2010-09-17 Tejas Belagod <tejas.belagod@arm.com>
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
188 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
200
201 static const arm_feature_set arm_arch_any = ARM_ANY;
202 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
203 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
204 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
205
206 static const arm_feature_set arm_cext_iwmmxt2 =
207 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
208 static const arm_feature_set arm_cext_iwmmxt =
209 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
210 static const arm_feature_set arm_cext_xscale =
211 ARM_FEATURE (0, ARM_CEXT_XSCALE);
212 static const arm_feature_set arm_cext_maverick =
213 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
214 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
215 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
216 static const arm_feature_set fpu_vfp_ext_v1xd =
217 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
218 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
219 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
220 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
221 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
222 static const arm_feature_set fpu_vfp_ext_d32 =
223 ARM_FEATURE (0, FPU_VFP_EXT_D32);
224 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
225 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
226 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
227 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
228 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
229 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
230
231 static int mfloat_abi_opt = -1;
232 /* Record user cpu selection for object attributes. */
233 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
234 /* Must be long enough to hold any of the names in arm_cpus. */
235 static char selected_cpu_name[16];
236 #ifdef OBJ_ELF
237 # ifdef EABI_DEFAULT
238 static int meabi_flags = EABI_DEFAULT;
239 # else
240 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
241 # endif
242
243 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
244
245 bfd_boolean
246 arm_is_eabi (void)
247 {
248 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
249 }
250 #endif
251
252 #ifdef OBJ_ELF
253 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
254 symbolS * GOT_symbol;
255 #endif
256
257 /* 0: assemble for ARM,
258 1: assemble for Thumb,
259 2: assemble for Thumb even though target CPU does not support thumb
260 instructions. */
261 static int thumb_mode = 0;
262 /* A value distinct from the possible values for thumb_mode that we
263 can use to record whether thumb_mode has been copied into the
264 tc_frag_data field of a frag. */
265 #define MODE_RECORDED (1 << 4)
266
267 /* Specifies the intrinsic IT insn behavior mode. */
268 enum implicit_it_mode
269 {
270 IMPLICIT_IT_MODE_NEVER = 0x00,
271 IMPLICIT_IT_MODE_ARM = 0x01,
272 IMPLICIT_IT_MODE_THUMB = 0x02,
273 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
274 };
275 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
276
277 /* If unified_syntax is true, we are processing the new unified
278 ARM/Thumb syntax. Important differences from the old ARM mode:
279
280 - Immediate operands do not require a # prefix.
281 - Conditional affixes always appear at the end of the
282 instruction. (For backward compatibility, those instructions
283 that formerly had them in the middle, continue to accept them
284 there.)
285 - The IT instruction may appear, and if it does is validated
286 against subsequent conditional affixes. It does not generate
287 machine code.
288
289 Important differences from the old Thumb mode:
290
291 - Immediate operands do not require a # prefix.
292 - Most of the V6T2 instructions are only available in unified mode.
293 - The .N and .W suffixes are recognized and honored (it is an error
294 if they cannot be honored).
295 - All instructions set the flags if and only if they have an 's' affix.
296 - Conditional affixes may be used. They are validated against
297 preceding IT instructions. Unlike ARM mode, you cannot use a
298 conditional affix except in the scope of an IT instruction. */
299
300 static bfd_boolean unified_syntax = FALSE;
301
302 enum neon_el_type
303 {
304 NT_invtype,
305 NT_untyped,
306 NT_integer,
307 NT_float,
308 NT_poly,
309 NT_signed,
310 NT_unsigned
311 };
312
313 struct neon_type_el
314 {
315 enum neon_el_type type;
316 unsigned size;
317 };
318
319 #define NEON_MAX_TYPE_ELS 4
320
321 struct neon_type
322 {
323 struct neon_type_el el[NEON_MAX_TYPE_ELS];
324 unsigned elems;
325 };
326
327 enum it_instruction_type
328 {
329 OUTSIDE_IT_INSN,
330 INSIDE_IT_INSN,
331 INSIDE_IT_LAST_INSN,
332 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
333 if inside, should be the last one. */
334 NEUTRAL_IT_INSN, /* This could be either inside or outside,
335 i.e. BKPT and NOP. */
336 IT_INSN /* The IT insn has been parsed. */
337 };
338
339 struct arm_it
340 {
341 const char * error;
342 unsigned long instruction;
343 int size;
344 int size_req;
345 int cond;
346 /* "uncond_value" is set to the value in place of the conditional field in
347 unconditional versions of the instruction, or -1 if nothing is
348 appropriate. */
349 int uncond_value;
350 struct neon_type vectype;
351 /* This does not indicate an actual NEON instruction, only that
352 the mnemonic accepts neon-style type suffixes. */
353 int is_neon;
354 /* Set to the opcode if the instruction needs relaxation.
355 Zero if the instruction is not relaxed. */
356 unsigned long relax;
357 struct
358 {
359 bfd_reloc_code_real_type type;
360 expressionS exp;
361 int pc_rel;
362 } reloc;
363
364 enum it_instruction_type it_insn_type;
365
366 struct
367 {
368 unsigned reg;
369 signed int imm;
370 struct neon_type_el vectype;
371 unsigned present : 1; /* Operand present. */
372 unsigned isreg : 1; /* Operand was a register. */
373 unsigned immisreg : 1; /* .imm field is a second register. */
374 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
375 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
376 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
377 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
378 instructions. This allows us to disambiguate ARM <-> vector insns. */
379 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
380 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
381 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
382 unsigned issingle : 1; /* Operand is VFP single-precision register. */
383 unsigned hasreloc : 1; /* Operand has relocation suffix. */
384 unsigned writeback : 1; /* Operand has trailing ! */
385 unsigned preind : 1; /* Preindexed address. */
386 unsigned postind : 1; /* Postindexed address. */
387 unsigned negative : 1; /* Index register was negated. */
388 unsigned shifted : 1; /* Shift applied to operation. */
389 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
390 } operands[6];
391 };
392
393 static struct arm_it inst;
394
395 #define NUM_FLOAT_VALS 8
396
397 const char * fp_const[] =
398 {
399 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
400 };
401
402 /* Number of littlenums required to hold an extended precision number. */
403 #define MAX_LITTLENUMS 6
404
405 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
406
407 #define FAIL (-1)
408 #define SUCCESS (0)
409
410 #define SUFF_S 1
411 #define SUFF_D 2
412 #define SUFF_E 3
413 #define SUFF_P 4
414
415 #define CP_T_X 0x00008000
416 #define CP_T_Y 0x00400000
417
418 #define CONDS_BIT 0x00100000
419 #define LOAD_BIT 0x00100000
420
421 #define DOUBLE_LOAD_FLAG 0x00000001
422
423 struct asm_cond
424 {
425 const char * template_name;
426 unsigned long value;
427 };
428
429 #define COND_ALWAYS 0xE
430
431 struct asm_psr
432 {
433 const char * template_name;
434 unsigned long field;
435 };
436
437 struct asm_barrier_opt
438 {
439 const char * template_name;
440 unsigned long value;
441 };
442
443 /* The bit that distinguishes CPSR and SPSR. */
444 #define SPSR_BIT (1 << 22)
445
446 /* The individual PSR flag bits. */
447 #define PSR_c (1 << 16)
448 #define PSR_x (1 << 17)
449 #define PSR_s (1 << 18)
450 #define PSR_f (1 << 19)
451
452 struct reloc_entry
453 {
454 char * name;
455 bfd_reloc_code_real_type reloc;
456 };
457
458 enum vfp_reg_pos
459 {
460 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
461 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
462 };
463
464 enum vfp_ldstm_type
465 {
466 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
467 };
468
469 /* Bits for DEFINED field in neon_typed_alias. */
470 #define NTA_HASTYPE 1
471 #define NTA_HASINDEX 2
472
473 struct neon_typed_alias
474 {
475 unsigned char defined;
476 unsigned char index;
477 struct neon_type_el eltype;
478 };
479
480 /* ARM register categories. This includes coprocessor numbers and various
481 architecture extensions' registers. */
482 enum arm_reg_type
483 {
484 REG_TYPE_RN,
485 REG_TYPE_CP,
486 REG_TYPE_CN,
487 REG_TYPE_FN,
488 REG_TYPE_VFS,
489 REG_TYPE_VFD,
490 REG_TYPE_NQ,
491 REG_TYPE_VFSD,
492 REG_TYPE_NDQ,
493 REG_TYPE_NSDQ,
494 REG_TYPE_VFC,
495 REG_TYPE_MVF,
496 REG_TYPE_MVD,
497 REG_TYPE_MVFX,
498 REG_TYPE_MVDX,
499 REG_TYPE_MVAX,
500 REG_TYPE_DSPSC,
501 REG_TYPE_MMXWR,
502 REG_TYPE_MMXWC,
503 REG_TYPE_MMXWCG,
504 REG_TYPE_XSCALE,
505 };
506
507 /* Structure for a hash table entry for a register.
508 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
509 information which states whether a vector type or index is specified (for a
510 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
511 struct reg_entry
512 {
513 const char * name;
514 unsigned char number;
515 unsigned char type;
516 unsigned char builtin;
517 struct neon_typed_alias * neon;
518 };
519
520 /* Diagnostics used when we don't get a register of the expected type. */
521 const char * const reg_expected_msgs[] =
522 {
523 N_("ARM register expected"),
524 N_("bad or missing co-processor number"),
525 N_("co-processor register expected"),
526 N_("FPA register expected"),
527 N_("VFP single precision register expected"),
528 N_("VFP/Neon double precision register expected"),
529 N_("Neon quad precision register expected"),
530 N_("VFP single or double precision register expected"),
531 N_("Neon double or quad precision register expected"),
532 N_("VFP single, double or Neon quad precision register expected"),
533 N_("VFP system register expected"),
534 N_("Maverick MVF register expected"),
535 N_("Maverick MVD register expected"),
536 N_("Maverick MVFX register expected"),
537 N_("Maverick MVDX register expected"),
538 N_("Maverick MVAX register expected"),
539 N_("Maverick DSPSC register expected"),
540 N_("iWMMXt data register expected"),
541 N_("iWMMXt control register expected"),
542 N_("iWMMXt scalar register expected"),
543 N_("XScale accumulator register expected"),
544 };
545
546 /* Some well known registers that we refer to directly elsewhere. */
547 #define REG_SP 13
548 #define REG_LR 14
549 #define REG_PC 15
550
551 /* ARM instructions take 4bytes in the object file, Thumb instructions
552 take 2: */
553 #define INSN_SIZE 4
554
555 struct asm_opcode
556 {
557 /* Basic string to match. */
558 const char * template_name;
559
560 /* Parameters to instruction. */
561 unsigned int operands[8];
562
563 /* Conditional tag - see opcode_lookup. */
564 unsigned int tag : 4;
565
566 /* Basic instruction code. */
567 unsigned int avalue : 28;
568
569 /* Thumb-format instruction code. */
570 unsigned int tvalue;
571
572 /* Which architecture variant provides this instruction. */
573 const arm_feature_set * avariant;
574 const arm_feature_set * tvariant;
575
576 /* Function to call to encode instruction in ARM format. */
577 void (* aencode) (void);
578
579 /* Function to call to encode instruction in Thumb format. */
580 void (* tencode) (void);
581 };
582
583 /* Defines for various bits that we will want to toggle. */
584 #define INST_IMMEDIATE 0x02000000
585 #define OFFSET_REG 0x02000000
586 #define HWOFFSET_IMM 0x00400000
587 #define SHIFT_BY_REG 0x00000010
588 #define PRE_INDEX 0x01000000
589 #define INDEX_UP 0x00800000
590 #define WRITE_BACK 0x00200000
591 #define LDM_TYPE_2_OR_3 0x00400000
592 #define CPSI_MMOD 0x00020000
593
594 #define LITERAL_MASK 0xf000f000
595 #define OPCODE_MASK 0xfe1fffff
596 #define V4_STR_BIT 0x00000020
597
598 #define T2_SUBS_PC_LR 0xf3de8f00
599
600 #define DATA_OP_SHIFT 21
601
602 #define T2_OPCODE_MASK 0xfe1fffff
603 #define T2_DATA_OP_SHIFT 21
604
605 /* Codes to distinguish the arithmetic instructions. */
606 #define OPCODE_AND 0
607 #define OPCODE_EOR 1
608 #define OPCODE_SUB 2
609 #define OPCODE_RSB 3
610 #define OPCODE_ADD 4
611 #define OPCODE_ADC 5
612 #define OPCODE_SBC 6
613 #define OPCODE_RSC 7
614 #define OPCODE_TST 8
615 #define OPCODE_TEQ 9
616 #define OPCODE_CMP 10
617 #define OPCODE_CMN 11
618 #define OPCODE_ORR 12
619 #define OPCODE_MOV 13
620 #define OPCODE_BIC 14
621 #define OPCODE_MVN 15
622
623 #define T2_OPCODE_AND 0
624 #define T2_OPCODE_BIC 1
625 #define T2_OPCODE_ORR 2
626 #define T2_OPCODE_ORN 3
627 #define T2_OPCODE_EOR 4
628 #define T2_OPCODE_ADD 8
629 #define T2_OPCODE_ADC 10
630 #define T2_OPCODE_SBC 11
631 #define T2_OPCODE_SUB 13
632 #define T2_OPCODE_RSB 14
633
634 #define T_OPCODE_MUL 0x4340
635 #define T_OPCODE_TST 0x4200
636 #define T_OPCODE_CMN 0x42c0
637 #define T_OPCODE_NEG 0x4240
638 #define T_OPCODE_MVN 0x43c0
639
640 #define T_OPCODE_ADD_R3 0x1800
641 #define T_OPCODE_SUB_R3 0x1a00
642 #define T_OPCODE_ADD_HI 0x4400
643 #define T_OPCODE_ADD_ST 0xb000
644 #define T_OPCODE_SUB_ST 0xb080
645 #define T_OPCODE_ADD_SP 0xa800
646 #define T_OPCODE_ADD_PC 0xa000
647 #define T_OPCODE_ADD_I8 0x3000
648 #define T_OPCODE_SUB_I8 0x3800
649 #define T_OPCODE_ADD_I3 0x1c00
650 #define T_OPCODE_SUB_I3 0x1e00
651
652 #define T_OPCODE_ASR_R 0x4100
653 #define T_OPCODE_LSL_R 0x4080
654 #define T_OPCODE_LSR_R 0x40c0
655 #define T_OPCODE_ROR_R 0x41c0
656 #define T_OPCODE_ASR_I 0x1000
657 #define T_OPCODE_LSL_I 0x0000
658 #define T_OPCODE_LSR_I 0x0800
659
660 #define T_OPCODE_MOV_I8 0x2000
661 #define T_OPCODE_CMP_I8 0x2800
662 #define T_OPCODE_CMP_LR 0x4280
663 #define T_OPCODE_MOV_HR 0x4600
664 #define T_OPCODE_CMP_HR 0x4500
665
666 #define T_OPCODE_LDR_PC 0x4800
667 #define T_OPCODE_LDR_SP 0x9800
668 #define T_OPCODE_STR_SP 0x9000
669 #define T_OPCODE_LDR_IW 0x6800
670 #define T_OPCODE_STR_IW 0x6000
671 #define T_OPCODE_LDR_IH 0x8800
672 #define T_OPCODE_STR_IH 0x8000
673 #define T_OPCODE_LDR_IB 0x7800
674 #define T_OPCODE_STR_IB 0x7000
675 #define T_OPCODE_LDR_RW 0x5800
676 #define T_OPCODE_STR_RW 0x5000
677 #define T_OPCODE_LDR_RH 0x5a00
678 #define T_OPCODE_STR_RH 0x5200
679 #define T_OPCODE_LDR_RB 0x5c00
680 #define T_OPCODE_STR_RB 0x5400
681
682 #define T_OPCODE_PUSH 0xb400
683 #define T_OPCODE_POP 0xbc00
684
685 #define T_OPCODE_BRANCH 0xe000
686
687 #define THUMB_SIZE 2 /* Size of thumb instruction. */
688 #define THUMB_PP_PC_LR 0x0100
689 #define THUMB_LOAD_BIT 0x0800
690 #define THUMB2_LOAD_BIT 0x00100000
691
692 #define BAD_ARGS _("bad arguments to instruction")
693 #define BAD_SP _("r13 not allowed here")
694 #define BAD_PC _("r15 not allowed here")
695 #define BAD_COND _("instruction cannot be conditional")
696 #define BAD_OVERLAP _("registers may not be the same")
697 #define BAD_HIREG _("lo register required")
698 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
699 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
700 #define BAD_BRANCH _("branch must be last instruction in IT block")
701 #define BAD_NOT_IT _("instruction not allowed in IT block")
702 #define BAD_FPU _("selected FPU does not support instruction")
703 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
704 #define BAD_IT_COND _("incorrect condition in IT block")
705 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
706 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
707 #define BAD_PC_ADDRESSING \
708 _("cannot use register index with PC-relative addressing")
709 #define BAD_PC_WRITEBACK \
710 _("cannot use writeback with PC-relative addressing")
711
712 static struct hash_control * arm_ops_hsh;
713 static struct hash_control * arm_cond_hsh;
714 static struct hash_control * arm_shift_hsh;
715 static struct hash_control * arm_psr_hsh;
716 static struct hash_control * arm_v7m_psr_hsh;
717 static struct hash_control * arm_reg_hsh;
718 static struct hash_control * arm_reloc_hsh;
719 static struct hash_control * arm_barrier_opt_hsh;
720
721 /* Stuff needed to resolve the label ambiguity
722 As:
723 ...
724 label: <insn>
725 may differ from:
726 ...
727 label:
728 <insn> */
729
730 symbolS * last_label_seen;
731 static int label_is_thumb_function_name = FALSE;
732
733 /* Literal pool structure. Held on a per-section
734 and per-sub-section basis. */
735
736 #define MAX_LITERAL_POOL_SIZE 1024
737 typedef struct literal_pool
738 {
739 expressionS literals [MAX_LITERAL_POOL_SIZE];
740 unsigned int next_free_entry;
741 unsigned int id;
742 symbolS * symbol;
743 segT section;
744 subsegT sub_section;
745 struct literal_pool * next;
746 } literal_pool;
747
748 /* Pointer to a linked list of literal pools. */
749 literal_pool * list_of_pools = NULL;
750
751 #ifdef OBJ_ELF
752 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
753 #else
754 static struct current_it now_it;
755 #endif
756
757 static inline int
758 now_it_compatible (int cond)
759 {
760 return (cond & ~1) == (now_it.cc & ~1);
761 }
762
763 static inline int
764 conditional_insn (void)
765 {
766 return inst.cond != COND_ALWAYS;
767 }
768
769 static int in_it_block (void);
770
771 static int handle_it_state (void);
772
773 static void force_automatic_it_block_close (void);
774
775 static void it_fsm_post_encode (void);
776
777 #define set_it_insn_type(type) \
778 do \
779 { \
780 inst.it_insn_type = type; \
781 if (handle_it_state () == FAIL) \
782 return; \
783 } \
784 while (0)
785
786 #define set_it_insn_type_nonvoid(type, failret) \
787 do \
788 { \
789 inst.it_insn_type = type; \
790 if (handle_it_state () == FAIL) \
791 return failret; \
792 } \
793 while(0)
794
795 #define set_it_insn_type_last() \
796 do \
797 { \
798 if (inst.cond == COND_ALWAYS) \
799 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
800 else \
801 set_it_insn_type (INSIDE_IT_LAST_INSN); \
802 } \
803 while (0)
804
805 /* Pure syntax. */
806
807 /* This array holds the chars that always start a comment. If the
808 pre-processor is disabled, these aren't very useful. */
809 const char comment_chars[] = "@";
810
811 /* This array holds the chars that only start a comment at the beginning of
812 a line. If the line seems to have the form '# 123 filename'
813 .line and .file directives will appear in the pre-processed output. */
814 /* Note that input_file.c hand checks for '#' at the beginning of the
815 first line of the input file. This is because the compiler outputs
816 #NO_APP at the beginning of its output. */
817 /* Also note that comments like this one will always work. */
818 const char line_comment_chars[] = "#";
819
820 const char line_separator_chars[] = ";";
821
822 /* Chars that can be used to separate mant
823 from exp in floating point numbers. */
824 const char EXP_CHARS[] = "eE";
825
826 /* Chars that mean this number is a floating point constant. */
827 /* As in 0f12.456 */
828 /* or 0d1.2345e12 */
829
830 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
831
832 /* Prefix characters that indicate the start of an immediate
833 value. */
834 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
835
836 /* Separator character handling. */
837
838 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
839
840 static inline int
841 skip_past_char (char ** str, char c)
842 {
843 if (**str == c)
844 {
845 (*str)++;
846 return SUCCESS;
847 }
848 else
849 return FAIL;
850 }
851
852 #define skip_past_comma(str) skip_past_char (str, ',')
853
854 /* Arithmetic expressions (possibly involving symbols). */
855
856 /* Return TRUE if anything in the expression is a bignum. */
857
858 static int
859 walk_no_bignums (symbolS * sp)
860 {
861 if (symbol_get_value_expression (sp)->X_op == O_big)
862 return 1;
863
864 if (symbol_get_value_expression (sp)->X_add_symbol)
865 {
866 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
867 || (symbol_get_value_expression (sp)->X_op_symbol
868 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
869 }
870
871 return 0;
872 }
873
874 static int in_my_get_expression = 0;
875
876 /* Third argument to my_get_expression. */
877 #define GE_NO_PREFIX 0
878 #define GE_IMM_PREFIX 1
879 #define GE_OPT_PREFIX 2
880 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
881 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
882 #define GE_OPT_PREFIX_BIG 3
883
884 static int
885 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
886 {
887 char * save_in;
888 segT seg;
889
890 /* In unified syntax, all prefixes are optional. */
891 if (unified_syntax)
892 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
893 : GE_OPT_PREFIX;
894
895 switch (prefix_mode)
896 {
897 case GE_NO_PREFIX: break;
898 case GE_IMM_PREFIX:
899 if (!is_immediate_prefix (**str))
900 {
901 inst.error = _("immediate expression requires a # prefix");
902 return FAIL;
903 }
904 (*str)++;
905 break;
906 case GE_OPT_PREFIX:
907 case GE_OPT_PREFIX_BIG:
908 if (is_immediate_prefix (**str))
909 (*str)++;
910 break;
911 default: abort ();
912 }
913
914 memset (ep, 0, sizeof (expressionS));
915
916 save_in = input_line_pointer;
917 input_line_pointer = *str;
918 in_my_get_expression = 1;
919 seg = expression (ep);
920 in_my_get_expression = 0;
921
922 if (ep->X_op == O_illegal || ep->X_op == O_absent)
923 {
924 /* We found a bad or missing expression in md_operand(). */
925 *str = input_line_pointer;
926 input_line_pointer = save_in;
927 if (inst.error == NULL)
928 inst.error = (ep->X_op == O_absent
929 ? _("missing expression") :_("bad expression"));
930 return 1;
931 }
932
933 #ifdef OBJ_AOUT
934 if (seg != absolute_section
935 && seg != text_section
936 && seg != data_section
937 && seg != bss_section
938 && seg != undefined_section)
939 {
940 inst.error = _("bad segment");
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 return 1;
944 }
945 #else
946 (void) seg;
947 #endif
948
949 /* Get rid of any bignums now, so that we don't generate an error for which
950 we can't establish a line number later on. Big numbers are never valid
951 in instructions, which is where this routine is always called. */
952 if (prefix_mode != GE_OPT_PREFIX_BIG
953 && (ep->X_op == O_big
954 || (ep->X_add_symbol
955 && (walk_no_bignums (ep->X_add_symbol)
956 || (ep->X_op_symbol
957 && walk_no_bignums (ep->X_op_symbol))))))
958 {
959 inst.error = _("invalid constant");
960 *str = input_line_pointer;
961 input_line_pointer = save_in;
962 return 1;
963 }
964
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 return 0;
968 }
969
970 /* Turn a string in input_line_pointer into a floating point constant
971 of type TYPE, and store the appropriate bytes in *LITP. The number
972 of LITTLENUMS emitted is stored in *SIZEP. An error message is
973 returned, or NULL on OK.
974
975 Note that fp constants aren't represent in the normal way on the ARM.
976 In big endian mode, things are as expected. However, in little endian
977 mode fp constants are big-endian word-wise, and little-endian byte-wise
978 within the words. For example, (double) 1.1 in big endian mode is
979 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
980 the byte sequence 99 99 f1 3f 9a 99 99 99.
981
982 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
983
984 char *
985 md_atof (int type, char * litP, int * sizeP)
986 {
987 int prec;
988 LITTLENUM_TYPE words[MAX_LITTLENUMS];
989 char *t;
990 int i;
991
992 switch (type)
993 {
994 case 'f':
995 case 'F':
996 case 's':
997 case 'S':
998 prec = 2;
999 break;
1000
1001 case 'd':
1002 case 'D':
1003 case 'r':
1004 case 'R':
1005 prec = 4;
1006 break;
1007
1008 case 'x':
1009 case 'X':
1010 prec = 5;
1011 break;
1012
1013 case 'p':
1014 case 'P':
1015 prec = 5;
1016 break;
1017
1018 default:
1019 *sizeP = 0;
1020 return _("Unrecognized or unsupported floating point constant");
1021 }
1022
1023 t = atof_ieee (input_line_pointer, type, words);
1024 if (t)
1025 input_line_pointer = t;
1026 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1027
1028 if (target_big_endian)
1029 {
1030 for (i = 0; i < prec; i++)
1031 {
1032 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1033 litP += sizeof (LITTLENUM_TYPE);
1034 }
1035 }
1036 else
1037 {
1038 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1039 for (i = prec - 1; i >= 0; i--)
1040 {
1041 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1042 litP += sizeof (LITTLENUM_TYPE);
1043 }
1044 else
1045 /* For a 4 byte float the order of elements in `words' is 1 0.
1046 For an 8 byte float the order is 1 0 3 2. */
1047 for (i = 0; i < prec; i += 2)
1048 {
1049 md_number_to_chars (litP, (valueT) words[i + 1],
1050 sizeof (LITTLENUM_TYPE));
1051 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1052 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1053 litP += 2 * sizeof (LITTLENUM_TYPE);
1054 }
1055 }
1056
1057 return NULL;
1058 }
1059
1060 /* We handle all bad expressions here, so that we can report the faulty
1061 instruction in the error message. */
1062 void
1063 md_operand (expressionS * exp)
1064 {
1065 if (in_my_get_expression)
1066 exp->X_op = O_illegal;
1067 }
1068
1069 /* Immediate values. */
1070
1071 /* Generic immediate-value read function for use in directives.
1072 Accepts anything that 'expression' can fold to a constant.
1073 *val receives the number. */
1074 #ifdef OBJ_ELF
1075 static int
1076 immediate_for_directive (int *val)
1077 {
1078 expressionS exp;
1079 exp.X_op = O_illegal;
1080
1081 if (is_immediate_prefix (*input_line_pointer))
1082 {
1083 input_line_pointer++;
1084 expression (&exp);
1085 }
1086
1087 if (exp.X_op != O_constant)
1088 {
1089 as_bad (_("expected #constant"));
1090 ignore_rest_of_line ();
1091 return FAIL;
1092 }
1093 *val = exp.X_add_number;
1094 return SUCCESS;
1095 }
1096 #endif
1097
1098 /* Register parsing. */
1099
1100 /* Generic register parser. CCP points to what should be the
1101 beginning of a register name. If it is indeed a valid register
1102 name, advance CCP over it and return the reg_entry structure;
1103 otherwise return NULL. Does not issue diagnostics. */
1104
1105 static struct reg_entry *
1106 arm_reg_parse_multi (char **ccp)
1107 {
1108 char *start = *ccp;
1109 char *p;
1110 struct reg_entry *reg;
1111
1112 #ifdef REGISTER_PREFIX
1113 if (*start != REGISTER_PREFIX)
1114 return NULL;
1115 start++;
1116 #endif
1117 #ifdef OPTIONAL_REGISTER_PREFIX
1118 if (*start == OPTIONAL_REGISTER_PREFIX)
1119 start++;
1120 #endif
1121
1122 p = start;
1123 if (!ISALPHA (*p) || !is_name_beginner (*p))
1124 return NULL;
1125
1126 do
1127 p++;
1128 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1129
1130 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1131
1132 if (!reg)
1133 return NULL;
1134
1135 *ccp = p;
1136 return reg;
1137 }
1138
1139 static int
1140 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1141 enum arm_reg_type type)
1142 {
1143 /* Alternative syntaxes are accepted for a few register classes. */
1144 switch (type)
1145 {
1146 case REG_TYPE_MVF:
1147 case REG_TYPE_MVD:
1148 case REG_TYPE_MVFX:
1149 case REG_TYPE_MVDX:
1150 /* Generic coprocessor register names are allowed for these. */
1151 if (reg && reg->type == REG_TYPE_CN)
1152 return reg->number;
1153 break;
1154
1155 case REG_TYPE_CP:
1156 /* For backward compatibility, a bare number is valid here. */
1157 {
1158 unsigned long processor = strtoul (start, ccp, 10);
1159 if (*ccp != start && processor <= 15)
1160 return processor;
1161 }
1162
1163 case REG_TYPE_MMXWC:
1164 /* WC includes WCG. ??? I'm not sure this is true for all
1165 instructions that take WC registers. */
1166 if (reg && reg->type == REG_TYPE_MMXWCG)
1167 return reg->number;
1168 break;
1169
1170 default:
1171 break;
1172 }
1173
1174 return FAIL;
1175 }
1176
1177 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1178 return value is the register number or FAIL. */
1179
1180 static int
1181 arm_reg_parse (char **ccp, enum arm_reg_type type)
1182 {
1183 char *start = *ccp;
1184 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1185 int ret;
1186
1187 /* Do not allow a scalar (reg+index) to parse as a register. */
1188 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1189 return FAIL;
1190
1191 if (reg && reg->type == type)
1192 return reg->number;
1193
1194 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1195 return ret;
1196
1197 *ccp = start;
1198 return FAIL;
1199 }
1200
1201 /* Parse a Neon type specifier. *STR should point at the leading '.'
1202 character. Does no verification at this stage that the type fits the opcode
1203 properly. E.g.,
1204
1205 .i32.i32.s16
1206 .s32.f32
1207 .u16
1208
1209 Can all be legally parsed by this function.
1210
1211 Fills in neon_type struct pointer with parsed information, and updates STR
1212 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1213 type, FAIL if not. */
1214
1215 static int
1216 parse_neon_type (struct neon_type *type, char **str)
1217 {
1218 char *ptr = *str;
1219
1220 if (type)
1221 type->elems = 0;
1222
1223 while (type->elems < NEON_MAX_TYPE_ELS)
1224 {
1225 enum neon_el_type thistype = NT_untyped;
1226 unsigned thissize = -1u;
1227
1228 if (*ptr != '.')
1229 break;
1230
1231 ptr++;
1232
1233 /* Just a size without an explicit type. */
1234 if (ISDIGIT (*ptr))
1235 goto parsesize;
1236
1237 switch (TOLOWER (*ptr))
1238 {
1239 case 'i': thistype = NT_integer; break;
1240 case 'f': thistype = NT_float; break;
1241 case 'p': thistype = NT_poly; break;
1242 case 's': thistype = NT_signed; break;
1243 case 'u': thistype = NT_unsigned; break;
1244 case 'd':
1245 thistype = NT_float;
1246 thissize = 64;
1247 ptr++;
1248 goto done;
1249 default:
1250 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1251 return FAIL;
1252 }
1253
1254 ptr++;
1255
1256 /* .f is an abbreviation for .f32. */
1257 if (thistype == NT_float && !ISDIGIT (*ptr))
1258 thissize = 32;
1259 else
1260 {
1261 parsesize:
1262 thissize = strtoul (ptr, &ptr, 10);
1263
1264 if (thissize != 8 && thissize != 16 && thissize != 32
1265 && thissize != 64)
1266 {
1267 as_bad (_("bad size %d in type specifier"), thissize);
1268 return FAIL;
1269 }
1270 }
1271
1272 done:
1273 if (type)
1274 {
1275 type->el[type->elems].type = thistype;
1276 type->el[type->elems].size = thissize;
1277 type->elems++;
1278 }
1279 }
1280
1281 /* Empty/missing type is not a successful parse. */
1282 if (type->elems == 0)
1283 return FAIL;
1284
1285 *str = ptr;
1286
1287 return SUCCESS;
1288 }
1289
1290 /* Errors may be set multiple times during parsing or bit encoding
1291 (particularly in the Neon bits), but usually the earliest error which is set
1292 will be the most meaningful. Avoid overwriting it with later (cascading)
1293 errors by calling this function. */
1294
1295 static void
1296 first_error (const char *err)
1297 {
1298 if (!inst.error)
1299 inst.error = err;
1300 }
1301
1302 /* Parse a single type, e.g. ".s32", leading period included. */
1303 static int
1304 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1305 {
1306 char *str = *ccp;
1307 struct neon_type optype;
1308
1309 if (*str == '.')
1310 {
1311 if (parse_neon_type (&optype, &str) == SUCCESS)
1312 {
1313 if (optype.elems == 1)
1314 *vectype = optype.el[0];
1315 else
1316 {
1317 first_error (_("only one type should be specified for operand"));
1318 return FAIL;
1319 }
1320 }
1321 else
1322 {
1323 first_error (_("vector type expected"));
1324 return FAIL;
1325 }
1326 }
1327 else
1328 return FAIL;
1329
1330 *ccp = str;
1331
1332 return SUCCESS;
1333 }
1334
1335 /* Special meanings for indices (which have a range of 0-7), which will fit into
1336 a 4-bit integer. */
1337
1338 #define NEON_ALL_LANES 15
1339 #define NEON_INTERLEAVE_LANES 14
1340
1341 /* Parse either a register or a scalar, with an optional type. Return the
1342 register number, and optionally fill in the actual type of the register
1343 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1344 type/index information in *TYPEINFO. */
1345
1346 static int
1347 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1348 enum arm_reg_type *rtype,
1349 struct neon_typed_alias *typeinfo)
1350 {
1351 char *str = *ccp;
1352 struct reg_entry *reg = arm_reg_parse_multi (&str);
1353 struct neon_typed_alias atype;
1354 struct neon_type_el parsetype;
1355
1356 atype.defined = 0;
1357 atype.index = -1;
1358 atype.eltype.type = NT_invtype;
1359 atype.eltype.size = -1;
1360
1361 /* Try alternate syntax for some types of register. Note these are mutually
1362 exclusive with the Neon syntax extensions. */
1363 if (reg == NULL)
1364 {
1365 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1366 if (altreg != FAIL)
1367 *ccp = str;
1368 if (typeinfo)
1369 *typeinfo = atype;
1370 return altreg;
1371 }
1372
1373 /* Undo polymorphism when a set of register types may be accepted. */
1374 if ((type == REG_TYPE_NDQ
1375 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1376 || (type == REG_TYPE_VFSD
1377 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1378 || (type == REG_TYPE_NSDQ
1379 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1380 || reg->type == REG_TYPE_NQ))
1381 || (type == REG_TYPE_MMXWC
1382 && (reg->type == REG_TYPE_MMXWCG)))
1383 type = (enum arm_reg_type) reg->type;
1384
1385 if (type != reg->type)
1386 return FAIL;
1387
1388 if (reg->neon)
1389 atype = *reg->neon;
1390
1391 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1392 {
1393 if ((atype.defined & NTA_HASTYPE) != 0)
1394 {
1395 first_error (_("can't redefine type for operand"));
1396 return FAIL;
1397 }
1398 atype.defined |= NTA_HASTYPE;
1399 atype.eltype = parsetype;
1400 }
1401
1402 if (skip_past_char (&str, '[') == SUCCESS)
1403 {
1404 if (type != REG_TYPE_VFD)
1405 {
1406 first_error (_("only D registers may be indexed"));
1407 return FAIL;
1408 }
1409
1410 if ((atype.defined & NTA_HASINDEX) != 0)
1411 {
1412 first_error (_("can't change index for operand"));
1413 return FAIL;
1414 }
1415
1416 atype.defined |= NTA_HASINDEX;
1417
1418 if (skip_past_char (&str, ']') == SUCCESS)
1419 atype.index = NEON_ALL_LANES;
1420 else
1421 {
1422 expressionS exp;
1423
1424 my_get_expression (&exp, &str, GE_NO_PREFIX);
1425
1426 if (exp.X_op != O_constant)
1427 {
1428 first_error (_("constant expression required"));
1429 return FAIL;
1430 }
1431
1432 if (skip_past_char (&str, ']') == FAIL)
1433 return FAIL;
1434
1435 atype.index = exp.X_add_number;
1436 }
1437 }
1438
1439 if (typeinfo)
1440 *typeinfo = atype;
1441
1442 if (rtype)
1443 *rtype = type;
1444
1445 *ccp = str;
1446
1447 return reg->number;
1448 }
1449
1450 /* Like arm_reg_parse, but allow allow the following extra features:
1451 - If RTYPE is non-zero, return the (possibly restricted) type of the
1452 register (e.g. Neon double or quad reg when either has been requested).
1453 - If this is a Neon vector type with additional type information, fill
1454 in the struct pointed to by VECTYPE (if non-NULL).
1455 This function will fault on encountering a scalar. */
1456
1457 static int
1458 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1459 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1460 {
1461 struct neon_typed_alias atype;
1462 char *str = *ccp;
1463 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1464
1465 if (reg == FAIL)
1466 return FAIL;
1467
1468 /* Do not allow a scalar (reg+index) to parse as a register. */
1469 if ((atype.defined & NTA_HASINDEX) != 0)
1470 {
1471 first_error (_("register operand expected, but got scalar"));
1472 return FAIL;
1473 }
1474
1475 if (vectype)
1476 *vectype = atype.eltype;
1477
1478 *ccp = str;
1479
1480 return reg;
1481 }
1482
1483 #define NEON_SCALAR_REG(X) ((X) >> 4)
1484 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1485
1486 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1487 have enough information to be able to do a good job bounds-checking. So, we
1488 just do easy checks here, and do further checks later. */
1489
1490 static int
1491 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1492 {
1493 int reg;
1494 char *str = *ccp;
1495 struct neon_typed_alias atype;
1496
1497 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1498
1499 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1500 return FAIL;
1501
1502 if (atype.index == NEON_ALL_LANES)
1503 {
1504 first_error (_("scalar must have an index"));
1505 return FAIL;
1506 }
1507 else if (atype.index >= 64 / elsize)
1508 {
1509 first_error (_("scalar index out of range"));
1510 return FAIL;
1511 }
1512
1513 if (type)
1514 *type = atype.eltype;
1515
1516 *ccp = str;
1517
1518 return reg * 16 + atype.index;
1519 }
1520
1521 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1522
1523 static long
1524 parse_reg_list (char ** strp)
1525 {
1526 char * str = * strp;
1527 long range = 0;
1528 int another_range;
1529
1530 /* We come back here if we get ranges concatenated by '+' or '|'. */
1531 do
1532 {
1533 another_range = 0;
1534
1535 if (*str == '{')
1536 {
1537 int in_range = 0;
1538 int cur_reg = -1;
1539
1540 str++;
1541 do
1542 {
1543 int reg;
1544
1545 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1546 {
1547 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1548 return FAIL;
1549 }
1550
1551 if (in_range)
1552 {
1553 int i;
1554
1555 if (reg <= cur_reg)
1556 {
1557 first_error (_("bad range in register list"));
1558 return FAIL;
1559 }
1560
1561 for (i = cur_reg + 1; i < reg; i++)
1562 {
1563 if (range & (1 << i))
1564 as_tsktsk
1565 (_("Warning: duplicated register (r%d) in register list"),
1566 i);
1567 else
1568 range |= 1 << i;
1569 }
1570 in_range = 0;
1571 }
1572
1573 if (range & (1 << reg))
1574 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1575 reg);
1576 else if (reg <= cur_reg)
1577 as_tsktsk (_("Warning: register range not in ascending order"));
1578
1579 range |= 1 << reg;
1580 cur_reg = reg;
1581 }
1582 while (skip_past_comma (&str) != FAIL
1583 || (in_range = 1, *str++ == '-'));
1584 str--;
1585
1586 if (*str++ != '}')
1587 {
1588 first_error (_("missing `}'"));
1589 return FAIL;
1590 }
1591 }
1592 else
1593 {
1594 expressionS exp;
1595
1596 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1597 return FAIL;
1598
1599 if (exp.X_op == O_constant)
1600 {
1601 if (exp.X_add_number
1602 != (exp.X_add_number & 0x0000ffff))
1603 {
1604 inst.error = _("invalid register mask");
1605 return FAIL;
1606 }
1607
1608 if ((range & exp.X_add_number) != 0)
1609 {
1610 int regno = range & exp.X_add_number;
1611
1612 regno &= -regno;
1613 regno = (1 << regno) - 1;
1614 as_tsktsk
1615 (_("Warning: duplicated register (r%d) in register list"),
1616 regno);
1617 }
1618
1619 range |= exp.X_add_number;
1620 }
1621 else
1622 {
1623 if (inst.reloc.type != 0)
1624 {
1625 inst.error = _("expression too complex");
1626 return FAIL;
1627 }
1628
1629 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1630 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1631 inst.reloc.pc_rel = 0;
1632 }
1633 }
1634
1635 if (*str == '|' || *str == '+')
1636 {
1637 str++;
1638 another_range = 1;
1639 }
1640 }
1641 while (another_range);
1642
1643 *strp = str;
1644 return range;
1645 }
1646
1647 /* Types of registers in a list. */
1648
1649 enum reg_list_els
1650 {
1651 REGLIST_VFP_S,
1652 REGLIST_VFP_D,
1653 REGLIST_NEON_D
1654 };
1655
1656 /* Parse a VFP register list. If the string is invalid return FAIL.
1657 Otherwise return the number of registers, and set PBASE to the first
1658 register. Parses registers of type ETYPE.
1659 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1660 - Q registers can be used to specify pairs of D registers
1661 - { } can be omitted from around a singleton register list
1662 FIXME: This is not implemented, as it would require backtracking in
1663 some cases, e.g.:
1664 vtbl.8 d3,d4,d5
1665 This could be done (the meaning isn't really ambiguous), but doesn't
1666 fit in well with the current parsing framework.
1667 - 32 D registers may be used (also true for VFPv3).
1668 FIXME: Types are ignored in these register lists, which is probably a
1669 bug. */
1670
1671 static int
1672 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1673 {
1674 char *str = *ccp;
1675 int base_reg;
1676 int new_base;
1677 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1678 int max_regs = 0;
1679 int count = 0;
1680 int warned = 0;
1681 unsigned long mask = 0;
1682 int i;
1683
1684 if (*str != '{')
1685 {
1686 inst.error = _("expecting {");
1687 return FAIL;
1688 }
1689
1690 str++;
1691
1692 switch (etype)
1693 {
1694 case REGLIST_VFP_S:
1695 regtype = REG_TYPE_VFS;
1696 max_regs = 32;
1697 break;
1698
1699 case REGLIST_VFP_D:
1700 regtype = REG_TYPE_VFD;
1701 break;
1702
1703 case REGLIST_NEON_D:
1704 regtype = REG_TYPE_NDQ;
1705 break;
1706 }
1707
1708 if (etype != REGLIST_VFP_S)
1709 {
1710 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1711 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1712 {
1713 max_regs = 32;
1714 if (thumb_mode)
1715 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1716 fpu_vfp_ext_d32);
1717 else
1718 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1719 fpu_vfp_ext_d32);
1720 }
1721 else
1722 max_regs = 16;
1723 }
1724
1725 base_reg = max_regs;
1726
1727 do
1728 {
1729 int setmask = 1, addregs = 1;
1730
1731 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1732
1733 if (new_base == FAIL)
1734 {
1735 first_error (_(reg_expected_msgs[regtype]));
1736 return FAIL;
1737 }
1738
1739 if (new_base >= max_regs)
1740 {
1741 first_error (_("register out of range in list"));
1742 return FAIL;
1743 }
1744
1745 /* Note: a value of 2 * n is returned for the register Q<n>. */
1746 if (regtype == REG_TYPE_NQ)
1747 {
1748 setmask = 3;
1749 addregs = 2;
1750 }
1751
1752 if (new_base < base_reg)
1753 base_reg = new_base;
1754
1755 if (mask & (setmask << new_base))
1756 {
1757 first_error (_("invalid register list"));
1758 return FAIL;
1759 }
1760
1761 if ((mask >> new_base) != 0 && ! warned)
1762 {
1763 as_tsktsk (_("register list not in ascending order"));
1764 warned = 1;
1765 }
1766
1767 mask |= setmask << new_base;
1768 count += addregs;
1769
1770 if (*str == '-') /* We have the start of a range expression */
1771 {
1772 int high_range;
1773
1774 str++;
1775
1776 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1777 == FAIL)
1778 {
1779 inst.error = gettext (reg_expected_msgs[regtype]);
1780 return FAIL;
1781 }
1782
1783 if (high_range >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
1789 if (regtype == REG_TYPE_NQ)
1790 high_range = high_range + 1;
1791
1792 if (high_range <= new_base)
1793 {
1794 inst.error = _("register range not in ascending order");
1795 return FAIL;
1796 }
1797
1798 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1799 {
1800 if (mask & (setmask << new_base))
1801 {
1802 inst.error = _("invalid register list");
1803 return FAIL;
1804 }
1805
1806 mask |= setmask << new_base;
1807 count += addregs;
1808 }
1809 }
1810 }
1811 while (skip_past_comma (&str) != FAIL);
1812
1813 str++;
1814
1815 /* Sanity check -- should have raised a parse error above. */
1816 if (count == 0 || count > max_regs)
1817 abort ();
1818
1819 *pbase = base_reg;
1820
1821 /* Final test -- the registers must be consecutive. */
1822 mask >>= base_reg;
1823 for (i = 0; i < count; i++)
1824 {
1825 if ((mask & (1u << i)) == 0)
1826 {
1827 inst.error = _("non-contiguous register range");
1828 return FAIL;
1829 }
1830 }
1831
1832 *ccp = str;
1833
1834 return count;
1835 }
1836
1837 /* True if two alias types are the same. */
1838
1839 static bfd_boolean
1840 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1841 {
1842 if (!a && !b)
1843 return TRUE;
1844
1845 if (!a || !b)
1846 return FALSE;
1847
1848 if (a->defined != b->defined)
1849 return FALSE;
1850
1851 if ((a->defined & NTA_HASTYPE) != 0
1852 && (a->eltype.type != b->eltype.type
1853 || a->eltype.size != b->eltype.size))
1854 return FALSE;
1855
1856 if ((a->defined & NTA_HASINDEX) != 0
1857 && (a->index != b->index))
1858 return FALSE;
1859
1860 return TRUE;
1861 }
1862
1863 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1864 The base register is put in *PBASE.
1865 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1866 the return value.
1867 The register stride (minus one) is put in bit 4 of the return value.
1868 Bits [6:5] encode the list length (minus one).
1869 The type of the list elements is put in *ELTYPE, if non-NULL. */
1870
1871 #define NEON_LANE(X) ((X) & 0xf)
1872 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1873 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1874
1875 static int
1876 parse_neon_el_struct_list (char **str, unsigned *pbase,
1877 struct neon_type_el *eltype)
1878 {
1879 char *ptr = *str;
1880 int base_reg = -1;
1881 int reg_incr = -1;
1882 int count = 0;
1883 int lane = -1;
1884 int leading_brace = 0;
1885 enum arm_reg_type rtype = REG_TYPE_NDQ;
1886 const char *const incr_error = _("register stride must be 1 or 2");
1887 const char *const type_error = _("mismatched element/structure types in list");
1888 struct neon_typed_alias firsttype;
1889
1890 if (skip_past_char (&ptr, '{') == SUCCESS)
1891 leading_brace = 1;
1892
1893 do
1894 {
1895 struct neon_typed_alias atype;
1896 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1897
1898 if (getreg == FAIL)
1899 {
1900 first_error (_(reg_expected_msgs[rtype]));
1901 return FAIL;
1902 }
1903
1904 if (base_reg == -1)
1905 {
1906 base_reg = getreg;
1907 if (rtype == REG_TYPE_NQ)
1908 {
1909 reg_incr = 1;
1910 }
1911 firsttype = atype;
1912 }
1913 else if (reg_incr == -1)
1914 {
1915 reg_incr = getreg - base_reg;
1916 if (reg_incr < 1 || reg_incr > 2)
1917 {
1918 first_error (_(incr_error));
1919 return FAIL;
1920 }
1921 }
1922 else if (getreg != base_reg + reg_incr * count)
1923 {
1924 first_error (_(incr_error));
1925 return FAIL;
1926 }
1927
1928 if (! neon_alias_types_same (&atype, &firsttype))
1929 {
1930 first_error (_(type_error));
1931 return FAIL;
1932 }
1933
1934 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1935 modes. */
1936 if (ptr[0] == '-')
1937 {
1938 struct neon_typed_alias htype;
1939 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1940 if (lane == -1)
1941 lane = NEON_INTERLEAVE_LANES;
1942 else if (lane != NEON_INTERLEAVE_LANES)
1943 {
1944 first_error (_(type_error));
1945 return FAIL;
1946 }
1947 if (reg_incr == -1)
1948 reg_incr = 1;
1949 else if (reg_incr != 1)
1950 {
1951 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1952 return FAIL;
1953 }
1954 ptr++;
1955 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1956 if (hireg == FAIL)
1957 {
1958 first_error (_(reg_expected_msgs[rtype]));
1959 return FAIL;
1960 }
1961 if (! neon_alias_types_same (&htype, &firsttype))
1962 {
1963 first_error (_(type_error));
1964 return FAIL;
1965 }
1966 count += hireg + dregs - getreg;
1967 continue;
1968 }
1969
1970 /* If we're using Q registers, we can't use [] or [n] syntax. */
1971 if (rtype == REG_TYPE_NQ)
1972 {
1973 count += 2;
1974 continue;
1975 }
1976
1977 if ((atype.defined & NTA_HASINDEX) != 0)
1978 {
1979 if (lane == -1)
1980 lane = atype.index;
1981 else if (lane != atype.index)
1982 {
1983 first_error (_(type_error));
1984 return FAIL;
1985 }
1986 }
1987 else if (lane == -1)
1988 lane = NEON_INTERLEAVE_LANES;
1989 else if (lane != NEON_INTERLEAVE_LANES)
1990 {
1991 first_error (_(type_error));
1992 return FAIL;
1993 }
1994 count++;
1995 }
1996 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1997
1998 /* No lane set by [x]. We must be interleaving structures. */
1999 if (lane == -1)
2000 lane = NEON_INTERLEAVE_LANES;
2001
2002 /* Sanity check. */
2003 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2004 || (count > 1 && reg_incr == -1))
2005 {
2006 first_error (_("error parsing element/structure list"));
2007 return FAIL;
2008 }
2009
2010 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2011 {
2012 first_error (_("expected }"));
2013 return FAIL;
2014 }
2015
2016 if (reg_incr == -1)
2017 reg_incr = 1;
2018
2019 if (eltype)
2020 *eltype = firsttype.eltype;
2021
2022 *pbase = base_reg;
2023 *str = ptr;
2024
2025 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2026 }
2027
2028 /* Parse an explicit relocation suffix on an expression. This is
2029 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2030 arm_reloc_hsh contains no entries, so this function can only
2031 succeed if there is no () after the word. Returns -1 on error,
2032 BFD_RELOC_UNUSED if there wasn't any suffix. */
2033 static int
2034 parse_reloc (char **str)
2035 {
2036 struct reloc_entry *r;
2037 char *p, *q;
2038
2039 if (**str != '(')
2040 return BFD_RELOC_UNUSED;
2041
2042 p = *str + 1;
2043 q = p;
2044
2045 while (*q && *q != ')' && *q != ',')
2046 q++;
2047 if (*q != ')')
2048 return -1;
2049
2050 if ((r = (struct reloc_entry *)
2051 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2052 return -1;
2053
2054 *str = q + 1;
2055 return r->reloc;
2056 }
2057
2058 /* Directives: register aliases. */
2059
2060 static struct reg_entry *
2061 insert_reg_alias (char *str, int number, int type)
2062 {
2063 struct reg_entry *new_reg;
2064 const char *name;
2065
2066 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2067 {
2068 if (new_reg->builtin)
2069 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2070
2071 /* Only warn about a redefinition if it's not defined as the
2072 same register. */
2073 else if (new_reg->number != number || new_reg->type != type)
2074 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2075
2076 return NULL;
2077 }
2078
2079 name = xstrdup (str);
2080 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2081
2082 new_reg->name = name;
2083 new_reg->number = number;
2084 new_reg->type = type;
2085 new_reg->builtin = FALSE;
2086 new_reg->neon = NULL;
2087
2088 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2089 abort ();
2090
2091 return new_reg;
2092 }
2093
2094 static void
2095 insert_neon_reg_alias (char *str, int number, int type,
2096 struct neon_typed_alias *atype)
2097 {
2098 struct reg_entry *reg = insert_reg_alias (str, number, type);
2099
2100 if (!reg)
2101 {
2102 first_error (_("attempt to redefine typed alias"));
2103 return;
2104 }
2105
2106 if (atype)
2107 {
2108 reg->neon = (struct neon_typed_alias *)
2109 xmalloc (sizeof (struct neon_typed_alias));
2110 *reg->neon = *atype;
2111 }
2112 }
2113
2114 /* Look for the .req directive. This is of the form:
2115
2116 new_register_name .req existing_register_name
2117
2118 If we find one, or if it looks sufficiently like one that we want to
2119 handle any error here, return TRUE. Otherwise return FALSE. */
2120
2121 static bfd_boolean
2122 create_register_alias (char * newname, char *p)
2123 {
2124 struct reg_entry *old;
2125 char *oldname, *nbuf;
2126 size_t nlen;
2127
2128 /* The input scrubber ensures that whitespace after the mnemonic is
2129 collapsed to single spaces. */
2130 oldname = p;
2131 if (strncmp (oldname, " .req ", 6) != 0)
2132 return FALSE;
2133
2134 oldname += 6;
2135 if (*oldname == '\0')
2136 return FALSE;
2137
2138 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2139 if (!old)
2140 {
2141 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2142 return TRUE;
2143 }
2144
2145 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2146 the desired alias name, and p points to its end. If not, then
2147 the desired alias name is in the global original_case_string. */
2148 #ifdef TC_CASE_SENSITIVE
2149 nlen = p - newname;
2150 #else
2151 newname = original_case_string;
2152 nlen = strlen (newname);
2153 #endif
2154
2155 nbuf = (char *) alloca (nlen + 1);
2156 memcpy (nbuf, newname, nlen);
2157 nbuf[nlen] = '\0';
2158
2159 /* Create aliases under the new name as stated; an all-lowercase
2160 version of the new name; and an all-uppercase version of the new
2161 name. */
2162 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2163 {
2164 for (p = nbuf; *p; p++)
2165 *p = TOUPPER (*p);
2166
2167 if (strncmp (nbuf, newname, nlen))
2168 {
2169 /* If this attempt to create an additional alias fails, do not bother
2170 trying to create the all-lower case alias. We will fail and issue
2171 a second, duplicate error message. This situation arises when the
2172 programmer does something like:
2173 foo .req r0
2174 Foo .req r1
2175 The second .req creates the "Foo" alias but then fails to create
2176 the artificial FOO alias because it has already been created by the
2177 first .req. */
2178 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2179 return TRUE;
2180 }
2181
2182 for (p = nbuf; *p; p++)
2183 *p = TOLOWER (*p);
2184
2185 if (strncmp (nbuf, newname, nlen))
2186 insert_reg_alias (nbuf, old->number, old->type);
2187 }
2188
2189 return TRUE;
2190 }
2191
2192 /* Create a Neon typed/indexed register alias using directives, e.g.:
2193 X .dn d5.s32[1]
2194 Y .qn 6.s16
2195 Z .dn d7
2196 T .dn Z[0]
2197 These typed registers can be used instead of the types specified after the
2198 Neon mnemonic, so long as all operands given have types. Types can also be
2199 specified directly, e.g.:
2200 vadd d0.s32, d1.s32, d2.s32 */
2201
2202 static bfd_boolean
2203 create_neon_reg_alias (char *newname, char *p)
2204 {
2205 enum arm_reg_type basetype;
2206 struct reg_entry *basereg;
2207 struct reg_entry mybasereg;
2208 struct neon_type ntype;
2209 struct neon_typed_alias typeinfo;
2210 char *namebuf, *nameend;
2211 int namelen;
2212
2213 typeinfo.defined = 0;
2214 typeinfo.eltype.type = NT_invtype;
2215 typeinfo.eltype.size = -1;
2216 typeinfo.index = -1;
2217
2218 nameend = p;
2219
2220 if (strncmp (p, " .dn ", 5) == 0)
2221 basetype = REG_TYPE_VFD;
2222 else if (strncmp (p, " .qn ", 5) == 0)
2223 basetype = REG_TYPE_NQ;
2224 else
2225 return FALSE;
2226
2227 p += 5;
2228
2229 if (*p == '\0')
2230 return FALSE;
2231
2232 basereg = arm_reg_parse_multi (&p);
2233
2234 if (basereg && basereg->type != basetype)
2235 {
2236 as_bad (_("bad type for register"));
2237 return FALSE;
2238 }
2239
2240 if (basereg == NULL)
2241 {
2242 expressionS exp;
2243 /* Try parsing as an integer. */
2244 my_get_expression (&exp, &p, GE_NO_PREFIX);
2245 if (exp.X_op != O_constant)
2246 {
2247 as_bad (_("expression must be constant"));
2248 return FALSE;
2249 }
2250 basereg = &mybasereg;
2251 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2252 : exp.X_add_number;
2253 basereg->neon = 0;
2254 }
2255
2256 if (basereg->neon)
2257 typeinfo = *basereg->neon;
2258
2259 if (parse_neon_type (&ntype, &p) == SUCCESS)
2260 {
2261 /* We got a type. */
2262 if (typeinfo.defined & NTA_HASTYPE)
2263 {
2264 as_bad (_("can't redefine the type of a register alias"));
2265 return FALSE;
2266 }
2267
2268 typeinfo.defined |= NTA_HASTYPE;
2269 if (ntype.elems != 1)
2270 {
2271 as_bad (_("you must specify a single type only"));
2272 return FALSE;
2273 }
2274 typeinfo.eltype = ntype.el[0];
2275 }
2276
2277 if (skip_past_char (&p, '[') == SUCCESS)
2278 {
2279 expressionS exp;
2280 /* We got a scalar index. */
2281
2282 if (typeinfo.defined & NTA_HASINDEX)
2283 {
2284 as_bad (_("can't redefine the index of a scalar alias"));
2285 return FALSE;
2286 }
2287
2288 my_get_expression (&exp, &p, GE_NO_PREFIX);
2289
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("scalar index must be constant"));
2293 return FALSE;
2294 }
2295
2296 typeinfo.defined |= NTA_HASINDEX;
2297 typeinfo.index = exp.X_add_number;
2298
2299 if (skip_past_char (&p, ']') == FAIL)
2300 {
2301 as_bad (_("expecting ]"));
2302 return FALSE;
2303 }
2304 }
2305
2306 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2307 the desired alias name, and p points to its end. If not, then
2308 the desired alias name is in the global original_case_string. */
2309 #ifdef TC_CASE_SENSITIVE
2310 namelen = nameend - newname;
2311 #else
2312 newname = original_case_string;
2313 namelen = strlen (newname);
2314 #endif
2315
2316 namebuf = (char *) alloca (namelen + 1);
2317 strncpy (namebuf, newname, namelen);
2318 namebuf[namelen] = '\0';
2319
2320 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2321 typeinfo.defined != 0 ? &typeinfo : NULL);
2322
2323 /* Insert name in all uppercase. */
2324 for (p = namebuf; *p; p++)
2325 *p = TOUPPER (*p);
2326
2327 if (strncmp (namebuf, newname, namelen))
2328 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2329 typeinfo.defined != 0 ? &typeinfo : NULL);
2330
2331 /* Insert name in all lowercase. */
2332 for (p = namebuf; *p; p++)
2333 *p = TOLOWER (*p);
2334
2335 if (strncmp (namebuf, newname, namelen))
2336 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2337 typeinfo.defined != 0 ? &typeinfo : NULL);
2338
2339 return TRUE;
2340 }
2341
2342 /* Should never be called, as .req goes between the alias and the
2343 register name, not at the beginning of the line. */
2344
2345 static void
2346 s_req (int a ATTRIBUTE_UNUSED)
2347 {
2348 as_bad (_("invalid syntax for .req directive"));
2349 }
2350
2351 static void
2352 s_dn (int a ATTRIBUTE_UNUSED)
2353 {
2354 as_bad (_("invalid syntax for .dn directive"));
2355 }
2356
2357 static void
2358 s_qn (int a ATTRIBUTE_UNUSED)
2359 {
2360 as_bad (_("invalid syntax for .qn directive"));
2361 }
2362
2363 /* The .unreq directive deletes an alias which was previously defined
2364 by .req. For example:
2365
2366 my_alias .req r11
2367 .unreq my_alias */
2368
2369 static void
2370 s_unreq (int a ATTRIBUTE_UNUSED)
2371 {
2372 char * name;
2373 char saved_char;
2374
2375 name = input_line_pointer;
2376
2377 while (*input_line_pointer != 0
2378 && *input_line_pointer != ' '
2379 && *input_line_pointer != '\n')
2380 ++input_line_pointer;
2381
2382 saved_char = *input_line_pointer;
2383 *input_line_pointer = 0;
2384
2385 if (!*name)
2386 as_bad (_("invalid syntax for .unreq directive"));
2387 else
2388 {
2389 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2390 name);
2391
2392 if (!reg)
2393 as_bad (_("unknown register alias '%s'"), name);
2394 else if (reg->builtin)
2395 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2396 name);
2397 else
2398 {
2399 char * p;
2400 char * nbuf;
2401
2402 hash_delete (arm_reg_hsh, name, FALSE);
2403 free ((char *) reg->name);
2404 if (reg->neon)
2405 free (reg->neon);
2406 free (reg);
2407
2408 /* Also locate the all upper case and all lower case versions.
2409 Do not complain if we cannot find one or the other as it
2410 was probably deleted above. */
2411
2412 nbuf = strdup (name);
2413 for (p = nbuf; *p; p++)
2414 *p = TOUPPER (*p);
2415 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2416 if (reg)
2417 {
2418 hash_delete (arm_reg_hsh, nbuf, FALSE);
2419 free ((char *) reg->name);
2420 if (reg->neon)
2421 free (reg->neon);
2422 free (reg);
2423 }
2424
2425 for (p = nbuf; *p; p++)
2426 *p = TOLOWER (*p);
2427 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2428 if (reg)
2429 {
2430 hash_delete (arm_reg_hsh, nbuf, FALSE);
2431 free ((char *) reg->name);
2432 if (reg->neon)
2433 free (reg->neon);
2434 free (reg);
2435 }
2436
2437 free (nbuf);
2438 }
2439 }
2440
2441 *input_line_pointer = saved_char;
2442 demand_empty_rest_of_line ();
2443 }
2444
2445 /* Directives: Instruction set selection. */
2446
2447 #ifdef OBJ_ELF
2448 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2449 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2450 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2451 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2452
2453 /* Create a new mapping symbol for the transition to STATE. */
2454
2455 static void
2456 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2457 {
2458 symbolS * symbolP;
2459 const char * symname;
2460 int type;
2461
2462 switch (state)
2463 {
2464 case MAP_DATA:
2465 symname = "$d";
2466 type = BSF_NO_FLAGS;
2467 break;
2468 case MAP_ARM:
2469 symname = "$a";
2470 type = BSF_NO_FLAGS;
2471 break;
2472 case MAP_THUMB:
2473 symname = "$t";
2474 type = BSF_NO_FLAGS;
2475 break;
2476 default:
2477 abort ();
2478 }
2479
2480 symbolP = symbol_new (symname, now_seg, value, frag);
2481 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2482
2483 switch (state)
2484 {
2485 case MAP_ARM:
2486 THUMB_SET_FUNC (symbolP, 0);
2487 ARM_SET_THUMB (symbolP, 0);
2488 ARM_SET_INTERWORK (symbolP, support_interwork);
2489 break;
2490
2491 case MAP_THUMB:
2492 THUMB_SET_FUNC (symbolP, 1);
2493 ARM_SET_THUMB (symbolP, 1);
2494 ARM_SET_INTERWORK (symbolP, support_interwork);
2495 break;
2496
2497 case MAP_DATA:
2498 default:
2499 break;
2500 }
2501
2502 /* Save the mapping symbols for future reference. Also check that
2503 we do not place two mapping symbols at the same offset within a
2504 frag. We'll handle overlap between frags in
2505 check_mapping_symbols.
2506
2507 If .fill or other data filling directive generates zero sized data,
2508 the mapping symbol for the following code will have the same value
2509 as the one generated for the data filling directive. In this case,
2510 we replace the old symbol with the new one at the same address. */
2511 if (value == 0)
2512 {
2513 if (frag->tc_frag_data.first_map != NULL)
2514 {
2515 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2516 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2517 }
2518 frag->tc_frag_data.first_map = symbolP;
2519 }
2520 if (frag->tc_frag_data.last_map != NULL)
2521 {
2522 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2523 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2524 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2525 }
2526 frag->tc_frag_data.last_map = symbolP;
2527 }
2528
2529 /* We must sometimes convert a region marked as code to data during
2530 code alignment, if an odd number of bytes have to be padded. The
2531 code mapping symbol is pushed to an aligned address. */
2532
2533 static void
2534 insert_data_mapping_symbol (enum mstate state,
2535 valueT value, fragS *frag, offsetT bytes)
2536 {
2537 /* If there was already a mapping symbol, remove it. */
2538 if (frag->tc_frag_data.last_map != NULL
2539 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2540 {
2541 symbolS *symp = frag->tc_frag_data.last_map;
2542
2543 if (value == 0)
2544 {
2545 know (frag->tc_frag_data.first_map == symp);
2546 frag->tc_frag_data.first_map = NULL;
2547 }
2548 frag->tc_frag_data.last_map = NULL;
2549 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2550 }
2551
2552 make_mapping_symbol (MAP_DATA, value, frag);
2553 make_mapping_symbol (state, value + bytes, frag);
2554 }
2555
2556 static void mapping_state_2 (enum mstate state, int max_chars);
2557
2558 /* Set the mapping state to STATE. Only call this when about to
2559 emit some STATE bytes to the file. */
2560
2561 void
2562 mapping_state (enum mstate state)
2563 {
2564 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2565
2566 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2567
2568 if (mapstate == state)
2569 /* The mapping symbol has already been emitted.
2570 There is nothing else to do. */
2571 return;
2572 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2573 /* This case will be evaluated later in the next else. */
2574 return;
2575 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2576 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2577 {
2578 /* Only add the symbol if the offset is > 0:
2579 if we're at the first frag, check it's size > 0;
2580 if we're not at the first frag, then for sure
2581 the offset is > 0. */
2582 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2583 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2584
2585 if (add_symbol)
2586 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2587 }
2588
2589 mapping_state_2 (state, 0);
2590 #undef TRANSITION
2591 }
2592
2593 /* Same as mapping_state, but MAX_CHARS bytes have already been
2594 allocated. Put the mapping symbol that far back. */
2595
2596 static void
2597 mapping_state_2 (enum mstate state, int max_chars)
2598 {
2599 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2600
2601 if (!SEG_NORMAL (now_seg))
2602 return;
2603
2604 if (mapstate == state)
2605 /* The mapping symbol has already been emitted.
2606 There is nothing else to do. */
2607 return;
2608
2609 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2610 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2611 }
2612 #else
2613 #define mapping_state(x) ((void)0)
2614 #define mapping_state_2(x, y) ((void)0)
2615 #endif
2616
2617 /* Find the real, Thumb encoded start of a Thumb function. */
2618
2619 #ifdef OBJ_COFF
2620 static symbolS *
2621 find_real_start (symbolS * symbolP)
2622 {
2623 char * real_start;
2624 const char * name = S_GET_NAME (symbolP);
2625 symbolS * new_target;
2626
2627 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2628 #define STUB_NAME ".real_start_of"
2629
2630 if (name == NULL)
2631 abort ();
2632
2633 /* The compiler may generate BL instructions to local labels because
2634 it needs to perform a branch to a far away location. These labels
2635 do not have a corresponding ".real_start_of" label. We check
2636 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2637 the ".real_start_of" convention for nonlocal branches. */
2638 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2639 return symbolP;
2640
2641 real_start = ACONCAT ((STUB_NAME, name, NULL));
2642 new_target = symbol_find (real_start);
2643
2644 if (new_target == NULL)
2645 {
2646 as_warn (_("Failed to find real start of function: %s\n"), name);
2647 new_target = symbolP;
2648 }
2649
2650 return new_target;
2651 }
2652 #endif
2653
2654 static void
2655 opcode_select (int width)
2656 {
2657 switch (width)
2658 {
2659 case 16:
2660 if (! thumb_mode)
2661 {
2662 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2663 as_bad (_("selected processor does not support THUMB opcodes"));
2664
2665 thumb_mode = 1;
2666 /* No need to force the alignment, since we will have been
2667 coming from ARM mode, which is word-aligned. */
2668 record_alignment (now_seg, 1);
2669 }
2670 break;
2671
2672 case 32:
2673 if (thumb_mode)
2674 {
2675 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2676 as_bad (_("selected processor does not support ARM opcodes"));
2677
2678 thumb_mode = 0;
2679
2680 if (!need_pass_2)
2681 frag_align (2, 0, 0);
2682
2683 record_alignment (now_seg, 1);
2684 }
2685 break;
2686
2687 default:
2688 as_bad (_("invalid instruction size selected (%d)"), width);
2689 }
2690 }
2691
2692 static void
2693 s_arm (int ignore ATTRIBUTE_UNUSED)
2694 {
2695 opcode_select (32);
2696 demand_empty_rest_of_line ();
2697 }
2698
2699 static void
2700 s_thumb (int ignore ATTRIBUTE_UNUSED)
2701 {
2702 opcode_select (16);
2703 demand_empty_rest_of_line ();
2704 }
2705
2706 static void
2707 s_code (int unused ATTRIBUTE_UNUSED)
2708 {
2709 int temp;
2710
2711 temp = get_absolute_expression ();
2712 switch (temp)
2713 {
2714 case 16:
2715 case 32:
2716 opcode_select (temp);
2717 break;
2718
2719 default:
2720 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2721 }
2722 }
2723
2724 static void
2725 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2726 {
2727 /* If we are not already in thumb mode go into it, EVEN if
2728 the target processor does not support thumb instructions.
2729 This is used by gcc/config/arm/lib1funcs.asm for example
2730 to compile interworking support functions even if the
2731 target processor should not support interworking. */
2732 if (! thumb_mode)
2733 {
2734 thumb_mode = 2;
2735 record_alignment (now_seg, 1);
2736 }
2737
2738 demand_empty_rest_of_line ();
2739 }
2740
2741 static void
2742 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2743 {
2744 s_thumb (0);
2745
2746 /* The following label is the name/address of the start of a Thumb function.
2747 We need to know this for the interworking support. */
2748 label_is_thumb_function_name = TRUE;
2749 }
2750
2751 /* Perform a .set directive, but also mark the alias as
2752 being a thumb function. */
2753
2754 static void
2755 s_thumb_set (int equiv)
2756 {
2757 /* XXX the following is a duplicate of the code for s_set() in read.c
2758 We cannot just call that code as we need to get at the symbol that
2759 is created. */
2760 char * name;
2761 char delim;
2762 char * end_name;
2763 symbolS * symbolP;
2764
2765 /* Especial apologies for the random logic:
2766 This just grew, and could be parsed much more simply!
2767 Dean - in haste. */
2768 name = input_line_pointer;
2769 delim = get_symbol_end ();
2770 end_name = input_line_pointer;
2771 *end_name = delim;
2772
2773 if (*input_line_pointer != ',')
2774 {
2775 *end_name = 0;
2776 as_bad (_("expected comma after name \"%s\""), name);
2777 *end_name = delim;
2778 ignore_rest_of_line ();
2779 return;
2780 }
2781
2782 input_line_pointer++;
2783 *end_name = 0;
2784
2785 if (name[0] == '.' && name[1] == '\0')
2786 {
2787 /* XXX - this should not happen to .thumb_set. */
2788 abort ();
2789 }
2790
2791 if ((symbolP = symbol_find (name)) == NULL
2792 && (symbolP = md_undefined_symbol (name)) == NULL)
2793 {
2794 #ifndef NO_LISTING
2795 /* When doing symbol listings, play games with dummy fragments living
2796 outside the normal fragment chain to record the file and line info
2797 for this symbol. */
2798 if (listing & LISTING_SYMBOLS)
2799 {
2800 extern struct list_info_struct * listing_tail;
2801 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2802
2803 memset (dummy_frag, 0, sizeof (fragS));
2804 dummy_frag->fr_type = rs_fill;
2805 dummy_frag->line = listing_tail;
2806 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2807 dummy_frag->fr_symbol = symbolP;
2808 }
2809 else
2810 #endif
2811 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2812
2813 #ifdef OBJ_COFF
2814 /* "set" symbols are local unless otherwise specified. */
2815 SF_SET_LOCAL (symbolP);
2816 #endif /* OBJ_COFF */
2817 } /* Make a new symbol. */
2818
2819 symbol_table_insert (symbolP);
2820
2821 * end_name = delim;
2822
2823 if (equiv
2824 && S_IS_DEFINED (symbolP)
2825 && S_GET_SEGMENT (symbolP) != reg_section)
2826 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2827
2828 pseudo_set (symbolP);
2829
2830 demand_empty_rest_of_line ();
2831
2832 /* XXX Now we come to the Thumb specific bit of code. */
2833
2834 THUMB_SET_FUNC (symbolP, 1);
2835 ARM_SET_THUMB (symbolP, 1);
2836 #if defined OBJ_ELF || defined OBJ_COFF
2837 ARM_SET_INTERWORK (symbolP, support_interwork);
2838 #endif
2839 }
2840
2841 /* Directives: Mode selection. */
2842
2843 /* .syntax [unified|divided] - choose the new unified syntax
2844 (same for Arm and Thumb encoding, modulo slight differences in what
2845 can be represented) or the old divergent syntax for each mode. */
2846 static void
2847 s_syntax (int unused ATTRIBUTE_UNUSED)
2848 {
2849 char *name, delim;
2850
2851 name = input_line_pointer;
2852 delim = get_symbol_end ();
2853
2854 if (!strcasecmp (name, "unified"))
2855 unified_syntax = TRUE;
2856 else if (!strcasecmp (name, "divided"))
2857 unified_syntax = FALSE;
2858 else
2859 {
2860 as_bad (_("unrecognized syntax mode \"%s\""), name);
2861 return;
2862 }
2863 *input_line_pointer = delim;
2864 demand_empty_rest_of_line ();
2865 }
2866
2867 /* Directives: sectioning and alignment. */
2868
2869 /* Same as s_align_ptwo but align 0 => align 2. */
2870
2871 static void
2872 s_align (int unused ATTRIBUTE_UNUSED)
2873 {
2874 int temp;
2875 bfd_boolean fill_p;
2876 long temp_fill;
2877 long max_alignment = 15;
2878
2879 temp = get_absolute_expression ();
2880 if (temp > max_alignment)
2881 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2882 else if (temp < 0)
2883 {
2884 as_bad (_("alignment negative. 0 assumed."));
2885 temp = 0;
2886 }
2887
2888 if (*input_line_pointer == ',')
2889 {
2890 input_line_pointer++;
2891 temp_fill = get_absolute_expression ();
2892 fill_p = TRUE;
2893 }
2894 else
2895 {
2896 fill_p = FALSE;
2897 temp_fill = 0;
2898 }
2899
2900 if (!temp)
2901 temp = 2;
2902
2903 /* Only make a frag if we HAVE to. */
2904 if (temp && !need_pass_2)
2905 {
2906 if (!fill_p && subseg_text_p (now_seg))
2907 frag_align_code (temp, 0);
2908 else
2909 frag_align (temp, (int) temp_fill, 0);
2910 }
2911 demand_empty_rest_of_line ();
2912
2913 record_alignment (now_seg, temp);
2914 }
2915
2916 static void
2917 s_bss (int ignore ATTRIBUTE_UNUSED)
2918 {
2919 /* We don't support putting frags in the BSS segment, we fake it by
2920 marking in_bss, then looking at s_skip for clues. */
2921 subseg_set (bss_section, 0);
2922 demand_empty_rest_of_line ();
2923
2924 #ifdef md_elf_section_change_hook
2925 md_elf_section_change_hook ();
2926 #endif
2927 }
2928
2929 static void
2930 s_even (int ignore ATTRIBUTE_UNUSED)
2931 {
2932 /* Never make frag if expect extra pass. */
2933 if (!need_pass_2)
2934 frag_align (1, 0, 0);
2935
2936 record_alignment (now_seg, 1);
2937
2938 demand_empty_rest_of_line ();
2939 }
2940
2941 /* Directives: Literal pools. */
2942
2943 static literal_pool *
2944 find_literal_pool (void)
2945 {
2946 literal_pool * pool;
2947
2948 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2949 {
2950 if (pool->section == now_seg
2951 && pool->sub_section == now_subseg)
2952 break;
2953 }
2954
2955 return pool;
2956 }
2957
2958 static literal_pool *
2959 find_or_make_literal_pool (void)
2960 {
2961 /* Next literal pool ID number. */
2962 static unsigned int latest_pool_num = 1;
2963 literal_pool * pool;
2964
2965 pool = find_literal_pool ();
2966
2967 if (pool == NULL)
2968 {
2969 /* Create a new pool. */
2970 pool = (literal_pool *) xmalloc (sizeof (* pool));
2971 if (! pool)
2972 return NULL;
2973
2974 pool->next_free_entry = 0;
2975 pool->section = now_seg;
2976 pool->sub_section = now_subseg;
2977 pool->next = list_of_pools;
2978 pool->symbol = NULL;
2979
2980 /* Add it to the list. */
2981 list_of_pools = pool;
2982 }
2983
2984 /* New pools, and emptied pools, will have a NULL symbol. */
2985 if (pool->symbol == NULL)
2986 {
2987 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2988 (valueT) 0, &zero_address_frag);
2989 pool->id = latest_pool_num ++;
2990 }
2991
2992 /* Done. */
2993 return pool;
2994 }
2995
2996 /* Add the literal in the global 'inst'
2997 structure to the relevant literal pool. */
2998
2999 static int
3000 add_to_lit_pool (void)
3001 {
3002 literal_pool * pool;
3003 unsigned int entry;
3004
3005 pool = find_or_make_literal_pool ();
3006
3007 /* Check if this literal value is already in the pool. */
3008 for (entry = 0; entry < pool->next_free_entry; entry ++)
3009 {
3010 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3011 && (inst.reloc.exp.X_op == O_constant)
3012 && (pool->literals[entry].X_add_number
3013 == inst.reloc.exp.X_add_number)
3014 && (pool->literals[entry].X_unsigned
3015 == inst.reloc.exp.X_unsigned))
3016 break;
3017
3018 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3019 && (inst.reloc.exp.X_op == O_symbol)
3020 && (pool->literals[entry].X_add_number
3021 == inst.reloc.exp.X_add_number)
3022 && (pool->literals[entry].X_add_symbol
3023 == inst.reloc.exp.X_add_symbol)
3024 && (pool->literals[entry].X_op_symbol
3025 == inst.reloc.exp.X_op_symbol))
3026 break;
3027 }
3028
3029 /* Do we need to create a new entry? */
3030 if (entry == pool->next_free_entry)
3031 {
3032 if (entry >= MAX_LITERAL_POOL_SIZE)
3033 {
3034 inst.error = _("literal pool overflow");
3035 return FAIL;
3036 }
3037
3038 pool->literals[entry] = inst.reloc.exp;
3039 pool->next_free_entry += 1;
3040 }
3041
3042 inst.reloc.exp.X_op = O_symbol;
3043 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3044 inst.reloc.exp.X_add_symbol = pool->symbol;
3045
3046 return SUCCESS;
3047 }
3048
3049 /* Can't use symbol_new here, so have to create a symbol and then at
3050 a later date assign it a value. Thats what these functions do. */
3051
3052 static void
3053 symbol_locate (symbolS * symbolP,
3054 const char * name, /* It is copied, the caller can modify. */
3055 segT segment, /* Segment identifier (SEG_<something>). */
3056 valueT valu, /* Symbol value. */
3057 fragS * frag) /* Associated fragment. */
3058 {
3059 unsigned int name_length;
3060 char * preserved_copy_of_name;
3061
3062 name_length = strlen (name) + 1; /* +1 for \0. */
3063 obstack_grow (&notes, name, name_length);
3064 preserved_copy_of_name = (char *) obstack_finish (&notes);
3065
3066 #ifdef tc_canonicalize_symbol_name
3067 preserved_copy_of_name =
3068 tc_canonicalize_symbol_name (preserved_copy_of_name);
3069 #endif
3070
3071 S_SET_NAME (symbolP, preserved_copy_of_name);
3072
3073 S_SET_SEGMENT (symbolP, segment);
3074 S_SET_VALUE (symbolP, valu);
3075 symbol_clear_list_pointers (symbolP);
3076
3077 symbol_set_frag (symbolP, frag);
3078
3079 /* Link to end of symbol chain. */
3080 {
3081 extern int symbol_table_frozen;
3082
3083 if (symbol_table_frozen)
3084 abort ();
3085 }
3086
3087 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3088
3089 obj_symbol_new_hook (symbolP);
3090
3091 #ifdef tc_symbol_new_hook
3092 tc_symbol_new_hook (symbolP);
3093 #endif
3094
3095 #ifdef DEBUG_SYMS
3096 verify_symbol_chain (symbol_rootP, symbol_lastP);
3097 #endif /* DEBUG_SYMS */
3098 }
3099
3100
3101 static void
3102 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3103 {
3104 unsigned int entry;
3105 literal_pool * pool;
3106 char sym_name[20];
3107
3108 pool = find_literal_pool ();
3109 if (pool == NULL
3110 || pool->symbol == NULL
3111 || pool->next_free_entry == 0)
3112 return;
3113
3114 mapping_state (MAP_DATA);
3115
3116 /* Align pool as you have word accesses.
