439 /* If op 1 were present and equal to PC, this function wouldn't
7440 have been called in the first place. */
7441 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7442
7443 inst.instruction |= inst.operands[0].reg << 12;
7444 inst.instruction |= inst.operands[2].reg << 16;
7445 }
7446
7447 static void
7448 do_ldst (void)
7449 {
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 if (!inst.operands[1].isreg)
7452 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7453 return;
7454 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7455 }
7456
7457 static void
7458 do_ldstt (void)
7459 {
7460 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7461 reject [Rn,...]. */
7462 if (inst.operands[1].preind)
7463 {
7464 constraint (inst.reloc.exp.X_op != O_constant
7465 || inst.reloc.exp.X_add_number != 0,
7466 _("this instruction requires a post-indexed address"));
7467
7468 inst.operands[1].preind = 0;
7469 inst.operands[1].postind = 1;
7470 inst.operands[1].writeback = 1;
7471 }
7472 inst.instruction |= inst.operands[0].reg << 12;
7473 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7474 }
7475
7476 /* Halfword and signed-byte load/store operations. */
7477
7478 static void
7479 do_ldstv4 (void)
7480 {
7481 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7482 inst.instruction |= inst.operands[0].reg << 12;
7483 if (!inst.operands[1].isreg)
7484 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7485 return;
7486 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7487 }
7488
7489 static void
7490 do_ldsttv4 (void)
7491 {
7492 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7493 reject [Rn,...]. */
7494 if (inst.operands[1].preind)
7495 {
7496 constraint (inst.reloc.exp.X_op != O_constant
7497 || inst.reloc.exp.X_add_number != 0,
7498 _("this instruction requires a post-indexed address"));
7499
7500 inst.operands[1].preind = 0;
7501 inst.operands[1].postind = 1;
7502 inst.operands[1].writeback = 1;
7503 }
7504 inst.instruction |= inst.operands[0].reg << 12;
7505 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7506 }
7507
7508 /* Co-processor register load/store.
7509 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7510 static void
7511 do_lstc (void)
7512 {
7513 inst.instruction |= inst.operands[0].reg << 8;
7514 inst.instruction |= inst.operands[1].reg << 12;
7515 encode_arm_cp_address (2, TRUE, TRUE, 0);
7516 }
7517
7518 static void
7519 do_mlas (void)
7520 {
7521 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7522 if (inst.operands[0].reg == inst.operands[1].reg
7523 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7524 && !(inst.instruction & 0x00400000))
7525 as_tsktsk (_("Rd and Rm should be different in mla"));
7526
7527 inst.instruction |= inst.operands[0].reg << 16;
7528 inst.instruction |= inst.operands[1].reg;
7529 inst.instruction |= inst.operands[2].reg << 8;
7530 inst.instruction |= inst.operands[3].reg << 12;
7531 }
7532
7533 static void
7534 do_mov (void)
7535 {
7536 inst.instruction |= inst.operands[0].reg << 12;
7537 encode_arm_shifter_operand (1);
7538 }
7539
7540 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7541 static void
7542 do_mov16 (void)
7543 {
7544 bfd_vma imm;
7545 bfd_boolean top;
7546
7547 top = (inst.instruction & 0x00400000) != 0;
7548 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7549 _(":lower16: not allowed this instruction"));
7550 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7551 _(":upper16: not allowed instruction"));
7552 inst.instruction |= inst.operands[0].reg << 12;
7553 if (inst.reloc.type == BFD_RELOC_UNUSED)
7554 {
7555 imm = inst.reloc.exp.X_add_number;
7556 /* The value is in two pieces: 0:11, 16:19. */
7557 inst.instruction |= (imm & 0x00000fff);
7558 inst.instruction |= (imm & 0x0000f000) << 4;
7559 }
7560 }
7561
7562 static void do_vfp_nsyn_opcode (const char *);
7563
7564 static int
7565 do_vfp_nsyn_mrs (void)
7566 {
7567 if (inst.operands[0].isvec)
7568 {
7569 if (inst.operands[1].reg != 1)
7570 first_error (_("operand 1 must be FPSCR"));
7571 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7572 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7573 do_vfp_nsyn_opcode ("fmstat");
7574 }
7575 else if (inst.operands[1].isvec)
7576 do_vfp_nsyn_opcode ("fmrx");
7577 else
7578 return FAIL;
7579
7580 return SUCCESS;
7581 }
7582
7583 static int
7584 do_vfp_nsyn_msr (void)
7585 {
7586 if (inst.operands[0].isvec)
7587 do_vfp_nsyn_opcode ("fmxr");
7588 else
7589 return FAIL;
7590
7591 return SUCCESS;
7592 }
7593
7594 static void
7595 do_vmrs (void)
7596 {
7597 unsigned Rt = inst.operands[0].reg;
7598
7599 if (thumb_mode && inst.operands[0].reg == REG_SP)
7600 {
7601 inst.error = BAD_SP;
7602 return;
7603 }
7604
7605 /* APSR_ sets isvec. All other refs to PC are illegal. */
7606 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7607 {
7608 inst.error = BAD_PC;
7609 return;
7610 }
7611
7612 if (inst.operands[1].reg != 1)
7613 first_error (_("operand 1 must be FPSCR"));
7614
7615 inst.instruction |= (Rt << 12);
7616 }
7617
7618 static void
7619 do_vmsr (void)
7620 {
7621 unsigned Rt = inst.operands[1].reg;
7622
7623 if (thumb_mode)
7624 reject_bad_reg (Rt);
7625 else if (Rt == REG_PC)
7626 {
7627 inst.error = BAD_PC;
7628 return;
7629 }
7630
7631 if (inst.operands[0].reg != 1)
7632 first_error (_("operand 0 must be FPSCR"));
7633
7634 inst.instruction |= (Rt << 12);
7635 }
7636
7637 static void
7638 do_mrs (void)
7639 {
7640 if (do_vfp_nsyn_mrs () == SUCCESS)
7641 return;
7642
7643 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7644 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7645 != (PSR_c|PSR_f),
7646 _("'CPSR' or 'SPSR' expected"));
7647 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7648 inst.instruction |= inst.operands[0].reg << 12;
7649 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7650 }
7651
7652 /* Two possible forms:
7653 "{C|S}PSR_<field>, Rm",
7654 "{C|S}PSR_f, #expression". */
7655
7656 static void
7657 do_msr (void)
7658 {
7659 if (do_vfp_nsyn_msr () == SUCCESS)
7660 return;
7661
7662 inst.instruction |= inst.operands[0].imm;
7663 if (inst.operands[1].isreg)
7664 inst.instruction |= inst.operands[1].reg;
7665 else
7666 {
7667 inst.instruction |= INST_IMMEDIATE;
7668 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7669 inst.reloc.pc_rel = 0;
7670 }
7671 }
7672
7673 static void
7674 do_mul (void)
7675 {
7676 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7677
7678 if (!inst.operands[2].present)
7679 inst.operands[2].reg = inst.operands[0].reg;
7680 inst.instruction |= inst.operands[0].reg << 16;
7681 inst.instruction |= inst.operands[1].reg;
7682 inst.instruction |= inst.operands[2].reg << 8;
7683
7684 if (inst.operands[0].reg == inst.operands[1].reg
7685 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7686 as_tsktsk (_("Rd and Rm should be different in mul"));
7687 }
7688
7689 /* Long Multiply Parser
7690 UMULL RdLo, RdHi, Rm, Rs
7691 SMULL RdLo, RdHi, Rm, Rs
7692 UMLAL RdLo, RdHi, Rm, Rs
7693 SMLAL RdLo, RdHi, Rm, Rs. */
7694
7695 static void
7696 do_mull (void)
7697 {
7698 inst.instruction |= inst.operands[0].reg << 12;
7699 inst.instruction |= inst.operands[1].reg << 16;
7700 inst.instruction |= inst.operands[2].reg;
7701 inst.instruction |= inst.operands[3].reg << 8;
7702
7703 /* rdhi and rdlo must be different. */
7704 if (inst.operands[0].reg == inst.operands[1].reg)
7705 as_tsktsk (_("rdhi and rdlo must be different"));
7706
7707 /* rdhi, rdlo and rm must all be different before armv6. */
7708 if ((inst.operands[0].reg == inst.operands[2].reg
7709 || inst.operands[1].reg == inst.operands[2].reg)
7710 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7711 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7712 }
7713
7714 static void
7715 do_nop (void)
7716 {
7717 if (inst.operands[0].present
7718 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7719 {
7720 /* Architectural NOP hints are CPSR sets with no bits selected. */
7721 inst.instruction &= 0xf0000000;
7722 inst.instruction |= 0x0320f000;
7723 if (inst.operands[0].present)
7724 inst.instruction |= inst.operands[0].imm;
7725 }
7726 }
7727
7728 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7729 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7730 Condition defaults to COND_ALWAYS.
7731 Error if Rd, Rn or Rm are R15. */
7732
7733 static void
7734 do_pkhbt (void)
7735 {
7736 inst.instruction |= inst.operands[0].reg << 12;
7737 inst.instruction |= inst.operands[1].reg << 16;
7738 inst.instruction |= inst.operands[2].reg;
7739 if (inst.operands[3].present)
7740 encode_arm_shift (3);
7741 }
7742
7743 /* ARM V6 PKHTB (Argument Parse). */
7744
7745 static void
7746 do_pkhtb (void)
7747 {
7748 if (!inst.operands[3].present)
7749 {
7750 /* If the shift specifier is omitted, turn the instruction
7751 into pkhbt rd, rm, rn. */
7752 inst.instruction &= 0xfff00010;
7753 inst.instruction |= inst.operands[0].reg << 12;
7754 inst.instruction |= inst.operands[1].reg;
7755 inst.instruction |= inst.operands[2].reg << 16;
7756 }
7757 else
7758 {
7759 inst.instruction |= inst.operands[0].reg << 12;
7760 inst.instruction |= inst.operands[1].reg << 16;
7761 inst.instruction |= inst.operands[2].reg;
7762 encode_arm_shift (3);
7763 }
7764 }
7765
7766 /* ARMv5TE: Preload-Cache
7767
7768 PLD <addr_mode>
7769
7770 Syntactically, like LDR with B=1, W=0, L=1. */
7771
7772 static void
7773 do_pld (void)
7774 {
7775 constraint (!inst.operands[0].isreg,
7776 _("'[' expected after PLD mnemonic"));
7777 constraint (inst.operands[0].postind,
7778 _("post-indexed expression used in preload instruction"));
7779 constraint (inst.operands[0].writeback,
7780 _("writeback used in preload instruction"));
7781 constraint (!inst.operands[0].preind,
7782 _("unindexed addressing used in preload instruction"));
7783 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7784 }
7785
7786 /* ARMv7: PLI <addr_mode> */
7787 static void
7788 do_pli (void)
7789 {
7790 constraint (!inst.operands[0].isreg,
7791 _("'[' expected after PLI mnemonic"));
7792 constraint (inst.operands[0].postind,
7793 _("post-indexed expression used in preload instruction"));
7794 constraint (inst.operands[0].writeback,
7795 _("writeback used in preload instruction"));
7796 constraint (!inst.operands[0].preind,
7797 _("unindexed addressing used in preload instruction"));
7798 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7799 inst.instruction &= ~PRE_INDEX;
7800 }
7801
7802 static void
7803 do_push_pop (void)
7804 {
7805 inst.operands[1] = inst.operands[0];
7806 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7807 inst.operands[0].isreg = 1;
7808 inst.operands[0].writeback = 1;
7809 inst.operands[0].reg = REG_SP;
7810 do_ldmstm ();
7811 }
7812
7813 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7814 word at the specified address and the following word
7815 respectively.
7816 Unconditionally executed.
7817 Error if Rn is R15. */
7818
7819 static void
7820 do_rfe (void)
7821 {
7822 inst.instruction |= inst.operands[0].reg << 16;
7823 if (inst.operands[0].writeback)
7824 inst.instruction |= WRITE_BACK;
7825 }
7826
7827 /* ARM V6 ssat (argument parse). */
7828
7829 static void
7830 do_ssat (void)
7831 {
7832 inst.instruction |= inst.operands[0].reg << 12;
7833 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7834 inst.instruction |= inst.operands[2].reg;
7835
7836 if (inst.operands[3].present)
7837 encode_arm_shift (3);
7838 }
7839
7840 /* ARM V6 usat (argument parse). */
7841
7842 static void
7843 do_usat (void)
7844 {
7845 inst.instruction |= inst.operands[0].reg << 12;
7846 inst.instruction |= inst.operands[1].imm << 16;
7847 inst.instruction |= inst.operands[2].reg;
7848
7849 if (inst.operands[3].present)
7850 encode_arm_shift (3);
7851 }
7852
7853 /* ARM V6 ssat16 (argument parse). */
7854
7855 static void
7856 do_ssat16 (void)
7857 {
7858 inst.instruction |= inst.operands[0].reg << 12;
7859 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7860 inst.instruction |= inst.operands[2].reg;
7861 }
7862
7863 static void
7864 do_usat16 (void)
7865 {
7866 inst.instruction |= inst.operands[0].reg << 12;
7867 inst.instruction |= inst.operands[1].imm << 16;
7868 inst.instruction |= inst.operands[2].reg;
7869 }
7870
7871 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7872 preserving the other bits.
7873
7874 setend <endian_specifier>, where <endian_specifier> is either
7875 BE or LE. */
7876
7877 static void
7878 do_setend (void)
7879 {
7880 if (inst.operands[0].imm)
7881 inst.instruction |= 0x200;
7882 }
7883
7884 static void
7885 do_shift (void)
7886 {
7887 unsigned int Rm = (inst.operands[1].present
7888 ? inst.operands[1].reg
7889 : inst.operands[0].reg);
7890
7891 inst.instruction |= inst.operands[0].reg << 12;
7892 inst.instruction |= Rm;
7893 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7894 {
7895 inst.instruction |= inst.operands[2].reg << 8;
7896 inst.instruction |= SHIFT_BY_REG;
7897 }
7898 else
7899 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7900 }
7901
7902 static void
7903 do_smc (void)
7904 {
7905 inst.reloc.type = BFD_RELOC_ARM_SMC;
7906 inst.reloc.pc_rel = 0;
7907 }
7908
7909 static void
7910 do_swi (void)
7911 {
7912 inst.reloc.type = BFD_RELOC_ARM_SWI;
7913 inst.reloc.pc_rel = 0;
7914 }
7915
7916 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7917 SMLAxy{cond} Rd,Rm,Rs,Rn
7918 SMLAWy{cond} Rd,Rm,Rs,Rn
7919 Error if any register is R15. */
7920
7921 static void
7922 do_smla (void)
7923 {
7924 inst.instruction |= inst.operands[0].reg << 16;
7925 inst.instruction |= inst.operands[1].reg;
7926 inst.instruction |= inst.operands[2].reg << 8;
7927 inst.instruction |= inst.operands[3].reg << 12;
7928 }
7929
7930 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7931 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7932 Error if any register is R15.
7933 Warning if Rdlo == Rdhi. */
7934
7935 static void
7936 do_smlal (void)
7937 {
7938 inst.instruction |= inst.operands[0].reg << 12;
7939 inst.instruction |= inst.operands[1].reg << 16;
7940 inst.instruction |= inst.operands[2].reg;
7941 inst.instruction |= inst.operands[3].reg << 8;
7942
7943 if (inst.operands[0].reg == inst.operands[1].reg)
7944 as_tsktsk (_("rdhi and rdlo must be different"));
7945 }
7946
7947 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7948 SMULxy{cond} Rd,Rm,Rs
7949 Error if any register is R15. */
7950
7951 static void
7952 do_smul (void)
7953 {
7954 inst.instruction |= inst.operands[0].reg << 16;
7955 inst.instruction |= inst.operands[1].reg;
7956 inst.instruction |= inst.operands[2].reg << 8;
7957 }
7958
7959 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7960 the same for both ARM and Thumb-2. */
7961
7962 static void
7963 do_srs (void)
7964 {
7965 int reg;
7966
7967 if (inst.operands[0].present)
7968 {
7969 reg = inst.operands[0].reg;
7970 constraint (reg != REG_SP, _("SRS base register must be r13"));
7971 }
7972 else
7973 reg = REG_SP;
7974
7975 inst.instruction |= reg << 16;
7976 inst.instruction |= inst.operands[1].imm;
7977 if (inst.operands[0].writeback || inst.operands[1].writeback)
7978 inst.instruction |= WRITE_BACK;
7979 }
7980
7981 /* ARM V6 strex (argument parse). */
7982
7983 static void
7984 do_strex (void)
7985 {
7986 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7987 || inst.operands[2].postind || inst.operands[2].writeback
7988 || inst.operands[2].immisreg || inst.operands[2].shifted
7989 || inst.operands[2].negative
7990 /* See comment in do_ldrex(). */
7991 || (inst.operands[2].reg == REG_PC),
7992 BAD_ADDR_MODE);
7993
7994 constraint (inst.operands[0].reg == inst.operands[1].reg
7995 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7996
7997 constraint (inst.reloc.exp.X_op != O_constant
7998 || inst.reloc.exp.X_add_number != 0,
7999 _("offset must be zero in ARM encoding"));
8000
8001 inst.instruction |= inst.operands[0].reg << 12;
8002 inst.instruction |= inst.operands[1].reg;
8003 inst.instruction |= inst.operands[2].reg << 16;
8004 inst.reloc.type = BFD_RELOC_UNUSED;
8005 }
8006
8007 static void
8008 do_strexd (void)
8009 {
8010 constraint (inst.operands[1].reg % 2 != 0,
8011 _("even register required"));
8012 constraint (inst.operands[2].present
8013 && inst.operands[2].reg != inst.operands[1].reg + 1,
8014 _("can only store two consecutive registers"));
8015 /* If op 2 were present and equal to PC, this function wouldn't
8016 have been called in the first place. */
8017 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8018
8019 constraint (inst.operands[0].reg == inst.operands[1].reg
8020 || inst.operands[0].reg == inst.operands[1].reg + 1
8021 || inst.operands[0].reg == inst.operands[3].reg,
8022 BAD_OVERLAP);
8023
8024 inst.instruction |= inst.operands[0].reg << 12;
8025 inst.instruction |= inst.operands[1].reg;
8026 inst.instruction |= inst.operands[3].reg << 16;
8027 }
8028
8029 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8030 extends it to 32-bits, and adds the result to a value in another
8031 register. You can specify a rotation by 0, 8, 16, or 24 bits
8032 before extracting the 16-bit value.
8033 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8034 Condition defaults to COND_ALWAYS.
8035 Error if any register uses R15. */
8036
8037 static void
8038 do_sxtah (void)
8039 {
8040 inst.instruction |= inst.operands[0].reg << 12;
8041 inst.instruction |= inst.operands[1].reg << 16;
8042 inst.instruction |= inst.operands[2].reg;
8043 inst.instruction |= inst.operands[3].imm << 10;
8044 }
8045
8046 /* ARM V6 SXTH.
8047
8048 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8049 Condition defaults to COND_ALWAYS.
8050 Error if any register uses R15. */
8051
8052 static void
8053 do_sxth (void)
8054 {
8055 inst.instruction |= inst.operands[0].reg << 12;
8056 inst.instruction |= inst.operands[1].reg;
8057 inst.instruction |= inst.operands[2].imm << 10;
8058 }
8059 \f
8060 /* VFP instructions. In a logical order: SP variant first, monad
8061 before dyad, arithmetic then move then load/store. */
8062
8063 static void
8064 do_vfp_sp_monadic (void)
8065 {
8066 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8067 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8068 }
8069
8070 static void
8071 do_vfp_sp_dyadic (void)
8072 {
8073 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8074 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8075 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8076 }
8077
8078 static void
8079 do_vfp_sp_compare_z (void)
8080 {
8081 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8082 }
8083
8084 static void
8085 do_vfp_dp_sp_cvt (void)
8086 {
8087 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8088 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8089 }
8090
8091 static void
8092 do_vfp_sp_dp_cvt (void)
8093 {
8094 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8095 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8096 }
8097
8098 static void
8099 do_vfp_reg_from_sp (void)
8100 {
8101 inst.instruction |= inst.operands[0].reg << 12;
8102 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8103 }
8104
8105 static void
8106 do_vfp_reg2_from_sp2 (void)
8107 {
8108 constraint (inst.operands[2].imm != 2,
8109 _("only two consecutive VFP SP registers allowed here"));
8110 inst.instruction |= inst.operands[0].reg << 12;
8111 inst.instruction |= inst.operands[1].reg << 16;
8112 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8113 }
8114
8115 static void
8116 do_vfp_sp_from_reg (void)
8117 {
8118 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8119 inst.instruction |= inst.operands[1].reg << 12;
8120 }
8121
8122 static void
8123 do_vfp_sp2_from_reg2 (void)
8124 {
8125 constraint (inst.operands[0].imm != 2,
8126 _("only two consecutive VFP SP registers allowed here"));
8127 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8128 inst.instruction |= inst.operands[1].reg << 12;
8129 inst.instruction |= inst.operands[2].reg << 16;
8130 }
8131
8132 static void
8133 do_vfp_sp_ldst (void)
8134 {
8135 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8136 encode_arm_cp_address (1, FALSE, TRUE, 0);
8137 }
8138
8139 static void
8140 do_vfp_dp_ldst (void)
8141 {
8142 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8143 encode_arm_cp_address (1, FALSE, TRUE, 0);
8144 }
8145
8146
8147 static void
8148 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8149 {
8150 if (inst.operands[0].writeback)
8151 inst.instruction |= WRITE_BACK;
8152 else
8153 constraint (ldstm_type != VFP_LDSTMIA,
8154 _("this addressing mode requires base-register writeback"));
8155 inst.instruction |= inst.operands[0].reg << 16;
8156 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8157 inst.instruction |= inst.operands[1].imm;
8158 }
8159
8160 static void
8161 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8162 {
8163 int count;
8164
8165 if (inst.operands[0].writeback)
8166 inst.instruction |= WRITE_BACK;
8167 else
8168 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8169 _("this addressing mode requires base-register writeback"));
8170
8171 inst.instruction |= inst.operands[0].reg << 16;
8172 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8173
8174 count = inst.operands[1].imm << 1;
8175 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8176 count += 1;
8177
8178 inst.instruction |= count;
8179 }
8180
8181 static void
8182 do_vfp_sp_ldstmia (void)
8183 {
8184 vfp_sp_ldstm (VFP_LDSTMIA);
8185 }
8186
8187 static void
8188 do_vfp_sp_ldstmdb (void)
8189 {
8190 vfp_sp_ldstm (VFP_LDSTMDB);
8191 }
8192
8193 static void
8194 do_vfp_dp_ldstmia (void)
8195 {
8196 vfp_dp_ldstm (VFP_LDSTMIA);
8197 }
8198
8199 static void
8200 do_vfp_dp_ldstmdb (void)
8201 {
8202 vfp_dp_ldstm (VFP_LDSTMDB);
8203 }
8204
8205 static void
8206 do_vfp_xp_ldstmia (void)
8207 {
8208 vfp_dp_ldstm (VFP_LDSTMIAX);
8209 }
8210
8211 static void
8212 do_vfp_xp_ldstmdb (void)
8213 {
8214 vfp_dp_ldstm (VFP_LDSTMDBX);
8215 }
8216
8217 static void
8218 do_vfp_dp_rd_rm (void)
8219 {
8220 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8221 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8222 }
8223
8224 static void
8225 do_vfp_dp_rn_rd (void)
8226 {
8227 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8228 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8229 }
8230
8231 static void
8232 do_vfp_dp_rd_rn (void)
8233 {
8234 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8235 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8236 }
8237
8238 static void
8239 do_vfp_dp_rd_rn_rm (void)
8240 {
8241 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8242 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8243 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8244 }
8245
8246 static void
8247 do_vfp_dp_rd (void)
8248 {
8249 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8250 }
8251
8252 static void
8253 do_vfp_dp_rm_rd_rn (void)
8254 {
8255 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8256 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8257 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8258 }
8259
8260 /* VFPv3 instructions. */
8261 static void
8262 do_vfp_sp_const (void)
8263 {
8264 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8265 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8266 inst.instruction |= (inst.operands[1].imm & 0x0f);
8267 }
8268
8269 static void
8270 do_vfp_dp_const (void)
8271 {
8272 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8273 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8274 inst.instruction |= (inst.operands[1].imm & 0x0f);
8275 }
8276
8277 static void
8278 vfp_conv (int srcsize)
8279 {
8280 unsigned immbits = srcsize - inst.operands[1].imm;
8281 inst.instruction |= (immbits & 1) << 5;
8282 inst.instruction |= (immbits >> 1);
8283 }
8284
8285 static void
8286 do_vfp_sp_conv_16 (void)
8287 {
8288 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8289 vfp_conv (16);
8290 }
8291
8292 static void
8293 do_vfp_dp_conv_16 (void)
8294 {
8295 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8296 vfp_conv (16);
8297 }
8298
8299 static void
8300 do_vfp_sp_conv_32 (void)
8301 {
8302 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8303 vfp_conv (32);
8304 }
8305
8306 static void
8307 do_vfp_dp_conv_32 (void)
8308 {
8309 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8310 vfp_conv (32);
8311 }
8312 \f
8313 /* FPA instructions. Also in a logical order. */
8314
8315 static void
8316 do_fpa_cmp (void)
8317 {
8318 inst.instruction |= inst.operands[0].reg << 16;
8319 inst.instruction |= inst.operands[1].reg;
8320 }
8321
8322 static void
8323 do_fpa_ldmstm (void)
8324 {
8325 inst.instruction |= inst.operands[0].reg << 12;
8326 switch (inst.operands[1].imm)
8327 {
8328 case 1: inst.instruction |= CP_T_X; break;
8329 case 2: inst.instruction |= CP_T_Y; break;
8330 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8331 case 4: break;
8332 default: abort ();
8333 }
8334
8335 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8336 {
8337 /* The instruction specified "ea" or "fd", so we can only accept
8338 [Rn]{!}. The instruction does not really support stacking or
8339 unstacking, so we have to emulate these by setting appropriate
8340 bits and offsets. */
8341 constraint (inst.reloc.exp.X_op != O_constant
8342 || inst.reloc.exp.X_add_number != 0,
8343 _("this instruction does not support indexing"));
8344
8345 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8346 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8347
8348 if (!(inst.instruction & INDEX_UP))
8349 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8350
8351 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8352 {
8353 inst.operands[2].preind = 0;
8354 inst.operands[2].postind = 1;
8355 }
8356 }
8357
8358 encode_arm_cp_address (2, TRUE, TRUE, 0);
8359 }
8360 \f
8361 /* iWMMXt instructions: strictly in alphabetical order. */
8362
8363 static void
8364 do_iwmmxt_tandorc (void)
8365 {
8366 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8367 }
8368
8369 static void
8370 do_iwmmxt_textrc (void)
8371 {
8372 inst.instruction |= inst.operands[0].reg << 12;
8373 inst.instruction |= inst.operands[1].imm;
8374 }
8375
8376 static void
8377 do_iwmmxt_textrm (void)
8378 {
8379 inst.instruction |= inst.operands[0].reg << 12;
8380 inst.instruction |= inst.operands[1].reg << 16;
8381 inst.instruction |= inst.operands[2].imm;
8382 }
8383
8384 static void
8385 do_iwmmxt_tinsr (void)
8386 {
8387 inst.instruction |= inst.operands[0].reg << 16;
8388 inst.instruction |= inst.operands[1].reg << 12;
8389 inst.instruction |= inst.operands[2].imm;
8390 }
8391
8392 static void
8393 do_iwmmxt_tmia (void)
8394 {
8395 inst.instruction |= inst.operands[0].reg << 5;
8396 inst.instruction |= inst.operands[1].reg;
8397 inst.instruction |= inst.operands[2].reg << 12;
8398 }
8399
8400 static void
8401 do_iwmmxt_waligni (void)
8402 {
8403 inst.instruction |= inst.operands[0].reg << 12;
8404 inst.instruction |= inst.operands[1].reg << 16;
8405 inst.instruction |= inst.operands[2].reg;
8406 inst.instruction |= inst.operands[3].imm << 20;
8407 }
8408
8409 static void
8410 do_iwmmxt_wmerge (void)
8411 {
8412 inst.instruction |= inst.operands[0].reg << 12;
8413 inst.instruction |= inst.operands[1].reg << 16;
8414 inst.instruction |= inst.operands[2].reg;
8415 inst.instruction |= inst.operands[3].imm << 21;
8416 }
8417
8418 static void
8419 do_iwmmxt_wmov (void)
8420 {
8421 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8422 inst.instruction |= inst.operands[0].reg << 12;
8423 inst.instruction |= inst.operands[1].reg << 16;
8424 inst.instruction |= inst.operands[1].reg;
8425 }
8426
8427 static void
8428 do_iwmmxt_wldstbh (void)
8429 {
8430 int reloc;
8431 inst.instruction |= inst.operands[0].reg << 12;
8432 if (thumb_mode)
8433 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8434 else
8435 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8436 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8437 }
8438
8439 static void
8440 do_iwmmxt_wldstw (void)
8441 {
8442 /* RIWR_RIWC clears .isreg for a control register. */
8443 if (!inst.operands[0].isreg)
8444 {
8445 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8446 inst.instruction |= 0xf0000000;
8447 }
8448
8449 inst.instruction |= inst.operands[0].reg << 12;
8450 encode_arm_cp_address (1, TRUE, TRUE, 0);
8451 }
8452
8453 static void
8454 do_iwmmxt_wldstd (void)
8455 {
8456 inst.instruction |= inst.operands[0].reg << 12;
8457 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8458 && inst.operands[1].immisreg)
8459 {
8460 inst.instruction &= ~0x1a000ff;
8461 inst.instruction |= (0xf << 28);
8462 if (inst.operands[1].preind)
8463 inst.instruction |= PRE_INDEX;
8464 if (!inst.operands[1].negative)
8465 inst.instruction |= INDEX_UP;
8466 if (inst.operands[1].writeback)
8467 inst.instruction |= WRITE_BACK;
8468 inst.instruction |= inst.operands[1].reg << 16;
8469 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8470 inst.instruction |= inst.operands[1].imm;
8471 }
8472 else
8473 encode_arm_cp_address (1, TRUE, FALSE, 0);
8474 }
8475
8476 static void
8477 do_iwmmxt_wshufh (void)
8478 {
8479 inst.instruction |= inst.operands[0].reg << 12;
8480 inst.instruction |= inst.operands[1].reg << 16;
8481 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8482 inst.instruction |= (inst.operands[2].imm & 0x0f);
8483 }
8484
8485 static void
8486 do_iwmmxt_wzero (void)
8487 {
8488 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8489 inst.instruction |= inst.operands[0].reg;
8490 inst.instruction |= inst.operands[0].reg << 12;
8491 inst.instruction |= inst.operands[0].reg << 16;
8492 }
8493
8494 static void
8495 do_iwmmxt_wrwrwr_or_imm5 (void)
8496 {
8497 if (inst.operands[2].isreg)
8498 do_rd_rn_rm ();
8499 else {
8500 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8501 _("immediate operand requires iWMMXt2"));
8502 do_rd_rn ();
8503 if (inst.operands[2].imm == 0)
8504 {
8505 switch ((inst.instruction >> 20) & 0xf)
8506 {
8507 case 4:
8508 case 5:
8509 case 6:
8510 case 7:
8511 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8512 inst.operands[2].imm = 16;
8513 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8514 break;
8515 case 8:
8516 case 9:
8517 case 10:
8518 case 11:
8519 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8520 inst.operands[2].imm = 32;
8521 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8522 break;
8523 case 12:
8524 case 13:
8525 case 14:
8526 case 15:
8527 {
8528 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8529 unsigned long wrn;
8530 wrn = (inst.instruction >> 16) & 0xf;
8531 inst.instruction &= 0xff0fff0f;
8532 inst.instruction |= wrn;
8533 /* Bail out here; the instruction is now assembled. */
8534 return;
8535 }
8536 }
8537 }
8538 /* Map 32 -> 0, etc. */
8539 inst.operands[2].imm &= 0x1f;
8540 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8541 }
8542 }
8543 \f
8544 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8545 operations first, then control, shift, and load/store. */
8546
8547 /* Insns like "foo X,Y,Z". */
8548
8549 static void
8550 do_mav_triple (void)
8551 {
8552 inst.instruction |= inst.operands[0].reg << 16;
8553 inst.instruction |= inst.operands[1].reg;
8554 inst.instruction |= inst.operands[2].reg << 12;
8555 }
8556
8557 /* Insns like "foo W,X,Y,Z".
8558 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8559
8560 static void
8561 do_mav_quad (void)
8562 {
8563 inst.instruction |= inst.operands[0].reg << 5;
8564 inst.instruction |= inst.operands[1].reg << 12;
8565 inst.instruction |= inst.operands[2].reg << 16;
8566 inst.instruction |= inst.operands[3].reg;
8567 }
8568
8569 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8570 static void
8571 do_mav_dspsc (void)
8572 {
8573 inst.instruction |= inst.operands[1].reg << 12;
8574 }
8575
8576 /* Maverick shift immediate instructions.
8577 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8578 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8579
8580 static void
8581 do_mav_shift (void)
8582 {
8583 int imm = inst.operands[2].imm;
8584
8585 inst.instruction |= inst.operands[0].reg << 12;
8586 inst.instruction |= inst.operands[1].reg << 16;
8587
8588 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8589 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8590 Bit 4 should be 0. */
8591 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8592
8593 inst.instruction |= imm;
8594 }
8595 \f
8596 /* XScale instructions. Also sorted arithmetic before move. */
8597
8598 /* Xscale multiply-accumulate (argument parse)
8599 MIAcc acc0,Rm,Rs
8600 MIAPHcc acc0,Rm,Rs
8601 MIAxycc acc0,Rm,Rs. */
8602
8603 static void
8604 do_xsc_mia (void)
8605 {
8606 inst.instruction |= inst.operands[1].reg;
8607 inst.instruction |= inst.operands[2].reg << 12;
8608 }
8609
8610 /* Xscale move-accumulator-register (argument parse)
8611
8612 MARcc acc0,RdLo,RdHi. */
8613
8614 static void
8615 do_xsc_mar (void)
8616 {
8617 inst.instruction |= inst.operands[1].reg << 12;
8618 inst.instruction |= inst.operands[2].reg << 16;
8619 }
8620
8621 /* Xscale move-register-accumulator (argument parse)
8622
8623 MRAcc RdLo,RdHi,acc0. */
8624
8625 static void
8626 do_xsc_mra (void)
8627 {
8628 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8629 inst.instruction |= inst.operands[0].reg << 12;
8630 inst.instruction |= inst.operands[1].reg << 16;
8631 }
8632 \f
8633 /* Encoding functions relevant only to Thumb. */
8634
8635 /* inst.operands[i] is a shifted-register operand; encode
8636 it into inst.instruction in the format used by Thumb32. */
8637
8638 static void
8639 encode_thumb32_shifted_operand (int i)
8640 {
8641 unsigned int value = inst.reloc.exp.X_add_number;
8642 unsigned int shift = inst.operands[i].shift_kind;
8643
8644 constraint (inst.operands[i].immisreg,
8645 _("shift by register not allowed in thumb mode"));
8646 inst.instruction |= inst.operands[i].reg;
8647 if (shift == SHIFT_RRX)
8648 inst.instruction |= SHIFT_ROR << 4;
8649 else
8650 {
8651 constraint (inst.reloc.exp.X_op != O_constant,
8652 _("expression too complex"));
8653
8654 constraint (value > 32
8655 || (value == 32 && (shift == SHIFT_LSL
8656 || shift == SHIFT_ROR)),
8657 _("shift expression is too large"));
8658
8659 if (value == 0)
8660 shift = SHIFT_LSL;
8661 else if (value == 32)
8662 value = 0;
8663
8664 inst.instruction |= shift << 4;
8665 inst.instruction |= (value & 0x1c) << 10;
8666 inst.instruction |= (value & 0x03) << 6;
8667 }
8668 }
8669
8670
8671 /* inst.operands[i] was set up by parse_address. Encode it into a
8672 Thumb32 format load or store instruction. Reject forms that cannot
8673 be used with such instructions. If is_t is true, reject forms that
8674 cannot be used with a T instruction; if is_d is true, reject forms
8675 that cannot be used with a D instruction. */
8676
8677 static void
8678 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8679 {
8680 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8681
8682 constraint (!inst.operands[i].isreg,
8683 _("Instruction does not support =N addresses"));
8684
8685 inst.instruction |= inst.operands[i].reg << 16;
8686 if (inst.operands[i].immisreg)
8687 {
8688 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8689 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8690 constraint (inst.operands[i].negative,
8691 _("Thumb does not support negative register indexing"));
8692 constraint (inst.operands[i].postind,
8693 _("Thumb does not support register post-indexing"));
8694 constraint (inst.operands[i].writeback,
8695 _("Thumb does not support register indexing with writeback"));
8696 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8697 _("Thumb supports only LSL in shifted register indexing"));
8698
8699 inst.instruction |= inst.operands[i].imm;
8700 if (inst.operands[i].shifted)
8701 {
8702 constraint (inst.reloc.exp.X_op != O_constant,
8703 _("expression too complex"));
8704 constraint (inst.reloc.exp.X_add_number < 0
8705 || inst.reloc.exp.X_add_number > 3,
8706 _("shift out of range"));
8707 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8708 }
8709 inst.reloc.type = BFD_RELOC_UNUSED;
8710 }
8711 else if (inst.operands[i].preind)
8712 {
8713 constraint (is_pc && inst.operands[i].writeback,
8714 _("cannot use writeback with PC-relative addressing"));
8715 constraint (is_t && inst.operands[i].writeback,
8716 _("cannot use writeback with this instruction"));
8717
8718 if (is_d)
8719 {
8720 inst.instruction |= 0x01000000;
8721 if (inst.operands[i].writeback)
8722 inst.instruction |= 0x00200000;
8723 }
8724 else
8725 {
8726 inst.instruction |= 0x00000c00;
8727 if (inst.operands[i].writeback)
8728 inst.instruction |= 0x00000100;
8729 }
8730 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8731 }
8732 else if (inst.operands[i].postind)
8733 {
8734 gas_assert (inst.operands[i].writeback);
8735 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8736 constraint (is_t, _("cannot use post-indexing with this instruction"));
8737
8738 if (is_d)
8739 inst.instruction |= 0x00200000;
8740 else
8741 inst.instruction |= 0x00000900;
8742 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8743 }
8744 else /* unindexed - only for coprocessor */
8745 inst.error = _("instruction does not accept unindexed addressing");
8746 }
8747
8748 /* Table of Thumb instructions which exist in both 16- and 32-bit
8749 encodings (the latter only in post-V6T2 cores). The index is the
8750 value used in the insns table below. When there is more than one
8751 possible 16-bit encoding for the instruction, this table always
8752 holds variant (1).
8753 Also contains several pseudo-instructions used during relaxation. */
8754 #define T16_32_TAB \
8755 X(_adc, 4140, eb400000), \
8756 X(_adcs, 4140, eb500000), \
8757 X(_add, 1c00, eb000000), \
8758 X(_adds, 1c00, eb100000), \
8759 X(_addi, 0000, f1000000), \
8760 X(_addis, 0000, f1100000), \
8761 X(_add_pc,000f, f20f0000), \
8762 X(_add_sp,000d, f10d0000), \
8763 X(_adr, 000f, f20f0000), \
8764 X(_and, 4000, ea000000), \
8765 X(_ands, 4000, ea100000), \
8766 X(_asr, 1000, fa40f000), \
8767 X(_asrs, 1000, fa50f000), \
8768 X(_b, e000, f000b000), \
8769 X(_bcond, d000, f0008000), \
8770 X(_bic, 4380, ea200000), \
8771 X(_bics, 4380, ea300000), \
8772 X(_cmn, 42c0, eb100f00), \
8773 X(_cmp, 2800, ebb00f00), \
8774 X(_cpsie, b660, f3af8400), \
8775 X(_cpsid, b670, f3af8600), \
8776 X(_cpy, 4600, ea4f0000), \
8777 X(_dec_sp,80dd, f1ad0d00), \
8778 X(_eor, 4040, ea800000), \
8779 X(_eors, 4040, ea900000), \
8780 X(_inc_sp,00dd, f10d0d00), \
8781 X(_ldmia, c800, e8900000), \
8782 X(_ldr, 6800, f8500000), \
8783 X(_ldrb, 7800, f8100000), \
8784 X(_ldrh, 8800, f8300000), \
8785 X(_ldrsb, 5600, f9100000), \
8786 X(_ldrsh, 5e00, f9300000), \
8787 X(_ldr_pc,4800, f85f0000), \
8788 X(_ldr_pc2,4800, f85f0000), \
8789 X(_ldr_sp,9800, f85d0000), \
8790 X(_lsl, 0000, fa00f000), \
8791 X(_lsls, 0000, fa10f000), \
8792 X(_lsr, 0800, fa20f000), \
8793 X(_lsrs, 0800, fa30f000), \
8794 X(_mov, 2000, ea4f0000), \
8795 X(_movs, 2000, ea5f0000), \
8796 X(_mul, 4340, fb00f000), \
8797 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8798 X(_mvn, 43c0, ea6f0000), \
8799 X(_mvns, 43c0, ea7f0000), \
8800 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8801 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8802 X(_orr, 4300, ea400000), \
8803 X(_orrs, 4300, ea500000), \
8804 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8805 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8806 X(_rev, ba00, fa90f080), \
8807 X(_rev16, ba40, fa90f090), \
8808 X(_revsh, bac0, fa90f0b0), \
8809 X(_ror, 41c0, fa60f000), \
8810 X(_rors, 41c0, fa70f000), \
8811 X(_sbc, 4180, eb600000), \
8812 X(_sbcs, 4180, eb700000), \
8813 X(_stmia, c000, e8800000), \
8814 X(_str, 6000, f8400000), \
8815 X(_strb, 7000, f8000000), \
8816 X(_strh, 8000, f8200000), \
8817 X(_str_sp,9000, f84d0000), \
8818 X(_sub, 1e00, eba00000), \
8819 X(_subs, 1e00, ebb00000), \
8820 X(_subi, 8000, f1a00000), \
8821 X(_subis, 8000, f1b00000), \
8822 X(_sxtb, b240, fa4ff080), \
8823 X(_sxth, b200, fa0ff080), \
8824 X(_tst, 4200, ea100f00), \
8825 X(_uxtb, b2c0, fa5ff080), \
8826 X(_uxth, b280, fa1ff080), \
8827 X(_nop, bf00, f3af8000), \
8828 X(_yield, bf10, f3af8001), \
8829 X(_wfe, bf20, f3af8002), \
8830 X(_wfi, bf30, f3af8003), \
8831 X(_sev, bf40, f3af8004),
8832
8833 /* To catch errors in encoding functions, the codes are all offset by
8834 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8835 as 16-bit instructions. */
8836 #define X(a,b,c) T_MNEM##a
8837 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8838 #undef X
8839
8840 #define X(a,b,c) 0x##b
8841 static const unsigned short thumb_op16[] = { T16_32_TAB };
8842 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8843 #undef X
8844
8845 #define X(a,b,c) 0x##c
8846 static const unsigned int thumb_op32[] = { T16_32_TAB };
8847 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8848 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8849 #undef X
8850 #undef T16_32_TAB
8851
8852 /* Thumb instruction encoders, in alphabetical order. */
8853
8854 /* ADDW or SUBW. */
8855
8856 static void
8857 do_t_add_sub_w (void)
8858 {
8859 int Rd, Rn;
8860
8861 Rd = inst.operands[0].reg;
8862 Rn = inst.operands[1].reg;
8863
8864 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8865 is the SP-{plus,minus}-immediate form of the instruction. */
8866 if (Rn == REG_SP)
8867 constraint (Rd == REG_PC, BAD_PC);
8868 else
8869 reject_bad_reg (Rd);
8870
8871 inst.instruction |= (Rn << 16) | (Rd << 8);
8872 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8873 }
8874
8875 /* Parse an add or subtract instruction. We get here with inst.instruction
8876 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8877
8878 static void
8879 do_t_add_sub (void)
8880 {
8881 int Rd, Rs, Rn;
8882
8883 Rd = inst.operands[0].reg;
8884 Rs = (inst.operands[1].present
8885 ? inst.operands[1].reg /* Rd, Rs, foo */
8886 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8887
8888 if (Rd == REG_PC)
8889 set_it_insn_type_last ();
8890
8891 if (unified_syntax)
8892 {
8893 bfd_boolean flags;
8894 bfd_boolean narrow;
8895 int opcode;
8896
8897 flags = (inst.instruction == T_MNEM_adds
8898 || inst.instruction == T_MNEM_subs);
8899 if (flags)
8900 narrow = !in_it_block ();
8901 else
8902 narrow = in_it_block ();
8903 if (!inst.operands[2].isreg)
8904 {
8905 int add;
8906
8907 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8908
8909 add = (inst.instruction == T_MNEM_add
8910 || inst.instruction == T_MNEM_adds);
8911 opcode = 0;
8912 if (inst.size_req != 4)
8913 {
8914 /* Attempt to use a narrow opcode, with relaxation if
8915 appropriate. */
8916 if (Rd == REG_SP && Rs == REG_SP && !flags)
8917 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8918 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8919 opcode = T_MNEM_add_sp;
8920 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8921 opcode = T_MNEM_add_pc;
8922 else if (Rd <= 7 && Rs <= 7 && narrow)
8923 {
8924 if (flags)
8925 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8926 else
8927 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8928 }
8929 if (opcode)
8930 {
8931 inst.instruction = THUMB_OP16(opcode);
8932 inst.instruction |= (Rd << 4) | Rs;
8933 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8934 if (inst.size_req != 2)
8935 inst.relax = opcode;
8936 }
8937 else
8938 constraint (inst.size_req == 2, BAD_HIREG);
8939 }
8940 if (inst.size_req == 4
8941 || (inst.size_req != 2 && !opcode))
8942 {
8943 if (Rd == REG_PC)
8944 {
8945 constraint (add, BAD_PC);
8946 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8947 _("only SUBS PC, LR, #const allowed"));
8948 constraint (inst.reloc.exp.X_op != O_constant,
8949 _("expression too complex"));
8950 constraint (inst.reloc.exp.X_add_number < 0
8951 || inst.reloc.exp.X_add_number > 0xff,
8952 _("immediate value out of range"));
8953 inst.instruction = T2_SUBS_PC_LR
8954 | inst.reloc.exp.X_add_number;
8955 inst.reloc.type = BFD_RELOC_UNUSED;
8956 return;
8957 }
8958 else if (Rs == REG_PC)
8959 {
8960 /* Always use addw/subw. */
8961 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8962 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8963 }
8964 else
8965 {
8966 inst.instruction = THUMB_OP32 (inst.instruction);
8967 inst.instruction = (inst.instruction & 0xe1ffffff)
8968 | 0x10000000;
8969 if (flags)
8970 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8971 else
8972 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8973 }
8974 inst.instruction |= Rd << 8;
8975 inst.instruction |= Rs << 16;
8976 }
8977 }
8978 else
8979 {
8980 Rn = inst.operands[2].reg;
8981 /* See if we can do this with a 16-bit instruction. */
8982 if (!inst.operands[2].shifted && inst.size_req != 4)
8983 {
8984 if (Rd > 7 || Rs > 7 || Rn > 7)
8985 narrow = FALSE;
8986
8987 if (narrow)
8988 {
8989 inst.instruction = ((inst.instruction == T_MNEM_adds
8990 || inst.instruction == T_MNEM_add)
8991 ? T_OPCODE_ADD_R3
8992 : T_OPCODE_SUB_R3);
8993 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8994 return;
8995 }
8996
8997 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
8998 {
8999 /* Thumb-1 cores (except v6-M) require at least one high
9000 register in a narrow non flag setting add. */
9001 if (Rd > 7 || Rn > 7
9002 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9003 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9004 {
9005 if (Rd == Rn)
9006 {
9007 Rn = Rs;
9008 Rs = Rd;
9009 }
9010 inst.instruction = T_OPCODE_ADD_HI;
9011 inst.instruction |= (Rd & 8) << 4;
9012 inst.instruction |= (Rd & 7);
9013 inst.instruction |= Rn << 3;
9014 return;
9015 }
9016 }
9017 }
9018
9019 constraint (Rd == REG_PC, BAD_PC);
9020 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9021 constraint (Rs == REG_PC, BAD_PC);
9022 reject_bad_reg (Rn);
9023
9024 /* If we get here, it can't be done in 16 bits. */
9025 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9026 _("shift must be constant"));
9027 inst.instruction = THUMB_OP32 (inst.instruction);
9028 inst.instruction |= Rd << 8;
9029 inst.instruction |= Rs << 16;
9030 encode_thumb32_shifted_operand (2);
9031 }
9032 }
9033 else
9034 {
9035 constraint (inst.instruction == T_MNEM_adds
9036 || inst.instruction == T_MNEM_subs,
9037 BAD_THUMB32);
9038
9039 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9040 {
9041 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9042 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9043 BAD_HIREG);
9044
9045 inst.instruction = (inst.instruction == T_MNEM_add
9046 ? 0x0000 : 0x8000);
9047 inst.instruction |= (Rd << 4) | Rs;
9048 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9049 return;
9050 }
9051
9052 Rn = inst.operands[2].reg;
9053 constraint (inst.operands[2].shifted, _("unshifted register required"));
9054
9055 /* We now have Rd, Rs, and Rn set to registers. */
9056 if (Rd > 7 || Rs > 7 || Rn > 7)
9057 {
9058 /* Can't do this for SUB. */
9059 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9060 inst.instruction = T_OPCODE_ADD_HI;
9061 inst.instruction |= (Rd & 8) << 4;
9062 inst.instruction |= (Rd & 7);
9063 if (Rs == Rd)
9064 inst.instruction |= Rn << 3;
9065 else if (Rn == Rd)
9066 inst.instruction |= Rs << 3;
9067 else
9068 constraint (1, _("dest must overlap one source register"));
9069 }
9070 else
9071 {
9072 inst.instruction = (inst.instruction == T_MNEM_add
9073 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9074 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9075 }
9076 }
9077 }
9078
9079 static void
9080 do_t_adr (void)
9081 {
9082 unsigned Rd;
9083
9084 Rd = inst.operands[0].reg;
9085 reject_bad_reg (Rd);
9086
9087 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9088 {
9089 /* Defer to section relaxation. */
9090 inst.relax = inst.instruction;
9091 inst.instruction = THUMB_OP16 (inst.instruction);
9092 inst.instruction |= Rd << 4;
9093 }
9094 else if (unified_syntax && inst.size_req != 2)
9095 {
9096 /* Generate a 32-bit opcode. */
9097 inst.instruction = THUMB_OP32 (inst.instruction);
9098 inst.instruction |= Rd << 8;
9099 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9100 inst.reloc.pc_rel = 1;
9101 }
9102 else
9103 {
9104 /* Generate a 16-bit opcode. */
9105 inst.instruction = THUMB_OP16 (inst.instruction);
9106 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9107 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9108 inst.reloc.pc_rel = 1;
9109
9110 inst.instruction |= Rd << 4;
9111 }
9112 }
9113
9114 /* Arithmetic instructions for which there is just one 16-bit
9115 instruction encoding, and it allows only two low registers.
