PR gas/3172
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include <limits.h>
29 #include <stdarg.h>
30 #define NO_RELOC 0
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #define WARN_DEPRECATED 1
46
47 #ifdef OBJ_ELF
48 /* Must be at least the size of the largest unwind opcode (currently two). */
49 #define ARM_OPCODE_CHUNK_SIZE 8
50
51 /* This structure holds the unwinding state. */
52
53 static struct
54 {
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
59 /* The segment containing the function. */
60 segT saved_seg;
61 subsegT saved_subseg;
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
64 int opcode_count;
65 int opcode_alloc;
66 /* The number of bytes pushed to the stack. */
67 offsetT frame_size;
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
71 offsetT pending_offset;
72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
76 /* Nonzero if an unwind_setfp directive has been seen. */
77 unsigned fp_used:1;
78 /* Nonzero if the last opcode restores sp from fp_reg. */
79 unsigned sp_restored:1;
80 } unwind;
81
82 /* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85 static unsigned int marked_pr_dependency = 0;
86
87 #endif /* OBJ_ELF */
88
89 /* Results from operand parsing worker functions. */
90
91 typedef enum
92 {
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96 } parse_operand_result;
97
98 enum arm_float_abi
99 {
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103 };
104
105 /* Types of processor to assemble for. */
106 #ifndef CPU_DEFAULT
107 #if defined __XSCALE__
108 #define CPU_DEFAULT ARM_ARCH_XSCALE
109 #else
110 #if defined __thumb__
111 #define CPU_DEFAULT ARM_ARCH_V5T
112 #endif
113 #endif
114 #endif
115
116 #ifndef FPU_DEFAULT
117 # ifdef TE_LINUX
118 # define FPU_DEFAULT FPU_ARCH_FPA
119 # elif defined (TE_NetBSD)
120 # ifdef OBJ_ELF
121 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122 # else
123 /* Legacy a.out format. */
124 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125 # endif
126 # elif defined (TE_VXWORKS)
127 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
128 # else
129 /* For backwards compatibility, default to FPA. */
130 # define FPU_DEFAULT FPU_ARCH_FPA
131 # endif
132 #endif /* ifndef FPU_DEFAULT */
133
134 #define streq(a, b) (strcmp (a, b) == 0)
135
136 static arm_feature_set cpu_variant;
137 static arm_feature_set arm_arch_used;
138 static arm_feature_set thumb_arch_used;
139
140 /* Flags stored in private area of BFD structure. */
141 static int uses_apcs_26 = FALSE;
142 static int atpcs = FALSE;
143 static int support_interwork = FALSE;
144 static int uses_apcs_float = FALSE;
145 static int pic_code = FALSE;
146
147 /* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
150 static const arm_feature_set *legacy_cpu = NULL;
151 static const arm_feature_set *legacy_fpu = NULL;
152
153 static const arm_feature_set *mcpu_cpu_opt = NULL;
154 static const arm_feature_set *mcpu_fpu_opt = NULL;
155 static const arm_feature_set *march_cpu_opt = NULL;
156 static const arm_feature_set *march_fpu_opt = NULL;
157 static const arm_feature_set *mfpu_opt = NULL;
158
159 /* Constants for known architecture features. */
160 static const arm_feature_set fpu_default = FPU_DEFAULT;
161 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
162 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
163 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
164 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
165 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
166 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
167 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
168 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
169
170 #ifdef CPU_DEFAULT
171 static const arm_feature_set cpu_default = CPU_DEFAULT;
172 #endif
173
174 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
175 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
176 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
177 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
178 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
179 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
180 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
181 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
182 static const arm_feature_set arm_ext_v4t_5 =
183 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
184 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
185 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
186 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
187 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
188 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
189 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
190 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
191 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
192 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198
199 static const arm_feature_set arm_arch_any = ARM_ANY;
200 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
201 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
202 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
203
204 static const arm_feature_set arm_cext_iwmmxt =
205 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
206 static const arm_feature_set arm_cext_xscale =
207 ARM_FEATURE (0, ARM_CEXT_XSCALE);
208 static const arm_feature_set arm_cext_maverick =
209 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
210 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
211 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
212 static const arm_feature_set fpu_vfp_ext_v1xd =
213 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
214 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
215 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
216 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
217 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
218 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
219 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
220
221 static int mfloat_abi_opt = -1;
222 /* Record user cpu selection for object attributes. */
223 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
224 /* Must be long enough to hold any of the names in arm_cpus. */
225 static char selected_cpu_name[16];
226 #ifdef OBJ_ELF
227 # ifdef EABI_DEFAULT
228 static int meabi_flags = EABI_DEFAULT;
229 # else
230 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
231 # endif
232 #endif
233
234 #ifdef OBJ_ELF
235 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
236 symbolS * GOT_symbol;
237 #endif
238
239 /* 0: assemble for ARM,
240 1: assemble for Thumb,
241 2: assemble for Thumb even though target CPU does not support thumb
242 instructions. */
243 static int thumb_mode = 0;
244
245 /* If unified_syntax is true, we are processing the new unified
246 ARM/Thumb syntax. Important differences from the old ARM mode:
247
248 - Immediate operands do not require a # prefix.
249 - Conditional affixes always appear at the end of the
250 instruction. (For backward compatibility, those instructions
251 that formerly had them in the middle, continue to accept them
252 there.)
253 - The IT instruction may appear, and if it does is validated
254 against subsequent conditional affixes. It does not generate
255 machine code.
256
257 Important differences from the old Thumb mode:
258
259 - Immediate operands do not require a # prefix.
260 - Most of the V6T2 instructions are only available in unified mode.
261 - The .N and .W suffixes are recognized and honored (it is an error
262 if they cannot be honored).
263 - All instructions set the flags if and only if they have an 's' affix.
264 - Conditional affixes may be used. They are validated against
265 preceding IT instructions. Unlike ARM mode, you cannot use a
266 conditional affix except in the scope of an IT instruction. */
267
268 static bfd_boolean unified_syntax = FALSE;
269
270 enum neon_el_type
271 {
272 NT_invtype,
273 NT_untyped,
274 NT_integer,
275 NT_float,
276 NT_poly,
277 NT_signed,
278 NT_unsigned
279 };
280
281 struct neon_type_el
282 {
283 enum neon_el_type type;
284 unsigned size;
285 };
286
287 #define NEON_MAX_TYPE_ELS 4
288
289 struct neon_type
290 {
291 struct neon_type_el el[NEON_MAX_TYPE_ELS];
292 unsigned elems;
293 };
294
295 struct arm_it
296 {
297 const char * error;
298 unsigned long instruction;
299 int size;
300 int size_req;
301 int cond;
302 /* "uncond_value" is set to the value in place of the conditional field in
303 unconditional versions of the instruction, or -1 if nothing is
304 appropriate. */
305 int uncond_value;
306 struct neon_type vectype;
307 /* Set to the opcode if the instruction needs relaxation.
308 Zero if the instruction is not relaxed. */
309 unsigned long relax;
310 struct
311 {
312 bfd_reloc_code_real_type type;
313 expressionS exp;
314 int pc_rel;
315 } reloc;
316
317 struct
318 {
319 unsigned reg;
320 signed int imm;
321 struct neon_type_el vectype;
322 unsigned present : 1; /* Operand present. */
323 unsigned isreg : 1; /* Operand was a register. */
324 unsigned immisreg : 1; /* .imm field is a second register. */
325 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
326 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
327 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
328 instructions. This allows us to disambiguate ARM <-> vector insns. */
329 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
330 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
331 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
332 unsigned issingle : 1; /* Operand is VFP single-precision register. */
333 unsigned hasreloc : 1; /* Operand has relocation suffix. */
334 unsigned writeback : 1; /* Operand has trailing ! */
335 unsigned preind : 1; /* Preindexed address. */
336 unsigned postind : 1; /* Postindexed address. */
337 unsigned negative : 1; /* Index register was negated. */
338 unsigned shifted : 1; /* Shift applied to operation. */
339 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
340 } operands[6];
341 };
342
343 static struct arm_it inst;
344
345 #define NUM_FLOAT_VALS 8
346
347 const char * fp_const[] =
348 {
349 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
350 };
351
352 /* Number of littlenums required to hold an extended precision number. */
353 #define MAX_LITTLENUMS 6
354
355 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
356
357 #define FAIL (-1)
358 #define SUCCESS (0)
359
360 #define SUFF_S 1
361 #define SUFF_D 2
362 #define SUFF_E 3
363 #define SUFF_P 4
364
365 #define CP_T_X 0x00008000
366 #define CP_T_Y 0x00400000
367
368 #define CONDS_BIT 0x00100000
369 #define LOAD_BIT 0x00100000
370
371 #define DOUBLE_LOAD_FLAG 0x00000001
372
373 struct asm_cond
374 {
375 const char * template;
376 unsigned long value;
377 };
378
379 #define COND_ALWAYS 0xE
380
381 struct asm_psr
382 {
383 const char *template;
384 unsigned long field;
385 };
386
387 struct asm_barrier_opt
388 {
389 const char *template;
390 unsigned long value;
391 };
392
393 /* The bit that distinguishes CPSR and SPSR. */
394 #define SPSR_BIT (1 << 22)
395
396 /* The individual PSR flag bits. */
397 #define PSR_c (1 << 16)
398 #define PSR_x (1 << 17)
399 #define PSR_s (1 << 18)
400 #define PSR_f (1 << 19)
401
402 struct reloc_entry
403 {
404 char *name;
405 bfd_reloc_code_real_type reloc;
406 };
407
408 enum vfp_reg_pos
409 {
410 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
411 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
412 };
413
414 enum vfp_ldstm_type
415 {
416 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
417 };
418
419 /* Bits for DEFINED field in neon_typed_alias. */
420 #define NTA_HASTYPE 1
421 #define NTA_HASINDEX 2
422
423 struct neon_typed_alias
424 {
425 unsigned char defined;
426 unsigned char index;
427 struct neon_type_el eltype;
428 };
429
430 /* ARM register categories. This includes coprocessor numbers and various
431 architecture extensions' registers. */
432 enum arm_reg_type
433 {
434 REG_TYPE_RN,
435 REG_TYPE_CP,
436 REG_TYPE_CN,
437 REG_TYPE_FN,
438 REG_TYPE_VFS,
439 REG_TYPE_VFD,
440 REG_TYPE_NQ,
441 REG_TYPE_VFSD,
442 REG_TYPE_NDQ,
443 REG_TYPE_NSDQ,
444 REG_TYPE_VFC,
445 REG_TYPE_MVF,
446 REG_TYPE_MVD,
447 REG_TYPE_MVFX,
448 REG_TYPE_MVDX,
449 REG_TYPE_MVAX,
450 REG_TYPE_DSPSC,
451 REG_TYPE_MMXWR,
452 REG_TYPE_MMXWC,
453 REG_TYPE_MMXWCG,
454 REG_TYPE_XSCALE,
455 };
456
457 /* Structure for a hash table entry for a register.
458 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
459 information which states whether a vector type or index is specified (for a
460 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
461 struct reg_entry
462 {
463 const char *name;
464 unsigned char number;
465 unsigned char type;
466 unsigned char builtin;
467 struct neon_typed_alias *neon;
468 };
469
470 /* Diagnostics used when we don't get a register of the expected type. */
471 const char *const reg_expected_msgs[] =
472 {
473 N_("ARM register expected"),
474 N_("bad or missing co-processor number"),
475 N_("co-processor register expected"),
476 N_("FPA register expected"),
477 N_("VFP single precision register expected"),
478 N_("VFP/Neon double precision register expected"),
479 N_("Neon quad precision register expected"),
480 N_("VFP single or double precision register expected"),
481 N_("Neon double or quad precision register expected"),
482 N_("VFP single, double or Neon quad precision register expected"),
483 N_("VFP system register expected"),
484 N_("Maverick MVF register expected"),
485 N_("Maverick MVD register expected"),
486 N_("Maverick MVFX register expected"),
487 N_("Maverick MVDX register expected"),
488 N_("Maverick MVAX register expected"),
489 N_("Maverick DSPSC register expected"),
490 N_("iWMMXt data register expected"),
491 N_("iWMMXt control register expected"),
492 N_("iWMMXt scalar register expected"),
493 N_("XScale accumulator register expected"),
494 };
495
496 /* Some well known registers that we refer to directly elsewhere. */
497 #define REG_SP 13
498 #define REG_LR 14
499 #define REG_PC 15
500
501 /* ARM instructions take 4bytes in the object file, Thumb instructions
502 take 2: */
503 #define INSN_SIZE 4
504
505 struct asm_opcode
506 {
507 /* Basic string to match. */
508 const char *template;
509
510 /* Parameters to instruction. */
511 unsigned char operands[8];
512
513 /* Conditional tag - see opcode_lookup. */
514 unsigned int tag : 4;
515
516 /* Basic instruction code. */
517 unsigned int avalue : 28;
518
519 /* Thumb-format instruction code. */
520 unsigned int tvalue;
521
522 /* Which architecture variant provides this instruction. */
523 const arm_feature_set *avariant;
524 const arm_feature_set *tvariant;
525
526 /* Function to call to encode instruction in ARM format. */
527 void (* aencode) (void);
528
529 /* Function to call to encode instruction in Thumb format. */
530 void (* tencode) (void);
531 };
532
533 /* Defines for various bits that we will want to toggle. */
534 #define INST_IMMEDIATE 0x02000000
535 #define OFFSET_REG 0x02000000
536 #define HWOFFSET_IMM 0x00400000
537 #define SHIFT_BY_REG 0x00000010
538 #define PRE_INDEX 0x01000000
539 #define INDEX_UP 0x00800000
540 #define WRITE_BACK 0x00200000
541 #define LDM_TYPE_2_OR_3 0x00400000
542
543 #define LITERAL_MASK 0xf000f000
544 #define OPCODE_MASK 0xfe1fffff
545 #define V4_STR_BIT 0x00000020
546
547 #define DATA_OP_SHIFT 21
548
549 #define T2_OPCODE_MASK 0xfe1fffff
550 #define T2_DATA_OP_SHIFT 21
551
552 /* Codes to distinguish the arithmetic instructions. */
553 #define OPCODE_AND 0
554 #define OPCODE_EOR 1
555 #define OPCODE_SUB 2
556 #define OPCODE_RSB 3
557 #define OPCODE_ADD 4
558 #define OPCODE_ADC 5
559 #define OPCODE_SBC 6
560 #define OPCODE_RSC 7
561 #define OPCODE_TST 8
562 #define OPCODE_TEQ 9
563 #define OPCODE_CMP 10
564 #define OPCODE_CMN 11
565 #define OPCODE_ORR 12
566 #define OPCODE_MOV 13
567 #define OPCODE_BIC 14
568 #define OPCODE_MVN 15
569
570 #define T2_OPCODE_AND 0
571 #define T2_OPCODE_BIC 1
572 #define T2_OPCODE_ORR 2
573 #define T2_OPCODE_ORN 3
574 #define T2_OPCODE_EOR 4
575 #define T2_OPCODE_ADD 8
576 #define T2_OPCODE_ADC 10
577 #define T2_OPCODE_SBC 11
578 #define T2_OPCODE_SUB 13
579 #define T2_OPCODE_RSB 14
580
581 #define T_OPCODE_MUL 0x4340
582 #define T_OPCODE_TST 0x4200
583 #define T_OPCODE_CMN 0x42c0
584 #define T_OPCODE_NEG 0x4240
585 #define T_OPCODE_MVN 0x43c0
586
587 #define T_OPCODE_ADD_R3 0x1800
588 #define T_OPCODE_SUB_R3 0x1a00
589 #define T_OPCODE_ADD_HI 0x4400
590 #define T_OPCODE_ADD_ST 0xb000
591 #define T_OPCODE_SUB_ST 0xb080
592 #define T_OPCODE_ADD_SP 0xa800
593 #define T_OPCODE_ADD_PC 0xa000
594 #define T_OPCODE_ADD_I8 0x3000
595 #define T_OPCODE_SUB_I8 0x3800
596 #define T_OPCODE_ADD_I3 0x1c00
597 #define T_OPCODE_SUB_I3 0x1e00
598
599 #define T_OPCODE_ASR_R 0x4100
600 #define T_OPCODE_LSL_R 0x4080
601 #define T_OPCODE_LSR_R 0x40c0
602 #define T_OPCODE_ROR_R 0x41c0
603 #define T_OPCODE_ASR_I 0x1000
604 #define T_OPCODE_LSL_I 0x0000
605 #define T_OPCODE_LSR_I 0x0800
606
607 #define T_OPCODE_MOV_I8 0x2000
608 #define T_OPCODE_CMP_I8 0x2800
609 #define T_OPCODE_CMP_LR 0x4280
610 #define T_OPCODE_MOV_HR 0x4600
611 #define T_OPCODE_CMP_HR 0x4500
612
613 #define T_OPCODE_LDR_PC 0x4800
614 #define T_OPCODE_LDR_SP 0x9800
615 #define T_OPCODE_STR_SP 0x9000
616 #define T_OPCODE_LDR_IW 0x6800
617 #define T_OPCODE_STR_IW 0x6000
618 #define T_OPCODE_LDR_IH 0x8800
619 #define T_OPCODE_STR_IH 0x8000
620 #define T_OPCODE_LDR_IB 0x7800
621 #define T_OPCODE_STR_IB 0x7000
622 #define T_OPCODE_LDR_RW 0x5800
623 #define T_OPCODE_STR_RW 0x5000
624 #define T_OPCODE_LDR_RH 0x5a00
625 #define T_OPCODE_STR_RH 0x5200
626 #define T_OPCODE_LDR_RB 0x5c00
627 #define T_OPCODE_STR_RB 0x5400
628
629 #define T_OPCODE_PUSH 0xb400
630 #define T_OPCODE_POP 0xbc00
631
632 #define T_OPCODE_BRANCH 0xe000
633
634 #define THUMB_SIZE 2 /* Size of thumb instruction. */
635 #define THUMB_PP_PC_LR 0x0100
636 #define THUMB_LOAD_BIT 0x0800
637 #define THUMB2_LOAD_BIT 0x00100000
638
639 #define BAD_ARGS _("bad arguments to instruction")
640 #define BAD_PC _("r15 not allowed here")
641 #define BAD_COND _("instruction cannot be conditional")
642 #define BAD_OVERLAP _("registers may not be the same")
643 #define BAD_HIREG _("lo register required")
644 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
645 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
646 #define BAD_BRANCH _("branch must be last instruction in IT block")
647 #define BAD_NOT_IT _("instruction not allowed in IT block")
648 #define BAD_FPU _("selected FPU does not support instruction")
649
650 static struct hash_control *arm_ops_hsh;
651 static struct hash_control *arm_cond_hsh;
652 static struct hash_control *arm_shift_hsh;
653 static struct hash_control *arm_psr_hsh;
654 static struct hash_control *arm_v7m_psr_hsh;
655 static struct hash_control *arm_reg_hsh;
656 static struct hash_control *arm_reloc_hsh;
657 static struct hash_control *arm_barrier_opt_hsh;
658
659 /* Stuff needed to resolve the label ambiguity
660 As:
661 ...
662 label: <insn>
663 may differ from:
664 ...
665 label:
666 <insn>
667 */
668
669 symbolS * last_label_seen;
670 static int label_is_thumb_function_name = FALSE;
671 \f
672 /* Literal pool structure. Held on a per-section
673 and per-sub-section basis. */
674
675 #define MAX_LITERAL_POOL_SIZE 1024
676 typedef struct literal_pool
677 {
678 expressionS literals [MAX_LITERAL_POOL_SIZE];
679 unsigned int next_free_entry;
680 unsigned int id;
681 symbolS * symbol;
682 segT section;
683 subsegT sub_section;
684 struct literal_pool * next;
685 } literal_pool;
686
687 /* Pointer to a linked list of literal pools. */
688 literal_pool * list_of_pools = NULL;
689
690 /* State variables for IT block handling. */
691 static bfd_boolean current_it_mask = 0;
692 static int current_cc;
693
694 \f
695 /* Pure syntax. */
696
697 /* This array holds the chars that always start a comment. If the
698 pre-processor is disabled, these aren't very useful. */
699 const char comment_chars[] = "@";
700
701 /* This array holds the chars that only start a comment at the beginning of
702 a line. If the line seems to have the form '# 123 filename'
703 .line and .file directives will appear in the pre-processed output. */
704 /* Note that input_file.c hand checks for '#' at the beginning of the
705 first line of the input file. This is because the compiler outputs
706 #NO_APP at the beginning of its output. */
707 /* Also note that comments like this one will always work. */
708 const char line_comment_chars[] = "#";
709
710 const char line_separator_chars[] = ";";
711
712 /* Chars that can be used to separate mant
713 from exp in floating point numbers. */
714 const char EXP_CHARS[] = "eE";
715
716 /* Chars that mean this number is a floating point constant. */
717 /* As in 0f12.456 */
718 /* or 0d1.2345e12 */
719
720 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
721
722 /* Prefix characters that indicate the start of an immediate
723 value. */
724 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
725
726 /* Separator character handling. */
727
728 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
729
730 static inline int
731 skip_past_char (char ** str, char c)
732 {
733 if (**str == c)
734 {
735 (*str)++;
736 return SUCCESS;
737 }
738 else
739 return FAIL;
740 }
741 #define skip_past_comma(str) skip_past_char (str, ',')
742
743 /* Arithmetic expressions (possibly involving symbols). */
744
745 /* Return TRUE if anything in the expression is a bignum. */
746
747 static int
748 walk_no_bignums (symbolS * sp)
749 {
750 if (symbol_get_value_expression (sp)->X_op == O_big)
751 return 1;
752
753 if (symbol_get_value_expression (sp)->X_add_symbol)
754 {
755 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
756 || (symbol_get_value_expression (sp)->X_op_symbol
757 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
758 }
759
760 return 0;
761 }
762
763 static int in_my_get_expression = 0;
764
765 /* Third argument to my_get_expression. */
766 #define GE_NO_PREFIX 0
767 #define GE_IMM_PREFIX 1
768 #define GE_OPT_PREFIX 2
769 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
770 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
771 #define GE_OPT_PREFIX_BIG 3
772
773 static int
774 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
775 {
776 char * save_in;
777 segT seg;
778
779 /* In unified syntax, all prefixes are optional. */
780 if (unified_syntax)
781 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
782 : GE_OPT_PREFIX;
783
784 switch (prefix_mode)
785 {
786 case GE_NO_PREFIX: break;
787 case GE_IMM_PREFIX:
788 if (!is_immediate_prefix (**str))
789 {
790 inst.error = _("immediate expression requires a # prefix");
791 return FAIL;
792 }
793 (*str)++;
794 break;
795 case GE_OPT_PREFIX:
796 case GE_OPT_PREFIX_BIG:
797 if (is_immediate_prefix (**str))
798 (*str)++;
799 break;
800 default: abort ();
801 }
802
803 memset (ep, 0, sizeof (expressionS));
804
805 save_in = input_line_pointer;
806 input_line_pointer = *str;
807 in_my_get_expression = 1;
808 seg = expression (ep);
809 in_my_get_expression = 0;
810
811 if (ep->X_op == O_illegal)
812 {
813 /* We found a bad expression in md_operand(). */
814 *str = input_line_pointer;
815 input_line_pointer = save_in;
816 if (inst.error == NULL)
817 inst.error = _("bad expression");
818 return 1;
819 }
820
821 #ifdef OBJ_AOUT
822 if (seg != absolute_section
823 && seg != text_section
824 && seg != data_section
825 && seg != bss_section
826 && seg != undefined_section)
827 {
828 inst.error = _("bad segment");
829 *str = input_line_pointer;
830 input_line_pointer = save_in;
831 return 1;
832 }
833 #endif
834
835 /* Get rid of any bignums now, so that we don't generate an error for which
836 we can't establish a line number later on. Big numbers are never valid
837 in instructions, which is where this routine is always called. */
838 if (prefix_mode != GE_OPT_PREFIX_BIG
839 && (ep->X_op == O_big
840 || (ep->X_add_symbol
841 && (walk_no_bignums (ep->X_add_symbol)
842 || (ep->X_op_symbol
843 && walk_no_bignums (ep->X_op_symbol))))))
844 {
845 inst.error = _("invalid constant");
846 *str = input_line_pointer;
847 input_line_pointer = save_in;
848 return 1;
849 }
850
851 *str = input_line_pointer;
852 input_line_pointer = save_in;
853 return 0;
854 }
855
856 /* Turn a string in input_line_pointer into a floating point constant
857 of type TYPE, and store the appropriate bytes in *LITP. The number
858 of LITTLENUMS emitted is stored in *SIZEP. An error message is
859 returned, or NULL on OK.
860
861 Note that fp constants aren't represent in the normal way on the ARM.
862 In big endian mode, things are as expected. However, in little endian
863 mode fp constants are big-endian word-wise, and little-endian byte-wise
864 within the words. For example, (double) 1.1 in big endian mode is
865 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
866 the byte sequence 99 99 f1 3f 9a 99 99 99.
867
868 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
869
870 char *
871 md_atof (int type, char * litP, int * sizeP)
872 {
873 int prec;
874 LITTLENUM_TYPE words[MAX_LITTLENUMS];
875 char *t;
876 int i;
877
878 switch (type)
879 {
880 case 'f':
881 case 'F':
882 case 's':
883 case 'S':
884 prec = 2;
885 break;
886
887 case 'd':
888 case 'D':
889 case 'r':
890 case 'R':
891 prec = 4;
892 break;
893
894 case 'x':
895 case 'X':
896 prec = 6;
897 break;
898
899 case 'p':
900 case 'P':
901 prec = 6;
902 break;
903
904 default:
905 *sizeP = 0;
906 return _("bad call to MD_ATOF()");
907 }
908
909 t = atof_ieee (input_line_pointer, type, words);
910 if (t)
911 input_line_pointer = t;
912 *sizeP = prec * 2;
913
914 if (target_big_endian)
915 {
916 for (i = 0; i < prec; i++)
917 {
918 md_number_to_chars (litP, (valueT) words[i], 2);
919 litP += 2;
920 }
921 }
922 else
923 {
924 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
925 for (i = prec - 1; i >= 0; i--)
926 {
927 md_number_to_chars (litP, (valueT) words[i], 2);
928 litP += 2;
929 }
930 else
931 /* For a 4 byte float the order of elements in `words' is 1 0.
932 For an 8 byte float the order is 1 0 3 2. */
933 for (i = 0; i < prec; i += 2)
934 {
935 md_number_to_chars (litP, (valueT) words[i + 1], 2);
936 md_number_to_chars (litP + 2, (valueT) words[i], 2);
937 litP += 4;
938 }
939 }
940
941 return 0;
942 }
943
944 /* We handle all bad expressions here, so that we can report the faulty
945 instruction in the error message. */
946 void
947 md_operand (expressionS * expr)
948 {
949 if (in_my_get_expression)
950 expr->X_op = O_illegal;
951 }
952
953 /* Immediate values. */
954
955 /* Generic immediate-value read function for use in directives.
956 Accepts anything that 'expression' can fold to a constant.
957 *val receives the number. */
958 #ifdef OBJ_ELF
959 static int
960 immediate_for_directive (int *val)
961 {
962 expressionS exp;
963 exp.X_op = O_illegal;
964
965 if (is_immediate_prefix (*input_line_pointer))
966 {
967 input_line_pointer++;
968 expression (&exp);
969 }
970
971 if (exp.X_op != O_constant)
972 {
973 as_bad (_("expected #constant"));
974 ignore_rest_of_line ();
975 return FAIL;
976 }
977 *val = exp.X_add_number;
978 return SUCCESS;
979 }
980 #endif
981
982 /* Register parsing. */
983
984 /* Generic register parser. CCP points to what should be the
985 beginning of a register name. If it is indeed a valid register
986 name, advance CCP over it and return the reg_entry structure;
987 otherwise return NULL. Does not issue diagnostics. */
988
989 static struct reg_entry *
990 arm_reg_parse_multi (char **ccp)
991 {
992 char *start = *ccp;
993 char *p;
994 struct reg_entry *reg;
995
996 #ifdef REGISTER_PREFIX
997 if (*start != REGISTER_PREFIX)
998 return NULL;
999 start++;
1000 #endif
1001 #ifdef OPTIONAL_REGISTER_PREFIX
1002 if (*start == OPTIONAL_REGISTER_PREFIX)
1003 start++;
1004 #endif
1005
1006 p = start;
1007 if (!ISALPHA (*p) || !is_name_beginner (*p))
1008 return NULL;
1009
1010 do
1011 p++;
1012 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1013
1014 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1015
1016 if (!reg)
1017 return NULL;
1018
1019 *ccp = p;
1020 return reg;
1021 }
1022
1023 static int
1024 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1025 enum arm_reg_type type)
1026 {
1027 /* Alternative syntaxes are accepted for a few register classes. */
1028 switch (type)
1029 {
1030 case REG_TYPE_MVF:
1031 case REG_TYPE_MVD:
1032 case REG_TYPE_MVFX:
1033 case REG_TYPE_MVDX:
1034 /* Generic coprocessor register names are allowed for these. */
1035 if (reg && reg->type == REG_TYPE_CN)
1036 return reg->number;
1037 break;
1038
1039 case REG_TYPE_CP:
1040 /* For backward compatibility, a bare number is valid here. */
1041 {
1042 unsigned long processor = strtoul (start, ccp, 10);
1043 if (*ccp != start && processor <= 15)
1044 return processor;
1045 }
1046
1047 case REG_TYPE_MMXWC:
1048 /* WC includes WCG. ??? I'm not sure this is true for all
1049 instructions that take WC registers. */
1050 if (reg && reg->type == REG_TYPE_MMXWCG)
1051 return reg->number;
1052 break;
1053
1054 default:
1055 break;
1056 }
1057
1058 return FAIL;
1059 }
1060
1061 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1062 return value is the register number or FAIL. */
1063
1064 static int
1065 arm_reg_parse (char **ccp, enum arm_reg_type type)
1066 {
1067 char *start = *ccp;
1068 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1069 int ret;
1070
1071 /* Do not allow a scalar (reg+index) to parse as a register. */
1072 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1073 return FAIL;
1074
1075 if (reg && reg->type == type)
1076 return reg->number;
1077
1078 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1079 return ret;
1080
1081 *ccp = start;
1082 return FAIL;
1083 }
1084
1085 /* Parse a Neon type specifier. *STR should point at the leading '.'
1086 character. Does no verification at this stage that the type fits the opcode
1087 properly. E.g.,
1088
1089 .i32.i32.s16
1090 .s32.f32
1091 .u16
1092
1093 Can all be legally parsed by this function.
1094
1095 Fills in neon_type struct pointer with parsed information, and updates STR
1096 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1097 type, FAIL if not. */
1098
1099 static int
1100 parse_neon_type (struct neon_type *type, char **str)
1101 {
1102 char *ptr = *str;
1103
1104 if (type)
1105 type->elems = 0;
1106
1107 while (type->elems < NEON_MAX_TYPE_ELS)
1108 {
1109 enum neon_el_type thistype = NT_untyped;
1110 unsigned thissize = -1u;
1111
1112 if (*ptr != '.')
1113 break;
1114
1115 ptr++;
1116
1117 /* Just a size without an explicit type. */
1118 if (ISDIGIT (*ptr))
1119 goto parsesize;
1120
1121 switch (TOLOWER (*ptr))
1122 {
1123 case 'i': thistype = NT_integer; break;
1124 case 'f': thistype = NT_float; break;
1125 case 'p': thistype = NT_poly; break;
1126 case 's': thistype = NT_signed; break;
1127 case 'u': thistype = NT_unsigned; break;
1128 case 'd':
1129 thistype = NT_float;
1130 thissize = 64;
1131 ptr++;
1132 goto done;
1133 default:
1134 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1135 return FAIL;
1136 }
1137
1138 ptr++;
1139
1140 /* .f is an abbreviation for .f32. */
1141 if (thistype == NT_float && !ISDIGIT (*ptr))
1142 thissize = 32;
1143 else
1144 {
1145 parsesize:
1146 thissize = strtoul (ptr, &ptr, 10);
1147
1148 if (thissize != 8 && thissize != 16 && thissize != 32
1149 && thissize != 64)
1150 {
1151 as_bad (_("bad size %d in type specifier"), thissize);
1152 return FAIL;
1153 }
1154 }
1155
1156 done:
1157 if (type)
1158 {
1159 type->el[type->elems].type = thistype;
1160 type->el[type->elems].size = thissize;
1161 type->elems++;
1162 }
1163 }
1164
1165 /* Empty/missing type is not a successful parse. */
1166 if (type->elems == 0)
1167 return FAIL;
1168
1169 *str = ptr;
1170
1171 return SUCCESS;
1172 }
1173
1174 /* Errors may be set multiple times during parsing or bit encoding
1175 (particularly in the Neon bits), but usually the earliest error which is set
1176 will be the most meaningful. Avoid overwriting it with later (cascading)
1177 errors by calling this function. */
1178
1179 static void
1180 first_error (const char *err)
1181 {
1182 if (!inst.error)
1183 inst.error = err;
1184 }
1185
1186 /* Parse a single type, e.g. ".s32", leading period included. */
1187 static int
1188 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1189 {
1190 char *str = *ccp;
1191 struct neon_type optype;
1192
1193 if (*str == '.')
1194 {
1195 if (parse_neon_type (&optype, &str) == SUCCESS)
1196 {
1197 if (optype.elems == 1)
1198 *vectype = optype.el[0];
1199 else
1200 {
1201 first_error (_("only one type should be specified for operand"));
1202 return FAIL;
1203 }
1204 }
1205 else
1206 {
1207 first_error (_("vector type expected"));
1208 return FAIL;
1209 }
1210 }
1211 else
1212 return FAIL;
1213
1214 *ccp = str;
1215
1216 return SUCCESS;
1217 }
1218
1219 /* Special meanings for indices (which have a range of 0-7), which will fit into
1220 a 4-bit integer. */
1221
1222 #define NEON_ALL_LANES 15
1223 #define NEON_INTERLEAVE_LANES 14
1224
1225 /* Parse either a register or a scalar, with an optional type. Return the
1226 register number, and optionally fill in the actual type of the register
1227 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1228 type/index information in *TYPEINFO. */
1229
1230 static int
1231 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1232 enum arm_reg_type *rtype,
1233 struct neon_typed_alias *typeinfo)
1234 {
1235 char *str = *ccp;
1236 struct reg_entry *reg = arm_reg_parse_multi (&str);
1237 struct neon_typed_alias atype;
1238 struct neon_type_el parsetype;
1239
1240 atype.defined = 0;
1241 atype.index = -1;
1242 atype.eltype.type = NT_invtype;
1243 atype.eltype.size = -1;
1244
1245 /* Try alternate syntax for some types of register. Note these are mutually
1246 exclusive with the Neon syntax extensions. */
1247 if (reg == NULL)
1248 {
1249 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1250 if (altreg != FAIL)
1251 *ccp = str;
1252 if (typeinfo)
1253 *typeinfo = atype;
1254 return altreg;
1255 }
1256
1257 /* Undo polymorphism when a set of register types may be accepted. */
1258 if ((type == REG_TYPE_NDQ
1259 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1260 || (type == REG_TYPE_VFSD
1261 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1262 || (type == REG_TYPE_NSDQ
1263 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1264 || reg->type == REG_TYPE_NQ))
1265 || (type == REG_TYPE_MMXWC
1266 && (reg->type == REG_TYPE_MMXWCG)))
1267 type = reg->type;
1268
1269 if (type != reg->type)
1270 return FAIL;
1271
1272 if (reg->neon)
1273 atype = *reg->neon;
1274
1275 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1276 {
1277 if ((atype.defined & NTA_HASTYPE) != 0)
1278 {
1279 first_error (_("can't redefine type for operand"));
1280 return FAIL;
1281 }
1282 atype.defined |= NTA_HASTYPE;
1283 atype.eltype = parsetype;
1284 }
1285
1286 if (skip_past_char (&str, '[') == SUCCESS)
1287 {
1288 if (type != REG_TYPE_VFD)
1289 {
1290 first_error (_("only D registers may be indexed"));
1291 return FAIL;
1292 }
1293
1294 if ((atype.defined & NTA_HASINDEX) != 0)
1295 {
1296 first_error (_("can't change index for operand"));
1297 return FAIL;
1298 }
1299
1300 atype.defined |= NTA_HASINDEX;
1301
1302 if (skip_past_char (&str, ']') == SUCCESS)
1303 atype.index = NEON_ALL_LANES;
1304 else
1305 {
1306 expressionS exp;
1307
1308 my_get_expression (&exp, &str, GE_NO_PREFIX);
1309
1310 if (exp.X_op != O_constant)
1311 {
1312 first_error (_("constant expression required"));
1313 return FAIL;
1314 }
1315
1316 if (skip_past_char (&str, ']') == FAIL)
1317 return FAIL;
1318
1319 atype.index = exp.X_add_number;
1320 }
1321 }
1322
1323 if (typeinfo)
1324 *typeinfo = atype;
1325
1326 if (rtype)
1327 *rtype = type;
1328
1329 *ccp = str;
1330
1331 return reg->number;
1332 }
1333
1334 /* Like arm_reg_parse, but allow allow the following extra features:
1335 - If RTYPE is non-zero, return the (possibly restricted) type of the
1336 register (e.g. Neon double or quad reg when either has been requested).
1337 - If this is a Neon vector type with additional type information, fill
1338 in the struct pointed to by VECTYPE (if non-NULL).
1339 This function will fault on encountering a scalar.
1340 */
1341
1342 static int
1343 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1344 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1345 {
1346 struct neon_typed_alias atype;
1347 char *str = *ccp;
1348 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1349
1350 if (reg == FAIL)
1351 return FAIL;
1352
1353 /* Do not allow a scalar (reg+index) to parse as a register. */
1354 if ((atype.defined & NTA_HASINDEX) != 0)
1355 {
1356 first_error (_("register operand expected, but got scalar"));
1357 return FAIL;
1358 }
1359
1360 if (vectype)
1361 *vectype = atype.eltype;
1362
1363 *ccp = str;
1364
1365 return reg;
1366 }
1367
1368 #define NEON_SCALAR_REG(X) ((X) >> 4)
1369 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1370
1371 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1372 have enough information to be able to do a good job bounds-checking. So, we
1373 just do easy checks here, and do further checks later. */
1374
1375 static int
1376 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1377 {
1378 int reg;
1379 char *str = *ccp;
1380 struct neon_typed_alias atype;
1381
1382 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1383
1384 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1385 return FAIL;
1386
1387 if (atype.index == NEON_ALL_LANES)
1388 {
1389 first_error (_("scalar must have an index"));
1390 return FAIL;
1391 }
1392 else if (atype.index >= 64 / elsize)
1393 {
1394 first_error (_("scalar index out of range"));
1395 return FAIL;
1396 }
1397
1398 if (type)
1399 *type = atype.eltype;
1400
1401 *ccp = str;
1402
1403 return reg * 16 + atype.index;
1404 }
1405
1406 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1407 static long
1408 parse_reg_list (char ** strp)
1409 {
1410 char * str = * strp;
1411 long range = 0;
1412 int another_range;
1413
1414 /* We come back here if we get ranges concatenated by '+' or '|'. */
1415 do
1416 {
1417 another_range = 0;
1418
1419 if (*str == '{')
1420 {
1421 int in_range = 0;
1422 int cur_reg = -1;
1423
1424 str++;
1425 do
1426 {
1427 int reg;
1428
1429 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1430 {
1431 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1432 return FAIL;
1433 }
1434
1435 if (in_range)
1436 {
1437 int i;
1438
1439 if (reg <= cur_reg)
1440 {
1441 first_error (_("bad range in register list"));
1442 return FAIL;
1443 }
1444
1445 for (i = cur_reg + 1; i < reg; i++)
1446 {
1447 if (range & (1 << i))
1448 as_tsktsk
1449 (_("Warning: duplicated register (r%d) in register list"),
1450 i);
1451 else
1452 range |= 1 << i;
1453 }
1454 in_range = 0;
1455 }
1456
1457 if (range & (1 << reg))
1458 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1459 reg);
1460 else if (reg <= cur_reg)
1461 as_tsktsk (_("Warning: register range not in ascending order"));
1462
1463 range |= 1 << reg;
1464 cur_reg = reg;
1465 }
1466 while (skip_past_comma (&str) != FAIL
1467 || (in_range = 1, *str++ == '-'));
1468 str--;
1469
1470 if (*str++ != '}')
1471 {
1472 first_error (_("missing `}'"));
1473 return FAIL;
1474 }
1475 }
1476 else
1477 {
1478 expressionS expr;
1479
1480 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1481 return FAIL;
1482
1483 if (expr.X_op == O_constant)
1484 {
1485 if (expr.X_add_number
1486 != (expr.X_add_number & 0x0000ffff))
1487 {
1488 inst.error = _("invalid register mask");
1489 return FAIL;
1490 }
1491
1492 if ((range & expr.X_add_number) != 0)
1493 {
1494 int regno = range & expr.X_add_number;
1495
1496 regno &= -regno;
1497 regno = (1 << regno) - 1;
1498 as_tsktsk
1499 (_("Warning: duplicated register (r%d) in register list"),
1500 regno);
1501 }
1502
1503 range |= expr.X_add_number;
1504 }
1505 else
1506 {
1507 if (inst.reloc.type != 0)
1508 {
1509 inst.error = _("expression too complex");
1510 return FAIL;
1511 }
1512
1513 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1514 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1515 inst.reloc.pc_rel = 0;
1516 }
1517 }
1518
1519 if (*str == '|' || *str == '+')
1520 {
1521 str++;
1522 another_range = 1;
1523 }
1524 }
1525 while (another_range);
1526
1527 *strp = str;
1528 return range;
1529 }
1530
1531 /* Types of registers in a list. */
1532
1533 enum reg_list_els
1534 {
1535 REGLIST_VFP_S,
1536 REGLIST_VFP_D,
1537 REGLIST_NEON_D
1538 };
1539
1540 /* Parse a VFP register list. If the string is invalid return FAIL.
1541 Otherwise return the number of registers, and set PBASE to the first
1542 register. Parses registers of type ETYPE.
1543 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1544 - Q registers can be used to specify pairs of D registers
1545 - { } can be omitted from around a singleton register list
1546 FIXME: This is not implemented, as it would require backtracking in
1547 some cases, e.g.:
1548 vtbl.8 d3,d4,d5
1549 This could be done (the meaning isn't really ambiguous), but doesn't
1550 fit in well with the current parsing framework.
1551 - 32 D registers may be used (also true for VFPv3).
1552 FIXME: Types are ignored in these register lists, which is probably a
1553 bug. */
1554
1555 static int
1556 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1557 {
1558 char *str = *ccp;
1559 int base_reg;
1560 int new_base;
1561 enum arm_reg_type regtype = 0;
1562 int max_regs = 0;
1563 int count = 0;
1564 int warned = 0;
1565 unsigned long mask = 0;
1566 int i;
1567
1568 if (*str != '{')
1569 {
1570 inst.error = _("expecting {");
1571 return FAIL;
1572 }
1573
1574 str++;
1575
1576 switch (etype)
1577 {
1578 case REGLIST_VFP_S:
1579 regtype = REG_TYPE_VFS;
1580 max_regs = 32;
1581 break;
1582
1583 case REGLIST_VFP_D:
1584 regtype = REG_TYPE_VFD;
1585 break;
1586
1587 case REGLIST_NEON_D:
1588 regtype = REG_TYPE_NDQ;
1589 break;
1590 }
1591
1592 if (etype != REGLIST_VFP_S)
1593 {
1594 /* VFPv3 allows 32 D registers. */
1595 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1596 {
1597 max_regs = 32;
1598 if (thumb_mode)
1599 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1600 fpu_vfp_ext_v3);
1601 else
1602 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1603 fpu_vfp_ext_v3);
1604 }
1605 else
1606 max_regs = 16;
1607 }
1608
1609 base_reg = max_regs;
1610
1611 do
1612 {
1613 int setmask = 1, addregs = 1;
1614
1615 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1616
1617 if (new_base == FAIL)
1618 {
1619 first_error (_(reg_expected_msgs[regtype]));
1620 return FAIL;
1621 }
1622
1623 if (new_base >= max_regs)
1624 {
1625 first_error (_("register out of range in list"));
1626 return FAIL;
1627 }
1628
1629 /* Note: a value of 2 * n is returned for the register Q<n>. */
1630 if (regtype == REG_TYPE_NQ)
1631 {
1632 setmask = 3;
1633 addregs = 2;
1634 }
1635
1636 if (new_base < base_reg)
1637 base_reg = new_base;
1638
1639 if (mask & (setmask << new_base))
1640 {
1641 first_error (_("invalid register list"));
1642 return FAIL;
1643 }
1644
1645 if ((mask >> new_base) != 0 && ! warned)
1646 {
1647 as_tsktsk (_("register list not in ascending order"));
1648 warned = 1;
1649 }
1650
1651 mask |= setmask << new_base;
1652 count += addregs;
1653
1654 if (*str == '-') /* We have the start of a range expression */
1655 {
1656 int high_range;
1657
1658 str++;
1659
1660 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1661 == FAIL)
1662 {
1663 inst.error = gettext (reg_expected_msgs[regtype]);
1664 return FAIL;
1665 }
1666
1667 if (high_range >= max_regs)
1668 {
1669 first_error (_("register out of range in list"));
1670 return FAIL;
1671 }
1672
1673 if (regtype == REG_TYPE_NQ)
1674 high_range = high_range + 1;
1675
1676 if (high_range <= new_base)
1677 {
1678 inst.error = _("register range not in ascending order");
1679 return FAIL;
1680 }
1681
1682 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1683 {
1684 if (mask & (setmask << new_base))
1685 {
1686 inst.error = _("invalid register list");
1687 return FAIL;
1688 }
1689
1690 mask |= setmask << new_base;
1691 count += addregs;
1692 }
1693 }
1694 }
1695 while (skip_past_comma (&str) != FAIL);
1696
1697 str++;
1698
1699 /* Sanity check -- should have raised a parse error above. */
1700 if (count == 0 || count > max_regs)
1701 abort ();
1702
1703 *pbase = base_reg;
1704
1705 /* Final test -- the registers must be consecutive. */
1706 mask >>= base_reg;
1707 for (i = 0; i < count; i++)
1708 {
1709 if ((mask & (1u << i)) == 0)
1710 {
1711 inst.error = _("non-contiguous register range");
1712 return FAIL;
1713 }
1714 }
1715
1716 *ccp = str;
1717
1718 return count;
1719 }
1720
1721 /* True if two alias types are the same. */
1722
1723 static int
1724 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1725 {
1726 if (!a && !b)
1727 return 1;
1728
1729 if (!a || !b)
1730 return 0;
1731
1732 if (a->defined != b->defined)
1733 return 0;
1734
1735 if ((a->defined & NTA_HASTYPE) != 0
1736 && (a->eltype.type != b->eltype.type
1737 || a->eltype.size != b->eltype.size))
1738 return 0;
1739
1740 if ((a->defined & NTA_HASINDEX) != 0
1741 && (a->index != b->index))
1742 return 0;
1743
1744 return 1;
1745 }
1746
1747 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1748 The base register is put in *PBASE.
1749 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1750 the return value.
1751 The register stride (minus one) is put in bit 4 of the return value.
1752 Bits [6:5] encode the list length (minus one).
1753 The type of the list elements is put in *ELTYPE, if non-NULL. */
1754
1755 #define NEON_LANE(X) ((X) & 0xf)
1756 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1757 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1758
1759 static int
1760 parse_neon_el_struct_list (char **str, unsigned *pbase,
1761 struct neon_type_el *eltype)
1762 {
1763 char *ptr = *str;
1764 int base_reg = -1;
1765 int reg_incr = -1;
1766 int count = 0;
1767 int lane = -1;
1768 int leading_brace = 0;
1769 enum arm_reg_type rtype = REG_TYPE_NDQ;
1770 int addregs = 1;
1771 const char *const incr_error = "register stride must be 1 or 2";
1772 const char *const type_error = "mismatched element/structure types in list";
1773 struct neon_typed_alias firsttype;
1774
1775 if (skip_past_char (&ptr, '{') == SUCCESS)
1776 leading_brace = 1;
1777
1778 do
1779 {
1780 struct neon_typed_alias atype;
1781 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1782
1783 if (getreg == FAIL)
1784 {
1785 first_error (_(reg_expected_msgs[rtype]));
1786 return FAIL;
1787 }
1788
1789 if (base_reg == -1)
1790 {
1791 base_reg = getreg;
1792 if (rtype == REG_TYPE_NQ)
1793 {
1794 reg_incr = 1;
1795 addregs = 2;
1796 }
1797 firsttype = atype;
1798 }
1799 else if (reg_incr == -1)
1800 {
1801 reg_incr = getreg - base_reg;
1802 if (reg_incr < 1 || reg_incr > 2)
1803 {
1804 first_error (_(incr_error));
1805 return FAIL;
1806 }
1807 }
1808 else if (getreg != base_reg + reg_incr * count)
1809 {
1810 first_error (_(incr_error));
1811 return FAIL;
1812 }
1813
1814 if (!neon_alias_types_same (&atype, &firsttype))
1815 {
1816 first_error (_(type_error));
1817 return FAIL;
1818 }
1819
1820 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1821 modes. */
1822 if (ptr[0] == '-')
1823 {
1824 struct neon_typed_alias htype;
1825 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1826 if (lane == -1)
1827 lane = NEON_INTERLEAVE_LANES;
1828 else if (lane != NEON_INTERLEAVE_LANES)
1829 {
1830 first_error (_(type_error));
1831 return FAIL;
1832 }
1833 if (reg_incr == -1)
1834 reg_incr = 1;
1835 else if (reg_incr != 1)
1836 {
1837 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1838 return FAIL;
1839 }
1840 ptr++;
1841 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1842 if (hireg == FAIL)
1843 {
1844 first_error (_(reg_expected_msgs[rtype]));
1845 return FAIL;
1846 }
1847 if (!neon_alias_types_same (&htype, &firsttype))
1848 {
1849 first_error (_(type_error));
1850 return FAIL;
1851 }
1852 count += hireg + dregs - getreg;
1853 continue;
1854 }
1855
1856 /* If we're using Q registers, we can't use [] or [n] syntax. */
1857 if (rtype == REG_TYPE_NQ)
1858 {
1859 count += 2;
1860 continue;
1861 }
1862
1863 if ((atype.defined & NTA_HASINDEX) != 0)
1864 {
1865 if (lane == -1)
1866 lane = atype.index;
1867 else if (lane != atype.index)
1868 {
1869 first_error (_(type_error));
1870 return FAIL;
1871 }
1872 }
1873 else if (lane == -1)
1874 lane = NEON_INTERLEAVE_LANES;
1875 else if (lane != NEON_INTERLEAVE_LANES)
1876 {
1877 first_error (_(type_error));
1878 return FAIL;
1879 }
1880 count++;
1881 }
1882 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1883
1884 /* No lane set by [x]. We must be interleaving structures. */
1885 if (lane == -1)
1886 lane = NEON_INTERLEAVE_LANES;
1887
1888 /* Sanity check. */
1889 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1890 || (count > 1 && reg_incr == -1))
1891 {
1892 first_error (_("error parsing element/structure list"));
1893 return FAIL;
1894 }
1895
1896 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1897 {
1898 first_error (_("expected }"));
1899 return FAIL;
1900 }
1901
1902 if (reg_incr == -1)
1903 reg_incr = 1;
1904
1905 if (eltype)
1906 *eltype = firsttype.eltype;
1907
1908 *pbase = base_reg;
1909 *str = ptr;
1910
1911 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1912 }
1913
1914 /* Parse an explicit relocation suffix on an expression. This is
1915 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1916 arm_reloc_hsh contains no entries, so this function can only
1917 succeed if there is no () after the word. Returns -1 on error,
1918 BFD_RELOC_UNUSED if there wasn't any suffix. */
1919 static int
1920 parse_reloc (char **str)
1921 {
1922 struct reloc_entry *r;
1923 char *p, *q;
1924
1925 if (**str != '(')
1926 return BFD_RELOC_UNUSED;
1927
1928 p = *str + 1;
1929 q = p;
1930
1931 while (*q && *q != ')' && *q != ',')
1932 q++;
1933 if (*q != ')')
1934 return -1;
1935
1936 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1937 return -1;
1938
1939 *str = q + 1;
1940 return r->reloc;
1941 }
1942
1943 /* Directives: register aliases. */
1944
1945 static struct reg_entry *
1946 insert_reg_alias (char *str, int number, int type)
1947 {
1948 struct reg_entry *new;
1949 const char *name;
1950
1951 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1952 {
1953 if (new->builtin)
1954 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1955
1956 /* Only warn about a redefinition if it's not defined as the
1957 same register. */
1958 else if (new->number != number || new->type != type)
1959 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1960
1961 return 0;
1962 }
1963
1964 name = xstrdup (str);
1965 new = xmalloc (sizeof (struct reg_entry));
1966
1967 new->name = name;
1968 new->number = number;
1969 new->type = type;
1970 new->builtin = FALSE;
1971 new->neon = NULL;
1972
1973 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1974 abort ();
1975
1976 return new;
1977 }
1978
1979 static void
1980 insert_neon_reg_alias (char *str, int number, int type,
1981 struct neon_typed_alias *atype)
1982 {
1983 struct reg_entry *reg = insert_reg_alias (str, number, type);
1984
1985 if (!reg)
1986 {
1987 first_error (_("attempt to redefine typed alias"));
1988 return;
1989 }
1990
1991 if (atype)
1992 {
1993 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
1994 *reg->neon = *atype;
1995 }
1996 }
1997
1998 /* Look for the .req directive. This is of the form:
1999
2000 new_register_name .req existing_register_name
2001
2002 If we find one, or if it looks sufficiently like one that we want to
2003 handle any error here, return non-zero. Otherwise return zero. */
2004
2005 static int
2006 create_register_alias (char * newname, char *p)
2007 {
2008 struct reg_entry *old;
2009 char *oldname, *nbuf;
2010 size_t nlen;
2011
2012 /* The input scrubber ensures that whitespace after the mnemonic is
2013 collapsed to single spaces. */
2014 oldname = p;
2015 if (strncmp (oldname, " .req ", 6) != 0)
2016 return 0;
2017
2018 oldname += 6;
2019 if (*oldname == '\0')
2020 return 0;
2021
2022 old = hash_find (arm_reg_hsh, oldname);
2023 if (!old)
2024 {
2025 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2026 return 1;
2027 }
2028
2029 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2030 the desired alias name, and p points to its end. If not, then
2031 the desired alias name is in the global original_case_string. */
2032 #ifdef TC_CASE_SENSITIVE
2033 nlen = p - newname;
2034 #else
2035 newname = original_case_string;
2036 nlen = strlen (newname);
2037 #endif
2038
2039 nbuf = alloca (nlen + 1);
2040 memcpy (nbuf, newname, nlen);
2041 nbuf[nlen] = '\0';
2042
2043 /* Create aliases under the new name as stated; an all-lowercase
2044 version of the new name; and an all-uppercase version of the new
2045 name. */
2046 insert_reg_alias (nbuf, old->number, old->type);
2047
2048 for (p = nbuf; *p; p++)
2049 *p = TOUPPER (*p);
2050
2051 if (strncmp (nbuf, newname, nlen))
2052 insert_reg_alias (nbuf, old->number, old->type);
2053
2054 for (p = nbuf; *p; p++)
2055 *p = TOLOWER (*p);
2056
2057 if (strncmp (nbuf, newname, nlen))
2058 insert_reg_alias (nbuf, old->number, old->type);
2059
2060 return 1;
2061 }
2062
2063 /* Create a Neon typed/indexed register alias using directives, e.g.:
2064 X .dn d5.s32[1]
2065 Y .qn 6.s16
2066 Z .dn d7
2067 T .dn Z[0]
2068 These typed registers can be used instead of the types specified after the
2069 Neon mnemonic, so long as all operands given have types. Types can also be
2070 specified directly, e.g.:
2071 vadd d0.s32, d1.s32, d2.s32
2072 */
2073
2074 static int
2075 create_neon_reg_alias (char *newname, char *p)
2076 {
2077 enum arm_reg_type basetype;
2078 struct reg_entry *basereg;
2079 struct reg_entry mybasereg;
2080 struct neon_type ntype;
2081 struct neon_typed_alias typeinfo;
2082 char *namebuf, *nameend;
2083 int namelen;
2084
2085 typeinfo.defined = 0;
2086 typeinfo.eltype.type = NT_invtype;
2087 typeinfo.eltype.size = -1;
2088 typeinfo.index = -1;
2089
2090 nameend = p;
2091
2092 if (strncmp (p, " .dn ", 5) == 0)
2093 basetype = REG_TYPE_VFD;
2094 else if (strncmp (p, " .qn ", 5) == 0)
2095 basetype = REG_TYPE_NQ;
2096 else
2097 return 0;
2098
2099 p += 5;
2100
2101 if (*p == '\0')
2102 return 0;
2103
2104 basereg = arm_reg_parse_multi (&p);
2105
2106 if (basereg && basereg->type != basetype)
2107 {
2108 as_bad (_("bad type for register"));
2109 return 0;
2110 }
2111
2112 if (basereg == NULL)
2113 {
2114 expressionS exp;
2115 /* Try parsing as an integer. */
2116 my_get_expression (&exp, &p, GE_NO_PREFIX);
2117 if (exp.X_op != O_constant)
2118 {
2119 as_bad (_("expression must be constant"));
2120 return 0;
2121 }
2122 basereg = &mybasereg;
2123 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2124 : exp.X_add_number;
2125 basereg->neon = 0;
2126 }
2127
2128 if (basereg->neon)
2129 typeinfo = *basereg->neon;
2130
2131 if (parse_neon_type (&ntype, &p) == SUCCESS)
2132 {
2133 /* We got a type. */
2134 if (typeinfo.defined & NTA_HASTYPE)
2135 {
2136 as_bad (_("can't redefine the type of a register alias"));
2137 return 0;
2138 }
2139
2140 typeinfo.defined |= NTA_HASTYPE;
2141 if (ntype.elems != 1)
2142 {
2143 as_bad (_("you must specify a single type only"));
2144 return 0;
2145 }
2146 typeinfo.eltype = ntype.el[0];
2147 }
2148
2149 if (skip_past_char (&p, '[') == SUCCESS)
2150 {
2151 expressionS exp;
2152 /* We got a scalar index. */
2153
2154 if (typeinfo.defined & NTA_HASINDEX)
2155 {
2156 as_bad (_("can't redefine the index of a scalar alias"));
2157 return 0;
2158 }
2159
2160 my_get_expression (&exp, &p, GE_NO_PREFIX);
2161
2162 if (exp.X_op != O_constant)
2163 {
2164 as_bad (_("scalar index must be constant"));
2165 return 0;
2166 }
2167
2168 typeinfo.defined |= NTA_HASINDEX;
2169 typeinfo.index = exp.X_add_number;
2170
2171 if (skip_past_char (&p, ']') == FAIL)
2172 {
2173 as_bad (_("expecting ]"));
2174 return 0;
2175 }
2176 }
2177
2178 namelen = nameend - newname;
2179 namebuf = alloca (namelen + 1);
2180 strncpy (namebuf, newname, namelen);
2181 namebuf[namelen] = '\0';
2182
2183 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2184 typeinfo.defined != 0 ? &typeinfo : NULL);
2185
2186 /* Insert name in all uppercase. */
2187 for (p = namebuf; *p; p++)
2188 *p = TOUPPER (*p);
2189
2190 if (strncmp (namebuf, newname, namelen))
2191 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2192 typeinfo.defined != 0 ? &typeinfo : NULL);
2193
2194 /* Insert name in all lowercase. */
2195 for (p = namebuf; *p; p++)
2196 *p = TOLOWER (*p);
2197
2198 if (strncmp (namebuf, newname, namelen))
2199 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2200 typeinfo.defined != 0 ? &typeinfo : NULL);
2201
2202 return 1;
2203 }
2204
2205 /* Should never be called, as .req goes between the alias and the
2206 register name, not at the beginning of the line. */
2207 static void
2208 s_req (int a ATTRIBUTE_UNUSED)
2209 {
2210 as_bad (_("invalid syntax for .req directive"));
2211 }
2212
2213 static void
2214 s_dn (int a ATTRIBUTE_UNUSED)
2215 {
2216 as_bad (_("invalid syntax for .dn directive"));
2217 }
2218
2219 static void
2220 s_qn (int a ATTRIBUTE_UNUSED)
2221 {
2222 as_bad (_("invalid syntax for .qn directive"));
2223 }
2224
2225 /* The .unreq directive deletes an alias which was previously defined
2226 by .req. For example:
2227
2228 my_alias .req r11
2229 .unreq my_alias */
2230
2231 static void
2232 s_unreq (int a ATTRIBUTE_UNUSED)
2233 {
2234 char * name;
2235 char saved_char;
2236
2237 name = input_line_pointer;
2238
2239 while (*input_line_pointer != 0
2240 && *input_line_pointer != ' '
2241 && *input_line_pointer != '\n')
2242 ++input_line_pointer;
2243
2244 saved_char = *input_line_pointer;
2245 *input_line_pointer = 0;
2246
2247 if (!*name)
2248 as_bad (_("invalid syntax for .unreq directive"));
2249 else
2250 {
2251 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2252
2253 if (!reg)
2254 as_bad (_("unknown register alias '%s'"), name);
2255 else if (reg->builtin)
2256 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2257 name);
2258 else
2259 {
2260 hash_delete (arm_reg_hsh, name);
2261 free ((char *) reg->name);
2262 if (reg->neon)
2263 free (reg->neon);
2264 free (reg);
2265 }
2266 }
2267
2268 *input_line_pointer = saved_char;
2269 demand_empty_rest_of_line ();
2270 }
2271
2272 /* Directives: Instruction set selection. */
2273
2274 #ifdef OBJ_ELF
2275 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2276 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2277 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2278 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2279
2280 static enum mstate mapstate = MAP_UNDEFINED;
2281
2282 static void
2283 mapping_state (enum mstate state)
2284 {
2285 symbolS * symbolP;
2286 const char * symname;
2287 int type;
2288
2289 if (mapstate == state)
2290 /* The mapping symbol has already been emitted.
2291 There is nothing else to do. */
2292 return;
2293
2294 mapstate = state;
2295
2296 switch (state)
2297 {
2298 case MAP_DATA:
2299 symname = "$d";
2300 type = BSF_NO_FLAGS;
2301 break;
2302 case MAP_ARM:
2303 symname = "$a";
2304 type = BSF_NO_FLAGS;
2305 break;
2306 case MAP_THUMB:
2307 symname = "$t";
2308 type = BSF_NO_FLAGS;
2309 break;
2310 case MAP_UNDEFINED:
2311 return;
2312 default:
2313 abort ();
2314 }
2315
2316 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2317
2318 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2319 symbol_table_insert (symbolP);
2320 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2321
2322 switch (state)
2323 {
2324 case MAP_ARM:
2325 THUMB_SET_FUNC (symbolP, 0);
2326 ARM_SET_THUMB (symbolP, 0);
2327 ARM_SET_INTERWORK (symbolP, support_interwork);
2328 break;
2329
2330 case MAP_THUMB:
2331 THUMB_SET_FUNC (symbolP, 1);
2332 ARM_SET_THUMB (symbolP, 1);
2333 ARM_SET_INTERWORK (symbolP, support_interwork);
2334 break;
2335
2336 case MAP_DATA:
2337 default:
2338 return;
2339 }
2340 }
2341 #else
2342 #define mapping_state(x) /* nothing */
2343 #endif
2344
2345 /* Find the real, Thumb encoded start of a Thumb function. */
2346
2347 static symbolS *
2348 find_real_start (symbolS * symbolP)
2349 {
2350 char * real_start;
2351 const char * name = S_GET_NAME (symbolP);
2352 symbolS * new_target;
2353
2354 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2355 #define STUB_NAME ".real_start_of"
2356
2357 if (name == NULL)
2358 abort ();
2359
2360 /* The compiler may generate BL instructions to local labels because
2361 it needs to perform a branch to a far away location. These labels
2362 do not have a corresponding ".real_start_of" label. We check
2363 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2364 the ".real_start_of" convention for nonlocal branches. */
2365 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2366 return symbolP;
2367
2368 real_start = ACONCAT ((STUB_NAME, name, NULL));
2369 new_target = symbol_find (real_start);
2370
2371 if (new_target == NULL)
2372 {
2373 as_warn ("Failed to find real start of function: %s\n", name);
2374 new_target = symbolP;
2375 }
2376
2377 return new_target;
2378 }
2379
2380 static void
2381 opcode_select (int width)
2382 {
2383 switch (width)
2384 {
2385 case 16:
2386 if (! thumb_mode)
2387 {
2388 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2389 as_bad (_("selected processor does not support THUMB opcodes"));
2390
2391 thumb_mode = 1;
2392 /* No need to force the alignment, since we will have been
2393 coming from ARM mode, which is word-aligned. */
2394 record_alignment (now_seg, 1);
2395 }
2396 mapping_state (MAP_THUMB);
2397 break;
2398
2399 case 32:
2400 if (thumb_mode)
2401 {
2402 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2403 as_bad (_("selected processor does not support ARM opcodes"));
2404
2405 thumb_mode = 0;
2406
2407 if (!need_pass_2)
2408 frag_align (2, 0, 0);
2409
2410 record_alignment (now_seg, 1);
2411 }
2412 mapping_state (MAP_ARM);
2413 break;
2414
2415 default:
2416 as_bad (_("invalid instruction size selected (%d)"), width);
2417 }
2418 }
2419
2420 static void
2421 s_arm (int ignore ATTRIBUTE_UNUSED)
2422 {
2423 opcode_select (32);
2424 demand_empty_rest_of_line ();
2425 }
2426
2427 static void
2428 s_thumb (int ignore ATTRIBUTE_UNUSED)
2429 {
2430 opcode_select (16);
2431 demand_empty_rest_of_line ();
2432 }
2433
2434 static void
2435 s_code (int unused ATTRIBUTE_UNUSED)
2436 {
2437 int temp;
2438
2439 temp = get_absolute_expression ();
2440 switch (temp)
2441 {
2442 case 16:
2443 case 32:
2444 opcode_select (temp);
2445 break;
2446
2447 default:
2448 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2449 }
2450 }
2451
2452 static void
2453 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2454 {
2455 /* If we are not already in thumb mode go into it, EVEN if
2456 the target processor does not support thumb instructions.
2457 This is used by gcc/config/arm/lib1funcs.asm for example
2458 to compile interworking support functions even if the
2459 target processor should not support interworking. */
2460 if (! thumb_mode)
2461 {
2462 thumb_mode = 2;
2463 record_alignment (now_seg, 1);
2464 }
2465
2466 demand_empty_rest_of_line ();
2467 }
2468
2469 static void
2470 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2471 {
2472 s_thumb (0);
2473
2474 /* The following label is the name/address of the start of a Thumb function.