3117 Only make a frag if we have to. */
3118 if (!need_pass_2)
3119 frag_align (2, 0, 0);
3120
3121 record_alignment (now_seg, 2);
3122
3123 sprintf (sym_name, "$$lit_\002%x", pool->id);
3124
3125 symbol_locate (pool->symbol, sym_name, now_seg,
3126 (valueT) frag_now_fix (), frag_now);
3127 symbol_table_insert (pool->symbol);
3128
3129 ARM_SET_THUMB (pool->symbol, thumb_mode);
3130
3131 #if defined OBJ_COFF || defined OBJ_ELF
3132 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3133 #endif
3134
3135 for (entry = 0; entry < pool->next_free_entry; entry ++)
3136 /* First output the expression in the instruction to the pool. */
3137 emit_expr (&(pool->literals[entry]), 4); /* .word */
3138
3139 /* Mark the pool as empty. */
3140 pool->next_free_entry = 0;
3141 pool->symbol = NULL;
3142 }
3143
3144 #ifdef OBJ_ELF
3145 /* Forward declarations for functions below, in the MD interface
3146 section. */
3147 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3148 static valueT create_unwind_entry (int);
3149 static void start_unwind_section (const segT, int);
3150 static void add_unwind_opcode (valueT, int);
3151 static void flush_pending_unwind (void);
3152
3153 /* Directives: Data. */
3154
3155 static void
3156 s_arm_elf_cons (int nbytes)
3157 {
3158 expressionS exp;
3159
3160 #ifdef md_flush_pending_output
3161 md_flush_pending_output ();
3162 #endif
3163
3164 if (is_it_end_of_statement ())
3165 {
3166 demand_empty_rest_of_line ();
3167 return;
3168 }
3169
3170 #ifdef md_cons_align
3171 md_cons_align (nbytes);
3172 #endif
3173
3174 mapping_state (MAP_DATA);
3175 do
3176 {
3177 int reloc;
3178 char *base = input_line_pointer;
3179
3180 expression (& exp);
3181
3182 if (exp.X_op != O_symbol)
3183 emit_expr (&exp, (unsigned int) nbytes);
3184 else
3185 {
3186 char *before_reloc = input_line_pointer;
3187 reloc = parse_reloc (&input_line_pointer);
3188 if (reloc == -1)
3189 {
3190 as_bad (_("unrecognized relocation suffix"));
3191 ignore_rest_of_line ();
3192 return;
3193 }
3194 else if (reloc == BFD_RELOC_UNUSED)
3195 emit_expr (&exp, (unsigned int) nbytes);
3196 else
3197 {
3198 reloc_howto_type *howto = (reloc_howto_type *)
3199 bfd_reloc_type_lookup (stdoutput,
3200 (bfd_reloc_code_real_type) reloc);
3201 int size = bfd_get_reloc_size (howto);
3202
3203 if (reloc == BFD_RELOC_ARM_PLT32)
3204 {
3205 as_bad (_("(plt) is only valid on branch targets"));
3206 reloc = BFD_RELOC_UNUSED;
3207 size = 0;
3208 }
3209
3210 if (size > nbytes)
3211 as_bad (_("%s relocations do not fit in %d bytes"),
3212 howto->name, nbytes);
3213 else
3214 {
3215 /* We've parsed an expression stopping at O_symbol.
3216 But there may be more expression left now that we
3217 have parsed the relocation marker. Parse it again.
3218 XXX Surely there is a cleaner way to do this. */
3219 char *p = input_line_pointer;
3220 int offset;
3221 char *save_buf = (char *) alloca (input_line_pointer - base);
3222 memcpy (save_buf, base, input_line_pointer - base);
3223 memmove (base + (input_line_pointer - before_reloc),
3224 base, before_reloc - base);
3225
3226 input_line_pointer = base + (input_line_pointer-before_reloc);
3227 expression (&exp);
3228 memcpy (base, save_buf, p - base);
3229
3230 offset = nbytes - size;
3231 p = frag_more ((int) nbytes);
3232 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3233 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3234 }
3235 }
3236 }
3237 }
3238 while (*input_line_pointer++ == ',');
3239
3240 /* Put terminator back into stream. */
3241 input_line_pointer --;
3242 demand_empty_rest_of_line ();
3243 }
3244
3245 /* Emit an expression containing a 32-bit thumb instruction.
3246 Implementation based on put_thumb32_insn. */
3247
3248 static void
3249 emit_thumb32_expr (expressionS * exp)
3250 {
3251 expressionS exp_high = *exp;
3252
3253 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3254 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3255 exp->X_add_number &= 0xffff;
3256 emit_expr (exp, (unsigned int) THUMB_SIZE);
3257 }
3258
3259 /* Guess the instruction size based on the opcode. */
3260
3261 static int
3262 thumb_insn_size (int opcode)
3263 {
3264 if ((unsigned int) opcode < 0xe800u)
3265 return 2;
3266 else if ((unsigned int) opcode >= 0xe8000000u)
3267 return 4;
3268 else
3269 return 0;
3270 }
3271
3272 static bfd_boolean
3273 emit_insn (expressionS *exp, int nbytes)
3274 {
3275 int size = 0;
3276
3277 if (exp->X_op == O_constant)
3278 {
3279 size = nbytes;
3280
3281 if (size == 0)
3282 size = thumb_insn_size (exp->X_add_number);
3283
3284 if (size != 0)
3285 {
3286 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3287 {
3288 as_bad (_(".inst.n operand too big. "\
3289 "Use .inst.w instead"));
3290 size = 0;
3291 }
3292 else
3293 {
3294 if (now_it.state == AUTOMATIC_IT_BLOCK)
3295 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3296 else
3297 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3298
3299 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3300 emit_thumb32_expr (exp);
3301 else
3302 emit_expr (exp, (unsigned int) size);
3303
3304 it_fsm_post_encode ();
3305 }
3306 }
3307 else
3308 as_bad (_("cannot determine Thumb instruction size. " \
3309 "Use .inst.n/.inst.w instead"));
3310 }
3311 else
3312 as_bad (_("constant expression required"));
3313
3314 return (size != 0);
3315 }
3316
3317 /* Like s_arm_elf_cons but do not use md_cons_align and
3318 set the mapping state to MAP_ARM/MAP_THUMB. */
3319
3320 static void
3321 s_arm_elf_inst (int nbytes)
3322 {
3323 if (is_it_end_of_statement ())
3324 {
3325 demand_empty_rest_of_line ();
3326 return;
3327 }
3328
3329 /* Calling mapping_state () here will not change ARM/THUMB,
3330 but will ensure not to be in DATA state. */
3331
3332 if (thumb_mode)
3333 mapping_state (MAP_THUMB);
3334 else
3335 {
3336 if (nbytes != 0)
3337 {
3338 as_bad (_("width suffixes are invalid in ARM mode"));
3339 ignore_rest_of_line ();
3340 return;
3341 }
3342
3343 nbytes = 4;
3344
3345 mapping_state (MAP_ARM);
3346 }
3347
3348 do
3349 {
3350 expressionS exp;
3351
3352 expression (& exp);
3353
3354 if (! emit_insn (& exp, nbytes))
3355 {
3356 ignore_rest_of_line ();
3357 return;
3358 }
3359 }
3360 while (*input_line_pointer++ == ',');
3361
3362 /* Put terminator back into stream. */
3363 input_line_pointer --;
3364 demand_empty_rest_of_line ();
3365 }
3366
3367 /* Parse a .rel31 directive. */
3368
3369 static void
3370 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3371 {
3372 expressionS exp;
3373 char *p;
3374 valueT highbit;
3375
3376 highbit = 0;
3377 if (*input_line_pointer == '1')
3378 highbit = 0x80000000;
3379 else if (*input_line_pointer != '0')
3380 as_bad (_("expected 0 or 1"));
3381
3382 input_line_pointer++;
3383 if (*input_line_pointer != ',')
3384 as_bad (_("missing comma"));
3385 input_line_pointer++;
3386
3387 #ifdef md_flush_pending_output
3388 md_flush_pending_output ();
3389 #endif
3390
3391 #ifdef md_cons_align
3392 md_cons_align (4);
3393 #endif
3394
3395 mapping_state (MAP_DATA);
3396
3397 expression (&exp);
3398
3399 p = frag_more (4);
3400 md_number_to_chars (p, highbit, 4);
3401 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3402 BFD_RELOC_ARM_PREL31);
3403
3404 demand_empty_rest_of_line ();
3405 }
3406
3407 /* Directives: AEABI stack-unwind tables. */
3408
3409 /* Parse an unwind_fnstart directive. Simply records the current location. */
3410
3411 static void
3412 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3413 {
3414 demand_empty_rest_of_line ();
3415 if (unwind.proc_start)
3416 {
3417 as_bad (_("duplicate .fnstart directive"));
3418 return;
3419 }
3420
3421 /* Mark the start of the function. */
3422 unwind.proc_start = expr_build_dot ();
3423
3424 /* Reset the rest of the unwind info. */
3425 unwind.opcode_count = 0;
3426 unwind.table_entry = NULL;
3427 unwind.personality_routine = NULL;
3428 unwind.personality_index = -1;
3429 unwind.frame_size = 0;
3430 unwind.fp_offset = 0;
3431 unwind.fp_reg = REG_SP;
3432 unwind.fp_used = 0;
3433 unwind.sp_restored = 0;
3434 }
3435
3436
3437 /* Parse a handlerdata directive. Creates the exception handling table entry
3438 for the function. */
3439
3440 static void
3441 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3442 {
3443 demand_empty_rest_of_line ();
3444 if (!unwind.proc_start)
3445 as_bad (MISSING_FNSTART);
3446
3447 if (unwind.table_entry)
3448 as_bad (_("duplicate .handlerdata directive"));
3449
3450 create_unwind_entry (1);
3451 }
3452
3453 /* Parse an unwind_fnend directive. Generates the index table entry. */
3454
3455 static void
3456 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3457 {
3458 long where;
3459 char *ptr;
3460 valueT val;
3461 unsigned int marked_pr_dependency;
3462
3463 demand_empty_rest_of_line ();
3464
3465 if (!unwind.proc_start)
3466 {
3467 as_bad (_(".fnend directive without .fnstart"));
3468 return;
3469 }
3470
3471 /* Add eh table entry. */
3472 if (unwind.table_entry == NULL)
3473 val = create_unwind_entry (0);
3474 else
3475 val = 0;
3476
3477 /* Add index table entry. This is two words. */
3478 start_unwind_section (unwind.saved_seg, 1);
3479 frag_align (2, 0, 0);
3480 record_alignment (now_seg, 2);
3481
3482 ptr = frag_more (8);
3483 where = frag_now_fix () - 8;
3484
3485 /* Self relative offset of the function start. */
3486 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3487 BFD_RELOC_ARM_PREL31);
3488
3489 /* Indicate dependency on EHABI-defined personality routines to the
3490 linker, if it hasn't been done already. */
3491 marked_pr_dependency
3492 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3493 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3494 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3495 {
3496 static const char *const name[] =
3497 {
3498 "__aeabi_unwind_cpp_pr0",
3499 "__aeabi_unwind_cpp_pr1",
3500 "__aeabi_unwind_cpp_pr2"
3501 };
3502 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3503 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3504 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3505 |= 1 << unwind.personality_index;
3506 }
3507
3508 if (val)
3509 /* Inline exception table entry. */
3510 md_number_to_chars (ptr + 4, val, 4);
3511 else
3512 /* Self relative offset of the table entry. */
3513 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3514 BFD_RELOC_ARM_PREL31);
3515
3516 /* Restore the original section. */
3517 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3518
3519 unwind.proc_start = NULL;
3520 }
3521
3522
3523 /* Parse an unwind_cantunwind directive. */
3524
3525 static void
3526 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3527 {
3528 demand_empty_rest_of_line ();
3529 if (!unwind.proc_start)
3530 as_bad (MISSING_FNSTART);
3531
3532 if (unwind.personality_routine || unwind.personality_index != -1)
3533 as_bad (_("personality routine specified for cantunwind frame"));
3534
3535 unwind.personality_index = -2;
3536 }
3537
3538
3539 /* Parse a personalityindex directive. */
3540
3541 static void
3542 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3543 {
3544 expressionS exp;
3545
3546 if (!unwind.proc_start)
3547 as_bad (MISSING_FNSTART);
3548
3549 if (unwind.personality_routine || unwind.personality_index != -1)
3550 as_bad (_("duplicate .personalityindex directive"));
3551
3552 expression (&exp);
3553
3554 if (exp.X_op != O_constant
3555 || exp.X_add_number < 0 || exp.X_add_number > 15)
3556 {
3557 as_bad (_("bad personality routine number"));
3558 ignore_rest_of_line ();
3559 return;
3560 }
3561
3562 unwind.personality_index = exp.X_add_number;
3563
3564 demand_empty_rest_of_line ();
3565 }
3566
3567
3568 /* Parse a personality directive. */
3569
3570 static void
3571 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3572 {
3573 char *name, *p, c;
3574
3575 if (!unwind.proc_start)
3576 as_bad (MISSING_FNSTART);
3577
3578 if (unwind.personality_routine || unwind.personality_index != -1)
3579 as_bad (_("duplicate .personality directive"));
3580
3581 name = input_line_pointer;
3582 c = get_symbol_end ();
3583 p = input_line_pointer;
3584 unwind.personality_routine = symbol_find_or_make (name);
3585 *p = c;
3586 demand_empty_rest_of_line ();
3587 }
3588
3589
3590 /* Parse a directive saving core registers. */
3591
3592 static void
3593 s_arm_unwind_save_core (void)
3594 {
3595 valueT op;
3596 long range;
3597 int n;
3598
3599 range = parse_reg_list (&input_line_pointer);
3600 if (range == FAIL)
3601 {
3602 as_bad (_("expected register list"));
3603 ignore_rest_of_line ();
3604 return;
3605 }
3606
3607 demand_empty_rest_of_line ();
3608
3609 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3610 into .unwind_save {..., sp...}. We aren't bothered about the value of
3611 ip because it is clobbered by calls. */
3612 if (unwind.sp_restored && unwind.fp_reg == 12
3613 && (range & 0x3000) == 0x1000)
3614 {
3615 unwind.opcode_count--;
3616 unwind.sp_restored = 0;
3617 range = (range | 0x2000) & ~0x1000;
3618 unwind.pending_offset = 0;
3619 }
3620
3621 /* Pop r4-r15. */
3622 if (range & 0xfff0)
3623 {
3624 /* See if we can use the short opcodes. These pop a block of up to 8
3625 registers starting with r4, plus maybe r14. */
3626 for (n = 0; n < 8; n++)
3627 {
3628 /* Break at the first non-saved register. */
3629 if ((range & (1 << (n + 4))) == 0)
3630 break;
3631 }
3632 /* See if there are any other bits set. */
3633 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3634 {
3635 /* Use the long form. */
3636 op = 0x8000 | ((range >> 4) & 0xfff);
3637 add_unwind_opcode (op, 2);
3638 }
3639 else
3640 {
3641 /* Use the short form. */
3642 if (range & 0x4000)
3643 op = 0xa8; /* Pop r14. */
3644 else
3645 op = 0xa0; /* Do not pop r14. */
3646 op |= (n - 1);
3647 add_unwind_opcode (op, 1);
3648 }
3649 }
3650
3651 /* Pop r0-r3. */
3652 if (range & 0xf)
3653 {
3654 op = 0xb100 | (range & 0xf);
3655 add_unwind_opcode (op, 2);
3656 }
3657
3658 /* Record the number of bytes pushed. */
3659 for (n = 0; n < 16; n++)
3660 {
3661 if (range & (1 << n))
3662 unwind.frame_size += 4;
3663 }
3664 }
3665
3666
3667 /* Parse a directive saving FPA registers. */
3668
3669 static void
3670 s_arm_unwind_save_fpa (int reg)
3671 {
3672 expressionS exp;
3673 int num_regs;
3674 valueT op;
3675
3676 /* Get Number of registers to transfer. */
3677 if (skip_past_comma (&input_line_pointer) != FAIL)
3678 expression (&exp);
3679 else
3680 exp.X_op = O_illegal;
3681
3682 if (exp.X_op != O_constant)
3683 {
3684 as_bad (_("expected , <constant>"));
3685 ignore_rest_of_line ();
3686 return;
3687 }
3688
3689 num_regs = exp.X_add_number;
3690
3691 if (num_regs < 1 || num_regs > 4)
3692 {
3693 as_bad (_("number of registers must be in the range [1:4]"));
3694 ignore_rest_of_line ();
3695 return;
3696 }
3697
3698 demand_empty_rest_of_line ();
3699
3700 if (reg == 4)
3701 {
3702 /* Short form. */
3703 op = 0xb4 | (num_regs - 1);
3704 add_unwind_opcode (op, 1);
3705 }
3706 else
3707 {
3708 /* Long form. */
3709 op = 0xc800 | (reg << 4) | (num_regs - 1);
3710 add_unwind_opcode (op, 2);
3711 }
3712 unwind.frame_size += num_regs * 12;
3713 }
3714
3715
3716 /* Parse a directive saving VFP registers for ARMv6 and above. */
3717
3718 static void
3719 s_arm_unwind_save_vfp_armv6 (void)
3720 {
3721 int count;
3722 unsigned int start;
3723 valueT op;
3724 int num_vfpv3_regs = 0;
3725 int num_regs_below_16;
3726
3727 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3728 if (count == FAIL)
3729 {
3730 as_bad (_("expected register list"));
3731 ignore_rest_of_line ();
3732 return;
3733 }
3734
3735 demand_empty_rest_of_line ();
3736
3737 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3738 than FSTMX/FLDMX-style ones). */
3739
3740 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3741 if (start >= 16)
3742 num_vfpv3_regs = count;
3743 else if (start + count > 16)
3744 num_vfpv3_regs = start + count - 16;
3745
3746 if (num_vfpv3_regs > 0)
3747 {
3748 int start_offset = start > 16 ? start - 16 : 0;
3749 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3750 add_unwind_opcode (op, 2);
3751 }
3752
3753 /* Generate opcode for registers numbered in the range 0 .. 15. */
3754 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3755 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3756 if (num_regs_below_16 > 0)
3757 {
3758 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3759 add_unwind_opcode (op, 2);
3760 }
3761
3762 unwind.frame_size += count * 8;
3763 }
3764
3765
3766 /* Parse a directive saving VFP registers for pre-ARMv6. */
3767
3768 static void
3769 s_arm_unwind_save_vfp (void)
3770 {
3771 int count;
3772 unsigned int reg;
3773 valueT op;
3774
3775 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3776 if (count == FAIL)
3777 {
3778 as_bad (_("expected register list"));
3779 ignore_rest_of_line ();
3780 return;
3781 }
3782
3783 demand_empty_rest_of_line ();
3784
3785 if (reg == 8)
3786 {
3787 /* Short form. */
3788 op = 0xb8 | (count - 1);
3789 add_unwind_opcode (op, 1);
3790 }
3791 else
3792 {
3793 /* Long form. */
3794 op = 0xb300 | (reg << 4) | (count - 1);
3795 add_unwind_opcode (op, 2);
3796 }
3797 unwind.frame_size += count * 8 + 4;
3798 }
3799
3800
3801 /* Parse a directive saving iWMMXt data registers. */
3802
3803 static void
3804 s_arm_unwind_save_mmxwr (void)
3805 {
3806 int reg;
3807 int hi_reg;
3808 int i;
3809 unsigned mask = 0;
3810 valueT op;
3811
3812 if (*input_line_pointer == '{')
3813 input_line_pointer++;
3814
3815 do
3816 {
3817 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3818
3819 if (reg == FAIL)
3820 {
3821 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3822 goto error;
3823 }
3824
3825 if (mask >> reg)
3826 as_tsktsk (_("register list not in ascending order"));
3827 mask |= 1 << reg;
3828
3829 if (*input_line_pointer == '-')
3830 {
3831 input_line_pointer++;
3832 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3833 if (hi_reg == FAIL)
3834 {
3835 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3836 goto error;
3837 }
3838 else if (reg >= hi_reg)
3839 {
3840 as_bad (_("bad register range"));
3841 goto error;
3842 }
3843 for (; reg < hi_reg; reg++)
3844 mask |= 1 << reg;
3845 }
3846 }
3847 while (skip_past_comma (&input_line_pointer) != FAIL);
3848
3849 if (*input_line_pointer == '}')
3850 input_line_pointer++;
3851
3852 demand_empty_rest_of_line ();
3853
3854 /* Generate any deferred opcodes because we're going to be looking at
3855 the list. */
3856 flush_pending_unwind ();
3857
3858 for (i = 0; i < 16; i++)
3859 {
3860 if (mask & (1 << i))
3861 unwind.frame_size += 8;
3862 }
3863
3864 /* Attempt to combine with a previous opcode. We do this because gcc
3865 likes to output separate unwind directives for a single block of
3866 registers. */
3867 if (unwind.opcode_count > 0)
3868 {
3869 i = unwind.opcodes[unwind.opcode_count - 1];
3870 if ((i & 0xf8) == 0xc0)
3871 {
3872 i &= 7;
3873 /* Only merge if the blocks are contiguous. */
3874 if (i < 6)
3875 {
3876 if ((mask & 0xfe00) == (1 << 9))
3877 {
3878 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3879 unwind.opcode_count--;
3880 }
3881 }
3882 else if (i == 6 && unwind.opcode_count >= 2)
3883 {
3884 i = unwind.opcodes[unwind.opcode_count - 2];
3885 reg = i >> 4;
3886 i &= 0xf;
3887
3888 op = 0xffff << (reg - 1);
3889 if (reg > 0
3890 && ((mask & op) == (1u << (reg - 1))))
3891 {
3892 op = (1 << (reg + i + 1)) - 1;
3893 op &= ~((1 << reg) - 1);
3894 mask |= op;
3895 unwind.opcode_count -= 2;
3896 }
3897 }
3898 }
3899 }
3900
3901 hi_reg = 15;
3902 /* We want to generate opcodes in the order the registers have been
3903 saved, ie. descending order. */
3904 for (reg = 15; reg >= -1; reg--)
3905 {
3906 /* Save registers in blocks. */
3907 if (reg < 0
3908 || !(mask & (1 << reg)))
3909 {
3910 /* We found an unsaved reg. Generate opcodes to save the
3911 preceding block. */
3912 if (reg != hi_reg)
3913 {
3914 if (reg == 9)
3915 {
3916 /* Short form. */
3917 op = 0xc0 | (hi_reg - 10);
3918 add_unwind_opcode (op, 1);
3919 }
3920 else
3921 {
3922 /* Long form. */
3923 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3924 add_unwind_opcode (op, 2);
3925 }
3926 }
3927 hi_reg = reg - 1;
3928 }
3929 }
3930
3931 return;
3932 error:
3933 ignore_rest_of_line ();
3934 }
3935
3936 static void
3937 s_arm_unwind_save_mmxwcg (void)
3938 {
3939 int reg;
3940 int hi_reg;
3941 unsigned mask = 0;
3942 valueT op;
3943
3944 if (*input_line_pointer == '{')
3945 input_line_pointer++;
3946
3947 do
3948 {
3949 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3950
3951 if (reg == FAIL)
3952 {
3953 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3954 goto error;
3955 }
3956
3957 reg -= 8;
3958 if (mask >> reg)
3959 as_tsktsk (_("register list not in ascending order"));
3960 mask |= 1 << reg;
3961
3962 if (*input_line_pointer == '-')
3963 {
3964 input_line_pointer++;
3965 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3966 if (hi_reg == FAIL)
3967 {
3968 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3969 goto error;
3970 }
3971 else if (reg >= hi_reg)
3972 {
3973 as_bad (_("bad register range"));
3974 goto error;
3975 }
3976 for (; reg < hi_reg; reg++)
3977 mask |= 1 << reg;
3978 }
3979 }
3980 while (skip_past_comma (&input_line_pointer) != FAIL);
3981
3982 if (*input_line_pointer == '}')
3983 input_line_pointer++;
3984
3985 demand_empty_rest_of_line ();
3986
3987 /* Generate any deferred opcodes because we're going to be looking at
3988 the list. */
3989 flush_pending_unwind ();
3990
3991 for (reg = 0; reg < 16; reg++)
3992 {
3993 if (mask & (1 << reg))
3994 unwind.frame_size += 4;
3995 }
3996 op = 0xc700 | mask;
3997 add_unwind_opcode (op, 2);
3998 return;
3999 error:
4000 ignore_rest_of_line ();
4001 }
4002
4003
4004 /* Parse an unwind_save directive.
4005 If the argument is non-zero, this is a .vsave directive. */
4006
4007 static void
4008 s_arm_unwind_save (int arch_v6)
4009 {
4010 char *peek;
4011 struct reg_entry *reg;
4012 bfd_boolean had_brace = FALSE;
4013
4014 if (!unwind.proc_start)
4015 as_bad (MISSING_FNSTART);
4016
4017 /* Figure out what sort of save we have. */
4018 peek = input_line_pointer;
4019
4020 if (*peek == '{')
4021 {
4022 had_brace = TRUE;
4023 peek++;
4024 }
4025
4026 reg = arm_reg_parse_multi (&peek);
4027
4028 if (!reg)
4029 {
4030 as_bad (_("register expected"));
4031 ignore_rest_of_line ();
4032 return;
4033 }
4034
4035 switch (reg->type)
4036 {
4037 case REG_TYPE_FN:
4038 if (had_brace)
4039 {
4040 as_bad (_("FPA .unwind_save does not take a register list"));
4041 ignore_rest_of_line ();
4042 return;
4043 }
4044 input_line_pointer = peek;
4045 s_arm_unwind_save_fpa (reg->number);
4046 return;
4047
4048 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4049 case REG_TYPE_VFD:
4050 if (arch_v6)
4051 s_arm_unwind_save_vfp_armv6 ();
4052 else
4053 s_arm_unwind_save_vfp ();
4054 return;
4055 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4056 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4057
4058 default:
4059 as_bad (_(".unwind_save does not support this kind of register"));
4060 ignore_rest_of_line ();
4061 }
4062 }
4063
4064
4065 /* Parse an unwind_movsp directive. */
4066
4067 static void
4068 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4069 {
4070 int reg;
4071 valueT op;
4072 int offset;
4073
4074 if (!unwind.proc_start)
4075 as_bad (MISSING_FNSTART);
4076
4077 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4078 if (reg == FAIL)
4079 {
4080 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4081 ignore_rest_of_line ();
4082 return;
4083 }
4084
4085 /* Optional constant. */
4086 if (skip_past_comma (&input_line_pointer) != FAIL)
4087 {
4088 if (immediate_for_directive (&offset) == FAIL)
4089 return;
4090 }
4091 else
4092 offset = 0;
4093
4094 demand_empty_rest_of_line ();
4095
4096 if (reg == REG_SP || reg == REG_PC)
4097 {
4098 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4099 return;
4100 }
4101
4102 if (unwind.fp_reg != REG_SP)
4103 as_bad (_("unexpected .unwind_movsp directive"));
4104
4105 /* Generate opcode to restore the value. */
4106 op = 0x90 | reg;
4107 add_unwind_opcode (op, 1);
4108
4109 /* Record the information for later. */
4110 unwind.fp_reg = reg;
4111 unwind.fp_offset = unwind.frame_size - offset;
4112 unwind.sp_restored = 1;
4113 }
4114
4115 /* Parse an unwind_pad directive. */
4116
4117 static void
4118 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4119 {
4120 int offset;
4121
4122 if (!unwind.proc_start)
4123 as_bad (MISSING_FNSTART);
4124
4125 if (immediate_for_directive (&offset) == FAIL)
4126 return;
4127
4128 if (offset & 3)
4129 {
4130 as_bad (_("stack increment must be multiple of 4"));
4131 ignore_rest_of_line ();
4132 return;
4133 }
4134
4135 /* Don't generate any opcodes, just record the details for later. */
4136 unwind.frame_size += offset;
4137 unwind.pending_offset += offset;
4138
4139 demand_empty_rest_of_line ();
4140 }
4141
4142 /* Parse an unwind_setfp directive. */
4143
4144 static void
4145 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4146 {
4147 int sp_reg;
4148 int fp_reg;
4149 int offset;
4150
4151 if (!unwind.proc_start)
4152 as_bad (MISSING_FNSTART);
4153
4154 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4155 if (skip_past_comma (&input_line_pointer) == FAIL)
4156 sp_reg = FAIL;
4157 else
4158 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4159
4160 if (fp_reg == FAIL || sp_reg == FAIL)
4161 {
4162 as_bad (_("expected <reg>, <reg>"));
4163 ignore_rest_of_line ();
4164 return;
4165 }
4166
4167 /* Optional constant. */
4168 if (skip_past_comma (&input_line_pointer) != FAIL)
4169 {
4170 if (immediate_for_directive (&offset) == FAIL)
4171 return;
4172 }
4173 else
4174 offset = 0;
4175
4176 demand_empty_rest_of_line ();
4177
4178 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4179 {
4180 as_bad (_("register must be either sp or set by a previous"
4181 "unwind_movsp directive"));
4182 return;
4183 }
4184
4185 /* Don't generate any opcodes, just record the information for later. */
4186 unwind.fp_reg = fp_reg;
4187 unwind.fp_used = 1;
4188 if (sp_reg == REG_SP)
4189 unwind.fp_offset = unwind.frame_size - offset;
4190 else
4191 unwind.fp_offset -= offset;
4192 }
4193
4194 /* Parse an unwind_raw directive. */
4195
4196 static void
4197 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4198 {
4199 expressionS exp;
4200 /* This is an arbitrary limit. */
4201 unsigned char op[16];
4202 int count;
4203
4204 if (!unwind.proc_start)
4205 as_bad (MISSING_FNSTART);
4206
4207 expression (&exp);
4208 if (exp.X_op == O_constant
4209 && skip_past_comma (&input_line_pointer) != FAIL)
4210 {
4211 unwind.frame_size += exp.X_add_number;
4212 expression (&exp);
4213 }
4214 else
4215 exp.X_op = O_illegal;
4216
4217 if (exp.X_op != O_constant)
4218 {
4219 as_bad (_("expected <offset>, <opcode>"));
4220 ignore_rest_of_line ();
4221 return;
4222 }
4223
4224 count = 0;
4225
4226 /* Parse the opcode. */
4227 for (;;)
4228 {
4229 if (count >= 16)
4230 {
4231 as_bad (_("unwind opcode too long"));
4232 ignore_rest_of_line ();
4233 }
4234 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4235 {
4236 as_bad (_("invalid unwind opcode"));
4237 ignore_rest_of_line ();
4238 return;
4239 }
4240 op[count++] = exp.X_add_number;
4241
4242 /* Parse the next byte. */
4243 if (skip_past_comma (&input_line_pointer) == FAIL)
4244 break;
4245
4246 expression (&exp);
4247 }
4248
4249 /* Add the opcode bytes in reverse order. */
4250 while (count--)
4251 add_unwind_opcode (op[count], 1);
4252
4253 demand_empty_rest_of_line ();
4254 }
4255
4256
4257 /* Parse a .eabi_attribute directive. */
4258
4259 static void
4260 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4261 {
4262 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4263
4264 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4265 attributes_set_explicitly[tag] = 1;
4266 }
4267 #endif /* OBJ_ELF */
4268
4269 static void s_arm_arch (int);
4270 static void s_arm_object_arch (int);
4271 static void s_arm_cpu (int);
4272 static void s_arm_fpu (int);
4273
4274 #ifdef TE_PE
4275
4276 static void
4277 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4278 {
4279 expressionS exp;
4280
4281 do
4282 {
4283 expression (&exp);
4284 if (exp.X_op == O_symbol)
4285 exp.X_op = O_secrel;
4286
4287 emit_expr (&exp, 4);
4288 }
4289 while (*input_line_pointer++ == ',');
4290
4291 input_line_pointer--;
4292 demand_empty_rest_of_line ();
4293 }
4294 #endif /* TE_PE */
4295
4296 /* This table describes all the machine specific pseudo-ops the assembler
4297 has to support. The fields are:
4298 pseudo-op name without dot
4299 function to call to execute this pseudo-op
4300 Integer arg to pass to the function. */
4301
4302 const pseudo_typeS md_pseudo_table[] =
4303 {
4304 /* Never called because '.req' does not start a line. */
4305 { "req", s_req, 0 },
4306 /* Following two are likewise never called. */
4307 { "dn", s_dn, 0 },
4308 { "qn", s_qn, 0 },
4309 { "unreq", s_unreq, 0 },
4310 { "bss", s_bss, 0 },
4311 { "align", s_align, 0 },
4312 { "arm", s_arm, 0 },
4313 { "thumb", s_thumb, 0 },
4314 { "code", s_code, 0 },
4315 { "force_thumb", s_force_thumb, 0 },
4316 { "thumb_func", s_thumb_func, 0 },
4317 { "thumb_set", s_thumb_set, 0 },
4318 { "even", s_even, 0 },
4319 { "ltorg", s_ltorg, 0 },
4320 { "pool", s_ltorg, 0 },
4321 { "syntax", s_syntax, 0 },
4322 { "cpu", s_arm_cpu, 0 },
4323 { "arch", s_arm_arch, 0 },
4324 { "object_arch", s_arm_object_arch, 0 },
4325 { "fpu", s_arm_fpu, 0 },
4326 #ifdef OBJ_ELF
4327 { "word", s_arm_elf_cons, 4 },
4328 { "long", s_arm_elf_cons, 4 },
4329 { "inst.n", s_arm_elf_inst, 2 },
4330 { "inst.w", s_arm_elf_inst, 4 },
4331 { "inst", s_arm_elf_inst, 0 },
4332 { "rel31", s_arm_rel31, 0 },
4333 { "fnstart", s_arm_unwind_fnstart, 0 },
4334 { "fnend", s_arm_unwind_fnend, 0 },
4335 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4336 { "personality", s_arm_unwind_personality, 0 },
4337 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4338 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4339 { "save", s_arm_unwind_save, 0 },
4340 { "vsave", s_arm_unwind_save, 1 },
4341 { "movsp", s_arm_unwind_movsp, 0 },
4342 { "pad", s_arm_unwind_pad, 0 },
4343 { "setfp", s_arm_unwind_setfp, 0 },
4344 { "unwind_raw", s_arm_unwind_raw, 0 },
4345 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4346 #else
4347 { "word", cons, 4},
4348
4349 /* These are used for dwarf. */
4350 {"2byte", cons, 2},
4351 {"4byte", cons, 4},
4352 {"8byte", cons, 8},
4353 /* These are used for dwarf2. */
4354 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4355 { "loc", dwarf2_directive_loc, 0 },
4356 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4357 #endif
4358 { "extend", float_cons, 'x' },
4359 { "ldouble", float_cons, 'x' },
4360 { "packed", float_cons, 'p' },
4361 #ifdef TE_PE
4362 {"secrel32", pe_directive_secrel, 0},
4363 #endif
4364 { 0, 0, 0 }
4365 };
4366 \f
4367 /* Parser functions used exclusively in instruction operands. */
4368
4369 /* Generic immediate-value read function for use in insn parsing.
4370 STR points to the beginning of the immediate (the leading #);
4371 VAL receives the value; if the value is outside [MIN, MAX]
4372 issue an error. PREFIX_OPT is true if the immediate prefix is
4373 optional. */
4374
4375 static int
4376 parse_immediate (char **str, int *val, int min, int max,
4377 bfd_boolean prefix_opt)
4378 {
4379 expressionS exp;
4380 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4381 if (exp.X_op != O_constant)
4382 {
4383 inst.error = _("constant expression required");
4384 return FAIL;
4385 }
4386
4387 if (exp.X_add_number < min || exp.X_add_number > max)
4388 {
4389 inst.error = _("immediate value out of range");
4390 return FAIL;
4391 }
4392
4393 *val = exp.X_add_number;
4394 return SUCCESS;
4395 }
4396
4397 /* Less-generic immediate-value read function with the possibility of loading a
4398 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4399 instructions. Puts the result directly in inst.operands[i]. */
4400
4401 static int
4402 parse_big_immediate (char **str, int i)
4403 {
4404 expressionS exp;
4405 char *ptr = *str;
4406
4407 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4408
4409 if (exp.X_op == O_constant)
4410 {
4411 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4412 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4413 O_constant. We have to be careful not to break compilation for
4414 32-bit X_add_number, though. */
4415 if ((exp.X_add_number & ~0xffffffffl) != 0)
4416 {
4417 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4418 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4419 inst.operands[i].regisimm = 1;
4420 }
4421 }
4422 else if (exp.X_op == O_big
4423 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4424 {
4425 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4426
4427 /* Bignums have their least significant bits in
4428 generic_bignum[0]. Make sure we put 32 bits in imm and
4429 32 bits in reg, in a (hopefully) portable way. */
4430 gas_assert (parts != 0);
4431
4432 /* Make sure that the number is not too big.
4433 PR 11972: Bignums can now be sign-extended to the
4434 size of a .octa so check that the out of range bits
4435 are all zero or all one. */
4436 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4437 {
4438 LITTLENUM_TYPE m = -1;
4439
4440 if (generic_bignum[parts * 2] != 0
4441 && generic_bignum[parts * 2] != m)
4442 return FAIL;
4443
4444 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4445 if (generic_bignum[j] != generic_bignum[j-1])
4446 return FAIL;
4447 }
4448
4449 inst.operands[i].imm = 0;
4450 for (j = 0; j < parts; j++, idx++)
4451 inst.operands[i].imm |= generic_bignum[idx]
4452 << (LITTLENUM_NUMBER_OF_BITS * j);
4453 inst.operands[i].reg = 0;
4454 for (j = 0; j < parts; j++, idx++)
4455 inst.operands[i].reg |= generic_bignum[idx]
4456 << (LITTLENUM_NUMBER_OF_BITS * j);
4457 inst.operands[i].regisimm = 1;
4458 }
4459 else
4460 return FAIL;
4461
4462 *str = ptr;
4463
4464 return SUCCESS;
4465 }
4466
4467 /* Returns the pseudo-register number of an FPA immediate constant,
4468 or FAIL if there isn't a valid constant here. */
4469
4470 static int
4471 parse_fpa_immediate (char ** str)
4472 {
4473 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4474 char * save_in;
4475 expressionS exp;
4476 int i;
4477 int j;
4478
4479 /* First try and match exact strings, this is to guarantee
4480 that some formats will work even for cross assembly. */
4481
4482 for (i = 0; fp_const[i]; i++)
4483 {
4484 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4485 {
4486 char *start = *str;
4487
4488 *str += strlen (fp_const[i]);
4489 if (is_end_of_line[(unsigned char) **str])
4490 return i + 8;
4491 *str = start;
4492 }
4493 }
4494
4495 /* Just because we didn't get a match doesn't mean that the constant
4496 isn't valid, just that it is in a format that we don't
4497 automatically recognize. Try parsing it with the standard
4498 expression routines. */
4499
4500 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4501
4502 /* Look for a raw floating point number. */
4503 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4504 && is_end_of_line[(unsigned char) *save_in])
4505 {
4506 for (i = 0; i < NUM_FLOAT_VALS; i++)
4507 {
4508 for (j = 0; j < MAX_LITTLENUMS; j++)
4509 {
4510 if (words[j] != fp_values[i][j])
4511 break;
4512 }
4513
4514 if (j == MAX_LITTLENUMS)
4515 {
4516 *str = save_in;
4517 return i + 8;
4518 }
4519 }
4520 }
4521
4522 /* Try and parse a more complex expression, this will probably fail
4523 unless the code uses a floating point prefix (eg "0f"). */
4524 save_in = input_line_pointer;
4525 input_line_pointer = *str;
4526 if (expression (&exp) == absolute_section
4527 && exp.X_op == O_big
4528 && exp.X_add_number < 0)
4529 {
4530 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4531 Ditto for 15. */
4532 if (gen_to_words (words, 5, (long) 15) == 0)
4533 {
4534 for (i = 0; i < NUM_FLOAT_VALS; i++)
4535 {
4536 for (j = 0; j < MAX_LITTLENUMS; j++)
4537 {
4538 if (words[j] != fp_values[i][j])
4539 break;
4540 }
4541
4542 if (j == MAX_LITTLENUMS)
4543 {
4544 *str = input_line_pointer;
4545 input_line_pointer = save_in;
4546 return i + 8;
4547 }
4548 }
4549 }
4550 }
4551
4552 *str = input_line_pointer;
4553 input_line_pointer = save_in;
4554 inst.error = _("invalid FPA immediate expression");
4555 return FAIL;
4556 }
4557
4558 /* Returns 1 if a number has "quarter-precision" float format
4559 0baBbbbbbc defgh000 00000000 00000000. */
4560
4561 static int
4562 is_quarter_float (unsigned imm)
4563 {
4564 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4565 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4566 }
4567
4568 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4569 0baBbbbbbc defgh000 00000000 00000000.
4570 The zero and minus-zero cases need special handling, since they can't be
4571 encoded in the "quarter-precision" float format, but can nonetheless be
4572 loaded as integer constants. */
4573
4574 static unsigned
4575 parse_qfloat_immediate (char **ccp, int *immed)
4576 {
4577 char *str = *ccp;
4578 char *fpnum;
4579 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4580 int found_fpchar = 0;
4581
4582 skip_past_char (&str, '#');
4583
4584 /* We must not accidentally parse an integer as a floating-point number. Make
4585 sure that the value we parse is not an integer by checking for special
4586 characters '.' or 'e'.
4587 FIXME: This is a horrible hack, but doing better is tricky because type
4588 information isn't in a very usable state at parse time. */
4589 fpnum = str;
4590 skip_whitespace (fpnum);
4591
4592 if (strncmp (fpnum, "0x", 2) == 0)
4593 return FAIL;
4594 else
4595 {
4596 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4597 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4598 {
4599 found_fpchar = 1;
4600 break;
4601 }
4602
4603 if (!found_fpchar)
4604 return FAIL;
4605 }
4606
4607 if ((str = atof_ieee (str, 's', words)) != NULL)
4608 {
4609 unsigned fpword = 0;
4610 int i;
4611
4612 /* Our FP word must be 32 bits (single-precision FP). */
4613 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4614 {
4615 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4616 fpword |= words[i];
4617 }
4618
4619 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4620 *immed = fpword;
4621 else
4622 return FAIL;
4623
4624 *ccp = str;
4625
4626 return SUCCESS;
4627 }
4628
4629 return FAIL;
4630 }
4631
4632 /* Shift operands. */
4633 enum shift_kind
4634 {
4635 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4636 };
4637
4638 struct asm_shift_name
4639 {
4640 const char *name;
4641 enum shift_kind kind;
4642 };
4643
4644 /* Third argument to parse_shift. */
4645 enum parse_shift_mode
4646 {
4647 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4648 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4649 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4650 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4651 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4652 };
4653
4654 /* Parse a <shift> specifier on an ARM data processing instruction.
4655 This has three forms:
4656
4657 (LSL|LSR|ASL|ASR|ROR) Rs
4658 (LSL|LSR|ASL|ASR|ROR) #imm
4659 RRX
4660
4661 Note that ASL is assimilated to LSL in the instruction encoding, and
4662 RRX to ROR #0 (which cannot be written as such). */
4663
4664 static int
4665 parse_shift (char **str, int i, enum parse_shift_mode mode)
4666 {
4667 const struct asm_shift_name *shift_name;
4668 enum shift_kind shift;
4669 char *s = *str;
4670 char *p = s;
4671 int reg;
4672
4673 for (p = *str; ISALPHA (*p); p++)
4674 ;
4675
4676 if (p == *str)
4677 {
4678 inst.error = _("shift expression expected");
4679 return FAIL;
4680 }
4681
4682 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4683 p - *str);
4684
4685 if (shift_name == NULL)
4686 {
4687 inst.error = _("shift expression expected");
4688 return FAIL;
4689 }
4690
4691 shift = shift_name->kind;
4692
4693 switch (mode)
4694 {
4695 case NO_SHIFT_RESTRICT:
4696 case SHIFT_IMMEDIATE: break;
4697
4698 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4699 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4700 {
4701 inst.error = _("'LSL' or 'ASR' required");
4702 return FAIL;
4703 }
4704 break;
4705
4706 case SHIFT_LSL_IMMEDIATE:
4707 if (shift != SHIFT_LSL)
4708 {
4709 inst.error = _("'LSL' required");
4710 return FAIL;
4711 }
4712 break;
4713
4714 case SHIFT_ASR_IMMEDIATE:
4715 if (shift != SHIFT_ASR)
4716 {
4717 inst.error = _("'ASR' required");
4718 return FAIL;
4719 }
4720 break;
4721
4722 default: abort ();
4723 }
4724
4725 if (shift != SHIFT_RRX)
4726 {
4727 /* Whitespace can appear here if the next thing is a bare digit. */
4728 skip_whitespace (p);
4729
4730 if (mode == NO_SHIFT_RESTRICT
4731 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4732 {
4733 inst.operands[i].imm = reg;
4734 inst.operands[i].immisreg = 1;
4735 }
4736 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4737 return FAIL;
4738 }
4739 inst.operands[i].shift_kind = shift;
4740 inst.operands[i].shifted = 1;
4741 *str = p;
4742 return SUCCESS;
4743 }
4744
4745 /* Parse a <shifter_operand> for an ARM data processing instruction:
4746
4747 #<immediate>
4748 #<immediate>, <rotate>
4749 <Rm>
4750 <Rm>, <shift>
4751
4752 where <shift> is defined by parse_shift above, and <rotate> is a
4753 multiple of 2 between 0 and 30. Validation of immediate operands
4754 is deferred to md_apply_fix. */
4755
4756 static int
4757 parse_shifter_operand (char **str, int i)
4758 {
4759 int value;
4760 expressionS exp;
4761
4762 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4763 {
4764 inst.operands[i].reg = value;
4765 inst.operands[i].isreg = 1;
4766
4767 /* parse_shift will override this if appropriate */
4768 inst.reloc.exp.X_op = O_constant;
4769 inst.reloc.exp.X_add_number = 0;
4770
4771 if (skip_past_comma (str) == FAIL)
4772 return SUCCESS;
4773
4774 /* Shift operation on register. */
4775 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4776 }
4777
4778 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4779 return FAIL;
4780
4781 if (skip_past_comma (str) == SUCCESS)
4782 {
4783 /* #x, y -- ie explicit rotation by Y. */
4784 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4785 return FAIL;
4786
4787 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4788 {
4789 inst.error = _("constant expression expected");
4790 return FAIL;
4791 }
4792
4793 value = exp.X_add_number;
4794 if (value < 0 || value > 30 || value % 2 != 0)
4795 {
4796 inst.error = _("invalid rotation");
4797 return FAIL;
4798 }
4799 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4800 {
4801 inst.error = _("invalid constant");
4802 return FAIL;
4803 }
4804
4805 /* Convert to decoded value. md_apply_fix will put it back. */
4806 inst.reloc.exp.X_add_number
4807 = (((inst.reloc.exp.X_add_number << (32 - value))
4808 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4809 }
4810
4811 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4812 inst.reloc.pc_rel = 0;
4813 return SUCCESS;
4814 }
4815
4816 /* Group relocation information. Each entry in the table contains the
4817 textual name of the relocation as may appear in assembler source
4818 and must end with a colon.
4819 Along with this textual name are the relocation codes to be used if
4820 the corresponding instruction is an ALU instruction (ADD or SUB only),
4821 an LDR, an LDRS, or an LDC. */
4822
4823 struct group_reloc_table_entry
4824 {
4825 const char *name;
4826 int alu_code;
4827 int ldr_code;
4828 int ldrs_code;
4829 int ldc_code;
4830 };
4831
4832 typedef enum
4833 {
4834 /* Varieties of non-ALU group relocation. */
4835
4836 GROUP_LDR,
4837 GROUP_LDRS,
4838 GROUP_LDC
4839 } group_reloc_type;
4840
4841 static struct group_reloc_table_entry group_reloc_table[] =
4842 { /* Program counter relative: */
4843 { "pc_g0_nc",
4844 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4845 0, /* LDR */
4846 0, /* LDRS */
4847 0 }, /* LDC */
4848 { "pc_g0",
4849 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4850 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4851 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4852 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4853 { "pc_g1_nc",
4854 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4855 0, /* LDR */
4856 0, /* LDRS */
4857 0 }, /* LDC */
4858 { "pc_g1",
4859 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4860 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4861 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4862 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4863 { "pc_g2",
4864 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4865 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4866 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4867 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4868 /* Section base relative */
4869 { "sb_g0_nc",
4870 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4871 0, /* LDR */
4872 0, /* LDRS */
4873 0 }, /* LDC */
4874 { "sb_g0",
4875 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4876 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4877 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4878 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4879 { "sb_g1_nc",
4880 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4881 0, /* LDR */
4882 0, /* LDRS */
4883 0 }, /* LDC */
4884 { "sb_g1",
4885 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4886 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4887 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4888 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4889 { "sb_g2",
4890 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4891 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4892 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4893 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4894
4895 /* Given the address of a pointer pointing to the textual name of a group
4896 relocation as may appear in assembler source, attempt to find its details
4897 in group_reloc_table. The pointer will be updated to the character after
4898 the trailing colon. On failure, FAIL will be returned; SUCCESS
4899 otherwise. On success, *entry will be updated to point at the relevant
4900 group_reloc_table entry. */
4901
4902 static int
4903 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4904 {
4905 unsigned int i;
4906 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4907 {
4908 int length = strlen (group_reloc_table[i].name);
4909
4910 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4911 && (*str)[length] == ':')
4912 {
4913 *out = &group_reloc_table[i];
4914 *str += (length + 1);
4915 return SUCCESS;
4916 }
4917 }
4918
4919 return FAIL;
4920 }
4921
4922 /* Parse a <shifter_operand> for an ARM data processing instruction
4923 (as for parse_shifter_operand) where group relocations are allowed:
4924
4925 #<immediate>
4926 #<immediate>, <rotate>
4927 #:<group_reloc>:<expression>
4928 <Rm>
4929 <Rm>, <shift>
4930
4931 where <group_reloc> is one of the strings defined in group_reloc_table.
4932 The hashes are optional.
4933
4934 Everything else is as for parse_shifter_operand. */
4935
4936 static parse_operand_result
4937 parse_shifter_operand_group_reloc (char **str, int i)
4938 {
4939 /* Determine if we have the sequence of characters #: or just :
4940 coming next. If we do, then we check for a group relocation.
4941 If we don't, punt the whole lot to parse_shifter_operand. */
4942
4943 if (((*str)[0] == '#' && (*str)[1] == ':')
4944 || (*str)[0] == ':')
4945 {
4946 struct group_reloc_table_entry *entry;
4947
4948 if ((*str)[0] == '#')
4949 (*str) += 2;
4950 else
4951 (*str)++;
4952
4953 /* Try to parse a group relocation. Anything else is an error. */
4954 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4955 {
4956 inst.error = _("unknown group relocation");
4957 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4958 }
4959
4960 /* We now have the group relocation table entry corresponding to
4961 the name in the assembler source. Next, we parse the expression. */
4962 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4963 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4964
4965 /* Record the relocation type (always the ALU variant here). */
4966 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
4967 gas_assert (inst.reloc.type != 0);
4968
4969 return PARSE_OPERAND_SUCCESS;
4970 }
4971 else
4972 return parse_shifter_operand (str, i) == SUCCESS
4973 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4974
4975 /* Never reached. */
4976 }
4977
4978 /* Parse a Neon alignment expression. Information is written to
4979 inst.operands[i]. We assume the initial ':' has been skipped.
4980
4981 align .imm = align << 8, .immisalign=1, .preind=0 */
4982 static parse_operand_result
4983 parse_neon_alignment (char **str, int i)
4984 {
4985 char *p = *str;
4986 expressionS exp;
4987
4988 my_get_expression (&exp, &p, GE_NO_PREFIX);
4989
4990 if (exp.X_op != O_constant)
4991 {
4992 inst.error = _("alignment must be constant");
4993 return PARSE_OPERAND_FAIL;
4994 }
4995
4996 inst.operands[i].imm = exp.X_add_number << 8;
4997 inst.operands[i].immisalign = 1;
4998 /* Alignments are not pre-indexes. */
4999 inst.operands[i].preind = 0;
5000
5001 *str = p;
5002 return PARSE_OPERAND_SUCCESS;
5003 }
5004
5005 /* Parse all forms of an ARM address expression. Information is written
5006 to inst.operands[i] and/or inst.reloc.
5007
5008 Preindexed addressing (.preind=1):
5009
5010 [Rn, #offset] .reg=Rn .reloc.exp=offset
5011 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5012 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5013 .shift_kind=shift .reloc.exp=shift_imm
5014
5015 These three may have a trailing ! which causes .writeback to be set also.
5016
5017 Postindexed addressing (.postind=1, .writeback=1):
5018
5019 [Rn], #offset .reg=Rn .reloc.exp=offset
5020 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5021 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5022 .shift_kind=shift .reloc.exp=shift_imm
5023
5024 Unindexed addressing (.preind=0, .postind=0):
5025
5026 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5027
5028 Other:
5029
5030 [Rn]{!} shorthand for [Rn,#0]{!}
5031 =immediate .isreg=0 .reloc.exp=immediate
5032 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5033
5034 It is the caller's responsibility to check for addressing modes not
5035 supported by the instruction, and to set inst.reloc.type. */
5036
5037 static parse_operand_result
5038 parse_address_main (char **str, int i, int group_relocations,
5039 group_reloc_type group_type)
5040 {
5041 char *p = *str;
5042 int reg;
5043
5044 if (skip_past_char (&p, '[') == FAIL)
5045 {
5046 if (skip_past_char (&p, '=') == FAIL)
5047 {
5048 /* Bare address - translate to PC-relative offset. */
5049 inst.reloc.pc_rel = 1;
5050 inst.operands[i].reg = REG_PC;
5051 inst.operands[i].isreg = 1;
5052 inst.operands[i].preind = 1;
5053 }
5054 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5055
5056 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5057 return PARSE_OPERAND_FAIL;
5058
5059 *str = p;
5060 return PARSE_OPERAND_SUCCESS;
5061 }
5062
5063 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5064 {
5065 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5066 return PARSE_OPERAND_FAIL;
5067 }
5068 inst.operands[i].reg = reg;
5069 inst.operands[i].isreg = 1;
5070
5071 if (skip_past_comma (&p) == SUCCESS)
5072 {
5073 inst.operands[i].preind = 1;
5074
5075 if (*p == '+') p++;
5076 else if (*p == '-') p++, inst.operands[i].negative = 1;
5077
5078 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5079 {
5080 inst.operands[i].imm = reg;
5081 inst.operands[i].immisreg = 1;
5082
5083 if (skip_past_comma (&p) == SUCCESS)
5084 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5085 return PARSE_OPERAND_FAIL;
5086 }
5087 else if (skip_past_char (&p, ':') == SUCCESS)
5088 {
5089 /* FIXME: '@' should be used here, but it's filtered out by generic
5090 code before we get to see it here. This may be subject to
5091 change. */
5092 parse_operand_result result = parse_neon_alignment (&p, i);
5093
5094 if (result != PARSE_OPERAND_SUCCESS)
5095 return result;
5096 }
5097 else
5098 {
5099 if (inst.operands[i].negative)
5100 {
5101 inst.operands[i].negative = 0;
5102 p--;
5103 }
5104
5105 if (group_relocations
5106 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5107 {
5108 struct group_reloc_table_entry *entry;
5109
5110 /* Skip over the #: or : sequence. */
5111 if (*p == '#')
5112 p += 2;
5113 else
5114 p++;
5115
5116 /* Try to parse a group relocation. Anything else is an
5117 error. */
5118 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5119 {
5120 inst.error = _("unknown group relocation");
5121 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5122 }
5123
5124 /* We now have the group relocation table entry corresponding to
5125 the name in the assembler source. Next, we parse the
5126 expression. */
5127 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5128 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5129
5130 /* Record the relocation type. */
5131 switch (group_type)
5132 {
5133 case GROUP_LDR:
5134 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5135 break;
5136
5137 case GROUP_LDRS:
5138 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5139 break;
5140
5141 case GROUP_LDC:
5142 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5143 break;
5144
5145 default:
5146 gas_assert (0);
5147 }
5148
5149 if (inst.reloc.type == 0)
5150 {
5151 inst.error = _("this group relocation is not allowed on this instruction");
5152 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5153 }
5154 }
5155 else
5156 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5157 return PARSE_OPERAND_FAIL;
5158 }
5159 }
5160 else if (skip_past_char (&p, ':') == SUCCESS)
5161 {
5162 /* FIXME: '@' should be used here, but it's filtered out by generic code
5163 before we get to see it here. This may be subject to change. */
5164 parse_operand_result result = parse_neon_alignment (&p, i);
5165
5166 if (result != PARSE_OPERAND_SUCCESS)
5167 return result;
5168 }
5169
5170 if (skip_past_char (&p, ']') == FAIL)
5171 {
5172 inst.error = _("']' expected");
5173 return PARSE_OPERAND_FAIL;
5174 }
5175
5176 if (skip_past_char (&p, '!') == SUCCESS)
5177 inst.operands[i].writeback = 1;
5178
5179 else if (skip_past_comma (&p) == SUCCESS)
5180 {
5181 if (skip_past_char (&p, '{') == SUCCESS)
5182 {
5183 /* [Rn], {expr} - unindexed, with option */
5184 if (parse_immediate (&p, &inst.operands[i].imm,
5185 0, 255, TRUE) == FAIL)
5186 return PARSE_OPERAND_FAIL;
5187
5188 if (skip_past_char (&p, '}') == FAIL)
5189 {
5190 inst.error = _("'}' expected at end of 'option' field");
5191 return PARSE_OPERAND_FAIL;
5192 }
5193 if (inst.operands[i].preind)
5194 {
5195 inst.error = _("cannot combine index with option");
5196 return PARSE_OPERAND_FAIL;
5197 }
5198 *str = p;
5199 return PARSE_OPERAND_SUCCESS;
5200 }
5201 else
5202 {
5203 inst.operands[i].postind = 1;
5204 inst.operands[i].writeback = 1;
5205
5206 if (inst.operands[i].preind)
5207 {
5208 inst.error = _("cannot combine pre- and post-indexing");
5209 return PARSE_OPERAND_FAIL;
5210 }
5211
5212 if (*p == '+') p++;
5213 else if (*p == '-') p++, inst.operands[i].negative = 1;
5214
5215 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5216 {
5217 /* We might be using the immediate for alignment already. If we
5218 are, OR the register number into the low-order bits. */
5219 if (inst.operands[i].immisalign)
5220 inst.operands[i].imm |= reg;
5221 else
5222 inst.operands[i].imm = reg;
5223 inst.operands[i].immisreg = 1;
5224
5225 if (skip_past_comma (&p) == SUCCESS)
5226 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5227 return PARSE_OPERAND_FAIL;
5228 }
5229 else
5230 {
5231 if (inst.operands[i].negative)
5232 {
5233 inst.operands[i].negative = 0;
5234 p--;
5235 }
5236 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5237 return PARSE_OPERAND_FAIL;
5238 }
5239 }
5240 }
5241
5242 /* If at this point neither .preind nor .postind is set, we have a
5243 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5244 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5245 {
5246 inst.operands[i].preind = 1;
5247 inst.reloc.exp.X_op = O_constant;
5248 inst.reloc.exp.X_add_number = 0;
5249 }
5250 *str = p;
5251 return PARSE_OPERAND_SUCCESS;
5252 }
5253
5254 static int
5255 parse_address (char **str, int i)
5256 {
5257 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5258 ? SUCCESS : FAIL;
5259 }
5260
5261 static parse_operand_result
5262 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5263 {
5264 return parse_address_main (str, i, 1, type);
5265 }
5266
5267 /* Parse an operand for a MOVW or MOVT instruction. */
5268 static int
5269 parse_half (char **str)
5270 {
5271 char * p;
5272
5273 p = *str;
5274 skip_past_char (&p, '#');
5275 if (strncasecmp (p, ":lower16:", 9) == 0)
5276 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5277 else if (strncasecmp (p, ":upper16:", 9) == 0)
5278 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5279
5280 if (inst.reloc.type != BFD_RELOC_UNUSED)
5281 {
5282 p += 9;
5283 skip_whitespace (p);
5284 }
5285
5286 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5287 return FAIL;
5288
5289 if (inst.reloc.type == BFD_RELOC_UNUSED)
5290 {
5291 if (inst.reloc.exp.X_op != O_constant)
5292 {
5293 inst.error = _("constant expression expected");
5294 return FAIL;
5295 }
5296 if (inst.reloc.exp.X_add_number < 0
5297 || inst.reloc.exp.X_add_number > 0xffff)
5298 {
5299 inst.error = _("immediate value out of range");
5300 return FAIL;
5301 }
5302 }
5303 *str = p;
5304 return SUCCESS;
5305 }
5306
5307 /* Miscellaneous. */
5308
5309 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5310 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5311 static int
5312 parse_psr (char **str)
5313 {
5314 char *p;
5315 unsigned long psr_field;
5316 const struct asm_psr *psr;
5317 char *start;
5318
5319 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5320 feature for ease of use and backwards compatibility. */
5321 p = *str;
5322 if (strncasecmp (p, "SPSR", 4) == 0)
5323 psr_field = SPSR_BIT;
5324 else if (strncasecmp (p, "CPSR", 4) == 0)
5325 psr_field = 0;
5326 else
5327 {
5328 start = p;
5329 do
5330 p++;
5331 while (ISALNUM (*p) || *p == '_');
5332
5333 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5334 p - start);
5335 if (!psr)
5336 return FAIL;
5337
5338 *str = p;
5339 return psr->field;
5340 }
5341
5342 p += 4;
5343 if (*p == '_')
5344 {
5345 /* A suffix follows. */
5346 p++;
5347 start = p;
5348
5349 do
5350 p++;
5351 while (ISALNUM (*p) || *p == '_');
5352
5353 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5354 p - start);
5355 if (!psr)
5356 goto error;
5357
5358 psr_field |= psr->field;
5359 }
5360 else
5361 {
5362 if (ISALNUM (*p))
5363 goto error; /* Garbage after "[CS]PSR". */
5364
5365 psr_field |= (PSR_c | PSR_f);
5366 }
5367 *str = p;
5368 return psr_field;
5369
5370 error:
5371 inst.error = _("flag for {c}psr instruction expected");
5372 return FAIL;
5373 }
5374
5375 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5376 value suitable for splatting into the AIF field of the instruction. */
5377
5378 static int
5379 parse_cps_flags (char **str)
5380 {
5381 int val = 0;
5382 int saw_a_flag = 0;
5383 char *s = *str;
5384
5385 for (;;)
5386 switch (*s++)
5387 {
5388 case '\0': case ',':
5389 goto done;
5390
5391 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5392 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5393 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5394
5395 default:
5396 inst.error = _("unrecognized CPS flag");
5397 return FAIL;
5398 }
5399
5400 done:
5401 if (saw_a_flag == 0)
5402 {
5403 inst.error = _("missing CPS flags");
5404 return FAIL;
5405 }
5406
5407 *str = s - 1;
5408 return val;
5409 }
5410
5411 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5412 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5413
5414 static int
5415 parse_endian_specifier (char **str)
5416 {
5417 int little_endian;
5418 char *s = *str;
5419
5420 if (strncasecmp (s, "BE", 2))
5421 little_endian = 0;
5422 else if (strncasecmp (s, "LE", 2))
5423 little_endian = 1;
5424 else
5425 {
5426 inst.error = _("valid endian specifiers are be or le");
5427 return FAIL;
5428 }
5429
5430 if (ISALNUM (s[2]) || s[2] == '_')
5431 {
5432 inst.error = _("valid endian specifiers are be or le");
5433 return FAIL;
5434 }
5435
5436 *str = s + 2;
5437 return little_endian;
5438 }
5439
5440 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5441 value suitable for poking into the rotate field of an sxt or sxta
5442 instruction, or FAIL on error. */
5443
5444 static int
5445 parse_ror (char **str)
5446 {
5447 int rot;
5448 char *s = *str;
5449
5450 if (strncasecmp (s, "ROR", 3) == 0)
5451 s += 3;
5452 else
5453 {
5454 inst.error = _("missing rotation field after comma");
5455 return FAIL;
5456 }
5457
5458 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5459 return FAIL;
5460
5461 switch (rot)
5462 {
5463 case 0: *str = s; return 0x0;
5464 case 8: *str = s; return 0x1;
5465 case 16: *str = s; return 0x2;
5466 case 24: *str = s; return 0x3;
5467
5468 default:
5469 inst.error = _("rotation can only be 0, 8, 16, or 24");
5470 return FAIL;
5471 }
5472 }
5473
5474 /* Parse a conditional code (from conds[] below). The value returned is in the
5475 range 0 .. 14, or FAIL. */
5476 static int
5477 parse_cond (char **str)
5478 {
5479 char *q;
5480 const struct asm_cond *c;
5481 int n;
5482 /* Condition codes are always 2 characters, so matching up to
5483 3 characters is sufficient. */
5484 char cond[3];
5485
5486 q = *str;
5487 n = 0;
5488 while (ISALPHA (*q) && n < 3)
5489 {
5490 cond[n] = TOLOWER (*q);
5491 q++;
5492 n++;
5493 }
5494
5495 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5496 if (!c)
5497 {
5498 inst.error = _("condition required");
5499 return FAIL;
5500 }
5501
5502 *str = q;
5503 return c->value;
5504 }
5505
5506 /* Parse an option for a barrier instruction. Returns the encoding for the
5507 option, or FAIL. */
5508 static int
5509 parse_barrier (char **str)
5510 {
5511 char *p, *q;
5512 const struct asm_barrier_opt *o;
5513
5514 p = q = *str;
5515 while (ISALPHA (*q))
5516 q++;
5517
5518 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5519 q - p);
5520 if (!o)
5521 return FAIL;
5522
5523 *str = q;
5524 return o->value;
5525 }
5526
5527 /* Parse the operands of a table branch instruction. Similar to a memory
5528 operand. */
5529 static int
5530 parse_tb (char **str)
5531 {
5532 char * p = *str;
5533 int reg;
5534
5535 if (skip_past_char (&p, '[') == FAIL)
5536 {
5537 inst.error = _("'[' expected");
5538 return FAIL;
5539 }
5540
5541 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5542 {
5543 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5544 return FAIL;
5545 }
5546 inst.operands[0].reg = reg;
5547
5548 if (skip_past_comma (&p) == FAIL)
5549 {
5550 inst.error = _("',' expected");
5551 return FAIL;
5552 }
5553
5554 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5555 {
5556 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5557 return FAIL;
5558 }
5559 inst.operands[0].imm = reg;
5560
5561 if (skip_past_comma (&p) == SUCCESS)
5562 {
5563 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5564 return FAIL;
5565 if (inst.reloc.exp.X_add_number != 1)
5566 {
5567 inst.error = _("invalid shift");
5568 return FAIL;
5569 }
5570 inst.operands[0].shifted = 1;
5571 }
5572
5573 if (skip_past_char (&p, ']') == FAIL)
5574 {
5575 inst.error = _("']' expected");
5576 return FAIL;
5577 }
5578 *str = p;
5579 return SUCCESS;
5580 }
5581
5582 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5583 information on the types the operands can take and how they are encoded.
5584 Up to four operands may be read; this function handles setting the
5585 ".present" field for each read operand itself.
5586 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5587 else returns FAIL. */
5588
5589 static int
5590 parse_neon_mov (char **str, int *which_operand)
5591 {
5592 int i = *which_operand, val;
5593 enum arm_reg_type rtype;
5594 char *ptr = *str;
5595 struct neon_type_el optype;
5596
5597 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5598 {
5599 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5600 inst.operands[i].reg = val;
5601 inst.operands[i].isscalar = 1;
5602 inst.operands[i].vectype = optype;
5603 inst.operands[i++].present = 1;
5604
5605 if (skip_past_comma (&ptr) == FAIL)
5606 goto wanted_comma;
5607
5608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5609 goto wanted_arm;
5610
5611 inst.operands[i].reg = val;
5612 inst.operands[i].isreg = 1;
5613 inst.operands[i].present = 1;
5614 }
5615 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5616 != FAIL)
5617 {
5618 /* Cases 0, 1, 2, 3, 5 (D only). */
5619 if (skip_past_comma (&ptr) == FAIL)
5620 goto wanted_comma;
5621
5622 inst.operands[i].reg = val;
5623 inst.operands[i].isreg = 1;
5624 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5625 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5626 inst.operands[i].isvec = 1;
5627 inst.operands[i].vectype = optype;
5628 inst.operands[i++].present = 1;
5629
5630 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5631 {
5632 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5633 Case 13: VMOV <Sd>, <Rm> */
5634 inst.operands[i].reg = val;
5635 inst.operands[i].isreg = 1;
5636 inst.operands[i].present = 1;
5637
5638 if (rtype == REG_TYPE_NQ)
5639 {
5640 first_error (_("can't use Neon quad register here"));
5641 return FAIL;
5642 }
5643 else if (rtype != REG_TYPE_VFS)
5644 {
5645 i++;
5646 if (skip_past_comma (&ptr) == FAIL)
5647 goto wanted_comma;
5648 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5649 goto wanted_arm;
5650 inst.operands[i].reg = val;
5651 inst.operands[i].isreg = 1;
5652 inst.operands[i].present = 1;
5653 }
5654 }
5655 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5656 &optype)) != FAIL)
5657 {
5658 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5659 Case 1: VMOV<c><q> <Dd>, <Dm>
5660 Case 8: VMOV.F32 <Sd>, <Sm>
5661 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5662
5663 inst.operands[i].reg = val;
5664 inst.operands[i].isreg = 1;
5665 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5666 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5667 inst.operands[i].isvec = 1;
5668 inst.operands[i].vectype = optype;
5669 inst.operands[i].present = 1;
5670
5671 if (skip_past_comma (&ptr) == SUCCESS)
5672 {
5673 /* Case 15. */
5674 i++;
5675
5676 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5677 goto wanted_arm;
5678
5679 inst.operands[i].reg = val;
5680 inst.operands[i].isreg = 1;
5681 inst.operands[i++].present = 1;
5682
5683 if (skip_past_comma (&ptr) == FAIL)
5684 goto wanted_comma;
5685
5686 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5687 goto wanted_arm;
5688
5689 inst.operands[i].reg = val;
5690 inst.operands[i].isreg = 1;
5691 inst.operands[i++].present = 1;
5692 }
5693 }
5694 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5695 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5696 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5697 Case 10: VMOV.F32 <Sd>, #<imm>
5698 Case 11: VMOV.F64 <Dd>, #<imm> */
5699 inst.operands[i].immisfloat = 1;
5700 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5701 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5702 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5703 ;
5704 else
5705 {
5706 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5707 return FAIL;
5708 }
5709 }
5710 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5711 {
5712 /* Cases 6, 7. */
5713 inst.operands[i].reg = val;
5714 inst.operands[i].isreg = 1;
5715 inst.operands[i++].present = 1;
5716
5717 if (skip_past_comma (&ptr) == FAIL)
5718 goto wanted_comma;
5719
5720 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5721 {
5722 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5723 inst.operands[i].reg = val;
5724 inst.operands[i].isscalar = 1;
5725 inst.operands[i].present = 1;
5726 inst.operands[i].vectype = optype;
5727 }
5728 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5729 {
5730 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5731 inst.operands[i].reg = val;
5732 inst.operands[i].isreg = 1;
5733 inst.operands[i++].present = 1;
5734
5735 if (skip_past_comma (&ptr) == FAIL)
5736 goto wanted_comma;
5737
5738 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5739 == FAIL)
5740 {
5741 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5742 return FAIL;
5743 }
5744
5745 inst.operands[i].reg = val;
5746 inst.operands[i].isreg = 1;
5747 inst.operands[i].isvec = 1;
5748 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5749 inst.operands[i].vectype = optype;
5750 inst.operands[i].present = 1;
5751
5752 if (rtype == REG_TYPE_VFS)
5753 {
5754 /* Case 14. */
5755 i++;
5756 if (skip_past_comma (&ptr) == FAIL)
5757 goto wanted_comma;
5758 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5759 &optype)) == FAIL)
5760 {
5761 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5762 return FAIL;
5763 }
5764 inst.operands[i].reg = val;
5765 inst.operands[i].isreg = 1;
5766 inst.operands[i].isvec = 1;
5767 inst.operands[i].issingle = 1;
5768 inst.operands[i].vectype = optype;
5769 inst.operands[i].present = 1;
5770 }
5771 }
5772 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5773 != FAIL)
5774 {
5775 /* Case 13. */
5776 inst.operands[i].reg = val;
5777 inst.operands[i].isreg = 1;
5778 inst.operands[i].isvec = 1;
5779 inst.operands[i].issingle = 1;
5780 inst.operands[i].vectype = optype;
5781 inst.operands[i++].present = 1;
5782 }
5783 }
5784 else
5785 {
5786 first_error (_("parse error"));
5787 return FAIL;
5788 }
5789
5790 /* Successfully parsed the operands. Update args. */
5791 *which_operand = i;
5792 *str = ptr;
5793 return SUCCESS;
5794
5795 wanted_comma:
5796 first_error (_("expected comma"));
5797 return FAIL;
5798
5799 wanted_arm:
5800 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5801 return FAIL;
5802 }
5803
5804 /* Use this macro when the operand constraints are different
5805 for ARM and THUMB (e.g. ldrd). */
5806 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5807 ((arm_operand) | ((thumb_operand) << 16))
5808
5809 /* Matcher codes for parse_operands. */
5810 enum operand_parse_code
5811 {
5812 OP_stop, /* end of line */
5813
5814 OP_RR, /* ARM register */
5815 OP_RRnpc, /* ARM register, not r15 */
5816 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
5817 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5818 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5819 optional trailing ! */
5820 OP_RRw, /* ARM register, not r15, optional trailing ! */
5821 OP_RCP, /* Coprocessor number */
5822 OP_RCN, /* Coprocessor register */
5823 OP_RF, /* FPA register */
5824 OP_RVS, /* VFP single precision register */
5825 OP_RVD, /* VFP double precision register (0..15) */
5826 OP_RND, /* Neon double precision register (0..31) */
5827 OP_RNQ, /* Neon quad precision register */
5828 OP_RVSD, /* VFP single or double precision register */
5829 OP_RNDQ, /* Neon double or quad precision register */
5830 OP_RNSDQ, /* Neon single, double or quad precision register */
5831 OP_RNSC, /* Neon scalar D[X] */
5832 OP_RVC, /* VFP control register */
5833 OP_RMF, /* Maverick F register */
5834 OP_RMD, /* Maverick D register */
5835 OP_RMFX, /* Maverick FX register */
5836 OP_RMDX, /* Maverick DX register */
5837 OP_RMAX, /* Maverick AX register */
5838 OP_RMDS, /* Maverick DSPSC register */
5839 OP_RIWR, /* iWMMXt wR register */
5840 OP_RIWC, /* iWMMXt wC register */
5841 OP_RIWG, /* iWMMXt wCG register */
5842 OP_RXA, /* XScale accumulator register */
5843
5844 OP_REGLST, /* ARM register list */
5845 OP_VRSLST, /* VFP single-precision register list */
5846 OP_VRDLST, /* VFP double-precision register list */
5847 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5848 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5849 OP_NSTRLST, /* Neon element/structure list */
5850
5851 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5852 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5853 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5854 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5855 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5856 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5857 OP_VMOV, /* Neon VMOV operands. */
5858 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5859 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5860 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5861
5862 OP_I0, /* immediate zero */
5863 OP_I7, /* immediate value 0 .. 7 */
5864 OP_I15, /* 0 .. 15 */
5865 OP_I16, /* 1 .. 16 */
5866 OP_I16z, /* 0 .. 16 */
5867 OP_I31, /* 0 .. 31 */
5868 OP_I31w, /* 0 .. 31, optional trailing ! */
5869 OP_I32, /* 1 .. 32 */
5870 OP_I32z, /* 0 .. 32 */
5871 OP_I63, /* 0 .. 63 */
5872 OP_I63s, /* -64 .. 63 */
5873 OP_I64, /* 1 .. 64 */
5874 OP_I64z, /* 0 .. 64 */
5875 OP_I255, /* 0 .. 255 */
5876
5877 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5878 OP_I7b, /* 0 .. 7 */
5879 OP_I15b, /* 0 .. 15 */
5880 OP_I31b, /* 0 .. 31 */
5881
5882 OP_SH, /* shifter operand */
5883 OP_SHG, /* shifter operand with possible group relocation */
5884 OP_ADDR, /* Memory address expression (any mode) */
5885 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5886 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5887 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5888 OP_EXP, /* arbitrary expression */
5889 OP_EXPi, /* same, with optional immediate prefix */
5890 OP_EXPr, /* same, with optional relocation suffix */
5891 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5892
5893 OP_CPSF, /* CPS flags */
5894 OP_ENDI, /* Endianness specifier */
5895 OP_PSR, /* CPSR/SPSR mask for msr */
5896 OP_COND, /* conditional code */
5897 OP_TB, /* Table branch. */
5898
5899 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5900 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5901
5902 OP_RRnpc_I0, /* ARM register or literal 0 */
5903 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5904 OP_RR_EXi, /* ARM register or expression with imm prefix */
5905 OP_RF_IF, /* FPA register or immediate */
5906 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5907 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5908
5909 /* Optional operands. */
5910 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5911 OP_oI31b, /* 0 .. 31 */
5912 OP_oI32b, /* 1 .. 32 */
5913 OP_oIffffb, /* 0 .. 65535 */
5914 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5915
5916 OP_oRR, /* ARM register */
5917 OP_oRRnpc, /* ARM register, not the PC */
5918 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
5919 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5920 OP_oRND, /* Optional Neon double precision register */
5921 OP_oRNQ, /* Optional Neon quad precision register */
5922 OP_oRNDQ, /* Optional Neon double or quad precision register */
5923 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5924 OP_oSHll, /* LSL immediate */
5925 OP_oSHar, /* ASR immediate */
5926 OP_oSHllar, /* LSL or ASR immediate */
5927 OP_oROR, /* ROR 0/8/16/24 */
5928 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
5929
5930 /* Some pre-defined mixed (ARM/THUMB) operands. */
5931 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5932 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5933 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5934
5935 OP_FIRST_OPTIONAL = OP_oI7b
5936 };
5937
5938 /* Generic instruction operand parser. This does no encoding and no
5939 semantic validation; it merely squirrels values away in the inst
5940 structure. Returns SUCCESS or FAIL depending on whether the
5941 specified grammar matched. */
5942 static int
5943 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
5944 {
5945 unsigned const int *upat = pattern;
5946 char *backtrack_pos = 0;
5947 const char *backtrack_error = 0;
5948 int i, val, backtrack_index = 0;
5949 enum arm_reg_type rtype;
5950 parse_operand_result result;
5951 unsigned int op_parse_code;
5952
5953 #define po_char_or_fail(chr) \
5954 do \
5955 { \
5956 if (skip_past_char (&str, chr) == FAIL) \
5957 goto bad_args; \
5958 } \
5959 while (0)
5960
5961 #define po_reg_or_fail(regtype) \
5962 do \
5963 { \
5964 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5965 & inst.operands[i].vectype); \
5966 if (val == FAIL) \
5967 { \
5968 first_error (_(reg_expected_msgs[regtype])); \
5969 goto failure; \
5970 } \
5971 inst.operands[i].reg = val; \
5972 inst.operands[i].isreg = 1; \
5973 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5974 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5975 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5976 || rtype == REG_TYPE_VFD \
5977 || rtype == REG_TYPE_NQ); \
5978 } \
5979 while (0)
5980
5981 #define po_reg_or_goto(regtype, label) \
5982 do \
5983 { \
5984 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5985 & inst.operands[i].vectype); \
5986 if (val == FAIL) \
5987 goto label; \
5988 \
5989 inst.operands[i].reg = val; \
5990 inst.operands[i].isreg = 1; \
5991 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5992 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5993 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5994 || rtype == REG_TYPE_VFD \
5995 || rtype == REG_TYPE_NQ); \
5996 } \
5997 while (0)
5998
5999 #define po_imm_or_fail(min, max, popt) \
6000 do \
6001 { \
6002 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6003 goto failure; \
6004 inst.operands[i].imm = val; \
6005 } \
6006 while (0)
6007
6008 #define po_scalar_or_goto(elsz, label) \
6009 do \
6010 { \
6011 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6012 if (val == FAIL) \
6013 goto label; \
6014 inst.operands[i].reg = val; \
6015 inst.operands[i].isscalar = 1; \
6016 } \
6017 while (0)
6018
6019 #define po_misc_or_fail(expr) \
6020 do \
6021 { \
6022 if (expr) \
6023 goto failure; \
6024 } \
6025 while (0)
6026
6027 #define po_misc_or_fail_no_backtrack(expr) \
6028 do \
6029 { \
6030 result = expr; \
6031 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6032 backtrack_pos = 0; \
6033 if (result != PARSE_OPERAND_SUCCESS) \
6034 goto failure; \
6035 } \
6036 while (0)
6037
6038 #define po_barrier_or_imm(str) \
6039 do \
6040 { \
6041 val = parse_barrier (&str); \
6042 if (val == FAIL) \
6043 { \
6044 if (ISALPHA (*str)) \
6045 goto failure; \
6046 else \
6047 goto immediate; \
6048 } \
6049 else \
6050 { \
6051 if ((inst.instruction & 0xf0) == 0x60 \
6052 && val != 0xf) \
6053 { \
6054 /* ISB can only take SY as an option. */ \
6055 inst.error = _("invalid barrier type"); \
6056 goto failure; \
6057 } \
6058 } \
6059 } \
6060 while (0)
6061
6062 skip_whitespace (str);
6063
6064 for (i = 0; upat[i] != OP_stop; i++)
6065 {
6066 op_parse_code = upat[i];
6067 if (op_parse_code >= 1<<16)
6068 op_parse_code = thumb ? (op_parse_code >> 16)
6069 : (op_parse_code & ((1<<16)-1));
6070
6071 if (op_parse_code >= OP_FIRST_OPTIONAL)
6072 {
6073 /* Remember where we are in case we need to backtrack. */
6074 gas_assert (!backtrack_pos);
6075 backtrack_pos = str;
6076 backtrack_error = inst.error;
6077 backtrack_index = i;
6078 }
6079
6080 if (i > 0 && (i > 1 || inst.operands[0].present))
6081 po_char_or_fail (',');
6082
6083 switch (op_parse_code)
6084 {
6085 /* Registers */
6086 case OP_oRRnpc:
6087 case OP_oRRnpcsp:
6088 case OP_RRnpc:
6089 case OP_RRnpcsp:
6090 case OP_oRR:
6091 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6092 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6093 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6094 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6095 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6096 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6097 case OP_oRND:
6098 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6099 case OP_RVC:
6100 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6101 break;
6102 /* Also accept generic coprocessor regs for unknown registers. */
6103 coproc_reg:
6104 po_reg_or_fail (REG_TYPE_CN);
6105 break;
6106 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6107 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6108 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6109 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6110 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6111 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6112 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6113 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6114 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6115 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6116 case OP_oRNQ:
6117 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6118 case OP_oRNDQ:
6119 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6120 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6121 case OP_oRNSDQ:
6122 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6123
6124 /* Neon scalar. Using an element size of 8 means that some invalid
6125 scalars are accepted here, so deal with those in later code. */
6126 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6127
6128 case OP_RNDQ_I0:
6129 {
6130 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6131 break;
6132 try_imm0:
6133 po_imm_or_fail (0, 0, TRUE);
6134 }
6135 break;
6136
6137 case OP_RVSD_I0:
6138 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6139 break;
6140
6141 case OP_RR_RNSC:
6142 {
6143 po_scalar_or_goto (8, try_rr);
6144 break;
6145 try_rr:
6146 po_reg_or_fail (REG_TYPE_RN);
6147 }
6148 break;
6149
6150 case OP_RNSDQ_RNSC:
6151 {
6152 po_scalar_or_goto (8, try_nsdq);
6153 break;
6154 try_nsdq:
6155 po_reg_or_fail (REG_TYPE_NSDQ);
6156 }
6157 break;
6158
6159 case OP_RNDQ_RNSC:
6160 {
6161 po_scalar_or_goto (8, try_ndq);
6162 break;
6163 try_ndq:
6164 po_reg_or_fail (REG_TYPE_NDQ);
6165 }
6166 break;
6167
6168 case OP_RND_RNSC:
6169 {
6170 po_scalar_or_goto (8, try_vfd);
6171 break;
6172 try_vfd:
6173 po_reg_or_fail (REG_TYPE_VFD);
6174 }
6175 break;
6176
6177 case OP_VMOV:
6178 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6179 not careful then bad things might happen. */
6180 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6181 break;
6182
6183 case OP_RNDQ_Ibig:
6184 {
6185 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6186 break;
6187 try_immbig:
6188 /* There's a possibility of getting a 64-bit immediate here, so
6189 we need special handling. */
6190 if (parse_big_immediate (&str, i) == FAIL)
6191 {
6192 inst.error = _("immediate value is out of range");
6193 goto failure;
6194 }
6195 }
6196 break;
6197
6198 case OP_RNDQ_I63b:
6199 {
6200 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6201 break;
6202 try_shimm:
6203 po_imm_or_fail (0, 63, TRUE);
6204 }
6205 break;
6206
6207 case OP_RRnpcb:
6208 po_char_or_fail ('[');
6209 po_reg_or_fail (REG_TYPE_RN);
6210 po_char_or_fail (']');
6211 break;
6212
6213 case OP_RRnpctw:
6214 case OP_RRw:
6215 case OP_oRRw:
6216 po_reg_or_fail (REG_TYPE_RN);
6217 if (skip_past_char (&str, '!') == SUCCESS)
6218 inst.operands[i].writeback = 1;
6219 break;
6220
6221 /* Immediates */
6222 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6223 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6224 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6225 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6226 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6227 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6228 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6229 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6230 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6231 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6232 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6233 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6234
6235 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6236 case OP_oI7b:
6237 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6238 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6239 case OP_oI31b:
6240 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6241 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6242 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6243
6244 /* Immediate variants */
6245 case OP_oI255c:
6246 po_char_or_fail ('{');
6247 po_imm_or_fail (0, 255, TRUE);
6248 po_char_or_fail ('}');
6249 break;
6250
6251 case OP_I31w:
6252 /* The expression parser chokes on a trailing !, so we have
6253 to find it first and zap it. */
6254 {
6255 char *s = str;
6256 while (*s && *s != ',')
6257 s++;
6258 if (s[-1] == '!')