9116 For maximal compatibility with ARM syntax, we allow three register
9117 operands even when Thumb-32 instructions are not available, as long
9118 as the first two are identical. For instance, both "sbc r0,r1" and
9119 "sbc r0,r0,r1" are allowed. */
9120 static void
9121 do_t_arit3 (void)
9122 {
9123 int Rd, Rs, Rn;
9124
9125 Rd = inst.operands[0].reg;
9126 Rs = (inst.operands[1].present
9127 ? inst.operands[1].reg /* Rd, Rs, foo */
9128 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9129 Rn = inst.operands[2].reg;
9130
9131 reject_bad_reg (Rd);
9132 reject_bad_reg (Rs);
9133 if (inst.operands[2].isreg)
9134 reject_bad_reg (Rn);
9135
9136 if (unified_syntax)
9137 {
9138 if (!inst.operands[2].isreg)
9139 {
9140 /* For an immediate, we always generate a 32-bit opcode;
9141 section relaxation will shrink it later if possible. */
9142 inst.instruction = THUMB_OP32 (inst.instruction);
9143 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9144 inst.instruction |= Rd << 8;
9145 inst.instruction |= Rs << 16;
9146 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9147 }
9148 else
9149 {
9150 bfd_boolean narrow;
9151
9152 /* See if we can do this with a 16-bit instruction. */
9153 if (THUMB_SETS_FLAGS (inst.instruction))
9154 narrow = !in_it_block ();
9155 else
9156 narrow = in_it_block ();
9157
9158 if (Rd > 7 || Rn > 7 || Rs > 7)
9159 narrow = FALSE;
9160 if (inst.operands[2].shifted)
9161 narrow = FALSE;
9162 if (inst.size_req == 4)
9163 narrow = FALSE;
9164
9165 if (narrow
9166 && Rd == Rs)
9167 {
9168 inst.instruction = THUMB_OP16 (inst.instruction);
9169 inst.instruction |= Rd;
9170 inst.instruction |= Rn << 3;
9171 return;
9172 }
9173
9174 /* If we get here, it can't be done in 16 bits. */
9175 constraint (inst.operands[2].shifted
9176 && inst.operands[2].immisreg,
9177 _("shift must be constant"));
9178 inst.instruction = THUMB_OP32 (inst.instruction);
9179 inst.instruction |= Rd << 8;
9180 inst.instruction |= Rs << 16;
9181 encode_thumb32_shifted_operand (2);
9182 }
9183 }
9184 else
9185 {
9186 /* On its face this is a lie - the instruction does set the
9187 flags. However, the only supported mnemonic in this mode
9188 says it doesn't. */
9189 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9190
9191 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9192 _("unshifted register required"));
9193 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9194 constraint (Rd != Rs,
9195 _("dest and source1 must be the same register"));
9196
9197 inst.instruction = THUMB_OP16 (inst.instruction);
9198 inst.instruction |= Rd;
9199 inst.instruction |= Rn << 3;
9200 }
9201 }
9202
9203 /* Similarly, but for instructions where the arithmetic operation is
9204 commutative, so we can allow either of them to be different from
9205 the destination operand in a 16-bit instruction. For instance, all
9206 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9207 accepted. */
9208 static void
9209 do_t_arit3c (void)
9210 {
9211 int Rd, Rs, Rn;
9212
9213 Rd = inst.operands[0].reg;
9214 Rs = (inst.operands[1].present
9215 ? inst.operands[1].reg /* Rd, Rs, foo */
9216 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9217 Rn = inst.operands[2].reg;
9218
9219 reject_bad_reg (Rd);
9220 reject_bad_reg (Rs);
9221 if (inst.operands[2].isreg)
9222 reject_bad_reg (Rn);
9223
9224 if (unified_syntax)
9225 {
9226 if (!inst.operands[2].isreg)
9227 {
9228 /* For an immediate, we always generate a 32-bit opcode;
9229 section relaxation will shrink it later if possible. */
9230 inst.instruction = THUMB_OP32 (inst.instruction);
9231 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9232 inst.instruction |= Rd << 8;
9233 inst.instruction |= Rs << 16;
9234 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9235 }
9236 else
9237 {
9238 bfd_boolean narrow;
9239
9240 /* See if we can do this with a 16-bit instruction. */
9241 if (THUMB_SETS_FLAGS (inst.instruction))
9242 narrow = !in_it_block ();
9243 else
9244 narrow = in_it_block ();
9245
9246 if (Rd > 7 || Rn > 7 || Rs > 7)
9247 narrow = FALSE;
9248 if (inst.operands[2].shifted)
9249 narrow = FALSE;
9250 if (inst.size_req == 4)
9251 narrow = FALSE;
9252
9253 if (narrow)
9254 {
9255 if (Rd == Rs)
9256 {
9257 inst.instruction = THUMB_OP16 (inst.instruction);
9258 inst.instruction |= Rd;
9259 inst.instruction |= Rn << 3;
9260 return;
9261 }
9262 if (Rd == Rn)
9263 {
9264 inst.instruction = THUMB_OP16 (inst.instruction);
9265 inst.instruction |= Rd;
9266 inst.instruction |= Rs << 3;
9267 return;
9268 }
9269 }
9270
9271 /* If we get here, it can't be done in 16 bits. */
9272 constraint (inst.operands[2].shifted
9273 && inst.operands[2].immisreg,
9274 _("shift must be constant"));
9275 inst.instruction = THUMB_OP32 (inst.instruction);
9276 inst.instruction |= Rd << 8;
9277 inst.instruction |= Rs << 16;
9278 encode_thumb32_shifted_operand (2);
9279 }
9280 }
9281 else
9282 {
9283 /* On its face this is a lie - the instruction does set the
9284 flags. However, the only supported mnemonic in this mode
9285 says it doesn't. */
9286 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9287
9288 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9289 _("unshifted register required"));
9290 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9291
9292 inst.instruction = THUMB_OP16 (inst.instruction);
9293 inst.instruction |= Rd;
9294
9295 if (Rd == Rs)
9296 inst.instruction |= Rn << 3;
9297 else if (Rd == Rn)
9298 inst.instruction |= Rs << 3;
9299 else
9300 constraint (1, _("dest must overlap one source register"));
9301 }
9302 }
9303
9304 static void
9305 do_t_barrier (void)
9306 {
9307 if (inst.operands[0].present)
9308 {
9309 constraint ((inst.instruction & 0xf0) != 0x40
9310 && inst.operands[0].imm != 0xf,
9311 _("bad barrier type"));
9312 inst.instruction |= inst.operands[0].imm;
9313 }
9314 else
9315 inst.instruction |= 0xf;
9316 }
9317
9318 static void
9319 do_t_bfc (void)
9320 {
9321 unsigned Rd;
9322 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9323 constraint (msb > 32, _("bit-field extends past end of register"));
9324 /* The instruction encoding stores the LSB and MSB,
9325 not the LSB and width. */
9326 Rd = inst.operands[0].reg;
9327 reject_bad_reg (Rd);
9328 inst.instruction |= Rd << 8;
9329 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9330 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9331 inst.instruction |= msb - 1;
9332 }
9333
9334 static void
9335 do_t_bfi (void)
9336 {
9337 int Rd, Rn;
9338 unsigned int msb;
9339
9340 Rd = inst.operands[0].reg;
9341 reject_bad_reg (Rd);
9342
9343 /* #0 in second position is alternative syntax for bfc, which is
9344 the same instruction but with REG_PC in the Rm field. */
9345 if (!inst.operands[1].isreg)
9346 Rn = REG_PC;
9347 else
9348 {
9349 Rn = inst.operands[1].reg;
9350 reject_bad_reg (Rn);
9351 }
9352
9353 msb = inst.operands[2].imm + inst.operands[3].imm;
9354 constraint (msb > 32, _("bit-field extends past end of register"));
9355 /* The instruction encoding stores the LSB and MSB,
9356 not the LSB and width. */
9357 inst.instruction |= Rd << 8;
9358 inst.instruction |= Rn << 16;
9359 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9360 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9361 inst.instruction |= msb - 1;
9362 }
9363
9364 static void
9365 do_t_bfx (void)
9366 {
9367 unsigned Rd, Rn;
9368
9369 Rd = inst.operands[0].reg;
9370 Rn = inst.operands[1].reg;
9371
9372 reject_bad_reg (Rd);
9373 reject_bad_reg (Rn);
9374
9375 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9376 _("bit-field extends past end of register"));
9377 inst.instruction |= Rd << 8;
9378 inst.instruction |= Rn << 16;
9379 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9380 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9381 inst.instruction |= inst.operands[3].imm - 1;
9382 }
9383
9384 /* ARM V5 Thumb BLX (argument parse)
9385 BLX <target_addr> which is BLX(1)
9386 BLX <Rm> which is BLX(2)
9387 Unfortunately, there are two different opcodes for this mnemonic.
9388 So, the insns[].value is not used, and the code here zaps values
9389 into inst.instruction.
9390
9391 ??? How to take advantage of the additional two bits of displacement
9392 available in Thumb32 mode? Need new relocation? */
9393
9394 static void
9395 do_t_blx (void)
9396 {
9397 set_it_insn_type_last ();
9398
9399 if (inst.operands[0].isreg)
9400 {
9401 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9402 /* We have a register, so this is BLX(2). */
9403 inst.instruction |= inst.operands[0].reg << 3;
9404 }
9405 else
9406 {
9407 /* No register. This must be BLX(1). */
9408 inst.instruction = 0xf000e800;
9409 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9410 inst.reloc.pc_rel = 1;
9411 }
9412 }
9413
9414 static void
9415 do_t_branch (void)
9416 {
9417 int opcode;
9418 int cond;
9419
9420 cond = inst.cond;
9421 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9422
9423 if (in_it_block ())
9424 {
9425 /* Conditional branches inside IT blocks are encoded as unconditional
9426 branches. */
9427 cond = COND_ALWAYS;
9428 }
9429 else
9430 cond = inst.cond;
9431
9432 if (cond != COND_ALWAYS)
9433 opcode = T_MNEM_bcond;
9434 else
9435 opcode = inst.instruction;
9436
9437 if (unified_syntax && inst.size_req == 4)
9438 {
9439 inst.instruction = THUMB_OP32(opcode);
9440 if (cond == COND_ALWAYS)
9441 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9442 else
9443 {
9444 gas_assert (cond != 0xF);
9445 inst.instruction |= cond << 22;
9446 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9447 }
9448 }
9449 else
9450 {
9451 inst.instruction = THUMB_OP16(opcode);
9452 if (cond == COND_ALWAYS)
9453 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9454 else
9455 {
9456 inst.instruction |= cond << 8;
9457 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9458 }
9459 /* Allow section relaxation. */
9460 if (unified_syntax && inst.size_req != 2)
9461 inst.relax = opcode;
9462 }
9463
9464 inst.reloc.pc_rel = 1;
9465 }
9466
9467 static void
9468 do_t_bkpt (void)
9469 {
9470 constraint (inst.cond != COND_ALWAYS,
9471 _("instruction is always unconditional"));
9472 if (inst.operands[0].present)
9473 {
9474 constraint (inst.operands[0].imm > 255,
9475 _("immediate value out of range"));
9476 inst.instruction |= inst.operands[0].imm;
9477 set_it_insn_type (NEUTRAL_IT_INSN);
9478 }
9479 }
9480
9481 static void
9482 do_t_branch23 (void)
9483 {
9484 set_it_insn_type_last ();
9485 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9486 inst.reloc.pc_rel = 1;
9487
9488 #if defined(OBJ_COFF)
9489 /* If the destination of the branch is a defined symbol which does not have
9490 the THUMB_FUNC attribute, then we must be calling a function which has
9491 the (interfacearm) attribute. We look for the Thumb entry point to that
9492 function and change the branch to refer to that function instead. */
9493 if ( inst.reloc.exp.X_op == O_symbol
9494 && inst.reloc.exp.X_add_symbol != NULL
9495 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9496 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9497 inst.reloc.exp.X_add_symbol =
9498 find_real_start (inst.reloc.exp.X_add_symbol);
9499 #endif
9500 }
9501
9502 static void
9503 do_t_bx (void)
9504 {
9505 set_it_insn_type_last ();
9506 inst.instruction |= inst.operands[0].reg << 3;
9507 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9508 should cause the alignment to be checked once it is known. This is
9509 because BX PC only works if the instruction is word aligned. */
9510 }
9511
9512 static void
9513 do_t_bxj (void)
9514 {
9515 int Rm;
9516
9517 set_it_insn_type_last ();
9518 Rm = inst.operands[0].reg;
9519 reject_bad_reg (Rm);
9520 inst.instruction |= Rm << 16;
9521 }
9522
9523 static void
9524 do_t_clz (void)
9525 {
9526 unsigned Rd;
9527 unsigned Rm;
9528
9529 Rd = inst.operands[0].reg;
9530 Rm = inst.operands[1].reg;
9531
9532 reject_bad_reg (Rd);
9533 reject_bad_reg (Rm);
9534
9535 inst.instruction |= Rd << 8;
9536 inst.instruction |= Rm << 16;
9537 inst.instruction |= Rm;
9538 }
9539
9540 static void
9541 do_t_cps (void)
9542 {
9543 set_it_insn_type (OUTSIDE_IT_INSN);
9544 inst.instruction |= inst.operands[0].imm;
9545 }
9546
9547 static void
9548 do_t_cpsi (void)
9549 {
9550 set_it_insn_type (OUTSIDE_IT_INSN);
9551 if (unified_syntax
9552 && (inst.operands[1].present || inst.size_req == 4)
9553 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9554 {
9555 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9556 inst.instruction = 0xf3af8000;
9557 inst.instruction |= imod << 9;
9558 inst.instruction |= inst.operands[0].imm << 5;
9559 if (inst.operands[1].present)
9560 inst.instruction |= 0x100 | inst.operands[1].imm;
9561 }
9562 else
9563 {
9564 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9565 && (inst.operands[0].imm & 4),
9566 _("selected processor does not support 'A' form "
9567 "of this instruction"));
9568 constraint (inst.operands[1].present || inst.size_req == 4,
9569 _("Thumb does not support the 2-argument "
9570 "form of this instruction"));
9571 inst.instruction |= inst.operands[0].imm;
9572 }
9573 }
9574
9575 /* THUMB CPY instruction (argument parse). */
9576
9577 static void
9578 do_t_cpy (void)
9579 {
9580 if (inst.size_req == 4)
9581 {
9582 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9583 inst.instruction |= inst.operands[0].reg << 8;
9584 inst.instruction |= inst.operands[1].reg;
9585 }
9586 else
9587 {
9588 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9589 inst.instruction |= (inst.operands[0].reg & 0x7);
9590 inst.instruction |= inst.operands[1].reg << 3;
9591 }
9592 }
9593
9594 static void
9595 do_t_cbz (void)
9596 {
9597 set_it_insn_type (OUTSIDE_IT_INSN);
9598 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9599 inst.instruction |= inst.operands[0].reg;
9600 inst.reloc.pc_rel = 1;
9601 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9602 }
9603
9604 static void
9605 do_t_dbg (void)
9606 {
9607 inst.instruction |= inst.operands[0].imm;
9608 }
9609
9610 static void
9611 do_t_div (void)
9612 {
9613 unsigned Rd, Rn, Rm;
9614
9615 Rd = inst.operands[0].reg;
9616 Rn = (inst.operands[1].present
9617 ? inst.operands[1].reg : Rd);
9618 Rm = inst.operands[2].reg;
9619
9620 reject_bad_reg (Rd);
9621 reject_bad_reg (Rn);
9622 reject_bad_reg (Rm);
9623
9624 inst.instruction |= Rd << 8;
9625 inst.instruction |= Rn << 16;
9626 inst.instruction |= Rm;
9627 }
9628
9629 static void
9630 do_t_hint (void)
9631 {
9632 if (unified_syntax && inst.size_req == 4)
9633 inst.instruction = THUMB_OP32 (inst.instruction);
9634 else
9635 inst.instruction = THUMB_OP16 (inst.instruction);
9636 }
9637
9638 static void
9639 do_t_it (void)
9640 {
9641 unsigned int cond = inst.operands[0].imm;
9642
9643 set_it_insn_type (IT_INSN);
9644 now_it.mask = (inst.instruction & 0xf) | 0x10;
9645 now_it.cc = cond;
9646
9647 /* If the condition is a negative condition, invert the mask. */
9648 if ((cond & 0x1) == 0x0)
9649 {
9650 unsigned int mask = inst.instruction & 0x000f;
9651
9652 if ((mask & 0x7) == 0)
9653 /* no conversion needed */;
9654 else if ((mask & 0x3) == 0)
9655 mask ^= 0x8;
9656 else if ((mask & 0x1) == 0)
9657 mask ^= 0xC;
9658 else
9659 mask ^= 0xE;
9660
9661 inst.instruction &= 0xfff0;
9662 inst.instruction |= mask;
9663 }
9664
9665 inst.instruction |= cond << 4;
9666 }
9667
9668 /* Helper function used for both push/pop and ldm/stm. */
9669 static void
9670 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9671 {
9672 bfd_boolean load;
9673
9674 load = (inst.instruction & (1 << 20)) != 0;
9675
9676 if (mask & (1 << 13))
9677 inst.error = _("SP not allowed in register list");
9678 if (load)
9679 {
9680 if (mask & (1 << 15))
9681 {
9682 if (mask & (1 << 14))
9683 inst.error = _("LR and PC should not both be in register list");
9684 else
9685 set_it_insn_type_last ();
9686 }
9687
9688 if ((mask & (1 << base)) != 0
9689 && writeback)
9690 as_warn (_("base register should not be in register list "
9691 "when written back"));
9692 }
9693 else
9694 {
9695 if (mask & (1 << 15))
9696 inst.error = _("PC not allowed in register list");
9697
9698 if (mask & (1 << base))
9699 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9700 }
9701
9702 if ((mask & (mask - 1)) == 0)
9703 {
9704 /* Single register transfers implemented as str/ldr. */
9705 if (writeback)
9706 {
9707 if (inst.instruction & (1 << 23))
9708 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9709 else
9710 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9711 }
9712 else
9713 {
9714 if (inst.instruction & (1 << 23))
9715 inst.instruction = 0x00800000; /* ia -> [base] */
9716 else
9717 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9718 }
9719
9720 inst.instruction |= 0xf8400000;
9721 if (load)
9722 inst.instruction |= 0x00100000;
9723
9724 mask = ffs (mask) - 1;
9725 mask <<= 12;
9726 }
9727 else if (writeback)
9728 inst.instruction |= WRITE_BACK;
9729
9730 inst.instruction |= mask;
9731 inst.instruction |= base << 16;
9732 }
9733
9734 static void
9735 do_t_ldmstm (void)
9736 {
9737 /* This really doesn't seem worth it. */
9738 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9739 _("expression too complex"));
9740 constraint (inst.operands[1].writeback,
9741 _("Thumb load/store multiple does not support {reglist}^"));
9742
9743 if (unified_syntax)
9744 {
9745 bfd_boolean narrow;
9746 unsigned mask;
9747
9748 narrow = FALSE;
9749 /* See if we can use a 16-bit instruction. */
9750 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9751 && inst.size_req != 4
9752 && !(inst.operands[1].imm & ~0xff))
9753 {
9754 mask = 1 << inst.operands[0].reg;
9755
9756 if (inst.operands[0].reg <= 7
9757 && (inst.instruction == T_MNEM_stmia
9758 ? inst.operands[0].writeback
9759 : (inst.operands[0].writeback
9760 == !(inst.operands[1].imm & mask))))
9761 {
9762 if (inst.instruction == T_MNEM_stmia
9763 && (inst.operands[1].imm & mask)
9764 && (inst.operands[1].imm & (mask - 1)))
9765 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9766 inst.operands[0].reg);
9767
9768 inst.instruction = THUMB_OP16 (inst.instruction);
9769 inst.instruction |= inst.operands[0].reg << 8;
9770 inst.instruction |= inst.operands[1].imm;
9771 narrow = TRUE;
9772 }
9773 else if (inst.operands[0] .reg == REG_SP
9774 && inst.operands[0].writeback)
9775 {
9776 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9777 ? T_MNEM_push : T_MNEM_pop);
9778 inst.instruction |= inst.operands[1].imm;
9779 narrow = TRUE;
9780 }
9781 }
9782
9783 if (!narrow)
9784 {
9785 if (inst.instruction < 0xffff)
9786 inst.instruction = THUMB_OP32 (inst.instruction);
9787
9788 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9789 inst.operands[0].writeback);
9790 }
9791 }
9792 else
9793 {
9794 constraint (inst.operands[0].reg > 7
9795 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9796 constraint (inst.instruction != T_MNEM_ldmia
9797 && inst.instruction != T_MNEM_stmia,
9798 _("Thumb-2 instruction only valid in unified syntax"));
9799 if (inst.instruction == T_MNEM_stmia)
9800 {
9801 if (!inst.operands[0].writeback)
9802 as_warn (_("this instruction will write back the base register"));
9803 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9804 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9805 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9806 inst.operands[0].reg);
9807 }
9808 else
9809 {
9810 if (!inst.operands[0].writeback
9811 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9812 as_warn (_("this instruction will write back the base register"));
9813 else if (inst.operands[0].writeback
9814 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9815 as_warn (_("this instruction will not write back the base register"));
9816 }
9817
9818 inst.instruction = THUMB_OP16 (inst.instruction);
9819 inst.instruction |= inst.operands[0].reg << 8;
9820 inst.instruction |= inst.operands[1].imm;
9821 }
9822 }
9823
9824 static void
9825 do_t_ldrex (void)
9826 {
9827 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9828 || inst.operands[1].postind || inst.operands[1].writeback
9829 || inst.operands[1].immisreg || inst.operands[1].shifted
9830 || inst.operands[1].negative,
9831 BAD_ADDR_MODE);
9832
9833 inst.instruction |= inst.operands[0].reg << 12;
9834 inst.instruction |= inst.operands[1].reg << 16;
9835 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9836 }
9837
9838 static void
9839 do_t_ldrexd (void)
9840 {
9841 if (!inst.operands[1].present)
9842 {
9843 constraint (inst.operands[0].reg == REG_LR,
9844 _("r14 not allowed as first register "
9845 "when second register is omitted"));
9846 inst.operands[1].reg = inst.operands[0].reg + 1;
9847 }
9848 constraint (inst.operands[0].reg == inst.operands[1].reg,
9849 BAD_OVERLAP);
9850
9851 inst.instruction |= inst.operands[0].reg << 12;
9852 inst.instruction |= inst.operands[1].reg << 8;
9853 inst.instruction |= inst.operands[2].reg << 16;
9854 }
9855
9856 static void
9857 do_t_ldst (void)
9858 {
9859 unsigned long opcode;
9860 int Rn;
9861
9862 if (inst.operands[0].isreg
9863 && !inst.operands[0].preind
9864 && inst.operands[0].reg == REG_PC)
9865 set_it_insn_type_last ();
9866
9867 opcode = inst.instruction;
9868 if (unified_syntax)
9869 {
9870 if (!inst.operands[1].isreg)
9871 {
9872 if (opcode <= 0xffff)
9873 inst.instruction = THUMB_OP32 (opcode);
9874 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9875 return;
9876 }
9877 if (inst.operands[1].isreg
9878 && !inst.operands[1].writeback
9879 && !inst.operands[1].shifted && !inst.operands[1].postind
9880 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9881 && opcode <= 0xffff
9882 && inst.size_req != 4)
9883 {
9884 /* Insn may have a 16-bit form. */
9885 Rn = inst.operands[1].reg;
9886 if (inst.operands[1].immisreg)
9887 {
9888 inst.instruction = THUMB_OP16 (opcode);
9889 /* [Rn, Rik] */
9890 if (Rn <= 7 && inst.operands[1].imm <= 7)
9891 goto op16;
9892 }
9893 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9894 && opcode != T_MNEM_ldrsb)
9895 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9896 || (Rn == REG_SP && opcode == T_MNEM_str))
9897 {
9898 /* [Rn, #const] */
9899 if (Rn > 7)
9900 {
9901 if (Rn == REG_PC)
9902 {
9903 if (inst.reloc.pc_rel)
9904 opcode = T_MNEM_ldr_pc2;
9905 else
9906 opcode = T_MNEM_ldr_pc;
9907 }
9908 else
9909 {
9910 if (opcode == T_MNEM_ldr)
9911 opcode = T_MNEM_ldr_sp;
9912 else
9913 opcode = T_MNEM_str_sp;
9914 }
9915 inst.instruction = inst.operands[0].reg << 8;
9916 }
9917 else
9918 {
9919 inst.instruction = inst.operands[0].reg;
9920 inst.instruction |= inst.operands[1].reg << 3;
9921 }
9922 inst.instruction |= THUMB_OP16 (opcode);
9923 if (inst.size_req == 2)
9924 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9925 else
9926 inst.relax = opcode;
9927 return;
9928 }
9929 }
9930 /* Definitely a 32-bit variant. */
9931 inst.instruction = THUMB_OP32 (opcode);
9932 inst.instruction |= inst.operands[0].reg << 12;
9933 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9934 return;
9935 }
9936
9937 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9938
9939 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9940 {
9941 /* Only [Rn,Rm] is acceptable. */
9942 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9943 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9944 || inst.operands[1].postind || inst.operands[1].shifted
9945 || inst.operands[1].negative,
9946 _("Thumb does not support this addressing mode"));
9947 inst.instruction = THUMB_OP16 (inst.instruction);
9948 goto op16;
9949 }
9950
9951 inst.instruction = THUMB_OP16 (inst.instruction);
9952 if (!inst.operands[1].isreg)
9953 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9954 return;
9955
9956 constraint (!inst.operands[1].preind
9957 || inst.operands[1].shifted
9958 || inst.operands[1].writeback,
9959 _("Thumb does not support this addressing mode"));
9960 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9961 {
9962 constraint (inst.instruction & 0x0600,
9963 _("byte or halfword not valid for base register"));
9964 constraint (inst.operands[1].reg == REG_PC
9965 && !(inst.instruction & THUMB_LOAD_BIT),
9966 _("r15 based store not allowed"));
9967 constraint (inst.operands[1].immisreg,
9968 _("invalid base register for register offset"));
9969
9970 if (inst.operands[1].reg == REG_PC)
9971 inst.instruction = T_OPCODE_LDR_PC;
9972 else if (inst.instruction & THUMB_LOAD_BIT)
9973 inst.instruction = T_OPCODE_LDR_SP;
9974 else
9975 inst.instruction = T_OPCODE_STR_SP;
9976
9977 inst.instruction |= inst.operands[0].reg << 8;
9978 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9979 return;
9980 }
9981
9982 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9983 if (!inst.operands[1].immisreg)
9984 {
9985 /* Immediate offset. */
9986 inst.instruction |= inst.operands[0].reg;
9987 inst.instruction |= inst.operands[1].reg << 3;
9988 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9989 return;
9990 }
9991
9992 /* Register offset. */
9993 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9994 constraint (inst.operands[1].negative,
9995 _("Thumb does not support this addressing mode"));
9996
9997 op16:
9998 switch (inst.instruction)
9999 {
10000 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10001 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10002 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10003 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10004 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10005 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10006 case 0x5600 /* ldrsb */:
10007 case 0x5e00 /* ldrsh */: break;
10008 default: abort ();
10009 }
10010
10011 inst.instruction |= inst.operands[0].reg;
10012 inst.instruction |= inst.operands[1].reg << 3;
10013 inst.instruction |= inst.operands[1].imm << 6;
10014 }
10015
10016 static void
10017 do_t_ldstd (void)
10018 {
10019 if (!inst.operands[1].present)
10020 {
10021 inst.operands[1].reg = inst.operands[0].reg + 1;
10022 constraint (inst.operands[0].reg == REG_LR,
10023 _("r14 not allowed here"));
10024 }
10025 inst.instruction |= inst.operands[0].reg << 12;
10026 inst.instruction |= inst.operands[1].reg << 8;
10027 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10028 }
10029
10030 static void
10031 do_t_ldstt (void)
10032 {
10033 inst.instruction |= inst.operands[0].reg << 12;
10034 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10035 }
10036
10037 static void
10038 do_t_mla (void)
10039 {
10040 unsigned Rd, Rn, Rm, Ra;
10041
10042 Rd = inst.operands[0].reg;
10043 Rn = inst.operands[1].reg;
10044 Rm = inst.operands[2].reg;
10045 Ra = inst.operands[3].reg;
10046
10047 reject_bad_reg (Rd);
10048 reject_bad_reg (Rn);
10049 reject_bad_reg (Rm);
10050 reject_bad_reg (Ra);
10051
10052 inst.instruction |= Rd << 8;
10053 inst.instruction |= Rn << 16;
10054 inst.instruction |= Rm;
10055 inst.instruction |= Ra << 12;
10056 }
10057
10058 static void
10059 do_t_mlal (void)
10060 {
10061 unsigned RdLo, RdHi, Rn, Rm;
10062
10063 RdLo = inst.operands[0].reg;
10064 RdHi = inst.operands[1].reg;
10065 Rn = inst.operands[2].reg;
10066 Rm = inst.operands[3].reg;
10067
10068 reject_bad_reg (RdLo);
10069 reject_bad_reg (RdHi);
10070 reject_bad_reg (Rn);
10071 reject_bad_reg (Rm);
10072
10073 inst.instruction |= RdLo << 12;
10074 inst.instruction |= RdHi << 8;
10075 inst.instruction |= Rn << 16;
10076 inst.instruction |= Rm;
10077 }
10078
10079 static void
10080 do_t_mov_cmp (void)
10081 {
10082 unsigned Rn, Rm;
10083
10084 Rn = inst.operands[0].reg;
10085 Rm = inst.operands[1].reg;
10086
10087 if (Rn == REG_PC)
10088 set_it_insn_type_last ();
10089
10090 if (unified_syntax)
10091 {
10092 int r0off = (inst.instruction == T_MNEM_mov
10093 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10094 unsigned long opcode;
10095 bfd_boolean narrow;
10096 bfd_boolean low_regs;
10097
10098 low_regs = (Rn <= 7 && Rm <= 7);
10099 opcode = inst.instruction;
10100 if (in_it_block ())
10101 narrow = opcode != T_MNEM_movs;
10102 else
10103 narrow = opcode != T_MNEM_movs || low_regs;
10104 if (inst.size_req == 4
10105 || inst.operands[1].shifted)
10106 narrow = FALSE;
10107
10108 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10109 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10110 && !inst.operands[1].shifted
10111 && Rn == REG_PC
10112 && Rm == REG_LR)
10113 {
10114 inst.instruction = T2_SUBS_PC_LR;
10115 return;
10116 }
10117
10118 if (opcode == T_MNEM_cmp)
10119 {
10120 constraint (Rn == REG_PC, BAD_PC);
10121 if (narrow)
10122 {
10123 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10124 but valid. */
10125 warn_deprecated_sp (Rm);
10126 /* R15 was documented as a valid choice for Rm in ARMv6,
10127 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10128 tools reject R15, so we do too. */
10129 constraint (Rm == REG_PC, BAD_PC);
10130 }
10131 else
10132 reject_bad_reg (Rm);
10133 }
10134 else if (opcode == T_MNEM_mov
10135 || opcode == T_MNEM_movs)
10136 {
10137 if (inst.operands[1].isreg)
10138 {
10139 if (opcode == T_MNEM_movs)
10140 {
10141 reject_bad_reg (Rn);
10142 reject_bad_reg (Rm);
10143 }
10144 else if ((Rn == REG_SP || Rn == REG_PC)
10145 && (Rm == REG_SP || Rm == REG_PC))
10146 reject_bad_reg (Rm);
10147 }
10148 else
10149 reject_bad_reg (Rn);
10150 }
10151
10152 if (!inst.operands[1].isreg)
10153 {
10154 /* Immediate operand. */
10155 if (!in_it_block () && opcode == T_MNEM_mov)
10156 narrow = 0;
10157 if (low_regs && narrow)
10158 {
10159 inst.instruction = THUMB_OP16 (opcode);
10160 inst.instruction |= Rn << 8;
10161 if (inst.size_req == 2)
10162 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10163 else
10164 inst.relax = opcode;
10165 }
10166 else
10167 {
10168 inst.instruction = THUMB_OP32 (inst.instruction);
10169 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10170 inst.instruction |= Rn << r0off;
10171 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10172 }
10173 }
10174 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10175 && (inst.instruction == T_MNEM_mov
10176 || inst.instruction == T_MNEM_movs))
10177 {
10178 /* Register shifts are encoded as separate shift instructions. */
10179 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10180
10181 if (in_it_block ())
10182 narrow = !flags;
10183 else
10184 narrow = flags;
10185
10186 if (inst.size_req == 4)
10187 narrow = FALSE;
10188
10189 if (!low_regs || inst.operands[1].imm > 7)
10190 narrow = FALSE;
10191
10192 if (Rn != Rm)
10193 narrow = FALSE;
10194
10195 switch (inst.operands[1].shift_kind)
10196 {
10197 case SHIFT_LSL:
10198 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10199 break;
10200 case SHIFT_ASR:
10201 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10202 break;
10203 case SHIFT_LSR:
10204 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10205 break;
10206 case SHIFT_ROR:
10207 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10208 break;
10209 default:
10210 abort ();
10211 }
10212
10213 inst.instruction = opcode;
10214 if (narrow)
10215 {
10216 inst.instruction |= Rn;
10217 inst.instruction |= inst.operands[1].imm << 3;
10218 }
10219 else
10220 {
10221 if (flags)
10222 inst.instruction |= CONDS_BIT;
10223
10224 inst.instruction |= Rn << 8;
10225 inst.instruction |= Rm << 16;
10226 inst.instruction |= inst.operands[1].imm;
10227 }
10228 }
10229 else if (!narrow)
10230 {
10231 /* Some mov with immediate shift have narrow variants.
10232 Register shifts are handled above. */
10233 if (low_regs && inst.operands[1].shifted
10234 && (inst.instruction == T_MNEM_mov
10235 || inst.instruction == T_MNEM_movs))
10236 {
10237 if (in_it_block ())
10238 narrow = (inst.instruction == T_MNEM_mov);
10239 else
10240 narrow = (inst.instruction == T_MNEM_movs);
10241 }
10242
10243 if (narrow)
10244 {
10245 switch (inst.operands[1].shift_kind)
10246 {
10247 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10248 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10249 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10250 default: narrow = FALSE; break;
10251 }
10252 }
10253
10254 if (narrow)
10255 {
10256 inst.instruction |= Rn;
10257 inst.instruction |= Rm << 3;
10258 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10259 }
10260 else
10261 {
10262 inst.instruction = THUMB_OP32 (inst.instruction);
10263 inst.instruction |= Rn << r0off;
10264 encode_thumb32_shifted_operand (1);
10265 }
10266 }
10267 else
10268 switch (inst.instruction)
10269 {
10270 case T_MNEM_mov:
10271 inst.instruction = T_OPCODE_MOV_HR;
10272 inst.instruction |= (Rn & 0x8) << 4;
10273 inst.instruction |= (Rn & 0x7);
10274 inst.instruction |= Rm << 3;
10275 break;
10276
10277 case T_MNEM_movs:
10278 /* We know we have low registers at this point.
10279 Generate ADD Rd, Rs, #0. */
10280 inst.instruction = T_OPCODE_ADD_I3;
10281 inst.instruction |= Rn;
10282 inst.instruction |= Rm << 3;
10283 break;
10284
10285 case T_MNEM_cmp:
10286 if (low_regs)
10287 {
10288 inst.instruction = T_OPCODE_CMP_LR;
10289 inst.instruction |= Rn;
10290 inst.instruction |= Rm << 3;
10291 }
10292 else
10293 {
10294 inst.instruction = T_OPCODE_CMP_HR;
10295 inst.instruction |= (Rn & 0x8) << 4;
10296 inst.instruction |= (Rn & 0x7);
10297 inst.instruction |= Rm << 3;
10298 }
10299 break;
10300 }
10301 return;
10302 }
10303
10304 inst.instruction = THUMB_OP16 (inst.instruction);
10305
10306 /* PR 10443: Do not silently ignore shifted operands. */
10307 constraint (inst.operands[1].shifted,
10308 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10309
10310 if (inst.operands[1].isreg)
10311 {
10312 if (Rn < 8 && Rm < 8)
10313 {
10314 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10315 since a MOV instruction produces unpredictable results. */
10316 if (inst.instruction == T_OPCODE_MOV_I8)
10317 inst.instruction = T_OPCODE_ADD_I3;
10318 else
10319 inst.instruction = T_OPCODE_CMP_LR;
10320
10321 inst.instruction |= Rn;
10322 inst.instruction |= Rm << 3;
10323 }
10324 else
10325 {
10326 if (inst.instruction == T_OPCODE_MOV_I8)
10327 inst.instruction = T_OPCODE_MOV_HR;
10328 else
10329 inst.instruction = T_OPCODE_CMP_HR;
10330 do_t_cpy ();
10331 }
10332 }
10333 else
10334 {
10335 constraint (Rn > 7,
10336 _("only lo regs allowed with immediate"));
10337 inst.instruction |= Rn << 8;
10338 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10339 }
10340 }
10341
10342 static void
10343 do_t_mov16 (void)
10344 {
10345 unsigned Rd;
10346 bfd_vma imm;
10347 bfd_boolean top;
10348
10349 top = (inst.instruction & 0x00800000) != 0;
10350 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10351 {
10352 constraint (top, _(":lower16: not allowed this instruction"));
10353 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10354 }
10355 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10356 {
10357 constraint (!top, _(":upper16: not allowed this instruction"));
10358 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10359 }
10360
10361 Rd = inst.operands[0].reg;
10362 reject_bad_reg (Rd);
10363
10364 inst.instruction |= Rd << 8;
10365 if (inst.reloc.type == BFD_RELOC_UNUSED)
10366 {
10367 imm = inst.reloc.exp.X_add_number;
10368 inst.instruction |= (imm & 0xf000) << 4;
10369 inst.instruction |= (imm & 0x0800) << 15;
10370 inst.instruction |= (imm & 0x0700) << 4;
10371 inst.instruction |= (imm & 0x00ff);
10372 }
10373 }
10374
10375 static void
10376 do_t_mvn_tst (void)
10377 {
10378 unsigned Rn, Rm;
10379
10380 Rn = inst.operands[0].reg;
10381 Rm = inst.operands[1].reg;
10382
10383 if (inst.instruction == T_MNEM_cmp
10384 || inst.instruction == T_MNEM_cmn)
10385 constraint (Rn == REG_PC, BAD_PC);
10386 else
10387 reject_bad_reg (Rn);
10388 reject_bad_reg (Rm);
10389
10390 if (unified_syntax)
10391 {
10392 int r0off = (inst.instruction == T_MNEM_mvn
10393 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10394 bfd_boolean narrow;
10395
10396 if (inst.size_req == 4
10397 || inst.instruction > 0xffff
10398 || inst.operands[1].shifted
10399 || Rn > 7 || Rm > 7)
10400 narrow = FALSE;
10401 else if (inst.instruction == T_MNEM_cmn)
10402 narrow = TRUE;
10403 else if (THUMB_SETS_FLAGS (inst.instruction))
10404 narrow = !in_it_block ();
10405 else
10406 narrow = in_it_block ();
10407
10408 if (!inst.operands[1].isreg)
10409 {
10410 /* For an immediate, we always generate a 32-bit opcode;
10411 section relaxation will shrink it later if possible. */
10412 if (inst.instruction < 0xffff)
10413 inst.instruction = THUMB_OP32 (inst.instruction);
10414 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10415 inst.instruction |= Rn << r0off;
10416 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10417 }
10418 else
10419 {
10420 /* See if we can do this with a 16-bit instruction. */
10421 if (narrow)
10422 {
10423 inst.instruction = THUMB_OP16 (inst.instruction);
10424 inst.instruction |= Rn;
10425 inst.instruction |= Rm << 3;
10426 }
10427 else
10428 {
10429 constraint (inst.operands[1].shifted
10430 && inst.operands[1].immisreg,
10431 _("shift must be constant"));
10432 if (inst.instruction < 0xffff)
10433 inst.instruction = THUMB_OP32 (inst.instruction);
10434 inst.instruction |= Rn << r0off;
10435 encode_thumb32_shifted_operand (1);
10436 }
10437 }
10438 }
10439 else
10440 {
10441 constraint (inst.instruction > 0xffff
10442 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10443 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10444 _("unshifted register required"));
10445 constraint (Rn > 7 || Rm > 7,
10446 BAD_HIREG);
10447
10448 inst.instruction = THUMB_OP16 (inst.instruction);
10449 inst.instruction |= Rn;
10450 inst.instruction |= Rm << 3;
10451 }
10452 }
10453
10454 static void
10455 do_t_mrs (void)
10456 {
10457 unsigned Rd;
10458 int flags;
10459
10460 if (do_vfp_nsyn_mrs () == SUCCESS)
10461 return;
10462
10463 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10464 if (flags == 0)
10465 {
10466 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10467 _("selected processor does not support "
10468 "requested special purpose register"));
10469 }
10470 else
10471 {
10472 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10473 _("selected processor does not support "
10474 "requested special purpose register"));
10475 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10476 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10477 _("'CPSR' or 'SPSR' expected"));
10478 }
10479
10480 Rd = inst.operands[0].reg;
10481 reject_bad_reg (Rd);
10482
10483 inst.instruction |= Rd << 8;
10484 inst.instruction |= (flags & SPSR_BIT) >> 2;
10485 inst.instruction |= inst.operands[1].imm & 0xff;
10486 }
10487
10488 static void
10489 do_t_msr (void)
10490 {
10491 int flags;
10492 unsigned Rn;
10493
10494 if (do_vfp_nsyn_msr () == SUCCESS)
10495 return;
10496
10497 constraint (!inst.operands[1].isreg,
10498 _("Thumb encoding does not support an immediate here"));
10499 flags = inst.operands[0].imm;
10500 if (flags & ~0xff)
10501 {
10502 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10503 _("selected processor does not support "
10504 "requested special purpose register"));
10505 }
10506 else
10507 {
10508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10509 _("selected processor does not support "
10510 "requested special purpose register"));
10511 flags |= PSR_f;
10512 }
10513
10514 Rn = inst.operands[1].reg;
10515 reject_bad_reg (Rn);
10516
10517 inst.instruction |= (flags & SPSR_BIT) >> 2;
10518 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10519 inst.instruction |= (flags & 0xff);
10520 inst.instruction |= Rn << 16;
10521 }
10522
10523 static void
10524 do_t_mul (void)
10525 {
10526 bfd_boolean narrow;
10527 unsigned Rd, Rn, Rm;
10528
10529 if (!inst.operands[2].present)
10530 inst.operands[2].reg = inst.operands[0].reg;
10531
10532 Rd = inst.operands[0].reg;
10533 Rn = inst.operands[1].reg;
10534 Rm = inst.operands[2].reg;
10535
10536 if (unified_syntax)
10537 {
10538 if (inst.size_req == 4
10539 || (Rd != Rn
10540 && Rd != Rm)
10541 || Rn > 7
10542 || Rm > 7)
10543 narrow = FALSE;
10544 else if (inst.instruction == T_MNEM_muls)
10545 narrow = !in_it_block ();
10546 else
10547 narrow = in_it_block ();
10548 }
10549 else
10550 {
10551 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10552 constraint (Rn > 7 || Rm > 7,
10553 BAD_HIREG);
10554 narrow = TRUE;
10555 }
10556
10557 if (narrow)
10558 {
10559 /* 16-bit MULS/Conditional MUL. */
10560 inst.instruction = THUMB_OP16 (inst.instruction);
10561 inst.instruction |= Rd;
10562
10563 if (Rd == Rn)
10564 inst.instruction |= Rm << 3;
10565 else if (Rd == Rm)
10566 inst.instruction |= Rn << 3;
10567 else
10568 constraint (1, _("dest must overlap one source register"));
10569 }
10570 else
10571 {
10572 constraint (inst.instruction != T_MNEM_mul,
10573 _("Thumb-2 MUL must not set flags"));
10574 /* 32-bit MUL. */
10575 inst.instruction = THUMB_OP32 (inst.instruction);
10576 inst.instruction |= Rd << 8;
10577 inst.instruction |= Rn << 16;
10578 inst.instruction |= Rm << 0;
10579
10580 reject_bad_reg (Rd);
10581 reject_bad_reg (Rn);
10582 reject_bad_reg (Rm);
10583 }
10584 }
10585
10586 static void
10587 do_t_mull (void)
10588 {
10589 unsigned RdLo, RdHi, Rn, Rm;
10590
10591 RdLo = inst.operands[0].reg;
10592 RdHi = inst.operands[1].reg;
10593 Rn = inst.operands[2].reg;
10594 Rm = inst.operands[3].reg;
10595
10596 reject_bad_reg (RdLo);
10597 reject_bad_reg (RdHi);
10598 reject_bad_reg (Rn);
10599 reject_bad_reg (Rm);
10600
10601 inst.instruction |= RdLo << 12;
10602 inst.instruction |= RdHi << 8;
10603 inst.instruction |= Rn << 16;
10604 inst.instruction |= Rm;
10605
10606 if (RdLo == RdHi)
10607 as_tsktsk (_("rdhi and rdlo must be different"));
10608 }
10609
10610 static void
10611 do_t_nop (void)
10612 {
10613 set_it_insn_type (NEUTRAL_IT_INSN);
10614
10615 if (unified_syntax)
10616 {
10617 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10618 {
10619 inst.instruction = THUMB_OP32 (inst.instruction);
10620 inst.instruction |= inst.operands[0].imm;
10621 }
10622 else
10623 {
10624 /* PR9722: Check for Thumb2 availability before
10625 generating a thumb2 nop instruction. */
10626 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
10627 {
10628 inst.instruction = THUMB_OP16 (inst.instruction);
10629 inst.instruction |= inst.operands[0].imm << 4;
10630 }
10631 else
10632 inst.instruction = 0x46c0;
10633 }
10634 }
10635 else
10636 {
10637 constraint (inst.operands[0].present,
10638 _("Thumb does not support NOP with hints"));
10639 inst.instruction = 0x46c0;
10640 }
10641 }
10642
10643 static void
10644 do_t_neg (void)
10645 {
10646 if (unified_syntax)
10647 {
10648 bfd_boolean narrow;
10649
10650 if (THUMB_SETS_FLAGS (inst.instruction))
10651 narrow = !in_it_block ();
10652 else
10653 narrow = in_it_block ();
10654 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10655 narrow = FALSE;
10656 if (inst.size_req == 4)
10657 narrow = FALSE;
10658
10659 if (!narrow)
10660 {
10661 inst.instruction = THUMB_OP32 (inst.instruction);
10662 inst.instruction |= inst.operands[0].reg << 8;
10663 inst.instruction |= inst.operands[1].reg << 16;
10664 }
10665 else
10666 {
10667 inst.instruction = THUMB_OP16 (inst.instruction);
10668 inst.instruction |= inst.operands[0].reg;
10669 inst.instruction |= inst.operands[1].reg << 3;
10670 }
10671 }
10672 else
10673 {
10674 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10675 BAD_HIREG);
10676 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10677
10678 inst.instruction = THUMB_OP16 (inst.instruction);
10679 inst.instruction |= inst.operands[0].reg;
10680 inst.instruction |= inst.operands[1].reg << 3;
10681 }
10682 }
10683
10684 static void
10685 do_t_orn (void)
10686 {
10687 unsigned Rd, Rn;
10688
10689 Rd = inst.operands[0].reg;
10690 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10691
10692 reject_bad_reg (Rd);
10693 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10694 reject_bad_reg (Rn);
10695
10696 inst.instruction |= Rd << 8;
10697 inst.instruction |= Rn << 16;
10698
10699 if (!inst.operands[2].isreg)
10700 {
10701 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10702 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10703 }
10704 else
10705 {
10706 unsigned Rm;
10707
10708 Rm = inst.operands[2].reg;
10709 reject_bad_reg (Rm);
10710
10711 constraint (inst.operands[2].shifted
10712 && inst.operands[2].immisreg,
10713 _("shift must be constant"));
10714 encode_thumb32_shifted_operand (2);
10715 }
10716 }
10717
10718 static void
10719 do_t_pkhbt (void)
10720 {
10721 unsigned Rd, Rn, Rm;
10722
10723 Rd = inst.operands[0].reg;
10724 Rn = inst.operands[1].reg;
10725 Rm = inst.operands[2].reg;
10726
10727 reject_bad_reg (Rd);
10728 reject_bad_reg (Rn);
10729 reject_bad_reg (Rm);
10730
10731 inst.instruction |= Rd << 8;
10732 inst.instruction |= Rn << 16;
10733 inst.instruction |= Rm;
10734 if (inst.operands[3].present)
10735 {
10736 unsigned int val = inst.reloc.exp.X_add_number;
10737 constraint (inst.reloc.exp.X_op != O_constant,
10738 _("expression too complex"));
10739 inst.instruction |= (val & 0x1c) << 10;
10740 inst.instruction |= (val & 0x03) << 6;
10741 }
10742 }
10743
10744 static void
10745 do_t_pkhtb (void)
10746 {
10747 if (!inst.operands[3].present)
10748 {
10749 unsigned Rtmp;
10750
10751 inst.instruction &= ~0x00000020;
10752
10753 /* PR 10168. Swap the Rm and Rn registers. */
10754 Rtmp = inst.operands[1].reg;
10755 inst.operands[1].reg = inst.operands[2].reg;
10756 inst.operands[2].reg = Rtmp;
10757 }
10758 do_t_pkhbt ();
10759 }
10760
10761 static void
10762 do_t_pld (void)
10763 {
10764 if (inst.operands[0].immisreg)
10765 reject_bad_reg (inst.operands[0].imm);
10766
10767 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10768 }
10769
10770 static void
10771 do_t_push_pop (void)
10772 {
10773 unsigned mask;
10774
10775 constraint (inst.operands[0].writeback,
10776 _("push/pop do not support {reglist}^"));
10777 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10778 _("expression too complex"));
10779
10780 mask = inst.operands[0].imm;
10781 if ((mask & ~0xff) == 0)
10782 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10783 else if ((inst.instruction == T_MNEM_push
10784 && (mask & ~0xff) == 1 << REG_LR)
10785 || (inst.instruction == T_MNEM_pop
10786 && (mask & ~0xff) == 1 << REG_PC))
10787 {
10788 inst.instruction = THUMB_OP16 (inst.instruction);
10789 inst.instruction |= THUMB_PP_PC_LR;
10790 inst.instruction |= mask & 0xff;
10791 }
10792 else if (unified_syntax)
10793 {
10794 inst.instruction = THUMB_OP32 (inst.instruction);
10795 encode_thumb2_ldmstm (13, mask, TRUE);
10796 }
10797 else
10798 {
10799 inst.error = _("invalid register list to push/pop instruction");
10800 return;
10801 }
10802 }
10803
10804 static void
10805 do_t_rbit (void)
10806 {
10807 unsigned Rd, Rm;
10808
10809 Rd = inst.operands[0].reg;
10810 Rm = inst.operands[1].reg;
10811
10812 reject_bad_reg (Rd);
10813 reject_bad_reg (Rm);
10814
10815 inst.instruction |= Rd << 8;
10816 inst.instruction |= Rm << 16;
10817 inst.instruction |= Rm;
10818 }
10819
10820 static void
10821 do_t_rev (void)
10822 {
10823 unsigned Rd, Rm;
10824
10825 Rd = inst.operands[0].reg;
10826 Rm = inst.operands[1].reg;
10827
10828 reject_bad_reg (Rd);
10829 reject_bad_reg (Rm);
10830
10831 if (Rd <= 7 && Rm <= 7
10832 && inst.size_req != 4)
10833 {
10834 inst.instruction = THUMB_OP16 (inst.instruction);
10835 inst.instruction |= Rd;
10836 inst.instruction |= Rm << 3;
10837 }
10838 else if (unified_syntax)
10839 {
10840 inst.instruction = THUMB_OP32 (inst.instruction);
10841 inst.instruction |= Rd << 8;
10842 inst.instruction |= Rm << 16;
10843 inst.instruction |= Rm;
10844 }
10845 else
10846 inst.error = BAD_HIREG;
10847 }
10848
10849 static void
10850 do_t_rrx (void)
10851 {
10852 unsigned Rd, Rm;
10853
10854 Rd = inst.operands[0].reg;
10855 Rm = inst.operands[1].reg;
10856
10857 reject_bad_reg (Rd);
10858 reject_bad_reg (Rm);
10859
10860 inst.instruction |= Rd << 8;
10861 inst.instruction |= Rm;
10862 }
10863
10864 static void
10865 do_t_rsb (void)
10866 {
10867 unsigned Rd, Rs;
10868
10869 Rd = inst.operands[0].reg;
10870 Rs = (inst.operands[1].present
10871 ? inst.operands[1].reg /* Rd, Rs, foo */
10872 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10873
10874 reject_bad_reg (Rd);
10875 reject_bad_reg (Rs);
10876 if (inst.operands[2].isreg)
10877 reject_bad_reg (inst.operands[2].reg);
10878
10879 inst.instruction |= Rd << 8;
10880 inst.instruction |= Rs << 16;
10881 if (!inst.operands[2].isreg)
10882 {
10883 bfd_boolean narrow;
10884
10885 if ((inst.instruction & 0x00100000) != 0)
10886 narrow = !in_it_block ();
10887 else
10888 narrow = in_it_block ();
10889
10890 if (Rd > 7 || Rs > 7)
10891 narrow = FALSE;
10892
10893 if (inst.size_req == 4 || !unified_syntax)
10894 narrow = FALSE;
10895
10896 if (inst.reloc.exp.X_op != O_constant
10897 || inst.reloc.exp.X_add_number != 0)
10898 narrow = FALSE;
10899
10900 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10901 relaxation, but it doesn't seem worth the hassle. */
10902 if (narrow)
10903 {
10904 inst.reloc.type = BFD_RELOC_UNUSED;
10905 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10906 inst.instruction |= Rs << 3;
10907 inst.instruction |= Rd;
10908 }
10909 else
10910 {
10911 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10912 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10913 }
10914 }
10915 else
10916 encode_thumb32_shifted_operand (2);
10917 }
10918
10919 static void
10920 do_t_setend (void)
10921 {
10922 set_it_insn_type (OUTSIDE_IT_INSN);
10923 if (inst.operands[0].imm)
10924 inst.instruction |= 0x8;
10925 }
10926
10927 static void
10928 do_t_shift (void)
10929 {
10930 if (!inst.operands[1].present)
10931 inst.operands[1].reg = inst.operands[0].reg;
10932
10933 if (unified_syntax)
10934 {
10935 bfd_boolean narrow;
10936 int shift_kind;
10937
10938 switch (inst.instruction)
10939 {
10940 case T_MNEM_asr:
10941 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10942 case T_MNEM_lsl:
10943 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10944 case T_MNEM_lsr:
10945 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10946 case T_MNEM_ror:
10947 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10948 default: abort ();
10949 }
10950
10951 if (THUMB_SETS_FLAGS (inst.instruction))
10952 narrow = !in_it_block ();
10953 else
10954 narrow = in_it_block ();
10955 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10956 narrow = FALSE;
10957 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10958 narrow = FALSE;
10959 if (inst.operands[2].isreg
10960 && (inst.operands[1].reg != inst.operands[0].reg
10961 || inst.operands[2].reg > 7))
10962 narrow = FALSE;
10963 if (inst.size_req == 4)
10964 narrow = FALSE;
10965
10966 reject_bad_reg (inst.operands[0].reg);
10967 reject_bad_reg (inst.operands[1].reg);
10968
10969 if (!narrow)
10970 {
10971 if (inst.operands[2].isreg)
10972 {
10973 reject_bad_reg (inst.operands[2].reg);
10974 inst.instruction = THUMB_OP32 (inst.instruction);
10975 inst.instruction |= inst.operands[0].reg << 8;
10976 inst.instruction |= inst.operands[1].reg << 16;
10977 inst.instruction |= inst.operands[2].reg;
10978 }
10979 else
10980 {
10981 inst.operands[1].shifted = 1;
10982 inst.operands[1].shift_kind = shift_kind;
10983 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10984 ? T_MNEM_movs : T_MNEM_mov);
10985 inst.instruction |= inst.operands[0].reg << 8;
10986 encode_thumb32_shifted_operand (1);
10987 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10988 inst.reloc.type = BFD_RELOC_UNUSED;
10989 }
10990 }
10991 else
10992 {
10993 if (inst.operands[2].isreg)
10994 {
10995 switch (shift_kind)
10996 {
10997 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10998 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10999 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11000 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11001 default: abort ();
11002 }
11003
11004 inst.instruction |= inst.operands[0].reg;
11005 inst.instruction |= inst.operands[2].reg << 3;
11006 }
11007 else
11008 {
11009 switch (shift_kind)
11010 {
11011 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11012 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11013 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11014 default: abort ();
11015 }
11016 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11017 inst.instruction |= inst.operands[0].reg;
11018 inst.instruction |= inst.operands[1].reg << 3;
11019 }
11020 }
11021 }
11022 else
11023 {
11024 constraint (inst.operands[0].reg > 7
11025 || inst.operands[1].reg > 7, BAD_HIREG);
11026 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11027
11028 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11029 {
11030 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11031 constraint (inst.operands[0].reg != inst.operands[1].reg,
11032 _("source1 and dest must be same register"));
11033
11034 switch (inst.instruction)
11035 {
11036 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11037 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11038 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11039 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11040 default: abort ();
11041 }
11042
11043 inst.instruction |= inst.operands[0].reg;
11044 inst.instruction |= inst.operands[2].reg << 3;
11045 }
11046 else
11047 {
11048 switch (inst.instruction)
11049 {
11050 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11051 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11052 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11053 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11054 default: abort ();
11055 }
11056 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11057 inst.instruction |= inst.operands[0].reg;
11058 inst.instruction |= inst.operands[1].reg << 3;
11059 }
11060 }
11061 }
11062
11063 static void
11064 do_t_simd (void)
11065 {
11066 unsigned Rd, Rn, Rm;
11067
11068 Rd = inst.operands[0].reg;
11069 Rn = inst.operands[1].reg;
11070 Rm = inst.operands[2].reg;
11071
11072 reject_bad_reg (Rd);
11073 reject_bad_reg (Rn);
11074 reject_bad_reg (Rm);
11075
11076 inst.instruction |= Rd << 8;
11077 inst.instruction |= Rn << 16;
11078 inst.instruction |= Rm;
11079 }
11080
11081 static void
11082 do_t_simd2 (void)
11083 {
11084 unsigned Rd, Rn, Rm;
11085
11086 Rd = inst.operands[0].reg;
11087 Rm = inst.operands[1].reg;
11088 Rn = inst.operands[2].reg;
11089
11090 reject_bad_reg (Rd);
11091 reject_bad_reg (Rn);
11092 reject_bad_reg (Rm);
11093
11094 inst.instruction |= Rd << 8;
11095 inst.instruction |= Rn << 16;
11096 inst.instruction |= Rm;
11097 }
11098
11099 static void
11100 do_t_smc (void)
11101 {
11102 unsigned int value = inst.reloc.exp.X_add_number;
11103 constraint (inst.reloc.exp.X_op != O_constant,
11104 _("expression too complex"));
11105 inst.reloc.type = BFD_RELOC_UNUSED;
11106 inst.instruction |= (value & 0xf000) >> 12;
11107 inst.instruction |= (value & 0x0ff0);
11108 inst.instruction |= (value & 0x000f) << 16;
11109 }
11110
11111 static void
11112 do_t_ssat_usat (int bias)
11113 {
11114 unsigned Rd, Rn;
11115
11116 Rd = inst.operands[0].reg;
11117 Rn = inst.operands[2].reg;
11118
11119 reject_bad_reg (Rd);
11120 reject_bad_reg (Rn);
11121
11122 inst.instruction |= Rd << 8;
11123 inst.instruction |= inst.operands[1].imm - bias;
11124 inst.instruction |= Rn << 16;
11125
11126 if (inst.operands[3].present)
11127 {
11128 offsetT shift_amount = inst.reloc.exp.X_add_number;
11129
11130 inst.reloc.type = BFD_RELOC_UNUSED;
11131
11132 constraint (inst.reloc.exp.X_op != O_constant,
11133 _("expression too complex"));
11134
11135 if (shift_amount != 0)
11136 {
11137 constraint (shift_amount > 31,
11138 _("shift expression is too large"));
11139
11140 if (inst.operands[3].shift_kind == SHIFT_ASR)
11141 inst.instruction |= 0x00200000; /* sh bit. */
11142
11143 inst.instruction |= (shift_amount & 0x1c) << 10;
11144 inst.instruction |= (shift_amount & 0x03) << 6;
11145 }
11146 }
11147 }
11148
11149 static void
11150 do_t_ssat (void)
11151 {
11152 do_t_ssat_usat (1);
11153 }
11154
11155 static void
11156 do_t_ssat16 (void)
11157 {
11158 unsigned Rd, Rn;
11159
11160 Rd = inst.operands[0].reg;
11161 Rn = inst.operands[2].reg;
11162
11163 reject_bad_reg (Rd);
11164 reject_bad_reg (Rn);
11165
11166 inst.instruction |= Rd << 8;
11167 inst.instruction |= inst.operands[1].imm - 1;
11168 inst.instruction |= Rn << 16;
11169 }
11170
11171 static void
11172 do_t_strex (void)
11173 {
11174 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11175 || inst.operands[2].postind || inst.operands[2].writeback
11176 || inst.operands[2].immisreg || inst.operands[2].shifted
11177 || inst.operands[2].negative,
11178 BAD_ADDR_MODE);
11179
11180 inst.instruction |= inst.operands[0].reg << 8;
11181 inst.instruction |= inst.operands[1].reg << 12;
11182 inst.instruction |= inst.operands[2].reg << 16;
11183 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11184 }
11185
11186 static void
11187 do_t_strexd (void)
11188 {
11189 if (!inst.operands[2].present)
11190 inst.operands[2].reg = inst.operands[1].reg + 1;
11191
11192 constraint (inst.operands[0].reg == inst.operands[1].reg
11193 || inst.operands[0].reg == inst.operands[2].reg
11194 || inst.operands[0].reg == inst.operands[3].reg
11195 || inst.operands[1].reg == inst.operands[2].reg,
11196 BAD_OVERLAP);
11197
11198 inst.instruction |= inst.operands[0].reg;
11199 inst.instruction |= inst.operands[1].reg << 12;
11200 inst.instruction |= inst.operands[2].reg << 8;
11201 inst.instruction |= inst.operands[3].reg << 16;
11202 }
11203
11204 static void
11205 do_t_sxtah (void)
11206 {
11207 unsigned Rd, Rn, Rm;
11208
11209 Rd = inst.operands[0].reg;
11210 Rn = inst.operands[1].reg;
11211 Rm = inst.operands[2].reg;
11212
11213 reject_bad_reg (Rd);
11214 reject_bad_reg (Rn);
11215 reject_bad_reg (Rm);
11216
11217 inst.instruction |= Rd << 8;
11218 inst.instruction |= Rn << 16;
11219 inst.instruction |= Rm;
11220 inst.instruction |= inst.operands[3].imm << 4;
11221 }
11222
11223 static void
11224 do_t_sxth (void)
11225 {
11226 unsigned Rd, Rm;
11227
11228 Rd = inst.operands[0].reg;
11229 Rm = inst.operands[1].reg;
11230
11231 reject_bad_reg (Rd);
11232 reject_bad_reg (Rm);
11233
11234 if (inst.instruction <= 0xffff
11235 && inst.size_req != 4
11236 && Rd <= 7 && Rm <= 7
11237 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11238 {
11239 inst.instruction = THUMB_OP16 (inst.instruction);
11240 inst.instruction |= Rd;
11241 inst.instruction |= Rm << 3;
11242 }
11243 else if (unified_syntax)
11244 {
11245 if (inst.instruction <= 0xffff)
11246 inst.instruction = THUMB_OP32 (inst.instruction);
11247 inst.instruction |= Rd << 8;
11248 inst.instruction |= Rm;
11249 inst.instruction |= inst.operands[2].imm << 4;
11250 }
11251 else
11252 {
11253 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11254 _("Thumb encoding does not support rotation"));
11255 constraint (1, BAD_HIREG);
11256 }
11257 }
11258
11259 static void
11260 do_t_swi (void)
11261 {
11262 inst.reloc.type = BFD_RELOC_ARM_SWI;
11263 }
11264
11265 static void
11266 do_t_tb (void)
11267 {
11268 unsigned Rn, Rm;
11269 int half;
11270
11271 half = (inst.instruction & 0x10) != 0;
11272 set_it_insn_type_last ();
11273 constraint (inst.operands[0].immisreg,
11274 _("instruction requires register index"));
11275
11276 Rn = inst.operands[0].reg;
11277 Rm = inst.operands[0].imm;
11278
11279 constraint (Rn == REG_SP, BAD_SP);
11280 reject_bad_reg (Rm);
11281
11282 constraint (!half && inst.operands[0].shifted,
11283 _("instruction does not allow shifted index"));
11284 inst.instruction |= (Rn << 16) | Rm;
11285 }
11286
11287 static void
11288 do_t_usat (void)
11289 {
11290 do_t_ssat_usat (0);
11291 }
11292
11293 static void
11294 do_t_usat16 (void)
11295 {
11296 unsigned Rd, Rn;
11297
11298 Rd = inst.operands[0].reg;
11299 Rn = inst.operands[2].reg;
11300
11301 reject_bad_reg (Rd);
11302 reject_bad_reg (Rn);
11303
11304 inst.instruction |= Rd << 8;
11305 inst.instruction |= inst.operands[1].imm;
11306 inst.instruction |= Rn << 16;
11307 }
11308
11309 /* Neon instruction encoder helpers. */
11310
11311 /* Encodings for the different types for various Neon opcodes. */
11312
11313 /* An "invalid" code for the following tables. */
11314 #define N_INV -1u
11315
11316 struct neon_tab_entry
11317 {
11318 unsigned integer;
11319 unsigned float_or_poly;
11320 unsigned scalar_or_imm;
11321 };
11322
11323 /* Map overloaded Neon opcodes to their respective encodings. */
11324 #define NEON_ENC_TAB \
11325 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11326 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11327 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11328 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11329 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11330 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11331 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11332 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11333 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11334 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11335 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11336 /* Register variants of the following two instructions are encoded as
11337 vcge / vcgt with the operands reversed. */ \
11338 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11339 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11340 X(vfma, N_INV, 0x0000c10, N_INV), \
11341 X(vfms, N_INV, 0x0200c10, N_INV), \
11342 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11343 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11344 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11345 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11346 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11347 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11348 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11349 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11350 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11351 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11352 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11353 X(vshl, 0x0000400, N_INV, 0x0800510), \
11354 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11355 X(vand, 0x0000110, N_INV, 0x0800030), \
11356 X(vbic, 0x0100110, N_INV, 0x0800030), \
11357 X(veor, 0x1000110, N_INV, N_INV), \
11358 X(vorn, 0x0300110, N_INV, 0x0800010), \
11359 X(vorr, 0x0200110, N_INV, 0x0800010), \
11360 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11361 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11362 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11363 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11364 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11365 X(vst1, 0x0000000, 0x0800000, N_INV), \
11366 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11367 X(vst2, 0x0000100, 0x0800100, N_INV), \
11368 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11369 X(vst3, 0x0000200, 0x0800200, N_INV), \
11370 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11371 X(vst4, 0x0000300, 0x0800300, N_INV), \
11372 X(vmovn, 0x1b20200, N_INV, N_INV), \
11373 X(vtrn, 0x1b20080, N_INV, N_INV), \
11374 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11375 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11376 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11377 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11378 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11379 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11380 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11381 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11382 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11383 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11384 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11385
11386 enum neon_opc
11387 {
11388 #define X(OPC,I,F,S) N_MNEM_##OPC
11389 NEON_ENC_TAB
11390 #undef X
11391 };
11392
11393 static const struct neon_tab_entry neon_enc_tab[] =
11394 {
11395 #define X(OPC,I,F,S) { (I), (F), (S) }
11396 NEON_ENC_TAB
11397 #undef X
11398 };
11399
11400 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11401 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11402 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11403 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11404 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11405 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11406 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11407 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11408 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11409 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11410 #define NEON_ENC_SINGLE_(X) \
11411 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11412 #define NEON_ENC_DOUBLE_(X) \
11413 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11414
11415 #define NEON_ENCODE(type, inst) \
11416 do \
11417 { \
11418 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11419 inst.is_neon = 1; \
11420 } \
11421 while (0)
11422
11423 #define check_neon_suffixes \
11424 do \
11425 { \
11426 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11427 { \
11428 as_bad (_("invalid neon suffix for non neon instruction")); \
11429 return; \
11430 } \
11431 } \
11432 while (0)
11433
11434 /* Define shapes for instruction operands. The following mnemonic characters
11435 are used in this table:
11436
11437 F - VFP S<n> register
11438 D - Neon D<n> register
11439 Q - Neon Q<n> register
11440 I - Immediate
11441 S - Scalar
11442 R - ARM register
11443 L - D<n> register list
11444
11445 This table is used to generate various data:
11446 - enumerations of the form NS_DDR to be used as arguments to
11447 neon_select_shape.