2475 We need to know this for the interworking support. */
2476 label_is_thumb_function_name = TRUE;
2477 }
2478
2479 /* Perform a .set directive, but also mark the alias as
2480 being a thumb function. */
2481
2482 static void
2483 s_thumb_set (int equiv)
2484 {
2485 /* XXX the following is a duplicate of the code for s_set() in read.c
2486 We cannot just call that code as we need to get at the symbol that
2487 is created. */
2488 char * name;
2489 char delim;
2490 char * end_name;
2491 symbolS * symbolP;
2492
2493 /* Especial apologies for the random logic:
2494 This just grew, and could be parsed much more simply!
2495 Dean - in haste. */
2496 name = input_line_pointer;
2497 delim = get_symbol_end ();
2498 end_name = input_line_pointer;
2499 *end_name = delim;
2500
2501 if (*input_line_pointer != ',')
2502 {
2503 *end_name = 0;
2504 as_bad (_("expected comma after name \"%s\""), name);
2505 *end_name = delim;
2506 ignore_rest_of_line ();
2507 return;
2508 }
2509
2510 input_line_pointer++;
2511 *end_name = 0;
2512
2513 if (name[0] == '.' && name[1] == '\0')
2514 {
2515 /* XXX - this should not happen to .thumb_set. */
2516 abort ();
2517 }
2518
2519 if ((symbolP = symbol_find (name)) == NULL
2520 && (symbolP = md_undefined_symbol (name)) == NULL)
2521 {
2522 #ifndef NO_LISTING
2523 /* When doing symbol listings, play games with dummy fragments living
2524 outside the normal fragment chain to record the file and line info
2525 for this symbol. */
2526 if (listing & LISTING_SYMBOLS)
2527 {
2528 extern struct list_info_struct * listing_tail;
2529 fragS * dummy_frag = xmalloc (sizeof (fragS));
2530
2531 memset (dummy_frag, 0, sizeof (fragS));
2532 dummy_frag->fr_type = rs_fill;
2533 dummy_frag->line = listing_tail;
2534 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2535 dummy_frag->fr_symbol = symbolP;
2536 }
2537 else
2538 #endif
2539 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2540
2541 #ifdef OBJ_COFF
2542 /* "set" symbols are local unless otherwise specified. */
2543 SF_SET_LOCAL (symbolP);
2544 #endif /* OBJ_COFF */
2545 } /* Make a new symbol. */
2546
2547 symbol_table_insert (symbolP);
2548
2549 * end_name = delim;
2550
2551 if (equiv
2552 && S_IS_DEFINED (symbolP)
2553 && S_GET_SEGMENT (symbolP) != reg_section)
2554 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2555
2556 pseudo_set (symbolP);
2557
2558 demand_empty_rest_of_line ();
2559
2560 /* XXX Now we come to the Thumb specific bit of code. */
2561
2562 THUMB_SET_FUNC (symbolP, 1);
2563 ARM_SET_THUMB (symbolP, 1);
2564 #if defined OBJ_ELF || defined OBJ_COFF
2565 ARM_SET_INTERWORK (symbolP, support_interwork);
2566 #endif
2567 }
2568
2569 /* Directives: Mode selection. */
2570
2571 /* .syntax [unified|divided] - choose the new unified syntax
2572 (same for Arm and Thumb encoding, modulo slight differences in what
2573 can be represented) or the old divergent syntax for each mode. */
2574 static void
2575 s_syntax (int unused ATTRIBUTE_UNUSED)
2576 {
2577 char *name, delim;
2578
2579 name = input_line_pointer;
2580 delim = get_symbol_end ();
2581
2582 if (!strcasecmp (name, "unified"))
2583 unified_syntax = TRUE;
2584 else if (!strcasecmp (name, "divided"))
2585 unified_syntax = FALSE;
2586 else
2587 {
2588 as_bad (_("unrecognized syntax mode \"%s\""), name);
2589 return;
2590 }
2591 *input_line_pointer = delim;
2592 demand_empty_rest_of_line ();
2593 }
2594
2595 /* Directives: sectioning and alignment. */
2596
2597 /* Same as s_align_ptwo but align 0 => align 2. */
2598
2599 static void
2600 s_align (int unused ATTRIBUTE_UNUSED)
2601 {
2602 int temp;
2603 long temp_fill;
2604 long max_alignment = 15;
2605
2606 temp = get_absolute_expression ();
2607 if (temp > max_alignment)
2608 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2609 else if (temp < 0)
2610 {
2611 as_bad (_("alignment negative. 0 assumed."));
2612 temp = 0;
2613 }
2614
2615 if (*input_line_pointer == ',')
2616 {
2617 input_line_pointer++;
2618 temp_fill = get_absolute_expression ();
2619 }
2620 else
2621 temp_fill = 0;
2622
2623 if (!temp)
2624 temp = 2;
2625
2626 /* Only make a frag if we HAVE to. */
2627 if (temp && !need_pass_2)
2628 frag_align (temp, (int) temp_fill, 0);
2629 demand_empty_rest_of_line ();
2630
2631 record_alignment (now_seg, temp);
2632 }
2633
2634 static void
2635 s_bss (int ignore ATTRIBUTE_UNUSED)
2636 {
2637 /* We don't support putting frags in the BSS segment, we fake it by
2638 marking in_bss, then looking at s_skip for clues. */
2639 subseg_set (bss_section, 0);
2640 demand_empty_rest_of_line ();
2641 mapping_state (MAP_DATA);
2642 }
2643
2644 static void
2645 s_even (int ignore ATTRIBUTE_UNUSED)
2646 {
2647 /* Never make frag if expect extra pass. */
2648 if (!need_pass_2)
2649 frag_align (1, 0, 0);
2650
2651 record_alignment (now_seg, 1);
2652
2653 demand_empty_rest_of_line ();
2654 }
2655
2656 /* Directives: Literal pools. */
2657
2658 static literal_pool *
2659 find_literal_pool (void)
2660 {
2661 literal_pool * pool;
2662
2663 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2664 {
2665 if (pool->section == now_seg
2666 && pool->sub_section == now_subseg)
2667 break;
2668 }
2669
2670 return pool;
2671 }
2672
2673 static literal_pool *
2674 find_or_make_literal_pool (void)
2675 {
2676 /* Next literal pool ID number. */
2677 static unsigned int latest_pool_num = 1;
2678 literal_pool * pool;
2679
2680 pool = find_literal_pool ();
2681
2682 if (pool == NULL)
2683 {
2684 /* Create a new pool. */
2685 pool = xmalloc (sizeof (* pool));
2686 if (! pool)
2687 return NULL;
2688
2689 pool->next_free_entry = 0;
2690 pool->section = now_seg;
2691 pool->sub_section = now_subseg;
2692 pool->next = list_of_pools;
2693 pool->symbol = NULL;
2694
2695 /* Add it to the list. */
2696 list_of_pools = pool;
2697 }
2698
2699 /* New pools, and emptied pools, will have a NULL symbol. */
2700 if (pool->symbol == NULL)
2701 {
2702 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2703 (valueT) 0, &zero_address_frag);
2704 pool->id = latest_pool_num ++;
2705 }
2706
2707 /* Done. */
2708 return pool;
2709 }
2710
2711 /* Add the literal in the global 'inst'
2712 structure to the relevent literal pool. */
2713
2714 static int
2715 add_to_lit_pool (void)
2716 {
2717 literal_pool * pool;
2718 unsigned int entry;
2719
2720 pool = find_or_make_literal_pool ();
2721
2722 /* Check if this literal value is already in the pool. */
2723 for (entry = 0; entry < pool->next_free_entry; entry ++)
2724 {
2725 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2726 && (inst.reloc.exp.X_op == O_constant)
2727 && (pool->literals[entry].X_add_number
2728 == inst.reloc.exp.X_add_number)
2729 && (pool->literals[entry].X_unsigned
2730 == inst.reloc.exp.X_unsigned))
2731 break;
2732
2733 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2734 && (inst.reloc.exp.X_op == O_symbol)
2735 && (pool->literals[entry].X_add_number
2736 == inst.reloc.exp.X_add_number)
2737 && (pool->literals[entry].X_add_symbol
2738 == inst.reloc.exp.X_add_symbol)
2739 && (pool->literals[entry].X_op_symbol
2740 == inst.reloc.exp.X_op_symbol))
2741 break;
2742 }
2743
2744 /* Do we need to create a new entry? */
2745 if (entry == pool->next_free_entry)
2746 {
2747 if (entry >= MAX_LITERAL_POOL_SIZE)
2748 {
2749 inst.error = _("literal pool overflow");
2750 return FAIL;
2751 }
2752
2753 pool->literals[entry] = inst.reloc.exp;
2754 pool->next_free_entry += 1;
2755 }
2756
2757 inst.reloc.exp.X_op = O_symbol;
2758 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2759 inst.reloc.exp.X_add_symbol = pool->symbol;
2760
2761 return SUCCESS;
2762 }
2763
2764 /* Can't use symbol_new here, so have to create a symbol and then at
2765 a later date assign it a value. Thats what these functions do. */
2766
2767 static void
2768 symbol_locate (symbolS * symbolP,
2769 const char * name, /* It is copied, the caller can modify. */
2770 segT segment, /* Segment identifier (SEG_<something>). */
2771 valueT valu, /* Symbol value. */
2772 fragS * frag) /* Associated fragment. */
2773 {
2774 unsigned int name_length;
2775 char * preserved_copy_of_name;
2776
2777 name_length = strlen (name) + 1; /* +1 for \0. */
2778 obstack_grow (&notes, name, name_length);
2779 preserved_copy_of_name = obstack_finish (&notes);
2780
2781 #ifdef tc_canonicalize_symbol_name
2782 preserved_copy_of_name =
2783 tc_canonicalize_symbol_name (preserved_copy_of_name);
2784 #endif
2785
2786 S_SET_NAME (symbolP, preserved_copy_of_name);
2787
2788 S_SET_SEGMENT (symbolP, segment);
2789 S_SET_VALUE (symbolP, valu);
2790 symbol_clear_list_pointers (symbolP);
2791
2792 symbol_set_frag (symbolP, frag);
2793
2794 /* Link to end of symbol chain. */
2795 {
2796 extern int symbol_table_frozen;
2797
2798 if (symbol_table_frozen)
2799 abort ();
2800 }
2801
2802 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2803
2804 obj_symbol_new_hook (symbolP);
2805
2806 #ifdef tc_symbol_new_hook
2807 tc_symbol_new_hook (symbolP);
2808 #endif
2809
2810 #ifdef DEBUG_SYMS
2811 verify_symbol_chain (symbol_rootP, symbol_lastP);
2812 #endif /* DEBUG_SYMS */
2813 }
2814
2815
2816 static void
2817 s_ltorg (int ignored ATTRIBUTE_UNUSED)
2818 {
2819 unsigned int entry;
2820 literal_pool * pool;
2821 char sym_name[20];
2822
2823 pool = find_literal_pool ();
2824 if (pool == NULL
2825 || pool->symbol == NULL
2826 || pool->next_free_entry == 0)
2827 return;
2828
2829 mapping_state (MAP_DATA);
2830
2831 /* Align pool as you have word accesses.
2832 Only make a frag if we have to. */
2833 if (!need_pass_2)
2834 frag_align (2, 0, 0);
2835
2836 record_alignment (now_seg, 2);
2837
2838 sprintf (sym_name, "$$lit_\002%x", pool->id);
2839
2840 symbol_locate (pool->symbol, sym_name, now_seg,
2841 (valueT) frag_now_fix (), frag_now);
2842 symbol_table_insert (pool->symbol);
2843
2844 ARM_SET_THUMB (pool->symbol, thumb_mode);
2845
2846 #if defined OBJ_COFF || defined OBJ_ELF
2847 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2848 #endif
2849
2850 for (entry = 0; entry < pool->next_free_entry; entry ++)
2851 /* First output the expression in the instruction to the pool. */
2852 emit_expr (&(pool->literals[entry]), 4); /* .word */
2853
2854 /* Mark the pool as empty. */
2855 pool->next_free_entry = 0;
2856 pool->symbol = NULL;
2857 }
2858
2859 #ifdef OBJ_ELF
2860 /* Forward declarations for functions below, in the MD interface
2861 section. */
2862 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2863 static valueT create_unwind_entry (int);
2864 static void start_unwind_section (const segT, int);
2865 static void add_unwind_opcode (valueT, int);
2866 static void flush_pending_unwind (void);
2867
2868 /* Directives: Data. */
2869
2870 static void
2871 s_arm_elf_cons (int nbytes)
2872 {
2873 expressionS exp;
2874
2875 #ifdef md_flush_pending_output
2876 md_flush_pending_output ();
2877 #endif
2878
2879 if (is_it_end_of_statement ())
2880 {
2881 demand_empty_rest_of_line ();
2882 return;
2883 }
2884
2885 #ifdef md_cons_align
2886 md_cons_align (nbytes);
2887 #endif
2888
2889 mapping_state (MAP_DATA);
2890 do
2891 {
2892 int reloc;
2893 char *base = input_line_pointer;
2894
2895 expression (& exp);
2896
2897 if (exp.X_op != O_symbol)
2898 emit_expr (&exp, (unsigned int) nbytes);
2899 else
2900 {
2901 char *before_reloc = input_line_pointer;
2902 reloc = parse_reloc (&input_line_pointer);
2903 if (reloc == -1)
2904 {
2905 as_bad (_("unrecognized relocation suffix"));
2906 ignore_rest_of_line ();
2907 return;
2908 }
2909 else if (reloc == BFD_RELOC_UNUSED)
2910 emit_expr (&exp, (unsigned int) nbytes);
2911 else
2912 {
2913 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2914 int size = bfd_get_reloc_size (howto);
2915
2916 if (reloc == BFD_RELOC_ARM_PLT32)
2917 {
2918 as_bad (_("(plt) is only valid on branch targets"));
2919 reloc = BFD_RELOC_UNUSED;
2920 size = 0;
2921 }
2922
2923 if (size > nbytes)
2924 as_bad (_("%s relocations do not fit in %d bytes"),
2925 howto->name, nbytes);
2926 else
2927 {
2928 /* We've parsed an expression stopping at O_symbol.
2929 But there may be more expression left now that we
2930 have parsed the relocation marker. Parse it again.
2931 XXX Surely there is a cleaner way to do this. */
2932 char *p = input_line_pointer;
2933 int offset;
2934 char *save_buf = alloca (input_line_pointer - base);
2935 memcpy (save_buf, base, input_line_pointer - base);
2936 memmove (base + (input_line_pointer - before_reloc),
2937 base, before_reloc - base);
2938
2939 input_line_pointer = base + (input_line_pointer-before_reloc);
2940 expression (&exp);
2941 memcpy (base, save_buf, p - base);
2942
2943 offset = nbytes - size;
2944 p = frag_more ((int) nbytes);
2945 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2946 size, &exp, 0, reloc);
2947 }
2948 }
2949 }
2950 }
2951 while (*input_line_pointer++ == ',');
2952
2953 /* Put terminator back into stream. */
2954 input_line_pointer --;
2955 demand_empty_rest_of_line ();
2956 }
2957
2958
2959 /* Parse a .rel31 directive. */
2960
2961 static void
2962 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2963 {
2964 expressionS exp;
2965 char *p;
2966 valueT highbit;
2967
2968 highbit = 0;
2969 if (*input_line_pointer == '1')
2970 highbit = 0x80000000;
2971 else if (*input_line_pointer != '0')
2972 as_bad (_("expected 0 or 1"));
2973
2974 input_line_pointer++;
2975 if (*input_line_pointer != ',')
2976 as_bad (_("missing comma"));
2977 input_line_pointer++;
2978
2979 #ifdef md_flush_pending_output
2980 md_flush_pending_output ();
2981 #endif
2982
2983 #ifdef md_cons_align
2984 md_cons_align (4);
2985 #endif
2986
2987 mapping_state (MAP_DATA);
2988
2989 expression (&exp);
2990
2991 p = frag_more (4);
2992 md_number_to_chars (p, highbit, 4);
2993 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
2994 BFD_RELOC_ARM_PREL31);
2995
2996 demand_empty_rest_of_line ();
2997 }
2998
2999 /* Directives: AEABI stack-unwind tables. */
3000
3001 /* Parse an unwind_fnstart directive. Simply records the current location. */
3002
3003 static void
3004 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3005 {
3006 demand_empty_rest_of_line ();
3007 /* Mark the start of the function. */
3008 unwind.proc_start = expr_build_dot ();
3009
3010 /* Reset the rest of the unwind info. */
3011 unwind.opcode_count = 0;
3012 unwind.table_entry = NULL;
3013 unwind.personality_routine = NULL;
3014 unwind.personality_index = -1;
3015 unwind.frame_size = 0;
3016 unwind.fp_offset = 0;
3017 unwind.fp_reg = 13;
3018 unwind.fp_used = 0;
3019 unwind.sp_restored = 0;
3020 }
3021
3022
3023 /* Parse a handlerdata directive. Creates the exception handling table entry
3024 for the function. */
3025
3026 static void
3027 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3028 {
3029 demand_empty_rest_of_line ();
3030 if (unwind.table_entry)
3031 as_bad (_("dupicate .handlerdata directive"));
3032
3033 create_unwind_entry (1);
3034 }
3035
3036 /* Parse an unwind_fnend directive. Generates the index table entry. */
3037
3038 static void
3039 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3040 {
3041 long where;
3042 char *ptr;
3043 valueT val;
3044
3045 demand_empty_rest_of_line ();
3046
3047 /* Add eh table entry. */
3048 if (unwind.table_entry == NULL)
3049 val = create_unwind_entry (0);
3050 else
3051 val = 0;
3052
3053 /* Add index table entry. This is two words. */
3054 start_unwind_section (unwind.saved_seg, 1);
3055 frag_align (2, 0, 0);
3056 record_alignment (now_seg, 2);
3057
3058 ptr = frag_more (8);
3059 where = frag_now_fix () - 8;
3060
3061 /* Self relative offset of the function start. */
3062 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3063 BFD_RELOC_ARM_PREL31);
3064
3065 /* Indicate dependency on EHABI-defined personality routines to the
3066 linker, if it hasn't been done already. */
3067 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3068 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3069 {
3070 static const char *const name[] = {
3071 "__aeabi_unwind_cpp_pr0",
3072 "__aeabi_unwind_cpp_pr1",
3073 "__aeabi_unwind_cpp_pr2"
3074 };
3075 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3076 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3077 marked_pr_dependency |= 1 << unwind.personality_index;
3078 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3079 = marked_pr_dependency;
3080 }
3081
3082 if (val)
3083 /* Inline exception table entry. */
3084 md_number_to_chars (ptr + 4, val, 4);
3085 else
3086 /* Self relative offset of the table entry. */
3087 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3088 BFD_RELOC_ARM_PREL31);
3089
3090 /* Restore the original section. */
3091 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3092 }
3093
3094
3095 /* Parse an unwind_cantunwind directive. */
3096
3097 static void
3098 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3099 {
3100 demand_empty_rest_of_line ();
3101 if (unwind.personality_routine || unwind.personality_index != -1)
3102 as_bad (_("personality routine specified for cantunwind frame"));
3103
3104 unwind.personality_index = -2;
3105 }
3106
3107
3108 /* Parse a personalityindex directive. */
3109
3110 static void
3111 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3112 {
3113 expressionS exp;
3114
3115 if (unwind.personality_routine || unwind.personality_index != -1)
3116 as_bad (_("duplicate .personalityindex directive"));
3117
3118 expression (&exp);
3119
3120 if (exp.X_op != O_constant
3121 || exp.X_add_number < 0 || exp.X_add_number > 15)
3122 {
3123 as_bad (_("bad personality routine number"));
3124 ignore_rest_of_line ();
3125 return;
3126 }
3127
3128 unwind.personality_index = exp.X_add_number;
3129
3130 demand_empty_rest_of_line ();
3131 }
3132
3133
3134 /* Parse a personality directive. */
3135
3136 static void
3137 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3138 {
3139 char *name, *p, c;
3140
3141 if (unwind.personality_routine || unwind.personality_index != -1)
3142 as_bad (_("duplicate .personality directive"));
3143
3144 name = input_line_pointer;
3145 c = get_symbol_end ();
3146 p = input_line_pointer;
3147 unwind.personality_routine = symbol_find_or_make (name);
3148 *p = c;
3149 demand_empty_rest_of_line ();
3150 }
3151
3152
3153 /* Parse a directive saving core registers. */
3154
3155 static void
3156 s_arm_unwind_save_core (void)
3157 {
3158 valueT op;
3159 long range;
3160 int n;
3161
3162 range = parse_reg_list (&input_line_pointer);
3163 if (range == FAIL)
3164 {
3165 as_bad (_("expected register list"));
3166 ignore_rest_of_line ();
3167 return;
3168 }
3169
3170 demand_empty_rest_of_line ();
3171
3172 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3173 into .unwind_save {..., sp...}. We aren't bothered about the value of
3174 ip because it is clobbered by calls. */
3175 if (unwind.sp_restored && unwind.fp_reg == 12
3176 && (range & 0x3000) == 0x1000)
3177 {
3178 unwind.opcode_count--;
3179 unwind.sp_restored = 0;
3180 range = (range | 0x2000) & ~0x1000;
3181 unwind.pending_offset = 0;
3182 }
3183
3184 /* Pop r4-r15. */
3185 if (range & 0xfff0)
3186 {
3187 /* See if we can use the short opcodes. These pop a block of up to 8
3188 registers starting with r4, plus maybe r14. */
3189 for (n = 0; n < 8; n++)
3190 {
3191 /* Break at the first non-saved register. */
3192 if ((range & (1 << (n + 4))) == 0)
3193 break;
3194 }
3195 /* See if there are any other bits set. */
3196 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3197 {
3198 /* Use the long form. */
3199 op = 0x8000 | ((range >> 4) & 0xfff);
3200 add_unwind_opcode (op, 2);
3201 }
3202 else
3203 {
3204 /* Use the short form. */
3205 if (range & 0x4000)
3206 op = 0xa8; /* Pop r14. */
3207 else
3208 op = 0xa0; /* Do not pop r14. */
3209 op |= (n - 1);
3210 add_unwind_opcode (op, 1);
3211 }
3212 }
3213
3214 /* Pop r0-r3. */
3215 if (range & 0xf)
3216 {
3217 op = 0xb100 | (range & 0xf);
3218 add_unwind_opcode (op, 2);
3219 }
3220
3221 /* Record the number of bytes pushed. */
3222 for (n = 0; n < 16; n++)
3223 {
3224 if (range & (1 << n))
3225 unwind.frame_size += 4;
3226 }
3227 }
3228
3229
3230 /* Parse a directive saving FPA registers. */
3231
3232 static void
3233 s_arm_unwind_save_fpa (int reg)
3234 {
3235 expressionS exp;
3236 int num_regs;
3237 valueT op;
3238
3239 /* Get Number of registers to transfer. */
3240 if (skip_past_comma (&input_line_pointer) != FAIL)
3241 expression (&exp);
3242 else
3243 exp.X_op = O_illegal;
3244
3245 if (exp.X_op != O_constant)
3246 {
3247 as_bad (_("expected , <constant>"));
3248 ignore_rest_of_line ();
3249 return;
3250 }
3251
3252 num_regs = exp.X_add_number;
3253
3254 if (num_regs < 1 || num_regs > 4)
3255 {
3256 as_bad (_("number of registers must be in the range [1:4]"));
3257 ignore_rest_of_line ();
3258 return;
3259 }
3260
3261 demand_empty_rest_of_line ();
3262
3263 if (reg == 4)
3264 {
3265 /* Short form. */
3266 op = 0xb4 | (num_regs - 1);
3267 add_unwind_opcode (op, 1);
3268 }
3269 else
3270 {
3271 /* Long form. */
3272 op = 0xc800 | (reg << 4) | (num_regs - 1);
3273 add_unwind_opcode (op, 2);
3274 }
3275 unwind.frame_size += num_regs * 12;
3276 }
3277
3278
3279 /* Parse a directive saving VFP registers for ARMv6 and above. */
3280
3281 static void
3282 s_arm_unwind_save_vfp_armv6 (void)
3283 {
3284 int count;
3285 unsigned int start;
3286 valueT op;
3287 int num_vfpv3_regs = 0;
3288 int num_regs_below_16;
3289
3290 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3291 if (count == FAIL)
3292 {
3293 as_bad (_("expected register list"));
3294 ignore_rest_of_line ();
3295 return;
3296 }
3297
3298 demand_empty_rest_of_line ();
3299
3300 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3301 than FSTMX/FLDMX-style ones). */
3302
3303 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3304 if (start >= 16)
3305 num_vfpv3_regs = count;
3306 else if (start + count > 16)
3307 num_vfpv3_regs = start + count - 16;
3308
3309 if (num_vfpv3_regs > 0)
3310 {
3311 int start_offset = start > 16 ? start - 16 : 0;
3312 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3313 add_unwind_opcode (op, 2);
3314 }
3315
3316 /* Generate opcode for registers numbered in the range 0 .. 15. */
3317 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3318 assert (num_regs_below_16 + num_vfpv3_regs == count);
3319 if (num_regs_below_16 > 0)
3320 {
3321 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3322 add_unwind_opcode (op, 2);
3323 }
3324
3325 unwind.frame_size += count * 8;
3326 }
3327
3328
3329 /* Parse a directive saving VFP registers for pre-ARMv6. */
3330
3331 static void
3332 s_arm_unwind_save_vfp (void)
3333 {
3334 int count;
3335 unsigned int reg;
3336 valueT op;
3337
3338 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3339 if (count == FAIL)
3340 {
3341 as_bad (_("expected register list"));
3342 ignore_rest_of_line ();
3343 return;
3344 }
3345
3346 demand_empty_rest_of_line ();
3347
3348 if (reg == 8)
3349 {
3350 /* Short form. */
3351 op = 0xb8 | (count - 1);
3352 add_unwind_opcode (op, 1);
3353 }
3354 else
3355 {
3356 /* Long form. */
3357 op = 0xb300 | (reg << 4) | (count - 1);
3358 add_unwind_opcode (op, 2);
3359 }
3360 unwind.frame_size += count * 8 + 4;
3361 }
3362
3363
3364 /* Parse a directive saving iWMMXt data registers. */
3365
3366 static void
3367 s_arm_unwind_save_mmxwr (void)
3368 {
3369 int reg;
3370 int hi_reg;
3371 int i;
3372 unsigned mask = 0;
3373 valueT op;
3374
3375 if (*input_line_pointer == '{')
3376 input_line_pointer++;
3377
3378 do
3379 {
3380 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3381
3382 if (reg == FAIL)
3383 {
3384 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3385 goto error;
3386 }
3387
3388 if (mask >> reg)
3389 as_tsktsk (_("register list not in ascending order"));
3390 mask |= 1 << reg;
3391
3392 if (*input_line_pointer == '-')
3393 {
3394 input_line_pointer++;
3395 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3396 if (hi_reg == FAIL)
3397 {
3398 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3399 goto error;
3400 }
3401 else if (reg >= hi_reg)
3402 {
3403 as_bad (_("bad register range"));
3404 goto error;
3405 }
3406 for (; reg < hi_reg; reg++)
3407 mask |= 1 << reg;
3408 }
3409 }
3410 while (skip_past_comma (&input_line_pointer) != FAIL);
3411
3412 if (*input_line_pointer == '}')
3413 input_line_pointer++;
3414
3415 demand_empty_rest_of_line ();
3416
3417 /* Generate any deferred opcodes because we're going to be looking at
3418 the list. */
3419 flush_pending_unwind ();
3420
3421 for (i = 0; i < 16; i++)
3422 {
3423 if (mask & (1 << i))
3424 unwind.frame_size += 8;
3425 }
3426
3427 /* Attempt to combine with a previous opcode. We do this because gcc
3428 likes to output separate unwind directives for a single block of
3429 registers. */
3430 if (unwind.opcode_count > 0)
3431 {
3432 i = unwind.opcodes[unwind.opcode_count - 1];
3433 if ((i & 0xf8) == 0xc0)
3434 {
3435 i &= 7;
3436 /* Only merge if the blocks are contiguous. */
3437 if (i < 6)
3438 {
3439 if ((mask & 0xfe00) == (1 << 9))
3440 {
3441 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3442 unwind.opcode_count--;
3443 }
3444 }
3445 else if (i == 6 && unwind.opcode_count >= 2)
3446 {
3447 i = unwind.opcodes[unwind.opcode_count - 2];
3448 reg = i >> 4;
3449 i &= 0xf;
3450
3451 op = 0xffff << (reg - 1);
3452 if (reg > 0
3453 && ((mask & op) == (1u << (reg - 1))))
3454 {
3455 op = (1 << (reg + i + 1)) - 1;
3456 op &= ~((1 << reg) - 1);
3457 mask |= op;
3458 unwind.opcode_count -= 2;
3459 }
3460 }
3461 }
3462 }
3463
3464 hi_reg = 15;
3465 /* We want to generate opcodes in the order the registers have been
3466 saved, ie. descending order. */
3467 for (reg = 15; reg >= -1; reg--)
3468 {
3469 /* Save registers in blocks. */
3470 if (reg < 0
3471 || !(mask & (1 << reg)))
3472 {
3473 /* We found an unsaved reg. Generate opcodes to save the
3474 preceeding block. */
3475 if (reg != hi_reg)
3476 {
3477 if (reg == 9)
3478 {
3479 /* Short form. */
3480 op = 0xc0 | (hi_reg - 10);
3481 add_unwind_opcode (op, 1);
3482 }
3483 else
3484 {
3485 /* Long form. */
3486 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3487 add_unwind_opcode (op, 2);
3488 }
3489 }
3490 hi_reg = reg - 1;
3491 }
3492 }
3493
3494 return;
3495 error:
3496 ignore_rest_of_line ();
3497 }
3498
3499 static void
3500 s_arm_unwind_save_mmxwcg (void)
3501 {
3502 int reg;
3503 int hi_reg;
3504 unsigned mask = 0;
3505 valueT op;
3506
3507 if (*input_line_pointer == '{')
3508 input_line_pointer++;
3509
3510 do
3511 {
3512 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3513
3514 if (reg == FAIL)
3515 {
3516 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3517 goto error;
3518 }
3519
3520 reg -= 8;
3521 if (mask >> reg)
3522 as_tsktsk (_("register list not in ascending order"));
3523 mask |= 1 << reg;
3524
3525 if (*input_line_pointer == '-')
3526 {
3527 input_line_pointer++;
3528 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3529 if (hi_reg == FAIL)
3530 {
3531 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3532 goto error;
3533 }
3534 else if (reg >= hi_reg)
3535 {
3536 as_bad (_("bad register range"));
3537 goto error;
3538 }
3539 for (; reg < hi_reg; reg++)
3540 mask |= 1 << reg;
3541 }
3542 }
3543 while (skip_past_comma (&input_line_pointer) != FAIL);
3544
3545 if (*input_line_pointer == '}')
3546 input_line_pointer++;
3547
3548 demand_empty_rest_of_line ();
3549
3550 /* Generate any deferred opcodes because we're going to be looking at
3551 the list. */
3552 flush_pending_unwind ();
3553
3554 for (reg = 0; reg < 16; reg++)
3555 {
3556 if (mask & (1 << reg))
3557 unwind.frame_size += 4;
3558 }
3559 op = 0xc700 | mask;
3560 add_unwind_opcode (op, 2);
3561 return;
3562 error:
3563 ignore_rest_of_line ();
3564 }
3565
3566
3567 /* Parse an unwind_save directive.
3568 If the argument is non-zero, this is a .vsave directive. */
3569
3570 static void
3571 s_arm_unwind_save (int arch_v6)
3572 {
3573 char *peek;
3574 struct reg_entry *reg;
3575 bfd_boolean had_brace = FALSE;
3576
3577 /* Figure out what sort of save we have. */
3578 peek = input_line_pointer;
3579
3580 if (*peek == '{')
3581 {
3582 had_brace = TRUE;
3583 peek++;
3584 }
3585
3586 reg = arm_reg_parse_multi (&peek);
3587
3588 if (!reg)
3589 {
3590 as_bad (_("register expected"));
3591 ignore_rest_of_line ();
3592 return;
3593 }
3594
3595 switch (reg->type)
3596 {
3597 case REG_TYPE_FN:
3598 if (had_brace)
3599 {
3600 as_bad (_("FPA .unwind_save does not take a register list"));
3601 ignore_rest_of_line ();
3602 return;
3603 }
3604 s_arm_unwind_save_fpa (reg->number);
3605 return;
3606
3607 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3608 case REG_TYPE_VFD:
3609 if (arch_v6)
3610 s_arm_unwind_save_vfp_armv6 ();
3611 else
3612 s_arm_unwind_save_vfp ();
3613 return;
3614 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3615 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3616
3617 default:
3618 as_bad (_(".unwind_save does not support this kind of register"));
3619 ignore_rest_of_line ();
3620 }
3621 }
3622
3623
3624 /* Parse an unwind_movsp directive. */
3625
3626 static void
3627 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3628 {
3629 int reg;
3630 valueT op;
3631
3632 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3633 if (reg == FAIL)
3634 {
3635 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3636 ignore_rest_of_line ();
3637 return;
3638 }
3639 demand_empty_rest_of_line ();
3640
3641 if (reg == REG_SP || reg == REG_PC)
3642 {
3643 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3644 return;
3645 }
3646
3647 if (unwind.fp_reg != REG_SP)
3648 as_bad (_("unexpected .unwind_movsp directive"));
3649
3650 /* Generate opcode to restore the value. */
3651 op = 0x90 | reg;
3652 add_unwind_opcode (op, 1);
3653
3654 /* Record the information for later. */
3655 unwind.fp_reg = reg;
3656 unwind.fp_offset = unwind.frame_size;
3657 unwind.sp_restored = 1;
3658 }
3659
3660 /* Parse an unwind_pad directive. */
3661
3662 static void
3663 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3664 {
3665 int offset;
3666
3667 if (immediate_for_directive (&offset) == FAIL)
3668 return;
3669
3670 if (offset & 3)
3671 {
3672 as_bad (_("stack increment must be multiple of 4"));
3673 ignore_rest_of_line ();
3674 return;
3675 }
3676
3677 /* Don't generate any opcodes, just record the details for later. */
3678 unwind.frame_size += offset;
3679 unwind.pending_offset += offset;
3680
3681 demand_empty_rest_of_line ();
3682 }
3683
3684 /* Parse an unwind_setfp directive. */
3685
3686 static void
3687 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3688 {
3689 int sp_reg;
3690 int fp_reg;
3691 int offset;
3692
3693 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3694 if (skip_past_comma (&input_line_pointer) == FAIL)
3695 sp_reg = FAIL;
3696 else
3697 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3698
3699 if (fp_reg == FAIL || sp_reg == FAIL)
3700 {
3701 as_bad (_("expected <reg>, <reg>"));
3702 ignore_rest_of_line ();
3703 return;
3704 }
3705
3706 /* Optional constant. */
3707 if (skip_past_comma (&input_line_pointer) != FAIL)
3708 {
3709 if (immediate_for_directive (&offset) == FAIL)
3710 return;
3711 }
3712 else
3713 offset = 0;
3714
3715 demand_empty_rest_of_line ();
3716
3717 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
3718 {
3719 as_bad (_("register must be either sp or set by a previous"
3720 "unwind_movsp directive"));
3721 return;
3722 }
3723
3724 /* Don't generate any opcodes, just record the information for later. */
3725 unwind.fp_reg = fp_reg;
3726 unwind.fp_used = 1;
3727 if (sp_reg == 13)
3728 unwind.fp_offset = unwind.frame_size - offset;
3729 else
3730 unwind.fp_offset -= offset;
3731 }
3732
3733 /* Parse an unwind_raw directive. */
3734
3735 static void
3736 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3737 {
3738 expressionS exp;
3739 /* This is an arbitrary limit. */
3740 unsigned char op[16];
3741 int count;
3742
3743 expression (&exp);
3744 if (exp.X_op == O_constant
3745 && skip_past_comma (&input_line_pointer) != FAIL)
3746 {
3747 unwind.frame_size += exp.X_add_number;
3748 expression (&exp);
3749 }
3750 else
3751 exp.X_op = O_illegal;
3752
3753 if (exp.X_op != O_constant)
3754 {
3755 as_bad (_("expected <offset>, <opcode>"));
3756 ignore_rest_of_line ();
3757 return;
3758 }
3759
3760 count = 0;
3761
3762 /* Parse the opcode. */
3763 for (;;)
3764 {
3765 if (count >= 16)
3766 {
3767 as_bad (_("unwind opcode too long"));
3768 ignore_rest_of_line ();
3769 }
3770 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3771 {
3772 as_bad (_("invalid unwind opcode"));
3773 ignore_rest_of_line ();
3774 return;
3775 }
3776 op[count++] = exp.X_add_number;
3777
3778 /* Parse the next byte. */
3779 if (skip_past_comma (&input_line_pointer) == FAIL)
3780 break;
3781
3782 expression (&exp);
3783 }
3784
3785 /* Add the opcode bytes in reverse order. */
3786 while (count--)
3787 add_unwind_opcode (op[count], 1);
3788
3789 demand_empty_rest_of_line ();
3790 }
3791
3792
3793 /* Parse a .eabi_attribute directive. */
3794
3795 static void
3796 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3797 {
3798 expressionS exp;
3799 bfd_boolean is_string;
3800 int tag;
3801 unsigned int i = 0;
3802 char *s = NULL;
3803 char saved_char;
3804
3805 expression (& exp);
3806 if (exp.X_op != O_constant)
3807 goto bad;
3808
3809 tag = exp.X_add_number;
3810 if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0))
3811 is_string = 1;
3812 else
3813 is_string = 0;
3814
3815 if (skip_past_comma (&input_line_pointer) == FAIL)
3816 goto bad;
3817 if (tag == 32 || !is_string)
3818 {
3819 expression (& exp);
3820 if (exp.X_op != O_constant)
3821 {
3822 as_bad (_("expected numeric constant"));
3823 ignore_rest_of_line ();
3824 return;
3825 }
3826 i = exp.X_add_number;
3827 }
3828 if (tag == Tag_compatibility
3829 && skip_past_comma (&input_line_pointer) == FAIL)
3830 {
3831 as_bad (_("expected comma"));
3832 ignore_rest_of_line ();
3833 return;
3834 }
3835 if (is_string)
3836 {
3837 skip_whitespace(input_line_pointer);
3838 if (*input_line_pointer != '"')
3839 goto bad_string;
3840 input_line_pointer++;
3841 s = input_line_pointer;
3842 while (*input_line_pointer && *input_line_pointer != '"')
3843 input_line_pointer++;
3844 if (*input_line_pointer != '"')
3845 goto bad_string;
3846 saved_char = *input_line_pointer;
3847 *input_line_pointer = 0;
3848 }
3849 else
3850 {
3851 s = NULL;
3852 saved_char = 0;
3853 }
3854
3855 if (tag == Tag_compatibility)
3856 elf32_arm_add_eabi_attr_compat (stdoutput, i, s);
3857 else if (is_string)
3858 elf32_arm_add_eabi_attr_string (stdoutput, tag, s);
3859 else
3860 elf32_arm_add_eabi_attr_int (stdoutput, tag, i);
3861
3862 if (s)
3863 {
3864 *input_line_pointer = saved_char;
3865 input_line_pointer++;
3866 }
3867 demand_empty_rest_of_line ();
3868 return;
3869 bad_string:
3870 as_bad (_("bad string constant"));
3871 ignore_rest_of_line ();
3872 return;
3873 bad:
3874 as_bad (_("expected <tag> , <value>"));
3875 ignore_rest_of_line ();
3876 }
3877 #endif /* OBJ_ELF */
3878
3879 static void s_arm_arch (int);
3880 static void s_arm_cpu (int);
3881 static void s_arm_fpu (int);
3882
3883 #ifdef TE_PE
3884
3885 static void
3886 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3887 {
3888 expressionS exp;
3889
3890 do
3891 {
3892 expression (&exp);
3893 if (exp.X_op == O_symbol)
3894 exp.X_op = O_secrel;
3895
3896 emit_expr (&exp, 4);
3897 }
3898 while (*input_line_pointer++ == ',');
3899
3900 input_line_pointer--;
3901 demand_empty_rest_of_line ();
3902 }
3903 #endif /* TE_PE */
3904
3905 /* This table describes all the machine specific pseudo-ops the assembler
3906 has to support. The fields are:
3907 pseudo-op name without dot
3908 function to call to execute this pseudo-op
3909 Integer arg to pass to the function. */
3910
3911 const pseudo_typeS md_pseudo_table[] =
3912 {
3913 /* Never called because '.req' does not start a line. */
3914 { "req", s_req, 0 },
3915 /* Following two are likewise never called. */
3916 { "dn", s_dn, 0 },
3917 { "qn", s_qn, 0 },
3918 { "unreq", s_unreq, 0 },
3919 { "bss", s_bss, 0 },
3920 { "align", s_align, 0 },
3921 { "arm", s_arm, 0 },
3922 { "thumb", s_thumb, 0 },
3923 { "code", s_code, 0 },
3924 { "force_thumb", s_force_thumb, 0 },
3925 { "thumb_func", s_thumb_func, 0 },
3926 { "thumb_set", s_thumb_set, 0 },
3927 { "even", s_even, 0 },
3928 { "ltorg", s_ltorg, 0 },
3929 { "pool", s_ltorg, 0 },
3930 { "syntax", s_syntax, 0 },
3931 { "cpu", s_arm_cpu, 0 },
3932 { "arch", s_arm_arch, 0 },
3933 { "fpu", s_arm_fpu, 0 },
3934 #ifdef OBJ_ELF
3935 { "word", s_arm_elf_cons, 4 },
3936 { "long", s_arm_elf_cons, 4 },
3937 { "rel31", s_arm_rel31, 0 },
3938 { "fnstart", s_arm_unwind_fnstart, 0 },
3939 { "fnend", s_arm_unwind_fnend, 0 },
3940 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3941 { "personality", s_arm_unwind_personality, 0 },
3942 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3943 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3944 { "save", s_arm_unwind_save, 0 },
3945 { "vsave", s_arm_unwind_save, 1 },
3946 { "movsp", s_arm_unwind_movsp, 0 },
3947 { "pad", s_arm_unwind_pad, 0 },
3948 { "setfp", s_arm_unwind_setfp, 0 },
3949 { "unwind_raw", s_arm_unwind_raw, 0 },
3950 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3951 #else
3952 { "word", cons, 4},
3953
3954 /* These are used for dwarf. */
3955 {"2byte", cons, 2},
3956 {"4byte", cons, 4},
3957 {"8byte", cons, 8},
3958 /* These are used for dwarf2. */
3959 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3960 { "loc", dwarf2_directive_loc, 0 },
3961 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
3962 #endif
3963 { "extend", float_cons, 'x' },
3964 { "ldouble", float_cons, 'x' },
3965 { "packed", float_cons, 'p' },
3966 #ifdef TE_PE
3967 {"secrel32", pe_directive_secrel, 0},
3968 #endif
3969 { 0, 0, 0 }
3970 };
3971 \f
3972 /* Parser functions used exclusively in instruction operands. */
3973
3974 /* Generic immediate-value read function for use in insn parsing.
3975 STR points to the beginning of the immediate (the leading #);
3976 VAL receives the value; if the value is outside [MIN, MAX]
3977 issue an error. PREFIX_OPT is true if the immediate prefix is
3978 optional. */
3979
3980 static int
3981 parse_immediate (char **str, int *val, int min, int max,
3982 bfd_boolean prefix_opt)
3983 {
3984 expressionS exp;
3985 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3986 if (exp.X_op != O_constant)
3987 {
3988 inst.error = _("constant expression required");
3989 return FAIL;
3990 }
3991
3992 if (exp.X_add_number < min || exp.X_add_number > max)
3993 {
3994 inst.error = _("immediate value out of range");
3995 return FAIL;
3996 }
3997
3998 *val = exp.X_add_number;
3999 return SUCCESS;
4000 }
4001
4002 /* Less-generic immediate-value read function with the possibility of loading a
4003 big (64-bit) immediate, as required by Neon VMOV and VMVN immediate
4004 instructions. Puts the result directly in inst.operands[i]. */
4005
4006 static int
4007 parse_big_immediate (char **str, int i)
4008 {
4009 expressionS exp;
4010 char *ptr = *str;
4011
4012 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4013
4014 if (exp.X_op == O_constant)
4015 inst.operands[i].imm = exp.X_add_number;
4016 else if (exp.X_op == O_big
4017 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4018 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4019 {
4020 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4021 /* Bignums have their least significant bits in
4022 generic_bignum[0]. Make sure we put 32 bits in imm and
4023 32 bits in reg, in a (hopefully) portable way. */
4024 assert (parts != 0);
4025 inst.operands[i].imm = 0;
4026 for (j = 0; j < parts; j++, idx++)
4027 inst.operands[i].imm |= generic_bignum[idx]
4028 << (LITTLENUM_NUMBER_OF_BITS * j);
4029 inst.operands[i].reg = 0;
4030 for (j = 0; j < parts; j++, idx++)
4031 inst.operands[i].reg |= generic_bignum[idx]
4032 << (LITTLENUM_NUMBER_OF_BITS * j);
4033 inst.operands[i].regisimm = 1;
4034 }
4035 else
4036 return FAIL;
4037
4038 *str = ptr;
4039
4040 return SUCCESS;
4041 }
4042
4043 /* Returns the pseudo-register number of an FPA immediate constant,
4044 or FAIL if there isn't a valid constant here. */
4045
4046 static int
4047 parse_fpa_immediate (char ** str)
4048 {
4049 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4050 char * save_in;
4051 expressionS exp;
4052 int i;
4053 int j;
4054
4055 /* First try and match exact strings, this is to guarantee
4056 that some formats will work even for cross assembly. */
4057
4058 for (i = 0; fp_const[i]; i++)
4059 {
4060 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4061 {
4062 char *start = *str;
4063
4064 *str += strlen (fp_const[i]);
4065 if (is_end_of_line[(unsigned char) **str])
4066 return i + 8;
4067 *str = start;
4068 }
4069 }
4070
4071 /* Just because we didn't get a match doesn't mean that the constant
4072 isn't valid, just that it is in a format that we don't
4073 automatically recognize. Try parsing it with the standard
4074 expression routines. */
4075
4076 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4077
4078 /* Look for a raw floating point number. */
4079 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4080 && is_end_of_line[(unsigned char) *save_in])
4081 {
4082 for (i = 0; i < NUM_FLOAT_VALS; i++)
4083 {
4084 for (j = 0; j < MAX_LITTLENUMS; j++)
4085 {
4086 if (words[j] != fp_values[i][j])
4087 break;
4088 }
4089
4090 if (j == MAX_LITTLENUMS)
4091 {
4092 *str = save_in;
4093 return i + 8;
4094 }
4095 }
4096 }
4097
4098 /* Try and parse a more complex expression, this will probably fail
4099 unless the code uses a floating point prefix (eg "0f"). */
4100 save_in = input_line_pointer;
4101 input_line_pointer = *str;
4102 if (expression (&exp) == absolute_section
4103 && exp.X_op == O_big
4104 && exp.X_add_number < 0)
4105 {
4106 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4107 Ditto for 15. */
4108 if (gen_to_words (words, 5, (long) 15) == 0)
4109 {
4110 for (i = 0; i < NUM_FLOAT_VALS; i++)
4111 {
4112 for (j = 0; j < MAX_LITTLENUMS; j++)
4113 {
4114 if (words[j] != fp_values[i][j])
4115 break;
4116 }
4117
4118 if (j == MAX_LITTLENUMS)
4119 {
4120 *str = input_line_pointer;
4121 input_line_pointer = save_in;
4122 return i + 8;
4123 }
4124 }
4125 }
4126 }
4127
4128 *str = input_line_pointer;
4129 input_line_pointer = save_in;
4130 inst.error = _("invalid FPA immediate expression");
4131 return FAIL;
4132 }
4133
4134 /* Returns 1 if a number has "quarter-precision" float format
4135 0baBbbbbbc defgh000 00000000 00000000. */
4136
4137 static int
4138 is_quarter_float (unsigned imm)
4139 {
4140 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4141 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4142 }
4143
4144 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4145 0baBbbbbbc defgh000 00000000 00000000.
4146 The minus-zero case needs special handling, since it can't be encoded in the
4147 "quarter-precision" float format, but can nonetheless be loaded as an integer
4148 constant. */
4149
4150 static unsigned
4151 parse_qfloat_immediate (char **ccp, int *immed)
4152 {
4153 char *str = *ccp;
4154 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4155
4156 skip_past_char (&str, '#');
4157
4158 if ((str = atof_ieee (str, 's', words)) != NULL)
4159 {
4160 unsigned fpword = 0;
4161 int i;
4162
4163 /* Our FP word must be 32 bits (single-precision FP). */
4164 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4165 {
4166 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4167 fpword |= words[i];
4168 }
4169
4170 if (is_quarter_float (fpword) || fpword == 0x80000000)
4171 *immed = fpword;
4172 else
4173 return FAIL;
4174
4175 *ccp = str;
4176
4177 return SUCCESS;
4178 }
4179
4180 return FAIL;
4181 }
4182
4183 /* Shift operands. */
4184 enum shift_kind
4185 {
4186 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4187 };
4188
4189 struct asm_shift_name
4190 {
4191 const char *name;
4192 enum shift_kind kind;
4193 };
4194
4195 /* Third argument to parse_shift. */
4196 enum parse_shift_mode
4197 {
4198 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4199 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4200 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4201 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4202 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4203 };
4204
4205 /* Parse a <shift> specifier on an ARM data processing instruction.
4206 This has three forms:
4207
4208 (LSL|LSR|ASL|ASR|ROR) Rs
4209 (LSL|LSR|ASL|ASR|ROR) #imm
4210 RRX
4211
4212 Note that ASL is assimilated to LSL in the instruction encoding, and
4213 RRX to ROR #0 (which cannot be written as such). */
4214
4215 static int
4216 parse_shift (char **str, int i, enum parse_shift_mode mode)
4217 {
4218 const struct asm_shift_name *shift_name;
4219 enum shift_kind shift;
4220 char *s = *str;
4221 char *p = s;
4222 int reg;
4223
4224 for (p = *str; ISALPHA (*p); p++)
4225 ;
4226
4227 if (p == *str)
4228 {
4229 inst.error = _("shift expression expected");
4230 return FAIL;
4231 }
4232
4233 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4234
4235 if (shift_name == NULL)
4236 {
4237 inst.error = _("shift expression expected");
4238 return FAIL;
4239 }
4240
4241 shift = shift_name->kind;
4242
4243 switch (mode)
4244 {
4245 case NO_SHIFT_RESTRICT:
4246 case SHIFT_IMMEDIATE: break;
4247
4248 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4249 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4250 {
4251 inst.error = _("'LSL' or 'ASR' required");
4252 return FAIL;
4253 }
4254 break;
4255
4256 case SHIFT_LSL_IMMEDIATE:
4257 if (shift != SHIFT_LSL)
4258 {
4259 inst.error = _("'LSL' required");
4260 return FAIL;
4261 }
4262 break;
4263
4264 case SHIFT_ASR_IMMEDIATE:
4265 if (shift != SHIFT_ASR)
4266 {
4267 inst.error = _("'ASR' required");
4268 return FAIL;
4269 }
4270 break;
4271
4272 default: abort ();
4273 }
4274
4275 if (shift != SHIFT_RRX)
4276 {
4277 /* Whitespace can appear here if the next thing is a bare digit. */
4278 skip_whitespace (p);
4279
4280 if (mode == NO_SHIFT_RESTRICT
4281 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4282 {
4283 inst.operands[i].imm = reg;
4284 inst.operands[i].immisreg = 1;
4285 }
4286 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4287 return FAIL;
4288 }
4289 inst.operands[i].shift_kind = shift;
4290 inst.operands[i].shifted = 1;
4291 *str = p;
4292 return SUCCESS;
4293 }
4294
4295 /* Parse a <shifter_operand> for an ARM data processing instruction:
4296
4297 #<immediate>
4298 #<immediate>, <rotate>
4299 <Rm>
4300 <Rm>, <shift>
4301
4302 where <shift> is defined by parse_shift above, and <rotate> is a
4303 multiple of 2 between 0 and 30. Validation of immediate operands
4304 is deferred to md_apply_fix. */
4305
4306 static int
4307 parse_shifter_operand (char **str, int i)
4308 {
4309 int value;
4310 expressionS expr;
4311
4312 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4313 {
4314 inst.operands[i].reg = value;
4315 inst.operands[i].isreg = 1;
4316
4317 /* parse_shift will override this if appropriate */
4318 inst.reloc.exp.X_op = O_constant;
4319 inst.reloc.exp.X_add_number = 0;
4320
4321 if (skip_past_comma (str) == FAIL)
4322 return SUCCESS;
4323
4324 /* Shift operation on register. */
4325 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4326 }
4327
4328 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4329 return FAIL;
4330
4331 if (skip_past_comma (str) == SUCCESS)
4332 {
4333 /* #x, y -- ie explicit rotation by Y. */
4334 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4335 return FAIL;
4336
4337 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4338 {
4339 inst.error = _("constant expression expected");
4340 return FAIL;
4341 }
4342
4343 value = expr.X_add_number;
4344 if (value < 0 || value > 30 || value % 2 != 0)
4345 {
4346 inst.error = _("invalid rotation");
4347 return FAIL;
4348 }
4349 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4350 {
4351 inst.error = _("invalid constant");
4352 return FAIL;
4353 }
4354
4355 /* Convert to decoded value. md_apply_fix will put it back. */
4356 inst.reloc.exp.X_add_number
4357 = (((inst.reloc.exp.X_add_number << (32 - value))
4358 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4359 }
4360
4361 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4362 inst.reloc.pc_rel = 0;
4363 return SUCCESS;
4364 }
4365
4366 /* Group relocation information. Each entry in the table contains the
4367 textual name of the relocation as may appear in assembler source
4368 and must end with a colon.
4369 Along with this textual name are the relocation codes to be used if
4370 the corresponding instruction is an ALU instruction (ADD or SUB only),
4371 an LDR, an LDRS, or an LDC. */
4372
4373 struct group_reloc_table_entry
4374 {
4375 const char *name;
4376 int alu_code;
4377 int ldr_code;
4378 int ldrs_code;
4379 int ldc_code;
4380 };
4381
4382 typedef enum
4383 {
4384 /* Varieties of non-ALU group relocation. */
4385
4386 GROUP_LDR,
4387 GROUP_LDRS,
4388 GROUP_LDC
4389 } group_reloc_type;
4390
4391 static struct group_reloc_table_entry group_reloc_table[] =
4392 { /* Program counter relative: */
4393 { "pc_g0_nc",
4394 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4395 0, /* LDR */
4396 0, /* LDRS */
4397 0 }, /* LDC */
4398 { "pc_g0",
4399 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4400 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4401 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4402 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4403 { "pc_g1_nc",
4404 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4405 0, /* LDR */
4406 0, /* LDRS */
4407 0 }, /* LDC */
4408 { "pc_g1",
4409 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4410 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4411 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4412 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4413 { "pc_g2",
4414 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4415 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4416 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4417 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4418 /* Section base relative */
4419 { "sb_g0_nc",
4420 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4421 0, /* LDR */
4422 0, /* LDRS */
4423 0 }, /* LDC */
4424 { "sb_g0",
4425 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4426 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4427 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4428 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4429 { "sb_g1_nc",
4430 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4431 0, /* LDR */
4432 0, /* LDRS */
4433 0 }, /* LDC */
4434 { "sb_g1",
4435 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4436 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4437 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4438 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4439 { "sb_g2",
4440 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4441 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4442 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4443 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4444
4445 /* Given the address of a pointer pointing to the textual name of a group
4446 relocation as may appear in assembler source, attempt to find its details
4447 in group_reloc_table. The pointer will be updated to the character after
4448 the trailing colon. On failure, FAIL will be returned; SUCCESS
4449 otherwise. On success, *entry will be updated to point at the relevant
4450 group_reloc_table entry. */
4451
4452 static int
4453 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4454 {
4455 unsigned int i;
4456 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4457 {
4458 int length = strlen (group_reloc_table[i].name);
4459
4460 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 &&
4461 (*str)[length] == ':')
4462 {
4463 *out = &group_reloc_table[i];
4464 *str += (length + 1);
4465 return SUCCESS;
4466 }
4467 }
4468
4469 return FAIL;
4470 }
4471
4472 /* Parse a <shifter_operand> for an ARM data processing instruction
4473 (as for parse_shifter_operand) where group relocations are allowed:
4474
4475 #<immediate>
4476 #<immediate>, <rotate>
4477 #:<group_reloc>:<expression>
4478 <Rm>
4479 <Rm>, <shift>
4480
4481 where <group_reloc> is one of the strings defined in group_reloc_table.
4482 The hashes are optional.
4483
4484 Everything else is as for parse_shifter_operand. */
4485
4486 static parse_operand_result
4487 parse_shifter_operand_group_reloc (char **str, int i)
4488 {
4489 /* Determine if we have the sequence of characters #: or just :
4490 coming next. If we do, then we check for a group relocation.
4491 If we don't, punt the whole lot to parse_shifter_operand. */
4492
4493 if (((*str)[0] == '#' && (*str)[1] == ':')
4494 || (*str)[0] == ':')
4495 {
4496 struct group_reloc_table_entry *entry;
4497
4498 if ((*str)[0] == '#')
4499 (*str) += 2;
4500 else
4501 (*str)++;
4502
4503 /* Try to parse a group relocation. Anything else is an error. */
4504 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4505 {
4506 inst.error = _("unknown group relocation");
4507 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4508 }
4509
4510 /* We now have the group relocation table entry corresponding to
4511 the name in the assembler source. Next, we parse the expression. */
4512 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4513 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4514
4515 /* Record the relocation type (always the ALU variant here). */
4516 inst.reloc.type = entry->alu_code;
4517 assert (inst.reloc.type != 0);
4518
4519 return PARSE_OPERAND_SUCCESS;
4520 }
4521 else
4522 return parse_shifter_operand (str, i) == SUCCESS
4523 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4524
4525 /* Never reached. */
4526 }
4527
4528 /* Parse all forms of an ARM address expression. Information is written
4529 to inst.operands[i] and/or inst.reloc.
4530
4531 Preindexed addressing (.preind=1):
4532
4533 [Rn, #offset] .reg=Rn .reloc.exp=offset
4534 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4535 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4536 .shift_kind=shift .reloc.exp=shift_imm
4537
4538 These three may have a trailing ! which causes .writeback to be set also.
4539
4540 Postindexed addressing (.postind=1, .writeback=1):
4541
4542 [Rn], #offset .reg=Rn .reloc.exp=offset
4543 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4544 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4545 .shift_kind=shift .reloc.exp=shift_imm
4546
4547 Unindexed addressing (.preind=0, .postind=0):
4548
4549 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4550
4551 Other:
4552
4553 [Rn]{!} shorthand for [Rn,#0]{!}
4554 =immediate .isreg=0 .reloc.exp=immediate
4555 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4556
4557 It is the caller's responsibility to check for addressing modes not
4558 supported by the instruction, and to set inst.reloc.type. */
4559
4560 static parse_operand_result
4561 parse_address_main (char **str, int i, int group_relocations,
4562 group_reloc_type group_type)
4563 {
4564 char *p = *str;
4565 int reg;
4566
4567 if (skip_past_char (&p, '[') == FAIL)
4568 {
4569 if (skip_past_char (&p, '=') == FAIL)
4570 {
4571 /* bare address - translate to PC-relative offset */
4572 inst.reloc.pc_rel = 1;
4573 inst.operands[i].reg = REG_PC;
4574 inst.operands[i].isreg = 1;
4575 inst.operands[i].preind = 1;
4576 }
4577 /* else a load-constant pseudo op, no special treatment needed here */
4578
4579 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4580 return PARSE_OPERAND_FAIL;
4581
4582 *str = p;
4583 return PARSE_OPERAND_SUCCESS;
4584 }
4585
4586 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4587 {
4588 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4589 return PARSE_OPERAND_FAIL;
4590 }
4591 inst.operands[i].reg = reg;
4592 inst.operands[i].isreg = 1;
4593
4594 if (skip_past_comma (&p) == SUCCESS)
4595 {
4596 inst.operands[i].preind = 1;
4597
4598 if (*p == '+') p++;
4599 else if (*p == '-') p++, inst.operands[i].negative = 1;
4600
4601 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4602 {
4603 inst.operands[i].imm = reg;
4604 inst.operands[i].immisreg = 1;
4605
4606 if (skip_past_comma (&p) == SUCCESS)
4607 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4608 return PARSE_OPERAND_FAIL;
4609 }
4610 else if (skip_past_char (&p, ':') == SUCCESS)
4611 {
4612 /* FIXME: '@' should be used here, but it's filtered out by generic
4613 code before we get to see it here. This may be subject to
4614 change. */
4615 expressionS exp;
4616 my_get_expression (&exp, &p, GE_NO_PREFIX);
4617 if (exp.X_op != O_constant)
4618 {
4619 inst.error = _("alignment must be constant");
4620 return PARSE_OPERAND_FAIL;
4621 }
4622 inst.operands[i].imm = exp.X_add_number << 8;
4623 inst.operands[i].immisalign = 1;
4624 /* Alignments are not pre-indexes. */
4625 inst.operands[i].preind = 0;
4626 }
4627 else
4628 {
4629 if (inst.operands[i].negative)
4630 {
4631 inst.operands[i].negative = 0;
4632 p--;
4633 }
4634
4635 if (group_relocations &&
4636 ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4637
4638 {
4639 struct group_reloc_table_entry *entry;
4640
4641 /* Skip over the #: or : sequence. */
4642 if (*p == '#')
4643 p += 2;
4644 else
4645 p++;
4646
4647 /* Try to parse a group relocation. Anything else is an
4648 error. */
4649 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4650 {
4651 inst.error = _("unknown group relocation");
4652 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4653 }
4654
4655 /* We now have the group relocation table entry corresponding to
4656 the name in the assembler source. Next, we parse the
4657 expression. */
4658 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4659 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4660
4661 /* Record the relocation type. */
4662 switch (group_type)
4663 {
4664 case GROUP_LDR:
4665 inst.reloc.type = entry->ldr_code;
4666 break;
4667
4668 case GROUP_LDRS:
4669 inst.reloc.type = entry->ldrs_code;
4670 break;
4671
4672 case GROUP_LDC:
4673 inst.reloc.type = entry->ldc_code;
4674 break;
4675
4676 default:
4677 assert (0);
4678 }
4679
4680 if (inst.reloc.type == 0)
4681 {
4682 inst.error = _("this group relocation is not allowed on this instruction");
4683 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4684 }
4685 }
4686 else
4687 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4688 return PARSE_OPERAND_FAIL;
4689 }
4690 }
4691
4692 if (skip_past_char (&p, ']') == FAIL)
4693 {
4694 inst.error = _("']' expected");
4695 return PARSE_OPERAND_FAIL;
4696 }
4697
4698 if (skip_past_char (&p, '!') == SUCCESS)
4699 inst.operands[i].writeback = 1;
4700
4701 else if (skip_past_comma (&p) == SUCCESS)
4702 {
4703 if (skip_past_char (&p, '{') == SUCCESS)
4704 {
4705 /* [Rn], {expr} - unindexed, with option */
4706 if (parse_immediate (&p, &inst.operands[i].imm,
4707 0, 255, TRUE) == FAIL)
4708 return PARSE_OPERAND_FAIL;
4709
4710 if (skip_past_char (&p, '}') == FAIL)
4711 {
4712 inst.error = _("'}' expected at end of 'option' field");
4713 return PARSE_OPERAND_FAIL;
4714 }
4715 if (inst.operands[i].preind)
4716 {
4717 inst.error = _("cannot combine index with option");
4718 return PARSE_OPERAND_FAIL;
4719 }
4720 *str = p;
4721 return PARSE_OPERAND_SUCCESS;
4722 }
4723 else
4724 {
4725 inst.operands[i].postind = 1;
4726 inst.operands[i].writeback = 1;
4727
4728 if (inst.operands[i].preind)
4729 {
4730 inst.error = _("cannot combine pre- and post-indexing");
4731 return PARSE_OPERAND_FAIL;
4732 }
4733
4734 if (*p == '+') p++;
4735 else if (*p == '-') p++, inst.operands[i].negative = 1;
4736
4737 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4738 {
4739 /* We might be using the immediate for alignment already. If we
4740 are, OR the register number into the low-order bits. */
4741 if (inst.operands[i].immisalign)
4742 inst.operands[i].imm |= reg;
4743 else
4744 inst.operands[i].imm = reg;
4745 inst.operands[i].immisreg = 1;
4746
4747 if (skip_past_comma (&p) == SUCCESS)
4748 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4749 return PARSE_OPERAND_FAIL;
4750 }
4751 else
4752 {
4753 if (inst.operands[i].negative)
4754 {
4755 inst.operands[i].negative = 0;
4756 p--;
4757 }
4758 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4759 return PARSE_OPERAND_FAIL;
4760 }
4761 }
4762 }
4763
4764 /* If at this point neither .preind nor .postind is set, we have a
4765 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4766 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4767 {
4768 inst.operands[i].preind = 1;
4769 inst.reloc.exp.X_op = O_constant;
4770 inst.reloc.exp.X_add_number = 0;
4771 }
4772 *str = p;
4773 return PARSE_OPERAND_SUCCESS;
4774 }
4775
4776 static int
4777 parse_address (char **str, int i)
4778 {
4779 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4780 ? SUCCESS : FAIL;
4781 }
4782
4783 static parse_operand_result
4784 parse_address_group_reloc (char **str, int i, group_reloc_type type)
4785 {
4786 return parse_address_main (str, i, 1, type);
4787 }
4788
4789 /* Parse an operand for a MOVW or MOVT instruction. */
4790 static int
4791 parse_half (char **str)
4792 {
4793 char * p;
4794
4795 p = *str;
4796 skip_past_char (&p, '#');
4797 if (strncasecmp (p, ":lower16:", 9) == 0)
4798 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4799 else if (strncasecmp (p, ":upper16:", 9) == 0)
4800 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4801
4802 if (inst.reloc.type != BFD_RELOC_UNUSED)
4803 {
4804 p += 9;
4805 skip_whitespace(p);
4806 }
4807
4808 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4809 return FAIL;
4810
4811 if (inst.reloc.type == BFD_RELOC_UNUSED)
4812 {
4813 if (inst.reloc.exp.X_op != O_constant)
4814 {
4815 inst.error = _("constant expression expected");
4816 return FAIL;
4817 }
4818 if (inst.reloc.exp.X_add_number < 0
4819 || inst.reloc.exp.X_add_number > 0xffff)
4820 {
4821 inst.error = _("immediate value out of range");
4822 return FAIL;
4823 }
4824 }
4825 *str = p;
4826 return SUCCESS;
4827 }
4828
4829 /* Miscellaneous. */
4830
4831 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4832 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4833 static int
4834 parse_psr (char **str)
4835 {
4836 char *p;
4837 unsigned long psr_field;
4838 const struct asm_psr *psr;
4839 char *start;
4840
4841 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4842 feature for ease of use and backwards compatibility. */
4843 p = *str;
4844 if (strncasecmp (p, "SPSR", 4) == 0)
4845 psr_field = SPSR_BIT;
4846 else if (strncasecmp (p, "CPSR", 4) == 0)
4847 psr_field = 0;
4848 else
4849 {
4850 start = p;
4851 do
4852 p++;
4853 while (ISALNUM (*p) || *p == '_');
4854
4855 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4856 if (!psr)
4857 return FAIL;
4858
4859 *str = p;
4860 return psr->field;
4861 }
4862
4863 p += 4;
4864 if (*p == '_')
4865 {
4866 /* A suffix follows. */
4867 p++;
4868 start = p;
4869
4870 do
4871 p++;
4872 while (ISALNUM (*p) || *p == '_');
4873
4874 psr = hash_find_n (arm_psr_hsh, start, p - start);
4875 if (!psr)
4876 goto error;
4877
4878 psr_field |= psr->field;
4879 }
4880 else
4881 {
4882 if (ISALNUM (*p))
4883 goto error; /* Garbage after "[CS]PSR". */
4884
4885 psr_field |= (PSR_c | PSR_f);
4886 }
4887 *str = p;
4888 return psr_field;
4889
4890 error:
4891 inst.error = _("flag for {c}psr instruction expected");
4892 return FAIL;
4893 }
4894
4895 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4896 value suitable for splatting into the AIF field of the instruction. */
4897
4898 static int
4899 parse_cps_flags (char **str)
4900 {
4901 int val = 0;
4902 int saw_a_flag = 0;
4903 char *s = *str;
4904
4905 for (;;)
4906 switch (*s++)
4907 {
4908 case '\0': case ',':
4909 goto done;
4910
4911 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4912 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4913 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4914
4915 default:
4916 inst.error = _("unrecognized CPS flag");
4917 return FAIL;
4918 }
4919
4920 done:
4921 if (saw_a_flag == 0)
4922 {
4923 inst.error = _("missing CPS flags");
4924 return FAIL;
4925 }
4926
4927 *str = s - 1;
4928 return val;
4929 }
4930
4931 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4932 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4933
4934 static int
4935 parse_endian_specifier (char **str)
4936 {
4937 int little_endian;
4938 char *s = *str;
4939
4940 if (strncasecmp (s, "BE", 2))
4941 little_endian = 0;
4942 else if (strncasecmp (s, "LE", 2))
4943 little_endian = 1;
4944 else
4945 {
4946 inst.error = _("valid endian specifiers are be or le");
4947 return FAIL;
4948 }
4949
4950 if (ISALNUM (s[2]) || s[2] == '_')
4951 {
4952 inst.error = _("valid endian specifiers are be or le");
4953 return FAIL;
4954 }
4955
4956 *str = s + 2;
4957 return little_endian;
4958 }
4959
4960 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
4961 value suitable for poking into the rotate field of an sxt or sxta
4962 instruction, or FAIL on error. */
4963
4964 static int
4965 parse_ror (char **str)
4966 {
4967 int rot;
4968 char *s = *str;
4969
4970 if (strncasecmp (s, "ROR", 3) == 0)
4971 s += 3;
4972 else
4973 {
4974 inst.error = _("missing rotation field after comma");
4975 return FAIL;
4976 }
4977
4978 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
4979 return FAIL;
4980
4981 switch (rot)
4982 {
4983 case 0: *str = s; return 0x0;
4984 case 8: *str = s; return 0x1;
4985 case 16: *str = s; return 0x2;
4986 case 24: *str = s; return 0x3;
4987
4988 default:
4989 inst.error = _("rotation can only be 0, 8, 16, or 24");
4990 return FAIL;
4991 }
4992 }
4993
4994 /* Parse a conditional code (from conds[] below). The value returned is in the
4995 range 0 .. 14, or FAIL. */
4996 static int
4997 parse_cond (char **str)
4998 {
4999 char *p, *q;
5000 const struct asm_cond *c;
5001
5002 p = q = *str;
5003 while (ISALPHA (*q))
5004 q++;
5005
5006 c = hash_find_n (arm_cond_hsh, p, q - p);
5007 if (!c)
5008 {
5009 inst.error = _("condition required");
5010 return FAIL;
5011 }
5012
5013 *str = q;
5014 return c->value;
5015 }
5016
5017 /* Parse an option for a barrier instruction. Returns the encoding for the
5018 option, or FAIL. */
5019 static int
5020 parse_barrier (char **str)
5021 {
5022 char *p, *q;
5023 const struct asm_barrier_opt *o;
5024
5025 p = q = *str;
5026 while (ISALPHA (*q))
5027 q++;
5028
5029 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5030 if (!o)
5031 return FAIL;
5032
5033 *str = q;
5034 return o->value;
5035 }
5036
5037 /* Parse the operands of a table branch instruction. Similar to a memory
5038 operand. */
5039 static int
5040 parse_tb (char **str)
5041 {
5042 char * p = *str;
5043 int reg;
5044
5045 if (skip_past_char (&p, '[') == FAIL)
5046 {
5047 inst.error = _("'[' expected");
5048 return FAIL;
5049 }
5050
5051 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5052 {
5053 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5054 return FAIL;
5055 }
5056 inst.operands[0].reg = reg;
5057
5058 if (skip_past_comma (&p) == FAIL)
5059 {
5060 inst.error = _("',' expected");
5061 return FAIL;
5062 }
5063
5064 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5065 {
5066 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5067 return FAIL;
5068 }
5069 inst.operands[0].imm = reg;
5070
5071 if (skip_past_comma (&p) == SUCCESS)
5072 {
5073 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5074 return FAIL;
5075 if (inst.reloc.exp.X_add_number != 1)
5076 {
5077 inst.error = _("invalid shift");
5078 return FAIL;
5079 }
5080 inst.operands[0].shifted = 1;
5081 }
5082
5083 if (skip_past_char (&p, ']') == FAIL)
5084 {
5085 inst.error = _("']' expected");
5086 return FAIL;
5087 }
5088 *str = p;
5089 return SUCCESS;
5090 }
5091
5092 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5093 information on the types the operands can take and how they are encoded.
5094 Up to four operands may be read; this function handles setting the
5095 ".present" field for each read operand itself.