6259 {
6260 s[-1] = '\0';
6261 inst.operands[i].writeback = 1;
6262 }
6263 po_imm_or_fail (0, 31, TRUE);
6264 if (str == s - 1)
6265 str = s;
6266 }
6267 break;
6268
6269 /* Expressions */
6270 case OP_EXPi: EXPi:
6271 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6272 GE_OPT_PREFIX));
6273 break;
6274
6275 case OP_EXP:
6276 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6277 GE_NO_PREFIX));
6278 break;
6279
6280 case OP_EXPr: EXPr:
6281 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6282 GE_NO_PREFIX));
6283 if (inst.reloc.exp.X_op == O_symbol)
6284 {
6285 val = parse_reloc (&str);
6286 if (val == -1)
6287 {
6288 inst.error = _("unrecognized relocation suffix");
6289 goto failure;
6290 }
6291 else if (val != BFD_RELOC_UNUSED)
6292 {
6293 inst.operands[i].imm = val;
6294 inst.operands[i].hasreloc = 1;
6295 }
6296 }
6297 break;
6298
6299 /* Operand for MOVW or MOVT. */
6300 case OP_HALF:
6301 po_misc_or_fail (parse_half (&str));
6302 break;
6303
6304 /* Register or expression. */
6305 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6306 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6307
6308 /* Register or immediate. */
6309 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6310 I0: po_imm_or_fail (0, 0, FALSE); break;
6311
6312 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6313 IF:
6314 if (!is_immediate_prefix (*str))
6315 goto bad_args;
6316 str++;
6317 val = parse_fpa_immediate (&str);
6318 if (val == FAIL)
6319 goto failure;
6320 /* FPA immediates are encoded as registers 8-15.
6321 parse_fpa_immediate has already applied the offset. */
6322 inst.operands[i].reg = val;
6323 inst.operands[i].isreg = 1;
6324 break;
6325
6326 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6327 I32z: po_imm_or_fail (0, 32, FALSE); break;
6328
6329 /* Two kinds of register. */
6330 case OP_RIWR_RIWC:
6331 {
6332 struct reg_entry *rege = arm_reg_parse_multi (&str);
6333 if (!rege
6334 || (rege->type != REG_TYPE_MMXWR
6335 && rege->type != REG_TYPE_MMXWC
6336 && rege->type != REG_TYPE_MMXWCG))
6337 {
6338 inst.error = _("iWMMXt data or control register expected");
6339 goto failure;
6340 }
6341 inst.operands[i].reg = rege->number;
6342 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6343 }
6344 break;
6345
6346 case OP_RIWC_RIWG:
6347 {
6348 struct reg_entry *rege = arm_reg_parse_multi (&str);
6349 if (!rege
6350 || (rege->type != REG_TYPE_MMXWC
6351 && rege->type != REG_TYPE_MMXWCG))
6352 {
6353 inst.error = _("iWMMXt control register expected");
6354 goto failure;
6355 }
6356 inst.operands[i].reg = rege->number;
6357 inst.operands[i].isreg = 1;
6358 }
6359 break;
6360
6361 /* Misc */
6362 case OP_CPSF: val = parse_cps_flags (&str); break;
6363 case OP_ENDI: val = parse_endian_specifier (&str); break;
6364 case OP_oROR: val = parse_ror (&str); break;
6365 case OP_PSR: val = parse_psr (&str); break;
6366 case OP_COND: val = parse_cond (&str); break;
6367 case OP_oBARRIER_I15:
6368 po_barrier_or_imm (str); break;
6369 immediate:
6370 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6371 goto failure;
6372 break;
6373
6374 case OP_RVC_PSR:
6375 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6376 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6377 break;
6378 try_psr:
6379 val = parse_psr (&str);
6380 break;
6381
6382 case OP_APSR_RR:
6383 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6384 break;
6385 try_apsr:
6386 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6387 instruction). */
6388 if (strncasecmp (str, "APSR_", 5) == 0)
6389 {
6390 unsigned found = 0;
6391 str += 5;
6392 while (found < 15)
6393 switch (*str++)
6394 {
6395 case 'c': found = (found & 1) ? 16 : found | 1; break;
6396 case 'n': found = (found & 2) ? 16 : found | 2; break;
6397 case 'z': found = (found & 4) ? 16 : found | 4; break;
6398 case 'v': found = (found & 8) ? 16 : found | 8; break;
6399 default: found = 16;
6400 }
6401 if (found != 15)
6402 goto failure;
6403 inst.operands[i].isvec = 1;
6404 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6405 inst.operands[i].reg = REG_PC;
6406 }
6407 else
6408 goto failure;
6409 break;
6410
6411 case OP_TB:
6412 po_misc_or_fail (parse_tb (&str));
6413 break;
6414
6415 /* Register lists. */
6416 case OP_REGLST:
6417 val = parse_reg_list (&str);
6418 if (*str == '^')
6419 {
6420 inst.operands[1].writeback = 1;
6421 str++;
6422 }
6423 break;
6424
6425 case OP_VRSLST:
6426 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6427 break;
6428
6429 case OP_VRDLST:
6430 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6431 break;
6432
6433 case OP_VRSDLST:
6434 /* Allow Q registers too. */
6435 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6436 REGLIST_NEON_D);
6437 if (val == FAIL)
6438 {
6439 inst.error = NULL;
6440 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6441 REGLIST_VFP_S);
6442 inst.operands[i].issingle = 1;
6443 }
6444 break;
6445
6446 case OP_NRDLST:
6447 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6448 REGLIST_NEON_D);
6449 break;
6450
6451 case OP_NSTRLST:
6452 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6453 &inst.operands[i].vectype);
6454 break;
6455
6456 /* Addressing modes */
6457 case OP_ADDR:
6458 po_misc_or_fail (parse_address (&str, i));
6459 break;
6460
6461 case OP_ADDRGLDR:
6462 po_misc_or_fail_no_backtrack (
6463 parse_address_group_reloc (&str, i, GROUP_LDR));
6464 break;
6465
6466 case OP_ADDRGLDRS:
6467 po_misc_or_fail_no_backtrack (
6468 parse_address_group_reloc (&str, i, GROUP_LDRS));
6469 break;
6470
6471 case OP_ADDRGLDC:
6472 po_misc_or_fail_no_backtrack (
6473 parse_address_group_reloc (&str, i, GROUP_LDC));
6474 break;
6475
6476 case OP_SH:
6477 po_misc_or_fail (parse_shifter_operand (&str, i));
6478 break;
6479
6480 case OP_SHG:
6481 po_misc_or_fail_no_backtrack (
6482 parse_shifter_operand_group_reloc (&str, i));
6483 break;
6484
6485 case OP_oSHll:
6486 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6487 break;
6488
6489 case OP_oSHar:
6490 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6491 break;
6492
6493 case OP_oSHllar:
6494 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6495 break;
6496
6497 default:
6498 as_fatal (_("unhandled operand code %d"), op_parse_code);
6499 }
6500
6501 /* Various value-based sanity checks and shared operations. We
6502 do not signal immediate failures for the register constraints;
6503 this allows a syntax error to take precedence. */
6504 switch (op_parse_code)
6505 {
6506 case OP_oRRnpc:
6507 case OP_RRnpc:
6508 case OP_RRnpcb:
6509 case OP_RRw:
6510 case OP_oRRw:
6511 case OP_RRnpc_I0:
6512 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6513 inst.error = BAD_PC;
6514 break;
6515
6516 case OP_oRRnpcsp:
6517 case OP_RRnpcsp:
6518 if (inst.operands[i].isreg)
6519 {
6520 if (inst.operands[i].reg == REG_PC)
6521 inst.error = BAD_PC;
6522 else if (inst.operands[i].reg == REG_SP)
6523 inst.error = BAD_SP;
6524 }
6525 break;
6526
6527 case OP_RRnpctw:
6528 if (inst.operands[i].isreg
6529 && inst.operands[i].reg == REG_PC
6530 && (inst.operands[i].writeback || thumb))
6531 inst.error = BAD_PC;
6532 break;
6533
6534 case OP_CPSF:
6535 case OP_ENDI:
6536 case OP_oROR:
6537 case OP_PSR:
6538 case OP_RVC_PSR:
6539 case OP_COND:
6540 case OP_oBARRIER_I15:
6541 case OP_REGLST:
6542 case OP_VRSLST:
6543 case OP_VRDLST:
6544 case OP_VRSDLST:
6545 case OP_NRDLST:
6546 case OP_NSTRLST:
6547 if (val == FAIL)
6548 goto failure;
6549 inst.operands[i].imm = val;
6550 break;
6551
6552 default:
6553 break;
6554 }
6555
6556 /* If we get here, this operand was successfully parsed. */
6557 inst.operands[i].present = 1;
6558 continue;
6559
6560 bad_args:
6561 inst.error = BAD_ARGS;
6562
6563 failure:
6564 if (!backtrack_pos)
6565 {
6566 /* The parse routine should already have set inst.error, but set a
6567 default here just in case. */
6568 if (!inst.error)
6569 inst.error = _("syntax error");
6570 return FAIL;
6571 }
6572
6573 /* Do not backtrack over a trailing optional argument that
6574 absorbed some text. We will only fail again, with the
6575 'garbage following instruction' error message, which is
6576 probably less helpful than the current one. */
6577 if (backtrack_index == i && backtrack_pos != str
6578 && upat[i+1] == OP_stop)
6579 {
6580 if (!inst.error)
6581 inst.error = _("syntax error");
6582 return FAIL;
6583 }
6584
6585 /* Try again, skipping the optional argument at backtrack_pos. */
6586 str = backtrack_pos;
6587 inst.error = backtrack_error;
6588 inst.operands[backtrack_index].present = 0;
6589 i = backtrack_index;
6590 backtrack_pos = 0;
6591 }
6592
6593 /* Check that we have parsed all the arguments. */
6594 if (*str != '\0' && !inst.error)
6595 inst.error = _("garbage following instruction");
6596
6597 return inst.error ? FAIL : SUCCESS;
6598 }
6599
6600 #undef po_char_or_fail
6601 #undef po_reg_or_fail
6602 #undef po_reg_or_goto
6603 #undef po_imm_or_fail
6604 #undef po_scalar_or_fail
6605 #undef po_barrier_or_imm
6606
6607 /* Shorthand macro for instruction encoding functions issuing errors. */
6608 #define constraint(expr, err) \
6609 do \
6610 { \
6611 if (expr) \
6612 { \
6613 inst.error = err; \
6614 return; \
6615 } \
6616 } \
6617 while (0)
6618
6619 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6620 instructions are unpredictable if these registers are used. This
6621 is the BadReg predicate in ARM's Thumb-2 documentation. */
6622 #define reject_bad_reg(reg) \
6623 do \
6624 if (reg == REG_SP || reg == REG_PC) \
6625 { \
6626 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6627 return; \
6628 } \
6629 while (0)
6630
6631 /* If REG is R13 (the stack pointer), warn that its use is
6632 deprecated. */
6633 #define warn_deprecated_sp(reg) \
6634 do \
6635 if (warn_on_deprecated && reg == REG_SP) \
6636 as_warn (_("use of r13 is deprecated")); \
6637 while (0)
6638
6639 /* Functions for operand encoding. ARM, then Thumb. */
6640
6641 #define rotate_left(v, n) (v << n | v >> (32 - n))
6642
6643 /* If VAL can be encoded in the immediate field of an ARM instruction,
6644 return the encoded form. Otherwise, return FAIL. */
6645
6646 static unsigned int
6647 encode_arm_immediate (unsigned int val)
6648 {
6649 unsigned int a, i;
6650
6651 for (i = 0; i < 32; i += 2)
6652 if ((a = rotate_left (val, i)) <= 0xff)
6653 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6654
6655 return FAIL;
6656 }
6657
6658 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6659 return the encoded form. Otherwise, return FAIL. */
6660 static unsigned int
6661 encode_thumb32_immediate (unsigned int val)
6662 {
6663 unsigned int a, i;
6664
6665 if (val <= 0xff)
6666 return val;
6667
6668 for (i = 1; i <= 24; i++)
6669 {
6670 a = val >> i;
6671 if ((val & ~(0xff << i)) == 0)
6672 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6673 }
6674
6675 a = val & 0xff;
6676 if (val == ((a << 16) | a))
6677 return 0x100 | a;
6678 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6679 return 0x300 | a;
6680
6681 a = val & 0xff00;
6682 if (val == ((a << 16) | a))
6683 return 0x200 | (a >> 8);
6684
6685 return FAIL;
6686 }
6687 /* Encode a VFP SP or DP register number into inst.instruction. */
6688
6689 static void
6690 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6691 {
6692 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6693 && reg > 15)
6694 {
6695 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6696 {
6697 if (thumb_mode)
6698 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6699 fpu_vfp_ext_d32);
6700 else
6701 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6702 fpu_vfp_ext_d32);
6703 }
6704 else
6705 {
6706 first_error (_("D register out of range for selected VFP version"));
6707 return;
6708 }
6709 }
6710
6711 switch (pos)
6712 {
6713 case VFP_REG_Sd:
6714 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6715 break;
6716
6717 case VFP_REG_Sn:
6718 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6719 break;
6720
6721 case VFP_REG_Sm:
6722 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6723 break;
6724
6725 case VFP_REG_Dd:
6726 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6727 break;
6728
6729 case VFP_REG_Dn:
6730 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6731 break;
6732
6733 case VFP_REG_Dm:
6734 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6735 break;
6736
6737 default:
6738 abort ();
6739 }
6740 }
6741
6742 /* Encode a <shift> in an ARM-format instruction. The immediate,
6743 if any, is handled by md_apply_fix. */
6744 static void
6745 encode_arm_shift (int i)
6746 {
6747 if (inst.operands[i].shift_kind == SHIFT_RRX)
6748 inst.instruction |= SHIFT_ROR << 5;
6749 else
6750 {
6751 inst.instruction |= inst.operands[i].shift_kind << 5;
6752 if (inst.operands[i].immisreg)
6753 {
6754 inst.instruction |= SHIFT_BY_REG;
6755 inst.instruction |= inst.operands[i].imm << 8;
6756 }
6757 else
6758 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6759 }
6760 }
6761
6762 static void
6763 encode_arm_shifter_operand (int i)
6764 {
6765 if (inst.operands[i].isreg)
6766 {
6767 inst.instruction |= inst.operands[i].reg;
6768 encode_arm_shift (i);
6769 }
6770 else
6771 inst.instruction |= INST_IMMEDIATE;
6772 }
6773
6774 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6775 static void
6776 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6777 {
6778 gas_assert (inst.operands[i].isreg);
6779 inst.instruction |= inst.operands[i].reg << 16;
6780
6781 if (inst.operands[i].preind)
6782 {
6783 if (is_t)
6784 {
6785 inst.error = _("instruction does not accept preindexed addressing");
6786 return;
6787 }
6788 inst.instruction |= PRE_INDEX;
6789 if (inst.operands[i].writeback)
6790 inst.instruction |= WRITE_BACK;
6791
6792 }
6793 else if (inst.operands[i].postind)
6794 {
6795 gas_assert (inst.operands[i].writeback);
6796 if (is_t)
6797 inst.instruction |= WRITE_BACK;
6798 }
6799 else /* unindexed - only for coprocessor */
6800 {
6801 inst.error = _("instruction does not accept unindexed addressing");
6802 return;
6803 }
6804
6805 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6806 && (((inst.instruction & 0x000f0000) >> 16)
6807 == ((inst.instruction & 0x0000f000) >> 12)))
6808 as_warn ((inst.instruction & LOAD_BIT)
6809 ? _("destination register same as write-back base")
6810 : _("source register same as write-back base"));
6811 }
6812
6813 /* inst.operands[i] was set up by parse_address. Encode it into an
6814 ARM-format mode 2 load or store instruction. If is_t is true,
6815 reject forms that cannot be used with a T instruction (i.e. not
6816 post-indexed). */
6817 static void
6818 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6819 {
6820 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6821
6822 encode_arm_addr_mode_common (i, is_t);
6823
6824 if (inst.operands[i].immisreg)
6825 {
6826 constraint ((inst.operands[i].imm == REG_PC
6827 || (is_pc && inst.operands[i].writeback)),
6828 BAD_PC_ADDRESSING);
6829 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6830 inst.instruction |= inst.operands[i].imm;
6831 if (!inst.operands[i].negative)
6832 inst.instruction |= INDEX_UP;
6833 if (inst.operands[i].shifted)
6834 {
6835 if (inst.operands[i].shift_kind == SHIFT_RRX)
6836 inst.instruction |= SHIFT_ROR << 5;
6837 else
6838 {
6839 inst.instruction |= inst.operands[i].shift_kind << 5;
6840 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6841 }
6842 }
6843 }
6844 else /* immediate offset in inst.reloc */
6845 {
6846 if (is_pc && !inst.reloc.pc_rel)
6847 {
6848 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
6849
6850 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
6851 cannot use PC in addressing.
6852 PC cannot be used in writeback addressing, either. */
6853 constraint ((is_t || inst.operands[i].writeback),
6854 BAD_PC_ADDRESSING);
6855
6856 /* Use of PC in str is deprecated for ARMv7. */
6857 if (warn_on_deprecated
6858 && !is_load
6859 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
6860 as_warn (_("use of PC in this instruction is deprecated"));
6861 }
6862
6863 if (inst.reloc.type == BFD_RELOC_UNUSED)
6864 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6865 }
6866 }
6867
6868 /* inst.operands[i] was set up by parse_address. Encode it into an
6869 ARM-format mode 3 load or store instruction. Reject forms that
6870 cannot be used with such instructions. If is_t is true, reject
6871 forms that cannot be used with a T instruction (i.e. not
6872 post-indexed). */
6873 static void
6874 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6875 {
6876 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6877 {
6878 inst.error = _("instruction does not accept scaled register index");
6879 return;
6880 }
6881
6882 encode_arm_addr_mode_common (i, is_t);
6883
6884 if (inst.operands[i].immisreg)
6885 {
6886 constraint ((inst.operands[i].imm == REG_PC
6887 || inst.operands[i].reg == REG_PC),
6888 BAD_PC_ADDRESSING);
6889 inst.instruction |= inst.operands[i].imm;
6890 if (!inst.operands[i].negative)
6891 inst.instruction |= INDEX_UP;
6892 }
6893 else /* immediate offset in inst.reloc */
6894 {
6895 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6896 && inst.operands[i].writeback),
6897 BAD_PC_WRITEBACK);
6898 inst.instruction |= HWOFFSET_IMM;
6899 if (inst.reloc.type == BFD_RELOC_UNUSED)
6900 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6901 }
6902 }
6903
6904 /* inst.operands[i] was set up by parse_address. Encode it into an
6905 ARM-format instruction. Reject all forms which cannot be encoded
6906 into a coprocessor load/store instruction. If wb_ok is false,
6907 reject use of writeback; if unind_ok is false, reject use of
6908 unindexed addressing. If reloc_override is not 0, use it instead
6909 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6910 (in which case it is preserved). */
6911
6912 static int
6913 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6914 {
6915 inst.instruction |= inst.operands[i].reg << 16;
6916
6917 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6918
6919 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6920 {
6921 gas_assert (!inst.operands[i].writeback);
6922 if (!unind_ok)
6923 {
6924 inst.error = _("instruction does not support unindexed addressing");
6925 return FAIL;
6926 }
6927 inst.instruction |= inst.operands[i].imm;
6928 inst.instruction |= INDEX_UP;
6929 return SUCCESS;
6930 }
6931
6932 if (inst.operands[i].preind)
6933 inst.instruction |= PRE_INDEX;
6934
6935 if (inst.operands[i].writeback)
6936 {
6937 if (inst.operands[i].reg == REG_PC)
6938 {
6939 inst.error = _("pc may not be used with write-back");
6940 return FAIL;
6941 }
6942 if (!wb_ok)
6943 {
6944 inst.error = _("instruction does not support writeback");
6945 return FAIL;
6946 }
6947 inst.instruction |= WRITE_BACK;
6948 }
6949
6950 if (reloc_override)
6951 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
6952 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6953 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6954 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6955 {
6956 if (thumb_mode)
6957 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6958 else
6959 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6960 }
6961
6962 return SUCCESS;
6963 }
6964
6965 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6966 Determine whether it can be performed with a move instruction; if
6967 it can, convert inst.instruction to that move instruction and
6968 return TRUE; if it can't, convert inst.instruction to a literal-pool
6969 load and return FALSE. If this is not a valid thing to do in the
6970 current context, set inst.error and return TRUE.
6971
6972 inst.operands[i] describes the destination register. */
6973
6974 static bfd_boolean
6975 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6976 {
6977 unsigned long tbit;
6978
6979 if (thumb_p)
6980 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6981 else
6982 tbit = LOAD_BIT;
6983
6984 if ((inst.instruction & tbit) == 0)
6985 {
6986 inst.error = _("invalid pseudo operation");
6987 return TRUE;
6988 }
6989 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6990 {
6991 inst.error = _("constant expression expected");
6992 return TRUE;
6993 }
6994 if (inst.reloc.exp.X_op == O_constant)
6995 {
6996 if (thumb_p)
6997 {
6998 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6999 {
7000 /* This can be done with a mov(1) instruction. */
7001 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7002 inst.instruction |= inst.reloc.exp.X_add_number;
7003 return TRUE;
7004 }
7005 }
7006 else
7007 {
7008 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7009 if (value != FAIL)
7010 {
7011 /* This can be done with a mov instruction. */
7012 inst.instruction &= LITERAL_MASK;
7013 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7014 inst.instruction |= value & 0xfff;
7015 return TRUE;
7016 }
7017
7018 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7019 if (value != FAIL)
7020 {
7021 /* This can be done with a mvn instruction. */
7022 inst.instruction &= LITERAL_MASK;
7023 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7024 inst.instruction |= value & 0xfff;
7025 return TRUE;
7026 }
7027 }
7028 }
7029
7030 if (add_to_lit_pool () == FAIL)
7031 {
7032 inst.error = _("literal pool insertion failed");
7033 return TRUE;
7034 }
7035 inst.operands[1].reg = REG_PC;
7036 inst.operands[1].isreg = 1;
7037 inst.operands[1].preind = 1;
7038 inst.reloc.pc_rel = 1;
7039 inst.reloc.type = (thumb_p
7040 ? BFD_RELOC_ARM_THUMB_OFFSET
7041 : (mode_3
7042 ? BFD_RELOC_ARM_HWLITERAL
7043 : BFD_RELOC_ARM_LITERAL));
7044 return FALSE;
7045 }
7046
7047 /* Functions for instruction encoding, sorted by sub-architecture.
7048 First some generics; their names are taken from the conventional
7049 bit positions for register arguments in ARM format instructions. */
7050
7051 static void
7052 do_noargs (void)
7053 {
7054 }
7055
7056 static void
7057 do_rd (void)
7058 {
7059 inst.instruction |= inst.operands[0].reg << 12;
7060 }
7061
7062 static void
7063 do_rd_rm (void)
7064 {
7065 inst.instruction |= inst.operands[0].reg << 12;
7066 inst.instruction |= inst.operands[1].reg;
7067 }
7068
7069 static void
7070 do_rd_rn (void)
7071 {
7072 inst.instruction |= inst.operands[0].reg << 12;
7073 inst.instruction |= inst.operands[1].reg << 16;
7074 }
7075
7076 static void
7077 do_rn_rd (void)
7078 {
7079 inst.instruction |= inst.operands[0].reg << 16;
7080 inst.instruction |= inst.operands[1].reg << 12;
7081 }
7082
7083 static void
7084 do_rd_rm_rn (void)
7085 {
7086 unsigned Rn = inst.operands[2].reg;
7087 /* Enforce restrictions on SWP instruction. */
7088 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7089 {
7090 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7091 _("Rn must not overlap other operands"));
7092
7093 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7094 if (warn_on_deprecated
7095 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7096 as_warn (_("swp{b} use is deprecated for this architecture"));
7097
7098 }
7099 inst.instruction |= inst.operands[0].reg << 12;
7100 inst.instruction |= inst.operands[1].reg;
7101 inst.instruction |= Rn << 16;
7102 }
7103
7104 static void
7105 do_rd_rn_rm (void)
7106 {
7107 inst.instruction |= inst.operands[0].reg << 12;
7108 inst.instruction |= inst.operands[1].reg << 16;
7109 inst.instruction |= inst.operands[2].reg;
7110 }
7111
7112 static void
7113 do_rm_rd_rn (void)
7114 {
7115 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7116 constraint (((inst.reloc.exp.X_op != O_constant
7117 && inst.reloc.exp.X_op != O_illegal)
7118 || inst.reloc.exp.X_add_number != 0),
7119 BAD_ADDR_MODE);
7120 inst.instruction |= inst.operands[0].reg;
7121 inst.instruction |= inst.operands[1].reg << 12;
7122 inst.instruction |= inst.operands[2].reg << 16;
7123 }
7124
7125 static void
7126 do_imm0 (void)
7127 {
7128 inst.instruction |= inst.operands[0].imm;
7129 }
7130
7131 static void
7132 do_rd_cpaddr (void)
7133 {
7134 inst.instruction |= inst.operands[0].reg << 12;
7135 encode_arm_cp_address (1, TRUE, TRUE, 0);
7136 }
7137
7138 /* ARM instructions, in alphabetical order by function name (except
7139 that wrapper functions appear immediately after the function they
7140 wrap). */
7141
7142 /* This is a pseudo-op of the form "adr rd, label" to be converted
7143 into a relative address of the form "add rd, pc, #label-.-8". */
7144
7145 static void
7146 do_adr (void)
7147 {
7148 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7149
7150 /* Frag hacking will turn this into a sub instruction if the offset turns
7151 out to be negative. */
7152 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7153 inst.reloc.pc_rel = 1;
7154 inst.reloc.exp.X_add_number -= 8;
7155 }
7156
7157 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7158 into a relative address of the form:
7159 add rd, pc, #low(label-.-8)"
7160 add rd, rd, #high(label-.-8)" */
7161
7162 static void
7163 do_adrl (void)
7164 {
7165 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7166
7167 /* Frag hacking will turn this into a sub instruction if the offset turns
7168 out to be negative. */
7169 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7170 inst.reloc.pc_rel = 1;
7171 inst.size = INSN_SIZE * 2;
7172 inst.reloc.exp.X_add_number -= 8;
7173 }
7174
7175 static void
7176 do_arit (void)
7177 {
7178 if (!inst.operands[1].present)
7179 inst.operands[1].reg = inst.operands[0].reg;
7180 inst.instruction |= inst.operands[0].reg << 12;
7181 inst.instruction |= inst.operands[1].reg << 16;
7182 encode_arm_shifter_operand (2);
7183 }
7184
7185 static void
7186 do_barrier (void)
7187 {
7188 if (inst.operands[0].present)
7189 {
7190 constraint ((inst.instruction & 0xf0) != 0x40
7191 && inst.operands[0].imm > 0xf
7192 && inst.operands[0].imm < 0x0,
7193 _("bad barrier type"));
7194 inst.instruction |= inst.operands[0].imm;
7195 }
7196 else
7197 inst.instruction |= 0xf;
7198 }
7199
7200 static void
7201 do_bfc (void)
7202 {
7203 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7204 constraint (msb > 32, _("bit-field extends past end of register"));
7205 /* The instruction encoding stores the LSB and MSB,
7206 not the LSB and width. */
7207 inst.instruction |= inst.operands[0].reg << 12;
7208 inst.instruction |= inst.operands[1].imm << 7;
7209 inst.instruction |= (msb - 1) << 16;
7210 }
7211
7212 static void
7213 do_bfi (void)
7214 {
7215 unsigned int msb;
7216
7217 /* #0 in second position is alternative syntax for bfc, which is
7218 the same instruction but with REG_PC in the Rm field. */
7219 if (!inst.operands[1].isreg)
7220 inst.operands[1].reg = REG_PC;
7221
7222 msb = inst.operands[2].imm + inst.operands[3].imm;
7223 constraint (msb > 32, _("bit-field extends past end of register"));
7224 /* The instruction encoding stores the LSB and MSB,
7225 not the LSB and width. */
7226 inst.instruction |= inst.operands[0].reg << 12;
7227 inst.instruction |= inst.operands[1].reg;
7228 inst.instruction |= inst.operands[2].imm << 7;
7229 inst.instruction |= (msb - 1) << 16;
7230 }
7231
7232 static void
7233 do_bfx (void)
7234 {
7235 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7236 _("bit-field extends past end of register"));
7237 inst.instruction |= inst.operands[0].reg << 12;
7238 inst.instruction |= inst.operands[1].reg;
7239 inst.instruction |= inst.operands[2].imm << 7;
7240 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7241 }
7242
7243 /* ARM V5 breakpoint instruction (argument parse)
7244 BKPT <16 bit unsigned immediate>
7245 Instruction is not conditional.
7246 The bit pattern given in insns[] has the COND_ALWAYS condition,
7247 and it is an error if the caller tried to override that. */
7248
7249 static void
7250 do_bkpt (void)
7251 {
7252 /* Top 12 of 16 bits to bits 19:8. */
7253 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7254
7255 /* Bottom 4 of 16 bits to bits 3:0. */
7256 inst.instruction |= inst.operands[0].imm & 0xf;
7257 }
7258
7259 static void
7260 encode_branch (int default_reloc)
7261 {
7262 if (inst.operands[0].hasreloc)
7263 {
7264 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7265 _("the only suffix valid here is '(plt)'"));
7266 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7267 }
7268 else
7269 {
7270 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7271 }
7272 inst.reloc.pc_rel = 1;
7273 }
7274
7275 static void
7276 do_branch (void)
7277 {
7278 #ifdef OBJ_ELF
7279 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7280 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7281 else
7282 #endif
7283 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7284 }
7285
7286 static void
7287 do_bl (void)
7288 {
7289 #ifdef OBJ_ELF
7290 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7291 {
7292 if (inst.cond == COND_ALWAYS)
7293 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7294 else
7295 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7296 }
7297 else
7298 #endif
7299 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7300 }
7301
7302 /* ARM V5 branch-link-exchange instruction (argument parse)
7303 BLX <target_addr> ie BLX(1)
7304 BLX{<condition>} <Rm> ie BLX(2)
7305 Unfortunately, there are two different opcodes for this mnemonic.
7306 So, the insns[].value is not used, and the code here zaps values
7307 into inst.instruction.
7308 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7309
7310 static void
7311 do_blx (void)
7312 {
7313 if (inst.operands[0].isreg)
7314 {
7315 /* Arg is a register; the opcode provided by insns[] is correct.
7316 It is not illegal to do "blx pc", just useless. */
7317 if (inst.operands[0].reg == REG_PC)
7318 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7319
7320 inst.instruction |= inst.operands[0].reg;
7321 }
7322 else
7323 {
7324 /* Arg is an address; this instruction cannot be executed
7325 conditionally, and the opcode must be adjusted.
7326 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7327 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7328 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7329 inst.instruction = 0xfa000000;
7330 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7331 }
7332 }
7333
7334 static void
7335 do_bx (void)
7336 {
7337 bfd_boolean want_reloc;
7338
7339 if (inst.operands[0].reg == REG_PC)
7340 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7341
7342 inst.instruction |= inst.operands[0].reg;
7343 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7344 it is for ARMv4t or earlier. */
7345 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7346 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7347 want_reloc = TRUE;
7348
7349 #ifdef OBJ_ELF
7350 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7351 #endif
7352 want_reloc = FALSE;
7353
7354 if (want_reloc)
7355 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7356 }
7357
7358
7359 /* ARM v5TEJ. Jump to Jazelle code. */
7360
7361 static void
7362 do_bxj (void)
7363 {
7364 if (inst.operands[0].reg == REG_PC)
7365 as_tsktsk (_("use of r15 in bxj is not really useful"));
7366
7367 inst.instruction |= inst.operands[0].reg;
7368 }
7369
7370 /* Co-processor data operation:
7371 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7372 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7373 static void
7374 do_cdp (void)
7375 {
7376 inst.instruction |= inst.operands[0].reg << 8;
7377 inst.instruction |= inst.operands[1].imm << 20;
7378 inst.instruction |= inst.operands[2].reg << 12;
7379 inst.instruction |= inst.operands[3].reg << 16;
7380 inst.instruction |= inst.operands[4].reg;
7381 inst.instruction |= inst.operands[5].imm << 5;
7382 }
7383
7384 static void
7385 do_cmp (void)
7386 {
7387 inst.instruction |= inst.operands[0].reg << 16;
7388 encode_arm_shifter_operand (1);
7389 }
7390
7391 /* Transfer between coprocessor and ARM registers.
7392 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7393 MRC2
7394 MCR{cond}
7395 MCR2
7396
7397 No special properties. */
7398
7399 static void
7400 do_co_reg (void)
7401 {
7402 unsigned Rd;
7403
7404 Rd = inst.operands[2].reg;
7405 if (thumb_mode)
7406 {
7407 if (inst.instruction == 0xee000010
7408 || inst.instruction == 0xfe000010)
7409 /* MCR, MCR2 */
7410 reject_bad_reg (Rd);
7411 else
7412 /* MRC, MRC2 */
7413 constraint (Rd == REG_SP, BAD_SP);
7414 }
7415 else
7416 {
7417 /* MCR */
7418 if (inst.instruction == 0xe000010)
7419 constraint (Rd == REG_PC, BAD_PC);
7420 }
7421
7422
7423 inst.instruction |= inst.operands[0].reg << 8;
7424 inst.instruction |= inst.operands[1].imm << 21;
7425 inst.instruction |= Rd << 12;
7426 inst.instruction |= inst.operands[3].reg << 16;
7427 inst.instruction |= inst.operands[4].reg;
7428 inst.instruction |= inst.operands[5].imm << 5;
7429 }
7430
7431 /* Transfer between coprocessor register and pair of ARM registers.
7432 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7433 MCRR2
7434 MRRC{cond}
7435 MRRC2
7436
7437 Two XScale instructions are special cases of these:
7438
7439 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7440 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7441
7442 Result unpredictable if Rd or Rn is R15. */
7443
7444 static void
7445 do_co_reg2c (void)
7446 {
7447 unsigned Rd, Rn;
7448
7449 Rd = inst.operands[2].reg;
7450 Rn = inst.operands[3].reg;
7451
7452 if (thumb_mode)
7453 {
7454 reject_bad_reg (Rd);
7455 reject_bad_reg (Rn);
7456 }
7457 else
7458 {
7459 constraint (Rd == REG_PC, BAD_PC);
7460 constraint (Rn == REG_PC, BAD_PC);
7461 }
7462
7463 inst.instruction |= inst.operands[0].reg << 8;
7464 inst.instruction |= inst.operands[1].imm << 4;
7465 inst.instruction |= Rd << 12;
7466 inst.instruction |= Rn << 16;
7467 inst.instruction |= inst.operands[4].reg;
7468 }
7469
7470 static void
7471 do_cpsi (void)
7472 {
7473 inst.instruction |= inst.operands[0].imm << 6;
7474 if (inst.operands[1].present)
7475 {
7476 inst.instruction |= CPSI_MMOD;
7477 inst.instruction |= inst.operands[1].imm;
7478 }
7479 }
7480
7481 static void
7482 do_dbg (void)
7483 {
7484 inst.instruction |= inst.operands[0].imm;
7485 }
7486
7487 static void
7488 do_it (void)
7489 {
7490 /* There is no IT instruction in ARM mode. We
7491 process it to do the validation as if in
7492 thumb mode, just in case the code gets
7493 assembled for thumb using the unified syntax. */
7494
7495 inst.size = 0;
7496 if (unified_syntax)
7497 {
7498 set_it_insn_type (IT_INSN);
7499 now_it.mask = (inst.instruction & 0xf) | 0x10;
7500 now_it.cc = inst.operands[0].imm;
7501 }
7502 }
7503
7504 static void
7505 do_ldmstm (void)
7506 {
7507 int base_reg = inst.operands[0].reg;
7508 int range = inst.operands[1].imm;
7509
7510 inst.instruction |= base_reg << 16;
7511 inst.instruction |= range;
7512
7513 if (inst.operands[1].writeback)
7514 inst.instruction |= LDM_TYPE_2_OR_3;
7515
7516 if (inst.operands[0].writeback)
7517 {
7518 inst.instruction |= WRITE_BACK;
7519 /* Check for unpredictable uses of writeback. */
7520 if (inst.instruction & LOAD_BIT)
7521 {
7522 /* Not allowed in LDM type 2. */
7523 if ((inst.instruction & LDM_TYPE_2_OR_3)
7524 && ((range & (1 << REG_PC)) == 0))
7525 as_warn (_("writeback of base register is UNPREDICTABLE"));
7526 /* Only allowed if base reg not in list for other types. */
7527 else if (range & (1 << base_reg))
7528 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7529 }
7530 else /* STM. */
7531 {
7532 /* Not allowed for type 2. */
7533 if (inst.instruction & LDM_TYPE_2_OR_3)
7534 as_warn (_("writeback of base register is UNPREDICTABLE"));
7535 /* Only allowed if base reg not in list, or first in list. */
7536 else if ((range & (1 << base_reg))
7537 && (range & ((1 << base_reg) - 1)))
7538 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7539 }
7540 }
7541 }
7542
7543 /* ARMv5TE load-consecutive (argument parse)
7544 Mode is like LDRH.
7545
7546 LDRccD R, mode
7547 STRccD R, mode. */
7548
7549 static void
7550 do_ldrd (void)
7551 {
7552 constraint (inst.operands[0].reg % 2 != 0,
7553 _("first destination register must be even"));
7554 constraint (inst.operands[1].present
7555 && inst.operands[1].reg != inst.operands[0].reg + 1,
7556 _("can only load two consecutive registers"));
7557 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7558 constraint (!inst.operands[2].isreg, _("'[' expected"));
7559
7560 if (!inst.operands[1].present)
7561 inst.operands[1].reg = inst.operands[0].reg + 1;
7562
7563 if (inst.instruction & LOAD_BIT)
7564 {
7565 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7566 register and the first register written; we have to diagnose
7567 overlap between the base and the second register written here. */
7568
7569 if (inst.operands[2].reg == inst.operands[1].reg
7570 && (inst.operands[2].writeback || inst.operands[2].postind))
7571 as_warn (_("base register written back, and overlaps "
7572 "second destination register"));
7573
7574 /* For an index-register load, the index register must not overlap the
7575 destination (even if not write-back). */
7576 else if (inst.operands[2].immisreg
7577 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7578 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7579 as_warn (_("index register overlaps destination register"));
7580 }
7581
7582 inst.instruction |= inst.operands[0].reg << 12;
7583 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7584 }
7585
7586 static void
7587 do_ldrex (void)
7588 {
7589 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7590 || inst.operands[1].postind || inst.operands[1].writeback
7591 || inst.operands[1].immisreg || inst.operands[1].shifted
7592 || inst.operands[1].negative
7593 /* This can arise if the programmer has written
7594 strex rN, rM, foo
7595 or if they have mistakenly used a register name as the last
7596 operand, eg:
7597 strex rN, rM, rX
7598 It is very difficult to distinguish between these two cases
7599 because "rX" might actually be a label. ie the register
7600 name has been occluded by a symbol of the same name. So we
7601 just generate a general 'bad addressing mode' type error
7602 message and leave it up to the programmer to discover the
7603 true cause and fix their mistake. */
7604 || (inst.operands[1].reg == REG_PC),
7605 BAD_ADDR_MODE);
7606
7607 constraint (inst.reloc.exp.X_op != O_constant
7608 || inst.reloc.exp.X_add_number != 0,
7609 _("offset must be zero in ARM encoding"));
7610
7611 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7612
7613 inst.instruction |= inst.operands[0].reg << 12;
7614 inst.instruction |= inst.operands[1].reg << 16;
7615 inst.reloc.type = BFD_RELOC_UNUSED;
7616 }
7617
7618 static void
7619 do_ldrexd (void)
7620 {
7621 constraint (inst.operands[0].reg % 2 != 0,
7622 _("even register required"));
7623 constraint (inst.operands[1].present
7624 && inst.operands[1].reg != inst.operands[0].reg + 1,
7625 _("can only load two consecutive registers"));
7626 /* If op 1 were present and equal to PC, this function wouldn't
7627 have been called in the first place. */
7628 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7629
7630 inst.instruction |= inst.operands[0].reg << 12;
7631 inst.instruction |= inst.operands[2].reg << 16;
7632 }
7633
7634 static void
7635 do_ldst (void)
7636 {
7637 inst.instruction |= inst.operands[0].reg << 12;
7638 if (!inst.operands[1].isreg)
7639 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7640 return;
7641 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7642 }
7643
7644 static void
7645 do_ldstt (void)
7646 {
7647 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7648 reject [Rn,...]. */
7649 if (inst.operands[1].preind)
7650 {
7651 constraint (inst.reloc.exp.X_op != O_constant
7652 || inst.reloc.exp.X_add_number != 0,
7653 _("this instruction requires a post-indexed address"));
7654
7655 inst.operands[1].preind = 0;
7656 inst.operands[1].postind = 1;
7657 inst.operands[1].writeback = 1;
7658 }
7659 inst.instruction |= inst.operands[0].reg << 12;
7660 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7661 }
7662
7663 /* Halfword and signed-byte load/store operations. */
7664
7665 static void
7666 do_ldstv4 (void)
7667 {
7668 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7669 inst.instruction |= inst.operands[0].reg << 12;
7670 if (!inst.operands[1].isreg)
7671 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7672 return;
7673 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7674 }
7675
7676 static void
7677 do_ldsttv4 (void)
7678 {
7679 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7680 reject [Rn,...]. */
7681 if (inst.operands[1].preind)
7682 {
7683 constraint (inst.reloc.exp.X_op != O_constant
7684 || inst.reloc.exp.X_add_number != 0,
7685 _("this instruction requires a post-indexed address"));
7686
7687 inst.operands[1].preind = 0;
7688 inst.operands[1].postind = 1;
7689 inst.operands[1].writeback = 1;
7690 }
7691 inst.instruction |= inst.operands[0].reg << 12;
7692 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7693 }
7694
7695 /* Co-processor register load/store.
7696 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7697 static void
7698 do_lstc (void)
7699 {
7700 inst.instruction |= inst.operands[0].reg << 8;
7701 inst.instruction |= inst.operands[1].reg << 12;
7702 encode_arm_cp_address (2, TRUE, TRUE, 0);
7703 }
7704
7705 static void
7706 do_mlas (void)
7707 {
7708 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7709 if (inst.operands[0].reg == inst.operands[1].reg
7710 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7711 && !(inst.instruction & 0x00400000))
7712 as_tsktsk (_("Rd and Rm should be different in mla"));
7713
7714 inst.instruction |= inst.operands[0].reg << 16;
7715 inst.instruction |= inst.operands[1].reg;
7716 inst.instruction |= inst.operands[2].reg << 8;
7717 inst.instruction |= inst.operands[3].reg << 12;
7718 }
7719
7720 static void
7721 do_mov (void)
7722 {
7723 inst.instruction |= inst.operands[0].reg << 12;
7724 encode_arm_shifter_operand (1);
7725 }
7726
7727 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7728 static void
7729 do_mov16 (void)
7730 {
7731 bfd_vma imm;
7732 bfd_boolean top;
7733
7734 top = (inst.instruction & 0x00400000) != 0;
7735 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7736 _(":lower16: not allowed this instruction"));
7737 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7738 _(":upper16: not allowed instruction"));
7739 inst.instruction |= inst.operands[0].reg << 12;
7740 if (inst.reloc.type == BFD_RELOC_UNUSED)
7741 {
7742 imm = inst.reloc.exp.X_add_number;
7743 /* The value is in two pieces: 0:11, 16:19. */
7744 inst.instruction |= (imm & 0x00000fff);
7745 inst.instruction |= (imm & 0x0000f000) << 4;
7746 }
7747 }
7748
7749 static void do_vfp_nsyn_opcode (const char *);
7750
7751 static int
7752 do_vfp_nsyn_mrs (void)
7753 {
7754 if (inst.operands[0].isvec)
7755 {
7756 if (inst.operands[1].reg != 1)
7757 first_error (_("operand 1 must be FPSCR"));
7758 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7759 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7760 do_vfp_nsyn_opcode ("fmstat");
7761 }
7762 else if (inst.operands[1].isvec)
7763 do_vfp_nsyn_opcode ("fmrx");
7764 else
7765 return FAIL;
7766
7767 return SUCCESS;
7768 }
7769
7770 static int
7771 do_vfp_nsyn_msr (void)
7772 {
7773 if (inst.operands[0].isvec)
7774 do_vfp_nsyn_opcode ("fmxr");
7775 else
7776 return FAIL;
7777
7778 return SUCCESS;
7779 }
7780
7781 static void
7782 do_vmrs (void)
7783 {
7784 unsigned Rt = inst.operands[0].reg;
7785
7786 if (thumb_mode && inst.operands[0].reg == REG_SP)
7787 {
7788 inst.error = BAD_SP;
7789 return;
7790 }
7791
7792 /* APSR_ sets isvec. All other refs to PC are illegal. */
7793 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7794 {
7795 inst.error = BAD_PC;
7796 return;
7797 }
7798
7799 if (inst.operands[1].reg != 1)
7800 first_error (_("operand 1 must be FPSCR"));
7801
7802 inst.instruction |= (Rt << 12);
7803 }
7804
7805 static void
7806 do_vmsr (void)
7807 {
7808 unsigned Rt = inst.operands[1].reg;
7809
7810 if (thumb_mode)
7811 reject_bad_reg (Rt);
7812 else if (Rt == REG_PC)
7813 {
7814 inst.error = BAD_PC;
7815 return;
7816 }
7817
7818 if (inst.operands[0].reg != 1)
7819 first_error (_("operand 0 must be FPSCR"));
7820
7821 inst.instruction |= (Rt << 12);
7822 }
7823
7824 static void
7825 do_mrs (void)
7826 {
7827 if (do_vfp_nsyn_mrs () == SUCCESS)
7828 return;
7829
7830 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7831 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7832 != (PSR_c|PSR_f),
7833 _("'CPSR' or 'SPSR' expected"));
7834 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7835 inst.instruction |= inst.operands[0].reg << 12;
7836 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7837 }
7838
7839 /* Two possible forms:
7840 "{C|S}PSR_<field>, Rm",
7841 "{C|S}PSR_f, #expression". */
7842
7843 static void
7844 do_msr (void)
7845 {
7846 if (do_vfp_nsyn_msr () == SUCCESS)
7847 return;
7848
7849 inst.instruction |= inst.operands[0].imm;
7850 if (inst.operands[1].isreg)
7851 inst.instruction |= inst.operands[1].reg;
7852 else
7853 {
7854 inst.instruction |= INST_IMMEDIATE;
7855 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7856 inst.reloc.pc_rel = 0;
7857 }
7858 }
7859
7860 static void
7861 do_mul (void)
7862 {
7863 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7864
7865 if (!inst.operands[2].present)
7866 inst.operands[2].reg = inst.operands[0].reg;
7867 inst.instruction |= inst.operands[0].reg << 16;
7868 inst.instruction |= inst.operands[1].reg;
7869 inst.instruction |= inst.operands[2].reg << 8;
7870
7871 if (inst.operands[0].reg == inst.operands[1].reg
7872 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7873 as_tsktsk (_("Rd and Rm should be different in mul"));
7874 }
7875
7876 /* Long Multiply Parser
7877 UMULL RdLo, RdHi, Rm, Rs
7878 SMULL RdLo, RdHi, Rm, Rs
7879 UMLAL RdLo, RdHi, Rm, Rs
7880 SMLAL RdLo, RdHi, Rm, Rs. */
7881
7882 static void
7883 do_mull (void)
7884 {
7885 inst.instruction |= inst.operands[0].reg << 12;
7886 inst.instruction |= inst.operands[1].reg << 16;
7887 inst.instruction |= inst.operands[2].reg;
7888 inst.instruction |= inst.operands[3].reg << 8;
7889
7890 /* rdhi and rdlo must be different. */
7891 if (inst.operands[0].reg == inst.operands[1].reg)
7892 as_tsktsk (_("rdhi and rdlo must be different"));
7893
7894 /* rdhi, rdlo and rm must all be different before armv6. */
7895 if ((inst.operands[0].reg == inst.operands[2].reg
7896 || inst.operands[1].reg == inst.operands[2].reg)
7897 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7898 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7899 }
7900
7901 static void
7902 do_nop (void)
7903 {
7904 if (inst.operands[0].present
7905 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7906 {
7907 /* Architectural NOP hints are CPSR sets with no bits selected. */
7908 inst.instruction &= 0xf0000000;
7909 inst.instruction |= 0x0320f000;
7910 if (inst.operands[0].present)
7911 inst.instruction |= inst.operands[0].imm;
7912 }
7913 }
7914
7915 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7916 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7917 Condition defaults to COND_ALWAYS.
7918 Error if Rd, Rn or Rm are R15. */
7919
7920 static void
7921 do_pkhbt (void)
7922 {
7923 inst.instruction |= inst.operands[0].reg << 12;
7924 inst.instruction |= inst.operands[1].reg << 16;
7925 inst.instruction |= inst.operands[2].reg;
7926 if (inst.operands[3].present)
7927 encode_arm_shift (3);
7928 }
7929
7930 /* ARM V6 PKHTB (Argument Parse). */
7931
7932 static void
7933 do_pkhtb (void)
7934 {
7935 if (!inst.operands[3].present)
7936 {
7937 /* If the shift specifier is omitted, turn the instruction
7938 into pkhbt rd, rm, rn. */
7939 inst.instruction &= 0xfff00010;
7940 inst.instruction |= inst.operands[0].reg << 12;
7941 inst.instruction |= inst.operands[1].reg;
7942 inst.instruction |= inst.operands[2].reg << 16;
7943 }
7944 else
7945 {
7946 inst.instruction |= inst.operands[0].reg << 12;
7947 inst.instruction |= inst.operands[1].reg << 16;
7948 inst.instruction |= inst.operands[2].reg;
7949 encode_arm_shift (3);
7950 }
7951 }
7952
7953 /* ARMv5TE: Preload-Cache
7954
7955 PLD <addr_mode>
7956
7957 Syntactically, like LDR with B=1, W=0, L=1. */
7958
7959 static void
7960 do_pld (void)
7961 {
7962 constraint (!inst.operands[0].isreg,
7963 _("'[' expected after PLD mnemonic"));
7964 constraint (inst.operands[0].postind,
7965 _("post-indexed expression used in preload instruction"));
7966 constraint (inst.operands[0].writeback,
7967 _("writeback used in preload instruction"));
7968 constraint (!inst.operands[0].preind,
7969 _("unindexed addressing used in preload instruction"));
7970 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7971 }
7972
7973 /* ARMv7: PLI <addr_mode> */
7974 static void
7975 do_pli (void)
7976 {
7977 constraint (!inst.operands[0].isreg,
7978 _("'[' expected after PLI mnemonic"));
7979 constraint (inst.operands[0].postind,
7980 _("post-indexed expression used in preload instruction"));
7981 constraint (inst.operands[0].writeback,
7982 _("writeback used in preload instruction"));
7983 constraint (!inst.operands[0].preind,
7984 _("unindexed addressing used in preload instruction"));
7985 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7986 inst.instruction &= ~PRE_INDEX;
7987 }
7988
7989 static void
7990 do_push_pop (void)
7991 {
7992 inst.operands[1] = inst.operands[0];
7993 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7994 inst.operands[0].isreg = 1;
7995 inst.operands[0].writeback = 1;
7996 inst.operands[0].reg = REG_SP;
7997 do_ldmstm ();
7998 }
7999
8000 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8001 word at the specified address and the following word
8002 respectively.
8003 Unconditionally executed.
8004 Error if Rn is R15. */
8005
8006 static void
8007 do_rfe (void)
8008 {
8009 inst.instruction |= inst.operands[0].reg << 16;
8010 if (inst.operands[0].writeback)
8011 inst.instruction |= WRITE_BACK;
8012 }
8013
8014 /* ARM V6 ssat (argument parse). */
8015
8016 static void
8017 do_ssat (void)
8018 {
8019 inst.instruction |= inst.operands[0].reg << 12;
8020 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8021 inst.instruction |= inst.operands[2].reg;
8022
8023 if (inst.operands[3].present)
8024 encode_arm_shift (3);
8025 }
8026
8027 /* ARM V6 usat (argument parse). */
8028
8029 static void
8030 do_usat (void)
8031 {
8032 inst.instruction |= inst.operands[0].reg << 12;
8033 inst.instruction |= inst.operands[1].imm << 16;
8034 inst.instruction |= inst.operands[2].reg;
8035
8036 if (inst.operands[3].present)
8037 encode_arm_shift (3);
8038 }
8039
8040 /* ARM V6 ssat16 (argument parse). */
8041
8042 static void
8043 do_ssat16 (void)
8044 {
8045 inst.instruction |= inst.operands[0].reg << 12;
8046 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8047 inst.instruction |= inst.operands[2].reg;
8048 }
8049
8050 static void
8051 do_usat16 (void)
8052 {
8053 inst.instruction |= inst.operands[0].reg << 12;
8054 inst.instruction |= inst.operands[1].imm << 16;
8055 inst.instruction |= inst.operands[2].reg;
8056 }
8057
8058 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8059 preserving the other bits.
8060
8061 setend <endian_specifier>, where <endian_specifier> is either
8062 BE or LE. */
8063
8064 static void
8065 do_setend (void)
8066 {
8067 if (inst.operands[0].imm)
8068 inst.instruction |= 0x200;
8069 }
8070
8071 static void
8072 do_shift (void)
8073 {
8074 unsigned int Rm = (inst.operands[1].present
8075 ? inst.operands[1].reg
8076 : inst.operands[0].reg);
8077
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= Rm;
8080 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8081 {
8082 inst.instruction |= inst.operands[2].reg << 8;
8083 inst.instruction |= SHIFT_BY_REG;
8084 }
8085 else
8086 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8087 }
8088
8089 static void
8090 do_smc (void)
8091 {
8092 inst.reloc.type = BFD_RELOC_ARM_SMC;
8093 inst.reloc.pc_rel = 0;
8094 }
8095
8096 static void
8097 do_swi (void)
8098 {
8099 inst.reloc.type = BFD_RELOC_ARM_SWI;
8100 inst.reloc.pc_rel = 0;
8101 }
8102
8103 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8104 SMLAxy{cond} Rd,Rm,Rs,Rn
8105 SMLAWy{cond} Rd,Rm,Rs,Rn
8106 Error if any register is R15. */
8107
8108 static void
8109 do_smla (void)
8110 {
8111 inst.instruction |= inst.operands[0].reg << 16;
8112 inst.instruction |= inst.operands[1].reg;
8113 inst.instruction |= inst.operands[2].reg << 8;
8114 inst.instruction |= inst.operands[3].reg << 12;
8115 }
8116
8117 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8118 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8119 Error if any register is R15.
8120 Warning if Rdlo == Rdhi. */
8121
8122 static void
8123 do_smlal (void)
8124 {
8125 inst.instruction |= inst.operands[0].reg << 12;
8126 inst.instruction |= inst.operands[1].reg << 16;
8127 inst.instruction |= inst.operands[2].reg;
8128 inst.instruction |= inst.operands[3].reg << 8;
8129
8130 if (inst.operands[0].reg == inst.operands[1].reg)
8131 as_tsktsk (_("rdhi and rdlo must be different"));
8132 }
8133
8134 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8135 SMULxy{cond} Rd,Rm,Rs
8136 Error if any register is R15. */
8137
8138 static void
8139 do_smul (void)
8140 {
8141 inst.instruction |= inst.operands[0].reg << 16;
8142 inst.instruction |= inst.operands[1].reg;
8143 inst.instruction |= inst.operands[2].reg << 8;
8144 }
8145
8146 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8147 the same for both ARM and Thumb-2. */
8148
8149 static void
8150 do_srs (void)
8151 {
8152 int reg;
8153
8154 if (inst.operands[0].present)
8155 {
8156 reg = inst.operands[0].reg;
8157 constraint (reg != REG_SP, _("SRS base register must be r13"));
8158 }
8159 else
8160 reg = REG_SP;
8161
8162 inst.instruction |= reg << 16;
8163 inst.instruction |= inst.operands[1].imm;
8164 if (inst.operands[0].writeback || inst.operands[1].writeback)
8165 inst.instruction |= WRITE_BACK;
8166 }
8167
8168 /* ARM V6 strex (argument parse). */
8169
8170 static void
8171 do_strex (void)
8172 {
8173 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8174 || inst.operands[2].postind || inst.operands[2].writeback
8175 || inst.operands[2].immisreg || inst.operands[2].shifted
8176 || inst.operands[2].negative
8177 /* See comment in do_ldrex(). */
8178 || (inst.operands[2].reg == REG_PC),
8179 BAD_ADDR_MODE);
8180
8181 constraint (inst.operands[0].reg == inst.operands[1].reg
8182 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8183
8184 constraint (inst.reloc.exp.X_op != O_constant
8185 || inst.reloc.exp.X_add_number != 0,
8186 _("offset must be zero in ARM encoding"));
8187
8188 inst.instruction |= inst.operands[0].reg << 12;
8189 inst.instruction |= inst.operands[1].reg;
8190 inst.instruction |= inst.operands[2].reg << 16;
8191 inst.reloc.type = BFD_RELOC_UNUSED;
8192 }
8193
8194 static void
8195 do_strexd (void)
8196 {
8197 constraint (inst.operands[1].reg % 2 != 0,
8198 _("even register required"));
8199 constraint (inst.operands[2].present
8200 && inst.operands[2].reg != inst.operands[1].reg + 1,
8201 _("can only store two consecutive registers"));
8202 /* If op 2 were present and equal to PC, this function wouldn't
8203 have been called in the first place. */
8204 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8205
8206 constraint (inst.operands[0].reg == inst.operands[1].reg
8207 || inst.operands[0].reg == inst.operands[1].reg + 1
8208 || inst.operands[0].reg == inst.operands[3].reg,
8209 BAD_OVERLAP);
8210
8211 inst.instruction |= inst.operands[0].reg << 12;
8212 inst.instruction |= inst.operands[1].reg;
8213 inst.instruction |= inst.operands[3].reg << 16;
8214 }
8215
8216 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8217 extends it to 32-bits, and adds the result to a value in another
8218 register. You can specify a rotation by 0, 8, 16, or 24 bits
8219 before extracting the 16-bit value.
8220 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8221 Condition defaults to COND_ALWAYS.
8222 Error if any register uses R15. */
8223
8224 static void
8225 do_sxtah (void)
8226 {
8227 inst.instruction |= inst.operands[0].reg << 12;
8228 inst.instruction |= inst.operands[1].reg << 16;
8229 inst.instruction |= inst.operands[2].reg;
8230 inst.instruction |= inst.operands[3].imm << 10;
8231 }
8232
8233 /* ARM V6 SXTH.
8234
8235 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8236 Condition defaults to COND_ALWAYS.
8237 Error if any register uses R15. */
8238
8239 static void
8240 do_sxth (void)
8241 {
8242 inst.instruction |= inst.operands[0].reg << 12;
8243 inst.instruction |= inst.operands[1].reg;
8244 inst.instruction |= inst.operands[2].imm << 10;
8245 }
8246 \f
8247 /* VFP instructions. In a logical order: SP variant first, monad
8248 before dyad, arithmetic then move then load/store. */
8249
8250 static void
8251 do_vfp_sp_monadic (void)
8252 {
8253 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8254 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8255 }
8256
8257 static void
8258 do_vfp_sp_dyadic (void)
8259 {
8260 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8261 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8262 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8263 }
8264
8265 static void
8266 do_vfp_sp_compare_z (void)
8267 {
8268 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8269 }
8270
8271 static void
8272 do_vfp_dp_sp_cvt (void)
8273 {
8274 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8275 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8276 }
8277
8278 static void
8279 do_vfp_sp_dp_cvt (void)
8280 {
8281 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8282 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8283 }
8284
8285 static void
8286 do_vfp_reg_from_sp (void)
8287 {
8288 inst.instruction |= inst.operands[0].reg << 12;
8289 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8290 }
8291
8292 static void
8293 do_vfp_reg2_from_sp2 (void)
8294 {
8295 constraint (inst.operands[2].imm != 2,
8296 _("only two consecutive VFP SP registers allowed here"));
8297 inst.instruction |= inst.operands[0].reg << 12;
8298 inst.instruction |= inst.operands[1].reg << 16;
8299 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8300 }
8301
8302 static void
8303 do_vfp_sp_from_reg (void)
8304 {
8305 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8306 inst.instruction |= inst.operands[1].reg << 12;
8307 }
8308
8309 static void
8310 do_vfp_sp2_from_reg2 (void)
8311 {
8312 constraint (inst.operands[0].imm != 2,
8313 _("only two consecutive VFP SP registers allowed here"));
8314 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8315 inst.instruction |= inst.operands[1].reg << 12;
8316 inst.instruction |= inst.operands[2].reg << 16;
8317 }
8318
8319 static void
8320 do_vfp_sp_ldst (void)
8321 {
8322 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8323 encode_arm_cp_address (1, FALSE, TRUE, 0);
8324 }
8325
8326 static void
8327 do_vfp_dp_ldst (void)
8328 {
8329 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8330 encode_arm_cp_address (1, FALSE, TRUE, 0);
8331 }
8332
8333
8334 static void
8335 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8336 {
8337 if (inst.operands[0].writeback)
8338 inst.instruction |= WRITE_BACK;
8339 else
8340 constraint (ldstm_type != VFP_LDSTMIA,
8341 _("this addressing mode requires base-register writeback"));
8342 inst.instruction |= inst.operands[0].reg << 16;
8343 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8344 inst.instruction |= inst.operands[1].imm;
8345 }
8346
8347 static void
8348 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8349 {
8350 int count;
8351
8352 if (inst.operands[0].writeback)
8353 inst.instruction |= WRITE_BACK;
8354 else
8355 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8356 _("this addressing mode requires base-register writeback"));
8357
8358 inst.instruction |= inst.operands[0].reg << 16;
8359 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8360
8361 count = inst.operands[1].imm << 1;
8362 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8363 count += 1;
8364
8365 inst.instruction |= count;
8366 }
8367
8368 static void
8369 do_vfp_sp_ldstmia (void)
8370 {
8371 vfp_sp_ldstm (VFP_LDSTMIA);
8372 }
8373
8374 static void
8375 do_vfp_sp_ldstmdb (void)
8376 {
8377 vfp_sp_ldstm (VFP_LDSTMDB);
8378 }
8379
8380 static void
8381 do_vfp_dp_ldstmia (void)
8382 {
8383 vfp_dp_ldstm (VFP_LDSTMIA);
8384 }
8385
8386 static void
8387 do_vfp_dp_ldstmdb (void)
8388 {
8389 vfp_dp_ldstm (VFP_LDSTMDB);
8390 }
8391
8392 static void
8393 do_vfp_xp_ldstmia (void)
8394 {
8395 vfp_dp_ldstm (VFP_LDSTMIAX);
8396 }
8397
8398 static void
8399 do_vfp_xp_ldstmdb (void)
8400 {
8401 vfp_dp_ldstm (VFP_LDSTMDBX);
8402 }
8403
8404 static void
8405 do_vfp_dp_rd_rm (void)
8406 {
8407 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8408 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8409 }
8410
8411 static void
8412 do_vfp_dp_rn_rd (void)
8413 {
8414 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8415 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8416 }
8417
8418 static void
8419 do_vfp_dp_rd_rn (void)
8420 {
8421 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8422 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8423 }
8424
8425 static void
8426 do_vfp_dp_rd_rn_rm (void)
8427 {
8428 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8429 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8430 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8431 }
8432
8433 static void
8434 do_vfp_dp_rd (void)
8435 {
8436 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8437 }
8438
8439 static void
8440 do_vfp_dp_rm_rd_rn (void)
8441 {
8442 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8443 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8444 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8445 }
8446
8447 /* VFPv3 instructions. */
8448 static void
8449 do_vfp_sp_const (void)
8450 {
8451 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8452 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8453 inst.instruction |= (inst.operands[1].imm & 0x0f);
8454 }
8455
8456 static void
8457 do_vfp_dp_const (void)
8458 {
8459 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8460 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8461 inst.instruction |= (inst.operands[1].imm & 0x0f);
8462 }
8463
8464 static void
8465 vfp_conv (int srcsize)
8466 {
8467 unsigned immbits = srcsize - inst.operands[1].imm;
8468 inst.instruction |= (immbits & 1) << 5;
8469 inst.instruction |= (immbits >> 1);
8470 }
8471
8472 static void
8473 do_vfp_sp_conv_16 (void)
8474 {
8475 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8476 vfp_conv (16);
8477 }
8478
8479 static void
8480 do_vfp_dp_conv_16 (void)
8481 {
8482 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8483 vfp_conv (16);
8484 }
8485
8486 static void
8487 do_vfp_sp_conv_32 (void)
8488 {
8489 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8490 vfp_conv (32);
8491 }
8492
8493 static void
8494 do_vfp_dp_conv_32 (void)
8495 {
8496 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8497 vfp_conv (32);
8498 }
8499 \f
8500 /* FPA instructions. Also in a logical order. */
8501
8502 static void
8503 do_fpa_cmp (void)
8504 {
8505 inst.instruction |= inst.operands[0].reg << 16;
8506 inst.instruction |= inst.operands[1].reg;
8507 }
8508
8509 static void
8510 do_fpa_ldmstm (void)
8511 {
8512 inst.instruction |= inst.operands[0].reg << 12;
8513 switch (inst.operands[1].imm)
8514 {
8515 case 1: inst.instruction |= CP_T_X; break;
8516 case 2: inst.instruction |= CP_T_Y; break;
8517 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8518 case 4: break;
8519 default: abort ();
8520 }
8521
8522 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8523 {
8524 /* The instruction specified "ea" or "fd", so we can only accept
8525 [Rn]{!}. The instruction does not really support stacking or
8526 unstacking, so we have to emulate these by setting appropriate
8527 bits and offsets. */
8528 constraint (inst.reloc.exp.X_op != O_constant
8529 || inst.reloc.exp.X_add_number != 0,
8530 _("this instruction does not support indexing"));
8531
8532 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8533 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8534
8535 if (!(inst.instruction & INDEX_UP))
8536 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8537
8538 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8539 {
8540 inst.operands[2].preind = 0;
8541 inst.operands[2].postind = 1;
8542 }
8543 }
8544
8545 encode_arm_cp_address (2, TRUE, TRUE, 0);
8546 }
8547 \f
8548 /* iWMMXt instructions: strictly in alphabetical order. */
8549
8550 static void
8551 do_iwmmxt_tandorc (void)
8552 {
8553 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8554 }
8555
8556 static void
8557 do_iwmmxt_textrc (void)
8558 {
8559 inst.instruction |= inst.operands[0].reg << 12;
8560 inst.instruction |= inst.operands[1].imm;
8561 }
8562
8563 static void
8564 do_iwmmxt_textrm (void)
8565 {
8566 inst.instruction |= inst.operands[0].reg << 12;
8567 inst.instruction |= inst.operands[1].reg << 16;
8568 inst.instruction |= inst.operands[2].imm;
8569 }
8570
8571 static void
8572 do_iwmmxt_tinsr (void)
8573 {
8574 inst.instruction |= inst.operands[0].reg << 16;
8575 inst.instruction |= inst.operands[1].reg << 12;
8576 inst.instruction |= inst.operands[2].imm;
8577 }
8578
8579 static void
8580 do_iwmmxt_tmia (void)
8581 {
8582 inst.instruction |= inst.operands[0].reg << 5;
8583 inst.instruction |= inst.operands[1].reg;
8584 inst.instruction |= inst.operands[2].reg << 12;
8585 }
8586
8587 static void
8588 do_iwmmxt_waligni (void)
8589 {
8590 inst.instruction |= inst.operands[0].reg << 12;
8591 inst.instruction |= inst.operands[1].reg << 16;
8592 inst.instruction |= inst.operands[2].reg;
8593 inst.instruction |= inst.operands[3].imm << 20;
8594 }
8595
8596 static void
8597 do_iwmmxt_wmerge (void)
8598 {
8599 inst.instruction |= inst.operands[0].reg << 12;
8600 inst.instruction |= inst.operands[1].reg << 16;
8601 inst.instruction |= inst.operands[2].reg;
8602 inst.instruction |= inst.operands[3].imm << 21;
8603 }
8604
8605 static void
8606 do_iwmmxt_wmov (void)
8607 {
8608 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8609 inst.instruction |= inst.operands[0].reg << 12;
8610 inst.instruction |= inst.operands[1].reg << 16;
8611 inst.instruction |= inst.operands[1].reg;
8612 }
8613
8614 static void
8615 do_iwmmxt_wldstbh (void)
8616 {
8617 int reloc;
8618 inst.instruction |= inst.operands[0].reg << 12;
8619 if (thumb_mode)
8620 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8621 else
8622 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8623 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8624 }
8625
8626 static void
8627 do_iwmmxt_wldstw (void)
8628 {
8629 /* RIWR_RIWC clears .isreg for a control register. */
8630 if (!inst.operands[0].isreg)
8631 {
8632 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8633 inst.instruction |= 0xf0000000;
8634 }
8635
8636 inst.instruction |= inst.operands[0].reg << 12;
8637 encode_arm_cp_address (1, TRUE, TRUE, 0);
8638 }
8639
8640 static void
8641 do_iwmmxt_wldstd (void)
8642 {
8643 inst.instruction |= inst.operands[0].reg << 12;
8644 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8645 && inst.operands[1].immisreg)
8646 {
8647 inst.instruction &= ~0x1a000ff;
8648 inst.instruction |= (0xf << 28);
8649 if (inst.operands[1].preind)
8650 inst.instruction |= PRE_INDEX;
8651 if (!inst.operands[1].negative)
8652 inst.instruction |= INDEX_UP;
8653 if (inst.operands[1].writeback)
8654 inst.instruction |= WRITE_BACK;
8655 inst.instruction |= inst.operands[1].reg << 16;
8656 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8657 inst.instruction |= inst.operands[1].imm;
8658 }
8659 else
8660 encode_arm_cp_address (1, TRUE, FALSE, 0);
8661 }
8662
8663 static void
8664 do_iwmmxt_wshufh (void)
8665 {
8666 inst.instruction |= inst.operands[0].reg << 12;
8667 inst.instruction |= inst.operands[1].reg << 16;
8668 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8669 inst.instruction |= (inst.operands[2].imm & 0x0f);
8670 }
8671
8672 static void
8673 do_iwmmxt_wzero (void)
8674 {
8675 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8676 inst.instruction |= inst.operands[0].reg;
8677 inst.instruction |= inst.operands[0].reg << 12;
8678 inst.instruction |= inst.operands[0].reg << 16;
8679 }
8680
8681 static void
8682 do_iwmmxt_wrwrwr_or_imm5 (void)
8683 {
8684 if (inst.operands[2].isreg)
8685 do_rd_rn_rm ();
8686 else {
8687 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8688 _("immediate operand requires iWMMXt2"));
8689 do_rd_rn ();
8690 if (inst.operands[2].imm == 0)
8691 {
8692 switch ((inst.instruction >> 20) & 0xf)
8693 {
8694 case 4:
8695 case 5:
8696 case 6:
8697 case 7:
8698 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8699 inst.operands[2].imm = 16;
8700 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8701 break;
8702 case 8:
8703 case 9:
8704 case 10:
8705 case 11:
8706 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8707 inst.operands[2].imm = 32;
8708 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8709 break;
8710 case 12:
8711 case 13:
8712 case 14:
8713 case 15:
8714 {
8715 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8716 unsigned long wrn;
8717 wrn = (inst.instruction >> 16) & 0xf;
8718 inst.instruction &= 0xff0fff0f;
8719 inst.instruction |= wrn;
8720 /* Bail out here; the instruction is now assembled. */
8721 return;
8722 }
8723 }
8724 }
8725 /* Map 32 -> 0, etc. */
8726 inst.operands[2].imm &= 0x1f;
8727 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8728 }
8729 }
8730 \f
8731 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8732 operations first, then control, shift, and load/store. */
8733
8734 /* Insns like "foo X,Y,Z". */
8735
8736 static void
8737 do_mav_triple (void)
8738 {
8739 inst.instruction |= inst.operands[0].reg << 16;
8740 inst.instruction |= inst.operands[1].reg;
8741 inst.instruction |= inst.operands[2].reg << 12;
8742 }
8743
8744 /* Insns like "foo W,X,Y,Z".