11448 - a table classifying shapes into single, double, quad, mixed.
11449 - a table used to drive neon_select_shape. */
11450
11451 #define NEON_SHAPE_DEF \
11452 X(3, (D, D, D), DOUBLE), \
11453 X(3, (Q, Q, Q), QUAD), \
11454 X(3, (D, D, I), DOUBLE), \
11455 X(3, (Q, Q, I), QUAD), \
11456 X(3, (D, D, S), DOUBLE), \
11457 X(3, (Q, Q, S), QUAD), \
11458 X(2, (D, D), DOUBLE), \
11459 X(2, (Q, Q), QUAD), \
11460 X(2, (D, S), DOUBLE), \
11461 X(2, (Q, S), QUAD), \
11462 X(2, (D, R), DOUBLE), \
11463 X(2, (Q, R), QUAD), \
11464 X(2, (D, I), DOUBLE), \
11465 X(2, (Q, I), QUAD), \
11466 X(3, (D, L, D), DOUBLE), \
11467 X(2, (D, Q), MIXED), \
11468 X(2, (Q, D), MIXED), \
11469 X(3, (D, Q, I), MIXED), \
11470 X(3, (Q, D, I), MIXED), \
11471 X(3, (Q, D, D), MIXED), \
11472 X(3, (D, Q, Q), MIXED), \
11473 X(3, (Q, Q, D), MIXED), \
11474 X(3, (Q, D, S), MIXED), \
11475 X(3, (D, Q, S), MIXED), \
11476 X(4, (D, D, D, I), DOUBLE), \
11477 X(4, (Q, Q, Q, I), QUAD), \
11478 X(2, (F, F), SINGLE), \
11479 X(3, (F, F, F), SINGLE), \
11480 X(2, (F, I), SINGLE), \
11481 X(2, (F, D), MIXED), \
11482 X(2, (D, F), MIXED), \
11483 X(3, (F, F, I), MIXED), \
11484 X(4, (R, R, F, F), SINGLE), \
11485 X(4, (F, F, R, R), SINGLE), \
11486 X(3, (D, R, R), DOUBLE), \
11487 X(3, (R, R, D), DOUBLE), \
11488 X(2, (S, R), SINGLE), \
11489 X(2, (R, S), SINGLE), \
11490 X(2, (F, R), SINGLE), \
11491 X(2, (R, F), SINGLE)
11492
11493 #define S2(A,B) NS_##A##B
11494 #define S3(A,B,C) NS_##A##B##C
11495 #define S4(A,B,C,D) NS_##A##B##C##D
11496
11497 #define X(N, L, C) S##N L
11498
11499 enum neon_shape
11500 {
11501 NEON_SHAPE_DEF,
11502 NS_NULL
11503 };
11504
11505 #undef X
11506 #undef S2
11507 #undef S3
11508 #undef S4
11509
11510 enum neon_shape_class
11511 {
11512 SC_SINGLE,
11513 SC_DOUBLE,
11514 SC_QUAD,
11515 SC_MIXED
11516 };
11517
11518 #define X(N, L, C) SC_##C
11519
11520 static enum neon_shape_class neon_shape_class[] =
11521 {
11522 NEON_SHAPE_DEF
11523 };
11524
11525 #undef X
11526
11527 enum neon_shape_el
11528 {
11529 SE_F,
11530 SE_D,
11531 SE_Q,
11532 SE_I,
11533 SE_S,
11534 SE_R,
11535 SE_L
11536 };
11537
11538 /* Register widths of above. */
11539 static unsigned neon_shape_el_size[] =
11540 {
11541 32,
11542 64,
11543 128,
11544 0,
11545 32,
11546 32,
11547 0
11548 };
11549
11550 struct neon_shape_info
11551 {
11552 unsigned els;
11553 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11554 };
11555
11556 #define S2(A,B) { SE_##A, SE_##B }
11557 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11558 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11559
11560 #define X(N, L, C) { N, S##N L }
11561
11562 static struct neon_shape_info neon_shape_tab[] =
11563 {
11564 NEON_SHAPE_DEF
11565 };
11566
11567 #undef X
11568 #undef S2
11569 #undef S3
11570 #undef S4
11571
11572 /* Bit masks used in type checking given instructions.
11573 'N_EQK' means the type must be the same as (or based on in some way) the key
11574 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11575 set, various other bits can be set as well in order to modify the meaning of
11576 the type constraint. */
11577
11578 enum neon_type_mask
11579 {
11580 N_S8 = 0x0000001,
11581 N_S16 = 0x0000002,
11582 N_S32 = 0x0000004,
11583 N_S64 = 0x0000008,
11584 N_U8 = 0x0000010,
11585 N_U16 = 0x0000020,
11586 N_U32 = 0x0000040,
11587 N_U64 = 0x0000080,
11588 N_I8 = 0x0000100,
11589 N_I16 = 0x0000200,
11590 N_I32 = 0x0000400,
11591 N_I64 = 0x0000800,
11592 N_8 = 0x0001000,
11593 N_16 = 0x0002000,
11594 N_32 = 0x0004000,
11595 N_64 = 0x0008000,
11596 N_P8 = 0x0010000,
11597 N_P16 = 0x0020000,
11598 N_F16 = 0x0040000,
11599 N_F32 = 0x0080000,
11600 N_F64 = 0x0100000,
11601 N_KEY = 0x1000000, /* Key element (main type specifier). */
11602 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11603 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11604 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11605 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11606 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11607 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11608 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11609 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11610 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11611 N_UTYP = 0,
11612 N_MAX_NONSPECIAL = N_F64
11613 };
11614
11615 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11616
11617 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11618 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11619 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11620 #define N_SUF_32 (N_SU_32 | N_F32)
11621 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11622 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11623
11624 /* Pass this as the first type argument to neon_check_type to ignore types
11625 altogether. */
11626 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11627
11628 /* Select a "shape" for the current instruction (describing register types or
11629 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11630 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11631 function of operand parsing, so this function doesn't need to be called.
11632 Shapes should be listed in order of decreasing length. */
11633
11634 static enum neon_shape
11635 neon_select_shape (enum neon_shape shape, ...)
11636 {
11637 va_list ap;
11638 enum neon_shape first_shape = shape;
11639
11640 /* Fix missing optional operands. FIXME: we don't know at this point how
11641 many arguments we should have, so this makes the assumption that we have
11642 > 1. This is true of all current Neon opcodes, I think, but may not be
11643 true in the future. */
11644 if (!inst.operands[1].present)
11645 inst.operands[1] = inst.operands[0];
11646
11647 va_start (ap, shape);
11648
11649 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
11650 {
11651 unsigned j;
11652 int matches = 1;
11653
11654 for (j = 0; j < neon_shape_tab[shape].els; j++)
11655 {
11656 if (!inst.operands[j].present)
11657 {
11658 matches = 0;
11659 break;
11660 }
11661
11662 switch (neon_shape_tab[shape].el[j])
11663 {
11664 case SE_F:
11665 if (!(inst.operands[j].isreg
11666 && inst.operands[j].isvec
11667 && inst.operands[j].issingle
11668 && !inst.operands[j].isquad))
11669 matches = 0;
11670 break;
11671
11672 case SE_D:
11673 if (!(inst.operands[j].isreg
11674 && inst.operands[j].isvec
11675 && !inst.operands[j].isquad
11676 && !inst.operands[j].issingle))
11677 matches = 0;
11678 break;
11679
11680 case SE_R:
11681 if (!(inst.operands[j].isreg
11682 && !inst.operands[j].isvec))
11683 matches = 0;
11684 break;
11685
11686 case SE_Q:
11687 if (!(inst.operands[j].isreg
11688 && inst.operands[j].isvec
11689 && inst.operands[j].isquad
11690 && !inst.operands[j].issingle))
11691 matches = 0;
11692 break;
11693
11694 case SE_I:
11695 if (!(!inst.operands[j].isreg
11696 && !inst.operands[j].isscalar))
11697 matches = 0;
11698 break;
11699
11700 case SE_S:
11701 if (!(!inst.operands[j].isreg
11702 && inst.operands[j].isscalar))
11703 matches = 0;
11704 break;
11705
11706 case SE_L:
11707 break;
11708 }
11709 }
11710 if (matches)
11711 break;
11712 }
11713
11714 va_end (ap);
11715
11716 if (shape == NS_NULL && first_shape != NS_NULL)
11717 first_error (_("invalid instruction shape"));
11718
11719 return shape;
11720 }
11721
11722 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11723 means the Q bit should be set). */
11724
11725 static int
11726 neon_quad (enum neon_shape shape)
11727 {
11728 return neon_shape_class[shape] == SC_QUAD;
11729 }
11730
11731 static void
11732 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11733 unsigned *g_size)
11734 {
11735 /* Allow modification to be made to types which are constrained to be
11736 based on the key element, based on bits set alongside N_EQK. */
11737 if ((typebits & N_EQK) != 0)
11738 {
11739 if ((typebits & N_HLF) != 0)
11740 *g_size /= 2;
11741 else if ((typebits & N_DBL) != 0)
11742 *g_size *= 2;
11743 if ((typebits & N_SGN) != 0)
11744 *g_type = NT_signed;
11745 else if ((typebits & N_UNS) != 0)
11746 *g_type = NT_unsigned;
11747 else if ((typebits & N_INT) != 0)
11748 *g_type = NT_integer;
11749 else if ((typebits & N_FLT) != 0)
11750 *g_type = NT_float;
11751 else if ((typebits & N_SIZ) != 0)
11752 *g_type = NT_untyped;
11753 }
11754 }
11755
11756 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11757 operand type, i.e. the single type specified in a Neon instruction when it
11758 is the only one given. */
11759
11760 static struct neon_type_el
11761 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11762 {
11763 struct neon_type_el dest = *key;
11764
11765 gas_assert ((thisarg & N_EQK) != 0);
11766
11767 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11768
11769 return dest;
11770 }
11771
11772 /* Convert Neon type and size into compact bitmask representation. */
11773
11774 static enum neon_type_mask
11775 type_chk_of_el_type (enum neon_el_type type, unsigned size)
11776 {
11777 switch (type)
11778 {
11779 case NT_untyped:
11780 switch (size)
11781 {
11782 case 8: return N_8;
11783 case 16: return N_16;
11784 case 32: return N_32;
11785 case 64: return N_64;
11786 default: ;
11787 }
11788 break;
11789
11790 case NT_integer:
11791 switch (size)
11792 {
11793 case 8: return N_I8;
11794 case 16: return N_I16;
11795 case 32: return N_I32;
11796 case 64: return N_I64;
11797 default: ;
11798 }
11799 break;
11800
11801 case NT_float:
11802 switch (size)
11803 {
11804 case 16: return N_F16;
11805 case 32: return N_F32;
11806 case 64: return N_F64;
11807 default: ;
11808 }
11809 break;
11810
11811 case NT_poly:
11812 switch (size)
11813 {
11814 case 8: return N_P8;
11815 case 16: return N_P16;
11816 default: ;
11817 }
11818 break;
11819
11820 case NT_signed:
11821 switch (size)
11822 {
11823 case 8: return N_S8;
11824 case 16: return N_S16;
11825 case 32: return N_S32;
11826 case 64: return N_S64;
11827 default: ;
11828 }
11829 break;
11830
11831 case NT_unsigned:
11832 switch (size)
11833 {
11834 case 8: return N_U8;
11835 case 16: return N_U16;
11836 case 32: return N_U32;
11837 case 64: return N_U64;
11838 default: ;
11839 }
11840 break;
11841
11842 default: ;
11843 }
11844
11845 return N_UTYP;
11846 }
11847
11848 /* Convert compact Neon bitmask type representation to a type and size. Only
11849 handles the case where a single bit is set in the mask. */
11850
11851 static int
11852 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11853 enum neon_type_mask mask)
11854 {
11855 if ((mask & N_EQK) != 0)
11856 return FAIL;
11857
11858 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11859 *size = 8;
11860 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
11861 *size = 16;
11862 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
11863 *size = 32;
11864 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
11865 *size = 64;
11866 else
11867 return FAIL;
11868
11869 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11870 *type = NT_signed;
11871 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
11872 *type = NT_unsigned;
11873 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
11874 *type = NT_integer;
11875 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
11876 *type = NT_untyped;
11877 else if ((mask & (N_P8 | N_P16)) != 0)
11878 *type = NT_poly;
11879 else if ((mask & (N_F32 | N_F64)) != 0)
11880 *type = NT_float;
11881 else
11882 return FAIL;
11883
11884 return SUCCESS;
11885 }
11886
11887 /* Modify a bitmask of allowed types. This is only needed for type
11888 relaxation. */
11889
11890 static unsigned
11891 modify_types_allowed (unsigned allowed, unsigned mods)
11892 {
11893 unsigned size;
11894 enum neon_el_type type;
11895 unsigned destmask;
11896 int i;
11897
11898 destmask = 0;
11899
11900 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11901 {
11902 if (el_type_of_type_chk (&type, &size,
11903 (enum neon_type_mask) (allowed & i)) == SUCCESS)
11904 {
11905 neon_modify_type_size (mods, &type, &size);
11906 destmask |= type_chk_of_el_type (type, size);
11907 }
11908 }
11909
11910 return destmask;
11911 }
11912
11913 /* Check type and return type classification.
11914 The manual states (paraphrase): If one datatype is given, it indicates the
11915 type given in:
11916 - the second operand, if there is one
11917 - the operand, if there is no second operand
11918 - the result, if there are no operands.
11919 This isn't quite good enough though, so we use a concept of a "key" datatype
11920 which is set on a per-instruction basis, which is the one which matters when
11921 only one data type is written.
11922 Note: this function has side-effects (e.g. filling in missing operands). All
11923 Neon instructions should call it before performing bit encoding. */
11924
11925 static struct neon_type_el
11926 neon_check_type (unsigned els, enum neon_shape ns, ...)
11927 {
11928 va_list ap;
11929 unsigned i, pass, key_el = 0;
11930 unsigned types[NEON_MAX_TYPE_ELS];
11931 enum neon_el_type k_type = NT_invtype;
11932 unsigned k_size = -1u;
11933 struct neon_type_el badtype = {NT_invtype, -1};
11934 unsigned key_allowed = 0;
11935
11936 /* Optional registers in Neon instructions are always (not) in operand 1.
11937 Fill in the missing operand here, if it was omitted. */
11938 if (els > 1 && !inst.operands[1].present)
11939 inst.operands[1] = inst.operands[0];
11940
11941 /* Suck up all the varargs. */
11942 va_start (ap, ns);
11943 for (i = 0; i < els; i++)
11944 {
11945 unsigned thisarg = va_arg (ap, unsigned);
11946 if (thisarg == N_IGNORE_TYPE)
11947 {
11948 va_end (ap);
11949 return badtype;
11950 }
11951 types[i] = thisarg;
11952 if ((thisarg & N_KEY) != 0)
11953 key_el = i;
11954 }
11955 va_end (ap);
11956
11957 if (inst.vectype.elems > 0)
11958 for (i = 0; i < els; i++)
11959 if (inst.operands[i].vectype.type != NT_invtype)
11960 {
11961 first_error (_("types specified in both the mnemonic and operands"));
11962 return badtype;
11963 }
11964
11965 /* Duplicate inst.vectype elements here as necessary.
11966 FIXME: No idea if this is exactly the same as the ARM assembler,
11967 particularly when an insn takes one register and one non-register
11968 operand. */
11969 if (inst.vectype.elems == 1 && els > 1)
11970 {
11971 unsigned j;
11972 inst.vectype.elems = els;
11973 inst.vectype.el[key_el] = inst.vectype.el[0];
11974 for (j = 0; j < els; j++)
11975 if (j != key_el)
11976 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11977 types[j]);
11978 }
11979 else if (inst.vectype.elems == 0 && els > 0)
11980 {
11981 unsigned j;
11982 /* No types were given after the mnemonic, so look for types specified
11983 after each operand. We allow some flexibility here; as long as the
11984 "key" operand has a type, we can infer the others. */
11985 for (j = 0; j < els; j++)
11986 if (inst.operands[j].vectype.type != NT_invtype)
11987 inst.vectype.el[j] = inst.operands[j].vectype;
11988
11989 if (inst.operands[key_el].vectype.type != NT_invtype)
11990 {
11991 for (j = 0; j < els; j++)
11992 if (inst.operands[j].vectype.type == NT_invtype)
11993 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11994 types[j]);
11995 }
11996 else
11997 {
11998 first_error (_("operand types can't be inferred"));
11999 return badtype;
12000 }
12001 }
12002 else if (inst.vectype.elems != els)
12003 {
12004 first_error (_("type specifier has the wrong number of parts"));
12005 return badtype;
12006 }
12007
12008 for (pass = 0; pass < 2; pass++)
12009 {
12010 for (i = 0; i < els; i++)
12011 {
12012 unsigned thisarg = types[i];
12013 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12014 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12015 enum neon_el_type g_type = inst.vectype.el[i].type;
12016 unsigned g_size = inst.vectype.el[i].size;
12017
12018 /* Decay more-specific signed & unsigned types to sign-insensitive
12019 integer types if sign-specific variants are unavailable. */
12020 if ((g_type == NT_signed || g_type == NT_unsigned)
12021 && (types_allowed & N_SU_ALL) == 0)
12022 g_type = NT_integer;
12023
12024 /* If only untyped args are allowed, decay any more specific types to
12025 them. Some instructions only care about signs for some element
12026 sizes, so handle that properly. */
12027 if ((g_size == 8 && (types_allowed & N_8) != 0)
12028 || (g_size == 16 && (types_allowed & N_16) != 0)
12029 || (g_size == 32 && (types_allowed & N_32) != 0)
12030 || (g_size == 64 && (types_allowed & N_64) != 0))
12031 g_type = NT_untyped;
12032
12033 if (pass == 0)
12034 {
12035 if ((thisarg & N_KEY) != 0)
12036 {
12037 k_type = g_type;
12038 k_size = g_size;
12039 key_allowed = thisarg & ~N_KEY;
12040 }
12041 }
12042 else
12043 {
12044 if ((thisarg & N_VFP) != 0)
12045 {
12046 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
12047 unsigned regwidth = neon_shape_el_size[regshape], match;
12048
12049 /* In VFP mode, operands must match register widths. If we
12050 have a key operand, use its width, else use the width of
12051 the current operand. */
12052 if (k_size != -1u)
12053 match = k_size;
12054 else
12055 match = g_size;
12056
12057 if (regwidth != match)
12058 {
12059 first_error (_("operand size must match register width"));
12060 return badtype;
12061 }
12062 }
12063
12064 if ((thisarg & N_EQK) == 0)
12065 {
12066 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12067
12068 if ((given_type & types_allowed) == 0)
12069 {
12070 first_error (_("bad type in Neon instruction"));
12071 return badtype;
12072 }
12073 }
12074 else
12075 {
12076 enum neon_el_type mod_k_type = k_type;
12077 unsigned mod_k_size = k_size;
12078 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12079 if (g_type != mod_k_type || g_size != mod_k_size)
12080 {
12081 first_error (_("inconsistent types in Neon instruction"));
12082 return badtype;
12083 }
12084 }
12085 }
12086 }
12087 }
12088
12089 return inst.vectype.el[key_el];
12090 }
12091
12092 /* Neon-style VFP instruction forwarding. */
12093
12094 /* Thumb VFP instructions have 0xE in the condition field. */
12095
12096 static void
12097 do_vfp_cond_or_thumb (void)
12098 {
12099 inst.is_neon = 1;
12100
12101 if (thumb_mode)
12102 inst.instruction |= 0xe0000000;
12103 else
12104 inst.instruction |= inst.cond << 28;
12105 }
12106
12107 /* Look up and encode a simple mnemonic, for use as a helper function for the
12108 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12109 etc. It is assumed that operand parsing has already been done, and that the
12110 operands are in the form expected by the given opcode (this isn't necessarily
12111 the same as the form in which they were parsed, hence some massaging must
12112 take place before this function is called).
12113 Checks current arch version against that in the looked-up opcode. */
12114
12115 static void
12116 do_vfp_nsyn_opcode (const char *opname)
12117 {
12118 const struct asm_opcode *opcode;
12119
12120 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12121
12122 if (!opcode)
12123 abort ();
12124
12125 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12126 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12127 _(BAD_FPU));
12128
12129 inst.is_neon = 1;
12130
12131 if (thumb_mode)
12132 {
12133 inst.instruction = opcode->tvalue;
12134 opcode->tencode ();
12135 }
12136 else
12137 {
12138 inst.instruction = (inst.cond << 28) | opcode->avalue;
12139 opcode->aencode ();
12140 }
12141 }
12142
12143 static void
12144 do_vfp_nsyn_add_sub (enum neon_shape rs)
12145 {
12146 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12147
12148 if (rs == NS_FFF)
12149 {
12150 if (is_add)
12151 do_vfp_nsyn_opcode ("fadds");
12152 else
12153 do_vfp_nsyn_opcode ("fsubs");
12154 }
12155 else
12156 {
12157 if (is_add)
12158 do_vfp_nsyn_opcode ("faddd");
12159 else
12160 do_vfp_nsyn_opcode ("fsubd");
12161 }
12162 }
12163
12164 /* Check operand types to see if this is a VFP instruction, and if so call
12165 PFN (). */
12166
12167 static int
12168 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12169 {
12170 enum neon_shape rs;
12171 struct neon_type_el et;
12172
12173 switch (args)
12174 {
12175 case 2:
12176 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12177 et = neon_check_type (2, rs,
12178 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12179 break;
12180
12181 case 3:
12182 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12183 et = neon_check_type (3, rs,
12184 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12185 break;
12186
12187 default:
12188 abort ();
12189 }
12190
12191 if (et.type != NT_invtype)
12192 {
12193 pfn (rs);
12194 return SUCCESS;
12195 }
12196 else
12197 inst.error = NULL;
12198
12199 return FAIL;
12200 }
12201
12202 static void
12203 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12204 {
12205 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12206
12207 if (rs == NS_FFF)
12208 {
12209 if (is_mla)
12210 do_vfp_nsyn_opcode ("fmacs");
12211 else
12212 do_vfp_nsyn_opcode ("fnmacs");
12213 }
12214 else
12215 {
12216 if (is_mla)
12217 do_vfp_nsyn_opcode ("fmacd");
12218 else
12219 do_vfp_nsyn_opcode ("fnmacd");
12220 }
12221 }
12222
12223 static void
12224 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12225 {
12226 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12227
12228 if (rs == NS_FFF)
12229 {
12230 if (is_fma)
12231 do_vfp_nsyn_opcode ("ffmas");
12232 else
12233 do_vfp_nsyn_opcode ("ffnmas");
12234 }
12235 else
12236 {
12237 if (is_fma)
12238 do_vfp_nsyn_opcode ("ffmad");
12239 else
12240 do_vfp_nsyn_opcode ("ffnmad");
12241 }
12242 }
12243
12244 static void
12245 do_vfp_nsyn_mul (enum neon_shape rs)
12246 {
12247 if (rs == NS_FFF)
12248 do_vfp_nsyn_opcode ("fmuls");
12249 else
12250 do_vfp_nsyn_opcode ("fmuld");
12251 }
12252
12253 static void
12254 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12255 {
12256 int is_neg = (inst.instruction & 0x80) != 0;
12257 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12258
12259 if (rs == NS_FF)
12260 {
12261 if (is_neg)
12262 do_vfp_nsyn_opcode ("fnegs");
12263 else
12264 do_vfp_nsyn_opcode ("fabss");
12265 }
12266 else
12267 {
12268 if (is_neg)
12269 do_vfp_nsyn_opcode ("fnegd");
12270 else
12271 do_vfp_nsyn_opcode ("fabsd");
12272 }
12273 }
12274
12275 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12276 insns belong to Neon, and are handled elsewhere. */
12277
12278 static void
12279 do_vfp_nsyn_ldm_stm (int is_dbmode)
12280 {
12281 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12282 if (is_ldm)
12283 {
12284 if (is_dbmode)
12285 do_vfp_nsyn_opcode ("fldmdbs");
12286 else
12287 do_vfp_nsyn_opcode ("fldmias");
12288 }
12289 else
12290 {
12291 if (is_dbmode)
12292 do_vfp_nsyn_opcode ("fstmdbs");
12293 else
12294 do_vfp_nsyn_opcode ("fstmias");
12295 }
12296 }
12297
12298 static void
12299 do_vfp_nsyn_sqrt (void)
12300 {
12301 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12302 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12303
12304 if (rs == NS_FF)
12305 do_vfp_nsyn_opcode ("fsqrts");
12306 else
12307 do_vfp_nsyn_opcode ("fsqrtd");
12308 }
12309
12310 static void
12311 do_vfp_nsyn_div (void)
12312 {
12313 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12314 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12315 N_F32 | N_F64 | N_KEY | N_VFP);
12316
12317 if (rs == NS_FFF)
12318 do_vfp_nsyn_opcode ("fdivs");
12319 else
12320 do_vfp_nsyn_opcode ("fdivd");
12321 }
12322
12323 static void
12324 do_vfp_nsyn_nmul (void)
12325 {
12326 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12327 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12328 N_F32 | N_F64 | N_KEY | N_VFP);
12329
12330 if (rs == NS_FFF)
12331 {
12332 NEON_ENCODE (SINGLE, inst);
12333 do_vfp_sp_dyadic ();
12334 }
12335 else
12336 {
12337 NEON_ENCODE (DOUBLE, inst);
12338 do_vfp_dp_rd_rn_rm ();
12339 }
12340 do_vfp_cond_or_thumb ();
12341 }
12342
12343 static void
12344 do_vfp_nsyn_cmp (void)
12345 {
12346 if (inst.operands[1].isreg)
12347 {
12348 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12349 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12350
12351 if (rs == NS_FF)
12352 {
12353 NEON_ENCODE (SINGLE, inst);
12354 do_vfp_sp_monadic ();
12355 }
12356 else
12357 {
12358 NEON_ENCODE (DOUBLE, inst);
12359 do_vfp_dp_rd_rm ();
12360 }
12361 }
12362 else
12363 {
12364 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12365 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12366
12367 switch (inst.instruction & 0x0fffffff)
12368 {
12369 case N_MNEM_vcmp:
12370 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12371 break;
12372 case N_MNEM_vcmpe:
12373 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12374 break;
12375 default:
12376 abort ();
12377 }
12378
12379 if (rs == NS_FI)
12380 {
12381 NEON_ENCODE (SINGLE, inst);
12382 do_vfp_sp_compare_z ();
12383 }
12384 else
12385 {
12386 NEON_ENCODE (DOUBLE, inst);
12387 do_vfp_dp_rd ();
12388 }
12389 }
12390 do_vfp_cond_or_thumb ();
12391 }
12392
12393 static void
12394 nsyn_insert_sp (void)
12395 {
12396 inst.operands[1] = inst.operands[0];
12397 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12398 inst.operands[0].reg = REG_SP;
12399 inst.operands[0].isreg = 1;
12400 inst.operands[0].writeback = 1;
12401 inst.operands[0].present = 1;
12402 }
12403
12404 static void
12405 do_vfp_nsyn_push (void)
12406 {
12407 nsyn_insert_sp ();
12408 if (inst.operands[1].issingle)
12409 do_vfp_nsyn_opcode ("fstmdbs");
12410 else
12411 do_vfp_nsyn_opcode ("fstmdbd");
12412 }
12413
12414 static void
12415 do_vfp_nsyn_pop (void)
12416 {
12417 nsyn_insert_sp ();
12418 if (inst.operands[1].issingle)
12419 do_vfp_nsyn_opcode ("fldmias");
12420 else
12421 do_vfp_nsyn_opcode ("fldmiad");
12422 }
12423
12424 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12425 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12426
12427 static void
12428 neon_dp_fixup (struct arm_it* insn)
12429 {
12430 unsigned int i = insn->instruction;
12431 insn->is_neon = 1;
12432
12433 if (thumb_mode)
12434 {
12435 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12436 if (i & (1 << 24))
12437 i |= 1 << 28;
12438
12439 i &= ~(1 << 24);
12440
12441 i |= 0xef000000;
12442 }
12443 else
12444 i |= 0xf2000000;
12445
12446 insn->instruction = i;
12447 }
12448
12449 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12450 (0, 1, 2, 3). */
12451
12452 static unsigned
12453 neon_logbits (unsigned x)
12454 {
12455 return ffs (x) - 4;
12456 }
12457
12458 #define LOW4(R) ((R) & 0xf)
12459 #define HI1(R) (((R) >> 4) & 1)
12460
12461 /* Encode insns with bit pattern:
12462
12463 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12464 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12465
12466 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12467 different meaning for some instruction. */
12468
12469 static void
12470 neon_three_same (int isquad, int ubit, int size)
12471 {
12472 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12473 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12474 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12475 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12476 inst.instruction |= LOW4 (inst.operands[2].reg);
12477 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12478 inst.instruction |= (isquad != 0) << 6;
12479 inst.instruction |= (ubit != 0) << 24;
12480 if (size != -1)
12481 inst.instruction |= neon_logbits (size) << 20;
12482
12483 neon_dp_fixup (&inst);
12484 }
12485
12486 /* Encode instructions of the form:
12487
12488 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12489 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12490
12491 Don't write size if SIZE == -1. */
12492
12493 static void
12494 neon_two_same (int qbit, int ubit, int size)
12495 {
12496 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12497 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12498 inst.instruction |= LOW4 (inst.operands[1].reg);
12499 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12500 inst.instruction |= (qbit != 0) << 6;
12501 inst.instruction |= (ubit != 0) << 24;
12502
12503 if (size != -1)
12504 inst.instruction |= neon_logbits (size) << 18;
12505
12506 neon_dp_fixup (&inst);
12507 }
12508
12509 /* Neon instruction encoders, in approximate order of appearance. */
12510
12511 static void
12512 do_neon_dyadic_i_su (void)
12513 {
12514 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12515 struct neon_type_el et = neon_check_type (3, rs,
12516 N_EQK, N_EQK, N_SU_32 | N_KEY);
12517 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12518 }
12519
12520 static void
12521 do_neon_dyadic_i64_su (void)
12522 {
12523 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12524 struct neon_type_el et = neon_check_type (3, rs,
12525 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12526 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12527 }
12528
12529 static void
12530 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12531 unsigned immbits)
12532 {
12533 unsigned size = et.size >> 3;
12534 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12535 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12536 inst.instruction |= LOW4 (inst.operands[1].reg);
12537 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12538 inst.instruction |= (isquad != 0) << 6;
12539 inst.instruction |= immbits << 16;
12540 inst.instruction |= (size >> 3) << 7;
12541 inst.instruction |= (size & 0x7) << 19;
12542 if (write_ubit)
12543 inst.instruction |= (uval != 0) << 24;
12544
12545 neon_dp_fixup (&inst);
12546 }
12547
12548 static void
12549 do_neon_shl_imm (void)
12550 {
12551 if (!inst.operands[2].isreg)
12552 {
12553 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12554 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12555 NEON_ENCODE (IMMED, inst);
12556 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12557 }
12558 else
12559 {
12560 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12561 struct neon_type_el et = neon_check_type (3, rs,
12562 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12563 unsigned int tmp;
12564
12565 /* VSHL/VQSHL 3-register variants have syntax such as:
12566 vshl.xx Dd, Dm, Dn
12567 whereas other 3-register operations encoded by neon_three_same have
12568 syntax like:
12569 vadd.xx Dd, Dn, Dm
12570 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12571 here. */
12572 tmp = inst.operands[2].reg;
12573 inst.operands[2].reg = inst.operands[1].reg;
12574 inst.operands[1].reg = tmp;
12575 NEON_ENCODE (INTEGER, inst);
12576 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12577 }
12578 }
12579
12580 static void
12581 do_neon_qshl_imm (void)
12582 {
12583 if (!inst.operands[2].isreg)
12584 {
12585 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12586 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12587
12588 NEON_ENCODE (IMMED, inst);
12589 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12590 inst.operands[2].imm);
12591 }
12592 else
12593 {
12594 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12595 struct neon_type_el et = neon_check_type (3, rs,
12596 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12597 unsigned int tmp;
12598
12599 /* See note in do_neon_shl_imm. */
12600 tmp = inst.operands[2].reg;
12601 inst.operands[2].reg = inst.operands[1].reg;
12602 inst.operands[1].reg = tmp;
12603 NEON_ENCODE (INTEGER, inst);
12604 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12605 }
12606 }
12607
12608 static void
12609 do_neon_rshl (void)
12610 {
12611 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12612 struct neon_type_el et = neon_check_type (3, rs,
12613 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12614 unsigned int tmp;
12615
12616 tmp = inst.operands[2].reg;
12617 inst.operands[2].reg = inst.operands[1].reg;
12618 inst.operands[1].reg = tmp;
12619 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12620 }
12621
12622 static int
12623 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12624 {
12625 /* Handle .I8 pseudo-instructions. */
12626 if (size == 8)
12627 {
12628 /* Unfortunately, this will make everything apart from zero out-of-range.
12629 FIXME is this the intended semantics? There doesn't seem much point in
12630 accepting .I8 if so. */
12631 immediate |= immediate << 8;
12632 size = 16;
12633 }
12634
12635 if (size >= 32)
12636 {
12637 if (immediate == (immediate & 0x000000ff))
12638 {
12639 *immbits = immediate;
12640 return 0x1;
12641 }
12642 else if (immediate == (immediate & 0x0000ff00))
12643 {
12644 *immbits = immediate >> 8;
12645 return 0x3;
12646 }
12647 else if (immediate == (immediate & 0x00ff0000))
12648 {
12649 *immbits = immediate >> 16;
12650 return 0x5;
12651 }
12652 else if (immediate == (immediate & 0xff000000))
12653 {
12654 *immbits = immediate >> 24;
12655 return 0x7;
12656 }
12657 if ((immediate & 0xffff) != (immediate >> 16))
12658 goto bad_immediate;
12659 immediate &= 0xffff;
12660 }
12661
12662 if (immediate == (immediate & 0x000000ff))
12663 {
12664 *immbits = immediate;
12665 return 0x9;
12666 }
12667 else if (immediate == (immediate & 0x0000ff00))
12668 {
12669 *immbits = immediate >> 8;
12670 return 0xb;
12671 }
12672
12673 bad_immediate:
12674 first_error (_("immediate value out of range"));
12675 return FAIL;
12676 }
12677
12678 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12679 A, B, C, D. */
12680
12681 static int
12682 neon_bits_same_in_bytes (unsigned imm)
12683 {
12684 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12685 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12686 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12687 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12688 }
12689
12690 /* For immediate of above form, return 0bABCD. */
12691
12692 static unsigned
12693 neon_squash_bits (unsigned imm)
12694 {
12695 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12696 | ((imm & 0x01000000) >> 21);
12697 }
12698
12699 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12700
12701 static unsigned
12702 neon_qfloat_bits (unsigned imm)
12703 {
12704 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12705 }
12706
12707 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12708 the instruction. *OP is passed as the initial value of the op field, and
12709 may be set to a different value depending on the constant (i.e.
12710 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12711 MVN). If the immediate looks like a repeated pattern then also
12712 try smaller element sizes. */
12713
12714 static int
12715 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12716 unsigned *immbits, int *op, int size,
12717 enum neon_el_type type)
12718 {
12719 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12720 float. */
12721 if (type == NT_float && !float_p)
12722 return FAIL;
12723
12724 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12725 {
12726 if (size != 32 || *op == 1)
12727 return FAIL;
12728 *immbits = neon_qfloat_bits (immlo);
12729 return 0xf;
12730 }
12731
12732 if (size == 64)
12733 {
12734 if (neon_bits_same_in_bytes (immhi)
12735 && neon_bits_same_in_bytes (immlo))
12736 {
12737 if (*op == 1)
12738 return FAIL;
12739 *immbits = (neon_squash_bits (immhi) << 4)
12740 | neon_squash_bits (immlo);
12741 *op = 1;
12742 return 0xe;
12743 }
12744
12745 if (immhi != immlo)
12746 return FAIL;
12747 }
12748
12749 if (size >= 32)
12750 {
12751 if (immlo == (immlo & 0x000000ff))
12752 {
12753 *immbits = immlo;
12754 return 0x0;
12755 }
12756 else if (immlo == (immlo & 0x0000ff00))
12757 {
12758 *immbits = immlo >> 8;
12759 return 0x2;
12760 }
12761 else if (immlo == (immlo & 0x00ff0000))
12762 {
12763 *immbits = immlo >> 16;
12764 return 0x4;
12765 }
12766 else if (immlo == (immlo & 0xff000000))
12767 {
12768 *immbits = immlo >> 24;
12769 return 0x6;
12770 }
12771 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12772 {
12773 *immbits = (immlo >> 8) & 0xff;
12774 return 0xc;
12775 }
12776 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12777 {
12778 *immbits = (immlo >> 16) & 0xff;
12779 return 0xd;
12780 }
12781
12782 if ((immlo & 0xffff) != (immlo >> 16))
12783 return FAIL;
12784 immlo &= 0xffff;
12785 }
12786
12787 if (size >= 16)
12788 {
12789 if (immlo == (immlo & 0x000000ff))
12790 {
12791 *immbits = immlo;
12792 return 0x8;
12793 }
12794 else if (immlo == (immlo & 0x0000ff00))
12795 {
12796 *immbits = immlo >> 8;
12797 return 0xa;
12798 }
12799
12800 if ((immlo & 0xff) != (immlo >> 8))
12801 return FAIL;
12802 immlo &= 0xff;
12803 }
12804
12805 if (immlo == (immlo & 0x000000ff))
12806 {
12807 /* Don't allow MVN with 8-bit immediate. */
12808 if (*op == 1)
12809 return FAIL;
12810 *immbits = immlo;
12811 return 0xe;
12812 }
12813
12814 return FAIL;
12815 }
12816
12817 /* Write immediate bits [7:0] to the following locations:
12818
12819 |28/24|23 19|18 16|15 4|3 0|
12820 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12821
12822 This function is used by VMOV/VMVN/VORR/VBIC. */
12823
12824 static void
12825 neon_write_immbits (unsigned immbits)
12826 {
12827 inst.instruction |= immbits & 0xf;
12828 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12829 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12830 }
12831
12832 /* Invert low-order SIZE bits of XHI:XLO. */
12833
12834 static void
12835 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12836 {
12837 unsigned immlo = xlo ? *xlo : 0;
12838 unsigned immhi = xhi ? *xhi : 0;
12839
12840 switch (size)
12841 {
12842 case 8:
12843 immlo = (~immlo) & 0xff;
12844 break;
12845
12846 case 16:
12847 immlo = (~immlo) & 0xffff;
12848 break;
12849
12850 case 64:
12851 immhi = (~immhi) & 0xffffffff;
12852 /* fall through. */
12853
12854 case 32:
12855 immlo = (~immlo) & 0xffffffff;
12856 break;
12857
12858 default:
12859 abort ();
12860 }
12861
12862 if (xlo)
12863 *xlo = immlo;
12864
12865 if (xhi)
12866 *xhi = immhi;
12867 }
12868
12869 static void
12870 do_neon_logic (void)
12871 {
12872 if (inst.operands[2].present && inst.operands[2].isreg)
12873 {
12874 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12875 neon_check_type (3, rs, N_IGNORE_TYPE);
12876 /* U bit and size field were set as part of the bitmask. */
12877 NEON_ENCODE (INTEGER, inst);
12878 neon_three_same (neon_quad (rs), 0, -1);
12879 }
12880 else
12881 {
12882 const int three_ops_form = (inst.operands[2].present
12883 && !inst.operands[2].isreg);
12884 const int immoperand = (three_ops_form ? 2 : 1);
12885 enum neon_shape rs = (three_ops_form
12886 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
12887 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
12888 struct neon_type_el et = neon_check_type (2, rs,
12889 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12890 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
12891 unsigned immbits;
12892 int cmode;
12893
12894 if (et.type == NT_invtype)
12895 return;
12896
12897 if (three_ops_form)
12898 constraint (inst.operands[0].reg != inst.operands[1].reg,
12899 _("first and second operands shall be the same register"));
12900
12901 NEON_ENCODE (IMMED, inst);
12902
12903 immbits = inst.operands[immoperand].imm;
12904 if (et.size == 64)
12905 {
12906 /* .i64 is a pseudo-op, so the immediate must be a repeating
12907 pattern. */
12908 if (immbits != (inst.operands[immoperand].regisimm ?