5096 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5097 else returns FAIL. */
5098
5099 static int
5100 parse_neon_mov (char **str, int *which_operand)
5101 {
5102 int i = *which_operand, val;
5103 enum arm_reg_type rtype;
5104 char *ptr = *str;
5105 struct neon_type_el optype;
5106
5107 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5108 {
5109 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5110 inst.operands[i].reg = val;
5111 inst.operands[i].isscalar = 1;
5112 inst.operands[i].vectype = optype;
5113 inst.operands[i++].present = 1;
5114
5115 if (skip_past_comma (&ptr) == FAIL)
5116 goto wanted_comma;
5117
5118 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5119 goto wanted_arm;
5120
5121 inst.operands[i].reg = val;
5122 inst.operands[i].isreg = 1;
5123 inst.operands[i].present = 1;
5124 }
5125 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5126 != FAIL)
5127 {
5128 /* Cases 0, 1, 2, 3, 5 (D only). */
5129 if (skip_past_comma (&ptr) == FAIL)
5130 goto wanted_comma;
5131
5132 inst.operands[i].reg = val;
5133 inst.operands[i].isreg = 1;
5134 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5135 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5136 inst.operands[i].isvec = 1;
5137 inst.operands[i].vectype = optype;
5138 inst.operands[i++].present = 1;
5139
5140 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5141 {
5142 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5143 Case 13: VMOV <Sd>, <Rm> */
5144 inst.operands[i].reg = val;
5145 inst.operands[i].isreg = 1;
5146 inst.operands[i].present = 1;
5147
5148 if (rtype == REG_TYPE_NQ)
5149 {
5150 first_error (_("can't use Neon quad register here"));
5151 return FAIL;
5152 }
5153 else if (rtype != REG_TYPE_VFS)
5154 {
5155 i++;
5156 if (skip_past_comma (&ptr) == FAIL)
5157 goto wanted_comma;
5158 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5159 goto wanted_arm;
5160 inst.operands[i].reg = val;
5161 inst.operands[i].isreg = 1;
5162 inst.operands[i].present = 1;
5163 }
5164 }
5165 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5166 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5167 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5168 Case 10: VMOV.F32 <Sd>, #<imm>
5169 Case 11: VMOV.F64 <Dd>, #<imm> */
5170 ;
5171 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5172 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5173 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5174 ;
5175 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5176 &optype)) != FAIL)
5177 {
5178 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5179 Case 1: VMOV<c><q> <Dd>, <Dm>
5180 Case 8: VMOV.F32 <Sd>, <Sm>
5181 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5182
5183 inst.operands[i].reg = val;
5184 inst.operands[i].isreg = 1;
5185 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5186 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5187 inst.operands[i].isvec = 1;
5188 inst.operands[i].vectype = optype;
5189 inst.operands[i].present = 1;
5190
5191 if (skip_past_comma (&ptr) == SUCCESS)
5192 {
5193 /* Case 15. */
5194 i++;
5195
5196 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5197 goto wanted_arm;
5198
5199 inst.operands[i].reg = val;
5200 inst.operands[i].isreg = 1;
5201 inst.operands[i++].present = 1;
5202
5203 if (skip_past_comma (&ptr) == FAIL)
5204 goto wanted_comma;
5205
5206 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5207 goto wanted_arm;
5208
5209 inst.operands[i].reg = val;
5210 inst.operands[i].isreg = 1;
5211 inst.operands[i++].present = 1;
5212 }
5213 }
5214 else
5215 {
5216 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5217 return FAIL;
5218 }
5219 }
5220 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5221 {
5222 /* Cases 6, 7. */
5223 inst.operands[i].reg = val;
5224 inst.operands[i].isreg = 1;
5225 inst.operands[i++].present = 1;
5226
5227 if (skip_past_comma (&ptr) == FAIL)
5228 goto wanted_comma;
5229
5230 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5231 {
5232 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5233 inst.operands[i].reg = val;
5234 inst.operands[i].isscalar = 1;
5235 inst.operands[i].present = 1;
5236 inst.operands[i].vectype = optype;
5237 }
5238 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5239 {
5240 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5241 inst.operands[i].reg = val;
5242 inst.operands[i].isreg = 1;
5243 inst.operands[i++].present = 1;
5244
5245 if (skip_past_comma (&ptr) == FAIL)
5246 goto wanted_comma;
5247
5248 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5249 == FAIL)
5250 {
5251 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5252 return FAIL;
5253 }
5254
5255 inst.operands[i].reg = val;
5256 inst.operands[i].isreg = 1;
5257 inst.operands[i].isvec = 1;
5258 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5259 inst.operands[i].vectype = optype;
5260 inst.operands[i].present = 1;
5261
5262 if (rtype == REG_TYPE_VFS)
5263 {
5264 /* Case 14. */
5265 i++;
5266 if (skip_past_comma (&ptr) == FAIL)
5267 goto wanted_comma;
5268 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5269 &optype)) == FAIL)
5270 {
5271 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5272 return FAIL;
5273 }
5274 inst.operands[i].reg = val;
5275 inst.operands[i].isreg = 1;
5276 inst.operands[i].isvec = 1;
5277 inst.operands[i].issingle = 1;
5278 inst.operands[i].vectype = optype;
5279 inst.operands[i].present = 1;
5280 }
5281 }
5282 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5283 != FAIL)
5284 {
5285 /* Case 13. */
5286 inst.operands[i].reg = val;
5287 inst.operands[i].isreg = 1;
5288 inst.operands[i].isvec = 1;
5289 inst.operands[i].issingle = 1;
5290 inst.operands[i].vectype = optype;
5291 inst.operands[i++].present = 1;
5292 }
5293 }
5294 else
5295 {
5296 first_error (_("parse error"));
5297 return FAIL;
5298 }
5299
5300 /* Successfully parsed the operands. Update args. */
5301 *which_operand = i;
5302 *str = ptr;
5303 return SUCCESS;
5304
5305 wanted_comma:
5306 first_error (_("expected comma"));
5307 return FAIL;
5308
5309 wanted_arm:
5310 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5311 return FAIL;
5312 }
5313
5314 /* Matcher codes for parse_operands. */
5315 enum operand_parse_code
5316 {
5317 OP_stop, /* end of line */
5318
5319 OP_RR, /* ARM register */
5320 OP_RRnpc, /* ARM register, not r15 */
5321 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5322 OP_RRw, /* ARM register, not r15, optional trailing ! */
5323 OP_RCP, /* Coprocessor number */
5324 OP_RCN, /* Coprocessor register */
5325 OP_RF, /* FPA register */
5326 OP_RVS, /* VFP single precision register */
5327 OP_RVD, /* VFP double precision register (0..15) */
5328 OP_RND, /* Neon double precision register (0..31) */
5329 OP_RNQ, /* Neon quad precision register */
5330 OP_RVSD, /* VFP single or double precision register */
5331 OP_RNDQ, /* Neon double or quad precision register */
5332 OP_RNSDQ, /* Neon single, double or quad precision register */
5333 OP_RNSC, /* Neon scalar D[X] */
5334 OP_RVC, /* VFP control register */
5335 OP_RMF, /* Maverick F register */
5336 OP_RMD, /* Maverick D register */
5337 OP_RMFX, /* Maverick FX register */
5338 OP_RMDX, /* Maverick DX register */
5339 OP_RMAX, /* Maverick AX register */
5340 OP_RMDS, /* Maverick DSPSC register */
5341 OP_RIWR, /* iWMMXt wR register */
5342 OP_RIWC, /* iWMMXt wC register */
5343 OP_RIWG, /* iWMMXt wCG register */
5344 OP_RXA, /* XScale accumulator register */
5345
5346 OP_REGLST, /* ARM register list */
5347 OP_VRSLST, /* VFP single-precision register list */
5348 OP_VRDLST, /* VFP double-precision register list */
5349 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5350 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5351 OP_NSTRLST, /* Neon element/structure list */
5352
5353 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5354 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5355 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5356 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5357 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5358 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5359 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5360 OP_VMOV, /* Neon VMOV operands. */
5361 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5362 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5363
5364 OP_I0, /* immediate zero */
5365 OP_I7, /* immediate value 0 .. 7 */
5366 OP_I15, /* 0 .. 15 */
5367 OP_I16, /* 1 .. 16 */
5368 OP_I16z, /* 0 .. 16 */
5369 OP_I31, /* 0 .. 31 */
5370 OP_I31w, /* 0 .. 31, optional trailing ! */
5371 OP_I32, /* 1 .. 32 */
5372 OP_I32z, /* 0 .. 32 */
5373 OP_I63, /* 0 .. 63 */
5374 OP_I63s, /* -64 .. 63 */
5375 OP_I64, /* 1 .. 64 */
5376 OP_I64z, /* 0 .. 64 */
5377 OP_I255, /* 0 .. 255 */
5378
5379 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5380 OP_I7b, /* 0 .. 7 */
5381 OP_I15b, /* 0 .. 15 */
5382 OP_I31b, /* 0 .. 31 */
5383
5384 OP_SH, /* shifter operand */
5385 OP_SHG, /* shifter operand with possible group relocation */
5386 OP_ADDR, /* Memory address expression (any mode) */
5387 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5388 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5389 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5390 OP_EXP, /* arbitrary expression */
5391 OP_EXPi, /* same, with optional immediate prefix */
5392 OP_EXPr, /* same, with optional relocation suffix */
5393 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5394
5395 OP_CPSF, /* CPS flags */
5396 OP_ENDI, /* Endianness specifier */
5397 OP_PSR, /* CPSR/SPSR mask for msr */
5398 OP_COND, /* conditional code */
5399 OP_TB, /* Table branch. */
5400
5401 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5402 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5403
5404 OP_RRnpc_I0, /* ARM register or literal 0 */
5405 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5406 OP_RR_EXi, /* ARM register or expression with imm prefix */
5407 OP_RF_IF, /* FPA register or immediate */
5408 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5409 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5410
5411 /* Optional operands. */
5412 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5413 OP_oI31b, /* 0 .. 31 */
5414 OP_oI32b, /* 1 .. 32 */
5415 OP_oIffffb, /* 0 .. 65535 */
5416 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5417
5418 OP_oRR, /* ARM register */
5419 OP_oRRnpc, /* ARM register, not the PC */
5420 OP_oRND, /* Optional Neon double precision register */
5421 OP_oRNQ, /* Optional Neon quad precision register */
5422 OP_oRNDQ, /* Optional Neon double or quad precision register */
5423 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5424 OP_oSHll, /* LSL immediate */
5425 OP_oSHar, /* ASR immediate */
5426 OP_oSHllar, /* LSL or ASR immediate */
5427 OP_oROR, /* ROR 0/8/16/24 */
5428 OP_oBARRIER, /* Option argument for a barrier instruction. */
5429
5430 OP_FIRST_OPTIONAL = OP_oI7b
5431 };
5432
5433 /* Generic instruction operand parser. This does no encoding and no
5434 semantic validation; it merely squirrels values away in the inst
5435 structure. Returns SUCCESS or FAIL depending on whether the
5436 specified grammar matched. */
5437 static int
5438 parse_operands (char *str, const unsigned char *pattern)
5439 {
5440 unsigned const char *upat = pattern;
5441 char *backtrack_pos = 0;
5442 const char *backtrack_error = 0;
5443 int i, val, backtrack_index = 0;
5444 enum arm_reg_type rtype;
5445 parse_operand_result result;
5446
5447 #define po_char_or_fail(chr) do { \
5448 if (skip_past_char (&str, chr) == FAIL) \
5449 goto bad_args; \
5450 } while (0)
5451
5452 #define po_reg_or_fail(regtype) do { \
5453 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5454 &inst.operands[i].vectype); \
5455 if (val == FAIL) \
5456 { \
5457 first_error (_(reg_expected_msgs[regtype])); \
5458 goto failure; \
5459 } \
5460 inst.operands[i].reg = val; \
5461 inst.operands[i].isreg = 1; \
5462 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5463 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5464 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5465 || rtype == REG_TYPE_VFD \
5466 || rtype == REG_TYPE_NQ); \
5467 } while (0)
5468
5469 #define po_reg_or_goto(regtype, label) do { \
5470 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5471 &inst.operands[i].vectype); \
5472 if (val == FAIL) \
5473 goto label; \
5474 \
5475 inst.operands[i].reg = val; \
5476 inst.operands[i].isreg = 1; \
5477 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5478 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5479 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5480 || rtype == REG_TYPE_VFD \
5481 || rtype == REG_TYPE_NQ); \
5482 } while (0)
5483
5484 #define po_imm_or_fail(min, max, popt) do { \
5485 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5486 goto failure; \
5487 inst.operands[i].imm = val; \
5488 } while (0)
5489
5490 #define po_scalar_or_goto(elsz, label) do { \
5491 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5492 if (val == FAIL) \
5493 goto label; \
5494 inst.operands[i].reg = val; \
5495 inst.operands[i].isscalar = 1; \
5496 } while (0)
5497
5498 #define po_misc_or_fail(expr) do { \
5499 if (expr) \
5500 goto failure; \
5501 } while (0)
5502
5503 #define po_misc_or_fail_no_backtrack(expr) do { \
5504 result = expr; \
5505 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5506 backtrack_pos = 0; \
5507 if (result != PARSE_OPERAND_SUCCESS) \
5508 goto failure; \
5509 } while (0)
5510
5511 skip_whitespace (str);
5512
5513 for (i = 0; upat[i] != OP_stop; i++)
5514 {
5515 if (upat[i] >= OP_FIRST_OPTIONAL)
5516 {
5517 /* Remember where we are in case we need to backtrack. */
5518 assert (!backtrack_pos);
5519 backtrack_pos = str;
5520 backtrack_error = inst.error;
5521 backtrack_index = i;
5522 }
5523
5524 if (i > 0)
5525 po_char_or_fail (',');
5526
5527 switch (upat[i])
5528 {
5529 /* Registers */
5530 case OP_oRRnpc:
5531 case OP_RRnpc:
5532 case OP_oRR:
5533 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5534 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5535 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5536 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5537 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5538 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5539 case OP_oRND:
5540 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5541 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
5542 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5543 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5544 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5545 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5546 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5547 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5548 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5549 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5550 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5551 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5552 case OP_oRNQ:
5553 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5554 case OP_oRNDQ:
5555 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5556 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5557 case OP_oRNSDQ:
5558 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5559
5560 /* Neon scalar. Using an element size of 8 means that some invalid
5561 scalars are accepted here, so deal with those in later code. */
5562 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5563
5564 /* WARNING: We can expand to two operands here. This has the potential
5565 to totally confuse the backtracking mechanism! It will be OK at
5566 least as long as we don't try to use optional args as well,
5567 though. */
5568 case OP_NILO:
5569 {
5570 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5571 inst.operands[i].present = 1;
5572 i++;
5573 skip_past_comma (&str);
5574 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5575 break;
5576 one_reg_only:
5577 /* Optional register operand was omitted. Unfortunately, it's in
5578 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5579 here (this is a bit grotty). */
5580 inst.operands[i] = inst.operands[i-1];
5581 inst.operands[i-1].present = 0;
5582 break;
5583 try_imm:
5584 /* Immediate gets verified properly later, so accept any now. */
5585 po_imm_or_fail (INT_MIN, INT_MAX, TRUE);
5586 }
5587 break;
5588
5589 case OP_RNDQ_I0:
5590 {
5591 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5592 break;
5593 try_imm0:
5594 po_imm_or_fail (0, 0, TRUE);
5595 }
5596 break;
5597
5598 case OP_RVSD_I0:
5599 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5600 break;
5601
5602 case OP_RR_RNSC:
5603 {
5604 po_scalar_or_goto (8, try_rr);
5605 break;
5606 try_rr:
5607 po_reg_or_fail (REG_TYPE_RN);
5608 }
5609 break;
5610
5611 case OP_RNSDQ_RNSC:
5612 {
5613 po_scalar_or_goto (8, try_nsdq);
5614 break;
5615 try_nsdq:
5616 po_reg_or_fail (REG_TYPE_NSDQ);
5617 }
5618 break;
5619
5620 case OP_RNDQ_RNSC:
5621 {
5622 po_scalar_or_goto (8, try_ndq);
5623 break;
5624 try_ndq:
5625 po_reg_or_fail (REG_TYPE_NDQ);
5626 }
5627 break;
5628
5629 case OP_RND_RNSC:
5630 {
5631 po_scalar_or_goto (8, try_vfd);
5632 break;
5633 try_vfd:
5634 po_reg_or_fail (REG_TYPE_VFD);
5635 }
5636 break;
5637
5638 case OP_VMOV:
5639 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5640 not careful then bad things might happen. */
5641 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5642 break;
5643
5644 case OP_RNDQ_IMVNb:
5645 {
5646 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5647 break;
5648 try_mvnimm:
5649 /* There's a possibility of getting a 64-bit immediate here, so
5650 we need special handling. */
5651 if (parse_big_immediate (&str, i) == FAIL)
5652 {
5653 inst.error = _("immediate value is out of range");
5654 goto failure;
5655 }
5656 }
5657 break;
5658
5659 case OP_RNDQ_I63b:
5660 {
5661 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5662 break;
5663 try_shimm:
5664 po_imm_or_fail (0, 63, TRUE);
5665 }
5666 break;
5667
5668 case OP_RRnpcb:
5669 po_char_or_fail ('[');
5670 po_reg_or_fail (REG_TYPE_RN);
5671 po_char_or_fail (']');
5672 break;
5673
5674 case OP_RRw:
5675 po_reg_or_fail (REG_TYPE_RN);
5676 if (skip_past_char (&str, '!') == SUCCESS)
5677 inst.operands[i].writeback = 1;
5678 break;
5679
5680 /* Immediates */
5681 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5682 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5683 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5684 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
5685 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5686 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5687 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
5688 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5689 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5690 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5691 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
5692 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5693
5694 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5695 case OP_oI7b:
5696 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5697 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5698 case OP_oI31b:
5699 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5700 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5701 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5702
5703 /* Immediate variants */
5704 case OP_oI255c:
5705 po_char_or_fail ('{');
5706 po_imm_or_fail (0, 255, TRUE);
5707 po_char_or_fail ('}');
5708 break;
5709
5710 case OP_I31w:
5711 /* The expression parser chokes on a trailing !, so we have
5712 to find it first and zap it. */
5713 {
5714 char *s = str;
5715 while (*s && *s != ',')
5716 s++;
5717 if (s[-1] == '!')
5718 {
5719 s[-1] = '\0';
5720 inst.operands[i].writeback = 1;
5721 }
5722 po_imm_or_fail (0, 31, TRUE);
5723 if (str == s - 1)
5724 str = s;
5725 }
5726 break;
5727
5728 /* Expressions */
5729 case OP_EXPi: EXPi:
5730 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5731 GE_OPT_PREFIX));
5732 break;
5733
5734 case OP_EXP:
5735 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5736 GE_NO_PREFIX));
5737 break;
5738
5739 case OP_EXPr: EXPr:
5740 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5741 GE_NO_PREFIX));
5742 if (inst.reloc.exp.X_op == O_symbol)
5743 {
5744 val = parse_reloc (&str);
5745 if (val == -1)
5746 {
5747 inst.error = _("unrecognized relocation suffix");
5748 goto failure;
5749 }
5750 else if (val != BFD_RELOC_UNUSED)
5751 {
5752 inst.operands[i].imm = val;
5753 inst.operands[i].hasreloc = 1;
5754 }
5755 }
5756 break;
5757
5758 /* Operand for MOVW or MOVT. */
5759 case OP_HALF:
5760 po_misc_or_fail (parse_half (&str));
5761 break;
5762
5763 /* Register or expression */
5764 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5765 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5766
5767 /* Register or immediate */
5768 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5769 I0: po_imm_or_fail (0, 0, FALSE); break;
5770
5771 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5772 IF:
5773 if (!is_immediate_prefix (*str))
5774 goto bad_args;
5775 str++;
5776 val = parse_fpa_immediate (&str);
5777 if (val == FAIL)
5778 goto failure;
5779 /* FPA immediates are encoded as registers 8-15.
5780 parse_fpa_immediate has already applied the offset. */
5781 inst.operands[i].reg = val;
5782 inst.operands[i].isreg = 1;
5783 break;
5784
5785 /* Two kinds of register */
5786 case OP_RIWR_RIWC:
5787 {
5788 struct reg_entry *rege = arm_reg_parse_multi (&str);
5789 if (!rege
5790 || (rege->type != REG_TYPE_MMXWR
5791 && rege->type != REG_TYPE_MMXWC
5792 && rege->type != REG_TYPE_MMXWCG))
5793 {
5794 inst.error = _("iWMMXt data or control register expected");
5795 goto failure;
5796 }
5797 inst.operands[i].reg = rege->number;
5798 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5799 }
5800 break;
5801
5802 case OP_RIWC_RIWG:
5803 {
5804 struct reg_entry *rege = arm_reg_parse_multi (&str);
5805 if (!rege
5806 || (rege->type != REG_TYPE_MMXWC
5807 && rege->type != REG_TYPE_MMXWCG))
5808 {
5809 inst.error = _("iWMMXt control register expected");
5810 goto failure;
5811 }
5812 inst.operands[i].reg = rege->number;
5813 inst.operands[i].isreg = 1;
5814 }
5815 break;
5816
5817 /* Misc */
5818 case OP_CPSF: val = parse_cps_flags (&str); break;
5819 case OP_ENDI: val = parse_endian_specifier (&str); break;
5820 case OP_oROR: val = parse_ror (&str); break;
5821 case OP_PSR: val = parse_psr (&str); break;
5822 case OP_COND: val = parse_cond (&str); break;
5823 case OP_oBARRIER:val = parse_barrier (&str); break;
5824
5825 case OP_RVC_PSR:
5826 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5827 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5828 break;
5829 try_psr:
5830 val = parse_psr (&str);
5831 break;
5832
5833 case OP_APSR_RR:
5834 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5835 break;
5836 try_apsr:
5837 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5838 instruction). */
5839 if (strncasecmp (str, "APSR_", 5) == 0)
5840 {
5841 unsigned found = 0;
5842 str += 5;
5843 while (found < 15)
5844 switch (*str++)
5845 {
5846 case 'c': found = (found & 1) ? 16 : found | 1; break;
5847 case 'n': found = (found & 2) ? 16 : found | 2; break;
5848 case 'z': found = (found & 4) ? 16 : found | 4; break;
5849 case 'v': found = (found & 8) ? 16 : found | 8; break;
5850 default: found = 16;
5851 }
5852 if (found != 15)
5853 goto failure;
5854 inst.operands[i].isvec = 1;
5855 }
5856 else
5857 goto failure;
5858 break;
5859
5860 case OP_TB:
5861 po_misc_or_fail (parse_tb (&str));
5862 break;
5863
5864 /* Register lists */
5865 case OP_REGLST:
5866 val = parse_reg_list (&str);
5867 if (*str == '^')
5868 {
5869 inst.operands[1].writeback = 1;
5870 str++;
5871 }
5872 break;
5873
5874 case OP_VRSLST:
5875 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5876 break;
5877
5878 case OP_VRDLST:
5879 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5880 break;
5881
5882 case OP_VRSDLST:
5883 /* Allow Q registers too. */
5884 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5885 REGLIST_NEON_D);
5886 if (val == FAIL)
5887 {
5888 inst.error = NULL;
5889 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5890 REGLIST_VFP_S);
5891 inst.operands[i].issingle = 1;
5892 }
5893 break;
5894
5895 case OP_NRDLST:
5896 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5897 REGLIST_NEON_D);
5898 break;
5899
5900 case OP_NSTRLST:
5901 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5902 &inst.operands[i].vectype);
5903 break;
5904
5905 /* Addressing modes */
5906 case OP_ADDR:
5907 po_misc_or_fail (parse_address (&str, i));
5908 break;
5909
5910 case OP_ADDRGLDR:
5911 po_misc_or_fail_no_backtrack (
5912 parse_address_group_reloc (&str, i, GROUP_LDR));
5913 break;
5914
5915 case OP_ADDRGLDRS:
5916 po_misc_or_fail_no_backtrack (
5917 parse_address_group_reloc (&str, i, GROUP_LDRS));
5918 break;
5919
5920 case OP_ADDRGLDC:
5921 po_misc_or_fail_no_backtrack (
5922 parse_address_group_reloc (&str, i, GROUP_LDC));
5923 break;
5924
5925 case OP_SH:
5926 po_misc_or_fail (parse_shifter_operand (&str, i));
5927 break;
5928
5929 case OP_SHG:
5930 po_misc_or_fail_no_backtrack (
5931 parse_shifter_operand_group_reloc (&str, i));
5932 break;
5933
5934 case OP_oSHll:
5935 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
5936 break;
5937
5938 case OP_oSHar:
5939 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
5940 break;
5941
5942 case OP_oSHllar:
5943 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
5944 break;
5945
5946 default:
5947 as_fatal ("unhandled operand code %d", upat[i]);
5948 }
5949
5950 /* Various value-based sanity checks and shared operations. We
5951 do not signal immediate failures for the register constraints;
5952 this allows a syntax error to take precedence. */
5953 switch (upat[i])
5954 {
5955 case OP_oRRnpc:
5956 case OP_RRnpc:
5957 case OP_RRnpcb:
5958 case OP_RRw:
5959 case OP_RRnpc_I0:
5960 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
5961 inst.error = BAD_PC;
5962 break;
5963
5964 case OP_CPSF:
5965 case OP_ENDI:
5966 case OP_oROR:
5967 case OP_PSR:
5968 case OP_RVC_PSR:
5969 case OP_COND:
5970 case OP_oBARRIER:
5971 case OP_REGLST:
5972 case OP_VRSLST:
5973 case OP_VRDLST:
5974 case OP_VRSDLST:
5975 case OP_NRDLST:
5976 case OP_NSTRLST:
5977 if (val == FAIL)
5978 goto failure;
5979 inst.operands[i].imm = val;
5980 break;
5981
5982 default:
5983 break;
5984 }
5985
5986 /* If we get here, this operand was successfully parsed. */
5987 inst.operands[i].present = 1;
5988 continue;
5989
5990 bad_args:
5991 inst.error = BAD_ARGS;
5992
5993 failure:
5994 if (!backtrack_pos)
5995 {
5996 /* The parse routine should already have set inst.error, but set a
5997 defaut here just in case. */
5998 if (!inst.error)
5999 inst.error = _("syntax error");
6000 return FAIL;
6001 }
6002
6003 /* Do not backtrack over a trailing optional argument that
6004 absorbed some text. We will only fail again, with the
6005 'garbage following instruction' error message, which is
6006 probably less helpful than the current one. */
6007 if (backtrack_index == i && backtrack_pos != str
6008 && upat[i+1] == OP_stop)
6009 {
6010 if (!inst.error)
6011 inst.error = _("syntax error");
6012 return FAIL;
6013 }
6014
6015 /* Try again, skipping the optional argument at backtrack_pos. */
6016 str = backtrack_pos;
6017 inst.error = backtrack_error;
6018 inst.operands[backtrack_index].present = 0;
6019 i = backtrack_index;
6020 backtrack_pos = 0;
6021 }
6022
6023 /* Check that we have parsed all the arguments. */
6024 if (*str != '\0' && !inst.error)
6025 inst.error = _("garbage following instruction");
6026
6027 return inst.error ? FAIL : SUCCESS;
6028 }
6029
6030 #undef po_char_or_fail
6031 #undef po_reg_or_fail
6032 #undef po_reg_or_goto
6033 #undef po_imm_or_fail
6034 #undef po_scalar_or_fail
6035 \f
6036 /* Shorthand macro for instruction encoding functions issuing errors. */
6037 #define constraint(expr, err) do { \
6038 if (expr) \
6039 { \
6040 inst.error = err; \
6041 return; \
6042 } \
6043 } while (0)
6044
6045 /* Functions for operand encoding. ARM, then Thumb. */
6046
6047 #define rotate_left(v, n) (v << n | v >> (32 - n))
6048
6049 /* If VAL can be encoded in the immediate field of an ARM instruction,
6050 return the encoded form. Otherwise, return FAIL. */
6051
6052 static unsigned int
6053 encode_arm_immediate (unsigned int val)
6054 {
6055 unsigned int a, i;
6056
6057 for (i = 0; i < 32; i += 2)
6058 if ((a = rotate_left (val, i)) <= 0xff)
6059 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6060
6061 return FAIL;
6062 }
6063
6064 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6065 return the encoded form. Otherwise, return FAIL. */
6066 static unsigned int
6067 encode_thumb32_immediate (unsigned int val)
6068 {
6069 unsigned int a, i;
6070
6071 if (val <= 0xff)
6072 return val;
6073
6074 for (i = 1; i <= 24; i++)
6075 {
6076 a = val >> i;
6077 if ((val & ~(0xff << i)) == 0)
6078 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6079 }
6080
6081 a = val & 0xff;
6082 if (val == ((a << 16) | a))
6083 return 0x100 | a;
6084 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6085 return 0x300 | a;
6086
6087 a = val & 0xff00;
6088 if (val == ((a << 16) | a))
6089 return 0x200 | (a >> 8);
6090
6091 return FAIL;
6092 }
6093 /* Encode a VFP SP or DP register number into inst.instruction. */
6094
6095 static void
6096 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6097 {
6098 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6099 && reg > 15)
6100 {
6101 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6102 {
6103 if (thumb_mode)
6104 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6105 fpu_vfp_ext_v3);
6106 else
6107 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6108 fpu_vfp_ext_v3);
6109 }
6110 else
6111 {
6112 first_error (_("D register out of range for selected VFP version"));
6113 return;
6114 }
6115 }
6116
6117 switch (pos)
6118 {
6119 case VFP_REG_Sd:
6120 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6121 break;
6122
6123 case VFP_REG_Sn:
6124 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6125 break;
6126
6127 case VFP_REG_Sm:
6128 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6129 break;
6130
6131 case VFP_REG_Dd:
6132 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6133 break;
6134
6135 case VFP_REG_Dn:
6136 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6137 break;
6138
6139 case VFP_REG_Dm:
6140 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6141 break;
6142
6143 default:
6144 abort ();
6145 }
6146 }
6147
6148 /* Encode a <shift> in an ARM-format instruction. The immediate,
6149 if any, is handled by md_apply_fix. */
6150 static void
6151 encode_arm_shift (int i)
6152 {
6153 if (inst.operands[i].shift_kind == SHIFT_RRX)
6154 inst.instruction |= SHIFT_ROR << 5;
6155 else
6156 {
6157 inst.instruction |= inst.operands[i].shift_kind << 5;
6158 if (inst.operands[i].immisreg)
6159 {
6160 inst.instruction |= SHIFT_BY_REG;
6161 inst.instruction |= inst.operands[i].imm << 8;
6162 }
6163 else
6164 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6165 }
6166 }
6167
6168 static void
6169 encode_arm_shifter_operand (int i)
6170 {
6171 if (inst.operands[i].isreg)
6172 {
6173 inst.instruction |= inst.operands[i].reg;
6174 encode_arm_shift (i);
6175 }
6176 else
6177 inst.instruction |= INST_IMMEDIATE;
6178 }
6179
6180 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6181 static void
6182 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6183 {
6184 assert (inst.operands[i].isreg);
6185 inst.instruction |= inst.operands[i].reg << 16;
6186
6187 if (inst.operands[i].preind)
6188 {
6189 if (is_t)
6190 {
6191 inst.error = _("instruction does not accept preindexed addressing");
6192 return;
6193 }
6194 inst.instruction |= PRE_INDEX;
6195 if (inst.operands[i].writeback)
6196 inst.instruction |= WRITE_BACK;
6197
6198 }
6199 else if (inst.operands[i].postind)
6200 {
6201 assert (inst.operands[i].writeback);
6202 if (is_t)
6203 inst.instruction |= WRITE_BACK;
6204 }
6205 else /* unindexed - only for coprocessor */
6206 {
6207 inst.error = _("instruction does not accept unindexed addressing");
6208 return;
6209 }
6210
6211 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6212 && (((inst.instruction & 0x000f0000) >> 16)
6213 == ((inst.instruction & 0x0000f000) >> 12)))
6214 as_warn ((inst.instruction & LOAD_BIT)
6215 ? _("destination register same as write-back base")
6216 : _("source register same as write-back base"));
6217 }
6218
6219 /* inst.operands[i] was set up by parse_address. Encode it into an
6220 ARM-format mode 2 load or store instruction. If is_t is true,
6221 reject forms that cannot be used with a T instruction (i.e. not
6222 post-indexed). */
6223 static void
6224 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6225 {
6226 encode_arm_addr_mode_common (i, is_t);
6227
6228 if (inst.operands[i].immisreg)
6229 {
6230 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6231 inst.instruction |= inst.operands[i].imm;
6232 if (!inst.operands[i].negative)
6233 inst.instruction |= INDEX_UP;
6234 if (inst.operands[i].shifted)
6235 {
6236 if (inst.operands[i].shift_kind == SHIFT_RRX)
6237 inst.instruction |= SHIFT_ROR << 5;
6238 else
6239 {
6240 inst.instruction |= inst.operands[i].shift_kind << 5;
6241 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6242 }
6243 }
6244 }
6245 else /* immediate offset in inst.reloc */
6246 {
6247 if (inst.reloc.type == BFD_RELOC_UNUSED)
6248 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6249 }
6250 }
6251
6252 /* inst.operands[i] was set up by parse_address. Encode it into an
6253 ARM-format mode 3 load or store instruction. Reject forms that
6254 cannot be used with such instructions. If is_t is true, reject
6255 forms that cannot be used with a T instruction (i.e. not
6256 post-indexed). */
6257 static void
6258 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6259 {
6260 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6261 {
6262 inst.error = _("instruction does not accept scaled register index");
6263 return;
6264 }
6265
6266 encode_arm_addr_mode_common (i, is_t);
6267
6268 if (inst.operands[i].immisreg)
6269 {
6270 inst.instruction |= inst.operands[i].imm;
6271 if (!inst.operands[i].negative)
6272 inst.instruction |= INDEX_UP;
6273 }
6274 else /* immediate offset in inst.reloc */
6275 {
6276 inst.instruction |= HWOFFSET_IMM;
6277 if (inst.reloc.type == BFD_RELOC_UNUSED)
6278 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6279 }
6280 }
6281
6282 /* inst.operands[i] was set up by parse_address. Encode it into an
6283 ARM-format instruction. Reject all forms which cannot be encoded
6284 into a coprocessor load/store instruction. If wb_ok is false,
6285 reject use of writeback; if unind_ok is false, reject use of
6286 unindexed addressing. If reloc_override is not 0, use it instead
6287 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6288 (in which case it is preserved). */
6289
6290 static int
6291 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6292 {
6293 inst.instruction |= inst.operands[i].reg << 16;
6294
6295 assert (!(inst.operands[i].preind && inst.operands[i].postind));
6296
6297 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6298 {
6299 assert (!inst.operands[i].writeback);
6300 if (!unind_ok)
6301 {
6302 inst.error = _("instruction does not support unindexed addressing");
6303 return FAIL;
6304 }
6305 inst.instruction |= inst.operands[i].imm;
6306 inst.instruction |= INDEX_UP;
6307 return SUCCESS;
6308 }
6309
6310 if (inst.operands[i].preind)
6311 inst.instruction |= PRE_INDEX;
6312
6313 if (inst.operands[i].writeback)
6314 {
6315 if (inst.operands[i].reg == REG_PC)
6316 {
6317 inst.error = _("pc may not be used with write-back");
6318 return FAIL;
6319 }
6320 if (!wb_ok)
6321 {
6322 inst.error = _("instruction does not support writeback");
6323 return FAIL;
6324 }
6325 inst.instruction |= WRITE_BACK;
6326 }
6327
6328 if (reloc_override)
6329 inst.reloc.type = reloc_override;
6330 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6331 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6332 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6333 {
6334 if (thumb_mode)
6335 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6336 else
6337 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6338 }
6339
6340 return SUCCESS;
6341 }
6342
6343 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6344 Determine whether it can be performed with a move instruction; if
6345 it can, convert inst.instruction to that move instruction and
6346 return 1; if it can't, convert inst.instruction to a literal-pool
6347 load and return 0. If this is not a valid thing to do in the
6348 current context, set inst.error and return 1.
6349
6350 inst.operands[i] describes the destination register. */
6351
6352 static int
6353 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6354 {
6355 unsigned long tbit;
6356
6357 if (thumb_p)
6358 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6359 else
6360 tbit = LOAD_BIT;
6361
6362 if ((inst.instruction & tbit) == 0)
6363 {
6364 inst.error = _("invalid pseudo operation");
6365 return 1;
6366 }
6367 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6368 {
6369 inst.error = _("constant expression expected");
6370 return 1;
6371 }
6372 if (inst.reloc.exp.X_op == O_constant)
6373 {
6374 if (thumb_p)
6375 {
6376 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6377 {
6378 /* This can be done with a mov(1) instruction. */
6379 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6380 inst.instruction |= inst.reloc.exp.X_add_number;
6381 return 1;
6382 }
6383 }
6384 else
6385 {
6386 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6387 if (value != FAIL)
6388 {
6389 /* This can be done with a mov instruction. */
6390 inst.instruction &= LITERAL_MASK;
6391 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6392 inst.instruction |= value & 0xfff;
6393 return 1;
6394 }
6395
6396 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6397 if (value != FAIL)
6398 {
6399 /* This can be done with a mvn instruction. */
6400 inst.instruction &= LITERAL_MASK;
6401 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6402 inst.instruction |= value & 0xfff;
6403 return 1;
6404 }
6405 }
6406 }
6407
6408 if (add_to_lit_pool () == FAIL)
6409 {
6410 inst.error = _("literal pool insertion failed");
6411 return 1;
6412 }
6413 inst.operands[1].reg = REG_PC;
6414 inst.operands[1].isreg = 1;
6415 inst.operands[1].preind = 1;
6416 inst.reloc.pc_rel = 1;
6417 inst.reloc.type = (thumb_p
6418 ? BFD_RELOC_ARM_THUMB_OFFSET
6419 : (mode_3
6420 ? BFD_RELOC_ARM_HWLITERAL
6421 : BFD_RELOC_ARM_LITERAL));
6422 return 0;
6423 }
6424
6425 /* Functions for instruction encoding, sorted by subarchitecture.
6426 First some generics; their names are taken from the conventional
6427 bit positions for register arguments in ARM format instructions. */
6428
6429 static void
6430 do_noargs (void)
6431 {
6432 }
6433
6434 static void
6435 do_rd (void)
6436 {
6437 inst.instruction |= inst.operands[0].reg << 12;
6438 }
6439
6440 static void
6441 do_rd_rm (void)
6442 {
6443 inst.instruction |= inst.operands[0].reg << 12;
6444 inst.instruction |= inst.operands[1].reg;
6445 }
6446
6447 static void
6448 do_rd_rn (void)
6449 {
6450 inst.instruction |= inst.operands[0].reg << 12;
6451 inst.instruction |= inst.operands[1].reg << 16;
6452 }
6453
6454 static void
6455 do_rn_rd (void)
6456 {
6457 inst.instruction |= inst.operands[0].reg << 16;
6458 inst.instruction |= inst.operands[1].reg << 12;
6459 }
6460
6461 static void
6462 do_rd_rm_rn (void)
6463 {
6464 unsigned Rn = inst.operands[2].reg;
6465 /* Enforce restrictions on SWP instruction. */
6466 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6467 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6468 _("Rn must not overlap other operands"));
6469 inst.instruction |= inst.operands[0].reg << 12;
6470 inst.instruction |= inst.operands[1].reg;
6471 inst.instruction |= Rn << 16;
6472 }
6473
6474 static void
6475 do_rd_rn_rm (void)
6476 {
6477 inst.instruction |= inst.operands[0].reg << 12;
6478 inst.instruction |= inst.operands[1].reg << 16;
6479 inst.instruction |= inst.operands[2].reg;
6480 }
6481
6482 static void
6483 do_rm_rd_rn (void)
6484 {
6485 inst.instruction |= inst.operands[0].reg;
6486 inst.instruction |= inst.operands[1].reg << 12;
6487 inst.instruction |= inst.operands[2].reg << 16;
6488 }
6489
6490 static void
6491 do_imm0 (void)
6492 {
6493 inst.instruction |= inst.operands[0].imm;
6494 }
6495
6496 static void
6497 do_rd_cpaddr (void)
6498 {
6499 inst.instruction |= inst.operands[0].reg << 12;
6500 encode_arm_cp_address (1, TRUE, TRUE, 0);
6501 }
6502
6503 /* ARM instructions, in alphabetical order by function name (except
6504 that wrapper functions appear immediately after the function they
6505 wrap). */
6506
6507 /* This is a pseudo-op of the form "adr rd, label" to be converted
6508 into a relative address of the form "add rd, pc, #label-.-8". */
6509
6510 static void
6511 do_adr (void)
6512 {
6513 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6514
6515 /* Frag hacking will turn this into a sub instruction if the offset turns
6516 out to be negative. */
6517 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6518 inst.reloc.pc_rel = 1;
6519 inst.reloc.exp.X_add_number -= 8;
6520 }
6521
6522 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6523 into a relative address of the form:
6524 add rd, pc, #low(label-.-8)"
6525 add rd, rd, #high(label-.-8)" */
6526
6527 static void
6528 do_adrl (void)
6529 {
6530 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6531
6532 /* Frag hacking will turn this into a sub instruction if the offset turns
6533 out to be negative. */
6534 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6535 inst.reloc.pc_rel = 1;
6536 inst.size = INSN_SIZE * 2;
6537 inst.reloc.exp.X_add_number -= 8;
6538 }
6539
6540 static void
6541 do_arit (void)
6542 {
6543 if (!inst.operands[1].present)
6544 inst.operands[1].reg = inst.operands[0].reg;
6545 inst.instruction |= inst.operands[0].reg << 12;
6546 inst.instruction |= inst.operands[1].reg << 16;
6547 encode_arm_shifter_operand (2);
6548 }
6549
6550 static void
6551 do_barrier (void)
6552 {
6553 if (inst.operands[0].present)
6554 {
6555 constraint ((inst.instruction & 0xf0) != 0x40
6556 && inst.operands[0].imm != 0xf,
6557 "bad barrier type");
6558 inst.instruction |= inst.operands[0].imm;
6559 }
6560 else
6561 inst.instruction |= 0xf;
6562 }
6563
6564 static void
6565 do_bfc (void)
6566 {
6567 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6568 constraint (msb > 32, _("bit-field extends past end of register"));
6569 /* The instruction encoding stores the LSB and MSB,
6570 not the LSB and width. */
6571 inst.instruction |= inst.operands[0].reg << 12;
6572 inst.instruction |= inst.operands[1].imm << 7;
6573 inst.instruction |= (msb - 1) << 16;
6574 }
6575
6576 static void
6577 do_bfi (void)
6578 {
6579 unsigned int msb;
6580
6581 /* #0 in second position is alternative syntax for bfc, which is
6582 the same instruction but with REG_PC in the Rm field. */
6583 if (!inst.operands[1].isreg)
6584 inst.operands[1].reg = REG_PC;
6585
6586 msb = inst.operands[2].imm + inst.operands[3].imm;
6587 constraint (msb > 32, _("bit-field extends past end of register"));
6588 /* The instruction encoding stores the LSB and MSB,
6589 not the LSB and width. */
6590 inst.instruction |= inst.operands[0].reg << 12;
6591 inst.instruction |= inst.operands[1].reg;
6592 inst.instruction |= inst.operands[2].imm << 7;
6593 inst.instruction |= (msb - 1) << 16;
6594 }
6595
6596 static void
6597 do_bfx (void)
6598 {
6599 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6600 _("bit-field extends past end of register"));
6601 inst.instruction |= inst.operands[0].reg << 12;
6602 inst.instruction |= inst.operands[1].reg;
6603 inst.instruction |= inst.operands[2].imm << 7;
6604 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6605 }
6606
6607 /* ARM V5 breakpoint instruction (argument parse)
6608 BKPT <16 bit unsigned immediate>
6609 Instruction is not conditional.
6610 The bit pattern given in insns[] has the COND_ALWAYS condition,
6611 and it is an error if the caller tried to override that. */
6612
6613 static void
6614 do_bkpt (void)
6615 {
6616 /* Top 12 of 16 bits to bits 19:8. */
6617 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6618
6619 /* Bottom 4 of 16 bits to bits 3:0. */
6620 inst.instruction |= inst.operands[0].imm & 0xf;
6621 }
6622
6623 static void
6624 encode_branch (int default_reloc)
6625 {
6626 if (inst.operands[0].hasreloc)
6627 {
6628 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6629 _("the only suffix valid here is '(plt)'"));
6630 inst.reloc.type = BFD_RELOC_ARM_PLT32;
6631 }
6632 else
6633 {
6634 inst.reloc.type = default_reloc;
6635 }
6636 inst.reloc.pc_rel = 1;
6637 }
6638
6639 static void
6640 do_branch (void)
6641 {
6642 #ifdef OBJ_ELF
6643 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6644 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6645 else
6646 #endif
6647 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6648 }
6649
6650 static void
6651 do_bl (void)
6652 {
6653 #ifdef OBJ_ELF
6654 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6655 {
6656 if (inst.cond == COND_ALWAYS)
6657 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6658 else
6659 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6660 }
6661 else
6662 #endif
6663 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6664 }
6665
6666 /* ARM V5 branch-link-exchange instruction (argument parse)
6667 BLX <target_addr> ie BLX(1)
6668 BLX{<condition>} <Rm> ie BLX(2)
6669 Unfortunately, there are two different opcodes for this mnemonic.
6670 So, the insns[].value is not used, and the code here zaps values
6671 into inst.instruction.
6672 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6673
6674 static void
6675 do_blx (void)
6676 {
6677 if (inst.operands[0].isreg)
6678 {
6679 /* Arg is a register; the opcode provided by insns[] is correct.
6680 It is not illegal to do "blx pc", just useless. */
6681 if (inst.operands[0].reg == REG_PC)
6682 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6683
6684 inst.instruction |= inst.operands[0].reg;
6685 }
6686 else
6687 {
6688 /* Arg is an address; this instruction cannot be executed
6689 conditionally, and the opcode must be adjusted. */
6690 constraint (inst.cond != COND_ALWAYS, BAD_COND);
6691 inst.instruction = 0xfa000000;
6692 #ifdef OBJ_ELF
6693 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6694 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6695 else
6696 #endif
6697 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6698 }
6699 }
6700
6701 static void
6702 do_bx (void)
6703 {
6704 if (inst.operands[0].reg == REG_PC)
6705 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6706
6707 inst.instruction |= inst.operands[0].reg;
6708 }
6709
6710
6711 /* ARM v5TEJ. Jump to Jazelle code. */
6712
6713 static void
6714 do_bxj (void)
6715 {
6716 if (inst.operands[0].reg == REG_PC)
6717 as_tsktsk (_("use of r15 in bxj is not really useful"));
6718
6719 inst.instruction |= inst.operands[0].reg;
6720 }
6721
6722 /* Co-processor data operation:
6723 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6724 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6725 static void
6726 do_cdp (void)
6727 {
6728 inst.instruction |= inst.operands[0].reg << 8;
6729 inst.instruction |= inst.operands[1].imm << 20;
6730 inst.instruction |= inst.operands[2].reg << 12;
6731 inst.instruction |= inst.operands[3].reg << 16;
6732 inst.instruction |= inst.operands[4].reg;
6733 inst.instruction |= inst.operands[5].imm << 5;
6734 }
6735
6736 static void
6737 do_cmp (void)
6738 {
6739 inst.instruction |= inst.operands[0].reg << 16;
6740 encode_arm_shifter_operand (1);
6741 }
6742
6743 /* Transfer between coprocessor and ARM registers.
6744 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6745 MRC2
6746 MCR{cond}
6747 MCR2
6748
6749 No special properties. */
6750
6751 static void
6752 do_co_reg (void)
6753 {
6754 inst.instruction |= inst.operands[0].reg << 8;
6755 inst.instruction |= inst.operands[1].imm << 21;
6756 inst.instruction |= inst.operands[2].reg << 12;
6757 inst.instruction |= inst.operands[3].reg << 16;
6758 inst.instruction |= inst.operands[4].reg;
6759 inst.instruction |= inst.operands[5].imm << 5;
6760 }
6761
6762 /* Transfer between coprocessor register and pair of ARM registers.
6763 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6764 MCRR2
6765 MRRC{cond}
6766 MRRC2
6767
6768 Two XScale instructions are special cases of these:
6769
6770 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6771 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6772
6773 Result unpredicatable if Rd or Rn is R15. */
6774
6775 static void
6776 do_co_reg2c (void)
6777 {
6778 inst.instruction |= inst.operands[0].reg << 8;
6779 inst.instruction |= inst.operands[1].imm << 4;
6780 inst.instruction |= inst.operands[2].reg << 12;
6781 inst.instruction |= inst.operands[3].reg << 16;
6782 inst.instruction |= inst.operands[4].reg;
6783 }
6784
6785 static void
6786 do_cpsi (void)
6787 {
6788 inst.instruction |= inst.operands[0].imm << 6;
6789 inst.instruction |= inst.operands[1].imm;
6790 }
6791
6792 static void
6793 do_dbg (void)
6794 {
6795 inst.instruction |= inst.operands[0].imm;
6796 }
6797
6798 static void
6799 do_it (void)
6800 {
6801 /* There is no IT instruction in ARM mode. We
6802 process it but do not generate code for it. */
6803 inst.size = 0;
6804 }
6805
6806 static void
6807 do_ldmstm (void)
6808 {
6809 int base_reg = inst.operands[0].reg;
6810 int range = inst.operands[1].imm;
6811
6812 inst.instruction |= base_reg << 16;
6813 inst.instruction |= range;
6814
6815 if (inst.operands[1].writeback)
6816 inst.instruction |= LDM_TYPE_2_OR_3;
6817
6818 if (inst.operands[0].writeback)
6819 {
6820 inst.instruction |= WRITE_BACK;
6821 /* Check for unpredictable uses of writeback. */
6822 if (inst.instruction & LOAD_BIT)
6823 {
6824 /* Not allowed in LDM type 2. */
6825 if ((inst.instruction & LDM_TYPE_2_OR_3)
6826 && ((range & (1 << REG_PC)) == 0))
6827 as_warn (_("writeback of base register is UNPREDICTABLE"));
6828 /* Only allowed if base reg not in list for other types. */
6829 else if (range & (1 << base_reg))
6830 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6831 }
6832 else /* STM. */
6833 {
6834 /* Not allowed for type 2. */
6835 if (inst.instruction & LDM_TYPE_2_OR_3)
6836 as_warn (_("writeback of base register is UNPREDICTABLE"));
6837 /* Only allowed if base reg not in list, or first in list. */
6838 else if ((range & (1 << base_reg))
6839 && (range & ((1 << base_reg) - 1)))
6840 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6841 }
6842 }
6843 }
6844
6845 /* ARMv5TE load-consecutive (argument parse)
6846 Mode is like LDRH.
6847
6848 LDRccD R, mode
6849 STRccD R, mode. */
6850
6851 static void
6852 do_ldrd (void)
6853 {
6854 constraint (inst.operands[0].reg % 2 != 0,
6855 _("first destination register must be even"));
6856 constraint (inst.operands[1].present
6857 && inst.operands[1].reg != inst.operands[0].reg + 1,
6858 _("can only load two consecutive registers"));
6859 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6860 constraint (!inst.operands[2].isreg, _("'[' expected"));
6861
6862 if (!inst.operands[1].present)
6863 inst.operands[1].reg = inst.operands[0].reg + 1;
6864
6865 if (inst.instruction & LOAD_BIT)
6866 {
6867 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6868 register and the first register written; we have to diagnose
6869 overlap between the base and the second register written here. */
6870
6871 if (inst.operands[2].reg == inst.operands[1].reg
6872 && (inst.operands[2].writeback || inst.operands[2].postind))
6873 as_warn (_("base register written back, and overlaps "
6874 "second destination register"));
6875
6876 /* For an index-register load, the index register must not overlap the
6877 destination (even if not write-back). */
6878 else if (inst.operands[2].immisreg
6879 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6880 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
6881 as_warn (_("index register overlaps destination register"));
6882 }
6883
6884 inst.instruction |= inst.operands[0].reg << 12;
6885 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
6886 }
6887
6888 static void
6889 do_ldrex (void)
6890 {
6891 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6892 || inst.operands[1].postind || inst.operands[1].writeback
6893 || inst.operands[1].immisreg || inst.operands[1].shifted
6894 || inst.operands[1].negative
6895 /* This can arise if the programmer has written
6896 strex rN, rM, foo
6897 or if they have mistakenly used a register name as the last
6898 operand, eg:
6899 strex rN, rM, rX
6900 It is very difficult to distinguish between these two cases
6901 because "rX" might actually be a label. ie the register
6902 name has been occluded by a symbol of the same name. So we
6903 just generate a general 'bad addressing mode' type error
6904 message and leave it up to the programmer to discover the
6905 true cause and fix their mistake. */
6906 || (inst.operands[1].reg == REG_PC),
6907 BAD_ADDR_MODE);
6908
6909 constraint (inst.reloc.exp.X_op != O_constant
6910 || inst.reloc.exp.X_add_number != 0,
6911 _("offset must be zero in ARM encoding"));
6912
6913 inst.instruction |= inst.operands[0].reg << 12;
6914 inst.instruction |= inst.operands[1].reg << 16;
6915 inst.reloc.type = BFD_RELOC_UNUSED;
6916 }
6917
6918 static void
6919 do_ldrexd (void)
6920 {
6921 constraint (inst.operands[0].reg % 2 != 0,
6922 _("even register required"));
6923 constraint (inst.operands[1].present
6924 && inst.operands[1].reg != inst.operands[0].reg + 1,
6925 _("can only load two consecutive registers"));
6926 /* If op 1 were present and equal to PC, this function wouldn't
6927 have been called in the first place. */
6928 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6929
6930 inst.instruction |= inst.operands[0].reg << 12;
6931 inst.instruction |= inst.operands[2].reg << 16;
6932 }
6933
6934 static void
6935 do_ldst (void)
6936 {
6937 inst.instruction |= inst.operands[0].reg << 12;
6938 if (!inst.operands[1].isreg)
6939 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
6940 return;
6941 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
6942 }
6943
6944 static void
6945 do_ldstt (void)
6946 {
6947 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6948 reject [Rn,...]. */
6949 if (inst.operands[1].preind)
6950 {
6951 constraint (inst.reloc.exp.X_op != O_constant ||
6952 inst.reloc.exp.X_add_number != 0,
6953 _("this instruction requires a post-indexed address"));
6954
6955 inst.operands[1].preind = 0;
6956 inst.operands[1].postind = 1;
6957 inst.operands[1].writeback = 1;
6958 }
6959 inst.instruction |= inst.operands[0].reg << 12;
6960 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
6961 }
6962
6963 /* Halfword and signed-byte load/store operations. */
6964
6965 static void
6966 do_ldstv4 (void)
6967 {
6968 inst.instruction |= inst.operands[0].reg << 12;
6969 if (!inst.operands[1].isreg)
6970 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
6971 return;
6972 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
6973 }
6974
6975 static void
6976 do_ldsttv4 (void)
6977 {
6978 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6979 reject [Rn,...]. */
6980 if (inst.operands[1].preind)
6981 {
6982 constraint (inst.reloc.exp.X_op != O_constant ||
6983 inst.reloc.exp.X_add_number != 0,
6984 _("this instruction requires a post-indexed address"));
6985
6986 inst.operands[1].preind = 0;
6987 inst.operands[1].postind = 1;
6988 inst.operands[1].writeback = 1;
6989 }
6990 inst.instruction |= inst.operands[0].reg << 12;
6991 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
6992 }
6993
6994 /* Co-processor register load/store.
6995 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
6996 static void
6997 do_lstc (void)
6998 {
6999 inst.instruction |= inst.operands[0].reg << 8;
7000 inst.instruction |= inst.operands[1].reg << 12;
7001 encode_arm_cp_address (2, TRUE, TRUE, 0);
7002 }
7003
7004 static void
7005 do_mlas (void)
7006 {
7007 /* This restriction does not apply to mls (nor to mla in v6, but
7008 that's hard to detect at present). */
7009 if (inst.operands[0].reg == inst.operands[1].reg
7010 && !(inst.instruction & 0x00400000))
7011 as_tsktsk (_("rd and rm should be different in mla"));
7012
7013 inst.instruction |= inst.operands[0].reg << 16;
7014 inst.instruction |= inst.operands[1].reg;
7015 inst.instruction |= inst.operands[2].reg << 8;
7016 inst.instruction |= inst.operands[3].reg << 12;
7017
7018 }
7019
7020 static void
7021 do_mov (void)
7022 {
7023 inst.instruction |= inst.operands[0].reg << 12;
7024 encode_arm_shifter_operand (1);
7025 }
7026
7027 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7028 static void
7029 do_mov16 (void)
7030 {
7031 bfd_vma imm;
7032 bfd_boolean top;
7033
7034 top = (inst.instruction & 0x00400000) != 0;
7035 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7036 _(":lower16: not allowed this instruction"));
7037 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7038 _(":upper16: not allowed instruction"));
7039 inst.instruction |= inst.operands[0].reg << 12;
7040 if (inst.reloc.type == BFD_RELOC_UNUSED)
7041 {
7042 imm = inst.reloc.exp.X_add_number;
7043 /* The value is in two pieces: 0:11, 16:19. */
7044 inst.instruction |= (imm & 0x00000fff);
7045 inst.instruction |= (imm & 0x0000f000) << 4;
7046 }
7047 }
7048
7049 static void do_vfp_nsyn_opcode (const char *);
7050
7051 static int
7052 do_vfp_nsyn_mrs (void)
7053 {
7054 if (inst.operands[0].isvec)
7055 {
7056 if (inst.operands[1].reg != 1)
7057 first_error (_("operand 1 must be FPSCR"));
7058 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7059 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7060 do_vfp_nsyn_opcode ("fmstat");
7061 }
7062 else if (inst.operands[1].isvec)
7063 do_vfp_nsyn_opcode ("fmrx");
7064 else
7065 return FAIL;
7066
7067 return SUCCESS;
7068 }
7069
7070 static int
7071 do_vfp_nsyn_msr (void)
7072 {
7073 if (inst.operands[0].isvec)
7074 do_vfp_nsyn_opcode ("fmxr");
7075 else
7076 return FAIL;
7077
7078 return SUCCESS;
7079 }
7080
7081 static void
7082 do_mrs (void)
7083 {
7084 if (do_vfp_nsyn_mrs () == SUCCESS)
7085 return;
7086
7087 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7088 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7089 != (PSR_c|PSR_f),
7090 _("'CPSR' or 'SPSR' expected"));
7091 inst.instruction |= inst.operands[0].reg << 12;
7092 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7093 }
7094
7095 /* Two possible forms:
7096 "{C|S}PSR_<field>, Rm",
7097 "{C|S}PSR_f, #expression". */
7098
7099 static void
7100 do_msr (void)
7101 {
7102 if (do_vfp_nsyn_msr () == SUCCESS)
7103 return;
7104
7105 inst.instruction |= inst.operands[0].imm;
7106 if (inst.operands[1].isreg)
7107 inst.instruction |= inst.operands[1].reg;
7108 else
7109 {
7110 inst.instruction |= INST_IMMEDIATE;
7111 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7112 inst.reloc.pc_rel = 0;
7113 }
7114 }
7115
7116 static void
7117 do_mul (void)
7118 {
7119 if (!inst.operands[2].present)
7120 inst.operands[2].reg = inst.operands[0].reg;
7121 inst.instruction |= inst.operands[0].reg << 16;
7122 inst.instruction |= inst.operands[1].reg;
7123 inst.instruction |= inst.operands[2].reg << 8;
7124
7125 if (inst.operands[0].reg == inst.operands[1].reg)
7126 as_tsktsk (_("rd and rm should be different in mul"));
7127 }
7128
7129 /* Long Multiply Parser
7130 UMULL RdLo, RdHi, Rm, Rs
7131 SMULL RdLo, RdHi, Rm, Rs
7132 UMLAL RdLo, RdHi, Rm, Rs
7133 SMLAL RdLo, RdHi, Rm, Rs. */
7134
7135 static void
7136 do_mull (void)
7137 {
7138 inst.instruction |= inst.operands[0].reg << 12;
7139 inst.instruction |= inst.operands[1].reg << 16;
7140 inst.instruction |= inst.operands[2].reg;
7141 inst.instruction |= inst.operands[3].reg << 8;
7142
7143 /* rdhi, rdlo and rm must all be different. */
7144 if (inst.operands[0].reg == inst.operands[1].reg
7145 || inst.operands[0].reg == inst.operands[2].reg
7146 || inst.operands[1].reg == inst.operands[2].reg)
7147 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7148 }
7149
7150 static void
7151 do_nop (void)
7152 {
7153 if (inst.operands[0].present)
7154 {
7155 /* Architectural NOP hints are CPSR sets with no bits selected. */
7156 inst.instruction &= 0xf0000000;
7157 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7158 }
7159 }
7160
7161 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7162 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7163 Condition defaults to COND_ALWAYS.
7164 Error if Rd, Rn or Rm are R15. */
7165
7166 static void
7167 do_pkhbt (void)
7168 {
7169 inst.instruction |= inst.operands[0].reg << 12;
7170 inst.instruction |= inst.operands[1].reg << 16;
7171 inst.instruction |= inst.operands[2].reg;
7172 if (inst.operands[3].present)
7173 encode_arm_shift (3);
7174 }
7175
7176 /* ARM V6 PKHTB (Argument Parse). */
7177
7178 static void
7179 do_pkhtb (void)
7180 {
7181 if (!inst.operands[3].present)
7182 {
7183 /* If the shift specifier is omitted, turn the instruction
7184 into pkhbt rd, rm, rn. */
7185 inst.instruction &= 0xfff00010;
7186 inst.instruction |= inst.operands[0].reg << 12;
7187 inst.instruction |= inst.operands[1].reg;
7188 inst.instruction |= inst.operands[2].reg << 16;
7189 }
7190 else
7191 {
7192 inst.instruction |= inst.operands[0].reg << 12;
7193 inst.instruction |= inst.operands[1].reg << 16;
7194 inst.instruction |= inst.operands[2].reg;
7195 encode_arm_shift (3);
7196 }
7197 }
7198
7199 /* ARMv5TE: Preload-Cache
7200
7201 PLD <addr_mode>
7202
7203 Syntactically, like LDR with B=1, W=0, L=1. */
7204
7205 static void
7206 do_pld (void)
7207 {
7208 constraint (!inst.operands[0].isreg,
7209 _("'[' expected after PLD mnemonic"));
7210 constraint (inst.operands[0].postind,
7211 _("post-indexed expression used in preload instruction"));
7212 constraint (inst.operands[0].writeback,
7213 _("writeback used in preload instruction"));
7214 constraint (!inst.operands[0].preind,
7215 _("unindexed addressing used in preload instruction"));
7216 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7217 }
7218
7219 /* ARMv7: PLI <addr_mode> */
7220 static void
7221 do_pli (void)
7222 {
7223 constraint (!inst.operands[0].isreg,
7224 _("'[' expected after PLI mnemonic"));
7225 constraint (inst.operands[0].postind,
7226 _("post-indexed expression used in preload instruction"));
7227 constraint (inst.operands[0].writeback,
7228 _("writeback used in preload instruction"));
7229 constraint (!inst.operands[0].preind,
7230 _("unindexed addressing used in preload instruction"));
7231 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7232 inst.instruction &= ~PRE_INDEX;
7233 }
7234
7235 static void
7236 do_push_pop (void)
7237 {
7238 inst.operands[1] = inst.operands[0];
7239 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7240 inst.operands[0].isreg = 1;
7241 inst.operands[0].writeback = 1;
7242 inst.operands[0].reg = REG_SP;
7243 do_ldmstm ();
7244 }
7245
7246 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7247 word at the specified address and the following word
7248 respectively.
7249 Unconditionally executed.
7250 Error if Rn is R15. */
7251
7252 static void
7253 do_rfe (void)
7254 {
7255 inst.instruction |= inst.operands[0].reg << 16;
7256 if (inst.operands[0].writeback)
7257 inst.instruction |= WRITE_BACK;
7258 }
7259
7260 /* ARM V6 ssat (argument parse). */
7261
7262 static void
7263 do_ssat (void)
7264 {
7265 inst.instruction |= inst.operands[0].reg << 12;
7266 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7267 inst.instruction |= inst.operands[2].reg;
7268
7269 if (inst.operands[3].present)
7270 encode_arm_shift (3);
7271 }
7272
7273 /* ARM V6 usat (argument parse). */
7274
7275 static void
7276 do_usat (void)
7277 {
7278 inst.instruction |= inst.operands[0].reg << 12;
7279 inst.instruction |= inst.operands[1].imm << 16;
7280 inst.instruction |= inst.operands[2].reg;
7281
7282 if (inst.operands[3].present)
7283 encode_arm_shift (3);
7284 }
7285
7286 /* ARM V6 ssat16 (argument parse). */
7287
7288 static void
7289 do_ssat16 (void)
7290 {
7291 inst.instruction |= inst.operands[0].reg << 12;
7292 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7293 inst.instruction |= inst.operands[2].reg;
7294 }
7295
7296 static void
7297 do_usat16 (void)
7298 {
7299 inst.instruction |= inst.operands[0].reg << 12;
7300 inst.instruction |= inst.operands[1].imm << 16;
7301 inst.instruction |= inst.operands[2].reg;
7302 }
7303
7304 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7305 preserving the other bits.
7306
7307 setend <endian_specifier>, where <endian_specifier> is either
7308 BE or LE. */
7309
7310 static void
7311 do_setend (void)
7312 {
7313 if (inst.operands[0].imm)
7314 inst.instruction |= 0x200;
7315 }
7316
7317 static void
7318 do_shift (void)
7319 {
7320 unsigned int Rm = (inst.operands[1].present
7321 ? inst.operands[1].reg
7322 : inst.operands[0].reg);
7323
7324 inst.instruction |= inst.operands[0].reg << 12;
7325 inst.instruction |= Rm;
7326 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7327 {
7328 inst.instruction |= inst.operands[2].reg << 8;
7329 inst.instruction |= SHIFT_BY_REG;
7330 }
7331 else
7332 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7333 }
7334
7335 static void
7336 do_smc (void)
7337 {
7338 inst.reloc.type = BFD_RELOC_ARM_SMC;
7339 inst.reloc.pc_rel = 0;
7340 }
7341
7342 static void
7343 do_swi (void)
7344 {
7345 inst.reloc.type = BFD_RELOC_ARM_SWI;
7346 inst.reloc.pc_rel = 0;
7347 }
7348
7349 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7350 SMLAxy{cond} Rd,Rm,Rs,Rn
7351 SMLAWy{cond} Rd,Rm,Rs,Rn
7352 Error if any register is R15. */
7353
7354 static void
7355 do_smla (void)
7356 {
7357 inst.instruction |= inst.operands[0].reg << 16;
7358 inst.instruction |= inst.operands[1].reg;
7359 inst.instruction |= inst.operands[2].reg << 8;
7360 inst.instruction |= inst.operands[3].reg << 12;
7361 }
7362
7363 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7364 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7365 Error if any register is R15.
7366 Warning if Rdlo == Rdhi. */
7367
7368 static void
7369 do_smlal (void)
7370 {
7371 inst.instruction |= inst.operands[0].reg << 12;
7372 inst.instruction |= inst.operands[1].reg << 16;
7373 inst.instruction |= inst.operands[2].reg;
7374 inst.instruction |= inst.operands[3].reg << 8;
7375
7376 if (inst.operands[0].reg == inst.operands[1].reg)
7377 as_tsktsk (_("rdhi and rdlo must be different"));
7378 }
7379
7380 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7381 SMULxy{cond} Rd,Rm,Rs
7382 Error if any register is R15. */
7383
7384 static void
7385 do_smul (void)
7386 {
7387 inst.instruction |= inst.operands[0].reg << 16;
7388 inst.instruction |= inst.operands[1].reg;
7389 inst.instruction |= inst.operands[2].reg << 8;
7390 }
7391
7392 /* ARM V6 srs (argument parse). */
7393
7394 static void
7395 do_srs (void)
7396 {
7397 inst.instruction |= inst.operands[0].imm;
7398 if (inst.operands[0].writeback)
7399 inst.instruction |= WRITE_BACK;
7400 }
7401
7402 /* ARM V6 strex (argument parse). */
7403
7404 static void
7405 do_strex (void)
7406 {
7407 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7408 || inst.operands[2].postind || inst.operands[2].writeback
7409 || inst.operands[2].immisreg || inst.operands[2].shifted
7410 || inst.operands[2].negative
7411 /* See comment in do_ldrex(). */
7412 || (inst.operands[2].reg == REG_PC),
7413 BAD_ADDR_MODE);
7414
7415 constraint (inst.operands[0].reg == inst.operands[1].reg
7416 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7417
7418 constraint (inst.reloc.exp.X_op != O_constant
7419 || inst.reloc.exp.X_add_number != 0,
7420 _("offset must be zero in ARM encoding"));
7421
7422 inst.instruction |= inst.operands[0].reg << 12;
7423 inst.instruction |= inst.operands[1].reg;
7424 inst.instruction |= inst.operands[2].reg << 16;
7425 inst.reloc.type = BFD_RELOC_UNUSED;
7426 }
7427
7428 static void
7429 do_strexd (void)
7430 {
7431 constraint (inst.operands[1].reg % 2 != 0,
7432 _("even register required"));
7433 constraint (inst.operands[2].present
7434 && inst.operands[2].reg != inst.operands[1].reg + 1,
7435 _("can only store two consecutive registers"));
7436 /* If op 2 were present and equal to PC, this function wouldn't
7437 have been called in the first place. */
7438 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7439
7440 constraint (inst.operands[0].reg == inst.operands[1].reg
7441 || inst.operands[0].reg == inst.operands[1].reg + 1
7442 || inst.operands[0].reg == inst.operands[3].reg,
7443 BAD_OVERLAP);
7444
7445 inst.instruction |= inst.operands[0].reg << 12;
7446 inst.instruction |= inst.operands[1].reg;
7447 inst.instruction |= inst.operands[3].reg << 16;
7448 }
7449
7450 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7451 extends it to 32-bits, and adds the result to a value in another
7452 register. You can specify a rotation by 0, 8, 16, or 24 bits
7453 before extracting the 16-bit value.
7454 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7455 Condition defaults to COND_ALWAYS.
7456 Error if any register uses R15. */
7457
7458 static void
7459 do_sxtah (void)
7460 {
7461 inst.instruction |= inst.operands[0].reg << 12;
7462 inst.instruction |= inst.operands[1].reg << 16;
7463 inst.instruction |= inst.operands[2].reg;
7464 inst.instruction |= inst.operands[3].imm << 10;
7465 }
7466
7467 /* ARM V6 SXTH.
7468
7469 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7470 Condition defaults to COND_ALWAYS.