8745 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8746
8747 static void
8748 do_mav_quad (void)
8749 {
8750 inst.instruction |= inst.operands[0].reg << 5;
8751 inst.instruction |= inst.operands[1].reg << 12;
8752 inst.instruction |= inst.operands[2].reg << 16;
8753 inst.instruction |= inst.operands[3].reg;
8754 }
8755
8756 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8757 static void
8758 do_mav_dspsc (void)
8759 {
8760 inst.instruction |= inst.operands[1].reg << 12;
8761 }
8762
8763 /* Maverick shift immediate instructions.
8764 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8765 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8766
8767 static void
8768 do_mav_shift (void)
8769 {
8770 int imm = inst.operands[2].imm;
8771
8772 inst.instruction |= inst.operands[0].reg << 12;
8773 inst.instruction |= inst.operands[1].reg << 16;
8774
8775 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8776 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8777 Bit 4 should be 0. */
8778 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8779
8780 inst.instruction |= imm;
8781 }
8782 \f
8783 /* XScale instructions. Also sorted arithmetic before move. */
8784
8785 /* Xscale multiply-accumulate (argument parse)
8786 MIAcc acc0,Rm,Rs
8787 MIAPHcc acc0,Rm,Rs
8788 MIAxycc acc0,Rm,Rs. */
8789
8790 static void
8791 do_xsc_mia (void)
8792 {
8793 inst.instruction |= inst.operands[1].reg;
8794 inst.instruction |= inst.operands[2].reg << 12;
8795 }
8796
8797 /* Xscale move-accumulator-register (argument parse)
8798
8799 MARcc acc0,RdLo,RdHi. */
8800
8801 static void
8802 do_xsc_mar (void)
8803 {
8804 inst.instruction |= inst.operands[1].reg << 12;
8805 inst.instruction |= inst.operands[2].reg << 16;
8806 }
8807
8808 /* Xscale move-register-accumulator (argument parse)
8809
8810 MRAcc RdLo,RdHi,acc0. */
8811
8812 static void
8813 do_xsc_mra (void)
8814 {
8815 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8816 inst.instruction |= inst.operands[0].reg << 12;
8817 inst.instruction |= inst.operands[1].reg << 16;
8818 }
8819 \f
8820 /* Encoding functions relevant only to Thumb. */
8821
8822 /* inst.operands[i] is a shifted-register operand; encode
8823 it into inst.instruction in the format used by Thumb32. */
8824
8825 static void
8826 encode_thumb32_shifted_operand (int i)
8827 {
8828 unsigned int value = inst.reloc.exp.X_add_number;
8829 unsigned int shift = inst.operands[i].shift_kind;
8830
8831 constraint (inst.operands[i].immisreg,
8832 _("shift by register not allowed in thumb mode"));
8833 inst.instruction |= inst.operands[i].reg;
8834 if (shift == SHIFT_RRX)
8835 inst.instruction |= SHIFT_ROR << 4;
8836 else
8837 {
8838 constraint (inst.reloc.exp.X_op != O_constant,
8839 _("expression too complex"));
8840
8841 constraint (value > 32
8842 || (value == 32 && (shift == SHIFT_LSL
8843 || shift == SHIFT_ROR)),
8844 _("shift expression is too large"));
8845
8846 if (value == 0)
8847 shift = SHIFT_LSL;
8848 else if (value == 32)
8849 value = 0;
8850
8851 inst.instruction |= shift << 4;
8852 inst.instruction |= (value & 0x1c) << 10;
8853 inst.instruction |= (value & 0x03) << 6;
8854 }
8855 }
8856
8857
8858 /* inst.operands[i] was set up by parse_address. Encode it into a
8859 Thumb32 format load or store instruction. Reject forms that cannot
8860 be used with such instructions. If is_t is true, reject forms that
8861 cannot be used with a T instruction; if is_d is true, reject forms
8862 that cannot be used with a D instruction. If it is a store insn,
8863 reject PC in Rn. */
8864
8865 static void
8866 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8867 {
8868 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8869
8870 constraint (!inst.operands[i].isreg,
8871 _("Instruction does not support =N addresses"));
8872
8873 inst.instruction |= inst.operands[i].reg << 16;
8874 if (inst.operands[i].immisreg)
8875 {
8876 constraint (is_pc, BAD_PC_ADDRESSING);
8877 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8878 constraint (inst.operands[i].negative,
8879 _("Thumb does not support negative register indexing"));
8880 constraint (inst.operands[i].postind,
8881 _("Thumb does not support register post-indexing"));
8882 constraint (inst.operands[i].writeback,
8883 _("Thumb does not support register indexing with writeback"));
8884 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8885 _("Thumb supports only LSL in shifted register indexing"));
8886
8887 inst.instruction |= inst.operands[i].imm;
8888 if (inst.operands[i].shifted)
8889 {
8890 constraint (inst.reloc.exp.X_op != O_constant,
8891 _("expression too complex"));
8892 constraint (inst.reloc.exp.X_add_number < 0
8893 || inst.reloc.exp.X_add_number > 3,
8894 _("shift out of range"));
8895 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8896 }
8897 inst.reloc.type = BFD_RELOC_UNUSED;
8898 }
8899 else if (inst.operands[i].preind)
8900 {
8901 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
8902 constraint (is_t && inst.operands[i].writeback,
8903 _("cannot use writeback with this instruction"));
8904 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8905 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
8906
8907 if (is_d)
8908 {
8909 inst.instruction |= 0x01000000;
8910 if (inst.operands[i].writeback)
8911 inst.instruction |= 0x00200000;
8912 }
8913 else
8914 {
8915 inst.instruction |= 0x00000c00;
8916 if (inst.operands[i].writeback)
8917 inst.instruction |= 0x00000100;
8918 }
8919 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8920 }
8921 else if (inst.operands[i].postind)
8922 {
8923 gas_assert (inst.operands[i].writeback);
8924 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8925 constraint (is_t, _("cannot use post-indexing with this instruction"));
8926
8927 if (is_d)
8928 inst.instruction |= 0x00200000;
8929 else
8930 inst.instruction |= 0x00000900;
8931 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8932 }
8933 else /* unindexed - only for coprocessor */
8934 inst.error = _("instruction does not accept unindexed addressing");
8935 }
8936
8937 /* Table of Thumb instructions which exist in both 16- and 32-bit
8938 encodings (the latter only in post-V6T2 cores). The index is the
8939 value used in the insns table below. When there is more than one
8940 possible 16-bit encoding for the instruction, this table always
8941 holds variant (1).
8942 Also contains several pseudo-instructions used during relaxation. */
8943 #define T16_32_TAB \
8944 X(_adc, 4140, eb400000), \
8945 X(_adcs, 4140, eb500000), \
8946 X(_add, 1c00, eb000000), \
8947 X(_adds, 1c00, eb100000), \
8948 X(_addi, 0000, f1000000), \
8949 X(_addis, 0000, f1100000), \
8950 X(_add_pc,000f, f20f0000), \
8951 X(_add_sp,000d, f10d0000), \
8952 X(_adr, 000f, f20f0000), \
8953 X(_and, 4000, ea000000), \
8954 X(_ands, 4000, ea100000), \
8955 X(_asr, 1000, fa40f000), \
8956 X(_asrs, 1000, fa50f000), \
8957 X(_b, e000, f000b000), \
8958 X(_bcond, d000, f0008000), \
8959 X(_bic, 4380, ea200000), \
8960 X(_bics, 4380, ea300000), \
8961 X(_cmn, 42c0, eb100f00), \
8962 X(_cmp, 2800, ebb00f00), \
8963 X(_cpsie, b660, f3af8400), \
8964 X(_cpsid, b670, f3af8600), \
8965 X(_cpy, 4600, ea4f0000), \
8966 X(_dec_sp,80dd, f1ad0d00), \
8967 X(_eor, 4040, ea800000), \
8968 X(_eors, 4040, ea900000), \
8969 X(_inc_sp,00dd, f10d0d00), \
8970 X(_ldmia, c800, e8900000), \
8971 X(_ldr, 6800, f8500000), \
8972 X(_ldrb, 7800, f8100000), \
8973 X(_ldrh, 8800, f8300000), \
8974 X(_ldrsb, 5600, f9100000), \
8975 X(_ldrsh, 5e00, f9300000), \
8976 X(_ldr_pc,4800, f85f0000), \
8977 X(_ldr_pc2,4800, f85f0000), \
8978 X(_ldr_sp,9800, f85d0000), \
8979 X(_lsl, 0000, fa00f000), \
8980 X(_lsls, 0000, fa10f000), \
8981 X(_lsr, 0800, fa20f000), \
8982 X(_lsrs, 0800, fa30f000), \
8983 X(_mov, 2000, ea4f0000), \
8984 X(_movs, 2000, ea5f0000), \
8985 X(_mul, 4340, fb00f000), \
8986 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8987 X(_mvn, 43c0, ea6f0000), \
8988 X(_mvns, 43c0, ea7f0000), \
8989 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8990 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8991 X(_orr, 4300, ea400000), \
8992 X(_orrs, 4300, ea500000), \
8993 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8994 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8995 X(_rev, ba00, fa90f080), \
8996 X(_rev16, ba40, fa90f090), \
8997 X(_revsh, bac0, fa90f0b0), \
8998 X(_ror, 41c0, fa60f000), \
8999 X(_rors, 41c0, fa70f000), \
9000 X(_sbc, 4180, eb600000), \
9001 X(_sbcs, 4180, eb700000), \
9002 X(_stmia, c000, e8800000), \
9003 X(_str, 6000, f8400000), \
9004 X(_strb, 7000, f8000000), \
9005 X(_strh, 8000, f8200000), \
9006 X(_str_sp,9000, f84d0000), \
9007 X(_sub, 1e00, eba00000), \
9008 X(_subs, 1e00, ebb00000), \
9009 X(_subi, 8000, f1a00000), \
9010 X(_subis, 8000, f1b00000), \
9011 X(_sxtb, b240, fa4ff080), \
9012 X(_sxth, b200, fa0ff080), \
9013 X(_tst, 4200, ea100f00), \
9014 X(_uxtb, b2c0, fa5ff080), \
9015 X(_uxth, b280, fa1ff080), \
9016 X(_nop, bf00, f3af8000), \
9017 X(_yield, bf10, f3af8001), \
9018 X(_wfe, bf20, f3af8002), \
9019 X(_wfi, bf30, f3af8003), \
9020 X(_sev, bf40, f3af8004),
9021
9022 /* To catch errors in encoding functions, the codes are all offset by
9023 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9024 as 16-bit instructions. */
9025 #define X(a,b,c) T_MNEM##a
9026 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9027 #undef X
9028
9029 #define X(a,b,c) 0x##b
9030 static const unsigned short thumb_op16[] = { T16_32_TAB };
9031 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9032 #undef X
9033
9034 #define X(a,b,c) 0x##c
9035 static const unsigned int thumb_op32[] = { T16_32_TAB };
9036 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9037 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9038 #undef X
9039 #undef T16_32_TAB
9040
9041 /* Thumb instruction encoders, in alphabetical order. */
9042
9043 /* ADDW or SUBW. */
9044
9045 static void
9046 do_t_add_sub_w (void)
9047 {
9048 int Rd, Rn;
9049
9050 Rd = inst.operands[0].reg;
9051 Rn = inst.operands[1].reg;
9052
9053 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9054 is the SP-{plus,minus}-immediate form of the instruction. */
9055 if (Rn == REG_SP)
9056 constraint (Rd == REG_PC, BAD_PC);
9057 else
9058 reject_bad_reg (Rd);
9059
9060 inst.instruction |= (Rn << 16) | (Rd << 8);
9061 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9062 }
9063
9064 /* Parse an add or subtract instruction. We get here with inst.instruction
9065 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9066
9067 static void
9068 do_t_add_sub (void)
9069 {
9070 int Rd, Rs, Rn;
9071
9072 Rd = inst.operands[0].reg;
9073 Rs = (inst.operands[1].present
9074 ? inst.operands[1].reg /* Rd, Rs, foo */
9075 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9076
9077 if (Rd == REG_PC)
9078 set_it_insn_type_last ();
9079
9080 if (unified_syntax)
9081 {
9082 bfd_boolean flags;
9083 bfd_boolean narrow;
9084 int opcode;
9085
9086 flags = (inst.instruction == T_MNEM_adds
9087 || inst.instruction == T_MNEM_subs);
9088 if (flags)
9089 narrow = !in_it_block ();
9090 else
9091 narrow = in_it_block ();
9092 if (!inst.operands[2].isreg)
9093 {
9094 int add;
9095
9096 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9097
9098 add = (inst.instruction == T_MNEM_add
9099 || inst.instruction == T_MNEM_adds);
9100 opcode = 0;
9101 if (inst.size_req != 4)
9102 {
9103 /* Attempt to use a narrow opcode, with relaxation if
9104 appropriate. */
9105 if (Rd == REG_SP && Rs == REG_SP && !flags)
9106 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9107 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9108 opcode = T_MNEM_add_sp;
9109 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9110 opcode = T_MNEM_add_pc;
9111 else if (Rd <= 7 && Rs <= 7 && narrow)
9112 {
9113 if (flags)
9114 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9115 else
9116 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9117 }
9118 if (opcode)
9119 {
9120 inst.instruction = THUMB_OP16(opcode);
9121 inst.instruction |= (Rd << 4) | Rs;
9122 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9123 if (inst.size_req != 2)
9124 inst.relax = opcode;
9125 }
9126 else
9127 constraint (inst.size_req == 2, BAD_HIREG);
9128 }
9129 if (inst.size_req == 4
9130 || (inst.size_req != 2 && !opcode))
9131 {
9132 if (Rd == REG_PC)
9133 {
9134 constraint (add, BAD_PC);
9135 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9136 _("only SUBS PC, LR, #const allowed"));
9137 constraint (inst.reloc.exp.X_op != O_constant,
9138 _("expression too complex"));
9139 constraint (inst.reloc.exp.X_add_number < 0
9140 || inst.reloc.exp.X_add_number > 0xff,
9141 _("immediate value out of range"));
9142 inst.instruction = T2_SUBS_PC_LR
9143 | inst.reloc.exp.X_add_number;
9144 inst.reloc.type = BFD_RELOC_UNUSED;
9145 return;
9146 }
9147 else if (Rs == REG_PC)
9148 {
9149 /* Always use addw/subw. */
9150 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9151 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9152 }
9153 else
9154 {
9155 inst.instruction = THUMB_OP32 (inst.instruction);
9156 inst.instruction = (inst.instruction & 0xe1ffffff)
9157 | 0x10000000;
9158 if (flags)
9159 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9160 else
9161 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9162 }
9163 inst.instruction |= Rd << 8;
9164 inst.instruction |= Rs << 16;
9165 }
9166 }
9167 else
9168 {
9169 Rn = inst.operands[2].reg;
9170 /* See if we can do this with a 16-bit instruction. */
9171 if (!inst.operands[2].shifted && inst.size_req != 4)
9172 {
9173 if (Rd > 7 || Rs > 7 || Rn > 7)
9174 narrow = FALSE;
9175
9176 if (narrow)
9177 {
9178 inst.instruction = ((inst.instruction == T_MNEM_adds
9179 || inst.instruction == T_MNEM_add)
9180 ? T_OPCODE_ADD_R3
9181 : T_OPCODE_SUB_R3);
9182 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9183 return;
9184 }
9185
9186 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9187 {
9188 /* Thumb-1 cores (except v6-M) require at least one high
9189 register in a narrow non flag setting add. */
9190 if (Rd > 7 || Rn > 7
9191 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9192 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9193 {
9194 if (Rd == Rn)
9195 {
9196 Rn = Rs;
9197 Rs = Rd;
9198 }
9199 inst.instruction = T_OPCODE_ADD_HI;
9200 inst.instruction |= (Rd & 8) << 4;
9201 inst.instruction |= (Rd & 7);
9202 inst.instruction |= Rn << 3;
9203 return;
9204 }
9205 }
9206 }
9207
9208 constraint (Rd == REG_PC, BAD_PC);
9209 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9210 constraint (Rs == REG_PC, BAD_PC);
9211 reject_bad_reg (Rn);
9212
9213 /* If we get here, it can't be done in 16 bits. */
9214 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9215 _("shift must be constant"));
9216 inst.instruction = THUMB_OP32 (inst.instruction);
9217 inst.instruction |= Rd << 8;
9218 inst.instruction |= Rs << 16;
9219 encode_thumb32_shifted_operand (2);
9220 }
9221 }
9222 else
9223 {
9224 constraint (inst.instruction == T_MNEM_adds
9225 || inst.instruction == T_MNEM_subs,
9226 BAD_THUMB32);
9227
9228 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9229 {
9230 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9231 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9232 BAD_HIREG);
9233
9234 inst.instruction = (inst.instruction == T_MNEM_add
9235 ? 0x0000 : 0x8000);
9236 inst.instruction |= (Rd << 4) | Rs;
9237 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9238 return;
9239 }
9240
9241 Rn = inst.operands[2].reg;
9242 constraint (inst.operands[2].shifted, _("unshifted register required"));
9243
9244 /* We now have Rd, Rs, and Rn set to registers. */
9245 if (Rd > 7 || Rs > 7 || Rn > 7)
9246 {
9247 /* Can't do this for SUB. */
9248 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9249 inst.instruction = T_OPCODE_ADD_HI;
9250 inst.instruction |= (Rd & 8) << 4;
9251 inst.instruction |= (Rd & 7);
9252 if (Rs == Rd)
9253 inst.instruction |= Rn << 3;
9254 else if (Rn == Rd)
9255 inst.instruction |= Rs << 3;
9256 else
9257 constraint (1, _("dest must overlap one source register"));
9258 }
9259 else
9260 {
9261 inst.instruction = (inst.instruction == T_MNEM_add
9262 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9263 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9264 }
9265 }
9266 }
9267
9268 static void
9269 do_t_adr (void)
9270 {
9271 unsigned Rd;
9272
9273 Rd = inst.operands[0].reg;
9274 reject_bad_reg (Rd);
9275
9276 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9277 {
9278 /* Defer to section relaxation. */
9279 inst.relax = inst.instruction;
9280 inst.instruction = THUMB_OP16 (inst.instruction);
9281 inst.instruction |= Rd << 4;
9282 }
9283 else if (unified_syntax && inst.size_req != 2)
9284 {
9285 /* Generate a 32-bit opcode. */
9286 inst.instruction = THUMB_OP32 (inst.instruction);
9287 inst.instruction |= Rd << 8;
9288 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9289 inst.reloc.pc_rel = 1;
9290 }
9291 else
9292 {
9293 /* Generate a 16-bit opcode. */
9294 inst.instruction = THUMB_OP16 (inst.instruction);
9295 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9296 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9297 inst.reloc.pc_rel = 1;
9298
9299 inst.instruction |= Rd << 4;
9300 }
9301 }
9302
9303 /* Arithmetic instructions for which there is just one 16-bit
9304 instruction encoding, and it allows only two low registers.
9305 For maximal compatibility with ARM syntax, we allow three register
9306 operands even when Thumb-32 instructions are not available, as long
9307 as the first two are identical. For instance, both "sbc r0,r1" and
9308 "sbc r0,r0,r1" are allowed. */
9309 static void
9310 do_t_arit3 (void)
9311 {
9312 int Rd, Rs, Rn;
9313
9314 Rd = inst.operands[0].reg;
9315 Rs = (inst.operands[1].present
9316 ? inst.operands[1].reg /* Rd, Rs, foo */
9317 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9318 Rn = inst.operands[2].reg;
9319
9320 reject_bad_reg (Rd);
9321 reject_bad_reg (Rs);
9322 if (inst.operands[2].isreg)
9323 reject_bad_reg (Rn);
9324
9325 if (unified_syntax)
9326 {
9327 if (!inst.operands[2].isreg)
9328 {
9329 /* For an immediate, we always generate a 32-bit opcode;
9330 section relaxation will shrink it later if possible. */
9331 inst.instruction = THUMB_OP32 (inst.instruction);
9332 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9333 inst.instruction |= Rd << 8;
9334 inst.instruction |= Rs << 16;
9335 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9336 }
9337 else
9338 {
9339 bfd_boolean narrow;
9340
9341 /* See if we can do this with a 16-bit instruction. */
9342 if (THUMB_SETS_FLAGS (inst.instruction))
9343 narrow = !in_it_block ();
9344 else
9345 narrow = in_it_block ();
9346
9347 if (Rd > 7 || Rn > 7 || Rs > 7)
9348 narrow = FALSE;
9349 if (inst.operands[2].shifted)
9350 narrow = FALSE;
9351 if (inst.size_req == 4)
9352 narrow = FALSE;
9353
9354 if (narrow
9355 && Rd == Rs)
9356 {
9357 inst.instruction = THUMB_OP16 (inst.instruction);
9358 inst.instruction |= Rd;
9359 inst.instruction |= Rn << 3;
9360 return;
9361 }
9362
9363 /* If we get here, it can't be done in 16 bits. */
9364 constraint (inst.operands[2].shifted
9365 && inst.operands[2].immisreg,
9366 _("shift must be constant"));
9367 inst.instruction = THUMB_OP32 (inst.instruction);
9368 inst.instruction |= Rd << 8;
9369 inst.instruction |= Rs << 16;
9370 encode_thumb32_shifted_operand (2);
9371 }
9372 }
9373 else
9374 {
9375 /* On its face this is a lie - the instruction does set the
9376 flags. However, the only supported mnemonic in this mode
9377 says it doesn't. */
9378 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9379
9380 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9381 _("unshifted register required"));
9382 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9383 constraint (Rd != Rs,
9384 _("dest and source1 must be the same register"));
9385
9386 inst.instruction = THUMB_OP16 (inst.instruction);
9387 inst.instruction |= Rd;
9388 inst.instruction |= Rn << 3;
9389 }
9390 }
9391
9392 /* Similarly, but for instructions where the arithmetic operation is
9393 commutative, so we can allow either of them to be different from
9394 the destination operand in a 16-bit instruction. For instance, all
9395 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9396 accepted. */
9397 static void
9398 do_t_arit3c (void)
9399 {
9400 int Rd, Rs, Rn;
9401
9402 Rd = inst.operands[0].reg;
9403 Rs = (inst.operands[1].present
9404 ? inst.operands[1].reg /* Rd, Rs, foo */
9405 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9406 Rn = inst.operands[2].reg;
9407
9408 reject_bad_reg (Rd);
9409 reject_bad_reg (Rs);
9410 if (inst.operands[2].isreg)
9411 reject_bad_reg (Rn);
9412
9413 if (unified_syntax)
9414 {
9415 if (!inst.operands[2].isreg)
9416 {
9417 /* For an immediate, we always generate a 32-bit opcode;
9418 section relaxation will shrink it later if possible. */
9419 inst.instruction = THUMB_OP32 (inst.instruction);
9420 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9421 inst.instruction |= Rd << 8;
9422 inst.instruction |= Rs << 16;
9423 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9424 }
9425 else
9426 {
9427 bfd_boolean narrow;
9428
9429 /* See if we can do this with a 16-bit instruction. */
9430 if (THUMB_SETS_FLAGS (inst.instruction))
9431 narrow = !in_it_block ();
9432 else
9433 narrow = in_it_block ();
9434
9435 if (Rd > 7 || Rn > 7 || Rs > 7)
9436 narrow = FALSE;
9437 if (inst.operands[2].shifted)
9438 narrow = FALSE;
9439 if (inst.size_req == 4)
9440 narrow = FALSE;
9441
9442 if (narrow)
9443 {
9444 if (Rd == Rs)
9445 {
9446 inst.instruction = THUMB_OP16 (inst.instruction);
9447 inst.instruction |= Rd;
9448 inst.instruction |= Rn << 3;
9449 return;
9450 }
9451 if (Rd == Rn)
9452 {
9453 inst.instruction = THUMB_OP16 (inst.instruction);
9454 inst.instruction |= Rd;
9455 inst.instruction |= Rs << 3;
9456 return;
9457 }
9458 }
9459
9460 /* If we get here, it can't be done in 16 bits. */
9461 constraint (inst.operands[2].shifted
9462 && inst.operands[2].immisreg,
9463 _("shift must be constant"));
9464 inst.instruction = THUMB_OP32 (inst.instruction);
9465 inst.instruction |= Rd << 8;
9466 inst.instruction |= Rs << 16;
9467 encode_thumb32_shifted_operand (2);
9468 }
9469 }
9470 else
9471 {
9472 /* On its face this is a lie - the instruction does set the
9473 flags. However, the only supported mnemonic in this mode
9474 says it doesn't. */
9475 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9476
9477 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9478 _("unshifted register required"));
9479 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9480
9481 inst.instruction = THUMB_OP16 (inst.instruction);
9482 inst.instruction |= Rd;
9483
9484 if (Rd == Rs)
9485 inst.instruction |= Rn << 3;
9486 else if (Rd == Rn)
9487 inst.instruction |= Rs << 3;
9488 else
9489 constraint (1, _("dest must overlap one source register"));
9490 }
9491 }
9492
9493 static void
9494 do_t_barrier (void)
9495 {
9496 if (inst.operands[0].present)
9497 {
9498 constraint ((inst.instruction & 0xf0) != 0x40
9499 && inst.operands[0].imm > 0xf
9500 && inst.operands[0].imm < 0x0,
9501 _("bad barrier type"));
9502 inst.instruction |= inst.operands[0].imm;
9503 }
9504 else
9505 inst.instruction |= 0xf;
9506 }
9507
9508 static void
9509 do_t_bfc (void)
9510 {
9511 unsigned Rd;
9512 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9513 constraint (msb > 32, _("bit-field extends past end of register"));
9514 /* The instruction encoding stores the LSB and MSB,
9515 not the LSB and width. */
9516 Rd = inst.operands[0].reg;
9517 reject_bad_reg (Rd);
9518 inst.instruction |= Rd << 8;
9519 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9520 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9521 inst.instruction |= msb - 1;
9522 }
9523
9524 static void
9525 do_t_bfi (void)
9526 {
9527 int Rd, Rn;
9528 unsigned int msb;
9529
9530 Rd = inst.operands[0].reg;
9531 reject_bad_reg (Rd);
9532
9533 /* #0 in second position is alternative syntax for bfc, which is
9534 the same instruction but with REG_PC in the Rm field. */
9535 if (!inst.operands[1].isreg)
9536 Rn = REG_PC;
9537 else
9538 {
9539 Rn = inst.operands[1].reg;
9540 reject_bad_reg (Rn);
9541 }
9542
9543 msb = inst.operands[2].imm + inst.operands[3].imm;
9544 constraint (msb > 32, _("bit-field extends past end of register"));
9545 /* The instruction encoding stores the LSB and MSB,
9546 not the LSB and width. */
9547 inst.instruction |= Rd << 8;
9548 inst.instruction |= Rn << 16;
9549 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9550 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9551 inst.instruction |= msb - 1;
9552 }
9553
9554 static void
9555 do_t_bfx (void)
9556 {
9557 unsigned Rd, Rn;
9558
9559 Rd = inst.operands[0].reg;
9560 Rn = inst.operands[1].reg;
9561
9562 reject_bad_reg (Rd);
9563 reject_bad_reg (Rn);
9564
9565 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9566 _("bit-field extends past end of register"));
9567 inst.instruction |= Rd << 8;
9568 inst.instruction |= Rn << 16;
9569 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9570 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9571 inst.instruction |= inst.operands[3].imm - 1;
9572 }
9573
9574 /* ARM V5 Thumb BLX (argument parse)
9575 BLX <target_addr> which is BLX(1)
9576 BLX <Rm> which is BLX(2)
9577 Unfortunately, there are two different opcodes for this mnemonic.
9578 So, the insns[].value is not used, and the code here zaps values
9579 into inst.instruction.
9580
9581 ??? How to take advantage of the additional two bits of displacement
9582 available in Thumb32 mode? Need new relocation? */
9583
9584 static void
9585 do_t_blx (void)
9586 {
9587 set_it_insn_type_last ();
9588
9589 if (inst.operands[0].isreg)
9590 {
9591 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9592 /* We have a register, so this is BLX(2). */
9593 inst.instruction |= inst.operands[0].reg << 3;
9594 }
9595 else
9596 {
9597 /* No register. This must be BLX(1). */
9598 inst.instruction = 0xf000e800;
9599 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9600 inst.reloc.pc_rel = 1;
9601 }
9602 }
9603
9604 static void
9605 do_t_branch (void)
9606 {
9607 int opcode;
9608 int cond;
9609
9610 cond = inst.cond;
9611 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9612
9613 if (in_it_block ())
9614 {
9615 /* Conditional branches inside IT blocks are encoded as unconditional
9616 branches. */
9617 cond = COND_ALWAYS;
9618 }
9619 else
9620 cond = inst.cond;
9621
9622 if (cond != COND_ALWAYS)
9623 opcode = T_MNEM_bcond;
9624 else
9625 opcode = inst.instruction;
9626
9627 if (unified_syntax && inst.size_req == 4)
9628 {
9629 inst.instruction = THUMB_OP32(opcode);
9630 if (cond == COND_ALWAYS)
9631 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9632 else
9633 {
9634 gas_assert (cond != 0xF);
9635 inst.instruction |= cond << 22;
9636 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9637 }
9638 }
9639 else
9640 {
9641 inst.instruction = THUMB_OP16(opcode);
9642 if (cond == COND_ALWAYS)
9643 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9644 else
9645 {
9646 inst.instruction |= cond << 8;
9647 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9648 }
9649 /* Allow section relaxation. */
9650 if (unified_syntax && inst.size_req != 2)
9651 inst.relax = opcode;
9652 }
9653
9654 inst.reloc.pc_rel = 1;
9655 }
9656
9657 static void
9658 do_t_bkpt (void)
9659 {
9660 constraint (inst.cond != COND_ALWAYS,
9661 _("instruction is always unconditional"));
9662 if (inst.operands[0].present)
9663 {
9664 constraint (inst.operands[0].imm > 255,
9665 _("immediate value out of range"));
9666 inst.instruction |= inst.operands[0].imm;
9667 set_it_insn_type (NEUTRAL_IT_INSN);
9668 }
9669 }
9670
9671 static void
9672 do_t_branch23 (void)
9673 {
9674 set_it_insn_type_last ();
9675 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9676 inst.reloc.pc_rel = 1;
9677
9678 #if defined(OBJ_COFF)
9679 /* If the destination of the branch is a defined symbol which does not have
9680 the THUMB_FUNC attribute, then we must be calling a function which has
9681 the (interfacearm) attribute. We look for the Thumb entry point to that
9682 function and change the branch to refer to that function instead. */
9683 if ( inst.reloc.exp.X_op == O_symbol
9684 && inst.reloc.exp.X_add_symbol != NULL
9685 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9686 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9687 inst.reloc.exp.X_add_symbol =
9688 find_real_start (inst.reloc.exp.X_add_symbol);
9689 #endif
9690 }
9691
9692 static void
9693 do_t_bx (void)
9694 {
9695 set_it_insn_type_last ();
9696 inst.instruction |= inst.operands[0].reg << 3;
9697 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9698 should cause the alignment to be checked once it is known. This is
9699 because BX PC only works if the instruction is word aligned. */
9700 }
9701
9702 static void
9703 do_t_bxj (void)
9704 {
9705 int Rm;
9706
9707 set_it_insn_type_last ();
9708 Rm = inst.operands[0].reg;
9709 reject_bad_reg (Rm);
9710 inst.instruction |= Rm << 16;
9711 }
9712
9713 static void
9714 do_t_clz (void)
9715 {
9716 unsigned Rd;
9717 unsigned Rm;
9718
9719 Rd = inst.operands[0].reg;
9720 Rm = inst.operands[1].reg;
9721
9722 reject_bad_reg (Rd);
9723 reject_bad_reg (Rm);
9724
9725 inst.instruction |= Rd << 8;
9726 inst.instruction |= Rm << 16;
9727 inst.instruction |= Rm;
9728 }
9729
9730 static void
9731 do_t_cps (void)
9732 {
9733 set_it_insn_type (OUTSIDE_IT_INSN);
9734 inst.instruction |= inst.operands[0].imm;
9735 }
9736
9737 static void
9738 do_t_cpsi (void)
9739 {
9740 set_it_insn_type (OUTSIDE_IT_INSN);
9741 if (unified_syntax
9742 && (inst.operands[1].present || inst.size_req == 4)
9743 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9744 {
9745 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9746 inst.instruction = 0xf3af8000;
9747 inst.instruction |= imod << 9;
9748 inst.instruction |= inst.operands[0].imm << 5;
9749 if (inst.operands[1].present)
9750 inst.instruction |= 0x100 | inst.operands[1].imm;
9751 }
9752 else
9753 {
9754 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9755 && (inst.operands[0].imm & 4),
9756 _("selected processor does not support 'A' form "
9757 "of this instruction"));
9758 constraint (inst.operands[1].present || inst.size_req == 4,
9759 _("Thumb does not support the 2-argument "
9760 "form of this instruction"));
9761 inst.instruction |= inst.operands[0].imm;
9762 }
9763 }
9764
9765 /* THUMB CPY instruction (argument parse). */
9766
9767 static void
9768 do_t_cpy (void)
9769 {
9770 if (inst.size_req == 4)
9771 {
9772 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9773 inst.instruction |= inst.operands[0].reg << 8;
9774 inst.instruction |= inst.operands[1].reg;
9775 }
9776 else
9777 {
9778 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9779 inst.instruction |= (inst.operands[0].reg & 0x7);
9780 inst.instruction |= inst.operands[1].reg << 3;
9781 }
9782 }
9783
9784 static void
9785 do_t_cbz (void)
9786 {
9787 set_it_insn_type (OUTSIDE_IT_INSN);
9788 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9789 inst.instruction |= inst.operands[0].reg;
9790 inst.reloc.pc_rel = 1;
9791 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9792 }
9793
9794 static void
9795 do_t_dbg (void)
9796 {
9797 inst.instruction |= inst.operands[0].imm;
9798 }
9799
9800 static void
9801 do_t_div (void)
9802 {
9803 unsigned Rd, Rn, Rm;
9804
9805 Rd = inst.operands[0].reg;
9806 Rn = (inst.operands[1].present
9807 ? inst.operands[1].reg : Rd);
9808 Rm = inst.operands[2].reg;
9809
9810 reject_bad_reg (Rd);
9811 reject_bad_reg (Rn);
9812 reject_bad_reg (Rm);
9813
9814 inst.instruction |= Rd << 8;
9815 inst.instruction |= Rn << 16;
9816 inst.instruction |= Rm;
9817 }
9818
9819 static void
9820 do_t_hint (void)
9821 {
9822 if (unified_syntax && inst.size_req == 4)
9823 inst.instruction = THUMB_OP32 (inst.instruction);
9824 else
9825 inst.instruction = THUMB_OP16 (inst.instruction);
9826 }
9827
9828 static void
9829 do_t_it (void)
9830 {
9831 unsigned int cond = inst.operands[0].imm;
9832
9833 set_it_insn_type (IT_INSN);
9834 now_it.mask = (inst.instruction & 0xf) | 0x10;
9835 now_it.cc = cond;
9836
9837 /* If the condition is a negative condition, invert the mask. */
9838 if ((cond & 0x1) == 0x0)
9839 {
9840 unsigned int mask = inst.instruction & 0x000f;
9841
9842 if ((mask & 0x7) == 0)
9843 /* no conversion needed */;
9844 else if ((mask & 0x3) == 0)
9845 mask ^= 0x8;
9846 else if ((mask & 0x1) == 0)
9847 mask ^= 0xC;
9848 else
9849 mask ^= 0xE;
9850
9851 inst.instruction &= 0xfff0;
9852 inst.instruction |= mask;
9853 }
9854
9855 inst.instruction |= cond << 4;
9856 }
9857
9858 /* Helper function used for both push/pop and ldm/stm. */
9859 static void
9860 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9861 {
9862 bfd_boolean load;
9863
9864 load = (inst.instruction & (1 << 20)) != 0;
9865
9866 if (mask & (1 << 13))
9867 inst.error = _("SP not allowed in register list");
9868
9869 if ((mask & (1 << base)) != 0
9870 && writeback)
9871 inst.error = _("having the base register in the register list when "
9872 "using write back is UNPREDICTABLE");
9873
9874 if (load)
9875 {
9876 if (mask & (1 << 15))
9877 {
9878 if (mask & (1 << 14))
9879 inst.error = _("LR and PC should not both be in register list");
9880 else
9881 set_it_insn_type_last ();
9882 }
9883 }
9884 else
9885 {
9886 if (mask & (1 << 15))
9887 inst.error = _("PC not allowed in register list");
9888 }
9889
9890 if ((mask & (mask - 1)) == 0)
9891 {
9892 /* Single register transfers implemented as str/ldr. */
9893 if (writeback)
9894 {
9895 if (inst.instruction & (1 << 23))
9896 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9897 else
9898 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9899 }
9900 else
9901 {
9902 if (inst.instruction & (1 << 23))
9903 inst.instruction = 0x00800000; /* ia -> [base] */
9904 else
9905 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9906 }
9907
9908 inst.instruction |= 0xf8400000;
9909 if (load)
9910 inst.instruction |= 0x00100000;
9911
9912 mask = ffs (mask) - 1;
9913 mask <<= 12;
9914 }
9915 else if (writeback)
9916 inst.instruction |= WRITE_BACK;
9917
9918 inst.instruction |= mask;
9919 inst.instruction |= base << 16;
9920 }
9921
9922 static void
9923 do_t_ldmstm (void)
9924 {
9925 /* This really doesn't seem worth it. */
9926 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9927 _("expression too complex"));
9928 constraint (inst.operands[1].writeback,
9929 _("Thumb load/store multiple does not support {reglist}^"));
9930
9931 if (unified_syntax)
9932 {
9933 bfd_boolean narrow;
9934 unsigned mask;
9935
9936 narrow = FALSE;
9937 /* See if we can use a 16-bit instruction. */
9938 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9939 && inst.size_req != 4
9940 && !(inst.operands[1].imm & ~0xff))
9941 {
9942 mask = 1 << inst.operands[0].reg;
9943
9944 if (inst.operands[0].reg <= 7
9945 && (inst.instruction == T_MNEM_stmia
9946 ? inst.operands[0].writeback
9947 : (inst.operands[0].writeback
9948 == !(inst.operands[1].imm & mask))))
9949 {
9950 if (inst.instruction == T_MNEM_stmia
9951 && (inst.operands[1].imm & mask)
9952 && (inst.operands[1].imm & (mask - 1)))
9953 as_warn (_("value stored for r%d is UNKNOWN"),
9954 inst.operands[0].reg);
9955
9956 inst.instruction = THUMB_OP16 (inst.instruction);
9957 inst.instruction |= inst.operands[0].reg << 8;
9958 inst.instruction |= inst.operands[1].imm;
9959 narrow = TRUE;
9960 }
9961 else if (inst.operands[0] .reg == REG_SP
9962 && inst.operands[0].writeback)
9963 {
9964 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9965 ? T_MNEM_push : T_MNEM_pop);
9966 inst.instruction |= inst.operands[1].imm;
9967 narrow = TRUE;
9968 }
9969 }
9970
9971 if (!narrow)
9972 {
9973 if (inst.instruction < 0xffff)
9974 inst.instruction = THUMB_OP32 (inst.instruction);
9975
9976 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9977 inst.operands[0].writeback);
9978 }
9979 }
9980 else
9981 {
9982 constraint (inst.operands[0].reg > 7
9983 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9984 constraint (inst.instruction != T_MNEM_ldmia
9985 && inst.instruction != T_MNEM_stmia,
9986 _("Thumb-2 instruction only valid in unified syntax"));
9987 if (inst.instruction == T_MNEM_stmia)
9988 {
9989 if (!inst.operands[0].writeback)
9990 as_warn (_("this instruction will write back the base register"));
9991 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9992 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9993 as_warn (_("value stored for r%d is UNKNOWN"),
9994 inst.operands[0].reg);
9995 }
9996 else
9997 {
9998 if (!inst.operands[0].writeback
9999 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10000 as_warn (_("this instruction will write back the base register"));
10001 else if (inst.operands[0].writeback
10002 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10003 as_warn (_("this instruction will not write back the base register"));
10004 }
10005
10006 inst.instruction = THUMB_OP16 (inst.instruction);
10007 inst.instruction |= inst.operands[0].reg << 8;
10008 inst.instruction |= inst.operands[1].imm;
10009 }
10010 }
10011
10012 static void
10013 do_t_ldrex (void)
10014 {
10015 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10016 || inst.operands[1].postind || inst.operands[1].writeback
10017 || inst.operands[1].immisreg || inst.operands[1].shifted
10018 || inst.operands[1].negative,
10019 BAD_ADDR_MODE);
10020
10021 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10022
10023 inst.instruction |= inst.operands[0].reg << 12;
10024 inst.instruction |= inst.operands[1].reg << 16;
10025 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10026 }
10027
10028 static void
10029 do_t_ldrexd (void)
10030 {
10031 if (!inst.operands[1].present)
10032 {
10033 constraint (inst.operands[0].reg == REG_LR,
10034 _("r14 not allowed as first register "
10035 "when second register is omitted"));
10036 inst.operands[1].reg = inst.operands[0].reg + 1;
10037 }
10038 constraint (inst.operands[0].reg == inst.operands[1].reg,
10039 BAD_OVERLAP);
10040
10041 inst.instruction |= inst.operands[0].reg << 12;
10042 inst.instruction |= inst.operands[1].reg << 8;
10043 inst.instruction |= inst.operands[2].reg << 16;
10044 }
10045
10046 static void
10047 do_t_ldst (void)
10048 {
10049 unsigned long opcode;
10050 int Rn;
10051
10052 if (inst.operands[0].isreg
10053 && !inst.operands[0].preind
10054 && inst.operands[0].reg == REG_PC)
10055 set_it_insn_type_last ();
10056
10057 opcode = inst.instruction;
10058 if (unified_syntax)
10059 {
10060 if (!inst.operands[1].isreg)
10061 {
10062 if (opcode <= 0xffff)
10063 inst.instruction = THUMB_OP32 (opcode);
10064 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10065 return;
10066 }
10067 if (inst.operands[1].isreg
10068 && !inst.operands[1].writeback
10069 && !inst.operands[1].shifted && !inst.operands[1].postind
10070 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10071 && opcode <= 0xffff
10072 && inst.size_req != 4)
10073 {
10074 /* Insn may have a 16-bit form. */
10075 Rn = inst.operands[1].reg;
10076 if (inst.operands[1].immisreg)
10077 {
10078 inst.instruction = THUMB_OP16 (opcode);
10079 /* [Rn, Rik] */
10080 if (Rn <= 7 && inst.operands[1].imm <= 7)
10081 goto op16;
10082 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10083 reject_bad_reg (inst.operands[1].imm);
10084 }
10085 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10086 && opcode != T_MNEM_ldrsb)
10087 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10088 || (Rn == REG_SP && opcode == T_MNEM_str))
10089 {
10090 /* [Rn, #const] */
10091 if (Rn > 7)
10092 {
10093 if (Rn == REG_PC)
10094 {
10095 if (inst.reloc.pc_rel)
10096 opcode = T_MNEM_ldr_pc2;
10097 else
10098 opcode = T_MNEM_ldr_pc;
10099 }
10100 else
10101 {
10102 if (opcode == T_MNEM_ldr)
10103 opcode = T_MNEM_ldr_sp;
10104 else
10105 opcode = T_MNEM_str_sp;
10106 }
10107 inst.instruction = inst.operands[0].reg << 8;
10108 }
10109 else
10110 {
10111 inst.instruction = inst.operands[0].reg;
10112 inst.instruction |= inst.operands[1].reg << 3;
10113 }
10114 inst.instruction |= THUMB_OP16 (opcode);
10115 if (inst.size_req == 2)
10116 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10117 else
10118 inst.relax = opcode;
10119 return;
10120 }
10121 }
10122 /* Definitely a 32-bit variant. */
10123
10124 /* Do some validations regarding addressing modes. */
10125 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10126 && opcode != T_MNEM_str)
10127 reject_bad_reg (inst.operands[1].imm);
10128
10129 inst.instruction = THUMB_OP32 (opcode);
10130 inst.instruction |= inst.operands[0].reg << 12;
10131 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10132 return;
10133 }
10134
10135 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10136
10137 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10138 {
10139 /* Only [Rn,Rm] is acceptable. */
10140 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10141 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10142 || inst.operands[1].postind || inst.operands[1].shifted
10143 || inst.operands[1].negative,
10144 _("Thumb does not support this addressing mode"));
10145 inst.instruction = THUMB_OP16 (inst.instruction);
10146 goto op16;
10147 }
10148
10149 inst.instruction = THUMB_OP16 (inst.instruction);
10150 if (!inst.operands[1].isreg)
10151 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10152 return;
10153
10154 constraint (!inst.operands[1].preind
10155 || inst.operands[1].shifted
10156 || inst.operands[1].writeback,
10157 _("Thumb does not support this addressing mode"));
10158 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10159 {
10160 constraint (inst.instruction & 0x0600,
10161 _("byte or halfword not valid for base register"));
10162 constraint (inst.operands[1].reg == REG_PC
10163 && !(inst.instruction & THUMB_LOAD_BIT),
10164 _("r15 based store not allowed"));
10165 constraint (inst.operands[1].immisreg,
10166 _("invalid base register for register offset"));
10167
10168 if (inst.operands[1].reg == REG_PC)
10169 inst.instruction = T_OPCODE_LDR_PC;
10170 else if (inst.instruction & THUMB_LOAD_BIT)
10171 inst.instruction = T_OPCODE_LDR_SP;
10172 else
10173 inst.instruction = T_OPCODE_STR_SP;
10174
10175 inst.instruction |= inst.operands[0].reg << 8;
10176 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10177 return;
10178 }
10179
10180 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10181 if (!inst.operands[1].immisreg)
10182 {
10183 /* Immediate offset. */
10184 inst.instruction |= inst.operands[0].reg;
10185 inst.instruction |= inst.operands[1].reg << 3;
10186 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10187 return;
10188 }
10189
10190 /* Register offset. */
10191 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10192 constraint (inst.operands[1].negative,
10193 _("Thumb does not support this addressing mode"));
10194
10195 op16:
10196 switch (inst.instruction)
10197 {
10198 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10199 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10200 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10201 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10202 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10203 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10204 case 0x5600 /* ldrsb */:
10205 case 0x5e00 /* ldrsh */: break;
10206 default: abort ();
10207 }
10208
10209 inst.instruction |= inst.operands[0].reg;
10210 inst.instruction |= inst.operands[1].reg << 3;
10211 inst.instruction |= inst.operands[1].imm << 6;
10212 }
10213
10214 static void
10215 do_t_ldstd (void)
10216 {
10217 if (!inst.operands[1].present)
10218 {
10219 inst.operands[1].reg = inst.operands[0].reg + 1;
10220 constraint (inst.operands[0].reg == REG_LR,
10221 _("r14 not allowed here"));
10222 }
10223 inst.instruction |= inst.operands[0].reg << 12;
10224 inst.instruction |= inst.operands[1].reg << 8;
10225 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10226 }
10227
10228 static void
10229 do_t_ldstt (void)
10230 {
10231 inst.instruction |= inst.operands[0].reg << 12;
10232 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10233 }
10234
10235 static void
10236 do_t_mla (void)
10237 {
10238 unsigned Rd, Rn, Rm, Ra;
10239
10240 Rd = inst.operands[0].reg;
10241 Rn = inst.operands[1].reg;
10242 Rm = inst.operands[2].reg;
10243 Ra = inst.operands[3].reg;
10244
10245 reject_bad_reg (Rd);
10246 reject_bad_reg (Rn);
10247 reject_bad_reg (Rm);
10248 reject_bad_reg (Ra);
10249
10250 inst.instruction |= Rd << 8;
10251 inst.instruction |= Rn << 16;
10252 inst.instruction |= Rm;
10253 inst.instruction |= Ra << 12;
10254 }
10255
10256 static void
10257 do_t_mlal (void)
10258 {
10259 unsigned RdLo, RdHi, Rn, Rm;
10260
10261 RdLo = inst.operands[0].reg;
10262 RdHi = inst.operands[1].reg;
10263 Rn = inst.operands[2].reg;
10264 Rm = inst.operands[3].reg;
10265
10266 reject_bad_reg (RdLo);
10267 reject_bad_reg (RdHi);
10268 reject_bad_reg (Rn);
10269 reject_bad_reg (Rm);
10270
10271 inst.instruction |= RdLo << 12;
10272 inst.instruction |= RdHi << 8;
10273 inst.instruction |= Rn << 16;
10274 inst.instruction |= Rm;
10275 }
10276
10277 static void
10278 do_t_mov_cmp (void)
10279 {
10280 unsigned Rn, Rm;
10281
10282 Rn = inst.operands[0].reg;
10283 Rm = inst.operands[1].reg;
10284
10285 if (Rn == REG_PC)
10286 set_it_insn_type_last ();
10287
10288 if (unified_syntax)
10289 {
10290 int r0off = (inst.instruction == T_MNEM_mov
10291 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10292 unsigned long opcode;
10293 bfd_boolean narrow;
10294 bfd_boolean low_regs;
10295
10296 low_regs = (Rn <= 7 && Rm <= 7);
10297 opcode = inst.instruction;
10298 if (in_it_block ())
10299 narrow = opcode != T_MNEM_movs;
10300 else
10301 narrow = opcode != T_MNEM_movs || low_regs;
10302 if (inst.size_req == 4
10303 || inst.operands[1].shifted)
10304 narrow = FALSE;
10305
10306 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10307 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10308 && !inst.operands[1].shifted
10309 && Rn == REG_PC
10310 && Rm == REG_LR)
10311 {
10312 inst.instruction = T2_SUBS_PC_LR;
10313 return;
10314 }
10315
10316 if (opcode == T_MNEM_cmp)
10317 {
10318 constraint (Rn == REG_PC, BAD_PC);
10319 if (narrow)
10320 {
10321 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10322 but valid. */
10323 warn_deprecated_sp (Rm);
10324 /* R15 was documented as a valid choice for Rm in ARMv6,
10325 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10326 tools reject R15, so we do too. */
10327 constraint (Rm == REG_PC, BAD_PC);
10328 }
10329 else
10330 reject_bad_reg (Rm);
10331 }
10332 else if (opcode == T_MNEM_mov
10333 || opcode == T_MNEM_movs)
10334 {
10335 if (inst.operands[1].isreg)
10336 {
10337 if (opcode == T_MNEM_movs)
10338 {
10339 reject_bad_reg (Rn);
10340 reject_bad_reg (Rm);
10341 }
10342 else if (narrow)
10343 {
10344 /* This is mov.n. */
10345 if ((Rn == REG_SP || Rn == REG_PC)
10346 && (Rm == REG_SP || Rm == REG_PC))
10347 {
10348 as_warn (_("Use of r%u as a source register is "
10349 "deprecated when r%u is the destination "
10350 "register."), Rm, Rn);
10351 }
10352 }
10353 else
10354 {
10355 /* This is mov.w. */
10356 constraint (Rn == REG_PC, BAD_PC);
10357 constraint (Rm == REG_PC, BAD_PC);
10358 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10359 }
10360 }
10361 else
10362 reject_bad_reg (Rn);
10363 }
10364
10365 if (!inst.operands[1].isreg)
10366 {
10367 /* Immediate operand. */
10368 if (!in_it_block () && opcode == T_MNEM_mov)
10369 narrow = 0;
10370 if (low_regs && narrow)
10371 {
10372 inst.instruction = THUMB_OP16 (opcode);
10373 inst.instruction |= Rn << 8;
10374 if (inst.size_req == 2)
10375 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10376 else
10377 inst.relax = opcode;
10378 }
10379 else
10380 {
10381 inst.instruction = THUMB_OP32 (inst.instruction);
10382 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10383 inst.instruction |= Rn << r0off;
10384 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10385 }
10386 }
10387 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10388 && (inst.instruction == T_MNEM_mov
10389 || inst.instruction == T_MNEM_movs))
10390 {
10391 /* Register shifts are encoded as separate shift instructions. */
10392 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10393
10394 if (in_it_block ())
10395 narrow = !flags;
10396 else
10397 narrow = flags;
10398
10399 if (inst.size_req == 4)
10400 narrow = FALSE;
10401
10402 if (!low_regs || inst.operands[1].imm > 7)
10403 narrow = FALSE;
10404
10405 if (Rn != Rm)
10406 narrow = FALSE;
10407
10408 switch (inst.operands[1].shift_kind)
10409 {
10410 case SHIFT_LSL:
10411 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10412 break;
10413 case SHIFT_ASR:
10414 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10415 break;
10416 case SHIFT_LSR:
10417 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10418 break;
10419 case SHIFT_ROR:
10420 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10421 break;
10422 default:
10423 abort ();
10424 }
10425
10426 inst.instruction = opcode;
10427 if (narrow)
10428 {
10429 inst.instruction |= Rn;
10430 inst.instruction |= inst.operands[1].imm << 3;
10431 }
10432 else
10433 {
10434 if (flags)
10435 inst.instruction |= CONDS_BIT;
10436
10437 inst.instruction |= Rn << 8;
10438 inst.instruction |= Rm << 16;
10439 inst.instruction |= inst.operands[1].imm;
10440 }
10441 }
10442 else if (!narrow)
10443 {
10444 /* Some mov with immediate shift have narrow variants.
10445 Register shifts are handled above. */
10446 if (low_regs && inst.operands[1].shifted
10447 && (inst.instruction == T_MNEM_mov
10448 || inst.instruction == T_MNEM_movs))
10449 {
10450 if (in_it_block ())
10451 narrow = (inst.instruction == T_MNEM_mov);
10452 else
10453 narrow = (inst.instruction == T_MNEM_movs);
10454 }
10455
10456 if (narrow)
10457 {
10458 switch (inst.operands[1].shift_kind)
10459 {
10460 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10461 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10462 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10463 default: narrow = FALSE; break;
10464 }
10465 }
10466
10467 if (narrow)
10468 {
10469 inst.instruction |= Rn;
10470 inst.instruction |= Rm << 3;
10471 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10472 }
10473 else
10474 {
10475 inst.instruction = THUMB_OP32 (inst.instruction);
10476 inst.instruction |= Rn << r0off;
10477 encode_thumb32_shifted_operand (1);
10478 }
10479 }
10480 else
10481 switch (inst.instruction)
10482 {
10483 case T_MNEM_mov:
10484 inst.instruction = T_OPCODE_MOV_HR;
10485 inst.instruction |= (Rn & 0x8) << 4;
10486 inst.instruction |= (Rn & 0x7);
10487 inst.instruction |= Rm << 3;
10488 break;
10489
10490 case T_MNEM_movs:
10491 /* We know we have low registers at this point.
10492 Generate LSLS Rd, Rs, #0. */
10493 inst.instruction = T_OPCODE_LSL_I;
10494 inst.instruction |= Rn;
10495 inst.instruction |= Rm << 3;
10496 break;
10497
10498 case T_MNEM_cmp:
10499 if (low_regs)
10500 {
10501 inst.instruction = T_OPCODE_CMP_LR;
10502 inst.instruction |= Rn;
10503 inst.instruction |= Rm << 3;
10504 }
10505 else
10506 {
10507 inst.instruction = T_OPCODE_CMP_HR;
10508 inst.instruction |= (Rn & 0x8) << 4;
10509 inst.instruction |= (Rn & 0x7);
10510 inst.instruction |= Rm << 3;
10511 }
10512 break;
10513 }
10514 return;
10515 }
10516
10517 inst.instruction = THUMB_OP16 (inst.instruction);
10518
10519 /* PR 10443: Do not silently ignore shifted operands. */
10520 constraint (inst.operands[1].shifted,
10521 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10522
10523 if (inst.operands[1].isreg)
10524 {
10525 if (Rn < 8 && Rm < 8)
10526 {
10527 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10528 since a MOV instruction produces unpredictable results. */
10529 if (inst.instruction == T_OPCODE_MOV_I8)
10530 inst.instruction = T_OPCODE_ADD_I3;
10531 else
10532 inst.instruction = T_OPCODE_CMP_LR;
10533
10534 inst.instruction |= Rn;
10535 inst.instruction |= Rm << 3;
10536 }
10537 else
10538 {
10539 if (inst.instruction == T_OPCODE_MOV_I8)
10540 inst.instruction = T_OPCODE_MOV_HR;
10541 else
10542 inst.instruction = T_OPCODE_CMP_HR;
10543 do_t_cpy ();
10544 }
10545 }
10546 else
10547 {
10548 constraint (Rn > 7,
10549 _("only lo regs allowed with immediate"));
10550 inst.instruction |= Rn << 8;
10551 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10552 }
10553 }
10554
10555 static void
10556 do_t_mov16 (void)
10557 {
10558 unsigned Rd;
10559 bfd_vma imm;
10560 bfd_boolean top;
10561
10562 top = (inst.instruction & 0x00800000) != 0;
10563 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10564 {
10565 constraint (top, _(":lower16: not allowed this instruction"));
10566 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10567 }
10568 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10569 {
10570 constraint (!top, _(":upper16: not allowed this instruction"));
10571 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10572 }
10573
10574 Rd = inst.operands[0].reg;
10575 reject_bad_reg (Rd);
10576
10577 inst.instruction |= Rd << 8;
10578 if (inst.reloc.type == BFD_RELOC_UNUSED)
10579 {
10580 imm = inst.reloc.exp.X_add_number;
10581 inst.instruction |= (imm & 0xf000) << 4;
10582 inst.instruction |= (imm & 0x0800) << 15;
10583 inst.instruction |= (imm & 0x0700) << 4;
10584 inst.instruction |= (imm & 0x00ff);
10585 }
10586 }
10587
10588 static void
10589 do_t_mvn_tst (void)
10590 {
10591 unsigned Rn, Rm;
10592
10593 Rn = inst.operands[0].reg;
10594 Rm = inst.operands[1].reg;
10595
10596 if (inst.instruction == T_MNEM_cmp
10597 || inst.instruction == T_MNEM_cmn)
10598 constraint (Rn == REG_PC, BAD_PC);
10599 else
10600 reject_bad_reg (Rn);
10601 reject_bad_reg (Rm);
10602
10603 if (unified_syntax)
10604 {
10605 int r0off = (inst.instruction == T_MNEM_mvn
10606 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10607 bfd_boolean narrow;
10608
10609 if (inst.size_req == 4
10610 || inst.instruction > 0xffff
10611 || inst.operands[1].shifted
10612 || Rn > 7 || Rm > 7)
10613 narrow = FALSE;
10614 else if (inst.instruction == T_MNEM_cmn)
10615 narrow = TRUE;
10616 else if (THUMB_SETS_FLAGS (inst.instruction))
10617 narrow = !in_it_block ();
10618 else
10619 narrow = in_it_block ();
10620
10621 if (!inst.operands[1].isreg)
10622 {
10623 /* For an immediate, we always generate a 32-bit opcode;
10624 section relaxation will shrink it later if possible. */
10625 if (inst.instruction < 0xffff)
10626 inst.instruction = THUMB_OP32 (inst.instruction);
10627 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10628 inst.instruction |= Rn << r0off;
10629 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10630 }
10631 else
10632 {
10633 /* See if we can do this with a 16-bit instruction. */
10634 if (narrow)
10635 {
10636 inst.instruction = THUMB_OP16 (inst.instruction);
10637 inst.instruction |= Rn;
10638 inst.instruction |= Rm << 3;
10639 }
10640 else
10641 {
10642 constraint (inst.operands[1].shifted
10643 && inst.operands[1].immisreg,
10644 _("shift must be constant"));
10645 if (inst.instruction < 0xffff)
10646 inst.instruction = THUMB_OP32 (inst.instruction);
10647 inst.instruction |= Rn << r0off;
10648 encode_thumb32_shifted_operand (1);
10649 }
10650 }
10651 }
10652 else
10653 {
10654 constraint (inst.instruction > 0xffff
10655 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10656 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10657 _("unshifted register required"));
10658 constraint (Rn > 7 || Rm > 7,
10659 BAD_HIREG);
10660
10661 inst.instruction = THUMB_OP16 (inst.instruction);
10662 inst.instruction |= Rn;
10663 inst.instruction |= Rm << 3;
10664 }
10665 }
10666
10667 static void
10668 do_t_mrs (void)
10669 {
10670 unsigned Rd;
10671 int flags;
10672
10673 if (do_vfp_nsyn_mrs () == SUCCESS)
10674 return;
10675
10676 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10677 if (flags == 0)
10678 {
10679 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10680 _("selected processor does not support "
10681 "requested special purpose register"));
10682 }
10683 else
10684 {
10685 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10686 _("selected processor does not support "
10687 "requested special purpose register"));
10688 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10689 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10690 _("'CPSR' or 'SPSR' expected"));
10691 }
10692
10693 Rd = inst.operands[0].reg;
10694 reject_bad_reg (Rd);
10695
10696 inst.instruction |= Rd << 8;
10697 inst.instruction |= (flags & SPSR_BIT) >> 2;
10698 inst.instruction |= inst.operands[1].imm & 0xff;
10699 }
10700
10701 static void
10702 do_t_msr (void)
10703 {
10704 int flags;
10705 unsigned Rn;
10706
10707 if (do_vfp_nsyn_msr () == SUCCESS)
10708 return;
10709
10710 constraint (!inst.operands[1].isreg,
10711 _("Thumb encoding does not support an immediate here"));
10712 flags = inst.operands[0].imm;
10713 if (flags & ~0xff)
10714 {
10715 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10716 _("selected processor does not support "
10717 "requested special purpose register"));
10718 }
10719 else
10720 {
10721 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10722 _("selected processor does not support "
10723 "requested special purpose register"));
10724 flags |= PSR_f;
10725 }
10726
10727 Rn = inst.operands[1].reg;
10728 reject_bad_reg (Rn);
10729
10730 inst.instruction |= (flags & SPSR_BIT) >> 2;
10731 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10732 inst.instruction |= (flags & 0xff);
10733 inst.instruction |= Rn << 16;
10734 }
10735
10736 static void
10737 do_t_mul (void)
10738 {
10739 bfd_boolean narrow;
10740 unsigned Rd, Rn, Rm;
10741
10742 if (!inst.operands[2].present)
10743 inst.operands[2].reg = inst.operands[0].reg;
10744
10745 Rd = inst.operands[0].reg;
10746 Rn = inst.operands[1].reg;
10747 Rm = inst.operands[2].reg;
10748
10749 if (unified_syntax)
10750 {
10751 if (inst.size_req == 4
10752 || (Rd != Rn
10753 && Rd != Rm)
10754 || Rn > 7
10755 || Rm > 7)
10756 narrow = FALSE;
10757 else if (inst.instruction == T_MNEM_muls)
10758 narrow = !in_it_block ();
10759 else
10760 narrow = in_it_block ();
10761 }
10762 else
10763 {
10764 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10765 constraint (Rn > 7 || Rm > 7,
10766 BAD_HIREG);
10767 narrow = TRUE;
10768 }
10769
10770 if (narrow)
10771 {
10772 /* 16-bit MULS/Conditional MUL. */
10773 inst.instruction = THUMB_OP16 (inst.instruction);
10774 inst.instruction |= Rd;
10775
10776 if (Rd == Rn)
10777 inst.instruction |= Rm << 3;
10778 else if (Rd == Rm)
10779 inst.instruction |= Rn << 3;
10780 else
10781 constraint (1, _("dest must overlap one source register"));
10782 }
10783 else
10784 {
10785 constraint (inst.instruction != T_MNEM_mul,
10786 _("Thumb-2 MUL must not set flags"));
10787 /* 32-bit MUL. */
10788 inst.instruction = THUMB_OP32 (inst.instruction);
10789 inst.instruction |= Rd << 8;
10790 inst.instruction |= Rn << 16;
10791 inst.instruction |= Rm << 0;
10792
10793 reject_bad_reg (Rd);
10794 reject_bad_reg (Rn);
10795 reject_bad_reg (Rm);
10796 }
10797 }
10798
10799 static void
10800 do_t_mull (void)
10801 {
10802 unsigned RdLo, RdHi, Rn, Rm;
10803
10804 RdLo = inst.operands[0].reg;
10805 RdHi = inst.operands[1].reg;
10806 Rn = inst.operands[2].reg;
10807 Rm = inst.operands[3].reg;
10808
10809 reject_bad_reg (RdLo);
10810 reject_bad_reg (RdHi);
10811 reject_bad_reg (Rn);
10812 reject_bad_reg (Rm);
10813
10814 inst.instruction |= RdLo << 12;
10815 inst.instruction |= RdHi << 8;
10816 inst.instruction |= Rn << 16;
10817 inst.instruction |= Rm;
10818
10819 if (RdLo == RdHi)
10820 as_tsktsk (_("rdhi and rdlo must be different"));
10821 }
10822
10823 static void
10824 do_t_nop (void)
10825 {
10826 set_it_insn_type (NEUTRAL_IT_INSN);
10827
10828 if (unified_syntax)
10829 {
10830 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10831 {
10832 inst.instruction = THUMB_OP32 (inst.instruction);
10833 inst.instruction |= inst.operands[0].imm;
10834 }
10835 else
10836 {
10837 /* PR9722: Check for Thumb2 availability before
10838 generating a thumb2 nop instruction. */
10839 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
10840 {
10841 inst.instruction = THUMB_OP16 (inst.instruction);
10842 inst.instruction |= inst.operands[0].imm << 4;
10843 }
10844 else
10845 inst.instruction = 0x46c0;
10846 }
10847 }
10848 else
10849 {
10850 constraint (inst.operands[0].present,
10851 _("Thumb does not support NOP with hints"));
10852 inst.instruction = 0x46c0;
10853 }
10854 }
10855
10856 static void
10857 do_t_neg (void)
10858 {
10859 if (unified_syntax)
10860 {
10861 bfd_boolean narrow;
10862
10863 if (THUMB_SETS_FLAGS (inst.instruction))
10864 narrow = !in_it_block ();
10865 else
10866 narrow = in_it_block ();
10867 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10868 narrow = FALSE;
10869 if (inst.size_req == 4)
10870 narrow = FALSE;
10871
10872 if (!narrow)
10873 {
10874 inst.instruction = THUMB_OP32 (inst.instruction);
10875 inst.instruction |= inst.operands[0].reg << 8;
10876 inst.instruction |= inst.operands[1].reg << 16;
10877 }
10878 else
10879 {
10880 inst.instruction = THUMB_OP16 (inst.instruction);
10881 inst.instruction |= inst.operands[0].reg;
10882 inst.instruction |= inst.operands[1].reg << 3;
10883 }
10884 }
10885 else
10886 {
10887 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10888 BAD_HIREG);
10889 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10890
10891 inst.instruction = THUMB_OP16 (inst.instruction);
10892 inst.instruction |= inst.operands[0].reg;
10893 inst.instruction |= inst.operands[1].reg << 3;
10894 }
10895 }
10896
10897 static void
10898 do_t_orn (void)
10899 {
10900 unsigned Rd, Rn;
10901
10902 Rd = inst.operands[0].reg;
10903 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10904
10905 reject_bad_reg (Rd);
10906 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10907 reject_bad_reg (Rn);
10908
10909 inst.instruction |= Rd << 8;
10910 inst.instruction |= Rn << 16;
10911
10912 if (!inst.operands[2].isreg)
10913 {
10914 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10915 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10916 }
10917 else
10918 {
10919 unsigned Rm;
10920
10921 Rm = inst.operands[2].reg;
10922 reject_bad_reg (Rm);
10923
10924 constraint (inst.operands[2].shifted
10925 && inst.operands[2].immisreg,
10926 _("shift must be constant"));
10927 encode_thumb32_shifted_operand (2);
10928 }
10929 }
10930
10931 static void
10932 do_t_pkhbt (void)
10933 {
10934 unsigned Rd, Rn, Rm;
10935
10936 Rd = inst.operands[0].reg;
10937 Rn = inst.operands[1].reg;
10938 Rm = inst.operands[2].reg;
10939
10940 reject_bad_reg (Rd);
10941 reject_bad_reg (Rn);
10942 reject_bad_reg (Rm);
10943
10944 inst.instruction |= Rd << 8;
10945 inst.instruction |= Rn << 16;
10946 inst.instruction |= Rm;
10947 if (inst.operands[3].present)
10948 {
10949 unsigned int val = inst.reloc.exp.X_add_number;
10950 constraint (inst.reloc.exp.X_op != O_constant,
10951 _("expression too complex"));
10952 inst.instruction |= (val & 0x1c) << 10;
10953 inst.instruction |= (val & 0x03) << 6;
10954 }
10955 }
10956
10957 static void
10958 do_t_pkhtb (void)
10959 {
10960 if (!inst.operands[3].present)
10961 {
10962 unsigned Rtmp;
10963
10964 inst.instruction &= ~0x00000020;
10965
10966 /* PR 10168. Swap the Rm and Rn registers. */
10967 Rtmp = inst.operands[1].reg;
10968 inst.operands[1].reg = inst.operands[2].reg;
10969 inst.operands[2].reg = Rtmp;
10970 }
10971 do_t_pkhbt ();
10972 }
10973
10974 static void
10975 do_t_pld (void)
10976 {
10977 if (inst.operands[0].immisreg)
10978 reject_bad_reg (inst.operands[0].imm);
10979
10980 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10981 }
10982
10983 static void
10984 do_t_push_pop (void)
10985 {
10986 unsigned mask;
10987
10988 constraint (inst.operands[0].writeback,
10989 _("push/pop do not support {reglist}^"));
10990 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10991 _("expression too complex"));
10992
10993 mask = inst.operands[0].imm;
10994 if ((mask & ~0xff) == 0)
10995 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10996 else if ((inst.instruction == T_MNEM_push
10997 && (mask & ~0xff) == 1 << REG_LR)
10998 || (inst.instruction == T_MNEM_pop
10999 && (mask & ~0xff) == 1 << REG_PC))
11000 {
11001 inst.instruction = THUMB_OP16 (inst.instruction);
11002 inst.instruction |= THUMB_PP_PC_LR;
11003 inst.instruction |= mask & 0xff;
11004 }
11005 else if (unified_syntax)
11006 {
11007 inst.instruction = THUMB_OP32 (inst.instruction);
11008 encode_thumb2_ldmstm (13, mask, TRUE);
11009 }
11010 else
11011 {
11012 inst.error = _("invalid register list to push/pop instruction");
11013 return;
11014 }
11015 }
11016
11017 static void
11018 do_t_rbit (void)
11019 {
11020 unsigned Rd, Rm;
11021
11022 Rd = inst.operands[0].reg;
11023 Rm = inst.operands[1].reg;
11024
11025 reject_bad_reg (Rd);
11026 reject_bad_reg (Rm);
11027
11028 inst.instruction |= Rd << 8;
11029 inst.instruction |= Rm << 16;
11030 inst.instruction |= Rm;
11031 }
11032
11033 static void
11034 do_t_rev (void)
11035 {
11036 unsigned Rd, Rm;
11037
11038 Rd = inst.operands[0].reg;
11039 Rm = inst.operands[1].reg;
11040
11041 reject_bad_reg (Rd);
11042 reject_bad_reg (Rm);
11043
11044 if (Rd <= 7 && Rm <= 7
11045 && inst.size_req != 4)
11046 {
11047 inst.instruction = THUMB_OP16 (inst.instruction);
11048 inst.instruction |= Rd;
11049 inst.instruction |= Rm << 3;
11050 }
11051 else if (unified_syntax)
11052 {
11053 inst.instruction = THUMB_OP32 (inst.instruction);
11054 inst.instruction |= Rd << 8;
11055 inst.instruction |= Rm << 16;
11056 inst.instruction |= Rm;
11057 }
11058 else
11059 inst.error = BAD_HIREG;
11060 }
11061
11062 static void
11063 do_t_rrx (void)
11064 {
11065 unsigned Rd, Rm;
11066
11067 Rd = inst.operands[0].reg;
11068 Rm = inst.operands[1].reg;
11069
11070 reject_bad_reg (Rd);
11071 reject_bad_reg (Rm);
11072
11073 inst.instruction |= Rd << 8;
11074 inst.instruction |= Rm;
11075 }
11076
11077 static void
11078 do_t_rsb (void)
11079 {
11080 unsigned Rd, Rs;
11081
11082 Rd = inst.operands[0].reg;
11083 Rs = (inst.operands[1].present
11084 ? inst.operands[1].reg /* Rd, Rs, foo */
11085 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11086
11087 reject_bad_reg (Rd);
11088 reject_bad_reg (Rs);
11089 if (inst.operands[2].isreg)
11090 reject_bad_reg (inst.operands[2].reg);
11091
11092 inst.instruction |= Rd << 8;
11093 inst.instruction |= Rs << 16;
11094 if (!inst.operands[2].isreg)
11095 {
11096 bfd_boolean narrow;
11097
11098 if ((inst.instruction & 0x00100000) != 0)
11099 narrow = !in_it_block ();
11100 else
11101 narrow = in_it_block ();
11102
11103 if (Rd > 7 || Rs > 7)
11104 narrow = FALSE;
11105
11106 if (inst.size_req == 4 || !unified_syntax)
11107 narrow = FALSE;
11108
11109 if (inst.reloc.exp.X_op != O_constant
11110 || inst.reloc.exp.X_add_number != 0)
11111 narrow = FALSE;
11112
11113 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11114 relaxation, but it doesn't seem worth the hassle. */
11115 if (narrow)
11116 {
11117 inst.reloc.type = BFD_RELOC_UNUSED;
11118 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11119 inst.instruction |= Rs << 3;
11120 inst.instruction |= Rd;
11121 }
11122 else
11123 {
11124 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11125 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11126 }
11127 }
11128 else
11129 encode_thumb32_shifted_operand (2);
11130 }
11131
11132 static void
11133 do_t_setend (void)
11134 {
11135 set_it_insn_type (OUTSIDE_IT_INSN);
11136 if (inst.operands[0].imm)
11137 inst.instruction |= 0x8;
11138 }
11139
11140 static void
11141 do_t_shift (void)
11142 {
11143 if (!inst.operands[1].present)
11144 inst.operands[1].reg = inst.operands[0].reg;
11145
11146 if (unified_syntax)
11147 {
11148 bfd_boolean narrow;
11149 int shift_kind;
11150
11151 switch (inst.instruction)
11152 {
11153 case T_MNEM_asr:
11154 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11155 case T_MNEM_lsl:
11156 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11157 case T_MNEM_lsr:
11158 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11159 case T_MNEM_ror:
11160 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11161 default: abort ();
11162 }
11163
11164 if (THUMB_SETS_FLAGS (inst.instruction))
11165 narrow = !in_it_block ();
11166 else
11167 narrow = in_it_block ();
11168 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11169 narrow = FALSE;
11170 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11171 narrow = FALSE;
11172 if (inst.operands[2].isreg
11173 && (inst.operands[1].reg != inst.operands[0].reg
11174 || inst.operands[2].reg > 7))
11175 narrow = FALSE;
11176 if (inst.size_req == 4)
11177 narrow = FALSE;
11178
11179 reject_bad_reg (inst.operands[0].reg);
11180 reject_bad_reg (inst.operands[1].reg);
11181
11182 if (!narrow)
11183 {
11184 if (inst.operands[2].isreg)
11185 {
11186 reject_bad_reg (inst.operands[2].reg);
11187 inst.instruction = THUMB_OP32 (inst.instruction);
11188 inst.instruction |= inst.operands[0].reg << 8;
11189 inst.instruction |= inst.operands[1].reg << 16;
11190 inst.instruction |= inst.operands[2].reg;
11191 }
11192 else
11193 {
11194 inst.operands[1].shifted = 1;
11195 inst.operands[1].shift_kind = shift_kind;
11196 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11197 ? T_MNEM_movs : T_MNEM_mov);
11198 inst.instruction |= inst.operands[0].reg << 8;
11199 encode_thumb32_shifted_operand (1);
11200 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11201 inst.reloc.type = BFD_RELOC_UNUSED;
11202 }
11203 }
11204 else
11205 {
11206 if (inst.operands[2].isreg)
11207 {
11208 switch (shift_kind)
11209 {
11210 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11211 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11212 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11213 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11214 default: abort ();
11215 }
11216
11217 inst.instruction |= inst.operands[0].reg;
11218 inst.instruction |= inst.operands[2].reg << 3;
11219 }
11220 else
11221 {
11222 switch (shift_kind)
11223 {
11224 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11225 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11226 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11227 default: abort ();
11228 }
11229 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11230 inst.instruction |= inst.operands[0].reg;
11231 inst.instruction |= inst.operands[1].reg << 3;
11232 }
11233 }
11234 }
11235 else
11236 {
11237 constraint (inst.operands[0].reg > 7
11238 || inst.operands[1].reg > 7, BAD_HIREG);
11239 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11240
11241 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11242 {
11243 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11244 constraint (inst.operands[0].reg != inst.operands[1].reg,
11245 _("source1 and dest must be same register"));
11246
11247 switch (inst.instruction)
11248 {
11249 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11250 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11251 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11252 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11253 default: abort ();
11254 }
11255
11256 inst.instruction |= inst.operands[0].reg;
11257 inst.instruction |= inst.operands[2].reg << 3;
11258 }
11259 else
11260 {
11261 switch (inst.instruction)
11262 {
11263 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11264 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11265 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11266 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11267 default: abort ();
11268 }
11269 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11270 inst.instruction |= inst.operands[0].reg;
11271 inst.instruction |= inst.operands[1].reg << 3;
11272 }
11273 }
11274 }
11275
11276 static void
11277 do_t_simd (void)
11278 {
11279 unsigned Rd, Rn, Rm;
11280
11281 Rd = inst.operands[0].reg;
11282 Rn = inst.operands[1].reg;
11283 Rm = inst.operands[2].reg;
11284
11285 reject_bad_reg (Rd);
11286 reject_bad_reg (Rn);
11287 reject_bad_reg (Rm);
11288
11289 inst.instruction |= Rd << 8;
11290 inst.instruction |= Rn << 16;
11291 inst.instruction |= Rm;
11292 }
11293
11294 static void
11295 do_t_simd2 (void)
11296 {
11297 unsigned Rd, Rn, Rm;
11298
11299 Rd = inst.operands[0].reg;
11300 Rm = inst.operands[1].reg;
11301 Rn = inst.operands[2].reg;
11302
11303 reject_bad_reg (Rd);
11304 reject_bad_reg (Rn);
11305 reject_bad_reg (Rm);
11306
11307 inst.instruction |= Rd << 8;
11308 inst.instruction |= Rn << 16;
11309 inst.instruction |= Rm;
11310 }
11311
11312 static void
11313 do_t_smc (void)
11314 {
11315 unsigned int value = inst.reloc.exp.X_add_number;
11316 constraint (inst.reloc.exp.X_op != O_constant,
11317 _("expression too complex"));
11318 inst.reloc.type = BFD_RELOC_UNUSED;
11319 inst.instruction |= (value & 0xf000) >> 12;
11320 inst.instruction |= (value & 0x0ff0);
11321 inst.instruction |= (value & 0x000f) << 16;
11322 }
11323
11324 static void
11325 do_t_ssat_usat (int bias)
11326 {
11327 unsigned Rd, Rn;
11328
11329 Rd = inst.operands[0].reg;
11330 Rn = inst.operands[2].reg;
11331
11332 reject_bad_reg (Rd);
11333 reject_bad_reg (Rn);
11334
11335 inst.instruction |= Rd << 8;
11336 inst.instruction |= inst.operands[1].imm - bias;
11337 inst.instruction |= Rn << 16;
11338
11339 if (inst.operands[3].present)
11340 {
11341 offsetT shift_amount = inst.reloc.exp.X_add_number;
11342
11343 inst.reloc.type = BFD_RELOC_UNUSED;
11344
11345 constraint (inst.reloc.exp.X_op != O_constant,
11346 _("expression too complex"));
11347
11348 if (shift_amount != 0)
11349 {
11350 constraint (shift_amount > 31,
11351 _("shift expression is too large"));
11352
11353 if (inst.operands[3].shift_kind == SHIFT_ASR)
11354 inst.instruction |= 0x00200000; /* sh bit. */
11355
11356 inst.instruction |= (shift_amount & 0x1c) << 10;
11357 inst.instruction |= (shift_amount & 0x03) << 6;
11358 }
11359 }
11360 }
11361
11362 static void
11363 do_t_ssat (void)
11364 {
11365 do_t_ssat_usat (1);
11366 }
11367
11368 static void
11369 do_t_ssat16 (void)
11370 {
11371 unsigned Rd, Rn;
11372
11373 Rd = inst.operands[0].reg;
11374 Rn = inst.operands[2].reg;
11375
11376 reject_bad_reg (Rd);
11377 reject_bad_reg (Rn);
11378
11379 inst.instruction |= Rd << 8;
11380 inst.instruction |= inst.operands[1].imm - 1;
11381 inst.instruction |= Rn << 16;
11382 }
11383
11384 static void
11385 do_t_strex (void)
11386 {
11387 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11388 || inst.operands[2].postind || inst.operands[2].writeback
11389 || inst.operands[2].immisreg || inst.operands[2].shifted
11390 || inst.operands[2].negative,
11391 BAD_ADDR_MODE);
11392
11393 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11394
11395 inst.instruction |= inst.operands[0].reg << 8;
11396 inst.instruction |= inst.operands[1].reg << 12;
11397 inst.instruction |= inst.operands[2].reg << 16;
11398 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11399 }
11400
11401 static void
11402 do_t_strexd (void)
11403 {
11404 if (!inst.operands[2].present)
11405 inst.operands[2].reg = inst.operands[1].reg + 1;
11406
11407 constraint (inst.operands[0].reg == inst.operands[1].reg
11408 || inst.operands[0].reg == inst.operands[2].reg
11409 || inst.operands[0].reg == inst.operands[3].reg,
11410 BAD_OVERLAP);
11411
11412 inst.instruction |= inst.operands[0].reg;
11413 inst.instruction |= inst.operands[1].reg << 12;
11414 inst.instruction |= inst.operands[2].reg << 8;
11415 inst.instruction |= inst.operands[3].reg << 16;
11416 }
11417
11418 static void
11419 do_t_sxtah (void)
11420 {
11421 unsigned Rd, Rn, Rm;
11422
11423 Rd = inst.operands[0].reg;
11424 Rn = inst.operands[1].reg;
11425 Rm = inst.operands[2].reg;
11426
11427 reject_bad_reg (Rd);
11428 reject_bad_reg (Rn);
11429 reject_bad_reg (Rm);
11430
11431 inst.instruction |= Rd << 8;
11432 inst.instruction |= Rn << 16;
11433 inst.instruction |= Rm;
11434 inst.instruction |= inst.operands[3].imm << 4;
11435 }
11436
11437 static void
11438 do_t_sxth (void)
11439 {
11440 unsigned Rd, Rm;
11441
11442 Rd = inst.operands[0].reg;
11443 Rm = inst.operands[1].reg;
11444
11445 reject_bad_reg (Rd);
11446 reject_bad_reg (Rm);
11447
11448 if (inst.instruction <= 0xffff
11449 && inst.size_req != 4
11450 && Rd <= 7 && Rm <= 7
11451 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11452 {
11453 inst.instruction = THUMB_OP16 (inst.instruction);
11454 inst.instruction |= Rd;
11455 inst.instruction |= Rm << 3;
11456 }
11457 else if (unified_syntax)
11458 {
11459 if (inst.instruction <= 0xffff)
11460 inst.instruction = THUMB_OP32 (inst.instruction);
11461 inst.instruction |= Rd << 8;
11462 inst.instruction |= Rm;
11463 inst.instruction |= inst.operands[2].imm << 4;
11464 }
11465 else
11466 {
11467 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11468 _("Thumb encoding does not support rotation"));
11469 constraint (1, BAD_HIREG);
11470 }
11471 }
11472
11473 static void
11474 do_t_swi (void)
11475 {
11476 inst.reloc.type = BFD_RELOC_ARM_SWI;
11477 }
11478
11479 static void
11480 do_t_tb (void)
11481 {
11482 unsigned Rn, Rm;
11483 int half;
11484
11485 half = (inst.instruction & 0x10) != 0;
11486 set_it_insn_type_last ();
11487 constraint (inst.operands[0].immisreg,
11488 _("instruction requires register index"));
11489
11490 Rn = inst.operands[0].reg;
11491 Rm = inst.operands[0].imm;
11492
11493 constraint (Rn == REG_SP, BAD_SP);
11494 reject_bad_reg (Rm);
11495
11496 constraint (!half && inst.operands[0].shifted,
11497 _("instruction does not allow shifted index"));
11498 inst.instruction |= (Rn << 16) | Rm;
11499 }
11500
11501 static void
11502 do_t_usat (void)
11503 {
11504 do_t_ssat_usat (0);
11505 }
11506
11507 static void
11508 do_t_usat16 (void)
11509 {
11510 unsigned Rd, Rn;
11511
11512 Rd = inst.operands[0].reg;
11513 Rn = inst.operands[2].reg;
11514
11515 reject_bad_reg (Rd);
11516 reject_bad_reg (Rn);
11517
11518 inst.instruction |= Rd << 8;
11519 inst.instruction |= inst.operands[1].imm;
11520 inst.instruction |= Rn << 16;
11521 }
11522
11523 /* Neon instruction encoder helpers. */
11524
11525 /* Encodings for the different types for various Neon opcodes. */
11526
11527 /* An "invalid" code for the following tables. */
11528 #define N_INV -1u
11529
11530 struct neon_tab_entry
11531 {
11532 unsigned integer;
11533 unsigned float_or_poly;
11534 unsigned scalar_or_imm;
11535 };
11536
11537 /* Map overloaded Neon opcodes to their respective encodings. */
11538 #define NEON_ENC_TAB \
11539 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11540 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11541 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11542 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11543 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11544 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11545 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11546 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11547 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11548 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11549 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11550 /* Register variants of the following two instructions are encoded as
11551 vcge / vcgt with the operands reversed. */ \
11552 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11553 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11554 X(vfma, N_INV, 0x0000c10, N_INV), \
11555 X(vfms, N_INV, 0x0200c10, N_INV), \
11556 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11557 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11558 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11559 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11560 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11561 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11562 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11563 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11564 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11565 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11566 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11567 X(vshl, 0x0000400, N_INV, 0x0800510), \
11568 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11569 X(vand, 0x0000110, N_INV, 0x0800030), \
11570 X(vbic, 0x0100110, N_INV, 0x0800030), \
11571 X(veor, 0x1000110, N_INV, N_INV), \
11572 X(vorn, 0x0300110, N_INV, 0x0800010), \
11573 X(vorr, 0x0200110, N_INV, 0x0800010), \
11574 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11575 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11576 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11577 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11578 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11579 X(vst1, 0x0000000, 0x0800000, N_INV), \
11580 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11581 X(vst2, 0x0000100, 0x0800100, N_INV), \
11582 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11583 X(vst3, 0x0000200, 0x0800200, N_INV), \
11584 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11585 X(vst4, 0x0000300, 0x0800300, N_INV), \
11586 X(vmovn, 0x1b20200, N_INV, N_INV), \
11587 X(vtrn, 0x1b20080, N_INV, N_INV), \
11588 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11589 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11590 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11591 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11592 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11593 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11594 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11595 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11596 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11597 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11598 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11599
11600 enum neon_opc
11601 {
11602 #define X(OPC,I,F,S) N_MNEM_##OPC
11603 NEON_ENC_TAB
11604 #undef X
11605 };
11606
11607 static const struct neon_tab_entry neon_enc_tab[] =
11608 {
11609 #define X(OPC,I,F,S) { (I), (F), (S) }
11610 NEON_ENC_TAB
11611 #undef X
11612 };
11613
11614 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11615 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11616 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11617 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11618 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11619 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11620 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11621 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11622 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11623 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11624 #define NEON_ENC_SINGLE_(X) \
11625 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11626 #define NEON_ENC_DOUBLE_(X) \
11627 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11628
11629 #define NEON_ENCODE(type, inst) \
11630 do \
11631 { \
11632 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11633 inst.is_neon = 1; \
11634 } \
11635 while (0)
11636
11637 #define check_neon_suffixes \
11638 do \
11639 { \
11640 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11641 { \
11642 as_bad (_("invalid neon suffix for non neon instruction")); \
11643 return; \
11644 } \
11645 } \
11646 while (0)
11647
11648 /* Define shapes for instruction operands. The following mnemonic characters
11649 are used in this table:
11650
11651 F - VFP S<n> register
11652 D - Neon D<n> register
11653 Q - Neon Q<n> register
11654 I - Immediate
11655 S - Scalar
11656 R - ARM register
11657 L - D<n> register list
11658
11659 This table is used to generate various data:
11660 - enumerations of the form NS_DDR to be used as arguments to
11661 neon_select_shape.