12909 inst.operands[immoperand].reg : 0))
12910 {
12911 /* Set immbits to an invalid constant. */
12912 immbits = 0xdeadbeef;
12913 }
12914 }
12915
12916 switch (opcode)
12917 {
12918 case N_MNEM_vbic:
12919 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12920 break;
12921
12922 case N_MNEM_vorr:
12923 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12924 break;
12925
12926 case N_MNEM_vand:
12927 /* Pseudo-instruction for VBIC. */
12928 neon_invert_size (&immbits, 0, et.size);
12929 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12930 break;
12931
12932 case N_MNEM_vorn:
12933 /* Pseudo-instruction for VORR. */
12934 neon_invert_size (&immbits, 0, et.size);
12935 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12936 break;
12937
12938 default:
12939 abort ();
12940 }
12941
12942 if (cmode == FAIL)
12943 return;
12944
12945 inst.instruction |= neon_quad (rs) << 6;
12946 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12947 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12948 inst.instruction |= cmode << 8;
12949 neon_write_immbits (immbits);
12950
12951 neon_dp_fixup (&inst);
12952 }
12953 }
12954
12955 static void
12956 do_neon_bitfield (void)
12957 {
12958 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12959 neon_check_type (3, rs, N_IGNORE_TYPE);
12960 neon_three_same (neon_quad (rs), 0, -1);
12961 }
12962
12963 static void
12964 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12965 unsigned destbits)
12966 {
12967 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12968 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12969 types | N_KEY);
12970 if (et.type == NT_float)
12971 {
12972 NEON_ENCODE (FLOAT, inst);
12973 neon_three_same (neon_quad (rs), 0, -1);
12974 }
12975 else
12976 {
12977 NEON_ENCODE (INTEGER, inst);
12978 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12979 }
12980 }
12981
12982 static void
12983 do_neon_dyadic_if_su (void)
12984 {
12985 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12986 }
12987
12988 static void
12989 do_neon_dyadic_if_su_d (void)
12990 {
12991 /* This version only allow D registers, but that constraint is enforced during
12992 operand parsing so we don't need to do anything extra here. */
12993 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12994 }
12995
12996 static void
12997 do_neon_dyadic_if_i_d (void)
12998 {
12999 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13000 affected if we specify unsigned args. */
13001 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13002 }
13003
13004 enum vfp_or_neon_is_neon_bits
13005 {
13006 NEON_CHECK_CC = 1,
13007 NEON_CHECK_ARCH = 2
13008 };
13009
13010 /* Call this function if an instruction which may have belonged to the VFP or
13011 Neon instruction sets, but turned out to be a Neon instruction (due to the
13012 operand types involved, etc.). We have to check and/or fix-up a couple of
13013 things:
13014
13015 - Make sure the user hasn't attempted to make a Neon instruction
13016 conditional.
13017 - Alter the value in the condition code field if necessary.
13018 - Make sure that the arch supports Neon instructions.
13019
13020 Which of these operations take place depends on bits from enum
13021 vfp_or_neon_is_neon_bits.
13022
13023 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13024 current instruction's condition is COND_ALWAYS, the condition field is
13025 changed to inst.uncond_value. This is necessary because instructions shared
13026 between VFP and Neon may be conditional for the VFP variants only, and the
13027 unconditional Neon version must have, e.g., 0xF in the condition field. */
13028
13029 static int
13030 vfp_or_neon_is_neon (unsigned check)
13031 {
13032 /* Conditions are always legal in Thumb mode (IT blocks). */
13033 if (!thumb_mode && (check & NEON_CHECK_CC))
13034 {
13035 if (inst.cond != COND_ALWAYS)
13036 {
13037 first_error (_(BAD_COND));
13038 return FAIL;
13039 }
13040 if (inst.uncond_value != -1)
13041 inst.instruction |= inst.uncond_value << 28;
13042 }
13043
13044 if ((check & NEON_CHECK_ARCH)
13045 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13046 {
13047 first_error (_(BAD_FPU));
13048 return FAIL;
13049 }
13050
13051 return SUCCESS;
13052 }
13053
13054 static void
13055 do_neon_addsub_if_i (void)
13056 {
13057 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13058 return;
13059
13060 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13061 return;
13062
13063 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13064 affected if we specify unsigned args. */
13065 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13066 }
13067
13068 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13069 result to be:
13070 V<op> A,B (A is operand 0, B is operand 2)
13071 to mean:
13072 V<op> A,B,A
13073 not:
13074 V<op> A,B,B
13075 so handle that case specially. */
13076
13077 static void
13078 neon_exchange_operands (void)
13079 {
13080 void *scratch = alloca (sizeof (inst.operands[0]));
13081 if (inst.operands[1].present)
13082 {
13083 /* Swap operands[1] and operands[2]. */
13084 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13085 inst.operands[1] = inst.operands[2];
13086 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13087 }
13088 else
13089 {
13090 inst.operands[1] = inst.operands[2];
13091 inst.operands[2] = inst.operands[0];
13092 }
13093 }
13094
13095 static void
13096 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13097 {
13098 if (inst.operands[2].isreg)
13099 {
13100 if (invert)
13101 neon_exchange_operands ();
13102 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13103 }
13104 else
13105 {
13106 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13107 struct neon_type_el et = neon_check_type (2, rs,
13108 N_EQK | N_SIZ, immtypes | N_KEY);
13109
13110 NEON_ENCODE (IMMED, inst);
13111 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13112 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13113 inst.instruction |= LOW4 (inst.operands[1].reg);
13114 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13115 inst.instruction |= neon_quad (rs) << 6;
13116 inst.instruction |= (et.type == NT_float) << 10;
13117 inst.instruction |= neon_logbits (et.size) << 18;
13118
13119 neon_dp_fixup (&inst);
13120 }
13121 }
13122
13123 static void
13124 do_neon_cmp (void)
13125 {
13126 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13127 }
13128
13129 static void
13130 do_neon_cmp_inv (void)
13131 {
13132 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13133 }
13134
13135 static void
13136 do_neon_ceq (void)
13137 {
13138 neon_compare (N_IF_32, N_IF_32, FALSE);
13139 }
13140
13141 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13142 scalars, which are encoded in 5 bits, M : Rm.
13143 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13144 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13145 index in M. */
13146
13147 static unsigned
13148 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13149 {
13150 unsigned regno = NEON_SCALAR_REG (scalar);
13151 unsigned elno = NEON_SCALAR_INDEX (scalar);
13152
13153 switch (elsize)
13154 {
13155 case 16:
13156 if (regno > 7 || elno > 3)
13157 goto bad_scalar;
13158 return regno | (elno << 3);
13159
13160 case 32:
13161 if (regno > 15 || elno > 1)
13162 goto bad_scalar;
13163 return regno | (elno << 4);
13164
13165 default:
13166 bad_scalar:
13167 first_error (_("scalar out of range for multiply instruction"));
13168 }
13169
13170 return 0;
13171 }
13172
13173 /* Encode multiply / multiply-accumulate scalar instructions. */
13174
13175 static void
13176 neon_mul_mac (struct neon_type_el et, int ubit)
13177 {
13178 unsigned scalar;
13179
13180 /* Give a more helpful error message if we have an invalid type. */
13181 if (et.type == NT_invtype)
13182 return;
13183
13184 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13185 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13186 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13187 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13188 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13189 inst.instruction |= LOW4 (scalar);
13190 inst.instruction |= HI1 (scalar) << 5;
13191 inst.instruction |= (et.type == NT_float) << 8;
13192 inst.instruction |= neon_logbits (et.size) << 20;
13193 inst.instruction |= (ubit != 0) << 24;
13194
13195 neon_dp_fixup (&inst);
13196 }
13197
13198 static void
13199 do_neon_mac_maybe_scalar (void)
13200 {
13201 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13202 return;
13203
13204 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13205 return;
13206
13207 if (inst.operands[2].isscalar)
13208 {
13209 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13210 struct neon_type_el et = neon_check_type (3, rs,
13211 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13212 NEON_ENCODE (SCALAR, inst);
13213 neon_mul_mac (et, neon_quad (rs));
13214 }
13215 else
13216 {
13217 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13218 affected if we specify unsigned args. */
13219 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13220 }
13221 }
13222
13223 static void
13224 do_neon_fmac (void)
13225 {
13226 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13227 return;
13228
13229 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13230 return;
13231
13232 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13233 }
13234
13235 static void
13236 do_neon_tst (void)
13237 {
13238 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13239 struct neon_type_el et = neon_check_type (3, rs,
13240 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13241 neon_three_same (neon_quad (rs), 0, et.size);
13242 }
13243
13244 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13245 same types as the MAC equivalents. The polynomial type for this instruction
13246 is encoded the same as the integer type. */
13247
13248 static void
13249 do_neon_mul (void)
13250 {
13251 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13252 return;
13253
13254 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13255 return;
13256
13257 if (inst.operands[2].isscalar)
13258 do_neon_mac_maybe_scalar ();
13259 else
13260 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13261 }
13262
13263 static void
13264 do_neon_qdmulh (void)
13265 {
13266 if (inst.operands[2].isscalar)
13267 {
13268 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13269 struct neon_type_el et = neon_check_type (3, rs,
13270 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13271 NEON_ENCODE (SCALAR, inst);
13272 neon_mul_mac (et, neon_quad (rs));
13273 }
13274 else
13275 {
13276 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13277 struct neon_type_el et = neon_check_type (3, rs,
13278 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13279 NEON_ENCODE (INTEGER, inst);
13280 /* The U bit (rounding) comes from bit mask. */
13281 neon_three_same (neon_quad (rs), 0, et.size);
13282 }
13283 }
13284
13285 static void
13286 do_neon_fcmp_absolute (void)
13287 {
13288 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13289 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13290 /* Size field comes from bit mask. */
13291 neon_three_same (neon_quad (rs), 1, -1);
13292 }
13293
13294 static void
13295 do_neon_fcmp_absolute_inv (void)
13296 {
13297 neon_exchange_operands ();
13298 do_neon_fcmp_absolute ();
13299 }
13300
13301 static void
13302 do_neon_step (void)
13303 {
13304 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13305 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13306 neon_three_same (neon_quad (rs), 0, -1);
13307 }
13308
13309 static void
13310 do_neon_abs_neg (void)
13311 {
13312 enum neon_shape rs;
13313 struct neon_type_el et;
13314
13315 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13316 return;
13317
13318 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13319 return;
13320
13321 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13322 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13323
13324 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13325 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13326 inst.instruction |= LOW4 (inst.operands[1].reg);
13327 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13328 inst.instruction |= neon_quad (rs) << 6;
13329 inst.instruction |= (et.type == NT_float) << 10;
13330 inst.instruction |= neon_logbits (et.size) << 18;
13331
13332 neon_dp_fixup (&inst);
13333 }
13334
13335 static void
13336 do_neon_sli (void)
13337 {
13338 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13339 struct neon_type_el et = neon_check_type (2, rs,
13340 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13341 int imm = inst.operands[2].imm;
13342 constraint (imm < 0 || (unsigned)imm >= et.size,
13343 _("immediate out of range for insert"));
13344 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13345 }
13346
13347 static void
13348 do_neon_sri (void)
13349 {
13350 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13351 struct neon_type_el et = neon_check_type (2, rs,
13352 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13353 int imm = inst.operands[2].imm;
13354 constraint (imm < 1 || (unsigned)imm > et.size,
13355 _("immediate out of range for insert"));
13356 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13357 }
13358
13359 static void
13360 do_neon_qshlu_imm (void)
13361 {
13362 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13363 struct neon_type_el et = neon_check_type (2, rs,
13364 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13365 int imm = inst.operands[2].imm;
13366 constraint (imm < 0 || (unsigned)imm >= et.size,
13367 _("immediate out of range for shift"));
13368 /* Only encodes the 'U present' variant of the instruction.
13369 In this case, signed types have OP (bit 8) set to 0.
13370 Unsigned types have OP set to 1. */
13371 inst.instruction |= (et.type == NT_unsigned) << 8;
13372 /* The rest of the bits are the same as other immediate shifts. */
13373 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13374 }
13375
13376 static void
13377 do_neon_qmovn (void)
13378 {
13379 struct neon_type_el et = neon_check_type (2, NS_DQ,
13380 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13381 /* Saturating move where operands can be signed or unsigned, and the
13382 destination has the same signedness. */
13383 NEON_ENCODE (INTEGER, inst);
13384 if (et.type == NT_unsigned)
13385 inst.instruction |= 0xc0;
13386 else
13387 inst.instruction |= 0x80;
13388 neon_two_same (0, 1, et.size / 2);
13389 }
13390
13391 static void
13392 do_neon_qmovun (void)
13393 {
13394 struct neon_type_el et = neon_check_type (2, NS_DQ,
13395 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13396 /* Saturating move with unsigned results. Operands must be signed. */
13397 NEON_ENCODE (INTEGER, inst);
13398 neon_two_same (0, 1, et.size / 2);
13399 }
13400
13401 static void
13402 do_neon_rshift_sat_narrow (void)
13403 {
13404 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13405 or unsigned. If operands are unsigned, results must also be unsigned. */
13406 struct neon_type_el et = neon_check_type (2, NS_DQI,
13407 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13408 int imm = inst.operands[2].imm;
13409 /* This gets the bounds check, size encoding and immediate bits calculation
13410 right. */
13411 et.size /= 2;
13412
13413 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13414 VQMOVN.I<size> <Dd>, <Qm>. */
13415 if (imm == 0)
13416 {
13417 inst.operands[2].present = 0;
13418 inst.instruction = N_MNEM_vqmovn;
13419 do_neon_qmovn ();
13420 return;
13421 }
13422
13423 constraint (imm < 1 || (unsigned)imm > et.size,
13424 _("immediate out of range"));
13425 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13426 }
13427
13428 static void
13429 do_neon_rshift_sat_narrow_u (void)
13430 {
13431 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13432 or unsigned. If operands are unsigned, results must also be unsigned. */
13433 struct neon_type_el et = neon_check_type (2, NS_DQI,
13434 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13435 int imm = inst.operands[2].imm;
13436 /* This gets the bounds check, size encoding and immediate bits calculation
13437 right. */
13438 et.size /= 2;
13439
13440 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13441 VQMOVUN.I<size> <Dd>, <Qm>. */
13442 if (imm == 0)
13443 {
13444 inst.operands[2].present = 0;
13445 inst.instruction = N_MNEM_vqmovun;
13446 do_neon_qmovun ();
13447 return;
13448 }
13449
13450 constraint (imm < 1 || (unsigned)imm > et.size,
13451 _("immediate out of range"));
13452 /* FIXME: The manual is kind of unclear about what value U should have in
13453 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13454 must be 1. */
13455 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13456 }
13457
13458 static void
13459 do_neon_movn (void)
13460 {
13461 struct neon_type_el et = neon_check_type (2, NS_DQ,
13462 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13463 NEON_ENCODE (INTEGER, inst);
13464 neon_two_same (0, 1, et.size / 2);
13465 }
13466
13467 static void
13468 do_neon_rshift_narrow (void)
13469 {
13470 struct neon_type_el et = neon_check_type (2, NS_DQI,
13471 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13472 int imm = inst.operands[2].imm;
13473 /* This gets the bounds check, size encoding and immediate bits calculation
13474 right. */
13475 et.size /= 2;
13476
13477 /* If immediate is zero then we are a pseudo-instruction for
13478 VMOVN.I<size> <Dd>, <Qm> */
13479 if (imm == 0)
13480 {
13481 inst.operands[2].present = 0;
13482 inst.instruction = N_MNEM_vmovn;
13483 do_neon_movn ();
13484 return;
13485 }
13486
13487 constraint (imm < 1 || (unsigned)imm > et.size,
13488 _("immediate out of range for narrowing operation"));
13489 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13490 }
13491
13492 static void
13493 do_neon_shll (void)
13494 {
13495 /* FIXME: Type checking when lengthening. */
13496 struct neon_type_el et = neon_check_type (2, NS_QDI,
13497 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13498 unsigned imm = inst.operands[2].imm;
13499
13500 if (imm == et.size)
13501 {
13502 /* Maximum shift variant. */
13503 NEON_ENCODE (INTEGER, inst);
13504 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13505 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13506 inst.instruction |= LOW4 (inst.operands[1].reg);
13507 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13508 inst.instruction |= neon_logbits (et.size) << 18;
13509
13510 neon_dp_fixup (&inst);
13511 }
13512 else
13513 {
13514 /* A more-specific type check for non-max versions. */
13515 et = neon_check_type (2, NS_QDI,
13516 N_EQK | N_DBL, N_SU_32 | N_KEY);
13517 NEON_ENCODE (IMMED, inst);
13518 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13519 }
13520 }
13521
13522 /* Check the various types for the VCVT instruction, and return which version
13523 the current instruction is. */
13524
13525 static int
13526 neon_cvt_flavour (enum neon_shape rs)
13527 {
13528 #define CVT_VAR(C,X,Y) \
13529 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13530 if (et.type != NT_invtype) \
13531 { \
13532 inst.error = NULL; \
13533 return (C); \
13534 }
13535 struct neon_type_el et;
13536 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13537 || rs == NS_FF) ? N_VFP : 0;
13538 /* The instruction versions which take an immediate take one register
13539 argument, which is extended to the width of the full register. Thus the
13540 "source" and "destination" registers must have the same width. Hack that
13541 here by making the size equal to the key (wider, in this case) operand. */
13542 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13543
13544 CVT_VAR (0, N_S32, N_F32);
13545 CVT_VAR (1, N_U32, N_F32);
13546 CVT_VAR (2, N_F32, N_S32);
13547 CVT_VAR (3, N_F32, N_U32);
13548 /* Half-precision conversions. */
13549 CVT_VAR (4, N_F32, N_F16);
13550 CVT_VAR (5, N_F16, N_F32);
13551
13552 whole_reg = N_VFP;
13553
13554 /* VFP instructions. */
13555 CVT_VAR (6, N_F32, N_F64);
13556 CVT_VAR (7, N_F64, N_F32);
13557 CVT_VAR (8, N_S32, N_F64 | key);
13558 CVT_VAR (9, N_U32, N_F64 | key);
13559 CVT_VAR (10, N_F64 | key, N_S32);
13560 CVT_VAR (11, N_F64 | key, N_U32);
13561 /* VFP instructions with bitshift. */
13562 CVT_VAR (12, N_F32 | key, N_S16);
13563 CVT_VAR (13, N_F32 | key, N_U16);
13564 CVT_VAR (14, N_F64 | key, N_S16);
13565 CVT_VAR (15, N_F64 | key, N_U16);
13566 CVT_VAR (16, N_S16, N_F32 | key);
13567 CVT_VAR (17, N_U16, N_F32 | key);
13568 CVT_VAR (18, N_S16, N_F64 | key);
13569 CVT_VAR (19, N_U16, N_F64 | key);
13570
13571 return -1;
13572 #undef CVT_VAR
13573 }
13574
13575 /* Neon-syntax VFP conversions. */
13576
13577 static void
13578 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13579 {
13580 const char *opname = 0;
13581
13582 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13583 {
13584 /* Conversions with immediate bitshift. */
13585 const char *enc[] =
13586 {
13587 "ftosls",
13588 "ftouls",
13589 "fsltos",
13590 "fultos",
13591 NULL,
13592 NULL,
13593 NULL,
13594 NULL,
13595 "ftosld",
13596 "ftould",
13597 "fsltod",
13598 "fultod",
13599 "fshtos",
13600 "fuhtos",
13601 "fshtod",
13602 "fuhtod",
13603 "ftoshs",
13604 "ftouhs",
13605 "ftoshd",
13606 "ftouhd"
13607 };
13608
13609 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13610 {
13611 opname = enc[flavour];
13612 constraint (inst.operands[0].reg != inst.operands[1].reg,
13613 _("operands 0 and 1 must be the same register"));
13614 inst.operands[1] = inst.operands[2];
13615 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13616 }
13617 }
13618 else
13619 {
13620 /* Conversions without bitshift. */
13621 const char *enc[] =
13622 {
13623 "ftosis",
13624 "ftouis",
13625 "fsitos",
13626 "fuitos",
13627 "NULL",
13628 "NULL",
13629 "fcvtsd",
13630 "fcvtds",
13631 "ftosid",
13632 "ftouid",
13633 "fsitod",
13634 "fuitod"
13635 };
13636
13637 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13638 opname = enc[flavour];
13639 }
13640
13641 if (opname)
13642 do_vfp_nsyn_opcode (opname);
13643 }
13644
13645 static void
13646 do_vfp_nsyn_cvtz (void)
13647 {
13648 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13649 int flavour = neon_cvt_flavour (rs);
13650 const char *enc[] =
13651 {
13652 "ftosizs",
13653 "ftouizs",
13654 NULL,
13655 NULL,
13656 NULL,
13657 NULL,
13658 NULL,
13659 NULL,
13660 "ftosizd",
13661 "ftouizd"
13662 };
13663
13664 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13665 do_vfp_nsyn_opcode (enc[flavour]);
13666 }
13667
13668 static void
13669 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
13670 {
13671 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13672 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13673 int flavour = neon_cvt_flavour (rs);
13674
13675 /* PR11109: Handle round-to-zero for VCVT conversions. */
13676 if (round_to_zero
13677 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
13678 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
13679 && (rs == NS_FD || rs == NS_FF))
13680 {
13681 do_vfp_nsyn_cvtz ();
13682 return;
13683 }
13684
13685 /* VFP rather than Neon conversions. */
13686 if (flavour >= 6)
13687 {
13688 do_vfp_nsyn_cvt (rs, flavour);
13689 return;
13690 }
13691
13692 switch (rs)
13693 {
13694 case NS_DDI:
13695 case NS_QQI:
13696 {
13697 unsigned immbits;
13698 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13699
13700 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13701 return;
13702
13703 /* Fixed-point conversion with #0 immediate is encoded as an
13704 integer conversion. */
13705 if (inst.operands[2].present && inst.operands[2].imm == 0)
13706 goto int_encode;
13707 immbits = 32 - inst.operands[2].imm;
13708 NEON_ENCODE (IMMED, inst);
13709 if (flavour != -1)
13710 inst.instruction |= enctab[flavour];
13711 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13712 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13713 inst.instruction |= LOW4 (inst.operands[1].reg);
13714 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13715 inst.instruction |= neon_quad (rs) << 6;
13716 inst.instruction |= 1 << 21;
13717 inst.instruction |= immbits << 16;
13718
13719 neon_dp_fixup (&inst);
13720 }
13721 break;
13722
13723 case NS_DD:
13724 case NS_QQ:
13725 int_encode:
13726 {
13727 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13728
13729 NEON_ENCODE (INTEGER, inst);
13730
13731 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13732 return;
13733
13734 if (flavour != -1)
13735 inst.instruction |= enctab[flavour];
13736
13737 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13738 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13739 inst.instruction |= LOW4 (inst.operands[1].reg);
13740 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13741 inst.instruction |= neon_quad (rs) << 6;
13742 inst.instruction |= 2 << 18;
13743
13744 neon_dp_fixup (&inst);
13745 }
13746 break;
13747
13748 /* Half-precision conversions for Advanced SIMD -- neon. */
13749 case NS_QD:
13750 case NS_DQ:
13751
13752 if ((rs == NS_DQ)
13753 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13754 {
13755 as_bad (_("operand size must match register width"));
13756 break;
13757 }
13758
13759 if ((rs == NS_QD)
13760 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13761 {
13762 as_bad (_("operand size must match register width"));
13763 break;
13764 }
13765
13766 if (rs == NS_DQ)
13767 inst.instruction = 0x3b60600;
13768 else
13769 inst.instruction = 0x3b60700;
13770
13771 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13772 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13773 inst.instruction |= LOW4 (inst.operands[1].reg);
13774 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13775 neon_dp_fixup (&inst);
13776 break;
13777
13778 default:
13779 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13780 do_vfp_nsyn_cvt (rs, flavour);
13781 }
13782 }
13783
13784 static void
13785 do_neon_cvtr (void)
13786 {
13787 do_neon_cvt_1 (FALSE);
13788 }
13789
13790 static void
13791 do_neon_cvt (void)
13792 {
13793 do_neon_cvt_1 (TRUE);
13794 }
13795
13796 static void
13797 do_neon_cvtb (void)
13798 {
13799 inst.instruction = 0xeb20a40;
13800
13801 /* The sizes are attached to the mnemonic. */
13802 if (inst.vectype.el[0].type != NT_invtype
13803 && inst.vectype.el[0].size == 16)
13804 inst.instruction |= 0x00010000;
13805
13806 /* Programmer's syntax: the sizes are attached to the operands. */
13807 else if (inst.operands[0].vectype.type != NT_invtype
13808 && inst.operands[0].vectype.size == 16)
13809 inst.instruction |= 0x00010000;
13810
13811 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13812 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13813 do_vfp_cond_or_thumb ();
13814 }
13815
13816
13817 static void
13818 do_neon_cvtt (void)
13819 {
13820 do_neon_cvtb ();
13821 inst.instruction |= 0x80;
13822 }
13823
13824 static void
13825 neon_move_immediate (void)
13826 {
13827 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13828 struct neon_type_el et = neon_check_type (2, rs,
13829 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13830 unsigned immlo, immhi = 0, immbits;
13831 int op, cmode, float_p;
13832
13833 constraint (et.type == NT_invtype,
13834 _("operand size must be specified for immediate VMOV"));
13835
13836 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13837 op = (inst.instruction & (1 << 5)) != 0;
13838
13839 immlo = inst.operands[1].imm;
13840 if (inst.operands[1].regisimm)
13841 immhi = inst.operands[1].reg;
13842
13843 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13844 _("immediate has bits set outside the operand size"));
13845
13846 float_p = inst.operands[1].immisfloat;
13847
13848 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
13849 et.size, et.type)) == FAIL)
13850 {
13851 /* Invert relevant bits only. */
13852 neon_invert_size (&immlo, &immhi, et.size);
13853 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13854 with one or the other; those cases are caught by
13855 neon_cmode_for_move_imm. */
13856 op = !op;
13857 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13858 &op, et.size, et.type)) == FAIL)
13859 {
13860 first_error (_("immediate out of range"));
13861 return;
13862 }
13863 }
13864
13865 inst.instruction &= ~(1 << 5);
13866 inst.instruction |= op << 5;
13867
13868 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13869 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13870 inst.instruction |= neon_quad (rs) << 6;
13871 inst.instruction |= cmode << 8;
13872
13873 neon_write_immbits (immbits);
13874 }
13875
13876 static void
13877 do_neon_mvn (void)
13878 {
13879 if (inst.operands[1].isreg)
13880 {
13881 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13882
13883 NEON_ENCODE (INTEGER, inst);
13884 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13885 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13886 inst.instruction |= LOW4 (inst.operands[1].reg);
13887 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13888 inst.instruction |= neon_quad (rs) << 6;
13889 }
13890 else
13891 {
13892 NEON_ENCODE (IMMED, inst);
13893 neon_move_immediate ();
13894 }
13895
13896 neon_dp_fixup (&inst);
13897 }
13898
13899 /* Encode instructions of form:
13900
13901 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13902 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
13903
13904 static void
13905 neon_mixed_length (struct neon_type_el et, unsigned size)
13906 {
13907 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13908 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13909 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13910 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13911 inst.instruction |= LOW4 (inst.operands[2].reg);
13912 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13913 inst.instruction |= (et.type == NT_unsigned) << 24;
13914 inst.instruction |= neon_logbits (size) << 20;
13915
13916 neon_dp_fixup (&inst);
13917 }
13918
13919 static void
13920 do_neon_dyadic_long (void)
13921 {
13922 /* FIXME: Type checking for lengthening op. */
13923 struct neon_type_el et = neon_check_type (3, NS_QDD,
13924 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13925 neon_mixed_length (et, et.size);
13926 }
13927
13928 static void
13929 do_neon_abal (void)
13930 {
13931 struct neon_type_el et = neon_check_type (3, NS_QDD,
13932 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13933 neon_mixed_length (et, et.size);
13934 }
13935
13936 static void
13937 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13938 {
13939 if (inst.operands[2].isscalar)
13940 {
13941 struct neon_type_el et = neon_check_type (3, NS_QDS,
13942 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
13943 NEON_ENCODE (SCALAR, inst);
13944 neon_mul_mac (et, et.type == NT_unsigned);
13945 }
13946 else
13947 {
13948 struct neon_type_el et = neon_check_type (3, NS_QDD,
13949 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13950 NEON_ENCODE (INTEGER, inst);
13951 neon_mixed_length (et, et.size);
13952 }
13953 }
13954
13955 static void
13956 do_neon_mac_maybe_scalar_long (void)
13957 {
13958 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13959 }
13960
13961 static void
13962 do_neon_dyadic_wide (void)
13963 {
13964 struct neon_type_el et = neon_check_type (3, NS_QQD,
13965 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13966 neon_mixed_length (et, et.size);
13967 }
13968
13969 static void
13970 do_neon_dyadic_narrow (void)
13971 {
13972 struct neon_type_el et = neon_check_type (3, NS_QDD,
13973 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
13974 /* Operand sign is unimportant, and the U bit is part of the opcode,
13975 so force the operand type to integer. */
13976 et.type = NT_integer;
13977 neon_mixed_length (et, et.size / 2);
13978 }
13979
13980 static void
13981 do_neon_mul_sat_scalar_long (void)
13982 {
13983 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13984 }
13985
13986 static void
13987 do_neon_vmull (void)
13988 {
13989 if (inst.operands[2].isscalar)
13990 do_neon_mac_maybe_scalar_long ();
13991 else
13992 {
13993 struct neon_type_el et = neon_check_type (3, NS_QDD,
13994 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13995 if (et.type == NT_poly)
13996 NEON_ENCODE (POLY, inst);
13997 else
13998 NEON_ENCODE (INTEGER, inst);
13999 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14000 zero. Should be OK as-is. */
14001 neon_mixed_length (et, et.size);
14002 }
14003 }
14004
14005 static void
14006 do_neon_ext (void)
14007 {
14008 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14009 struct neon_type_el et = neon_check_type (3, rs,
14010 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14011 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14012
14013 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14014 _("shift out of range"));
14015 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14016 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14017 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14018 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14019 inst.instruction |= LOW4 (inst.operands[2].reg);
14020 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14021 inst.instruction |= neon_quad (rs) << 6;
14022 inst.instruction |= imm << 8;
14023
14024 neon_dp_fixup (&inst);
14025 }
14026
14027 static void
14028 do_neon_rev (void)
14029 {
14030 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14031 struct neon_type_el et = neon_check_type (2, rs,
14032 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14033 unsigned op = (inst.instruction >> 7) & 3;
14034 /* N (width of reversed regions) is encoded as part of the bitmask. We
14035 extract it here to check the elements to be reversed are smaller.
14036 Otherwise we'd get a reserved instruction. */
14037 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14038 gas_assert (elsize != 0);
14039 constraint (et.size >= elsize,
14040 _("elements must be smaller than reversal region"));
14041 neon_two_same (neon_quad (rs), 1, et.size);
14042 }
14043
14044 static void
14045 do_neon_dup (void)
14046 {
14047 if (inst.operands[1].isscalar)
14048 {
14049 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14050 struct neon_type_el et = neon_check_type (2, rs,
14051 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14052 unsigned sizebits = et.size >> 3;
14053 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14054 int logsize = neon_logbits (et.size);
14055 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14056
14057 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14058 return;
14059
14060 NEON_ENCODE (SCALAR, inst);
14061 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14062 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14063 inst.instruction |= LOW4 (dm);
14064 inst.instruction |= HI1 (dm) << 5;
14065 inst.instruction |= neon_quad (rs) << 6;
14066 inst.instruction |= x << 17;
14067 inst.instruction |= sizebits << 16;
14068
14069 neon_dp_fixup (&inst);
14070 }
14071 else
14072 {
14073 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14074 struct neon_type_el et = neon_check_type (2, rs,
14075 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14076 /* Duplicate ARM register to lanes of vector. */
14077 NEON_ENCODE (ARMREG, inst);
14078 switch (et.size)
14079 {
14080 case 8: inst.instruction |= 0x400000; break;
14081 case 16: inst.instruction |= 0x000020; break;
14082 case 32: inst.instruction |= 0x000000; break;
14083 default: break;
14084 }
14085 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14086 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14087 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14088 inst.instruction |= neon_quad (rs) << 21;
14089 /* The encoding for this instruction is identical for the ARM and Thumb
14090 variants, except for the condition field. */
14091 do_vfp_cond_or_thumb ();
14092 }
14093 }
14094
14095 /* VMOV has particularly many variations. It can be one of:
14096 0. VMOV<c><q> <Qd>, <Qm>
14097 1. VMOV<c><q> <Dd>, <Dm>
14098 (Register operations, which are VORR with Rm = Rn.)
14099 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14100 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14101 (Immediate loads.)
14102 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14103 (ARM register to scalar.)
14104 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14105 (Two ARM registers to vector.)
14106 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14107 (Scalar to ARM register.)
14108 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14109 (Vector to two ARM registers.)
14110 8. VMOV.F32 <Sd>, <Sm>
14111 9. VMOV.F64 <Dd>, <Dm>
14112 (VFP register moves.)
14113 10. VMOV.F32 <Sd>, #imm
14114 11. VMOV.F64 <Dd>, #imm
14115 (VFP float immediate load.)
14116 12. VMOV <Rd>, <Sm>
14117 (VFP single to ARM reg.)
14118 13. VMOV <Sd>, <Rm>
14119 (ARM reg to VFP single.)
14120 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14121 (Two ARM regs to two VFP singles.)
14122 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14123 (Two VFP singles to two ARM regs.)
14124
14125 These cases can be disambiguated using neon_select_shape, except cases 1/9
14126 and 3/11 which depend on the operand type too.
14127
14128 All the encoded bits are hardcoded by this function.
14129
14130 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14131 Cases 5, 7 may be used with VFPv2 and above.
14132
14133 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14134 can specify a type where it doesn't make sense to, and is ignored). */
14135
14136 static void
14137 do_neon_mov (void)
14138 {
14139 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14140 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14141 NS_NULL);
14142 struct neon_type_el et;
14143 const char *ldconst = 0;
14144
14145 switch (rs)
14146 {
14147 case NS_DD: /* case 1/9. */
14148 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14149 /* It is not an error here if no type is given. */
14150 inst.error = NULL;
14151 if (et.type == NT_float && et.size == 64)
14152 {
14153 do_vfp_nsyn_opcode ("fcpyd");
14154 break;
14155 }
14156 /* fall through. */
14157
14158 case NS_QQ: /* case 0/1. */
14159 {
14160 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14161 return;
14162 /* The architecture manual I have doesn't explicitly state which
14163 value the U bit should have for register->register moves, but
14164 the equivalent VORR instruction has U = 0, so do that. */
14165 inst.instruction = 0x0200110;
14166 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14167 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14168 inst.instruction |= LOW4 (inst.operands[1].reg);
14169 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14170 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14171 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14172 inst.instruction |= neon_quad (rs) << 6;
14173
14174 neon_dp_fixup (&inst);
14175 }
14176 break;
14177
14178 case NS_DI: /* case 3/11. */
14179 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14180 inst.error = NULL;
14181 if (et.type == NT_float && et.size == 64)
14182 {
14183 /* case 11 (fconstd). */
14184 ldconst = "fconstd";
14185 goto encode_fconstd;
14186 }
14187 /* fall through. */
14188
14189 case NS_QI: /* case 2/3. */
14190 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14191 return;
14192 inst.instruction = 0x0800010;
14193 neon_move_immediate ();
14194 neon_dp_fixup (&inst);
14195 break;
14196
14197 case NS_SR: /* case 4. */
14198 {
14199 unsigned bcdebits = 0;
14200 int logsize;
14201 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14202 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14203
14204 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14205 logsize = neon_logbits (et.size);
14206
14207 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14208 _(BAD_FPU));
14209 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14210 && et.size != 32, _(BAD_FPU));
14211 constraint (et.type == NT_invtype, _("bad type for scalar"));
14212 constraint (x >= 64 / et.size, _("scalar index out of range"));
14213
14214 switch (et.size)
14215 {
14216 case 8: bcdebits = 0x8; break;
14217 case 16: bcdebits = 0x1; break;
14218 case 32: bcdebits = 0x0; break;
14219 default: ;
14220 }
14221
14222 bcdebits |= x << logsize;
14223
14224 inst.instruction = 0xe000b10;
14225 do_vfp_cond_or_thumb ();
14226 inst.instruction |= LOW4 (dn) << 16;
14227 inst.instruction |= HI1 (dn) << 7;
14228 inst.instruction |= inst.operands[1].reg << 12;
14229 inst.instruction |= (bcdebits & 3) << 5;
14230 inst.instruction |= (bcdebits >> 2) << 21;
14231 }
14232 break;
14233
14234 case NS_DRR: /* case 5 (fmdrr). */
14235 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14236 _(BAD_FPU));
14237
14238 inst.instruction = 0xc400b10;
14239 do_vfp_cond_or_thumb ();
14240 inst.instruction |= LOW4 (inst.operands[0].reg);
14241 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14242 inst.instruction |= inst.operands[1].reg << 12;
14243 inst.instruction |= inst.operands[2].reg << 16;
14244 break;
14245
14246 case NS_RS: /* case 6. */
14247 {
14248 unsigned logsize;
14249 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14250 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14251 unsigned abcdebits = 0;
14252
14253 et = neon_check_type (2, NS_NULL,
14254 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14255 logsize = neon_logbits (et.size);
14256
14257 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14258 _(BAD_FPU));
14259 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14260 && et.size != 32, _(BAD_FPU));
14261 constraint (et.type == NT_invtype, _("bad type for scalar"));
14262 constraint (x >= 64 / et.size, _("scalar index out of range"));
14263
14264 switch (et.size)
14265 {
14266 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14267 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14268 case 32: abcdebits = 0x00; break;
14269 default: ;
14270 }
14271
14272 abcdebits |= x << logsize;
14273 inst.instruction = 0xe100b10;
14274 do_vfp_cond_or_thumb ();
14275 inst.instruction |= LOW4 (dn) << 16;
14276 inst.instruction |= HI1 (dn) << 7;
14277 inst.instruction |= inst.operands[0].reg << 12;
14278 inst.instruction |= (abcdebits & 3) << 5;
14279 inst.instruction |= (abcdebits >> 2) << 21;
14280 }
14281 break;
14282
14283 case NS_RRD: /* case 7 (fmrrd). */
14284 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14285 _(BAD_FPU));
14286
14287 inst.instruction = 0xc500b10;
14288 do_vfp_cond_or_thumb ();
14289 inst.instruction |= inst.operands[0].reg << 12;
14290 inst.instruction |= inst.operands[1].reg << 16;
14291 inst.instruction |= LOW4 (inst.operands[2].reg);
14292 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14293 break;
14294
14295 case NS_FF: /* case 8 (fcpys). */
14296 do_vfp_nsyn_opcode ("fcpys");
14297 break;
14298
14299 case NS_FI: /* case 10 (fconsts). */
14300 ldconst = "fconsts";
14301 encode_fconstd:
14302 if (is_quarter_float (inst.operands[1].imm))
14303 {
14304 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14305 do_vfp_nsyn_opcode (ldconst);
14306 }
14307 else
14308 first_error (_("immediate out of range"));
14309 break;
14310
14311 case NS_RF: /* case 12 (fmrs). */
14312 do_vfp_nsyn_opcode ("fmrs");
14313 break;
14314
14315 case NS_FR: /* case 13 (fmsr). */
14316 do_vfp_nsyn_opcode ("fmsr");
14317 break;
14318
14319 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14320 (one of which is a list), but we have parsed four. Do some fiddling to
14321 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14322 expect. */
14323 case NS_RRFF: /* case 14 (fmrrs). */
14324 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14325 _("VFP registers must be adjacent"));
14326 inst.operands[2].imm = 2;
14327 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14328 do_vfp_nsyn_opcode ("fmrrs");
14329 break;
14330
14331 case NS_FFRR: /* case 15 (fmsrr). */
14332 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14333 _("VFP registers must be adjacent"));
14334 inst.operands[1] = inst.operands[2];
14335 inst.operands[2] = inst.operands[3];
14336 inst.operands[0].imm = 2;
14337 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14338 do_vfp_nsyn_opcode ("fmsrr");
14339 break;
14340
14341 default:
14342 abort ();
14343 }
14344 }
14345
14346 static void
14347 do_neon_rshift_round_imm (void)
14348 {
14349 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14350 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14351 int imm = inst.operands[2].imm;
14352
14353 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14354 if (imm == 0)
14355 {
14356 inst.operands[2].present = 0;
14357 do_neon_mov ();
14358 return;
14359 }
14360
14361 constraint (imm < 1 || (unsigned)imm > et.size,
14362 _("immediate out of range for shift"));
14363 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14364 et.size - imm);
14365 }
14366
14367 static void
14368 do_neon_movl (void)
14369 {
14370 struct neon_type_el et = neon_check_type (2, NS_QD,
14371 N_EQK | N_DBL, N_SU_32 | N_KEY);
14372 unsigned sizebits = et.size >> 3;
14373 inst.instruction |= sizebits << 19;
14374 neon_two_same (0, et.type == NT_unsigned, -1);
14375 }
14376
14377 static void
14378 do_neon_trn (void)
14379 {
14380 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14381 struct neon_type_el et = neon_check_type (2, rs,
14382 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14383 NEON_ENCODE (INTEGER, inst);
14384 neon_two_same (neon_quad (rs), 1, et.size);
14385 }
14386
14387 static void
14388 do_neon_zip_uzp (void)
14389 {
14390 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14391 struct neon_type_el et = neon_check_type (2, rs,
14392 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14393 if (rs == NS_DD && et.size == 32)
14394 {
14395 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14396 inst.instruction = N_MNEM_vtrn;
14397 do_neon_trn ();
14398 return;
14399 }
14400 neon_two_same (neon_quad (rs), 1, et.size);
14401 }
14402
14403 static void
14404 do_neon_sat_abs_neg (void)
14405 {
14406 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14407 struct neon_type_el et = neon_check_type (2, rs,
14408 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14409 neon_two_same (neon_quad (rs), 1, et.size);
14410 }
14411
14412 static void
14413 do_neon_pair_long (void)
14414 {
14415 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14416 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14417 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14418 inst.instruction |= (et.type == NT_unsigned) << 7;
14419 neon_two_same (neon_quad (rs), 1, et.size);
14420 }
14421
14422 static void
14423 do_neon_recip_est (void)
14424 {
14425 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14426 struct neon_type_el et = neon_check_type (2, rs,
14427 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14428 inst.instruction |= (et.type == NT_float) << 8;
14429 neon_two_same (neon_quad (rs), 1, et.size);
14430 }
14431
14432 static void
14433 do_neon_cls (void)
14434 {
14435 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14436 struct neon_type_el et = neon_check_type (2, rs,
14437 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14438 neon_two_same (neon_quad (rs), 1, et.size);
14439 }
14440
14441 static void
14442 do_neon_clz (void)
14443 {
14444 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14445 struct neon_type_el et = neon_check_type (2, rs,
14446 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14447 neon_two_same (neon_quad (rs), 1, et.size);
14448 }
14449
14450 static void
14451 do_neon_cnt (void)
14452 {
14453 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14454 struct neon_type_el et = neon_check_type (2, rs,
14455 N_EQK | N_INT, N_8 | N_KEY);
14456 neon_two_same (neon_quad (rs), 1, et.size);
14457 }
14458
14459 static void
14460 do_neon_swp (void)
14461 {
14462 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14463 neon_two_same (neon_quad (rs), 1, -1);
14464 }
14465
14466 static void
14467 do_neon_tbl_tbx (void)
14468 {
14469 unsigned listlenbits;
14470 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14471
14472 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14473 {
14474 first_error (_("bad list length for table lookup"));
14475 return;
14476 }
14477
14478 listlenbits = inst.operands[1].imm - 1;
14479 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14480 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14481 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14482 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14483 inst.instruction |= LOW4 (inst.operands[2].reg);
14484 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14485 inst.instruction |= listlenbits << 8;
14486
14487 neon_dp_fixup (&inst);
14488 }
14489
14490 static void
14491 do_neon_ldm_stm (void)
14492 {
14493 /* P, U and L bits are part of bitmask. */
14494 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14495 unsigned offsetbits = inst.operands[1].imm * 2;
14496
14497 if (inst.operands[1].issingle)
14498 {
14499 do_vfp_nsyn_ldm_stm (is_dbmode);
14500 return;
14501 }
14502
14503 constraint (is_dbmode && !inst.operands[0].writeback,
14504 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14505
14506 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14507 _("register list must contain at least 1 and at most 16 "
14508 "registers"));
14509
14510 inst.instruction |= inst.operands[0].reg << 16;
14511 inst.instruction |= inst.operands[0].writeback << 21;
14512 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14513 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14514
14515 inst.instruction |= offsetbits;
14516
14517 do_vfp_cond_or_thumb ();
14518 }
14519
14520 static void
14521 do_neon_ldr_str (void)
14522 {
14523 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14524
14525 if (inst.operands[0].issingle)
14526 {
14527 if (is_ldr)
14528 do_vfp_nsyn_opcode ("flds");
14529 else
14530 do_vfp_nsyn_opcode ("fsts");
14531 }
14532 else
14533 {
14534 if (is_ldr)
14535 do_vfp_nsyn_opcode ("fldd");
14536 else
14537 do_vfp_nsyn_opcode ("fstd");
14538 }
14539 }
14540
14541 /* "interleave" version also handles non-interleaving register VLD1/VST1
14542 instructions. */
14543
14544 static void
14545 do_neon_ld_st_interleave (void)
14546 {
14547 struct neon_type_el et = neon_check_type (1, NS_NULL,
14548 N_8 | N_16 | N_32 | N_64);
14549 unsigned alignbits = 0;
14550 unsigned idx;
14551 /* The bits in this table go:
14552 0: register stride of one (0) or two (1)
14553 1,2: register list length, minus one (1, 2, 3, 4).
14554 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14555 We use -1 for invalid entries. */
14556 const int typetable[] =
14557 {
14558 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14559 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14560 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14561 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14562 };
14563 int typebits;
14564
14565 if (et.type == NT_invtype)
14566 return;
14567
14568 if (inst.operands[1].immisalign)
14569 switch (inst.operands[1].imm >> 8)
14570 {
14571 case 64: alignbits = 1; break;
14572 case 128:
14573 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14574 goto bad_alignment;
14575 alignbits = 2;
14576 break;
14577 case 256:
14578 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14579 goto bad_alignment;
14580 alignbits = 3;
14581 break;
14582 default:
14583 bad_alignment:
14584 first_error (_("bad alignment"));
14585 return;
14586 }
14587
14588 inst.instruction |= alignbits << 4;
14589 inst.instruction |= neon_logbits (et.size) << 6;
14590
14591 /* Bits [4:6] of the immediate in a list specifier encode register stride
14592 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14593 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14594 up the right value for "type" in a table based on this value and the given
14595 list style, then stick it back. */
14596 idx = ((inst.operands[0].imm >> 4) & 7)
14597 | (((inst.instruction >> 8) & 3) << 3);
14598
14599 typebits = typetable[idx];
14600
14601 constraint (typebits == -1, _("bad list type for instruction"));
14602
14603 inst.instruction &= ~0xf00;
14604 inst.instruction |= typebits << 8;
14605 }
14606
14607 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14608 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14609 otherwise. The variable arguments are a list of pairs of legal (size, align)
14610 values, terminated with -1. */
14611
14612 static int
14613 neon_alignment_bit (int size, int align, int *do_align, ...)
14614 {
14615 va_list ap;
14616 int result = FAIL, thissize, thisalign;
14617
14618 if (!inst.operands[1].immisalign)
14619 {
14620 *do_align = 0;
14621 return SUCCESS;
14622 }
14623
14624 va_start (ap, do_align);
14625
14626 do
14627 {
14628 thissize = va_arg (ap, int);
14629 if (thissize == -1)
14630 break;
14631 thisalign = va_arg (ap, int);
14632
14633 if (size == thissize && align == thisalign)
14634 result = SUCCESS;
14635 }
14636 while (result != SUCCESS);
14637
14638 va_end (ap);
14639
14640 if (result == SUCCESS)
14641 *do_align = 1;
14642 else
14643 first_error (_("unsupported alignment for instruction"));
14644
14645 return result;
14646 }
14647
14648 static void
14649 do_neon_ld_st_lane (void)
14650 {
14651 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14652 int align_good, do_align = 0;
14653 int logsize = neon_logbits (et.size);
14654 int align = inst.operands[1].imm >> 8;
14655 int n = (inst.instruction >> 8) & 3;
14656 int max_el = 64 / et.size;
14657
14658 if (et.type == NT_invtype)
14659 return;
14660
14661 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14662 _("bad list length"));
14663 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14664 _("scalar index out of range"));
14665 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14666 && et.size == 8,
14667 _("stride of 2 unavailable when element size is 8"));
14668
14669 switch (n)
14670 {
14671 case 0: /* VLD1 / VST1. */
14672 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14673 32, 32, -1);
14674 if (align_good == FAIL)
14675 return;
14676 if (do_align)
14677 {
14678 unsigned alignbits = 0;
14679 switch (et.size)
14680 {
14681 case 16: alignbits = 0x1; break;
14682 case 32: alignbits = 0x3; break;
14683 default: ;
14684 }
14685 inst.instruction |= alignbits << 4;
14686 }
14687 break;
14688
14689 case 1: /* VLD2 / VST2. */
14690 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14691 32, 64, -1);
14692 if (align_good == FAIL)
14693 return;
14694 if (do_align)
14695 inst.instruction |= 1 << 4;
14696 break;
14697
14698 case 2: /* VLD3 / VST3. */
14699 constraint (inst.operands[1].immisalign,
14700 _("can't use alignment with this instruction"));
14701 break;
14702
14703 case 3: /* VLD4 / VST4. */
14704 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14705 16, 64, 32, 64, 32, 128, -1);
14706 if (align_good == FAIL)
14707 return;
14708 if (do_align)
14709 {
14710 unsigned alignbits = 0;
14711 switch (et.size)
14712 {
14713 case 8: alignbits = 0x1; break;
14714 case 16: alignbits = 0x1; break;
14715 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14716 default: ;
14717 }
14718 inst.instruction |= alignbits << 4;
14719 }
14720 break;
14721
14722 default: ;
14723 }
14724
14725 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14726 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14727 inst.instruction |= 1 << (4 + logsize);
14728
14729 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14730 inst.instruction |= logsize << 10;
14731 }
14732
14733 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14734
14735 static void
14736 do_neon_ld_dup (void)
14737 {
14738 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14739 int align_good, do_align = 0;
14740
14741 if (et.type == NT_invtype)
14742 return;
14743
14744 switch ((inst.instruction >> 8) & 3)
14745 {
14746 case 0: /* VLD1. */
14747 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14748 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14749 &do_align, 16, 16, 32, 32, -1);
14750 if (align_good == FAIL)
14751 return;
14752 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14753 {
14754 case 1: break;
14755 case 2: inst.instruction |= 1 << 5; break;
14756 default: first_error (_("bad list length")); return;
14757 }
14758 inst.instruction |= neon_logbits (et.size) << 6;
14759 break;
14760
14761 case 1: /* VLD2. */
14762 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14763 &do_align, 8, 16, 16, 32, 32, 64, -1);
14764 if (align_good == FAIL)
14765 return;
14766 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14767 _("bad list length"));
14768 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14769 inst.instruction |= 1 << 5;
14770 inst.instruction |= neon_logbits (et.size) << 6;
14771 break;
14772
14773 case 2: /* VLD3. */
14774 constraint (inst.operands[1].immisalign,
14775 _("can't use alignment with this instruction"));
14776 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14777 _("bad list length"));
14778 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14779 inst.instruction |= 1 << 5;
14780 inst.instruction |= neon_logbits (et.size) << 6;
14781 break;
14782
14783 case 3: /* VLD4. */
14784 {
14785 int align = inst.operands[1].imm >> 8;
14786 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14787 16, 64, 32, 64, 32, 128, -1);
14788 if (align_good == FAIL)
14789 return;
14790 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14791 _("bad list length"));
14792 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14793 inst.instruction |= 1 << 5;
14794 if (et.size == 32 && align == 128)
14795 inst.instruction |= 0x3 << 6;
14796 else
14797 inst.instruction |= neon_logbits (et.size) << 6;
14798 }
14799 break;
14800
14801 default: ;
14802 }
14803
14804 inst.instruction |= do_align << 4;
14805 }
14806
14807 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14808 apart from bits [11:4]. */
14809
14810 static void
14811 do_neon_ldx_stx (void)
14812 {
14813 if (inst.operands[1].isreg)
14814 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
14815
14816 switch (NEON_LANE (inst.operands[0].imm))
14817 {
14818 case NEON_INTERLEAVE_LANES:
14819 NEON_ENCODE (INTERLV, inst);
14820 do_neon_ld_st_interleave ();
14821 break;
14822
14823 case NEON_ALL_LANES:
14824 NEON_ENCODE (DUP, inst);
14825 do_neon_ld_dup ();
14826 break;
14827
14828 default:
14829 NEON_ENCODE (LANE, inst);
14830 do_neon_ld_st_lane ();
14831 }
14832
14833 /* L bit comes from bit mask. */
14834 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14835 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14836 inst.instruction |= inst.operands[1].reg << 16;
14837
14838 if (inst.operands[1].postind)
14839 {
14840 int postreg = inst.operands[1].imm & 0xf;
14841 constraint (!inst.operands[1].immisreg,
14842 _("post-index must be a register"));
14843 constraint (postreg == 0xd || postreg == 0xf,
14844 _("bad register for post-index"));
14845 inst.instruction |= postreg;
14846 }
14847 else if (inst.operands[1].writeback)
14848 {
14849 inst.instruction |= 0xd;
14850 }
14851 else
14852 inst.instruction |= 0xf;
14853
14854 if (thumb_mode)
14855 inst.instruction |= 0xf9000000;
14856 else
14857 inst.instruction |= 0xf4000000;
14858 }
14859 \f
14860 /* Overall per-instruction processing. */
14861
14862 /* We need to be able to fix up arbitrary expressions in some statements.