7471 Error if any register uses R15. */
7472
7473 static void
7474 do_sxth (void)
7475 {
7476 inst.instruction |= inst.operands[0].reg << 12;
7477 inst.instruction |= inst.operands[1].reg;
7478 inst.instruction |= inst.operands[2].imm << 10;
7479 }
7480 \f
7481 /* VFP instructions. In a logical order: SP variant first, monad
7482 before dyad, arithmetic then move then load/store. */
7483
7484 static void
7485 do_vfp_sp_monadic (void)
7486 {
7487 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7488 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7489 }
7490
7491 static void
7492 do_vfp_sp_dyadic (void)
7493 {
7494 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7495 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7496 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7497 }
7498
7499 static void
7500 do_vfp_sp_compare_z (void)
7501 {
7502 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7503 }
7504
7505 static void
7506 do_vfp_dp_sp_cvt (void)
7507 {
7508 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7509 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7510 }
7511
7512 static void
7513 do_vfp_sp_dp_cvt (void)
7514 {
7515 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7516 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7517 }
7518
7519 static void
7520 do_vfp_reg_from_sp (void)
7521 {
7522 inst.instruction |= inst.operands[0].reg << 12;
7523 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7524 }
7525
7526 static void
7527 do_vfp_reg2_from_sp2 (void)
7528 {
7529 constraint (inst.operands[2].imm != 2,
7530 _("only two consecutive VFP SP registers allowed here"));
7531 inst.instruction |= inst.operands[0].reg << 12;
7532 inst.instruction |= inst.operands[1].reg << 16;
7533 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7534 }
7535
7536 static void
7537 do_vfp_sp_from_reg (void)
7538 {
7539 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7540 inst.instruction |= inst.operands[1].reg << 12;
7541 }
7542
7543 static void
7544 do_vfp_sp2_from_reg2 (void)
7545 {
7546 constraint (inst.operands[0].imm != 2,
7547 _("only two consecutive VFP SP registers allowed here"));
7548 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7549 inst.instruction |= inst.operands[1].reg << 12;
7550 inst.instruction |= inst.operands[2].reg << 16;
7551 }
7552
7553 static void
7554 do_vfp_sp_ldst (void)
7555 {
7556 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7557 encode_arm_cp_address (1, FALSE, TRUE, 0);
7558 }
7559
7560 static void
7561 do_vfp_dp_ldst (void)
7562 {
7563 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7564 encode_arm_cp_address (1, FALSE, TRUE, 0);
7565 }
7566
7567
7568 static void
7569 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7570 {
7571 if (inst.operands[0].writeback)
7572 inst.instruction |= WRITE_BACK;
7573 else
7574 constraint (ldstm_type != VFP_LDSTMIA,
7575 _("this addressing mode requires base-register writeback"));
7576 inst.instruction |= inst.operands[0].reg << 16;
7577 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7578 inst.instruction |= inst.operands[1].imm;
7579 }
7580
7581 static void
7582 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7583 {
7584 int count;
7585
7586 if (inst.operands[0].writeback)
7587 inst.instruction |= WRITE_BACK;
7588 else
7589 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7590 _("this addressing mode requires base-register writeback"));
7591
7592 inst.instruction |= inst.operands[0].reg << 16;
7593 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7594
7595 count = inst.operands[1].imm << 1;
7596 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7597 count += 1;
7598
7599 inst.instruction |= count;
7600 }
7601
7602 static void
7603 do_vfp_sp_ldstmia (void)
7604 {
7605 vfp_sp_ldstm (VFP_LDSTMIA);
7606 }
7607
7608 static void
7609 do_vfp_sp_ldstmdb (void)
7610 {
7611 vfp_sp_ldstm (VFP_LDSTMDB);
7612 }
7613
7614 static void
7615 do_vfp_dp_ldstmia (void)
7616 {
7617 vfp_dp_ldstm (VFP_LDSTMIA);
7618 }
7619
7620 static void
7621 do_vfp_dp_ldstmdb (void)
7622 {
7623 vfp_dp_ldstm (VFP_LDSTMDB);
7624 }
7625
7626 static void
7627 do_vfp_xp_ldstmia (void)
7628 {
7629 vfp_dp_ldstm (VFP_LDSTMIAX);
7630 }
7631
7632 static void
7633 do_vfp_xp_ldstmdb (void)
7634 {
7635 vfp_dp_ldstm (VFP_LDSTMDBX);
7636 }
7637
7638 static void
7639 do_vfp_dp_rd_rm (void)
7640 {
7641 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7642 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7643 }
7644
7645 static void
7646 do_vfp_dp_rn_rd (void)
7647 {
7648 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7649 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7650 }
7651
7652 static void
7653 do_vfp_dp_rd_rn (void)
7654 {
7655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7656 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7657 }
7658
7659 static void
7660 do_vfp_dp_rd_rn_rm (void)
7661 {
7662 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7663 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7664 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7665 }
7666
7667 static void
7668 do_vfp_dp_rd (void)
7669 {
7670 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7671 }
7672
7673 static void
7674 do_vfp_dp_rm_rd_rn (void)
7675 {
7676 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7677 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7678 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7679 }
7680
7681 /* VFPv3 instructions. */
7682 static void
7683 do_vfp_sp_const (void)
7684 {
7685 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7686 inst.instruction |= (inst.operands[1].imm & 15) << 16;
7687 inst.instruction |= (inst.operands[1].imm >> 4);
7688 }
7689
7690 static void
7691 do_vfp_dp_const (void)
7692 {
7693 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7694 inst.instruction |= (inst.operands[1].imm & 15) << 16;
7695 inst.instruction |= (inst.operands[1].imm >> 4);
7696 }
7697
7698 static void
7699 vfp_conv (int srcsize)
7700 {
7701 unsigned immbits = srcsize - inst.operands[1].imm;
7702 inst.instruction |= (immbits & 1) << 5;
7703 inst.instruction |= (immbits >> 1);
7704 }
7705
7706 static void
7707 do_vfp_sp_conv_16 (void)
7708 {
7709 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7710 vfp_conv (16);
7711 }
7712
7713 static void
7714 do_vfp_dp_conv_16 (void)
7715 {
7716 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7717 vfp_conv (16);
7718 }
7719
7720 static void
7721 do_vfp_sp_conv_32 (void)
7722 {
7723 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7724 vfp_conv (32);
7725 }
7726
7727 static void
7728 do_vfp_dp_conv_32 (void)
7729 {
7730 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7731 vfp_conv (32);
7732 }
7733
7734 \f
7735 /* FPA instructions. Also in a logical order. */
7736
7737 static void
7738 do_fpa_cmp (void)
7739 {
7740 inst.instruction |= inst.operands[0].reg << 16;
7741 inst.instruction |= inst.operands[1].reg;
7742 }
7743
7744 static void
7745 do_fpa_ldmstm (void)
7746 {
7747 inst.instruction |= inst.operands[0].reg << 12;
7748 switch (inst.operands[1].imm)
7749 {
7750 case 1: inst.instruction |= CP_T_X; break;
7751 case 2: inst.instruction |= CP_T_Y; break;
7752 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7753 case 4: break;
7754 default: abort ();
7755 }
7756
7757 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7758 {
7759 /* The instruction specified "ea" or "fd", so we can only accept
7760 [Rn]{!}. The instruction does not really support stacking or
7761 unstacking, so we have to emulate these by setting appropriate
7762 bits and offsets. */
7763 constraint (inst.reloc.exp.X_op != O_constant
7764 || inst.reloc.exp.X_add_number != 0,
7765 _("this instruction does not support indexing"));
7766
7767 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7768 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7769
7770 if (!(inst.instruction & INDEX_UP))
7771 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7772
7773 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7774 {
7775 inst.operands[2].preind = 0;
7776 inst.operands[2].postind = 1;
7777 }
7778 }
7779
7780 encode_arm_cp_address (2, TRUE, TRUE, 0);
7781 }
7782
7783 \f
7784 /* iWMMXt instructions: strictly in alphabetical order. */
7785
7786 static void
7787 do_iwmmxt_tandorc (void)
7788 {
7789 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7790 }
7791
7792 static void
7793 do_iwmmxt_textrc (void)
7794 {
7795 inst.instruction |= inst.operands[0].reg << 12;
7796 inst.instruction |= inst.operands[1].imm;
7797 }
7798
7799 static void
7800 do_iwmmxt_textrm (void)
7801 {
7802 inst.instruction |= inst.operands[0].reg << 12;
7803 inst.instruction |= inst.operands[1].reg << 16;
7804 inst.instruction |= inst.operands[2].imm;
7805 }
7806
7807 static void
7808 do_iwmmxt_tinsr (void)
7809 {
7810 inst.instruction |= inst.operands[0].reg << 16;
7811 inst.instruction |= inst.operands[1].reg << 12;
7812 inst.instruction |= inst.operands[2].imm;
7813 }
7814
7815 static void
7816 do_iwmmxt_tmia (void)
7817 {
7818 inst.instruction |= inst.operands[0].reg << 5;
7819 inst.instruction |= inst.operands[1].reg;
7820 inst.instruction |= inst.operands[2].reg << 12;
7821 }
7822
7823 static void
7824 do_iwmmxt_waligni (void)
7825 {
7826 inst.instruction |= inst.operands[0].reg << 12;
7827 inst.instruction |= inst.operands[1].reg << 16;
7828 inst.instruction |= inst.operands[2].reg;
7829 inst.instruction |= inst.operands[3].imm << 20;
7830 }
7831
7832 static void
7833 do_iwmmxt_wmov (void)
7834 {
7835 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7836 inst.instruction |= inst.operands[0].reg << 12;
7837 inst.instruction |= inst.operands[1].reg << 16;
7838 inst.instruction |= inst.operands[1].reg;
7839 }
7840
7841 static void
7842 do_iwmmxt_wldstbh (void)
7843 {
7844 int reloc;
7845 inst.instruction |= inst.operands[0].reg << 12;
7846 if (thumb_mode)
7847 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7848 else
7849 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7850 encode_arm_cp_address (1, TRUE, FALSE, reloc);
7851 }
7852
7853 static void
7854 do_iwmmxt_wldstw (void)
7855 {
7856 /* RIWR_RIWC clears .isreg for a control register. */
7857 if (!inst.operands[0].isreg)
7858 {
7859 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7860 inst.instruction |= 0xf0000000;
7861 }
7862
7863 inst.instruction |= inst.operands[0].reg << 12;
7864 encode_arm_cp_address (1, TRUE, TRUE, 0);
7865 }
7866
7867 static void
7868 do_iwmmxt_wldstd (void)
7869 {
7870 inst.instruction |= inst.operands[0].reg << 12;
7871 encode_arm_cp_address (1, TRUE, FALSE, 0);
7872 }
7873
7874 static void
7875 do_iwmmxt_wshufh (void)
7876 {
7877 inst.instruction |= inst.operands[0].reg << 12;
7878 inst.instruction |= inst.operands[1].reg << 16;
7879 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7880 inst.instruction |= (inst.operands[2].imm & 0x0f);
7881 }
7882
7883 static void
7884 do_iwmmxt_wzero (void)
7885 {
7886 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7887 inst.instruction |= inst.operands[0].reg;
7888 inst.instruction |= inst.operands[0].reg << 12;
7889 inst.instruction |= inst.operands[0].reg << 16;
7890 }
7891 \f
7892 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
7893 operations first, then control, shift, and load/store. */
7894
7895 /* Insns like "foo X,Y,Z". */
7896
7897 static void
7898 do_mav_triple (void)
7899 {
7900 inst.instruction |= inst.operands[0].reg << 16;
7901 inst.instruction |= inst.operands[1].reg;
7902 inst.instruction |= inst.operands[2].reg << 12;
7903 }
7904
7905 /* Insns like "foo W,X,Y,Z".
7906 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
7907
7908 static void
7909 do_mav_quad (void)
7910 {
7911 inst.instruction |= inst.operands[0].reg << 5;
7912 inst.instruction |= inst.operands[1].reg << 12;
7913 inst.instruction |= inst.operands[2].reg << 16;
7914 inst.instruction |= inst.operands[3].reg;
7915 }
7916
7917 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
7918 static void
7919 do_mav_dspsc (void)
7920 {
7921 inst.instruction |= inst.operands[1].reg << 12;
7922 }
7923
7924 /* Maverick shift immediate instructions.
7925 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
7926 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
7927
7928 static void
7929 do_mav_shift (void)
7930 {
7931 int imm = inst.operands[2].imm;
7932
7933 inst.instruction |= inst.operands[0].reg << 12;
7934 inst.instruction |= inst.operands[1].reg << 16;
7935
7936 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
7937 Bits 5-7 of the insn should have bits 4-6 of the immediate.
7938 Bit 4 should be 0. */
7939 imm = (imm & 0xf) | ((imm & 0x70) << 1);
7940
7941 inst.instruction |= imm;
7942 }
7943 \f
7944 /* XScale instructions. Also sorted arithmetic before move. */
7945
7946 /* Xscale multiply-accumulate (argument parse)
7947 MIAcc acc0,Rm,Rs
7948 MIAPHcc acc0,Rm,Rs
7949 MIAxycc acc0,Rm,Rs. */
7950
7951 static void
7952 do_xsc_mia (void)
7953 {
7954 inst.instruction |= inst.operands[1].reg;
7955 inst.instruction |= inst.operands[2].reg << 12;
7956 }
7957
7958 /* Xscale move-accumulator-register (argument parse)
7959
7960 MARcc acc0,RdLo,RdHi. */
7961
7962 static void
7963 do_xsc_mar (void)
7964 {
7965 inst.instruction |= inst.operands[1].reg << 12;
7966 inst.instruction |= inst.operands[2].reg << 16;
7967 }
7968
7969 /* Xscale move-register-accumulator (argument parse)
7970
7971 MRAcc RdLo,RdHi,acc0. */
7972
7973 static void
7974 do_xsc_mra (void)
7975 {
7976 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
7977 inst.instruction |= inst.operands[0].reg << 12;
7978 inst.instruction |= inst.operands[1].reg << 16;
7979 }
7980 \f
7981 /* Encoding functions relevant only to Thumb. */
7982
7983 /* inst.operands[i] is a shifted-register operand; encode
7984 it into inst.instruction in the format used by Thumb32. */
7985
7986 static void
7987 encode_thumb32_shifted_operand (int i)
7988 {
7989 unsigned int value = inst.reloc.exp.X_add_number;
7990 unsigned int shift = inst.operands[i].shift_kind;
7991
7992 constraint (inst.operands[i].immisreg,
7993 _("shift by register not allowed in thumb mode"));
7994 inst.instruction |= inst.operands[i].reg;
7995 if (shift == SHIFT_RRX)
7996 inst.instruction |= SHIFT_ROR << 4;
7997 else
7998 {
7999 constraint (inst.reloc.exp.X_op != O_constant,
8000 _("expression too complex"));
8001
8002 constraint (value > 32
8003 || (value == 32 && (shift == SHIFT_LSL
8004 || shift == SHIFT_ROR)),
8005 _("shift expression is too large"));
8006
8007 if (value == 0)
8008 shift = SHIFT_LSL;
8009 else if (value == 32)
8010 value = 0;
8011
8012 inst.instruction |= shift << 4;
8013 inst.instruction |= (value & 0x1c) << 10;
8014 inst.instruction |= (value & 0x03) << 6;
8015 }
8016 }
8017
8018
8019 /* inst.operands[i] was set up by parse_address. Encode it into a
8020 Thumb32 format load or store instruction. Reject forms that cannot
8021 be used with such instructions. If is_t is true, reject forms that
8022 cannot be used with a T instruction; if is_d is true, reject forms
8023 that cannot be used with a D instruction. */
8024
8025 static void
8026 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8027 {
8028 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8029
8030 constraint (!inst.operands[i].isreg,
8031 _("Instruction does not support =N addresses"));
8032
8033 inst.instruction |= inst.operands[i].reg << 16;
8034 if (inst.operands[i].immisreg)
8035 {
8036 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8037 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8038 constraint (inst.operands[i].negative,
8039 _("Thumb does not support negative register indexing"));
8040 constraint (inst.operands[i].postind,
8041 _("Thumb does not support register post-indexing"));
8042 constraint (inst.operands[i].writeback,
8043 _("Thumb does not support register indexing with writeback"));
8044 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8045 _("Thumb supports only LSL in shifted register indexing"));
8046
8047 inst.instruction |= inst.operands[i].imm;
8048 if (inst.operands[i].shifted)
8049 {
8050 constraint (inst.reloc.exp.X_op != O_constant,
8051 _("expression too complex"));
8052 constraint (inst.reloc.exp.X_add_number < 0
8053 || inst.reloc.exp.X_add_number > 3,
8054 _("shift out of range"));
8055 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8056 }
8057 inst.reloc.type = BFD_RELOC_UNUSED;
8058 }
8059 else if (inst.operands[i].preind)
8060 {
8061 constraint (is_pc && inst.operands[i].writeback,
8062 _("cannot use writeback with PC-relative addressing"));
8063 constraint (is_t && inst.operands[i].writeback,
8064 _("cannot use writeback with this instruction"));
8065
8066 if (is_d)
8067 {
8068 inst.instruction |= 0x01000000;
8069 if (inst.operands[i].writeback)
8070 inst.instruction |= 0x00200000;
8071 }
8072 else
8073 {
8074 inst.instruction |= 0x00000c00;
8075 if (inst.operands[i].writeback)
8076 inst.instruction |= 0x00000100;
8077 }
8078 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8079 }
8080 else if (inst.operands[i].postind)
8081 {
8082 assert (inst.operands[i].writeback);
8083 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8084 constraint (is_t, _("cannot use post-indexing with this instruction"));
8085
8086 if (is_d)
8087 inst.instruction |= 0x00200000;
8088 else
8089 inst.instruction |= 0x00000900;
8090 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8091 }
8092 else /* unindexed - only for coprocessor */
8093 inst.error = _("instruction does not accept unindexed addressing");
8094 }
8095
8096 /* Table of Thumb instructions which exist in both 16- and 32-bit
8097 encodings (the latter only in post-V6T2 cores). The index is the
8098 value used in the insns table below. When there is more than one
8099 possible 16-bit encoding for the instruction, this table always
8100 holds variant (1).
8101 Also contains several pseudo-instructions used during relaxation. */
8102 #define T16_32_TAB \
8103 X(adc, 4140, eb400000), \
8104 X(adcs, 4140, eb500000), \
8105 X(add, 1c00, eb000000), \
8106 X(adds, 1c00, eb100000), \
8107 X(addi, 0000, f1000000), \
8108 X(addis, 0000, f1100000), \
8109 X(add_pc,000f, f20f0000), \
8110 X(add_sp,000d, f10d0000), \
8111 X(adr, 000f, f20f0000), \
8112 X(and, 4000, ea000000), \
8113 X(ands, 4000, ea100000), \
8114 X(asr, 1000, fa40f000), \
8115 X(asrs, 1000, fa50f000), \
8116 X(b, e000, f000b000), \
8117 X(bcond, d000, f0008000), \
8118 X(bic, 4380, ea200000), \
8119 X(bics, 4380, ea300000), \
8120 X(cmn, 42c0, eb100f00), \
8121 X(cmp, 2800, ebb00f00), \
8122 X(cpsie, b660, f3af8400), \
8123 X(cpsid, b670, f3af8600), \
8124 X(cpy, 4600, ea4f0000), \
8125 X(dec_sp,80dd, f1bd0d00), \
8126 X(eor, 4040, ea800000), \
8127 X(eors, 4040, ea900000), \
8128 X(inc_sp,00dd, f10d0d00), \
8129 X(ldmia, c800, e8900000), \
8130 X(ldr, 6800, f8500000), \
8131 X(ldrb, 7800, f8100000), \
8132 X(ldrh, 8800, f8300000), \
8133 X(ldrsb, 5600, f9100000), \
8134 X(ldrsh, 5e00, f9300000), \
8135 X(ldr_pc,4800, f85f0000), \
8136 X(ldr_pc2,4800, f85f0000), \
8137 X(ldr_sp,9800, f85d0000), \
8138 X(lsl, 0000, fa00f000), \
8139 X(lsls, 0000, fa10f000), \
8140 X(lsr, 0800, fa20f000), \
8141 X(lsrs, 0800, fa30f000), \
8142 X(mov, 2000, ea4f0000), \
8143 X(movs, 2000, ea5f0000), \
8144 X(mul, 4340, fb00f000), \
8145 X(muls, 4340, ffffffff), /* no 32b muls */ \
8146 X(mvn, 43c0, ea6f0000), \
8147 X(mvns, 43c0, ea7f0000), \
8148 X(neg, 4240, f1c00000), /* rsb #0 */ \
8149 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8150 X(orr, 4300, ea400000), \
8151 X(orrs, 4300, ea500000), \
8152 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8153 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8154 X(rev, ba00, fa90f080), \
8155 X(rev16, ba40, fa90f090), \
8156 X(revsh, bac0, fa90f0b0), \
8157 X(ror, 41c0, fa60f000), \
8158 X(rors, 41c0, fa70f000), \
8159 X(sbc, 4180, eb600000), \
8160 X(sbcs, 4180, eb700000), \
8161 X(stmia, c000, e8800000), \
8162 X(str, 6000, f8400000), \
8163 X(strb, 7000, f8000000), \
8164 X(strh, 8000, f8200000), \
8165 X(str_sp,9000, f84d0000), \
8166 X(sub, 1e00, eba00000), \
8167 X(subs, 1e00, ebb00000), \
8168 X(subi, 8000, f1a00000), \
8169 X(subis, 8000, f1b00000), \
8170 X(sxtb, b240, fa4ff080), \
8171 X(sxth, b200, fa0ff080), \
8172 X(tst, 4200, ea100f00), \
8173 X(uxtb, b2c0, fa5ff080), \
8174 X(uxth, b280, fa1ff080), \
8175 X(nop, bf00, f3af8000), \
8176 X(yield, bf10, f3af8001), \
8177 X(wfe, bf20, f3af8002), \
8178 X(wfi, bf30, f3af8003), \
8179 X(sev, bf40, f3af9004), /* typo, 8004? */
8180
8181 /* To catch errors in encoding functions, the codes are all offset by
8182 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8183 as 16-bit instructions. */
8184 #define X(a,b,c) T_MNEM_##a
8185 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8186 #undef X
8187
8188 #define X(a,b,c) 0x##b
8189 static const unsigned short thumb_op16[] = { T16_32_TAB };
8190 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8191 #undef X
8192
8193 #define X(a,b,c) 0x##c
8194 static const unsigned int thumb_op32[] = { T16_32_TAB };
8195 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8196 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8197 #undef X
8198 #undef T16_32_TAB
8199
8200 /* Thumb instruction encoders, in alphabetical order. */
8201
8202 /* ADDW or SUBW. */
8203 static void
8204 do_t_add_sub_w (void)
8205 {
8206 int Rd, Rn;
8207
8208 Rd = inst.operands[0].reg;
8209 Rn = inst.operands[1].reg;
8210
8211 constraint (Rd == 15, _("PC not allowed as destination"));
8212 inst.instruction |= (Rn << 16) | (Rd << 8);
8213 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8214 }
8215
8216 /* Parse an add or subtract instruction. We get here with inst.instruction
8217 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8218
8219 static void
8220 do_t_add_sub (void)
8221 {
8222 int Rd, Rs, Rn;
8223
8224 Rd = inst.operands[0].reg;
8225 Rs = (inst.operands[1].present
8226 ? inst.operands[1].reg /* Rd, Rs, foo */
8227 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8228
8229 if (unified_syntax)
8230 {
8231 bfd_boolean flags;
8232 bfd_boolean narrow;
8233 int opcode;
8234
8235 flags = (inst.instruction == T_MNEM_adds
8236 || inst.instruction == T_MNEM_subs);
8237 if (flags)
8238 narrow = (current_it_mask == 0);
8239 else
8240 narrow = (current_it_mask != 0);
8241 if (!inst.operands[2].isreg)
8242 {
8243 int add;
8244
8245 add = (inst.instruction == T_MNEM_add
8246 || inst.instruction == T_MNEM_adds);
8247 opcode = 0;
8248 if (inst.size_req != 4)
8249 {
8250 /* Attempt to use a narrow opcode, with relaxation if
8251 appropriate. */
8252 if (Rd == REG_SP && Rs == REG_SP && !flags)
8253 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8254 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8255 opcode = T_MNEM_add_sp;
8256 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8257 opcode = T_MNEM_add_pc;
8258 else if (Rd <= 7 && Rs <= 7 && narrow)
8259 {
8260 if (flags)
8261 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8262 else
8263 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8264 }
8265 if (opcode)
8266 {
8267 inst.instruction = THUMB_OP16(opcode);
8268 inst.instruction |= (Rd << 4) | Rs;
8269 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8270 if (inst.size_req != 2)
8271 inst.relax = opcode;
8272 }
8273 else
8274 constraint (inst.size_req == 2, BAD_HIREG);
8275 }
8276 if (inst.size_req == 4
8277 || (inst.size_req != 2 && !opcode))
8278 {
8279 if (Rs == REG_PC)
8280 {
8281 /* Always use addw/subw. */
8282 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8283 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8284 }
8285 else
8286 {
8287 inst.instruction = THUMB_OP32 (inst.instruction);
8288 inst.instruction = (inst.instruction & 0xe1ffffff)
8289 | 0x10000000;
8290 if (flags)
8291 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8292 else
8293 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8294 }
8295 inst.instruction |= inst.operands[0].reg << 8;
8296 inst.instruction |= inst.operands[1].reg << 16;
8297 }
8298 }
8299 else
8300 {
8301 Rn = inst.operands[2].reg;
8302 /* See if we can do this with a 16-bit instruction. */
8303 if (!inst.operands[2].shifted && inst.size_req != 4)
8304 {
8305 if (Rd > 7 || Rs > 7 || Rn > 7)
8306 narrow = FALSE;
8307
8308 if (narrow)
8309 {
8310 inst.instruction = ((inst.instruction == T_MNEM_adds
8311 || inst.instruction == T_MNEM_add)
8312 ? T_OPCODE_ADD_R3
8313 : T_OPCODE_SUB_R3);
8314 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8315 return;
8316 }
8317
8318 if (inst.instruction == T_MNEM_add)
8319 {
8320 if (Rd == Rs)
8321 {
8322 inst.instruction = T_OPCODE_ADD_HI;
8323 inst.instruction |= (Rd & 8) << 4;
8324 inst.instruction |= (Rd & 7);
8325 inst.instruction |= Rn << 3;
8326 return;
8327 }
8328 /* ... because addition is commutative! */
8329 else if (Rd == Rn)
8330 {
8331 inst.instruction = T_OPCODE_ADD_HI;
8332 inst.instruction |= (Rd & 8) << 4;
8333 inst.instruction |= (Rd & 7);
8334 inst.instruction |= Rs << 3;
8335 return;
8336 }
8337 }
8338 }
8339 /* If we get here, it can't be done in 16 bits. */
8340 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8341 _("shift must be constant"));
8342 inst.instruction = THUMB_OP32 (inst.instruction);
8343 inst.instruction |= Rd << 8;
8344 inst.instruction |= Rs << 16;
8345 encode_thumb32_shifted_operand (2);
8346 }
8347 }
8348 else
8349 {
8350 constraint (inst.instruction == T_MNEM_adds
8351 || inst.instruction == T_MNEM_subs,
8352 BAD_THUMB32);
8353
8354 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8355 {
8356 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8357 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8358 BAD_HIREG);
8359
8360 inst.instruction = (inst.instruction == T_MNEM_add
8361 ? 0x0000 : 0x8000);
8362 inst.instruction |= (Rd << 4) | Rs;
8363 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8364 return;
8365 }
8366
8367 Rn = inst.operands[2].reg;
8368 constraint (inst.operands[2].shifted, _("unshifted register required"));
8369
8370 /* We now have Rd, Rs, and Rn set to registers. */
8371 if (Rd > 7 || Rs > 7 || Rn > 7)
8372 {
8373 /* Can't do this for SUB. */
8374 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8375 inst.instruction = T_OPCODE_ADD_HI;
8376 inst.instruction |= (Rd & 8) << 4;
8377 inst.instruction |= (Rd & 7);
8378 if (Rs == Rd)
8379 inst.instruction |= Rn << 3;
8380 else if (Rn == Rd)
8381 inst.instruction |= Rs << 3;
8382 else
8383 constraint (1, _("dest must overlap one source register"));
8384 }
8385 else
8386 {
8387 inst.instruction = (inst.instruction == T_MNEM_add
8388 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8389 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8390 }
8391 }
8392 }
8393
8394 static void
8395 do_t_adr (void)
8396 {
8397 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8398 {
8399 /* Defer to section relaxation. */
8400 inst.relax = inst.instruction;
8401 inst.instruction = THUMB_OP16 (inst.instruction);
8402 inst.instruction |= inst.operands[0].reg << 4;
8403 }
8404 else if (unified_syntax && inst.size_req != 2)
8405 {
8406 /* Generate a 32-bit opcode. */
8407 inst.instruction = THUMB_OP32 (inst.instruction);
8408 inst.instruction |= inst.operands[0].reg << 8;
8409 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8410 inst.reloc.pc_rel = 1;
8411 }
8412 else
8413 {
8414 /* Generate a 16-bit opcode. */
8415 inst.instruction = THUMB_OP16 (inst.instruction);
8416 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8417 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8418 inst.reloc.pc_rel = 1;
8419
8420 inst.instruction |= inst.operands[0].reg << 4;
8421 }
8422 }
8423
8424 /* Arithmetic instructions for which there is just one 16-bit
8425 instruction encoding, and it allows only two low registers.
8426 For maximal compatibility with ARM syntax, we allow three register
8427 operands even when Thumb-32 instructions are not available, as long
8428 as the first two are identical. For instance, both "sbc r0,r1" and
8429 "sbc r0,r0,r1" are allowed. */
8430 static void
8431 do_t_arit3 (void)
8432 {
8433 int Rd, Rs, Rn;
8434
8435 Rd = inst.operands[0].reg;
8436 Rs = (inst.operands[1].present
8437 ? inst.operands[1].reg /* Rd, Rs, foo */
8438 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8439 Rn = inst.operands[2].reg;
8440
8441 if (unified_syntax)
8442 {
8443 if (!inst.operands[2].isreg)
8444 {
8445 /* For an immediate, we always generate a 32-bit opcode;
8446 section relaxation will shrink it later if possible. */
8447 inst.instruction = THUMB_OP32 (inst.instruction);
8448 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8449 inst.instruction |= Rd << 8;
8450 inst.instruction |= Rs << 16;
8451 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8452 }
8453 else
8454 {
8455 bfd_boolean narrow;
8456
8457 /* See if we can do this with a 16-bit instruction. */
8458 if (THUMB_SETS_FLAGS (inst.instruction))
8459 narrow = current_it_mask == 0;
8460 else
8461 narrow = current_it_mask != 0;
8462
8463 if (Rd > 7 || Rn > 7 || Rs > 7)
8464 narrow = FALSE;
8465 if (inst.operands[2].shifted)
8466 narrow = FALSE;
8467 if (inst.size_req == 4)
8468 narrow = FALSE;
8469
8470 if (narrow
8471 && Rd == Rs)
8472 {
8473 inst.instruction = THUMB_OP16 (inst.instruction);
8474 inst.instruction |= Rd;
8475 inst.instruction |= Rn << 3;
8476 return;
8477 }
8478
8479 /* If we get here, it can't be done in 16 bits. */
8480 constraint (inst.operands[2].shifted
8481 && inst.operands[2].immisreg,
8482 _("shift must be constant"));
8483 inst.instruction = THUMB_OP32 (inst.instruction);
8484 inst.instruction |= Rd << 8;
8485 inst.instruction |= Rs << 16;
8486 encode_thumb32_shifted_operand (2);
8487 }
8488 }
8489 else
8490 {
8491 /* On its face this is a lie - the instruction does set the
8492 flags. However, the only supported mnemonic in this mode
8493 says it doesn't. */
8494 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8495
8496 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8497 _("unshifted register required"));
8498 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8499 constraint (Rd != Rs,
8500 _("dest and source1 must be the same register"));
8501
8502 inst.instruction = THUMB_OP16 (inst.instruction);
8503 inst.instruction |= Rd;
8504 inst.instruction |= Rn << 3;
8505 }
8506 }
8507
8508 /* Similarly, but for instructions where the arithmetic operation is
8509 commutative, so we can allow either of them to be different from
8510 the destination operand in a 16-bit instruction. For instance, all
8511 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8512 accepted. */
8513 static void
8514 do_t_arit3c (void)
8515 {
8516 int Rd, Rs, Rn;
8517
8518 Rd = inst.operands[0].reg;
8519 Rs = (inst.operands[1].present
8520 ? inst.operands[1].reg /* Rd, Rs, foo */
8521 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8522 Rn = inst.operands[2].reg;
8523
8524 if (unified_syntax)
8525 {
8526 if (!inst.operands[2].isreg)
8527 {
8528 /* For an immediate, we always generate a 32-bit opcode;
8529 section relaxation will shrink it later if possible. */
8530 inst.instruction = THUMB_OP32 (inst.instruction);
8531 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8532 inst.instruction |= Rd << 8;
8533 inst.instruction |= Rs << 16;
8534 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8535 }
8536 else
8537 {
8538 bfd_boolean narrow;
8539
8540 /* See if we can do this with a 16-bit instruction. */
8541 if (THUMB_SETS_FLAGS (inst.instruction))
8542 narrow = current_it_mask == 0;
8543 else
8544 narrow = current_it_mask != 0;
8545
8546 if (Rd > 7 || Rn > 7 || Rs > 7)
8547 narrow = FALSE;
8548 if (inst.operands[2].shifted)
8549 narrow = FALSE;
8550 if (inst.size_req == 4)
8551 narrow = FALSE;
8552
8553 if (narrow)
8554 {
8555 if (Rd == Rs)
8556 {
8557 inst.instruction = THUMB_OP16 (inst.instruction);
8558 inst.instruction |= Rd;
8559 inst.instruction |= Rn << 3;
8560 return;
8561 }
8562 if (Rd == Rn)
8563 {
8564 inst.instruction = THUMB_OP16 (inst.instruction);
8565 inst.instruction |= Rd;
8566 inst.instruction |= Rs << 3;
8567 return;
8568 }
8569 }
8570
8571 /* If we get here, it can't be done in 16 bits. */
8572 constraint (inst.operands[2].shifted
8573 && inst.operands[2].immisreg,
8574 _("shift must be constant"));
8575 inst.instruction = THUMB_OP32 (inst.instruction);
8576 inst.instruction |= Rd << 8;
8577 inst.instruction |= Rs << 16;
8578 encode_thumb32_shifted_operand (2);
8579 }
8580 }
8581 else
8582 {
8583 /* On its face this is a lie - the instruction does set the
8584 flags. However, the only supported mnemonic in this mode
8585 says it doesn't. */
8586 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8587
8588 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8589 _("unshifted register required"));
8590 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8591
8592 inst.instruction = THUMB_OP16 (inst.instruction);
8593 inst.instruction |= Rd;
8594
8595 if (Rd == Rs)
8596 inst.instruction |= Rn << 3;
8597 else if (Rd == Rn)
8598 inst.instruction |= Rs << 3;
8599 else
8600 constraint (1, _("dest must overlap one source register"));
8601 }
8602 }
8603
8604 static void
8605 do_t_barrier (void)
8606 {
8607 if (inst.operands[0].present)
8608 {
8609 constraint ((inst.instruction & 0xf0) != 0x40
8610 && inst.operands[0].imm != 0xf,
8611 "bad barrier type");
8612 inst.instruction |= inst.operands[0].imm;
8613 }
8614 else
8615 inst.instruction |= 0xf;
8616 }
8617
8618 static void
8619 do_t_bfc (void)
8620 {
8621 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8622 constraint (msb > 32, _("bit-field extends past end of register"));
8623 /* The instruction encoding stores the LSB and MSB,
8624 not the LSB and width. */
8625 inst.instruction |= inst.operands[0].reg << 8;
8626 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8627 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8628 inst.instruction |= msb - 1;
8629 }
8630
8631 static void
8632 do_t_bfi (void)
8633 {
8634 unsigned int msb;
8635
8636 /* #0 in second position is alternative syntax for bfc, which is
8637 the same instruction but with REG_PC in the Rm field. */
8638 if (!inst.operands[1].isreg)
8639 inst.operands[1].reg = REG_PC;
8640
8641 msb = inst.operands[2].imm + inst.operands[3].imm;
8642 constraint (msb > 32, _("bit-field extends past end of register"));
8643 /* The instruction encoding stores the LSB and MSB,
8644 not the LSB and width. */
8645 inst.instruction |= inst.operands[0].reg << 8;
8646 inst.instruction |= inst.operands[1].reg << 16;
8647 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8648 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8649 inst.instruction |= msb - 1;
8650 }
8651
8652 static void
8653 do_t_bfx (void)
8654 {
8655 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8656 _("bit-field extends past end of register"));
8657 inst.instruction |= inst.operands[0].reg << 8;
8658 inst.instruction |= inst.operands[1].reg << 16;
8659 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8660 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8661 inst.instruction |= inst.operands[3].imm - 1;
8662 }
8663
8664 /* ARM V5 Thumb BLX (argument parse)
8665 BLX <target_addr> which is BLX(1)
8666 BLX <Rm> which is BLX(2)
8667 Unfortunately, there are two different opcodes for this mnemonic.
8668 So, the insns[].value is not used, and the code here zaps values
8669 into inst.instruction.
8670
8671 ??? How to take advantage of the additional two bits of displacement
8672 available in Thumb32 mode? Need new relocation? */
8673
8674 static void
8675 do_t_blx (void)
8676 {
8677 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8678 if (inst.operands[0].isreg)
8679 /* We have a register, so this is BLX(2). */
8680 inst.instruction |= inst.operands[0].reg << 3;
8681 else
8682 {
8683 /* No register. This must be BLX(1). */
8684 inst.instruction = 0xf000e800;
8685 #ifdef OBJ_ELF
8686 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8687 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8688 else
8689 #endif
8690 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
8691 inst.reloc.pc_rel = 1;
8692 }
8693 }
8694
8695 static void
8696 do_t_branch (void)
8697 {
8698 int opcode;
8699 int cond;
8700
8701 if (current_it_mask)
8702 {
8703 /* Conditional branches inside IT blocks are encoded as unconditional
8704 branches. */
8705 cond = COND_ALWAYS;
8706 /* A branch must be the last instruction in an IT block. */
8707 constraint (current_it_mask != 0x10, BAD_BRANCH);
8708 }
8709 else
8710 cond = inst.cond;
8711
8712 if (cond != COND_ALWAYS)
8713 opcode = T_MNEM_bcond;
8714 else
8715 opcode = inst.instruction;
8716
8717 if (unified_syntax && inst.size_req == 4)
8718 {
8719 inst.instruction = THUMB_OP32(opcode);
8720 if (cond == COND_ALWAYS)
8721 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
8722 else
8723 {
8724 assert (cond != 0xF);
8725 inst.instruction |= cond << 22;
8726 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8727 }
8728 }
8729 else
8730 {
8731 inst.instruction = THUMB_OP16(opcode);
8732 if (cond == COND_ALWAYS)
8733 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8734 else
8735 {
8736 inst.instruction |= cond << 8;
8737 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
8738 }
8739 /* Allow section relaxation. */
8740 if (unified_syntax && inst.size_req != 2)
8741 inst.relax = opcode;
8742 }
8743
8744 inst.reloc.pc_rel = 1;
8745 }
8746
8747 static void
8748 do_t_bkpt (void)
8749 {
8750 constraint (inst.cond != COND_ALWAYS,
8751 _("instruction is always unconditional"));
8752 if (inst.operands[0].present)
8753 {
8754 constraint (inst.operands[0].imm > 255,
8755 _("immediate value out of range"));
8756 inst.instruction |= inst.operands[0].imm;
8757 }
8758 }
8759
8760 static void
8761 do_t_branch23 (void)
8762 {
8763 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8764 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8765 inst.reloc.pc_rel = 1;
8766
8767 /* If the destination of the branch is a defined symbol which does not have
8768 the THUMB_FUNC attribute, then we must be calling a function which has
8769 the (interfacearm) attribute. We look for the Thumb entry point to that
8770 function and change the branch to refer to that function instead. */
8771 if ( inst.reloc.exp.X_op == O_symbol
8772 && inst.reloc.exp.X_add_symbol != NULL
8773 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8774 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8775 inst.reloc.exp.X_add_symbol =
8776 find_real_start (inst.reloc.exp.X_add_symbol);
8777 }
8778
8779 static void
8780 do_t_bx (void)
8781 {
8782 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8783 inst.instruction |= inst.operands[0].reg << 3;
8784 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8785 should cause the alignment to be checked once it is known. This is
8786 because BX PC only works if the instruction is word aligned. */
8787 }
8788
8789 static void
8790 do_t_bxj (void)
8791 {
8792 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8793 if (inst.operands[0].reg == REG_PC)
8794 as_tsktsk (_("use of r15 in bxj is not really useful"));
8795
8796 inst.instruction |= inst.operands[0].reg << 16;
8797 }
8798
8799 static void
8800 do_t_clz (void)
8801 {
8802 inst.instruction |= inst.operands[0].reg << 8;
8803 inst.instruction |= inst.operands[1].reg << 16;
8804 inst.instruction |= inst.operands[1].reg;
8805 }
8806
8807 static void
8808 do_t_cps (void)
8809 {
8810 constraint (current_it_mask, BAD_NOT_IT);
8811 inst.instruction |= inst.operands[0].imm;
8812 }
8813
8814 static void
8815 do_t_cpsi (void)
8816 {
8817 constraint (current_it_mask, BAD_NOT_IT);
8818 if (unified_syntax
8819 && (inst.operands[1].present || inst.size_req == 4)
8820 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
8821 {
8822 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8823 inst.instruction = 0xf3af8000;
8824 inst.instruction |= imod << 9;
8825 inst.instruction |= inst.operands[0].imm << 5;
8826 if (inst.operands[1].present)
8827 inst.instruction |= 0x100 | inst.operands[1].imm;
8828 }
8829 else
8830 {
8831 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8832 && (inst.operands[0].imm & 4),
8833 _("selected processor does not support 'A' form "
8834 "of this instruction"));
8835 constraint (inst.operands[1].present || inst.size_req == 4,
8836 _("Thumb does not support the 2-argument "
8837 "form of this instruction"));
8838 inst.instruction |= inst.operands[0].imm;
8839 }
8840 }
8841
8842 /* THUMB CPY instruction (argument parse). */
8843
8844 static void
8845 do_t_cpy (void)
8846 {
8847 if (inst.size_req == 4)
8848 {
8849 inst.instruction = THUMB_OP32 (T_MNEM_mov);
8850 inst.instruction |= inst.operands[0].reg << 8;
8851 inst.instruction |= inst.operands[1].reg;
8852 }
8853 else
8854 {
8855 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
8856 inst.instruction |= (inst.operands[0].reg & 0x7);
8857 inst.instruction |= inst.operands[1].reg << 3;
8858 }
8859 }
8860
8861 static void
8862 do_t_czb (void)
8863 {
8864 constraint (current_it_mask, BAD_NOT_IT);
8865 constraint (inst.operands[0].reg > 7, BAD_HIREG);
8866 inst.instruction |= inst.operands[0].reg;
8867 inst.reloc.pc_rel = 1;
8868 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
8869 }
8870
8871 static void
8872 do_t_dbg (void)
8873 {
8874 inst.instruction |= inst.operands[0].imm;
8875 }
8876
8877 static void
8878 do_t_div (void)
8879 {
8880 if (!inst.operands[1].present)
8881 inst.operands[1].reg = inst.operands[0].reg;
8882 inst.instruction |= inst.operands[0].reg << 8;
8883 inst.instruction |= inst.operands[1].reg << 16;
8884 inst.instruction |= inst.operands[2].reg;
8885 }
8886
8887 static void
8888 do_t_hint (void)
8889 {
8890 if (unified_syntax && inst.size_req == 4)
8891 inst.instruction = THUMB_OP32 (inst.instruction);
8892 else
8893 inst.instruction = THUMB_OP16 (inst.instruction);
8894 }
8895
8896 static void
8897 do_t_it (void)
8898 {
8899 unsigned int cond = inst.operands[0].imm;
8900
8901 constraint (current_it_mask, BAD_NOT_IT);
8902 current_it_mask = (inst.instruction & 0xf) | 0x10;
8903 current_cc = cond;
8904
8905 /* If the condition is a negative condition, invert the mask. */
8906 if ((cond & 0x1) == 0x0)
8907 {
8908 unsigned int mask = inst.instruction & 0x000f;
8909
8910 if ((mask & 0x7) == 0)
8911 /* no conversion needed */;
8912 else if ((mask & 0x3) == 0)
8913 mask ^= 0x8;
8914 else if ((mask & 0x1) == 0)
8915 mask ^= 0xC;
8916 else
8917 mask ^= 0xE;
8918
8919 inst.instruction &= 0xfff0;
8920 inst.instruction |= mask;
8921 }
8922
8923 inst.instruction |= cond << 4;
8924 }
8925
8926 static void
8927 do_t_ldmstm (void)
8928 {
8929 /* This really doesn't seem worth it. */
8930 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
8931 _("expression too complex"));
8932 constraint (inst.operands[1].writeback,
8933 _("Thumb load/store multiple does not support {reglist}^"));
8934
8935 if (unified_syntax)
8936 {
8937 /* See if we can use a 16-bit instruction. */
8938 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
8939 && inst.size_req != 4
8940 && inst.operands[0].reg <= 7
8941 && !(inst.operands[1].imm & ~0xff)
8942 && (inst.instruction == T_MNEM_stmia
8943 ? inst.operands[0].writeback
8944 : (inst.operands[0].writeback
8945 == !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
8946 {
8947 if (inst.instruction == T_MNEM_stmia
8948 && (inst.operands[1].imm & (1 << inst.operands[0].reg))
8949 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
8950 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8951 inst.operands[0].reg);
8952
8953 inst.instruction = THUMB_OP16 (inst.instruction);
8954 inst.instruction |= inst.operands[0].reg << 8;
8955 inst.instruction |= inst.operands[1].imm;
8956 }
8957 else
8958 {
8959 if (inst.operands[1].imm & (1 << 13))
8960 as_warn (_("SP should not be in register list"));
8961 if (inst.instruction == T_MNEM_stmia)
8962 {
8963 if (inst.operands[1].imm & (1 << 15))
8964 as_warn (_("PC should not be in register list"));
8965 if (inst.operands[1].imm & (1 << inst.operands[0].reg))
8966 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8967 inst.operands[0].reg);
8968 }
8969 else
8970 {
8971 if (inst.operands[1].imm & (1 << 14)
8972 && inst.operands[1].imm & (1 << 15))
8973 as_warn (_("LR and PC should not both be in register list"));
8974 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
8975 && inst.operands[0].writeback)
8976 as_warn (_("base register should not be in register list "
8977 "when written back"));
8978 }
8979 if (inst.instruction < 0xffff)
8980 inst.instruction = THUMB_OP32 (inst.instruction);
8981 inst.instruction |= inst.operands[0].reg << 16;
8982 inst.instruction |= inst.operands[1].imm;
8983 if (inst.operands[0].writeback)
8984 inst.instruction |= WRITE_BACK;
8985 }
8986 }
8987 else
8988 {
8989 constraint (inst.operands[0].reg > 7
8990 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
8991 if (inst.instruction == T_MNEM_stmia)
8992 {
8993 if (!inst.operands[0].writeback)
8994 as_warn (_("this instruction will write back the base register"));
8995 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
8996 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
8997 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8998 inst.operands[0].reg);
8999 }
9000 else
9001 {
9002 if (!inst.operands[0].writeback
9003 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9004 as_warn (_("this instruction will write back the base register"));
9005 else if (inst.operands[0].writeback
9006 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9007 as_warn (_("this instruction will not write back the base register"));
9008 }
9009
9010 inst.instruction = THUMB_OP16 (inst.instruction);
9011 inst.instruction |= inst.operands[0].reg << 8;
9012 inst.instruction |= inst.operands[1].imm;
9013 }
9014 }
9015
9016 static void
9017 do_t_ldrex (void)
9018 {
9019 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9020 || inst.operands[1].postind || inst.operands[1].writeback
9021 || inst.operands[1].immisreg || inst.operands[1].shifted
9022 || inst.operands[1].negative,
9023 BAD_ADDR_MODE);
9024
9025 inst.instruction |= inst.operands[0].reg << 12;
9026 inst.instruction |= inst.operands[1].reg << 16;
9027 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9028 }
9029
9030 static void
9031 do_t_ldrexd (void)
9032 {
9033 if (!inst.operands[1].present)
9034 {
9035 constraint (inst.operands[0].reg == REG_LR,
9036 _("r14 not allowed as first register "
9037 "when second register is omitted"));
9038 inst.operands[1].reg = inst.operands[0].reg + 1;
9039 }
9040 constraint (inst.operands[0].reg == inst.operands[1].reg,
9041 BAD_OVERLAP);
9042
9043 inst.instruction |= inst.operands[0].reg << 12;
9044 inst.instruction |= inst.operands[1].reg << 8;
9045 inst.instruction |= inst.operands[2].reg << 16;
9046 }
9047
9048 static void
9049 do_t_ldst (void)
9050 {
9051 unsigned long opcode;
9052 int Rn;
9053
9054 opcode = inst.instruction;
9055 if (unified_syntax)
9056 {
9057 if (!inst.operands[1].isreg)
9058 {
9059 if (opcode <= 0xffff)
9060 inst.instruction = THUMB_OP32 (opcode);
9061 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9062 return;
9063 }
9064 if (inst.operands[1].isreg
9065 && !inst.operands[1].writeback
9066 && !inst.operands[1].shifted && !inst.operands[1].postind
9067 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9068 && opcode <= 0xffff
9069 && inst.size_req != 4)
9070 {
9071 /* Insn may have a 16-bit form. */
9072 Rn = inst.operands[1].reg;
9073 if (inst.operands[1].immisreg)
9074 {
9075 inst.instruction = THUMB_OP16 (opcode);
9076 /* [Rn, Ri] */
9077 if (Rn <= 7 && inst.operands[1].imm <= 7)
9078 goto op16;
9079 }
9080 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9081 && opcode != T_MNEM_ldrsb)
9082 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9083 || (Rn == REG_SP && opcode == T_MNEM_str))
9084 {
9085 /* [Rn, #const] */
9086 if (Rn > 7)
9087 {
9088 if (Rn == REG_PC)
9089 {
9090 if (inst.reloc.pc_rel)
9091 opcode = T_MNEM_ldr_pc2;
9092 else
9093 opcode = T_MNEM_ldr_pc;
9094 }
9095 else
9096 {
9097 if (opcode == T_MNEM_ldr)
9098 opcode = T_MNEM_ldr_sp;
9099 else
9100 opcode = T_MNEM_str_sp;
9101 }
9102 inst.instruction = inst.operands[0].reg << 8;
9103 }
9104 else
9105 {
9106 inst.instruction = inst.operands[0].reg;
9107 inst.instruction |= inst.operands[1].reg << 3;
9108 }
9109 inst.instruction |= THUMB_OP16 (opcode);
9110 if (inst.size_req == 2)
9111 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9112 else
9113 inst.relax = opcode;
9114 return;
9115 }
9116 }
9117 /* Definitely a 32-bit variant. */
9118 inst.instruction = THUMB_OP32 (opcode);
9119 inst.instruction |= inst.operands[0].reg << 12;
9120 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9121 return;
9122 }
9123
9124 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9125
9126 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9127 {
9128 /* Only [Rn,Rm] is acceptable. */
9129 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9130 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9131 || inst.operands[1].postind || inst.operands[1].shifted
9132 || inst.operands[1].negative,
9133 _("Thumb does not support this addressing mode"));
9134 inst.instruction = THUMB_OP16 (inst.instruction);
9135 goto op16;
9136 }
9137
9138 inst.instruction = THUMB_OP16 (inst.instruction);
9139 if (!inst.operands[1].isreg)
9140 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9141 return;
9142
9143 constraint (!inst.operands[1].preind
9144 || inst.operands[1].shifted
9145 || inst.operands[1].writeback,
9146 _("Thumb does not support this addressing mode"));
9147 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9148 {
9149 constraint (inst.instruction & 0x0600,
9150 _("byte or halfword not valid for base register"));
9151 constraint (inst.operands[1].reg == REG_PC
9152 && !(inst.instruction & THUMB_LOAD_BIT),
9153 _("r15 based store not allowed"));
9154 constraint (inst.operands[1].immisreg,
9155 _("invalid base register for register offset"));
9156
9157 if (inst.operands[1].reg == REG_PC)
9158 inst.instruction = T_OPCODE_LDR_PC;
9159 else if (inst.instruction & THUMB_LOAD_BIT)
9160 inst.instruction = T_OPCODE_LDR_SP;
9161 else
9162 inst.instruction = T_OPCODE_STR_SP;
9163
9164 inst.instruction |= inst.operands[0].reg << 8;
9165 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9166 return;
9167 }
9168
9169 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9170 if (!inst.operands[1].immisreg)
9171 {
9172 /* Immediate offset. */
9173 inst.instruction |= inst.operands[0].reg;
9174 inst.instruction |= inst.operands[1].reg << 3;
9175 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9176 return;
9177 }
9178
9179 /* Register offset. */
9180 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9181 constraint (inst.operands[1].negative,
9182 _("Thumb does not support this addressing mode"));
9183
9184 op16:
9185 switch (inst.instruction)
9186 {
9187 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9188 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9189 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9190 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9191 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9192 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9193 case 0x5600 /* ldrsb */:
9194 case 0x5e00 /* ldrsh */: break;
9195 default: abort ();
9196 }
9197
9198 inst.instruction |= inst.operands[0].reg;
9199 inst.instruction |= inst.operands[1].reg << 3;
9200 inst.instruction |= inst.operands[1].imm << 6;
9201 }
9202
9203 static void
9204 do_t_ldstd (void)
9205 {
9206 if (!inst.operands[1].present)
9207 {
9208 inst.operands[1].reg = inst.operands[0].reg + 1;
9209 constraint (inst.operands[0].reg == REG_LR,
9210 _("r14 not allowed here"));
9211 }
9212 inst.instruction |= inst.operands[0].reg << 12;
9213 inst.instruction |= inst.operands[1].reg << 8;
9214 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9215
9216 }
9217
9218 static void
9219 do_t_ldstt (void)
9220 {
9221 inst.instruction |= inst.operands[0].reg << 12;
9222 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9223 }
9224
9225 static void
9226 do_t_mla (void)
9227 {
9228 inst.instruction |= inst.operands[0].reg << 8;
9229 inst.instruction |= inst.operands[1].reg << 16;
9230 inst.instruction |= inst.operands[2].reg;
9231 inst.instruction |= inst.operands[3].reg << 12;
9232 }
9233
9234 static void
9235 do_t_mlal (void)
9236 {
9237 inst.instruction |= inst.operands[0].reg << 12;
9238 inst.instruction |= inst.operands[1].reg << 8;
9239 inst.instruction |= inst.operands[2].reg << 16;
9240 inst.instruction |= inst.operands[3].reg;
9241 }
9242
9243 static void
9244 do_t_mov_cmp (void)
9245 {
9246 if (unified_syntax)
9247 {
9248 int r0off = (inst.instruction == T_MNEM_mov
9249 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9250 unsigned long opcode;
9251 bfd_boolean narrow;
9252 bfd_boolean low_regs;
9253
9254 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
9255 opcode = inst.instruction;
9256 if (current_it_mask)
9257 narrow = opcode != T_MNEM_movs;
9258 else
9259 narrow = opcode != T_MNEM_movs || low_regs;
9260 if (inst.size_req == 4
9261 || inst.operands[1].shifted)
9262 narrow = FALSE;
9263
9264 if (!inst.operands[1].isreg)
9265 {
9266 /* Immediate operand. */
9267 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9268 narrow = 0;
9269 if (low_regs && narrow)
9270 {
9271 inst.instruction = THUMB_OP16 (opcode);
9272 inst.instruction |= inst.operands[0].reg << 8;
9273 if (inst.size_req == 2)
9274 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9275 else
9276 inst.relax = opcode;
9277 }
9278 else
9279 {
9280 inst.instruction = THUMB_OP32 (inst.instruction);
9281 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9282 inst.instruction |= inst.operands[0].reg << r0off;
9283 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9284 }
9285 }
9286 else if (!narrow)
9287 {
9288 inst.instruction = THUMB_OP32 (inst.instruction);
9289 inst.instruction |= inst.operands[0].reg << r0off;
9290 encode_thumb32_shifted_operand (1);
9291 }
9292 else
9293 switch (inst.instruction)
9294 {
9295 case T_MNEM_mov:
9296 inst.instruction = T_OPCODE_MOV_HR;
9297 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9298 inst.instruction |= (inst.operands[0].reg & 0x7);
9299 inst.instruction |= inst.operands[1].reg << 3;
9300 break;
9301
9302 case T_MNEM_movs:
9303 /* We know we have low registers at this point.
9304 Generate ADD Rd, Rs, #0. */
9305 inst.instruction = T_OPCODE_ADD_I3;
9306 inst.instruction |= inst.operands[0].reg;
9307 inst.instruction |= inst.operands[1].reg << 3;
9308 break;
9309
9310 case T_MNEM_cmp:
9311 if (low_regs)
9312 {
9313 inst.instruction = T_OPCODE_CMP_LR;
9314 inst.instruction |= inst.operands[0].reg;
9315 inst.instruction |= inst.operands[1].reg << 3;
9316 }
9317 else
9318 {
9319 inst.instruction = T_OPCODE_CMP_HR;
9320 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9321 inst.instruction |= (inst.operands[0].reg & 0x7);
9322 inst.instruction |= inst.operands[1].reg << 3;
9323 }
9324 break;
9325 }
9326 return;
9327 }
9328
9329 inst.instruction = THUMB_OP16 (inst.instruction);
9330 if (inst.operands[1].isreg)
9331 {
9332 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
9333 {
9334 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9335 since a MOV instruction produces unpredictable results. */
9336 if (inst.instruction == T_OPCODE_MOV_I8)
9337 inst.instruction = T_OPCODE_ADD_I3;
9338 else
9339 inst.instruction = T_OPCODE_CMP_LR;
9340
9341 inst.instruction |= inst.operands[0].reg;
9342 inst.instruction |= inst.operands[1].reg << 3;
9343 }
9344 else
9345 {
9346 if (inst.instruction == T_OPCODE_MOV_I8)
9347 inst.instruction = T_OPCODE_MOV_HR;
9348 else
9349 inst.instruction = T_OPCODE_CMP_HR;
9350 do_t_cpy ();
9351 }
9352 }
9353 else
9354 {
9355 constraint (inst.operands[0].reg > 7,
9356 _("only lo regs allowed with immediate"));
9357 inst.instruction |= inst.operands[0].reg << 8;
9358 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9359 }
9360 }
9361
9362 static void
9363 do_t_mov16 (void)
9364 {
9365 bfd_vma imm;
9366 bfd_boolean top;
9367
9368 top = (inst.instruction & 0x00800000) != 0;
9369 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9370 {
9371 constraint (top, _(":lower16: not allowed this instruction"));
9372 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9373 }
9374 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9375 {
9376 constraint (!top, _(":upper16: not allowed this instruction"));
9377 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9378 }
9379
9380 inst.instruction |= inst.operands[0].reg << 8;
9381 if (inst.reloc.type == BFD_RELOC_UNUSED)
9382 {
9383 imm = inst.reloc.exp.X_add_number;
9384 inst.instruction |= (imm & 0xf000) << 4;
9385 inst.instruction |= (imm & 0x0800) << 15;
9386 inst.instruction |= (imm & 0x0700) << 4;
9387 inst.instruction |= (imm & 0x00ff);
9388 }
9389 }
9390
9391 static void
9392 do_t_mvn_tst (void)
9393 {
9394 if (unified_syntax)
9395 {
9396 int r0off = (inst.instruction == T_MNEM_mvn
9397 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9398 bfd_boolean narrow;
9399
9400 if (inst.size_req == 4
9401 || inst.instruction > 0xffff
9402 || inst.operands[1].shifted
9403 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9404 narrow = FALSE;
9405 else if (inst.instruction == T_MNEM_cmn)
9406 narrow = TRUE;
9407 else if (THUMB_SETS_FLAGS (inst.instruction))
9408 narrow = (current_it_mask == 0);
9409 else
9410 narrow = (current_it_mask != 0);
9411
9412 if (!inst.operands[1].isreg)
9413 {
9414 /* For an immediate, we always generate a 32-bit opcode;
9415 section relaxation will shrink it later if possible. */
9416 if (inst.instruction < 0xffff)
9417 inst.instruction = THUMB_OP32 (inst.instruction);
9418 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9419 inst.instruction |= inst.operands[0].reg << r0off;
9420 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9421 }
9422 else
9423 {
9424 /* See if we can do this with a 16-bit instruction. */
9425 if (narrow)
9426 {
9427 inst.instruction = THUMB_OP16 (inst.instruction);
9428 inst.instruction |= inst.operands[0].reg;
9429 inst.instruction |= inst.operands[1].reg << 3;
9430 }
9431 else
9432 {
9433 constraint (inst.operands[1].shifted
9434 && inst.operands[1].immisreg,
9435 _("shift must be constant"));
9436 if (inst.instruction < 0xffff)
9437 inst.instruction = THUMB_OP32 (inst.instruction);
9438 inst.instruction |= inst.operands[0].reg << r0off;
9439 encode_thumb32_shifted_operand (1);
9440 }
9441 }
9442 }
9443 else
9444 {
9445 constraint (inst.instruction > 0xffff
9446 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9447 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9448 _("unshifted register required"));
9449 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9450 BAD_HIREG);
9451
9452 inst.instruction = THUMB_OP16 (inst.instruction);
9453 inst.instruction |= inst.operands[0].reg;
9454 inst.instruction |= inst.operands[1].reg << 3;
9455 }
9456 }
9457
9458 static void
9459 do_t_mrs (void)
9460 {
9461 int flags;
9462
9463 if (do_vfp_nsyn_mrs () == SUCCESS)
9464 return;
9465
9466 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9467 if (flags == 0)
9468 {
9469 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9470 _("selected processor does not support "
9471 "requested special purpose register"));
9472 }
9473 else
9474 {
9475 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9476 _("selected processor does not support "
9477 "requested special purpose register %x"));
9478 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9479 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9480 _("'CPSR' or 'SPSR' expected"));
9481 }
9482
9483 inst.instruction |= inst.operands[0].reg << 8;
9484 inst.instruction |= (flags & SPSR_BIT) >> 2;
9485 inst.instruction |= inst.operands[1].imm & 0xff;
9486 }
9487
9488 static void
9489 do_t_msr (void)
9490 {
9491 int flags;
9492
9493 if (do_vfp_nsyn_msr () == SUCCESS)
9494 return;
9495
9496 constraint (!inst.operands[1].isreg,
9497 _("Thumb encoding does not support an immediate here"));
9498 flags = inst.operands[0].imm;
9499 if (flags & ~0xff)
9500 {
9501 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9502 _("selected processor does not support "
9503 "requested special purpose register"));
9504 }
9505 else
9506 {
9507 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9508 _("selected processor does not support "
9509 "requested special purpose register"));
9510 flags |= PSR_f;
9511 }
9512 inst.instruction |= (flags & SPSR_BIT) >> 2;
9513 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9514 inst.instruction |= (flags & 0xff);
9515 inst.instruction |= inst.operands[1].reg << 16;
9516 }
9517
9518 static void
9519 do_t_mul (void)
9520 {
9521 if (!inst.operands[2].present)
9522 inst.operands[2].reg = inst.operands[0].reg;
9523
9524 /* There is no 32-bit MULS and no 16-bit MUL. */
9525 if (unified_syntax && inst.instruction == T_MNEM_mul)
9526 {
9527 inst.instruction = THUMB_OP32 (inst.instruction);
9528 inst.instruction |= inst.operands[0].reg << 8;
9529 inst.instruction |= inst.operands[1].reg << 16;
9530 inst.instruction |= inst.operands[2].reg << 0;
9531 }
9532 else
9533 {
9534 constraint (!unified_syntax
9535 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9536 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9537 BAD_HIREG);
9538
9539 inst.instruction = THUMB_OP16 (inst.instruction);
9540 inst.instruction |= inst.operands[0].reg;
9541
9542 if (inst.operands[0].reg == inst.operands[1].reg)
9543 inst.instruction |= inst.operands[2].reg << 3;
9544 else if (inst.operands[0].reg == inst.operands[2].reg)
9545 inst.instruction |= inst.operands[1].reg << 3;
9546 else
9547 constraint (1, _("dest must overlap one source register"));
9548 }
9549 }
9550
9551 static void
9552 do_t_mull (void)
9553 {
9554 inst.instruction |= inst.operands[0].reg << 12;
9555 inst.instruction |= inst.operands[1].reg << 8;
9556 inst.instruction |= inst.operands[2].reg << 16;
9557 inst.instruction |= inst.operands[3].reg;
9558
9559 if (inst.operands[0].reg == inst.operands[1].reg)
9560 as_tsktsk (_("rdhi and rdlo must be different"));
9561 }
9562
9563 static void
9564 do_t_nop (void)
9565 {
9566 if (unified_syntax)
9567 {
9568 if (inst.size_req == 4 || inst.operands[0].imm > 15)
9569 {
9570 inst.instruction = THUMB_OP32 (inst.instruction);
9571 inst.instruction |= inst.operands[0].imm;
9572 }
9573 else
9574 {
9575 inst.instruction = THUMB_OP16 (inst.instruction);
9576 inst.instruction |= inst.operands[0].imm << 4;
9577 }
9578 }
9579 else
9580 {
9581 constraint (inst.operands[0].present,
9582 _("Thumb does not support NOP with hints"));
9583 inst.instruction = 0x46c0;
9584 }
9585 }
9586
9587 static void
9588 do_t_neg (void)
9589 {
9590 if (unified_syntax)
9591 {
9592 bfd_boolean narrow;
9593
9594 if (THUMB_SETS_FLAGS (inst.instruction))
9595 narrow = (current_it_mask == 0);
9596 else
9597 narrow = (current_it_mask != 0);
9598 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9599 narrow = FALSE;
9600 if (inst.size_req == 4)
9601 narrow = FALSE;
9602
9603 if (!narrow)
9604 {
9605 inst.instruction = THUMB_OP32 (inst.instruction);
9606 inst.instruction |= inst.operands[0].reg << 8;
9607 inst.instruction |= inst.operands[1].reg << 16;
9608 }
9609 else
9610 {
9611 inst.instruction = THUMB_OP16 (inst.instruction);
9612 inst.instruction |= inst.operands[0].reg;
9613 inst.instruction |= inst.operands[1].reg << 3;
9614 }
9615 }
9616 else
9617 {
9618 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9619 BAD_HIREG);
9620 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9621
9622 inst.instruction = THUMB_OP16 (inst.instruction);
9623 inst.instruction |= inst.operands[0].reg;
9624 inst.instruction |= inst.operands[1].reg << 3;
9625 }
9626 }
9627
9628 static void
9629 do_t_pkhbt (void)
9630 {
9631 inst.instruction |= inst.operands[0].reg << 8;
9632 inst.instruction |= inst.operands[1].reg << 16;
9633 inst.instruction |= inst.operands[2].reg;
9634 if (inst.operands[3].present)
9635 {
9636 unsigned int val = inst.reloc.exp.X_add_number;
9637 constraint (inst.reloc.exp.X_op != O_constant,
9638 _("expression too complex"));
9639 inst.instruction |= (val & 0x1c) << 10;
9640 inst.instruction |= (val & 0x03) << 6;
9641 }
9642 }
9643
9644 static void
9645 do_t_pkhtb (void)
9646 {
9647 if (!inst.operands[3].present)
9648 inst.instruction &= ~0x00000020;
9649 do_t_pkhbt ();
9650 }
9651
9652 static void
9653 do_t_pld (void)
9654 {
9655 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9656 }
9657
9658 static void
9659 do_t_push_pop (void)
9660 {
9661 unsigned mask;
9662
9663 constraint (inst.operands[0].writeback,
9664 _("push/pop do not support {reglist}^"));
9665 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9666 _("expression too complex"));
9667
9668 mask = inst.operands[0].imm;
9669 if ((mask & ~0xff) == 0)
9670 inst.instruction = THUMB_OP16 (inst.instruction);
9671 else if ((inst.instruction == T_MNEM_push
9672 && (mask & ~0xff) == 1 << REG_LR)
9673 || (inst.instruction == T_MNEM_pop
9674 && (mask & ~0xff) == 1 << REG_PC))
9675 {
9676 inst.instruction = THUMB_OP16 (inst.instruction);
9677 inst.instruction |= THUMB_PP_PC_LR;
9678 mask &= 0xff;
9679 }
9680 else if (unified_syntax)
9681 {
9682 if (mask & (1 << 13))
9683 inst.error = _("SP not allowed in register list");
9684 if (inst.instruction == T_MNEM_push)
9685 {
9686 if (mask & (1 << 15))
9687 inst.error = _("PC not allowed in register list");
9688 }
9689 else
9690 {
9691 if (mask & (1 << 14)
9692 && mask & (1 << 15))
9693 inst.error = _("LR and PC should not both be in register list");
9694 }
9695 if ((mask & (mask - 1)) == 0)
9696 {
9697 /* Single register push/pop implemented as str/ldr. */
9698 if (inst.instruction == T_MNEM_push)
9699 inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */
9700 else
9701 inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */
9702 mask = ffs(mask) - 1;
9703 mask <<= 12;
9704 }
9705 else
9706 inst.instruction = THUMB_OP32 (inst.instruction);
9707 }
9708 else
9709 {
9710 inst.error = _("invalid register list to push/pop instruction");
9711 return;
9712 }
9713
9714 inst.instruction |= mask;
9715 }
9716
9717 static void
9718 do_t_rbit (void)
9719 {
9720 inst.instruction |= inst.operands[0].reg << 8;
9721 inst.instruction |= inst.operands[1].reg << 16;
9722 }
9723
9724 static void
9725 do_t_rev (void)
9726 {
9727 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9728 && inst.size_req != 4)
9729 {
9730 inst.instruction = THUMB_OP16 (inst.instruction);
9731 inst.instruction |= inst.operands[0].reg;
9732 inst.instruction |= inst.operands[1].reg << 3;
9733 }
9734 else if (unified_syntax)
9735 {
9736 inst.instruction = THUMB_OP32 (inst.instruction);
9737 inst.instruction |= inst.operands[0].reg << 8;
9738 inst.instruction |= inst.operands[1].reg << 16;
9739 inst.instruction |= inst.operands[1].reg;
9740 }
9741 else
9742 inst.error = BAD_HIREG;
9743 }
9744
9745 static void
9746 do_t_rsb (void)
9747 {
9748 int Rd, Rs;
9749
9750 Rd = inst.operands[0].reg;
9751 Rs = (inst.operands[1].present
9752 ? inst.operands[1].reg /* Rd, Rs, foo */
9753 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9754
9755 inst.instruction |= Rd << 8;
9756 inst.instruction |= Rs << 16;
9757 if (!inst.operands[2].isreg)
9758 {
9759 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9760 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9761 }
9762 else
9763 encode_thumb32_shifted_operand (2);
9764 }
9765
9766 static void
9767 do_t_setend (void)
9768 {
9769 constraint (current_it_mask, BAD_NOT_IT);
9770 if (inst.operands[0].imm)
9771 inst.instruction |= 0x8;
9772 }
9773
9774 static void
9775 do_t_shift (void)
9776 {
9777 if (!inst.operands[1].present)
9778 inst.operands[1].reg = inst.operands[0].reg;
9779
9780 if (unified_syntax)
9781 {
9782 bfd_boolean narrow;
9783 int shift_kind;
9784
9785 switch (inst.instruction)
9786 {
9787 case T_MNEM_asr:
9788 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
9789 case T_MNEM_lsl:
9790 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
9791 case T_MNEM_lsr:
9792 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
9793 case T_MNEM_ror:
9794 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
9795 default: abort ();
9796 }
9797
9798 if (THUMB_SETS_FLAGS (inst.instruction))
9799 narrow = (current_it_mask == 0);
9800 else
9801 narrow = (current_it_mask != 0);
9802 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9803 narrow = FALSE;
9804 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
9805 narrow = FALSE;
9806 if (inst.operands[2].isreg
9807 && (inst.operands[1].reg != inst.operands[0].reg
9808 || inst.operands[2].reg > 7))
9809 narrow = FALSE;
9810 if (inst.size_req == 4)
9811 narrow = FALSE;
9812
9813 if (!narrow)
9814 {
9815 if (inst.operands[2].isreg)
9816 {
9817 inst.instruction = THUMB_OP32 (inst.instruction);
9818 inst.instruction |= inst.operands[0].reg << 8;
9819 inst.instruction |= inst.operands[1].reg << 16;
9820 inst.instruction |= inst.operands[2].reg;
9821 }
9822 else
9823 {
9824 inst.operands[1].shifted = 1;
9825 inst.operands[1].shift_kind = shift_kind;
9826 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
9827 ? T_MNEM_movs : T_MNEM_mov);
9828 inst.instruction |= inst.operands[0].reg << 8;
9829 encode_thumb32_shifted_operand (1);
9830 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
9831 inst.reloc.type = BFD_RELOC_UNUSED;
9832 }
9833 }
9834 else
9835 {
9836 if (inst.operands[2].isreg)
9837 {
9838 switch (shift_kind)
9839 {
9840 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
9841 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
9842 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
9843 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
9844 default: abort ();
9845 }
9846
9847 inst.instruction |= inst.operands[0].reg;
9848 inst.instruction |= inst.operands[2].reg << 3;
9849 }
9850 else
9851 {
9852 switch (shift_kind)
9853 {
9854 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9855 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9856 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9857 default: abort ();
9858 }
9859 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9860 inst.instruction |= inst.operands[0].reg;
9861 inst.instruction |= inst.operands[1].reg << 3;
9862 }
9863 }
9864 }
9865 else
9866 {
9867 constraint (inst.operands[0].reg > 7
9868 || inst.operands[1].reg > 7, BAD_HIREG);
9869 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9870
9871 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
9872 {
9873 constraint (inst.operands[2].reg > 7, BAD_HIREG);
9874 constraint (inst.operands[0].reg != inst.operands[1].reg,
9875 _("source1 and dest must be same register"));
9876
9877 switch (inst.instruction)
9878 {
9879 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
9880 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
9881 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
9882 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
9883 default: abort ();
9884 }
9885
9886 inst.instruction |= inst.operands[0].reg;
9887 inst.instruction |= inst.operands[2].reg << 3;
9888 }
9889 else
9890 {
9891 switch (inst.instruction)
9892 {
9893 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
9894 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
9895 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
9896 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
9897 default: abort ();
9898 }
9899 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9900 inst.instruction |= inst.operands[0].reg;
9901 inst.instruction |= inst.operands[1].reg << 3;
9902 }
9903 }
9904 }
9905
9906 static void
9907 do_t_simd (void)
9908 {
9909 inst.instruction |= inst.operands[0].reg << 8;
9910 inst.instruction |= inst.operands[1].reg << 16;
9911 inst.instruction |= inst.operands[2].reg;
9912 }
9913
9914 static void
9915 do_t_smc (void)
9916 {
9917 unsigned int value = inst.reloc.exp.X_add_number;
9918 constraint (inst.reloc.exp.X_op != O_constant,
9919 _("expression too complex"));
9920 inst.reloc.type = BFD_RELOC_UNUSED;
9921 inst.instruction |= (value & 0xf000) >> 12;
9922 inst.instruction |= (value & 0x0ff0);
9923 inst.instruction |= (value & 0x000f) << 16;
9924 }
9925
9926 static void
9927 do_t_ssat (void)
9928 {
9929 inst.instruction |= inst.operands[0].reg << 8;
9930 inst.instruction |= inst.operands[1].imm - 1;
9931 inst.instruction |= inst.operands[2].reg << 16;
9932
9933 if (inst.operands[3].present)
9934 {
9935 constraint (inst.reloc.exp.X_op != O_constant,
9936 _("expression too complex"));
9937
9938 if (inst.reloc.exp.X_add_number != 0)
9939 {
9940 if (inst.operands[3].shift_kind == SHIFT_ASR)
9941 inst.instruction |= 0x00200000; /* sh bit */
9942 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
9943 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
9944 }
9945 inst.reloc.type = BFD_RELOC_UNUSED;
9946 }
9947 }
9948
9949 static void
9950 do_t_ssat16 (void)
9951 {
9952 inst.instruction |= inst.operands[0].reg << 8;
9953 inst.instruction |= inst.operands[1].imm - 1;
9954 inst.instruction |= inst.operands[2].reg << 16;
9955 }
9956
9957 static void
9958 do_t_strex (void)
9959 {
9960 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9961 || inst.operands[2].postind || inst.operands[2].writeback
9962 || inst.operands[2].immisreg || inst.operands[2].shifted
9963 || inst.operands[2].negative,
9964 BAD_ADDR_MODE);
9965
9966 inst.instruction |= inst.operands[0].reg << 8;
9967 inst.instruction |= inst.operands[1].reg << 12;
9968 inst.instruction |= inst.operands[2].reg << 16;
9969 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9970 }
9971
9972 static void
9973 do_t_strexd (void)
9974 {
9975 if (!inst.operands[2].present)
9976 inst.operands[2].reg = inst.operands[1].reg + 1;
9977
9978 constraint (inst.operands[0].reg == inst.operands[1].reg
9979 || inst.operands[0].reg == inst.operands[2].reg
9980 || inst.operands[0].reg == inst.operands[3].reg
9981 || inst.operands[1].reg == inst.operands[2].reg,
9982 BAD_OVERLAP);
9983
9984 inst.instruction |= inst.operands[0].reg;
9985 inst.instruction |= inst.operands[1].reg << 12;
9986 inst.instruction |= inst.operands[2].reg << 8;
9987 inst.instruction |= inst.operands[3].reg << 16;
9988 }
9989
9990 static void
9991 do_t_sxtah (void)
9992 {
9993 inst.instruction |= inst.operands[0].reg << 8;
9994 inst.instruction |= inst.operands[1].reg << 16;
9995 inst.instruction |= inst.operands[2].reg;
9996 inst.instruction |= inst.operands[3].imm << 4;
9997 }
9998
9999 static void
10000 do_t_sxth (void)
10001 {
10002 if (inst.instruction <= 0xffff && inst.size_req != 4
10003 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10004 && (!inst.operands[2].present || inst.operands[2].imm == 0))
10005 {
10006 inst.instruction = THUMB_OP16 (inst.instruction);
10007 inst.instruction |= inst.operands[0].reg;
10008 inst.instruction |= inst.operands[1].reg << 3;
10009 }
10010 else if (unified_syntax)
10011 {
10012 if (inst.instruction <= 0xffff)
10013 inst.instruction = THUMB_OP32 (inst.instruction);
10014 inst.instruction |= inst.operands[0].reg << 8;
10015 inst.instruction |= inst.operands[1].reg;
10016 inst.instruction |= inst.operands[2].imm << 4;
10017 }
10018 else
10019 {
10020 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10021 _("Thumb encoding does not support rotation"));
10022 constraint (1, BAD_HIREG);
10023 }
10024 }
10025
10026 static void
10027 do_t_swi (void)
10028 {
10029 inst.reloc.type = BFD_RELOC_ARM_SWI;
10030 }
10031
10032 static void
10033 do_t_tb (void)
10034 {
10035 int half;
10036
10037 half = (inst.instruction & 0x10) != 0;
10038 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10039 constraint (inst.operands[0].immisreg,
10040 _("instruction requires register index"));
10041 constraint (inst.operands[0].imm == 15,
10042 _("PC is not a valid index register"));
10043 constraint (!half && inst.operands[0].shifted,
10044 _("instruction does not allow shifted index"));
10045 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10046 }
10047
10048 static void
10049 do_t_usat (void)
10050 {
10051 inst.instruction |= inst.operands[0].reg << 8;
10052 inst.instruction |= inst.operands[1].imm;
10053 inst.instruction |= inst.operands[2].reg << 16;
10054
10055 if (inst.operands[3].present)
10056 {
10057 constraint (inst.reloc.exp.X_op != O_constant,
10058 _("expression too complex"));
10059 if (inst.reloc.exp.X_add_number != 0)
10060 {
10061 if (inst.operands[3].shift_kind == SHIFT_ASR)
10062 inst.instruction |= 0x00200000; /* sh bit */
10063
10064 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10065 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10066 }
10067 inst.reloc.type = BFD_RELOC_UNUSED;
10068 }
10069 }
10070
10071 static void
10072 do_t_usat16 (void)
10073 {
10074 inst.instruction |= inst.operands[0].reg << 8;
10075 inst.instruction |= inst.operands[1].imm;
10076 inst.instruction |= inst.operands[2].reg << 16;
10077 }
10078
10079 /* Neon instruction encoder helpers. */
10080
10081 /* Encodings for the different types for various Neon opcodes. */
10082
10083 /* An "invalid" code for the following tables. */
10084 #define N_INV -1u
10085
10086 struct neon_tab_entry
10087 {
10088 unsigned integer;
10089 unsigned float_or_poly;
10090 unsigned scalar_or_imm;
10091 };
10092
10093 /* Map overloaded Neon opcodes to their respective encodings. */
10094 #define NEON_ENC_TAB \
10095 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10096 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10097 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10098 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10099 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10100 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10101 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10102 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10103 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10104 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10105 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10106 /* Register variants of the following two instructions are encoded as
10107 vcge / vcgt with the operands reversed. */ \
10108 X(vclt, 0x0000310, 0x1000e00, 0x1b10200), \
10109 X(vcle, 0x0000300, 0x1200e00, 0x1b10180), \
10110 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10111 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10112 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10113 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10114 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10115 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10116 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10117 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10118 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10119 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10120 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10121 X(vshl, 0x0000400, N_INV, 0x0800510), \
10122 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10123 X(vand, 0x0000110, N_INV, 0x0800030), \
10124 X(vbic, 0x0100110, N_INV, 0x0800030), \
10125 X(veor, 0x1000110, N_INV, N_INV), \
10126 X(vorn, 0x0300110, N_INV, 0x0800010), \
10127 X(vorr, 0x0200110, N_INV, 0x0800010), \
10128 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10129 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10130 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10131 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10132 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10133 X(vst1, 0x0000000, 0x0800000, N_INV), \
10134 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10135 X(vst2, 0x0000100, 0x0800100, N_INV), \
10136 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10137 X(vst3, 0x0000200, 0x0800200, N_INV), \
10138 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10139 X(vst4, 0x0000300, 0x0800300, N_INV), \
10140 X(vmovn, 0x1b20200, N_INV, N_INV), \
10141 X(vtrn, 0x1b20080, N_INV, N_INV), \
10142 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10143 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10144 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10145 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10146 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10147 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10148 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10149 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10150 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10151
10152 enum neon_opc
10153 {
10154 #define X(OPC,I,F,S) N_MNEM_##OPC
10155 NEON_ENC_TAB
10156 #undef X
10157 };
10158
10159 static const struct neon_tab_entry neon_enc_tab[] =
10160 {
10161 #define X(OPC,I,F,S) { (I), (F), (S) }
10162 NEON_ENC_TAB
10163 #undef X
10164 };
10165
10166 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10167 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10168 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10169 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10170 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10171 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10172 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10173 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10174 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10175 #define NEON_ENC_SINGLE(X) \
10176 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10177 #define NEON_ENC_DOUBLE(X) \
10178 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10179
10180 /* Define shapes for instruction operands. The following mnemonic characters
10181 are used in this table:
10182
10183 F - VFP S<n> register
10184 D - Neon D<n> register
10185 Q - Neon Q<n> register
10186 I - Immediate
10187 S - Scalar
10188 R - ARM register
10189 L - D<n> register list
10190
10191 This table is used to generate various data:
10192 - enumerations of the form NS_DDR to be used as arguments to
10193 neon_select_shape.