11662 - a table classifying shapes into single, double, quad, mixed.
11663 - a table used to drive neon_select_shape. */
11664
11665 #define NEON_SHAPE_DEF \
11666 X(3, (D, D, D), DOUBLE), \
11667 X(3, (Q, Q, Q), QUAD), \
11668 X(3, (D, D, I), DOUBLE), \
11669 X(3, (Q, Q, I), QUAD), \
11670 X(3, (D, D, S), DOUBLE), \
11671 X(3, (Q, Q, S), QUAD), \
11672 X(2, (D, D), DOUBLE), \
11673 X(2, (Q, Q), QUAD), \
11674 X(2, (D, S), DOUBLE), \
11675 X(2, (Q, S), QUAD), \
11676 X(2, (D, R), DOUBLE), \
11677 X(2, (Q, R), QUAD), \
11678 X(2, (D, I), DOUBLE), \
11679 X(2, (Q, I), QUAD), \
11680 X(3, (D, L, D), DOUBLE), \
11681 X(2, (D, Q), MIXED), \
11682 X(2, (Q, D), MIXED), \
11683 X(3, (D, Q, I), MIXED), \
11684 X(3, (Q, D, I), MIXED), \
11685 X(3, (Q, D, D), MIXED), \
11686 X(3, (D, Q, Q), MIXED), \
11687 X(3, (Q, Q, D), MIXED), \
11688 X(3, (Q, D, S), MIXED), \
11689 X(3, (D, Q, S), MIXED), \
11690 X(4, (D, D, D, I), DOUBLE), \
11691 X(4, (Q, Q, Q, I), QUAD), \
11692 X(2, (F, F), SINGLE), \
11693 X(3, (F, F, F), SINGLE), \
11694 X(2, (F, I), SINGLE), \
11695 X(2, (F, D), MIXED), \
11696 X(2, (D, F), MIXED), \
11697 X(3, (F, F, I), MIXED), \
11698 X(4, (R, R, F, F), SINGLE), \
11699 X(4, (F, F, R, R), SINGLE), \
11700 X(3, (D, R, R), DOUBLE), \
11701 X(3, (R, R, D), DOUBLE), \
11702 X(2, (S, R), SINGLE), \
11703 X(2, (R, S), SINGLE), \
11704 X(2, (F, R), SINGLE), \
11705 X(2, (R, F), SINGLE)
11706
11707 #define S2(A,B) NS_##A##B
11708 #define S3(A,B,C) NS_##A##B##C
11709 #define S4(A,B,C,D) NS_##A##B##C##D
11710
11711 #define X(N, L, C) S##N L
11712
11713 enum neon_shape
11714 {
11715 NEON_SHAPE_DEF,
11716 NS_NULL
11717 };
11718
11719 #undef X
11720 #undef S2
11721 #undef S3
11722 #undef S4
11723
11724 enum neon_shape_class
11725 {
11726 SC_SINGLE,
11727 SC_DOUBLE,
11728 SC_QUAD,
11729 SC_MIXED
11730 };
11731
11732 #define X(N, L, C) SC_##C
11733
11734 static enum neon_shape_class neon_shape_class[] =
11735 {
11736 NEON_SHAPE_DEF
11737 };
11738
11739 #undef X
11740
11741 enum neon_shape_el
11742 {
11743 SE_F,
11744 SE_D,
11745 SE_Q,
11746 SE_I,
11747 SE_S,
11748 SE_R,
11749 SE_L
11750 };
11751
11752 /* Register widths of above. */
11753 static unsigned neon_shape_el_size[] =
11754 {
11755 32,
11756 64,
11757 128,
11758 0,
11759 32,
11760 32,
11761 0
11762 };
11763
11764 struct neon_shape_info
11765 {
11766 unsigned els;
11767 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11768 };
11769
11770 #define S2(A,B) { SE_##A, SE_##B }
11771 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11772 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11773
11774 #define X(N, L, C) { N, S##N L }
11775
11776 static struct neon_shape_info neon_shape_tab[] =
11777 {
11778 NEON_SHAPE_DEF
11779 };
11780
11781 #undef X
11782 #undef S2
11783 #undef S3
11784 #undef S4
11785
11786 /* Bit masks used in type checking given instructions.
11787 'N_EQK' means the type must be the same as (or based on in some way) the key
11788 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11789 set, various other bits can be set as well in order to modify the meaning of
11790 the type constraint. */
11791
11792 enum neon_type_mask
11793 {
11794 N_S8 = 0x0000001,
11795 N_S16 = 0x0000002,
11796 N_S32 = 0x0000004,
11797 N_S64 = 0x0000008,
11798 N_U8 = 0x0000010,
11799 N_U16 = 0x0000020,
11800 N_U32 = 0x0000040,
11801 N_U64 = 0x0000080,
11802 N_I8 = 0x0000100,
11803 N_I16 = 0x0000200,
11804 N_I32 = 0x0000400,
11805 N_I64 = 0x0000800,
11806 N_8 = 0x0001000,
11807 N_16 = 0x0002000,
11808 N_32 = 0x0004000,
11809 N_64 = 0x0008000,
11810 N_P8 = 0x0010000,
11811 N_P16 = 0x0020000,
11812 N_F16 = 0x0040000,
11813 N_F32 = 0x0080000,
11814 N_F64 = 0x0100000,
11815 N_KEY = 0x1000000, /* Key element (main type specifier). */
11816 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11817 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11818 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11819 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11820 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11821 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11822 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11823 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11824 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11825 N_UTYP = 0,
11826 N_MAX_NONSPECIAL = N_F64
11827 };
11828
11829 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11830
11831 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11832 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11833 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11834 #define N_SUF_32 (N_SU_32 | N_F32)
11835 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11836 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11837
11838 /* Pass this as the first type argument to neon_check_type to ignore types
11839 altogether. */
11840 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11841
11842 /* Select a "shape" for the current instruction (describing register types or
11843 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11844 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11845 function of operand parsing, so this function doesn't need to be called.
11846 Shapes should be listed in order of decreasing length. */
11847
11848 static enum neon_shape
11849 neon_select_shape (enum neon_shape shape, ...)
11850 {
11851 va_list ap;
11852 enum neon_shape first_shape = shape;
11853
11854 /* Fix missing optional operands. FIXME: we don't know at this point how
11855 many arguments we should have, so this makes the assumption that we have
11856 > 1. This is true of all current Neon opcodes, I think, but may not be
11857 true in the future. */
11858 if (!inst.operands[1].present)
11859 inst.operands[1] = inst.operands[0];
11860
11861 va_start (ap, shape);
11862
11863 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
11864 {
11865 unsigned j;
11866 int matches = 1;
11867
11868 for (j = 0; j < neon_shape_tab[shape].els; j++)
11869 {
11870 if (!inst.operands[j].present)
11871 {
11872 matches = 0;
11873 break;
11874 }
11875
11876 switch (neon_shape_tab[shape].el[j])
11877 {
11878 case SE_F:
11879 if (!(inst.operands[j].isreg
11880 && inst.operands[j].isvec
11881 && inst.operands[j].issingle
11882 && !inst.operands[j].isquad))
11883 matches = 0;
11884 break;
11885
11886 case SE_D:
11887 if (!(inst.operands[j].isreg
11888 && inst.operands[j].isvec
11889 && !inst.operands[j].isquad
11890 && !inst.operands[j].issingle))
11891 matches = 0;
11892 break;
11893
11894 case SE_R:
11895 if (!(inst.operands[j].isreg
11896 && !inst.operands[j].isvec))
11897 matches = 0;
11898 break;
11899
11900 case SE_Q:
11901 if (!(inst.operands[j].isreg
11902 && inst.operands[j].isvec
11903 && inst.operands[j].isquad
11904 && !inst.operands[j].issingle))
11905 matches = 0;
11906 break;
11907
11908 case SE_I:
11909 if (!(!inst.operands[j].isreg
11910 && !inst.operands[j].isscalar))
11911 matches = 0;
11912 break;
11913
11914 case SE_S:
11915 if (!(!inst.operands[j].isreg
11916 && inst.operands[j].isscalar))
11917 matches = 0;
11918 break;
11919
11920 case SE_L:
11921 break;
11922 }
11923 if (!matches)
11924 break;
11925 }
11926 if (matches)
11927 break;
11928 }
11929
11930 va_end (ap);
11931
11932 if (shape == NS_NULL && first_shape != NS_NULL)
11933 first_error (_("invalid instruction shape"));
11934
11935 return shape;
11936 }
11937
11938 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11939 means the Q bit should be set). */
11940
11941 static int
11942 neon_quad (enum neon_shape shape)
11943 {
11944 return neon_shape_class[shape] == SC_QUAD;
11945 }
11946
11947 static void
11948 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11949 unsigned *g_size)
11950 {
11951 /* Allow modification to be made to types which are constrained to be
11952 based on the key element, based on bits set alongside N_EQK. */
11953 if ((typebits & N_EQK) != 0)
11954 {
11955 if ((typebits & N_HLF) != 0)
11956 *g_size /= 2;
11957 else if ((typebits & N_DBL) != 0)
11958 *g_size *= 2;
11959 if ((typebits & N_SGN) != 0)
11960 *g_type = NT_signed;
11961 else if ((typebits & N_UNS) != 0)
11962 *g_type = NT_unsigned;
11963 else if ((typebits & N_INT) != 0)
11964 *g_type = NT_integer;
11965 else if ((typebits & N_FLT) != 0)
11966 *g_type = NT_float;
11967 else if ((typebits & N_SIZ) != 0)
11968 *g_type = NT_untyped;
11969 }
11970 }
11971
11972 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11973 operand type, i.e. the single type specified in a Neon instruction when it
11974 is the only one given. */
11975
11976 static struct neon_type_el
11977 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11978 {
11979 struct neon_type_el dest = *key;
11980
11981 gas_assert ((thisarg & N_EQK) != 0);
11982
11983 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11984
11985 return dest;
11986 }
11987
11988 /* Convert Neon type and size into compact bitmask representation. */
11989
11990 static enum neon_type_mask
11991 type_chk_of_el_type (enum neon_el_type type, unsigned size)
11992 {
11993 switch (type)
11994 {
11995 case NT_untyped:
11996 switch (size)
11997 {
11998 case 8: return N_8;
11999 case 16: return N_16;
12000 case 32: return N_32;
12001 case 64: return N_64;
12002 default: ;
12003 }
12004 break;
12005
12006 case NT_integer:
12007 switch (size)
12008 {
12009 case 8: return N_I8;
12010 case 16: return N_I16;
12011 case 32: return N_I32;
12012 case 64: return N_I64;
12013 default: ;
12014 }
12015 break;
12016
12017 case NT_float:
12018 switch (size)
12019 {
12020 case 16: return N_F16;
12021 case 32: return N_F32;
12022 case 64: return N_F64;
12023 default: ;
12024 }
12025 break;
12026
12027 case NT_poly:
12028 switch (size)
12029 {
12030 case 8: return N_P8;
12031 case 16: return N_P16;
12032 default: ;
12033 }
12034 break;
12035
12036 case NT_signed:
12037 switch (size)
12038 {
12039 case 8: return N_S8;
12040 case 16: return N_S16;
12041 case 32: return N_S32;
12042 case 64: return N_S64;
12043 default: ;
12044 }
12045 break;
12046
12047 case NT_unsigned:
12048 switch (size)
12049 {
12050 case 8: return N_U8;
12051 case 16: return N_U16;
12052 case 32: return N_U32;
12053 case 64: return N_U64;
12054 default: ;
12055 }
12056 break;
12057
12058 default: ;
12059 }
12060
12061 return N_UTYP;
12062 }
12063
12064 /* Convert compact Neon bitmask type representation to a type and size. Only
12065 handles the case where a single bit is set in the mask. */
12066
12067 static int
12068 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12069 enum neon_type_mask mask)
12070 {
12071 if ((mask & N_EQK) != 0)
12072 return FAIL;
12073
12074 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12075 *size = 8;
12076 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12077 *size = 16;
12078 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12079 *size = 32;
12080 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12081 *size = 64;
12082 else
12083 return FAIL;
12084
12085 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12086 *type = NT_signed;
12087 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12088 *type = NT_unsigned;
12089 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12090 *type = NT_integer;
12091 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12092 *type = NT_untyped;
12093 else if ((mask & (N_P8 | N_P16)) != 0)
12094 *type = NT_poly;
12095 else if ((mask & (N_F32 | N_F64)) != 0)
12096 *type = NT_float;
12097 else
12098 return FAIL;
12099
12100 return SUCCESS;
12101 }
12102
12103 /* Modify a bitmask of allowed types. This is only needed for type
12104 relaxation. */
12105
12106 static unsigned
12107 modify_types_allowed (unsigned allowed, unsigned mods)
12108 {
12109 unsigned size;
12110 enum neon_el_type type;
12111 unsigned destmask;
12112 int i;
12113
12114 destmask = 0;
12115
12116 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12117 {
12118 if (el_type_of_type_chk (&type, &size,
12119 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12120 {
12121 neon_modify_type_size (mods, &type, &size);
12122 destmask |= type_chk_of_el_type (type, size);
12123 }
12124 }
12125
12126 return destmask;
12127 }
12128
12129 /* Check type and return type classification.
12130 The manual states (paraphrase): If one datatype is given, it indicates the
12131 type given in:
12132 - the second operand, if there is one
12133 - the operand, if there is no second operand
12134 - the result, if there are no operands.
12135 This isn't quite good enough though, so we use a concept of a "key" datatype
12136 which is set on a per-instruction basis, which is the one which matters when
12137 only one data type is written.
12138 Note: this function has side-effects (e.g. filling in missing operands). All
12139 Neon instructions should call it before performing bit encoding. */
12140
12141 static struct neon_type_el
12142 neon_check_type (unsigned els, enum neon_shape ns, ...)
12143 {
12144 va_list ap;
12145 unsigned i, pass, key_el = 0;
12146 unsigned types[NEON_MAX_TYPE_ELS];
12147 enum neon_el_type k_type = NT_invtype;
12148 unsigned k_size = -1u;
12149 struct neon_type_el badtype = {NT_invtype, -1};
12150 unsigned key_allowed = 0;
12151
12152 /* Optional registers in Neon instructions are always (not) in operand 1.
12153 Fill in the missing operand here, if it was omitted. */
12154 if (els > 1 && !inst.operands[1].present)
12155 inst.operands[1] = inst.operands[0];
12156
12157 /* Suck up all the varargs. */
12158 va_start (ap, ns);
12159 for (i = 0; i < els; i++)
12160 {
12161 unsigned thisarg = va_arg (ap, unsigned);
12162 if (thisarg == N_IGNORE_TYPE)
12163 {
12164 va_end (ap);
12165 return badtype;
12166 }
12167 types[i] = thisarg;
12168 if ((thisarg & N_KEY) != 0)
12169 key_el = i;
12170 }
12171 va_end (ap);
12172
12173 if (inst.vectype.elems > 0)
12174 for (i = 0; i < els; i++)
12175 if (inst.operands[i].vectype.type != NT_invtype)
12176 {
12177 first_error (_("types specified in both the mnemonic and operands"));
12178 return badtype;
12179 }
12180
12181 /* Duplicate inst.vectype elements here as necessary.
12182 FIXME: No idea if this is exactly the same as the ARM assembler,
12183 particularly when an insn takes one register and one non-register
12184 operand. */
12185 if (inst.vectype.elems == 1 && els > 1)
12186 {
12187 unsigned j;
12188 inst.vectype.elems = els;
12189 inst.vectype.el[key_el] = inst.vectype.el[0];
12190 for (j = 0; j < els; j++)
12191 if (j != key_el)
12192 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12193 types[j]);
12194 }
12195 else if (inst.vectype.elems == 0 && els > 0)
12196 {
12197 unsigned j;
12198 /* No types were given after the mnemonic, so look for types specified
12199 after each operand. We allow some flexibility here; as long as the
12200 "key" operand has a type, we can infer the others. */
12201 for (j = 0; j < els; j++)
12202 if (inst.operands[j].vectype.type != NT_invtype)
12203 inst.vectype.el[j] = inst.operands[j].vectype;
12204
12205 if (inst.operands[key_el].vectype.type != NT_invtype)
12206 {
12207 for (j = 0; j < els; j++)
12208 if (inst.operands[j].vectype.type == NT_invtype)
12209 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12210 types[j]);
12211 }
12212 else
12213 {
12214 first_error (_("operand types can't be inferred"));
12215 return badtype;
12216 }
12217 }
12218 else if (inst.vectype.elems != els)
12219 {
12220 first_error (_("type specifier has the wrong number of parts"));
12221 return badtype;
12222 }
12223
12224 for (pass = 0; pass < 2; pass++)
12225 {
12226 for (i = 0; i < els; i++)
12227 {
12228 unsigned thisarg = types[i];
12229 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12230 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12231 enum neon_el_type g_type = inst.vectype.el[i].type;
12232 unsigned g_size = inst.vectype.el[i].size;
12233
12234 /* Decay more-specific signed & unsigned types to sign-insensitive
12235 integer types if sign-specific variants are unavailable. */
12236 if ((g_type == NT_signed || g_type == NT_unsigned)
12237 && (types_allowed & N_SU_ALL) == 0)
12238 g_type = NT_integer;
12239
12240 /* If only untyped args are allowed, decay any more specific types to
12241 them. Some instructions only care about signs for some element
12242 sizes, so handle that properly. */
12243 if ((g_size == 8 && (types_allowed & N_8) != 0)
12244 || (g_size == 16 && (types_allowed & N_16) != 0)
12245 || (g_size == 32 && (types_allowed & N_32) != 0)
12246 || (g_size == 64 && (types_allowed & N_64) != 0))
12247 g_type = NT_untyped;
12248
12249 if (pass == 0)
12250 {
12251 if ((thisarg & N_KEY) != 0)
12252 {
12253 k_type = g_type;
12254 k_size = g_size;
12255 key_allowed = thisarg & ~N_KEY;
12256 }
12257 }
12258 else
12259 {
12260 if ((thisarg & N_VFP) != 0)
12261 {
12262 enum neon_shape_el regshape;
12263 unsigned regwidth, match;
12264
12265 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12266 if (ns == NS_NULL)
12267 {
12268 first_error (_("invalid instruction shape"));
12269 return badtype;
12270 }
12271 regshape = neon_shape_tab[ns].el[i];
12272 regwidth = neon_shape_el_size[regshape];
12273
12274 /* In VFP mode, operands must match register widths. If we
12275 have a key operand, use its width, else use the width of
12276 the current operand. */
12277 if (k_size != -1u)
12278 match = k_size;
12279 else
12280 match = g_size;
12281
12282 if (regwidth != match)
12283 {
12284 first_error (_("operand size must match register width"));
12285 return badtype;
12286 }
12287 }
12288
12289 if ((thisarg & N_EQK) == 0)
12290 {
12291 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12292
12293 if ((given_type & types_allowed) == 0)
12294 {
12295 first_error (_("bad type in Neon instruction"));
12296 return badtype;
12297 }
12298 }
12299 else
12300 {
12301 enum neon_el_type mod_k_type = k_type;
12302 unsigned mod_k_size = k_size;
12303 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12304 if (g_type != mod_k_type || g_size != mod_k_size)
12305 {
12306 first_error (_("inconsistent types in Neon instruction"));
12307 return badtype;
12308 }
12309 }
12310 }
12311 }
12312 }
12313
12314 return inst.vectype.el[key_el];
12315 }
12316
12317 /* Neon-style VFP instruction forwarding. */
12318
12319 /* Thumb VFP instructions have 0xE in the condition field. */
12320
12321 static void
12322 do_vfp_cond_or_thumb (void)
12323 {
12324 inst.is_neon = 1;
12325
12326 if (thumb_mode)
12327 inst.instruction |= 0xe0000000;
12328 else
12329 inst.instruction |= inst.cond << 28;
12330 }
12331
12332 /* Look up and encode a simple mnemonic, for use as a helper function for the
12333 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12334 etc. It is assumed that operand parsing has already been done, and that the
12335 operands are in the form expected by the given opcode (this isn't necessarily
12336 the same as the form in which they were parsed, hence some massaging must
12337 take place before this function is called).
12338 Checks current arch version against that in the looked-up opcode. */
12339
12340 static void
12341 do_vfp_nsyn_opcode (const char *opname)
12342 {
12343 const struct asm_opcode *opcode;
12344
12345 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12346
12347 if (!opcode)
12348 abort ();
12349
12350 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12351 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12352 _(BAD_FPU));
12353
12354 inst.is_neon = 1;
12355
12356 if (thumb_mode)
12357 {
12358 inst.instruction = opcode->tvalue;
12359 opcode->tencode ();
12360 }
12361 else
12362 {
12363 inst.instruction = (inst.cond << 28) | opcode->avalue;
12364 opcode->aencode ();
12365 }
12366 }
12367
12368 static void
12369 do_vfp_nsyn_add_sub (enum neon_shape rs)
12370 {
12371 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12372
12373 if (rs == NS_FFF)
12374 {
12375 if (is_add)
12376 do_vfp_nsyn_opcode ("fadds");
12377 else
12378 do_vfp_nsyn_opcode ("fsubs");
12379 }
12380 else
12381 {
12382 if (is_add)
12383 do_vfp_nsyn_opcode ("faddd");
12384 else
12385 do_vfp_nsyn_opcode ("fsubd");
12386 }
12387 }
12388
12389 /* Check operand types to see if this is a VFP instruction, and if so call
12390 PFN (). */
12391
12392 static int
12393 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12394 {
12395 enum neon_shape rs;
12396 struct neon_type_el et;
12397
12398 switch (args)
12399 {
12400 case 2:
12401 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12402 et = neon_check_type (2, rs,
12403 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12404 break;
12405
12406 case 3:
12407 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12408 et = neon_check_type (3, rs,
12409 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12410 break;
12411
12412 default:
12413 abort ();
12414 }
12415
12416 if (et.type != NT_invtype)
12417 {
12418 pfn (rs);
12419 return SUCCESS;
12420 }
12421
12422 inst.error = NULL;
12423 return FAIL;
12424 }
12425
12426 static void
12427 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12428 {
12429 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12430
12431 if (rs == NS_FFF)
12432 {
12433 if (is_mla)
12434 do_vfp_nsyn_opcode ("fmacs");
12435 else
12436 do_vfp_nsyn_opcode ("fnmacs");
12437 }
12438 else
12439 {
12440 if (is_mla)
12441 do_vfp_nsyn_opcode ("fmacd");
12442 else
12443 do_vfp_nsyn_opcode ("fnmacd");
12444 }
12445 }
12446
12447 static void
12448 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12449 {
12450 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12451
12452 if (rs == NS_FFF)
12453 {
12454 if (is_fma)
12455 do_vfp_nsyn_opcode ("ffmas");
12456 else
12457 do_vfp_nsyn_opcode ("ffnmas");
12458 }
12459 else
12460 {
12461 if (is_fma)
12462 do_vfp_nsyn_opcode ("ffmad");
12463 else
12464 do_vfp_nsyn_opcode ("ffnmad");
12465 }
12466 }
12467
12468 static void
12469 do_vfp_nsyn_mul (enum neon_shape rs)
12470 {
12471 if (rs == NS_FFF)
12472 do_vfp_nsyn_opcode ("fmuls");
12473 else
12474 do_vfp_nsyn_opcode ("fmuld");
12475 }
12476
12477 static void
12478 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12479 {
12480 int is_neg = (inst.instruction & 0x80) != 0;
12481 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12482
12483 if (rs == NS_FF)
12484 {
12485 if (is_neg)
12486 do_vfp_nsyn_opcode ("fnegs");
12487 else
12488 do_vfp_nsyn_opcode ("fabss");
12489 }
12490 else
12491 {
12492 if (is_neg)
12493 do_vfp_nsyn_opcode ("fnegd");
12494 else
12495 do_vfp_nsyn_opcode ("fabsd");
12496 }
12497 }
12498
12499 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12500 insns belong to Neon, and are handled elsewhere. */
12501
12502 static void
12503 do_vfp_nsyn_ldm_stm (int is_dbmode)
12504 {
12505 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12506 if (is_ldm)
12507 {
12508 if (is_dbmode)
12509 do_vfp_nsyn_opcode ("fldmdbs");
12510 else
12511 do_vfp_nsyn_opcode ("fldmias");
12512 }
12513 else
12514 {
12515 if (is_dbmode)
12516 do_vfp_nsyn_opcode ("fstmdbs");
12517 else
12518 do_vfp_nsyn_opcode ("fstmias");
12519 }
12520 }
12521
12522 static void
12523 do_vfp_nsyn_sqrt (void)
12524 {
12525 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12526 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12527
12528 if (rs == NS_FF)
12529 do_vfp_nsyn_opcode ("fsqrts");
12530 else
12531 do_vfp_nsyn_opcode ("fsqrtd");
12532 }
12533
12534 static void
12535 do_vfp_nsyn_div (void)
12536 {
12537 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12538 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12539 N_F32 | N_F64 | N_KEY | N_VFP);
12540
12541 if (rs == NS_FFF)
12542 do_vfp_nsyn_opcode ("fdivs");
12543 else
12544 do_vfp_nsyn_opcode ("fdivd");
12545 }
12546
12547 static void
12548 do_vfp_nsyn_nmul (void)
12549 {
12550 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12551 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12552 N_F32 | N_F64 | N_KEY | N_VFP);
12553
12554 if (rs == NS_FFF)
12555 {
12556 NEON_ENCODE (SINGLE, inst);
12557 do_vfp_sp_dyadic ();
12558 }
12559 else
12560 {
12561 NEON_ENCODE (DOUBLE, inst);
12562 do_vfp_dp_rd_rn_rm ();
12563 }
12564 do_vfp_cond_or_thumb ();
12565 }
12566
12567 static void
12568 do_vfp_nsyn_cmp (void)
12569 {
12570 if (inst.operands[1].isreg)
12571 {
12572 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12573 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12574
12575 if (rs == NS_FF)
12576 {
12577 NEON_ENCODE (SINGLE, inst);
12578 do_vfp_sp_monadic ();
12579 }
12580 else
12581 {
12582 NEON_ENCODE (DOUBLE, inst);
12583 do_vfp_dp_rd_rm ();
12584 }
12585 }
12586 else
12587 {
12588 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12589 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12590
12591 switch (inst.instruction & 0x0fffffff)
12592 {
12593 case N_MNEM_vcmp:
12594 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12595 break;
12596 case N_MNEM_vcmpe:
12597 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12598 break;
12599 default:
12600 abort ();
12601 }
12602
12603 if (rs == NS_FI)
12604 {
12605 NEON_ENCODE (SINGLE, inst);
12606 do_vfp_sp_compare_z ();
12607 }
12608 else
12609 {
12610 NEON_ENCODE (DOUBLE, inst);
12611 do_vfp_dp_rd ();
12612 }
12613 }
12614 do_vfp_cond_or_thumb ();
12615 }
12616
12617 static void
12618 nsyn_insert_sp (void)
12619 {
12620 inst.operands[1] = inst.operands[0];
12621 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12622 inst.operands[0].reg = REG_SP;
12623 inst.operands[0].isreg = 1;
12624 inst.operands[0].writeback = 1;
12625 inst.operands[0].present = 1;
12626 }
12627
12628 static void
12629 do_vfp_nsyn_push (void)
12630 {
12631 nsyn_insert_sp ();
12632 if (inst.operands[1].issingle)
12633 do_vfp_nsyn_opcode ("fstmdbs");
12634 else
12635 do_vfp_nsyn_opcode ("fstmdbd");
12636 }
12637
12638 static void
12639 do_vfp_nsyn_pop (void)
12640 {
12641 nsyn_insert_sp ();
12642 if (inst.operands[1].issingle)
12643 do_vfp_nsyn_opcode ("fldmias");
12644 else
12645 do_vfp_nsyn_opcode ("fldmiad");
12646 }
12647
12648 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12649 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12650
12651 static void
12652 neon_dp_fixup (struct arm_it* insn)
12653 {
12654 unsigned int i = insn->instruction;
12655 insn->is_neon = 1;
12656
12657 if (thumb_mode)
12658 {
12659 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12660 if (i & (1 << 24))
12661 i |= 1 << 28;
12662
12663 i &= ~(1 << 24);
12664
12665 i |= 0xef000000;
12666 }
12667 else
12668 i |= 0xf2000000;
12669
12670 insn->instruction = i;
12671 }
12672
12673 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12674 (0, 1, 2, 3). */
12675
12676 static unsigned
12677 neon_logbits (unsigned x)
12678 {
12679 return ffs (x) - 4;
12680 }
12681
12682 #define LOW4(R) ((R) & 0xf)
12683 #define HI1(R) (((R) >> 4) & 1)
12684
12685 /* Encode insns with bit pattern:
12686
12687 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12688 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12689
12690 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12691 different meaning for some instruction. */
12692
12693 static void
12694 neon_three_same (int isquad, int ubit, int size)
12695 {
12696 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12697 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12698 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12699 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12700 inst.instruction |= LOW4 (inst.operands[2].reg);
12701 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12702 inst.instruction |= (isquad != 0) << 6;
12703 inst.instruction |= (ubit != 0) << 24;
12704 if (size != -1)
12705 inst.instruction |= neon_logbits (size) << 20;
12706
12707 neon_dp_fixup (&inst);
12708 }
12709
12710 /* Encode instructions of the form:
12711
12712 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12713 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12714
12715 Don't write size if SIZE == -1. */
12716
12717 static void
12718 neon_two_same (int qbit, int ubit, int size)
12719 {
12720 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12721 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12722 inst.instruction |= LOW4 (inst.operands[1].reg);
12723 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12724 inst.instruction |= (qbit != 0) << 6;
12725 inst.instruction |= (ubit != 0) << 24;
12726
12727 if (size != -1)
12728 inst.instruction |= neon_logbits (size) << 18;
12729
12730 neon_dp_fixup (&inst);
12731 }
12732
12733 /* Neon instruction encoders, in approximate order of appearance. */
12734
12735 static void
12736 do_neon_dyadic_i_su (void)
12737 {
12738 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12739 struct neon_type_el et = neon_check_type (3, rs,
12740 N_EQK, N_EQK, N_SU_32 | N_KEY);
12741 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12742 }
12743
12744 static void
12745 do_neon_dyadic_i64_su (void)
12746 {
12747 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12748 struct neon_type_el et = neon_check_type (3, rs,
12749 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12750 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12751 }
12752
12753 static void
12754 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12755 unsigned immbits)
12756 {
12757 unsigned size = et.size >> 3;
12758 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12759 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12760 inst.instruction |= LOW4 (inst.operands[1].reg);
12761 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12762 inst.instruction |= (isquad != 0) << 6;
12763 inst.instruction |= immbits << 16;
12764 inst.instruction |= (size >> 3) << 7;
12765 inst.instruction |= (size & 0x7) << 19;
12766 if (write_ubit)
12767 inst.instruction |= (uval != 0) << 24;
12768
12769 neon_dp_fixup (&inst);
12770 }
12771
12772 static void
12773 do_neon_shl_imm (void)
12774 {
12775 if (!inst.operands[2].isreg)
12776 {
12777 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12778 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12779 NEON_ENCODE (IMMED, inst);
12780 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12781 }
12782 else
12783 {
12784 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12785 struct neon_type_el et = neon_check_type (3, rs,
12786 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12787 unsigned int tmp;
12788
12789 /* VSHL/VQSHL 3-register variants have syntax such as:
12790 vshl.xx Dd, Dm, Dn
12791 whereas other 3-register operations encoded by neon_three_same have
12792 syntax like:
12793 vadd.xx Dd, Dn, Dm
12794 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12795 here. */
12796 tmp = inst.operands[2].reg;
12797 inst.operands[2].reg = inst.operands[1].reg;
12798 inst.operands[1].reg = tmp;
12799 NEON_ENCODE (INTEGER, inst);
12800 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12801 }
12802 }
12803
12804 static void
12805 do_neon_qshl_imm (void)
12806 {
12807 if (!inst.operands[2].isreg)
12808 {
12809 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12810 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12811
12812 NEON_ENCODE (IMMED, inst);
12813 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12814 inst.operands[2].imm);
12815 }
12816 else
12817 {
12818 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12819 struct neon_type_el et = neon_check_type (3, rs,
12820 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12821 unsigned int tmp;
12822
12823 /* See note in do_neon_shl_imm. */
12824 tmp = inst.operands[2].reg;
12825 inst.operands[2].reg = inst.operands[1].reg;
12826 inst.operands[1].reg = tmp;
12827 NEON_ENCODE (INTEGER, inst);
12828 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12829 }
12830 }
12831
12832 static void
12833 do_neon_rshl (void)
12834 {
12835 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12836 struct neon_type_el et = neon_check_type (3, rs,
12837 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12838 unsigned int tmp;
12839
12840 tmp = inst.operands[2].reg;
12841 inst.operands[2].reg = inst.operands[1].reg;
12842 inst.operands[1].reg = tmp;
12843 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12844 }
12845
12846 static int
12847 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12848 {
12849 /* Handle .I8 pseudo-instructions. */
12850 if (size == 8)
12851 {
12852 /* Unfortunately, this will make everything apart from zero out-of-range.
12853 FIXME is this the intended semantics? There doesn't seem much point in
12854 accepting .I8 if so. */
12855 immediate |= immediate << 8;
12856 size = 16;
12857 }
12858
12859 if (size >= 32)
12860 {
12861 if (immediate == (immediate & 0x000000ff))
12862 {
12863 *immbits = immediate;
12864 return 0x1;
12865 }
12866 else if (immediate == (immediate & 0x0000ff00))
12867 {
12868 *immbits = immediate >> 8;
12869 return 0x3;
12870 }
12871 else if (immediate == (immediate & 0x00ff0000))
12872 {
12873 *immbits = immediate >> 16;
12874 return 0x5;
12875 }
12876 else if (immediate == (immediate & 0xff000000))
12877 {
12878 *immbits = immediate >> 24;
12879 return 0x7;
12880 }
12881 if ((immediate & 0xffff) != (immediate >> 16))
12882 goto bad_immediate;
12883 immediate &= 0xffff;
12884 }
12885
12886 if (immediate == (immediate & 0x000000ff))
12887 {
12888 *immbits = immediate;
12889 return 0x9;
12890 }
12891 else if (immediate == (immediate & 0x0000ff00))
12892 {
12893 *immbits = immediate >> 8;
12894 return 0xb;
12895 }
12896
12897 bad_immediate:
12898 first_error (_("immediate value out of range"));
12899 return FAIL;
12900 }
12901
12902 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12903 A, B, C, D. */
12904
12905 static int
12906 neon_bits_same_in_bytes (unsigned imm)
12907 {
12908 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12909 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12910 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12911 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12912 }
12913
12914 /* For immediate of above form, return 0bABCD. */
12915
12916 static unsigned
12917 neon_squash_bits (unsigned imm)
12918 {
12919 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12920 | ((imm & 0x01000000) >> 21);
12921 }
12922
12923 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12924
12925 static unsigned
12926 neon_qfloat_bits (unsigned imm)
12927 {
12928 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12929 }
12930
12931 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12932 the instruction. *OP is passed as the initial value of the op field, and
12933 may be set to a different value depending on the constant (i.e.
12934 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12935 MVN). If the immediate looks like a repeated pattern then also
12936 try smaller element sizes. */
12937
12938 static int
12939 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12940 unsigned *immbits, int *op, int size,
12941 enum neon_el_type type)
12942 {
12943 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12944 float. */
12945 if (type == NT_float && !float_p)
12946 return FAIL;
12947
12948 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12949 {
12950 if (size != 32 || *op == 1)
12951 return FAIL;
12952 *immbits = neon_qfloat_bits (immlo);
12953 return 0xf;
12954 }
12955
12956 if (size == 64)
12957 {
12958 if (neon_bits_same_in_bytes (immhi)
12959 && neon_bits_same_in_bytes (immlo))
12960 {
12961 if (*op == 1)
12962 return FAIL;
12963 *immbits = (neon_squash_bits (immhi) << 4)
12964 | neon_squash_bits (immlo);
12965 *op = 1;
12966 return 0xe;
12967 }
12968
12969 if (immhi != immlo)
12970 return FAIL;
12971 }
12972
12973 if (size >= 32)
12974 {
12975 if (immlo == (immlo & 0x000000ff))
12976 {
12977 *immbits = immlo;
12978 return 0x0;
12979 }
12980 else if (immlo == (immlo & 0x0000ff00))
12981 {
12982 *immbits = immlo >> 8;
12983 return 0x2;
12984 }
12985 else if (immlo == (immlo & 0x00ff0000))
12986 {
12987 *immbits = immlo >> 16;
12988 return 0x4;
12989 }
12990 else if (immlo == (immlo & 0xff000000))
12991 {
12992 *immbits = immlo >> 24;
12993 return 0x6;
12994 }
12995 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12996 {
12997 *immbits = (immlo >> 8) & 0xff;
12998 return 0xc;
12999 }
13000 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13001 {
13002 *immbits = (immlo >> 16) & 0xff;
13003 return 0xd;
13004 }
13005
13006 if ((immlo & 0xffff) != (immlo >> 16))
13007 return FAIL;
13008 immlo &= 0xffff;
13009 }
13010
13011 if (size >= 16)
13012 {
13013 if (immlo == (immlo & 0x000000ff))
13014 {
13015 *immbits = immlo;
13016 return 0x8;
13017 }
13018 else if (immlo == (immlo & 0x0000ff00))
13019 {
13020 *immbits = immlo >> 8;
13021 return 0xa;
13022 }
13023
13024 if ((immlo & 0xff) != (immlo >> 8))
13025 return FAIL;
13026 immlo &= 0xff;
13027 }
13028
13029 if (immlo == (immlo & 0x000000ff))
13030 {
13031 /* Don't allow MVN with 8-bit immediate. */
13032 if (*op == 1)
13033 return FAIL;
13034 *immbits = immlo;
13035 return 0xe;
13036 }
13037
13038 return FAIL;
13039 }
13040
13041 /* Write immediate bits [7:0] to the following locations:
13042
13043 |28/24|23 19|18 16|15 4|3 0|
13044 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13045
13046 This function is used by VMOV/VMVN/VORR/VBIC. */
13047
13048 static void
13049 neon_write_immbits (unsigned immbits)
13050 {
13051 inst.instruction |= immbits & 0xf;
13052 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13053 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13054 }
13055
13056 /* Invert low-order SIZE bits of XHI:XLO. */
13057
13058 static void
13059 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13060 {
13061 unsigned immlo = xlo ? *xlo : 0;
13062 unsigned immhi = xhi ? *xhi : 0;
13063
13064 switch (size)
13065 {
13066 case 8:
13067 immlo = (~immlo) & 0xff;
13068 break;
13069
13070 case 16:
13071 immlo = (~immlo) & 0xffff;
13072 break;
13073
13074 case 64:
13075 immhi = (~immhi) & 0xffffffff;
13076 /* fall through. */
13077
13078 case 32:
13079 immlo = (~immlo) & 0xffffffff;
13080 break;
13081
13082 default:
13083 abort ();
13084 }
13085
13086 if (xlo)
13087 *xlo = immlo;
13088
13089 if (xhi)
13090 *xhi = immhi;
13091 }
13092
13093 static void
13094 do_neon_logic (void)
13095 {
13096 if (inst.operands[2].present && inst.operands[2].isreg)
13097 {
13098 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13099 neon_check_type (3, rs, N_IGNORE_TYPE);
13100 /* U bit and size field were set as part of the bitmask. */
13101 NEON_ENCODE (INTEGER, inst);
13102 neon_three_same (neon_quad (rs), 0, -1);
13103 }
13104 else
13105 {
13106 const int three_ops_form = (inst.operands[2].present
13107 && !inst.operands[2].isreg);
13108 const int immoperand = (three_ops_form ? 2 : 1);
13109 enum neon_shape rs = (three_ops_form
13110 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13111 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13112 struct neon_type_el et = neon_check_type (2, rs,
13113 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13114 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13115 unsigned immbits;
13116 int cmode;
13117
13118 if (et.type == NT_invtype)
13119 return;
13120
13121 if (three_ops_form)
13122 constraint (inst.operands[0].reg != inst.operands[1].reg,
13123 _("first and second operands shall be the same register"));
13124
13125 NEON_ENCODE (IMMED, inst);
13126
13127 immbits = inst.operands[immoperand].imm;
13128 if (et.size == 64)
13129 {
13130 /* .i64 is a pseudo-op, so the immediate must be a repeating
13131 pattern. */
13132 if (immbits != (inst.operands[immoperand].regisimm ?
13133 inst.operands[immoperand].reg : 0))
13134 {
13135 /* Set immbits to an invalid constant. */
13136 immbits = 0xdeadbeef;
13137 }
13138 }
13139
13140 switch (opcode)
13141 {
13142 case N_MNEM_vbic:
13143 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13144 break;
13145
13146 case N_MNEM_vorr:
13147 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13148 break;
13149
13150 case N_MNEM_vand:
13151 /* Pseudo-instruction for VBIC. */
13152 neon_invert_size (&immbits, 0, et.size);
13153 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13154 break;
13155
13156 case N_MNEM_vorn:
13157 /* Pseudo-instruction for VORR. */
13158 neon_invert_size (&immbits, 0, et.size);
13159 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13160 break;
13161
13162 default:
13163 abort ();
13164 }
13165
13166 if (cmode == FAIL)
13167 return;
13168
13169 inst.instruction |= neon_quad (rs) << 6;
13170 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13171 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13172 inst.instruction |= cmode << 8;
13173 neon_write_immbits (immbits);
13174
13175 neon_dp_fixup (&inst);
13176 }
13177 }
13178
13179 static void
13180 do_neon_bitfield (void)
13181 {
13182 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13183 neon_check_type (3, rs, N_IGNORE_TYPE);
13184 neon_three_same (neon_quad (rs), 0, -1);
13185 }
13186
13187 static void
13188 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13189 unsigned destbits)
13190 {
13191 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13192 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13193 types | N_KEY);
13194 if (et.type == NT_float)
13195 {
13196 NEON_ENCODE (FLOAT, inst);
13197 neon_three_same (neon_quad (rs), 0, -1);
13198 }
13199 else
13200 {
13201 NEON_ENCODE (INTEGER, inst);
13202 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13203 }
13204 }
13205
13206 static void
13207 do_neon_dyadic_if_su (void)
13208 {
13209 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13210 }
13211
13212 static void
13213 do_neon_dyadic_if_su_d (void)
13214 {
13215 /* This version only allow D registers, but that constraint is enforced during
13216 operand parsing so we don't need to do anything extra here. */
13217 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13218 }
13219
13220 static void
13221 do_neon_dyadic_if_i_d (void)
13222 {
13223 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13224 affected if we specify unsigned args. */
13225 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13226 }
13227
13228 enum vfp_or_neon_is_neon_bits
13229 {
13230 NEON_CHECK_CC = 1,
13231 NEON_CHECK_ARCH = 2
13232 };
13233
13234 /* Call this function if an instruction which may have belonged to the VFP or
13235 Neon instruction sets, but turned out to be a Neon instruction (due to the
13236 operand types involved, etc.). We have to check and/or fix-up a couple of
13237 things:
13238
13239 - Make sure the user hasn't attempted to make a Neon instruction
13240 conditional.
13241 - Alter the value in the condition code field if necessary.
13242 - Make sure that the arch supports Neon instructions.
13243
13244 Which of these operations take place depends on bits from enum
13245 vfp_or_neon_is_neon_bits.
13246
13247 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13248 current instruction's condition is COND_ALWAYS, the condition field is
13249 changed to inst.uncond_value. This is necessary because instructions shared
13250 between VFP and Neon may be conditional for the VFP variants only, and the
13251 unconditional Neon version must have, e.g., 0xF in the condition field. */
13252
13253 static int
13254 vfp_or_neon_is_neon (unsigned check)
13255 {
13256 /* Conditions are always legal in Thumb mode (IT blocks). */
13257 if (!thumb_mode && (check & NEON_CHECK_CC))
13258 {
13259 if (inst.cond != COND_ALWAYS)
13260 {
13261 first_error (_(BAD_COND));
13262 return FAIL;
13263 }
13264 if (inst.uncond_value != -1)
13265 inst.instruction |= inst.uncond_value << 28;
13266 }
13267
13268 if ((check & NEON_CHECK_ARCH)
13269 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13270 {
13271 first_error (_(BAD_FPU));
13272 return FAIL;
13273 }
13274
13275 return SUCCESS;
13276 }
13277
13278 static void
13279 do_neon_addsub_if_i (void)
13280 {
13281 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13282 return;
13283
13284 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13285 return;
13286
13287 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13288 affected if we specify unsigned args. */
13289 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13290 }
13291
13292 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13293 result to be:
13294 V<op> A,B (A is operand 0, B is operand 2)
13295 to mean:
13296 V<op> A,B,A
13297 not:
13298 V<op> A,B,B
13299 so handle that case specially. */
13300
13301 static void
13302 neon_exchange_operands (void)
13303 {
13304 void *scratch = alloca (sizeof (inst.operands[0]));
13305 if (inst.operands[1].present)
13306 {
13307 /* Swap operands[1] and operands[2]. */
13308 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13309 inst.operands[1] = inst.operands[2];
13310 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13311 }
13312 else
13313 {
13314 inst.operands[1] = inst.operands[2];
13315 inst.operands[2] = inst.operands[0];
13316 }
13317 }
13318
13319 static void
13320 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13321 {
13322 if (inst.operands[2].isreg)
13323 {
13324 if (invert)
13325 neon_exchange_operands ();
13326 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13327 }
13328 else
13329 {
13330 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13331 struct neon_type_el et = neon_check_type (2, rs,
13332 N_EQK | N_SIZ, immtypes | N_KEY);
13333
13334 NEON_ENCODE (IMMED, inst);
13335 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13336 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13337 inst.instruction |= LOW4 (inst.operands[1].reg);
13338 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13339 inst.instruction |= neon_quad (rs) << 6;
13340 inst.instruction |= (et.type == NT_float) << 10;
13341 inst.instruction |= neon_logbits (et.size) << 18;
13342
13343 neon_dp_fixup (&inst);
13344 }
13345 }
13346
13347 static void
13348 do_neon_cmp (void)
13349 {
13350 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13351 }
13352
13353 static void
13354 do_neon_cmp_inv (void)
13355 {
13356 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13357 }
13358
13359 static void
13360 do_neon_ceq (void)
13361 {
13362 neon_compare (N_IF_32, N_IF_32, FALSE);
13363 }
13364
13365 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13366 scalars, which are encoded in 5 bits, M : Rm.
13367 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13368 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13369 index in M. */
13370
13371 static unsigned
13372 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13373 {
13374 unsigned regno = NEON_SCALAR_REG (scalar);
13375 unsigned elno = NEON_SCALAR_INDEX (scalar);
13376
13377 switch (elsize)
13378 {
13379 case 16:
13380 if (regno > 7 || elno > 3)
13381 goto bad_scalar;
13382 return regno | (elno << 3);
13383
13384 case 32:
13385 if (regno > 15 || elno > 1)
13386 goto bad_scalar;
13387 return regno | (elno << 4);
13388
13389 default:
13390 bad_scalar:
13391 first_error (_("scalar out of range for multiply instruction"));
13392 }
13393
13394 return 0;
13395 }
13396
13397 /* Encode multiply / multiply-accumulate scalar instructions. */
13398
13399 static void
13400 neon_mul_mac (struct neon_type_el et, int ubit)
13401 {
13402 unsigned scalar;
13403
13404 /* Give a more helpful error message if we have an invalid type. */
13405 if (et.type == NT_invtype)
13406 return;
13407
13408 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13409 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13410 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13411 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13412 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13413 inst.instruction |= LOW4 (scalar);
13414 inst.instruction |= HI1 (scalar) << 5;
13415 inst.instruction |= (et.type == NT_float) << 8;
13416 inst.instruction |= neon_logbits (et.size) << 20;
13417 inst.instruction |= (ubit != 0) << 24;
13418
13419 neon_dp_fixup (&inst);
13420 }
13421
13422 static void
13423 do_neon_mac_maybe_scalar (void)
13424 {
13425 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13426 return;
13427
13428 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13429 return;
13430
13431 if (inst.operands[2].isscalar)
13432 {
13433 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13434 struct neon_type_el et = neon_check_type (3, rs,
13435 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13436 NEON_ENCODE (SCALAR, inst);
13437 neon_mul_mac (et, neon_quad (rs));
13438 }
13439 else
13440 {
13441 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13442 affected if we specify unsigned args. */
13443 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13444 }
13445 }
13446
13447 static void
13448 do_neon_fmac (void)
13449 {
13450 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13451 return;
13452
13453 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13454 return;
13455
13456 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13457 }
13458
13459 static void
13460 do_neon_tst (void)
13461 {
13462 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13463 struct neon_type_el et = neon_check_type (3, rs,
13464 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13465 neon_three_same (neon_quad (rs), 0, et.size);
13466 }
13467
13468 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13469 same types as the MAC equivalents. The polynomial type for this instruction
13470 is encoded the same as the integer type. */
13471
13472 static void
13473 do_neon_mul (void)
13474 {
13475 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13476 return;
13477
13478 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13479 return;
13480
13481 if (inst.operands[2].isscalar)
13482 do_neon_mac_maybe_scalar ();
13483 else
13484 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13485 }
13486
13487 static void
13488 do_neon_qdmulh (void)
13489 {
13490 if (inst.operands[2].isscalar)
13491 {
13492 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13493 struct neon_type_el et = neon_check_type (3, rs,
13494 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13495 NEON_ENCODE (SCALAR, inst);
13496 neon_mul_mac (et, neon_quad (rs));
13497 }
13498 else
13499 {
13500 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13501 struct neon_type_el et = neon_check_type (3, rs,
13502 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13503 NEON_ENCODE (INTEGER, inst);
13504 /* The U bit (rounding) comes from bit mask. */
13505 neon_three_same (neon_quad (rs), 0, et.size);
13506 }
13507 }
13508
13509 static void
13510 do_neon_fcmp_absolute (void)
13511 {
13512 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13513 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13514 /* Size field comes from bit mask. */
13515 neon_three_same (neon_quad (rs), 1, -1);
13516 }
13517
13518 static void
13519 do_neon_fcmp_absolute_inv (void)
13520 {
13521 neon_exchange_operands ();
13522 do_neon_fcmp_absolute ();
13523 }
13524
13525 static void
13526 do_neon_step (void)
13527 {
13528 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13529 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13530 neon_three_same (neon_quad (rs), 0, -1);
13531 }
13532
13533 static void
13534 do_neon_abs_neg (void)
13535 {
13536 enum neon_shape rs;
13537 struct neon_type_el et;
13538
13539 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13540 return;
13541
13542 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13543 return;
13544
13545 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13546 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13547
13548 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13549 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13550 inst.instruction |= LOW4 (inst.operands[1].reg);
13551 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13552 inst.instruction |= neon_quad (rs) << 6;
13553 inst.instruction |= (et.type == NT_float) << 10;
13554 inst.instruction |= neon_logbits (et.size) << 18;
13555
13556 neon_dp_fixup (&inst);
13557 }
13558
13559 static void
13560 do_neon_sli (void)
13561 {
13562 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13563 struct neon_type_el et = neon_check_type (2, rs,
13564 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13565 int imm = inst.operands[2].imm;
13566 constraint (imm < 0 || (unsigned)imm >= et.size,
13567 _("immediate out of range for insert"));
13568 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13569 }
13570
13571 static void
13572 do_neon_sri (void)
13573 {
13574 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13575 struct neon_type_el et = neon_check_type (2, rs,
13576 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13577 int imm = inst.operands[2].imm;
13578 constraint (imm < 1 || (unsigned)imm > et.size,
13579 _("immediate out of range for insert"));
13580 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13581 }
13582
13583 static void
13584 do_neon_qshlu_imm (void)
13585 {
13586 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13587 struct neon_type_el et = neon_check_type (2, rs,
13588 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13589 int imm = inst.operands[2].imm;
13590 constraint (imm < 0 || (unsigned)imm >= et.size,
13591 _("immediate out of range for shift"));
13592 /* Only encodes the 'U present' variant of the instruction.
13593 In this case, signed types have OP (bit 8) set to 0.
13594 Unsigned types have OP set to 1. */
13595 inst.instruction |= (et.type == NT_unsigned) << 8;
13596 /* The rest of the bits are the same as other immediate shifts. */
13597 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13598 }
13599
13600 static void
13601 do_neon_qmovn (void)
13602 {
13603 struct neon_type_el et = neon_check_type (2, NS_DQ,
13604 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13605 /* Saturating move where operands can be signed or unsigned, and the
13606 destination has the same signedness. */
13607 NEON_ENCODE (INTEGER, inst);
13608 if (et.type == NT_unsigned)
13609 inst.instruction |= 0xc0;
13610 else
13611 inst.instruction |= 0x80;
13612 neon_two_same (0, 1, et.size / 2);
13613 }
13614
13615 static void
13616 do_neon_qmovun (void)
13617 {
13618 struct neon_type_el et = neon_check_type (2, NS_DQ,
13619 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13620 /* Saturating move with unsigned results. Operands must be signed. */
13621 NEON_ENCODE (INTEGER, inst);
13622 neon_two_same (0, 1, et.size / 2);
13623 }
13624
13625 static void
13626 do_neon_rshift_sat_narrow (void)
13627 {
13628 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13629 or unsigned. If operands are unsigned, results must also be unsigned. */
13630 struct neon_type_el et = neon_check_type (2, NS_DQI,
13631 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13632 int imm = inst.operands[2].imm;
13633 /* This gets the bounds check, size encoding and immediate bits calculation
13634 right. */
13635 et.size /= 2;
13636
13637 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13638 VQMOVN.I<size> <Dd>, <Qm>. */
13639 if (imm == 0)
13640 {
13641 inst.operands[2].present = 0;
13642 inst.instruction = N_MNEM_vqmovn;
13643 do_neon_qmovn ();
13644 return;
13645 }
13646
13647 constraint (imm < 1 || (unsigned)imm > et.size,
13648 _("immediate out of range"));
13649 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13650 }
13651
13652 static void
13653 do_neon_rshift_sat_narrow_u (void)
13654 {
13655 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13656 or unsigned. If operands are unsigned, results must also be unsigned. */
13657 struct neon_type_el et = neon_check_type (2, NS_DQI,
13658 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13659 int imm = inst.operands[2].imm;
13660 /* This gets the bounds check, size encoding and immediate bits calculation
13661 right. */
13662 et.size /= 2;
13663
13664 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13665 VQMOVUN.I<size> <Dd>, <Qm>. */
13666 if (imm == 0)
13667 {
13668 inst.operands[2].present = 0;
13669 inst.instruction = N_MNEM_vqmovun;
13670 do_neon_qmovun ();
13671 return;
13672 }
13673
13674 constraint (imm < 1 || (unsigned)imm > et.size,
13675 _("immediate out of range"));
13676 /* FIXME: The manual is kind of unclear about what value U should have in
13677 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13678 must be 1. */
13679 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13680 }
13681
13682 static void
13683 do_neon_movn (void)
13684 {
13685 struct neon_type_el et = neon_check_type (2, NS_DQ,
13686 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13687 NEON_ENCODE (INTEGER, inst);
13688 neon_two_same (0, 1, et.size / 2);
13689 }
13690
13691 static void
13692 do_neon_rshift_narrow (void)
13693 {
13694 struct neon_type_el et = neon_check_type (2, NS_DQI,
13695 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13696 int imm = inst.operands[2].imm;
13697 /* This gets the bounds check, size encoding and immediate bits calculation
13698 right. */
13699 et.size /= 2;
13700
13701 /* If immediate is zero then we are a pseudo-instruction for
13702 VMOVN.I<size> <Dd>, <Qm> */
13703 if (imm == 0)
13704 {
13705 inst.operands[2].present = 0;
13706 inst.instruction = N_MNEM_vmovn;
13707 do_neon_movn ();
13708 return;
13709 }
13710
13711 constraint (imm < 1 || (unsigned)imm > et.size,
13712 _("immediate out of range for narrowing operation"));
13713 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13714 }
13715
13716 static void
13717 do_neon_shll (void)
13718 {
13719 /* FIXME: Type checking when lengthening. */
13720 struct neon_type_el et = neon_check_type (2, NS_QDI,
13721 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13722 unsigned imm = inst.operands[2].imm;
13723
13724 if (imm == et.size)
13725 {
13726 /* Maximum shift variant. */
13727 NEON_ENCODE (INTEGER, inst);
13728 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13729 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13730 inst.instruction |= LOW4 (inst.operands[1].reg);
13731 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13732 inst.instruction |= neon_logbits (et.size) << 18;
13733
13734 neon_dp_fixup (&inst);
13735 }
13736 else
13737 {
13738 /* A more-specific type check for non-max versions. */
13739 et = neon_check_type (2, NS_QDI,
13740 N_EQK | N_DBL, N_SU_32 | N_KEY);
13741 NEON_ENCODE (IMMED, inst);
13742 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13743 }
13744 }
13745
13746 /* Check the various types for the VCVT instruction, and return which version
13747 the current instruction is. */
13748
13749 static int
13750 neon_cvt_flavour (enum neon_shape rs)
13751 {
13752 #define CVT_VAR(C,X,Y) \
13753 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13754 if (et.type != NT_invtype) \
13755 { \
13756 inst.error = NULL; \
13757 return (C); \
13758 }
13759 struct neon_type_el et;
13760 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13761 || rs == NS_FF) ? N_VFP : 0;
13762 /* The instruction versions which take an immediate take one register
13763 argument, which is extended to the width of the full register. Thus the
13764 "source" and "destination" registers must have the same width. Hack that
13765 here by making the size equal to the key (wider, in this case) operand. */
13766 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13767
13768 CVT_VAR (0, N_S32, N_F32);
13769 CVT_VAR (1, N_U32, N_F32);
13770 CVT_VAR (2, N_F32, N_S32);
13771 CVT_VAR (3, N_F32, N_U32);
13772 /* Half-precision conversions. */
13773 CVT_VAR (4, N_F32, N_F16);
13774 CVT_VAR (5, N_F16, N_F32);
13775
13776 whole_reg = N_VFP;
13777
13778 /* VFP instructions. */
13779 CVT_VAR (6, N_F32, N_F64);
13780 CVT_VAR (7, N_F64, N_F32);
13781 CVT_VAR (8, N_S32, N_F64 | key);
13782 CVT_VAR (9, N_U32, N_F64 | key);
13783 CVT_VAR (10, N_F64 | key, N_S32);
13784 CVT_VAR (11, N_F64 | key, N_U32);
13785 /* VFP instructions with bitshift. */
13786 CVT_VAR (12, N_F32 | key, N_S16);
13787 CVT_VAR (13, N_F32 | key, N_U16);
13788 CVT_VAR (14, N_F64 | key, N_S16);
13789 CVT_VAR (15, N_F64 | key, N_U16);
13790 CVT_VAR (16, N_S16, N_F32 | key);
13791 CVT_VAR (17, N_U16, N_F32 | key);
13792 CVT_VAR (18, N_S16, N_F64 | key);
13793 CVT_VAR (19, N_U16, N_F64 | key);
13794
13795 return -1;
13796 #undef CVT_VAR
13797 }
13798
13799 /* Neon-syntax VFP conversions. */
13800
13801 static void
13802 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13803 {
13804 const char *opname = 0;
13805
13806 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13807 {
13808 /* Conversions with immediate bitshift. */
13809 const char *enc[] =
13810 {
13811 "ftosls",
13812 "ftouls",
13813 "fsltos",
13814 "fultos",
13815 NULL,
13816 NULL,
13817 NULL,
13818 NULL,
13819 "ftosld",
13820 "ftould",
13821 "fsltod",
13822 "fultod",
13823 "fshtos",
13824 "fuhtos",
13825 "fshtod",
13826 "fuhtod",
13827 "ftoshs",
13828 "ftouhs",
13829 "ftoshd",
13830 "ftouhd"
13831 };
13832
13833 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13834 {
13835 opname = enc[flavour];
13836 constraint (inst.operands[0].reg != inst.operands[1].reg,
13837 _("operands 0 and 1 must be the same register"));
13838 inst.operands[1] = inst.operands[2];
13839 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13840 }
13841 }
13842 else
13843 {
13844 /* Conversions without bitshift. */
13845 const char *enc[] =
13846 {
13847 "ftosis",
13848 "ftouis",
13849 "fsitos",
13850 "fuitos",
13851 "NULL",
13852 "NULL",
13853 "fcvtsd",
13854 "fcvtds",
13855 "ftosid",
13856 "ftouid",
13857 "fsitod",
13858 "fuitod"
13859 };
13860
13861 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13862 opname = enc[flavour];
13863 }
13864
13865 if (opname)
13866 do_vfp_nsyn_opcode (opname);
13867 }
13868
13869 static void
13870 do_vfp_nsyn_cvtz (void)
13871 {
13872 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13873 int flavour = neon_cvt_flavour (rs);
13874 const char *enc[] =
13875 {
13876 "ftosizs",
13877 "ftouizs",
13878 NULL,
13879 NULL,
13880 NULL,
13881 NULL,
13882 NULL,
13883 NULL,
13884 "ftosizd",
13885 "ftouizd"
13886 };
13887
13888 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13889 do_vfp_nsyn_opcode (enc[flavour]);
13890 }
13891
13892 static void
13893 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
13894 {
13895 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13896 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13897 int flavour = neon_cvt_flavour (rs);
13898
13899 /* PR11109: Handle round-to-zero for VCVT conversions. */
13900 if (round_to_zero
13901 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
13902 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
13903 && (rs == NS_FD || rs == NS_FF))
13904 {
13905 do_vfp_nsyn_cvtz ();
13906 return;
13907 }
13908
13909 /* VFP rather than Neon conversions. */
13910 if (flavour >= 6)
13911 {
13912 do_vfp_nsyn_cvt (rs, flavour);
13913 return;
13914 }
13915
13916 switch (rs)
13917 {
13918 case NS_DDI:
13919 case NS_QQI:
13920 {
13921 unsigned immbits;
13922 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13923
13924 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13925 return;
13926
13927 /* Fixed-point conversion with #0 immediate is encoded as an
13928 integer conversion. */
13929 if (inst.operands[2].present && inst.operands[2].imm == 0)
13930 goto int_encode;
13931 immbits = 32 - inst.operands[2].imm;
13932 NEON_ENCODE (IMMED, inst);
13933 if (flavour != -1)
13934 inst.instruction |= enctab[flavour];
13935 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13936 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13937 inst.instruction |= LOW4 (inst.operands[1].reg);
13938 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13939 inst.instruction |= neon_quad (rs) << 6;
13940 inst.instruction |= 1 << 21;
13941 inst.instruction |= immbits << 16;
13942
13943 neon_dp_fixup (&inst);
13944 }
13945 break;
13946
13947 case NS_DD:
13948 case NS_QQ:
13949 int_encode:
13950 {
13951 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13952
13953 NEON_ENCODE (INTEGER, inst);
13954
13955 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13956 return;
13957
13958 if (flavour != -1)
13959 inst.instruction |= enctab[flavour];
13960
13961 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13962 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13963 inst.instruction |= LOW4 (inst.operands[1].reg);
13964 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13965 inst.instruction |= neon_quad (rs) << 6;
13966 inst.instruction |= 2 << 18;
13967
13968 neon_dp_fixup (&inst);
13969 }
13970 break;
13971
13972 /* Half-precision conversions for Advanced SIMD -- neon. */
13973 case NS_QD:
13974 case NS_DQ:
13975
13976 if ((rs == NS_DQ)
13977 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13978 {
13979 as_bad (_("operand size must match register width"));
13980 break;
13981 }
13982
13983 if ((rs == NS_QD)
13984 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13985 {
13986 as_bad (_("operand size must match register width"));
13987 break;
13988 }
13989
13990 if (rs == NS_DQ)
13991 inst.instruction = 0x3b60600;
13992 else
13993 inst.instruction = 0x3b60700;
13994
13995 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13996 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13997 inst.instruction |= LOW4 (inst.operands[1].reg);
13998 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13999 neon_dp_fixup (&inst);
14000 break;
14001
14002 default:
14003 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14004 do_vfp_nsyn_cvt (rs, flavour);
14005 }
14006 }
14007
14008 static void
14009 do_neon_cvtr (void)
14010 {
14011 do_neon_cvt_1 (FALSE);
14012 }
14013
14014 static void
14015 do_neon_cvt (void)
14016 {
14017 do_neon_cvt_1 (TRUE);
14018 }
14019
14020 static void
14021 do_neon_cvtb (void)
14022 {
14023 inst.instruction = 0xeb20a40;
14024
14025 /* The sizes are attached to the mnemonic. */
14026 if (inst.vectype.el[0].type != NT_invtype
14027 && inst.vectype.el[0].size == 16)
14028 inst.instruction |= 0x00010000;
14029
14030 /* Programmer's syntax: the sizes are attached to the operands. */
14031 else if (inst.operands[0].vectype.type != NT_invtype
14032 && inst.operands[0].vectype.size == 16)
14033 inst.instruction |= 0x00010000;
14034
14035 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14036 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14037 do_vfp_cond_or_thumb ();
14038 }
14039
14040
14041 static void
14042 do_neon_cvtt (void)
14043 {
14044 do_neon_cvtb ();
14045 inst.instruction |= 0x80;
14046 }
14047
14048 static void
14049 neon_move_immediate (void)
14050 {
14051 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14052 struct neon_type_el et = neon_check_type (2, rs,
14053 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14054 unsigned immlo, immhi = 0, immbits;
14055 int op, cmode, float_p;
14056
14057 constraint (et.type == NT_invtype,
14058 _("operand size must be specified for immediate VMOV"));
14059
14060 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14061 op = (inst.instruction & (1 << 5)) != 0;
14062
14063 immlo = inst.operands[1].imm;
14064 if (inst.operands[1].regisimm)
14065 immhi = inst.operands[1].reg;
14066
14067 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14068 _("immediate has bits set outside the operand size"));
14069
14070 float_p = inst.operands[1].immisfloat;
14071
14072 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14073 et.size, et.type)) == FAIL)
14074 {
14075 /* Invert relevant bits only. */
14076 neon_invert_size (&immlo, &immhi, et.size);
14077 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14078 with one or the other; those cases are caught by
14079 neon_cmode_for_move_imm. */
14080 op = !op;
14081 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14082 &op, et.size, et.type)) == FAIL)
14083 {
14084 first_error (_("immediate out of range"));
14085 return;
14086 }
14087 }
14088
14089 inst.instruction &= ~(1 << 5);
14090 inst.instruction |= op << 5;
14091
14092 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14093 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14094 inst.instruction |= neon_quad (rs) << 6;
14095 inst.instruction |= cmode << 8;
14096
14097 neon_write_immbits (immbits);
14098 }
14099
14100 static void
14101 do_neon_mvn (void)
14102 {
14103 if (inst.operands[1].isreg)
14104 {
14105 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14106
14107 NEON_ENCODE (INTEGER, inst);
14108 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14109 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14110 inst.instruction |= LOW4 (inst.operands[1].reg);
14111 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14112 inst.instruction |= neon_quad (rs) << 6;
14113 }
14114 else
14115 {
14116 NEON_ENCODE (IMMED, inst);
14117 neon_move_immediate ();
14118 }
14119
14120 neon_dp_fixup (&inst);
14121 }
14122
14123 /* Encode instructions of form:
14124
14125 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14126 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14127
14128 static void
14129 neon_mixed_length (struct neon_type_el et, unsigned size)
14130 {
14131 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14132 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14133 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14134 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14135 inst.instruction |= LOW4 (inst.operands[2].reg);
14136 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14137 inst.instruction |= (et.type == NT_unsigned) << 24;
14138 inst.instruction |= neon_logbits (size) << 20;
14139
14140 neon_dp_fixup (&inst);
14141 }
14142
14143 static void
14144 do_neon_dyadic_long (void)
14145 {
14146 /* FIXME: Type checking for lengthening op. */
14147 struct neon_type_el et = neon_check_type (3, NS_QDD,
14148 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14149 neon_mixed_length (et, et.size);
14150 }
14151
14152 static void
14153 do_neon_abal (void)
14154 {
14155 struct neon_type_el et = neon_check_type (3, NS_QDD,
14156 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14157 neon_mixed_length (et, et.size);
14158 }
14159
14160 static void
14161 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14162 {
14163 if (inst.operands[2].isscalar)
14164 {
14165 struct neon_type_el et = neon_check_type (3, NS_QDS,
14166 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14167 NEON_ENCODE (SCALAR, inst);
14168 neon_mul_mac (et, et.type == NT_unsigned);
14169 }
14170 else
14171 {
14172 struct neon_type_el et = neon_check_type (3, NS_QDD,
14173 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14174 NEON_ENCODE (INTEGER, inst);
14175 neon_mixed_length (et, et.size);
14176 }
14177 }
14178
14179 static void
14180 do_neon_mac_maybe_scalar_long (void)
14181 {
14182 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14183 }
14184
14185 static void
14186 do_neon_dyadic_wide (void)
14187 {
14188 struct neon_type_el et = neon_check_type (3, NS_QQD,
14189 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14190 neon_mixed_length (et, et.size);
14191 }
14192
14193 static void
14194 do_neon_dyadic_narrow (void)
14195 {
14196 struct neon_type_el et = neon_check_type (3, NS_QDD,
14197 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14198 /* Operand sign is unimportant, and the U bit is part of the opcode,
14199 so force the operand type to integer. */
14200 et.type = NT_integer;
14201 neon_mixed_length (et, et.size / 2);
14202 }
14203
14204 static void
14205 do_neon_mul_sat_scalar_long (void)
14206 {
14207 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14208 }
14209
14210 static void
14211 do_neon_vmull (void)
14212 {
14213 if (inst.operands[2].isscalar)
14214 do_neon_mac_maybe_scalar_long ();
14215 else
14216 {
14217 struct neon_type_el et = neon_check_type (3, NS_QDD,
14218 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14219 if (et.type == NT_poly)
14220 NEON_ENCODE (POLY, inst);
14221 else
14222 NEON_ENCODE (INTEGER, inst);
14223 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14224 zero. Should be OK as-is. */
14225 neon_mixed_length (et, et.size);
14226 }
14227 }
14228
14229 static void
14230 do_neon_ext (void)
14231 {
14232 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14233 struct neon_type_el et = neon_check_type (3, rs,
14234 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14235 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14236
14237 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14238 _("shift out of range"));
14239 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14240 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14241 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14242 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14243 inst.instruction |= LOW4 (inst.operands[2].reg);
14244 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14245 inst.instruction |= neon_quad (rs) << 6;
14246 inst.instruction |= imm << 8;
14247
14248 neon_dp_fixup (&inst);
14249 }
14250
14251 static void
14252 do_neon_rev (void)
14253 {
14254 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14255 struct neon_type_el et = neon_check_type (2, rs,
14256 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14257 unsigned op = (inst.instruction >> 7) & 3;
14258 /* N (width of reversed regions) is encoded as part of the bitmask. We
14259 extract it here to check the elements to be reversed are smaller.