14863 This is so that we can handle symbols that are an arbitrary distance from
14864 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14865 which returns part of an address in a form which will be valid for
14866 a data instruction. We do this by pushing the expression into a symbol
14867 in the expr_section, and creating a fix for that. */
14868
14869 static void
14870 fix_new_arm (fragS * frag,
14871 int where,
14872 short int size,
14873 expressionS * exp,
14874 int pc_rel,
14875 int reloc)
14876 {
14877 fixS * new_fix;
14878
14879 switch (exp->X_op)
14880 {
14881 case O_constant:
14882 case O_symbol:
14883 case O_add:
14884 case O_subtract:
14885 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
14886 (enum bfd_reloc_code_real) reloc);
14887 break;
14888
14889 default:
14890 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
14891 pc_rel, (enum bfd_reloc_code_real) reloc);
14892 break;
14893 }
14894
14895 /* Mark whether the fix is to a THUMB instruction, or an ARM
14896 instruction. */
14897 new_fix->tc_fix_data = thumb_mode;
14898 }
14899
14900 /* Create a frg for an instruction requiring relaxation. */
14901 static void
14902 output_relax_insn (void)
14903 {
14904 char * to;
14905 symbolS *sym;
14906 int offset;
14907
14908 /* The size of the instruction is unknown, so tie the debug info to the
14909 start of the instruction. */
14910 dwarf2_emit_insn (0);
14911
14912 switch (inst.reloc.exp.X_op)
14913 {
14914 case O_symbol:
14915 sym = inst.reloc.exp.X_add_symbol;
14916 offset = inst.reloc.exp.X_add_number;
14917 break;
14918 case O_constant:
14919 sym = NULL;
14920 offset = inst.reloc.exp.X_add_number;
14921 break;
14922 default:
14923 sym = make_expr_symbol (&inst.reloc.exp);
14924 offset = 0;
14925 break;
14926 }
14927 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14928 inst.relax, sym, offset, NULL/*offset, opcode*/);
14929 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
14930 }
14931
14932 /* Write a 32-bit thumb instruction to buf. */
14933 static void
14934 put_thumb32_insn (char * buf, unsigned long insn)
14935 {
14936 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14937 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14938 }
14939
14940 static void
14941 output_inst (const char * str)
14942 {
14943 char * to = NULL;
14944
14945 if (inst.error)
14946 {
14947 as_bad ("%s -- `%s'", inst.error, str);
14948 return;
14949 }
14950 if (inst.relax)
14951 {
14952 output_relax_insn ();
14953 return;
14954 }
14955 if (inst.size == 0)
14956 return;
14957
14958 to = frag_more (inst.size);
14959 /* PR 9814: Record the thumb mode into the current frag so that we know
14960 what type of NOP padding to use, if necessary. We override any previous
14961 setting so that if the mode has changed then the NOPS that we use will
14962 match the encoding of the last instruction in the frag. */
14963 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
14964
14965 if (thumb_mode && (inst.size > THUMB_SIZE))
14966 {
14967 gas_assert (inst.size == (2 * THUMB_SIZE));
14968 put_thumb32_insn (to, inst.instruction);
14969 }
14970 else if (inst.size > INSN_SIZE)
14971 {
14972 gas_assert (inst.size == (2 * INSN_SIZE));
14973 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14974 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
14975 }
14976 else
14977 md_number_to_chars (to, inst.instruction, inst.size);
14978
14979 if (inst.reloc.type != BFD_RELOC_UNUSED)
14980 fix_new_arm (frag_now, to - frag_now->fr_literal,
14981 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14982 inst.reloc.type);
14983
14984 dwarf2_emit_insn (inst.size);
14985 }
14986
14987 static char *
14988 output_it_inst (int cond, int mask, char * to)
14989 {
14990 unsigned long instruction = 0xbf00;
14991
14992 mask &= 0xf;
14993 instruction |= mask;
14994 instruction |= cond << 4;
14995
14996 if (to == NULL)
14997 {
14998 to = frag_more (2);
14999 #ifdef OBJ_ELF
15000 dwarf2_emit_insn (2);
15001 #endif
15002 }
15003
15004 md_number_to_chars (to, instruction, 2);
15005
15006 return to;
15007 }
15008
15009 /* Tag values used in struct asm_opcode's tag field. */
15010 enum opcode_tag
15011 {
15012 OT_unconditional, /* Instruction cannot be conditionalized.
15013 The ARM condition field is still 0xE. */
15014 OT_unconditionalF, /* Instruction cannot be conditionalized
15015 and carries 0xF in its ARM condition field. */
15016 OT_csuffix, /* Instruction takes a conditional suffix. */
15017 OT_csuffixF, /* Some forms of the instruction take a conditional
15018 suffix, others place 0xF where the condition field
15019 would be. */
15020 OT_cinfix3, /* Instruction takes a conditional infix,
15021 beginning at character index 3. (In
15022 unified mode, it becomes a suffix.) */
15023 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15024 tsts, cmps, cmns, and teqs. */
15025 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15026 character index 3, even in unified mode. Used for
15027 legacy instructions where suffix and infix forms
15028 may be ambiguous. */
15029 OT_csuf_or_in3, /* Instruction takes either a conditional
15030 suffix or an infix at character index 3. */
15031 OT_odd_infix_unc, /* This is the unconditional variant of an
15032 instruction that takes a conditional infix
15033 at an unusual position. In unified mode,
15034 this variant will accept a suffix. */
15035 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15036 are the conditional variants of instructions that
15037 take conditional infixes in unusual positions.
15038 The infix appears at character index
15039 (tag - OT_odd_infix_0). These are not accepted
15040 in unified mode. */
15041 };
15042
15043 /* Subroutine of md_assemble, responsible for looking up the primary
15044 opcode from the mnemonic the user wrote. STR points to the
15045 beginning of the mnemonic.
15046
15047 This is not simply a hash table lookup, because of conditional
15048 variants. Most instructions have conditional variants, which are
15049 expressed with a _conditional affix_ to the mnemonic. If we were
15050 to encode each conditional variant as a literal string in the opcode
15051 table, it would have approximately 20,000 entries.
15052
15053 Most mnemonics take this affix as a suffix, and in unified syntax,
15054 'most' is upgraded to 'all'. However, in the divided syntax, some
15055 instructions take the affix as an infix, notably the s-variants of
15056 the arithmetic instructions. Of those instructions, all but six
15057 have the infix appear after the third character of the mnemonic.
15058
15059 Accordingly, the algorithm for looking up primary opcodes given
15060 an identifier is:
15061
15062 1. Look up the identifier in the opcode table.
15063 If we find a match, go to step U.
15064
15065 2. Look up the last two characters of the identifier in the
15066 conditions table. If we find a match, look up the first N-2
15067 characters of the identifier in the opcode table. If we
15068 find a match, go to step CE.
15069
15070 3. Look up the fourth and fifth characters of the identifier in
15071 the conditions table. If we find a match, extract those
15072 characters from the identifier, and look up the remaining
15073 characters in the opcode table. If we find a match, go
15074 to step CM.
15075
15076 4. Fail.
15077
15078 U. Examine the tag field of the opcode structure, in case this is
15079 one of the six instructions with its conditional infix in an
15080 unusual place. If it is, the tag tells us where to find the
15081 infix; look it up in the conditions table and set inst.cond
15082 accordingly. Otherwise, this is an unconditional instruction.
15083 Again set inst.cond accordingly. Return the opcode structure.
15084
15085 CE. Examine the tag field to make sure this is an instruction that
15086 should receive a conditional suffix. If it is not, fail.
15087 Otherwise, set inst.cond from the suffix we already looked up,
15088 and return the opcode structure.
15089
15090 CM. Examine the tag field to make sure this is an instruction that
15091 should receive a conditional infix after the third character.
15092 If it is not, fail. Otherwise, undo the edits to the current
15093 line of input and proceed as for case CE. */
15094
15095 static const struct asm_opcode *
15096 opcode_lookup (char **str)
15097 {
15098 char *end, *base;
15099 char *affix;
15100 const struct asm_opcode *opcode;
15101 const struct asm_cond *cond;
15102 char save[2];
15103
15104 /* Scan up to the end of the mnemonic, which must end in white space,
15105 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15106 for (base = end = *str; *end != '\0'; end++)
15107 if (*end == ' ' || *end == '.')
15108 break;
15109
15110 if (end == base)
15111 return NULL;
15112
15113 /* Handle a possible width suffix and/or Neon type suffix. */
15114 if (end[0] == '.')
15115 {
15116 int offset = 2;
15117
15118 /* The .w and .n suffixes are only valid if the unified syntax is in
15119 use. */
15120 if (unified_syntax && end[1] == 'w')
15121 inst.size_req = 4;
15122 else if (unified_syntax && end[1] == 'n')
15123 inst.size_req = 2;
15124 else
15125 offset = 0;
15126
15127 inst.vectype.elems = 0;
15128
15129 *str = end + offset;
15130
15131 if (end[offset] == '.')
15132 {
15133 /* See if we have a Neon type suffix (possible in either unified or
15134 non-unified ARM syntax mode). */
15135 if (parse_neon_type (&inst.vectype, str) == FAIL)
15136 return NULL;
15137 }
15138 else if (end[offset] != '\0' && end[offset] != ' ')
15139 return NULL;
15140 }
15141 else
15142 *str = end;
15143
15144 /* Look for unaffixed or special-case affixed mnemonic. */
15145 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15146 end - base);
15147 if (opcode)
15148 {
15149 /* step U */
15150 if (opcode->tag < OT_odd_infix_0)
15151 {
15152 inst.cond = COND_ALWAYS;
15153 return opcode;
15154 }
15155
15156 if (warn_on_deprecated && unified_syntax)
15157 as_warn (_("conditional infixes are deprecated in unified syntax"));
15158 affix = base + (opcode->tag - OT_odd_infix_0);
15159 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15160 gas_assert (cond);
15161
15162 inst.cond = cond->value;
15163 return opcode;
15164 }
15165
15166 /* Cannot have a conditional suffix on a mnemonic of less than two
15167 characters. */
15168 if (end - base < 3)
15169 return NULL;
15170
15171 /* Look for suffixed mnemonic. */
15172 affix = end - 2;
15173 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15174 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15175 affix - base);
15176 if (opcode && cond)
15177 {
15178 /* step CE */
15179 switch (opcode->tag)
15180 {
15181 case OT_cinfix3_legacy:
15182 /* Ignore conditional suffixes matched on infix only mnemonics. */
15183 break;
15184
15185 case OT_cinfix3:
15186 case OT_cinfix3_deprecated:
15187 case OT_odd_infix_unc:
15188 if (!unified_syntax)
15189 return 0;
15190 /* else fall through */
15191
15192 case OT_csuffix:
15193 case OT_csuffixF:
15194 case OT_csuf_or_in3:
15195 inst.cond = cond->value;
15196 return opcode;
15197
15198 case OT_unconditional:
15199 case OT_unconditionalF:
15200 if (thumb_mode)
15201 inst.cond = cond->value;
15202 else
15203 {
15204 /* Delayed diagnostic. */
15205 inst.error = BAD_COND;
15206 inst.cond = COND_ALWAYS;
15207 }
15208 return opcode;
15209
15210 default:
15211 return NULL;
15212 }
15213 }
15214
15215 /* Cannot have a usual-position infix on a mnemonic of less than
15216 six characters (five would be a suffix). */
15217 if (end - base < 6)
15218 return NULL;
15219
15220 /* Look for infixed mnemonic in the usual position. */
15221 affix = base + 3;
15222 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15223 if (!cond)
15224 return NULL;
15225
15226 memcpy (save, affix, 2);
15227 memmove (affix, affix + 2, (end - affix) - 2);
15228 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15229 (end - base) - 2);
15230 memmove (affix + 2, affix, (end - affix) - 2);
15231 memcpy (affix, save, 2);
15232
15233 if (opcode
15234 && (opcode->tag == OT_cinfix3
15235 || opcode->tag == OT_cinfix3_deprecated
15236 || opcode->tag == OT_csuf_or_in3
15237 || opcode->tag == OT_cinfix3_legacy))
15238 {
15239 /* Step CM. */
15240 if (warn_on_deprecated && unified_syntax
15241 && (opcode->tag == OT_cinfix3
15242 || opcode->tag == OT_cinfix3_deprecated))
15243 as_warn (_("conditional infixes are deprecated in unified syntax"));
15244
15245 inst.cond = cond->value;
15246 return opcode;
15247 }
15248
15249 return NULL;
15250 }
15251
15252 /* This function generates an initial IT instruction, leaving its block
15253 virtually open for the new instructions. Eventually,
15254 the mask will be updated by now_it_add_mask () each time
15255 a new instruction needs to be included in the IT block.
15256 Finally, the block is closed with close_automatic_it_block ().
15257 The block closure can be requested either from md_assemble (),
15258 a tencode (), or due to a label hook. */
15259
15260 static void
15261 new_automatic_it_block (int cond)
15262 {
15263 now_it.state = AUTOMATIC_IT_BLOCK;
15264 now_it.mask = 0x18;
15265 now_it.cc = cond;
15266 now_it.block_length = 1;
15267 mapping_state (MAP_THUMB);
15268 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15269 }
15270
15271 /* Close an automatic IT block.
15272 See comments in new_automatic_it_block (). */
15273
15274 static void
15275 close_automatic_it_block (void)
15276 {
15277 now_it.mask = 0x10;
15278 now_it.block_length = 0;
15279 }
15280
15281 /* Update the mask of the current automatically-generated IT
15282 instruction. See comments in new_automatic_it_block (). */
15283
15284 static void
15285 now_it_add_mask (int cond)
15286 {
15287 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15288 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15289 | ((bitvalue) << (nbit)))
15290 const int resulting_bit = (cond & 1);
15291
15292 now_it.mask &= 0xf;
15293 now_it.mask = SET_BIT_VALUE (now_it.mask,
15294 resulting_bit,
15295 (5 - now_it.block_length));
15296 now_it.mask = SET_BIT_VALUE (now_it.mask,
15297 1,
15298 ((5 - now_it.block_length) - 1) );
15299 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15300
15301 #undef CLEAR_BIT
15302 #undef SET_BIT_VALUE
15303 }
15304
15305 /* The IT blocks handling machinery is accessed through the these functions:
15306 it_fsm_pre_encode () from md_assemble ()
15307 set_it_insn_type () optional, from the tencode functions
15308 set_it_insn_type_last () ditto
15309 in_it_block () ditto
15310 it_fsm_post_encode () from md_assemble ()
15311 force_automatic_it_block_close () from label habdling functions
15312
15313 Rationale:
15314 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15315 initializing the IT insn type with a generic initial value depending
15316 on the inst.condition.
15317 2) During the tencode function, two things may happen:
15318 a) The tencode function overrides the IT insn type by
15319 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15320 b) The tencode function queries the IT block state by
15321 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15322
15323 Both set_it_insn_type and in_it_block run the internal FSM state
15324 handling function (handle_it_state), because: a) setting the IT insn
15325 type may incur in an invalid state (exiting the function),
15326 and b) querying the state requires the FSM to be updated.
15327 Specifically we want to avoid creating an IT block for conditional
15328 branches, so it_fsm_pre_encode is actually a guess and we can't
15329 determine whether an IT block is required until the tencode () routine
15330 has decided what type of instruction this actually it.
15331 Because of this, if set_it_insn_type and in_it_block have to be used,
15332 set_it_insn_type has to be called first.
15333
15334 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15335 determines the insn IT type depending on the inst.cond code.
15336 When a tencode () routine encodes an instruction that can be
15337 either outside an IT block, or, in the case of being inside, has to be
15338 the last one, set_it_insn_type_last () will determine the proper
15339 IT instruction type based on the inst.cond code. Otherwise,
15340 set_it_insn_type can be called for overriding that logic or
15341 for covering other cases.
15342
15343 Calling handle_it_state () may not transition the IT block state to
15344 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15345 still queried. Instead, if the FSM determines that the state should
15346 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15347 after the tencode () function: that's what it_fsm_post_encode () does.
15348
15349 Since in_it_block () calls the state handling function to get an
15350 updated state, an error may occur (due to invalid insns combination).
15351 In that case, inst.error is set.
15352 Therefore, inst.error has to be checked after the execution of
15353 the tencode () routine.
15354
15355 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15356 any pending state change (if any) that didn't take place in
15357 handle_it_state () as explained above. */
15358
15359 static void
15360 it_fsm_pre_encode (void)
15361 {
15362 if (inst.cond != COND_ALWAYS)
15363 inst.it_insn_type = INSIDE_IT_INSN;
15364 else
15365 inst.it_insn_type = OUTSIDE_IT_INSN;
15366
15367 now_it.state_handled = 0;
15368 }
15369
15370 /* IT state FSM handling function. */
15371
15372 static int
15373 handle_it_state (void)
15374 {
15375 now_it.state_handled = 1;
15376
15377 switch (now_it.state)
15378 {
15379 case OUTSIDE_IT_BLOCK:
15380 switch (inst.it_insn_type)
15381 {
15382 case OUTSIDE_IT_INSN:
15383 break;
15384
15385 case INSIDE_IT_INSN:
15386 case INSIDE_IT_LAST_INSN:
15387 if (thumb_mode == 0)
15388 {
15389 if (unified_syntax
15390 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15391 as_tsktsk (_("Warning: conditional outside an IT block"\
15392 " for Thumb."));
15393 }
15394 else
15395 {
15396 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15397 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15398 {
15399 /* Automatically generate the IT instruction. */
15400 new_automatic_it_block (inst.cond);
15401 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15402 close_automatic_it_block ();
15403 }
15404 else
15405 {
15406 inst.error = BAD_OUT_IT;
15407 return FAIL;
15408 }
15409 }
15410 break;
15411
15412 case IF_INSIDE_IT_LAST_INSN:
15413 case NEUTRAL_IT_INSN:
15414 break;
15415
15416 case IT_INSN:
15417 now_it.state = MANUAL_IT_BLOCK;
15418 now_it.block_length = 0;
15419 break;
15420 }
15421 break;
15422
15423 case AUTOMATIC_IT_BLOCK:
15424 /* Three things may happen now:
15425 a) We should increment current it block size;
15426 b) We should close current it block (closing insn or 4 insns);
15427 c) We should close current it block and start a new one (due
15428 to incompatible conditions or
15429 4 insns-length block reached). */
15430
15431 switch (inst.it_insn_type)
15432 {
15433 case OUTSIDE_IT_INSN:
15434 /* The closure of the block shall happen immediatelly,
15435 so any in_it_block () call reports the block as closed. */
15436 force_automatic_it_block_close ();
15437 break;
15438
15439 case INSIDE_IT_INSN:
15440 case INSIDE_IT_LAST_INSN:
15441 case IF_INSIDE_IT_LAST_INSN:
15442 now_it.block_length++;
15443
15444 if (now_it.block_length > 4
15445 || !now_it_compatible (inst.cond))
15446 {
15447 force_automatic_it_block_close ();
15448 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15449 new_automatic_it_block (inst.cond);
15450 }
15451 else
15452 {
15453 now_it_add_mask (inst.cond);
15454 }
15455
15456 if (now_it.state == AUTOMATIC_IT_BLOCK
15457 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15458 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15459 close_automatic_it_block ();
15460 break;
15461
15462 case NEUTRAL_IT_INSN:
15463 now_it.block_length++;
15464
15465 if (now_it.block_length > 4)
15466 force_automatic_it_block_close ();
15467 else
15468 now_it_add_mask (now_it.cc & 1);
15469 break;
15470
15471 case IT_INSN:
15472 close_automatic_it_block ();
15473 now_it.state = MANUAL_IT_BLOCK;
15474 break;
15475 }
15476 break;
15477
15478 case MANUAL_IT_BLOCK:
15479 {
15480 /* Check conditional suffixes. */
15481 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15482 int is_last;
15483 now_it.mask <<= 1;
15484 now_it.mask &= 0x1f;
15485 is_last = (now_it.mask == 0x10);
15486
15487 switch (inst.it_insn_type)
15488 {
15489 case OUTSIDE_IT_INSN:
15490 inst.error = BAD_NOT_IT;
15491 return FAIL;
15492
15493 case INSIDE_IT_INSN:
15494 if (cond != inst.cond)
15495 {
15496 inst.error = BAD_IT_COND;
15497 return FAIL;
15498 }
15499 break;
15500
15501 case INSIDE_IT_LAST_INSN:
15502 case IF_INSIDE_IT_LAST_INSN:
15503 if (cond != inst.cond)
15504 {
15505 inst.error = BAD_IT_COND;
15506 return FAIL;
15507 }
15508 if (!is_last)
15509 {
15510 inst.error = BAD_BRANCH;
15511 return FAIL;
15512 }
15513 break;
15514
15515 case NEUTRAL_IT_INSN:
15516 /* The BKPT instruction is unconditional even in an IT block. */
15517 break;
15518
15519 case IT_INSN:
15520 inst.error = BAD_IT_IT;
15521 return FAIL;
15522 }
15523 }
15524 break;
15525 }
15526
15527 return SUCCESS;
15528 }
15529
15530 static void
15531 it_fsm_post_encode (void)
15532 {
15533 int is_last;
15534
15535 if (!now_it.state_handled)
15536 handle_it_state ();
15537
15538 is_last = (now_it.mask == 0x10);
15539 if (is_last)
15540 {
15541 now_it.state = OUTSIDE_IT_BLOCK;
15542 now_it.mask = 0;
15543 }
15544 }
15545
15546 static void
15547 force_automatic_it_block_close (void)
15548 {
15549 if (now_it.state == AUTOMATIC_IT_BLOCK)
15550 {
15551 close_automatic_it_block ();
15552 now_it.state = OUTSIDE_IT_BLOCK;
15553 now_it.mask = 0;
15554 }
15555 }
15556
15557 static int
15558 in_it_block (void)
15559 {
15560 if (!now_it.state_handled)
15561 handle_it_state ();
15562
15563 return now_it.state != OUTSIDE_IT_BLOCK;
15564 }
15565
15566 void
15567 md_assemble (char *str)
15568 {
15569 char *p = str;
15570 const struct asm_opcode * opcode;
15571
15572 /* Align the previous label if needed. */
15573 if (last_label_seen != NULL)
15574 {
15575 symbol_set_frag (last_label_seen, frag_now);
15576 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15577 S_SET_SEGMENT (last_label_seen, now_seg);
15578 }
15579
15580 memset (&inst, '\0', sizeof (inst));
15581 inst.reloc.type = BFD_RELOC_UNUSED;
15582
15583 opcode = opcode_lookup (&p);
15584 if (!opcode)
15585 {
15586 /* It wasn't an instruction, but it might be a register alias of
15587 the form alias .req reg, or a Neon .dn/.qn directive. */
15588 if (! create_register_alias (str, p)
15589 && ! create_neon_reg_alias (str, p))
15590 as_bad (_("bad instruction `%s'"), str);
15591
15592 return;
15593 }
15594
15595 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15596 as_warn (_("s suffix on comparison instruction is deprecated"));
15597
15598 /* The value which unconditional instructions should have in place of the
15599 condition field. */
15600 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15601
15602 if (thumb_mode)
15603 {
15604 arm_feature_set variant;
15605
15606 variant = cpu_variant;
15607 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15608 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15609 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15610 /* Check that this instruction is supported for this CPU. */
15611 if (!opcode->tvariant
15612 || (thumb_mode == 1
15613 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15614 {
15615 as_bad (_("selected processor does not support `%s'"), str);
15616 return;
15617 }
15618 if (inst.cond != COND_ALWAYS && !unified_syntax
15619 && opcode->tencode != do_t_branch)
15620 {
15621 as_bad (_("Thumb does not support conditional execution"));
15622 return;
15623 }
15624
15625 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
15626 {
15627 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
15628 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15629 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15630 {
15631 /* Two things are addressed here.
15632 1) Implicit require narrow instructions on Thumb-1.
15633 This avoids relaxation accidentally introducing Thumb-2
15634 instructions.
15635 2) Reject wide instructions in non Thumb-2 cores. */
15636 if (inst.size_req == 0)
15637 inst.size_req = 2;
15638 else if (inst.size_req == 4)
15639 {
15640 as_bad (_("selected processor does not support `%s'"), str);
15641 return;
15642 }
15643 }
15644 }
15645
15646 inst.instruction = opcode->tvalue;
15647
15648 if (!parse_operands (p, opcode->operands))
15649 {
15650 /* Prepare the it_insn_type for those encodings that don't set
15651 it. */
15652 it_fsm_pre_encode ();
15653
15654 opcode->tencode ();
15655
15656 it_fsm_post_encode ();
15657 }
15658
15659 if (!(inst.error || inst.relax))
15660 {
15661 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
15662 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15663 if (inst.size_req && inst.size_req != inst.size)
15664 {
15665 as_bad (_("cannot honor width suffix -- `%s'"), str);
15666 return;
15667 }
15668 }
15669
15670 /* Something has gone badly wrong if we try to relax a fixed size
15671 instruction. */
15672 gas_assert (inst.size_req == 0 || !inst.relax);
15673
15674 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15675 *opcode->tvariant);
15676 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
15677 set those bits when Thumb-2 32-bit instructions are seen. ie.
15678 anything other than bl/blx and v6-M instructions.
15679 This is overly pessimistic for relaxable instructions. */
15680 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15681 || inst.relax)
15682 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15683 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
15684 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15685 arm_ext_v6t2);
15686
15687 check_neon_suffixes;
15688
15689 if (!inst.error)
15690 {
15691 mapping_state (MAP_THUMB);
15692 }
15693 }
15694 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
15695 {
15696 bfd_boolean is_bx;
15697
15698 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15699 is_bx = (opcode->aencode == do_bx);
15700
15701 /* Check that this instruction is supported for this CPU. */
15702 if (!(is_bx && fix_v4bx)
15703 && !(opcode->avariant &&
15704 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
15705 {
15706 as_bad (_("selected processor does not support `%s'"), str);
15707 return;
15708 }
15709 if (inst.size_req)
15710 {
15711 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15712 return;
15713 }
15714
15715 inst.instruction = opcode->avalue;
15716 if (opcode->tag == OT_unconditionalF)
15717 inst.instruction |= 0xF << 28;
15718 else
15719 inst.instruction |= inst.cond << 28;
15720 inst.size = INSN_SIZE;
15721 if (!parse_operands (p, opcode->operands))
15722 {
15723 it_fsm_pre_encode ();
15724 opcode->aencode ();
15725 it_fsm_post_encode ();
15726 }
15727 /* Arm mode bx is marked as both v4T and v5 because it's still required
15728 on a hypothetical non-thumb v5 core. */
15729 if (is_bx)
15730 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
15731 else
15732 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15733 *opcode->avariant);
15734
15735 check_neon_suffixes;
15736
15737 if (!inst.error)
15738 {
15739 mapping_state (MAP_ARM);
15740 }
15741 }
15742 else
15743 {
15744 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15745 "-- `%s'"), str);
15746 return;
15747 }
15748 output_inst (str);
15749 }
15750
15751 static void
15752 check_it_blocks_finished (void)
15753 {
15754 #ifdef OBJ_ELF
15755 asection *sect;
15756
15757 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15758 if (seg_info (sect)->tc_segment_info_data.current_it.state
15759 == MANUAL_IT_BLOCK)
15760 {
15761 as_warn (_("section '%s' finished with an open IT block."),
15762 sect->name);
15763 }
15764 #else
15765 if (now_it.state == MANUAL_IT_BLOCK)
15766 as_warn (_("file finished with an open IT block."));
15767 #endif
15768 }
15769
15770 /* Various frobbings of labels and their addresses. */
15771
15772 void
15773 arm_start_line_hook (void)
15774 {
15775 last_label_seen = NULL;
15776 }
15777
15778 void
15779 arm_frob_label (symbolS * sym)
15780 {
15781 last_label_seen = sym;
15782
15783 ARM_SET_THUMB (sym, thumb_mode);
15784
15785 #if defined OBJ_COFF || defined OBJ_ELF
15786 ARM_SET_INTERWORK (sym, support_interwork);
15787 #endif
15788
15789 force_automatic_it_block_close ();
15790
15791 /* Note - do not allow local symbols (.Lxxx) to be labelled
15792 as Thumb functions. This is because these labels, whilst
15793 they exist inside Thumb code, are not the entry points for
15794 possible ARM->Thumb calls. Also, these labels can be used
15795 as part of a computed goto or switch statement. eg gcc
15796 can generate code that looks like this:
15797
15798 ldr r2, [pc, .Laaa]
15799 lsl r3, r3, #2
15800 ldr r2, [r3, r2]
15801 mov pc, r2
15802
15803 .Lbbb: .word .Lxxx
15804 .Lccc: .word .Lyyy
15805 ..etc...
15806 .Laaa: .word Lbbb
15807
15808 The first instruction loads the address of the jump table.
15809 The second instruction converts a table index into a byte offset.
15810 The third instruction gets the jump address out of the table.
15811 The fourth instruction performs the jump.
15812
15813 If the address stored at .Laaa is that of a symbol which has the
15814 Thumb_Func bit set, then the linker will arrange for this address
15815 to have the bottom bit set, which in turn would mean that the
15816 address computation performed by the third instruction would end
15817 up with the bottom bit set. Since the ARM is capable of unaligned
15818 word loads, the instruction would then load the incorrect address
15819 out of the jump table, and chaos would ensue. */
15820 if (label_is_thumb_function_name
15821 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15822 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
15823 {
15824 /* When the address of a Thumb function is taken the bottom
15825 bit of that address should be set. This will allow
15826 interworking between Arm and Thumb functions to work
15827 correctly. */
15828
15829 THUMB_SET_FUNC (sym, 1);
15830
15831 label_is_thumb_function_name = FALSE;
15832 }
15833
15834 dwarf2_emit_label (sym);
15835 }
15836
15837 bfd_boolean
15838 arm_data_in_code (void)
15839 {
15840 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
15841 {
15842 *input_line_pointer = '/';
15843 input_line_pointer += 5;
15844 *input_line_pointer = 0;
15845 return TRUE;
15846 }
15847
15848 return FALSE;
15849 }
15850
15851 char *
15852 arm_canonicalize_symbol_name (char * name)
15853 {
15854 int len;
15855
15856 if (thumb_mode && (len = strlen (name)) > 5
15857 && streq (name + len - 5, "/data"))
15858 *(name + len - 5) = 0;
15859
15860 return name;
15861 }
15862 \f
15863 /* Table of all register names defined by default. The user can
15864 define additional names with .req. Note that all register names
15865 should appear in both upper and lowercase variants. Some registers
15866 also have mixed-case names. */
15867
15868 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
15869 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
15870 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
15871 #define REGSET(p,t) \
15872 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15873 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15874 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15875 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
15876 #define REGSETH(p,t) \
15877 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15878 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15879 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15880 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15881 #define REGSET2(p,t) \
15882 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15883 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15884 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15885 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
15886
15887 static const struct reg_entry reg_names[] =
15888 {
15889 /* ARM integer registers. */
15890 REGSET(r, RN), REGSET(R, RN),
15891
15892 /* ATPCS synonyms. */
15893 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
15894 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
15895 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
15896
15897 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
15898 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
15899 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
15900
15901 /* Well-known aliases. */
15902 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
15903 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15904
15905 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
15906 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
15907
15908 /* Coprocessor numbers. */
15909 REGSET(p, CP), REGSET(P, CP),
15910
15911 /* Coprocessor register numbers. The "cr" variants are for backward
15912 compatibility. */
15913 REGSET(c, CN), REGSET(C, CN),
15914 REGSET(cr, CN), REGSET(CR, CN),
15915
15916 /* FPA registers. */
15917 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
15918 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
15919
15920 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
15921 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
15922
15923 /* VFP SP registers. */
15924 REGSET(s,VFS), REGSET(S,VFS),
15925 REGSETH(s,VFS), REGSETH(S,VFS),
15926
15927 /* VFP DP Registers. */
15928 REGSET(d,VFD), REGSET(D,VFD),
15929 /* Extra Neon DP registers. */
15930 REGSETH(d,VFD), REGSETH(D,VFD),
15931
15932 /* Neon QP registers. */
15933 REGSET2(q,NQ), REGSET2(Q,NQ),
15934
15935 /* VFP control registers. */
15936 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15937 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
15938 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15939 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15940 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15941 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
15942
15943 /* Maverick DSP coprocessor registers. */
15944 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15945 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15946
15947 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15948 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15949 REGDEF(dspsc,0,DSPSC),
15950
15951 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15952 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15953 REGDEF(DSPSC,0,DSPSC),
15954
15955 /* iWMMXt data registers - p0, c0-15. */
15956 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15957
15958 /* iWMMXt control registers - p1, c0-3. */
15959 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15960 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15961 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15962 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15963
15964 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15965 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15966 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15967 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15968 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15969
15970 /* XScale accumulator registers. */
15971 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15972 };
15973 #undef REGDEF
15974 #undef REGNUM
15975 #undef REGSET
15976
15977 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15978 within psr_required_here. */
15979 static const struct asm_psr psrs[] =
15980 {
15981 /* Backward compatibility notation. Note that "all" is no longer
15982 truly all possible PSR bits. */
15983 {"all", PSR_c | PSR_f},
15984 {"flg", PSR_f},
15985 {"ctl", PSR_c},
15986
15987 /* Individual flags. */
15988 {"f", PSR_f},
15989 {"c", PSR_c},
15990 {"x", PSR_x},
15991 {"s", PSR_s},
15992 /* Combinations of flags. */
15993 {"fs", PSR_f | PSR_s},
15994 {"fx", PSR_f | PSR_x},
15995 {"fc", PSR_f | PSR_c},
15996 {"sf", PSR_s | PSR_f},
15997 {"sx", PSR_s | PSR_x},
15998 {"sc", PSR_s | PSR_c},
15999 {"xf", PSR_x | PSR_f},
16000 {"xs", PSR_x | PSR_s},
16001 {"xc", PSR_x | PSR_c},
16002 {"cf", PSR_c | PSR_f},
16003 {"cs", PSR_c | PSR_s},
16004 {"cx", PSR_c | PSR_x},
16005 {"fsx", PSR_f | PSR_s | PSR_x},
16006 {"fsc", PSR_f | PSR_s | PSR_c},
16007 {"fxs", PSR_f | PSR_x | PSR_s},
16008 {"fxc", PSR_f | PSR_x | PSR_c},
16009 {"fcs", PSR_f | PSR_c | PSR_s},
16010 {"fcx", PSR_f | PSR_c | PSR_x},
16011 {"sfx", PSR_s | PSR_f | PSR_x},
16012 {"sfc", PSR_s | PSR_f | PSR_c},
16013 {"sxf", PSR_s | PSR_x | PSR_f},
16014 {"sxc", PSR_s | PSR_x | PSR_c},
16015 {"scf", PSR_s | PSR_c | PSR_f},
16016 {"scx", PSR_s | PSR_c | PSR_x},
16017 {"xfs", PSR_x | PSR_f | PSR_s},
16018 {"xfc", PSR_x | PSR_f | PSR_c},
16019 {"xsf", PSR_x | PSR_s | PSR_f},
16020 {"xsc", PSR_x | PSR_s | PSR_c},
16021 {"xcf", PSR_x | PSR_c | PSR_f},
16022 {"xcs", PSR_x | PSR_c | PSR_s},
16023 {"cfs", PSR_c | PSR_f | PSR_s},
16024 {"cfx", PSR_c | PSR_f | PSR_x},
16025 {"csf", PSR_c | PSR_s | PSR_f},
16026 {"csx", PSR_c | PSR_s | PSR_x},
16027 {"cxf", PSR_c | PSR_x | PSR_f},
16028 {"cxs", PSR_c | PSR_x | PSR_s},
16029 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16030 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16031 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16032 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16033 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16034 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16035 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16036 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16037 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16038 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16039 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16040 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16041 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16042 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16043 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16044 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16045 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16046 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16047 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16048 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16049 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16050 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16051 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16052 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16053 };
16054
16055 /* Table of V7M psr names. */
16056 static const struct asm_psr v7m_psrs[] =
16057 {
16058 {"apsr", 0 }, {"APSR", 0 },
16059 {"iapsr", 1 }, {"IAPSR", 1 },
16060 {"eapsr", 2 }, {"EAPSR", 2 },
16061 {"psr", 3 }, {"PSR", 3 },
16062 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16063 {"ipsr", 5 }, {"IPSR", 5 },
16064 {"epsr", 6 }, {"EPSR", 6 },
16065 {"iepsr", 7 }, {"IEPSR", 7 },
16066 {"msp", 8 }, {"MSP", 8 },
16067 {"psp", 9 }, {"PSP", 9 },
16068 {"primask", 16}, {"PRIMASK", 16},
16069 {"basepri", 17}, {"BASEPRI", 17},
16070 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16071 {"faultmask", 19}, {"FAULTMASK", 19},
16072 {"control", 20}, {"CONTROL", 20}
16073 };
16074
16075 /* Table of all shift-in-operand names. */
16076 static const struct asm_shift_name shift_names [] =
16077 {
16078 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16079 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16080 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16081 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16082 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16083 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16084 };
16085
16086 /* Table of all explicit relocation names. */
16087 #ifdef OBJ_ELF
16088 static struct reloc_entry reloc_names[] =
16089 {
16090 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16091 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16092 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16093 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16094 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16095 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16096 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16097 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16098 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16099 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16100 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
16101 };
16102 #endif
16103
16104 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16105 static const struct asm_cond conds[] =
16106 {
16107 {"eq", 0x0},
16108 {"ne", 0x1},
16109 {"cs", 0x2}, {"hs", 0x2},
16110 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16111 {"mi", 0x4},
16112 {"pl", 0x5},
16113 {"vs", 0x6},
16114 {"vc", 0x7},
16115 {"hi", 0x8},
16116 {"ls", 0x9},
16117 {"ge", 0xa},
16118 {"lt", 0xb},
16119 {"gt", 0xc},
16120 {"le", 0xd},
16121 {"al", 0xe}
16122 };
16123
16124 static struct asm_barrier_opt barrier_opt_names[] =
16125 {
16126 { "sy", 0xf },
16127 { "un", 0x7 },
16128 { "st", 0xe },
16129 { "unst", 0x6 }
16130 };
16131
16132 /* Table of ARM-format instructions. */
16133
16134 /* Macros for gluing together operand strings. N.B. In all cases
16135 other than OPS0, the trailing OP_stop comes from default
16136 zero-initialization of the unspecified elements of the array. */
16137 #define OPS0() { OP_stop, }
16138 #define OPS1(a) { OP_##a, }
16139 #define OPS2(a,b) { OP_##a,OP_##b, }
16140 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16141 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16142 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16143 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16144
16145 /* These macros abstract out the exact format of the mnemonic table and
16146 save some repeated characters. */
16147
16148 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16149 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16150 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16151 THUMB_VARIANT, do_##ae, do_##te }
16152
16153 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16154 a T_MNEM_xyz enumerator. */
16155 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16156 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16157 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16158 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16159
16160 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16161 infix after the third character. */
16162 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16163 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16164 THUMB_VARIANT, do_##ae, do_##te }
16165 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16166 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16167 THUMB_VARIANT, do_##ae, do_##te }
16168 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16169 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16170 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16171 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16172 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16173 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16174 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16175 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16176
16177 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16178 appear in the condition table. */
16179 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16180 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16181 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16182
16183 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16184 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16185 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16186 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16187 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16188 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16189 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16190 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16191 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16192 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16193 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16194 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16195 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16196 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16197 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16198 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16199 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16200 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16201 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16202 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16203
16204 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16205 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16206 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16207 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16208
16209 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16210 field is still 0xE. Many of the Thumb variants can be executed
16211 conditionally, so this is checked separately. */
16212 #define TUE(mnem, op, top, nops, ops, ae, te) \
16213 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16214 THUMB_VARIANT, do_##ae, do_##te }
16215
16216 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16217 condition code field. */
16218 #define TUF(mnem, op, top, nops, ops, ae, te) \
16219 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16220 THUMB_VARIANT, do_##ae, do_##te }
16221
16222 /* ARM-only variants of all the above. */
16223 #define CE(mnem, op, nops, ops, ae) \
16224 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16225
16226 #define C3(mnem, op, nops, ops, ae) \
16227 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16228
16229 /* Legacy mnemonics that always have conditional infix after the third
16230 character. */
16231 #define CL(mnem, op, nops, ops, ae) \
16232 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16233 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16234
16235 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16236 #define cCE(mnem, op, nops, ops, ae) \
16237 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16238
16239 /* Legacy coprocessor instructions where conditional infix and conditional
16240 suffix are ambiguous. For consistency this includes all FPA instructions,
16241 not just the potentially ambiguous ones. */
16242 #define cCL(mnem, op, nops, ops, ae) \
16243 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16244 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16245
16246 /* Coprocessor, takes either a suffix or a position-3 infix
16247 (for an FPA corner case). */
16248 #define C3E(mnem, op, nops, ops, ae) \
16249 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16250 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16251
16252 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16253 { m1 #m2 m3, OPS##nops ops, \
16254 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16255 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16256
16257 #define CM(m1, m2, op, nops, ops, ae) \
16258 xCM_ (m1, , m2, op, nops, ops, ae), \
16259 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16260 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16261 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16262 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16263 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16264 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16265 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16266 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16267 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16268 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16269 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16270 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16271 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16272 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16273 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16274 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16275 xCM_ (m1, le, m2, op, nops, ops, ae), \
16276 xCM_ (m1, al, m2, op, nops, ops, ae)
16277
16278 #define UE(mnem, op, nops, ops, ae) \
16279 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16280
16281 #define UF(mnem, op, nops, ops, ae) \
16282 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16283
16284 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16285 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16286 use the same encoding function for each. */
16287 #define NUF(mnem, op, nops, ops, enc) \
16288 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16289 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16290
16291 /* Neon data processing, version which indirects through neon_enc_tab for
16292 the various overloaded versions of opcodes. */
16293 #define nUF(mnem, op, nops, ops, enc) \
16294 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16295 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16296
16297 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16298 version. */
16299 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16300 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16301 THUMB_VARIANT, do_##enc, do_##enc }
16302
16303 #define NCE(mnem, op, nops, ops, enc) \
16304 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16305
16306 #define NCEF(mnem, op, nops, ops, enc) \
16307 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16308
16309 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16310 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16311 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16312 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16313
16314 #define nCE(mnem, op, nops, ops, enc) \
16315 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16316
16317 #define nCEF(mnem, op, nops, ops, enc) \
16318 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16319
16320 #define do_0 0
16321
16322 /* Thumb-only, unconditional. */
16323 #define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
16324
16325 static const struct asm_opcode insns[] =
16326 {
16327 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16328 #define THUMB_VARIANT &arm_ext_v4t
16329 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16330 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16331 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16332 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16333 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16334 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16335 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16336 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16337 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16338 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16339 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16340 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16341 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16342 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16343 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16344 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16345
16346 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16347 for setting PSR flag bits. They are obsolete in V6 and do not
16348 have Thumb equivalents. */
16349 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16350 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16351 CL("tstp", 110f000, 2, (RR, SH), cmp),
16352 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16353 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16354 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16355 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16356 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16357 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16358
16359 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16360 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16361 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16362 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16363
16364 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16365 tC3("ldrb", 4500000, _ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16366 tCE("str", 4000000, _str, 2, (RR, ADDRGLDR),ldst, t_ldst),
16367 tC3("strb", 4400000, _strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16368
16369 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16370 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16371 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16372 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16373 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16374 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16375
16376 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16377 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16378 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16379 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16380
16381 /* Pseudo ops. */
16382 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16383 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16384 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16385
16386 /* Thumb-compatibility pseudo ops. */
16387 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16388 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16389 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16390 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16391 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16392 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16393 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16394 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16395 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16396 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16397 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16398 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16399
16400 /* These may simplify to neg. */
16401 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16402 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16403
16404 #undef THUMB_VARIANT
16405 #define THUMB_VARIANT & arm_ext_v6
16406
16407 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16408
16409 /* V1 instructions with no Thumb analogue prior to V6T2. */
16410 #undef THUMB_VARIANT
16411 #define THUMB_VARIANT & arm_ext_v6t2
16412
16413 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16414 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16415 CL("teqp", 130f000, 2, (RR, SH), cmp),
16416
16417 TC3("ldrt", 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
16418 TC3("ldrbt", 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
16419 TC3("strt", 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
16420 TC3("strbt", 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
16421
16422 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16423 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16424
16425 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16426 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16427
16428 /* V1 instructions with no Thumb analogue at all. */
16429 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16430 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16431
16432 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16433 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16434 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16435 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16436 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16437 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16438 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16439 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16440
16441 #undef ARM_VARIANT
16442 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16443 #undef THUMB_VARIANT
16444 #define THUMB_VARIANT & arm_ext_v4t
16445
16446 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16447 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16448
16449 #undef THUMB_VARIANT
16450 #define THUMB_VARIANT & arm_ext_v6t2
16451
16452 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16453 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16454
16455 /* Generic coprocessor instructions. */
16456 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16457 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16458 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16459 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16460 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16461 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16462 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16463
16464 #undef ARM_VARIANT
16465 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16466
16467 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16468 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16469
16470 #undef ARM_VARIANT
16471 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16472 #undef THUMB_VARIANT
16473 #define THUMB_VARIANT & arm_ext_msr
16474
16475 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16476 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16477
16478 #undef ARM_VARIANT
16479 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16480 #undef THUMB_VARIANT
16481 #define THUMB_VARIANT & arm_ext_v6t2
16482
16483 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16484 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16485 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16486 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16487 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16488 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16489 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16490 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16491
16492 #undef ARM_VARIANT
16493 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16494 #undef THUMB_VARIANT
16495 #define THUMB_VARIANT & arm_ext_v4t
16496
16497 tC3("ldrh", 01000b0, _ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16498 tC3("strh", 00000b0, _strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16499 tC3("ldrsh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16500 tC3("ldrsb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16501 tCM("ld","sh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16502 tCM("ld","sb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16503
16504 #undef ARM_VARIANT
16505 #define ARM_VARIANT & arm_ext_v4t_5
16506
16507 /* ARM Architecture 4T. */
16508 /* Note: bx (and blx) are required on V5, even if the processor does
16509 not support Thumb. */
16510 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16511
16512 #undef ARM_VARIANT
16513 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16514 #undef THUMB_VARIANT
16515 #define THUMB_VARIANT & arm_ext_v5t
16516
16517 /* Note: blx has 2 variants; the .value coded here is for
16518 BLX(2). Only this variant has conditional execution. */
16519 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16520 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16521
16522 #undef THUMB_VARIANT
16523 #define THUMB_VARIANT & arm_ext_v6t2
16524
16525 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16526 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16527 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16528 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16529 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16530 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16531 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16532 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16533
16534 #undef ARM_VARIANT
16535 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16536 #undef THUMB_VARIANT
16537 #define THUMB_VARIANT &arm_ext_v5exp
16538
16539 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16540 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16541 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16542 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16543
16544 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16545 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16546
16547 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16548 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16549 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16550 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16551
16552 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16553 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16554 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16555 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16556
16557 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16558 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16559
16560 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16561 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16562 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16563 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16564
16565 #undef ARM_VARIANT
16566 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16567 #undef THUMB_VARIANT
16568 #define THUMB_VARIANT &arm_ext_v6t2
16569
16570 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
16571 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16572 TC3("strd", 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16573
16574 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16575 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16576
16577 #undef ARM_VARIANT
16578 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16579
16580 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
16581
16582 #undef ARM_VARIANT
16583 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16584 #undef THUMB_VARIANT
16585 #define THUMB_VARIANT & arm_ext_v6
16586
16587 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16588 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16589 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16590 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16591 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16592 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16593 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16594 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16595 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16596 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
16597
16598 #undef THUMB_VARIANT
16599 #define THUMB_VARIANT & arm_ext_v6t2
16600
16601 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
16602 TCE("strex", 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
16603 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16604 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16605
16606 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16607 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
16608
16609 /* ARM V6 not included in V7M. */
16610 #undef THUMB_VARIANT
16611 #define THUMB_VARIANT & arm_ext_v6_notm
16612 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16613 UF(rfeib, 9900a00, 1, (RRw), rfe),
16614 UF(rfeda, 8100a00, 1, (RRw), rfe),
16615 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16616 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16617 UF(rfefa, 9900a00, 1, (RRw), rfe),
16618 UF(rfeea, 8100a00, 1, (RRw), rfe),
16619 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16620 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16621 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16622 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16623 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
16624
16625 /* ARM V6 not included in V7M (eg. integer SIMD). */
16626 #undef THUMB_VARIANT
16627 #define THUMB_VARIANT & arm_ext_v6_dsp
16628 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16629 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16630 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16631 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16632 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16633 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16634 /* Old name for QASX. */
16635 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16636 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16637 /* Old name for QSAX. */
16638 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16639 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16640 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16641 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16642 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16643 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16644 /* Old name for SASX. */
16645 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16646 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16647 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16648 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16649 /* Old name for SHASX. */
16650 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16651 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16652 /* Old name for SHSAX. */
16653 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16654 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16655 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16656 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16657 /* Old name for SSAX. */
16658 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16659 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16660 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16661 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16662 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16663 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16664 /* Old name for UASX. */
16665 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16666 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16667 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16668 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16669 /* Old name for UHASX. */
16670 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16671 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16672 /* Old name for UHSAX. */
16673 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16674 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16675 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16676 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16677 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16678 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16679 /* Old name for UQASX. */
16680 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16681 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16682 /* Old name for UQSAX. */
16683 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16684 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16685 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16686 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16687 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16688 /* Old name for USAX. */
16689 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16690 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16691 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16692 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16693 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16694 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16695 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16696 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16697 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16698 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16699 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16700 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16701 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16702 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16703 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16704 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16705 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16706 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16707 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16708 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16709 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16710 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16711 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16712 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16713 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16714 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16715 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16716 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16717 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16718 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16719 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16720 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16721 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16722 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
16723
16724 #undef ARM_VARIANT
16725 #define ARM_VARIANT & arm_ext_v6k
16726 #undef THUMB_VARIANT
16727 #define THUMB_VARIANT & arm_ext_v6k
16728
16729 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16730 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16731 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16732 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
16733
16734 #undef THUMB_VARIANT
16735 #define THUMB_VARIANT & arm_ext_v6_notm
16736
16737 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
16738 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
16739
16740 #undef THUMB_VARIANT
16741 #define THUMB_VARIANT & arm_ext_v6t2
16742
16743 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16744 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16745 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16746 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16747 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
16748
16749 #undef ARM_VARIANT
16750 #define ARM_VARIANT & arm_ext_v6z
16751
16752 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
16753
16754 #undef ARM_VARIANT
16755 #define ARM_VARIANT & arm_ext_v6t2
16756
16757 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16758 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16759 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16760 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16761
16762 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16763 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16764 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16765 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
16766
16767 TC3("ldrht", 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16768 TC3("ldrsht", 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16769 TC3("ldrsbt", 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16770 TC3("strht", 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16771
16772 UT("cbnz", b900, 2, (RR, EXP), t_cbz),
16773 UT("cbz", b100, 2, (RR, EXP), t_cbz),
16774
16775 /* ARM does not really have an IT instruction, so always allow it.