10194 - a table classifying shapes into single, double, quad, mixed.
10195 - a table used to drive neon_select_shape.
10196 */
10197
10198 #define NEON_SHAPE_DEF \
10199 X(3, (D, D, D), DOUBLE), \
10200 X(3, (Q, Q, Q), QUAD), \
10201 X(3, (D, D, I), DOUBLE), \
10202 X(3, (Q, Q, I), QUAD), \
10203 X(3, (D, D, S), DOUBLE), \
10204 X(3, (Q, Q, S), QUAD), \
10205 X(2, (D, D), DOUBLE), \
10206 X(2, (Q, Q), QUAD), \
10207 X(2, (D, S), DOUBLE), \
10208 X(2, (Q, S), QUAD), \
10209 X(2, (D, R), DOUBLE), \
10210 X(2, (Q, R), QUAD), \
10211 X(2, (D, I), DOUBLE), \
10212 X(2, (Q, I), QUAD), \
10213 X(3, (D, L, D), DOUBLE), \
10214 X(2, (D, Q), MIXED), \
10215 X(2, (Q, D), MIXED), \
10216 X(3, (D, Q, I), MIXED), \
10217 X(3, (Q, D, I), MIXED), \
10218 X(3, (Q, D, D), MIXED), \
10219 X(3, (D, Q, Q), MIXED), \
10220 X(3, (Q, Q, D), MIXED), \
10221 X(3, (Q, D, S), MIXED), \
10222 X(3, (D, Q, S), MIXED), \
10223 X(4, (D, D, D, I), DOUBLE), \
10224 X(4, (Q, Q, Q, I), QUAD), \
10225 X(2, (F, F), SINGLE), \
10226 X(3, (F, F, F), SINGLE), \
10227 X(2, (F, I), SINGLE), \
10228 X(2, (F, D), MIXED), \
10229 X(2, (D, F), MIXED), \
10230 X(3, (F, F, I), MIXED), \
10231 X(4, (R, R, F, F), SINGLE), \
10232 X(4, (F, F, R, R), SINGLE), \
10233 X(3, (D, R, R), DOUBLE), \
10234 X(3, (R, R, D), DOUBLE), \
10235 X(2, (S, R), SINGLE), \
10236 X(2, (R, S), SINGLE), \
10237 X(2, (F, R), SINGLE), \
10238 X(2, (R, F), SINGLE)
10239
10240 #define S2(A,B) NS_##A##B
10241 #define S3(A,B,C) NS_##A##B##C
10242 #define S4(A,B,C,D) NS_##A##B##C##D
10243
10244 #define X(N, L, C) S##N L
10245
10246 enum neon_shape
10247 {
10248 NEON_SHAPE_DEF,
10249 NS_NULL
10250 };
10251
10252 #undef X
10253 #undef S2
10254 #undef S3
10255 #undef S4
10256
10257 enum neon_shape_class
10258 {
10259 SC_SINGLE,
10260 SC_DOUBLE,
10261 SC_QUAD,
10262 SC_MIXED
10263 };
10264
10265 #define X(N, L, C) SC_##C
10266
10267 static enum neon_shape_class neon_shape_class[] =
10268 {
10269 NEON_SHAPE_DEF
10270 };
10271
10272 #undef X
10273
10274 enum neon_shape_el
10275 {
10276 SE_F,
10277 SE_D,
10278 SE_Q,
10279 SE_I,
10280 SE_S,
10281 SE_R,
10282 SE_L
10283 };
10284
10285 /* Register widths of above. */
10286 static unsigned neon_shape_el_size[] =
10287 {
10288 32,
10289 64,
10290 128,
10291 0,
10292 32,
10293 32,
10294 0
10295 };
10296
10297 struct neon_shape_info
10298 {
10299 unsigned els;
10300 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10301 };
10302
10303 #define S2(A,B) { SE_##A, SE_##B }
10304 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10305 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10306
10307 #define X(N, L, C) { N, S##N L }
10308
10309 static struct neon_shape_info neon_shape_tab[] =
10310 {
10311 NEON_SHAPE_DEF
10312 };
10313
10314 #undef X
10315 #undef S2
10316 #undef S3
10317 #undef S4
10318
10319 /* Bit masks used in type checking given instructions.
10320 'N_EQK' means the type must be the same as (or based on in some way) the key
10321 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10322 set, various other bits can be set as well in order to modify the meaning of
10323 the type constraint. */
10324
10325 enum neon_type_mask
10326 {
10327 N_S8 = 0x000001,
10328 N_S16 = 0x000002,
10329 N_S32 = 0x000004,
10330 N_S64 = 0x000008,
10331 N_U8 = 0x000010,
10332 N_U16 = 0x000020,
10333 N_U32 = 0x000040,
10334 N_U64 = 0x000080,
10335 N_I8 = 0x000100,
10336 N_I16 = 0x000200,
10337 N_I32 = 0x000400,
10338 N_I64 = 0x000800,
10339 N_8 = 0x001000,
10340 N_16 = 0x002000,
10341 N_32 = 0x004000,
10342 N_64 = 0x008000,
10343 N_P8 = 0x010000,
10344 N_P16 = 0x020000,
10345 N_F32 = 0x040000,
10346 N_F64 = 0x080000,
10347 N_KEY = 0x100000, /* key element (main type specifier). */
10348 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10349 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
10350 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10351 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10352 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10353 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10354 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10355 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
10356 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
10357 N_UTYP = 0,
10358 N_MAX_NONSPECIAL = N_F64
10359 };
10360
10361 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10362
10363 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10364 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10365 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10366 #define N_SUF_32 (N_SU_32 | N_F32)
10367 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10368 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10369
10370 /* Pass this as the first type argument to neon_check_type to ignore types
10371 altogether. */
10372 #define N_IGNORE_TYPE (N_KEY | N_EQK)
10373
10374 /* Select a "shape" for the current instruction (describing register types or
10375 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10376 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10377 function of operand parsing, so this function doesn't need to be called.
10378 Shapes should be listed in order of decreasing length. */
10379
10380 static enum neon_shape
10381 neon_select_shape (enum neon_shape shape, ...)
10382 {
10383 va_list ap;
10384 enum neon_shape first_shape = shape;
10385
10386 /* Fix missing optional operands. FIXME: we don't know at this point how
10387 many arguments we should have, so this makes the assumption that we have
10388 > 1. This is true of all current Neon opcodes, I think, but may not be
10389 true in the future. */
10390 if (!inst.operands[1].present)
10391 inst.operands[1] = inst.operands[0];
10392
10393 va_start (ap, shape);
10394
10395 for (; shape != NS_NULL; shape = va_arg (ap, int))
10396 {
10397 unsigned j;
10398 int matches = 1;
10399
10400 for (j = 0; j < neon_shape_tab[shape].els; j++)
10401 {
10402 if (!inst.operands[j].present)
10403 {
10404 matches = 0;
10405 break;
10406 }
10407
10408 switch (neon_shape_tab[shape].el[j])
10409 {
10410 case SE_F:
10411 if (!(inst.operands[j].isreg
10412 && inst.operands[j].isvec
10413 && inst.operands[j].issingle
10414 && !inst.operands[j].isquad))
10415 matches = 0;
10416 break;
10417
10418 case SE_D:
10419 if (!(inst.operands[j].isreg
10420 && inst.operands[j].isvec
10421 && !inst.operands[j].isquad
10422 && !inst.operands[j].issingle))
10423 matches = 0;
10424 break;
10425
10426 case SE_R:
10427 if (!(inst.operands[j].isreg
10428 && !inst.operands[j].isvec))
10429 matches = 0;
10430 break;
10431
10432 case SE_Q:
10433 if (!(inst.operands[j].isreg
10434 && inst.operands[j].isvec
10435 && inst.operands[j].isquad
10436 && !inst.operands[j].issingle))
10437 matches = 0;
10438 break;
10439
10440 case SE_I:
10441 if (!(!inst.operands[j].isreg
10442 && !inst.operands[j].isscalar))
10443 matches = 0;
10444 break;
10445
10446 case SE_S:
10447 if (!(!inst.operands[j].isreg
10448 && inst.operands[j].isscalar))
10449 matches = 0;
10450 break;
10451
10452 case SE_L:
10453 break;
10454 }
10455 }
10456 if (matches)
10457 break;
10458 }
10459
10460 va_end (ap);
10461
10462 if (shape == NS_NULL && first_shape != NS_NULL)
10463 first_error (_("invalid instruction shape"));
10464
10465 return shape;
10466 }
10467
10468 /* True if SHAPE is predominantly a quadword operation (most of the time, this
10469 means the Q bit should be set). */
10470
10471 static int
10472 neon_quad (enum neon_shape shape)
10473 {
10474 return neon_shape_class[shape] == SC_QUAD;
10475 }
10476
10477 static void
10478 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10479 unsigned *g_size)
10480 {
10481 /* Allow modification to be made to types which are constrained to be
10482 based on the key element, based on bits set alongside N_EQK. */
10483 if ((typebits & N_EQK) != 0)
10484 {
10485 if ((typebits & N_HLF) != 0)
10486 *g_size /= 2;
10487 else if ((typebits & N_DBL) != 0)
10488 *g_size *= 2;
10489 if ((typebits & N_SGN) != 0)
10490 *g_type = NT_signed;
10491 else if ((typebits & N_UNS) != 0)
10492 *g_type = NT_unsigned;
10493 else if ((typebits & N_INT) != 0)
10494 *g_type = NT_integer;
10495 else if ((typebits & N_FLT) != 0)
10496 *g_type = NT_float;
10497 else if ((typebits & N_SIZ) != 0)
10498 *g_type = NT_untyped;
10499 }
10500 }
10501
10502 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10503 operand type, i.e. the single type specified in a Neon instruction when it
10504 is the only one given. */
10505
10506 static struct neon_type_el
10507 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10508 {
10509 struct neon_type_el dest = *key;
10510
10511 assert ((thisarg & N_EQK) != 0);
10512
10513 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10514
10515 return dest;
10516 }
10517
10518 /* Convert Neon type and size into compact bitmask representation. */
10519
10520 static enum neon_type_mask
10521 type_chk_of_el_type (enum neon_el_type type, unsigned size)
10522 {
10523 switch (type)
10524 {
10525 case NT_untyped:
10526 switch (size)
10527 {
10528 case 8: return N_8;
10529 case 16: return N_16;
10530 case 32: return N_32;
10531 case 64: return N_64;
10532 default: ;
10533 }
10534 break;
10535
10536 case NT_integer:
10537 switch (size)
10538 {
10539 case 8: return N_I8;
10540 case 16: return N_I16;
10541 case 32: return N_I32;
10542 case 64: return N_I64;
10543 default: ;
10544 }
10545 break;
10546
10547 case NT_float:
10548 switch (size)
10549 {
10550 case 32: return N_F32;
10551 case 64: return N_F64;
10552 default: ;
10553 }
10554 break;
10555
10556 case NT_poly:
10557 switch (size)
10558 {
10559 case 8: return N_P8;
10560 case 16: return N_P16;
10561 default: ;
10562 }
10563 break;
10564
10565 case NT_signed:
10566 switch (size)
10567 {
10568 case 8: return N_S8;
10569 case 16: return N_S16;
10570 case 32: return N_S32;
10571 case 64: return N_S64;
10572 default: ;
10573 }
10574 break;
10575
10576 case NT_unsigned:
10577 switch (size)
10578 {
10579 case 8: return N_U8;
10580 case 16: return N_U16;
10581 case 32: return N_U32;
10582 case 64: return N_U64;
10583 default: ;
10584 }
10585 break;
10586
10587 default: ;
10588 }
10589
10590 return N_UTYP;
10591 }
10592
10593 /* Convert compact Neon bitmask type representation to a type and size. Only
10594 handles the case where a single bit is set in the mask. */
10595
10596 static int
10597 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10598 enum neon_type_mask mask)
10599 {
10600 if ((mask & N_EQK) != 0)
10601 return FAIL;
10602
10603 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10604 *size = 8;
10605 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
10606 *size = 16;
10607 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
10608 *size = 32;
10609 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
10610 *size = 64;
10611 else
10612 return FAIL;
10613
10614 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10615 *type = NT_signed;
10616 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
10617 *type = NT_unsigned;
10618 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
10619 *type = NT_integer;
10620 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
10621 *type = NT_untyped;
10622 else if ((mask & (N_P8 | N_P16)) != 0)
10623 *type = NT_poly;
10624 else if ((mask & (N_F32 | N_F64)) != 0)
10625 *type = NT_float;
10626 else
10627 return FAIL;
10628
10629 return SUCCESS;
10630 }
10631
10632 /* Modify a bitmask of allowed types. This is only needed for type
10633 relaxation. */
10634
10635 static unsigned
10636 modify_types_allowed (unsigned allowed, unsigned mods)
10637 {
10638 unsigned size;
10639 enum neon_el_type type;
10640 unsigned destmask;
10641 int i;
10642
10643 destmask = 0;
10644
10645 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10646 {
10647 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10648 {
10649 neon_modify_type_size (mods, &type, &size);
10650 destmask |= type_chk_of_el_type (type, size);
10651 }
10652 }
10653
10654 return destmask;
10655 }
10656
10657 /* Check type and return type classification.
10658 The manual states (paraphrase): If one datatype is given, it indicates the
10659 type given in:
10660 - the second operand, if there is one
10661 - the operand, if there is no second operand
10662 - the result, if there are no operands.
10663 This isn't quite good enough though, so we use a concept of a "key" datatype
10664 which is set on a per-instruction basis, which is the one which matters when
10665 only one data type is written.
10666 Note: this function has side-effects (e.g. filling in missing operands). All
10667 Neon instructions should call it before performing bit encoding. */
10668
10669 static struct neon_type_el
10670 neon_check_type (unsigned els, enum neon_shape ns, ...)
10671 {
10672 va_list ap;
10673 unsigned i, pass, key_el = 0;
10674 unsigned types[NEON_MAX_TYPE_ELS];
10675 enum neon_el_type k_type = NT_invtype;
10676 unsigned k_size = -1u;
10677 struct neon_type_el badtype = {NT_invtype, -1};
10678 unsigned key_allowed = 0;
10679
10680 /* Optional registers in Neon instructions are always (not) in operand 1.
10681 Fill in the missing operand here, if it was omitted. */
10682 if (els > 1 && !inst.operands[1].present)
10683 inst.operands[1] = inst.operands[0];
10684
10685 /* Suck up all the varargs. */
10686 va_start (ap, ns);
10687 for (i = 0; i < els; i++)
10688 {
10689 unsigned thisarg = va_arg (ap, unsigned);
10690 if (thisarg == N_IGNORE_TYPE)
10691 {
10692 va_end (ap);
10693 return badtype;
10694 }
10695 types[i] = thisarg;
10696 if ((thisarg & N_KEY) != 0)
10697 key_el = i;
10698 }
10699 va_end (ap);
10700
10701 if (inst.vectype.elems > 0)
10702 for (i = 0; i < els; i++)
10703 if (inst.operands[i].vectype.type != NT_invtype)
10704 {
10705 first_error (_("types specified in both the mnemonic and operands"));
10706 return badtype;
10707 }
10708
10709 /* Duplicate inst.vectype elements here as necessary.
10710 FIXME: No idea if this is exactly the same as the ARM assembler,
10711 particularly when an insn takes one register and one non-register
10712 operand. */
10713 if (inst.vectype.elems == 1 && els > 1)
10714 {
10715 unsigned j;
10716 inst.vectype.elems = els;
10717 inst.vectype.el[key_el] = inst.vectype.el[0];
10718 for (j = 0; j < els; j++)
10719 if (j != key_el)
10720 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10721 types[j]);
10722 }
10723 else if (inst.vectype.elems == 0 && els > 0)
10724 {
10725 unsigned j;
10726 /* No types were given after the mnemonic, so look for types specified
10727 after each operand. We allow some flexibility here; as long as the
10728 "key" operand has a type, we can infer the others. */
10729 for (j = 0; j < els; j++)
10730 if (inst.operands[j].vectype.type != NT_invtype)
10731 inst.vectype.el[j] = inst.operands[j].vectype;
10732
10733 if (inst.operands[key_el].vectype.type != NT_invtype)
10734 {
10735 for (j = 0; j < els; j++)
10736 if (inst.operands[j].vectype.type == NT_invtype)
10737 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10738 types[j]);
10739 }
10740 else
10741 {
10742 first_error (_("operand types can't be inferred"));
10743 return badtype;
10744 }
10745 }
10746 else if (inst.vectype.elems != els)
10747 {
10748 first_error (_("type specifier has the wrong number of parts"));
10749 return badtype;
10750 }
10751
10752 for (pass = 0; pass < 2; pass++)
10753 {
10754 for (i = 0; i < els; i++)
10755 {
10756 unsigned thisarg = types[i];
10757 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
10758 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
10759 enum neon_el_type g_type = inst.vectype.el[i].type;
10760 unsigned g_size = inst.vectype.el[i].size;
10761
10762 /* Decay more-specific signed & unsigned types to sign-insensitive
10763 integer types if sign-specific variants are unavailable. */
10764 if ((g_type == NT_signed || g_type == NT_unsigned)
10765 && (types_allowed & N_SU_ALL) == 0)
10766 g_type = NT_integer;
10767
10768 /* If only untyped args are allowed, decay any more specific types to
10769 them. Some instructions only care about signs for some element
10770 sizes, so handle that properly. */
10771 if ((g_size == 8 && (types_allowed & N_8) != 0)
10772 || (g_size == 16 && (types_allowed & N_16) != 0)
10773 || (g_size == 32 && (types_allowed & N_32) != 0)
10774 || (g_size == 64 && (types_allowed & N_64) != 0))
10775 g_type = NT_untyped;
10776
10777 if (pass == 0)
10778 {
10779 if ((thisarg & N_KEY) != 0)
10780 {
10781 k_type = g_type;
10782 k_size = g_size;
10783 key_allowed = thisarg & ~N_KEY;
10784 }
10785 }
10786 else
10787 {
10788 if ((thisarg & N_VFP) != 0)
10789 {
10790 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
10791 unsigned regwidth = neon_shape_el_size[regshape], match;
10792
10793 /* In VFP mode, operands must match register widths. If we
10794 have a key operand, use its width, else use the width of
10795 the current operand. */
10796 if (k_size != -1u)
10797 match = k_size;
10798 else
10799 match = g_size;
10800
10801 if (regwidth != match)
10802 {
10803 first_error (_("operand size must match register width"));
10804 return badtype;
10805 }
10806 }
10807
10808 if ((thisarg & N_EQK) == 0)
10809 {
10810 unsigned given_type = type_chk_of_el_type (g_type, g_size);
10811
10812 if ((given_type & types_allowed) == 0)
10813 {
10814 first_error (_("bad type in Neon instruction"));
10815 return badtype;
10816 }
10817 }
10818 else
10819 {
10820 enum neon_el_type mod_k_type = k_type;
10821 unsigned mod_k_size = k_size;
10822 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
10823 if (g_type != mod_k_type || g_size != mod_k_size)
10824 {
10825 first_error (_("inconsistent types in Neon instruction"));
10826 return badtype;
10827 }
10828 }
10829 }
10830 }
10831 }
10832
10833 return inst.vectype.el[key_el];
10834 }
10835
10836 /* Neon-style VFP instruction forwarding. */
10837
10838 /* Thumb VFP instructions have 0xE in the condition field. */
10839
10840 static void
10841 do_vfp_cond_or_thumb (void)
10842 {
10843 if (thumb_mode)
10844 inst.instruction |= 0xe0000000;
10845 else
10846 inst.instruction |= inst.cond << 28;
10847 }
10848
10849 /* Look up and encode a simple mnemonic, for use as a helper function for the
10850 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
10851 etc. It is assumed that operand parsing has already been done, and that the
10852 operands are in the form expected by the given opcode (this isn't necessarily
10853 the same as the form in which they were parsed, hence some massaging must
10854 take place before this function is called).
10855 Checks current arch version against that in the looked-up opcode. */
10856
10857 static void
10858 do_vfp_nsyn_opcode (const char *opname)
10859 {
10860 const struct asm_opcode *opcode;
10861
10862 opcode = hash_find (arm_ops_hsh, opname);
10863
10864 if (!opcode)
10865 abort ();
10866
10867 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
10868 thumb_mode ? *opcode->tvariant : *opcode->avariant),
10869 _(BAD_FPU));
10870
10871 if (thumb_mode)
10872 {
10873 inst.instruction = opcode->tvalue;
10874 opcode->tencode ();
10875 }
10876 else
10877 {
10878 inst.instruction = (inst.cond << 28) | opcode->avalue;
10879 opcode->aencode ();
10880 }
10881 }
10882
10883 static void
10884 do_vfp_nsyn_add_sub (enum neon_shape rs)
10885 {
10886 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
10887
10888 if (rs == NS_FFF)
10889 {
10890 if (is_add)
10891 do_vfp_nsyn_opcode ("fadds");
10892 else
10893 do_vfp_nsyn_opcode ("fsubs");
10894 }
10895 else
10896 {
10897 if (is_add)
10898 do_vfp_nsyn_opcode ("faddd");
10899 else
10900 do_vfp_nsyn_opcode ("fsubd");
10901 }
10902 }
10903
10904 /* Check operand types to see if this is a VFP instruction, and if so call
10905 PFN (). */
10906
10907 static int
10908 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
10909 {
10910 enum neon_shape rs;
10911 struct neon_type_el et;
10912
10913 switch (args)
10914 {
10915 case 2:
10916 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
10917 et = neon_check_type (2, rs,
10918 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
10919 break;
10920
10921 case 3:
10922 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
10923 et = neon_check_type (3, rs,
10924 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
10925 break;
10926
10927 default:
10928 abort ();
10929 }
10930
10931 if (et.type != NT_invtype)
10932 {
10933 pfn (rs);
10934 return SUCCESS;
10935 }
10936 else
10937 inst.error = NULL;
10938
10939 return FAIL;
10940 }
10941
10942 static void
10943 do_vfp_nsyn_mla_mls (enum neon_shape rs)
10944 {
10945 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
10946
10947 if (rs == NS_FFF)
10948 {
10949 if (is_mla)
10950 do_vfp_nsyn_opcode ("fmacs");
10951 else
10952 do_vfp_nsyn_opcode ("fmscs");
10953 }
10954 else
10955 {
10956 if (is_mla)
10957 do_vfp_nsyn_opcode ("fmacd");
10958 else
10959 do_vfp_nsyn_opcode ("fmscd");
10960 }
10961 }
10962
10963 static void
10964 do_vfp_nsyn_mul (enum neon_shape rs)
10965 {
10966 if (rs == NS_FFF)
10967 do_vfp_nsyn_opcode ("fmuls");
10968 else
10969 do_vfp_nsyn_opcode ("fmuld");
10970 }
10971
10972 static void
10973 do_vfp_nsyn_abs_neg (enum neon_shape rs)
10974 {
10975 int is_neg = (inst.instruction & 0x80) != 0;
10976 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
10977
10978 if (rs == NS_FF)
10979 {
10980 if (is_neg)
10981 do_vfp_nsyn_opcode ("fnegs");
10982 else
10983 do_vfp_nsyn_opcode ("fabss");
10984 }
10985 else
10986 {
10987 if (is_neg)
10988 do_vfp_nsyn_opcode ("fnegd");
10989 else
10990 do_vfp_nsyn_opcode ("fabsd");
10991 }
10992 }
10993
10994 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
10995 insns belong to Neon, and are handled elsewhere. */
10996
10997 static void
10998 do_vfp_nsyn_ldm_stm (int is_dbmode)
10999 {
11000 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11001 if (is_ldm)
11002 {
11003 if (is_dbmode)
11004 do_vfp_nsyn_opcode ("fldmdbs");
11005 else
11006 do_vfp_nsyn_opcode ("fldmias");
11007 }
11008 else
11009 {
11010 if (is_dbmode)
11011 do_vfp_nsyn_opcode ("fstmdbs");
11012 else
11013 do_vfp_nsyn_opcode ("fstmias");
11014 }
11015 }
11016
11017 static void
11018 do_vfp_nsyn_sqrt (void)
11019 {
11020 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11021 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11022
11023 if (rs == NS_FF)
11024 do_vfp_nsyn_opcode ("fsqrts");
11025 else
11026 do_vfp_nsyn_opcode ("fsqrtd");
11027 }
11028
11029 static void
11030 do_vfp_nsyn_div (void)
11031 {
11032 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11033 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11034 N_F32 | N_F64 | N_KEY | N_VFP);
11035
11036 if (rs == NS_FFF)
11037 do_vfp_nsyn_opcode ("fdivs");
11038 else
11039 do_vfp_nsyn_opcode ("fdivd");
11040 }
11041
11042 static void
11043 do_vfp_nsyn_nmul (void)
11044 {
11045 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11046 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11047 N_F32 | N_F64 | N_KEY | N_VFP);
11048
11049 if (rs == NS_FFF)
11050 {
11051 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11052 do_vfp_sp_dyadic ();
11053 }
11054 else
11055 {
11056 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11057 do_vfp_dp_rd_rn_rm ();
11058 }
11059 do_vfp_cond_or_thumb ();
11060 }
11061
11062 static void
11063 do_vfp_nsyn_cmp (void)
11064 {
11065 if (inst.operands[1].isreg)
11066 {
11067 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11068 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11069
11070 if (rs == NS_FF)
11071 {
11072 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11073 do_vfp_sp_monadic ();
11074 }
11075 else
11076 {
11077 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11078 do_vfp_dp_rd_rm ();
11079 }
11080 }
11081 else
11082 {
11083 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11084 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11085
11086 switch (inst.instruction & 0x0fffffff)
11087 {
11088 case N_MNEM_vcmp:
11089 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11090 break;
11091 case N_MNEM_vcmpe:
11092 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11093 break;
11094 default:
11095 abort ();
11096 }
11097
11098 if (rs == NS_FI)
11099 {
11100 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11101 do_vfp_sp_compare_z ();
11102 }
11103 else
11104 {
11105 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11106 do_vfp_dp_rd ();
11107 }
11108 }
11109 do_vfp_cond_or_thumb ();
11110 }
11111
11112 static void
11113 nsyn_insert_sp (void)
11114 {
11115 inst.operands[1] = inst.operands[0];
11116 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11117 inst.operands[0].reg = 13;
11118 inst.operands[0].isreg = 1;
11119 inst.operands[0].writeback = 1;
11120 inst.operands[0].present = 1;
11121 }
11122
11123 static void
11124 do_vfp_nsyn_push (void)
11125 {
11126 nsyn_insert_sp ();
11127 if (inst.operands[1].issingle)
11128 do_vfp_nsyn_opcode ("fstmdbs");
11129 else
11130 do_vfp_nsyn_opcode ("fstmdbd");
11131 }
11132
11133 static void
11134 do_vfp_nsyn_pop (void)
11135 {
11136 nsyn_insert_sp ();
11137 if (inst.operands[1].issingle)
11138 do_vfp_nsyn_opcode ("fldmdbs");
11139 else
11140 do_vfp_nsyn_opcode ("fldmdbd");
11141 }
11142
11143 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11144 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11145
11146 static unsigned
11147 neon_dp_fixup (unsigned i)
11148 {
11149 if (thumb_mode)
11150 {
11151 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11152 if (i & (1 << 24))
11153 i |= 1 << 28;
11154
11155 i &= ~(1 << 24);
11156
11157 i |= 0xef000000;
11158 }
11159 else
11160 i |= 0xf2000000;
11161
11162 return i;
11163 }
11164
11165 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11166 (0, 1, 2, 3). */
11167
11168 static unsigned
11169 neon_logbits (unsigned x)
11170 {
11171 return ffs (x) - 4;
11172 }
11173
11174 #define LOW4(R) ((R) & 0xf)
11175 #define HI1(R) (((R) >> 4) & 1)
11176
11177 /* Encode insns with bit pattern:
11178
11179 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11180 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11181
11182 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11183 different meaning for some instruction. */
11184
11185 static void
11186 neon_three_same (int isquad, int ubit, int size)
11187 {
11188 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11189 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11190 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11191 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11192 inst.instruction |= LOW4 (inst.operands[2].reg);
11193 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11194 inst.instruction |= (isquad != 0) << 6;
11195 inst.instruction |= (ubit != 0) << 24;
11196 if (size != -1)
11197 inst.instruction |= neon_logbits (size) << 20;
11198
11199 inst.instruction = neon_dp_fixup (inst.instruction);
11200 }
11201
11202 /* Encode instructions of the form:
11203
11204 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11205 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11206
11207 Don't write size if SIZE == -1. */
11208
11209 static void
11210 neon_two_same (int qbit, int ubit, int size)
11211 {
11212 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11213 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11214 inst.instruction |= LOW4 (inst.operands[1].reg);
11215 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11216 inst.instruction |= (qbit != 0) << 6;
11217 inst.instruction |= (ubit != 0) << 24;
11218
11219 if (size != -1)
11220 inst.instruction |= neon_logbits (size) << 18;
11221
11222 inst.instruction = neon_dp_fixup (inst.instruction);
11223 }
11224
11225 /* Neon instruction encoders, in approximate order of appearance. */
11226
11227 static void
11228 do_neon_dyadic_i_su (void)
11229 {
11230 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11231 struct neon_type_el et = neon_check_type (3, rs,
11232 N_EQK, N_EQK, N_SU_32 | N_KEY);
11233 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11234 }
11235
11236 static void
11237 do_neon_dyadic_i64_su (void)
11238 {
11239 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11240 struct neon_type_el et = neon_check_type (3, rs,
11241 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11242 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11243 }
11244
11245 static void
11246 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11247 unsigned immbits)
11248 {
11249 unsigned size = et.size >> 3;
11250 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11251 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11252 inst.instruction |= LOW4 (inst.operands[1].reg);
11253 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11254 inst.instruction |= (isquad != 0) << 6;
11255 inst.instruction |= immbits << 16;
11256 inst.instruction |= (size >> 3) << 7;
11257 inst.instruction |= (size & 0x7) << 19;
11258 if (write_ubit)
11259 inst.instruction |= (uval != 0) << 24;
11260
11261 inst.instruction = neon_dp_fixup (inst.instruction);
11262 }
11263
11264 static void
11265 do_neon_shl_imm (void)
11266 {
11267 if (!inst.operands[2].isreg)
11268 {
11269 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11270 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11271 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11272 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
11273 }
11274 else
11275 {
11276 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11277 struct neon_type_el et = neon_check_type (3, rs,
11278 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11279 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11280 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11281 }
11282 }
11283
11284 static void
11285 do_neon_qshl_imm (void)
11286 {
11287 if (!inst.operands[2].isreg)
11288 {
11289 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11290 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11291 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11292 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
11293 inst.operands[2].imm);
11294 }
11295 else
11296 {
11297 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11298 struct neon_type_el et = neon_check_type (3, rs,
11299 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11300 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11301 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11302 }
11303 }
11304
11305 static int
11306 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11307 {
11308 /* Handle .I8 and .I64 as pseudo-instructions. */
11309 switch (size)
11310 {
11311 case 8:
11312 /* Unfortunately, this will make everything apart from zero out-of-range.
11313 FIXME is this the intended semantics? There doesn't seem much point in
11314 accepting .I8 if so. */
11315 immediate |= immediate << 8;
11316 size = 16;
11317 break;
11318 case 64:
11319 /* Similarly, anything other than zero will be replicated in bits [63:32],
11320 which probably isn't want we want if we specified .I64. */
11321 if (immediate != 0)
11322 goto bad_immediate;
11323 size = 32;
11324 break;
11325 default: ;
11326 }
11327
11328 if (immediate == (immediate & 0x000000ff))
11329 {
11330 *immbits = immediate;
11331 return (size == 16) ? 0x9 : 0x1;
11332 }
11333 else if (immediate == (immediate & 0x0000ff00))
11334 {
11335 *immbits = immediate >> 8;
11336 return (size == 16) ? 0xb : 0x3;
11337 }
11338 else if (immediate == (immediate & 0x00ff0000))
11339 {
11340 *immbits = immediate >> 16;
11341 return 0x5;
11342 }
11343 else if (immediate == (immediate & 0xff000000))
11344 {
11345 *immbits = immediate >> 24;
11346 return 0x7;
11347 }
11348
11349 bad_immediate:
11350 first_error (_("immediate value out of range"));
11351 return FAIL;
11352 }
11353
11354 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11355 A, B, C, D. */
11356
11357 static int
11358 neon_bits_same_in_bytes (unsigned imm)
11359 {
11360 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11361 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11362 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11363 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11364 }
11365
11366 /* For immediate of above form, return 0bABCD. */
11367
11368 static unsigned
11369 neon_squash_bits (unsigned imm)
11370 {
11371 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11372 | ((imm & 0x01000000) >> 21);
11373 }
11374
11375 /* Compress quarter-float representation to 0b...000 abcdefgh. */
11376
11377 static unsigned
11378 neon_qfloat_bits (unsigned imm)
11379 {
11380 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
11381 }
11382
11383 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11384 the instruction. *OP is passed as the initial value of the op field, and
11385 may be set to a different value depending on the constant (i.e.
11386 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11387 MVN). */
11388
11389 static int
11390 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, unsigned *immbits,
11391 int *op, int size, enum neon_el_type type)
11392 {
11393 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11394 {
11395 if (size != 32 || *op == 1)
11396 return FAIL;
11397 *immbits = neon_qfloat_bits (immlo);
11398 return 0xf;
11399 }
11400 else if (size == 64 && neon_bits_same_in_bytes (immhi)
11401 && neon_bits_same_in_bytes (immlo))
11402 {
11403 /* Check this one first so we don't have to bother with immhi in later
11404 tests. */
11405 if (*op == 1)
11406 return FAIL;
11407 *immbits = (neon_squash_bits (immhi) << 4) | neon_squash_bits (immlo);
11408 *op = 1;
11409 return 0xe;
11410 }
11411 else if (immhi != 0)
11412 return FAIL;
11413 else if (immlo == (immlo & 0x000000ff))
11414 {
11415 /* 64-bit case was already handled. Don't allow MVN with 8-bit
11416 immediate. */
11417 if ((size != 8 && size != 16 && size != 32)
11418 || (size == 8 && *op == 1))
11419 return FAIL;
11420 *immbits = immlo;
11421 return (size == 8) ? 0xe : (size == 16) ? 0x8 : 0x0;
11422 }
11423 else if (immlo == (immlo & 0x0000ff00))
11424 {
11425 if (size != 16 && size != 32)
11426 return FAIL;
11427 *immbits = immlo >> 8;
11428 return (size == 16) ? 0xa : 0x2;
11429 }
11430 else if (immlo == (immlo & 0x00ff0000))
11431 {
11432 if (size != 32)
11433 return FAIL;
11434 *immbits = immlo >> 16;
11435 return 0x4;
11436 }
11437 else if (immlo == (immlo & 0xff000000))
11438 {
11439 if (size != 32)
11440 return FAIL;
11441 *immbits = immlo >> 24;
11442 return 0x6;
11443 }
11444 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11445 {
11446 if (size != 32)
11447 return FAIL;
11448 *immbits = (immlo >> 8) & 0xff;
11449 return 0xc;
11450 }
11451 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11452 {
11453 if (size != 32)
11454 return FAIL;
11455 *immbits = (immlo >> 16) & 0xff;
11456 return 0xd;
11457 }
11458
11459 return FAIL;
11460 }
11461
11462 /* Write immediate bits [7:0] to the following locations:
11463
11464 |28/24|23 19|18 16|15 4|3 0|
11465 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11466
11467 This function is used by VMOV/VMVN/VORR/VBIC. */
11468
11469 static void
11470 neon_write_immbits (unsigned immbits)
11471 {
11472 inst.instruction |= immbits & 0xf;
11473 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11474 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11475 }
11476
11477 /* Invert low-order SIZE bits of XHI:XLO. */
11478
11479 static void
11480 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11481 {
11482 unsigned immlo = xlo ? *xlo : 0;
11483 unsigned immhi = xhi ? *xhi : 0;
11484
11485 switch (size)
11486 {
11487 case 8:
11488 immlo = (~immlo) & 0xff;
11489 break;
11490
11491 case 16:
11492 immlo = (~immlo) & 0xffff;
11493 break;
11494
11495 case 64:
11496 immhi = (~immhi) & 0xffffffff;
11497 /* fall through. */
11498
11499 case 32:
11500 immlo = (~immlo) & 0xffffffff;
11501 break;
11502
11503 default:
11504 abort ();
11505 }
11506
11507 if (xlo)
11508 *xlo = immlo;
11509
11510 if (xhi)
11511 *xhi = immhi;
11512 }
11513
11514 static void
11515 do_neon_logic (void)
11516 {
11517 if (inst.operands[2].present && inst.operands[2].isreg)
11518 {
11519 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11520 neon_check_type (3, rs, N_IGNORE_TYPE);
11521 /* U bit and size field were set as part of the bitmask. */
11522 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11523 neon_three_same (neon_quad (rs), 0, -1);
11524 }
11525 else
11526 {
11527 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11528 struct neon_type_el et = neon_check_type (2, rs,
11529 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
11530 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11531 unsigned immbits;
11532 int cmode;
11533
11534 if (et.type == NT_invtype)
11535 return;
11536
11537 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11538
11539 switch (opcode)
11540 {
11541 case N_MNEM_vbic:
11542 cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits,
11543 et.size);
11544 break;
11545
11546 case N_MNEM_vorr:
11547 cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits,
11548 et.size);
11549 break;
11550
11551 case N_MNEM_vand:
11552 /* Pseudo-instruction for VBIC. */
11553 immbits = inst.operands[1].imm;
11554 neon_invert_size (&immbits, 0, et.size);
11555 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11556 break;
11557
11558 case N_MNEM_vorn:
11559 /* Pseudo-instruction for VORR. */
11560 immbits = inst.operands[1].imm;
11561 neon_invert_size (&immbits, 0, et.size);
11562 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11563 break;
11564
11565 default:
11566 abort ();
11567 }
11568
11569 if (cmode == FAIL)
11570 return;
11571
11572 inst.instruction |= neon_quad (rs) << 6;
11573 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11574 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11575 inst.instruction |= cmode << 8;
11576 neon_write_immbits (immbits);
11577
11578 inst.instruction = neon_dp_fixup (inst.instruction);
11579 }
11580 }
11581
11582 static void
11583 do_neon_bitfield (void)
11584 {
11585 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11586 neon_check_type (3, rs, N_IGNORE_TYPE);
11587 neon_three_same (neon_quad (rs), 0, -1);
11588 }
11589
11590 static void
11591 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
11592 unsigned destbits)
11593 {
11594 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11595 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
11596 types | N_KEY);
11597 if (et.type == NT_float)
11598 {
11599 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
11600 neon_three_same (neon_quad (rs), 0, -1);
11601 }
11602 else
11603 {
11604 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11605 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
11606 }
11607 }
11608
11609 static void
11610 do_neon_dyadic_if_su (void)
11611 {
11612 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
11613 }
11614
11615 static void
11616 do_neon_dyadic_if_su_d (void)
11617 {
11618 /* This version only allow D registers, but that constraint is enforced during
11619 operand parsing so we don't need to do anything extra here. */
11620 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
11621 }
11622
11623 static void
11624 do_neon_dyadic_if_i_d (void)
11625 {
11626 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11627 affected if we specify unsigned args. */
11628 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
11629 }
11630
11631 enum vfp_or_neon_is_neon_bits
11632 {
11633 NEON_CHECK_CC = 1,
11634 NEON_CHECK_ARCH = 2
11635 };
11636
11637 /* Call this function if an instruction which may have belonged to the VFP or
11638 Neon instruction sets, but turned out to be a Neon instruction (due to the
11639 operand types involved, etc.). We have to check and/or fix-up a couple of
11640 things:
11641
11642 - Make sure the user hasn't attempted to make a Neon instruction
11643 conditional.
11644 - Alter the value in the condition code field if necessary.
11645 - Make sure that the arch supports Neon instructions.
11646
11647 Which of these operations take place depends on bits from enum
11648 vfp_or_neon_is_neon_bits.
11649
11650 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
11651 current instruction's condition is COND_ALWAYS, the condition field is
11652 changed to inst.uncond_value. This is necessary because instructions shared
11653 between VFP and Neon may be conditional for the VFP variants only, and the
11654 unconditional Neon version must have, e.g., 0xF in the condition field. */
11655
11656 static int
11657 vfp_or_neon_is_neon (unsigned check)
11658 {
11659 /* Conditions are always legal in Thumb mode (IT blocks). */
11660 if (!thumb_mode && (check & NEON_CHECK_CC))
11661 {
11662 if (inst.cond != COND_ALWAYS)
11663 {
11664 first_error (_(BAD_COND));
11665 return FAIL;
11666 }
11667 if (inst.uncond_value != -1)
11668 inst.instruction |= inst.uncond_value << 28;
11669 }
11670
11671 if ((check & NEON_CHECK_ARCH)
11672 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
11673 {
11674 first_error (_(BAD_FPU));
11675 return FAIL;
11676 }
11677
11678 return SUCCESS;
11679 }
11680
11681 static void
11682 do_neon_addsub_if_i (void)
11683 {
11684 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
11685 return;
11686
11687 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11688 return;
11689
11690 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11691 affected if we specify unsigned args. */
11692 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
11693 }
11694
11695 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
11696 result to be:
11697 V<op> A,B (A is operand 0, B is operand 2)
11698 to mean:
11699 V<op> A,B,A
11700 not:
11701 V<op> A,B,B
11702 so handle that case specially. */
11703
11704 static void
11705 neon_exchange_operands (void)
11706 {
11707 void *scratch = alloca (sizeof (inst.operands[0]));
11708 if (inst.operands[1].present)
11709 {
11710 /* Swap operands[1] and operands[2]. */
11711 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
11712 inst.operands[1] = inst.operands[2];
11713 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
11714 }
11715 else
11716 {
11717 inst.operands[1] = inst.operands[2];
11718 inst.operands[2] = inst.operands[0];
11719 }
11720 }
11721
11722 static void
11723 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
11724 {
11725 if (inst.operands[2].isreg)
11726 {
11727 if (invert)
11728 neon_exchange_operands ();
11729 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
11730 }
11731 else
11732 {
11733 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11734 struct neon_type_el et = neon_check_type (2, rs,
11735 N_EQK | N_SIZ, immtypes | N_KEY);
11736
11737 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11738 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11739 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11740 inst.instruction |= LOW4 (inst.operands[1].reg);
11741 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11742 inst.instruction |= neon_quad (rs) << 6;
11743 inst.instruction |= (et.type == NT_float) << 10;
11744 inst.instruction |= neon_logbits (et.size) << 18;
11745
11746 inst.instruction = neon_dp_fixup (inst.instruction);
11747 }
11748 }
11749
11750 static void
11751 do_neon_cmp (void)
11752 {
11753 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
11754 }
11755
11756 static void
11757 do_neon_cmp_inv (void)
11758 {
11759 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
11760 }
11761
11762 static void
11763 do_neon_ceq (void)
11764 {
11765 neon_compare (N_IF_32, N_IF_32, FALSE);
11766 }
11767
11768 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
11769 scalars, which are encoded in 5 bits, M : Rm.
11770 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
11771 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
11772 index in M. */
11773
11774 static unsigned
11775 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
11776 {
11777 unsigned regno = NEON_SCALAR_REG (scalar);
11778 unsigned elno = NEON_SCALAR_INDEX (scalar);
11779
11780 switch (elsize)
11781 {
11782 case 16:
11783 if (regno > 7 || elno > 3)
11784 goto bad_scalar;
11785 return regno | (elno << 3);
11786
11787 case 32:
11788 if (regno > 15 || elno > 1)
11789 goto bad_scalar;
11790 return regno | (elno << 4);
11791
11792 default:
11793 bad_scalar:
11794 first_error (_("scalar out of range for multiply instruction"));
11795 }
11796
11797 return 0;
11798 }
11799
11800 /* Encode multiply / multiply-accumulate scalar instructions. */
11801
11802 static void
11803 neon_mul_mac (struct neon_type_el et, int ubit)
11804 {
11805 unsigned scalar;
11806
11807 /* Give a more helpful error message if we have an invalid type. */
11808 if (et.type == NT_invtype)
11809 return;
11810
11811 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
11812 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11813 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11814 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11815 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11816 inst.instruction |= LOW4 (scalar);
11817 inst.instruction |= HI1 (scalar) << 5;
11818 inst.instruction |= (et.type == NT_float) << 8;
11819 inst.instruction |= neon_logbits (et.size) << 20;
11820 inst.instruction |= (ubit != 0) << 24;
11821
11822 inst.instruction = neon_dp_fixup (inst.instruction);
11823 }
11824
11825 static void
11826 do_neon_mac_maybe_scalar (void)
11827 {
11828 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
11829 return;
11830
11831 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11832 return;
11833
11834 if (inst.operands[2].isscalar)
11835 {
11836 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
11837 struct neon_type_el et = neon_check_type (3, rs,
11838 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
11839 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
11840 neon_mul_mac (et, neon_quad (rs));
11841 }
11842 else
11843 {
11844 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11845 affected if we specify unsigned args. */
11846 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
11847 }
11848 }
11849
11850 static void
11851 do_neon_tst (void)
11852 {
11853 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11854 struct neon_type_el et = neon_check_type (3, rs,
11855 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
11856 neon_three_same (neon_quad (rs), 0, et.size);
11857 }
11858
11859 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
11860 same types as the MAC equivalents. The polynomial type for this instruction
11861 is encoded the same as the integer type. */
11862
11863 static void
11864 do_neon_mul (void)
11865 {
11866 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
11867 return;
11868
11869 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11870 return;
11871
11872 if (inst.operands[2].isscalar)
11873 do_neon_mac_maybe_scalar ();
11874 else
11875 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
11876 }
11877
11878 static void
11879 do_neon_qdmulh (void)
11880 {
11881 if (inst.operands[2].isscalar)
11882 {
11883 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
11884 struct neon_type_el et = neon_check_type (3, rs,
11885 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
11886 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
11887 neon_mul_mac (et, neon_quad (rs));
11888 }
11889 else
11890 {
11891 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11892 struct neon_type_el et = neon_check_type (3, rs,
11893 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
11894 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11895 /* The U bit (rounding) comes from bit mask. */
11896 neon_three_same (neon_quad (rs), 0, et.size);
11897 }
11898 }
11899
11900 static void
11901 do_neon_fcmp_absolute (void)
11902 {
11903 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11904 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
11905 /* Size field comes from bit mask. */
11906 neon_three_same (neon_quad (rs), 1, -1);
11907 }
11908
11909 static void
11910 do_neon_fcmp_absolute_inv (void)
11911 {
11912 neon_exchange_operands ();
11913 do_neon_fcmp_absolute ();
11914 }
11915
11916 static void
11917 do_neon_step (void)
11918 {
11919 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11920 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
11921 neon_three_same (neon_quad (rs), 0, -1);
11922 }
11923
11924 static void
11925 do_neon_abs_neg (void)
11926 {
11927 enum neon_shape rs;
11928 struct neon_type_el et;
11929
11930 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
11931 return;
11932
11933 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11934 return;
11935
11936 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
11937 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
11938
11939 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11940 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11941 inst.instruction |= LOW4 (inst.operands[1].reg);
11942 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11943 inst.instruction |= neon_quad (rs) << 6;
11944 inst.instruction |= (et.type == NT_float) << 10;
11945 inst.instruction |= neon_logbits (et.size) << 18;
11946
11947 inst.instruction = neon_dp_fixup (inst.instruction);
11948 }
11949
11950 static void
11951 do_neon_sli (void)
11952 {
11953 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11954 struct neon_type_el et = neon_check_type (2, rs,
11955 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
11956 int imm = inst.operands[2].imm;
11957 constraint (imm < 0 || (unsigned)imm >= et.size,
11958 _("immediate out of range for insert"));
11959 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
11960 }
11961
11962 static void
11963 do_neon_sri (void)
11964 {
11965 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11966 struct neon_type_el et = neon_check_type (2, rs,
11967 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
11968 int imm = inst.operands[2].imm;
11969 constraint (imm < 1 || (unsigned)imm > et.size,
11970 _("immediate out of range for insert"));
11971 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
11972 }
11973
11974 static void
11975 do_neon_qshlu_imm (void)
11976 {
11977 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11978 struct neon_type_el et = neon_check_type (2, rs,
11979 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
11980 int imm = inst.operands[2].imm;
11981 constraint (imm < 0 || (unsigned)imm >= et.size,
11982 _("immediate out of range for shift"));
11983 /* Only encodes the 'U present' variant of the instruction.
11984 In this case, signed types have OP (bit 8) set to 0.
11985 Unsigned types have OP set to 1. */
11986 inst.instruction |= (et.type == NT_unsigned) << 8;
11987 /* The rest of the bits are the same as other immediate shifts. */
11988 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
11989 }
11990
11991 static void
11992 do_neon_qmovn (void)
11993 {
11994 struct neon_type_el et = neon_check_type (2, NS_DQ,
11995 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
11996 /* Saturating move where operands can be signed or unsigned, and the
11997 destination has the same signedness. */
11998 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11999 if (et.type == NT_unsigned)
12000 inst.instruction |= 0xc0;
12001 else
12002 inst.instruction |= 0x80;
12003 neon_two_same (0, 1, et.size / 2);
12004 }
12005
12006 static void
12007 do_neon_qmovun (void)
12008 {
12009 struct neon_type_el et = neon_check_type (2, NS_DQ,
12010 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12011 /* Saturating move with unsigned results. Operands must be signed. */
12012 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12013 neon_two_same (0, 1, et.size / 2);
12014 }
12015
12016 static void
12017 do_neon_rshift_sat_narrow (void)
12018 {
12019 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12020 or unsigned. If operands are unsigned, results must also be unsigned. */
12021 struct neon_type_el et = neon_check_type (2, NS_DQI,
12022 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12023 int imm = inst.operands[2].imm;
12024 /* This gets the bounds check, size encoding and immediate bits calculation
12025 right. */
12026 et.size /= 2;
12027
12028 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12029 VQMOVN.I<size> <Dd>, <Qm>. */
12030 if (imm == 0)
12031 {
12032 inst.operands[2].present = 0;
12033 inst.instruction = N_MNEM_vqmovn;
12034 do_neon_qmovn ();
12035 return;
12036 }
12037
12038 constraint (imm < 1 || (unsigned)imm > et.size,
12039 _("immediate out of range"));
12040 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12041 }
12042
12043 static void
12044 do_neon_rshift_sat_narrow_u (void)
12045 {
12046 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12047 or unsigned. If operands are unsigned, results must also be unsigned. */
12048 struct neon_type_el et = neon_check_type (2, NS_DQI,
12049 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12050 int imm = inst.operands[2].imm;
12051 /* This gets the bounds check, size encoding and immediate bits calculation
12052 right. */
12053 et.size /= 2;
12054
12055 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12056 VQMOVUN.I<size> <Dd>, <Qm>. */
12057 if (imm == 0)
12058 {
12059 inst.operands[2].present = 0;
12060 inst.instruction = N_MNEM_vqmovun;
12061 do_neon_qmovun ();
12062 return;
12063 }
12064
12065 constraint (imm < 1 || (unsigned)imm > et.size,
12066 _("immediate out of range"));
12067 /* FIXME: The manual is kind of unclear about what value U should have in
12068 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12069 must be 1. */
12070 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12071 }
12072
12073 static void
12074 do_neon_movn (void)
12075 {
12076 struct neon_type_el et = neon_check_type (2, NS_DQ,
12077 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12078 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12079 neon_two_same (0, 1, et.size / 2);
12080 }
12081
12082 static void
12083 do_neon_rshift_narrow (void)
12084 {
12085 struct neon_type_el et = neon_check_type (2, NS_DQI,
12086 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12087 int imm = inst.operands[2].imm;
12088 /* This gets the bounds check, size encoding and immediate bits calculation
12089 right. */
12090 et.size /= 2;
12091
12092 /* If immediate is zero then we are a pseudo-instruction for
12093 VMOVN.I<size> <Dd>, <Qm> */
12094 if (imm == 0)
12095 {
12096 inst.operands[2].present = 0;
12097 inst.instruction = N_MNEM_vmovn;
12098 do_neon_movn ();
12099 return;
12100 }
12101
12102 constraint (imm < 1 || (unsigned)imm > et.size,
12103 _("immediate out of range for narrowing operation"));
12104 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12105 }
12106
12107 static void
12108 do_neon_shll (void)
12109 {
12110 /* FIXME: Type checking when lengthening. */
12111 struct neon_type_el et = neon_check_type (2, NS_QDI,
12112 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12113 unsigned imm = inst.operands[2].imm;
12114
12115 if (imm == et.size)
12116 {
12117 /* Maximum shift variant. */
12118 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12119 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12120 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12121 inst.instruction |= LOW4 (inst.operands[1].reg);
12122 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12123 inst.instruction |= neon_logbits (et.size) << 18;
12124
12125 inst.instruction = neon_dp_fixup (inst.instruction);
12126 }
12127 else
12128 {
12129 /* A more-specific type check for non-max versions. */
12130 et = neon_check_type (2, NS_QDI,
12131 N_EQK | N_DBL, N_SU_32 | N_KEY);
12132 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12133 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12134 }
12135 }
12136
12137 /* Check the various types for the VCVT instruction, and return which version
12138 the current instruction is. */
12139
12140 static int
12141 neon_cvt_flavour (enum neon_shape rs)
12142 {
12143 #define CVT_VAR(C,X,Y) \
12144 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12145 if (et.type != NT_invtype) \
12146 { \
12147 inst.error = NULL; \
12148 return (C); \
12149 }
12150 struct neon_type_el et;
12151 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12152 || rs == NS_FF) ? N_VFP : 0;
12153 /* The instruction versions which take an immediate take one register
12154 argument, which is extended to the width of the full register. Thus the
12155 "source" and "destination" registers must have the same width. Hack that
12156 here by making the size equal to the key (wider, in this case) operand. */
12157 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
12158
12159 CVT_VAR (0, N_S32, N_F32);
12160 CVT_VAR (1, N_U32, N_F32);
12161 CVT_VAR (2, N_F32, N_S32);
12162 CVT_VAR (3, N_F32, N_U32);
12163
12164 whole_reg = N_VFP;
12165
12166 /* VFP instructions. */
12167 CVT_VAR (4, N_F32, N_F64);
12168 CVT_VAR (5, N_F64, N_F32);
12169 CVT_VAR (6, N_S32, N_F64 | key);
12170 CVT_VAR (7, N_U32, N_F64 | key);
12171 CVT_VAR (8, N_F64 | key, N_S32);
12172 CVT_VAR (9, N_F64 | key, N_U32);
12173 /* VFP instructions with bitshift. */
12174 CVT_VAR (10, N_F32 | key, N_S16);
12175 CVT_VAR (11, N_F32 | key, N_U16);
12176 CVT_VAR (12, N_F64 | key, N_S16);
12177 CVT_VAR (13, N_F64 | key, N_U16);
12178 CVT_VAR (14, N_S16, N_F32 | key);
12179 CVT_VAR (15, N_U16, N_F32 | key);
12180 CVT_VAR (16, N_S16, N_F64 | key);
12181 CVT_VAR (17, N_U16, N_F64 | key);
12182
12183 return -1;
12184 #undef CVT_VAR
12185 }
12186
12187 /* Neon-syntax VFP conversions. */
12188
12189 static void
12190 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
12191 {
12192 const char *opname = 0;
12193
12194 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
12195 {
12196 /* Conversions with immediate bitshift. */
12197 const char *enc[] =
12198 {
12199 "ftosls",
12200 "ftouls",
12201 "fsltos",
12202 "fultos",
12203 NULL,
12204 NULL,
12205 "ftosld",
12206 "ftould",
12207 "fsltod",
12208 "fultod",
12209 "fshtos",
12210 "fuhtos",
12211 "fshtod",
12212 "fuhtod",
12213 "ftoshs",
12214 "ftouhs",
12215 "ftoshd",
12216 "ftouhd"
12217 };
12218
12219 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12220 {
12221 opname = enc[flavour];
12222 constraint (inst.operands[0].reg != inst.operands[1].reg,
12223 _("operands 0 and 1 must be the same register"));
12224 inst.operands[1] = inst.operands[2];
12225 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12226 }
12227 }
12228 else
12229 {
12230 /* Conversions without bitshift. */
12231 const char *enc[] =
12232 {
12233 "ftosis",
12234 "ftouis",
12235 "fsitos",
12236 "fuitos",
12237 "fcvtsd",
12238 "fcvtds",
12239 "ftosid",
12240 "ftouid",
12241 "fsitod",
12242 "fuitod"
12243 };
12244
12245 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12246 opname = enc[flavour];
12247 }
12248
12249 if (opname)
12250 do_vfp_nsyn_opcode (opname);
12251 }
12252
12253 static void
12254 do_vfp_nsyn_cvtz (void)
12255 {
12256 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12257 int flavour = neon_cvt_flavour (rs);
12258 const char *enc[] =
12259 {
12260 "ftosizs",
12261 "ftouizs",
12262 NULL,
12263 NULL,
12264 NULL,
12265 NULL,
12266 "ftosizd",
12267 "ftouizd"
12268 };
12269
12270 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12271 do_vfp_nsyn_opcode (enc[flavour]);
12272 }
12273
12274 static void
12275 do_neon_cvt (void)
12276 {
12277 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12278 NS_FD, NS_DF, NS_FF, NS_NULL);
12279 int flavour = neon_cvt_flavour (rs);
12280
12281 /* VFP rather than Neon conversions. */
12282 if (flavour >= 4)
12283 {
12284 do_vfp_nsyn_cvt (rs, flavour);
12285 return;
12286 }
12287
12288 switch (rs)
12289 {
12290 case NS_DDI:
12291 case NS_QQI:
12292 {
12293 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12294 return;
12295
12296 /* Fixed-point conversion with #0 immediate is encoded as an
12297 integer conversion. */
12298 if (inst.operands[2].present && inst.operands[2].imm == 0)
12299 goto int_encode;
12300 unsigned immbits = 32 - inst.operands[2].imm;
12301 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12302 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12303 if (flavour != -1)
12304 inst.instruction |= enctab[flavour];
12305 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12306 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12307 inst.instruction |= LOW4 (inst.operands[1].reg);
12308 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12309 inst.instruction |= neon_quad (rs) << 6;
12310 inst.instruction |= 1 << 21;
12311 inst.instruction |= immbits << 16;
12312
12313 inst.instruction = neon_dp_fixup (inst.instruction);
12314 }
12315 break;
12316
12317 case NS_DD:
12318 case NS_QQ:
12319 int_encode:
12320 {
12321 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12322
12323 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12324
12325 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12326 return;
12327
12328 if (flavour != -1)
12329 inst.instruction |= enctab[flavour];
12330
12331 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12332 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12333 inst.instruction |= LOW4 (inst.operands[1].reg);
12334 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12335 inst.instruction |= neon_quad (rs) << 6;
12336 inst.instruction |= 2 << 18;
12337
12338 inst.instruction = neon_dp_fixup (inst.instruction);
12339 }
12340 break;
12341
12342 default:
12343 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12344 do_vfp_nsyn_cvt (rs, flavour);
12345 }
12346 }
12347
12348 static void
12349 neon_move_immediate (void)
12350 {
12351 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12352 struct neon_type_el et = neon_check_type (2, rs,
12353 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12354 unsigned immlo, immhi = 0, immbits;
12355 int op, cmode;
12356
12357 constraint (et.type == NT_invtype,
12358 _("operand size must be specified for immediate VMOV"));
12359
12360 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12361 op = (inst.instruction & (1 << 5)) != 0;
12362
12363 immlo = inst.operands[1].imm;
12364 if (inst.operands[1].regisimm)
12365 immhi = inst.operands[1].reg;
12366
12367 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12368 _("immediate has bits set outside the operand size"));
12369
12370 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op,
12371 et.size, et.type)) == FAIL)
12372 {
12373 /* Invert relevant bits only. */
12374 neon_invert_size (&immlo, &immhi, et.size);
12375 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12376 with one or the other; those cases are caught by
12377 neon_cmode_for_move_imm. */
12378 op = !op;
12379 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op,
12380 et.size, et.type)) == FAIL)
12381 {
12382 first_error (_("immediate out of range"));
12383 return;
12384 }
12385 }
12386
12387 inst.instruction &= ~(1 << 5);
12388 inst.instruction |= op << 5;
12389
12390 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12391 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12392 inst.instruction |= neon_quad (rs) << 6;
12393 inst.instruction |= cmode << 8;
12394
12395 neon_write_immbits (immbits);
12396 }
12397
12398 static void
12399 do_neon_mvn (void)
12400 {
12401 if (inst.operands[1].isreg)
12402 {
12403 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12404
12405 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12406 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12407 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12408 inst.instruction |= LOW4 (inst.operands[1].reg);
12409 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12410 inst.instruction |= neon_quad (rs) << 6;
12411 }
12412 else
12413 {
12414 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12415 neon_move_immediate ();
12416 }
12417
12418 inst.instruction = neon_dp_fixup (inst.instruction);
12419 }
12420
12421 /* Encode instructions of form:
12422
12423 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12424 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
12425
12426 */
12427
12428 static void
12429 neon_mixed_length (struct neon_type_el et, unsigned size)
12430 {
12431 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12432 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12433 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12434 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12435 inst.instruction |= LOW4 (inst.operands[2].reg);
12436 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12437 inst.instruction |= (et.type == NT_unsigned) << 24;
12438 inst.instruction |= neon_logbits (size) << 20;
12439
12440 inst.instruction = neon_dp_fixup (inst.instruction);
12441 }
12442
12443 static void
12444 do_neon_dyadic_long (void)
12445 {
12446 /* FIXME: Type checking for lengthening op. */
12447 struct neon_type_el et = neon_check_type (3, NS_QDD,
12448 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12449 neon_mixed_length (et, et.size);
12450 }
12451
12452 static void
12453 do_neon_abal (void)
12454 {
12455 struct neon_type_el et = neon_check_type (3, NS_QDD,
12456 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12457 neon_mixed_length (et, et.size);
12458 }
12459
12460 static void
12461 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12462 {
12463 if (inst.operands[2].isscalar)
12464 {
12465 struct neon_type_el et = neon_check_type (3, NS_QDS,
12466 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
12467 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12468 neon_mul_mac (et, et.type == NT_unsigned);
12469 }
12470 else
12471 {
12472 struct neon_type_el et = neon_check_type (3, NS_QDD,
12473 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12474 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12475 neon_mixed_length (et, et.size);
12476 }
12477 }
12478
12479 static void
12480 do_neon_mac_maybe_scalar_long (void)
12481 {
12482 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12483 }
12484
12485 static void
12486 do_neon_dyadic_wide (void)
12487 {
12488 struct neon_type_el et = neon_check_type (3, NS_QQD,
12489 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12490 neon_mixed_length (et, et.size);
12491 }
12492
12493 static void
12494 do_neon_dyadic_narrow (void)
12495 {
12496 struct neon_type_el et = neon_check_type (3, NS_QDD,
12497 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
12498 /* Operand sign is unimportant, and the U bit is part of the opcode,
12499 so force the operand type to integer. */
12500 et.type = NT_integer;
12501 neon_mixed_length (et, et.size / 2);
12502 }
12503
12504 static void
12505 do_neon_mul_sat_scalar_long (void)
12506 {
12507 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12508 }
12509
12510 static void
12511 do_neon_vmull (void)
12512 {
12513 if (inst.operands[2].isscalar)
12514 do_neon_mac_maybe_scalar_long ();
12515 else
12516 {
12517 struct neon_type_el et = neon_check_type (3, NS_QDD,
12518 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12519 if (et.type == NT_poly)
12520 inst.instruction = NEON_ENC_POLY (inst.instruction);
12521 else
12522 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12523 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12524 zero. Should be OK as-is. */
12525 neon_mixed_length (et, et.size);
12526 }
12527 }
12528
12529 static void
12530 do_neon_ext (void)
12531 {
12532 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
12533 struct neon_type_el et = neon_check_type (3, rs,
12534 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12535 unsigned imm = (inst.operands[3].imm * et.size) / 8;
12536 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12537 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12538 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12539 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12540 inst.instruction |= LOW4 (inst.operands[2].reg);
12541 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12542 inst.instruction |= neon_quad (rs) << 6;
12543 inst.instruction |= imm << 8;
12544
12545 inst.instruction = neon_dp_fixup (inst.instruction);
12546 }
12547
12548 static void
12549 do_neon_rev (void)
12550 {
12551 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12552 struct neon_type_el et = neon_check_type (2, rs,
12553 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12554 unsigned op = (inst.instruction >> 7) & 3;
12555 /* N (width of reversed regions) is encoded as part of the bitmask. We
12556 extract it here to check the elements to be reversed are smaller.