14260 Otherwise we'd get a reserved instruction. */
14261 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14262 gas_assert (elsize != 0);
14263 constraint (et.size >= elsize,
14264 _("elements must be smaller than reversal region"));
14265 neon_two_same (neon_quad (rs), 1, et.size);
14266 }
14267
14268 static void
14269 do_neon_dup (void)
14270 {
14271 if (inst.operands[1].isscalar)
14272 {
14273 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14274 struct neon_type_el et = neon_check_type (2, rs,
14275 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14276 unsigned sizebits = et.size >> 3;
14277 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14278 int logsize = neon_logbits (et.size);
14279 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14280
14281 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14282 return;
14283
14284 NEON_ENCODE (SCALAR, inst);
14285 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14286 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14287 inst.instruction |= LOW4 (dm);
14288 inst.instruction |= HI1 (dm) << 5;
14289 inst.instruction |= neon_quad (rs) << 6;
14290 inst.instruction |= x << 17;
14291 inst.instruction |= sizebits << 16;
14292
14293 neon_dp_fixup (&inst);
14294 }
14295 else
14296 {
14297 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14298 struct neon_type_el et = neon_check_type (2, rs,
14299 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14300 /* Duplicate ARM register to lanes of vector. */
14301 NEON_ENCODE (ARMREG, inst);
14302 switch (et.size)
14303 {
14304 case 8: inst.instruction |= 0x400000; break;
14305 case 16: inst.instruction |= 0x000020; break;
14306 case 32: inst.instruction |= 0x000000; break;
14307 default: break;
14308 }
14309 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14310 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14311 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14312 inst.instruction |= neon_quad (rs) << 21;
14313 /* The encoding for this instruction is identical for the ARM and Thumb
14314 variants, except for the condition field. */
14315 do_vfp_cond_or_thumb ();
14316 }
14317 }
14318
14319 /* VMOV has particularly many variations. It can be one of:
14320 0. VMOV<c><q> <Qd>, <Qm>
14321 1. VMOV<c><q> <Dd>, <Dm>
14322 (Register operations, which are VORR with Rm = Rn.)
14323 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14324 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14325 (Immediate loads.)
14326 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14327 (ARM register to scalar.)
14328 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14329 (Two ARM registers to vector.)
14330 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14331 (Scalar to ARM register.)
14332 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14333 (Vector to two ARM registers.)
14334 8. VMOV.F32 <Sd>, <Sm>
14335 9. VMOV.F64 <Dd>, <Dm>
14336 (VFP register moves.)
14337 10. VMOV.F32 <Sd>, #imm
14338 11. VMOV.F64 <Dd>, #imm
14339 (VFP float immediate load.)
14340 12. VMOV <Rd>, <Sm>
14341 (VFP single to ARM reg.)
14342 13. VMOV <Sd>, <Rm>
14343 (ARM reg to VFP single.)
14344 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14345 (Two ARM regs to two VFP singles.)
14346 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14347 (Two VFP singles to two ARM regs.)
14348
14349 These cases can be disambiguated using neon_select_shape, except cases 1/9
14350 and 3/11 which depend on the operand type too.
14351
14352 All the encoded bits are hardcoded by this function.
14353
14354 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14355 Cases 5, 7 may be used with VFPv2 and above.
14356
14357 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14358 can specify a type where it doesn't make sense to, and is ignored). */
14359
14360 static void
14361 do_neon_mov (void)
14362 {
14363 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14364 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14365 NS_NULL);
14366 struct neon_type_el et;
14367 const char *ldconst = 0;
14368
14369 switch (rs)
14370 {
14371 case NS_DD: /* case 1/9. */
14372 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14373 /* It is not an error here if no type is given. */
14374 inst.error = NULL;
14375 if (et.type == NT_float && et.size == 64)
14376 {
14377 do_vfp_nsyn_opcode ("fcpyd");
14378 break;
14379 }
14380 /* fall through. */
14381
14382 case NS_QQ: /* case 0/1. */
14383 {
14384 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14385 return;
14386 /* The architecture manual I have doesn't explicitly state which
14387 value the U bit should have for register->register moves, but
14388 the equivalent VORR instruction has U = 0, so do that. */
14389 inst.instruction = 0x0200110;
14390 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14391 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14392 inst.instruction |= LOW4 (inst.operands[1].reg);
14393 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14394 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14395 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14396 inst.instruction |= neon_quad (rs) << 6;
14397
14398 neon_dp_fixup (&inst);
14399 }
14400 break;
14401
14402 case NS_DI: /* case 3/11. */
14403 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14404 inst.error = NULL;
14405 if (et.type == NT_float && et.size == 64)
14406 {
14407 /* case 11 (fconstd). */
14408 ldconst = "fconstd";
14409 goto encode_fconstd;
14410 }
14411 /* fall through. */
14412
14413 case NS_QI: /* case 2/3. */
14414 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14415 return;
14416 inst.instruction = 0x0800010;
14417 neon_move_immediate ();
14418 neon_dp_fixup (&inst);
14419 break;
14420
14421 case NS_SR: /* case 4. */
14422 {
14423 unsigned bcdebits = 0;
14424 int logsize;
14425 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14426 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14427
14428 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14429 logsize = neon_logbits (et.size);
14430
14431 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14432 _(BAD_FPU));
14433 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14434 && et.size != 32, _(BAD_FPU));
14435 constraint (et.type == NT_invtype, _("bad type for scalar"));
14436 constraint (x >= 64 / et.size, _("scalar index out of range"));
14437
14438 switch (et.size)
14439 {
14440 case 8: bcdebits = 0x8; break;
14441 case 16: bcdebits = 0x1; break;
14442 case 32: bcdebits = 0x0; break;
14443 default: ;
14444 }
14445
14446 bcdebits |= x << logsize;
14447
14448 inst.instruction = 0xe000b10;
14449 do_vfp_cond_or_thumb ();
14450 inst.instruction |= LOW4 (dn) << 16;
14451 inst.instruction |= HI1 (dn) << 7;
14452 inst.instruction |= inst.operands[1].reg << 12;
14453 inst.instruction |= (bcdebits & 3) << 5;
14454 inst.instruction |= (bcdebits >> 2) << 21;
14455 }
14456 break;
14457
14458 case NS_DRR: /* case 5 (fmdrr). */
14459 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14460 _(BAD_FPU));
14461
14462 inst.instruction = 0xc400b10;
14463 do_vfp_cond_or_thumb ();
14464 inst.instruction |= LOW4 (inst.operands[0].reg);
14465 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14466 inst.instruction |= inst.operands[1].reg << 12;
14467 inst.instruction |= inst.operands[2].reg << 16;
14468 break;
14469
14470 case NS_RS: /* case 6. */
14471 {
14472 unsigned logsize;
14473 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14474 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14475 unsigned abcdebits = 0;
14476
14477 et = neon_check_type (2, NS_NULL,
14478 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14479 logsize = neon_logbits (et.size);
14480
14481 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14482 _(BAD_FPU));
14483 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14484 && et.size != 32, _(BAD_FPU));
14485 constraint (et.type == NT_invtype, _("bad type for scalar"));
14486 constraint (x >= 64 / et.size, _("scalar index out of range"));
14487
14488 switch (et.size)
14489 {
14490 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14491 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14492 case 32: abcdebits = 0x00; break;
14493 default: ;
14494 }
14495
14496 abcdebits |= x << logsize;
14497 inst.instruction = 0xe100b10;
14498 do_vfp_cond_or_thumb ();
14499 inst.instruction |= LOW4 (dn) << 16;
14500 inst.instruction |= HI1 (dn) << 7;
14501 inst.instruction |= inst.operands[0].reg << 12;
14502 inst.instruction |= (abcdebits & 3) << 5;
14503 inst.instruction |= (abcdebits >> 2) << 21;
14504 }
14505 break;
14506
14507 case NS_RRD: /* case 7 (fmrrd). */
14508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14509 _(BAD_FPU));
14510
14511 inst.instruction = 0xc500b10;
14512 do_vfp_cond_or_thumb ();
14513 inst.instruction |= inst.operands[0].reg << 12;
14514 inst.instruction |= inst.operands[1].reg << 16;
14515 inst.instruction |= LOW4 (inst.operands[2].reg);
14516 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14517 break;
14518
14519 case NS_FF: /* case 8 (fcpys). */
14520 do_vfp_nsyn_opcode ("fcpys");
14521 break;
14522
14523 case NS_FI: /* case 10 (fconsts). */
14524 ldconst = "fconsts";
14525 encode_fconstd:
14526 if (is_quarter_float (inst.operands[1].imm))
14527 {
14528 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14529 do_vfp_nsyn_opcode (ldconst);
14530 }
14531 else
14532 first_error (_("immediate out of range"));
14533 break;
14534
14535 case NS_RF: /* case 12 (fmrs). */
14536 do_vfp_nsyn_opcode ("fmrs");
14537 break;
14538
14539 case NS_FR: /* case 13 (fmsr). */
14540 do_vfp_nsyn_opcode ("fmsr");
14541 break;
14542
14543 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14544 (one of which is a list), but we have parsed four. Do some fiddling to
14545 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14546 expect. */
14547 case NS_RRFF: /* case 14 (fmrrs). */
14548 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14549 _("VFP registers must be adjacent"));
14550 inst.operands[2].imm = 2;
14551 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14552 do_vfp_nsyn_opcode ("fmrrs");
14553 break;
14554
14555 case NS_FFRR: /* case 15 (fmsrr). */
14556 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14557 _("VFP registers must be adjacent"));
14558 inst.operands[1] = inst.operands[2];
14559 inst.operands[2] = inst.operands[3];
14560 inst.operands[0].imm = 2;
14561 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14562 do_vfp_nsyn_opcode ("fmsrr");
14563 break;
14564
14565 default:
14566 abort ();
14567 }
14568 }
14569
14570 static void
14571 do_neon_rshift_round_imm (void)
14572 {
14573 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14574 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14575 int imm = inst.operands[2].imm;
14576
14577 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14578 if (imm == 0)
14579 {
14580 inst.operands[2].present = 0;
14581 do_neon_mov ();
14582 return;
14583 }
14584
14585 constraint (imm < 1 || (unsigned)imm > et.size,
14586 _("immediate out of range for shift"));
14587 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14588 et.size - imm);
14589 }
14590
14591 static void
14592 do_neon_movl (void)
14593 {
14594 struct neon_type_el et = neon_check_type (2, NS_QD,
14595 N_EQK | N_DBL, N_SU_32 | N_KEY);
14596 unsigned sizebits = et.size >> 3;
14597 inst.instruction |= sizebits << 19;
14598 neon_two_same (0, et.type == NT_unsigned, -1);
14599 }
14600
14601 static void
14602 do_neon_trn (void)
14603 {
14604 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14605 struct neon_type_el et = neon_check_type (2, rs,
14606 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14607 NEON_ENCODE (INTEGER, inst);
14608 neon_two_same (neon_quad (rs), 1, et.size);
14609 }
14610
14611 static void
14612 do_neon_zip_uzp (void)
14613 {
14614 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14615 struct neon_type_el et = neon_check_type (2, rs,
14616 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14617 if (rs == NS_DD && et.size == 32)
14618 {
14619 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14620 inst.instruction = N_MNEM_vtrn;
14621 do_neon_trn ();
14622 return;
14623 }
14624 neon_two_same (neon_quad (rs), 1, et.size);
14625 }
14626
14627 static void
14628 do_neon_sat_abs_neg (void)
14629 {
14630 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14631 struct neon_type_el et = neon_check_type (2, rs,
14632 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14633 neon_two_same (neon_quad (rs), 1, et.size);
14634 }
14635
14636 static void
14637 do_neon_pair_long (void)
14638 {
14639 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14640 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14641 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14642 inst.instruction |= (et.type == NT_unsigned) << 7;
14643 neon_two_same (neon_quad (rs), 1, et.size);
14644 }
14645
14646 static void
14647 do_neon_recip_est (void)
14648 {
14649 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14650 struct neon_type_el et = neon_check_type (2, rs,
14651 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14652 inst.instruction |= (et.type == NT_float) << 8;
14653 neon_two_same (neon_quad (rs), 1, et.size);
14654 }
14655
14656 static void
14657 do_neon_cls (void)
14658 {
14659 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14660 struct neon_type_el et = neon_check_type (2, rs,
14661 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14662 neon_two_same (neon_quad (rs), 1, et.size);
14663 }
14664
14665 static void
14666 do_neon_clz (void)
14667 {
14668 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14669 struct neon_type_el et = neon_check_type (2, rs,
14670 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14671 neon_two_same (neon_quad (rs), 1, et.size);
14672 }
14673
14674 static void
14675 do_neon_cnt (void)
14676 {
14677 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14678 struct neon_type_el et = neon_check_type (2, rs,
14679 N_EQK | N_INT, N_8 | N_KEY);
14680 neon_two_same (neon_quad (rs), 1, et.size);
14681 }
14682
14683 static void
14684 do_neon_swp (void)
14685 {
14686 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14687 neon_two_same (neon_quad (rs), 1, -1);
14688 }
14689
14690 static void
14691 do_neon_tbl_tbx (void)
14692 {
14693 unsigned listlenbits;
14694 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14695
14696 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14697 {
14698 first_error (_("bad list length for table lookup"));
14699 return;
14700 }
14701
14702 listlenbits = inst.operands[1].imm - 1;
14703 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14704 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14705 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14706 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14707 inst.instruction |= LOW4 (inst.operands[2].reg);
14708 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14709 inst.instruction |= listlenbits << 8;
14710
14711 neon_dp_fixup (&inst);
14712 }
14713
14714 static void
14715 do_neon_ldm_stm (void)
14716 {
14717 /* P, U and L bits are part of bitmask. */
14718 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14719 unsigned offsetbits = inst.operands[1].imm * 2;
14720
14721 if (inst.operands[1].issingle)
14722 {
14723 do_vfp_nsyn_ldm_stm (is_dbmode);
14724 return;
14725 }
14726
14727 constraint (is_dbmode && !inst.operands[0].writeback,
14728 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14729
14730 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14731 _("register list must contain at least 1 and at most 16 "
14732 "registers"));
14733
14734 inst.instruction |= inst.operands[0].reg << 16;
14735 inst.instruction |= inst.operands[0].writeback << 21;
14736 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14737 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14738
14739 inst.instruction |= offsetbits;
14740
14741 do_vfp_cond_or_thumb ();
14742 }
14743
14744 static void
14745 do_neon_ldr_str (void)
14746 {
14747 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14748
14749 if (inst.operands[0].issingle)
14750 {
14751 if (is_ldr)
14752 do_vfp_nsyn_opcode ("flds");
14753 else
14754 do_vfp_nsyn_opcode ("fsts");
14755 }
14756 else
14757 {
14758 if (is_ldr)
14759 do_vfp_nsyn_opcode ("fldd");
14760 else
14761 do_vfp_nsyn_opcode ("fstd");
14762 }
14763 }
14764
14765 /* "interleave" version also handles non-interleaving register VLD1/VST1
14766 instructions. */
14767
14768 static void
14769 do_neon_ld_st_interleave (void)
14770 {
14771 struct neon_type_el et = neon_check_type (1, NS_NULL,
14772 N_8 | N_16 | N_32 | N_64);
14773 unsigned alignbits = 0;
14774 unsigned idx;
14775 /* The bits in this table go:
14776 0: register stride of one (0) or two (1)
14777 1,2: register list length, minus one (1, 2, 3, 4).
14778 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14779 We use -1 for invalid entries. */
14780 const int typetable[] =
14781 {
14782 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14783 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14784 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14785 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14786 };
14787 int typebits;
14788
14789 if (et.type == NT_invtype)
14790 return;
14791
14792 if (inst.operands[1].immisalign)
14793 switch (inst.operands[1].imm >> 8)
14794 {
14795 case 64: alignbits = 1; break;
14796 case 128:
14797 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14798 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14799 goto bad_alignment;
14800 alignbits = 2;
14801 break;
14802 case 256:
14803 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14804 goto bad_alignment;
14805 alignbits = 3;
14806 break;
14807 default:
14808 bad_alignment:
14809 first_error (_("bad alignment"));
14810 return;
14811 }
14812
14813 inst.instruction |= alignbits << 4;
14814 inst.instruction |= neon_logbits (et.size) << 6;
14815
14816 /* Bits [4:6] of the immediate in a list specifier encode register stride
14817 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14818 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14819 up the right value for "type" in a table based on this value and the given
14820 list style, then stick it back. */
14821 idx = ((inst.operands[0].imm >> 4) & 7)
14822 | (((inst.instruction >> 8) & 3) << 3);
14823
14824 typebits = typetable[idx];
14825
14826 constraint (typebits == -1, _("bad list type for instruction"));
14827
14828 inst.instruction &= ~0xf00;
14829 inst.instruction |= typebits << 8;
14830 }
14831
14832 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14833 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14834 otherwise. The variable arguments are a list of pairs of legal (size, align)
14835 values, terminated with -1. */
14836
14837 static int
14838 neon_alignment_bit (int size, int align, int *do_align, ...)
14839 {
14840 va_list ap;
14841 int result = FAIL, thissize, thisalign;
14842
14843 if (!inst.operands[1].immisalign)
14844 {
14845 *do_align = 0;
14846 return SUCCESS;
14847 }
14848
14849 va_start (ap, do_align);
14850
14851 do
14852 {
14853 thissize = va_arg (ap, int);
14854 if (thissize == -1)
14855 break;
14856 thisalign = va_arg (ap, int);
14857
14858 if (size == thissize && align == thisalign)
14859 result = SUCCESS;
14860 }
14861 while (result != SUCCESS);
14862
14863 va_end (ap);
14864
14865 if (result == SUCCESS)
14866 *do_align = 1;
14867 else
14868 first_error (_("unsupported alignment for instruction"));
14869
14870 return result;
14871 }
14872
14873 static void
14874 do_neon_ld_st_lane (void)
14875 {
14876 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14877 int align_good, do_align = 0;
14878 int logsize = neon_logbits (et.size);
14879 int align = inst.operands[1].imm >> 8;
14880 int n = (inst.instruction >> 8) & 3;
14881 int max_el = 64 / et.size;
14882
14883 if (et.type == NT_invtype)
14884 return;
14885
14886 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14887 _("bad list length"));
14888 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14889 _("scalar index out of range"));
14890 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14891 && et.size == 8,
14892 _("stride of 2 unavailable when element size is 8"));
14893
14894 switch (n)
14895 {
14896 case 0: /* VLD1 / VST1. */
14897 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14898 32, 32, -1);
14899 if (align_good == FAIL)
14900 return;
14901 if (do_align)
14902 {
14903 unsigned alignbits = 0;
14904 switch (et.size)
14905 {
14906 case 16: alignbits = 0x1; break;
14907 case 32: alignbits = 0x3; break;
14908 default: ;
14909 }
14910 inst.instruction |= alignbits << 4;
14911 }
14912 break;
14913
14914 case 1: /* VLD2 / VST2. */
14915 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14916 32, 64, -1);
14917 if (align_good == FAIL)
14918 return;
14919 if (do_align)
14920 inst.instruction |= 1 << 4;
14921 break;
14922
14923 case 2: /* VLD3 / VST3. */
14924 constraint (inst.operands[1].immisalign,
14925 _("can't use alignment with this instruction"));
14926 break;
14927
14928 case 3: /* VLD4 / VST4. */
14929 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14930 16, 64, 32, 64, 32, 128, -1);
14931 if (align_good == FAIL)
14932 return;
14933 if (do_align)
14934 {
14935 unsigned alignbits = 0;
14936 switch (et.size)
14937 {
14938 case 8: alignbits = 0x1; break;
14939 case 16: alignbits = 0x1; break;
14940 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14941 default: ;
14942 }
14943 inst.instruction |= alignbits << 4;
14944 }
14945 break;
14946
14947 default: ;
14948 }
14949
14950 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14951 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14952 inst.instruction |= 1 << (4 + logsize);
14953
14954 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14955 inst.instruction |= logsize << 10;
14956 }
14957
14958 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14959
14960 static void
14961 do_neon_ld_dup (void)
14962 {
14963 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14964 int align_good, do_align = 0;
14965
14966 if (et.type == NT_invtype)
14967 return;
14968
14969 switch ((inst.instruction >> 8) & 3)
14970 {
14971 case 0: /* VLD1. */
14972 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14973 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14974 &do_align, 16, 16, 32, 32, -1);
14975 if (align_good == FAIL)
14976 return;
14977 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14978 {
14979 case 1: break;
14980 case 2: inst.instruction |= 1 << 5; break;
14981 default: first_error (_("bad list length")); return;
14982 }
14983 inst.instruction |= neon_logbits (et.size) << 6;
14984 break;
14985
14986 case 1: /* VLD2. */
14987 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14988 &do_align, 8, 16, 16, 32, 32, 64, -1);
14989 if (align_good == FAIL)
14990 return;
14991 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14992 _("bad list length"));
14993 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14994 inst.instruction |= 1 << 5;
14995 inst.instruction |= neon_logbits (et.size) << 6;
14996 break;
14997
14998 case 2: /* VLD3. */
14999 constraint (inst.operands[1].immisalign,
15000 _("can't use alignment with this instruction"));
15001 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15002 _("bad list length"));
15003 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15004 inst.instruction |= 1 << 5;
15005 inst.instruction |= neon_logbits (et.size) << 6;
15006 break;
15007
15008 case 3: /* VLD4. */
15009 {
15010 int align = inst.operands[1].imm >> 8;
15011 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15012 16, 64, 32, 64, 32, 128, -1);
15013 if (align_good == FAIL)
15014 return;
15015 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15016 _("bad list length"));
15017 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15018 inst.instruction |= 1 << 5;
15019 if (et.size == 32 && align == 128)
15020 inst.instruction |= 0x3 << 6;
15021 else
15022 inst.instruction |= neon_logbits (et.size) << 6;
15023 }
15024 break;
15025
15026 default: ;
15027 }
15028
15029 inst.instruction |= do_align << 4;
15030 }
15031
15032 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15033 apart from bits [11:4]. */
15034
15035 static void
15036 do_neon_ldx_stx (void)
15037 {
15038 if (inst.operands[1].isreg)
15039 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15040
15041 switch (NEON_LANE (inst.operands[0].imm))
15042 {
15043 case NEON_INTERLEAVE_LANES:
15044 NEON_ENCODE (INTERLV, inst);
15045 do_neon_ld_st_interleave ();
15046 break;
15047
15048 case NEON_ALL_LANES:
15049 NEON_ENCODE (DUP, inst);
15050 do_neon_ld_dup ();
15051 break;
15052
15053 default:
15054 NEON_ENCODE (LANE, inst);
15055 do_neon_ld_st_lane ();
15056 }
15057
15058 /* L bit comes from bit mask. */
15059 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15060 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15061 inst.instruction |= inst.operands[1].reg << 16;
15062
15063 if (inst.operands[1].postind)
15064 {
15065 int postreg = inst.operands[1].imm & 0xf;
15066 constraint (!inst.operands[1].immisreg,
15067 _("post-index must be a register"));
15068 constraint (postreg == 0xd || postreg == 0xf,
15069 _("bad register for post-index"));
15070 inst.instruction |= postreg;
15071 }
15072 else if (inst.operands[1].writeback)
15073 {
15074 inst.instruction |= 0xd;
15075 }
15076 else
15077 inst.instruction |= 0xf;
15078
15079 if (thumb_mode)
15080 inst.instruction |= 0xf9000000;
15081 else
15082 inst.instruction |= 0xf4000000;
15083 }
15084 \f
15085 /* Overall per-instruction processing. */
15086
15087 /* We need to be able to fix up arbitrary expressions in some statements.
15088 This is so that we can handle symbols that are an arbitrary distance from
15089 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15090 which returns part of an address in a form which will be valid for
15091 a data instruction. We do this by pushing the expression into a symbol
15092 in the expr_section, and creating a fix for that. */
15093
15094 static void
15095 fix_new_arm (fragS * frag,
15096 int where,
15097 short int size,
15098 expressionS * exp,
15099 int pc_rel,
15100 int reloc)
15101 {
15102 fixS * new_fix;
15103
15104 switch (exp->X_op)
15105 {
15106 case O_constant:
15107 case O_symbol:
15108 case O_add:
15109 case O_subtract:
15110 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15111 (enum bfd_reloc_code_real) reloc);
15112 break;
15113
15114 default:
15115 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15116 pc_rel, (enum bfd_reloc_code_real) reloc);
15117 break;
15118 }
15119
15120 /* Mark whether the fix is to a THUMB instruction, or an ARM
15121 instruction. */
15122 new_fix->tc_fix_data = thumb_mode;
15123 }
15124
15125 /* Create a frg for an instruction requiring relaxation. */
15126 static void
15127 output_relax_insn (void)
15128 {
15129 char * to;
15130 symbolS *sym;
15131 int offset;
15132
15133 /* The size of the instruction is unknown, so tie the debug info to the
15134 start of the instruction. */
15135 dwarf2_emit_insn (0);
15136
15137 switch (inst.reloc.exp.X_op)
15138 {
15139 case O_symbol:
15140 sym = inst.reloc.exp.X_add_symbol;
15141 offset = inst.reloc.exp.X_add_number;
15142 break;
15143 case O_constant:
15144 sym = NULL;
15145 offset = inst.reloc.exp.X_add_number;
15146 break;
15147 default:
15148 sym = make_expr_symbol (&inst.reloc.exp);
15149 offset = 0;
15150 break;
15151 }
15152 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15153 inst.relax, sym, offset, NULL/*offset, opcode*/);
15154 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15155 }
15156
15157 /* Write a 32-bit thumb instruction to buf. */
15158 static void
15159 put_thumb32_insn (char * buf, unsigned long insn)
15160 {
15161 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15162 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15163 }
15164
15165 static void
15166 output_inst (const char * str)
15167 {
15168 char * to = NULL;
15169
15170 if (inst.error)
15171 {
15172 as_bad ("%s -- `%s'", inst.error, str);
15173 return;
15174 }
15175 if (inst.relax)
15176 {
15177 output_relax_insn ();
15178 return;
15179 }
15180 if (inst.size == 0)
15181 return;
15182
15183 to = frag_more (inst.size);
15184 /* PR 9814: Record the thumb mode into the current frag so that we know
15185 what type of NOP padding to use, if necessary. We override any previous
15186 setting so that if the mode has changed then the NOPS that we use will
15187 match the encoding of the last instruction in the frag. */
15188 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15189
15190 if (thumb_mode && (inst.size > THUMB_SIZE))
15191 {
15192 gas_assert (inst.size == (2 * THUMB_SIZE));
15193 put_thumb32_insn (to, inst.instruction);
15194 }
15195 else if (inst.size > INSN_SIZE)
15196 {
15197 gas_assert (inst.size == (2 * INSN_SIZE));
15198 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15199 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15200 }
15201 else
15202 md_number_to_chars (to, inst.instruction, inst.size);
15203
15204 if (inst.reloc.type != BFD_RELOC_UNUSED)
15205 fix_new_arm (frag_now, to - frag_now->fr_literal,
15206 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15207 inst.reloc.type);
15208
15209 dwarf2_emit_insn (inst.size);
15210 }
15211
15212 static char *
15213 output_it_inst (int cond, int mask, char * to)
15214 {
15215 unsigned long instruction = 0xbf00;
15216
15217 mask &= 0xf;
15218 instruction |= mask;
15219 instruction |= cond << 4;
15220
15221 if (to == NULL)
15222 {
15223 to = frag_more (2);
15224 #ifdef OBJ_ELF
15225 dwarf2_emit_insn (2);
15226 #endif
15227 }
15228
15229 md_number_to_chars (to, instruction, 2);
15230
15231 return to;
15232 }
15233
15234 /* Tag values used in struct asm_opcode's tag field. */
15235 enum opcode_tag
15236 {
15237 OT_unconditional, /* Instruction cannot be conditionalized.
15238 The ARM condition field is still 0xE. */
15239 OT_unconditionalF, /* Instruction cannot be conditionalized
15240 and carries 0xF in its ARM condition field. */
15241 OT_csuffix, /* Instruction takes a conditional suffix. */
15242 OT_csuffixF, /* Some forms of the instruction take a conditional
15243 suffix, others place 0xF where the condition field
15244 would be. */
15245 OT_cinfix3, /* Instruction takes a conditional infix,
15246 beginning at character index 3. (In
15247 unified mode, it becomes a suffix.) */
15248 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15249 tsts, cmps, cmns, and teqs. */
15250 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15251 character index 3, even in unified mode. Used for
15252 legacy instructions where suffix and infix forms
15253 may be ambiguous. */
15254 OT_csuf_or_in3, /* Instruction takes either a conditional
15255 suffix or an infix at character index 3. */
15256 OT_odd_infix_unc, /* This is the unconditional variant of an
15257 instruction that takes a conditional infix
15258 at an unusual position. In unified mode,
15259 this variant will accept a suffix. */
15260 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15261 are the conditional variants of instructions that
15262 take conditional infixes in unusual positions.
15263 The infix appears at character index
15264 (tag - OT_odd_infix_0). These are not accepted
15265 in unified mode. */
15266 };
15267
15268 /* Subroutine of md_assemble, responsible for looking up the primary
15269 opcode from the mnemonic the user wrote. STR points to the
15270 beginning of the mnemonic.
15271
15272 This is not simply a hash table lookup, because of conditional
15273 variants. Most instructions have conditional variants, which are
15274 expressed with a _conditional affix_ to the mnemonic. If we were
15275 to encode each conditional variant as a literal string in the opcode
15276 table, it would have approximately 20,000 entries.
15277
15278 Most mnemonics take this affix as a suffix, and in unified syntax,
15279 'most' is upgraded to 'all'. However, in the divided syntax, some
15280 instructions take the affix as an infix, notably the s-variants of
15281 the arithmetic instructions. Of those instructions, all but six
15282 have the infix appear after the third character of the mnemonic.
15283
15284 Accordingly, the algorithm for looking up primary opcodes given
15285 an identifier is:
15286
15287 1. Look up the identifier in the opcode table.
15288 If we find a match, go to step U.
15289
15290 2. Look up the last two characters of the identifier in the
15291 conditions table. If we find a match, look up the first N-2
15292 characters of the identifier in the opcode table. If we
15293 find a match, go to step CE.
15294
15295 3. Look up the fourth and fifth characters of the identifier in
15296 the conditions table. If we find a match, extract those
15297 characters from the identifier, and look up the remaining
15298 characters in the opcode table. If we find a match, go
15299 to step CM.
15300
15301 4. Fail.
15302
15303 U. Examine the tag field of the opcode structure, in case this is
15304 one of the six instructions with its conditional infix in an
15305 unusual place. If it is, the tag tells us where to find the
15306 infix; look it up in the conditions table and set inst.cond
15307 accordingly. Otherwise, this is an unconditional instruction.
15308 Again set inst.cond accordingly. Return the opcode structure.
15309
15310 CE. Examine the tag field to make sure this is an instruction that
15311 should receive a conditional suffix. If it is not, fail.
15312 Otherwise, set inst.cond from the suffix we already looked up,
15313 and return the opcode structure.
15314
15315 CM. Examine the tag field to make sure this is an instruction that
15316 should receive a conditional infix after the third character.
15317 If it is not, fail. Otherwise, undo the edits to the current
15318 line of input and proceed as for case CE. */
15319
15320 static const struct asm_opcode *
15321 opcode_lookup (char **str)
15322 {
15323 char *end, *base;
15324 char *affix;
15325 const struct asm_opcode *opcode;
15326 const struct asm_cond *cond;
15327 char save[2];
15328
15329 /* Scan up to the end of the mnemonic, which must end in white space,
15330 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15331 for (base = end = *str; *end != '\0'; end++)
15332 if (*end == ' ' || *end == '.')
15333 break;
15334
15335 if (end == base)
15336 return NULL;
15337
15338 /* Handle a possible width suffix and/or Neon type suffix. */
15339 if (end[0] == '.')
15340 {
15341 int offset = 2;
15342
15343 /* The .w and .n suffixes are only valid if the unified syntax is in
15344 use. */
15345 if (unified_syntax && end[1] == 'w')
15346 inst.size_req = 4;
15347 else if (unified_syntax && end[1] == 'n')
15348 inst.size_req = 2;
15349 else
15350 offset = 0;
15351
15352 inst.vectype.elems = 0;
15353
15354 *str = end + offset;
15355
15356 if (end[offset] == '.')
15357 {
15358 /* See if we have a Neon type suffix (possible in either unified or
15359 non-unified ARM syntax mode). */
15360 if (parse_neon_type (&inst.vectype, str) == FAIL)
15361 return NULL;
15362 }
15363 else if (end[offset] != '\0' && end[offset] != ' ')
15364 return NULL;
15365 }
15366 else
15367 *str = end;
15368
15369 /* Look for unaffixed or special-case affixed mnemonic. */
15370 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15371 end - base);
15372 if (opcode)
15373 {
15374 /* step U */
15375 if (opcode->tag < OT_odd_infix_0)
15376 {
15377 inst.cond = COND_ALWAYS;
15378 return opcode;
15379 }
15380
15381 if (warn_on_deprecated && unified_syntax)
15382 as_warn (_("conditional infixes are deprecated in unified syntax"));
15383 affix = base + (opcode->tag - OT_odd_infix_0);
15384 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15385 gas_assert (cond);
15386
15387 inst.cond = cond->value;
15388 return opcode;
15389 }
15390
15391 /* Cannot have a conditional suffix on a mnemonic of less than two
15392 characters. */
15393 if (end - base < 3)
15394 return NULL;
15395
15396 /* Look for suffixed mnemonic. */
15397 affix = end - 2;
15398 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15399 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15400 affix - base);
15401 if (opcode && cond)
15402 {
15403 /* step CE */
15404 switch (opcode->tag)
15405 {
15406 case OT_cinfix3_legacy:
15407 /* Ignore conditional suffixes matched on infix only mnemonics. */
15408 break;
15409
15410 case OT_cinfix3:
15411 case OT_cinfix3_deprecated:
15412 case OT_odd_infix_unc:
15413 if (!unified_syntax)
15414 return 0;
15415 /* else fall through */
15416
15417 case OT_csuffix:
15418 case OT_csuffixF:
15419 case OT_csuf_or_in3:
15420 inst.cond = cond->value;
15421 return opcode;
15422
15423 case OT_unconditional:
15424 case OT_unconditionalF:
15425 if (thumb_mode)
15426 inst.cond = cond->value;
15427 else
15428 {
15429 /* Delayed diagnostic. */
15430 inst.error = BAD_COND;
15431 inst.cond = COND_ALWAYS;
15432 }
15433 return opcode;
15434
15435 default:
15436 return NULL;
15437 }
15438 }
15439
15440 /* Cannot have a usual-position infix on a mnemonic of less than
15441 six characters (five would be a suffix). */
15442 if (end - base < 6)
15443 return NULL;
15444
15445 /* Look for infixed mnemonic in the usual position. */
15446 affix = base + 3;
15447 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15448 if (!cond)
15449 return NULL;
15450
15451 memcpy (save, affix, 2);
15452 memmove (affix, affix + 2, (end - affix) - 2);
15453 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15454 (end - base) - 2);
15455 memmove (affix + 2, affix, (end - affix) - 2);
15456 memcpy (affix, save, 2);
15457
15458 if (opcode
15459 && (opcode->tag == OT_cinfix3
15460 || opcode->tag == OT_cinfix3_deprecated
15461 || opcode->tag == OT_csuf_or_in3
15462 || opcode->tag == OT_cinfix3_legacy))
15463 {
15464 /* Step CM. */
15465 if (warn_on_deprecated && unified_syntax
15466 && (opcode->tag == OT_cinfix3
15467 || opcode->tag == OT_cinfix3_deprecated))
15468 as_warn (_("conditional infixes are deprecated in unified syntax"));
15469
15470 inst.cond = cond->value;
15471 return opcode;
15472 }
15473
15474 return NULL;
15475 }
15476
15477 /* This function generates an initial IT instruction, leaving its block
15478 virtually open for the new instructions. Eventually,
15479 the mask will be updated by now_it_add_mask () each time
15480 a new instruction needs to be included in the IT block.
15481 Finally, the block is closed with close_automatic_it_block ().
15482 The block closure can be requested either from md_assemble (),
15483 a tencode (), or due to a label hook. */
15484
15485 static void
15486 new_automatic_it_block (int cond)
15487 {
15488 now_it.state = AUTOMATIC_IT_BLOCK;
15489 now_it.mask = 0x18;
15490 now_it.cc = cond;
15491 now_it.block_length = 1;
15492 mapping_state (MAP_THUMB);
15493 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15494 }
15495
15496 /* Close an automatic IT block.
15497 See comments in new_automatic_it_block (). */
15498
15499 static void
15500 close_automatic_it_block (void)
15501 {
15502 now_it.mask = 0x10;
15503 now_it.block_length = 0;
15504 }
15505
15506 /* Update the mask of the current automatically-generated IT
15507 instruction. See comments in new_automatic_it_block (). */
15508
15509 static void
15510 now_it_add_mask (int cond)
15511 {
15512 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15513 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15514 | ((bitvalue) << (nbit)))
15515 const int resulting_bit = (cond & 1);
15516
15517 now_it.mask &= 0xf;
15518 now_it.mask = SET_BIT_VALUE (now_it.mask,
15519 resulting_bit,
15520 (5 - now_it.block_length));
15521 now_it.mask = SET_BIT_VALUE (now_it.mask,
15522 1,
15523 ((5 - now_it.block_length) - 1) );
15524 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15525
15526 #undef CLEAR_BIT
15527 #undef SET_BIT_VALUE
15528 }
15529
15530 /* The IT blocks handling machinery is accessed through the these functions:
15531 it_fsm_pre_encode () from md_assemble ()
15532 set_it_insn_type () optional, from the tencode functions
15533 set_it_insn_type_last () ditto
15534 in_it_block () ditto
15535 it_fsm_post_encode () from md_assemble ()
15536 force_automatic_it_block_close () from label habdling functions
15537
15538 Rationale:
15539 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15540 initializing the IT insn type with a generic initial value depending
15541 on the inst.condition.
15542 2) During the tencode function, two things may happen:
15543 a) The tencode function overrides the IT insn type by
15544 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15545 b) The tencode function queries the IT block state by
15546 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15547
15548 Both set_it_insn_type and in_it_block run the internal FSM state
15549 handling function (handle_it_state), because: a) setting the IT insn
15550 type may incur in an invalid state (exiting the function),
15551 and b) querying the state requires the FSM to be updated.
15552 Specifically we want to avoid creating an IT block for conditional
15553 branches, so it_fsm_pre_encode is actually a guess and we can't
15554 determine whether an IT block is required until the tencode () routine
15555 has decided what type of instruction this actually it.
15556 Because of this, if set_it_insn_type and in_it_block have to be used,
15557 set_it_insn_type has to be called first.
15558
15559 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15560 determines the insn IT type depending on the inst.cond code.
15561 When a tencode () routine encodes an instruction that can be
15562 either outside an IT block, or, in the case of being inside, has to be
15563 the last one, set_it_insn_type_last () will determine the proper
15564 IT instruction type based on the inst.cond code. Otherwise,
15565 set_it_insn_type can be called for overriding that logic or
15566 for covering other cases.
15567
15568 Calling handle_it_state () may not transition the IT block state to
15569 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15570 still queried. Instead, if the FSM determines that the state should
15571 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15572 after the tencode () function: that's what it_fsm_post_encode () does.
15573
15574 Since in_it_block () calls the state handling function to get an
15575 updated state, an error may occur (due to invalid insns combination).
15576 In that case, inst.error is set.
15577 Therefore, inst.error has to be checked after the execution of
15578 the tencode () routine.
15579
15580 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15581 any pending state change (if any) that didn't take place in
15582 handle_it_state () as explained above. */
15583
15584 static void
15585 it_fsm_pre_encode (void)
15586 {
15587 if (inst.cond != COND_ALWAYS)
15588 inst.it_insn_type = INSIDE_IT_INSN;
15589 else
15590 inst.it_insn_type = OUTSIDE_IT_INSN;
15591
15592 now_it.state_handled = 0;
15593 }
15594
15595 /* IT state FSM handling function. */
15596
15597 static int
15598 handle_it_state (void)
15599 {
15600 now_it.state_handled = 1;
15601
15602 switch (now_it.state)
15603 {
15604 case OUTSIDE_IT_BLOCK:
15605 switch (inst.it_insn_type)
15606 {
15607 case OUTSIDE_IT_INSN:
15608 break;
15609
15610 case INSIDE_IT_INSN:
15611 case INSIDE_IT_LAST_INSN:
15612 if (thumb_mode == 0)
15613 {
15614 if (unified_syntax
15615 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15616 as_tsktsk (_("Warning: conditional outside an IT block"\
15617 " for Thumb."));
15618 }
15619 else
15620 {
15621 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15622 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15623 {
15624 /* Automatically generate the IT instruction. */
15625 new_automatic_it_block (inst.cond);
15626 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15627 close_automatic_it_block ();
15628 }
15629 else
15630 {
15631 inst.error = BAD_OUT_IT;
15632 return FAIL;
15633 }
15634 }
15635 break;
15636
15637 case IF_INSIDE_IT_LAST_INSN:
15638 case NEUTRAL_IT_INSN:
15639 break;
15640
15641 case IT_INSN:
15642 now_it.state = MANUAL_IT_BLOCK;
15643 now_it.block_length = 0;
15644 break;
15645 }
15646 break;
15647
15648 case AUTOMATIC_IT_BLOCK:
15649 /* Three things may happen now:
15650 a) We should increment current it block size;
15651 b) We should close current it block (closing insn or 4 insns);
15652 c) We should close current it block and start a new one (due
15653 to incompatible conditions or
15654 4 insns-length block reached). */
15655
15656 switch (inst.it_insn_type)
15657 {
15658 case OUTSIDE_IT_INSN:
15659 /* The closure of the block shall happen immediatelly,
15660 so any in_it_block () call reports the block as closed. */
15661 force_automatic_it_block_close ();
15662 break;
15663
15664 case INSIDE_IT_INSN:
15665 case INSIDE_IT_LAST_INSN:
15666 case IF_INSIDE_IT_LAST_INSN:
15667 now_it.block_length++;
15668
15669 if (now_it.block_length > 4
15670 || !now_it_compatible (inst.cond))
15671 {
15672 force_automatic_it_block_close ();
15673 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15674 new_automatic_it_block (inst.cond);
15675 }
15676 else
15677 {
15678 now_it_add_mask (inst.cond);
15679 }
15680
15681 if (now_it.state == AUTOMATIC_IT_BLOCK
15682 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15683 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15684 close_automatic_it_block ();
15685 break;
15686
15687 case NEUTRAL_IT_INSN:
15688 now_it.block_length++;
15689
15690 if (now_it.block_length > 4)
15691 force_automatic_it_block_close ();
15692 else
15693 now_it_add_mask (now_it.cc & 1);
15694 break;
15695
15696 case IT_INSN:
15697 close_automatic_it_block ();
15698 now_it.state = MANUAL_IT_BLOCK;
15699 break;
15700 }
15701 break;
15702
15703 case MANUAL_IT_BLOCK:
15704 {
15705 /* Check conditional suffixes. */
15706 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15707 int is_last;
15708 now_it.mask <<= 1;
15709 now_it.mask &= 0x1f;
15710 is_last = (now_it.mask == 0x10);
15711
15712 switch (inst.it_insn_type)
15713 {
15714 case OUTSIDE_IT_INSN:
15715 inst.error = BAD_NOT_IT;
15716 return FAIL;
15717
15718 case INSIDE_IT_INSN:
15719 if (cond != inst.cond)
15720 {
15721 inst.error = BAD_IT_COND;
15722 return FAIL;
15723 }
15724 break;
15725
15726 case INSIDE_IT_LAST_INSN:
15727 case IF_INSIDE_IT_LAST_INSN:
15728 if (cond != inst.cond)
15729 {
15730 inst.error = BAD_IT_COND;
15731 return FAIL;
15732 }
15733 if (!is_last)
15734 {
15735 inst.error = BAD_BRANCH;
15736 return FAIL;
15737 }
15738 break;
15739
15740 case NEUTRAL_IT_INSN:
15741 /* The BKPT instruction is unconditional even in an IT block. */
15742 break;
15743
15744 case IT_INSN:
15745 inst.error = BAD_IT_IT;
15746 return FAIL;
15747 }
15748 }
15749 break;
15750 }
15751
15752 return SUCCESS;
15753 }
15754
15755 static void
15756 it_fsm_post_encode (void)
15757 {
15758 int is_last;
15759
15760 if (!now_it.state_handled)
15761 handle_it_state ();
15762
15763 is_last = (now_it.mask == 0x10);
15764 if (is_last)
15765 {
15766 now_it.state = OUTSIDE_IT_BLOCK;
15767 now_it.mask = 0;
15768 }
15769 }
15770
15771 static void
15772 force_automatic_it_block_close (void)
15773 {
15774 if (now_it.state == AUTOMATIC_IT_BLOCK)
15775 {
15776 close_automatic_it_block ();
15777 now_it.state = OUTSIDE_IT_BLOCK;
15778 now_it.mask = 0;
15779 }
15780 }
15781
15782 static int
15783 in_it_block (void)
15784 {
15785 if (!now_it.state_handled)
15786 handle_it_state ();
15787
15788 return now_it.state != OUTSIDE_IT_BLOCK;
15789 }
15790
15791 void
15792 md_assemble (char *str)
15793 {
15794 char *p = str;
15795 const struct asm_opcode * opcode;
15796
15797 /* Align the previous label if needed. */
15798 if (last_label_seen != NULL)
15799 {
15800 symbol_set_frag (last_label_seen, frag_now);
15801 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15802 S_SET_SEGMENT (last_label_seen, now_seg);
15803 }
15804
15805 memset (&inst, '\0', sizeof (inst));
15806 inst.reloc.type = BFD_RELOC_UNUSED;
15807
15808 opcode = opcode_lookup (&p);
15809 if (!opcode)
15810 {
15811 /* It wasn't an instruction, but it might be a register alias of
15812 the form alias .req reg, or a Neon .dn/.qn directive. */
15813 if (! create_register_alias (str, p)
15814 && ! create_neon_reg_alias (str, p))
15815 as_bad (_("bad instruction `%s'"), str);
15816
15817 return;
15818 }
15819
15820 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15821 as_warn (_("s suffix on comparison instruction is deprecated"));
15822
15823 /* The value which unconditional instructions should have in place of the
15824 condition field. */
15825 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15826
15827 if (thumb_mode)
15828 {
15829 arm_feature_set variant;
15830
15831 variant = cpu_variant;
15832 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15833 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15834 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15835 /* Check that this instruction is supported for this CPU. */
15836 if (!opcode->tvariant
15837 || (thumb_mode == 1
15838 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15839 {
15840 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
15841 return;
15842 }
15843 if (inst.cond != COND_ALWAYS && !unified_syntax
15844 && opcode->tencode != do_t_branch)
15845 {
15846 as_bad (_("Thumb does not support conditional execution"));
15847 return;
15848 }
15849
15850 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
15851 {
15852 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
15853 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15854 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15855 {
15856 /* Two things are addressed here.
15857 1) Implicit require narrow instructions on Thumb-1.
15858 This avoids relaxation accidentally introducing Thumb-2
15859 instructions.
15860 2) Reject wide instructions in non Thumb-2 cores. */
15861 if (inst.size_req == 0)
15862 inst.size_req = 2;
15863 else if (inst.size_req == 4)
15864 {
15865 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
15866 return;
15867 }
15868 }
15869 }
15870
15871 inst.instruction = opcode->tvalue;
15872
15873 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
15874 {
15875 /* Prepare the it_insn_type for those encodings that don't set
15876 it. */
15877 it_fsm_pre_encode ();
15878
15879 opcode->tencode ();
15880
15881 it_fsm_post_encode ();
15882 }
15883
15884 if (!(inst.error || inst.relax))
15885 {
15886 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
15887 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15888 if (inst.size_req && inst.size_req != inst.size)
15889 {
15890 as_bad (_("cannot honor width suffix -- `%s'"), str);
15891 return;
15892 }
15893 }
15894
15895 /* Something has gone badly wrong if we try to relax a fixed size
15896 instruction. */
15897 gas_assert (inst.size_req == 0 || !inst.relax);
15898
15899 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15900 *opcode->tvariant);
15901 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
15902 set those bits when Thumb-2 32-bit instructions are seen. ie.
15903 anything other than bl/blx and v6-M instructions.
15904 This is overly pessimistic for relaxable instructions. */
15905 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15906 || inst.relax)
15907 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15908 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
15909 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15910 arm_ext_v6t2);
15911
15912 check_neon_suffixes;
15913
15914 if (!inst.error)
15915 {
15916 mapping_state (MAP_THUMB);
15917 }
15918 }
15919 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
15920 {
15921 bfd_boolean is_bx;
15922
15923 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15924 is_bx = (opcode->aencode == do_bx);
15925
15926 /* Check that this instruction is supported for this CPU. */
15927 if (!(is_bx && fix_v4bx)
15928 && !(opcode->avariant &&
15929 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
15930 {
15931 as_bad (_("selected processor does not support ARM mode `%s'"), str);
15932 return;
15933 }
15934 if (inst.size_req)
15935 {
15936 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15937 return;
15938 }
15939
15940 inst.instruction = opcode->avalue;
15941 if (opcode->tag == OT_unconditionalF)
15942 inst.instruction |= 0xF << 28;
15943 else
15944 inst.instruction |= inst.cond << 28;
15945 inst.size = INSN_SIZE;
15946 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
15947 {
15948 it_fsm_pre_encode ();
15949 opcode->aencode ();
15950 it_fsm_post_encode ();
15951 }
15952 /* Arm mode bx is marked as both v4T and v5 because it's still required
15953 on a hypothetical non-thumb v5 core. */
15954 if (is_bx)
15955 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
15956 else
15957 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15958 *opcode->avariant);
15959
15960 check_neon_suffixes;
15961
15962 if (!inst.error)
15963 {
15964 mapping_state (MAP_ARM);
15965 }
15966 }
15967 else
15968 {
15969 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15970 "-- `%s'"), str);
15971 return;
15972 }
15973 output_inst (str);
15974 }
15975
15976 static void
15977 check_it_blocks_finished (void)
15978 {
15979 #ifdef OBJ_ELF
15980 asection *sect;
15981
15982 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15983 if (seg_info (sect)->tc_segment_info_data.current_it.state
15984 == MANUAL_IT_BLOCK)
15985 {
15986 as_warn (_("section '%s' finished with an open IT block."),
15987 sect->name);
15988 }
15989 #else
15990 if (now_it.state == MANUAL_IT_BLOCK)
15991 as_warn (_("file finished with an open IT block."));
15992 #endif
15993 }
15994
15995 /* Various frobbings of labels and their addresses. */
15996
15997 void
15998 arm_start_line_hook (void)
15999 {
16000 last_label_seen = NULL;
16001 }
16002
16003 void
16004 arm_frob_label (symbolS * sym)
16005 {
16006 last_label_seen = sym;
16007
16008 ARM_SET_THUMB (sym, thumb_mode);
16009
16010 #if defined OBJ_COFF || defined OBJ_ELF
16011 ARM_SET_INTERWORK (sym, support_interwork);
16012 #endif
16013
16014 force_automatic_it_block_close ();
16015
16016 /* Note - do not allow local symbols (.Lxxx) to be labelled
16017 as Thumb functions. This is because these labels, whilst
16018 they exist inside Thumb code, are not the entry points for
16019 possible ARM->Thumb calls. Also, these labels can be used
16020 as part of a computed goto or switch statement. eg gcc
16021 can generate code that looks like this:
16022
16023 ldr r2, [pc, .Laaa]
16024 lsl r3, r3, #2
16025 ldr r2, [r3, r2]
16026 mov pc, r2
16027
16028 .Lbbb: .word .Lxxx
16029 .Lccc: .word .Lyyy
16030 ..etc...
16031 .Laaa: .word Lbbb
16032
16033 The first instruction loads the address of the jump table.
16034 The second instruction converts a table index into a byte offset.
16035 The third instruction gets the jump address out of the table.
16036 The fourth instruction performs the jump.
16037
16038 If the address stored at .Laaa is that of a symbol which has the
16039 Thumb_Func bit set, then the linker will arrange for this address
16040 to have the bottom bit set, which in turn would mean that the
16041 address computation performed by the third instruction would end
16042 up with the bottom bit set. Since the ARM is capable of unaligned
16043 word loads, the instruction would then load the incorrect address
16044 out of the jump table, and chaos would ensue. */
16045 if (label_is_thumb_function_name
16046 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16047 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16048 {
16049 /* When the address of a Thumb function is taken the bottom
16050 bit of that address should be set. This will allow
16051 interworking between Arm and Thumb functions to work
16052 correctly. */
16053
16054 THUMB_SET_FUNC (sym, 1);
16055
16056 label_is_thumb_function_name = FALSE;
16057 }
16058
16059 dwarf2_emit_label (sym);
16060 }
16061
16062 bfd_boolean
16063 arm_data_in_code (void)
16064 {
16065 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16066 {
16067 *input_line_pointer = '/';
16068 input_line_pointer += 5;
16069 *input_line_pointer = 0;
16070 return TRUE;
16071 }
16072
16073 return FALSE;
16074 }
16075
16076 char *
16077 arm_canonicalize_symbol_name (char * name)
16078 {
16079 int len;
16080
16081 if (thumb_mode && (len = strlen (name)) > 5
16082 && streq (name + len - 5, "/data"))
16083 *(name + len - 5) = 0;
16084
16085 return name;
16086 }
16087 \f
16088 /* Table of all register names defined by default. The user can
16089 define additional names with .req. Note that all register names
16090 should appear in both upper and lowercase variants. Some registers
16091 also have mixed-case names. */
16092
16093 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16094 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16095 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16096 #define REGSET(p,t) \
16097 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16098 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16099 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16100 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16101 #define REGSETH(p,t) \
16102 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16103 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16104 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16105 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16106 #define REGSET2(p,t) \
16107 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16108 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16109 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16110 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16111
16112 static const struct reg_entry reg_names[] =
16113 {
16114 /* ARM integer registers. */
16115 REGSET(r, RN), REGSET(R, RN),
16116
16117 /* ATPCS synonyms. */
16118 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16119 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16120 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16121
16122 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16123 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16124 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16125
16126 /* Well-known aliases. */
16127 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16128 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16129
16130 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16131 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16132
16133 /* Coprocessor numbers. */
16134 REGSET(p, CP), REGSET(P, CP),
16135
16136 /* Coprocessor register numbers. The "cr" variants are for backward
16137 compatibility. */
16138 REGSET(c, CN), REGSET(C, CN),
16139 REGSET(cr, CN), REGSET(CR, CN),
16140
16141 /* FPA registers. */
16142 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16143 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16144
16145 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16146 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16147
16148 /* VFP SP registers. */
16149 REGSET(s,VFS), REGSET(S,VFS),
16150 REGSETH(s,VFS), REGSETH(S,VFS),
16151
16152 /* VFP DP Registers. */
16153 REGSET(d,VFD), REGSET(D,VFD),
16154 /* Extra Neon DP registers. */
16155 REGSETH(d,VFD), REGSETH(D,VFD),
16156
16157 /* Neon QP registers. */
16158 REGSET2(q,NQ), REGSET2(Q,NQ),
16159
16160 /* VFP control registers. */
16161 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16162 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16163 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16164 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16165 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16166 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16167
16168 /* Maverick DSP coprocessor registers. */
16169 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16170 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16171
16172 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16173 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16174 REGDEF(dspsc,0,DSPSC),
16175
16176 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16177 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16178 REGDEF(DSPSC,0,DSPSC),
16179
16180 /* iWMMXt data registers - p0, c0-15. */
16181 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16182
16183 /* iWMMXt control registers - p1, c0-3. */
16184 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16185 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16186 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16187 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16188
16189 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16190 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16191 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16192 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16193 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16194
16195 /* XScale accumulator registers. */
16196 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16197 };
16198 #undef REGDEF
16199 #undef REGNUM
16200 #undef REGSET
16201
16202 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16203 within psr_required_here. */
16204 static const struct asm_psr psrs[] =
16205 {
16206 /* Backward compatibility notation. Note that "all" is no longer
16207 truly all possible PSR bits. */
16208 {"all", PSR_c | PSR_f},
16209 {"flg", PSR_f},
16210 {"ctl", PSR_c},
16211
16212 /* Individual flags. */
16213 {"f", PSR_f},
16214 {"c", PSR_c},
16215 {"x", PSR_x},
16216 {"s", PSR_s},
16217 /* Combinations of flags. */
16218 {"fs", PSR_f | PSR_s},
16219 {"fx", PSR_f | PSR_x},
16220 {"fc", PSR_f | PSR_c},
16221 {"sf", PSR_s | PSR_f},
16222 {"sx", PSR_s | PSR_x},
16223 {"sc", PSR_s | PSR_c},
16224 {"xf", PSR_x | PSR_f},
16225 {"xs", PSR_x | PSR_s},
16226 {"xc", PSR_x | PSR_c},
16227 {"cf", PSR_c | PSR_f},
16228 {"cs", PSR_c | PSR_s},
16229 {"cx", PSR_c | PSR_x},
16230 {"fsx", PSR_f | PSR_s | PSR_x},
16231 {"fsc", PSR_f | PSR_s | PSR_c},
16232 {"fxs", PSR_f | PSR_x | PSR_s},
16233 {"fxc", PSR_f | PSR_x | PSR_c},
16234 {"fcs", PSR_f | PSR_c | PSR_s},
16235 {"fcx", PSR_f | PSR_c | PSR_x},
16236 {"sfx", PSR_s | PSR_f | PSR_x},
16237 {"sfc", PSR_s | PSR_f | PSR_c},
16238 {"sxf", PSR_s | PSR_x | PSR_f},
16239 {"sxc", PSR_s | PSR_x | PSR_c},
16240 {"scf", PSR_s | PSR_c | PSR_f},
16241 {"scx", PSR_s | PSR_c | PSR_x},
16242 {"xfs", PSR_x | PSR_f | PSR_s},
16243 {"xfc", PSR_x | PSR_f | PSR_c},
16244 {"xsf", PSR_x | PSR_s | PSR_f},
16245 {"xsc", PSR_x | PSR_s | PSR_c},
16246 {"xcf", PSR_x | PSR_c | PSR_f},
16247 {"xcs", PSR_x | PSR_c | PSR_s},
16248 {"cfs", PSR_c | PSR_f | PSR_s},
16249 {"cfx", PSR_c | PSR_f | PSR_x},
16250 {"csf", PSR_c | PSR_s | PSR_f},
16251 {"csx", PSR_c | PSR_s | PSR_x},
16252 {"cxf", PSR_c | PSR_x | PSR_f},
16253 {"cxs", PSR_c | PSR_x | PSR_s},
16254 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16255 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16256 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16257 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16258 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16259 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16260 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16261 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16262 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16263 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16264 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16265 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16266 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16267 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16268 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16269 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16270 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16271 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16272 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16273 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16274 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16275 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16276 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16277 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16278 };
16279
16280 /* Table of V7M psr names. */
16281 static const struct asm_psr v7m_psrs[] =
16282 {
16283 {"apsr", 0 }, {"APSR", 0 },
16284 {"iapsr", 1 }, {"IAPSR", 1 },
16285 {"eapsr", 2 }, {"EAPSR", 2 },
16286 {"psr", 3 }, {"PSR", 3 },
16287 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16288 {"ipsr", 5 }, {"IPSR", 5 },
16289 {"epsr", 6 }, {"EPSR", 6 },
16290 {"iepsr", 7 }, {"IEPSR", 7 },
16291 {"msp", 8 }, {"MSP", 8 },
16292 {"psp", 9 }, {"PSP", 9 },
16293 {"primask", 16}, {"PRIMASK", 16},
16294 {"basepri", 17}, {"BASEPRI", 17},
16295 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16296 {"faultmask", 19}, {"FAULTMASK", 19},
16297 {"control", 20}, {"CONTROL", 20}
16298 };
16299
16300 /* Table of all shift-in-operand names. */
16301 static const struct asm_shift_name shift_names [] =
16302 {
16303 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16304 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16305 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16306 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16307 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16308 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16309 };
16310
16311 /* Table of all explicit relocation names. */
16312 #ifdef OBJ_ELF
16313 static struct reloc_entry reloc_names[] =
16314 {
16315 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16316 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16317 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16318 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16319 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16320 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16321 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16322 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16323 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16324 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16325 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16326 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL}
16327 };
16328 #endif
16329
16330 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16331 static const struct asm_cond conds[] =
16332 {
16333 {"eq", 0x0},
16334 {"ne", 0x1},
16335 {"cs", 0x2}, {"hs", 0x2},
16336 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16337 {"mi", 0x4},
16338 {"pl", 0x5},
16339 {"vs", 0x6},
16340 {"vc", 0x7},
16341 {"hi", 0x8},
16342 {"ls", 0x9},
16343 {"ge", 0xa},
16344 {"lt", 0xb},
16345 {"gt", 0xc},
16346 {"le", 0xd},
16347 {"al", 0xe}
16348 };
16349
16350 static struct asm_barrier_opt barrier_opt_names[] =
16351 {
16352 { "sy", 0xf }, { "SY", 0xf },
16353 { "un", 0x7 }, { "UN", 0x7 },
16354 { "st", 0xe }, { "ST", 0xe },
16355 { "unst", 0x6 }, { "UNST", 0x6 },
16356 { "ish", 0xb }, { "ISH", 0xb },
16357 { "sh", 0xb }, { "SH", 0xb },
16358 { "ishst", 0xa }, { "ISHST", 0xa },
16359 { "shst", 0xa }, { "SHST", 0xa },
16360 { "nsh", 0x7 }, { "NSH", 0x7 },
16361 { "nshst", 0x6 }, { "NSHST", 0x6 },
16362 { "osh", 0x3 }, { "OSH", 0x3 },
16363 { "oshst", 0x2 }, { "OSHST", 0x2 }
16364 };
16365
16366 /* Table of ARM-format instructions. */
16367
16368 /* Macros for gluing together operand strings. N.B. In all cases
16369 other than OPS0, the trailing OP_stop comes from default
16370 zero-initialization of the unspecified elements of the array. */
16371 #define OPS0() { OP_stop, }
16372 #define OPS1(a) { OP_##a, }
16373 #define OPS2(a,b) { OP_##a,OP_##b, }
16374 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16375 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16376 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16377 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16378
16379 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16380 This is useful when mixing operands for ARM and THUMB, i.e. using the
16381 MIX_ARM_THUMB_OPERANDS macro.
16382 In order to use these macros, prefix the number of operands with _
16383 e.g. _3. */
16384 #define OPS_1(a) { a, }
16385 #define OPS_2(a,b) { a,b, }
16386 #define OPS_3(a,b,c) { a,b,c, }
16387 #define OPS_4(a,b,c,d) { a,b,c,d, }
16388 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16389 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16390
16391 /* These macros abstract out the exact format of the mnemonic table and
16392 save some repeated characters. */
16393
16394 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16395 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16396 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16397 THUMB_VARIANT, do_##ae, do_##te }
16398
16399 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16400 a T_MNEM_xyz enumerator. */
16401 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16402 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16403 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16404 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16405
16406 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16407 infix after the third character. */
16408 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16409 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16410 THUMB_VARIANT, do_##ae, do_##te }
16411 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16412 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16413 THUMB_VARIANT, do_##ae, do_##te }
16414 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16415 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16416 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16417 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16418 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16419 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16420 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16421 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16422
16423 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16424 appear in the condition table. */
16425 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16426 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16427 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16428
16429 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16430 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16431 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16432 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16433 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16434 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16435 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16436 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16437 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16438 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16439 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16440 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16441 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16442 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16443 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16444 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16445 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16446 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16447 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16448 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16449
16450 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16451 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16452 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16453 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16454
16455 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16456 field is still 0xE. Many of the Thumb variants can be executed
16457 conditionally, so this is checked separately. */
16458 #define TUE(mnem, op, top, nops, ops, ae, te) \
16459 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16460 THUMB_VARIANT, do_##ae, do_##te }
16461
16462 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16463 condition code field. */
16464 #define TUF(mnem, op, top, nops, ops, ae, te) \
16465 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16466 THUMB_VARIANT, do_##ae, do_##te }
16467
16468 /* ARM-only variants of all the above. */
16469 #define CE(mnem, op, nops, ops, ae) \
16470 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16471
16472 #define C3(mnem, op, nops, ops, ae) \
16473 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16474
16475 /* Legacy mnemonics that always have conditional infix after the third
16476 character. */
16477 #define CL(mnem, op, nops, ops, ae) \
16478 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16479 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16480
16481 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16482 #define cCE(mnem, op, nops, ops, ae) \
16483 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16484
16485 /* Legacy coprocessor instructions where conditional infix and conditional
16486 suffix are ambiguous. For consistency this includes all FPA instructions,
16487 not just the potentially ambiguous ones. */
16488 #define cCL(mnem, op, nops, ops, ae) \
16489 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16490 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16491
16492 /* Coprocessor, takes either a suffix or a position-3 infix
16493 (for an FPA corner case). */
16494 #define C3E(mnem, op, nops, ops, ae) \
16495 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16496 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16497
16498 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16499 { m1 #m2 m3, OPS##nops ops, \
16500 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16501 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16502
16503 #define CM(m1, m2, op, nops, ops, ae) \
16504 xCM_ (m1, , m2, op, nops, ops, ae), \
16505 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16506 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16507 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16508 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16509 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16510 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16511 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16512 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16513 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16514 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16515 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16516 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16517 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16518 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16519 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16520 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16521 xCM_ (m1, le, m2, op, nops, ops, ae), \
16522 xCM_ (m1, al, m2, op, nops, ops, ae)
16523
16524 #define UE(mnem, op, nops, ops, ae) \
16525 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16526
16527 #define UF(mnem, op, nops, ops, ae) \
16528 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16529
16530 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16531 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16532 use the same encoding function for each. */
16533 #define NUF(mnem, op, nops, ops, enc) \
16534 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16535 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16536
16537 /* Neon data processing, version which indirects through neon_enc_tab for
16538 the various overloaded versions of opcodes. */
16539 #define nUF(mnem, op, nops, ops, enc) \
16540 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16541 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16542
16543 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16544 version. */
16545 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16546 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16547 THUMB_VARIANT, do_##enc, do_##enc }
16548
16549 #define NCE(mnem, op, nops, ops, enc) \
16550 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16551
16552 #define NCEF(mnem, op, nops, ops, enc) \
16553 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16554
16555 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16556 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16557 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16558 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16559
16560 #define nCE(mnem, op, nops, ops, enc) \
16561 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16562
16563 #define nCEF(mnem, op, nops, ops, enc) \
16564 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16565
16566 #define do_0 0
16567
16568 static const struct asm_opcode insns[] =
16569 {
16570 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16571 #define THUMB_VARIANT &arm_ext_v4t
16572 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16573 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16574 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16575 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16576 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16577 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16578 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16579 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16580 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16581 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16582 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16583 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16584 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16585 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16586 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16587 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16588
16589 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16590 for setting PSR flag bits. They are obsolete in V6 and do not
16591 have Thumb equivalents. */
16592 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16593 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16594 CL("tstp", 110f000, 2, (RR, SH), cmp),
16595 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16596 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16597 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16598 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16599 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16600 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16601
16602 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16603 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16604 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16605 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16606
16607 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16608 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16609 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16610 OP_RRnpc),
16611 OP_ADDRGLDR),ldst, t_ldst),
16612 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16613
16614 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16615 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16616 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16617 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16618 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16619 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16620
16621 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16622 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16623 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16624 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16625
16626 /* Pseudo ops. */
16627 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16628 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16629 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16630
16631 /* Thumb-compatibility pseudo ops. */
16632 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16633 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16634 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16635 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16636 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16637 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16638 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16639 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16640 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16641 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16642 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16643 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16644
16645 /* These may simplify to neg. */
16646 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16647 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16648
16649 #undef THUMB_VARIANT
16650 #define THUMB_VARIANT & arm_ext_v6
16651
16652 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16653
16654 /* V1 instructions with no Thumb analogue prior to V6T2. */
16655 #undef THUMB_VARIANT
16656 #define THUMB_VARIANT & arm_ext_v6t2
16657
16658 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16659 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16660 CL("teqp", 130f000, 2, (RR, SH), cmp),
16661
16662 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16663 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16664 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16665 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16666
16667 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16668 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16669
16670 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16671 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16672
16673 /* V1 instructions with no Thumb analogue at all. */
16674 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16675 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16676
16677 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16678 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16679 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16680 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16681 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16682 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16683 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16684 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16685
16686 #undef ARM_VARIANT
16687 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16688 #undef THUMB_VARIANT
16689 #define THUMB_VARIANT & arm_ext_v4t
16690
16691 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16692 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16693
16694 #undef THUMB_VARIANT
16695 #define THUMB_VARIANT & arm_ext_v6t2
16696
16697 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16698 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16699
16700 /* Generic coprocessor instructions. */
16701 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16702 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16703 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16704 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16705 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16706 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16707 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
16708
16709 #undef ARM_VARIANT
16710 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16711
16712 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16713 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16714
16715 #undef ARM_VARIANT
16716 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16717 #undef THUMB_VARIANT
16718 #define THUMB_VARIANT & arm_ext_msr
16719
16720 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16721 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16722
16723 #undef ARM_VARIANT
16724 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16725 #undef THUMB_VARIANT
16726 #define THUMB_VARIANT & arm_ext_v6t2
16727
16728 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16729 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16730 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16731 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16732 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16733 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16734 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16735 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16736
16737 #undef ARM_VARIANT
16738 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16739 #undef THUMB_VARIANT
16740 #define THUMB_VARIANT & arm_ext_v4t
16741
16742 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16743 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16744 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16745 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16746 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16747 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16748
16749 #undef ARM_VARIANT
16750 #define ARM_VARIANT & arm_ext_v4t_5
16751
16752 /* ARM Architecture 4T. */
16753 /* Note: bx (and blx) are required on V5, even if the processor does
16754 not support Thumb. */
16755 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16756
16757 #undef ARM_VARIANT
16758 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16759 #undef THUMB_VARIANT
16760 #define THUMB_VARIANT & arm_ext_v5t
16761
16762 /* Note: blx has 2 variants; the .value coded here is for
16763 BLX(2). Only this variant has conditional execution. */
16764 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16765 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16766
16767 #undef THUMB_VARIANT
16768 #define THUMB_VARIANT & arm_ext_v6t2
16769
16770 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16771 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16772 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16773 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16774 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16775 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16776 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16777 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16778
16779 #undef ARM_VARIANT
16780 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16781 #undef THUMB_VARIANT
16782 #define THUMB_VARIANT &arm_ext_v5exp
16783
16784 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16785 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16786 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16787 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16788
16789 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16790 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16791
16792 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16793 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16794 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16795 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16796
16797 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16798 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16799 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16800 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16801
16802 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16803 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16804
16805 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16806 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16807 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16808 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16809
16810 #undef ARM_VARIANT
16811 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16812 #undef THUMB_VARIANT
16813 #define THUMB_VARIANT &arm_ext_v6t2
16814
16815 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
16816 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
16817 ldrd, t_ldstd),
16818 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
16819 ADDRGLDRS), ldrd, t_ldstd),
16820
16821 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16822 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16823
16824 #undef ARM_VARIANT
16825 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16826
16827 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
16828
16829 #undef ARM_VARIANT
16830 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16831 #undef THUMB_VARIANT
16832 #define THUMB_VARIANT & arm_ext_v6
16833
16834 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16835 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16836 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16837 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16838 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16839 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16840 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16841 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16842 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16843 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
16844
16845 #undef THUMB_VARIANT
16846 #define THUMB_VARIANT & arm_ext_v6t2
16847
16848 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
16849 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16850 strex, t_strex),
16851 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16852 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16853
16854 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16855 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
16856
16857 /* ARM V6 not included in V7M. */
16858 #undef THUMB_VARIANT
16859 #define THUMB_VARIANT & arm_ext_v6_notm
16860 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16861 UF(rfeib, 9900a00, 1, (RRw), rfe),
16862 UF(rfeda, 8100a00, 1, (RRw), rfe),
16863 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16864 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16865 UF(rfefa, 9900a00, 1, (RRw), rfe),
16866 UF(rfeea, 8100a00, 1, (RRw), rfe),
16867 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16868 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16869 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16870 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16871 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
16872
16873 /* ARM V6 not included in V7M (eg. integer SIMD). */
16874 #undef THUMB_VARIANT
16875 #define THUMB_VARIANT & arm_ext_v6_dsp
16876 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16877 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16878 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16879 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16880 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16881 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16882 /* Old name for QASX. */
16883 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16884 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16885 /* Old name for QSAX. */
16886 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16887 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16888 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16889 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16890 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16891 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16892 /* Old name for SASX. */
16893 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16894 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16895 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16896 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16897 /* Old name for SHASX. */
16898 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16899 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16900 /* Old name for SHSAX. */
16901 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16902 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16903 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16904 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16905 /* Old name for SSAX. */
16906 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16907 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16908 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16909 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16910 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16911 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16912 /* Old name for UASX. */
16913 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16914 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16915 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16916 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16917 /* Old name for UHASX. */
16918 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16919 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16920 /* Old name for UHSAX. */
16921 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16922 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16923 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16924 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16925 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16926 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16927 /* Old name for UQASX. */
16928 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16929 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16930 /* Old name for UQSAX. */
16931 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16932 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16933 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16934 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16935 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16936 /* Old name for USAX. */
16937 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16938 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16939 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16940 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16941 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16942 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16943 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16944 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16945 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16946 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16947 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16948 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16949 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16950 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16951 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16952 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16953 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16954 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16955 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16956 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16957 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16958 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16959 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16960 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16961 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16962 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16963 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16964 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16965 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16966 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16967 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16968 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16969 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16970 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
16971
16972 #undef ARM_VARIANT
16973 #define ARM_VARIANT & arm_ext_v6k
16974 #undef THUMB_VARIANT
16975 #define THUMB_VARIANT & arm_ext_v6k
16976
16977 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16978 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16979 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16980 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
16981
16982 #undef THUMB_VARIANT
16983 #define THUMB_VARIANT & arm_ext_v6_notm
16984 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
16985 ldrexd, t_ldrexd),
16986 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
16987 RRnpcb), strexd, t_strexd),
16988
16989 #undef THUMB_VARIANT
16990 #define THUMB_VARIANT & arm_ext_v6t2
16991 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
16992 rd_rn, rd_rn),
16993 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
16994 rd_rn, rd_rn),
16995 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16996 strex, rm_rd_rn),
16997 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16998 strex, rm_rd_rn),
16999 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17000
17001 #undef ARM_VARIANT
17002 #define ARM_VARIANT & arm_ext_v6z
17003
17004 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17005
17006 #undef ARM_VARIANT
17007 #define ARM_VARIANT & arm_ext_v6t2
17008
17009 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17010 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17011 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17012 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17013
17014 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17015 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17016 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17017 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17018
17019 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17020 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17021 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17022 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17023
17024 /* Thumb-only instructions. */
17025 #undef ARM_VARIANT
17026 #define ARM_VARIANT NULL
17027 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17028 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17029
17030 /* ARM does not really have an IT instruction, so always allow it.
17031 The opcode is copied from Thumb in order to allow warnings in
17032 -mimplicit-it=[never | arm] modes. */
17033 #undef ARM_VARIANT
17034 #define ARM_VARIANT & arm_ext_v1
17035
17036 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17037 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17038 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17039 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17040 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17041 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17042 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17043 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17044 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17045 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17046 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17047 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17048 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17049 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17050 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17051 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17052 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17053 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17054
17055 /* Thumb2 only instructions. */
17056 #undef ARM_VARIANT
17057 #define ARM_VARIANT NULL
17058
17059 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17060 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17061 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17062 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17063 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17064 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17065
17066 /* Thumb-2 hardware division instructions (R and M profiles only). */
17067 #undef THUMB_VARIANT
17068 #define THUMB_VARIANT & arm_ext_div
17069
17070 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
17071 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
17072
17073 /* ARM V6M/V7 instructions. */
17074 #undef ARM_VARIANT
17075 #define ARM_VARIANT & arm_ext_barrier
17076 #undef THUMB_VARIANT
17077 #define THUMB_VARIANT & arm_ext_barrier
17078
17079 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17080 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17081 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17082
17083 /* ARM V7 instructions. */
17084 #undef ARM_VARIANT
17085 #define ARM_VARIANT & arm_ext_v7
17086 #undef THUMB_VARIANT
17087 #define THUMB_VARIANT & arm_ext_v7
17088
17089 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17090 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17091
17092 #undef ARM_VARIANT
17093 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17094
17095 cCE("wfs", e200110, 1, (RR), rd),
17096 cCE("rfs", e300110, 1, (RR), rd),
17097 cCE("wfc", e400110, 1, (RR), rd),
17098 cCE("rfc", e500110, 1, (RR), rd),
17099
17100 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17101 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17102 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17103 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17104
17105 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17106 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17107 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17108 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17109
17110 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17111 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17112 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17113 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17114 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17115 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17116 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17117 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17118 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17119 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17120 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17121 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17122
17123 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17124 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17125 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17126 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17127 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17128 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17129 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17130 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17131 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17132 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17133 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17134 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17135
17136 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17137 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17138 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17139 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17140 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17141 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17142 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17143 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17144 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17145 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17146 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17147 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17148
17149 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17150 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17151 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17152 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17153 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17154 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17155 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17156 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17157 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17158 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17159 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17160 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17161
17162 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17163 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17164 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17165 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17166 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17167 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17168 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17169 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17170 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17171 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17172 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17173 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17174
17175 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17176 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17177 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17178 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17179 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17180 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17181 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17182 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17183 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17184 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17185 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17186 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17187
17188 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17189 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17190 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17191 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17192 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17193 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17194 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17195 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17196 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17197 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17198 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17199 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17200
17201 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17202 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17203 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17204 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17205 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17206 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17207 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17208 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17209 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17210 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17211 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17212 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17213
17214 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17215 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17216 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17217 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17218 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17219 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17220 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17221 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17222 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17223 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17224 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17225 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17226
17227 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17228 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17229 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17230 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17231 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17232 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17233 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17234 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17235 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17236 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17237 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17238 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17239
17240 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17241 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17242 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17243 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17244 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17245 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17246 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17247 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17248 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17249 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17250 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17251 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17252
17253 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17254 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17255 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17256 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17257 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17258 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17259 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17260 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17261 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17262 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17263 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17264 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17265
17266 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17267 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17268 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17269 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17270 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17271 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17272 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17273 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17274 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17275 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17276 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17277 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17278
17279 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17280 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17281 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17282 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17283 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17284 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17285 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17286 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17287 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17288 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17289 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17290 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17291
17292 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17293 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17294 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17295 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17296 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17297 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17298 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17299 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17300 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17301 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17302 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17303 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17304
17305 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17306 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17307 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17308 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17309 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17310 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17311 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17312 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17313 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17314 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17315 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17316 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17317
17318 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17319 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17320 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17321 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17322 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17323 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17324 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17325 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17326 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17327 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17328 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17329 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17330
17331 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17332 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17333 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17334 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17335 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17336 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17337 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17338 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17339 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17340 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17341 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17342 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17343
17344 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17345 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17346 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17347 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17348 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17349 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17350 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17351 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17352 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17353 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17354 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17355 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17356
17357 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17358 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17359 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17360 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17361 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17362 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17363 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17364 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17365 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17366 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17367 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17368 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17369
17370 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17371 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17372 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17373 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17374 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17375 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17376 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17377 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17378 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17379 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17380 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17381 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17382
17383 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17384 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17385 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17386 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17387 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17388 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17389 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17390 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17391 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17392 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17393 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17394 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17395
17396 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17397 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17398 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17399 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17400 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17401 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17402 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17403 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17404 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17405 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17406 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17407 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17408
17409 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17410 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17411 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17412 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17413 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17414 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17415 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17416 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17417 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17418 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17419 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17420 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17421
17422 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17423 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17424 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17425 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17426 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17427 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17428 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17429 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17430 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17431 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17432 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17433 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17434
17435 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17436 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17437 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17438 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17439 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17440 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17441 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17442 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17443 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17444 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17445 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17446 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17447
17448 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17449 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17450 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17451 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17452 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17453 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17454 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17455 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17456 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17457 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17458 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17459 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17460
17461 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17462 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17463 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17464 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17465 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17466 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17467 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17468 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17469 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17470 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17471 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17472 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17473
17474 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17475 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17476 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17477 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17478 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17479 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17480 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17481 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17482 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17483 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17484 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17485 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17486
17487 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17488 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17489 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17490 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17491
17492 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17493 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17494 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17495 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17496 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17497 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17498 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17499 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17500 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17501 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17502 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17503 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17504
17505 /* The implementation of the FIX instruction is broken on some
17506 assemblers, in that it accepts a precision specifier as well as a
17507 rounding specifier, despite the fact that this is meaningless.