16776 The opcode is copied from Thumb in order to allow warnings in
16777 -mimplicit-it=[never | arm] modes. */
16778 #undef ARM_VARIANT
16779 #define ARM_VARIANT & arm_ext_v1
16780
16781 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16782 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16783 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16784 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16785 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16786 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16787 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16788 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16789 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16790 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16791 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16792 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16793 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16794 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16795 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
16796 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
16797 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16798 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
16799
16800 /* Thumb2 only instructions. */
16801 #undef ARM_VARIANT
16802 #define ARM_VARIANT NULL
16803
16804 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16805 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16806 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16807 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16808 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16809 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
16810
16811 /* Thumb-2 hardware division instructions (R and M profiles only). */
16812 #undef THUMB_VARIANT
16813 #define THUMB_VARIANT & arm_ext_div
16814
16815 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16816 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
16817
16818 /* ARM V6M/V7 instructions. */
16819 #undef ARM_VARIANT
16820 #define ARM_VARIANT & arm_ext_barrier
16821 #undef THUMB_VARIANT
16822 #define THUMB_VARIANT & arm_ext_barrier
16823
16824 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16825 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16826 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
16827
16828 /* ARM V7 instructions. */
16829 #undef ARM_VARIANT
16830 #define ARM_VARIANT & arm_ext_v7
16831 #undef THUMB_VARIANT
16832 #define THUMB_VARIANT & arm_ext_v7
16833
16834 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
16835 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
16836
16837 #undef ARM_VARIANT
16838 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16839
16840 cCE("wfs", e200110, 1, (RR), rd),
16841 cCE("rfs", e300110, 1, (RR), rd),
16842 cCE("wfc", e400110, 1, (RR), rd),
16843 cCE("rfc", e500110, 1, (RR), rd),
16844
16845 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16846 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16847 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16848 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16849
16850 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16851 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16852 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16853 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16854
16855 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
16856 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
16857 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
16858 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
16859 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
16860 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
16861 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
16862 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
16863 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
16864 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
16865 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
16866 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
16867
16868 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
16869 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
16870 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
16871 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
16872 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
16873 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
16874 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
16875 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
16876 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
16877 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
16878 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
16879 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
16880
16881 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
16882 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
16883 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
16884 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
16885 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
16886 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
16887 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
16888 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
16889 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
16890 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
16891 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
16892 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
16893
16894 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
16895 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
16896 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
16897 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
16898 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
16899 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
16900 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
16901 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
16902 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
16903 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
16904 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
16905 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
16906
16907 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
16908 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
16909 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
16910 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
16911 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
16912 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
16913 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
16914 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
16915 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
16916 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
16917 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
16918 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
16919
16920 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
16921 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
16922 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
16923 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
16924 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
16925 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
16926 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
16927 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
16928 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
16929 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
16930 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
16931 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
16932
16933 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
16934 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
16935 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
16936 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
16937 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
16938 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
16939 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
16940 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
16941 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
16942 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
16943 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
16944 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
16945
16946 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
16947 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
16948 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
16949 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
16950 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
16951 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
16952 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
16953 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
16954 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
16955 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
16956 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
16957 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
16958
16959 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
16960 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
16961 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
16962 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
16963 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
16964 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
16965 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
16966 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
16967 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
16968 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
16969 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
16970 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
16971
16972 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
16973 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
16974 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
16975 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
16976 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
16977 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
16978 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
16979 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
16980 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
16981 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
16982 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
16983 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
16984
16985 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
16986 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
16987 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
16988 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
16989 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
16990 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
16991 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
16992 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
16993 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
16994 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
16995 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
16996 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
16997
16998 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
16999 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17000 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17001 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17002 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17003 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17004 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17005 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17006 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17007 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17008 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17009 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17010
17011 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17012 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17013 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17014 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17015 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17016 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17017 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17018 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17019 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17020 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17021 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17022 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17023
17024 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17025 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17026 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17027 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17028 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17029 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17030 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17031 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17032 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17033 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17034 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17035 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17036
17037 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17038 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17039 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17040 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17041 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17042 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17043 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17044 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17045 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17046 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17047 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17048 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17049
17050 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17051 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17052 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17053 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17054 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17055 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17056 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17057 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17058 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17059 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17060 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17061 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17062
17063 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17064 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17065 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17066 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17067 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17068 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17069 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17070 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17071 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17072 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17073 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17074 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17075
17076 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17077 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17078 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17079 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17080 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17081 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17082 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17083 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17084 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17085 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17086 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17087 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17088
17089 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17090 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17091 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17092 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17093 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17094 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17095 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17096 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17097 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17098 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17099 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17100 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17101
17102 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17103 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17104 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17105 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17106 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17107 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17108 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17109 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17110 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17111 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17112 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17113 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17114
17115 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17116 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17117 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17118 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17119 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17120 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17121 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17122 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17123 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17124 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17125 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17126 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17127
17128 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17129 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17130 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17131 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17132 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17133 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17134 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17135 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17136 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17137 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17138 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17139 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17140
17141 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17142 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17143 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17144 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17145 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17146 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17147 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17148 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17149 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17150 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17151 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17152 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17153
17154 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17155 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17156 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17157 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17158 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17159 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17160 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17161 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17162 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17163 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17164 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17165 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17166
17167 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17168 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17169 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17170 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17171 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17172 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17173 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17174 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17175 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17176 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17177 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17178 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17179
17180 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17181 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17182 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17183 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17184 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17185 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17186 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17187 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17188 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17189 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17190 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17191 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17192
17193 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17194 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17195 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17196 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17197 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17198 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17199 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17200 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17201 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17202 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17203 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17204 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17205
17206 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17207 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17208 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17209 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17210 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17211 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17212 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17213 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17214 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17215 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17216 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17217 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17218
17219 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17220 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17221 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17222 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17223 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17224 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17225 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17226 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17227 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17228 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17229 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17230 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17231
17232 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17233 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17234 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17235 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17236
17237 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17238 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17239 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17240 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17241 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17242 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17243 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17244 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17245 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17246 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17247 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17248 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17249
17250 /* The implementation of the FIX instruction is broken on some
17251 assemblers, in that it accepts a precision specifier as well as a
17252 rounding specifier, despite the fact that this is meaningless.
17253 To be more compatible, we accept it as well, though of course it
17254 does not set any bits. */
17255 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17256 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17257 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17258 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17259 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17260 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17261 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17262 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17263 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17264 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17265 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17266 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17267 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17268
17269 /* Instructions that were new with the real FPA, call them V2. */
17270 #undef ARM_VARIANT
17271 #define ARM_VARIANT & fpu_fpa_ext_v2
17272
17273 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17274 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17275 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17276 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17277 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17278 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17279
17280 #undef ARM_VARIANT
17281 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17282
17283 /* Moves and type conversions. */
17284 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17285 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17286 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17287 cCE("fmstat", ef1fa10, 0, (), noargs),
17288 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17289 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17290 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17291 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17292 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17293 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17294 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17295 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17296 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17297 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17298
17299 /* Memory operations. */
17300 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17301 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17302 cCE("fldmias", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17303 cCE("fldmfds", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17304 cCE("fldmdbs", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17305 cCE("fldmeas", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17306 cCE("fldmiax", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17307 cCE("fldmfdx", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17308 cCE("fldmdbx", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17309 cCE("fldmeax", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17310 cCE("fstmias", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17311 cCE("fstmeas", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17312 cCE("fstmdbs", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17313 cCE("fstmfds", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17314 cCE("fstmiax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17315 cCE("fstmeax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17316 cCE("fstmdbx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17317 cCE("fstmfdx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17318
17319 /* Monadic operations. */
17320 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17321 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17322 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17323
17324 /* Dyadic operations. */
17325 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17326 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17327 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17328 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17329 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17330 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17331 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17332 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17333 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17334
17335 /* Comparisons. */
17336 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17337 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17338 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17339 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17340
17341 /* Double precision load/store are still present on single precision
17342 implementations. */
17343 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17344 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17345 cCE("fldmiad", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17346 cCE("fldmfdd", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17347 cCE("fldmdbd", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17348 cCE("fldmead", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17349 cCE("fstmiad", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17350 cCE("fstmead", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17351 cCE("fstmdbd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17352 cCE("fstmfdd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17353
17354 #undef ARM_VARIANT
17355 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17356
17357 /* Moves and type conversions. */
17358 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17359 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17360 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17361 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17362 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17363 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17364 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17365 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17366 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17367 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17368 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17369 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17370 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17371
17372 /* Monadic operations. */
17373 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17374 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17375 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17376
17377 /* Dyadic operations. */
17378 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17379 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17380 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17381 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17382 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17383 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17384 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17385 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17386 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17387
17388 /* Comparisons. */
17389 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17390 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17391 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17392 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17393
17394 #undef ARM_VARIANT
17395 #define ARM_VARIANT & fpu_vfp_ext_v2
17396
17397 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17398 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17399 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17400 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17401
17402 /* Instructions which may belong to either the Neon or VFP instruction sets.
17403 Individual encoder functions perform additional architecture checks. */
17404 #undef ARM_VARIANT
17405 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17406 #undef THUMB_VARIANT
17407 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17408
17409 /* These mnemonics are unique to VFP. */
17410 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17411 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17412 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17413 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17414 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17415 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17416 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17417 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17418 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17419 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17420
17421 /* Mnemonics shared by Neon and VFP. */
17422 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17423 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17424 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17425
17426 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17427 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17428
17429 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17430 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17431
17432 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17433 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17434 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17435 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17436 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17437 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17438 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17439 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17440
17441 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17442 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
17443 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17444 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17445
17446
17447 /* NOTE: All VMOV encoding is special-cased! */
17448 NCE(vmov, 0, 1, (VMOV), neon_mov),
17449 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17450
17451 #undef THUMB_VARIANT
17452 #define THUMB_VARIANT & fpu_neon_ext_v1
17453 #undef ARM_VARIANT
17454 #define ARM_VARIANT & fpu_neon_ext_v1
17455
17456 /* Data processing with three registers of the same length. */
17457 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17458 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17459 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17460 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17461 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17462 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17463 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17464 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17465 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17466 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17467 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17468 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17469 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17470 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17471 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17472 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17473 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17474 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17475 /* If not immediate, fall back to neon_dyadic_i64_su.
17476 shl_imm should accept I8 I16 I32 I64,
17477 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17478 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17479 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17480 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17481 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17482 /* Logic ops, types optional & ignored. */
17483 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17484 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17485 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17486 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17487 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17488 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17489 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17490 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17491 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17492 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17493 /* Bitfield ops, untyped. */
17494 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17495 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17496 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17497 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17498 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17499 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17500 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17501 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17502 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17503 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17504 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17505 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17506 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17507 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17508 back to neon_dyadic_if_su. */
17509 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17510 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17511 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17512 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17513 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17514 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17515 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17516 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17517 /* Comparison. Type I8 I16 I32 F32. */
17518 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17519 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17520 /* As above, D registers only. */
17521 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17522 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17523 /* Int and float variants, signedness unimportant. */
17524 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17525 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17526 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17527 /* Add/sub take types I8 I16 I32 I64 F32. */
17528 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17529 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17530 /* vtst takes sizes 8, 16, 32. */
17531 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17532 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17533 /* VMUL takes I8 I16 I32 F32 P8. */
17534 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
17535 /* VQD{R}MULH takes S16 S32. */
17536 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17537 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17538 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17539 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17540 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17541 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17542 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17543 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17544 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17545 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17546 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17547 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17548 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17549 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17550 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17551 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17552
17553 /* Two address, int/float. Types S8 S16 S32 F32. */
17554 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
17555 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17556
17557 /* Data processing with two registers and a shift amount. */
17558 /* Right shifts, and variants with rounding.
17559 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17560 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17561 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17562 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17563 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17564 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17565 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17566 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17567 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17568 /* Shift and insert. Sizes accepted 8 16 32 64. */
17569 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17570 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17571 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17572 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17573 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17574 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17575 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17576 /* Right shift immediate, saturating & narrowing, with rounding variants.
17577 Types accepted S16 S32 S64 U16 U32 U64. */
17578 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17579 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17580 /* As above, unsigned. Types accepted S16 S32 S64. */
17581 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17582 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17583 /* Right shift narrowing. Types accepted I16 I32 I64. */
17584 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17585 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17586 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
17587 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
17588 /* CVT with optional immediate for fixed-point variant. */
17589 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
17590
17591 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
17592 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
17593
17594 /* Data processing, three registers of different lengths. */
17595 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17596 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17597 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17598 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17599 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17600 /* If not scalar, fall back to neon_dyadic_long.
17601 Vector types as above, scalar types S16 S32 U16 U32. */
17602 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17603 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17604 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17605 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17606 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17607 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17608 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17609 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17610 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17611 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17612 /* Saturating doubling multiplies. Types S16 S32. */
17613 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17614 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17615 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17616 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17617 S16 S32 U16 U32. */
17618 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
17619
17620 /* Extract. Size 8. */
17621 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17622 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
17623
17624 /* Two registers, miscellaneous. */
17625 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17626 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17627 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17628 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17629 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17630 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17631 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17632 /* Vector replicate. Sizes 8 16 32. */
17633 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17634 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
17635 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17636 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17637 /* VMOVN. Types I16 I32 I64. */
17638 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
17639 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
17640 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
17641 /* VQMOVUN. Types S16 S32 S64. */
17642 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
17643 /* VZIP / VUZP. Sizes 8 16 32. */
17644 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17645 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17646 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17647 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17648 /* VQABS / VQNEG. Types S8 S16 S32. */
17649 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17650 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17651 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17652 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17653 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17654 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17655 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17656 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17657 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17658 /* Reciprocal estimates. Types U32 F32. */
17659 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17660 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17661 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17662 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17663 /* VCLS. Types S8 S16 S32. */
17664 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17665 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17666 /* VCLZ. Types I8 I16 I32. */
17667 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17668 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17669 /* VCNT. Size 8. */
17670 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17671 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17672 /* Two address, untyped. */
17673 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17674 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17675 /* VTRN. Sizes 8 16 32. */
17676 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17677 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
17678
17679 /* Table lookup. Size 8. */
17680 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17681 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17682
17683 #undef THUMB_VARIANT
17684 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17685 #undef ARM_VARIANT
17686 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17687
17688 /* Neon element/structure load/store. */
17689 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17690 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17691 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17692 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17693 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17694 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17695 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17696 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17697
17698 #undef THUMB_VARIANT
17699 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
17700 #undef ARM_VARIANT
17701 #define ARM_VARIANT &fpu_vfp_ext_v3xd
17702 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17703 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17704 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17705 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17706 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17707 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17708 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17709 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17710 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17711
17712 #undef THUMB_VARIANT
17713 #define THUMB_VARIANT & fpu_vfp_ext_v3
17714 #undef ARM_VARIANT
17715 #define ARM_VARIANT & fpu_vfp_ext_v3
17716
17717 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
17718 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17719 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17720 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17721 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17722 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17723 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17724 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17725 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17726
17727 #undef ARM_VARIANT
17728 #define ARM_VARIANT &fpu_vfp_ext_fma
17729 #undef THUMB_VARIANT
17730 #define THUMB_VARIANT &fpu_vfp_ext_fma
17731 /* Mnemonics shared by Neon and VFP. These are included in the
17732 VFP FMA variant; NEON and VFP FMA always includes the NEON
17733 FMA instructions. */
17734 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17735 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17736 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17737 the v form should always be used. */
17738 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17739 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17740 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17741 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17742 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17743 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17744
17745 #undef THUMB_VARIANT
17746 #undef ARM_VARIANT
17747 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17748
17749 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17750 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17751 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17752 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17753 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17754 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17755 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17756 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
17757
17758 #undef ARM_VARIANT
17759 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17760
17761 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17762 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17763 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17764 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17765 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17766 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17767 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17768 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17769 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17770 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17771 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17772 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17773 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17774 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17775 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17776 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17777 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17778 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17779 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17780 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17781 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17782 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17783 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17784 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17785 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17786 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17787 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17788 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17789 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17790 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17791 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17792 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17793 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17794 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17795 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17796 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17797 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17798 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17799 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17800 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17801 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17802 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17803 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17804 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17805 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17806 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17807 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17808 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17809 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17810 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17811 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17812 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17813 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17814 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17815 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17816 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17817 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17818 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17819 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17820 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17821 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17822 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17823 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17824 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17825 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17826 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17827 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17828 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17829 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17830 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17831 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17832 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17833 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17834 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17835 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17836 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17837 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17838 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17839 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17840 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17841 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17842 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17843 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17844 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17845 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17846 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17847 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17848 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17849 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17850 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17851 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17852 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17853 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17854 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17855 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17856 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17857 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17858 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17859 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17860 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17861 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17862 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17863 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17864 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17865 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17866 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17867 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17868 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17869 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17870 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17871 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
17872 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17873 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17874 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17875 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17876 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17877 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17878 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17879 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17880 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17881 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17882 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17883 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17884 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17885 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17886 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17887 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17888 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17889 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17890 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17891 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17892 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17893 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17894 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17895 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17896 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17897 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17898 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17899 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17900 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17901 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17902 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17903 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
17904 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
17905 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
17906 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
17907 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
17908 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
17909 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17910 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17911 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17912 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
17913 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
17914 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
17915 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
17916 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
17917 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
17918 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17919 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17920 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17921 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17922 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
17923
17924 #undef ARM_VARIANT
17925 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
17926
17927 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
17928 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
17929 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
17930 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
17931 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
17932 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
17933 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17934 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17935 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17936 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17937 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17938 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17939 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17940 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17941 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17942 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17943 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17944 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17945 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17946 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17947 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
17948 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17949 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17950 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17951 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17952 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17953 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17954 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17955 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17956 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17957 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17958 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17959 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17960 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17961 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17962 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17963 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17964 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17965 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17966 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17967 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17968 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17969 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17970 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17971 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17972 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17973 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17974 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17975 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17976 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17977 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17978 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17979 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17980 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17981 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17982 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17983 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17984
17985 #undef ARM_VARIANT
17986 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
17987
17988 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17989 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17990 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17991 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17992 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17993 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17994 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17995 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17996 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
17997 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
17998 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
17999 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18000 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18001 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18002 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18003 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18004 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18005 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18006 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18007 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18008 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18009 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18010 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18011 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18012 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18013 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18014 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18015 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18016 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18017 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18018 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18019 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18020 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18021 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18022 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18023 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18024 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18025 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18026 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18027 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18028 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18029 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18030 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18031 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18032 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18033 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18034 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18035 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18036 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18037 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18038 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18039 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18040 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18041 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18042 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18043 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18044 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18045 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18046 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18047 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18048 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18049 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18050 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18051 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18052 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18053 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18054 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18055 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18056 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18057 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18058 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18059 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18060 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18061 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18062 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18063 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18064 };
18065 #undef ARM_VARIANT
18066 #undef THUMB_VARIANT
18067 #undef TCE
18068 #undef TCM
18069 #undef TUE
18070 #undef TUF
18071 #undef TCC
18072 #undef cCE
18073 #undef cCL
18074 #undef C3E
18075 #undef CE
18076 #undef CM
18077 #undef UE
18078 #undef UF
18079 #undef UT
18080 #undef NUF
18081 #undef nUF
18082 #undef NCE
18083 #undef nCE
18084 #undef OPS0
18085 #undef OPS1
18086 #undef OPS2
18087 #undef OPS3
18088 #undef OPS4
18089 #undef OPS5
18090 #undef OPS6
18091 #undef do_0
18092 \f
18093 /* MD interface: bits in the object file. */
18094
18095 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18096 for use in the a.out file, and stores them in the array pointed to by buf.
18097 This knows about the endian-ness of the target machine and does
18098 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18099 2 (short) and 4 (long) Floating numbers are put out as a series of
18100 LITTLENUMS (shorts, here at least). */
18101
18102 void
18103 md_number_to_chars (char * buf, valueT val, int n)
18104 {
18105 if (target_big_endian)
18106 number_to_chars_bigendian (buf, val, n);
18107 else
18108 number_to_chars_littleendian (buf, val, n);
18109 }
18110
18111 static valueT
18112 md_chars_to_number (char * buf, int n)
18113 {
18114 valueT result = 0;
18115 unsigned char * where = (unsigned char *) buf;
18116
18117 if (target_big_endian)
18118 {
18119 while (n--)
18120 {
18121 result <<= 8;
18122 result |= (*where++ & 255);
18123 }
18124 }
18125 else
18126 {
18127 while (n--)
18128 {
18129 result <<= 8;
18130 result |= (where[n] & 255);
18131 }
18132 }
18133
18134 return result;
18135 }
18136
18137 /* MD interface: Sections. */
18138
18139 /* Estimate the size of a frag before relaxing. Assume everything fits in
18140 2 bytes. */
18141
18142 int
18143 md_estimate_size_before_relax (fragS * fragp,
18144 segT segtype ATTRIBUTE_UNUSED)
18145 {
18146 fragp->fr_var = 2;
18147 return 2;
18148 }
18149
18150 /* Convert a machine dependent frag. */
18151
18152 void
18153 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18154 {
18155 unsigned long insn;
18156 unsigned long old_op;
18157 char *buf;
18158 expressionS exp;
18159 fixS *fixp;
18160 int reloc_type;
18161 int pc_rel;
18162 int opcode;
18163
18164 buf = fragp->fr_literal + fragp->fr_fix;
18165
18166 old_op = bfd_get_16(abfd, buf);
18167 if (fragp->fr_symbol)
18168 {
18169 exp.X_op = O_symbol;
18170 exp.X_add_symbol = fragp->fr_symbol;
18171 }
18172 else
18173 {
18174 exp.X_op = O_constant;
18175 }
18176 exp.X_add_number = fragp->fr_offset;
18177 opcode = fragp->fr_subtype;
18178 switch (opcode)
18179 {
18180 case T_MNEM_ldr_pc:
18181 case T_MNEM_ldr_pc2:
18182 case T_MNEM_ldr_sp:
18183 case T_MNEM_str_sp:
18184 case T_MNEM_ldr:
18185 case T_MNEM_ldrb:
18186 case T_MNEM_ldrh:
18187 case T_MNEM_str:
18188 case T_MNEM_strb:
18189 case T_MNEM_strh:
18190 if (fragp->fr_var == 4)
18191 {
18192 insn = THUMB_OP32 (opcode);
18193 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18194 {
18195 insn |= (old_op & 0x700) << 4;
18196 }
18197 else
18198 {
18199 insn |= (old_op & 7) << 12;
18200 insn |= (old_op & 0x38) << 13;
18201 }
18202 insn |= 0x00000c00;
18203 put_thumb32_insn (buf, insn);
18204 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18205 }
18206 else
18207 {
18208 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18209 }
18210 pc_rel = (opcode == T_MNEM_ldr_pc2);
18211 break;
18212 case T_MNEM_adr:
18213 if (fragp->fr_var == 4)
18214 {
18215 insn = THUMB_OP32 (opcode);
18216 insn |= (old_op & 0xf0) << 4;
18217 put_thumb32_insn (buf, insn);
18218 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18219 }
18220 else
18221 {
18222 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18223 exp.X_add_number -= 4;
18224 }
18225 pc_rel = 1;
18226 break;
18227 case T_MNEM_mov:
18228 case T_MNEM_movs:
18229 case T_MNEM_cmp:
18230 case T_MNEM_cmn:
18231 if (fragp->fr_var == 4)
18232 {
18233 int r0off = (opcode == T_MNEM_mov
18234 || opcode == T_MNEM_movs) ? 0 : 8;
18235 insn = THUMB_OP32 (opcode);
18236 insn = (insn & 0xe1ffffff) | 0x10000000;
18237 insn |= (old_op & 0x700) << r0off;
18238 put_thumb32_insn (buf, insn);
18239 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18240 }
18241 else
18242 {
18243 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18244 }
18245 pc_rel = 0;
18246 break;
18247 case T_MNEM_b:
18248 if (fragp->fr_var == 4)
18249 {
18250 insn = THUMB_OP32(opcode);
18251 put_thumb32_insn (buf, insn);
18252 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18253 }
18254 else
18255 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18256 pc_rel = 1;
18257 break;
18258 case T_MNEM_bcond:
18259 if (fragp->fr_var == 4)
18260 {
18261 insn = THUMB_OP32(opcode);
18262 insn |= (old_op & 0xf00) << 14;
18263 put_thumb32_insn (buf, insn);
18264 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18265 }
18266 else
18267 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18268 pc_rel = 1;
18269 break;
18270 case T_MNEM_add_sp:
18271 case T_MNEM_add_pc:
18272 case T_MNEM_inc_sp:
18273 case T_MNEM_dec_sp:
18274 if (fragp->fr_var == 4)
18275 {
18276 /* ??? Choose between add and addw. */
18277 insn = THUMB_OP32 (opcode);
18278 insn |= (old_op & 0xf0) << 4;
18279 put_thumb32_insn (buf, insn);
18280 if (opcode == T_MNEM_add_pc)
18281 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18282 else
18283 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18284 }
18285 else
18286 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18287 pc_rel = 0;
18288 break;
18289
18290 case T_MNEM_addi:
18291 case T_MNEM_addis:
18292 case T_MNEM_subi:
18293 case T_MNEM_subis:
18294 if (fragp->fr_var == 4)
18295 {
18296 insn = THUMB_OP32 (opcode);
18297 insn |= (old_op & 0xf0) << 4;
18298 insn |= (old_op & 0xf) << 16;
18299 put_thumb32_insn (buf, insn);
18300 if (insn & (1 << 20))
18301 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18302 else
18303 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18304 }
18305 else
18306 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18307 pc_rel = 0;
18308 break;
18309 default:
18310 abort ();
18311 }
18312 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18313 (enum bfd_reloc_code_real) reloc_type);
18314 fixp->fx_file = fragp->fr_file;
18315 fixp->fx_line = fragp->fr_line;
18316 fragp->fr_fix += fragp->fr_var;
18317 }
18318
18319 /* Return the size of a relaxable immediate operand instruction.
18320 SHIFT and SIZE specify the form of the allowable immediate. */
18321 static int
18322 relax_immediate (fragS *fragp, int size, int shift)
18323 {
18324 offsetT offset;
18325 offsetT mask;
18326 offsetT low;
18327
18328 /* ??? Should be able to do better than this. */
18329 if (fragp->fr_symbol)
18330 return 4;
18331
18332 low = (1 << shift) - 1;
18333 mask = (1 << (shift + size)) - (1 << shift);
18334 offset = fragp->fr_offset;
18335 /* Force misaligned offsets to 32-bit variant. */
18336 if (offset & low)
18337 return 4;
18338 if (offset & ~mask)
18339 return 4;
18340 return 2;
18341 }
18342
18343 /* Get the address of a symbol during relaxation. */
18344 static addressT
18345 relaxed_symbol_addr (fragS *fragp, long stretch)
18346 {
18347 fragS *sym_frag;
18348 addressT addr;
18349 symbolS *sym;
18350
18351 sym = fragp->fr_symbol;
18352 sym_frag = symbol_get_frag (sym);
18353 know (S_GET_SEGMENT (sym) != absolute_section
18354 || sym_frag == &zero_address_frag);
18355 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18356
18357 /* If frag has yet to be reached on this pass, assume it will
18358 move by STRETCH just as we did. If this is not so, it will
18359 be because some frag between grows, and that will force
18360 another pass. */
18361
18362 if (stretch != 0
18363 && sym_frag->relax_marker != fragp->relax_marker)
18364 {
18365 fragS *f;
18366
18367 /* Adjust stretch for any alignment frag. Note that if have
18368 been expanding the earlier code, the symbol may be
18369 defined in what appears to be an earlier frag. FIXME:
18370 This doesn't handle the fr_subtype field, which specifies
18371 a maximum number of bytes to skip when doing an
18372 alignment. */
18373 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18374 {
18375 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18376 {
18377 if (stretch < 0)
18378 stretch = - ((- stretch)
18379 & ~ ((1 << (int) f->fr_offset) - 1));
18380 else
18381 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18382 if (stretch == 0)
18383 break;
18384 }
18385 }
18386 if (f != NULL)
18387 addr += stretch;
18388 }
18389
18390 return addr;
18391 }
18392
18393 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18394 load. */
18395 static int
18396 relax_adr (fragS *fragp, asection *sec, long stretch)
18397 {
18398 addressT addr;
18399 offsetT val;
18400
18401 /* Assume worst case for symbols not known to be in the same section. */
18402 if (fragp->fr_symbol == NULL
18403 || !S_IS_DEFINED (fragp->fr_symbol)
18404 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18405 return 4;
18406
18407 val = relaxed_symbol_addr (fragp, stretch);
18408 addr = fragp->fr_address + fragp->fr_fix;
18409 addr = (addr + 4) & ~3;
18410 /* Force misaligned targets to 32-bit variant. */
18411 if (val & 3)
18412 return 4;
18413 val -= addr;
18414 if (val < 0 || val > 1020)
18415 return 4;
18416 return 2;
18417 }
18418
18419 /* Return the size of a relaxable add/sub immediate instruction. */
18420 static int
18421 relax_addsub (fragS *fragp, asection *sec)
18422 {
18423 char *buf;
18424 int op;
18425
18426 buf = fragp->fr_literal + fragp->fr_fix;
18427 op = bfd_get_16(sec->owner, buf);
18428 if ((op & 0xf) == ((op >> 4) & 0xf))
18429 return relax_immediate (fragp, 8, 0);
18430 else
18431 return relax_immediate (fragp, 3, 0);
18432 }
18433
18434
18435 /* Return the size of a relaxable branch instruction. BITS is the
18436 size of the offset field in the narrow instruction. */
18437
18438 static int
18439 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18440 {
18441 addressT addr;
18442 offsetT val;
18443 offsetT limit;
18444
18445 /* Assume worst case for symbols not known to be in the same section. */
18446 if (!S_IS_DEFINED (fragp->fr_symbol)
18447 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18448 return 4;
18449
18450 #ifdef OBJ_ELF
18451 if (S_IS_DEFINED (fragp->fr_symbol)
18452 && ARM_IS_FUNC (fragp->fr_symbol))
18453 return 4;
18454 #endif
18455
18456 val = relaxed_symbol_addr (fragp, stretch);
18457 addr = fragp->fr_address + fragp->fr_fix + 4;
18458 val -= addr;
18459
18460 /* Offset is a signed value *2 */
18461 limit = 1 << bits;
18462 if (val >= limit || val < -limit)
18463 return 4;
18464 return 2;
18465 }
18466
18467
18468 /* Relax a machine dependent frag. This returns the amount by which
18469 the current size of the frag should change. */
18470
18471 int
18472 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18473 {
18474 int oldsize;
18475 int newsize;
18476
18477 oldsize = fragp->fr_var;
18478 switch (fragp->fr_subtype)
18479 {
18480 case T_MNEM_ldr_pc2:
18481 newsize = relax_adr (fragp, sec, stretch);
18482 break;
18483 case T_MNEM_ldr_pc:
18484 case T_MNEM_ldr_sp:
18485 case T_MNEM_str_sp:
18486 newsize = relax_immediate (fragp, 8, 2);
18487 break;
18488 case T_MNEM_ldr:
18489 case T_MNEM_str:
18490 newsize = relax_immediate (fragp, 5, 2);
18491 break;
18492 case T_MNEM_ldrh:
18493 case T_MNEM_strh:
18494 newsize = relax_immediate (fragp, 5, 1);
18495 break;
18496 case T_MNEM_ldrb:
18497 case T_MNEM_strb:
18498 newsize = relax_immediate (fragp, 5, 0);
18499 break;
18500 case T_MNEM_adr:
18501 newsize = relax_adr (fragp, sec, stretch);
18502 break;
18503 case T_MNEM_mov:
18504 case T_MNEM_movs:
18505 case T_MNEM_cmp:
18506 case T_MNEM_cmn:
18507 newsize = relax_immediate (fragp, 8, 0);
18508 break;
18509 case T_MNEM_b:
18510 newsize = relax_branch (fragp, sec, 11, stretch);
18511 break;
18512 case T_MNEM_bcond:
18513 newsize = relax_branch (fragp, sec, 8, stretch);
18514 break;
18515 case T_MNEM_add_sp:
18516 case T_MNEM_add_pc:
18517 newsize = relax_immediate (fragp, 8, 2);
18518 break;
18519 case T_MNEM_inc_sp:
18520 case T_MNEM_dec_sp:
18521 newsize = relax_immediate (fragp, 7, 2);
18522 break;
18523 case T_MNEM_addi:
18524 case T_MNEM_addis:
18525 case T_MNEM_subi:
18526 case T_MNEM_subis:
18527 newsize = relax_addsub (fragp, sec);
18528 break;
18529 default:
18530 abort ();
18531 }
18532
18533 fragp->fr_var = newsize;
18534 /* Freeze wide instructions that are at or before the same location as
18535 in the previous pass. This avoids infinite loops.
18536 Don't freeze them unconditionally because targets may be artificially
18537 misaligned by the expansion of preceding frags. */
18538 if (stretch <= 0 && newsize > 2)
18539 {
18540 md_convert_frag (sec->owner, sec, fragp);
18541 frag_wane (fragp);
18542 }
18543
18544 return newsize - oldsize;
18545 }
18546
18547 /* Round up a section size to the appropriate boundary. */
18548
18549 valueT
18550 md_section_align (segT segment ATTRIBUTE_UNUSED,
18551 valueT size)
18552 {
18553 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18554 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18555 {
18556 /* For a.out, force the section size to be aligned. If we don't do
18557 this, BFD will align it for us, but it will not write out the
18558 final bytes of the section. This may be a bug in BFD, but it is
18559 easier to fix it here since that is how the other a.out targets
18560 work. */
18561 int align;
18562
18563 align = bfd_get_section_alignment (stdoutput, segment);
18564 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18565 }
18566 #endif
18567
18568 return size;
18569 }
18570
18571 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18572 of an rs_align_code fragment. */
18573
18574 void
18575 arm_handle_align (fragS * fragP)
18576 {
18577 static char const arm_noop[2][2][4] =
18578 {
18579 { /* ARMv1 */
18580 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18581 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18582 },
18583 { /* ARMv6k */
18584 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18585 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18586 },
18587 };
18588 static char const thumb_noop[2][2][2] =
18589 {
18590 { /* Thumb-1 */
18591 {0xc0, 0x46}, /* LE */
18592 {0x46, 0xc0}, /* BE */
18593 },
18594 { /* Thumb-2 */
18595 {0x00, 0xbf}, /* LE */
18596 {0xbf, 0x00} /* BE */
18597 }
18598 };
18599 static char const wide_thumb_noop[2][4] =
18600 { /* Wide Thumb-2 */
18601 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18602 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18603 };
18604
18605 unsigned bytes, fix, noop_size;
18606 char * p;
18607 const char * noop;
18608 const char *narrow_noop = NULL;
18609 #ifdef OBJ_ELF
18610 enum mstate state;
18611 #endif
18612
18613 if (fragP->fr_type != rs_align_code)
18614 return;
18615
18616 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18617 p = fragP->fr_literal + fragP->fr_fix;
18618 fix = 0;
18619
18620 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18621 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
18622
18623 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
18624
18625 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
18626 {
18627 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18628 {
18629 narrow_noop = thumb_noop[1][target_big_endian];
18630 noop = wide_thumb_noop[target_big_endian];
18631 }
18632 else
18633 noop = thumb_noop[0][target_big_endian];
18634 noop_size = 2;
18635 #ifdef OBJ_ELF
18636 state = MAP_THUMB;
18637 #endif
18638 }
18639 else
18640 {
18641 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18642 [target_big_endian];
18643 noop_size = 4;
18644 #ifdef OBJ_ELF
18645 state = MAP_ARM;
18646 #endif
18647 }
18648
18649 fragP->fr_var = noop_size;
18650
18651 if (bytes & (noop_size - 1))
18652 {
18653 fix = bytes & (noop_size - 1);
18654 #ifdef OBJ_ELF
18655 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18656 #endif
18657 memset (p, 0, fix);
18658 p += fix;
18659 bytes -= fix;
18660 }
18661
18662 if (narrow_noop)
18663 {
18664 if (bytes & noop_size)
18665 {
18666 /* Insert a narrow noop. */
18667 memcpy (p, narrow_noop, noop_size);
18668 p += noop_size;
18669 bytes -= noop_size;
18670 fix += noop_size;
18671 }
18672
18673 /* Use wide noops for the remainder */
18674 noop_size = 4;
18675 }
18676
18677 while (bytes >= noop_size)
18678 {
18679 memcpy (p, noop, noop_size);
18680 p += noop_size;
18681 bytes -= noop_size;
18682 fix += noop_size;
18683 }
18684
18685 fragP->fr_fix += fix;
18686 }
18687
18688 /* Called from md_do_align. Used to create an alignment
18689 frag in a code section. */
18690
18691 void
18692 arm_frag_align_code (int n, int max)
18693 {
18694 char * p;
18695
18696 /* We assume that there will never be a requirement
18697 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
18698 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
18699 {
18700 char err_msg[128];
18701
18702 sprintf (err_msg,
18703 _("alignments greater than %d bytes not supported in .text sections."),
18704 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
18705 as_fatal ("%s", err_msg);
18706 }
18707
18708 p = frag_var (rs_align_code,
18709 MAX_MEM_FOR_RS_ALIGN_CODE,
18710 1,
18711 (relax_substateT) max,
18712 (symbolS *) NULL,
18713 (offsetT) n,
18714 (char *) NULL);
18715 *p = 0;
18716 }
18717
18718 /* Perform target specific initialisation of a frag.
18719 Note - despite the name this initialisation is not done when the frag
18720 is created, but only when its type is assigned. A frag can be created
18721 and used a long time before its type is set, so beware of assuming that
18722 this initialisationis performed first. */
18723
18724 #ifndef OBJ_ELF
18725 void
18726 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18727 {
18728 /* Record whether this frag is in an ARM or a THUMB area. */
18729 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18730 }
18731
18732 #else /* OBJ_ELF is defined. */
18733 void
18734 arm_init_frag (fragS * fragP, int max_chars)
18735 {
18736 /* If the current ARM vs THUMB mode has not already
18737 been recorded into this frag then do so now. */
18738 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18739 {
18740 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18741
18742 /* Record a mapping symbol for alignment frags. We will delete this
18743 later if the alignment ends up empty. */
18744 switch (fragP->fr_type)
18745 {
18746 case rs_align:
18747 case rs_align_test:
18748 case rs_fill:
18749 mapping_state_2 (MAP_DATA, max_chars);
18750 break;
18751 case rs_align_code:
18752 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18753 break;
18754 default:
18755 break;
18756 }
18757 }
18758 }
18759
18760 /* When we change sections we need to issue a new mapping symbol. */
18761
18762 void
18763 arm_elf_change_section (void)
18764 {
18765 /* Link an unlinked unwind index table section to the .text section. */
18766 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18767 && elf_linked_to_section (now_seg) == NULL)
18768 elf_linked_to_section (now_seg) = text_section;
18769 }
18770
18771 int
18772 arm_elf_section_type (const char * str, size_t len)
18773 {
18774 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18775 return SHT_ARM_EXIDX;
18776
18777 return -1;
18778 }
18779 \f
18780 /* Code to deal with unwinding tables. */
18781
18782 static void add_unwind_adjustsp (offsetT);
18783
18784 /* Generate any deferred unwind frame offset. */
18785
18786 static void
18787 flush_pending_unwind (void)
18788 {
18789 offsetT offset;
18790
18791 offset = unwind.pending_offset;
18792 unwind.pending_offset = 0;
18793 if (offset != 0)
18794 add_unwind_adjustsp (offset);
18795 }
18796
18797 /* Add an opcode to this list for this function. Two-byte opcodes should
18798 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18799 order. */
18800
18801 static void
18802 add_unwind_opcode (valueT op, int length)
18803 {
18804 /* Add any deferred stack adjustment. */
18805 if (unwind.pending_offset)
18806 flush_pending_unwind ();
18807
18808 unwind.sp_restored = 0;
18809
18810 if (unwind.opcode_count + length > unwind.opcode_alloc)
18811 {
18812 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18813 if (unwind.opcodes)
18814 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18815 unwind.opcode_alloc);
18816 else
18817 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
18818 }
18819 while (length > 0)
18820 {
18821 length--;
18822 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18823 op >>= 8;
18824 unwind.opcode_count++;
18825 }
18826 }
18827
18828 /* Add unwind opcodes to adjust the stack pointer. */
18829
18830 static void
18831 add_unwind_adjustsp (offsetT offset)
18832 {
18833 valueT op;
18834
18835 if (offset > 0x200)
18836 {
18837 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18838 char bytes[5];
18839 int n;
18840 valueT o;
18841
18842 /* Long form: 0xb2, uleb128. */
18843 /* This might not fit in a word so add the individual bytes,
18844 remembering the list is built in reverse order. */
18845 o = (valueT) ((offset - 0x204) >> 2);
18846 if (o == 0)
18847 add_unwind_opcode (0, 1);
18848
18849 /* Calculate the uleb128 encoding of the offset. */
18850 n = 0;
18851 while (o)
18852 {
18853 bytes[n] = o & 0x7f;
18854 o >>= 7;
18855 if (o)
18856 bytes[n] |= 0x80;
18857 n++;
18858 }
18859 /* Add the insn. */
18860 for (; n; n--)
18861 add_unwind_opcode (bytes[n - 1], 1);
18862 add_unwind_opcode (0xb2, 1);
18863 }
18864 else if (offset > 0x100)
18865 {
18866 /* Two short opcodes. */
18867 add_unwind_opcode (0x3f, 1);
18868 op = (offset - 0x104) >> 2;
18869 add_unwind_opcode (op, 1);
18870 }
18871 else if (offset > 0)
18872 {
18873 /* Short opcode. */
18874 op = (offset - 4) >> 2;
18875 add_unwind_opcode (op, 1);
18876 }
18877 else if (offset < 0)
18878 {
18879 offset = -offset;
18880 while (offset > 0x100)
18881 {
18882 add_unwind_opcode (0x7f, 1);
18883 offset -= 0x100;
18884 }
18885 op = ((offset - 4) >> 2) | 0x40;
18886 add_unwind_opcode (op, 1);
18887 }
18888 }
18889
18890 /* Finish the list of unwind opcodes for this function. */
18891 static void
18892 finish_unwind_opcodes (void)
18893 {
18894 valueT op;
18895
18896 if (unwind.fp_used)
18897 {
18898 /* Adjust sp as necessary. */
18899 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
18900 flush_pending_unwind ();
18901
18902 /* After restoring sp from the frame pointer. */
18903 op = 0x90 | unwind.fp_reg;
18904 add_unwind_opcode (op, 1);
18905 }
18906 else
18907 flush_pending_unwind ();
18908 }
18909
18910
18911 /* Start an exception table entry. If idx is nonzero this is an index table
18912 entry. */
18913
18914 static void
18915 start_unwind_section (const segT text_seg, int idx)
18916 {
18917 const char * text_name;
18918 const char * prefix;
18919 const char * prefix_once;
18920 const char * group_name;
18921 size_t prefix_len;
18922 size_t text_len;
18923 char * sec_name;
18924 size_t sec_name_len;
18925 int type;
18926 int flags;
18927 int linkonce;
18928
18929 if (idx)
18930 {
18931 prefix = ELF_STRING_ARM_unwind;
18932 prefix_once = ELF_STRING_ARM_unwind_once;
18933 type = SHT_ARM_EXIDX;
18934 }
18935 else
18936 {
18937 prefix = ELF_STRING_ARM_unwind_info;
18938 prefix_once = ELF_STRING_ARM_unwind_info_once;
18939 type = SHT_PROGBITS;
18940 }
18941
18942 text_name = segment_name (text_seg);
18943 if (streq (text_name, ".text"))
18944 text_name = "";
18945
18946 if (strncmp (text_name, ".gnu.linkonce.t.",
18947 strlen (".gnu.linkonce.t.")) == 0)
18948 {
18949 prefix = prefix_once;
18950 text_name += strlen (".gnu.linkonce.t.");
18951 }
18952
18953 prefix_len = strlen (prefix);
18954 text_len = strlen (text_name);
18955 sec_name_len = prefix_len + text_len;
18956 sec_name = (char *) xmalloc (sec_name_len + 1);
18957 memcpy (sec_name, prefix, prefix_len);
18958 memcpy (sec_name + prefix_len, text_name, text_len);
18959 sec_name[prefix_len + text_len] = '\0';
18960
18961 flags = SHF_ALLOC;
18962 linkonce = 0;
18963 group_name = 0;
18964
18965 /* Handle COMDAT group. */
18966 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
18967 {
18968 group_name = elf_group_name (text_seg);
18969 if (group_name == NULL)
18970 {
18971 as_bad (_("Group section `%s' has no group signature"),
18972 segment_name (text_seg));
18973 ignore_rest_of_line ();
18974 return;
18975 }
18976 flags |= SHF_GROUP;
18977 linkonce = 1;
18978 }
18979
18980 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
18981
18982 /* Set the section link for index tables. */
18983 if (idx)
18984 elf_linked_to_section (now_seg) = text_seg;
18985 }
18986
18987
18988 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
18989 personality routine data. Returns zero, or the index table value for
18990 and inline entry. */
18991
18992 static valueT
18993 create_unwind_entry (int have_data)
18994 {
18995 int size;
18996 addressT where;
18997 char *ptr;
18998 /* The current word of data. */
18999 valueT data;
19000 /* The number of bytes left in this word. */
19001 int n;
19002
19003 finish_unwind_opcodes ();
19004
19005 /* Remember the current text section. */
19006 unwind.saved_seg = now_seg;
19007 unwind.saved_subseg = now_subseg;
19008
19009 start_unwind_section (now_seg, 0);
19010
19011 if (unwind.personality_routine == NULL)
19012 {
19013 if (unwind.personality_index == -2)
19014 {
19015 if (have_data)
19016 as_bad (_("handlerdata in cantunwind frame"));
19017 return 1; /* EXIDX_CANTUNWIND. */
19018 }
19019
19020 /* Use a default personality routine if none is specified. */
19021 if (unwind.personality_index == -1)
19022 {
19023 if (unwind.opcode_count > 3)
19024 unwind.personality_index = 1;
19025 else
19026 unwind.personality_index = 0;
19027 }
19028
19029 /* Space for the personality routine entry. */
19030 if (unwind.personality_index == 0)
19031 {
19032 if (unwind.opcode_count > 3)
19033 as_bad (_("too many unwind opcodes for personality routine 0"));
19034
19035 if (!have_data)
19036 {
19037 /* All the data is inline in the index table. */
19038 data = 0x80;
19039 n = 3;
19040 while (unwind.opcode_count > 0)
19041 {
19042 unwind.opcode_count--;
19043 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19044 n--;
19045 }
19046
19047 /* Pad with "finish" opcodes. */
19048 while (n--)
19049 data = (data << 8) | 0xb0;
19050
19051 return data;
19052 }
19053 size = 0;
19054 }
19055 else
19056 /* We get two opcodes "free" in the first word. */
19057 size = unwind.opcode_count - 2;
19058 }
19059 else
19060 /* An extra byte is required for the opcode count. */
19061 size = unwind.opcode_count + 1;
19062
19063 size = (size + 3) >> 2;
19064 if (size > 0xff)
19065 as_bad (_("too many unwind opcodes"));
19066
19067 frag_align (2, 0, 0);
19068 record_alignment (now_seg, 2);
19069 unwind.table_entry = expr_build_dot ();
19070
19071 /* Allocate the table entry. */
19072 ptr = frag_more ((size << 2) + 4);
19073 where = frag_now_fix () - ((size << 2) + 4);
19074
19075 switch (unwind.personality_index)
19076 {
19077 case -1:
19078 /* ??? Should this be a PLT generating relocation? */
19079 /* Custom personality routine. */
19080 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19081 BFD_RELOC_ARM_PREL31);
19082
19083 where += 4;
19084 ptr += 4;
19085
19086 /* Set the first byte to the number of additional words. */
19087 data = size - 1;
19088 n = 3;
19089 break;
19090
19091 /* ABI defined personality routines. */
19092 case 0:
19093 /* Three opcodes bytes are packed into the first word. */
19094 data = 0x80;
19095 n = 3;
19096 break;
19097
19098 case 1:
19099 case 2:
19100 /* The size and first two opcode bytes go in the first word. */
19101 data = ((0x80 + unwind.personality_index) << 8) | size;
19102 n = 2;
19103 break;
19104
19105 default:
19106 /* Should never happen. */
19107 abort ();
19108 }
19109
19110 /* Pack the opcodes into words (MSB first), reversing the list at the same
19111 time. */
19112 while (unwind.opcode_count > 0)
19113 {
19114 if (n == 0)
19115 {
19116 md_number_to_chars (ptr, data, 4);
19117 ptr += 4;
19118 n = 4;
19119 data = 0;
19120 }
19121 unwind.opcode_count--;
19122 n--;
19123 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19124 }
19125
19126 /* Finish off the last word. */
19127 if (n < 4)
19128 {
19129 /* Pad with "finish" opcodes. */
19130 while (n--)
19131 data = (data << 8) | 0xb0;
19132
19133 md_number_to_chars (ptr, data, 4);
19134 }
19135
19136 if (!have_data)
19137 {
19138 /* Add an empty descriptor if there is no user-specified data. */
19139 ptr = frag_more (4);
19140 md_number_to_chars (ptr, 0, 4);
19141 }
19142
19143 return 0;
19144 }
19145
19146
19147 /* Initialize the DWARF-2 unwind information for this procedure. */
19148
19149 void
19150 tc_arm_frame_initial_instructions (void)
19151 {
19152 cfi_add_CFA_def_cfa (REG_SP, 0);
19153 }
19154 #endif /* OBJ_ELF */
19155
19156 /* Convert REGNAME to a DWARF-2 register number. */
19157
19158 int
19159 tc_arm_regname_to_dw2regnum (char *regname)
19160 {
19161 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19162
19163 if (reg == FAIL)
19164 return -1;
19165
19166 return reg;
19167 }
19168
19169 #ifdef TE_PE
19170 void
19171 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19172 {
19173 expressionS exp;
19174
19175 exp.X_op = O_secrel;
19176 exp.X_add_symbol = symbol;
19177 exp.X_add_number = 0;
19178 emit_expr (&exp, size);
19179 }
19180 #endif
19181
19182 /* MD interface: Symbol and relocation handling. */
19183
19184 /* Return the address within the segment that a PC-relative fixup is
19185 relative to. For ARM, PC-relative fixups applied to instructions
19186 are generally relative to the location of the fixup plus 8 bytes.
19187 Thumb branches are offset by 4, and Thumb loads relative to PC
19188 require special handling. */
19189
19190 long
19191 md_pcrel_from_section (fixS * fixP, segT seg)
19192 {
19193 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19194
19195 /* If this is pc-relative and we are going to emit a relocation
19196 then we just want to put out any pipeline compensation that the linker
19197 will need. Otherwise we want to use the calculated base.
19198 For WinCE we skip the bias for externals as well, since this
19199 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19200 if (fixP->fx_pcrel
19201 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19202 || (arm_force_relocation (fixP)
19203 #ifdef TE_WINCE
19204 && !S_IS_EXTERNAL (fixP->fx_addsy)
19205 #endif
19206 )))
19207 base = 0;
19208
19209
19210 switch (fixP->fx_r_type)
19211 {
19212 /* PC relative addressing on the Thumb is slightly odd as the
19213 bottom two bits of the PC are forced to zero for the
19214 calculation. This happens *after* application of the
19215 pipeline offset. However, Thumb adrl already adjusts for
19216 this, so we need not do it again. */
19217 case BFD_RELOC_ARM_THUMB_ADD:
19218 return base & ~3;
19219
19220 case BFD_RELOC_ARM_THUMB_OFFSET:
19221 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19222 case BFD_RELOC_ARM_T32_ADD_PC12:
19223 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19224 return (base + 4) & ~3;
19225
19226 /* Thumb branches are simply offset by +4. */
19227 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19228 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19229 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19230 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19231 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19232 return base + 4;
19233
19234 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19235 if (fixP->fx_addsy
19236 && ARM_IS_FUNC (fixP->fx_addsy)
19237 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19238 base = fixP->fx_where + fixP->fx_frag->fr_address;
19239 return base + 4;
19240
19241 /* BLX is like branches above, but forces the low two bits of PC to
19242 zero. */
19243 case BFD_RELOC_THUMB_PCREL_BLX:
19244 if (fixP->fx_addsy
19245 && THUMB_IS_FUNC (fixP->fx_addsy)
19246 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19247 base = fixP->fx_where + fixP->fx_frag->fr_address;
19248 return (base + 4) & ~3;
19249
19250 /* ARM mode branches are offset by +8. However, the Windows CE
19251 loader expects the relocation not to take this into account. */
19252 case BFD_RELOC_ARM_PCREL_BLX:
19253 if (fixP->fx_addsy
19254 && ARM_IS_FUNC (fixP->fx_addsy)
19255 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19256 base = fixP->fx_where + fixP->fx_frag->fr_address;
19257 return base + 8;
19258
19259 case BFD_RELOC_ARM_PCREL_CALL:
19260 if (fixP->fx_addsy
19261 && THUMB_IS_FUNC (fixP->fx_addsy)
19262 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19263 base = fixP->fx_where + fixP->fx_frag->fr_address;
19264 return base + 8;
19265
19266 case BFD_RELOC_ARM_PCREL_BRANCH:
19267 case BFD_RELOC_ARM_PCREL_JUMP:
19268 case BFD_RELOC_ARM_PLT32:
19269 #ifdef TE_WINCE
19270 /* When handling fixups immediately, because we have already
19271 discovered the value of a symbol, or the address of the frag involved
19272 we must account for the offset by +8, as the OS loader will never see the reloc.
19273 see fixup_segment() in write.c
19274 The S_IS_EXTERNAL test handles the case of global symbols.
19275 Those need the calculated base, not just the pipe compensation the linker will need. */
19276 if (fixP->fx_pcrel
19277 && fixP->fx_addsy != NULL
19278 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19279 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19280 return base + 8;
19281 return base;
19282 #else
19283 return base + 8;
19284 #endif
19285
19286
19287 /* ARM mode loads relative to PC are also offset by +8. Unlike
19288 branches, the Windows CE loader *does* expect the relocation
19289 to take this into account. */
19290 case BFD_RELOC_ARM_OFFSET_IMM:
19291 case BFD_RELOC_ARM_OFFSET_IMM8:
19292 case BFD_RELOC_ARM_HWLITERAL:
19293 case BFD_RELOC_ARM_LITERAL:
19294 case BFD_RELOC_ARM_CP_OFF_IMM:
19295 return base + 8;
19296
19297
19298 /* Other PC-relative relocations are un-offset. */
19299 default:
19300 return base;
19301 }
19302 }
19303
19304 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19305 Otherwise we have no need to default values of symbols. */
19306
19307 symbolS *
19308 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19309 {
19310 #ifdef OBJ_ELF
19311 if (name[0] == '_' && name[1] == 'G'
19312 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19313 {
19314 if (!GOT_symbol)
19315 {
19316 if (symbol_find (name))
19317 as_bad (_("GOT already in the symbol table"));
19318
19319 GOT_symbol = symbol_new (name, undefined_section,
19320 (valueT) 0, & zero_address_frag);
19321 }
19322
19323 return GOT_symbol;
19324 }
19325 #endif
19326
19327 return NULL;
19328 }
19329
19330 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19331 computed as two separate immediate values, added together. We
19332 already know that this value cannot be computed by just one ARM
19333 instruction. */
19334
19335 static unsigned int
19336 validate_immediate_twopart (unsigned int val,
19337 unsigned int * highpart)
19338 {
19339 unsigned int a;
19340 unsigned int i;
19341
19342 for (i = 0; i < 32; i += 2)
19343 if (((a = rotate_left (val, i)) & 0xff) != 0)
19344 {
19345 if (a & 0xff00)
19346 {
19347 if (a & ~ 0xffff)
19348 continue;
19349 * highpart = (a >> 8) | ((i + 24) << 7);
19350 }
19351 else if (a & 0xff0000)
19352 {
19353 if (a & 0xff000000)
19354 continue;
19355 * highpart = (a >> 16) | ((i + 16) << 7);
19356 }
19357 else
19358 {
19359 gas_assert (a & 0xff000000);
19360 * highpart = (a >> 24) | ((i + 8) << 7);
19361 }
19362
19363 return (a & 0xff) | (i << 7);
19364 }
19365
19366 return FAIL;
19367 }
19368
19369 static int
19370 validate_offset_imm (unsigned int val, int hwse)
19371 {
19372 if ((hwse && val > 255) || val > 4095)
19373 return FAIL;
19374 return val;
19375 }
19376
19377 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19378 negative immediate constant by altering the instruction. A bit of
19379 a hack really.