12557 Otherwise we'd get a reserved instruction. */
12558 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12559 assert (elsize != 0);
12560 constraint (et.size >= elsize,
12561 _("elements must be smaller than reversal region"));
12562 neon_two_same (neon_quad (rs), 1, et.size);
12563 }
12564
12565 static void
12566 do_neon_dup (void)
12567 {
12568 if (inst.operands[1].isscalar)
12569 {
12570 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
12571 struct neon_type_el et = neon_check_type (2, rs,
12572 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12573 unsigned sizebits = et.size >> 3;
12574 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
12575 int logsize = neon_logbits (et.size);
12576 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
12577
12578 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12579 return;
12580
12581 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12582 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12583 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12584 inst.instruction |= LOW4 (dm);
12585 inst.instruction |= HI1 (dm) << 5;
12586 inst.instruction |= neon_quad (rs) << 6;
12587 inst.instruction |= x << 17;
12588 inst.instruction |= sizebits << 16;
12589
12590 inst.instruction = neon_dp_fixup (inst.instruction);
12591 }
12592 else
12593 {
12594 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
12595 struct neon_type_el et = neon_check_type (2, rs,
12596 N_8 | N_16 | N_32 | N_KEY, N_EQK);
12597 /* Duplicate ARM register to lanes of vector. */
12598 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
12599 switch (et.size)
12600 {
12601 case 8: inst.instruction |= 0x400000; break;
12602 case 16: inst.instruction |= 0x000020; break;
12603 case 32: inst.instruction |= 0x000000; break;
12604 default: break;
12605 }
12606 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
12607 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
12608 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
12609 inst.instruction |= neon_quad (rs) << 21;
12610 /* The encoding for this instruction is identical for the ARM and Thumb
12611 variants, except for the condition field. */
12612 do_vfp_cond_or_thumb ();
12613 }
12614 }
12615
12616 /* VMOV has particularly many variations. It can be one of:
12617 0. VMOV<c><q> <Qd>, <Qm>
12618 1. VMOV<c><q> <Dd>, <Dm>
12619 (Register operations, which are VORR with Rm = Rn.)
12620 2. VMOV<c><q>.<dt> <Qd>, #<imm>
12621 3. VMOV<c><q>.<dt> <Dd>, #<imm>
12622 (Immediate loads.)
12623 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
12624 (ARM register to scalar.)
12625 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
12626 (Two ARM registers to vector.)
12627 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
12628 (Scalar to ARM register.)
12629 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
12630 (Vector to two ARM registers.)
12631 8. VMOV.F32 <Sd>, <Sm>
12632 9. VMOV.F64 <Dd>, <Dm>
12633 (VFP register moves.)
12634 10. VMOV.F32 <Sd>, #imm
12635 11. VMOV.F64 <Dd>, #imm
12636 (VFP float immediate load.)
12637 12. VMOV <Rd>, <Sm>
12638 (VFP single to ARM reg.)
12639 13. VMOV <Sd>, <Rm>
12640 (ARM reg to VFP single.)
12641 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
12642 (Two ARM regs to two VFP singles.)
12643 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
12644 (Two VFP singles to two ARM regs.)
12645
12646 These cases can be disambiguated using neon_select_shape, except cases 1/9
12647 and 3/11 which depend on the operand type too.
12648
12649 All the encoded bits are hardcoded by this function.
12650
12651 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
12652 Cases 5, 7 may be used with VFPv2 and above.
12653
12654 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
12655 can specify a type where it doesn't make sense to, and is ignored).
12656 */
12657
12658 static void
12659 do_neon_mov (void)
12660 {
12661 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
12662 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
12663 NS_NULL);
12664 struct neon_type_el et;
12665 const char *ldconst = 0;
12666
12667 switch (rs)
12668 {
12669 case NS_DD: /* case 1/9. */
12670 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12671 /* It is not an error here if no type is given. */
12672 inst.error = NULL;
12673 if (et.type == NT_float && et.size == 64)
12674 {
12675 do_vfp_nsyn_opcode ("fcpyd");
12676 break;
12677 }
12678 /* fall through. */
12679
12680 case NS_QQ: /* case 0/1. */
12681 {
12682 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12683 return;
12684 /* The architecture manual I have doesn't explicitly state which
12685 value the U bit should have for register->register moves, but
12686 the equivalent VORR instruction has U = 0, so do that. */
12687 inst.instruction = 0x0200110;
12688 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12689 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12690 inst.instruction |= LOW4 (inst.operands[1].reg);
12691 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12692 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12693 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12694 inst.instruction |= neon_quad (rs) << 6;
12695
12696 inst.instruction = neon_dp_fixup (inst.instruction);
12697 }
12698 break;
12699
12700 case NS_DI: /* case 3/11. */
12701 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12702 inst.error = NULL;
12703 if (et.type == NT_float && et.size == 64)
12704 {
12705 /* case 11 (fconstd). */
12706 ldconst = "fconstd";
12707 goto encode_fconstd;
12708 }
12709 /* fall through. */
12710
12711 case NS_QI: /* case 2/3. */
12712 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12713 return;
12714 inst.instruction = 0x0800010;
12715 neon_move_immediate ();
12716 inst.instruction = neon_dp_fixup (inst.instruction);
12717 break;
12718
12719 case NS_SR: /* case 4. */
12720 {
12721 unsigned bcdebits = 0;
12722 struct neon_type_el et = neon_check_type (2, NS_NULL,
12723 N_8 | N_16 | N_32 | N_KEY, N_EQK);
12724 int logsize = neon_logbits (et.size);
12725 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
12726 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
12727
12728 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
12729 _(BAD_FPU));
12730 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
12731 && et.size != 32, _(BAD_FPU));
12732 constraint (et.type == NT_invtype, _("bad type for scalar"));
12733 constraint (x >= 64 / et.size, _("scalar index out of range"));
12734
12735 switch (et.size)
12736 {
12737 case 8: bcdebits = 0x8; break;
12738 case 16: bcdebits = 0x1; break;
12739 case 32: bcdebits = 0x0; break;
12740 default: ;
12741 }
12742
12743 bcdebits |= x << logsize;
12744
12745 inst.instruction = 0xe000b10;
12746 do_vfp_cond_or_thumb ();
12747 inst.instruction |= LOW4 (dn) << 16;
12748 inst.instruction |= HI1 (dn) << 7;
12749 inst.instruction |= inst.operands[1].reg << 12;
12750 inst.instruction |= (bcdebits & 3) << 5;
12751 inst.instruction |= (bcdebits >> 2) << 21;
12752 }
12753 break;
12754
12755 case NS_DRR: /* case 5 (fmdrr). */
12756 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
12757 _(BAD_FPU));
12758
12759 inst.instruction = 0xc400b10;
12760 do_vfp_cond_or_thumb ();
12761 inst.instruction |= LOW4 (inst.operands[0].reg);
12762 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
12763 inst.instruction |= inst.operands[1].reg << 12;
12764 inst.instruction |= inst.operands[2].reg << 16;
12765 break;
12766
12767 case NS_RS: /* case 6. */
12768 {
12769 struct neon_type_el et = neon_check_type (2, NS_NULL,
12770 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
12771 unsigned logsize = neon_logbits (et.size);
12772 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
12773 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
12774 unsigned abcdebits = 0;
12775
12776 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
12777 _(BAD_FPU));
12778 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
12779 && et.size != 32, _(BAD_FPU));
12780 constraint (et.type == NT_invtype, _("bad type for scalar"));
12781 constraint (x >= 64 / et.size, _("scalar index out of range"));
12782
12783 switch (et.size)
12784 {
12785 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
12786 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
12787 case 32: abcdebits = 0x00; break;
12788 default: ;
12789 }
12790
12791 abcdebits |= x << logsize;
12792 inst.instruction = 0xe100b10;
12793 do_vfp_cond_or_thumb ();
12794 inst.instruction |= LOW4 (dn) << 16;
12795 inst.instruction |= HI1 (dn) << 7;
12796 inst.instruction |= inst.operands[0].reg << 12;
12797 inst.instruction |= (abcdebits & 3) << 5;
12798 inst.instruction |= (abcdebits >> 2) << 21;
12799 }
12800 break;
12801
12802 case NS_RRD: /* case 7 (fmrrd). */
12803 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
12804 _(BAD_FPU));
12805
12806 inst.instruction = 0xc500b10;
12807 do_vfp_cond_or_thumb ();
12808 inst.instruction |= inst.operands[0].reg << 12;
12809 inst.instruction |= inst.operands[1].reg << 16;
12810 inst.instruction |= LOW4 (inst.operands[2].reg);
12811 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12812 break;
12813
12814 case NS_FF: /* case 8 (fcpys). */
12815 do_vfp_nsyn_opcode ("fcpys");
12816 break;
12817
12818 case NS_FI: /* case 10 (fconsts). */
12819 ldconst = "fconsts";
12820 encode_fconstd:
12821 if (is_quarter_float (inst.operands[1].imm))
12822 {
12823 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
12824 do_vfp_nsyn_opcode (ldconst);
12825 }
12826 else
12827 first_error (_("immediate out of range"));
12828 break;
12829
12830 case NS_RF: /* case 12 (fmrs). */
12831 do_vfp_nsyn_opcode ("fmrs");
12832 break;
12833
12834 case NS_FR: /* case 13 (fmsr). */
12835 do_vfp_nsyn_opcode ("fmsr");
12836 break;
12837
12838 /* The encoders for the fmrrs and fmsrr instructions expect three operands
12839 (one of which is a list), but we have parsed four. Do some fiddling to
12840 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
12841 expect. */
12842 case NS_RRFF: /* case 14 (fmrrs). */
12843 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
12844 _("VFP registers must be adjacent"));
12845 inst.operands[2].imm = 2;
12846 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
12847 do_vfp_nsyn_opcode ("fmrrs");
12848 break;
12849
12850 case NS_FFRR: /* case 15 (fmsrr). */
12851 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
12852 _("VFP registers must be adjacent"));
12853 inst.operands[1] = inst.operands[2];
12854 inst.operands[2] = inst.operands[3];
12855 inst.operands[0].imm = 2;
12856 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
12857 do_vfp_nsyn_opcode ("fmsrr");
12858 break;
12859
12860 default:
12861 abort ();
12862 }
12863 }
12864
12865 static void
12866 do_neon_rshift_round_imm (void)
12867 {
12868 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12869 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12870 int imm = inst.operands[2].imm;
12871
12872 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
12873 if (imm == 0)
12874 {
12875 inst.operands[2].present = 0;
12876 do_neon_mov ();
12877 return;
12878 }
12879
12880 constraint (imm < 1 || (unsigned)imm > et.size,
12881 _("immediate out of range for shift"));
12882 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12883 et.size - imm);
12884 }
12885
12886 static void
12887 do_neon_movl (void)
12888 {
12889 struct neon_type_el et = neon_check_type (2, NS_QD,
12890 N_EQK | N_DBL, N_SU_32 | N_KEY);
12891 unsigned sizebits = et.size >> 3;
12892 inst.instruction |= sizebits << 19;
12893 neon_two_same (0, et.type == NT_unsigned, -1);
12894 }
12895
12896 static void
12897 do_neon_trn (void)
12898 {
12899 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12900 struct neon_type_el et = neon_check_type (2, rs,
12901 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12902 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12903 neon_two_same (neon_quad (rs), 1, et.size);
12904 }
12905
12906 static void
12907 do_neon_zip_uzp (void)
12908 {
12909 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12910 struct neon_type_el et = neon_check_type (2, rs,
12911 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12912 if (rs == NS_DD && et.size == 32)
12913 {
12914 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
12915 inst.instruction = N_MNEM_vtrn;
12916 do_neon_trn ();
12917 return;
12918 }
12919 neon_two_same (neon_quad (rs), 1, et.size);
12920 }
12921
12922 static void
12923 do_neon_sat_abs_neg (void)
12924 {
12925 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12926 struct neon_type_el et = neon_check_type (2, rs,
12927 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
12928 neon_two_same (neon_quad (rs), 1, et.size);
12929 }
12930
12931 static void
12932 do_neon_pair_long (void)
12933 {
12934 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12935 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
12936 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
12937 inst.instruction |= (et.type == NT_unsigned) << 7;
12938 neon_two_same (neon_quad (rs), 1, et.size);
12939 }
12940
12941 static void
12942 do_neon_recip_est (void)
12943 {
12944 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12945 struct neon_type_el et = neon_check_type (2, rs,
12946 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
12947 inst.instruction |= (et.type == NT_float) << 8;
12948 neon_two_same (neon_quad (rs), 1, et.size);
12949 }
12950
12951 static void
12952 do_neon_cls (void)
12953 {
12954 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12955 struct neon_type_el et = neon_check_type (2, rs,
12956 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
12957 neon_two_same (neon_quad (rs), 1, et.size);
12958 }
12959
12960 static void
12961 do_neon_clz (void)
12962 {
12963 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12964 struct neon_type_el et = neon_check_type (2, rs,
12965 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
12966 neon_two_same (neon_quad (rs), 1, et.size);
12967 }
12968
12969 static void
12970 do_neon_cnt (void)
12971 {
12972 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12973 struct neon_type_el et = neon_check_type (2, rs,
12974 N_EQK | N_INT, N_8 | N_KEY);
12975 neon_two_same (neon_quad (rs), 1, et.size);
12976 }
12977
12978 static void
12979 do_neon_swp (void)
12980 {
12981 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12982 neon_two_same (neon_quad (rs), 1, -1);
12983 }
12984
12985 static void
12986 do_neon_tbl_tbx (void)
12987 {
12988 unsigned listlenbits;
12989 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
12990
12991 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
12992 {
12993 first_error (_("bad list length for table lookup"));
12994 return;
12995 }
12996
12997 listlenbits = inst.operands[1].imm - 1;
12998 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12999 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13000 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13001 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13002 inst.instruction |= LOW4 (inst.operands[2].reg);
13003 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13004 inst.instruction |= listlenbits << 8;
13005
13006 inst.instruction = neon_dp_fixup (inst.instruction);
13007 }
13008
13009 static void
13010 do_neon_ldm_stm (void)
13011 {
13012 /* P, U and L bits are part of bitmask. */
13013 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13014 unsigned offsetbits = inst.operands[1].imm * 2;
13015
13016 if (inst.operands[1].issingle)
13017 {
13018 do_vfp_nsyn_ldm_stm (is_dbmode);
13019 return;
13020 }
13021
13022 constraint (is_dbmode && !inst.operands[0].writeback,
13023 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13024
13025 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13026 _("register list must contain at least 1 and at most 16 "
13027 "registers"));
13028
13029 inst.instruction |= inst.operands[0].reg << 16;
13030 inst.instruction |= inst.operands[0].writeback << 21;
13031 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13032 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13033
13034 inst.instruction |= offsetbits;
13035
13036 do_vfp_cond_or_thumb ();
13037 }
13038
13039 static void
13040 do_neon_ldr_str (void)
13041 {
13042 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13043
13044 if (inst.operands[0].issingle)
13045 {
13046 if (is_ldr)
13047 do_vfp_nsyn_opcode ("flds");
13048 else
13049 do_vfp_nsyn_opcode ("fsts");
13050 }
13051 else
13052 {
13053 if (is_ldr)
13054 do_vfp_nsyn_opcode ("fldd");
13055 else
13056 do_vfp_nsyn_opcode ("fstd");
13057 }
13058 }
13059
13060 /* "interleave" version also handles non-interleaving register VLD1/VST1
13061 instructions. */
13062
13063 static void
13064 do_neon_ld_st_interleave (void)
13065 {
13066 struct neon_type_el et = neon_check_type (1, NS_NULL,
13067 N_8 | N_16 | N_32 | N_64);
13068 unsigned alignbits = 0;
13069 unsigned idx;
13070 /* The bits in this table go:
13071 0: register stride of one (0) or two (1)
13072 1,2: register list length, minus one (1, 2, 3, 4).
13073 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13074 We use -1 for invalid entries. */
13075 const int typetable[] =
13076 {
13077 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13078 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13079 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13080 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13081 };
13082 int typebits;
13083
13084 if (et.type == NT_invtype)
13085 return;
13086
13087 if (inst.operands[1].immisalign)
13088 switch (inst.operands[1].imm >> 8)
13089 {
13090 case 64: alignbits = 1; break;
13091 case 128:
13092 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13093 goto bad_alignment;
13094 alignbits = 2;
13095 break;
13096 case 256:
13097 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13098 goto bad_alignment;
13099 alignbits = 3;
13100 break;
13101 default:
13102 bad_alignment:
13103 first_error (_("bad alignment"));
13104 return;
13105 }
13106
13107 inst.instruction |= alignbits << 4;
13108 inst.instruction |= neon_logbits (et.size) << 6;
13109
13110 /* Bits [4:6] of the immediate in a list specifier encode register stride
13111 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13112 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13113 up the right value for "type" in a table based on this value and the given
13114 list style, then stick it back. */
13115 idx = ((inst.operands[0].imm >> 4) & 7)
13116 | (((inst.instruction >> 8) & 3) << 3);
13117
13118 typebits = typetable[idx];
13119
13120 constraint (typebits == -1, _("bad list type for instruction"));
13121
13122 inst.instruction &= ~0xf00;
13123 inst.instruction |= typebits << 8;
13124 }
13125
13126 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13127 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13128 otherwise. The variable arguments are a list of pairs of legal (size, align)
13129 values, terminated with -1. */
13130
13131 static int
13132 neon_alignment_bit (int size, int align, int *do_align, ...)
13133 {
13134 va_list ap;
13135 int result = FAIL, thissize, thisalign;
13136
13137 if (!inst.operands[1].immisalign)
13138 {
13139 *do_align = 0;
13140 return SUCCESS;
13141 }
13142
13143 va_start (ap, do_align);
13144
13145 do
13146 {
13147 thissize = va_arg (ap, int);
13148 if (thissize == -1)
13149 break;
13150 thisalign = va_arg (ap, int);
13151
13152 if (size == thissize && align == thisalign)
13153 result = SUCCESS;
13154 }
13155 while (result != SUCCESS);
13156
13157 va_end (ap);
13158
13159 if (result == SUCCESS)
13160 *do_align = 1;
13161 else
13162 first_error (_("unsupported alignment for instruction"));
13163
13164 return result;
13165 }
13166
13167 static void
13168 do_neon_ld_st_lane (void)
13169 {
13170 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13171 int align_good, do_align = 0;
13172 int logsize = neon_logbits (et.size);
13173 int align = inst.operands[1].imm >> 8;
13174 int n = (inst.instruction >> 8) & 3;
13175 int max_el = 64 / et.size;
13176
13177 if (et.type == NT_invtype)
13178 return;
13179
13180 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13181 _("bad list length"));
13182 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13183 _("scalar index out of range"));
13184 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13185 && et.size == 8,
13186 _("stride of 2 unavailable when element size is 8"));
13187
13188 switch (n)
13189 {
13190 case 0: /* VLD1 / VST1. */
13191 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13192 32, 32, -1);
13193 if (align_good == FAIL)
13194 return;
13195 if (do_align)
13196 {
13197 unsigned alignbits = 0;
13198 switch (et.size)
13199 {
13200 case 16: alignbits = 0x1; break;
13201 case 32: alignbits = 0x3; break;
13202 default: ;
13203 }
13204 inst.instruction |= alignbits << 4;
13205 }
13206 break;
13207
13208 case 1: /* VLD2 / VST2. */
13209 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13210 32, 64, -1);
13211 if (align_good == FAIL)
13212 return;
13213 if (do_align)
13214 inst.instruction |= 1 << 4;
13215 break;
13216
13217 case 2: /* VLD3 / VST3. */
13218 constraint (inst.operands[1].immisalign,
13219 _("can't use alignment with this instruction"));
13220 break;
13221
13222 case 3: /* VLD4 / VST4. */
13223 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13224 16, 64, 32, 64, 32, 128, -1);
13225 if (align_good == FAIL)
13226 return;
13227 if (do_align)
13228 {
13229 unsigned alignbits = 0;
13230 switch (et.size)
13231 {
13232 case 8: alignbits = 0x1; break;
13233 case 16: alignbits = 0x1; break;
13234 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13235 default: ;
13236 }
13237 inst.instruction |= alignbits << 4;
13238 }
13239 break;
13240
13241 default: ;
13242 }
13243
13244 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13245 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13246 inst.instruction |= 1 << (4 + logsize);
13247
13248 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13249 inst.instruction |= logsize << 10;
13250 }
13251
13252 /* Encode single n-element structure to all lanes VLD<n> instructions. */
13253
13254 static void
13255 do_neon_ld_dup (void)
13256 {
13257 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13258 int align_good, do_align = 0;
13259
13260 if (et.type == NT_invtype)
13261 return;
13262
13263 switch ((inst.instruction >> 8) & 3)
13264 {
13265 case 0: /* VLD1. */
13266 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13267 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13268 &do_align, 16, 16, 32, 32, -1);
13269 if (align_good == FAIL)
13270 return;
13271 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13272 {
13273 case 1: break;
13274 case 2: inst.instruction |= 1 << 5; break;
13275 default: first_error (_("bad list length")); return;
13276 }
13277 inst.instruction |= neon_logbits (et.size) << 6;
13278 break;
13279
13280 case 1: /* VLD2. */
13281 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13282 &do_align, 8, 16, 16, 32, 32, 64, -1);
13283 if (align_good == FAIL)
13284 return;
13285 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13286 _("bad list length"));
13287 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13288 inst.instruction |= 1 << 5;
13289 inst.instruction |= neon_logbits (et.size) << 6;
13290 break;
13291
13292 case 2: /* VLD3. */
13293 constraint (inst.operands[1].immisalign,
13294 _("can't use alignment with this instruction"));
13295 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13296 _("bad list length"));
13297 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13298 inst.instruction |= 1 << 5;
13299 inst.instruction |= neon_logbits (et.size) << 6;
13300 break;
13301
13302 case 3: /* VLD4. */
13303 {
13304 int align = inst.operands[1].imm >> 8;
13305 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13306 16, 64, 32, 64, 32, 128, -1);
13307 if (align_good == FAIL)
13308 return;
13309 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13310 _("bad list length"));
13311 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13312 inst.instruction |= 1 << 5;
13313 if (et.size == 32 && align == 128)
13314 inst.instruction |= 0x3 << 6;
13315 else
13316 inst.instruction |= neon_logbits (et.size) << 6;
13317 }
13318 break;
13319
13320 default: ;
13321 }
13322
13323 inst.instruction |= do_align << 4;
13324 }
13325
13326 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13327 apart from bits [11:4]. */
13328
13329 static void
13330 do_neon_ldx_stx (void)
13331 {
13332 switch (NEON_LANE (inst.operands[0].imm))
13333 {
13334 case NEON_INTERLEAVE_LANES:
13335 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13336 do_neon_ld_st_interleave ();
13337 break;
13338
13339 case NEON_ALL_LANES:
13340 inst.instruction = NEON_ENC_DUP (inst.instruction);
13341 do_neon_ld_dup ();
13342 break;
13343
13344 default:
13345 inst.instruction = NEON_ENC_LANE (inst.instruction);
13346 do_neon_ld_st_lane ();
13347 }
13348
13349 /* L bit comes from bit mask. */
13350 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13351 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13352 inst.instruction |= inst.operands[1].reg << 16;
13353
13354 if (inst.operands[1].postind)
13355 {
13356 int postreg = inst.operands[1].imm & 0xf;
13357 constraint (!inst.operands[1].immisreg,
13358 _("post-index must be a register"));
13359 constraint (postreg == 0xd || postreg == 0xf,
13360 _("bad register for post-index"));
13361 inst.instruction |= postreg;
13362 }
13363 else if (inst.operands[1].writeback)
13364 {
13365 inst.instruction |= 0xd;
13366 }
13367 else
13368 inst.instruction |= 0xf;
13369
13370 if (thumb_mode)
13371 inst.instruction |= 0xf9000000;
13372 else
13373 inst.instruction |= 0xf4000000;
13374 }
13375
13376 \f
13377 /* Overall per-instruction processing. */
13378
13379 /* We need to be able to fix up arbitrary expressions in some statements.
13380 This is so that we can handle symbols that are an arbitrary distance from
13381 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13382 which returns part of an address in a form which will be valid for
13383 a data instruction. We do this by pushing the expression into a symbol
13384 in the expr_section, and creating a fix for that. */
13385
13386 static void
13387 fix_new_arm (fragS * frag,
13388 int where,
13389 short int size,
13390 expressionS * exp,
13391 int pc_rel,
13392 int reloc)
13393 {
13394 fixS * new_fix;
13395
13396 switch (exp->X_op)
13397 {
13398 case O_constant:
13399 case O_symbol:
13400 case O_add:
13401 case O_subtract:
13402 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13403 break;
13404
13405 default:
13406 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13407 pc_rel, reloc);
13408 break;
13409 }
13410
13411 /* Mark whether the fix is to a THUMB instruction, or an ARM
13412 instruction. */
13413 new_fix->tc_fix_data = thumb_mode;
13414 }
13415
13416 /* Create a frg for an instruction requiring relaxation. */
13417 static void
13418 output_relax_insn (void)
13419 {
13420 char * to;
13421 symbolS *sym;
13422 int offset;
13423
13424 /* The size of the instruction is unknown, so tie the debug info to the
13425 start of the instruction. */
13426 dwarf2_emit_insn (0);
13427
13428 switch (inst.reloc.exp.X_op)
13429 {
13430 case O_symbol:
13431 sym = inst.reloc.exp.X_add_symbol;
13432 offset = inst.reloc.exp.X_add_number;
13433 break;
13434 case O_constant:
13435 sym = NULL;
13436 offset = inst.reloc.exp.X_add_number;
13437 break;
13438 default:
13439 sym = make_expr_symbol (&inst.reloc.exp);
13440 offset = 0;
13441 break;
13442 }
13443 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13444 inst.relax, sym, offset, NULL/*offset, opcode*/);
13445 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
13446 }
13447
13448 /* Write a 32-bit thumb instruction to buf. */
13449 static void
13450 put_thumb32_insn (char * buf, unsigned long insn)
13451 {
13452 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13453 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13454 }
13455
13456 static void
13457 output_inst (const char * str)
13458 {
13459 char * to = NULL;
13460
13461 if (inst.error)
13462 {
13463 as_bad ("%s -- `%s'", inst.error, str);
13464 return;
13465 }
13466 if (inst.relax) {
13467 output_relax_insn();
13468 return;
13469 }
13470 if (inst.size == 0)
13471 return;
13472
13473 to = frag_more (inst.size);
13474
13475 if (thumb_mode && (inst.size > THUMB_SIZE))
13476 {
13477 assert (inst.size == (2 * THUMB_SIZE));
13478 put_thumb32_insn (to, inst.instruction);
13479 }
13480 else if (inst.size > INSN_SIZE)
13481 {
13482 assert (inst.size == (2 * INSN_SIZE));
13483 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13484 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
13485 }
13486 else
13487 md_number_to_chars (to, inst.instruction, inst.size);
13488
13489 if (inst.reloc.type != BFD_RELOC_UNUSED)
13490 fix_new_arm (frag_now, to - frag_now->fr_literal,
13491 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13492 inst.reloc.type);
13493
13494 dwarf2_emit_insn (inst.size);
13495 }
13496
13497 /* Tag values used in struct asm_opcode's tag field. */
13498 enum opcode_tag
13499 {
13500 OT_unconditional, /* Instruction cannot be conditionalized.
13501 The ARM condition field is still 0xE. */
13502 OT_unconditionalF, /* Instruction cannot be conditionalized
13503 and carries 0xF in its ARM condition field. */
13504 OT_csuffix, /* Instruction takes a conditional suffix. */
13505 OT_csuffixF, /* Some forms of the instruction take a conditional
13506 suffix, others place 0xF where the condition field
13507 would be. */
13508 OT_cinfix3, /* Instruction takes a conditional infix,
13509 beginning at character index 3. (In
13510 unified mode, it becomes a suffix.) */
13511 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13512 tsts, cmps, cmns, and teqs. */
13513 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13514 character index 3, even in unified mode. Used for
13515 legacy instructions where suffix and infix forms
13516 may be ambiguous. */
13517 OT_csuf_or_in3, /* Instruction takes either a conditional
13518 suffix or an infix at character index 3. */
13519 OT_odd_infix_unc, /* This is the unconditional variant of an
13520 instruction that takes a conditional infix
13521 at an unusual position. In unified mode,
13522 this variant will accept a suffix. */
13523 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13524 are the conditional variants of instructions that
13525 take conditional infixes in unusual positions.
13526 The infix appears at character index
13527 (tag - OT_odd_infix_0). These are not accepted
13528 in unified mode. */
13529 };
13530
13531 /* Subroutine of md_assemble, responsible for looking up the primary
13532 opcode from the mnemonic the user wrote. STR points to the
13533 beginning of the mnemonic.
13534
13535 This is not simply a hash table lookup, because of conditional
13536 variants. Most instructions have conditional variants, which are
13537 expressed with a _conditional affix_ to the mnemonic. If we were
13538 to encode each conditional variant as a literal string in the opcode
13539 table, it would have approximately 20,000 entries.
13540
13541 Most mnemonics take this affix as a suffix, and in unified syntax,
13542 'most' is upgraded to 'all'. However, in the divided syntax, some
13543 instructions take the affix as an infix, notably the s-variants of
13544 the arithmetic instructions. Of those instructions, all but six
13545 have the infix appear after the third character of the mnemonic.
13546
13547 Accordingly, the algorithm for looking up primary opcodes given
13548 an identifier is:
13549
13550 1. Look up the identifier in the opcode table.
13551 If we find a match, go to step U.
13552
13553 2. Look up the last two characters of the identifier in the
13554 conditions table. If we find a match, look up the first N-2
13555 characters of the identifier in the opcode table. If we
13556 find a match, go to step CE.
13557
13558 3. Look up the fourth and fifth characters of the identifier in
13559 the conditions table. If we find a match, extract those
13560 characters from the identifier, and look up the remaining
13561 characters in the opcode table. If we find a match, go
13562 to step CM.
13563
13564 4. Fail.
13565
13566 U. Examine the tag field of the opcode structure, in case this is
13567 one of the six instructions with its conditional infix in an
13568 unusual place. If it is, the tag tells us where to find the
13569 infix; look it up in the conditions table and set inst.cond
13570 accordingly. Otherwise, this is an unconditional instruction.
13571 Again set inst.cond accordingly. Return the opcode structure.
13572
13573 CE. Examine the tag field to make sure this is an instruction that
13574 should receive a conditional suffix. If it is not, fail.
13575 Otherwise, set inst.cond from the suffix we already looked up,
13576 and return the opcode structure.
13577
13578 CM. Examine the tag field to make sure this is an instruction that
13579 should receive a conditional infix after the third character.
13580 If it is not, fail. Otherwise, undo the edits to the current
13581 line of input and proceed as for case CE. */
13582
13583 static const struct asm_opcode *
13584 opcode_lookup (char **str)
13585 {
13586 char *end, *base;
13587 char *affix;
13588 const struct asm_opcode *opcode;
13589 const struct asm_cond *cond;
13590 char save[2];
13591 bfd_boolean neon_supported;
13592
13593 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
13594
13595 /* Scan up to the end of the mnemonic, which must end in white space,
13596 '.' (in unified mode, or for Neon instructions), or end of string. */
13597 for (base = end = *str; *end != '\0'; end++)
13598 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
13599 break;
13600
13601 if (end == base)
13602 return 0;
13603
13604 /* Handle a possible width suffix and/or Neon type suffix. */
13605 if (end[0] == '.')
13606 {
13607 int offset = 2;
13608
13609 /* The .w and .n suffixes are only valid if the unified syntax is in
13610 use. */
13611 if (unified_syntax && end[1] == 'w')
13612 inst.size_req = 4;
13613 else if (unified_syntax && end[1] == 'n')
13614 inst.size_req = 2;
13615 else
13616 offset = 0;
13617
13618 inst.vectype.elems = 0;
13619
13620 *str = end + offset;
13621
13622 if (end[offset] == '.')
13623 {
13624 /* See if we have a Neon type suffix (possible in either unified or
13625 non-unified ARM syntax mode). */
13626 if (parse_neon_type (&inst.vectype, str) == FAIL)
13627 return 0;
13628 }
13629 else if (end[offset] != '\0' && end[offset] != ' ')
13630 return 0;
13631 }
13632 else
13633 *str = end;
13634
13635 /* Look for unaffixed or special-case affixed mnemonic. */
13636 opcode = hash_find_n (arm_ops_hsh, base, end - base);
13637 if (opcode)
13638 {
13639 /* step U */
13640 if (opcode->tag < OT_odd_infix_0)
13641 {
13642 inst.cond = COND_ALWAYS;
13643 return opcode;
13644 }
13645
13646 if (unified_syntax)
13647 as_warn (_("conditional infixes are deprecated in unified syntax"));
13648 affix = base + (opcode->tag - OT_odd_infix_0);
13649 cond = hash_find_n (arm_cond_hsh, affix, 2);
13650 assert (cond);
13651
13652 inst.cond = cond->value;
13653 return opcode;
13654 }
13655
13656 /* Cannot have a conditional suffix on a mnemonic of less than two
13657 characters. */
13658 if (end - base < 3)
13659 return 0;
13660
13661 /* Look for suffixed mnemonic. */
13662 affix = end - 2;
13663 cond = hash_find_n (arm_cond_hsh, affix, 2);
13664 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
13665 if (opcode && cond)
13666 {
13667 /* step CE */
13668 switch (opcode->tag)
13669 {
13670 case OT_cinfix3_legacy:
13671 /* Ignore conditional suffixes matched on infix only mnemonics. */
13672 break;
13673
13674 case OT_cinfix3:
13675 case OT_cinfix3_deprecated:
13676 case OT_odd_infix_unc:
13677 if (!unified_syntax)
13678 return 0;
13679 /* else fall through */
13680
13681 case OT_csuffix:
13682 case OT_csuffixF:
13683 case OT_csuf_or_in3:
13684 inst.cond = cond->value;
13685 return opcode;
13686
13687 case OT_unconditional:
13688 case OT_unconditionalF:
13689 if (thumb_mode)
13690 {
13691 inst.cond = cond->value;
13692 }
13693 else
13694 {
13695 /* delayed diagnostic */
13696 inst.error = BAD_COND;
13697 inst.cond = COND_ALWAYS;
13698 }
13699 return opcode;
13700
13701 default:
13702 return 0;
13703 }
13704 }
13705
13706 /* Cannot have a usual-position infix on a mnemonic of less than
13707 six characters (five would be a suffix). */
13708 if (end - base < 6)
13709 return 0;
13710
13711 /* Look for infixed mnemonic in the usual position. */
13712 affix = base + 3;
13713 cond = hash_find_n (arm_cond_hsh, affix, 2);
13714 if (!cond)
13715 return 0;
13716
13717 memcpy (save, affix, 2);
13718 memmove (affix, affix + 2, (end - affix) - 2);
13719 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
13720 memmove (affix + 2, affix, (end - affix) - 2);
13721 memcpy (affix, save, 2);
13722
13723 if (opcode
13724 && (opcode->tag == OT_cinfix3
13725 || opcode->tag == OT_cinfix3_deprecated
13726 || opcode->tag == OT_csuf_or_in3
13727 || opcode->tag == OT_cinfix3_legacy))
13728 {
13729 /* step CM */
13730 if (unified_syntax
13731 && (opcode->tag == OT_cinfix3
13732 || opcode->tag == OT_cinfix3_deprecated))
13733 as_warn (_("conditional infixes are deprecated in unified syntax"));
13734
13735 inst.cond = cond->value;
13736 return opcode;
13737 }
13738
13739 return 0;
13740 }
13741
13742 void
13743 md_assemble (char *str)
13744 {
13745 char *p = str;
13746 const struct asm_opcode * opcode;
13747
13748 /* Align the previous label if needed. */
13749 if (last_label_seen != NULL)
13750 {
13751 symbol_set_frag (last_label_seen, frag_now);
13752 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
13753 S_SET_SEGMENT (last_label_seen, now_seg);
13754 }
13755
13756 memset (&inst, '\0', sizeof (inst));
13757 inst.reloc.type = BFD_RELOC_UNUSED;
13758
13759 opcode = opcode_lookup (&p);
13760 if (!opcode)
13761 {
13762 /* It wasn't an instruction, but it might be a register alias of
13763 the form alias .req reg, or a Neon .dn/.qn directive. */
13764 if (!create_register_alias (str, p)
13765 && !create_neon_reg_alias (str, p))
13766 as_bad (_("bad instruction `%s'"), str);
13767
13768 return;
13769 }
13770
13771 if (opcode->tag == OT_cinfix3_deprecated)
13772 as_warn (_("s suffix on comparison instruction is deprecated"));
13773
13774 /* The value which unconditional instructions should have in place of the
13775 condition field. */
13776 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
13777
13778 if (thumb_mode)
13779 {
13780 arm_feature_set variant;
13781
13782 variant = cpu_variant;
13783 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
13784 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
13785 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
13786 /* Check that this instruction is supported for this CPU. */
13787 if (!opcode->tvariant
13788 || (thumb_mode == 1
13789 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
13790 {
13791 as_bad (_("selected processor does not support `%s'"), str);
13792 return;
13793 }
13794 if (inst.cond != COND_ALWAYS && !unified_syntax
13795 && opcode->tencode != do_t_branch)
13796 {
13797 as_bad (_("Thumb does not support conditional execution"));
13798 return;
13799 }
13800
13801 /* Check conditional suffixes. */
13802 if (current_it_mask)
13803 {
13804 int cond;
13805 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
13806 current_it_mask <<= 1;
13807 current_it_mask &= 0x1f;
13808 /* The BKPT instruction is unconditional even in an IT block. */
13809 if (!inst.error
13810 && cond != inst.cond && opcode->tencode != do_t_bkpt)
13811 {
13812 as_bad (_("incorrect condition in IT block"));
13813 return;
13814 }
13815 }
13816 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
13817 {
13818 as_bad (_("thumb conditional instrunction not in IT block"));
13819 return;
13820 }
13821
13822 mapping_state (MAP_THUMB);
13823 inst.instruction = opcode->tvalue;
13824
13825 if (!parse_operands (p, opcode->operands))
13826 opcode->tencode ();
13827
13828 /* Clear current_it_mask at the end of an IT block. */
13829 if (current_it_mask == 0x10)
13830 current_it_mask = 0;
13831
13832 if (!(inst.error || inst.relax))
13833 {
13834 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
13835 inst.size = (inst.instruction > 0xffff ? 4 : 2);
13836 if (inst.size_req && inst.size_req != inst.size)
13837 {
13838 as_bad (_("cannot honor width suffix -- `%s'"), str);
13839 return;
13840 }
13841 }
13842 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13843 *opcode->tvariant);
13844 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
13845 set those bits when Thumb-2 32-bit instructions are seen. ie.
13846 anything other than bl/blx.
13847 This is overly pessimistic for relaxable instructions. */
13848 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
13849 || inst.relax)
13850 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13851 arm_ext_v6t2);
13852 }
13853 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
13854 {
13855 /* Check that this instruction is supported for this CPU. */
13856 if (!opcode->avariant ||
13857 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
13858 {
13859 as_bad (_("selected processor does not support `%s'"), str);
13860 return;
13861 }
13862 if (inst.size_req)
13863 {
13864 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
13865 return;
13866 }
13867
13868 mapping_state (MAP_ARM);
13869 inst.instruction = opcode->avalue;
13870 if (opcode->tag == OT_unconditionalF)
13871 inst.instruction |= 0xF << 28;
13872 else
13873 inst.instruction |= inst.cond << 28;
13874 inst.size = INSN_SIZE;
13875 if (!parse_operands (p, opcode->operands))
13876 opcode->aencode ();
13877 /* Arm mode bx is marked as both v4T and v5 because it's still required
13878 on a hypothetical non-thumb v5 core. */
13879 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
13880 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
13881 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
13882 else
13883 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
13884 *opcode->avariant);
13885 }
13886 else
13887 {
13888 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
13889 "-- `%s'"), str);
13890 return;
13891 }
13892 output_inst (str);
13893 }
13894
13895 /* Various frobbings of labels and their addresses. */
13896
13897 void
13898 arm_start_line_hook (void)
13899 {
13900 last_label_seen = NULL;
13901 }
13902
13903 void
13904 arm_frob_label (symbolS * sym)
13905 {
13906 last_label_seen = sym;
13907
13908 ARM_SET_THUMB (sym, thumb_mode);
13909
13910 #if defined OBJ_COFF || defined OBJ_ELF
13911 ARM_SET_INTERWORK (sym, support_interwork);
13912 #endif
13913
13914 /* Note - do not allow local symbols (.Lxxx) to be labeled
13915 as Thumb functions. This is because these labels, whilst
13916 they exist inside Thumb code, are not the entry points for
13917 possible ARM->Thumb calls. Also, these labels can be used
13918 as part of a computed goto or switch statement. eg gcc
13919 can generate code that looks like this:
13920
13921 ldr r2, [pc, .Laaa]
13922 lsl r3, r3, #2
13923 ldr r2, [r3, r2]
13924 mov pc, r2
13925
13926 .Lbbb: .word .Lxxx
13927 .Lccc: .word .Lyyy
13928 ..etc...
13929 .Laaa: .word Lbbb
13930
13931 The first instruction loads the address of the jump table.
13932 The second instruction converts a table index into a byte offset.
13933 The third instruction gets the jump address out of the table.
13934 The fourth instruction performs the jump.
13935
13936 If the address stored at .Laaa is that of a symbol which has the
13937 Thumb_Func bit set, then the linker will arrange for this address
13938 to have the bottom bit set, which in turn would mean that the
13939 address computation performed by the third instruction would end
13940 up with the bottom bit set. Since the ARM is capable of unaligned
13941 word loads, the instruction would then load the incorrect address
13942 out of the jump table, and chaos would ensue. */
13943 if (label_is_thumb_function_name
13944 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
13945 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
13946 {
13947 /* When the address of a Thumb function is taken the bottom
13948 bit of that address should be set. This will allow
13949 interworking between Arm and Thumb functions to work
13950 correctly. */
13951
13952 THUMB_SET_FUNC (sym, 1);
13953
13954 label_is_thumb_function_name = FALSE;
13955 }
13956
13957 dwarf2_emit_label (sym);
13958 }
13959
13960 int
13961 arm_data_in_code (void)
13962 {
13963 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
13964 {
13965 *input_line_pointer = '/';
13966 input_line_pointer += 5;
13967 *input_line_pointer = 0;
13968 return 1;
13969 }
13970
13971 return 0;
13972 }
13973
13974 char *
13975 arm_canonicalize_symbol_name (char * name)
13976 {
13977 int len;
13978
13979 if (thumb_mode && (len = strlen (name)) > 5
13980 && streq (name + len - 5, "/data"))
13981 *(name + len - 5) = 0;
13982
13983 return name;
13984 }
13985 \f
13986 /* Table of all register names defined by default. The user can
13987 define additional names with .req. Note that all register names
13988 should appear in both upper and lowercase variants. Some registers
13989 also have mixed-case names. */
13990
13991 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
13992 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
13993 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
13994 #define REGSET(p,t) \
13995 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
13996 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
13997 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
13998 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
13999 #define REGSETH(p,t) \
14000 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14001 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14002 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14003 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14004 #define REGSET2(p,t) \
14005 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14006 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14007 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14008 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
14009
14010 static const struct reg_entry reg_names[] =
14011 {
14012 /* ARM integer registers. */
14013 REGSET(r, RN), REGSET(R, RN),
14014
14015 /* ATPCS synonyms. */
14016 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14017 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14018 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
14019
14020 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14021 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14022 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
14023
14024 /* Well-known aliases. */
14025 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14026 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14027
14028 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14029 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14030
14031 /* Coprocessor numbers. */
14032 REGSET(p, CP), REGSET(P, CP),
14033
14034 /* Coprocessor register numbers. The "cr" variants are for backward
14035 compatibility. */
14036 REGSET(c, CN), REGSET(C, CN),
14037 REGSET(cr, CN), REGSET(CR, CN),
14038
14039 /* FPA registers. */
14040 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14041 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14042
14043 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14044 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14045
14046 /* VFP SP registers. */
14047 REGSET(s,VFS), REGSET(S,VFS),
14048 REGSETH(s,VFS), REGSETH(S,VFS),
14049
14050 /* VFP DP Registers. */
14051 REGSET(d,VFD), REGSET(D,VFD),
14052 /* Extra Neon DP registers. */
14053 REGSETH(d,VFD), REGSETH(D,VFD),
14054
14055 /* Neon QP registers. */
14056 REGSET2(q,NQ), REGSET2(Q,NQ),
14057
14058 /* VFP control registers. */
14059 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14060 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14061
14062 /* Maverick DSP coprocessor registers. */
14063 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14064 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14065
14066 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14067 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14068 REGDEF(dspsc,0,DSPSC),
14069
14070 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14071 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14072 REGDEF(DSPSC,0,DSPSC),
14073
14074 /* iWMMXt data registers - p0, c0-15. */
14075 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14076
14077 /* iWMMXt control registers - p1, c0-3. */
14078 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14079 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14080 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14081 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14082
14083 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14084 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14085 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14086 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14087 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14088
14089 /* XScale accumulator registers. */
14090 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14091 };
14092 #undef REGDEF
14093 #undef REGNUM
14094 #undef REGSET
14095
14096 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14097 within psr_required_here. */
14098 static const struct asm_psr psrs[] =
14099 {
14100 /* Backward compatibility notation. Note that "all" is no longer
14101 truly all possible PSR bits. */
14102 {"all", PSR_c | PSR_f},
14103 {"flg", PSR_f},
14104 {"ctl", PSR_c},
14105
14106 /* Individual flags. */
14107 {"f", PSR_f},
14108 {"c", PSR_c},
14109 {"x", PSR_x},
14110 {"s", PSR_s},
14111 /* Combinations of flags. */
14112 {"fs", PSR_f | PSR_s},
14113 {"fx", PSR_f | PSR_x},
14114 {"fc", PSR_f | PSR_c},
14115 {"sf", PSR_s | PSR_f},
14116 {"sx", PSR_s | PSR_x},
14117 {"sc", PSR_s | PSR_c},
14118 {"xf", PSR_x | PSR_f},
14119 {"xs", PSR_x | PSR_s},
14120 {"xc", PSR_x | PSR_c},
14121 {"cf", PSR_c | PSR_f},
14122 {"cs", PSR_c | PSR_s},
14123 {"cx", PSR_c | PSR_x},
14124 {"fsx", PSR_f | PSR_s | PSR_x},
14125 {"fsc", PSR_f | PSR_s | PSR_c},
14126 {"fxs", PSR_f | PSR_x | PSR_s},
14127 {"fxc", PSR_f | PSR_x | PSR_c},
14128 {"fcs", PSR_f | PSR_c | PSR_s},
14129 {"fcx", PSR_f | PSR_c | PSR_x},
14130 {"sfx", PSR_s | PSR_f | PSR_x},
14131 {"sfc", PSR_s | PSR_f | PSR_c},
14132 {"sxf", PSR_s | PSR_x | PSR_f},
14133 {"sxc", PSR_s | PSR_x | PSR_c},
14134 {"scf", PSR_s | PSR_c | PSR_f},
14135 {"scx", PSR_s | PSR_c | PSR_x},
14136 {"xfs", PSR_x | PSR_f | PSR_s},
14137 {"xfc", PSR_x | PSR_f | PSR_c},
14138 {"xsf", PSR_x | PSR_s | PSR_f},
14139 {"xsc", PSR_x | PSR_s | PSR_c},
14140 {"xcf", PSR_x | PSR_c | PSR_f},
14141 {"xcs", PSR_x | PSR_c | PSR_s},
14142 {"cfs", PSR_c | PSR_f | PSR_s},
14143 {"cfx", PSR_c | PSR_f | PSR_x},
14144 {"csf", PSR_c | PSR_s | PSR_f},
14145 {"csx", PSR_c | PSR_s | PSR_x},
14146 {"cxf", PSR_c | PSR_x | PSR_f},
14147 {"cxs", PSR_c | PSR_x | PSR_s},
14148 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14149 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14150 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14151 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14152 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14153 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14154 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14155 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14156 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14157 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14158 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14159 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14160 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14161 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14162 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14163 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14164 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14165 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14166 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14167 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14168 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14169 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14170 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14171 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14172 };
14173
14174 /* Table of V7M psr names. */
14175 static const struct asm_psr v7m_psrs[] =
14176 {
14177 {"apsr", 0 },
14178 {"iapsr", 1 },
14179 {"eapsr", 2 },
14180 {"psr", 3 },
14181 {"ipsr", 5 },
14182 {"epsr", 6 },
14183 {"iepsr", 7 },
14184 {"msp", 8 },
14185 {"psp", 9 },
14186 {"primask", 16},
14187 {"basepri", 17},
14188 {"basepri_max", 18},
14189 {"faultmask", 19},
14190 {"control", 20}
14191 };
14192
14193 /* Table of all shift-in-operand names. */
14194 static const struct asm_shift_name shift_names [] =
14195 {
14196 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14197 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14198 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14199 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14200 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14201 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14202 };
14203
14204 /* Table of all explicit relocation names. */
14205 #ifdef OBJ_ELF
14206 static struct reloc_entry reloc_names[] =
14207 {
14208 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14209 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14210 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14211 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14212 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14213 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14214 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14215 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14216 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14217 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14218 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14219 };
14220 #endif
14221
14222 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
14223 static const struct asm_cond conds[] =
14224 {
14225 {"eq", 0x0},
14226 {"ne", 0x1},
14227 {"cs", 0x2}, {"hs", 0x2},
14228 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14229 {"mi", 0x4},
14230 {"pl", 0x5},
14231 {"vs", 0x6},
14232 {"vc", 0x7},
14233 {"hi", 0x8},
14234 {"ls", 0x9},
14235 {"ge", 0xa},
14236 {"lt", 0xb},
14237 {"gt", 0xc},
14238 {"le", 0xd},
14239 {"al", 0xe}
14240 };
14241
14242 static struct asm_barrier_opt barrier_opt_names[] =
14243 {
14244 { "sy", 0xf },
14245 { "un", 0x7 },
14246 { "st", 0xe },
14247 { "unst", 0x6 }
14248 };
14249
14250 /* Table of ARM-format instructions. */
14251
14252 /* Macros for gluing together operand strings. N.B. In all cases
14253 other than OPS0, the trailing OP_stop comes from default
14254 zero-initialization of the unspecified elements of the array. */
14255 #define OPS0() { OP_stop, }
14256 #define OPS1(a) { OP_##a, }
14257 #define OPS2(a,b) { OP_##a,OP_##b, }
14258 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14259 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14260 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14261 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14262
14263 /* These macros abstract out the exact format of the mnemonic table and
14264 save some repeated characters. */
14265
14266 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14267 #define TxCE(mnem, op, top, nops, ops, ae, te) \
14268 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14269 THUMB_VARIANT, do_##ae, do_##te }
14270
14271 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14272 a T_MNEM_xyz enumerator. */
14273 #define TCE(mnem, aop, top, nops, ops, ae, te) \
14274 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14275 #define tCE(mnem, aop, top, nops, ops, ae, te) \
14276 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14277
14278 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14279 infix after the third character. */
14280 #define TxC3(mnem, op, top, nops, ops, ae, te) \
14281 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14282 THUMB_VARIANT, do_##ae, do_##te }
14283 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
14284 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14285 THUMB_VARIANT, do_##ae, do_##te }
14286 #define TC3(mnem, aop, top, nops, ops, ae, te) \
14287 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14288 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
14289 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14290 #define tC3(mnem, aop, top, nops, ops, ae, te) \
14291 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14292 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
14293 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14294
14295 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14296 appear in the condition table. */
14297 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14298 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14299 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14300
14301 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14302 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14303 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14304 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14305 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14306 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14307 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14308 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14309 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14310 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14311 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14312 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14313 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14314 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14315 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14316 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14317 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14318 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14319 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14320 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14321
14322 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14323 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14324 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14325 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14326
14327 /* Mnemonic that cannot be conditionalized. The ARM condition-code
14328 field is still 0xE. Many of the Thumb variants can be executed
14329 conditionally, so this is checked separately. */
14330 #define TUE(mnem, op, top, nops, ops, ae, te) \
14331 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14332 THUMB_VARIANT, do_##ae, do_##te }
14333
14334 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14335 condition code field. */
14336 #define TUF(mnem, op, top, nops, ops, ae, te) \
14337 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14338 THUMB_VARIANT, do_##ae, do_##te }
14339
14340 /* ARM-only variants of all the above. */
14341 #define CE(mnem, op, nops, ops, ae) \
14342 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14343
14344 #define C3(mnem, op, nops, ops, ae) \
14345 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14346
14347 /* Legacy mnemonics that always have conditional infix after the third
14348 character. */
14349 #define CL(mnem, op, nops, ops, ae) \
14350 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14351 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14352
14353 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14354 #define cCE(mnem, op, nops, ops, ae) \
14355 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14356
14357 /* Legacy coprocessor instructions where conditional infix and conditional
14358 suffix are ambiguous. For consistency this includes all FPA instructions,
14359 not just the potentially ambiguous ones. */
14360 #define cCL(mnem, op, nops, ops, ae) \
14361 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14362 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14363
14364 /* Coprocessor, takes either a suffix or a position-3 infix
14365 (for an FPA corner case). */
14366 #define C3E(mnem, op, nops, ops, ae) \
14367 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14368 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14369
14370 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
14371 { #m1 #m2 #m3, OPS##nops ops, \
14372 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14373 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14374
14375 #define CM(m1, m2, op, nops, ops, ae) \
14376 xCM_(m1, , m2, op, nops, ops, ae), \
14377 xCM_(m1, eq, m2, op, nops, ops, ae), \
14378 xCM_(m1, ne, m2, op, nops, ops, ae), \
14379 xCM_(m1, cs, m2, op, nops, ops, ae), \
14380 xCM_(m1, hs, m2, op, nops, ops, ae), \
14381 xCM_(m1, cc, m2, op, nops, ops, ae), \
14382 xCM_(m1, ul, m2, op, nops, ops, ae), \
14383 xCM_(m1, lo, m2, op, nops, ops, ae), \
14384 xCM_(m1, mi, m2, op, nops, ops, ae), \
14385 xCM_(m1, pl, m2, op, nops, ops, ae), \
14386 xCM_(m1, vs, m2, op, nops, ops, ae), \
14387 xCM_(m1, vc, m2, op, nops, ops, ae), \
14388 xCM_(m1, hi, m2, op, nops, ops, ae), \
14389 xCM_(m1, ls, m2, op, nops, ops, ae), \
14390 xCM_(m1, ge, m2, op, nops, ops, ae), \
14391 xCM_(m1, lt, m2, op, nops, ops, ae), \
14392 xCM_(m1, gt, m2, op, nops, ops, ae), \
14393 xCM_(m1, le, m2, op, nops, ops, ae), \
14394 xCM_(m1, al, m2, op, nops, ops, ae)
14395
14396 #define UE(mnem, op, nops, ops, ae) \
14397 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14398
14399 #define UF(mnem, op, nops, ops, ae) \
14400 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14401
14402 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
14403 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14404 use the same encoding function for each. */
14405 #define NUF(mnem, op, nops, ops, enc) \
14406 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14407 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14408
14409 /* Neon data processing, version which indirects through neon_enc_tab for
14410 the various overloaded versions of opcodes. */
14411 #define nUF(mnem, op, nops, ops, enc) \
14412 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14413 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14414
14415 /* Neon insn with conditional suffix for the ARM version, non-overloaded
14416 version. */
14417 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
14418 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
14419 THUMB_VARIANT, do_##enc, do_##enc }
14420
14421 #define NCE(mnem, op, nops, ops, enc) \
14422 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14423
14424 #define NCEF(mnem, op, nops, ops, enc) \
14425 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14426
14427 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
14428 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
14429 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
14430 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14431
14432 #define nCE(mnem, op, nops, ops, enc) \
14433 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14434
14435 #define nCEF(mnem, op, nops, ops, enc) \
14436 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14437
14438 #define do_0 0
14439
14440 /* Thumb-only, unconditional. */
14441 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14442
14443 static const struct asm_opcode insns[] =
14444 {
14445 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14446 #define THUMB_VARIANT &arm_ext_v4t
14447 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14448 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14449 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14450 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14451 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14452 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
14453 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14454 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
14455 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14456 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14457 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14458 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14459 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14460 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14461 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14462 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14463
14464 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14465 for setting PSR flag bits. They are obsolete in V6 and do not
14466 have Thumb equivalents. */
14467 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14468 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14469 CL(tstp, 110f000, 2, (RR, SH), cmp),
14470 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14471 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14472 CL(cmpp, 150f000, 2, (RR, SH), cmp),
14473 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14474 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14475 CL(cmnp, 170f000, 2, (RR, SH), cmp),
14476
14477 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14478 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14479 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14480 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14481
14482 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14483 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14484 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14485 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14486
14487 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14488 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14489 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14490 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14491 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14492 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14493
14494 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
14495 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
14496 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
14497 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
14498
14499 /* Pseudo ops. */
14500 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
14501 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14502 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
14503
14504 /* Thumb-compatibility pseudo ops. */
14505 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14506 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14507 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14508 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14509 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
14510 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
14511 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14512 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14513 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14514 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14515 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14516 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14517
14518 #undef THUMB_VARIANT
14519 #define THUMB_VARIANT &arm_ext_v6
14520 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
14521
14522 /* V1 instructions with no Thumb analogue prior to V6T2. */
14523 #undef THUMB_VARIANT
14524 #define THUMB_VARIANT &arm_ext_v6t2
14525 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14526 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14527 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14528 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14529 CL(teqp, 130f000, 2, (RR, SH), cmp),
14530
14531 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
14532 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
14533 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
14534 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
14535
14536 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14537 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14538
14539 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14540 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14541
14542 /* V1 instructions with no Thumb analogue at all. */
14543 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14544 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14545
14546 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14547 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14548 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
14549 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
14550 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
14551 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
14552 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
14553 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
14554
14555 #undef ARM_VARIANT
14556 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
14557 #undef THUMB_VARIANT
14558 #define THUMB_VARIANT &arm_ext_v4t
14559 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14560 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14561
14562 #undef THUMB_VARIANT
14563 #define THUMB_VARIANT &arm_ext_v6t2
14564 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14565 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14566
14567 /* Generic coprocessor instructions. */
14568 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14569 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14570 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14571 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14572 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14573 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14574 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14575
14576 #undef ARM_VARIANT
14577 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
14578 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14579 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14580
14581 #undef ARM_VARIANT
14582 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
14583 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
14584 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
14585
14586 #undef ARM_VARIANT
14587 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
14588 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14589 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14590 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14591 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14592 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14593 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14594 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14595 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14596
14597 #undef ARM_VARIANT
14598 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
14599 #undef THUMB_VARIANT
14600 #define THUMB_VARIANT &arm_ext_v4t
14601 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14602 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14603 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14604 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14605 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14606 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14607
14608 #undef ARM_VARIANT
14609 #define ARM_VARIANT &arm_ext_v4t_5
14610 /* ARM Architecture 4T. */
14611 /* Note: bx (and blx) are required on V5, even if the processor does
14612 not support Thumb. */
14613 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
14614
14615 #undef ARM_VARIANT
14616 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
14617 #undef THUMB_VARIANT
14618 #define THUMB_VARIANT &arm_ext_v5t
14619 /* Note: blx has 2 variants; the .value coded here is for
14620 BLX(2). Only this variant has conditional execution. */
14621 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
14622 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
14623
14624 #undef THUMB_VARIANT
14625 #define THUMB_VARIANT &arm_ext_v6t2
14626 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
14627 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14628 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14629 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14630 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14631 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14632 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14633 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14634
14635 #undef ARM_VARIANT
14636 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
14637 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14638 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14639 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14640 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14641
14642 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14643 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14644
14645 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14646 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14647 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14648 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14649
14650 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14651 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14652 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14653 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14654
14655 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14656 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14657
14658 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14659 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14660 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14661 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14662
14663 #undef ARM_VARIANT
14664 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
14665 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
14666 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
14667 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
14668
14669 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14670 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14671
14672 #undef ARM_VARIANT
14673 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
14674 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
14675
14676 #undef ARM_VARIANT
14677 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
14678 #undef THUMB_VARIANT
14679 #define THUMB_VARIANT &arm_ext_v6
14680 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
14681 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
14682 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14683 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14684 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14685 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14686 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14687 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14688 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14689 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
14690
14691 #undef THUMB_VARIANT
14692 #define THUMB_VARIANT &arm_ext_v6t2
14693 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
14694 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14695 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14696
14697 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
14698 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
14699
14700 /* ARM V6 not included in V7M (eg. integer SIMD). */
14701 #undef THUMB_VARIANT
14702 #define THUMB_VARIANT &arm_ext_v6_notm
14703 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
14704 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
14705 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
14706 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14707 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14708 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14709 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14710 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14711 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14712 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14713 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14714 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14715 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14716 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14717 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14718 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14719 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14720 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14721 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14722 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14723 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14724 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14725 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14726 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14727 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14728 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14729 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14730 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14731 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14732 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14733 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14734 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14735 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14736 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14737 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14738 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14739 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14740 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14741 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14742 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
14743 UF(rfeib, 9900a00, 1, (RRw), rfe),
14744 UF(rfeda, 8100a00, 1, (RRw), rfe),
14745 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
14746 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
14747 UF(rfefa, 9900a00, 1, (RRw), rfe),
14748 UF(rfeea, 8100a00, 1, (RRw), rfe),
14749 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
14750 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14751 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14752 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14753 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14754 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14755 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14756 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14757 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14758 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14759 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14760 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14761 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14762 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14763 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14764 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14765 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14766 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14767 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14768 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14769 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14770 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14771 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14772 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14773 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14774 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14775 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14776 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14777 TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs),
14778 UF(srsib, 9cd0500, 1, (I31w), srs),
14779 UF(srsda, 84d0500, 1, (I31w), srs),
14780 TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs),
14781 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
14782 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
14783 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
14784 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14785 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14786 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
14787
14788 #undef ARM_VARIANT
14789 #define ARM_VARIANT &arm_ext_v6k
14790 #undef THUMB_VARIANT
14791 #define THUMB_VARIANT &arm_ext_v6k
14792 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
14793 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
14794 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
14795 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
14796
14797 #undef THUMB_VARIANT
14798 #define THUMB_VARIANT &arm_ext_v6_notm
14799 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
14800 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
14801
14802 #undef THUMB_VARIANT
14803 #define THUMB_VARIANT &arm_ext_v6t2
14804 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
14805 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
14806 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
14807 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
14808 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
14809
14810 #undef ARM_VARIANT
14811 #define ARM_VARIANT &arm_ext_v6z
14812 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
14813
14814 #undef ARM_VARIANT
14815 #define ARM_VARIANT &arm_ext_v6t2
14816 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
14817 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
14818 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
14819 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
14820
14821 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14822 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
14823 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
14824 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
14825
14826 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14827 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14828 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14829 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14830
14831 UT(cbnz, b900, 2, (RR, EXP), t_czb),
14832 UT(cbz, b100, 2, (RR, EXP), t_czb),
14833 /* ARM does not really have an IT instruction, so always allow it. */
14834 #undef ARM_VARIANT
14835 #define ARM_VARIANT &arm_ext_v1
14836 TUE(it, 0, bf08, 1, (COND), it, t_it),
14837 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
14838 TUE(ite, 0, bf04, 1, (COND), it, t_it),
14839 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
14840 TUE(itet, 0, bf06, 1, (COND), it, t_it),
14841 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
14842 TUE(itee, 0, bf02, 1, (COND), it, t_it),
14843 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
14844 TUE(itett, 0, bf07, 1, (COND), it, t_it),
14845 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
14846 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
14847 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
14848 TUE(itete, 0, bf05, 1, (COND), it, t_it),
14849 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
14850 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
14851
14852 /* Thumb2 only instructions. */
14853 #undef ARM_VARIANT
14854 #define ARM_VARIANT NULL
14855
14856 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
14857 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
14858 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
14859 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
14860
14861 /* Thumb-2 hardware division instructions (R and M profiles only). */
14862 #undef THUMB_VARIANT
14863 #define THUMB_VARIANT &arm_ext_div
14864 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
14865 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
14866
14867 /* ARM V7 instructions. */
14868 #undef ARM_VARIANT
14869 #define ARM_VARIANT &arm_ext_v7
14870 #undef THUMB_VARIANT
14871 #define THUMB_VARIANT &arm_ext_v7
14872 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
14873 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
14874 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
14875 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
14876 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
14877
14878 #undef ARM_VARIANT
14879 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
14880 cCE(wfs, e200110, 1, (RR), rd),
14881 cCE(rfs, e300110, 1, (RR), rd),
14882 cCE(wfc, e400110, 1, (RR), rd),
14883 cCE(rfc, e500110, 1, (RR), rd),
14884
14885 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
14886 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
14887 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
14888 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
14889
14890 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
14891 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
14892 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
14893 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
14894
14895 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
14896 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
14897 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
14898 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
14899 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
14900 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
14901 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
14902 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
14903 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
14904 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
14905 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
14906 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
14907
14908 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
14909 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
14910 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
14911 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
14912 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
14913 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
14914 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
14915 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
14916 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
14917 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
14918 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
14919 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
14920
14921 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
14922 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
14923 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
14924 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
14925 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
14926 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
14927 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
14928 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
14929 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
14930 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
14931 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
14932 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
14933
14934 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
14935 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
14936 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
14937 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
14938 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
14939 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
14940 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
14941 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
14942 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
14943 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
14944 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
14945 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
14946
14947 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
14948 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
14949 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
14950 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
14951 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
14952 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
14953 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
14954 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
14955 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
14956 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
14957 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
14958 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
14959
14960 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
14961 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
14962 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
14963 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
14964 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
14965 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
14966 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
14967 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
14968 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
14969 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
14970 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
14971 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
14972
14973 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
14974 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
14975 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
14976 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
14977 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
14978 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
14979 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
14980 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
14981 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
14982 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
14983 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
14984 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
14985
14986 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
14987 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
14988 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
14989 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
14990 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
14991 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
14992 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
14993 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
14994 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
14995 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
14996 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
14997 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
14998
14999 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15000 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15001 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15002 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15003 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15004 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15005 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15006 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15007 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15008 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15009 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15010 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15011
15012 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15013 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15014 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15015 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15016 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15017 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15018 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15019 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15020 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15021 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15022 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15023 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15024
15025 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15026 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15027 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15028 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15029 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15030 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15031 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15032 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15033 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15034 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15035 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15036 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15037
15038 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15039 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15040 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15041 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15042 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15043 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15044 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15045 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15046 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15047 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15048 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15049 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15050
15051 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15052 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15053 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15054 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15055 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15056 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15057 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15058 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15059 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15060 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15061 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15062 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15063
15064 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15065 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15066 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15067 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15068 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15069 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15070 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15071 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15072 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15073 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15074 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15075 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15076
15077 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15078 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15079 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15080 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15081 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15082 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15083 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15084 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15085 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15086 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15087 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15088 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15089
15090 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15091 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15092 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15093 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15094 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15095 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15096 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15097 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15098 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15099 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15100 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15101 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15102
15103 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15104 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15105 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15106 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15107 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15108 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15109 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15110 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15111 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15112 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15113 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15114 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15115
15116 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15117 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15118 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15119 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15120 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15121 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15122 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15123 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15124 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15125 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15126 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15127 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15128
15129 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15130 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15131 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15132 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15133 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15134 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15135 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15136 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15137 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15138 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15139 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15140 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15141
15142 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15143 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15144 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15145 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15146 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15147 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15148 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15149 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15150 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15151 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15152 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15153 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15154
15155 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15156 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15157 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15158 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15159 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15160 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15161 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15162 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15163 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15164 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15165 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15166 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15167
15168 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15169 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15170 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15171 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15172 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15173 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15174 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15175 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15176 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15177 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15178 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15179 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15180
15181 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15182 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15183 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15184 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15185 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15186 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15187 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15188 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15189 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15190 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15191 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15192 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15193
15194 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15195 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15196 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15197 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15198 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15199 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15200 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15201 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15202 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15203 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15204 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15205 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15206
15207 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15208 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15209 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15210 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15211 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15212 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15213 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15214 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15215 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15216 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15217 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15218 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15219
15220 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15221 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15222 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15223 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15224 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15225 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15226 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15227 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15228 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15229 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15230 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15231 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15232
15233 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15234 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15235 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15236 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15237 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15238 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15239 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15240 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15241 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15242 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15243 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15244 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15245
15246 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15247 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15248 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15249 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15250 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15251 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15252 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15253 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15254 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15255 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15256 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15257 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15258
15259 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15260 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15261 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15262 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15263 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15264 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15265 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15266 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15267 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15268 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15269 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15270 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15271
15272 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
15273 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
15274 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
15275 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15276
15277 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15278 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15279 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15280 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15281 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15282 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15283 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15284 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15285 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15286 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15287 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15288 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
15289
15290 /* The implementation of the FIX instruction is broken on some
15291 assemblers, in that it accepts a precision specifier as well as a
15292 rounding specifier, despite the fact that this is meaningless.