17508 To be more compatible, we accept it as well, though of course it
17509 does not set any bits. */
17510 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17511 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17512 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17513 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17514 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17515 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17516 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17517 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17518 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17519 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17520 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17521 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17522 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17523
17524 /* Instructions that were new with the real FPA, call them V2. */
17525 #undef ARM_VARIANT
17526 #define ARM_VARIANT & fpu_fpa_ext_v2
17527
17528 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17529 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17530 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17531 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17532 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17533 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17534
17535 #undef ARM_VARIANT
17536 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17537
17538 /* Moves and type conversions. */
17539 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17540 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17541 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17542 cCE("fmstat", ef1fa10, 0, (), noargs),
17543 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17544 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17545 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17546 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17547 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17548 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17549 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17550 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17551 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17552 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17553
17554 /* Memory operations. */
17555 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17556 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17557 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17558 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17559 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17560 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17561 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17562 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17563 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17564 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17565 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17566 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17567 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17568 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17569 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17570 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17571 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17572 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17573
17574 /* Monadic operations. */
17575 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17576 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17577 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17578
17579 /* Dyadic operations. */
17580 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17581 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17582 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17583 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17584 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17585 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17586 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17587 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17588 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17589
17590 /* Comparisons. */
17591 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17592 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17593 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17594 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17595
17596 /* Double precision load/store are still present on single precision
17597 implementations. */
17598 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17599 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17600 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17601 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17602 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17603 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17604 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17605 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17606 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17607 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17608
17609 #undef ARM_VARIANT
17610 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17611
17612 /* Moves and type conversions. */
17613 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17614 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17615 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17616 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17617 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17618 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17619 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17620 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17621 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17622 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17623 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17624 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17625 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17626
17627 /* Monadic operations. */
17628 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17629 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17630 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17631
17632 /* Dyadic operations. */
17633 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17634 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17635 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17636 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17637 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17638 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17639 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17640 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17641 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17642
17643 /* Comparisons. */
17644 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17645 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17646 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17647 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17648
17649 #undef ARM_VARIANT
17650 #define ARM_VARIANT & fpu_vfp_ext_v2
17651
17652 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17653 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17654 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17655 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17656
17657 /* Instructions which may belong to either the Neon or VFP instruction sets.
17658 Individual encoder functions perform additional architecture checks. */
17659 #undef ARM_VARIANT
17660 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17661 #undef THUMB_VARIANT
17662 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17663
17664 /* These mnemonics are unique to VFP. */
17665 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17666 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17667 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17668 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17669 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17670 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17671 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17672 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17673 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17674 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17675
17676 /* Mnemonics shared by Neon and VFP. */
17677 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17678 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17679 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17680
17681 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17682 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17683
17684 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17685 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17686
17687 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17688 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17689 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17690 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17691 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17692 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17693 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17694 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17695
17696 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17697 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
17698 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17699 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17700
17701
17702 /* NOTE: All VMOV encoding is special-cased! */
17703 NCE(vmov, 0, 1, (VMOV), neon_mov),
17704 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17705
17706 #undef THUMB_VARIANT
17707 #define THUMB_VARIANT & fpu_neon_ext_v1
17708 #undef ARM_VARIANT
17709 #define ARM_VARIANT & fpu_neon_ext_v1
17710
17711 /* Data processing with three registers of the same length. */
17712 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17713 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17714 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17715 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17716 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17717 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17718 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17719 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17720 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17721 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17722 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17723 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17724 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17725 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17726 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17727 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17728 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17729 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17730 /* If not immediate, fall back to neon_dyadic_i64_su.
17731 shl_imm should accept I8 I16 I32 I64,
17732 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17733 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17734 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17735 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17736 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17737 /* Logic ops, types optional & ignored. */
17738 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17739 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17740 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17741 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17742 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17743 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17744 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17745 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17746 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17747 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17748 /* Bitfield ops, untyped. */
17749 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17750 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17751 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17752 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17753 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17754 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17755 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17756 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17757 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17758 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17759 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17760 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17761 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17762 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17763 back to neon_dyadic_if_su. */
17764 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17765 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17766 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17767 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17768 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17769 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17770 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17771 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17772 /* Comparison. Type I8 I16 I32 F32. */
17773 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17774 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17775 /* As above, D registers only. */
17776 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17777 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17778 /* Int and float variants, signedness unimportant. */
17779 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17780 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17781 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17782 /* Add/sub take types I8 I16 I32 I64 F32. */
17783 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17784 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17785 /* vtst takes sizes 8, 16, 32. */
17786 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17787 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17788 /* VMUL takes I8 I16 I32 F32 P8. */
17789 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
17790 /* VQD{R}MULH takes S16 S32. */
17791 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17792 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17793 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17794 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17795 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17796 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17797 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17798 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17799 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17800 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17801 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17802 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17803 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17804 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17805 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17806 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17807
17808 /* Two address, int/float. Types S8 S16 S32 F32. */
17809 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
17810 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17811
17812 /* Data processing with two registers and a shift amount. */
17813 /* Right shifts, and variants with rounding.
17814 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17815 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17816 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17817 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17818 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17819 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17820 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17821 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17822 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17823 /* Shift and insert. Sizes accepted 8 16 32 64. */
17824 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17825 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17826 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17827 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17828 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17829 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17830 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17831 /* Right shift immediate, saturating & narrowing, with rounding variants.
17832 Types accepted S16 S32 S64 U16 U32 U64. */
17833 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17834 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17835 /* As above, unsigned. Types accepted S16 S32 S64. */
17836 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17837 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17838 /* Right shift narrowing. Types accepted I16 I32 I64. */
17839 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17840 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17841 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
17842 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
17843 /* CVT with optional immediate for fixed-point variant. */
17844 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
17845
17846 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
17847 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
17848
17849 /* Data processing, three registers of different lengths. */
17850 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17851 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17852 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17853 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17854 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17855 /* If not scalar, fall back to neon_dyadic_long.
17856 Vector types as above, scalar types S16 S32 U16 U32. */
17857 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17858 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17859 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17860 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17861 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17862 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17863 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17864 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17865 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17866 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17867 /* Saturating doubling multiplies. Types S16 S32. */
17868 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17869 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17870 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17871 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17872 S16 S32 U16 U32. */
17873 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
17874
17875 /* Extract. Size 8. */
17876 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17877 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
17878
17879 /* Two registers, miscellaneous. */
17880 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17881 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17882 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17883 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17884 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17885 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17886 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17887 /* Vector replicate. Sizes 8 16 32. */
17888 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17889 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
17890 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17891 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17892 /* VMOVN. Types I16 I32 I64. */
17893 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
17894 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
17895 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
17896 /* VQMOVUN. Types S16 S32 S64. */
17897 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
17898 /* VZIP / VUZP. Sizes 8 16 32. */
17899 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17900 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17901 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17902 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17903 /* VQABS / VQNEG. Types S8 S16 S32. */
17904 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17905 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17906 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17907 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17908 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17909 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17910 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17911 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17912 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17913 /* Reciprocal estimates. Types U32 F32. */
17914 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17915 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17916 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17917 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17918 /* VCLS. Types S8 S16 S32. */
17919 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17920 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17921 /* VCLZ. Types I8 I16 I32. */
17922 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17923 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17924 /* VCNT. Size 8. */
17925 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17926 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17927 /* Two address, untyped. */
17928 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17929 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17930 /* VTRN. Sizes 8 16 32. */
17931 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17932 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
17933
17934 /* Table lookup. Size 8. */
17935 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17936 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17937
17938 #undef THUMB_VARIANT
17939 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17940 #undef ARM_VARIANT
17941 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17942
17943 /* Neon element/structure load/store. */
17944 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17945 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17946 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17947 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17948 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17949 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17950 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17951 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17952
17953 #undef THUMB_VARIANT
17954 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
17955 #undef ARM_VARIANT
17956 #define ARM_VARIANT &fpu_vfp_ext_v3xd
17957 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17958 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17959 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17960 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17961 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17962 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17963 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17964 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17965 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17966
17967 #undef THUMB_VARIANT
17968 #define THUMB_VARIANT & fpu_vfp_ext_v3
17969 #undef ARM_VARIANT
17970 #define ARM_VARIANT & fpu_vfp_ext_v3
17971
17972 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
17973 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17974 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17975 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17976 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17977 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17978 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17979 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17980 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17981
17982 #undef ARM_VARIANT
17983 #define ARM_VARIANT &fpu_vfp_ext_fma
17984 #undef THUMB_VARIANT
17985 #define THUMB_VARIANT &fpu_vfp_ext_fma
17986 /* Mnemonics shared by Neon and VFP. These are included in the
17987 VFP FMA variant; NEON and VFP FMA always includes the NEON
17988 FMA instructions. */
17989 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17990 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17991 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17992 the v form should always be used. */
17993 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17994 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17995 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17996 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17997 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17998 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17999
18000 #undef THUMB_VARIANT
18001 #undef ARM_VARIANT
18002 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18003
18004 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18005 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18006 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18007 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18008 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18009 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18010 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18011 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18012
18013 #undef ARM_VARIANT
18014 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18015
18016 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18017 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18018 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18019 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18020 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18021 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18022 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18023 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18024 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18025 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18026 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18027 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18028 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18029 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18030 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18031 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18032 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18033 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18034 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18035 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18036 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18037 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18038 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18039 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18040 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18041 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18042 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18043 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18044 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18045 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18046 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18047 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18048 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18049 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18050 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18051 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18052 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18053 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18054 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18055 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18056 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18057 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18058 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18059 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18060 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18061 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18062 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18063 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18064 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18065 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18066 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18067 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18068 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18069 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18070 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18071 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18072 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18073 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18074 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18075 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18076 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18077 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18078 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18079 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18080 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18081 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18082 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18083 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18084 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18085 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18086 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18087 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18088 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18089 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18090 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18091 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18092 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18093 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18094 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18095 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18096 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18097 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18098 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18099 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18100 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18101 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18102 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18103 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18104 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18105 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18106 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18107 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18108 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18109 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18110 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18111 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18112 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18113 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18114 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18115 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18116 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18117 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18118 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18119 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18120 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18121 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18122 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18123 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18124 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18125 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18126 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18127 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18128 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18129 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18130 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18131 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18132 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18133 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18134 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18135 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18136 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18137 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18138 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18139 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18140 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18141 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18142 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18143 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18144 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18145 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18146 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18147 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18148 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18149 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18150 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18151 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18152 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18153 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18154 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18155 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18156 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18157 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18158 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18159 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18160 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18161 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18162 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18163 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18164 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18165 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18166 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18167 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18168 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18169 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18170 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18171 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18172 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18173 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18174 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18175 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18176 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18177 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18178
18179 #undef ARM_VARIANT
18180 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18181
18182 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18183 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18184 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18185 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18186 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18187 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18188 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18189 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18190 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18191 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18192 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18193 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18194 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18195 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18196 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18197 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18198 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18199 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18200 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18201 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18202 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18203 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18204 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18205 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18206 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18207 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18208 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18209 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18210 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18211 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18212 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18213 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18214 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18215 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18216 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18217 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18218 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18219 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18220 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18221 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18222 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18223 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18224 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18225 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18226 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18227 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18228 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18229 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18230 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18231 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18232 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18233 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18234 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18235 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18236 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18237 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18238 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18239
18240 #undef ARM_VARIANT
18241 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18242
18243 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18244 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18245 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18246 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18247 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18248 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18249 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18250 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18251 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18252 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18253 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18254 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18255 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18256 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18257 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18258 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18259 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18260 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18261 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18262 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18263 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18264 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18265 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18266 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18267 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18268 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18269 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18270 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18271 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18272 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18273 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18274 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18275 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18276 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18277 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18278 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18279 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18280 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18281 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18282 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18283 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18284 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18285 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18286 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18287 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18288 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18289 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18290 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18291 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18292 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18293 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18294 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18295 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18296 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18297 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18298 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18299 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18300 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18301 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18302 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18303 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18304 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18305 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18306 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18307 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18308 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18309 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18310 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18311 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18312 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18313 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18314 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18315 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18316 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18317 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18318 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18319 };
18320 #undef ARM_VARIANT
18321 #undef THUMB_VARIANT
18322 #undef TCE
18323 #undef TCM
18324 #undef TUE
18325 #undef TUF
18326 #undef TCC
18327 #undef cCE
18328 #undef cCL
18329 #undef C3E
18330 #undef CE
18331 #undef CM
18332 #undef UE
18333 #undef UF
18334 #undef UT
18335 #undef NUF
18336 #undef nUF
18337 #undef NCE
18338 #undef nCE
18339 #undef OPS0
18340 #undef OPS1
18341 #undef OPS2
18342 #undef OPS3
18343 #undef OPS4
18344 #undef OPS5
18345 #undef OPS6
18346 #undef do_0
18347 \f
18348 /* MD interface: bits in the object file. */
18349
18350 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18351 for use in the a.out file, and stores them in the array pointed to by buf.
18352 This knows about the endian-ness of the target machine and does
18353 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18354 2 (short) and 4 (long) Floating numbers are put out as a series of
18355 LITTLENUMS (shorts, here at least). */
18356
18357 void
18358 md_number_to_chars (char * buf, valueT val, int n)
18359 {
18360 if (target_big_endian)
18361 number_to_chars_bigendian (buf, val, n);
18362 else
18363 number_to_chars_littleendian (buf, val, n);
18364 }
18365
18366 static valueT
18367 md_chars_to_number (char * buf, int n)
18368 {
18369 valueT result = 0;
18370 unsigned char * where = (unsigned char *) buf;
18371
18372 if (target_big_endian)
18373 {
18374 while (n--)
18375 {
18376 result <<= 8;
18377 result |= (*where++ & 255);
18378 }
18379 }
18380 else
18381 {
18382 while (n--)
18383 {
18384 result <<= 8;
18385 result |= (where[n] & 255);
18386 }
18387 }
18388
18389 return result;
18390 }
18391
18392 /* MD interface: Sections. */
18393
18394 /* Estimate the size of a frag before relaxing. Assume everything fits in
18395 2 bytes. */
18396
18397 int
18398 md_estimate_size_before_relax (fragS * fragp,
18399 segT segtype ATTRIBUTE_UNUSED)
18400 {
18401 fragp->fr_var = 2;
18402 return 2;
18403 }
18404
18405 /* Convert a machine dependent frag. */
18406
18407 void
18408 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18409 {
18410 unsigned long insn;
18411 unsigned long old_op;
18412 char *buf;
18413 expressionS exp;
18414 fixS *fixp;
18415 int reloc_type;
18416 int pc_rel;
18417 int opcode;
18418
18419 buf = fragp->fr_literal + fragp->fr_fix;
18420
18421 old_op = bfd_get_16(abfd, buf);
18422 if (fragp->fr_symbol)
18423 {
18424 exp.X_op = O_symbol;
18425 exp.X_add_symbol = fragp->fr_symbol;
18426 }
18427 else
18428 {
18429 exp.X_op = O_constant;
18430 }
18431 exp.X_add_number = fragp->fr_offset;
18432 opcode = fragp->fr_subtype;
18433 switch (opcode)
18434 {
18435 case T_MNEM_ldr_pc:
18436 case T_MNEM_ldr_pc2:
18437 case T_MNEM_ldr_sp:
18438 case T_MNEM_str_sp:
18439 case T_MNEM_ldr:
18440 case T_MNEM_ldrb:
18441 case T_MNEM_ldrh:
18442 case T_MNEM_str:
18443 case T_MNEM_strb:
18444 case T_MNEM_strh:
18445 if (fragp->fr_var == 4)
18446 {
18447 insn = THUMB_OP32 (opcode);
18448 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18449 {
18450 insn |= (old_op & 0x700) << 4;
18451 }
18452 else
18453 {
18454 insn |= (old_op & 7) << 12;
18455 insn |= (old_op & 0x38) << 13;
18456 }
18457 insn |= 0x00000c00;
18458 put_thumb32_insn (buf, insn);
18459 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18460 }
18461 else
18462 {
18463 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18464 }
18465 pc_rel = (opcode == T_MNEM_ldr_pc2);
18466 break;
18467 case T_MNEM_adr:
18468 if (fragp->fr_var == 4)
18469 {
18470 insn = THUMB_OP32 (opcode);
18471 insn |= (old_op & 0xf0) << 4;
18472 put_thumb32_insn (buf, insn);
18473 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18474 }
18475 else
18476 {
18477 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18478 exp.X_add_number -= 4;
18479 }
18480 pc_rel = 1;
18481 break;
18482 case T_MNEM_mov:
18483 case T_MNEM_movs:
18484 case T_MNEM_cmp:
18485 case T_MNEM_cmn:
18486 if (fragp->fr_var == 4)
18487 {
18488 int r0off = (opcode == T_MNEM_mov
18489 || opcode == T_MNEM_movs) ? 0 : 8;
18490 insn = THUMB_OP32 (opcode);
18491 insn = (insn & 0xe1ffffff) | 0x10000000;
18492 insn |= (old_op & 0x700) << r0off;
18493 put_thumb32_insn (buf, insn);
18494 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18495 }
18496 else
18497 {
18498 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18499 }
18500 pc_rel = 0;
18501 break;
18502 case T_MNEM_b:
18503 if (fragp->fr_var == 4)
18504 {
18505 insn = THUMB_OP32(opcode);
18506 put_thumb32_insn (buf, insn);
18507 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18508 }
18509 else
18510 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18511 pc_rel = 1;
18512 break;
18513 case T_MNEM_bcond:
18514 if (fragp->fr_var == 4)
18515 {
18516 insn = THUMB_OP32(opcode);
18517 insn |= (old_op & 0xf00) << 14;
18518 put_thumb32_insn (buf, insn);
18519 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18520 }
18521 else
18522 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18523 pc_rel = 1;
18524 break;
18525 case T_MNEM_add_sp:
18526 case T_MNEM_add_pc:
18527 case T_MNEM_inc_sp:
18528 case T_MNEM_dec_sp:
18529 if (fragp->fr_var == 4)
18530 {
18531 /* ??? Choose between add and addw. */
18532 insn = THUMB_OP32 (opcode);
18533 insn |= (old_op & 0xf0) << 4;
18534 put_thumb32_insn (buf, insn);
18535 if (opcode == T_MNEM_add_pc)
18536 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18537 else
18538 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18539 }
18540 else
18541 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18542 pc_rel = 0;
18543 break;
18544
18545 case T_MNEM_addi:
18546 case T_MNEM_addis:
18547 case T_MNEM_subi:
18548 case T_MNEM_subis:
18549 if (fragp->fr_var == 4)
18550 {
18551 insn = THUMB_OP32 (opcode);
18552 insn |= (old_op & 0xf0) << 4;
18553 insn |= (old_op & 0xf) << 16;
18554 put_thumb32_insn (buf, insn);
18555 if (insn & (1 << 20))
18556 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18557 else
18558 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18559 }
18560 else
18561 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18562 pc_rel = 0;
18563 break;
18564 default:
18565 abort ();
18566 }
18567 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18568 (enum bfd_reloc_code_real) reloc_type);
18569 fixp->fx_file = fragp->fr_file;
18570 fixp->fx_line = fragp->fr_line;
18571 fragp->fr_fix += fragp->fr_var;
18572 }
18573
18574 /* Return the size of a relaxable immediate operand instruction.
18575 SHIFT and SIZE specify the form of the allowable immediate. */
18576 static int
18577 relax_immediate (fragS *fragp, int size, int shift)
18578 {
18579 offsetT offset;
18580 offsetT mask;
18581 offsetT low;
18582
18583 /* ??? Should be able to do better than this. */
18584 if (fragp->fr_symbol)
18585 return 4;
18586
18587 low = (1 << shift) - 1;
18588 mask = (1 << (shift + size)) - (1 << shift);
18589 offset = fragp->fr_offset;
18590 /* Force misaligned offsets to 32-bit variant. */
18591 if (offset & low)
18592 return 4;
18593 if (offset & ~mask)
18594 return 4;
18595 return 2;
18596 }
18597
18598 /* Get the address of a symbol during relaxation. */
18599 static addressT
18600 relaxed_symbol_addr (fragS *fragp, long stretch)
18601 {
18602 fragS *sym_frag;
18603 addressT addr;
18604 symbolS *sym;
18605
18606 sym = fragp->fr_symbol;
18607 sym_frag = symbol_get_frag (sym);
18608 know (S_GET_SEGMENT (sym) != absolute_section
18609 || sym_frag == &zero_address_frag);
18610 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18611
18612 /* If frag has yet to be reached on this pass, assume it will
18613 move by STRETCH just as we did. If this is not so, it will
18614 be because some frag between grows, and that will force
18615 another pass. */
18616
18617 if (stretch != 0
18618 && sym_frag->relax_marker != fragp->relax_marker)
18619 {
18620 fragS *f;
18621
18622 /* Adjust stretch for any alignment frag. Note that if have
18623 been expanding the earlier code, the symbol may be
18624 defined in what appears to be an earlier frag. FIXME:
18625 This doesn't handle the fr_subtype field, which specifies
18626 a maximum number of bytes to skip when doing an
18627 alignment. */
18628 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18629 {
18630 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18631 {
18632 if (stretch < 0)
18633 stretch = - ((- stretch)
18634 & ~ ((1 << (int) f->fr_offset) - 1));
18635 else
18636 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18637 if (stretch == 0)
18638 break;
18639 }
18640 }
18641 if (f != NULL)
18642 addr += stretch;
18643 }
18644
18645 return addr;
18646 }
18647
18648 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18649 load. */
18650 static int
18651 relax_adr (fragS *fragp, asection *sec, long stretch)
18652 {
18653 addressT addr;
18654 offsetT val;
18655
18656 /* Assume worst case for symbols not known to be in the same section. */
18657 if (fragp->fr_symbol == NULL
18658 || !S_IS_DEFINED (fragp->fr_symbol)
18659 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18660 || S_IS_WEAK (fragp->fr_symbol))
18661 return 4;
18662
18663 val = relaxed_symbol_addr (fragp, stretch);
18664 addr = fragp->fr_address + fragp->fr_fix;
18665 addr = (addr + 4) & ~3;
18666 /* Force misaligned targets to 32-bit variant. */
18667 if (val & 3)
18668 return 4;
18669 val -= addr;
18670 if (val < 0 || val > 1020)
18671 return 4;
18672 return 2;
18673 }
18674
18675 /* Return the size of a relaxable add/sub immediate instruction. */
18676 static int
18677 relax_addsub (fragS *fragp, asection *sec)
18678 {
18679 char *buf;
18680 int op;
18681
18682 buf = fragp->fr_literal + fragp->fr_fix;
18683 op = bfd_get_16(sec->owner, buf);
18684 if ((op & 0xf) == ((op >> 4) & 0xf))
18685 return relax_immediate (fragp, 8, 0);
18686 else
18687 return relax_immediate (fragp, 3, 0);
18688 }
18689
18690
18691 /* Return the size of a relaxable branch instruction. BITS is the
18692 size of the offset field in the narrow instruction. */
18693
18694 static int
18695 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18696 {
18697 addressT addr;
18698 offsetT val;
18699 offsetT limit;
18700
18701 /* Assume worst case for symbols not known to be in the same section. */
18702 if (!S_IS_DEFINED (fragp->fr_symbol)
18703 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18704 || S_IS_WEAK (fragp->fr_symbol))
18705 return 4;
18706
18707 #ifdef OBJ_ELF
18708 if (S_IS_DEFINED (fragp->fr_symbol)
18709 && ARM_IS_FUNC (fragp->fr_symbol))
18710 return 4;
18711 #endif
18712
18713 val = relaxed_symbol_addr (fragp, stretch);
18714 addr = fragp->fr_address + fragp->fr_fix + 4;
18715 val -= addr;
18716
18717 /* Offset is a signed value *2 */
18718 limit = 1 << bits;
18719 if (val >= limit || val < -limit)
18720 return 4;
18721 return 2;
18722 }
18723
18724
18725 /* Relax a machine dependent frag. This returns the amount by which
18726 the current size of the frag should change. */
18727
18728 int
18729 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18730 {
18731 int oldsize;
18732 int newsize;
18733
18734 oldsize = fragp->fr_var;
18735 switch (fragp->fr_subtype)
18736 {
18737 case T_MNEM_ldr_pc2:
18738 newsize = relax_adr (fragp, sec, stretch);
18739 break;
18740 case T_MNEM_ldr_pc:
18741 case T_MNEM_ldr_sp:
18742 case T_MNEM_str_sp:
18743 newsize = relax_immediate (fragp, 8, 2);
18744 break;
18745 case T_MNEM_ldr:
18746 case T_MNEM_str:
18747 newsize = relax_immediate (fragp, 5, 2);
18748 break;
18749 case T_MNEM_ldrh:
18750 case T_MNEM_strh:
18751 newsize = relax_immediate (fragp, 5, 1);
18752 break;
18753 case T_MNEM_ldrb:
18754 case T_MNEM_strb:
18755 newsize = relax_immediate (fragp, 5, 0);
18756 break;
18757 case T_MNEM_adr:
18758 newsize = relax_adr (fragp, sec, stretch);
18759 break;
18760 case T_MNEM_mov:
18761 case T_MNEM_movs:
18762 case T_MNEM_cmp:
18763 case T_MNEM_cmn:
18764 newsize = relax_immediate (fragp, 8, 0);
18765 break;
18766 case T_MNEM_b:
18767 newsize = relax_branch (fragp, sec, 11, stretch);
18768 break;
18769 case T_MNEM_bcond:
18770 newsize = relax_branch (fragp, sec, 8, stretch);
18771 break;
18772 case T_MNEM_add_sp:
18773 case T_MNEM_add_pc:
18774 newsize = relax_immediate (fragp, 8, 2);
18775 break;
18776 case T_MNEM_inc_sp:
18777 case T_MNEM_dec_sp:
18778 newsize = relax_immediate (fragp, 7, 2);
18779 break;
18780 case T_MNEM_addi:
18781 case T_MNEM_addis:
18782 case T_MNEM_subi:
18783 case T_MNEM_subis:
18784 newsize = relax_addsub (fragp, sec);
18785 break;
18786 default:
18787 abort ();
18788 }
18789
18790 fragp->fr_var = newsize;
18791 /* Freeze wide instructions that are at or before the same location as
18792 in the previous pass. This avoids infinite loops.
18793 Don't freeze them unconditionally because targets may be artificially
18794 misaligned by the expansion of preceding frags. */
18795 if (stretch <= 0 && newsize > 2)
18796 {
18797 md_convert_frag (sec->owner, sec, fragp);
18798 frag_wane (fragp);
18799 }
18800
18801 return newsize - oldsize;
18802 }
18803
18804 /* Round up a section size to the appropriate boundary. */
18805
18806 valueT
18807 md_section_align (segT segment ATTRIBUTE_UNUSED,
18808 valueT size)
18809 {
18810 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18811 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18812 {
18813 /* For a.out, force the section size to be aligned. If we don't do
18814 this, BFD will align it for us, but it will not write out the
18815 final bytes of the section. This may be a bug in BFD, but it is
18816 easier to fix it here since that is how the other a.out targets
18817 work. */
18818 int align;
18819
18820 align = bfd_get_section_alignment (stdoutput, segment);
18821 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18822 }
18823 #endif
18824
18825 return size;
18826 }
18827
18828 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18829 of an rs_align_code fragment. */
18830
18831 void
18832 arm_handle_align (fragS * fragP)
18833 {
18834 static char const arm_noop[2][2][4] =
18835 {
18836 { /* ARMv1 */
18837 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18838 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18839 },
18840 { /* ARMv6k */
18841 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18842 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18843 },
18844 };
18845 static char const thumb_noop[2][2][2] =
18846 {
18847 { /* Thumb-1 */
18848 {0xc0, 0x46}, /* LE */
18849 {0x46, 0xc0}, /* BE */
18850 },
18851 { /* Thumb-2 */
18852 {0x00, 0xbf}, /* LE */
18853 {0xbf, 0x00} /* BE */
18854 }
18855 };
18856 static char const wide_thumb_noop[2][4] =
18857 { /* Wide Thumb-2 */
18858 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18859 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18860 };
18861
18862 unsigned bytes, fix, noop_size;
18863 char * p;
18864 const char * noop;
18865 const char *narrow_noop = NULL;
18866 #ifdef OBJ_ELF
18867 enum mstate state;
18868 #endif
18869
18870 if (fragP->fr_type != rs_align_code)
18871 return;
18872
18873 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18874 p = fragP->fr_literal + fragP->fr_fix;
18875 fix = 0;
18876
18877 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18878 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
18879
18880 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
18881
18882 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
18883 {
18884 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18885 {
18886 narrow_noop = thumb_noop[1][target_big_endian];
18887 noop = wide_thumb_noop[target_big_endian];
18888 }
18889 else
18890 noop = thumb_noop[0][target_big_endian];
18891 noop_size = 2;
18892 #ifdef OBJ_ELF
18893 state = MAP_THUMB;
18894 #endif
18895 }
18896 else
18897 {
18898 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18899 [target_big_endian];
18900 noop_size = 4;
18901 #ifdef OBJ_ELF
18902 state = MAP_ARM;
18903 #endif
18904 }
18905
18906 fragP->fr_var = noop_size;
18907
18908 if (bytes & (noop_size - 1))
18909 {
18910 fix = bytes & (noop_size - 1);
18911 #ifdef OBJ_ELF
18912 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18913 #endif
18914 memset (p, 0, fix);
18915 p += fix;
18916 bytes -= fix;
18917 }
18918
18919 if (narrow_noop)
18920 {
18921 if (bytes & noop_size)
18922 {
18923 /* Insert a narrow noop. */
18924 memcpy (p, narrow_noop, noop_size);
18925 p += noop_size;
18926 bytes -= noop_size;
18927 fix += noop_size;
18928 }
18929
18930 /* Use wide noops for the remainder */
18931 noop_size = 4;
18932 }
18933
18934 while (bytes >= noop_size)
18935 {
18936 memcpy (p, noop, noop_size);
18937 p += noop_size;
18938 bytes -= noop_size;
18939 fix += noop_size;
18940 }
18941
18942 fragP->fr_fix += fix;
18943 }
18944
18945 /* Called from md_do_align. Used to create an alignment
18946 frag in a code section. */
18947
18948 void
18949 arm_frag_align_code (int n, int max)
18950 {
18951 char * p;
18952
18953 /* We assume that there will never be a requirement
18954 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
18955 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
18956 {
18957 char err_msg[128];
18958
18959 sprintf (err_msg,
18960 _("alignments greater than %d bytes not supported in .text sections."),
18961 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
18962 as_fatal ("%s", err_msg);
18963 }
18964
18965 p = frag_var (rs_align_code,
18966 MAX_MEM_FOR_RS_ALIGN_CODE,
18967 1,
18968 (relax_substateT) max,
18969 (symbolS *) NULL,
18970 (offsetT) n,
18971 (char *) NULL);
18972 *p = 0;
18973 }
18974
18975 /* Perform target specific initialisation of a frag.
18976 Note - despite the name this initialisation is not done when the frag
18977 is created, but only when its type is assigned. A frag can be created
18978 and used a long time before its type is set, so beware of assuming that
18979 this initialisationis performed first. */
18980
18981 #ifndef OBJ_ELF
18982 void
18983 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18984 {
18985 /* Record whether this frag is in an ARM or a THUMB area. */
18986 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18987 }
18988
18989 #else /* OBJ_ELF is defined. */
18990 void
18991 arm_init_frag (fragS * fragP, int max_chars)
18992 {
18993 /* If the current ARM vs THUMB mode has not already
18994 been recorded into this frag then do so now. */
18995 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18996 {
18997 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18998
18999 /* Record a mapping symbol for alignment frags. We will delete this
19000 later if the alignment ends up empty. */
19001 switch (fragP->fr_type)
19002 {
19003 case rs_align:
19004 case rs_align_test:
19005 case rs_fill:
19006 mapping_state_2 (MAP_DATA, max_chars);
19007 break;
19008 case rs_align_code:
19009 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19010 break;
19011 default:
19012 break;
19013 }
19014 }
19015 }
19016
19017 /* When we change sections we need to issue a new mapping symbol. */
19018
19019 void
19020 arm_elf_change_section (void)
19021 {
19022 /* Link an unlinked unwind index table section to the .text section. */
19023 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19024 && elf_linked_to_section (now_seg) == NULL)
19025 elf_linked_to_section (now_seg) = text_section;
19026 }
19027
19028 int
19029 arm_elf_section_type (const char * str, size_t len)
19030 {
19031 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19032 return SHT_ARM_EXIDX;
19033
19034 return -1;
19035 }
19036 \f
19037 /* Code to deal with unwinding tables. */
19038
19039 static void add_unwind_adjustsp (offsetT);
19040
19041 /* Generate any deferred unwind frame offset. */
19042
19043 static void
19044 flush_pending_unwind (void)
19045 {
19046 offsetT offset;
19047
19048 offset = unwind.pending_offset;
19049 unwind.pending_offset = 0;
19050 if (offset != 0)
19051 add_unwind_adjustsp (offset);
19052 }
19053
19054 /* Add an opcode to this list for this function. Two-byte opcodes should
19055 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19056 order. */
19057
19058 static void
19059 add_unwind_opcode (valueT op, int length)
19060 {
19061 /* Add any deferred stack adjustment. */
19062 if (unwind.pending_offset)
19063 flush_pending_unwind ();
19064
19065 unwind.sp_restored = 0;
19066
19067 if (unwind.opcode_count + length > unwind.opcode_alloc)
19068 {
19069 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19070 if (unwind.opcodes)
19071 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19072 unwind.opcode_alloc);
19073 else
19074 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19075 }
19076 while (length > 0)
19077 {
19078 length--;
19079 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19080 op >>= 8;
19081 unwind.opcode_count++;
19082 }
19083 }
19084
19085 /* Add unwind opcodes to adjust the stack pointer. */
19086
19087 static void
19088 add_unwind_adjustsp (offsetT offset)
19089 {
19090 valueT op;
19091
19092 if (offset > 0x200)
19093 {
19094 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19095 char bytes[5];
19096 int n;
19097 valueT o;
19098
19099 /* Long form: 0xb2, uleb128. */
19100 /* This might not fit in a word so add the individual bytes,
19101 remembering the list is built in reverse order. */
19102 o = (valueT) ((offset - 0x204) >> 2);
19103 if (o == 0)
19104 add_unwind_opcode (0, 1);
19105
19106 /* Calculate the uleb128 encoding of the offset. */
19107 n = 0;
19108 while (o)
19109 {
19110 bytes[n] = o & 0x7f;
19111 o >>= 7;
19112 if (o)
19113 bytes[n] |= 0x80;
19114 n++;
19115 }
19116 /* Add the insn. */
19117 for (; n; n--)
19118 add_unwind_opcode (bytes[n - 1], 1);
19119 add_unwind_opcode (0xb2, 1);
19120 }
19121 else if (offset > 0x100)
19122 {
19123 /* Two short opcodes. */
19124 add_unwind_opcode (0x3f, 1);
19125 op = (offset - 0x104) >> 2;
19126 add_unwind_opcode (op, 1);
19127 }
19128 else if (offset > 0)
19129 {
19130 /* Short opcode. */
19131 op = (offset - 4) >> 2;
19132 add_unwind_opcode (op, 1);
19133 }
19134 else if (offset < 0)
19135 {
19136 offset = -offset;
19137 while (offset > 0x100)
19138 {
19139 add_unwind_opcode (0x7f, 1);
19140 offset -= 0x100;
19141 }
19142 op = ((offset - 4) >> 2) | 0x40;
19143 add_unwind_opcode (op, 1);
19144 }
19145 }
19146
19147 /* Finish the list of unwind opcodes for this function. */
19148 static void
19149 finish_unwind_opcodes (void)
19150 {
19151 valueT op;
19152
19153 if (unwind.fp_used)
19154 {
19155 /* Adjust sp as necessary. */
19156 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19157 flush_pending_unwind ();
19158
19159 /* After restoring sp from the frame pointer. */
19160 op = 0x90 | unwind.fp_reg;
19161 add_unwind_opcode (op, 1);
19162 }
19163 else
19164 flush_pending_unwind ();
19165 }
19166
19167
19168 /* Start an exception table entry. If idx is nonzero this is an index table
19169 entry. */
19170
19171 static void
19172 start_unwind_section (const segT text_seg, int idx)
19173 {
19174 const char * text_name;
19175 const char * prefix;
19176 const char * prefix_once;
19177 const char * group_name;
19178 size_t prefix_len;
19179 size_t text_len;
19180 char * sec_name;
19181 size_t sec_name_len;
19182 int type;
19183 int flags;
19184 int linkonce;
19185
19186 if (idx)
19187 {
19188 prefix = ELF_STRING_ARM_unwind;
19189 prefix_once = ELF_STRING_ARM_unwind_once;
19190 type = SHT_ARM_EXIDX;
19191 }
19192 else
19193 {
19194 prefix = ELF_STRING_ARM_unwind_info;
19195 prefix_once = ELF_STRING_ARM_unwind_info_once;
19196 type = SHT_PROGBITS;
19197 }
19198
19199 text_name = segment_name (text_seg);
19200 if (streq (text_name, ".text"))
19201 text_name = "";
19202
19203 if (strncmp (text_name, ".gnu.linkonce.t.",
19204 strlen (".gnu.linkonce.t.")) == 0)
19205 {
19206 prefix = prefix_once;
19207 text_name += strlen (".gnu.linkonce.t.");
19208 }
19209
19210 prefix_len = strlen (prefix);
19211 text_len = strlen (text_name);
19212 sec_name_len = prefix_len + text_len;
19213 sec_name = (char *) xmalloc (sec_name_len + 1);
19214 memcpy (sec_name, prefix, prefix_len);
19215 memcpy (sec_name + prefix_len, text_name, text_len);
19216 sec_name[prefix_len + text_len] = '\0';
19217
19218 flags = SHF_ALLOC;
19219 linkonce = 0;
19220 group_name = 0;
19221
19222 /* Handle COMDAT group. */
19223 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19224 {
19225 group_name = elf_group_name (text_seg);
19226 if (group_name == NULL)
19227 {
19228 as_bad (_("Group section `%s' has no group signature"),
19229 segment_name (text_seg));
19230 ignore_rest_of_line ();
19231 return;
19232 }
19233 flags |= SHF_GROUP;
19234 linkonce = 1;
19235 }
19236
19237 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19238
19239 /* Set the section link for index tables. */
19240 if (idx)
19241 elf_linked_to_section (now_seg) = text_seg;
19242 }
19243
19244
19245 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19246 personality routine data. Returns zero, or the index table value for
19247 and inline entry. */
19248
19249 static valueT
19250 create_unwind_entry (int have_data)
19251 {
19252 int size;
19253 addressT where;
19254 char *ptr;
19255 /* The current word of data. */
19256 valueT data;
19257 /* The number of bytes left in this word. */
19258 int n;
19259
19260 finish_unwind_opcodes ();
19261
19262 /* Remember the current text section. */
19263 unwind.saved_seg = now_seg;
19264 unwind.saved_subseg = now_subseg;
19265
19266 start_unwind_section (now_seg, 0);
19267
19268 if (unwind.personality_routine == NULL)
19269 {
19270 if (unwind.personality_index == -2)
19271 {
19272 if (have_data)
19273 as_bad (_("handlerdata in cantunwind frame"));
19274 return 1; /* EXIDX_CANTUNWIND. */
19275 }
19276
19277 /* Use a default personality routine if none is specified. */
19278 if (unwind.personality_index == -1)
19279 {
19280 if (unwind.opcode_count > 3)
19281 unwind.personality_index = 1;
19282 else
19283 unwind.personality_index = 0;
19284 }
19285
19286 /* Space for the personality routine entry. */
19287 if (unwind.personality_index == 0)
19288 {
19289 if (unwind.opcode_count > 3)
19290 as_bad (_("too many unwind opcodes for personality routine 0"));
19291
19292 if (!have_data)
19293 {
19294 /* All the data is inline in the index table. */
19295 data = 0x80;
19296 n = 3;
19297 while (unwind.opcode_count > 0)
19298 {
19299 unwind.opcode_count--;
19300 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19301 n--;
19302 }
19303
19304 /* Pad with "finish" opcodes. */
19305 while (n--)
19306 data = (data << 8) | 0xb0;
19307
19308 return data;
19309 }
19310 size = 0;
19311 }
19312 else
19313 /* We get two opcodes "free" in the first word. */
19314 size = unwind.opcode_count - 2;
19315 }
19316 else
19317 /* An extra byte is required for the opcode count. */
19318 size = unwind.opcode_count + 1;
19319
19320 size = (size + 3) >> 2;
19321 if (size > 0xff)
19322 as_bad (_("too many unwind opcodes"));
19323
19324 frag_align (2, 0, 0);
19325 record_alignment (now_seg, 2);
19326 unwind.table_entry = expr_build_dot ();
19327
19328 /* Allocate the table entry. */
19329 ptr = frag_more ((size << 2) + 4);
19330 where = frag_now_fix () - ((size << 2) + 4);
19331
19332 switch (unwind.personality_index)
19333 {
19334 case -1:
19335 /* ??? Should this be a PLT generating relocation? */
19336 /* Custom personality routine. */
19337 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19338 BFD_RELOC_ARM_PREL31);
19339
19340 where += 4;
19341 ptr += 4;
19342
19343 /* Set the first byte to the number of additional words. */
19344 data = size - 1;
19345 n = 3;
19346 break;
19347
19348 /* ABI defined personality routines. */
19349 case 0:
19350 /* Three opcodes bytes are packed into the first word. */
19351 data = 0x80;
19352 n = 3;
19353 break;
19354
19355 case 1:
19356 case 2:
19357 /* The size and first two opcode bytes go in the first word. */
19358 data = ((0x80 + unwind.personality_index) << 8) | size;
19359 n = 2;
19360 break;
19361
19362 default:
19363 /* Should never happen. */
19364 abort ();
19365 }
19366
19367 /* Pack the opcodes into words (MSB first), reversing the list at the same
19368 time. */
19369 while (unwind.opcode_count > 0)
19370 {
19371 if (n == 0)
19372 {
19373 md_number_to_chars (ptr, data, 4);
19374 ptr += 4;
19375 n = 4;
19376 data = 0;
19377 }
19378 unwind.opcode_count--;
19379 n--;
19380 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19381 }
19382
19383 /* Finish off the last word. */
19384 if (n < 4)
19385 {
19386 /* Pad with "finish" opcodes. */
19387 while (n--)
19388 data = (data << 8) | 0xb0;
19389
19390 md_number_to_chars (ptr, data, 4);
19391 }
19392
19393 if (!have_data)
19394 {
19395 /* Add an empty descriptor if there is no user-specified data. */
19396 ptr = frag_more (4);
19397 md_number_to_chars (ptr, 0, 4);
19398 }
19399
19400 return 0;
19401 }
19402
19403
19404 /* Initialize the DWARF-2 unwind information for this procedure. */
19405
19406 void
19407 tc_arm_frame_initial_instructions (void)
19408 {
19409 cfi_add_CFA_def_cfa (REG_SP, 0);
19410 }
19411 #endif /* OBJ_ELF */
19412
19413 /* Convert REGNAME to a DWARF-2 register number. */
19414
19415 int
19416 tc_arm_regname_to_dw2regnum (char *regname)
19417 {
19418 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19419
19420 if (reg == FAIL)
19421 return -1;
19422
19423 return reg;
19424 }
19425
19426 #ifdef TE_PE
19427 void
19428 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19429 {
19430 expressionS exp;
19431
19432 exp.X_op = O_secrel;
19433 exp.X_add_symbol = symbol;
19434 exp.X_add_number = 0;
19435 emit_expr (&exp, size);
19436 }
19437 #endif
19438
19439 /* MD interface: Symbol and relocation handling. */
19440
19441 /* Return the address within the segment that a PC-relative fixup is
19442 relative to. For ARM, PC-relative fixups applied to instructions
19443 are generally relative to the location of the fixup plus 8 bytes.
19444 Thumb branches are offset by 4, and Thumb loads relative to PC
19445 require special handling. */
19446
19447 long
19448 md_pcrel_from_section (fixS * fixP, segT seg)
19449 {
19450 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19451
19452 /* If this is pc-relative and we are going to emit a relocation
19453 then we just want to put out any pipeline compensation that the linker
19454 will need. Otherwise we want to use the calculated base.
19455 For WinCE we skip the bias for externals as well, since this
19456 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19457 if (fixP->fx_pcrel
19458 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19459 || (arm_force_relocation (fixP)
19460 #ifdef TE_WINCE
19461 && !S_IS_EXTERNAL (fixP->fx_addsy)
19462 #endif
19463 )))
19464 base = 0;
19465
19466
19467 switch (fixP->fx_r_type)
19468 {
19469 /* PC relative addressing on the Thumb is slightly odd as the
19470 bottom two bits of the PC are forced to zero for the
19471 calculation. This happens *after* application of the
19472 pipeline offset. However, Thumb adrl already adjusts for
19473 this, so we need not do it again. */
19474 case BFD_RELOC_ARM_THUMB_ADD:
19475 return base & ~3;
19476
19477 case BFD_RELOC_ARM_THUMB_OFFSET:
19478 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19479 case BFD_RELOC_ARM_T32_ADD_PC12:
19480 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19481 return (base + 4) & ~3;
19482
19483 /* Thumb branches are simply offset by +4. */
19484 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19485 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19486 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19487 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19488 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19489 return base + 4;
19490
19491 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19492 if (fixP->fx_addsy
19493 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19494 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19495 && ARM_IS_FUNC (fixP->fx_addsy)
19496 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19497 base = fixP->fx_where + fixP->fx_frag->fr_address;
19498 return base + 4;
19499
19500 /* BLX is like branches above, but forces the low two bits of PC to
19501 zero. */
19502 case BFD_RELOC_THUMB_PCREL_BLX:
19503 if (fixP->fx_addsy
19504 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19505 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19506 && THUMB_IS_FUNC (fixP->fx_addsy)
19507 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19508 base = fixP->fx_where + fixP->fx_frag->fr_address;
19509 return (base + 4) & ~3;
19510
19511 /* ARM mode branches are offset by +8. However, the Windows CE
19512 loader expects the relocation not to take this into account. */
19513 case BFD_RELOC_ARM_PCREL_BLX:
19514 if (fixP->fx_addsy
19515 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19516 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19517 && ARM_IS_FUNC (fixP->fx_addsy)
19518 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19519 base = fixP->fx_where + fixP->fx_frag->fr_address;
19520 return base + 8;
19521
19522 case BFD_RELOC_ARM_PCREL_CALL:
19523 if (fixP->fx_addsy
19524 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19525 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19526 && THUMB_IS_FUNC (fixP->fx_addsy)
19527 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19528 base = fixP->fx_where + fixP->fx_frag->fr_address;
19529 return base + 8;
19530
19531 case BFD_RELOC_ARM_PCREL_BRANCH:
19532 case BFD_RELOC_ARM_PCREL_JUMP:
19533 case BFD_RELOC_ARM_PLT32:
19534 #ifdef TE_WINCE
19535 /* When handling fixups immediately, because we have already
19536 discovered the value of a symbol, or the address of the frag involved
19537 we must account for the offset by +8, as the OS loader will never see the reloc.
19538 see fixup_segment() in write.c
19539 The S_IS_EXTERNAL test handles the case of global symbols.
19540 Those need the calculated base, not just the pipe compensation the linker will need. */
19541 if (fixP->fx_pcrel
19542 && fixP->fx_addsy != NULL
19543 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19544 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19545 return base + 8;
19546 return base;
19547 #else
19548 return base + 8;
19549 #endif
19550
19551
19552 /* ARM mode loads relative to PC are also offset by +8. Unlike
19553 branches, the Windows CE loader *does* expect the relocation
19554 to take this into account. */
19555 case BFD_RELOC_ARM_OFFSET_IMM:
19556 case BFD_RELOC_ARM_OFFSET_IMM8:
19557 case BFD_RELOC_ARM_HWLITERAL:
19558 case BFD_RELOC_ARM_LITERAL:
19559 case BFD_RELOC_ARM_CP_OFF_IMM:
19560 return base + 8;
19561
19562
19563 /* Other PC-relative relocations are un-offset. */
19564 default:
19565 return base;
19566 }
19567 }
19568
19569 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19570 Otherwise we have no need to default values of symbols. */
19571
19572 symbolS *
19573 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19574 {
19575 #ifdef OBJ_ELF
19576 if (name[0] == '_' && name[1] == 'G'
19577 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19578 {
19579 if (!GOT_symbol)
19580 {
19581 if (symbol_find (name))
19582 as_bad (_("GOT already in the symbol table"));
19583
19584 GOT_symbol = symbol_new (name, undefined_section,
19585 (valueT) 0, & zero_address_frag);
19586 }
19587
19588 return GOT_symbol;
19589 }
19590 #endif
19591
19592 return NULL;
19593 }
19594
19595 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19596 computed as two separate immediate values, added together. We
19597 already know that this value cannot be computed by just one ARM
19598 instruction. */
19599
19600 static unsigned int
19601 validate_immediate_twopart (unsigned int val,
19602 unsigned int * highpart)
19603 {
19604 unsigned int a;
19605 unsigned int i;
19606
19607 for (i = 0; i < 32; i += 2)
19608 if (((a = rotate_left (val, i)) & 0xff) != 0)
19609 {
19610 if (a & 0xff00)
19611 {
19612 if (a & ~ 0xffff)
19613 continue;
19614 * highpart = (a >> 8) | ((i + 24) << 7);
19615 }
19616 else if (a & 0xff0000)
19617 {
19618 if (a & 0xff000000)
19619 continue;
19620 * highpart = (a >> 16) | ((i + 16) << 7);
19621 }
19622 else
19623 {
19624 gas_assert (a & 0xff000000);
19625 * highpart = (a >> 24) | ((i + 8) << 7);
19626 }
19627
19628 return (a & 0xff) | (i << 7);
19629 }
19630
19631 return FAIL;
19632 }
19633
19634 static int
19635 validate_offset_imm (unsigned int val, int hwse)
19636 {
19637 if ((hwse && val > 255) || val > 4095)
19638 return FAIL;
19639 return val;
19640 }
19641
19642 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19643 negative immediate constant by altering the instruction. A bit of
19644 a hack really.
19645 MOV <-> MVN
19646 AND <-> BIC
19647 ADC <-> SBC
19648 by inverting the second operand, and
19649 ADD <-> SUB
19650 CMP <-> CMN
19651 by negating the second operand. */
19652
19653 static int
19654 negate_data_op (unsigned long * instruction,
19655 unsigned long value)
19656 {
19657 int op, new_inst;
19658 unsigned long negated, inverted;
19659
19660 negated = encode_arm_immediate (-value);
19661 inverted = encode_arm_immediate (~value);
19662
19663 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19664 switch (op)
19665 {
19666 /* First negates. */
19667 case OPCODE_SUB: /* ADD <-> SUB */
19668 new_inst = OPCODE_ADD;
19669 value = negated;
19670 break;
19671
19672 case OPCODE_ADD:
19673 new_inst = OPCODE_SUB;
19674 value = negated;
19675 break;
19676
19677 case OPCODE_CMP: /* CMP <-> CMN */
19678 new_inst = OPCODE_CMN;
19679 value = negated;
19680 break;
19681
19682 case OPCODE_CMN:
19683 new_inst = OPCODE_CMP;
19684 value = negated;
19685 break;
19686
19687 /* Now Inverted ops. */
19688 case OPCODE_MOV: /* MOV <-> MVN */
19689 new_inst = OPCODE_MVN;
19690 value = inverted;
19691 break;
19692
19693 case OPCODE_MVN:
19694 new_inst = OPCODE_MOV;
19695 value = inverted;
19696 break;
19697
19698 case OPCODE_AND: /* AND <-> BIC */
19699 new_inst = OPCODE_BIC;
19700 value = inverted;
19701 break;
19702
19703 case OPCODE_BIC:
19704 new_inst = OPCODE_AND;
19705 value = inverted;
19706 break;
19707
19708 case OPCODE_ADC: /* ADC <-> SBC */
19709 new_inst = OPCODE_SBC;
19710 value = inverted;
19711 break;
19712
19713 case OPCODE_SBC:
19714 new_inst = OPCODE_ADC;
19715 value = inverted;
19716 break;
19717
19718 /* We cannot do anything. */
19719 default:
19720 return FAIL;
19721 }
19722
19723 if (value == (unsigned) FAIL)
19724 return FAIL;
19725
19726 *instruction &= OPCODE_MASK;
19727 *instruction |= new_inst << DATA_OP_SHIFT;
19728 return value;
19729 }
19730
19731 /* Like negate_data_op, but for Thumb-2. */
19732
19733 static unsigned int
19734 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19735 {
19736 int op, new_inst;
19737 int rd;
19738 unsigned int negated, inverted;
19739
19740 negated = encode_thumb32_immediate (-value);
19741 inverted = encode_thumb32_immediate (~value);
19742
19743 rd = (*instruction >> 8) & 0xf;
19744 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19745 switch (op)
19746 {
19747 /* ADD <-> SUB. Includes CMP <-> CMN. */
19748 case T2_OPCODE_SUB:
19749 new_inst = T2_OPCODE_ADD;
19750 value = negated;
19751 break;
19752
19753 case T2_OPCODE_ADD:
19754 new_inst = T2_OPCODE_SUB;
19755 value = negated;
19756 break;
19757
19758 /* ORR <-> ORN. Includes MOV <-> MVN. */
19759 case T2_OPCODE_ORR:
19760 new_inst = T2_OPCODE_ORN;
19761 value = inverted;
19762 break;
19763
19764 case T2_OPCODE_ORN:
19765 new_inst = T2_OPCODE_ORR;
19766 value = inverted;
19767 break;
19768
19769 /* AND <-> BIC. TST has no inverted equivalent. */
19770 case T2_OPCODE_AND:
19771 new_inst = T2_OPCODE_BIC;
19772 if (rd == 15)
19773 value = FAIL;
19774 else
19775 value = inverted;
19776 break;
19777
19778 case T2_OPCODE_BIC:
19779 new_inst = T2_OPCODE_AND;
19780 value = inverted;
19781 break;
19782
19783 /* ADC <-> SBC */
19784 case T2_OPCODE_ADC:
19785 new_inst = T2_OPCODE_SBC;
19786 value = inverted;
19787 break;
19788
19789 case T2_OPCODE_SBC:
19790 new_inst = T2_OPCODE_ADC;
19791 value = inverted;
19792 break;
19793
19794 /* We cannot do anything. */
19795 default:
19796 return FAIL;
19797 }
19798
19799 if (value == (unsigned int)FAIL)
19800 return FAIL;
19801
19802 *instruction &= T2_OPCODE_MASK;
19803 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19804 return value;
19805 }
19806
19807 /* Read a 32-bit thumb instruction from buf. */
19808 static unsigned long
19809 get_thumb32_insn (char * buf)
19810 {
19811 unsigned long insn;
19812 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19813 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19814
19815 return insn;
19816 }
19817
19818
19819 /* We usually want to set the low bit on the address of thumb function
19820 symbols. In particular .word foo - . should have the low bit set.
19821 Generic code tries to fold the difference of two symbols to
19822 a constant. Prevent this and force a relocation when the first symbols
19823 is a thumb function. */
19824
19825 bfd_boolean
19826 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19827 {
19828 if (op == O_subtract
19829 && l->X_op == O_symbol
19830 && r->X_op == O_symbol
19831 && THUMB_IS_FUNC (l->X_add_symbol))
19832 {
19833 l->X_op = O_subtract;
19834 l->X_op_symbol = r->X_add_symbol;
19835 l->X_add_number -= r->X_add_number;
19836 return TRUE;
19837 }
19838
19839 /* Process as normal. */
19840 return FALSE;
19841 }
19842
19843 /* Encode Thumb2 unconditional branches and calls. The encoding
19844 for the 2 are identical for the immediate values. */
19845
19846 static void
19847 encode_thumb2_b_bl_offset (char * buf, offsetT value)
19848 {
19849 #define T2I1I2MASK ((1 << 13) | (1 << 11))
19850 offsetT newval;
19851 offsetT newval2;
19852 addressT S, I1, I2, lo, hi;
19853
19854 S = (value >> 24) & 0x01;
19855 I1 = (value >> 23) & 0x01;
19856 I2 = (value >> 22) & 0x01;
19857 hi = (value >> 12) & 0x3ff;
19858 lo = (value >> 1) & 0x7ff;
19859 newval = md_chars_to_number (buf, THUMB_SIZE);
19860 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19861 newval |= (S << 10) | hi;
19862 newval2 &= ~T2I1I2MASK;
19863 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
19864 md_number_to_chars (buf, newval, THUMB_SIZE);
19865 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19866 }
19867
19868 void
19869 md_apply_fix (fixS * fixP,
19870 valueT * valP,
19871 segT seg)
19872 {
19873 offsetT value = * valP;
19874 offsetT newval;
19875 unsigned int newimm;
19876 unsigned long temp;
19877 int sign;
19878 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
19879
19880 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
19881
19882 /* Note whether this will delete the relocation. */
19883
19884 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19885 fixP->fx_done = 1;
19886
19887 /* On a 64-bit host, silently truncate 'value' to 32 bits for
19888 consistency with the behaviour on 32-bit hosts. Remember value
19889 for emit_reloc. */
19890 value &= 0xffffffff;
19891 value ^= 0x80000000;
19892 value -= 0x80000000;
19893
19894 *valP = value;
19895 fixP->fx_addnumber = value;
19896
19897 /* Same treatment for fixP->fx_offset. */
19898 fixP->fx_offset &= 0xffffffff;
19899 fixP->fx_offset ^= 0x80000000;
19900 fixP->fx_offset -= 0x80000000;
19901
19902 switch (fixP->fx_r_type)
19903 {
19904 case BFD_RELOC_NONE:
19905 /* This will need to go in the object file. */
19906 fixP->fx_done = 0;
19907 break;
19908
19909 case BFD_RELOC_ARM_IMMEDIATE:
19910 /* We claim that this fixup has been processed here,
19911 even if in fact we generate an error because we do
19912 not have a reloc for it, so tc_gen_reloc will reject it. */
19913 fixP->fx_done = 1;
19914
19915 if (fixP->fx_addsy)
19916 {
19917 const char *msg = 0;
19918
19919 if (! S_IS_DEFINED (fixP->fx_addsy))
19920 msg = _("undefined symbol %s used as an immediate value");
19921 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
19922 msg = _("symbol %s is in a different section");
19923 else if (S_IS_WEAK (fixP->fx_addsy))
19924 msg = _("symbol %s is weak and may be overridden later");
19925
19926 if (msg)
19927 {
19928 as_bad_where (fixP->fx_file, fixP->fx_line,
19929 msg, S_GET_NAME (fixP->fx_addsy));
19930 break;
19931 }
19932 }
19933
19934 newimm = encode_arm_immediate (value);
19935 temp = md_chars_to_number (buf, INSN_SIZE);
19936
19937 /* If the instruction will fail, see if we can fix things up by
19938 changing the opcode. */
19939 if (newimm == (unsigned int) FAIL
19940 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
19941 {
19942 as_bad_where (fixP->fx_file, fixP->fx_line,
19943 _("invalid constant (%lx) after fixup"),
19944 (unsigned long) value);
19945 break;
19946 }
19947
19948 newimm |= (temp & 0xfffff000);
19949 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19950 break;
19951
19952 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19953 {
19954 unsigned int highpart = 0;
19955 unsigned int newinsn = 0xe1a00000; /* nop. */
19956
19957 if (fixP->fx_addsy)
19958 {
19959 const char *msg = 0;
19960
19961 if (! S_IS_DEFINED (fixP->fx_addsy))
19962 msg = _("undefined symbol %s used as an immediate value");
19963 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
19964 msg = _("symbol %s is in a different section");
19965 else if (S_IS_WEAK (fixP->fx_addsy))
19966 msg = _("symbol %s is weak and may be overridden later");
19967
19968 if (msg)
19969 {
19970 as_bad_where (fixP->fx_file, fixP->fx_line,
19971 msg, S_GET_NAME (fixP->fx_addsy));
19972 break;
19973 }
19974 }
19975
19976 newimm = encode_arm_immediate (value);
19977 temp = md_chars_to_number (buf, INSN_SIZE);
19978
19979 /* If the instruction will fail, see if we can fix things up by
19980 changing the opcode. */
19981 if (newimm == (unsigned int) FAIL
19982 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19983 {
19984 /* No ? OK - try using two ADD instructions to generate
19985 the value. */
19986 newimm = validate_immediate_twopart (value, & highpart);
19987
19988 /* Yes - then make sure that the second instruction is
19989 also an add. */
19990 if (newimm != (unsigned int) FAIL)
19991 newinsn = temp;
19992 /* Still No ? Try using a negated value. */
19993 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19994 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19995 /* Otherwise - give up. */
19996 else
19997 {
19998 as_bad_where (fixP->fx_file, fixP->fx_line,
19999 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20000 (long) value);
20001 break;
20002 }
20003
20004 /* Replace the first operand in the 2nd instruction (which
20005 is the PC) with the destination register. We have
20006 already added in the PC in the first instruction and we
20007 do not want to do it again. */
20008 newinsn &= ~ 0xf0000;
20009 newinsn |= ((newinsn & 0x0f000) << 4);
20010 }
20011
20012 newimm |= (temp & 0xfffff000);
20013 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20014
20015 highpart |= (newinsn & 0xfffff000);
20016 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20017 }
20018 break;
20019
20020 case BFD_RELOC_ARM_OFFSET_IMM:
20021 if (!fixP->fx_done && seg->use_rela_p)
20022 value = 0;
20023
20024 case BFD_RELOC_ARM_LITERAL:
20025 sign = value >= 0;
20026
20027 if (value < 0)
20028 value = - value;
20029
20030 if (validate_offset_imm (value, 0) == FAIL)
20031 {
20032 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20033 as_bad_where (fixP->fx_file, fixP->fx_line,
20034 _("invalid literal constant: pool needs to be closer"));
20035 else
20036 as_bad_where (fixP->fx_file, fixP->fx_line,
20037 _("bad immediate value for offset (%ld)"),
20038 (long) value);
20039 break;
20040 }
20041
20042 newval = md_chars_to_number (buf, INSN_SIZE);
20043 newval &= 0xff7ff000;
20044 newval |= value | (sign ? INDEX_UP : 0);
20045 md_number_to_chars (buf, newval, INSN_SIZE);
20046 break;
20047
20048 case BFD_RELOC_ARM_OFFSET_IMM8:
20049 case BFD_RELOC_ARM_HWLITERAL:
20050 sign = value >= 0;
20051
20052 if (value < 0)
20053 value = - value;
20054
20055 if (validate_offset_imm (value, 1) == FAIL)
20056 {
20057 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20058 as_bad_where (fixP->fx_file, fixP->fx_line,
20059 _("invalid literal constant: pool needs to be closer"));
20060 else
20061 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20062 (long) value);
20063 break;
20064 }
20065
20066 newval = md_chars_to_number (buf, INSN_SIZE);
20067 newval &= 0xff7ff0f0;
20068 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20069 md_number_to_chars (buf, newval, INSN_SIZE);
20070 break;
20071
20072 case BFD_RELOC_ARM_T32_OFFSET_U8:
20073 if (value < 0 || value > 1020 || value % 4 != 0)
20074 as_bad_where (fixP->fx_file, fixP->fx_line,
20075 _("bad immediate value for offset (%ld)"), (long) value);
20076 value /= 4;
20077
20078 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20079 newval |= value;
20080 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20081 break;
20082
20083 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20084 /* This is a complicated relocation used for all varieties of Thumb32
20085 load/store instruction with immediate offset:
20086
20087 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20088 *4, optional writeback(W)
20089 (doubleword load/store)
20090
20091 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20092 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20093 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20094 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20095 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20096
20097 Uppercase letters indicate bits that are already encoded at
20098 this point. Lowercase letters are our problem. For the
20099 second block of instructions, the secondary opcode nybble
20100 (bits 8..11) is present, and bit 23 is zero, even if this is
20101 a PC-relative operation. */
20102 newval = md_chars_to_number (buf, THUMB_SIZE);
20103 newval <<= 16;
20104 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20105
20106 if ((newval & 0xf0000000) == 0xe0000000)
20107 {
20108 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20109 if (value >= 0)
20110 newval |= (1 << 23);
20111 else
20112 value = -value;
20113 if (value % 4 != 0)
20114 {
20115 as_bad_where (fixP->fx_file, fixP->fx_line,
20116 _("offset not a multiple of 4"));
20117 break;
20118 }
20119 value /= 4;
20120 if (value > 0xff)
20121 {
20122 as_bad_where (fixP->fx_file, fixP->fx_line,
20123 _("offset out of range"));
20124 break;
20125 }
20126 newval &= ~0xff;
20127 }
20128 else if ((newval & 0x000f0000) == 0x000f0000)
20129 {
20130 /* PC-relative, 12-bit offset. */
20131 if (value >= 0)
20132 newval |= (1 << 23);
20133 else
20134 value = -value;
20135 if (value > 0xfff)
20136 {
20137 as_bad_where (fixP->fx_file, fixP->fx_line,
20138 _("offset out of range"));
20139 break;
20140 }
20141 newval &= ~0xfff;
20142 }
20143 else if ((newval & 0x00000100) == 0x00000100)
20144 {
20145 /* Writeback: 8-bit, +/- offset. */
20146 if (value >= 0)
20147 newval |= (1 << 9);
20148 else
20149 value = -value;
20150 if (value > 0xff)
20151 {
20152 as_bad_where (fixP->fx_file, fixP->fx_line,
20153 _("offset out of range"));
20154 break;
20155 }
20156 newval &= ~0xff;
20157 }
20158 else if ((newval & 0x00000f00) == 0x00000e00)
20159 {
20160 /* T-instruction: positive 8-bit offset. */
20161 if (value < 0 || value > 0xff)
20162 {
20163 as_bad_where (fixP->fx_file, fixP->fx_line,
20164 _("offset out of range"));
20165 break;
20166 }
20167 newval &= ~0xff;
20168 newval |= value;
20169 }
20170 else
20171 {
20172 /* Positive 12-bit or negative 8-bit offset. */
20173 int limit;
20174 if (value >= 0)
20175 {
20176 newval |= (1 << 23);
20177 limit = 0xfff;
20178 }
20179 else
20180 {
20181 value = -value;
20182 limit = 0xff;
20183 }
20184 if (value > limit)
20185 {
20186 as_bad_where (fixP->fx_file, fixP->fx_line,
20187 _("offset out of range"));
20188 break;
20189 }
20190 newval &= ~limit;
20191 }
20192
20193 newval |= value;
20194 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20195 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20196 break;
20197
20198 case BFD_RELOC_ARM_SHIFT_IMM:
20199 newval = md_chars_to_number (buf, INSN_SIZE);
20200 if (((unsigned long) value) > 32
20201 || (value == 32
20202 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20203 {
20204 as_bad_where (fixP->fx_file, fixP->fx_line,
20205 _("shift expression is too large"));
20206 break;
20207 }
20208
20209 if (value == 0)
20210 /* Shifts of zero must be done as lsl. */
20211 newval &= ~0x60;
20212 else if (value == 32)
20213 value = 0;
20214 newval &= 0xfffff07f;
20215 newval |= (value & 0x1f) << 7;
20216 md_number_to_chars (buf, newval, INSN_SIZE);
20217 break;
20218
20219 case BFD_RELOC_ARM_T32_IMMEDIATE:
20220 case BFD_RELOC_ARM_T32_ADD_IMM:
20221 case BFD_RELOC_ARM_T32_IMM12:
20222 case BFD_RELOC_ARM_T32_ADD_PC12:
20223 /* We claim that this fixup has been processed here,
20224 even if in fact we generate an error because we do
20225 not have a reloc for it, so tc_gen_reloc will reject it. */
20226 fixP->fx_done = 1;
20227
20228 if (fixP->fx_addsy
20229 && ! S_IS_DEFINED (fixP->fx_addsy))
20230 {
20231 as_bad_where (fixP->fx_file, fixP->fx_line,
20232 _("undefined symbol %s used as an immediate value"),
20233 S_GET_NAME (fixP->fx_addsy));
20234 break;
20235 }
20236
20237 newval = md_chars_to_number (buf, THUMB_SIZE);
20238 newval <<= 16;
20239 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20240
20241 newimm = FAIL;
20242 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20243 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20244 {
20245 newimm = encode_thumb32_immediate (value);
20246 if (newimm == (unsigned int) FAIL)
20247 newimm = thumb32_negate_data_op (&newval, value);
20248 }
20249 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20250 && newimm == (unsigned int) FAIL)
20251 {
20252 /* Turn add/sum into addw/subw. */
20253 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20254 newval = (newval & 0xfeffffff) | 0x02000000;
20255 /* No flat 12-bit imm encoding for addsw/subsw. */
20256 if ((newval & 0x00100000) == 0)
20257 {
20258 /* 12 bit immediate for addw/subw. */
20259 if (value < 0)
20260 {
20261 value = -value;
20262 newval ^= 0x00a00000;
20263 }
20264 if (value > 0xfff)
20265 newimm = (unsigned int) FAIL;
20266 else
20267 newimm = value;
20268 }
20269 }
20270
20271 if (newimm == (unsigned int)FAIL)
20272 {
20273 as_bad_where (fixP->fx_file, fixP->fx_line,
20274 _("invalid constant (%lx) after fixup"),
20275 (unsigned long) value);
20276 break;
20277 }
20278
20279 newval |= (newimm & 0x800) << 15;
20280 newval |= (newimm & 0x700) << 4;
20281 newval |= (newimm & 0x0ff);
20282
20283 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20284 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20285 break;
20286
20287 case BFD_RELOC_ARM_SMC:
20288 if (((unsigned long) value) > 0xffff)
20289 as_bad_where (fixP->fx_file, fixP->fx_line,
20290 _("invalid smc expression"));
20291 newval = md_chars_to_number (buf, INSN_SIZE);
20292 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20293 md_number_to_chars (buf, newval, INSN_SIZE);
20294 break;
20295
20296 case BFD_RELOC_ARM_SWI:
20297 if (fixP->tc_fix_data != 0)
20298 {
20299 if (((unsigned long) value) > 0xff)
20300 as_bad_where (fixP->fx_file, fixP->fx_line,
20301 _("invalid swi expression"));
20302 newval = md_chars_to_number (buf, THUMB_SIZE);
20303 newval |= value;
20304 md_number_to_chars (buf, newval, THUMB_SIZE);
20305 }
20306 else
20307 {
20308 if (((unsigned long) value) > 0x00ffffff)
20309 as_bad_where (fixP->fx_file, fixP->fx_line,
20310 _("invalid swi expression"));
20311 newval = md_chars_to_number (buf, INSN_SIZE);
20312 newval |= value;
20313 md_number_to_chars (buf, newval, INSN_SIZE);
20314 }
20315 break;
20316
20317 case BFD_RELOC_ARM_MULTI:
20318 if (((unsigned long) value) > 0xffff)
20319 as_bad_where (fixP->fx_file, fixP->fx_line,
20320 _("invalid expression in load/store multiple"));
20321 newval = value | md_chars_to_number (buf, INSN_SIZE);
20322 md_number_to_chars (buf, newval, INSN_SIZE);
20323 break;
20324
20325 #ifdef OBJ_ELF
20326 case BFD_RELOC_ARM_PCREL_CALL:
20327
20328 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20329 && fixP->fx_addsy
20330 && !S_IS_EXTERNAL (fixP->fx_addsy)
20331 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20332 && THUMB_IS_FUNC (fixP->fx_addsy))
20333 /* Flip the bl to blx. This is a simple flip
20334 bit here because we generate PCREL_CALL for
20335 unconditional bls. */
20336 {
20337 newval = md_chars_to_number (buf, INSN_SIZE);
20338 newval = newval | 0x10000000;
20339 md_number_to_chars (buf, newval, INSN_SIZE);
20340 temp = 1;
20341 fixP->fx_done = 1;
20342 }
20343 else
20344 temp = 3;
20345 goto arm_branch_common;
20346
20347 case BFD_RELOC_ARM_PCREL_JUMP:
20348 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20349 && fixP->fx_addsy
20350 && !S_IS_EXTERNAL (fixP->fx_addsy)
20351 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20352 && THUMB_IS_FUNC (fixP->fx_addsy))
20353 {
20354 /* This would map to a bl<cond>, b<cond>,
20355 b<always> to a Thumb function. We
20356 need to force a relocation for this particular
20357 case. */
20358 newval = md_chars_to_number (buf, INSN_SIZE);
20359 fixP->fx_done = 0;
20360 }
20361
20362 case BFD_RELOC_ARM_PLT32:
20363 #endif
20364 case BFD_RELOC_ARM_PCREL_BRANCH:
20365 temp = 3;
20366 goto arm_branch_common;
20367
20368 case BFD_RELOC_ARM_PCREL_BLX:
20369
20370 temp = 1;
20371 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20372 && fixP->fx_addsy
20373 && !S_IS_EXTERNAL (fixP->fx_addsy)
20374 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20375 && ARM_IS_FUNC (fixP->fx_addsy))
20376 {
20377 /* Flip the blx to a bl and warn. */
20378 const char *name = S_GET_NAME (fixP->fx_addsy);
20379 newval = 0xeb000000;
20380 as_warn_where (fixP->fx_file, fixP->fx_line,
20381 _("blx to '%s' an ARM ISA state function changed to bl"),
20382 name);
20383 md_number_to_chars (buf, newval, INSN_SIZE);
20384 temp = 3;
20385 fixP->fx_done = 1;
20386 }
20387
20388 #ifdef OBJ_ELF
20389 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20390 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20391 #endif
20392
20393 arm_branch_common:
20394 /* We are going to store value (shifted right by two) in the
20395 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20396 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20397 also be be clear. */
20398 if (value & temp)
20399 as_bad_where (fixP->fx_file, fixP->fx_line,
20400 _("misaligned branch destination"));
20401 if ((value & (offsetT)0xfe000000) != (offsetT)0
20402 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20403 as_bad_where (fixP->fx_file, fixP->fx_line,
20404 _("branch out of range"));
20405
20406 if (fixP->fx_done || !seg->use_rela_p)
20407 {
20408 newval = md_chars_to_number (buf, INSN_SIZE);
20409 newval |= (value >> 2) & 0x00ffffff;
20410 /* Set the H bit on BLX instructions. */
20411 if (temp == 1)
20412 {
20413 if (value & 2)
20414 newval |= 0x01000000;
20415 else
20416 newval &= ~0x01000000;
20417 }
20418 md_number_to_chars (buf, newval, INSN_SIZE);
20419 }
20420 break;
20421
20422 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20423 /* CBZ can only branch forward. */
20424
20425 /* Attempts to use CBZ to branch to the next instruction
20426 (which, strictly speaking, are prohibited) will be turned into
20427 no-ops.