19380 MOV <-> MVN
19381 AND <-> BIC
19382 ADC <-> SBC
19383 by inverting the second operand, and
19384 ADD <-> SUB
19385 CMP <-> CMN
19386 by negating the second operand. */
19387
19388 static int
19389 negate_data_op (unsigned long * instruction,
19390 unsigned long value)
19391 {
19392 int op, new_inst;
19393 unsigned long negated, inverted;
19394
19395 negated = encode_arm_immediate (-value);
19396 inverted = encode_arm_immediate (~value);
19397
19398 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19399 switch (op)
19400 {
19401 /* First negates. */
19402 case OPCODE_SUB: /* ADD <-> SUB */
19403 new_inst = OPCODE_ADD;
19404 value = negated;
19405 break;
19406
19407 case OPCODE_ADD:
19408 new_inst = OPCODE_SUB;
19409 value = negated;
19410 break;
19411
19412 case OPCODE_CMP: /* CMP <-> CMN */
19413 new_inst = OPCODE_CMN;
19414 value = negated;
19415 break;
19416
19417 case OPCODE_CMN:
19418 new_inst = OPCODE_CMP;
19419 value = negated;
19420 break;
19421
19422 /* Now Inverted ops. */
19423 case OPCODE_MOV: /* MOV <-> MVN */
19424 new_inst = OPCODE_MVN;
19425 value = inverted;
19426 break;
19427
19428 case OPCODE_MVN:
19429 new_inst = OPCODE_MOV;
19430 value = inverted;
19431 break;
19432
19433 case OPCODE_AND: /* AND <-> BIC */
19434 new_inst = OPCODE_BIC;
19435 value = inverted;
19436 break;
19437
19438 case OPCODE_BIC:
19439 new_inst = OPCODE_AND;
19440 value = inverted;
19441 break;
19442
19443 case OPCODE_ADC: /* ADC <-> SBC */
19444 new_inst = OPCODE_SBC;
19445 value = inverted;
19446 break;
19447
19448 case OPCODE_SBC:
19449 new_inst = OPCODE_ADC;
19450 value = inverted;
19451 break;
19452
19453 /* We cannot do anything. */
19454 default:
19455 return FAIL;
19456 }
19457
19458 if (value == (unsigned) FAIL)
19459 return FAIL;
19460
19461 *instruction &= OPCODE_MASK;
19462 *instruction |= new_inst << DATA_OP_SHIFT;
19463 return value;
19464 }
19465
19466 /* Like negate_data_op, but for Thumb-2. */
19467
19468 static unsigned int
19469 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19470 {
19471 int op, new_inst;
19472 int rd;
19473 unsigned int negated, inverted;
19474
19475 negated = encode_thumb32_immediate (-value);
19476 inverted = encode_thumb32_immediate (~value);
19477
19478 rd = (*instruction >> 8) & 0xf;
19479 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19480 switch (op)
19481 {
19482 /* ADD <-> SUB. Includes CMP <-> CMN. */
19483 case T2_OPCODE_SUB:
19484 new_inst = T2_OPCODE_ADD;
19485 value = negated;
19486 break;
19487
19488 case T2_OPCODE_ADD:
19489 new_inst = T2_OPCODE_SUB;
19490 value = negated;
19491 break;
19492
19493 /* ORR <-> ORN. Includes MOV <-> MVN. */
19494 case T2_OPCODE_ORR:
19495 new_inst = T2_OPCODE_ORN;
19496 value = inverted;
19497 break;
19498
19499 case T2_OPCODE_ORN:
19500 new_inst = T2_OPCODE_ORR;
19501 value = inverted;
19502 break;
19503
19504 /* AND <-> BIC. TST has no inverted equivalent. */
19505 case T2_OPCODE_AND:
19506 new_inst = T2_OPCODE_BIC;
19507 if (rd == 15)
19508 value = FAIL;
19509 else
19510 value = inverted;
19511 break;
19512
19513 case T2_OPCODE_BIC:
19514 new_inst = T2_OPCODE_AND;
19515 value = inverted;
19516 break;
19517
19518 /* ADC <-> SBC */
19519 case T2_OPCODE_ADC:
19520 new_inst = T2_OPCODE_SBC;
19521 value = inverted;
19522 break;
19523
19524 case T2_OPCODE_SBC:
19525 new_inst = T2_OPCODE_ADC;
19526 value = inverted;
19527 break;
19528
19529 /* We cannot do anything. */
19530 default:
19531 return FAIL;
19532 }
19533
19534 if (value == (unsigned int)FAIL)
19535 return FAIL;
19536
19537 *instruction &= T2_OPCODE_MASK;
19538 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19539 return value;
19540 }
19541
19542 /* Read a 32-bit thumb instruction from buf. */
19543 static unsigned long
19544 get_thumb32_insn (char * buf)
19545 {
19546 unsigned long insn;
19547 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19548 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19549
19550 return insn;
19551 }
19552
19553
19554 /* We usually want to set the low bit on the address of thumb function
19555 symbols. In particular .word foo - . should have the low bit set.
19556 Generic code tries to fold the difference of two symbols to
19557 a constant. Prevent this and force a relocation when the first symbols
19558 is a thumb function. */
19559
19560 bfd_boolean
19561 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19562 {
19563 if (op == O_subtract
19564 && l->X_op == O_symbol
19565 && r->X_op == O_symbol
19566 && THUMB_IS_FUNC (l->X_add_symbol))
19567 {
19568 l->X_op = O_subtract;
19569 l->X_op_symbol = r->X_add_symbol;
19570 l->X_add_number -= r->X_add_number;
19571 return TRUE;
19572 }
19573
19574 /* Process as normal. */
19575 return FALSE;
19576 }
19577
19578 /* Encode Thumb2 unconditional branches and calls. The encoding
19579 for the 2 are identical for the immediate values. */
19580
19581 static void
19582 encode_thumb2_b_bl_offset (char * buf, offsetT value)
19583 {
19584 #define T2I1I2MASK ((1 << 13) | (1 << 11))
19585 offsetT newval;
19586 offsetT newval2;
19587 addressT S, I1, I2, lo, hi;
19588
19589 S = (value >> 24) & 0x01;
19590 I1 = (value >> 23) & 0x01;
19591 I2 = (value >> 22) & 0x01;
19592 hi = (value >> 12) & 0x3ff;
19593 lo = (value >> 1) & 0x7ff;
19594 newval = md_chars_to_number (buf, THUMB_SIZE);
19595 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19596 newval |= (S << 10) | hi;
19597 newval2 &= ~T2I1I2MASK;
19598 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
19599 md_number_to_chars (buf, newval, THUMB_SIZE);
19600 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19601 }
19602
19603 void
19604 md_apply_fix (fixS * fixP,
19605 valueT * valP,
19606 segT seg)
19607 {
19608 offsetT value = * valP;
19609 offsetT newval;
19610 unsigned int newimm;
19611 unsigned long temp;
19612 int sign;
19613 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
19614
19615 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
19616
19617 /* Note whether this will delete the relocation. */
19618
19619 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19620 fixP->fx_done = 1;
19621
19622 /* On a 64-bit host, silently truncate 'value' to 32 bits for
19623 consistency with the behaviour on 32-bit hosts. Remember value
19624 for emit_reloc. */
19625 value &= 0xffffffff;
19626 value ^= 0x80000000;
19627 value -= 0x80000000;
19628
19629 *valP = value;
19630 fixP->fx_addnumber = value;
19631
19632 /* Same treatment for fixP->fx_offset. */
19633 fixP->fx_offset &= 0xffffffff;
19634 fixP->fx_offset ^= 0x80000000;
19635 fixP->fx_offset -= 0x80000000;
19636
19637 switch (fixP->fx_r_type)
19638 {
19639 case BFD_RELOC_NONE:
19640 /* This will need to go in the object file. */
19641 fixP->fx_done = 0;
19642 break;
19643
19644 case BFD_RELOC_ARM_IMMEDIATE:
19645 /* We claim that this fixup has been processed here,
19646 even if in fact we generate an error because we do
19647 not have a reloc for it, so tc_gen_reloc will reject it. */
19648 fixP->fx_done = 1;
19649
19650 if (fixP->fx_addsy
19651 && ! S_IS_DEFINED (fixP->fx_addsy))
19652 {
19653 as_bad_where (fixP->fx_file, fixP->fx_line,
19654 _("undefined symbol %s used as an immediate value"),
19655 S_GET_NAME (fixP->fx_addsy));
19656 break;
19657 }
19658
19659 if (fixP->fx_addsy
19660 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19661 {
19662 as_bad_where (fixP->fx_file, fixP->fx_line,
19663 _("symbol %s is in a different section"),
19664 S_GET_NAME (fixP->fx_addsy));
19665 break;
19666 }
19667
19668 newimm = encode_arm_immediate (value);
19669 temp = md_chars_to_number (buf, INSN_SIZE);
19670
19671 /* If the instruction will fail, see if we can fix things up by
19672 changing the opcode. */
19673 if (newimm == (unsigned int) FAIL
19674 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
19675 {
19676 as_bad_where (fixP->fx_file, fixP->fx_line,
19677 _("invalid constant (%lx) after fixup"),
19678 (unsigned long) value);
19679 break;
19680 }
19681
19682 newimm |= (temp & 0xfffff000);
19683 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19684 break;
19685
19686 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19687 {
19688 unsigned int highpart = 0;
19689 unsigned int newinsn = 0xe1a00000; /* nop. */
19690
19691 if (fixP->fx_addsy
19692 && ! S_IS_DEFINED (fixP->fx_addsy))
19693 {
19694 as_bad_where (fixP->fx_file, fixP->fx_line,
19695 _("undefined symbol %s used as an immediate value"),
19696 S_GET_NAME (fixP->fx_addsy));
19697 break;
19698 }
19699
19700 if (fixP->fx_addsy
19701 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19702 {
19703 as_bad_where (fixP->fx_file, fixP->fx_line,
19704 _("symbol %s is in a different section"),
19705 S_GET_NAME (fixP->fx_addsy));
19706 break;
19707 }
19708
19709 newimm = encode_arm_immediate (value);
19710 temp = md_chars_to_number (buf, INSN_SIZE);
19711
19712 /* If the instruction will fail, see if we can fix things up by
19713 changing the opcode. */
19714 if (newimm == (unsigned int) FAIL
19715 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19716 {
19717 /* No ? OK - try using two ADD instructions to generate
19718 the value. */
19719 newimm = validate_immediate_twopart (value, & highpart);
19720
19721 /* Yes - then make sure that the second instruction is
19722 also an add. */
19723 if (newimm != (unsigned int) FAIL)
19724 newinsn = temp;
19725 /* Still No ? Try using a negated value. */
19726 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19727 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19728 /* Otherwise - give up. */
19729 else
19730 {
19731 as_bad_where (fixP->fx_file, fixP->fx_line,
19732 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19733 (long) value);
19734 break;
19735 }
19736
19737 /* Replace the first operand in the 2nd instruction (which
19738 is the PC) with the destination register. We have
19739 already added in the PC in the first instruction and we
19740 do not want to do it again. */
19741 newinsn &= ~ 0xf0000;
19742 newinsn |= ((newinsn & 0x0f000) << 4);
19743 }
19744
19745 newimm |= (temp & 0xfffff000);
19746 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19747
19748 highpart |= (newinsn & 0xfffff000);
19749 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19750 }
19751 break;
19752
19753 case BFD_RELOC_ARM_OFFSET_IMM:
19754 if (!fixP->fx_done && seg->use_rela_p)
19755 value = 0;
19756
19757 case BFD_RELOC_ARM_LITERAL:
19758 sign = value >= 0;
19759
19760 if (value < 0)
19761 value = - value;
19762
19763 if (validate_offset_imm (value, 0) == FAIL)
19764 {
19765 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19766 as_bad_where (fixP->fx_file, fixP->fx_line,
19767 _("invalid literal constant: pool needs to be closer"));
19768 else
19769 as_bad_where (fixP->fx_file, fixP->fx_line,
19770 _("bad immediate value for offset (%ld)"),
19771 (long) value);
19772 break;
19773 }
19774
19775 newval = md_chars_to_number (buf, INSN_SIZE);
19776 newval &= 0xff7ff000;
19777 newval |= value | (sign ? INDEX_UP : 0);
19778 md_number_to_chars (buf, newval, INSN_SIZE);
19779 break;
19780
19781 case BFD_RELOC_ARM_OFFSET_IMM8:
19782 case BFD_RELOC_ARM_HWLITERAL:
19783 sign = value >= 0;
19784
19785 if (value < 0)
19786 value = - value;
19787
19788 if (validate_offset_imm (value, 1) == FAIL)
19789 {
19790 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19791 as_bad_where (fixP->fx_file, fixP->fx_line,
19792 _("invalid literal constant: pool needs to be closer"));
19793 else
19794 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
19795 (long) value);
19796 break;
19797 }
19798
19799 newval = md_chars_to_number (buf, INSN_SIZE);
19800 newval &= 0xff7ff0f0;
19801 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19802 md_number_to_chars (buf, newval, INSN_SIZE);
19803 break;
19804
19805 case BFD_RELOC_ARM_T32_OFFSET_U8:
19806 if (value < 0 || value > 1020 || value % 4 != 0)
19807 as_bad_where (fixP->fx_file, fixP->fx_line,
19808 _("bad immediate value for offset (%ld)"), (long) value);
19809 value /= 4;
19810
19811 newval = md_chars_to_number (buf+2, THUMB_SIZE);
19812 newval |= value;
19813 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19814 break;
19815
19816 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19817 /* This is a complicated relocation used for all varieties of Thumb32
19818 load/store instruction with immediate offset:
19819
19820 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19821 *4, optional writeback(W)
19822 (doubleword load/store)
19823
19824 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19825 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19826 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19827 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19828 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19829
19830 Uppercase letters indicate bits that are already encoded at
19831 this point. Lowercase letters are our problem. For the
19832 second block of instructions, the secondary opcode nybble
19833 (bits 8..11) is present, and bit 23 is zero, even if this is
19834 a PC-relative operation. */
19835 newval = md_chars_to_number (buf, THUMB_SIZE);
19836 newval <<= 16;
19837 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
19838
19839 if ((newval & 0xf0000000) == 0xe0000000)
19840 {
19841 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19842 if (value >= 0)
19843 newval |= (1 << 23);
19844 else
19845 value = -value;
19846 if (value % 4 != 0)
19847 {
19848 as_bad_where (fixP->fx_file, fixP->fx_line,
19849 _("offset not a multiple of 4"));
19850 break;
19851 }
19852 value /= 4;
19853 if (value > 0xff)
19854 {
19855 as_bad_where (fixP->fx_file, fixP->fx_line,
19856 _("offset out of range"));
19857 break;
19858 }
19859 newval &= ~0xff;
19860 }
19861 else if ((newval & 0x000f0000) == 0x000f0000)
19862 {
19863 /* PC-relative, 12-bit offset. */
19864 if (value >= 0)
19865 newval |= (1 << 23);
19866 else
19867 value = -value;
19868 if (value > 0xfff)
19869 {
19870 as_bad_where (fixP->fx_file, fixP->fx_line,
19871 _("offset out of range"));
19872 break;
19873 }
19874 newval &= ~0xfff;
19875 }
19876 else if ((newval & 0x00000100) == 0x00000100)
19877 {
19878 /* Writeback: 8-bit, +/- offset. */
19879 if (value >= 0)
19880 newval |= (1 << 9);
19881 else
19882 value = -value;
19883 if (value > 0xff)
19884 {
19885 as_bad_where (fixP->fx_file, fixP->fx_line,
19886 _("offset out of range"));
19887 break;
19888 }
19889 newval &= ~0xff;
19890 }
19891 else if ((newval & 0x00000f00) == 0x00000e00)
19892 {
19893 /* T-instruction: positive 8-bit offset. */
19894 if (value < 0 || value > 0xff)
19895 {
19896 as_bad_where (fixP->fx_file, fixP->fx_line,
19897 _("offset out of range"));
19898 break;
19899 }
19900 newval &= ~0xff;
19901 newval |= value;
19902 }
19903 else
19904 {
19905 /* Positive 12-bit or negative 8-bit offset. */
19906 int limit;
19907 if (value >= 0)
19908 {
19909 newval |= (1 << 23);
19910 limit = 0xfff;
19911 }
19912 else
19913 {
19914 value = -value;
19915 limit = 0xff;
19916 }
19917 if (value > limit)
19918 {
19919 as_bad_where (fixP->fx_file, fixP->fx_line,
19920 _("offset out of range"));
19921 break;
19922 }
19923 newval &= ~limit;
19924 }
19925
19926 newval |= value;
19927 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
19928 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
19929 break;
19930
19931 case BFD_RELOC_ARM_SHIFT_IMM:
19932 newval = md_chars_to_number (buf, INSN_SIZE);
19933 if (((unsigned long) value) > 32
19934 || (value == 32
19935 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
19936 {
19937 as_bad_where (fixP->fx_file, fixP->fx_line,
19938 _("shift expression is too large"));
19939 break;
19940 }
19941
19942 if (value == 0)
19943 /* Shifts of zero must be done as lsl. */
19944 newval &= ~0x60;
19945 else if (value == 32)
19946 value = 0;
19947 newval &= 0xfffff07f;
19948 newval |= (value & 0x1f) << 7;
19949 md_number_to_chars (buf, newval, INSN_SIZE);
19950 break;
19951
19952 case BFD_RELOC_ARM_T32_IMMEDIATE:
19953 case BFD_RELOC_ARM_T32_ADD_IMM:
19954 case BFD_RELOC_ARM_T32_IMM12:
19955 case BFD_RELOC_ARM_T32_ADD_PC12:
19956 /* We claim that this fixup has been processed here,
19957 even if in fact we generate an error because we do
19958 not have a reloc for it, so tc_gen_reloc will reject it. */
19959 fixP->fx_done = 1;
19960
19961 if (fixP->fx_addsy
19962 && ! S_IS_DEFINED (fixP->fx_addsy))
19963 {
19964 as_bad_where (fixP->fx_file, fixP->fx_line,
19965 _("undefined symbol %s used as an immediate value"),
19966 S_GET_NAME (fixP->fx_addsy));
19967 break;
19968 }
19969
19970 newval = md_chars_to_number (buf, THUMB_SIZE);
19971 newval <<= 16;
19972 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
19973
19974 newimm = FAIL;
19975 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19976 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19977 {
19978 newimm = encode_thumb32_immediate (value);
19979 if (newimm == (unsigned int) FAIL)
19980 newimm = thumb32_negate_data_op (&newval, value);
19981 }
19982 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
19983 && newimm == (unsigned int) FAIL)
19984 {
19985 /* Turn add/sum into addw/subw. */
19986 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19987 newval = (newval & 0xfeffffff) | 0x02000000;
19988
19989 /* 12 bit immediate for addw/subw. */
19990 if (value < 0)
19991 {
19992 value = -value;
19993 newval ^= 0x00a00000;
19994 }
19995 if (value > 0xfff)
19996 newimm = (unsigned int) FAIL;
19997 else
19998 newimm = value;
19999 }
20000
20001 if (newimm == (unsigned int)FAIL)
20002 {
20003 as_bad_where (fixP->fx_file, fixP->fx_line,
20004 _("invalid constant (%lx) after fixup"),
20005 (unsigned long) value);
20006 break;
20007 }
20008
20009 newval |= (newimm & 0x800) << 15;
20010 newval |= (newimm & 0x700) << 4;
20011 newval |= (newimm & 0x0ff);
20012
20013 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20014 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20015 break;
20016
20017 case BFD_RELOC_ARM_SMC:
20018 if (((unsigned long) value) > 0xffff)
20019 as_bad_where (fixP->fx_file, fixP->fx_line,
20020 _("invalid smc expression"));
20021 newval = md_chars_to_number (buf, INSN_SIZE);
20022 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20023 md_number_to_chars (buf, newval, INSN_SIZE);
20024 break;
20025
20026 case BFD_RELOC_ARM_SWI:
20027 if (fixP->tc_fix_data != 0)
20028 {
20029 if (((unsigned long) value) > 0xff)
20030 as_bad_where (fixP->fx_file, fixP->fx_line,
20031 _("invalid swi expression"));
20032 newval = md_chars_to_number (buf, THUMB_SIZE);
20033 newval |= value;
20034 md_number_to_chars (buf, newval, THUMB_SIZE);
20035 }
20036 else
20037 {
20038 if (((unsigned long) value) > 0x00ffffff)
20039 as_bad_where (fixP->fx_file, fixP->fx_line,
20040 _("invalid swi expression"));
20041 newval = md_chars_to_number (buf, INSN_SIZE);
20042 newval |= value;
20043 md_number_to_chars (buf, newval, INSN_SIZE);
20044 }
20045 break;
20046
20047 case BFD_RELOC_ARM_MULTI:
20048 if (((unsigned long) value) > 0xffff)
20049 as_bad_where (fixP->fx_file, fixP->fx_line,
20050 _("invalid expression in load/store multiple"));
20051 newval = value | md_chars_to_number (buf, INSN_SIZE);
20052 md_number_to_chars (buf, newval, INSN_SIZE);
20053 break;
20054
20055 #ifdef OBJ_ELF
20056 case BFD_RELOC_ARM_PCREL_CALL:
20057
20058 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20059 && fixP->fx_addsy
20060 && !S_IS_EXTERNAL (fixP->fx_addsy)
20061 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20062 && THUMB_IS_FUNC (fixP->fx_addsy))
20063 /* Flip the bl to blx. This is a simple flip
20064 bit here because we generate PCREL_CALL for
20065 unconditional bls. */
20066 {
20067 newval = md_chars_to_number (buf, INSN_SIZE);
20068 newval = newval | 0x10000000;
20069 md_number_to_chars (buf, newval, INSN_SIZE);
20070 temp = 1;
20071 fixP->fx_done = 1;
20072 }
20073 else
20074 temp = 3;
20075 goto arm_branch_common;
20076
20077 case BFD_RELOC_ARM_PCREL_JUMP:
20078 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20079 && fixP->fx_addsy
20080 && !S_IS_EXTERNAL (fixP->fx_addsy)
20081 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20082 && THUMB_IS_FUNC (fixP->fx_addsy))
20083 {
20084 /* This would map to a bl<cond>, b<cond>,
20085 b<always> to a Thumb function. We
20086 need to force a relocation for this particular
20087 case. */
20088 newval = md_chars_to_number (buf, INSN_SIZE);
20089 fixP->fx_done = 0;
20090 }
20091
20092 case BFD_RELOC_ARM_PLT32:
20093 #endif
20094 case BFD_RELOC_ARM_PCREL_BRANCH:
20095 temp = 3;
20096 goto arm_branch_common;
20097
20098 case BFD_RELOC_ARM_PCREL_BLX:
20099
20100 temp = 1;
20101 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20102 && fixP->fx_addsy
20103 && !S_IS_EXTERNAL (fixP->fx_addsy)
20104 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20105 && ARM_IS_FUNC (fixP->fx_addsy))
20106 {
20107 /* Flip the blx to a bl and warn. */
20108 const char *name = S_GET_NAME (fixP->fx_addsy);
20109 newval = 0xeb000000;
20110 as_warn_where (fixP->fx_file, fixP->fx_line,
20111 _("blx to '%s' an ARM ISA state function changed to bl"),
20112 name);
20113 md_number_to_chars (buf, newval, INSN_SIZE);
20114 temp = 3;
20115 fixP->fx_done = 1;
20116 }
20117
20118 #ifdef OBJ_ELF
20119 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20120 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20121 #endif
20122
20123 arm_branch_common:
20124 /* We are going to store value (shifted right by two) in the
20125 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20126 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20127 also be be clear. */
20128 if (value & temp)
20129 as_bad_where (fixP->fx_file, fixP->fx_line,
20130 _("misaligned branch destination"));
20131 if ((value & (offsetT)0xfe000000) != (offsetT)0
20132 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20133 as_bad_where (fixP->fx_file, fixP->fx_line,
20134 _("branch out of range"));
20135
20136 if (fixP->fx_done || !seg->use_rela_p)
20137 {
20138 newval = md_chars_to_number (buf, INSN_SIZE);
20139 newval |= (value >> 2) & 0x00ffffff;
20140 /* Set the H bit on BLX instructions. */
20141 if (temp == 1)
20142 {
20143 if (value & 2)
20144 newval |= 0x01000000;
20145 else
20146 newval &= ~0x01000000;
20147 }
20148 md_number_to_chars (buf, newval, INSN_SIZE);
20149 }
20150 break;
20151
20152 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20153 /* CBZ can only branch forward. */
20154
20155 /* Attempts to use CBZ to branch to the next instruction
20156 (which, strictly speaking, are prohibited) will be turned into
20157 no-ops.
20158
20159 FIXME: It may be better to remove the instruction completely and
20160 perform relaxation. */
20161 if (value == -2)
20162 {
20163 newval = md_chars_to_number (buf, THUMB_SIZE);
20164 newval = 0xbf00; /* NOP encoding T1 */
20165 md_number_to_chars (buf, newval, THUMB_SIZE);
20166 }
20167 else
20168 {
20169 if (value & ~0x7e)
20170 as_bad_where (fixP->fx_file, fixP->fx_line,
20171 _("branch out of range"));
20172
20173 if (fixP->fx_done || !seg->use_rela_p)
20174 {
20175 newval = md_chars_to_number (buf, THUMB_SIZE);
20176 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20177 md_number_to_chars (buf, newval, THUMB_SIZE);
20178 }
20179 }
20180 break;
20181
20182 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20183 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20184 as_bad_where (fixP->fx_file, fixP->fx_line,
20185 _("branch out of range"));
20186
20187 if (fixP->fx_done || !seg->use_rela_p)
20188 {
20189 newval = md_chars_to_number (buf, THUMB_SIZE);
20190 newval |= (value & 0x1ff) >> 1;
20191 md_number_to_chars (buf, newval, THUMB_SIZE);
20192 }
20193 break;
20194
20195 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20196 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20197 as_bad_where (fixP->fx_file, fixP->fx_line,
20198 _("branch out of range"));
20199
20200 if (fixP->fx_done || !seg->use_rela_p)
20201 {
20202 newval = md_chars_to_number (buf, THUMB_SIZE);
20203 newval |= (value & 0xfff) >> 1;
20204 md_number_to_chars (buf, newval, THUMB_SIZE);
20205 }
20206 break;
20207
20208 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20209 if (fixP->fx_addsy
20210 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20211 && !S_IS_EXTERNAL (fixP->fx_addsy)
20212 && S_IS_DEFINED (fixP->fx_addsy)
20213 && ARM_IS_FUNC (fixP->fx_addsy)
20214 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20215 {
20216 /* Force a relocation for a branch 20 bits wide. */
20217 fixP->fx_done = 0;
20218 }
20219 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20220 as_bad_where (fixP->fx_file, fixP->fx_line,
20221 _("conditional branch out of range"));
20222
20223 if (fixP->fx_done || !seg->use_rela_p)
20224 {
20225 offsetT newval2;
20226 addressT S, J1, J2, lo, hi;
20227
20228 S = (value & 0x00100000) >> 20;
20229 J2 = (value & 0x00080000) >> 19;
20230 J1 = (value & 0x00040000) >> 18;
20231 hi = (value & 0x0003f000) >> 12;
20232 lo = (value & 0x00000ffe) >> 1;
20233
20234 newval = md_chars_to_number (buf, THUMB_SIZE);
20235 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20236 newval |= (S << 10) | hi;
20237 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20238 md_number_to_chars (buf, newval, THUMB_SIZE);
20239 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20240 }
20241 break;
20242
20243 case BFD_RELOC_THUMB_PCREL_BLX:
20244
20245 /* If there is a blx from a thumb state function to
20246 another thumb function flip this to a bl and warn
20247 about it. */
20248
20249 if (fixP->fx_addsy
20250 && S_IS_DEFINED (fixP->fx_addsy)
20251 && !S_IS_EXTERNAL (fixP->fx_addsy)
20252 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20253 && THUMB_IS_FUNC (fixP->fx_addsy))
20254 {
20255 const char *name = S_GET_NAME (fixP->fx_addsy);
20256 as_warn_where (fixP->fx_file, fixP->fx_line,
20257 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20258 name);
20259 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20260 newval = newval | 0x1000;
20261 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20262 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20263 fixP->fx_done = 1;
20264 }
20265
20266
20267 goto thumb_bl_common;
20268
20269 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20270
20271 /* A bl from Thumb state ISA to an internal ARM state function
20272 is converted to a blx. */
20273 if (fixP->fx_addsy
20274 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20275 && !S_IS_EXTERNAL (fixP->fx_addsy)
20276 && S_IS_DEFINED (fixP->fx_addsy)
20277 && ARM_IS_FUNC (fixP->fx_addsy)
20278 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20279 {
20280 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20281 newval = newval & ~0x1000;
20282 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20283 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20284 fixP->fx_done = 1;
20285 }
20286
20287 thumb_bl_common:
20288
20289 #ifdef OBJ_ELF
20290 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20291 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20292 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20293 #endif
20294
20295 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20296 /* For a BLX instruction, make sure that the relocation is rounded up
20297 to a word boundary. This follows the semantics of the instruction
20298 which specifies that bit 1 of the target address will come from bit
20299 1 of the base address. */
20300 value = (value + 1) & ~ 1;
20301
20302
20303 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20304 {
20305 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20306 {
20307 as_bad_where (fixP->fx_file, fixP->fx_line,
20308 _("branch out of range"));
20309 }
20310 else if ((value & ~0x1ffffff)
20311 && ((value & ~0x1ffffff) != ~0x1ffffff))
20312 {
20313 as_bad_where (fixP->fx_file, fixP->fx_line,
20314 _("Thumb2 branch out of range"));
20315 }
20316 }
20317
20318 if (fixP->fx_done || !seg->use_rela_p)
20319 encode_thumb2_b_bl_offset (buf, value);
20320
20321 break;
20322
20323 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20324 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20325 as_bad_where (fixP->fx_file, fixP->fx_line,
20326 _("branch out of range"));
20327
20328 if (fixP->fx_done || !seg->use_rela_p)
20329 encode_thumb2_b_bl_offset (buf, value);
20330
20331 break;
20332
20333 case BFD_RELOC_8:
20334 if (fixP->fx_done || !seg->use_rela_p)
20335 md_number_to_chars (buf, value, 1);
20336 break;
20337
20338 case BFD_RELOC_16:
20339 if (fixP->fx_done || !seg->use_rela_p)
20340 md_number_to_chars (buf, value, 2);
20341 break;
20342
20343 #ifdef OBJ_ELF
20344 case BFD_RELOC_ARM_TLS_GD32:
20345 case BFD_RELOC_ARM_TLS_LE32:
20346 case BFD_RELOC_ARM_TLS_IE32:
20347 case BFD_RELOC_ARM_TLS_LDM32:
20348 case BFD_RELOC_ARM_TLS_LDO32:
20349 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20350 /* fall through */
20351
20352 case BFD_RELOC_ARM_GOT32:
20353 case BFD_RELOC_ARM_GOTOFF:
20354 if (fixP->fx_done || !seg->use_rela_p)
20355 md_number_to_chars (buf, 0, 4);
20356 break;
20357
20358 case BFD_RELOC_ARM_TARGET2:
20359 /* TARGET2 is not partial-inplace, so we need to write the
20360 addend here for REL targets, because it won't be written out
20361 during reloc processing later. */
20362 if (fixP->fx_done || !seg->use_rela_p)
20363 md_number_to_chars (buf, fixP->fx_offset, 4);
20364 break;
20365 #endif
20366
20367 case BFD_RELOC_RVA:
20368 case BFD_RELOC_32:
20369 case BFD_RELOC_ARM_TARGET1:
20370 case BFD_RELOC_ARM_ROSEGREL32:
20371 case BFD_RELOC_ARM_SBREL32:
20372 case BFD_RELOC_32_PCREL:
20373 #ifdef TE_PE
20374 case BFD_RELOC_32_SECREL:
20375 #endif
20376 if (fixP->fx_done || !seg->use_rela_p)
20377 #ifdef TE_WINCE
20378 /* For WinCE we only do this for pcrel fixups. */
20379 if (fixP->fx_done || fixP->fx_pcrel)
20380 #endif
20381 md_number_to_chars (buf, value, 4);
20382 break;
20383
20384 #ifdef OBJ_ELF
20385 case BFD_RELOC_ARM_PREL31:
20386 if (fixP->fx_done || !seg->use_rela_p)
20387 {
20388 newval = md_chars_to_number (buf, 4) & 0x80000000;
20389 if ((value ^ (value >> 1)) & 0x40000000)
20390 {
20391 as_bad_where (fixP->fx_file, fixP->fx_line,
20392 _("rel31 relocation overflow"));
20393 }
20394 newval |= value & 0x7fffffff;
20395 md_number_to_chars (buf, newval, 4);
20396 }
20397 break;
20398 #endif
20399
20400 case BFD_RELOC_ARM_CP_OFF_IMM:
20401 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20402 if (value < -1023 || value > 1023 || (value & 3))
20403 as_bad_where (fixP->fx_file, fixP->fx_line,
20404 _("co-processor offset out of range"));
20405 cp_off_common:
20406 sign = value >= 0;
20407 if (value < 0)
20408 value = -value;
20409 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20410 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20411 newval = md_chars_to_number (buf, INSN_SIZE);
20412 else
20413 newval = get_thumb32_insn (buf);
20414 newval &= 0xff7fff00;
20415 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20416 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20417 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20418 md_number_to_chars (buf, newval, INSN_SIZE);
20419 else
20420 put_thumb32_insn (buf, newval);
20421 break;
20422
20423 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20424 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20425 if (value < -255 || value > 255)
20426 as_bad_where (fixP->fx_file, fixP->fx_line,
20427 _("co-processor offset out of range"));
20428 value *= 4;
20429 goto cp_off_common;
20430
20431 case BFD_RELOC_ARM_THUMB_OFFSET:
20432 newval = md_chars_to_number (buf, THUMB_SIZE);
20433 /* Exactly what ranges, and where the offset is inserted depends
20434 on the type of instruction, we can establish this from the
20435 top 4 bits. */
20436 switch (newval >> 12)
20437 {
20438 case 4: /* PC load. */
20439 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20440 forced to zero for these loads; md_pcrel_from has already
20441 compensated for this. */
20442 if (value & 3)
20443 as_bad_where (fixP->fx_file, fixP->fx_line,
20444 _("invalid offset, target not word aligned (0x%08lX)"),
20445 (((unsigned long) fixP->fx_frag->fr_address
20446 + (unsigned long) fixP->fx_where) & ~3)
20447 + (unsigned long) value);
20448
20449 if (value & ~0x3fc)
20450 as_bad_where (fixP->fx_file, fixP->fx_line,
20451 _("invalid offset, value too big (0x%08lX)"),
20452 (long) value);
20453
20454 newval |= value >> 2;
20455 break;
20456
20457 case 9: /* SP load/store. */
20458 if (value & ~0x3fc)
20459 as_bad_where (fixP->fx_file, fixP->fx_line,
20460 _("invalid offset, value too big (0x%08lX)"),
20461 (long) value);
20462 newval |= value >> 2;
20463 break;
20464
20465 case 6: /* Word load/store. */
20466 if (value & ~0x7c)
20467 as_bad_where (fixP->fx_file, fixP->fx_line,
20468 _("invalid offset, value too big (0x%08lX)"),
20469 (long) value);
20470 newval |= value << 4; /* 6 - 2. */
20471 break;
20472
20473 case 7: /* Byte load/store. */
20474 if (value & ~0x1f)
20475 as_bad_where (fixP->fx_file, fixP->fx_line,
20476 _("invalid offset, value too big (0x%08lX)"),
20477 (long) value);
20478 newval |= value << 6;
20479 break;
20480
20481 case 8: /* Halfword load/store. */
20482 if (value & ~0x3e)
20483 as_bad_where (fixP->fx_file, fixP->fx_line,
20484 _("invalid offset, value too big (0x%08lX)"),
20485 (long) value);
20486 newval |= value << 5; /* 6 - 1. */
20487 break;
20488
20489 default:
20490 as_bad_where (fixP->fx_file, fixP->fx_line,
20491 "Unable to process relocation for thumb opcode: %lx",
20492 (unsigned long) newval);
20493 break;
20494 }
20495 md_number_to_chars (buf, newval, THUMB_SIZE);
20496 break;
20497
20498 case BFD_RELOC_ARM_THUMB_ADD:
20499 /* This is a complicated relocation, since we use it for all of
20500 the following immediate relocations:
20501
20502 3bit ADD/SUB
20503 8bit ADD/SUB
20504 9bit ADD/SUB SP word-aligned
20505 10bit ADD PC/SP word-aligned
20506
20507 The type of instruction being processed is encoded in the
20508 instruction field:
20509
20510 0x8000 SUB
20511 0x00F0 Rd
20512 0x000F Rs
20513 */
20514 newval = md_chars_to_number (buf, THUMB_SIZE);
20515 {
20516 int rd = (newval >> 4) & 0xf;
20517 int rs = newval & 0xf;
20518 int subtract = !!(newval & 0x8000);
20519
20520 /* Check for HI regs, only very restricted cases allowed:
20521 Adjusting SP, and using PC or SP to get an address. */
20522 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20523 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20524 as_bad_where (fixP->fx_file, fixP->fx_line,
20525 _("invalid Hi register with immediate"));
20526
20527 /* If value is negative, choose the opposite instruction. */
20528 if (value < 0)
20529 {
20530 value = -value;
20531 subtract = !subtract;
20532 if (value < 0)
20533 as_bad_where (fixP->fx_file, fixP->fx_line,
20534 _("immediate value out of range"));
20535 }
20536
20537 if (rd == REG_SP)
20538 {
20539 if (value & ~0x1fc)
20540 as_bad_where (fixP->fx_file, fixP->fx_line,
20541 _("invalid immediate for stack address calculation"));
20542 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20543 newval |= value >> 2;
20544 }
20545 else if (rs == REG_PC || rs == REG_SP)
20546 {
20547 if (subtract || value & ~0x3fc)
20548 as_bad_where (fixP->fx_file, fixP->fx_line,
20549 _("invalid immediate for address calculation (value = 0x%08lX)"),
20550 (unsigned long) value);
20551 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20552 newval |= rd << 8;
20553 newval |= value >> 2;
20554 }
20555 else if (rs == rd)
20556 {
20557 if (value & ~0xff)
20558 as_bad_where (fixP->fx_file, fixP->fx_line,
20559 _("immediate value out of range"));
20560 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20561 newval |= (rd << 8) | value;
20562 }
20563 else
20564 {
20565 if (value & ~0x7)
20566 as_bad_where (fixP->fx_file, fixP->fx_line,
20567 _("immediate value out of range"));
20568 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20569 newval |= rd | (rs << 3) | (value << 6);
20570 }
20571 }
20572 md_number_to_chars (buf, newval, THUMB_SIZE);
20573 break;
20574
20575 case BFD_RELOC_ARM_THUMB_IMM:
20576 newval = md_chars_to_number (buf, THUMB_SIZE);
20577 if (value < 0 || value > 255)
20578 as_bad_where (fixP->fx_file, fixP->fx_line,
20579 _("invalid immediate: %ld is out of range"),
20580 (long) value);
20581 newval |= value;
20582 md_number_to_chars (buf, newval, THUMB_SIZE);
20583 break;
20584
20585 case BFD_RELOC_ARM_THUMB_SHIFT:
20586 /* 5bit shift value (0..32). LSL cannot take 32. */
20587 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20588 temp = newval & 0xf800;
20589 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20590 as_bad_where (fixP->fx_file, fixP->fx_line,
20591 _("invalid shift value: %ld"), (long) value);
20592 /* Shifts of zero must be encoded as LSL. */
20593 if (value == 0)
20594 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20595 /* Shifts of 32 are encoded as zero. */
20596 else if (value == 32)
20597 value = 0;
20598 newval |= value << 6;
20599 md_number_to_chars (buf, newval, THUMB_SIZE);
20600 break;
20601
20602 case BFD_RELOC_VTABLE_INHERIT:
20603 case BFD_RELOC_VTABLE_ENTRY:
20604 fixP->fx_done = 0;
20605 return;
20606
20607 case BFD_RELOC_ARM_MOVW:
20608 case BFD_RELOC_ARM_MOVT:
20609 case BFD_RELOC_ARM_THUMB_MOVW:
20610 case BFD_RELOC_ARM_THUMB_MOVT:
20611 if (fixP->fx_done || !seg->use_rela_p)
20612 {
20613 /* REL format relocations are limited to a 16-bit addend. */
20614 if (!fixP->fx_done)
20615 {
20616 if (value < -0x8000 || value > 0x7fff)
20617 as_bad_where (fixP->fx_file, fixP->fx_line,
20618 _("offset out of range"));
20619 }
20620 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20621 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20622 {
20623 value >>= 16;
20624 }
20625
20626 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20627 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20628 {
20629 newval = get_thumb32_insn (buf);
20630 newval &= 0xfbf08f00;
20631 newval |= (value & 0xf000) << 4;
20632 newval |= (value & 0x0800) << 15;
20633 newval |= (value & 0x0700) << 4;
20634 newval |= (value & 0x00ff);
20635 put_thumb32_insn (buf, newval);
20636 }
20637 else
20638 {
20639 newval = md_chars_to_number (buf, 4);
20640 newval &= 0xfff0f000;
20641 newval |= value & 0x0fff;
20642 newval |= (value & 0xf000) << 4;
20643 md_number_to_chars (buf, newval, 4);
20644 }
20645 }
20646 return;
20647
20648 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20649 case BFD_RELOC_ARM_ALU_PC_G0:
20650 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20651 case BFD_RELOC_ARM_ALU_PC_G1:
20652 case BFD_RELOC_ARM_ALU_PC_G2:
20653 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20654 case BFD_RELOC_ARM_ALU_SB_G0:
20655 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20656 case BFD_RELOC_ARM_ALU_SB_G1:
20657 case BFD_RELOC_ARM_ALU_SB_G2:
20658 gas_assert (!fixP->fx_done);
20659 if (!seg->use_rela_p)
20660 {
20661 bfd_vma insn;
20662 bfd_vma encoded_addend;
20663 bfd_vma addend_abs = abs (value);
20664
20665 /* Check that the absolute value of the addend can be
20666 expressed as an 8-bit constant plus a rotation. */
20667 encoded_addend = encode_arm_immediate (addend_abs);
20668 if (encoded_addend == (unsigned int) FAIL)
20669 as_bad_where (fixP->fx_file, fixP->fx_line,
20670 _("the offset 0x%08lX is not representable"),
20671 (unsigned long) addend_abs);
20672
20673 /* Extract the instruction. */
20674 insn = md_chars_to_number (buf, INSN_SIZE);
20675
20676 /* If the addend is positive, use an ADD instruction.
20677 Otherwise use a SUB. Take care not to destroy the S bit. */
20678 insn &= 0xff1fffff;
20679 if (value < 0)
20680 insn |= 1 << 22;
20681 else
20682 insn |= 1 << 23;
20683
20684 /* Place the encoded addend into the first 12 bits of the
20685 instruction. */
20686 insn &= 0xfffff000;
20687 insn |= encoded_addend;
20688
20689 /* Update the instruction. */
20690 md_number_to_chars (buf, insn, INSN_SIZE);
20691 }
20692 break;
20693
20694 case BFD_RELOC_ARM_LDR_PC_G0:
20695 case BFD_RELOC_ARM_LDR_PC_G1:
20696 case BFD_RELOC_ARM_LDR_PC_G2:
20697 case BFD_RELOC_ARM_LDR_SB_G0:
20698 case BFD_RELOC_ARM_LDR_SB_G1:
20699 case BFD_RELOC_ARM_LDR_SB_G2:
20700 gas_assert (!fixP->fx_done);
20701 if (!seg->use_rela_p)
20702 {
20703 bfd_vma insn;
20704 bfd_vma addend_abs = abs (value);
20705
20706 /* Check that the absolute value of the addend can be
20707 encoded in 12 bits. */
20708 if (addend_abs >= 0x1000)
20709 as_bad_where (fixP->fx_file, fixP->fx_line,
20710 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
20711 (unsigned long) addend_abs);
20712
20713 /* Extract the instruction. */
20714 insn = md_chars_to_number (buf, INSN_SIZE);
20715
20716 /* If the addend is negative, clear bit 23 of the instruction.
20717 Otherwise set it. */
20718 if (value < 0)
20719 insn &= ~(1 << 23);
20720 else
20721 insn |= 1 << 23;
20722
20723 /* Place the absolute value of the addend into the first 12 bits
20724 of the instruction. */
20725 insn &= 0xfffff000;
20726 insn |= addend_abs;
20727
20728 /* Update the instruction. */
20729 md_number_to_chars (buf, insn, INSN_SIZE);
20730 }
20731 break;
20732
20733 case BFD_RELOC_ARM_LDRS_PC_G0:
20734 case BFD_RELOC_ARM_LDRS_PC_G1:
20735 case BFD_RELOC_ARM_LDRS_PC_G2:
20736 case BFD_RELOC_ARM_LDRS_SB_G0:
20737 case BFD_RELOC_ARM_LDRS_SB_G1:
20738 case BFD_RELOC_ARM_LDRS_SB_G2:
20739 gas_assert (!fixP->fx_done);
20740 if (!seg->use_rela_p)
20741 {
20742 bfd_vma insn;
20743 bfd_vma addend_abs = abs (value);
20744
20745 /* Check that the absolute value of the addend can be
20746 encoded in 8 bits. */
20747 if (addend_abs >= 0x100)
20748 as_bad_where (fixP->fx_file, fixP->fx_line,
20749 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
20750 (unsigned long) addend_abs);
20751
20752 /* Extract the instruction. */
20753 insn = md_chars_to_number (buf, INSN_SIZE);
20754
20755 /* If the addend is negative, clear bit 23 of the instruction.
20756 Otherwise set it. */
20757 if (value < 0)
20758 insn &= ~(1 << 23);
20759 else
20760 insn |= 1 << 23;
20761
20762 /* Place the first four bits of the absolute value of the addend
20763 into the first 4 bits of the instruction, and the remaining
20764 four into bits 8 .. 11. */
20765 insn &= 0xfffff0f0;
20766 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
20767
20768 /* Update the instruction. */
20769 md_number_to_chars (buf, insn, INSN_SIZE);
20770 }
20771 break;
20772
20773 case BFD_RELOC_ARM_LDC_PC_G0:
20774 case BFD_RELOC_ARM_LDC_PC_G1:
20775 case BFD_RELOC_ARM_LDC_PC_G2:
20776 case BFD_RELOC_ARM_LDC_SB_G0:
20777 case BFD_RELOC_ARM_LDC_SB_G1:
20778 case BFD_RELOC_ARM_LDC_SB_G2:
20779 gas_assert (!fixP->fx_done);
20780 if (!seg->use_rela_p)
20781 {
20782 bfd_vma insn;
20783 bfd_vma addend_abs = abs (value);
20784
20785 /* Check that the absolute value of the addend is a multiple of
20786 four and, when divided by four, fits in 8 bits. */
20787 if (addend_abs & 0x3)
20788 as_bad_where (fixP->fx_file, fixP->fx_line,
20789 _("bad offset 0x%08lX (must be word-aligned)"),
20790 (unsigned long) addend_abs);
20791
20792 if ((addend_abs >> 2) > 0xff)
20793 as_bad_where (fixP->fx_file, fixP->fx_line,
20794 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
20795 (unsigned long) addend_abs);
20796
20797 /* Extract the instruction. */
20798 insn = md_chars_to_number (buf, INSN_SIZE);
20799
20800 /* If the addend is negative, clear bit 23 of the instruction.
20801 Otherwise set it. */
20802 if (value < 0)
20803 insn &= ~(1 << 23);
20804 else
20805 insn |= 1 << 23;
20806
20807 /* Place the addend (divided by four) into the first eight
20808 bits of the instruction. */
20809 insn &= 0xfffffff0;
20810 insn |= addend_abs >> 2;
20811
20812 /* Update the instruction. */
20813 md_number_to_chars (buf, insn, INSN_SIZE);
20814 }
20815 break;
20816
20817 case BFD_RELOC_ARM_V4BX:
20818 /* This will need to go in the object file. */
20819 fixP->fx_done = 0;
20820 break;
20821
20822 case BFD_RELOC_UNUSED:
20823 default:
20824 as_bad_where (fixP->fx_file, fixP->fx_line,
20825 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20826 }
20827 }
20828
20829 /* Translate internal representation of relocation info to BFD target
20830 format. */
20831
20832 arelent *
20833 tc_gen_reloc (asection *section, fixS *fixp)
20834 {
20835 arelent * reloc;
20836 bfd_reloc_code_real_type code;
20837
20838 reloc = (arelent *) xmalloc (sizeof (arelent));
20839
20840 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
20841 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20842 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
20843
20844 if (fixp->fx_pcrel)
20845 {
20846 if (section->use_rela_p)
20847 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20848 else
20849 fixp->fx_offset = reloc->address;
20850 }
20851 reloc->addend = fixp->fx_offset;
20852
20853 switch (fixp->fx_r_type)
20854 {
20855 case BFD_RELOC_8:
20856 if (fixp->fx_pcrel)
20857 {
20858 code = BFD_RELOC_8_PCREL;
20859 break;
20860 }
20861
20862 case BFD_RELOC_16:
20863 if (fixp->fx_pcrel)
20864 {
20865 code = BFD_RELOC_16_PCREL;
20866 break;
20867 }
20868
20869 case BFD_RELOC_32:
20870 if (fixp->fx_pcrel)
20871 {
20872 code = BFD_RELOC_32_PCREL;
20873 break;
20874 }
20875
20876 case BFD_RELOC_ARM_MOVW:
20877 if (fixp->fx_pcrel)
20878 {
20879 code = BFD_RELOC_ARM_MOVW_PCREL;
20880 break;
20881 }
20882
20883 case BFD_RELOC_ARM_MOVT:
20884 if (fixp->fx_pcrel)
20885 {
20886 code = BFD_RELOC_ARM_MOVT_PCREL;
20887 break;
20888 }
20889
20890 case BFD_RELOC_ARM_THUMB_MOVW:
20891 if (fixp->fx_pcrel)
20892 {
20893 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
20894 break;
20895 }
20896
20897 case BFD_RELOC_ARM_THUMB_MOVT:
20898 if (fixp->fx_pcrel)
20899 {
20900 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
20901 break;
20902 }
20903
20904 case BFD_RELOC_NONE:
20905 case BFD_RELOC_ARM_PCREL_BRANCH:
20906 case BFD_RELOC_ARM_PCREL_BLX:
20907 case BFD_RELOC_RVA:
20908 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20909 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20910 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20911 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20912 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20913 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20914 case BFD_RELOC_VTABLE_ENTRY:
20915 case BFD_RELOC_VTABLE_INHERIT:
20916 #ifdef TE_PE
20917 case BFD_RELOC_32_SECREL:
20918 #endif
20919 code = fixp->fx_r_type;
20920 break;
20921
20922 case BFD_RELOC_THUMB_PCREL_BLX:
20923 #ifdef OBJ_ELF
20924 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20925 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
20926 else
20927 #endif
20928 code = BFD_RELOC_THUMB_PCREL_BLX;
20929 break;
20930
20931 case BFD_RELOC_ARM_LITERAL:
20932 case BFD_RELOC_ARM_HWLITERAL:
20933 /* If this is called then the a literal has
20934 been referenced across a section boundary. */
20935 as_bad_where (fixp->fx_file, fixp->fx_line,
20936 _("literal referenced across section boundary"));
20937 return NULL;
20938
20939 #ifdef OBJ_ELF
20940 case BFD_RELOC_ARM_GOT32:
20941 case BFD_RELOC_ARM_GOTOFF:
20942 case BFD_RELOC_ARM_PLT32:
20943 case BFD_RELOC_ARM_TARGET1:
20944 case BFD_RELOC_ARM_ROSEGREL32:
20945 case BFD_RELOC_ARM_SBREL32:
20946 case BFD_RELOC_ARM_PREL31:
20947 case BFD_RELOC_ARM_TARGET2:
20948 case BFD_RELOC_ARM_TLS_LE32:
20949 case BFD_RELOC_ARM_TLS_LDO32:
20950 case BFD_RELOC_ARM_PCREL_CALL:
20951 case BFD_RELOC_ARM_PCREL_JUMP:
20952 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20953 case BFD_RELOC_ARM_ALU_PC_G0:
20954 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20955 case BFD_RELOC_ARM_ALU_PC_G1:
20956 case BFD_RELOC_ARM_ALU_PC_G2:
20957 case BFD_RELOC_ARM_LDR_PC_G0:
20958 case BFD_RELOC_ARM_LDR_PC_G1:
20959 case BFD_RELOC_ARM_LDR_PC_G2:
20960 case BFD_RELOC_ARM_LDRS_PC_G0:
20961 case BFD_RELOC_ARM_LDRS_PC_G1:
20962 case BFD_RELOC_ARM_LDRS_PC_G2:
20963 case BFD_RELOC_ARM_LDC_PC_G0:
20964 case BFD_RELOC_ARM_LDC_PC_G1:
20965 case BFD_RELOC_ARM_LDC_PC_G2:
20966 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20967 case BFD_RELOC_ARM_ALU_SB_G0:
20968 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20969 case BFD_RELOC_ARM_ALU_SB_G1:
20970 case BFD_RELOC_ARM_ALU_SB_G2:
20971 case BFD_RELOC_ARM_LDR_SB_G0:
20972 case BFD_RELOC_ARM_LDR_SB_G1:
20973 case BFD_RELOC_ARM_LDR_SB_G2:
20974 case BFD_RELOC_ARM_LDRS_SB_G0:
20975 case BFD_RELOC_ARM_LDRS_SB_G1:
20976 case BFD_RELOC_ARM_LDRS_SB_G2:
20977 case BFD_RELOC_ARM_LDC_SB_G0:
20978 case BFD_RELOC_ARM_LDC_SB_G1:
20979 case BFD_RELOC_ARM_LDC_SB_G2:
20980 case BFD_RELOC_ARM_V4BX:
20981 code = fixp->fx_r_type;
20982 break;
20983
20984 case BFD_RELOC_ARM_TLS_GD32:
20985 case BFD_RELOC_ARM_TLS_IE32:
20986 case BFD_RELOC_ARM_TLS_LDM32:
20987 /* BFD will include the symbol's address in the addend.