15293 To be more compatible, we accept it as well, though of course it
15294 does not set any bits. */
15295 cCE(fix, e100110, 2, (RR, RF), rd_rm),
15296 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15297 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15298 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15299 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15300 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15301 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15302 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15303 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15304 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15305 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15306 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15307 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
15308
15309 /* Instructions that were new with the real FPA, call them V2. */
15310 #undef ARM_VARIANT
15311 #define ARM_VARIANT &fpu_fpa_ext_v2
15312 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15313 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15314 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15315 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15316 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15317 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15318
15319 #undef ARM_VARIANT
15320 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
15321 /* Moves and type conversions. */
15322 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15323 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15324 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15325 cCE(fmstat, ef1fa10, 0, (), noargs),
15326 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15327 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15328 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15329 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15330 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15331 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15332 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15333 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
15334
15335 /* Memory operations. */
15336 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15337 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15338 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15339 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15340 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15341 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15342 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15343 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15344 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15345 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15346 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15347 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15348 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15349 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15350 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15351 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15352 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15353 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15354
15355 /* Monadic operations. */
15356 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15357 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15358 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
15359
15360 /* Dyadic operations. */
15361 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15362 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15363 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15364 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15365 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15366 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15367 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15368 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15369 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15370
15371 /* Comparisons. */
15372 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15373 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15374 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15375 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
15376
15377 #undef ARM_VARIANT
15378 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
15379 /* Moves and type conversions. */
15380 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15381 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15382 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15383 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15384 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15385 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15386 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
15387 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15388 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15389 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15390 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15391 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15392 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15393
15394 /* Memory operations. */
15395 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15396 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15397 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15398 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15399 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15400 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15401 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15402 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15403 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15404 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15405
15406 /* Monadic operations. */
15407 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15408 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15409 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15410
15411 /* Dyadic operations. */
15412 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15413 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15414 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15415 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15416 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15417 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15418 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15419 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15420 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15421
15422 /* Comparisons. */
15423 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15424 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15425 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15426 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
15427
15428 #undef ARM_VARIANT
15429 #define ARM_VARIANT &fpu_vfp_ext_v2
15430 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15431 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
15432 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15433 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15434
15435 /* Instructions which may belong to either the Neon or VFP instruction sets.
15436 Individual encoder functions perform additional architecture checks. */
15437 #undef ARM_VARIANT
15438 #define ARM_VARIANT &fpu_vfp_ext_v1xd
15439 #undef THUMB_VARIANT
15440 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
15441 /* These mnemonics are unique to VFP. */
15442 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15443 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15444 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15445 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15446 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15447 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15448 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15449 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15450 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15451 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15452
15453 /* Mnemonics shared by Neon and VFP. */
15454 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15455 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15456 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15457
15458 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15459 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15460
15461 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15462 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15463
15464 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15465 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15466 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15467 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15468 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15469 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15470 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15471 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15472
15473 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15474
15475 /* NOTE: All VMOV encoding is special-cased! */
15476 NCE(vmov, 0, 1, (VMOV), neon_mov),
15477 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15478
15479 #undef THUMB_VARIANT
15480 #define THUMB_VARIANT &fpu_neon_ext_v1
15481 #undef ARM_VARIANT
15482 #define ARM_VARIANT &fpu_neon_ext_v1
15483 /* Data processing with three registers of the same length. */
15484 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15485 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15486 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15487 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15488 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15489 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15490 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15491 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15492 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15493 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15494 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15495 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15496 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15497 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15498 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15499 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15500 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15501 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15502 /* If not immediate, fall back to neon_dyadic_i64_su.
15503 shl_imm should accept I8 I16 I32 I64,
15504 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15505 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15506 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15507 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15508 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15509 /* Logic ops, types optional & ignored. */
15510 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15511 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15512 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15513 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15514 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15515 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15516 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15517 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15518 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15519 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15520 /* Bitfield ops, untyped. */
15521 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15522 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15523 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15524 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15525 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15526 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15527 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15528 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15529 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15530 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15531 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15532 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15533 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15534 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15535 back to neon_dyadic_if_su. */
15536 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15537 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15538 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15539 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15540 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15541 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15542 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15543 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15544 /* Comparison. Type I8 I16 I32 F32. */
15545 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15546 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15547 /* As above, D registers only. */
15548 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15549 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15550 /* Int and float variants, signedness unimportant. */
15551 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15552 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15553 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
15554 /* Add/sub take types I8 I16 I32 I64 F32. */
15555 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15556 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15557 /* vtst takes sizes 8, 16, 32. */
15558 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15559 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
15560 /* VMUL takes I8 I16 I32 F32 P8. */
15561 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
15562 /* VQD{R}MULH takes S16 S32. */
15563 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15564 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15565 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15566 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15567 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15568 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15569 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15570 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15571 NUF(vaclt, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15572 NUF(vacltq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15573 NUF(vacle, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15574 NUF(vacleq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15575 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15576 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15577 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15578 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15579
15580 /* Two address, int/float. Types S8 S16 S32 F32. */
15581 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
15582 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
15583
15584 /* Data processing with two registers and a shift amount. */
15585 /* Right shifts, and variants with rounding.
15586 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
15587 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15588 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15589 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15590 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15591 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15592 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15593 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15594 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15595 /* Shift and insert. Sizes accepted 8 16 32 64. */
15596 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
15597 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
15598 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
15599 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
15600 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
15601 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
15602 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
15603 /* Right shift immediate, saturating & narrowing, with rounding variants.
15604 Types accepted S16 S32 S64 U16 U32 U64. */
15605 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15606 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15607 /* As above, unsigned. Types accepted S16 S32 S64. */
15608 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15609 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15610 /* Right shift narrowing. Types accepted I16 I32 I64. */
15611 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15612 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15613 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
15614 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
15615 /* CVT with optional immediate for fixed-point variant. */
15616 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
15617
15618 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
15619 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
15620
15621 /* Data processing, three registers of different lengths. */
15622 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
15623 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
15624 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
15625 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
15626 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
15627 /* If not scalar, fall back to neon_dyadic_long.
15628 Vector types as above, scalar types S16 S32 U16 U32. */
15629 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15630 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15631 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
15632 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15633 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15634 /* Dyadic, narrowing insns. Types I16 I32 I64. */
15635 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15636 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15637 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15638 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15639 /* Saturating doubling multiplies. Types S16 S32. */
15640 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15641 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15642 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15643 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
15644 S16 S32 U16 U32. */
15645 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
15646
15647 /* Extract. Size 8. */
15648 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I7), neon_ext),
15649 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I7), neon_ext),
15650
15651 /* Two registers, miscellaneous. */
15652 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
15653 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
15654 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
15655 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
15656 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
15657 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
15658 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
15659 /* Vector replicate. Sizes 8 16 32. */
15660 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
15661 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
15662 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
15663 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
15664 /* VMOVN. Types I16 I32 I64. */
15665 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
15666 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
15667 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
15668 /* VQMOVUN. Types S16 S32 S64. */
15669 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
15670 /* VZIP / VUZP. Sizes 8 16 32. */
15671 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
15672 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
15673 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
15674 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
15675 /* VQABS / VQNEG. Types S8 S16 S32. */
15676 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15677 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
15678 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15679 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
15680 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
15681 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
15682 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
15683 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
15684 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
15685 /* Reciprocal estimates. Types U32 F32. */
15686 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
15687 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
15688 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
15689 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
15690 /* VCLS. Types S8 S16 S32. */
15691 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
15692 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
15693 /* VCLZ. Types I8 I16 I32. */
15694 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
15695 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
15696 /* VCNT. Size 8. */
15697 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
15698 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
15699 /* Two address, untyped. */
15700 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
15701 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
15702 /* VTRN. Sizes 8 16 32. */
15703 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
15704 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
15705
15706 /* Table lookup. Size 8. */
15707 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15708 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15709
15710 #undef THUMB_VARIANT
15711 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
15712 #undef ARM_VARIANT
15713 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
15714 /* Neon element/structure load/store. */
15715 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15716 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15717 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
15718 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
15719 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
15720 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
15721 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
15722 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
15723
15724 #undef THUMB_VARIANT
15725 #define THUMB_VARIANT &fpu_vfp_ext_v3
15726 #undef ARM_VARIANT
15727 #define ARM_VARIANT &fpu_vfp_ext_v3
15728 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
15729 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
15730 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15731 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15732 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15733 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15734 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15735 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15736 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15737 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15738 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15739 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15740 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15741 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15742 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15743 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15744 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15745 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15746
15747 #undef THUMB_VARIANT
15748 #undef ARM_VARIANT
15749 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
15750 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15751 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15752 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15753 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15754 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15755 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15756 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
15757 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
15758
15759 #undef ARM_VARIANT
15760 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
15761 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
15762 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
15763 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
15764 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
15765 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
15766 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
15767 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
15768 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
15769 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
15770 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15771 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15772 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15773 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15774 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15775 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15776 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15777 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15778 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15779 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
15780 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
15781 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15782 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15783 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15784 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15785 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15786 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15787 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
15788 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
15789 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
15790 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
15791 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
15792 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
15793 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
15794 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
15795 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
15796 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
15797 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
15798 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15799 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15800 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15801 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15802 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15803 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15804 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15805 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15806 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15807 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
15808 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15809 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15810 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15811 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15812 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15813 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15814 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15815 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15816 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15817 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15818 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15819 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15820 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15821 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15822 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15823 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15824 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15825 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15826 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15827 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15828 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15829 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
15830 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
15831 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15832 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15833 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15834 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15835 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15836 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15837 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15838 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15839 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15840 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15841 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15842 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15843 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15844 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15845 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15846 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15847 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15848 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15849 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
15850 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15851 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15852 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15853 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15854 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15855 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15856 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15857 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15858 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15859 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15860 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15861 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15862 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15863 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15864 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15865 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15866 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15867 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15868 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15869 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15870 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15871 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
15872 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15873 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15874 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15875 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15876 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15877 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15878 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15879 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15880 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15881 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15882 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15883 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15884 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15885 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15886 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15887 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15888 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15889 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15890 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15891 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15892 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
15893 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
15894 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15895 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15896 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15897 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15898 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15899 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15900 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15901 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15902 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15903 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
15904 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
15905 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
15906 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
15907 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
15908 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
15909 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15910 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15911 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15912 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
15913 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
15914 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
15915 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
15916 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
15917 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
15918 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15919 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15920 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15921 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15922 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
15923
15924 #undef ARM_VARIANT
15925 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
15926 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
15927 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
15928 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
15929 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
15930 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
15931 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
15932 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
15933 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
15934 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
15935 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
15936 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
15937 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
15938 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
15939 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
15940 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
15941 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
15942 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
15943 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
15944 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
15945 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
15946 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
15947 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
15948 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
15949 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
15950 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
15951 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
15952 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
15953 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
15954 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
15955 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
15956 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
15957 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
15958 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
15959 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
15960 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
15961 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
15962 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
15963 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
15964 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
15965 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
15966 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
15967 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
15968 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
15969 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
15970 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
15971 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
15972 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
15973 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
15974 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
15975 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
15976 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
15977 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
15978 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
15979 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
15980 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
15981 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
15982 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
15983 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
15984 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
15985 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
15986 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
15987 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
15988 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
15989 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
15990 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15991 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15992 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15993 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15994 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15995 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15996 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15997 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15998 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
15999 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16000 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16001 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16002 };
16003 #undef ARM_VARIANT
16004 #undef THUMB_VARIANT
16005 #undef TCE
16006 #undef TCM
16007 #undef TUE
16008 #undef TUF
16009 #undef TCC
16010 #undef cCE
16011 #undef cCL
16012 #undef C3E
16013 #undef CE
16014 #undef CM
16015 #undef UE
16016 #undef UF
16017 #undef UT
16018 #undef NUF
16019 #undef nUF
16020 #undef NCE
16021 #undef nCE
16022 #undef OPS0
16023 #undef OPS1
16024 #undef OPS2
16025 #undef OPS3
16026 #undef OPS4
16027 #undef OPS5
16028 #undef OPS6
16029 #undef do_0
16030 \f
16031 /* MD interface: bits in the object file. */
16032
16033 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16034 for use in the a.out file, and stores them in the array pointed to by buf.
16035 This knows about the endian-ness of the target machine and does
16036 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16037 2 (short) and 4 (long) Floating numbers are put out as a series of
16038 LITTLENUMS (shorts, here at least). */
16039
16040 void
16041 md_number_to_chars (char * buf, valueT val, int n)
16042 {
16043 if (target_big_endian)
16044 number_to_chars_bigendian (buf, val, n);
16045 else
16046 number_to_chars_littleendian (buf, val, n);
16047 }
16048
16049 static valueT
16050 md_chars_to_number (char * buf, int n)
16051 {
16052 valueT result = 0;
16053 unsigned char * where = (unsigned char *) buf;
16054
16055 if (target_big_endian)
16056 {
16057 while (n--)
16058 {
16059 result <<= 8;
16060 result |= (*where++ & 255);
16061 }
16062 }
16063 else
16064 {
16065 while (n--)
16066 {
16067 result <<= 8;
16068 result |= (where[n] & 255);
16069 }
16070 }
16071
16072 return result;
16073 }
16074
16075 /* MD interface: Sections. */
16076
16077 /* Estimate the size of a frag before relaxing. Assume everything fits in
16078 2 bytes. */
16079
16080 int
16081 md_estimate_size_before_relax (fragS * fragp,
16082 segT segtype ATTRIBUTE_UNUSED)
16083 {
16084 fragp->fr_var = 2;
16085 return 2;
16086 }
16087
16088 /* Convert a machine dependent frag. */
16089
16090 void
16091 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16092 {
16093 unsigned long insn;
16094 unsigned long old_op;
16095 char *buf;
16096 expressionS exp;
16097 fixS *fixp;
16098 int reloc_type;
16099 int pc_rel;
16100 int opcode;
16101
16102 buf = fragp->fr_literal + fragp->fr_fix;
16103
16104 old_op = bfd_get_16(abfd, buf);
16105 if (fragp->fr_symbol) {
16106 exp.X_op = O_symbol;
16107 exp.X_add_symbol = fragp->fr_symbol;
16108 } else {
16109 exp.X_op = O_constant;
16110 }
16111 exp.X_add_number = fragp->fr_offset;
16112 opcode = fragp->fr_subtype;
16113 switch (opcode)
16114 {
16115 case T_MNEM_ldr_pc:
16116 case T_MNEM_ldr_pc2:
16117 case T_MNEM_ldr_sp:
16118 case T_MNEM_str_sp:
16119 case T_MNEM_ldr:
16120 case T_MNEM_ldrb:
16121 case T_MNEM_ldrh:
16122 case T_MNEM_str:
16123 case T_MNEM_strb:
16124 case T_MNEM_strh:
16125 if (fragp->fr_var == 4)
16126 {
16127 insn = THUMB_OP32(opcode);
16128 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16129 {
16130 insn |= (old_op & 0x700) << 4;
16131 }
16132 else
16133 {
16134 insn |= (old_op & 7) << 12;
16135 insn |= (old_op & 0x38) << 13;
16136 }
16137 insn |= 0x00000c00;
16138 put_thumb32_insn (buf, insn);
16139 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16140 }
16141 else
16142 {
16143 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16144 }
16145 pc_rel = (opcode == T_MNEM_ldr_pc2);
16146 break;
16147 case T_MNEM_adr:
16148 if (fragp->fr_var == 4)
16149 {
16150 insn = THUMB_OP32 (opcode);
16151 insn |= (old_op & 0xf0) << 4;
16152 put_thumb32_insn (buf, insn);
16153 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16154 }
16155 else
16156 {
16157 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16158 exp.X_add_number -= 4;
16159 }
16160 pc_rel = 1;
16161 break;
16162 case T_MNEM_mov:
16163 case T_MNEM_movs:
16164 case T_MNEM_cmp:
16165 case T_MNEM_cmn:
16166 if (fragp->fr_var == 4)
16167 {
16168 int r0off = (opcode == T_MNEM_mov
16169 || opcode == T_MNEM_movs) ? 0 : 8;
16170 insn = THUMB_OP32 (opcode);
16171 insn = (insn & 0xe1ffffff) | 0x10000000;
16172 insn |= (old_op & 0x700) << r0off;
16173 put_thumb32_insn (buf, insn);
16174 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16175 }
16176 else
16177 {
16178 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16179 }
16180 pc_rel = 0;
16181 break;
16182 case T_MNEM_b:
16183 if (fragp->fr_var == 4)
16184 {
16185 insn = THUMB_OP32(opcode);
16186 put_thumb32_insn (buf, insn);
16187 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16188 }
16189 else
16190 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16191 pc_rel = 1;
16192 break;
16193 case T_MNEM_bcond:
16194 if (fragp->fr_var == 4)
16195 {
16196 insn = THUMB_OP32(opcode);
16197 insn |= (old_op & 0xf00) << 14;
16198 put_thumb32_insn (buf, insn);
16199 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16200 }
16201 else
16202 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16203 pc_rel = 1;
16204 break;
16205 case T_MNEM_add_sp:
16206 case T_MNEM_add_pc:
16207 case T_MNEM_inc_sp:
16208 case T_MNEM_dec_sp:
16209 if (fragp->fr_var == 4)
16210 {
16211 /* ??? Choose between add and addw. */
16212 insn = THUMB_OP32 (opcode);
16213 insn |= (old_op & 0xf0) << 4;
16214 put_thumb32_insn (buf, insn);
16215 if (opcode == T_MNEM_add_pc)
16216 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16217 else
16218 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16219 }
16220 else
16221 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16222 pc_rel = 0;
16223 break;
16224
16225 case T_MNEM_addi:
16226 case T_MNEM_addis:
16227 case T_MNEM_subi:
16228 case T_MNEM_subis:
16229 if (fragp->fr_var == 4)
16230 {
16231 insn = THUMB_OP32 (opcode);
16232 insn |= (old_op & 0xf0) << 4;
16233 insn |= (old_op & 0xf) << 16;
16234 put_thumb32_insn (buf, insn);
16235 if (insn & (1 << 20))
16236 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16237 else
16238 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16239 }
16240 else
16241 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16242 pc_rel = 0;
16243 break;
16244 default:
16245 abort();
16246 }
16247 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16248 reloc_type);
16249 fixp->fx_file = fragp->fr_file;
16250 fixp->fx_line = fragp->fr_line;
16251 fragp->fr_fix += fragp->fr_var;
16252 }
16253
16254 /* Return the size of a relaxable immediate operand instruction.
16255 SHIFT and SIZE specify the form of the allowable immediate. */
16256 static int
16257 relax_immediate (fragS *fragp, int size, int shift)
16258 {
16259 offsetT offset;
16260 offsetT mask;
16261 offsetT low;
16262
16263 /* ??? Should be able to do better than this. */
16264 if (fragp->fr_symbol)
16265 return 4;
16266
16267 low = (1 << shift) - 1;
16268 mask = (1 << (shift + size)) - (1 << shift);
16269 offset = fragp->fr_offset;
16270 /* Force misaligned offsets to 32-bit variant. */
16271 if (offset & low)
16272 return -4;
16273 if (offset & ~mask)
16274 return 4;
16275 return 2;
16276 }
16277
16278 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
16279 load. */
16280 static int
16281 relax_adr (fragS *fragp, asection *sec)
16282 {
16283 addressT addr;
16284 offsetT val;
16285
16286 /* Assume worst case for symbols not known to be in the same section. */
16287 if (!S_IS_DEFINED(fragp->fr_symbol)
16288 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16289 return 4;
16290
16291 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
16292 addr = fragp->fr_address + fragp->fr_fix;
16293 addr = (addr + 4) & ~3;
16294 /* Fix the insn as the 4-byte version if the target address is not
16295 sufficiently aligned. This is prevents an infinite loop when two
16296 instructions have contradictory range/alignment requirements. */
16297 if (val & 3)
16298 return -4;
16299 val -= addr;
16300 if (val < 0 || val > 1020)
16301 return 4;
16302 return 2;
16303 }
16304
16305 /* Return the size of a relaxable add/sub immediate instruction. */
16306 static int
16307 relax_addsub (fragS *fragp, asection *sec)
16308 {
16309 char *buf;
16310 int op;
16311
16312 buf = fragp->fr_literal + fragp->fr_fix;
16313 op = bfd_get_16(sec->owner, buf);
16314 if ((op & 0xf) == ((op >> 4) & 0xf))
16315 return relax_immediate (fragp, 8, 0);
16316 else
16317 return relax_immediate (fragp, 3, 0);
16318 }
16319
16320
16321 /* Return the size of a relaxable branch instruction. BITS is the
16322 size of the offset field in the narrow instruction. */
16323
16324 static int
16325 relax_branch (fragS *fragp, asection *sec, int bits)
16326 {
16327 addressT addr;
16328 offsetT val;
16329 offsetT limit;
16330
16331 /* Assume worst case for symbols not known to be in the same section. */
16332 if (!S_IS_DEFINED(fragp->fr_symbol)
16333 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16334 return 4;
16335
16336 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
16337 addr = fragp->fr_address + fragp->fr_fix + 4;
16338 val -= addr;
16339
16340 /* Offset is a signed value *2 */
16341 limit = 1 << bits;
16342 if (val >= limit || val < -limit)
16343 return 4;
16344 return 2;
16345 }
16346
16347
16348 /* Relax a machine dependent frag. This returns the amount by which
16349 the current size of the frag should change. */
16350
16351 int
16352 arm_relax_frag (asection *sec, fragS *fragp, long stretch ATTRIBUTE_UNUSED)
16353 {
16354 int oldsize;
16355 int newsize;
16356
16357 oldsize = fragp->fr_var;
16358 switch (fragp->fr_subtype)
16359 {
16360 case T_MNEM_ldr_pc2:
16361 newsize = relax_adr(fragp, sec);
16362 break;
16363 case T_MNEM_ldr_pc:
16364 case T_MNEM_ldr_sp:
16365 case T_MNEM_str_sp:
16366 newsize = relax_immediate(fragp, 8, 2);
16367 break;
16368 case T_MNEM_ldr:
16369 case T_MNEM_str:
16370 newsize = relax_immediate(fragp, 5, 2);
16371 break;
16372 case T_MNEM_ldrh:
16373 case T_MNEM_strh:
16374 newsize = relax_immediate(fragp, 5, 1);
16375 break;
16376 case T_MNEM_ldrb:
16377 case T_MNEM_strb:
16378 newsize = relax_immediate(fragp, 5, 0);
16379 break;
16380 case T_MNEM_adr:
16381 newsize = relax_adr(fragp, sec);
16382 break;
16383 case T_MNEM_mov:
16384 case T_MNEM_movs:
16385 case T_MNEM_cmp:
16386 case T_MNEM_cmn:
16387 newsize = relax_immediate(fragp, 8, 0);
16388 break;
16389 case T_MNEM_b:
16390 newsize = relax_branch(fragp, sec, 11);
16391 break;
16392 case T_MNEM_bcond:
16393 newsize = relax_branch(fragp, sec, 8);
16394 break;
16395 case T_MNEM_add_sp:
16396 case T_MNEM_add_pc:
16397 newsize = relax_immediate (fragp, 8, 2);
16398 break;
16399 case T_MNEM_inc_sp:
16400 case T_MNEM_dec_sp:
16401 newsize = relax_immediate (fragp, 7, 2);
16402 break;
16403 case T_MNEM_addi:
16404 case T_MNEM_addis:
16405 case T_MNEM_subi:
16406 case T_MNEM_subis:
16407 newsize = relax_addsub (fragp, sec);
16408 break;
16409 default:
16410 abort();
16411 }
16412 if (newsize < 0)
16413 {
16414 fragp->fr_var = -newsize;
16415 md_convert_frag (sec->owner, sec, fragp);
16416 frag_wane(fragp);
16417 return -(newsize + oldsize);
16418 }
16419 fragp->fr_var = newsize;
16420 return newsize - oldsize;
16421 }
16422
16423 /* Round up a section size to the appropriate boundary. */
16424
16425 valueT
16426 md_section_align (segT segment ATTRIBUTE_UNUSED,
16427 valueT size)
16428 {
16429 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16430 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
16431 {
16432 /* For a.out, force the section size to be aligned. If we don't do
16433 this, BFD will align it for us, but it will not write out the
16434 final bytes of the section. This may be a bug in BFD, but it is
16435 easier to fix it here since that is how the other a.out targets
16436 work. */
16437 int align;
16438
16439 align = bfd_get_section_alignment (stdoutput, segment);
16440 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
16441 }
16442 #endif
16443
16444 return size;
16445 }
16446
16447 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16448 of an rs_align_code fragment. */
16449
16450 void
16451 arm_handle_align (fragS * fragP)
16452 {
16453 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16454 static char const thumb_noop[2] = { 0xc0, 0x46 };
16455 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16456 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
16457
16458 int bytes, fix, noop_size;
16459 char * p;
16460 const char * noop;
16461
16462 if (fragP->fr_type != rs_align_code)
16463 return;
16464
16465 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
16466 p = fragP->fr_literal + fragP->fr_fix;
16467 fix = 0;
16468
16469 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
16470 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
16471
16472 if (fragP->tc_frag_data)
16473 {
16474 if (target_big_endian)
16475 noop = thumb_bigend_noop;
16476 else
16477 noop = thumb_noop;
16478 noop_size = sizeof (thumb_noop);
16479 }
16480 else
16481 {
16482 if (target_big_endian)
16483 noop = arm_bigend_noop;
16484 else
16485 noop = arm_noop;
16486 noop_size = sizeof (arm_noop);
16487 }
16488
16489 if (bytes & (noop_size - 1))
16490 {
16491 fix = bytes & (noop_size - 1);
16492 memset (p, 0, fix);
16493 p += fix;
16494 bytes -= fix;
16495 }
16496
16497 while (bytes >= noop_size)
16498 {
16499 memcpy (p, noop, noop_size);
16500 p += noop_size;
16501 bytes -= noop_size;
16502 fix += noop_size;
16503 }
16504
16505 fragP->fr_fix += fix;
16506 fragP->fr_var = noop_size;
16507 }
16508
16509 /* Called from md_do_align. Used to create an alignment
16510 frag in a code section. */
16511
16512 void
16513 arm_frag_align_code (int n, int max)
16514 {
16515 char * p;
16516
16517 /* We assume that there will never be a requirement
16518 to support alignments greater than 32 bytes. */
16519 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
16520 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
16521
16522 p = frag_var (rs_align_code,
16523 MAX_MEM_FOR_RS_ALIGN_CODE,
16524 1,
16525 (relax_substateT) max,
16526 (symbolS *) NULL,
16527 (offsetT) n,
16528 (char *) NULL);
16529 *p = 0;
16530 }
16531
16532 /* Perform target specific initialisation of a frag. */
16533
16534 void
16535 arm_init_frag (fragS * fragP)
16536 {
16537 /* Record whether this frag is in an ARM or a THUMB area. */
16538 fragP->tc_frag_data = thumb_mode;
16539 }
16540
16541 #ifdef OBJ_ELF
16542 /* When we change sections we need to issue a new mapping symbol. */
16543
16544 void
16545 arm_elf_change_section (void)
16546 {
16547 flagword flags;
16548 segment_info_type *seginfo;
16549
16550 /* Link an unlinked unwind index table section to the .text section. */
16551 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
16552 && elf_linked_to_section (now_seg) == NULL)
16553 elf_linked_to_section (now_seg) = text_section;
16554
16555 if (!SEG_NORMAL (now_seg))
16556 return;
16557
16558 flags = bfd_get_section_flags (stdoutput, now_seg);
16559
16560 /* We can ignore sections that only contain debug info. */
16561 if ((flags & SEC_ALLOC) == 0)
16562 return;
16563
16564 seginfo = seg_info (now_seg);
16565 mapstate = seginfo->tc_segment_info_data.mapstate;
16566 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
16567 }
16568
16569 int
16570 arm_elf_section_type (const char * str, size_t len)
16571 {
16572 if (len == 5 && strncmp (str, "exidx", 5) == 0)
16573 return SHT_ARM_EXIDX;
16574
16575 return -1;
16576 }
16577 \f
16578 /* Code to deal with unwinding tables. */
16579
16580 static void add_unwind_adjustsp (offsetT);
16581
16582 /* Cenerate and deferred unwind frame offset. */
16583
16584 static void
16585 flush_pending_unwind (void)
16586 {
16587 offsetT offset;
16588
16589 offset = unwind.pending_offset;
16590 unwind.pending_offset = 0;
16591 if (offset != 0)
16592 add_unwind_adjustsp (offset);
16593 }
16594
16595 /* Add an opcode to this list for this function. Two-byte opcodes should
16596 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
16597 order. */
16598
16599 static void
16600 add_unwind_opcode (valueT op, int length)
16601 {
16602 /* Add any deferred stack adjustment. */
16603 if (unwind.pending_offset)
16604 flush_pending_unwind ();
16605
16606 unwind.sp_restored = 0;
16607
16608 if (unwind.opcode_count + length > unwind.opcode_alloc)
16609 {
16610 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
16611 if (unwind.opcodes)
16612 unwind.opcodes = xrealloc (unwind.opcodes,
16613 unwind.opcode_alloc);
16614 else
16615 unwind.opcodes = xmalloc (unwind.opcode_alloc);
16616 }
16617 while (length > 0)
16618 {
16619 length--;
16620 unwind.opcodes[unwind.opcode_count] = op & 0xff;
16621 op >>= 8;
16622 unwind.opcode_count++;
16623 }
16624 }
16625
16626 /* Add unwind opcodes to adjust the stack pointer. */
16627
16628 static void
16629 add_unwind_adjustsp (offsetT offset)
16630 {
16631 valueT op;
16632
16633 if (offset > 0x200)
16634 {
16635 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
16636 char bytes[5];
16637 int n;
16638 valueT o;
16639
16640 /* Long form: 0xb2, uleb128. */
16641 /* This might not fit in a word so add the individual bytes,
16642 remembering the list is built in reverse order. */
16643 o = (valueT) ((offset - 0x204) >> 2);
16644 if (o == 0)
16645 add_unwind_opcode (0, 1);
16646
16647 /* Calculate the uleb128 encoding of the offset. */
16648 n = 0;
16649 while (o)
16650 {
16651 bytes[n] = o & 0x7f;
16652 o >>= 7;
16653 if (o)
16654 bytes[n] |= 0x80;
16655 n++;
16656 }
16657 /* Add the insn. */
16658 for (; n; n--)
16659 add_unwind_opcode (bytes[n - 1], 1);
16660 add_unwind_opcode (0xb2, 1);
16661 }
16662 else if (offset > 0x100)
16663 {
16664 /* Two short opcodes. */
16665 add_unwind_opcode (0x3f, 1);
16666 op = (offset - 0x104) >> 2;
16667 add_unwind_opcode (op, 1);
16668 }
16669 else if (offset > 0)
16670 {
16671 /* Short opcode. */
16672 op = (offset - 4) >> 2;
16673 add_unwind_opcode (op, 1);
16674 }
16675 else if (offset < 0)
16676 {
16677 offset = -offset;
16678 while (offset > 0x100)
16679 {
16680 add_unwind_opcode (0x7f, 1);
16681 offset -= 0x100;
16682 }
16683 op = ((offset - 4) >> 2) | 0x40;
16684 add_unwind_opcode (op, 1);
16685 }
16686 }
16687
16688 /* Finish the list of unwind opcodes for this function. */
16689 static void
16690 finish_unwind_opcodes (void)
16691 {
16692 valueT op;
16693
16694 if (unwind.fp_used)
16695 {
16696 /* Adjust sp as necessary. */
16697 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
16698 flush_pending_unwind ();
16699
16700 /* After restoring sp from the frame pointer. */
16701 op = 0x90 | unwind.fp_reg;
16702 add_unwind_opcode (op, 1);
16703 }
16704 else
16705 flush_pending_unwind ();
16706 }
16707
16708
16709 /* Start an exception table entry. If idx is nonzero this is an index table
16710 entry. */
16711
16712 static void
16713 start_unwind_section (const segT text_seg, int idx)
16714 {
16715 const char * text_name;
16716 const char * prefix;
16717 const char * prefix_once;
16718 const char * group_name;
16719 size_t prefix_len;
16720 size_t text_len;
16721 char * sec_name;
16722 size_t sec_name_len;
16723 int type;
16724 int flags;
16725 int linkonce;
16726
16727 if (idx)
16728 {
16729 prefix = ELF_STRING_ARM_unwind;
16730 prefix_once = ELF_STRING_ARM_unwind_once;
16731 type = SHT_ARM_EXIDX;
16732 }
16733 else
16734 {
16735 prefix = ELF_STRING_ARM_unwind_info;
16736 prefix_once = ELF_STRING_ARM_unwind_info_once;
16737 type = SHT_PROGBITS;
16738 }
16739
16740 text_name = segment_name (text_seg);
16741 if (streq (text_name, ".text"))
16742 text_name = "";
16743
16744 if (strncmp (text_name, ".gnu.linkonce.t.",
16745 strlen (".gnu.linkonce.t.")) == 0)
16746 {
16747 prefix = prefix_once;
16748 text_name += strlen (".gnu.linkonce.t.");
16749 }
16750
16751 prefix_len = strlen (prefix);
16752 text_len = strlen (text_name);
16753 sec_name_len = prefix_len + text_len;
16754 sec_name = xmalloc (sec_name_len + 1);
16755 memcpy (sec_name, prefix, prefix_len);
16756 memcpy (sec_name + prefix_len, text_name, text_len);
16757 sec_name[prefix_len + text_len] = '\0';
16758
16759 flags = SHF_ALLOC;
16760 linkonce = 0;
16761 group_name = 0;
16762
16763 /* Handle COMDAT group. */
16764 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
16765 {
16766 group_name = elf_group_name (text_seg);
16767 if (group_name == NULL)
16768 {
16769 as_bad ("Group section `%s' has no group signature",
16770 segment_name (text_seg));
16771 ignore_rest_of_line ();
16772 return;
16773 }
16774 flags |= SHF_GROUP;
16775 linkonce = 1;
16776 }
16777
16778 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
16779
16780 /* Set the setion link for index tables. */
16781 if (idx)
16782 elf_linked_to_section (now_seg) = text_seg;
16783 }
16784
16785
16786 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
16787 personality routine data. Returns zero, or the index table value for
16788 and inline entry. */
16789
16790 static valueT
16791 create_unwind_entry (int have_data)
16792 {
16793 int size;
16794 addressT where;
16795 char *ptr;
16796 /* The current word of data. */
16797 valueT data;
16798 /* The number of bytes left in this word. */
16799 int n;
16800
16801 finish_unwind_opcodes ();
16802
16803 /* Remember the current text section. */
16804 unwind.saved_seg = now_seg;
16805 unwind.saved_subseg = now_subseg;
16806
16807 start_unwind_section (now_seg, 0);
16808
16809 if (unwind.personality_routine == NULL)
16810 {
16811 if (unwind.personality_index == -2)
16812 {
16813 if (have_data)
16814 as_bad (_("handerdata in cantunwind frame"));
16815 return 1; /* EXIDX_CANTUNWIND. */
16816 }
16817
16818 /* Use a default personality routine if none is specified. */
16819 if (unwind.personality_index == -1)
16820 {
16821 if (unwind.opcode_count > 3)
16822 unwind.personality_index = 1;
16823 else
16824 unwind.personality_index = 0;
16825 }
16826
16827 /* Space for the personality routine entry. */
16828 if (unwind.personality_index == 0)
16829 {
16830 if (unwind.opcode_count > 3)
16831 as_bad (_("too many unwind opcodes for personality routine 0"));
16832
16833 if (!have_data)
16834 {
16835 /* All the data is inline in the index table. */
16836 data = 0x80;
16837 n = 3;
16838 while (unwind.opcode_count > 0)
16839 {
16840 unwind.opcode_count--;
16841 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
16842 n--;
16843 }
16844
16845 /* Pad with "finish" opcodes. */
16846 while (n--)
16847 data = (data << 8) | 0xb0;
16848
16849 return data;
16850 }
16851 size = 0;
16852 }
16853 else
16854 /* We get two opcodes "free" in the first word. */
16855 size = unwind.opcode_count - 2;
16856 }
16857 else
16858 /* An extra byte is required for the opcode count. */
16859 size = unwind.opcode_count + 1;
16860
16861 size = (size + 3) >> 2;
16862 if (size > 0xff)
16863 as_bad (_("too many unwind opcodes"));
16864
16865 frag_align (2, 0, 0);
16866 record_alignment (now_seg, 2);
16867 unwind.table_entry = expr_build_dot ();
16868
16869 /* Allocate the table entry. */
16870 ptr = frag_more ((size << 2) + 4);
16871 where = frag_now_fix () - ((size << 2) + 4);
16872
16873 switch (unwind.personality_index)
16874 {
16875 case -1:
16876 /* ??? Should this be a PLT generating relocation? */
16877 /* Custom personality routine. */
16878 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
16879 BFD_RELOC_ARM_PREL31);
16880
16881 where += 4;
16882 ptr += 4;
16883
16884 /* Set the first byte to the number of additional words. */
16885 data = size - 1;
16886 n = 3;
16887 break;
16888
16889 /* ABI defined personality routines. */
16890 case 0:
16891 /* Three opcodes bytes are packed into the first word. */
16892 data = 0x80;
16893 n = 3;
16894 break;
16895
16896 case 1:
16897 case 2:
16898 /* The size and first two opcode bytes go in the first word. */
16899 data = ((0x80 + unwind.personality_index) << 8) | size;
16900 n = 2;
16901 break;
16902
16903 default:
16904 /* Should never happen. */
16905 abort ();
16906 }
16907
16908 /* Pack the opcodes into words (MSB first), reversing the list at the same
16909 time. */
16910 while (unwind.opcode_count > 0)
16911 {
16912 if (n == 0)
16913 {
16914 md_number_to_chars (ptr, data, 4);
16915 ptr += 4;
16916 n = 4;
16917 data = 0;
16918 }
16919 unwind.opcode_count--;
16920 n--;
16921 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
16922 }
16923
16924 /* Finish off the last word. */
16925 if (n < 4)
16926 {
16927 /* Pad with "finish" opcodes. */
16928 while (n--)
16929 data = (data << 8) | 0xb0;
16930
16931 md_number_to_chars (ptr, data, 4);
16932 }
16933
16934 if (!have_data)
16935 {
16936 /* Add an empty descriptor if there is no user-specified data. */
16937 ptr = frag_more (4);
16938 md_number_to_chars (ptr, 0, 4);
16939 }
16940
16941 return 0;
16942 }
16943
16944
16945 /* Initialize the DWARF-2 unwind information for this procedure. */
16946
16947 void
16948 tc_arm_frame_initial_instructions (void)
16949 {
16950 cfi_add_CFA_def_cfa (REG_SP, 0);
16951 }
16952 #endif /* OBJ_ELF */
16953
16954 /* Convert REGNAME to a DWARF-2 register number. */
16955
16956 int
16957 tc_arm_regname_to_dw2regnum (char *regname)
16958 {
16959 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
16960
16961 if (reg == FAIL)
16962 return -1;
16963
16964 return reg;
16965 }
16966
16967 #ifdef TE_PE
16968 void
16969 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
16970 {
16971 expressionS expr;
16972
16973 expr.X_op = O_secrel;
16974 expr.X_add_symbol = symbol;
16975 expr.X_add_number = 0;
16976 emit_expr (&expr, size);
16977 }
16978 #endif
16979
16980 /* MD interface: Symbol and relocation handling. */
16981
16982 /* Return the address within the segment that a PC-relative fixup is
16983 relative to. For ARM, PC-relative fixups applied to instructions
16984 are generally relative to the location of the fixup plus 8 bytes.
16985 Thumb branches are offset by 4, and Thumb loads relative to PC
16986 require special handling. */
16987
16988 long
16989 md_pcrel_from_section (fixS * fixP, segT seg)
16990 {
16991 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
16992
16993 /* If this is pc-relative and we are going to emit a relocation
16994 then we just want to put out any pipeline compensation that the linker
16995 will need. Otherwise we want to use the calculated base.
16996 For WinCE we skip the bias for externals as well, since this
16997 is how the MS ARM-CE assembler behaves and we want to be compatible. */
16998 if (fixP->fx_pcrel
16999 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
17000 || (arm_force_relocation (fixP)
17001 #ifdef TE_WINCE
17002 && !S_IS_EXTERNAL (fixP->fx_addsy)
17003 #endif
17004 )))
17005 base = 0;
17006
17007 switch (fixP->fx_r_type)
17008 {
17009 /* PC relative addressing on the Thumb is slightly odd as the
17010 bottom two bits of the PC are forced to zero for the
17011 calculation. This happens *after* application of the
17012 pipeline offset. However, Thumb adrl already adjusts for
17013 this, so we need not do it again. */
17014 case BFD_RELOC_ARM_THUMB_ADD:
17015 return base & ~3;
17016
17017 case BFD_RELOC_ARM_THUMB_OFFSET:
17018 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17019 case BFD_RELOC_ARM_T32_ADD_PC12:
17020 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17021 return (base + 4) & ~3;
17022
17023 /* Thumb branches are simply offset by +4. */
17024 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17025 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17026 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17027 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17028 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17029 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17030 case BFD_RELOC_THUMB_PCREL_BLX:
17031 return base + 4;
17032
17033 /* ARM mode branches are offset by +8. However, the Windows CE
17034 loader expects the relocation not to take this into account. */
17035 case BFD_RELOC_ARM_PCREL_BRANCH:
17036 case BFD_RELOC_ARM_PCREL_CALL:
17037 case BFD_RELOC_ARM_PCREL_JUMP:
17038 case BFD_RELOC_ARM_PCREL_BLX:
17039 case BFD_RELOC_ARM_PLT32:
17040 #ifdef TE_WINCE
17041 /* When handling fixups immediately, because we have already
17042 discovered the value of a symbol, or the address of the frag involved
17043 we must account for the offset by +8, as the OS loader will never see the reloc.
17044 see fixup_segment() in write.c
17045 The S_IS_EXTERNAL test handles the case of global symbols.
17046 Those need the calculated base, not just the pipe compensation the linker will need. */
17047 if (fixP->fx_pcrel
17048 && fixP->fx_addsy != NULL
17049 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17050 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17051 return base + 8;
17052 return base;
17053 #else
17054 return base + 8;
17055 #endif
17056
17057 /* ARM mode loads relative to PC are also offset by +8. Unlike
17058 branches, the Windows CE loader *does* expect the relocation
17059 to take this into account. */
17060 case BFD_RELOC_ARM_OFFSET_IMM:
17061 case BFD_RELOC_ARM_OFFSET_IMM8:
17062 case BFD_RELOC_ARM_HWLITERAL:
17063 case BFD_RELOC_ARM_LITERAL:
17064 case BFD_RELOC_ARM_CP_OFF_IMM:
17065 return base + 8;
17066
17067
17068 /* Other PC-relative relocations are un-offset. */
17069 default:
17070 return base;
17071 }
17072 }
17073
17074 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17075 Otherwise we have no need to default values of symbols. */
17076
17077 symbolS *
17078 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
17079 {
17080 #ifdef OBJ_ELF
17081 if (name[0] == '_' && name[1] == 'G'
17082 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17083 {
17084 if (!GOT_symbol)
17085 {
17086 if (symbol_find (name))
17087 as_bad ("GOT already in the symbol table");
17088
17089 GOT_symbol = symbol_new (name, undefined_section,
17090 (valueT) 0, & zero_address_frag);
17091 }
17092
17093 return GOT_symbol;
17094 }
17095 #endif
17096
17097 return 0;
17098 }
17099
17100 /* Subroutine of md_apply_fix. Check to see if an immediate can be
17101 computed as two separate immediate values, added together. We
17102 already know that this value cannot be computed by just one ARM
17103 instruction. */
17104
17105 static unsigned int
17106 validate_immediate_twopart (unsigned int val,
17107 unsigned int * highpart)
17108 {
17109 unsigned int a;
17110 unsigned int i;
17111
17112 for (i = 0; i < 32; i += 2)
17113 if (((a = rotate_left (val, i)) & 0xff) != 0)
17114 {
17115 if (a & 0xff00)
17116 {
17117 if (a & ~ 0xffff)
17118 continue;
17119 * highpart = (a >> 8) | ((i + 24) << 7);
17120 }
17121 else if (a & 0xff0000)
17122 {
17123 if (a & 0xff000000)
17124 continue;
17125 * highpart = (a >> 16) | ((i + 16) << 7);
17126 }
17127 else
17128 {
17129 assert (a & 0xff000000);
17130 * highpart = (a >> 24) | ((i + 8) << 7);
17131 }
17132
17133 return (a & 0xff) | (i << 7);
17134 }
17135
17136 return FAIL;
17137 }
17138
17139 static int
17140 validate_offset_imm (unsigned int val, int hwse)
17141 {
17142 if ((hwse && val > 255) || val > 4095)
17143 return FAIL;
17144 return val;
17145 }
17146
17147 /* Subroutine of md_apply_fix. Do those data_ops which can take a
17148 negative immediate constant by altering the instruction. A bit of
17149 a hack really.
17150 MOV <-> MVN
17151 AND <-> BIC
17152 ADC <-> SBC
17153 by inverting the second operand, and
17154 ADD <-> SUB
17155 CMP <-> CMN
17156 by negating the second operand. */
17157
17158 static int
17159 negate_data_op (unsigned long * instruction,
17160 unsigned long value)
17161 {
17162 int op, new_inst;
17163 unsigned long negated, inverted;
17164
17165 negated = encode_arm_immediate (-value);
17166 inverted = encode_arm_immediate (~value);
17167
17168 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17169 switch (op)
17170 {
17171 /* First negates. */
17172 case OPCODE_SUB: /* ADD <-> SUB */
17173 new_inst = OPCODE_ADD;
17174 value = negated;
17175 break;
17176
17177 case OPCODE_ADD:
17178 new_inst = OPCODE_SUB;
17179 value = negated;
17180 break;
17181
17182 case OPCODE_CMP: /* CMP <-> CMN */
17183 new_inst = OPCODE_CMN;
17184 value = negated;
17185 break;
17186
17187 case OPCODE_CMN:
17188 new_inst = OPCODE_CMP;
17189 value = negated;
17190 break;
17191
17192 /* Now Inverted ops. */
17193 case OPCODE_MOV: /* MOV <-> MVN */
17194 new_inst = OPCODE_MVN;
17195 value = inverted;
17196 break;
17197
17198 case OPCODE_MVN:
17199 new_inst = OPCODE_MOV;
17200 value = inverted;
17201 break;
17202
17203 case OPCODE_AND: /* AND <-> BIC */
17204 new_inst = OPCODE_BIC;
17205 value = inverted;
17206 break;
17207
17208 case OPCODE_BIC:
17209 new_inst = OPCODE_AND;
17210 value = inverted;
17211 break;
17212
17213 case OPCODE_ADC: /* ADC <-> SBC */
17214 new_inst = OPCODE_SBC;
17215 value = inverted;
17216 break;
17217
17218 case OPCODE_SBC:
17219 new_inst = OPCODE_ADC;
17220 value = inverted;
17221 break;
17222
17223 /* We cannot do anything. */
17224 default:
17225 return FAIL;
17226 }
17227
17228 if (value == (unsigned) FAIL)
17229 return FAIL;
17230
17231 *instruction &= OPCODE_MASK;
17232 *instruction |= new_inst << DATA_OP_SHIFT;
17233 return value;
17234 }
17235
17236 /* Like negate_data_op, but for Thumb-2. */
17237
17238 static unsigned int
17239 thumb32_negate_data_op (offsetT *instruction, offsetT value)
17240 {
17241 int op, new_inst;
17242 int rd;
17243 offsetT negated, inverted;
17244
17245 negated = encode_thumb32_immediate (-value);
17246 inverted = encode_thumb32_immediate (~value);
17247
17248 rd = (*instruction >> 8) & 0xf;
17249 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17250 switch (op)
17251 {
17252 /* ADD <-> SUB. Includes CMP <-> CMN. */
17253 case T2_OPCODE_SUB:
17254 new_inst = T2_OPCODE_ADD;
17255 value = negated;
17256 break;
17257
17258 case T2_OPCODE_ADD:
17259 new_inst = T2_OPCODE_SUB;
17260 value = negated;
17261 break;
17262
17263 /* ORR <-> ORN. Includes MOV <-> MVN. */
17264 case T2_OPCODE_ORR:
17265 new_inst = T2_OPCODE_ORN;
17266 value = inverted;
17267 break;
17268
17269 case T2_OPCODE_ORN:
17270 new_inst = T2_OPCODE_ORR;
17271 value = inverted;
17272 break;
17273
17274 /* AND <-> BIC. TST has no inverted equivalent. */
17275 case T2_OPCODE_AND:
17276 new_inst = T2_OPCODE_BIC;
17277 if (rd == 15)
17278 value = FAIL;
17279 else
17280 value = inverted;
17281 break;
17282
17283 case T2_OPCODE_BIC:
17284 new_inst = T2_OPCODE_AND;
17285 value = inverted;
17286 break;
17287
17288 /* ADC <-> SBC */
17289 case T2_OPCODE_ADC:
17290 new_inst = T2_OPCODE_SBC;
17291 value = inverted;
17292 break;
17293
17294 case T2_OPCODE_SBC:
17295 new_inst = T2_OPCODE_ADC;
17296 value = inverted;
17297 break;
17298
17299 /* We cannot do anything. */
17300 default:
17301 return FAIL;
17302 }
17303
17304 if (value == FAIL)
17305 return FAIL;
17306
17307 *instruction &= T2_OPCODE_MASK;
17308 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17309 return value;
17310 }
17311
17312 /* Read a 32-bit thumb instruction from buf. */
17313 static unsigned long
17314 get_thumb32_insn (char * buf)
17315 {
17316 unsigned long insn;
17317 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17318 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17319
17320 return insn;
17321 }
17322
17323
17324 /* We usually want to set the low bit on the address of thumb function
17325 symbols. In particular .word foo - . should have the low bit set.