20428
20429 FIXME: It may be better to remove the instruction completely and
20430 perform relaxation. */
20431 if (value == -2)
20432 {
20433 newval = md_chars_to_number (buf, THUMB_SIZE);
20434 newval = 0xbf00; /* NOP encoding T1 */
20435 md_number_to_chars (buf, newval, THUMB_SIZE);
20436 }
20437 else
20438 {
20439 if (value & ~0x7e)
20440 as_bad_where (fixP->fx_file, fixP->fx_line,
20441 _("branch out of range"));
20442
20443 if (fixP->fx_done || !seg->use_rela_p)
20444 {
20445 newval = md_chars_to_number (buf, THUMB_SIZE);
20446 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20447 md_number_to_chars (buf, newval, THUMB_SIZE);
20448 }
20449 }
20450 break;
20451
20452 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20453 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20454 as_bad_where (fixP->fx_file, fixP->fx_line,
20455 _("branch out of range"));
20456
20457 if (fixP->fx_done || !seg->use_rela_p)
20458 {
20459 newval = md_chars_to_number (buf, THUMB_SIZE);
20460 newval |= (value & 0x1ff) >> 1;
20461 md_number_to_chars (buf, newval, THUMB_SIZE);
20462 }
20463 break;
20464
20465 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20466 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20467 as_bad_where (fixP->fx_file, fixP->fx_line,
20468 _("branch out of range"));
20469
20470 if (fixP->fx_done || !seg->use_rela_p)
20471 {
20472 newval = md_chars_to_number (buf, THUMB_SIZE);
20473 newval |= (value & 0xfff) >> 1;
20474 md_number_to_chars (buf, newval, THUMB_SIZE);
20475 }
20476 break;
20477
20478 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20479 if (fixP->fx_addsy
20480 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20481 && !S_IS_EXTERNAL (fixP->fx_addsy)
20482 && S_IS_DEFINED (fixP->fx_addsy)
20483 && ARM_IS_FUNC (fixP->fx_addsy)
20484 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20485 {
20486 /* Force a relocation for a branch 20 bits wide. */
20487 fixP->fx_done = 0;
20488 }
20489 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20490 as_bad_where (fixP->fx_file, fixP->fx_line,
20491 _("conditional branch out of range"));
20492
20493 if (fixP->fx_done || !seg->use_rela_p)
20494 {
20495 offsetT newval2;
20496 addressT S, J1, J2, lo, hi;
20497
20498 S = (value & 0x00100000) >> 20;
20499 J2 = (value & 0x00080000) >> 19;
20500 J1 = (value & 0x00040000) >> 18;
20501 hi = (value & 0x0003f000) >> 12;
20502 lo = (value & 0x00000ffe) >> 1;
20503
20504 newval = md_chars_to_number (buf, THUMB_SIZE);
20505 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20506 newval |= (S << 10) | hi;
20507 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20508 md_number_to_chars (buf, newval, THUMB_SIZE);
20509 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20510 }
20511 break;
20512
20513 case BFD_RELOC_THUMB_PCREL_BLX:
20514
20515 /* If there is a blx from a thumb state function to
20516 another thumb function flip this to a bl and warn
20517 about it. */
20518
20519 if (fixP->fx_addsy
20520 && S_IS_DEFINED (fixP->fx_addsy)
20521 && !S_IS_EXTERNAL (fixP->fx_addsy)
20522 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20523 && THUMB_IS_FUNC (fixP->fx_addsy))
20524 {
20525 const char *name = S_GET_NAME (fixP->fx_addsy);
20526 as_warn_where (fixP->fx_file, fixP->fx_line,
20527 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20528 name);
20529 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20530 newval = newval | 0x1000;
20531 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20532 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20533 fixP->fx_done = 1;
20534 }
20535
20536
20537 goto thumb_bl_common;
20538
20539 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20540
20541 /* A bl from Thumb state ISA to an internal ARM state function
20542 is converted to a blx. */
20543 if (fixP->fx_addsy
20544 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20545 && !S_IS_EXTERNAL (fixP->fx_addsy)
20546 && S_IS_DEFINED (fixP->fx_addsy)
20547 && ARM_IS_FUNC (fixP->fx_addsy)
20548 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20549 {
20550 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20551 newval = newval & ~0x1000;
20552 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20553 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20554 fixP->fx_done = 1;
20555 }
20556
20557 thumb_bl_common:
20558
20559 #ifdef OBJ_ELF
20560 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20561 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20562 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20563 #endif
20564
20565 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20566 /* For a BLX instruction, make sure that the relocation is rounded up
20567 to a word boundary. This follows the semantics of the instruction
20568 which specifies that bit 1 of the target address will come from bit
20569 1 of the base address. */
20570 value = (value + 1) & ~ 1;
20571
20572
20573 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20574 {
20575 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20576 {
20577 as_bad_where (fixP->fx_file, fixP->fx_line,
20578 _("branch out of range"));
20579 }
20580 else if ((value & ~0x1ffffff)
20581 && ((value & ~0x1ffffff) != ~0x1ffffff))
20582 {
20583 as_bad_where (fixP->fx_file, fixP->fx_line,
20584 _("Thumb2 branch out of range"));
20585 }
20586 }
20587
20588 if (fixP->fx_done || !seg->use_rela_p)
20589 encode_thumb2_b_bl_offset (buf, value);
20590
20591 break;
20592
20593 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20594 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20595 as_bad_where (fixP->fx_file, fixP->fx_line,
20596 _("branch out of range"));
20597
20598 if (fixP->fx_done || !seg->use_rela_p)
20599 encode_thumb2_b_bl_offset (buf, value);
20600
20601 break;
20602
20603 case BFD_RELOC_8:
20604 if (fixP->fx_done || !seg->use_rela_p)
20605 md_number_to_chars (buf, value, 1);
20606 break;
20607
20608 case BFD_RELOC_16:
20609 if (fixP->fx_done || !seg->use_rela_p)
20610 md_number_to_chars (buf, value, 2);
20611 break;
20612
20613 #ifdef OBJ_ELF
20614 case BFD_RELOC_ARM_TLS_GD32:
20615 case BFD_RELOC_ARM_TLS_LE32:
20616 case BFD_RELOC_ARM_TLS_IE32:
20617 case BFD_RELOC_ARM_TLS_LDM32:
20618 case BFD_RELOC_ARM_TLS_LDO32:
20619 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20620 /* fall through */
20621
20622 case BFD_RELOC_ARM_GOT32:
20623 case BFD_RELOC_ARM_GOTOFF:
20624 if (fixP->fx_done || !seg->use_rela_p)
20625 md_number_to_chars (buf, 0, 4);
20626 break;
20627
20628 case BFD_RELOC_ARM_GOT_PREL:
20629 if (fixP->fx_done || !seg->use_rela_p)
20630 md_number_to_chars (buf, value, 4);
20631 break;
20632
20633 case BFD_RELOC_ARM_TARGET2:
20634 /* TARGET2 is not partial-inplace, so we need to write the
20635 addend here for REL targets, because it won't be written out
20636 during reloc processing later. */
20637 if (fixP->fx_done || !seg->use_rela_p)
20638 md_number_to_chars (buf, fixP->fx_offset, 4);
20639 break;
20640 #endif
20641
20642 case BFD_RELOC_RVA:
20643 case BFD_RELOC_32:
20644 case BFD_RELOC_ARM_TARGET1:
20645 case BFD_RELOC_ARM_ROSEGREL32:
20646 case BFD_RELOC_ARM_SBREL32:
20647 case BFD_RELOC_32_PCREL:
20648 #ifdef TE_PE
20649 case BFD_RELOC_32_SECREL:
20650 #endif
20651 if (fixP->fx_done || !seg->use_rela_p)
20652 #ifdef TE_WINCE
20653 /* For WinCE we only do this for pcrel fixups. */
20654 if (fixP->fx_done || fixP->fx_pcrel)
20655 #endif
20656 md_number_to_chars (buf, value, 4);
20657 break;
20658
20659 #ifdef OBJ_ELF
20660 case BFD_RELOC_ARM_PREL31:
20661 if (fixP->fx_done || !seg->use_rela_p)
20662 {
20663 newval = md_chars_to_number (buf, 4) & 0x80000000;
20664 if ((value ^ (value >> 1)) & 0x40000000)
20665 {
20666 as_bad_where (fixP->fx_file, fixP->fx_line,
20667 _("rel31 relocation overflow"));
20668 }
20669 newval |= value & 0x7fffffff;
20670 md_number_to_chars (buf, newval, 4);
20671 }
20672 break;
20673 #endif
20674
20675 case BFD_RELOC_ARM_CP_OFF_IMM:
20676 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20677 if (value < -1023 || value > 1023 || (value & 3))
20678 as_bad_where (fixP->fx_file, fixP->fx_line,
20679 _("co-processor offset out of range"));
20680 cp_off_common:
20681 sign = value >= 0;
20682 if (value < 0)
20683 value = -value;
20684 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20685 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20686 newval = md_chars_to_number (buf, INSN_SIZE);
20687 else
20688 newval = get_thumb32_insn (buf);
20689 newval &= 0xff7fff00;
20690 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20691 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20692 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20693 md_number_to_chars (buf, newval, INSN_SIZE);
20694 else
20695 put_thumb32_insn (buf, newval);
20696 break;
20697
20698 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20699 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20700 if (value < -255 || value > 255)
20701 as_bad_where (fixP->fx_file, fixP->fx_line,
20702 _("co-processor offset out of range"));
20703 value *= 4;
20704 goto cp_off_common;
20705
20706 case BFD_RELOC_ARM_THUMB_OFFSET:
20707 newval = md_chars_to_number (buf, THUMB_SIZE);
20708 /* Exactly what ranges, and where the offset is inserted depends
20709 on the type of instruction, we can establish this from the
20710 top 4 bits. */
20711 switch (newval >> 12)
20712 {
20713 case 4: /* PC load. */
20714 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20715 forced to zero for these loads; md_pcrel_from has already
20716 compensated for this. */
20717 if (value & 3)
20718 as_bad_where (fixP->fx_file, fixP->fx_line,
20719 _("invalid offset, target not word aligned (0x%08lX)"),
20720 (((unsigned long) fixP->fx_frag->fr_address
20721 + (unsigned long) fixP->fx_where) & ~3)
20722 + (unsigned long) value);
20723
20724 if (value & ~0x3fc)
20725 as_bad_where (fixP->fx_file, fixP->fx_line,
20726 _("invalid offset, value too big (0x%08lX)"),
20727 (long) value);
20728
20729 newval |= value >> 2;
20730 break;
20731
20732 case 9: /* SP load/store. */
20733 if (value & ~0x3fc)
20734 as_bad_where (fixP->fx_file, fixP->fx_line,
20735 _("invalid offset, value too big (0x%08lX)"),
20736 (long) value);
20737 newval |= value >> 2;
20738 break;
20739
20740 case 6: /* Word load/store. */
20741 if (value & ~0x7c)
20742 as_bad_where (fixP->fx_file, fixP->fx_line,
20743 _("invalid offset, value too big (0x%08lX)"),
20744 (long) value);
20745 newval |= value << 4; /* 6 - 2. */
20746 break;
20747
20748 case 7: /* Byte load/store. */
20749 if (value & ~0x1f)
20750 as_bad_where (fixP->fx_file, fixP->fx_line,
20751 _("invalid offset, value too big (0x%08lX)"),
20752 (long) value);
20753 newval |= value << 6;
20754 break;
20755
20756 case 8: /* Halfword load/store. */
20757 if (value & ~0x3e)
20758 as_bad_where (fixP->fx_file, fixP->fx_line,
20759 _("invalid offset, value too big (0x%08lX)"),
20760 (long) value);
20761 newval |= value << 5; /* 6 - 1. */
20762 break;
20763
20764 default:
20765 as_bad_where (fixP->fx_file, fixP->fx_line,
20766 "Unable to process relocation for thumb opcode: %lx",
20767 (unsigned long) newval);
20768 break;
20769 }
20770 md_number_to_chars (buf, newval, THUMB_SIZE);
20771 break;
20772
20773 case BFD_RELOC_ARM_THUMB_ADD:
20774 /* This is a complicated relocation, since we use it for all of
20775 the following immediate relocations:
20776
20777 3bit ADD/SUB
20778 8bit ADD/SUB
20779 9bit ADD/SUB SP word-aligned
20780 10bit ADD PC/SP word-aligned
20781
20782 The type of instruction being processed is encoded in the
20783 instruction field:
20784
20785 0x8000 SUB
20786 0x00F0 Rd
20787 0x000F Rs
20788 */
20789 newval = md_chars_to_number (buf, THUMB_SIZE);
20790 {
20791 int rd = (newval >> 4) & 0xf;
20792 int rs = newval & 0xf;
20793 int subtract = !!(newval & 0x8000);
20794
20795 /* Check for HI regs, only very restricted cases allowed:
20796 Adjusting SP, and using PC or SP to get an address. */
20797 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20798 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20799 as_bad_where (fixP->fx_file, fixP->fx_line,
20800 _("invalid Hi register with immediate"));
20801
20802 /* If value is negative, choose the opposite instruction. */
20803 if (value < 0)
20804 {
20805 value = -value;
20806 subtract = !subtract;
20807 if (value < 0)
20808 as_bad_where (fixP->fx_file, fixP->fx_line,
20809 _("immediate value out of range"));
20810 }
20811
20812 if (rd == REG_SP)
20813 {
20814 if (value & ~0x1fc)
20815 as_bad_where (fixP->fx_file, fixP->fx_line,
20816 _("invalid immediate for stack address calculation"));
20817 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20818 newval |= value >> 2;
20819 }
20820 else if (rs == REG_PC || rs == REG_SP)
20821 {
20822 if (subtract || value & ~0x3fc)
20823 as_bad_where (fixP->fx_file, fixP->fx_line,
20824 _("invalid immediate for address calculation (value = 0x%08lX)"),
20825 (unsigned long) value);
20826 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20827 newval |= rd << 8;
20828 newval |= value >> 2;
20829 }
20830 else if (rs == rd)
20831 {
20832 if (value & ~0xff)
20833 as_bad_where (fixP->fx_file, fixP->fx_line,
20834 _("immediate value out of range"));
20835 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20836 newval |= (rd << 8) | value;
20837 }
20838 else
20839 {
20840 if (value & ~0x7)
20841 as_bad_where (fixP->fx_file, fixP->fx_line,
20842 _("immediate value out of range"));
20843 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20844 newval |= rd | (rs << 3) | (value << 6);
20845 }
20846 }
20847 md_number_to_chars (buf, newval, THUMB_SIZE);
20848 break;
20849
20850 case BFD_RELOC_ARM_THUMB_IMM:
20851 newval = md_chars_to_number (buf, THUMB_SIZE);
20852 if (value < 0 || value > 255)
20853 as_bad_where (fixP->fx_file, fixP->fx_line,
20854 _("invalid immediate: %ld is out of range"),
20855 (long) value);
20856 newval |= value;
20857 md_number_to_chars (buf, newval, THUMB_SIZE);
20858 break;
20859
20860 case BFD_RELOC_ARM_THUMB_SHIFT:
20861 /* 5bit shift value (0..32). LSL cannot take 32. */
20862 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20863 temp = newval & 0xf800;
20864 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20865 as_bad_where (fixP->fx_file, fixP->fx_line,
20866 _("invalid shift value: %ld"), (long) value);
20867 /* Shifts of zero must be encoded as LSL. */
20868 if (value == 0)
20869 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20870 /* Shifts of 32 are encoded as zero. */
20871 else if (value == 32)
20872 value = 0;
20873 newval |= value << 6;
20874 md_number_to_chars (buf, newval, THUMB_SIZE);
20875 break;
20876
20877 case BFD_RELOC_VTABLE_INHERIT:
20878 case BFD_RELOC_VTABLE_ENTRY:
20879 fixP->fx_done = 0;
20880 return;
20881
20882 case BFD_RELOC_ARM_MOVW:
20883 case BFD_RELOC_ARM_MOVT:
20884 case BFD_RELOC_ARM_THUMB_MOVW:
20885 case BFD_RELOC_ARM_THUMB_MOVT:
20886 if (fixP->fx_done || !seg->use_rela_p)
20887 {
20888 /* REL format relocations are limited to a 16-bit addend. */
20889 if (!fixP->fx_done)
20890 {
20891 if (value < -0x8000 || value > 0x7fff)
20892 as_bad_where (fixP->fx_file, fixP->fx_line,
20893 _("offset out of range"));
20894 }
20895 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20896 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20897 {
20898 value >>= 16;
20899 }
20900
20901 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20902 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20903 {
20904 newval = get_thumb32_insn (buf);
20905 newval &= 0xfbf08f00;
20906 newval |= (value & 0xf000) << 4;
20907 newval |= (value & 0x0800) << 15;
20908 newval |= (value & 0x0700) << 4;
20909 newval |= (value & 0x00ff);
20910 put_thumb32_insn (buf, newval);
20911 }
20912 else
20913 {
20914 newval = md_chars_to_number (buf, 4);
20915 newval &= 0xfff0f000;
20916 newval |= value & 0x0fff;
20917 newval |= (value & 0xf000) << 4;
20918 md_number_to_chars (buf, newval, 4);
20919 }
20920 }
20921 return;
20922
20923 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20924 case BFD_RELOC_ARM_ALU_PC_G0:
20925 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20926 case BFD_RELOC_ARM_ALU_PC_G1:
20927 case BFD_RELOC_ARM_ALU_PC_G2:
20928 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20929 case BFD_RELOC_ARM_ALU_SB_G0:
20930 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20931 case BFD_RELOC_ARM_ALU_SB_G1:
20932 case BFD_RELOC_ARM_ALU_SB_G2:
20933 gas_assert (!fixP->fx_done);
20934 if (!seg->use_rela_p)
20935 {
20936 bfd_vma insn;
20937 bfd_vma encoded_addend;
20938 bfd_vma addend_abs = abs (value);
20939
20940 /* Check that the absolute value of the addend can be
20941 expressed as an 8-bit constant plus a rotation. */
20942 encoded_addend = encode_arm_immediate (addend_abs);
20943 if (encoded_addend == (unsigned int) FAIL)
20944 as_bad_where (fixP->fx_file, fixP->fx_line,
20945 _("the offset 0x%08lX is not representable"),
20946 (unsigned long) addend_abs);
20947
20948 /* Extract the instruction. */
20949 insn = md_chars_to_number (buf, INSN_SIZE);
20950
20951 /* If the addend is positive, use an ADD instruction.
20952 Otherwise use a SUB. Take care not to destroy the S bit. */
20953 insn &= 0xff1fffff;
20954 if (value < 0)
20955 insn |= 1 << 22;
20956 else
20957 insn |= 1 << 23;
20958
20959 /* Place the encoded addend into the first 12 bits of the
20960 instruction. */
20961 insn &= 0xfffff000;
20962 insn |= encoded_addend;
20963
20964 /* Update the instruction. */
20965 md_number_to_chars (buf, insn, INSN_SIZE);
20966 }
20967 break;
20968
20969 case BFD_RELOC_ARM_LDR_PC_G0:
20970 case BFD_RELOC_ARM_LDR_PC_G1:
20971 case BFD_RELOC_ARM_LDR_PC_G2:
20972 case BFD_RELOC_ARM_LDR_SB_G0:
20973 case BFD_RELOC_ARM_LDR_SB_G1:
20974 case BFD_RELOC_ARM_LDR_SB_G2:
20975 gas_assert (!fixP->fx_done);
20976 if (!seg->use_rela_p)
20977 {
20978 bfd_vma insn;
20979 bfd_vma addend_abs = abs (value);
20980
20981 /* Check that the absolute value of the addend can be
20982 encoded in 12 bits. */
20983 if (addend_abs >= 0x1000)
20984 as_bad_where (fixP->fx_file, fixP->fx_line,
20985 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
20986 (unsigned long) addend_abs);
20987
20988 /* Extract the instruction. */
20989 insn = md_chars_to_number (buf, INSN_SIZE);
20990
20991 /* If the addend is negative, clear bit 23 of the instruction.
20992 Otherwise set it. */
20993 if (value < 0)
20994 insn &= ~(1 << 23);
20995 else
20996 insn |= 1 << 23;
20997
20998 /* Place the absolute value of the addend into the first 12 bits
20999 of the instruction. */
21000 insn &= 0xfffff000;
21001 insn |= addend_abs;
21002
21003 /* Update the instruction. */
21004 md_number_to_chars (buf, insn, INSN_SIZE);
21005 }
21006 break;
21007
21008 case BFD_RELOC_ARM_LDRS_PC_G0:
21009 case BFD_RELOC_ARM_LDRS_PC_G1:
21010 case BFD_RELOC_ARM_LDRS_PC_G2:
21011 case BFD_RELOC_ARM_LDRS_SB_G0:
21012 case BFD_RELOC_ARM_LDRS_SB_G1:
21013 case BFD_RELOC_ARM_LDRS_SB_G2:
21014 gas_assert (!fixP->fx_done);
21015 if (!seg->use_rela_p)
21016 {
21017 bfd_vma insn;
21018 bfd_vma addend_abs = abs (value);
21019
21020 /* Check that the absolute value of the addend can be
21021 encoded in 8 bits. */
21022 if (addend_abs >= 0x100)
21023 as_bad_where (fixP->fx_file, fixP->fx_line,
21024 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21025 (unsigned long) addend_abs);
21026
21027 /* Extract the instruction. */
21028 insn = md_chars_to_number (buf, INSN_SIZE);
21029
21030 /* If the addend is negative, clear bit 23 of the instruction.
21031 Otherwise set it. */
21032 if (value < 0)
21033 insn &= ~(1 << 23);
21034 else
21035 insn |= 1 << 23;
21036
21037 /* Place the first four bits of the absolute value of the addend
21038 into the first 4 bits of the instruction, and the remaining
21039 four into bits 8 .. 11. */
21040 insn &= 0xfffff0f0;
21041 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21042
21043 /* Update the instruction. */
21044 md_number_to_chars (buf, insn, INSN_SIZE);
21045 }
21046 break;
21047
21048 case BFD_RELOC_ARM_LDC_PC_G0:
21049 case BFD_RELOC_ARM_LDC_PC_G1:
21050 case BFD_RELOC_ARM_LDC_PC_G2:
21051 case BFD_RELOC_ARM_LDC_SB_G0:
21052 case BFD_RELOC_ARM_LDC_SB_G1:
21053 case BFD_RELOC_ARM_LDC_SB_G2:
21054 gas_assert (!fixP->fx_done);
21055 if (!seg->use_rela_p)
21056 {
21057 bfd_vma insn;
21058 bfd_vma addend_abs = abs (value);
21059
21060 /* Check that the absolute value of the addend is a multiple of
21061 four and, when divided by four, fits in 8 bits. */
21062 if (addend_abs & 0x3)
21063 as_bad_where (fixP->fx_file, fixP->fx_line,
21064 _("bad offset 0x%08lX (must be word-aligned)"),
21065 (unsigned long) addend_abs);
21066
21067 if ((addend_abs >> 2) > 0xff)
21068 as_bad_where (fixP->fx_file, fixP->fx_line,
21069 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21070 (unsigned long) addend_abs);
21071
21072 /* Extract the instruction. */
21073 insn = md_chars_to_number (buf, INSN_SIZE);
21074
21075 /* If the addend is negative, clear bit 23 of the instruction.
21076 Otherwise set it. */
21077 if (value < 0)
21078 insn &= ~(1 << 23);
21079 else
21080 insn |= 1 << 23;
21081
21082 /* Place the addend (divided by four) into the first eight
21083 bits of the instruction. */
21084 insn &= 0xfffffff0;
21085 insn |= addend_abs >> 2;
21086
21087 /* Update the instruction. */
21088 md_number_to_chars (buf, insn, INSN_SIZE);
21089 }
21090 break;
21091
21092 case BFD_RELOC_ARM_V4BX:
21093 /* This will need to go in the object file. */
21094 fixP->fx_done = 0;
21095 break;
21096
21097 case BFD_RELOC_UNUSED:
21098 default:
21099 as_bad_where (fixP->fx_file, fixP->fx_line,
21100 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21101 }
21102 }
21103
21104 /* Translate internal representation of relocation info to BFD target
21105 format. */
21106
21107 arelent *
21108 tc_gen_reloc (asection *section, fixS *fixp)
21109 {
21110 arelent * reloc;
21111 bfd_reloc_code_real_type code;
21112
21113 reloc = (arelent *) xmalloc (sizeof (arelent));
21114
21115 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21116 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21117 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21118
21119 if (fixp->fx_pcrel)
21120 {
21121 if (section->use_rela_p)
21122 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21123 else
21124 fixp->fx_offset = reloc->address;
21125 }
21126 reloc->addend = fixp->fx_offset;
21127
21128 switch (fixp->fx_r_type)
21129 {
21130 case BFD_RELOC_8:
21131 if (fixp->fx_pcrel)
21132 {
21133 code = BFD_RELOC_8_PCREL;
21134 break;
21135 }
21136
21137 case BFD_RELOC_16:
21138 if (fixp->fx_pcrel)
21139 {
21140 code = BFD_RELOC_16_PCREL;
21141 break;
21142 }
21143
21144 case BFD_RELOC_32:
21145 if (fixp->fx_pcrel)
21146 {
21147 code = BFD_RELOC_32_PCREL;
21148 break;
21149 }
21150
21151 case BFD_RELOC_ARM_MOVW:
21152 if (fixp->fx_pcrel)
21153 {
21154 code = BFD_RELOC_ARM_MOVW_PCREL;
21155 break;
21156 }
21157
21158 case BFD_RELOC_ARM_MOVT:
21159 if (fixp->fx_pcrel)
21160 {
21161 code = BFD_RELOC_ARM_MOVT_PCREL;
21162 break;
21163 }
21164
21165 case BFD_RELOC_ARM_THUMB_MOVW:
21166 if (fixp->fx_pcrel)
21167 {
21168 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21169 break;
21170 }
21171
21172 case BFD_RELOC_ARM_THUMB_MOVT:
21173 if (fixp->fx_pcrel)
21174 {
21175 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21176 break;
21177 }
21178
21179 case BFD_RELOC_NONE:
21180 case BFD_RELOC_ARM_PCREL_BRANCH:
21181 case BFD_RELOC_ARM_PCREL_BLX:
21182 case BFD_RELOC_RVA:
21183 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21184 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21185 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21186 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21187 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21188 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21189 case BFD_RELOC_VTABLE_ENTRY:
21190 case BFD_RELOC_VTABLE_INHERIT:
21191 #ifdef TE_PE
21192 case BFD_RELOC_32_SECREL:
21193 #endif
21194 code = fixp->fx_r_type;
21195 break;
21196
21197 case BFD_RELOC_THUMB_PCREL_BLX:
21198 #ifdef OBJ_ELF
21199 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21200 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21201 else
21202 #endif
21203 code = BFD_RELOC_THUMB_PCREL_BLX;
21204 break;
21205
21206 case BFD_RELOC_ARM_LITERAL:
21207 case BFD_RELOC_ARM_HWLITERAL:
21208 /* If this is called then the a literal has
21209 been referenced across a section boundary. */
21210 as_bad_where (fixp->fx_file, fixp->fx_line,
21211 _("literal referenced across section boundary"));
21212 return NULL;
21213
21214 #ifdef OBJ_ELF
21215 case BFD_RELOC_ARM_GOT32:
21216 case BFD_RELOC_ARM_GOTOFF:
21217 case BFD_RELOC_ARM_GOT_PREL:
21218 case BFD_RELOC_ARM_PLT32:
21219 case BFD_RELOC_ARM_TARGET1:
21220 case BFD_RELOC_ARM_ROSEGREL32:
21221 case BFD_RELOC_ARM_SBREL32:
21222 case BFD_RELOC_ARM_PREL31:
21223 case BFD_RELOC_ARM_TARGET2:
21224 case BFD_RELOC_ARM_TLS_LE32:
21225 case BFD_RELOC_ARM_TLS_LDO32:
21226 case BFD_RELOC_ARM_PCREL_CALL:
21227 case BFD_RELOC_ARM_PCREL_JUMP:
21228 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21229 case BFD_RELOC_ARM_ALU_PC_G0:
21230 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21231 case BFD_RELOC_ARM_ALU_PC_G1:
21232 case BFD_RELOC_ARM_ALU_PC_G2:
21233 case BFD_RELOC_ARM_LDR_PC_G0:
21234 case BFD_RELOC_ARM_LDR_PC_G1:
21235 case BFD_RELOC_ARM_LDR_PC_G2:
21236 case BFD_RELOC_ARM_LDRS_PC_G0:
21237 case BFD_RELOC_ARM_LDRS_PC_G1:
21238 case BFD_RELOC_ARM_LDRS_PC_G2:
21239 case BFD_RELOC_ARM_LDC_PC_G0:
21240 case BFD_RELOC_ARM_LDC_PC_G1:
21241 case BFD_RELOC_ARM_LDC_PC_G2:
21242 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21243 case BFD_RELOC_ARM_ALU_SB_G0:
21244 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21245 case BFD_RELOC_ARM_ALU_SB_G1:
21246 case BFD_RELOC_ARM_ALU_SB_G2:
21247 case BFD_RELOC_ARM_LDR_SB_G0:
21248 case BFD_RELOC_ARM_LDR_SB_G1:
21249 case BFD_RELOC_ARM_LDR_SB_G2:
21250 case BFD_RELOC_ARM_LDRS_SB_G0:
21251 case BFD_RELOC_ARM_LDRS_SB_G1:
21252 case BFD_RELOC_ARM_LDRS_SB_G2:
21253 case BFD_RELOC_ARM_LDC_SB_G0:
21254 case BFD_RELOC_ARM_LDC_SB_G1:
21255 case BFD_RELOC_ARM_LDC_SB_G2:
21256 case BFD_RELOC_ARM_V4BX:
21257 code = fixp->fx_r_type;
21258 break;
21259
21260 case BFD_RELOC_ARM_TLS_GD32:
21261 case BFD_RELOC_ARM_TLS_IE32:
21262 case BFD_RELOC_ARM_TLS_LDM32:
21263 /* BFD will include the symbol's address in the addend.
21264 But we don't want that, so subtract it out again here. */
21265 if (!S_IS_COMMON (fixp->fx_addsy))
21266 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21267 code = fixp->fx_r_type;
21268 break;
21269 #endif
21270
21271 case BFD_RELOC_ARM_IMMEDIATE:
21272 as_bad_where (fixp->fx_file, fixp->fx_line,
21273 _("internal relocation (type: IMMEDIATE) not fixed up"));
21274 return NULL;
21275
21276 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21277 as_bad_where (fixp->fx_file, fixp->fx_line,
21278 _("ADRL used for a symbol not defined in the same file"));
21279 return NULL;
21280
21281 case BFD_RELOC_ARM_OFFSET_IMM:
21282 if (section->use_rela_p)
21283 {
21284 code = fixp->fx_r_type;
21285 break;
21286 }
21287
21288 if (fixp->fx_addsy != NULL
21289 && !S_IS_DEFINED (fixp->fx_addsy)
21290 && S_IS_LOCAL (fixp->fx_addsy))
21291 {
21292 as_bad_where (fixp->fx_file, fixp->fx_line,
21293 _("undefined local label `%s'"),
21294 S_GET_NAME (fixp->fx_addsy));
21295 return NULL;
21296 }
21297
21298 as_bad_where (fixp->fx_file, fixp->fx_line,
21299 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21300 return NULL;
21301
21302 default:
21303 {
21304 char * type;
21305
21306 switch (fixp->fx_r_type)
21307 {
21308 case BFD_RELOC_NONE: type = "NONE"; break;
21309 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21310 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21311 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21312 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21313 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21314 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21315 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21316 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21317 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21318 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21319 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21320 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21321 default: type = _("<unknown>"); break;
21322 }
21323 as_bad_where (fixp->fx_file, fixp->fx_line,
21324 _("cannot represent %s relocation in this object file format"),
21325 type);
21326 return NULL;
21327 }
21328 }
21329
21330 #ifdef OBJ_ELF
21331 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21332 && GOT_symbol
21333 && fixp->fx_addsy == GOT_symbol)
21334 {
21335 code = BFD_RELOC_ARM_GOTPC;
21336 reloc->addend = fixp->fx_offset = reloc->address;
21337 }
21338 #endif
21339
21340 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21341
21342 if (reloc->howto == NULL)
21343 {
21344 as_bad_where (fixp->fx_file, fixp->fx_line,
21345 _("cannot represent %s relocation in this object file format"),
21346 bfd_get_reloc_code_name (code));
21347 return NULL;
21348 }
21349
21350 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21351 vtable entry to be used in the relocation's section offset. */
21352 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21353 reloc->address = fixp->fx_offset;
21354
21355 return reloc;
21356 }
21357
21358 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21359
21360 void
21361 cons_fix_new_arm (fragS * frag,
21362 int where,
21363 int size,
21364 expressionS * exp)
21365 {
21366 bfd_reloc_code_real_type type;
21367 int pcrel = 0;
21368
21369 /* Pick a reloc.
21370 FIXME: @@ Should look at CPU word size. */
21371 switch (size)
21372 {
21373 case 1:
21374 type = BFD_RELOC_8;
21375 break;
21376 case 2:
21377 type = BFD_RELOC_16;
21378 break;
21379 case 4:
21380 default:
21381 type = BFD_RELOC_32;
21382 break;
21383 case 8:
21384 type = BFD_RELOC_64;
21385 break;
21386 }
21387
21388 #ifdef TE_PE
21389 if (exp->X_op == O_secrel)
21390 {
21391 exp->X_op = O_symbol;
21392 type = BFD_RELOC_32_SECREL;
21393 }
21394 #endif
21395
21396 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21397 }
21398
21399 #if defined (OBJ_COFF)
21400 void
21401 arm_validate_fix (fixS * fixP)
21402 {
21403 /* If the destination of the branch is a defined symbol which does not have
21404 the THUMB_FUNC attribute, then we must be calling a function which has
21405 the (interfacearm) attribute. We look for the Thumb entry point to that
21406 function and change the branch to refer to that function instead. */
21407 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21408 && fixP->fx_addsy != NULL
21409 && S_IS_DEFINED (fixP->fx_addsy)
21410 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21411 {
21412 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21413 }
21414 }
21415 #endif
21416
21417
21418 int
21419 arm_force_relocation (struct fix * fixp)
21420 {
21421 #if defined (OBJ_COFF) && defined (TE_PE)
21422 if (fixp->fx_r_type == BFD_RELOC_RVA)
21423 return 1;
21424 #endif
21425
21426 /* In case we have a call or a branch to a function in ARM ISA mode from
21427 a thumb function or vice-versa force the relocation. These relocations
21428 are cleared off for some cores that might have blx and simple transformations
21429 are possible. */
21430
21431 #ifdef OBJ_ELF
21432 switch (fixp->fx_r_type)
21433 {
21434 case BFD_RELOC_ARM_PCREL_JUMP:
21435 case BFD_RELOC_ARM_PCREL_CALL:
21436 case BFD_RELOC_THUMB_PCREL_BLX:
21437 if (THUMB_IS_FUNC (fixp->fx_addsy))
21438 return 1;
21439 break;
21440
21441 case BFD_RELOC_ARM_PCREL_BLX:
21442 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21443 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21444 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21445 if (ARM_IS_FUNC (fixp->fx_addsy))
21446 return 1;
21447 break;
21448
21449 default:
21450 break;
21451 }
21452 #endif
21453
21454 /* Resolve these relocations even if the symbol is extern or weak. */
21455 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21456 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21457 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21458 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21459 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21460 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21461 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21462 return 0;
21463
21464 /* Always leave these relocations for the linker. */
21465 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21466 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21467 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21468 return 1;
21469
21470 /* Always generate relocations against function symbols. */
21471 if (fixp->fx_r_type == BFD_RELOC_32
21472 && fixp->fx_addsy
21473 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21474 return 1;
21475
21476 return generic_force_reloc (fixp);
21477 }
21478
21479 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21480 /* Relocations against function names must be left unadjusted,
21481 so that the linker can use this information to generate interworking
21482 stubs. The MIPS version of this function
21483 also prevents relocations that are mips-16 specific, but I do not
21484 know why it does this.
21485
21486 FIXME:
21487 There is one other problem that ought to be addressed here, but
21488 which currently is not: Taking the address of a label (rather
21489 than a function) and then later jumping to that address. Such
21490 addresses also ought to have their bottom bit set (assuming that
21491 they reside in Thumb code), but at the moment they will not. */
21492
21493 bfd_boolean
21494 arm_fix_adjustable (fixS * fixP)
21495 {
21496 if (fixP->fx_addsy == NULL)
21497 return 1;
21498
21499 /* Preserve relocations against symbols with function type. */
21500 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21501 return FALSE;
21502
21503 if (THUMB_IS_FUNC (fixP->fx_addsy)
21504 && fixP->fx_subsy == NULL)
21505 return FALSE;
21506
21507 /* We need the symbol name for the VTABLE entries. */
21508 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21509 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21510 return FALSE;
21511
21512 /* Don't allow symbols to be discarded on GOT related relocs. */
21513 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21514 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21515 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21516 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21517 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21518 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21519 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21520 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21521 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21522 return FALSE;
21523
21524 /* Similarly for group relocations. */
21525 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21526 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21527 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21528 return FALSE;
21529
21530 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21531 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21532 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21533 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21534 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21535 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21536 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21537 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21538 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21539 return FALSE;
21540
21541 return TRUE;
21542 }
21543 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21544
21545 #ifdef OBJ_ELF
21546
21547 const char *
21548 elf32_arm_target_format (void)
21549 {
21550 #ifdef TE_SYMBIAN
21551 return (target_big_endian
21552 ? "elf32-bigarm-symbian"
21553 : "elf32-littlearm-symbian");
21554 #elif defined (TE_VXWORKS)
21555 return (target_big_endian
21556 ? "elf32-bigarm-vxworks"
21557 : "elf32-littlearm-vxworks");
21558 #else
21559 if (target_big_endian)
21560 return "elf32-bigarm";
21561 else
21562 return "elf32-littlearm";
21563 #endif
21564 }
21565
21566 void
21567 armelf_frob_symbol (symbolS * symp,
21568 int * puntp)
21569 {
21570 elf_frob_symbol (symp, puntp);
21571 }
21572 #endif
21573
21574 /* MD interface: Finalization. */
21575
21576 void
21577 arm_cleanup (void)
21578 {
21579 literal_pool * pool;
21580
21581 /* Ensure that all the IT blocks are properly closed. */
21582 check_it_blocks_finished ();
21583
21584 for (pool = list_of_pools; pool; pool = pool->next)
21585 {
21586 /* Put it at the end of the relevant section. */
21587 subseg_set (pool->section, pool->sub_section);
21588 #ifdef OBJ_ELF
21589 arm_elf_change_section ();
21590 #endif
21591 s_ltorg (0);
21592 }
21593 }
21594
21595 #ifdef OBJ_ELF
21596 /* Remove any excess mapping symbols generated for alignment frags in
21597 SEC. We may have created a mapping symbol before a zero byte
21598 alignment; remove it if there's a mapping symbol after the
21599 alignment. */
21600 static void
21601 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21602 void *dummy ATTRIBUTE_UNUSED)
21603 {
21604 segment_info_type *seginfo = seg_info (sec);
21605 fragS *fragp;
21606
21607 if (seginfo == NULL || seginfo->frchainP == NULL)
21608 return;
21609
21610 for (fragp = seginfo->frchainP->frch_root;
21611 fragp != NULL;
21612 fragp = fragp->fr_next)
21613 {
21614 symbolS *sym = fragp->tc_frag_data.last_map;
21615 fragS *next = fragp->fr_next;
21616
21617 /* Variable-sized frags have been converted to fixed size by
21618 this point. But if this was variable-sized to start with,
21619 there will be a fixed-size frag after it. So don't handle
21620 next == NULL. */
21621 if (sym == NULL || next == NULL)
21622 continue;
21623
21624 if (S_GET_VALUE (sym) < next->fr_address)
21625 /* Not at the end of this frag. */
21626 continue;
21627 know (S_GET_VALUE (sym) == next->fr_address);
21628
21629 do
21630 {
21631 if (next->tc_frag_data.first_map != NULL)
21632 {
21633 /* Next frag starts with a mapping symbol. Discard this
21634 one. */
21635 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21636 break;
21637 }
21638
21639 if (next->fr_next == NULL)
21640 {
21641 /* This mapping symbol is at the end of the section. Discard
21642 it. */
21643 know (next->fr_fix == 0 && next->fr_var == 0);
21644 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21645 break;
21646 }
21647
21648 /* As long as we have empty frags without any mapping symbols,
21649 keep looking. */
21650 /* If the next frag is non-empty and does not start with a
21651 mapping symbol, then this mapping symbol is required. */
21652 if (next->fr_address != next->fr_next->fr_address)
21653 break;
21654
21655 next = next->fr_next;
21656 }
21657 while (next != NULL);
21658 }
21659 }
21660 #endif
21661
21662 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21663 ARM ones. */
21664
21665 void
21666 arm_adjust_symtab (void)
21667 {
21668 #ifdef OBJ_COFF
21669 symbolS * sym;
21670
21671 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21672 {
21673 if (ARM_IS_THUMB (sym))
21674 {
21675 if (THUMB_IS_FUNC (sym))
21676 {
21677 /* Mark the symbol as a Thumb function. */
21678 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21679 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21680 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21681
21682 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21683 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21684 else
21685 as_bad (_("%s: unexpected function type: %d"),
21686 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21687 }
21688 else switch (S_GET_STORAGE_CLASS (sym))
21689 {
21690 case C_EXT:
21691 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21692 break;
21693 case C_STAT:
21694 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21695 break;
21696 case C_LABEL:
21697 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21698 break;
21699 default:
21700 /* Do nothing. */
21701 break;
21702 }
21703 }
21704
21705 if (ARM_IS_INTERWORK (sym))
21706 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21707 }
21708 #endif
21709 #ifdef OBJ_ELF
21710 symbolS * sym;
21711 char bind;
21712
21713 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21714 {
21715 if (ARM_IS_THUMB (sym))
21716 {
21717 elf_symbol_type * elf_sym;
21718
21719 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21720 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21721
21722 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21723 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21724 {
21725 /* If it's a .thumb_func, declare it as so,
21726 otherwise tag label as .code 16. */
21727 if (THUMB_IS_FUNC (sym))
21728 elf_sym->internal_elf_sym.st_info =
21729 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21730 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21731 elf_sym->internal_elf_sym.st_info =
21732 ELF_ST_INFO (bind, STT_ARM_16BIT);
21733 }
21734 }
21735 }
21736
21737 /* Remove any overlapping mapping symbols generated by alignment frags. */
21738 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
21739 #endif
21740 }
21741
21742 /* MD interface: Initialization. */
21743
21744 static void
21745 set_constant_flonums (void)
21746 {
21747 int i;
21748
21749 for (i = 0; i < NUM_FLOAT_VALS; i++)
21750 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21751 abort ();
21752 }
21753
21754 /* Auto-select Thumb mode if it's the only available instruction set for the
21755 given architecture. */
21756
21757 static void
21758 autoselect_thumb_from_cpu_variant (void)
21759 {
21760 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21761 opcode_select (16);
21762 }
21763
21764 void
21765 md_begin (void)
21766 {
21767 unsigned mach;
21768 unsigned int i;
21769
21770 if ( (arm_ops_hsh = hash_new ()) == NULL
21771 || (arm_cond_hsh = hash_new ()) == NULL
21772 || (arm_shift_hsh = hash_new ()) == NULL
21773 || (arm_psr_hsh = hash_new ()) == NULL
21774 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21775 || (arm_reg_hsh = hash_new ()) == NULL
21776 || (arm_reloc_hsh = hash_new ()) == NULL
21777 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
21778 as_fatal (_("virtual memory exhausted"));
21779
21780 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
21781 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
21782 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
21783 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
21784 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
21785 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
21786 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
21787 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
21788 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
21789 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21790 (void *) (v7m_psrs + i));
21791 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
21792 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
21793 for (i = 0;
21794 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21795 i++)
21796 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
21797 (void *) (barrier_opt_names + i));
21798 #ifdef OBJ_ELF
21799 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
21800 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
21801 #endif
21802
21803 set_constant_flonums ();
21804
21805 /* Set the cpu variant based on the command-line options. We prefer
21806 -mcpu= over -march= if both are set (as for GCC); and we prefer
21807 -mfpu= over any other way of setting the floating point unit.
21808 Use of legacy options with new options are faulted. */
21809 if (legacy_cpu)
21810 {
21811 if (mcpu_cpu_opt || march_cpu_opt)
21812 as_bad (_("use of old and new-style options to set CPU type"));
21813
21814 mcpu_cpu_opt = legacy_cpu;
21815 }
21816 else if (!mcpu_cpu_opt)
21817 mcpu_cpu_opt = march_cpu_opt;
21818
21819 if (legacy_fpu)
21820 {
21821 if (mfpu_opt)
21822 as_bad (_("use of old and new-style options to set FPU type"));
21823
21824 mfpu_opt = legacy_fpu;
21825 }
21826 else if (!mfpu_opt)
21827 {
21828 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21829 || defined (TE_NetBSD) || defined (TE_VXWORKS))
21830 /* Some environments specify a default FPU. If they don't, infer it
21831 from the processor. */
21832 if (mcpu_fpu_opt)
21833 mfpu_opt = mcpu_fpu_opt;
21834 else
21835 mfpu_opt = march_fpu_opt;
21836 #else
21837 mfpu_opt = &fpu_default;
21838 #endif
21839 }
21840
21841 if (!mfpu_opt)
21842 {
21843 if (mcpu_cpu_opt != NULL)
21844 mfpu_opt = &fpu_default;
21845 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
21846 mfpu_opt = &fpu_arch_vfp_v2;
21847 else
21848 mfpu_opt = &fpu_arch_fpa;
21849 }
21850
21851 #ifdef CPU_DEFAULT
21852 if (!mcpu_cpu_opt)
21853 {
21854 mcpu_cpu_opt = &cpu_default;
21855 selected_cpu = cpu_default;
21856 }
21857 #else
21858 if (mcpu_cpu_opt)
21859 selected_cpu = *mcpu_cpu_opt;
21860 else
21861 mcpu_cpu_opt = &arm_arch_any;
21862 #endif
21863
21864 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21865
21866 autoselect_thumb_from_cpu_variant ();
21867
21868 arm_arch_used = thumb_arch_used = arm_arch_none;
21869
21870 #if defined OBJ_COFF || defined OBJ_ELF
21871 {
21872 unsigned int flags = 0;
21873
21874 #if defined OBJ_ELF
21875 flags = meabi_flags;
21876
21877 switch (meabi_flags)
21878 {
21879 case EF_ARM_EABI_UNKNOWN:
21880 #endif
21881 /* Set the flags in the private structure. */
21882 if (uses_apcs_26) flags |= F_APCS26;
21883 if (support_interwork) flags |= F_INTERWORK;
21884 if (uses_apcs_float) flags |= F_APCS_FLOAT;
21885 if (pic_code) flags |= F_PIC;
21886 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
21887 flags |= F_SOFT_FLOAT;
21888
21889 switch (mfloat_abi_opt)
21890 {
21891 case ARM_FLOAT_ABI_SOFT:
21892 case ARM_FLOAT_ABI_SOFTFP:
21893 flags |= F_SOFT_FLOAT;
21894 break;
21895
21896 case ARM_FLOAT_ABI_HARD:
21897 if (flags & F_SOFT_FLOAT)
21898 as_bad (_("hard-float conflicts with specified fpu"));
21899 break;
21900 }
21901
21902 /* Using pure-endian doubles (even if soft-float). */
21903 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
21904 flags |= F_VFP_FLOAT;
21905
21906 #if defined OBJ_ELF
21907 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
21908 flags |= EF_ARM_MAVERICK_FLOAT;
21909 break;
21910
21911 case EF_ARM_EABI_VER4:
21912 case EF_ARM_EABI_VER5:
21913 /* No additional flags to set. */
21914 break;
21915
21916 default:
21917 abort ();
21918 }
21919 #endif
21920 bfd_set_private_flags (stdoutput, flags);
21921
21922 /* We have run out flags in the COFF header to encode the
21923 status of ATPCS support, so instead we create a dummy,
21924 empty, debug section called .arm.atpcs. */
21925 if (atpcs)
21926 {
21927 asection * sec;
21928
21929 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21930
21931 if (sec != NULL)
21932 {
21933 bfd_set_section_flags
21934 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21935 bfd_set_section_size (stdoutput, sec, 0);
21936 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21937 }
21938 }
21939 }
21940 #endif
21941
21942 /* Record the CPU type as well. */
21943 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21944 mach = bfd_mach_arm_iWMMXt2;
21945 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
21946 mach = bfd_mach_arm_iWMMXt;
21947 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
21948 mach = bfd_mach_arm_XScale;
21949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
21950 mach = bfd_mach_arm_ep9312;
21951 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
21952 mach = bfd_mach_arm_5TE;
21953 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
21954 {
21955 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21956 mach = bfd_mach_arm_5T;
21957 else
21958 mach = bfd_mach_arm_5;
21959 }
21960 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
21961 {
21962 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21963 mach = bfd_mach_arm_4T;
21964 else
21965 mach = bfd_mach_arm_4;
21966 }
21967 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
21968 mach = bfd_mach_arm_3M;
21969 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21970 mach = bfd_mach_arm_3;
21971 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21972 mach = bfd_mach_arm_2a;
21973 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21974 mach = bfd_mach_arm_2;
21975 else
21976 mach = bfd_mach_arm_unknown;
21977
21978 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21979 }
21980
21981 /* Command line processing. */
21982
21983 /* md_parse_option
21984 Invocation line includes a switch not recognized by the base assembler.
21985 See if it's a processor-specific option.
21986
21987 This routine is somewhat complicated by the need for backwards
21988 compatibility (since older releases of gcc can't be changed).
21989 The new options try to make the interface as compatible as
21990 possible with GCC.
21991
21992 New options (supported) are:
21993
21994 -mcpu=<cpu name> Assemble for selected processor
21995 -march=<architecture name> Assemble for selected architecture
21996 -mfpu=<fpu architecture> Assemble for selected FPU.
21997 -EB/-mbig-endian Big-endian
21998 -EL/-mlittle-endian Little-endian
21999 -k Generate PIC code
22000 -mthumb Start in Thumb mode
22001 -mthumb-interwork Code supports ARM/Thumb interworking
22002
22003 -m[no-]warn-deprecated Warn about deprecated features
22004
22005 For now we will also provide support for:
22006
22007 -mapcs-32 32-bit Program counter
22008 -mapcs-26 26-bit Program counter
22009 -macps-float Floats passed in FP registers
22010 -mapcs-reentrant Reentrant code
22011 -matpcs
22012 (sometime these will probably be replaced with -mapcs=<list of options>
22013 and -matpcs=<list of options>)
22014
22015 The remaining options are only supported for back-wards compatibility.
22016 Cpu variants, the arm part is optional:
22017 -m[arm]1 Currently not supported.
22018 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22019 -m[arm]3 Arm 3 processor
22020 -m[arm]6[xx], Arm 6 processors
22021 -m[arm]7[xx][t][[d]m] Arm 7 processors
22022 -m[arm]8[10] Arm 8 processors
22023 -m[arm]9[20][tdmi] Arm 9 processors
22024 -mstrongarm[110[0]] StrongARM processors
22025 -mxscale XScale processors
22026 -m[arm]v[2345[t[e]]] Arm architectures
22027 -mall All (except the ARM1)
22028 FP variants:
22029 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22030 -mfpe-old (No float load/store multiples)
22031 -mvfpxd VFP Single precision
22032 -mvfp All VFP
22033 -mno-fpu Disable all floating point instructions
22034
22035 The following CPU names are recognized:
22036 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22037 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22038 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22039 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22040 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22041 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22042 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22043
22044 */
22045
22046 const char * md_shortopts = "m:k";
22047
22048 #ifdef ARM_BI_ENDIAN
22049 #define OPTION_EB (OPTION_MD_BASE + 0)
22050 #define OPTION_EL (OPTION_MD_BASE + 1)
22051 #else
22052 #if TARGET_BYTES_BIG_ENDIAN
22053 #define OPTION_EB (OPTION_MD_BASE + 0)
22054 #else
22055 #define OPTION_EL (OPTION_MD_BASE + 1)
22056 #endif
22057 #endif
22058 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22059
22060 struct option md_longopts[] =
22061 {
22062 #ifdef OPTION_EB
22063 {"EB", no_argument, NULL, OPTION_EB},
22064 #endif
22065 #ifdef OPTION_EL
22066 {"EL", no_argument, NULL, OPTION_EL},
22067 #endif
22068 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22069 {NULL, no_argument, NULL, 0}
22070 };
22071
22072 size_t md_longopts_size = sizeof (md_longopts);
22073
22074 struct arm_option_table
22075 {
22076 char *option; /* Option name to match. */
22077 char *help; /* Help information. */
22078 int *var; /* Variable to change. */
22079 int value; /* What to change it to. */
22080 char *deprecated; /* If non-null, print this message. */
22081 };
22082
22083 struct arm_option_table arm_opts[] =
22084 {
22085 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22086 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22087 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22088 &support_interwork, 1, NULL},
22089 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22090 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22091 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22092 1, NULL},
22093 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22094 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22095 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22096 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22097 NULL},
22098
22099 /* These are recognized by the assembler, but have no affect on code. */
22100 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22101 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22102
22103 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22104 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22105 &warn_on_deprecated, 0, NULL},
22106 {NULL, NULL, NULL, 0, NULL}
22107 };
22108
22109 struct arm_legacy_option_table
22110 {
22111 char *option; /* Option name to match. */
22112 const arm_feature_set **var; /* Variable to change. */
22113 const arm_feature_set value; /* What to change it to. */
22114 char *deprecated; /* If non-null, print this message. */
22115 };
22116
22117 const struct arm_legacy_option_table arm_legacy_opts[] =
22118 {
22119 /* DON'T add any new processors to this list -- we want the whole list
22120 to go away... Add them to the processors table instead. */
22121 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22122 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22123 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22124 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22125 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22126 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22127 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22128 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22129 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22130 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22131 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22132 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22133 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22134 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22135 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22136 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22137 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22138 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22139 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22140 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22141 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22142 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22143 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22144 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22145 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22146 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22147 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22148 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22149 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22150 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22151 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22152 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22153 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22154 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22155 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22156 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22157 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22158 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22159 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22160 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22161 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22162 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22163 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22164 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22165 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22166 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22167 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22168 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22169 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22170 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22171 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22172 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22173 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22174 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22175 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22176 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22177 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22178 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22179 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22180 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22181 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22182 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22183 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22184 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22185 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22186 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22187 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22188 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22189 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22190 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22191 N_("use -mcpu=strongarm110")},
22192 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22193 N_("use -mcpu=strongarm1100")},
22194 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22195 N_("use -mcpu=strongarm1110")},
22196 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22197 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22198 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22199
22200 /* Architecture variants -- don't add any more to this list either. */
22201 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22202 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22203 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22204 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22205 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22206 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22207 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22208 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22209 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22210 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22211 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22212 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22213 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22214 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22215 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22216 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22217 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22218 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22219
22220 /* Floating point variants -- don't add any more to this list either. */
22221 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22222 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22223 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22224 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22225 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22226
22227 {NULL, NULL, ARM_ARCH_NONE, NULL}
22228 };
22229
22230 struct arm_cpu_option_table
22231 {
22232 char *name;
22233 const arm_feature_set value;
22234 /* For some CPUs we assume an FPU unless the user explicitly sets
22235 -mfpu=... */
22236 const arm_feature_set default_fpu;
22237 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22238 case. */
22239 const char *canonical_name;
22240 };
22241
22242 /* This list should, at a minimum, contain all the cpu names
22243 recognized by GCC. */
22244 static const struct arm_cpu_option_table arm_cpus[] =
22245 {
22246 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22247 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22248 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22249 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22250 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22251 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22252 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22253 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22254 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22255 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22256 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22257 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22258 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22259 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22260 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22261 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22262 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22263 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22264 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22265 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22266 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22267 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22268 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22269 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22270 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22271 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22272 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22273 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22274 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22275 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22276 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22277 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22278 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22279 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22280 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22281 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22282 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22283 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22284 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22285 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22286 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22287 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22288 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22289 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22290 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22291 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22292 /* For V5 or later processors we default to using VFP; but the user
22293 should really set the FPU type explicitly. */
22294 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22295 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22296 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22297 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22298 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22299 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22300 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22301 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22302 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22303 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22304 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22305 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22306 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22307 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22308 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22309 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22310 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22311 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22312 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22313 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22314 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22315 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22316 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22317 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22318 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22319 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22320 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22321 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
22322 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
22323 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22324 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22325 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22326 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22327 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
22328 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22329 | FPU_NEON_EXT_V1),
22330 NULL},
22331 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22332 | FPU_NEON_EXT_V1),
22333 NULL},
22334 {"cortex-a15", ARM_ARCH_V7A, FPU_ARCH_NEON_VFP_V4,
22335 "Cortex-A15"},
22336 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
22337 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
22338 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, NULL},
22339 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
22340 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
22341 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
22342 /* ??? XSCALE is really an architecture. */
22343 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22344 /* ??? iwmmxt is not a processor. */
22345 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22346 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22347 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22348 /* Maverick */
22349 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22350 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22351 };
22352
22353 struct arm_arch_option_table
22354 {
22355 char *name;
22356 const arm_feature_set value;
22357 const arm_feature_set default_fpu;
22358 };
22359
22360 /* This list should, at a minimum, contain all the architecture names
22361 recognized by GCC. */
22362 static const struct arm_arch_option_table arm_archs[] =
22363 {
22364 {"all", ARM_ANY, FPU_ARCH_FPA},
22365 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22366 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22367 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22368 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22369 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22370 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22371 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22372 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22373 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22374 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22375 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22376 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22377 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22378 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22379 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22380 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22381 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22382 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22383 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22384 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22385 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22386 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22387 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22388 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22389 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22390 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22391 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22392 /* The official spelling of the ARMv7 profile variants is the dashed form.
22393 Accept the non-dashed form for compatibility with old toolchains. */
22394 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22395 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22396 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22397 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22398 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22399 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22400 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22401 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22402 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22403 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22404 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22405 };
22406
22407 /* ISA extensions in the co-processor space. */
22408 struct arm_option_cpu_value_table
22409 {
22410 char *name;
22411 const arm_feature_set value;
22412 };
22413
22414 static const struct arm_option_cpu_value_table arm_extensions[] =
22415 {
22416 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22417 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22418 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
22419 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
22420 {NULL, ARM_ARCH_NONE}
22421 };
22422
22423 /* This list should, at a minimum, contain all the fpu names
22424 recognized by GCC. */
22425 static const struct arm_option_cpu_value_table arm_fpus[] =
22426 {
22427 {"softfpa", FPU_NONE},
22428 {"fpe", FPU_ARCH_FPE},
22429 {"fpe2", FPU_ARCH_FPE},
22430 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22431 {"fpa", FPU_ARCH_FPA},
22432 {"fpa10", FPU_ARCH_FPA},
22433 {"fpa11", FPU_ARCH_FPA},
22434 {"arm7500fe", FPU_ARCH_FPA},
22435 {"softvfp", FPU_ARCH_VFP},
22436 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22437 {"vfp", FPU_ARCH_VFP_V2},
22438 {"vfp9", FPU_ARCH_VFP_V2},
22439 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22440 {"vfp10", FPU_ARCH_VFP_V2},
22441 {"vfp10-r0", FPU_ARCH_VFP_V1},
22442 {"vfpxd", FPU_ARCH_VFP_V1xD},
22443 {"vfpv2", FPU_ARCH_VFP_V2},
22444 {"vfpv3", FPU_ARCH_VFP_V3},
22445 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22446 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22447 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22448 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22449 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22450 {"arm1020t", FPU_ARCH_VFP_V1},
22451 {"arm1020e", FPU_ARCH_VFP_V2},
22452 {"arm1136jfs", FPU_ARCH_VFP_V2},
22453 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22454 {"maverick", FPU_ARCH_MAVERICK},
22455 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22456 {"neon-fp16", FPU_ARCH_NEON_FP16},
22457 {"vfpv4", FPU_ARCH_VFP_V4},
22458 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22459 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22460 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22461 {NULL, ARM_ARCH_NONE}
22462 };
22463
22464 struct arm_option_value_table
22465 {
22466 char *name;
22467 long value;
22468 };
22469
22470 static const struct arm_option_value_table arm_float_abis[] =
22471 {
22472 {"hard", ARM_FLOAT_ABI_HARD},
22473 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22474 {"soft", ARM_FLOAT_ABI_SOFT},
22475 {NULL, 0}
22476 };
22477
22478 #ifdef OBJ_ELF
22479 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22480 static const struct arm_option_value_table arm_eabis[] =
22481 {
22482 {"gnu", EF_ARM_EABI_UNKNOWN},
22483 {"4", EF_ARM_EABI_VER4},
22484 {"5", EF_ARM_EABI_VER5},
22485 {NULL, 0}
22486 };
22487 #endif
22488
22489 struct arm_long_option_table
22490 {
22491 char * option; /* Substring to match. */
22492 char * help; /* Help information. */
22493 int (* func) (char * subopt); /* Function to decode sub-option. */
22494 char * deprecated; /* If non-null, print this message. */
22495 };
22496
22497 static bfd_boolean
22498 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22499 {
22500 arm_feature_set *ext_set = (arm_feature_set *)
22501 xmalloc (sizeof (arm_feature_set));
22502
22503 /* Copy the feature set, so that we can modify it. */
22504 *ext_set = **opt_p;
22505 *opt_p = ext_set;
22506
22507 while (str != NULL && *str != 0)
22508 {
22509 const struct arm_option_cpu_value_table * opt;
22510 char * ext;
22511 int optlen;
22512
22513 if (*str != '+')
22514 {
22515 as_bad (_("invalid architectural extension"));
22516 return FALSE;
22517 }
22518
22519 str++;
22520 ext = strchr (str, '+');
22521
22522 if (ext != NULL)
22523 optlen = ext - str;
22524 else
22525 optlen = strlen (str);
22526
22527 if (optlen == 0)
22528 {
22529 as_bad (_("missing architectural extension"));
22530 return FALSE;
22531 }
22532
22533 for (opt = arm_extensions; opt->name != NULL; opt++)
22534 if (strncmp (opt->name, str, optlen) == 0)
22535 {
22536 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22537 break;
22538 }
22539
22540 if (opt->name == NULL)
22541 {
22542 as_bad (_("unknown architectural extension `%s'"), str);
22543 return FALSE;
22544 }
22545
22546 str = ext;
22547 };
22548
22549 return TRUE;
22550 }
22551
22552 static bfd_boolean
22553 arm_parse_cpu (char * str)
22554 {
22555 const struct arm_cpu_option_table * opt;
22556 char * ext = strchr (str, '+');
22557 int optlen;
22558
22559 if (ext != NULL)
22560 optlen = ext - str;
22561 else
22562 optlen = strlen (str);
22563
22564 if (optlen == 0)
22565 {
22566 as_bad (_("missing cpu name `%s'"), str);
22567 return FALSE;
22568 }
22569
22570 for (opt = arm_cpus; opt->name != NULL; opt++)
22571 if (strncmp (opt->name, str, optlen) == 0)
22572 {
22573 mcpu_cpu_opt = &opt->value;
22574 mcpu_fpu_opt = &opt->default_fpu;
22575 if (opt->canonical_name)
22576 strcpy (selected_cpu_name, opt->canonical_name);
22577 else
22578 {
22579 int i;
22580
22581 for (i = 0; i < optlen; i++)
22582 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22583 selected_cpu_name[i] = 0;
22584 }
22585
22586 if (ext != NULL)
22587 return arm_parse_extension (ext, &mcpu_cpu_opt);
22588
22589 return TRUE;
22590 }
22591
22592 as_bad (_("unknown cpu `%s'"), str);
22593 return FALSE;
22594 }
22595
22596 static bfd_boolean
22597 arm_parse_arch (char * str)
22598 {
22599 const struct arm_arch_option_table *opt;
22600 char *ext = strchr (str, '+');
22601 int optlen;
22602
22603 if (ext != NULL)
22604 optlen = ext - str;
22605 else
22606 optlen = strlen (str);
22607
22608 if (optlen == 0)
22609 {
22610 as_bad (_("missing architecture name `%s'"), str);
22611 return FALSE;
22612 }
22613
22614 for (opt = arm_archs; opt->name != NULL; opt++)
22615 if (streq (opt->name, str))
22616 {
22617 march_cpu_opt = &opt->value;
22618 march_fpu_opt = &opt->default_fpu;
22619 strcpy (selected_cpu_name, opt->name);
22620
22621 if (ext != NULL)
22622 return arm_parse_extension (ext, &march_cpu_opt);
22623
22624 return TRUE;
22625 }
22626
22627 as_bad (_("unknown architecture `%s'\n"), str);
22628 return FALSE;
22629 }
22630
22631 static bfd_boolean
22632 arm_parse_fpu (char * str)
22633 {
22634 const struct arm_option_cpu_value_table * opt;
22635
22636 for (opt = arm_fpus; opt->name != NULL; opt++)
22637 if (streq (opt->name, str))
22638 {
22639 mfpu_opt = &opt->value;
22640 return TRUE;
22641 }
22642
22643 as_bad (_("unknown floating point format `%s'\n"), str);
22644 return FALSE;
22645 }
22646
22647 static bfd_boolean
22648 arm_parse_float_abi (char * str)
22649 {
22650 const struct arm_option_value_table * opt;
22651
22652 for (opt = arm_float_abis; opt->name != NULL; opt++)
22653 if (streq (opt->name, str))
22654 {
22655 mfloat_abi_opt = opt->value;
22656 return TRUE;
22657 }
22658
22659 as_bad (_("unknown floating point abi `%s'\n"), str);
22660 return FALSE;
22661 }
22662
22663 #ifdef OBJ_ELF
22664 static bfd_boolean
22665 arm_parse_eabi (char * str)
22666 {
22667 const struct arm_option_value_table *opt;
22668
22669 for (opt = arm_eabis; opt->name != NULL; opt++)
22670 if (streq (opt->name, str))
22671 {
22672 meabi_flags = opt->value;
22673 return TRUE;
22674 }
22675 as_bad (_("unknown EABI `%s'\n"), str);
22676 return FALSE;
22677 }
22678 #endif
22679
22680 static bfd_boolean
22681 arm_parse_it_mode (char * str)
22682 {
22683 bfd_boolean ret = TRUE;
22684
22685 if (streq ("arm", str))
22686 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22687 else if (streq ("thumb", str))
22688 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22689 else if (streq ("always", str))
22690 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22691 else if (streq ("never", str))
22692 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22693 else
22694 {
22695 as_bad (_("unknown implicit IT mode `%s', should be "\
22696 "arm, thumb, always, or never."), str);
22697 ret = FALSE;
22698 }
22699
22700 return ret;
22701 }
22702
22703 struct arm_long_option_table arm_long_opts[] =
22704 {
22705 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22706 arm_parse_cpu, NULL},
22707 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22708 arm_parse_arch, NULL},
22709 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22710 arm_parse_fpu, NULL},
22711 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22712 arm_parse_float_abi, NULL},
22713 #ifdef OBJ_ELF
22714 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
22715 arm_parse_eabi, NULL},
22716 #endif
22717 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22718 arm_parse_it_mode, NULL},
22719 {NULL, NULL, 0, NULL}
22720 };
22721
22722 int
22723 md_parse_option (int c, char * arg)
22724 {
22725 struct arm_option_table *opt;
22726 const struct arm_legacy_option_table *fopt;
22727 struct arm_long_option_table *lopt;
22728
22729 switch (c)
22730 {
22731 #ifdef OPTION_EB
22732 case OPTION_EB:
22733 target_big_endian = 1;
22734 break;
22735 #endif
22736
22737 #ifdef OPTION_EL
22738 case OPTION_EL:
22739 target_big_endian = 0;
22740 break;
22741 #endif
22742
22743 case OPTION_FIX_V4BX:
22744 fix_v4bx = TRUE;
22745 break;
22746
22747 case 'a':
22748 /* Listing option. Just ignore these, we don't support additional
22749 ones. */
22750 return 0;
22751
22752 default:
22753 for (opt = arm_opts; opt->option != NULL; opt++)
22754 {
22755 if (c == opt->option[0]
22756 && ((arg == NULL && opt->option[1] == 0)
22757 || streq (arg, opt->option + 1)))
22758 {
22759 /* If the option is deprecated, tell the user. */
22760 if (warn_on_deprecated && opt->deprecated != NULL)
22761 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22762 arg ? arg : "", _(opt->deprecated));
22763
22764 if (opt->var != NULL)
22765 *opt->var = opt->value;
22766
22767 return 1;
22768 }
22769 }
22770
22771 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22772 {
22773 if (c == fopt->option[0]
22774 && ((arg == NULL && fopt->option[1] == 0)
22775 || streq (arg, fopt->option + 1)))
22776 {
22777 /* If the option is deprecated, tell the user. */
22778 if (warn_on_deprecated && fopt->deprecated != NULL)
22779 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22780 arg ? arg : "", _(fopt->deprecated));
22781
22782 if (fopt->var != NULL)
22783 *fopt->var = &fopt->value;
22784
22785 return 1;
22786 }
22787 }
22788
22789 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22790 {
22791 /* These options are expected to have an argument. */
22792 if (c == lopt->option[0]
22793 && arg != NULL
22794 && strncmp (arg, lopt->option + 1,
22795 strlen (lopt->option + 1)) == 0)
22796 {
22797 /* If the option is deprecated, tell the user. */
22798 if (warn_on_deprecated && lopt->deprecated != NULL)
22799 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22800 _(lopt->deprecated));
22801
22802 /* Call the sup-option parser. */
22803 return lopt->func (arg + strlen (lopt->option) - 1);
22804 }
22805 }
22806
22807 return 0;
22808 }
22809
22810 return 1;
22811 }
22812
22813 void
22814 md_show_usage (FILE * fp)
22815 {
22816 struct arm_option_table *opt;
22817 struct arm_long_option_table *lopt;
22818
22819 fprintf (fp, _(" ARM-specific assembler options:\n"));
22820
22821 for (opt = arm_opts; opt->option != NULL; opt++)
22822 if (opt->help != NULL)
22823 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
22824
22825 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22826 if (lopt->help != NULL)
22827 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
22828
22829 #ifdef OPTION_EB
22830 fprintf (fp, _("\
22831 -EB assemble code for a big-endian cpu\n"));
22832 #endif
22833
22834 #ifdef OPTION_EL
22835 fprintf (fp, _("\
22836 -EL assemble code for a little-endian cpu\n"));
22837 #endif
22838
22839 fprintf (fp, _("\
22840 --fix-v4bx Allow BX in ARMv4 code\n"));
22841 }
22842
22843
22844 #ifdef OBJ_ELF
22845 typedef struct
22846 {
22847 int val;
22848 arm_feature_set flags;
22849 } cpu_arch_ver_table;
22850
22851 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22852 least features first. */
22853 static const cpu_arch_ver_table cpu_arch_ver[] =
22854 {
22855 {1, ARM_ARCH_V4},
22856 {2, ARM_ARCH_V4T},
22857 {3, ARM_ARCH_V5},
22858 {3, ARM_ARCH_V5T},
22859 {4, ARM_ARCH_V5TE},
22860 {5, ARM_ARCH_V5TEJ},
22861 {6, ARM_ARCH_V6},
22862 {7, ARM_ARCH_V6Z},
22863 {9, ARM_ARCH_V6K},
22864 {11, ARM_ARCH_V6M},
22865 {8, ARM_ARCH_V6T2},
22866 {10, ARM_ARCH_V7A},
22867 {10, ARM_ARCH_V7R},
22868 {10, ARM_ARCH_V7M},
22869 {0, ARM_ARCH_NONE}
22870 };
22871
22872 /* Set an attribute if it has not already been set by the user. */
22873 static void
22874 aeabi_set_attribute_int (int tag, int value)
22875 {
22876 if (tag < 1
22877 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22878 || !attributes_set_explicitly[tag])
22879 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22880 }
22881
22882 static void
22883 aeabi_set_attribute_string (int tag, const char *value)
22884 {
22885 if (tag < 1
22886 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22887 || !attributes_set_explicitly[tag])
22888 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22889 }
22890
22891 /* Set the public EABI object attributes. */
22892 static void
22893 aeabi_set_public_attributes (void)
22894 {
22895 int arch;
22896 arm_feature_set flags;
22897 arm_feature_set tmp;
22898 const cpu_arch_ver_table *p;
22899
22900 /* Choose the architecture based on the capabilities of the requested cpu
22901 (if any) and/or the instructions actually used. */
22902 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22903 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22904 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
22905 /*Allow the user to override the reported architecture. */
22906 if (object_arch)
22907 {
22908 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22909 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22910 }
22911
22912 tmp = flags;
22913 arch = 0;
22914 for (p = cpu_arch_ver; p->val; p++)
22915 {
22916 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22917 {
22918 arch = p->val;
22919 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22920 }
22921 }
22922
22923 /* The table lookup above finds the last architecture to contribute
22924 a new feature. Unfortunately, Tag13 is a subset of the union of
22925 v6T2 and v7-M, so it is never seen as contributing a new feature.
22926 We can not search for the last entry which is entirely used,
22927 because if no CPU is specified we build up only those flags
22928 actually used. Perhaps we should separate out the specified
22929 and implicit cases. Avoid taking this path for -march=all by
22930 checking for contradictory v7-A / v7-M features. */
22931 if (arch == 10
22932 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
22933 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
22934 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
22935 arch = 13;
22936
22937 /* Tag_CPU_name. */
22938 if (selected_cpu_name[0])
22939 {
22940 char *q;
22941
22942 q = selected_cpu_name;
22943 if (strncmp (q, "armv", 4) == 0)
22944 {
22945 int i;
22946
22947 q += 4;
22948 for (i = 0; q[i]; i++)
22949 q[i] = TOUPPER (q[i]);
22950 }
22951 aeabi_set_attribute_string (Tag_CPU_name, q);
22952 }
22953
22954 /* Tag_CPU_arch. */
22955 aeabi_set_attribute_int (Tag_CPU_arch, arch);
22956
22957 /* Tag_CPU_arch_profile. */
22958 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
22959 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
22960 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
22961 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
22962 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
22963 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
22964
22965 /* Tag_ARM_ISA_use. */
22966 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22967 || arch == 0)
22968 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
22969
22970 /* Tag_THUMB_ISA_use. */
22971 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22972 || arch == 0)
22973 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22974 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
22975
22976 /* Tag_VFP_arch. */
22977 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22978 aeabi_set_attribute_int (Tag_VFP_arch,
22979 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22980 ? 5 : 6);
22981 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
22982 aeabi_set_attribute_int (Tag_VFP_arch, 3);
22983 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
22984 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22985 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22986 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22987 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22988 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22989 aeabi_set_attribute_int (Tag_VFP_arch, 1);
22990
22991 /* Tag_ABI_HardFP_use. */
22992 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
22993 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
22994 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
22995
22996 /* Tag_WMMX_arch. */
22997 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22998 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22999 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23000 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23001
23002 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23003 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23004 aeabi_set_attribute_int
23005 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23006 ? 2 : 1));
23007
23008 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23009 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23010 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23011
23012 /* Tag_DIV_use. */
23013 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23014 aeabi_set_attribute_int (Tag_DIV_use, 0);
23015 /* Fill this in when gas supports v7a sdiv/udiv.
23016 else if (... v7a with div extension used ...)
23017 aeabi_set_attribute_int (Tag_DIV_use, 2); */
23018 else
23019 aeabi_set_attribute_int (Tag_DIV_use, 1);
23020 }
23021
23022 /* Add the default contents for the .ARM.attributes section. */
23023 void
23024 arm_md_end (void)
23025 {
23026 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23027 return;
23028
23029 aeabi_set_public_attributes ();
23030 }
23031 #endif /* OBJ_ELF */
23032
23033
23034 /* Parse a .cpu directive. */
23035
23036 static void
23037 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23038 {
23039 const struct arm_cpu_option_table *opt;
23040 char *name;
23041 char saved_char;
23042
23043 name = input_line_pointer;
23044 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23045 input_line_pointer++;
23046 saved_char = *input_line_pointer;
23047 *input_line_pointer = 0;
23048
23049 /* Skip the first "all" entry. */
23050 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23051 if (streq (opt->name, name))
23052 {
23053 mcpu_cpu_opt = &opt->value;
23054 selected_cpu = opt->value;
23055 if (opt->canonical_name)
23056 strcpy (selected_cpu_name, opt->canonical_name);
23057 else
23058 {
23059 int i;
23060 for (i = 0; opt->name[i]; i++)
23061 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23062 selected_cpu_name[i] = 0;
23063 }
23064 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23065 *input_line_pointer = saved_char;
23066 demand_empty_rest_of_line ();
23067 return;
23068 }
23069 as_bad (_("unknown cpu `%s'"), name);
23070 *input_line_pointer = saved_char;
23071 ignore_rest_of_line ();
23072 }
23073
23074
23075 /* Parse a .arch directive. */
23076
23077 static void
23078 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23079 {
23080 const struct arm_arch_option_table *opt;
23081 char saved_char;
23082 char *name;
23083
23084 name = input_line_pointer;
23085 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23086 input_line_pointer++;
23087 saved_char = *input_line_pointer;
23088 *input_line_pointer = 0;
23089
23090 /* Skip the first "all" entry. */
23091 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23092 if (streq (opt->name, name))
23093 {
23094 mcpu_cpu_opt = &opt->value;
23095 selected_cpu = opt->value;
23096 strcpy (selected_cpu_name, opt->name);
23097 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23098 *input_line_pointer = saved_char;
23099 demand_empty_rest_of_line ();
23100 return;
23101 }
23102
23103 as_bad (_("unknown architecture `%s'\n"), name);
23104 *input_line_pointer = saved_char;
23105 ignore_rest_of_line ();
23106 }
23107
23108
23109 /* Parse a .object_arch directive. */
23110
23111 static void
23112 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23113 {
23114 const struct arm_arch_option_table *opt;
23115 char saved_char;
23116 char *name;
23117
23118 name = input_line_pointer;
23119 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23120 input_line_pointer++;
23121 saved_char = *input_line_pointer;
23122 *input_line_pointer = 0;
23123
23124 /* Skip the first "all" entry. */
23125 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23126 if (streq (opt->name, name))
23127 {
23128 object_arch = &opt->value;
23129 *input_line_pointer = saved_char;
23130 demand_empty_rest_of_line ();
23131 return;
23132 }
23133
23134 as_bad (_("unknown architecture `%s'\n"), name);
23135 *input_line_pointer = saved_char;
23136 ignore_rest_of_line ();
23137 }
23138
23139 /* Parse a .fpu directive. */
23140
23141 static void
23142 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23143 {
23144 const struct arm_option_cpu_value_table *opt;
23145 char saved_char;
23146 char *name;
23147
23148 name = input_line_pointer;
23149 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23150 input_line_pointer++;
23151 saved_char = *input_line_pointer;
23152 *input_line_pointer = 0;
23153
23154 for (opt = arm_fpus; opt->name != NULL; opt++)
23155 if (streq (opt->name, name))
23156 {
23157 mfpu_opt = &opt->value;
23158 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23159 *input_line_pointer = saved_char;
23160 demand_empty_rest_of_line ();
23161 return;
23162 }
23163
23164 as_bad (_("unknown floating point format `%s'\n"), name);
23165 *input_line_pointer = saved_char;
23166 ignore_rest_of_line ();
23167 }
23168
23169 /* Copy symbol information. */
23170
23171 void
23172 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23173 {
23174 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23175 }
23176
23177 #ifdef OBJ_ELF
23178 /* Given a symbolic attribute NAME, return the proper integer value.
23179 Returns -1 if the attribute is not known. */
23180
23181 int
23182 arm_convert_symbolic_attribute (const char *name)
23183 {
23184 static const struct
23185 {
23186 const char * name;
23187 const int tag;
23188 }
23189 attribute_table[] =
23190 {
23191 /* When you modify this table you should
23192 also modify the list in doc/c-arm.texi. */
23193 #define T(tag) {#tag, tag}
23194 T (Tag_CPU_raw_name),
23195 T (Tag_CPU_name),
23196 T (Tag_CPU_arch),
23197 T (Tag_CPU_arch_profile),
23198 T (Tag_ARM_ISA_use),
23199 T (Tag_THUMB_ISA_use),
23200 T (Tag_FP_arch),
23201 T (Tag_VFP_arch),
23202 T (Tag_WMMX_arch),
23203 T (Tag_Advanced_SIMD_arch),
23204 T (Tag_PCS_config),
23205 T (Tag_ABI_PCS_R9_use),
23206 T (Tag_ABI_PCS_RW_data),
23207 T (Tag_ABI_PCS_RO_data),
23208 T (Tag_ABI_PCS_GOT_use),
23209 T (Tag_ABI_PCS_wchar_t),
23210 T (Tag_ABI_FP_rounding),
23211 T (Tag_ABI_FP_denormal),
23212 T (Tag_ABI_FP_exceptions),
23213 T (Tag_ABI_FP_user_exceptions),
23214 T (Tag_ABI_FP_number_model),
23215 T (Tag_ABI_align_needed),
23216 T (Tag_ABI_align8_needed),
23217 T (Tag_ABI_align_preserved),
23218 T (Tag_ABI_align8_preserved),
23219 T (Tag_ABI_enum_size),
23220 T (Tag_ABI_HardFP_use),
23221 T (Tag_ABI_VFP_args),
23222 T (Tag_ABI_WMMX_args),
23223 T (Tag_ABI_optimization_goals),
23224 T (Tag_ABI_FP_optimization_goals),
23225 T (Tag_compatibility),
23226 T (Tag_CPU_unaligned_access),
23227 T (Tag_FP_HP_extension),
23228 T (Tag_VFP_HP_extension),
23229 T (Tag_ABI_FP_16bit_format),
23230 T (Tag_MPextension_use),
23231 T (Tag_DIV_use),
23232 T (Tag_nodefaults),
23233 T (Tag_also_compatible_with),
23234 T (Tag_conformance),
23235 T (Tag_T2EE_use),
23236 T (Tag_Virtualization_use),
23237 /* We deliberately do not include Tag_MPextension_use_legacy. */
23238 #undef T
23239 };
23240 unsigned int i;
23241
23242 if (name == NULL)
23243 return -1;
23244
23245 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
23246 if (streq (name, attribute_table[i].name))
23247 return attribute_table[i].tag;
23248
23249 return -1;
23250 }
23251
23252
23253 /* Apply sym value for relocations only in the case that
23254 they are for local symbols and you have the respective
23255 architectural feature for blx and simple switches. */
23256 int
23257 arm_apply_sym_value (struct fix * fixP)
23258 {
23259 if (fixP->fx_addsy
23260 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23261 && !S_IS_EXTERNAL (fixP->fx_addsy))
23262 {
23263 switch (fixP->fx_r_type)
23264 {
23265 case BFD_RELOC_ARM_PCREL_BLX:
23266 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23267 if (ARM_IS_FUNC (fixP->fx_addsy))
23268 return 1;
23269 break;
23270
23271 case BFD_RELOC_ARM_PCREL_CALL:
23272 case BFD_RELOC_THUMB_PCREL_BLX:
23273 if (THUMB_IS_FUNC (fixP->fx_addsy))
23274 return 1;
23275 break;
23276
23277 default:
23278 break;
23279 }
23280
23281 }
23282 return 0;
23283 }
23284 #endif /* OBJ_ELF */
This page took 1.158986 seconds and 5 git commands to generate.