20988 But we don't want that, so subtract it out again here. */
20989 if (!S_IS_COMMON (fixp->fx_addsy))
20990 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
20991 code = fixp->fx_r_type;
20992 break;
20993 #endif
20994
20995 case BFD_RELOC_ARM_IMMEDIATE:
20996 as_bad_where (fixp->fx_file, fixp->fx_line,
20997 _("internal relocation (type: IMMEDIATE) not fixed up"));
20998 return NULL;
20999
21000 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21001 as_bad_where (fixp->fx_file, fixp->fx_line,
21002 _("ADRL used for a symbol not defined in the same file"));
21003 return NULL;
21004
21005 case BFD_RELOC_ARM_OFFSET_IMM:
21006 if (section->use_rela_p)
21007 {
21008 code = fixp->fx_r_type;
21009 break;
21010 }
21011
21012 if (fixp->fx_addsy != NULL
21013 && !S_IS_DEFINED (fixp->fx_addsy)
21014 && S_IS_LOCAL (fixp->fx_addsy))
21015 {
21016 as_bad_where (fixp->fx_file, fixp->fx_line,
21017 _("undefined local label `%s'"),
21018 S_GET_NAME (fixp->fx_addsy));
21019 return NULL;
21020 }
21021
21022 as_bad_where (fixp->fx_file, fixp->fx_line,
21023 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21024 return NULL;
21025
21026 default:
21027 {
21028 char * type;
21029
21030 switch (fixp->fx_r_type)
21031 {
21032 case BFD_RELOC_NONE: type = "NONE"; break;
21033 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21034 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21035 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21036 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21037 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21038 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21039 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21040 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21041 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21042 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21043 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21044 default: type = _("<unknown>"); break;
21045 }
21046 as_bad_where (fixp->fx_file, fixp->fx_line,
21047 _("cannot represent %s relocation in this object file format"),
21048 type);
21049 return NULL;
21050 }
21051 }
21052
21053 #ifdef OBJ_ELF
21054 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21055 && GOT_symbol
21056 && fixp->fx_addsy == GOT_symbol)
21057 {
21058 code = BFD_RELOC_ARM_GOTPC;
21059 reloc->addend = fixp->fx_offset = reloc->address;
21060 }
21061 #endif
21062
21063 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21064
21065 if (reloc->howto == NULL)
21066 {
21067 as_bad_where (fixp->fx_file, fixp->fx_line,
21068 _("cannot represent %s relocation in this object file format"),
21069 bfd_get_reloc_code_name (code));
21070 return NULL;
21071 }
21072
21073 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21074 vtable entry to be used in the relocation's section offset. */
21075 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21076 reloc->address = fixp->fx_offset;
21077
21078 return reloc;
21079 }
21080
21081 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21082
21083 void
21084 cons_fix_new_arm (fragS * frag,
21085 int where,
21086 int size,
21087 expressionS * exp)
21088 {
21089 bfd_reloc_code_real_type type;
21090 int pcrel = 0;
21091
21092 /* Pick a reloc.
21093 FIXME: @@ Should look at CPU word size. */
21094 switch (size)
21095 {
21096 case 1:
21097 type = BFD_RELOC_8;
21098 break;
21099 case 2:
21100 type = BFD_RELOC_16;
21101 break;
21102 case 4:
21103 default:
21104 type = BFD_RELOC_32;
21105 break;
21106 case 8:
21107 type = BFD_RELOC_64;
21108 break;
21109 }
21110
21111 #ifdef TE_PE
21112 if (exp->X_op == O_secrel)
21113 {
21114 exp->X_op = O_symbol;
21115 type = BFD_RELOC_32_SECREL;
21116 }
21117 #endif
21118
21119 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21120 }
21121
21122 #if defined (OBJ_COFF)
21123 void
21124 arm_validate_fix (fixS * fixP)
21125 {
21126 /* If the destination of the branch is a defined symbol which does not have
21127 the THUMB_FUNC attribute, then we must be calling a function which has
21128 the (interfacearm) attribute. We look for the Thumb entry point to that
21129 function and change the branch to refer to that function instead. */
21130 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21131 && fixP->fx_addsy != NULL
21132 && S_IS_DEFINED (fixP->fx_addsy)
21133 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21134 {
21135 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21136 }
21137 }
21138 #endif
21139
21140
21141 int
21142 arm_force_relocation (struct fix * fixp)
21143 {
21144 #if defined (OBJ_COFF) && defined (TE_PE)
21145 if (fixp->fx_r_type == BFD_RELOC_RVA)
21146 return 1;
21147 #endif
21148
21149 /* In case we have a call or a branch to a function in ARM ISA mode from
21150 a thumb function or vice-versa force the relocation. These relocations
21151 are cleared off for some cores that might have blx and simple transformations
21152 are possible. */
21153
21154 #ifdef OBJ_ELF
21155 switch (fixp->fx_r_type)
21156 {
21157 case BFD_RELOC_ARM_PCREL_JUMP:
21158 case BFD_RELOC_ARM_PCREL_CALL:
21159 case BFD_RELOC_THUMB_PCREL_BLX:
21160 if (THUMB_IS_FUNC (fixp->fx_addsy))
21161 return 1;
21162 break;
21163
21164 case BFD_RELOC_ARM_PCREL_BLX:
21165 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21166 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21167 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21168 if (ARM_IS_FUNC (fixp->fx_addsy))
21169 return 1;
21170 break;
21171
21172 default:
21173 break;
21174 }
21175 #endif
21176
21177 /* Resolve these relocations even if the symbol is extern or weak. */
21178 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21179 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21180 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21181 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21182 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21183 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21184 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21185 return 0;
21186
21187 /* Always leave these relocations for the linker. */
21188 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21189 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21190 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21191 return 1;
21192
21193 /* Always generate relocations against function symbols. */
21194 if (fixp->fx_r_type == BFD_RELOC_32
21195 && fixp->fx_addsy
21196 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21197 return 1;
21198
21199 return generic_force_reloc (fixp);
21200 }
21201
21202 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21203 /* Relocations against function names must be left unadjusted,
21204 so that the linker can use this information to generate interworking
21205 stubs. The MIPS version of this function
21206 also prevents relocations that are mips-16 specific, but I do not
21207 know why it does this.
21208
21209 FIXME:
21210 There is one other problem that ought to be addressed here, but
21211 which currently is not: Taking the address of a label (rather
21212 than a function) and then later jumping to that address. Such
21213 addresses also ought to have their bottom bit set (assuming that
21214 they reside in Thumb code), but at the moment they will not. */
21215
21216 bfd_boolean
21217 arm_fix_adjustable (fixS * fixP)
21218 {
21219 if (fixP->fx_addsy == NULL)
21220 return 1;
21221
21222 /* Preserve relocations against symbols with function type. */
21223 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21224 return FALSE;
21225
21226 if (THUMB_IS_FUNC (fixP->fx_addsy)
21227 && fixP->fx_subsy == NULL)
21228 return FALSE;
21229
21230 /* We need the symbol name for the VTABLE entries. */
21231 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21232 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21233 return FALSE;
21234
21235 /* Don't allow symbols to be discarded on GOT related relocs. */
21236 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21237 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21238 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21239 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21240 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21241 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21242 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21243 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21244 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21245 return FALSE;
21246
21247 /* Similarly for group relocations. */
21248 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21249 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21250 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21251 return FALSE;
21252
21253 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21254 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21255 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21256 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21257 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21258 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21259 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21260 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21261 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21262 return FALSE;
21263
21264 return TRUE;
21265 }
21266 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21267
21268 #ifdef OBJ_ELF
21269
21270 const char *
21271 elf32_arm_target_format (void)
21272 {
21273 #ifdef TE_SYMBIAN
21274 return (target_big_endian
21275 ? "elf32-bigarm-symbian"
21276 : "elf32-littlearm-symbian");
21277 #elif defined (TE_VXWORKS)
21278 return (target_big_endian
21279 ? "elf32-bigarm-vxworks"
21280 : "elf32-littlearm-vxworks");
21281 #else
21282 if (target_big_endian)
21283 return "elf32-bigarm";
21284 else
21285 return "elf32-littlearm";
21286 #endif
21287 }
21288
21289 void
21290 armelf_frob_symbol (symbolS * symp,
21291 int * puntp)
21292 {
21293 elf_frob_symbol (symp, puntp);
21294 }
21295 #endif
21296
21297 /* MD interface: Finalization. */
21298
21299 void
21300 arm_cleanup (void)
21301 {
21302 literal_pool * pool;
21303
21304 /* Ensure that all the IT blocks are properly closed. */
21305 check_it_blocks_finished ();
21306
21307 for (pool = list_of_pools; pool; pool = pool->next)
21308 {
21309 /* Put it at the end of the relevant section. */
21310 subseg_set (pool->section, pool->sub_section);
21311 #ifdef OBJ_ELF
21312 arm_elf_change_section ();
21313 #endif
21314 s_ltorg (0);
21315 }
21316 }
21317
21318 #ifdef OBJ_ELF
21319 /* Remove any excess mapping symbols generated for alignment frags in
21320 SEC. We may have created a mapping symbol before a zero byte
21321 alignment; remove it if there's a mapping symbol after the
21322 alignment. */
21323 static void
21324 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21325 void *dummy ATTRIBUTE_UNUSED)
21326 {
21327 segment_info_type *seginfo = seg_info (sec);
21328 fragS *fragp;
21329
21330 if (seginfo == NULL || seginfo->frchainP == NULL)
21331 return;
21332
21333 for (fragp = seginfo->frchainP->frch_root;
21334 fragp != NULL;
21335 fragp = fragp->fr_next)
21336 {
21337 symbolS *sym = fragp->tc_frag_data.last_map;
21338 fragS *next = fragp->fr_next;
21339
21340 /* Variable-sized frags have been converted to fixed size by
21341 this point. But if this was variable-sized to start with,
21342 there will be a fixed-size frag after it. So don't handle
21343 next == NULL. */
21344 if (sym == NULL || next == NULL)
21345 continue;
21346
21347 if (S_GET_VALUE (sym) < next->fr_address)
21348 /* Not at the end of this frag. */
21349 continue;
21350 know (S_GET_VALUE (sym) == next->fr_address);
21351
21352 do
21353 {
21354 if (next->tc_frag_data.first_map != NULL)
21355 {
21356 /* Next frag starts with a mapping symbol. Discard this
21357 one. */
21358 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21359 break;
21360 }
21361
21362 if (next->fr_next == NULL)
21363 {
21364 /* This mapping symbol is at the end of the section. Discard
21365 it. */
21366 know (next->fr_fix == 0 && next->fr_var == 0);
21367 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21368 break;
21369 }
21370
21371 /* As long as we have empty frags without any mapping symbols,
21372 keep looking. */
21373 /* If the next frag is non-empty and does not start with a
21374 mapping symbol, then this mapping symbol is required. */
21375 if (next->fr_address != next->fr_next->fr_address)
21376 break;
21377
21378 next = next->fr_next;
21379 }
21380 while (next != NULL);
21381 }
21382 }
21383 #endif
21384
21385 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21386 ARM ones. */
21387
21388 void
21389 arm_adjust_symtab (void)
21390 {
21391 #ifdef OBJ_COFF
21392 symbolS * sym;
21393
21394 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21395 {
21396 if (ARM_IS_THUMB (sym))
21397 {
21398 if (THUMB_IS_FUNC (sym))
21399 {
21400 /* Mark the symbol as a Thumb function. */
21401 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21402 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21403 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21404
21405 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21406 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21407 else
21408 as_bad (_("%s: unexpected function type: %d"),
21409 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21410 }
21411 else switch (S_GET_STORAGE_CLASS (sym))
21412 {
21413 case C_EXT:
21414 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21415 break;
21416 case C_STAT:
21417 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21418 break;
21419 case C_LABEL:
21420 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21421 break;
21422 default:
21423 /* Do nothing. */
21424 break;
21425 }
21426 }
21427
21428 if (ARM_IS_INTERWORK (sym))
21429 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21430 }
21431 #endif
21432 #ifdef OBJ_ELF
21433 symbolS * sym;
21434 char bind;
21435
21436 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21437 {
21438 if (ARM_IS_THUMB (sym))
21439 {
21440 elf_symbol_type * elf_sym;
21441
21442 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21443 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21444
21445 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21446 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21447 {
21448 /* If it's a .thumb_func, declare it as so,
21449 otherwise tag label as .code 16. */
21450 if (THUMB_IS_FUNC (sym))
21451 elf_sym->internal_elf_sym.st_info =
21452 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21453 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21454 elf_sym->internal_elf_sym.st_info =
21455 ELF_ST_INFO (bind, STT_ARM_16BIT);
21456 }
21457 }
21458 }
21459
21460 /* Remove any overlapping mapping symbols generated by alignment frags. */
21461 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
21462 #endif
21463 }
21464
21465 /* MD interface: Initialization. */
21466
21467 static void
21468 set_constant_flonums (void)
21469 {
21470 int i;
21471
21472 for (i = 0; i < NUM_FLOAT_VALS; i++)
21473 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21474 abort ();
21475 }
21476
21477 /* Auto-select Thumb mode if it's the only available instruction set for the
21478 given architecture. */
21479
21480 static void
21481 autoselect_thumb_from_cpu_variant (void)
21482 {
21483 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21484 opcode_select (16);
21485 }
21486
21487 void
21488 md_begin (void)
21489 {
21490 unsigned mach;
21491 unsigned int i;
21492
21493 if ( (arm_ops_hsh = hash_new ()) == NULL
21494 || (arm_cond_hsh = hash_new ()) == NULL
21495 || (arm_shift_hsh = hash_new ()) == NULL
21496 || (arm_psr_hsh = hash_new ()) == NULL
21497 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21498 || (arm_reg_hsh = hash_new ()) == NULL
21499 || (arm_reloc_hsh = hash_new ()) == NULL
21500 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
21501 as_fatal (_("virtual memory exhausted"));
21502
21503 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
21504 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
21505 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
21506 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
21507 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
21508 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
21509 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
21510 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
21511 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
21512 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21513 (void *) (v7m_psrs + i));
21514 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
21515 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
21516 for (i = 0;
21517 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21518 i++)
21519 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
21520 (void *) (barrier_opt_names + i));
21521 #ifdef OBJ_ELF
21522 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
21523 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
21524 #endif
21525
21526 set_constant_flonums ();
21527
21528 /* Set the cpu variant based on the command-line options. We prefer
21529 -mcpu= over -march= if both are set (as for GCC); and we prefer
21530 -mfpu= over any other way of setting the floating point unit.
21531 Use of legacy options with new options are faulted. */
21532 if (legacy_cpu)
21533 {
21534 if (mcpu_cpu_opt || march_cpu_opt)
21535 as_bad (_("use of old and new-style options to set CPU type"));
21536
21537 mcpu_cpu_opt = legacy_cpu;
21538 }
21539 else if (!mcpu_cpu_opt)
21540 mcpu_cpu_opt = march_cpu_opt;
21541
21542 if (legacy_fpu)
21543 {
21544 if (mfpu_opt)
21545 as_bad (_("use of old and new-style options to set FPU type"));
21546
21547 mfpu_opt = legacy_fpu;
21548 }
21549 else if (!mfpu_opt)
21550 {
21551 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21552 || defined (TE_NetBSD) || defined (TE_VXWORKS))
21553 /* Some environments specify a default FPU. If they don't, infer it
21554 from the processor. */
21555 if (mcpu_fpu_opt)
21556 mfpu_opt = mcpu_fpu_opt;
21557 else
21558 mfpu_opt = march_fpu_opt;
21559 #else
21560 mfpu_opt = &fpu_default;
21561 #endif
21562 }
21563
21564 if (!mfpu_opt)
21565 {
21566 if (mcpu_cpu_opt != NULL)
21567 mfpu_opt = &fpu_default;
21568 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
21569 mfpu_opt = &fpu_arch_vfp_v2;
21570 else
21571 mfpu_opt = &fpu_arch_fpa;
21572 }
21573
21574 #ifdef CPU_DEFAULT
21575 if (!mcpu_cpu_opt)
21576 {
21577 mcpu_cpu_opt = &cpu_default;
21578 selected_cpu = cpu_default;
21579 }
21580 #else
21581 if (mcpu_cpu_opt)
21582 selected_cpu = *mcpu_cpu_opt;
21583 else
21584 mcpu_cpu_opt = &arm_arch_any;
21585 #endif
21586
21587 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21588
21589 autoselect_thumb_from_cpu_variant ();
21590
21591 arm_arch_used = thumb_arch_used = arm_arch_none;
21592
21593 #if defined OBJ_COFF || defined OBJ_ELF
21594 {
21595 unsigned int flags = 0;
21596
21597 #if defined OBJ_ELF
21598 flags = meabi_flags;
21599
21600 switch (meabi_flags)
21601 {
21602 case EF_ARM_EABI_UNKNOWN:
21603 #endif
21604 /* Set the flags in the private structure. */
21605 if (uses_apcs_26) flags |= F_APCS26;
21606 if (support_interwork) flags |= F_INTERWORK;
21607 if (uses_apcs_float) flags |= F_APCS_FLOAT;
21608 if (pic_code) flags |= F_PIC;
21609 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
21610 flags |= F_SOFT_FLOAT;
21611
21612 switch (mfloat_abi_opt)
21613 {
21614 case ARM_FLOAT_ABI_SOFT:
21615 case ARM_FLOAT_ABI_SOFTFP:
21616 flags |= F_SOFT_FLOAT;
21617 break;
21618
21619 case ARM_FLOAT_ABI_HARD:
21620 if (flags & F_SOFT_FLOAT)
21621 as_bad (_("hard-float conflicts with specified fpu"));
21622 break;
21623 }
21624
21625 /* Using pure-endian doubles (even if soft-float). */
21626 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
21627 flags |= F_VFP_FLOAT;
21628
21629 #if defined OBJ_ELF
21630 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
21631 flags |= EF_ARM_MAVERICK_FLOAT;
21632 break;
21633
21634 case EF_ARM_EABI_VER4:
21635 case EF_ARM_EABI_VER5:
21636 /* No additional flags to set. */
21637 break;
21638
21639 default:
21640 abort ();
21641 }
21642 #endif
21643 bfd_set_private_flags (stdoutput, flags);
21644
21645 /* We have run out flags in the COFF header to encode the
21646 status of ATPCS support, so instead we create a dummy,
21647 empty, debug section called .arm.atpcs. */
21648 if (atpcs)
21649 {
21650 asection * sec;
21651
21652 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21653
21654 if (sec != NULL)
21655 {
21656 bfd_set_section_flags
21657 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21658 bfd_set_section_size (stdoutput, sec, 0);
21659 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21660 }
21661 }
21662 }
21663 #endif
21664
21665 /* Record the CPU type as well. */
21666 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21667 mach = bfd_mach_arm_iWMMXt2;
21668 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
21669 mach = bfd_mach_arm_iWMMXt;
21670 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
21671 mach = bfd_mach_arm_XScale;
21672 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
21673 mach = bfd_mach_arm_ep9312;
21674 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
21675 mach = bfd_mach_arm_5TE;
21676 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
21677 {
21678 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21679 mach = bfd_mach_arm_5T;
21680 else
21681 mach = bfd_mach_arm_5;
21682 }
21683 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
21684 {
21685 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21686 mach = bfd_mach_arm_4T;
21687 else
21688 mach = bfd_mach_arm_4;
21689 }
21690 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
21691 mach = bfd_mach_arm_3M;
21692 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21693 mach = bfd_mach_arm_3;
21694 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21695 mach = bfd_mach_arm_2a;
21696 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21697 mach = bfd_mach_arm_2;
21698 else
21699 mach = bfd_mach_arm_unknown;
21700
21701 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21702 }
21703
21704 /* Command line processing. */
21705
21706 /* md_parse_option
21707 Invocation line includes a switch not recognized by the base assembler.
21708 See if it's a processor-specific option.
21709
21710 This routine is somewhat complicated by the need for backwards
21711 compatibility (since older releases of gcc can't be changed).
21712 The new options try to make the interface as compatible as
21713 possible with GCC.
21714
21715 New options (supported) are:
21716
21717 -mcpu=<cpu name> Assemble for selected processor
21718 -march=<architecture name> Assemble for selected architecture
21719 -mfpu=<fpu architecture> Assemble for selected FPU.
21720 -EB/-mbig-endian Big-endian
21721 -EL/-mlittle-endian Little-endian
21722 -k Generate PIC code
21723 -mthumb Start in Thumb mode
21724 -mthumb-interwork Code supports ARM/Thumb interworking
21725
21726 -m[no-]warn-deprecated Warn about deprecated features
21727
21728 For now we will also provide support for:
21729
21730 -mapcs-32 32-bit Program counter
21731 -mapcs-26 26-bit Program counter
21732 -macps-float Floats passed in FP registers
21733 -mapcs-reentrant Reentrant code
21734 -matpcs
21735 (sometime these will probably be replaced with -mapcs=<list of options>
21736 and -matpcs=<list of options>)
21737
21738 The remaining options are only supported for back-wards compatibility.
21739 Cpu variants, the arm part is optional:
21740 -m[arm]1 Currently not supported.
21741 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21742 -m[arm]3 Arm 3 processor
21743 -m[arm]6[xx], Arm 6 processors
21744 -m[arm]7[xx][t][[d]m] Arm 7 processors
21745 -m[arm]8[10] Arm 8 processors
21746 -m[arm]9[20][tdmi] Arm 9 processors
21747 -mstrongarm[110[0]] StrongARM processors
21748 -mxscale XScale processors
21749 -m[arm]v[2345[t[e]]] Arm architectures
21750 -mall All (except the ARM1)
21751 FP variants:
21752 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21753 -mfpe-old (No float load/store multiples)
21754 -mvfpxd VFP Single precision
21755 -mvfp All VFP
21756 -mno-fpu Disable all floating point instructions
21757
21758 The following CPU names are recognized:
21759 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21760 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21761 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21762 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21763 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21764 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21765 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
21766
21767 */
21768
21769 const char * md_shortopts = "m:k";
21770
21771 #ifdef ARM_BI_ENDIAN
21772 #define OPTION_EB (OPTION_MD_BASE + 0)
21773 #define OPTION_EL (OPTION_MD_BASE + 1)
21774 #else
21775 #if TARGET_BYTES_BIG_ENDIAN
21776 #define OPTION_EB (OPTION_MD_BASE + 0)
21777 #else
21778 #define OPTION_EL (OPTION_MD_BASE + 1)
21779 #endif
21780 #endif
21781 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
21782
21783 struct option md_longopts[] =
21784 {
21785 #ifdef OPTION_EB
21786 {"EB", no_argument, NULL, OPTION_EB},
21787 #endif
21788 #ifdef OPTION_EL
21789 {"EL", no_argument, NULL, OPTION_EL},
21790 #endif
21791 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
21792 {NULL, no_argument, NULL, 0}
21793 };
21794
21795 size_t md_longopts_size = sizeof (md_longopts);
21796
21797 struct arm_option_table
21798 {
21799 char *option; /* Option name to match. */
21800 char *help; /* Help information. */
21801 int *var; /* Variable to change. */
21802 int value; /* What to change it to. */
21803 char *deprecated; /* If non-null, print this message. */
21804 };
21805
21806 struct arm_option_table arm_opts[] =
21807 {
21808 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21809 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21810 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21811 &support_interwork, 1, NULL},
21812 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21813 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21814 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21815 1, NULL},
21816 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21817 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21818 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21819 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21820 NULL},
21821
21822 /* These are recognized by the assembler, but have no affect on code. */
21823 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21824 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
21825
21826 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21827 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21828 &warn_on_deprecated, 0, NULL},
21829 {NULL, NULL, NULL, 0, NULL}
21830 };
21831
21832 struct arm_legacy_option_table
21833 {
21834 char *option; /* Option name to match. */
21835 const arm_feature_set **var; /* Variable to change. */
21836 const arm_feature_set value; /* What to change it to. */
21837 char *deprecated; /* If non-null, print this message. */
21838 };
21839
21840 const struct arm_legacy_option_table arm_legacy_opts[] =
21841 {
21842 /* DON'T add any new processors to this list -- we want the whole list
21843 to go away... Add them to the processors table instead. */
21844 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21845 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21846 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21847 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21848 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21849 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21850 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21851 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21852 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21853 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21854 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21855 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21856 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21857 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21858 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21859 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21860 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21861 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21862 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21863 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21864 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21865 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21866 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21867 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21868 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21869 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21870 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21871 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21872 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21873 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21874 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21875 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21876 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21877 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21878 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21879 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21880 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21881 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21882 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21883 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21884 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21885 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21886 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21887 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21888 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21889 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21890 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21891 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21892 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21893 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21894 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21895 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21896 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21897 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21898 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21899 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21900 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21901 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21902 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21903 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21904 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21905 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21906 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21907 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21908 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21909 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21910 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21911 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21912 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
21913 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
21914 N_("use -mcpu=strongarm110")},
21915 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
21916 N_("use -mcpu=strongarm1100")},
21917 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
21918 N_("use -mcpu=strongarm1110")},
21919 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
21920 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
21921 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
21922
21923 /* Architecture variants -- don't add any more to this list either. */
21924 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21925 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21926 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21927 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21928 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21929 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21930 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21931 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21932 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21933 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21934 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21935 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21936 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21937 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21938 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21939 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21940 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21941 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21942
21943 /* Floating point variants -- don't add any more to this list either. */
21944 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
21945 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
21946 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
21947 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
21948 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
21949
21950 {NULL, NULL, ARM_ARCH_NONE, NULL}
21951 };
21952
21953 struct arm_cpu_option_table
21954 {
21955 char *name;
21956 const arm_feature_set value;
21957 /* For some CPUs we assume an FPU unless the user explicitly sets
21958 -mfpu=... */
21959 const arm_feature_set default_fpu;
21960 /* The canonical name of the CPU, or NULL to use NAME converted to upper
21961 case. */
21962 const char *canonical_name;
21963 };
21964
21965 /* This list should, at a minimum, contain all the cpu names
21966 recognized by GCC. */
21967 static const struct arm_cpu_option_table arm_cpus[] =
21968 {
21969 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
21970 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
21971 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
21972 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21973 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21974 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21975 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21976 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21977 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21978 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21979 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21980 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21981 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21982 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21983 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21984 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21985 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21986 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21987 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21988 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21989 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21990 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21991 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21992 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21993 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21994 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21995 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21996 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21997 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21998 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21999 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22000 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22001 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22002 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22003 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22004 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22005 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22006 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22007 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22008 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22009 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22010 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22011 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22012 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22013 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22014 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22015 /* For V5 or later processors we default to using VFP; but the user
22016 should really set the FPU type explicitly. */
22017 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22018 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22019 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22020 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22021 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22022 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22023 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22024 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22025 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22026 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22027 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22028 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22029 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22030 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22031 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22032 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22033 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22034 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22035 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22036 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22037 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22038 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22039 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22040 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22041 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22042 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22043 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22044 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
22045 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
22046 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22047 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22048 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22049 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22050 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
22051 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22052 | FPU_NEON_EXT_V1),
22053 NULL},
22054 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22055 | FPU_NEON_EXT_V1),
22056 NULL},
22057 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
22058 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
22059 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
22060 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
22061 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
22062 /* ??? XSCALE is really an architecture. */
22063 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22064 /* ??? iwmmxt is not a processor. */
22065 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22066 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22067 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22068 /* Maverick */
22069 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22070 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22071 };
22072
22073 struct arm_arch_option_table
22074 {
22075 char *name;
22076 const arm_feature_set value;
22077 const arm_feature_set default_fpu;
22078 };
22079
22080 /* This list should, at a minimum, contain all the architecture names
22081 recognized by GCC. */
22082 static const struct arm_arch_option_table arm_archs[] =
22083 {
22084 {"all", ARM_ANY, FPU_ARCH_FPA},
22085 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22086 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22087 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22088 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22089 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22090 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22091 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22092 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22093 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22094 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22095 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22096 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22097 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22098 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22099 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22100 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22101 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22102 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22103 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22104 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22105 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22106 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22107 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22108 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22109 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22110 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22111 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22112 /* The official spelling of the ARMv7 profile variants is the dashed form.
22113 Accept the non-dashed form for compatibility with old toolchains. */
22114 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22115 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22116 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22117 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22118 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22119 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22120 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22121 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22122 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22123 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22124 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22125 };
22126
22127 /* ISA extensions in the co-processor space. */
22128 struct arm_option_cpu_value_table
22129 {
22130 char *name;
22131 const arm_feature_set value;
22132 };
22133
22134 static const struct arm_option_cpu_value_table arm_extensions[] =
22135 {
22136 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22137 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22138 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
22139 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
22140 {NULL, ARM_ARCH_NONE}
22141 };
22142
22143 /* This list should, at a minimum, contain all the fpu names
22144 recognized by GCC. */
22145 static const struct arm_option_cpu_value_table arm_fpus[] =
22146 {
22147 {"softfpa", FPU_NONE},
22148 {"fpe", FPU_ARCH_FPE},
22149 {"fpe2", FPU_ARCH_FPE},
22150 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22151 {"fpa", FPU_ARCH_FPA},
22152 {"fpa10", FPU_ARCH_FPA},
22153 {"fpa11", FPU_ARCH_FPA},
22154 {"arm7500fe", FPU_ARCH_FPA},
22155 {"softvfp", FPU_ARCH_VFP},
22156 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22157 {"vfp", FPU_ARCH_VFP_V2},
22158 {"vfp9", FPU_ARCH_VFP_V2},
22159 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22160 {"vfp10", FPU_ARCH_VFP_V2},
22161 {"vfp10-r0", FPU_ARCH_VFP_V1},
22162 {"vfpxd", FPU_ARCH_VFP_V1xD},
22163 {"vfpv2", FPU_ARCH_VFP_V2},
22164 {"vfpv3", FPU_ARCH_VFP_V3},
22165 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22166 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22167 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22168 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22169 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22170 {"arm1020t", FPU_ARCH_VFP_V1},
22171 {"arm1020e", FPU_ARCH_VFP_V2},
22172 {"arm1136jfs", FPU_ARCH_VFP_V2},
22173 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22174 {"maverick", FPU_ARCH_MAVERICK},
22175 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22176 {"neon-fp16", FPU_ARCH_NEON_FP16},
22177 {"vfpv4", FPU_ARCH_VFP_V4},
22178 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22179 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22180 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22181 {NULL, ARM_ARCH_NONE}
22182 };
22183
22184 struct arm_option_value_table
22185 {
22186 char *name;
22187 long value;
22188 };
22189
22190 static const struct arm_option_value_table arm_float_abis[] =
22191 {
22192 {"hard", ARM_FLOAT_ABI_HARD},
22193 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22194 {"soft", ARM_FLOAT_ABI_SOFT},
22195 {NULL, 0}
22196 };
22197
22198 #ifdef OBJ_ELF
22199 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22200 static const struct arm_option_value_table arm_eabis[] =
22201 {
22202 {"gnu", EF_ARM_EABI_UNKNOWN},
22203 {"4", EF_ARM_EABI_VER4},
22204 {"5", EF_ARM_EABI_VER5},
22205 {NULL, 0}
22206 };
22207 #endif
22208
22209 struct arm_long_option_table
22210 {
22211 char * option; /* Substring to match. */
22212 char * help; /* Help information. */
22213 int (* func) (char * subopt); /* Function to decode sub-option. */
22214 char * deprecated; /* If non-null, print this message. */
22215 };
22216
22217 static bfd_boolean
22218 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22219 {
22220 arm_feature_set *ext_set = (arm_feature_set *)
22221 xmalloc (sizeof (arm_feature_set));
22222
22223 /* Copy the feature set, so that we can modify it. */
22224 *ext_set = **opt_p;
22225 *opt_p = ext_set;
22226
22227 while (str != NULL && *str != 0)
22228 {
22229 const struct arm_option_cpu_value_table * opt;
22230 char * ext;
22231 int optlen;
22232
22233 if (*str != '+')
22234 {
22235 as_bad (_("invalid architectural extension"));
22236 return FALSE;
22237 }
22238
22239 str++;
22240 ext = strchr (str, '+');
22241
22242 if (ext != NULL)
22243 optlen = ext - str;
22244 else
22245 optlen = strlen (str);
22246
22247 if (optlen == 0)
22248 {
22249 as_bad (_("missing architectural extension"));
22250 return FALSE;
22251 }
22252
22253 for (opt = arm_extensions; opt->name != NULL; opt++)
22254 if (strncmp (opt->name, str, optlen) == 0)
22255 {
22256 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22257 break;
22258 }
22259
22260 if (opt->name == NULL)
22261 {
22262 as_bad (_("unknown architectural extension `%s'"), str);
22263 return FALSE;
22264 }
22265
22266 str = ext;
22267 };
22268
22269 return TRUE;
22270 }
22271
22272 static bfd_boolean
22273 arm_parse_cpu (char * str)
22274 {
22275 const struct arm_cpu_option_table * opt;
22276 char * ext = strchr (str, '+');
22277 int optlen;
22278
22279 if (ext != NULL)
22280 optlen = ext - str;
22281 else
22282 optlen = strlen (str);
22283
22284 if (optlen == 0)
22285 {
22286 as_bad (_("missing cpu name `%s'"), str);
22287 return FALSE;
22288 }
22289
22290 for (opt = arm_cpus; opt->name != NULL; opt++)
22291 if (strncmp (opt->name, str, optlen) == 0)
22292 {
22293 mcpu_cpu_opt = &opt->value;
22294 mcpu_fpu_opt = &opt->default_fpu;
22295 if (opt->canonical_name)
22296 strcpy (selected_cpu_name, opt->canonical_name);
22297 else
22298 {
22299 int i;
22300
22301 for (i = 0; i < optlen; i++)
22302 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22303 selected_cpu_name[i] = 0;
22304 }
22305
22306 if (ext != NULL)
22307 return arm_parse_extension (ext, &mcpu_cpu_opt);
22308
22309 return TRUE;
22310 }
22311
22312 as_bad (_("unknown cpu `%s'"), str);
22313 return FALSE;
22314 }
22315
22316 static bfd_boolean
22317 arm_parse_arch (char * str)
22318 {
22319 const struct arm_arch_option_table *opt;
22320 char *ext = strchr (str, '+');
22321 int optlen;
22322
22323 if (ext != NULL)
22324 optlen = ext - str;
22325 else
22326 optlen = strlen (str);
22327
22328 if (optlen == 0)
22329 {
22330 as_bad (_("missing architecture name `%s'"), str);
22331 return FALSE;
22332 }
22333
22334 for (opt = arm_archs; opt->name != NULL; opt++)
22335 if (streq (opt->name, str))
22336 {
22337 march_cpu_opt = &opt->value;
22338 march_fpu_opt = &opt->default_fpu;
22339 strcpy (selected_cpu_name, opt->name);
22340
22341 if (ext != NULL)
22342 return arm_parse_extension (ext, &march_cpu_opt);
22343
22344 return TRUE;
22345 }
22346
22347 as_bad (_("unknown architecture `%s'\n"), str);
22348 return FALSE;
22349 }
22350
22351 static bfd_boolean
22352 arm_parse_fpu (char * str)
22353 {
22354 const struct arm_option_cpu_value_table * opt;
22355
22356 for (opt = arm_fpus; opt->name != NULL; opt++)
22357 if (streq (opt->name, str))
22358 {
22359 mfpu_opt = &opt->value;
22360 return TRUE;
22361 }
22362
22363 as_bad (_("unknown floating point format `%s'\n"), str);
22364 return FALSE;
22365 }
22366
22367 static bfd_boolean
22368 arm_parse_float_abi (char * str)
22369 {
22370 const struct arm_option_value_table * opt;
22371
22372 for (opt = arm_float_abis; opt->name != NULL; opt++)
22373 if (streq (opt->name, str))
22374 {
22375 mfloat_abi_opt = opt->value;
22376 return TRUE;
22377 }
22378
22379 as_bad (_("unknown floating point abi `%s'\n"), str);
22380 return FALSE;
22381 }
22382
22383 #ifdef OBJ_ELF
22384 static bfd_boolean
22385 arm_parse_eabi (char * str)
22386 {
22387 const struct arm_option_value_table *opt;
22388
22389 for (opt = arm_eabis; opt->name != NULL; opt++)
22390 if (streq (opt->name, str))
22391 {
22392 meabi_flags = opt->value;
22393 return TRUE;
22394 }
22395 as_bad (_("unknown EABI `%s'\n"), str);
22396 return FALSE;
22397 }
22398 #endif
22399
22400 static bfd_boolean
22401 arm_parse_it_mode (char * str)
22402 {
22403 bfd_boolean ret = TRUE;
22404
22405 if (streq ("arm", str))
22406 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22407 else if (streq ("thumb", str))
22408 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22409 else if (streq ("always", str))
22410 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22411 else if (streq ("never", str))
22412 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22413 else
22414 {
22415 as_bad (_("unknown implicit IT mode `%s', should be "\
22416 "arm, thumb, always, or never."), str);
22417 ret = FALSE;
22418 }
22419
22420 return ret;
22421 }
22422
22423 struct arm_long_option_table arm_long_opts[] =
22424 {
22425 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22426 arm_parse_cpu, NULL},
22427 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22428 arm_parse_arch, NULL},
22429 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22430 arm_parse_fpu, NULL},
22431 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22432 arm_parse_float_abi, NULL},
22433 #ifdef OBJ_ELF
22434 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
22435 arm_parse_eabi, NULL},
22436 #endif
22437 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22438 arm_parse_it_mode, NULL},
22439 {NULL, NULL, 0, NULL}
22440 };
22441
22442 int
22443 md_parse_option (int c, char * arg)
22444 {
22445 struct arm_option_table *opt;
22446 const struct arm_legacy_option_table *fopt;
22447 struct arm_long_option_table *lopt;
22448
22449 switch (c)
22450 {
22451 #ifdef OPTION_EB
22452 case OPTION_EB:
22453 target_big_endian = 1;
22454 break;
22455 #endif
22456
22457 #ifdef OPTION_EL
22458 case OPTION_EL:
22459 target_big_endian = 0;
22460 break;
22461 #endif
22462
22463 case OPTION_FIX_V4BX:
22464 fix_v4bx = TRUE;
22465 break;
22466
22467 case 'a':
22468 /* Listing option. Just ignore these, we don't support additional
22469 ones. */
22470 return 0;
22471
22472 default:
22473 for (opt = arm_opts; opt->option != NULL; opt++)
22474 {
22475 if (c == opt->option[0]
22476 && ((arg == NULL && opt->option[1] == 0)
22477 || streq (arg, opt->option + 1)))
22478 {
22479 /* If the option is deprecated, tell the user. */
22480 if (warn_on_deprecated && opt->deprecated != NULL)
22481 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22482 arg ? arg : "", _(opt->deprecated));
22483
22484 if (opt->var != NULL)
22485 *opt->var = opt->value;
22486
22487 return 1;
22488 }
22489 }
22490
22491 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22492 {
22493 if (c == fopt->option[0]
22494 && ((arg == NULL && fopt->option[1] == 0)
22495 || streq (arg, fopt->option + 1)))
22496 {
22497 /* If the option is deprecated, tell the user. */
22498 if (warn_on_deprecated && fopt->deprecated != NULL)
22499 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22500 arg ? arg : "", _(fopt->deprecated));
22501
22502 if (fopt->var != NULL)
22503 *fopt->var = &fopt->value;
22504
22505 return 1;
22506 }
22507 }
22508
22509 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22510 {
22511 /* These options are expected to have an argument. */
22512 if (c == lopt->option[0]
22513 && arg != NULL
22514 && strncmp (arg, lopt->option + 1,
22515 strlen (lopt->option + 1)) == 0)
22516 {
22517 /* If the option is deprecated, tell the user. */
22518 if (warn_on_deprecated && lopt->deprecated != NULL)
22519 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22520 _(lopt->deprecated));
22521
22522 /* Call the sup-option parser. */
22523 return lopt->func (arg + strlen (lopt->option) - 1);
22524 }
22525 }
22526
22527 return 0;
22528 }
22529
22530 return 1;
22531 }
22532
22533 void
22534 md_show_usage (FILE * fp)
22535 {
22536 struct arm_option_table *opt;
22537 struct arm_long_option_table *lopt;
22538
22539 fprintf (fp, _(" ARM-specific assembler options:\n"));
22540
22541 for (opt = arm_opts; opt->option != NULL; opt++)
22542 if (opt->help != NULL)
22543 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
22544
22545 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22546 if (lopt->help != NULL)
22547 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
22548
22549 #ifdef OPTION_EB
22550 fprintf (fp, _("\
22551 -EB assemble code for a big-endian cpu\n"));
22552 #endif
22553
22554 #ifdef OPTION_EL
22555 fprintf (fp, _("\
22556 -EL assemble code for a little-endian cpu\n"));
22557 #endif
22558
22559 fprintf (fp, _("\
22560 --fix-v4bx Allow BX in ARMv4 code\n"));
22561 }
22562
22563
22564 #ifdef OBJ_ELF
22565 typedef struct
22566 {
22567 int val;
22568 arm_feature_set flags;
22569 } cpu_arch_ver_table;
22570
22571 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22572 least features first. */
22573 static const cpu_arch_ver_table cpu_arch_ver[] =
22574 {
22575 {1, ARM_ARCH_V4},
22576 {2, ARM_ARCH_V4T},
22577 {3, ARM_ARCH_V5},
22578 {3, ARM_ARCH_V5T},
22579 {4, ARM_ARCH_V5TE},
22580 {5, ARM_ARCH_V5TEJ},
22581 {6, ARM_ARCH_V6},
22582 {7, ARM_ARCH_V6Z},
22583 {9, ARM_ARCH_V6K},
22584 {11, ARM_ARCH_V6M},
22585 {8, ARM_ARCH_V6T2},
22586 {10, ARM_ARCH_V7A},
22587 {10, ARM_ARCH_V7R},
22588 {10, ARM_ARCH_V7M},
22589 {0, ARM_ARCH_NONE}
22590 };
22591
22592 /* Set an attribute if it has not already been set by the user. */
22593 static void
22594 aeabi_set_attribute_int (int tag, int value)
22595 {
22596 if (tag < 1
22597 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22598 || !attributes_set_explicitly[tag])
22599 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22600 }
22601
22602 static void
22603 aeabi_set_attribute_string (int tag, const char *value)
22604 {
22605 if (tag < 1
22606 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22607 || !attributes_set_explicitly[tag])
22608 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22609 }
22610
22611 /* Set the public EABI object attributes. */
22612 static void
22613 aeabi_set_public_attributes (void)
22614 {
22615 int arch;
22616 arm_feature_set flags;
22617 arm_feature_set tmp;
22618 const cpu_arch_ver_table *p;
22619
22620 /* Choose the architecture based on the capabilities of the requested cpu
22621 (if any) and/or the instructions actually used. */
22622 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22623 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22624 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
22625 /*Allow the user to override the reported architecture. */
22626 if (object_arch)
22627 {
22628 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22629 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22630 }
22631
22632 tmp = flags;
22633 arch = 0;
22634 for (p = cpu_arch_ver; p->val; p++)
22635 {
22636 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22637 {
22638 arch = p->val;
22639 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22640 }
22641 }
22642
22643 /* The table lookup above finds the last architecture to contribute
22644 a new feature. Unfortunately, Tag13 is a subset of the union of
22645 v6T2 and v7-M, so it is never seen as contributing a new feature.
22646 We can not search for the last entry which is entirely used,
22647 because if no CPU is specified we build up only those flags
22648 actually used. Perhaps we should separate out the specified
22649 and implicit cases. Avoid taking this path for -march=all by
22650 checking for contradictory v7-A / v7-M features. */
22651 if (arch == 10
22652 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
22653 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
22654 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
22655 arch = 13;
22656
22657 /* Tag_CPU_name. */
22658 if (selected_cpu_name[0])
22659 {
22660 char *q;
22661
22662 q = selected_cpu_name;
22663 if (strncmp (q, "armv", 4) == 0)
22664 {
22665 int i;
22666
22667 q += 4;
22668 for (i = 0; q[i]; i++)
22669 q[i] = TOUPPER (q[i]);
22670 }
22671 aeabi_set_attribute_string (Tag_CPU_name, q);
22672 }
22673
22674 /* Tag_CPU_arch. */
22675 aeabi_set_attribute_int (Tag_CPU_arch, arch);
22676
22677 /* Tag_CPU_arch_profile. */
22678 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
22679 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
22680 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
22681 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
22682 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
22683 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
22684
22685 /* Tag_ARM_ISA_use. */
22686 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22687 || arch == 0)
22688 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
22689
22690 /* Tag_THUMB_ISA_use. */
22691 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22692 || arch == 0)
22693 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22694 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
22695
22696 /* Tag_VFP_arch. */
22697 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22698 aeabi_set_attribute_int (Tag_VFP_arch,
22699 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22700 ? 5 : 6);
22701 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
22702 aeabi_set_attribute_int (Tag_VFP_arch, 3);
22703 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
22704 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22705 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22706 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22707 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22708 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22709 aeabi_set_attribute_int (Tag_VFP_arch, 1);
22710
22711 /* Tag_WMMX_arch. */
22712 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22713 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22714 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22715 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
22716
22717 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
22718 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
22719 aeabi_set_attribute_int
22720 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22721 ? 2 : 1));
22722
22723 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
22724 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
22725 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
22726 }
22727
22728 /* Add the default contents for the .ARM.attributes section. */
22729 void
22730 arm_md_end (void)
22731 {
22732 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22733 return;
22734
22735 aeabi_set_public_attributes ();
22736 }
22737 #endif /* OBJ_ELF */
22738
22739
22740 /* Parse a .cpu directive. */
22741
22742 static void
22743 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22744 {
22745 const struct arm_cpu_option_table *opt;
22746 char *name;
22747 char saved_char;
22748
22749 name = input_line_pointer;
22750 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22751 input_line_pointer++;
22752 saved_char = *input_line_pointer;
22753 *input_line_pointer = 0;
22754
22755 /* Skip the first "all" entry. */
22756 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22757 if (streq (opt->name, name))
22758 {
22759 mcpu_cpu_opt = &opt->value;
22760 selected_cpu = opt->value;
22761 if (opt->canonical_name)
22762 strcpy (selected_cpu_name, opt->canonical_name);
22763 else
22764 {
22765 int i;
22766 for (i = 0; opt->name[i]; i++)
22767 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22768 selected_cpu_name[i] = 0;
22769 }
22770 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22771 *input_line_pointer = saved_char;
22772 demand_empty_rest_of_line ();
22773 return;
22774 }
22775 as_bad (_("unknown cpu `%s'"), name);
22776 *input_line_pointer = saved_char;
22777 ignore_rest_of_line ();
22778 }
22779
22780
22781 /* Parse a .arch directive. */
22782
22783 static void
22784 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22785 {
22786 const struct arm_arch_option_table *opt;
22787 char saved_char;
22788 char *name;
22789
22790 name = input_line_pointer;
22791 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22792 input_line_pointer++;
22793 saved_char = *input_line_pointer;
22794 *input_line_pointer = 0;
22795
22796 /* Skip the first "all" entry. */
22797 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22798 if (streq (opt->name, name))
22799 {
22800 mcpu_cpu_opt = &opt->value;
22801 selected_cpu = opt->value;
22802 strcpy (selected_cpu_name, opt->name);
22803 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22804 *input_line_pointer = saved_char;
22805 demand_empty_rest_of_line ();
22806 return;
22807 }
22808
22809 as_bad (_("unknown architecture `%s'\n"), name);
22810 *input_line_pointer = saved_char;
22811 ignore_rest_of_line ();
22812 }
22813
22814
22815 /* Parse a .object_arch directive. */
22816
22817 static void
22818 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22819 {
22820 const struct arm_arch_option_table *opt;
22821 char saved_char;
22822 char *name;
22823
22824 name = input_line_pointer;
22825 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22826 input_line_pointer++;
22827 saved_char = *input_line_pointer;
22828 *input_line_pointer = 0;
22829
22830 /* Skip the first "all" entry. */
22831 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22832 if (streq (opt->name, name))
22833 {
22834 object_arch = &opt->value;
22835 *input_line_pointer = saved_char;
22836 demand_empty_rest_of_line ();
22837 return;
22838 }
22839
22840 as_bad (_("unknown architecture `%s'\n"), name);
22841 *input_line_pointer = saved_char;
22842 ignore_rest_of_line ();
22843 }
22844
22845 /* Parse a .fpu directive. */
22846
22847 static void
22848 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
22849 {
22850 const struct arm_option_cpu_value_table *opt;
22851 char saved_char;
22852 char *name;
22853
22854 name = input_line_pointer;
22855 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22856 input_line_pointer++;
22857 saved_char = *input_line_pointer;
22858 *input_line_pointer = 0;
22859
22860 for (opt = arm_fpus; opt->name != NULL; opt++)
22861 if (streq (opt->name, name))
22862 {
22863 mfpu_opt = &opt->value;
22864 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22865 *input_line_pointer = saved_char;
22866 demand_empty_rest_of_line ();
22867 return;
22868 }
22869
22870 as_bad (_("unknown floating point format `%s'\n"), name);
22871 *input_line_pointer = saved_char;
22872 ignore_rest_of_line ();
22873 }
22874
22875 /* Copy symbol information. */
22876
22877 void
22878 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
22879 {
22880 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
22881 }
22882
22883 #ifdef OBJ_ELF
22884 /* Given a symbolic attribute NAME, return the proper integer value.
22885 Returns -1 if the attribute is not known. */
22886
22887 int
22888 arm_convert_symbolic_attribute (const char *name)
22889 {
22890 static const struct
22891 {
22892 const char * name;
22893 const int tag;
22894 }
22895 attribute_table[] =
22896 {
22897 /* When you modify this table you should
22898 also modify the list in doc/c-arm.texi. */
22899 #define T(tag) {#tag, tag}
22900 T (Tag_CPU_raw_name),
22901 T (Tag_CPU_name),
22902 T (Tag_CPU_arch),
22903 T (Tag_CPU_arch_profile),
22904 T (Tag_ARM_ISA_use),
22905 T (Tag_THUMB_ISA_use),
22906 T (Tag_VFP_arch),
22907 T (Tag_WMMX_arch),
22908 T (Tag_Advanced_SIMD_arch),
22909 T (Tag_PCS_config),
22910 T (Tag_ABI_PCS_R9_use),
22911 T (Tag_ABI_PCS_RW_data),
22912 T (Tag_ABI_PCS_RO_data),
22913 T (Tag_ABI_PCS_GOT_use),
22914 T (Tag_ABI_PCS_wchar_t),
22915 T (Tag_ABI_FP_rounding),
22916 T (Tag_ABI_FP_denormal),
22917 T (Tag_ABI_FP_exceptions),
22918 T (Tag_ABI_FP_user_exceptions),
22919 T (Tag_ABI_FP_number_model),
22920 T (Tag_ABI_align8_needed),
22921 T (Tag_ABI_align8_preserved),
22922 T (Tag_ABI_enum_size),
22923 T (Tag_ABI_HardFP_use),
22924 T (Tag_ABI_VFP_args),
22925 T (Tag_ABI_WMMX_args),
22926 T (Tag_ABI_optimization_goals),
22927 T (Tag_ABI_FP_optimization_goals),
22928 T (Tag_compatibility),
22929 T (Tag_CPU_unaligned_access),
22930 T (Tag_VFP_HP_extension),
22931 T (Tag_ABI_FP_16bit_format),
22932 T (Tag_nodefaults),
22933 T (Tag_also_compatible_with),
22934 T (Tag_conformance),
22935 T (Tag_T2EE_use),
22936 T (Tag_Virtualization_use),
22937 T (Tag_MPextension_use)
22938 #undef T
22939 };
22940 unsigned int i;
22941
22942 if (name == NULL)
22943 return -1;
22944
22945 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
22946 if (streq (name, attribute_table[i].name))
22947 return attribute_table[i].tag;
22948
22949 return -1;
22950 }
22951
22952
22953 /* Apply sym value for relocations only in the case that
22954 they are for local symbols and you have the respective
22955 architectural feature for blx and simple switches. */
22956 int
22957 arm_apply_sym_value (struct fix * fixP)
22958 {
22959 if (fixP->fx_addsy
22960 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22961 && !S_IS_EXTERNAL (fixP->fx_addsy))
22962 {
22963 switch (fixP->fx_r_type)
22964 {
22965 case BFD_RELOC_ARM_PCREL_BLX:
22966 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22967 if (ARM_IS_FUNC (fixP->fx_addsy))
22968 return 1;
22969 break;
22970
22971 case BFD_RELOC_ARM_PCREL_CALL:
22972 case BFD_RELOC_THUMB_PCREL_BLX:
22973 if (THUMB_IS_FUNC (fixP->fx_addsy))
22974 return 1;
22975 break;
22976
22977 default:
22978 break;
22979 }
22980
22981 }
22982 return 0;
22983 }
22984 #endif /* OBJ_ELF */
This page took 0.664449 seconds and 5 git commands to generate.