17326 Generic code tries to fold the difference of two symbols to
17327 a constant. Prevent this and force a relocation when the first symbols
17328 is a thumb function. */
17329 int
17330 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17331 {
17332 if (op == O_subtract
17333 && l->X_op == O_symbol
17334 && r->X_op == O_symbol
17335 && THUMB_IS_FUNC (l->X_add_symbol))
17336 {
17337 l->X_op = O_subtract;
17338 l->X_op_symbol = r->X_add_symbol;
17339 l->X_add_number -= r->X_add_number;
17340 return 1;
17341 }
17342 /* Process as normal. */
17343 return 0;
17344 }
17345
17346 void
17347 md_apply_fix (fixS * fixP,
17348 valueT * valP,
17349 segT seg)
17350 {
17351 offsetT value = * valP;
17352 offsetT newval;
17353 unsigned int newimm;
17354 unsigned long temp;
17355 int sign;
17356 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
17357
17358 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
17359
17360 /* Note whether this will delete the relocation. */
17361
17362 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17363 fixP->fx_done = 1;
17364
17365 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17366 consistency with the behavior on 32-bit hosts. Remember value
17367 for emit_reloc. */
17368 value &= 0xffffffff;
17369 value ^= 0x80000000;
17370 value -= 0x80000000;
17371
17372 *valP = value;
17373 fixP->fx_addnumber = value;
17374
17375 /* Same treatment for fixP->fx_offset. */
17376 fixP->fx_offset &= 0xffffffff;
17377 fixP->fx_offset ^= 0x80000000;
17378 fixP->fx_offset -= 0x80000000;
17379
17380 switch (fixP->fx_r_type)
17381 {
17382 case BFD_RELOC_NONE:
17383 /* This will need to go in the object file. */
17384 fixP->fx_done = 0;
17385 break;
17386
17387 case BFD_RELOC_ARM_IMMEDIATE:
17388 /* We claim that this fixup has been processed here,
17389 even if in fact we generate an error because we do
17390 not have a reloc for it, so tc_gen_reloc will reject it. */
17391 fixP->fx_done = 1;
17392
17393 if (fixP->fx_addsy
17394 && ! S_IS_DEFINED (fixP->fx_addsy))
17395 {
17396 as_bad_where (fixP->fx_file, fixP->fx_line,
17397 _("undefined symbol %s used as an immediate value"),
17398 S_GET_NAME (fixP->fx_addsy));
17399 break;
17400 }
17401
17402 newimm = encode_arm_immediate (value);
17403 temp = md_chars_to_number (buf, INSN_SIZE);
17404
17405 /* If the instruction will fail, see if we can fix things up by
17406 changing the opcode. */
17407 if (newimm == (unsigned int) FAIL
17408 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
17409 {
17410 as_bad_where (fixP->fx_file, fixP->fx_line,
17411 _("invalid constant (%lx) after fixup"),
17412 (unsigned long) value);
17413 break;
17414 }
17415
17416 newimm |= (temp & 0xfffff000);
17417 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17418 break;
17419
17420 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17421 {
17422 unsigned int highpart = 0;
17423 unsigned int newinsn = 0xe1a00000; /* nop. */
17424
17425 newimm = encode_arm_immediate (value);
17426 temp = md_chars_to_number (buf, INSN_SIZE);
17427
17428 /* If the instruction will fail, see if we can fix things up by
17429 changing the opcode. */
17430 if (newimm == (unsigned int) FAIL
17431 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17432 {
17433 /* No ? OK - try using two ADD instructions to generate
17434 the value. */
17435 newimm = validate_immediate_twopart (value, & highpart);
17436
17437 /* Yes - then make sure that the second instruction is
17438 also an add. */
17439 if (newimm != (unsigned int) FAIL)
17440 newinsn = temp;
17441 /* Still No ? Try using a negated value. */
17442 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17443 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17444 /* Otherwise - give up. */
17445 else
17446 {
17447 as_bad_where (fixP->fx_file, fixP->fx_line,
17448 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17449 (long) value);
17450 break;
17451 }
17452
17453 /* Replace the first operand in the 2nd instruction (which
17454 is the PC) with the destination register. We have
17455 already added in the PC in the first instruction and we
17456 do not want to do it again. */
17457 newinsn &= ~ 0xf0000;
17458 newinsn |= ((newinsn & 0x0f000) << 4);
17459 }
17460
17461 newimm |= (temp & 0xfffff000);
17462 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17463
17464 highpart |= (newinsn & 0xfffff000);
17465 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
17466 }
17467 break;
17468
17469 case BFD_RELOC_ARM_OFFSET_IMM:
17470 if (!fixP->fx_done && seg->use_rela_p)
17471 value = 0;
17472
17473 case BFD_RELOC_ARM_LITERAL:
17474 sign = value >= 0;
17475
17476 if (value < 0)
17477 value = - value;
17478
17479 if (validate_offset_imm (value, 0) == FAIL)
17480 {
17481 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
17482 as_bad_where (fixP->fx_file, fixP->fx_line,
17483 _("invalid literal constant: pool needs to be closer"));
17484 else
17485 as_bad_where (fixP->fx_file, fixP->fx_line,
17486 _("bad immediate value for offset (%ld)"),
17487 (long) value);
17488 break;
17489 }
17490
17491 newval = md_chars_to_number (buf, INSN_SIZE);
17492 newval &= 0xff7ff000;
17493 newval |= value | (sign ? INDEX_UP : 0);
17494 md_number_to_chars (buf, newval, INSN_SIZE);
17495 break;
17496
17497 case BFD_RELOC_ARM_OFFSET_IMM8:
17498 case BFD_RELOC_ARM_HWLITERAL:
17499 sign = value >= 0;
17500
17501 if (value < 0)
17502 value = - value;
17503
17504 if (validate_offset_imm (value, 1) == FAIL)
17505 {
17506 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
17507 as_bad_where (fixP->fx_file, fixP->fx_line,
17508 _("invalid literal constant: pool needs to be closer"));
17509 else
17510 as_bad (_("bad immediate value for half-word offset (%ld)"),
17511 (long) value);
17512 break;
17513 }
17514
17515 newval = md_chars_to_number (buf, INSN_SIZE);
17516 newval &= 0xff7ff0f0;
17517 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
17518 md_number_to_chars (buf, newval, INSN_SIZE);
17519 break;
17520
17521 case BFD_RELOC_ARM_T32_OFFSET_U8:
17522 if (value < 0 || value > 1020 || value % 4 != 0)
17523 as_bad_where (fixP->fx_file, fixP->fx_line,
17524 _("bad immediate value for offset (%ld)"), (long) value);
17525 value /= 4;
17526
17527 newval = md_chars_to_number (buf+2, THUMB_SIZE);
17528 newval |= value;
17529 md_number_to_chars (buf+2, newval, THUMB_SIZE);
17530 break;
17531
17532 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17533 /* This is a complicated relocation used for all varieties of Thumb32
17534 load/store instruction with immediate offset:
17535
17536 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
17537 *4, optional writeback(W)
17538 (doubleword load/store)
17539
17540 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
17541 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
17542 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
17543 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
17544 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
17545
17546 Uppercase letters indicate bits that are already encoded at
17547 this point. Lowercase letters are our problem. For the
17548 second block of instructions, the secondary opcode nybble
17549 (bits 8..11) is present, and bit 23 is zero, even if this is
17550 a PC-relative operation. */
17551 newval = md_chars_to_number (buf, THUMB_SIZE);
17552 newval <<= 16;
17553 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
17554
17555 if ((newval & 0xf0000000) == 0xe0000000)
17556 {
17557 /* Doubleword load/store: 8-bit offset, scaled by 4. */
17558 if (value >= 0)
17559 newval |= (1 << 23);
17560 else
17561 value = -value;
17562 if (value % 4 != 0)
17563 {
17564 as_bad_where (fixP->fx_file, fixP->fx_line,
17565 _("offset not a multiple of 4"));
17566 break;
17567 }
17568 value /= 4;
17569 if (value > 0xff)
17570 {
17571 as_bad_where (fixP->fx_file, fixP->fx_line,
17572 _("offset out of range"));
17573 break;
17574 }
17575 newval &= ~0xff;
17576 }
17577 else if ((newval & 0x000f0000) == 0x000f0000)
17578 {
17579 /* PC-relative, 12-bit offset. */
17580 if (value >= 0)
17581 newval |= (1 << 23);
17582 else
17583 value = -value;
17584 if (value > 0xfff)
17585 {
17586 as_bad_where (fixP->fx_file, fixP->fx_line,
17587 _("offset out of range"));
17588 break;
17589 }
17590 newval &= ~0xfff;
17591 }
17592 else if ((newval & 0x00000100) == 0x00000100)
17593 {
17594 /* Writeback: 8-bit, +/- offset. */
17595 if (value >= 0)
17596 newval |= (1 << 9);
17597 else
17598 value = -value;
17599 if (value > 0xff)
17600 {
17601 as_bad_where (fixP->fx_file, fixP->fx_line,
17602 _("offset out of range"));
17603 break;
17604 }
17605 newval &= ~0xff;
17606 }
17607 else if ((newval & 0x00000f00) == 0x00000e00)
17608 {
17609 /* T-instruction: positive 8-bit offset. */
17610 if (value < 0 || value > 0xff)
17611 {
17612 as_bad_where (fixP->fx_file, fixP->fx_line,
17613 _("offset out of range"));
17614 break;
17615 }
17616 newval &= ~0xff;
17617 newval |= value;
17618 }
17619 else
17620 {
17621 /* Positive 12-bit or negative 8-bit offset. */
17622 int limit;
17623 if (value >= 0)
17624 {
17625 newval |= (1 << 23);
17626 limit = 0xfff;
17627 }
17628 else
17629 {
17630 value = -value;
17631 limit = 0xff;
17632 }
17633 if (value > limit)
17634 {
17635 as_bad_where (fixP->fx_file, fixP->fx_line,
17636 _("offset out of range"));
17637 break;
17638 }
17639 newval &= ~limit;
17640 }
17641
17642 newval |= value;
17643 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
17644 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
17645 break;
17646
17647 case BFD_RELOC_ARM_SHIFT_IMM:
17648 newval = md_chars_to_number (buf, INSN_SIZE);
17649 if (((unsigned long) value) > 32
17650 || (value == 32
17651 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
17652 {
17653 as_bad_where (fixP->fx_file, fixP->fx_line,
17654 _("shift expression is too large"));
17655 break;
17656 }
17657
17658 if (value == 0)
17659 /* Shifts of zero must be done as lsl. */
17660 newval &= ~0x60;
17661 else if (value == 32)
17662 value = 0;
17663 newval &= 0xfffff07f;
17664 newval |= (value & 0x1f) << 7;
17665 md_number_to_chars (buf, newval, INSN_SIZE);
17666 break;
17667
17668 case BFD_RELOC_ARM_T32_IMMEDIATE:
17669 case BFD_RELOC_ARM_T32_ADD_IMM:
17670 case BFD_RELOC_ARM_T32_IMM12:
17671 case BFD_RELOC_ARM_T32_ADD_PC12:
17672 /* We claim that this fixup has been processed here,
17673 even if in fact we generate an error because we do
17674 not have a reloc for it, so tc_gen_reloc will reject it. */
17675 fixP->fx_done = 1;
17676
17677 if (fixP->fx_addsy
17678 && ! S_IS_DEFINED (fixP->fx_addsy))
17679 {
17680 as_bad_where (fixP->fx_file, fixP->fx_line,
17681 _("undefined symbol %s used as an immediate value"),
17682 S_GET_NAME (fixP->fx_addsy));
17683 break;
17684 }
17685
17686 newval = md_chars_to_number (buf, THUMB_SIZE);
17687 newval <<= 16;
17688 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
17689
17690 newimm = FAIL;
17691 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
17692 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
17693 {
17694 newimm = encode_thumb32_immediate (value);
17695 if (newimm == (unsigned int) FAIL)
17696 newimm = thumb32_negate_data_op (&newval, value);
17697 }
17698 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
17699 && newimm == (unsigned int) FAIL)
17700 {
17701 /* Turn add/sum into addw/subw. */
17702 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
17703 newval = (newval & 0xfeffffff) | 0x02000000;
17704
17705 /* 12 bit immediate for addw/subw. */
17706 if (value < 0)
17707 {
17708 value = -value;
17709 newval ^= 0x00a00000;
17710 }
17711 if (value > 0xfff)
17712 newimm = (unsigned int) FAIL;
17713 else
17714 newimm = value;
17715 }
17716
17717 if (newimm == (unsigned int)FAIL)
17718 {
17719 as_bad_where (fixP->fx_file, fixP->fx_line,
17720 _("invalid constant (%lx) after fixup"),
17721 (unsigned long) value);
17722 break;
17723 }
17724
17725 newval |= (newimm & 0x800) << 15;
17726 newval |= (newimm & 0x700) << 4;
17727 newval |= (newimm & 0x0ff);
17728
17729 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
17730 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
17731 break;
17732
17733 case BFD_RELOC_ARM_SMC:
17734 if (((unsigned long) value) > 0xffff)
17735 as_bad_where (fixP->fx_file, fixP->fx_line,
17736 _("invalid smc expression"));
17737 newval = md_chars_to_number (buf, INSN_SIZE);
17738 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
17739 md_number_to_chars (buf, newval, INSN_SIZE);
17740 break;
17741
17742 case BFD_RELOC_ARM_SWI:
17743 if (fixP->tc_fix_data != 0)
17744 {
17745 if (((unsigned long) value) > 0xff)
17746 as_bad_where (fixP->fx_file, fixP->fx_line,
17747 _("invalid swi expression"));
17748 newval = md_chars_to_number (buf, THUMB_SIZE);
17749 newval |= value;
17750 md_number_to_chars (buf, newval, THUMB_SIZE);
17751 }
17752 else
17753 {
17754 if (((unsigned long) value) > 0x00ffffff)
17755 as_bad_where (fixP->fx_file, fixP->fx_line,
17756 _("invalid swi expression"));
17757 newval = md_chars_to_number (buf, INSN_SIZE);
17758 newval |= value;
17759 md_number_to_chars (buf, newval, INSN_SIZE);
17760 }
17761 break;
17762
17763 case BFD_RELOC_ARM_MULTI:
17764 if (((unsigned long) value) > 0xffff)
17765 as_bad_where (fixP->fx_file, fixP->fx_line,
17766 _("invalid expression in load/store multiple"));
17767 newval = value | md_chars_to_number (buf, INSN_SIZE);
17768 md_number_to_chars (buf, newval, INSN_SIZE);
17769 break;
17770
17771 #ifdef OBJ_ELF
17772 case BFD_RELOC_ARM_PCREL_CALL:
17773 newval = md_chars_to_number (buf, INSN_SIZE);
17774 if ((newval & 0xf0000000) == 0xf0000000)
17775 temp = 1;
17776 else
17777 temp = 3;
17778 goto arm_branch_common;
17779
17780 case BFD_RELOC_ARM_PCREL_JUMP:
17781 case BFD_RELOC_ARM_PLT32:
17782 #endif
17783 case BFD_RELOC_ARM_PCREL_BRANCH:
17784 temp = 3;
17785 goto arm_branch_common;
17786
17787 case BFD_RELOC_ARM_PCREL_BLX:
17788 temp = 1;
17789 arm_branch_common:
17790 /* We are going to store value (shifted right by two) in the
17791 instruction, in a 24 bit, signed field. Bits 26 through 32 either
17792 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
17793 also be be clear. */
17794 if (value & temp)
17795 as_bad_where (fixP->fx_file, fixP->fx_line,
17796 _("misaligned branch destination"));
17797 if ((value & (offsetT)0xfe000000) != (offsetT)0
17798 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
17799 as_bad_where (fixP->fx_file, fixP->fx_line,
17800 _("branch out of range"));
17801
17802 if (fixP->fx_done || !seg->use_rela_p)
17803 {
17804 newval = md_chars_to_number (buf, INSN_SIZE);
17805 newval |= (value >> 2) & 0x00ffffff;
17806 /* Set the H bit on BLX instructions. */
17807 if (temp == 1)
17808 {
17809 if (value & 2)
17810 newval |= 0x01000000;
17811 else
17812 newval &= ~0x01000000;
17813 }
17814 md_number_to_chars (buf, newval, INSN_SIZE);
17815 }
17816 break;
17817
17818 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */
17819 /* CZB can only branch forward. */
17820 if (value & ~0x7e)
17821 as_bad_where (fixP->fx_file, fixP->fx_line,
17822 _("branch out of range"));
17823
17824 if (fixP->fx_done || !seg->use_rela_p)
17825 {
17826 newval = md_chars_to_number (buf, THUMB_SIZE);
17827 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
17828 md_number_to_chars (buf, newval, THUMB_SIZE);
17829 }
17830 break;
17831
17832 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
17833 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
17834 as_bad_where (fixP->fx_file, fixP->fx_line,
17835 _("branch out of range"));
17836
17837 if (fixP->fx_done || !seg->use_rela_p)
17838 {
17839 newval = md_chars_to_number (buf, THUMB_SIZE);
17840 newval |= (value & 0x1ff) >> 1;
17841 md_number_to_chars (buf, newval, THUMB_SIZE);
17842 }
17843 break;
17844
17845 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
17846 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
17847 as_bad_where (fixP->fx_file, fixP->fx_line,
17848 _("branch out of range"));
17849
17850 if (fixP->fx_done || !seg->use_rela_p)
17851 {
17852 newval = md_chars_to_number (buf, THUMB_SIZE);
17853 newval |= (value & 0xfff) >> 1;
17854 md_number_to_chars (buf, newval, THUMB_SIZE);
17855 }
17856 break;
17857
17858 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17859 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
17860 as_bad_where (fixP->fx_file, fixP->fx_line,
17861 _("conditional branch out of range"));
17862
17863 if (fixP->fx_done || !seg->use_rela_p)
17864 {
17865 offsetT newval2;
17866 addressT S, J1, J2, lo, hi;
17867
17868 S = (value & 0x00100000) >> 20;
17869 J2 = (value & 0x00080000) >> 19;
17870 J1 = (value & 0x00040000) >> 18;
17871 hi = (value & 0x0003f000) >> 12;
17872 lo = (value & 0x00000ffe) >> 1;
17873
17874 newval = md_chars_to_number (buf, THUMB_SIZE);
17875 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17876 newval |= (S << 10) | hi;
17877 newval2 |= (J1 << 13) | (J2 << 11) | lo;
17878 md_number_to_chars (buf, newval, THUMB_SIZE);
17879 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17880 }
17881 break;
17882
17883 case BFD_RELOC_THUMB_PCREL_BLX:
17884 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17885 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
17886 as_bad_where (fixP->fx_file, fixP->fx_line,
17887 _("branch out of range"));
17888
17889 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
17890 /* For a BLX instruction, make sure that the relocation is rounded up
17891 to a word boundary. This follows the semantics of the instruction
17892 which specifies that bit 1 of the target address will come from bit
17893 1 of the base address. */
17894 value = (value + 1) & ~ 1;
17895
17896 if (fixP->fx_done || !seg->use_rela_p)
17897 {
17898 offsetT newval2;
17899
17900 newval = md_chars_to_number (buf, THUMB_SIZE);
17901 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17902 newval |= (value & 0x7fffff) >> 12;
17903 newval2 |= (value & 0xfff) >> 1;
17904 md_number_to_chars (buf, newval, THUMB_SIZE);
17905 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17906 }
17907 break;
17908
17909 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17910 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
17911 as_bad_where (fixP->fx_file, fixP->fx_line,
17912 _("branch out of range"));
17913
17914 if (fixP->fx_done || !seg->use_rela_p)
17915 {
17916 offsetT newval2;
17917 addressT S, I1, I2, lo, hi;
17918
17919 S = (value & 0x01000000) >> 24;
17920 I1 = (value & 0x00800000) >> 23;
17921 I2 = (value & 0x00400000) >> 22;
17922 hi = (value & 0x003ff000) >> 12;
17923 lo = (value & 0x00000ffe) >> 1;
17924
17925 I1 = !(I1 ^ S);
17926 I2 = !(I2 ^ S);
17927
17928 newval = md_chars_to_number (buf, THUMB_SIZE);
17929 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17930 newval |= (S << 10) | hi;
17931 newval2 |= (I1 << 13) | (I2 << 11) | lo;
17932 md_number_to_chars (buf, newval, THUMB_SIZE);
17933 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17934 }
17935 break;
17936
17937 case BFD_RELOC_8:
17938 if (fixP->fx_done || !seg->use_rela_p)
17939 md_number_to_chars (buf, value, 1);
17940 break;
17941
17942 case BFD_RELOC_16:
17943 if (fixP->fx_done || !seg->use_rela_p)
17944 md_number_to_chars (buf, value, 2);
17945 break;
17946
17947 #ifdef OBJ_ELF
17948 case BFD_RELOC_ARM_TLS_GD32:
17949 case BFD_RELOC_ARM_TLS_LE32:
17950 case BFD_RELOC_ARM_TLS_IE32:
17951 case BFD_RELOC_ARM_TLS_LDM32:
17952 case BFD_RELOC_ARM_TLS_LDO32:
17953 S_SET_THREAD_LOCAL (fixP->fx_addsy);
17954 /* fall through */
17955
17956 case BFD_RELOC_ARM_GOT32:
17957 case BFD_RELOC_ARM_GOTOFF:
17958 case BFD_RELOC_ARM_TARGET2:
17959 if (fixP->fx_done || !seg->use_rela_p)
17960 md_number_to_chars (buf, 0, 4);
17961 break;
17962 #endif
17963
17964 case BFD_RELOC_RVA:
17965 case BFD_RELOC_32:
17966 case BFD_RELOC_ARM_TARGET1:
17967 case BFD_RELOC_ARM_ROSEGREL32:
17968 case BFD_RELOC_ARM_SBREL32:
17969 case BFD_RELOC_32_PCREL:
17970 #ifdef TE_PE
17971 case BFD_RELOC_32_SECREL:
17972 #endif
17973 if (fixP->fx_done || !seg->use_rela_p)
17974 #ifdef TE_WINCE
17975 /* For WinCE we only do this for pcrel fixups. */
17976 if (fixP->fx_done || fixP->fx_pcrel)
17977 #endif
17978 md_number_to_chars (buf, value, 4);
17979 break;
17980
17981 #ifdef OBJ_ELF
17982 case BFD_RELOC_ARM_PREL31:
17983 if (fixP->fx_done || !seg->use_rela_p)
17984 {
17985 newval = md_chars_to_number (buf, 4) & 0x80000000;
17986 if ((value ^ (value >> 1)) & 0x40000000)
17987 {
17988 as_bad_where (fixP->fx_file, fixP->fx_line,
17989 _("rel31 relocation overflow"));
17990 }
17991 newval |= value & 0x7fffffff;
17992 md_number_to_chars (buf, newval, 4);
17993 }
17994 break;
17995 #endif
17996
17997 case BFD_RELOC_ARM_CP_OFF_IMM:
17998 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17999 if (value < -1023 || value > 1023 || (value & 3))
18000 as_bad_where (fixP->fx_file, fixP->fx_line,
18001 _("co-processor offset out of range"));
18002 cp_off_common:
18003 sign = value >= 0;
18004 if (value < 0)
18005 value = -value;
18006 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18007 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18008 newval = md_chars_to_number (buf, INSN_SIZE);
18009 else
18010 newval = get_thumb32_insn (buf);
18011 newval &= 0xff7fff00;
18012 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
18013 if (value == 0)
18014 newval &= ~WRITE_BACK;
18015 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18016 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18017 md_number_to_chars (buf, newval, INSN_SIZE);
18018 else
18019 put_thumb32_insn (buf, newval);
18020 break;
18021
18022 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
18023 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
18024 if (value < -255 || value > 255)
18025 as_bad_where (fixP->fx_file, fixP->fx_line,
18026 _("co-processor offset out of range"));
18027 value *= 4;
18028 goto cp_off_common;
18029
18030 case BFD_RELOC_ARM_THUMB_OFFSET:
18031 newval = md_chars_to_number (buf, THUMB_SIZE);
18032 /* Exactly what ranges, and where the offset is inserted depends
18033 on the type of instruction, we can establish this from the
18034 top 4 bits. */
18035 switch (newval >> 12)
18036 {
18037 case 4: /* PC load. */
18038 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18039 forced to zero for these loads; md_pcrel_from has already
18040 compensated for this. */
18041 if (value & 3)
18042 as_bad_where (fixP->fx_file, fixP->fx_line,
18043 _("invalid offset, target not word aligned (0x%08lX)"),
18044 (((unsigned long) fixP->fx_frag->fr_address
18045 + (unsigned long) fixP->fx_where) & ~3)
18046 + (unsigned long) value);
18047
18048 if (value & ~0x3fc)
18049 as_bad_where (fixP->fx_file, fixP->fx_line,
18050 _("invalid offset, value too big (0x%08lX)"),
18051 (long) value);
18052
18053 newval |= value >> 2;
18054 break;
18055
18056 case 9: /* SP load/store. */
18057 if (value & ~0x3fc)
18058 as_bad_where (fixP->fx_file, fixP->fx_line,
18059 _("invalid offset, value too big (0x%08lX)"),
18060 (long) value);
18061 newval |= value >> 2;
18062 break;
18063
18064 case 6: /* Word load/store. */
18065 if (value & ~0x7c)
18066 as_bad_where (fixP->fx_file, fixP->fx_line,
18067 _("invalid offset, value too big (0x%08lX)"),
18068 (long) value);
18069 newval |= value << 4; /* 6 - 2. */
18070 break;
18071
18072 case 7: /* Byte load/store. */
18073 if (value & ~0x1f)
18074 as_bad_where (fixP->fx_file, fixP->fx_line,
18075 _("invalid offset, value too big (0x%08lX)"),
18076 (long) value);
18077 newval |= value << 6;
18078 break;
18079
18080 case 8: /* Halfword load/store. */
18081 if (value & ~0x3e)
18082 as_bad_where (fixP->fx_file, fixP->fx_line,
18083 _("invalid offset, value too big (0x%08lX)"),
18084 (long) value);
18085 newval |= value << 5; /* 6 - 1. */
18086 break;
18087
18088 default:
18089 as_bad_where (fixP->fx_file, fixP->fx_line,
18090 "Unable to process relocation for thumb opcode: %lx",
18091 (unsigned long) newval);
18092 break;
18093 }
18094 md_number_to_chars (buf, newval, THUMB_SIZE);
18095 break;
18096
18097 case BFD_RELOC_ARM_THUMB_ADD:
18098 /* This is a complicated relocation, since we use it for all of
18099 the following immediate relocations:
18100
18101 3bit ADD/SUB
18102 8bit ADD/SUB
18103 9bit ADD/SUB SP word-aligned
18104 10bit ADD PC/SP word-aligned
18105
18106 The type of instruction being processed is encoded in the
18107 instruction field:
18108
18109 0x8000 SUB
18110 0x00F0 Rd
18111 0x000F Rs
18112 */
18113 newval = md_chars_to_number (buf, THUMB_SIZE);
18114 {
18115 int rd = (newval >> 4) & 0xf;
18116 int rs = newval & 0xf;
18117 int subtract = !!(newval & 0x8000);
18118
18119 /* Check for HI regs, only very restricted cases allowed:
18120 Adjusting SP, and using PC or SP to get an address. */
18121 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18122 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18123 as_bad_where (fixP->fx_file, fixP->fx_line,
18124 _("invalid Hi register with immediate"));
18125
18126 /* If value is negative, choose the opposite instruction. */
18127 if (value < 0)
18128 {
18129 value = -value;
18130 subtract = !subtract;
18131 if (value < 0)
18132 as_bad_where (fixP->fx_file, fixP->fx_line,
18133 _("immediate value out of range"));
18134 }
18135
18136 if (rd == REG_SP)
18137 {
18138 if (value & ~0x1fc)
18139 as_bad_where (fixP->fx_file, fixP->fx_line,
18140 _("invalid immediate for stack address calculation"));
18141 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18142 newval |= value >> 2;
18143 }
18144 else if (rs == REG_PC || rs == REG_SP)
18145 {
18146 if (subtract || value & ~0x3fc)
18147 as_bad_where (fixP->fx_file, fixP->fx_line,
18148 _("invalid immediate for address calculation (value = 0x%08lX)"),
18149 (unsigned long) value);
18150 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18151 newval |= rd << 8;
18152 newval |= value >> 2;
18153 }
18154 else if (rs == rd)
18155 {
18156 if (value & ~0xff)
18157 as_bad_where (fixP->fx_file, fixP->fx_line,
18158 _("immediate value out of range"));
18159 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18160 newval |= (rd << 8) | value;
18161 }
18162 else
18163 {
18164 if (value & ~0x7)
18165 as_bad_where (fixP->fx_file, fixP->fx_line,
18166 _("immediate value out of range"));
18167 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18168 newval |= rd | (rs << 3) | (value << 6);
18169 }
18170 }
18171 md_number_to_chars (buf, newval, THUMB_SIZE);
18172 break;
18173
18174 case BFD_RELOC_ARM_THUMB_IMM:
18175 newval = md_chars_to_number (buf, THUMB_SIZE);
18176 if (value < 0 || value > 255)
18177 as_bad_where (fixP->fx_file, fixP->fx_line,
18178 _("invalid immediate: %ld is too large"),
18179 (long) value);
18180 newval |= value;
18181 md_number_to_chars (buf, newval, THUMB_SIZE);
18182 break;
18183
18184 case BFD_RELOC_ARM_THUMB_SHIFT:
18185 /* 5bit shift value (0..32). LSL cannot take 32. */
18186 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18187 temp = newval & 0xf800;
18188 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18189 as_bad_where (fixP->fx_file, fixP->fx_line,
18190 _("invalid shift value: %ld"), (long) value);
18191 /* Shifts of zero must be encoded as LSL. */
18192 if (value == 0)
18193 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18194 /* Shifts of 32 are encoded as zero. */
18195 else if (value == 32)
18196 value = 0;
18197 newval |= value << 6;
18198 md_number_to_chars (buf, newval, THUMB_SIZE);
18199 break;
18200
18201 case BFD_RELOC_VTABLE_INHERIT:
18202 case BFD_RELOC_VTABLE_ENTRY:
18203 fixP->fx_done = 0;
18204 return;
18205
18206 case BFD_RELOC_ARM_MOVW:
18207 case BFD_RELOC_ARM_MOVT:
18208 case BFD_RELOC_ARM_THUMB_MOVW:
18209 case BFD_RELOC_ARM_THUMB_MOVT:
18210 if (fixP->fx_done || !seg->use_rela_p)
18211 {
18212 /* REL format relocations are limited to a 16-bit addend. */
18213 if (!fixP->fx_done)
18214 {
18215 if (value < -0x1000 || value > 0xffff)
18216 as_bad_where (fixP->fx_file, fixP->fx_line,
18217 _("offset too big"));
18218 }
18219 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18220 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18221 {
18222 value >>= 16;
18223 }
18224
18225 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18226 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18227 {
18228 newval = get_thumb32_insn (buf);
18229 newval &= 0xfbf08f00;
18230 newval |= (value & 0xf000) << 4;
18231 newval |= (value & 0x0800) << 15;
18232 newval |= (value & 0x0700) << 4;
18233 newval |= (value & 0x00ff);
18234 put_thumb32_insn (buf, newval);
18235 }
18236 else
18237 {
18238 newval = md_chars_to_number (buf, 4);
18239 newval &= 0xfff0f000;
18240 newval |= value & 0x0fff;
18241 newval |= (value & 0xf000) << 4;
18242 md_number_to_chars (buf, newval, 4);
18243 }
18244 }
18245 return;
18246
18247 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18248 case BFD_RELOC_ARM_ALU_PC_G0:
18249 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18250 case BFD_RELOC_ARM_ALU_PC_G1:
18251 case BFD_RELOC_ARM_ALU_PC_G2:
18252 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18253 case BFD_RELOC_ARM_ALU_SB_G0:
18254 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18255 case BFD_RELOC_ARM_ALU_SB_G1:
18256 case BFD_RELOC_ARM_ALU_SB_G2:
18257 assert (!fixP->fx_done);
18258 if (!seg->use_rela_p)
18259 {
18260 bfd_vma insn;
18261 bfd_vma encoded_addend;
18262 bfd_vma addend_abs = abs (value);
18263
18264 /* Check that the absolute value of the addend can be
18265 expressed as an 8-bit constant plus a rotation. */
18266 encoded_addend = encode_arm_immediate (addend_abs);
18267 if (encoded_addend == (unsigned int) FAIL)
18268 as_bad_where (fixP->fx_file, fixP->fx_line,
18269 _("the offset 0x%08lX is not representable"),
18270 addend_abs);
18271
18272 /* Extract the instruction. */
18273 insn = md_chars_to_number (buf, INSN_SIZE);
18274
18275 /* If the addend is positive, use an ADD instruction.
18276 Otherwise use a SUB. Take care not to destroy the S bit. */
18277 insn &= 0xff1fffff;
18278 if (value < 0)
18279 insn |= 1 << 22;
18280 else
18281 insn |= 1 << 23;
18282
18283 /* Place the encoded addend into the first 12 bits of the
18284 instruction. */
18285 insn &= 0xfffff000;
18286 insn |= encoded_addend;
18287
18288 /* Update the instruction. */
18289 md_number_to_chars (buf, insn, INSN_SIZE);
18290 }
18291 break;
18292
18293 case BFD_RELOC_ARM_LDR_PC_G0:
18294 case BFD_RELOC_ARM_LDR_PC_G1:
18295 case BFD_RELOC_ARM_LDR_PC_G2:
18296 case BFD_RELOC_ARM_LDR_SB_G0:
18297 case BFD_RELOC_ARM_LDR_SB_G1:
18298 case BFD_RELOC_ARM_LDR_SB_G2:
18299 assert (!fixP->fx_done);
18300 if (!seg->use_rela_p)
18301 {
18302 bfd_vma insn;
18303 bfd_vma addend_abs = abs (value);
18304
18305 /* Check that the absolute value of the addend can be
18306 encoded in 12 bits. */
18307 if (addend_abs >= 0x1000)
18308 as_bad_where (fixP->fx_file, fixP->fx_line,
18309 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18310 addend_abs);
18311
18312 /* Extract the instruction. */
18313 insn = md_chars_to_number (buf, INSN_SIZE);
18314
18315 /* If the addend is negative, clear bit 23 of the instruction.
18316 Otherwise set it. */
18317 if (value < 0)
18318 insn &= ~(1 << 23);
18319 else
18320 insn |= 1 << 23;
18321
18322 /* Place the absolute value of the addend into the first 12 bits
18323 of the instruction. */
18324 insn &= 0xfffff000;
18325 insn |= addend_abs;
18326
18327 /* Update the instruction. */
18328 md_number_to_chars (buf, insn, INSN_SIZE);
18329 }
18330 break;
18331
18332 case BFD_RELOC_ARM_LDRS_PC_G0:
18333 case BFD_RELOC_ARM_LDRS_PC_G1:
18334 case BFD_RELOC_ARM_LDRS_PC_G2:
18335 case BFD_RELOC_ARM_LDRS_SB_G0:
18336 case BFD_RELOC_ARM_LDRS_SB_G1:
18337 case BFD_RELOC_ARM_LDRS_SB_G2:
18338 assert (!fixP->fx_done);
18339 if (!seg->use_rela_p)
18340 {
18341 bfd_vma insn;
18342 bfd_vma addend_abs = abs (value);
18343
18344 /* Check that the absolute value of the addend can be
18345 encoded in 8 bits. */
18346 if (addend_abs >= 0x100)
18347 as_bad_where (fixP->fx_file, fixP->fx_line,
18348 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18349 addend_abs);
18350
18351 /* Extract the instruction. */
18352 insn = md_chars_to_number (buf, INSN_SIZE);
18353
18354 /* If the addend is negative, clear bit 23 of the instruction.
18355 Otherwise set it. */
18356 if (value < 0)
18357 insn &= ~(1 << 23);
18358 else
18359 insn |= 1 << 23;
18360
18361 /* Place the first four bits of the absolute value of the addend
18362 into the first 4 bits of the instruction, and the remaining
18363 four into bits 8 .. 11. */
18364 insn &= 0xfffff0f0;
18365 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18366
18367 /* Update the instruction. */
18368 md_number_to_chars (buf, insn, INSN_SIZE);
18369 }
18370 break;
18371
18372 case BFD_RELOC_ARM_LDC_PC_G0:
18373 case BFD_RELOC_ARM_LDC_PC_G1:
18374 case BFD_RELOC_ARM_LDC_PC_G2:
18375 case BFD_RELOC_ARM_LDC_SB_G0:
18376 case BFD_RELOC_ARM_LDC_SB_G1:
18377 case BFD_RELOC_ARM_LDC_SB_G2:
18378 assert (!fixP->fx_done);
18379 if (!seg->use_rela_p)
18380 {
18381 bfd_vma insn;
18382 bfd_vma addend_abs = abs (value);
18383
18384 /* Check that the absolute value of the addend is a multiple of
18385 four and, when divided by four, fits in 8 bits. */
18386 if (addend_abs & 0x3)
18387 as_bad_where (fixP->fx_file, fixP->fx_line,
18388 _("bad offset 0x%08lX (must be word-aligned)"),
18389 addend_abs);
18390
18391 if ((addend_abs >> 2) > 0xff)
18392 as_bad_where (fixP->fx_file, fixP->fx_line,
18393 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18394 addend_abs);
18395
18396 /* Extract the instruction. */
18397 insn = md_chars_to_number (buf, INSN_SIZE);
18398
18399 /* If the addend is negative, clear bit 23 of the instruction.
18400 Otherwise set it. */
18401 if (value < 0)
18402 insn &= ~(1 << 23);
18403 else
18404 insn |= 1 << 23;
18405
18406 /* Place the addend (divided by four) into the first eight
18407 bits of the instruction. */
18408 insn &= 0xfffffff0;
18409 insn |= addend_abs >> 2;
18410
18411 /* Update the instruction. */
18412 md_number_to_chars (buf, insn, INSN_SIZE);
18413 }
18414 break;
18415
18416 case BFD_RELOC_UNUSED:
18417 default:
18418 as_bad_where (fixP->fx_file, fixP->fx_line,
18419 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18420 }
18421 }
18422
18423 /* Translate internal representation of relocation info to BFD target
18424 format. */
18425
18426 arelent *
18427 tc_gen_reloc (asection *section, fixS *fixp)
18428 {
18429 arelent * reloc;
18430 bfd_reloc_code_real_type code;
18431
18432 reloc = xmalloc (sizeof (arelent));
18433
18434 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18435 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18436 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18437
18438 if (fixp->fx_pcrel)
18439 {
18440 if (section->use_rela_p)
18441 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18442 else
18443 fixp->fx_offset = reloc->address;
18444 }
18445 reloc->addend = fixp->fx_offset;
18446
18447 switch (fixp->fx_r_type)
18448 {
18449 case BFD_RELOC_8:
18450 if (fixp->fx_pcrel)
18451 {
18452 code = BFD_RELOC_8_PCREL;
18453 break;
18454 }
18455
18456 case BFD_RELOC_16:
18457 if (fixp->fx_pcrel)
18458 {
18459 code = BFD_RELOC_16_PCREL;
18460 break;
18461 }
18462
18463 case BFD_RELOC_32:
18464 if (fixp->fx_pcrel)
18465 {
18466 code = BFD_RELOC_32_PCREL;
18467 break;
18468 }
18469
18470 case BFD_RELOC_ARM_MOVW:
18471 if (fixp->fx_pcrel)
18472 {
18473 code = BFD_RELOC_ARM_MOVW_PCREL;
18474 break;
18475 }
18476
18477 case BFD_RELOC_ARM_MOVT:
18478 if (fixp->fx_pcrel)
18479 {
18480 code = BFD_RELOC_ARM_MOVT_PCREL;
18481 break;
18482 }
18483
18484 case BFD_RELOC_ARM_THUMB_MOVW:
18485 if (fixp->fx_pcrel)
18486 {
18487 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
18488 break;
18489 }
18490
18491 case BFD_RELOC_ARM_THUMB_MOVT:
18492 if (fixp->fx_pcrel)
18493 {
18494 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
18495 break;
18496 }
18497
18498 case BFD_RELOC_NONE:
18499 case BFD_RELOC_ARM_PCREL_BRANCH:
18500 case BFD_RELOC_ARM_PCREL_BLX:
18501 case BFD_RELOC_RVA:
18502 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18503 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18504 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18505 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18506 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18507 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18508 case BFD_RELOC_THUMB_PCREL_BLX:
18509 case BFD_RELOC_VTABLE_ENTRY:
18510 case BFD_RELOC_VTABLE_INHERIT:
18511 #ifdef TE_PE
18512 case BFD_RELOC_32_SECREL:
18513 #endif
18514 code = fixp->fx_r_type;
18515 break;
18516
18517 case BFD_RELOC_ARM_LITERAL:
18518 case BFD_RELOC_ARM_HWLITERAL:
18519 /* If this is called then the a literal has
18520 been referenced across a section boundary. */
18521 as_bad_where (fixp->fx_file, fixp->fx_line,
18522 _("literal referenced across section boundary"));
18523 return NULL;
18524
18525 #ifdef OBJ_ELF
18526 case BFD_RELOC_ARM_GOT32:
18527 case BFD_RELOC_ARM_GOTOFF:
18528 case BFD_RELOC_ARM_PLT32:
18529 case BFD_RELOC_ARM_TARGET1:
18530 case BFD_RELOC_ARM_ROSEGREL32:
18531 case BFD_RELOC_ARM_SBREL32:
18532 case BFD_RELOC_ARM_PREL31:
18533 case BFD_RELOC_ARM_TARGET2:
18534 case BFD_RELOC_ARM_TLS_LE32:
18535 case BFD_RELOC_ARM_TLS_LDO32:
18536 case BFD_RELOC_ARM_PCREL_CALL:
18537 case BFD_RELOC_ARM_PCREL_JUMP:
18538 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18539 case BFD_RELOC_ARM_ALU_PC_G0:
18540 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18541 case BFD_RELOC_ARM_ALU_PC_G1:
18542 case BFD_RELOC_ARM_ALU_PC_G2:
18543 case BFD_RELOC_ARM_LDR_PC_G0:
18544 case BFD_RELOC_ARM_LDR_PC_G1:
18545 case BFD_RELOC_ARM_LDR_PC_G2:
18546 case BFD_RELOC_ARM_LDRS_PC_G0:
18547 case BFD_RELOC_ARM_LDRS_PC_G1:
18548 case BFD_RELOC_ARM_LDRS_PC_G2:
18549 case BFD_RELOC_ARM_LDC_PC_G0:
18550 case BFD_RELOC_ARM_LDC_PC_G1:
18551 case BFD_RELOC_ARM_LDC_PC_G2:
18552 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18553 case BFD_RELOC_ARM_ALU_SB_G0:
18554 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18555 case BFD_RELOC_ARM_ALU_SB_G1:
18556 case BFD_RELOC_ARM_ALU_SB_G2:
18557 case BFD_RELOC_ARM_LDR_SB_G0:
18558 case BFD_RELOC_ARM_LDR_SB_G1:
18559 case BFD_RELOC_ARM_LDR_SB_G2:
18560 case BFD_RELOC_ARM_LDRS_SB_G0:
18561 case BFD_RELOC_ARM_LDRS_SB_G1:
18562 case BFD_RELOC_ARM_LDRS_SB_G2:
18563 case BFD_RELOC_ARM_LDC_SB_G0:
18564 case BFD_RELOC_ARM_LDC_SB_G1:
18565 case BFD_RELOC_ARM_LDC_SB_G2:
18566 code = fixp->fx_r_type;
18567 break;
18568
18569 case BFD_RELOC_ARM_TLS_GD32:
18570 case BFD_RELOC_ARM_TLS_IE32:
18571 case BFD_RELOC_ARM_TLS_LDM32:
18572 /* BFD will include the symbol's address in the addend.
18573 But we don't want that, so subtract it out again here. */
18574 if (!S_IS_COMMON (fixp->fx_addsy))
18575 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
18576 code = fixp->fx_r_type;
18577 break;
18578 #endif
18579
18580 case BFD_RELOC_ARM_IMMEDIATE:
18581 as_bad_where (fixp->fx_file, fixp->fx_line,
18582 _("internal relocation (type: IMMEDIATE) not fixed up"));
18583 return NULL;
18584
18585 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18586 as_bad_where (fixp->fx_file, fixp->fx_line,
18587 _("ADRL used for a symbol not defined in the same file"));
18588 return NULL;
18589
18590 case BFD_RELOC_ARM_OFFSET_IMM:
18591 if (section->use_rela_p)
18592 {
18593 code = fixp->fx_r_type;
18594 break;
18595 }
18596
18597 if (fixp->fx_addsy != NULL
18598 && !S_IS_DEFINED (fixp->fx_addsy)
18599 && S_IS_LOCAL (fixp->fx_addsy))
18600 {
18601 as_bad_where (fixp->fx_file, fixp->fx_line,
18602 _("undefined local label `%s'"),
18603 S_GET_NAME (fixp->fx_addsy));
18604 return NULL;
18605 }
18606
18607 as_bad_where (fixp->fx_file, fixp->fx_line,
18608 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
18609 return NULL;
18610
18611 default:
18612 {
18613 char * type;
18614
18615 switch (fixp->fx_r_type)
18616 {
18617 case BFD_RELOC_NONE: type = "NONE"; break;
18618 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
18619 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
18620 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
18621 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
18622 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
18623 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
18624 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
18625 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
18626 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
18627 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
18628 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
18629 default: type = _("<unknown>"); break;
18630 }
18631 as_bad_where (fixp->fx_file, fixp->fx_line,
18632 _("cannot represent %s relocation in this object file format"),
18633 type);
18634 return NULL;
18635 }
18636 }
18637
18638 #ifdef OBJ_ELF
18639 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
18640 && GOT_symbol
18641 && fixp->fx_addsy == GOT_symbol)
18642 {
18643 code = BFD_RELOC_ARM_GOTPC;
18644 reloc->addend = fixp->fx_offset = reloc->address;
18645 }
18646 #endif
18647
18648 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18649
18650 if (reloc->howto == NULL)
18651 {
18652 as_bad_where (fixp->fx_file, fixp->fx_line,
18653 _("cannot represent %s relocation in this object file format"),
18654 bfd_get_reloc_code_name (code));
18655 return NULL;
18656 }
18657
18658 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
18659 vtable entry to be used in the relocation's section offset. */
18660 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18661 reloc->address = fixp->fx_offset;
18662
18663 return reloc;
18664 }
18665
18666 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
18667
18668 void
18669 cons_fix_new_arm (fragS * frag,
18670 int where,
18671 int size,
18672 expressionS * exp)
18673 {
18674 bfd_reloc_code_real_type type;
18675 int pcrel = 0;
18676
18677 /* Pick a reloc.
18678 FIXME: @@ Should look at CPU word size. */
18679 switch (size)
18680 {
18681 case 1:
18682 type = BFD_RELOC_8;
18683 break;
18684 case 2:
18685 type = BFD_RELOC_16;
18686 break;
18687 case 4:
18688 default:
18689 type = BFD_RELOC_32;
18690 break;
18691 case 8:
18692 type = BFD_RELOC_64;
18693 break;
18694 }
18695
18696 #ifdef TE_PE
18697 if (exp->X_op == O_secrel)
18698 {
18699 exp->X_op = O_symbol;
18700 type = BFD_RELOC_32_SECREL;
18701 }
18702 #endif
18703
18704 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
18705 }
18706
18707 #if defined OBJ_COFF || defined OBJ_ELF
18708 void
18709 arm_validate_fix (fixS * fixP)
18710 {
18711 /* If the destination of the branch is a defined symbol which does not have
18712 the THUMB_FUNC attribute, then we must be calling a function which has
18713 the (interfacearm) attribute. We look for the Thumb entry point to that
18714 function and change the branch to refer to that function instead. */
18715 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
18716 && fixP->fx_addsy != NULL
18717 && S_IS_DEFINED (fixP->fx_addsy)
18718 && ! THUMB_IS_FUNC (fixP->fx_addsy))
18719 {
18720 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
18721 }
18722 }
18723 #endif
18724
18725 int
18726 arm_force_relocation (struct fix * fixp)
18727 {
18728 #if defined (OBJ_COFF) && defined (TE_PE)
18729 if (fixp->fx_r_type == BFD_RELOC_RVA)
18730 return 1;
18731 #endif
18732
18733 /* Resolve these relocations even if the symbol is extern or weak. */
18734 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
18735 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
18736 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
18737 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
18738 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18739 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
18740 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
18741 return 0;
18742
18743 /* Always leave these relocations for the linker. */
18744 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
18745 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
18746 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
18747 return 1;
18748
18749 return generic_force_reloc (fixp);
18750 }
18751
18752 #ifdef OBJ_COFF
18753 bfd_boolean
18754 arm_fix_adjustable (fixS * fixP)
18755 {
18756 /* This is a little hack to help the gas/arm/adrl.s test. It prevents
18757 local labels from being added to the output symbol table when they
18758 are used with the ADRL pseudo op. The ADRL relocation should always
18759 be resolved before the binbary is emitted, so it is safe to say that
18760 it is adjustable. */
18761 if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
18762 return 1;
18763
18764 /* This is a hack for the gas/all/redef2.s test. This test causes symbols
18765 to be cloned, and without this test relocs would still be generated
18766 against the original, pre-cloned symbol. Such symbols would not appear
18767 in the symbol table however, and so a valid reloc could not be
18768 generated. So check to see if the fixup is against a symbol which has
18769 been removed from the symbol chain, and if it is, then allow it to be
18770 adjusted into a reloc against a section symbol. */
18771 if (fixP->fx_addsy != NULL
18772 && ! S_IS_LOCAL (fixP->fx_addsy)
18773 && symbol_next (fixP->fx_addsy) == NULL
18774 && symbol_next (fixP->fx_addsy) == symbol_previous (fixP->fx_addsy))
18775 return 1;
18776
18777 return 0;
18778 }
18779 #endif
18780
18781 #ifdef OBJ_ELF
18782 /* Relocations against function names must be left unadjusted,
18783 so that the linker can use this information to generate interworking
18784 stubs. The MIPS version of this function
18785 also prevents relocations that are mips-16 specific, but I do not
18786 know why it does this.
18787
18788 FIXME:
18789 There is one other problem that ought to be addressed here, but
18790 which currently is not: Taking the address of a label (rather
18791 than a function) and then later jumping to that address. Such
18792 addresses also ought to have their bottom bit set (assuming that
18793 they reside in Thumb code), but at the moment they will not. */
18794
18795 bfd_boolean
18796 arm_fix_adjustable (fixS * fixP)
18797 {
18798 if (fixP->fx_addsy == NULL)
18799 return 1;
18800
18801 /* Preserve relocations against symbols with function type. */
18802 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
18803 return 0;
18804
18805 if (THUMB_IS_FUNC (fixP->fx_addsy)
18806 && fixP->fx_subsy == NULL)
18807 return 0;
18808
18809 /* We need the symbol name for the VTABLE entries. */
18810 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
18811 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18812 return 0;
18813
18814 /* Don't allow symbols to be discarded on GOT related relocs. */
18815 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
18816 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
18817 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
18818 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
18819 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
18820 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
18821 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
18822 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
18823 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
18824 return 0;
18825
18826 /* Similarly for group relocations. */
18827 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
18828 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
18829 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
18830 return 0;
18831
18832 return 1;
18833 }
18834
18835 const char *
18836 elf32_arm_target_format (void)
18837 {
18838 #ifdef TE_SYMBIAN
18839 return (target_big_endian
18840 ? "elf32-bigarm-symbian"
18841 : "elf32-littlearm-symbian");
18842 #elif defined (TE_VXWORKS)
18843 return (target_big_endian
18844 ? "elf32-bigarm-vxworks"
18845 : "elf32-littlearm-vxworks");
18846 #else
18847 if (target_big_endian)
18848 return "elf32-bigarm";
18849 else
18850 return "elf32-littlearm";
18851 #endif
18852 }
18853
18854 void
18855 armelf_frob_symbol (symbolS * symp,
18856 int * puntp)
18857 {
18858 elf_frob_symbol (symp, puntp);
18859 }
18860 #endif
18861
18862 /* MD interface: Finalization. */
18863
18864 /* A good place to do this, although this was probably not intended
18865 for this kind of use. We need to dump the literal pool before
18866 references are made to a null symbol pointer. */
18867
18868 void
18869 arm_cleanup (void)
18870 {
18871 literal_pool * pool;
18872
18873 for (pool = list_of_pools; pool; pool = pool->next)
18874 {
18875 /* Put it at the end of the relevent section. */
18876 subseg_set (pool->section, pool->sub_section);
18877 #ifdef OBJ_ELF
18878 arm_elf_change_section ();
18879 #endif
18880 s_ltorg (0);
18881 }
18882 }
18883
18884 /* Adjust the symbol table. This marks Thumb symbols as distinct from
18885 ARM ones. */
18886
18887 void
18888 arm_adjust_symtab (void)
18889 {
18890 #ifdef OBJ_COFF
18891 symbolS * sym;
18892
18893 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
18894 {
18895 if (ARM_IS_THUMB (sym))
18896 {
18897 if (THUMB_IS_FUNC (sym))
18898 {
18899 /* Mark the symbol as a Thumb function. */
18900 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
18901 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
18902 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
18903
18904 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
18905 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
18906 else
18907 as_bad (_("%s: unexpected function type: %d"),
18908 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
18909 }
18910 else switch (S_GET_STORAGE_CLASS (sym))
18911 {
18912 case C_EXT:
18913 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
18914 break;
18915 case C_STAT:
18916 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
18917 break;
18918 case C_LABEL:
18919 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
18920 break;
18921 default:
18922 /* Do nothing. */
18923 break;
18924 }
18925 }
18926
18927 if (ARM_IS_INTERWORK (sym))
18928 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
18929 }
18930 #endif
18931 #ifdef OBJ_ELF
18932 symbolS * sym;
18933 char bind;
18934
18935 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
18936 {
18937 if (ARM_IS_THUMB (sym))
18938 {
18939 elf_symbol_type * elf_sym;
18940
18941 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
18942 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
18943
18944 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
18945 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
18946 {
18947 /* If it's a .thumb_func, declare it as so,
18948 otherwise tag label as .code 16. */
18949 if (THUMB_IS_FUNC (sym))
18950 elf_sym->internal_elf_sym.st_info =
18951 ELF_ST_INFO (bind, STT_ARM_TFUNC);
18952 else
18953 elf_sym->internal_elf_sym.st_info =
18954 ELF_ST_INFO (bind, STT_ARM_16BIT);
18955 }
18956 }
18957 }
18958 #endif
18959 }
18960
18961 /* MD interface: Initialization. */
18962
18963 static void
18964 set_constant_flonums (void)
18965 {
18966 int i;
18967
18968 for (i = 0; i < NUM_FLOAT_VALS; i++)
18969 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
18970 abort ();
18971 }
18972
18973 /* Auto-select Thumb mode if it's the only available instruction set for the
18974 given architecture. */
18975
18976 static void
18977 autoselect_thumb_from_cpu_variant (void)
18978 {
18979 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
18980 opcode_select (16);
18981 }
18982
18983 void
18984 md_begin (void)
18985 {
18986 unsigned mach;
18987 unsigned int i;
18988
18989 if ( (arm_ops_hsh = hash_new ()) == NULL
18990 || (arm_cond_hsh = hash_new ()) == NULL
18991 || (arm_shift_hsh = hash_new ()) == NULL
18992 || (arm_psr_hsh = hash_new ()) == NULL
18993 || (arm_v7m_psr_hsh = hash_new ()) == NULL
18994 || (arm_reg_hsh = hash_new ()) == NULL
18995 || (arm_reloc_hsh = hash_new ()) == NULL
18996 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
18997 as_fatal (_("virtual memory exhausted"));
18998
18999 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19000 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
19001 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19002 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
19003 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19004 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
19005 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19006 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
19007 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19008 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
19009 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19010 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
19011 for (i = 0;
19012 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19013 i++)
19014 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19015 (PTR) (barrier_opt_names + i));
19016 #ifdef OBJ_ELF
19017 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19018 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
19019 #endif
19020
19021 set_constant_flonums ();
19022
19023 /* Set the cpu variant based on the command-line options. We prefer
19024 -mcpu= over -march= if both are set (as for GCC); and we prefer
19025 -mfpu= over any other way of setting the floating point unit.
19026 Use of legacy options with new options are faulted. */
19027 if (legacy_cpu)
19028 {
19029 if (mcpu_cpu_opt || march_cpu_opt)
19030 as_bad (_("use of old and new-style options to set CPU type"));
19031
19032 mcpu_cpu_opt = legacy_cpu;
19033 }
19034 else if (!mcpu_cpu_opt)
19035 mcpu_cpu_opt = march_cpu_opt;
19036
19037 if (legacy_fpu)
19038 {
19039 if (mfpu_opt)
19040 as_bad (_("use of old and new-style options to set FPU type"));
19041
19042 mfpu_opt = legacy_fpu;
19043 }
19044 else if (!mfpu_opt)
19045 {
19046 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
19047 /* Some environments specify a default FPU. If they don't, infer it
19048 from the processor. */
19049 if (mcpu_fpu_opt)
19050 mfpu_opt = mcpu_fpu_opt;
19051 else
19052 mfpu_opt = march_fpu_opt;
19053 #else
19054 mfpu_opt = &fpu_default;
19055 #endif
19056 }
19057
19058 if (!mfpu_opt)
19059 {
19060 if (!mcpu_cpu_opt)
19061 mfpu_opt = &fpu_default;
19062 else if (ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
19063 mfpu_opt = &fpu_arch_vfp_v2;
19064 else
19065 mfpu_opt = &fpu_arch_fpa;
19066 }
19067
19068 #ifdef CPU_DEFAULT
19069 if (!mcpu_cpu_opt)
19070 {
19071 mcpu_cpu_opt = &cpu_default;
19072 selected_cpu = cpu_default;
19073 }
19074 #else
19075 if (mcpu_cpu_opt)
19076 selected_cpu = *mcpu_cpu_opt;
19077 else
19078 mcpu_cpu_opt = &arm_arch_any;
19079 #endif
19080
19081 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
19082
19083 autoselect_thumb_from_cpu_variant ();
19084
19085 arm_arch_used = thumb_arch_used = arm_arch_none;
19086
19087 #if defined OBJ_COFF || defined OBJ_ELF
19088 {
19089 unsigned int flags = 0;
19090
19091 #if defined OBJ_ELF
19092 flags = meabi_flags;
19093
19094 switch (meabi_flags)
19095 {
19096 case EF_ARM_EABI_UNKNOWN:
19097 #endif
19098 /* Set the flags in the private structure. */
19099 if (uses_apcs_26) flags |= F_APCS26;
19100 if (support_interwork) flags |= F_INTERWORK;
19101 if (uses_apcs_float) flags |= F_APCS_FLOAT;
19102 if (pic_code) flags |= F_PIC;
19103 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
19104 flags |= F_SOFT_FLOAT;
19105
19106 switch (mfloat_abi_opt)
19107 {
19108 case ARM_FLOAT_ABI_SOFT:
19109 case ARM_FLOAT_ABI_SOFTFP:
19110 flags |= F_SOFT_FLOAT;
19111 break;
19112
19113 case ARM_FLOAT_ABI_HARD:
19114 if (flags & F_SOFT_FLOAT)
19115 as_bad (_("hard-float conflicts with specified fpu"));
19116 break;
19117 }
19118
19119 /* Using pure-endian doubles (even if soft-float). */
19120 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
19121 flags |= F_VFP_FLOAT;
19122
19123 #if defined OBJ_ELF
19124 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
19125 flags |= EF_ARM_MAVERICK_FLOAT;
19126 break;
19127
19128 case EF_ARM_EABI_VER4:
19129 case EF_ARM_EABI_VER5:
19130 /* No additional flags to set. */
19131 break;
19132
19133 default:
19134 abort ();
19135 }
19136 #endif
19137 bfd_set_private_flags (stdoutput, flags);
19138
19139 /* We have run out flags in the COFF header to encode the
19140 status of ATPCS support, so instead we create a dummy,
19141 empty, debug section called .arm.atpcs. */
19142 if (atpcs)
19143 {
19144 asection * sec;
19145
19146 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19147
19148 if (sec != NULL)
19149 {
19150 bfd_set_section_flags
19151 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19152 bfd_set_section_size (stdoutput, sec, 0);
19153 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19154 }
19155 }
19156 }
19157 #endif
19158
19159 /* Record the CPU type as well. */
19160 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
19161 mach = bfd_mach_arm_iWMMXt;
19162 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
19163 mach = bfd_mach_arm_XScale;
19164 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
19165 mach = bfd_mach_arm_ep9312;
19166 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
19167 mach = bfd_mach_arm_5TE;
19168 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
19169 {
19170 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19171 mach = bfd_mach_arm_5T;
19172 else
19173 mach = bfd_mach_arm_5;
19174 }
19175 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
19176 {
19177 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19178 mach = bfd_mach_arm_4T;
19179 else
19180 mach = bfd_mach_arm_4;
19181 }
19182 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
19183 mach = bfd_mach_arm_3M;
19184 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19185 mach = bfd_mach_arm_3;
19186 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19187 mach = bfd_mach_arm_2a;
19188 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19189 mach = bfd_mach_arm_2;
19190 else
19191 mach = bfd_mach_arm_unknown;
19192
19193 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19194 }
19195
19196 /* Command line processing. */
19197
19198 /* md_parse_option
19199 Invocation line includes a switch not recognized by the base assembler.
19200 See if it's a processor-specific option.
19201
19202 This routine is somewhat complicated by the need for backwards
19203 compatibility (since older releases of gcc can't be changed).
19204 The new options try to make the interface as compatible as
19205 possible with GCC.
19206
19207 New options (supported) are:
19208
19209 -mcpu=<cpu name> Assemble for selected processor
19210 -march=<architecture name> Assemble for selected architecture
19211 -mfpu=<fpu architecture> Assemble for selected FPU.
19212 -EB/-mbig-endian Big-endian
19213 -EL/-mlittle-endian Little-endian
19214 -k Generate PIC code
19215 -mthumb Start in Thumb mode
19216 -mthumb-interwork Code supports ARM/Thumb interworking
19217
19218 For now we will also provide support for:
19219
19220 -mapcs-32 32-bit Program counter
19221 -mapcs-26 26-bit Program counter
19222 -macps-float Floats passed in FP registers
19223 -mapcs-reentrant Reentrant code
19224 -matpcs
19225 (sometime these will probably be replaced with -mapcs=<list of options>
19226 and -matpcs=<list of options>)
19227
19228 The remaining options are only supported for back-wards compatibility.
19229 Cpu variants, the arm part is optional:
19230 -m[arm]1 Currently not supported.
19231 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19232 -m[arm]3 Arm 3 processor
19233 -m[arm]6[xx], Arm 6 processors
19234 -m[arm]7[xx][t][[d]m] Arm 7 processors
19235 -m[arm]8[10] Arm 8 processors
19236 -m[arm]9[20][tdmi] Arm 9 processors
19237 -mstrongarm[110[0]] StrongARM processors
19238 -mxscale XScale processors
19239 -m[arm]v[2345[t[e]]] Arm architectures
19240 -mall All (except the ARM1)
19241 FP variants:
19242 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19243 -mfpe-old (No float load/store multiples)
19244 -mvfpxd VFP Single precision
19245 -mvfp All VFP
19246 -mno-fpu Disable all floating point instructions
19247
19248 The following CPU names are recognized:
19249 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19250 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19251 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19252 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19253 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19254 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19255 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19256
19257 */
19258
19259 const char * md_shortopts = "m:k";
19260
19261 #ifdef ARM_BI_ENDIAN
19262 #define OPTION_EB (OPTION_MD_BASE + 0)
19263 #define OPTION_EL (OPTION_MD_BASE + 1)
19264 #else
19265 #if TARGET_BYTES_BIG_ENDIAN
19266 #define OPTION_EB (OPTION_MD_BASE + 0)
19267 #else
19268 #define OPTION_EL (OPTION_MD_BASE + 1)
19269 #endif
19270 #endif
19271
19272 struct option md_longopts[] =
19273 {
19274 #ifdef OPTION_EB
19275 {"EB", no_argument, NULL, OPTION_EB},
19276 #endif
19277 #ifdef OPTION_EL
19278 {"EL", no_argument, NULL, OPTION_EL},
19279 #endif
19280 {NULL, no_argument, NULL, 0}
19281 };
19282
19283 size_t md_longopts_size = sizeof (md_longopts);
19284
19285 struct arm_option_table
19286 {
19287 char *option; /* Option name to match. */
19288 char *help; /* Help information. */
19289 int *var; /* Variable to change. */
19290 int value; /* What to change it to. */
19291 char *deprecated; /* If non-null, print this message. */
19292 };
19293
19294 struct arm_option_table arm_opts[] =
19295 {
19296 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19297 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19298 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19299 &support_interwork, 1, NULL},
19300 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19301 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19302 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19303 1, NULL},
19304 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19305 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19306 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19307 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19308 NULL},
19309
19310 /* These are recognized by the assembler, but have no affect on code. */
19311 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19312 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
19313 {NULL, NULL, NULL, 0, NULL}
19314 };
19315
19316 struct arm_legacy_option_table
19317 {
19318 char *option; /* Option name to match. */
19319 const arm_feature_set **var; /* Variable to change. */
19320 const arm_feature_set value; /* What to change it to. */
19321 char *deprecated; /* If non-null, print this message. */
19322 };
19323
19324 const struct arm_legacy_option_table arm_legacy_opts[] =
19325 {
19326 /* DON'T add any new processors to this list -- we want the whole list
19327 to go away... Add them to the processors table instead. */
19328 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19329 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19330 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19331 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19332 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19333 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19334 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19335 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19336 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19337 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19338 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19339 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19340 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19341 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19342 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19343 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19344 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19345 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19346 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19347 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19348 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19349 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19350 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19351 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19352 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19353 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19354 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19355 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19356 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19357 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19358 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19359 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19360 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19361 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19362 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19363 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19364 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19365 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19366 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19367 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19368 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19369 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19370 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19371 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19372 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19373 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19374 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19375 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19376 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19377 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19378 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19379 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19380 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19381 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19382 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19383 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19384 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19385 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19386 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19387 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19388 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19389 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19390 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19391 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19392 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19393 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19394 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19395 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19396 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19397 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
19398 N_("use -mcpu=strongarm110")},
19399 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
19400 N_("use -mcpu=strongarm1100")},
19401 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
19402 N_("use -mcpu=strongarm1110")},
19403 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19404 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19405 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
19406
19407 /* Architecture variants -- don't add any more to this list either. */
19408 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19409 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19410 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19411 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19412 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19413 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19414 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19415 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19416 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19417 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19418 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19419 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19420 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19421 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19422 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19423 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19424 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19425 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19426
19427 /* Floating point variants -- don't add any more to this list either. */
19428 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19429 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19430 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19431 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
19432 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
19433
19434 {NULL, NULL, ARM_ARCH_NONE, NULL}
19435 };
19436
19437 struct arm_cpu_option_table
19438 {
19439 char *name;
19440 const arm_feature_set value;
19441 /* For some CPUs we assume an FPU unless the user explicitly sets
19442 -mfpu=... */
19443 const arm_feature_set default_fpu;
19444 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19445 case. */
19446 const char *canonical_name;
19447 };
19448
19449 /* This list should, at a minimum, contain all the cpu names
19450 recognized by GCC. */
19451 static const struct arm_cpu_option_table arm_cpus[] =
19452 {
19453 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19454 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19455 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19456 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19457 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19458 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19459 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19460 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19461 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19462 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19463 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19464 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19465 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19466 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19467 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19468 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19469 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19470 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19471 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19472 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19473 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19474 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19475 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19476 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19477 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19478 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19479 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19480 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19481 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19482 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19483 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19484 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19485 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19486 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19487 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19488 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19489 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19490 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19491 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19492 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
19493 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19494 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19495 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19496 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19497 /* For V5 or later processors we default to using VFP; but the user
19498 should really set the FPU type explicitly. */
19499 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19500 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19501 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19502 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19503 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19504 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19505 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
19506 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19507 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19508 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
19509 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19510 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19511 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19512 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19513 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19514 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
19515 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19516 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19517 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19518 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
19519 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19520 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
19521 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
19522 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
19523 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
19524 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
19525 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
19526 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
19527 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
19528 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
19529 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
19530 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
19531 | FPU_NEON_EXT_V1),
19532 NULL},
19533 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
19534 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
19535 /* ??? XSCALE is really an architecture. */
19536 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
19537 /* ??? iwmmxt is not a processor. */
19538 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
19539 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
19540 /* Maverick */
19541 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
19542 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
19543 };
19544
19545 struct arm_arch_option_table
19546 {
19547 char *name;
19548 const arm_feature_set value;
19549 const arm_feature_set default_fpu;
19550 };
19551
19552 /* This list should, at a minimum, contain all the architecture names
19553 recognized by GCC. */
19554 static const struct arm_arch_option_table arm_archs[] =
19555 {
19556 {"all", ARM_ANY, FPU_ARCH_FPA},
19557 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
19558 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
19559 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
19560 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
19561 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
19562 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
19563 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
19564 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
19565 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
19566 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
19567 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
19568 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
19569 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
19570 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
19571 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
19572 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
19573 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
19574 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
19575 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
19576 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
19577 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
19578 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
19579 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
19580 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
19581 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
19582 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
19583 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
19584 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
19585 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
19586 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
19587 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
19588 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
19589 };
19590
19591 /* ISA extensions in the co-processor space. */
19592 struct arm_option_cpu_value_table
19593 {
19594 char *name;
19595 const arm_feature_set value;
19596 };
19597
19598 static const struct arm_option_cpu_value_table arm_extensions[] =
19599 {
19600 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
19601 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
19602 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
19603 {NULL, ARM_ARCH_NONE}
19604 };
19605
19606 /* This list should, at a minimum, contain all the fpu names
19607 recognized by GCC. */
19608 static const struct arm_option_cpu_value_table arm_fpus[] =
19609 {
19610 {"softfpa", FPU_NONE},
19611 {"fpe", FPU_ARCH_FPE},
19612 {"fpe2", FPU_ARCH_FPE},
19613 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
19614 {"fpa", FPU_ARCH_FPA},
19615 {"fpa10", FPU_ARCH_FPA},
19616 {"fpa11", FPU_ARCH_FPA},
19617 {"arm7500fe", FPU_ARCH_FPA},
19618 {"softvfp", FPU_ARCH_VFP},
19619 {"softvfp+vfp", FPU_ARCH_VFP_V2},
19620 {"vfp", FPU_ARCH_VFP_V2},
19621 {"vfp9", FPU_ARCH_VFP_V2},
19622 {"vfp3", FPU_ARCH_VFP_V3},
19623 {"vfp10", FPU_ARCH_VFP_V2},
19624 {"vfp10-r0", FPU_ARCH_VFP_V1},
19625 {"vfpxd", FPU_ARCH_VFP_V1xD},
19626 {"arm1020t", FPU_ARCH_VFP_V1},
19627 {"arm1020e", FPU_ARCH_VFP_V2},
19628 {"arm1136jfs", FPU_ARCH_VFP_V2},
19629 {"arm1136jf-s", FPU_ARCH_VFP_V2},
19630 {"maverick", FPU_ARCH_MAVERICK},
19631 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
19632 {NULL, ARM_ARCH_NONE}
19633 };
19634
19635 struct arm_option_value_table
19636 {
19637 char *name;
19638 long value;
19639 };
19640
19641 static const struct arm_option_value_table arm_float_abis[] =
19642 {
19643 {"hard", ARM_FLOAT_ABI_HARD},
19644 {"softfp", ARM_FLOAT_ABI_SOFTFP},
19645 {"soft", ARM_FLOAT_ABI_SOFT},
19646 {NULL, 0}
19647 };
19648
19649 #ifdef OBJ_ELF
19650 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
19651 static const struct arm_option_value_table arm_eabis[] =
19652 {
19653 {"gnu", EF_ARM_EABI_UNKNOWN},
19654 {"4", EF_ARM_EABI_VER4},
19655 {"5", EF_ARM_EABI_VER5},
19656 {NULL, 0}
19657 };
19658 #endif
19659
19660 struct arm_long_option_table
19661 {
19662 char * option; /* Substring to match. */
19663 char * help; /* Help information. */
19664 int (* func) (char * subopt); /* Function to decode sub-option. */
19665 char * deprecated; /* If non-null, print this message. */
19666 };
19667
19668 static int
19669 arm_parse_extension (char * str, const arm_feature_set **opt_p)
19670 {
19671 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
19672
19673 /* Copy the feature set, so that we can modify it. */
19674 *ext_set = **opt_p;
19675 *opt_p = ext_set;
19676
19677 while (str != NULL && *str != 0)
19678 {
19679 const struct arm_option_cpu_value_table * opt;
19680 char * ext;
19681 int optlen;
19682
19683 if (*str != '+')
19684 {
19685 as_bad (_("invalid architectural extension"));
19686 return 0;
19687 }
19688
19689 str++;
19690 ext = strchr (str, '+');
19691
19692 if (ext != NULL)
19693 optlen = ext - str;
19694 else
19695 optlen = strlen (str);
19696
19697 if (optlen == 0)
19698 {
19699 as_bad (_("missing architectural extension"));
19700 return 0;
19701 }
19702
19703 for (opt = arm_extensions; opt->name != NULL; opt++)
19704 if (strncmp (opt->name, str, optlen) == 0)
19705 {
19706 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
19707 break;
19708 }
19709
19710 if (opt->name == NULL)
19711 {
19712 as_bad (_("unknown architectural extnsion `%s'"), str);
19713 return 0;
19714 }
19715
19716 str = ext;
19717 };
19718
19719 return 1;
19720 }
19721
19722 static int
19723 arm_parse_cpu (char * str)
19724 {
19725 const struct arm_cpu_option_table * opt;
19726 char * ext = strchr (str, '+');
19727 int optlen;
19728
19729 if (ext != NULL)
19730 optlen = ext - str;
19731 else
19732 optlen = strlen (str);
19733
19734 if (optlen == 0)
19735 {
19736 as_bad (_("missing cpu name `%s'"), str);
19737 return 0;
19738 }
19739
19740 for (opt = arm_cpus; opt->name != NULL; opt++)
19741 if (strncmp (opt->name, str, optlen) == 0)
19742 {
19743 mcpu_cpu_opt = &opt->value;
19744 mcpu_fpu_opt = &opt->default_fpu;
19745 if (opt->canonical_name)
19746 strcpy(selected_cpu_name, opt->canonical_name);
19747 else
19748 {
19749 int i;
19750 for (i = 0; i < optlen; i++)
19751 selected_cpu_name[i] = TOUPPER (opt->name[i]);
19752 selected_cpu_name[i] = 0;
19753 }
19754
19755 if (ext != NULL)
19756 return arm_parse_extension (ext, &mcpu_cpu_opt);
19757
19758 return 1;
19759 }
19760
19761 as_bad (_("unknown cpu `%s'"), str);
19762 return 0;
19763 }
19764
19765 static int
19766 arm_parse_arch (char * str)
19767 {
19768 const struct arm_arch_option_table *opt;
19769 char *ext = strchr (str, '+');
19770 int optlen;
19771
19772 if (ext != NULL)
19773 optlen = ext - str;
19774 else
19775 optlen = strlen (str);
19776
19777 if (optlen == 0)
19778 {
19779 as_bad (_("missing architecture name `%s'"), str);
19780 return 0;
19781 }
19782
19783 for (opt = arm_archs; opt->name != NULL; opt++)
19784 if (streq (opt->name, str))
19785 {
19786 march_cpu_opt = &opt->value;
19787 march_fpu_opt = &opt->default_fpu;
19788 strcpy(selected_cpu_name, opt->name);
19789
19790 if (ext != NULL)
19791 return arm_parse_extension (ext, &march_cpu_opt);
19792
19793 return 1;
19794 }
19795
19796 as_bad (_("unknown architecture `%s'\n"), str);
19797 return 0;
19798 }
19799
19800 static int
19801 arm_parse_fpu (char * str)
19802 {
19803 const struct arm_option_cpu_value_table * opt;
19804
19805 for (opt = arm_fpus; opt->name != NULL; opt++)
19806 if (streq (opt->name, str))
19807 {
19808 mfpu_opt = &opt->value;
19809 return 1;
19810 }
19811
19812 as_bad (_("unknown floating point format `%s'\n"), str);
19813 return 0;
19814 }
19815
19816 static int
19817 arm_parse_float_abi (char * str)
19818 {
19819 const struct arm_option_value_table * opt;
19820
19821 for (opt = arm_float_abis; opt->name != NULL; opt++)
19822 if (streq (opt->name, str))
19823 {
19824 mfloat_abi_opt = opt->value;
19825 return 1;
19826 }
19827
19828 as_bad (_("unknown floating point abi `%s'\n"), str);
19829 return 0;
19830 }
19831
19832 #ifdef OBJ_ELF
19833 static int
19834 arm_parse_eabi (char * str)
19835 {
19836 const struct arm_option_value_table *opt;
19837
19838 for (opt = arm_eabis; opt->name != NULL; opt++)
19839 if (streq (opt->name, str))
19840 {
19841 meabi_flags = opt->value;
19842 return 1;
19843 }
19844 as_bad (_("unknown EABI `%s'\n"), str);
19845 return 0;
19846 }
19847 #endif
19848
19849 struct arm_long_option_table arm_long_opts[] =
19850 {
19851 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
19852 arm_parse_cpu, NULL},
19853 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
19854 arm_parse_arch, NULL},
19855 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
19856 arm_parse_fpu, NULL},
19857 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
19858 arm_parse_float_abi, NULL},
19859 #ifdef OBJ_ELF
19860 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
19861 arm_parse_eabi, NULL},
19862 #endif
19863 {NULL, NULL, 0, NULL}
19864 };
19865
19866 int
19867 md_parse_option (int c, char * arg)
19868 {
19869 struct arm_option_table *opt;
19870 const struct arm_legacy_option_table *fopt;
19871 struct arm_long_option_table *lopt;
19872
19873 switch (c)
19874 {
19875 #ifdef OPTION_EB
19876 case OPTION_EB:
19877 target_big_endian = 1;
19878 break;
19879 #endif
19880
19881 #ifdef OPTION_EL
19882 case OPTION_EL:
19883 target_big_endian = 0;
19884 break;
19885 #endif
19886
19887 case 'a':
19888 /* Listing option. Just ignore these, we don't support additional
19889 ones. */
19890 return 0;
19891
19892 default:
19893 for (opt = arm_opts; opt->option != NULL; opt++)
19894 {
19895 if (c == opt->option[0]
19896 && ((arg == NULL && opt->option[1] == 0)
19897 || streq (arg, opt->option + 1)))
19898 {
19899 #if WARN_DEPRECATED
19900 /* If the option is deprecated, tell the user. */
19901 if (opt->deprecated != NULL)
19902 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
19903 arg ? arg : "", _(opt->deprecated));
19904 #endif
19905
19906 if (opt->var != NULL)
19907 *opt->var = opt->value;
19908
19909 return 1;
19910 }
19911 }
19912
19913 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
19914 {
19915 if (c == fopt->option[0]
19916 && ((arg == NULL && fopt->option[1] == 0)
19917 || streq (arg, fopt->option + 1)))
19918 {
19919 #if WARN_DEPRECATED
19920 /* If the option is deprecated, tell the user. */
19921 if (fopt->deprecated != NULL)
19922 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
19923 arg ? arg : "", _(fopt->deprecated));
19924 #endif
19925
19926 if (fopt->var != NULL)
19927 *fopt->var = &fopt->value;
19928
19929 return 1;
19930 }
19931 }
19932
19933 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
19934 {
19935 /* These options are expected to have an argument. */
19936 if (c == lopt->option[0]
19937 && arg != NULL
19938 && strncmp (arg, lopt->option + 1,
19939 strlen (lopt->option + 1)) == 0)
19940 {
19941 #if WARN_DEPRECATED
19942 /* If the option is deprecated, tell the user. */
19943 if (lopt->deprecated != NULL)
19944 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
19945 _(lopt->deprecated));
19946 #endif
19947
19948 /* Call the sup-option parser. */
19949 return lopt->func (arg + strlen (lopt->option) - 1);
19950 }
19951 }
19952
19953 return 0;
19954 }
19955
19956 return 1;
19957 }
19958
19959 void
19960 md_show_usage (FILE * fp)
19961 {
19962 struct arm_option_table *opt;
19963 struct arm_long_option_table *lopt;
19964
19965 fprintf (fp, _(" ARM-specific assembler options:\n"));
19966
19967 for (opt = arm_opts; opt->option != NULL; opt++)
19968 if (opt->help != NULL)
19969 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
19970
19971 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
19972 if (lopt->help != NULL)
19973 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
19974
19975 #ifdef OPTION_EB
19976 fprintf (fp, _("\
19977 -EB assemble code for a big-endian cpu\n"));
19978 #endif
19979
19980 #ifdef OPTION_EL
19981 fprintf (fp, _("\
19982 -EL assemble code for a little-endian cpu\n"));
19983 #endif
19984 }
19985
19986
19987 #ifdef OBJ_ELF
19988 typedef struct
19989 {
19990 int val;
19991 arm_feature_set flags;
19992 } cpu_arch_ver_table;
19993
19994 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
19995 least features first. */
19996 static const cpu_arch_ver_table cpu_arch_ver[] =
19997 {
19998 {1, ARM_ARCH_V4},
19999 {2, ARM_ARCH_V4T},
20000 {3, ARM_ARCH_V5},
20001 {4, ARM_ARCH_V5TE},
20002 {5, ARM_ARCH_V5TEJ},
20003 {6, ARM_ARCH_V6},
20004 {7, ARM_ARCH_V6Z},
20005 {8, ARM_ARCH_V6K},
20006 {9, ARM_ARCH_V6T2},
20007 {10, ARM_ARCH_V7A},
20008 {10, ARM_ARCH_V7R},
20009 {10, ARM_ARCH_V7M},
20010 {0, ARM_ARCH_NONE}
20011 };
20012
20013 /* Set the public EABI object attributes. */
20014 static void
20015 aeabi_set_public_attributes (void)
20016 {
20017 int arch;
20018 arm_feature_set flags;
20019 arm_feature_set tmp;
20020 const cpu_arch_ver_table *p;
20021
20022 /* Choose the architecture based on the capabilities of the requested cpu
20023 (if any) and/or the instructions actually used. */
20024 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20025 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20026 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
20027
20028 tmp = flags;
20029 arch = 0;
20030 for (p = cpu_arch_ver; p->val; p++)
20031 {
20032 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20033 {
20034 arch = p->val;
20035 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20036 }
20037 }
20038
20039 /* Tag_CPU_name. */
20040 if (selected_cpu_name[0])
20041 {
20042 char *p;
20043
20044 p = selected_cpu_name;
20045 if (strncmp(p, "armv", 4) == 0)
20046 {
20047 int i;
20048
20049 p += 4;
20050 for (i = 0; p[i]; i++)
20051 p[i] = TOUPPER (p[i]);
20052 }
20053 elf32_arm_add_eabi_attr_string (stdoutput, 5, p);
20054 }
20055 /* Tag_CPU_arch. */
20056 elf32_arm_add_eabi_attr_int (stdoutput, 6, arch);
20057 /* Tag_CPU_arch_profile. */
20058 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
20059 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A');
20060 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
20061 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R');
20062 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
20063 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M');
20064 /* Tag_ARM_ISA_use. */
20065 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
20066 elf32_arm_add_eabi_attr_int (stdoutput, 8, 1);
20067 /* Tag_THUMB_ISA_use. */
20068 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
20069 elf32_arm_add_eabi_attr_int (stdoutput, 9,
20070 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
20071 /* Tag_VFP_arch. */
20072 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
20073 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
20074 elf32_arm_add_eabi_attr_int (stdoutput, 10, 3);
20075 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20076 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
20077 elf32_arm_add_eabi_attr_int (stdoutput, 10, 2);
20078 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20079 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20080 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20081 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
20082 elf32_arm_add_eabi_attr_int (stdoutput, 10, 1);
20083 /* Tag_WMMX_arch. */
20084 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20085 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
20086 elf32_arm_add_eabi_attr_int (stdoutput, 11, 1);
20087 /* Tag_NEON_arch. */
20088 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20089 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
20090 elf32_arm_add_eabi_attr_int (stdoutput, 12, 1);
20091 }
20092
20093 /* Add the .ARM.attributes section. */
20094 void
20095 arm_md_end (void)
20096 {
20097 segT s;
20098 char *p;
20099 addressT addr;
20100 offsetT size;
20101
20102 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20103 return;
20104
20105 aeabi_set_public_attributes ();
20106 size = elf32_arm_eabi_attr_size (stdoutput);
20107 s = subseg_new (".ARM.attributes", 0);
20108 bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA);
20109 addr = frag_now_fix ();
20110 p = frag_more (size);
20111 elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size);
20112 }
20113 #endif /* OBJ_ELF */
20114
20115
20116 /* Parse a .cpu directive. */
20117
20118 static void
20119 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20120 {
20121 const struct arm_cpu_option_table *opt;
20122 char *name;
20123 char saved_char;
20124
20125 name = input_line_pointer;
20126 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20127 input_line_pointer++;
20128 saved_char = *input_line_pointer;
20129 *input_line_pointer = 0;
20130
20131 /* Skip the first "all" entry. */
20132 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20133 if (streq (opt->name, name))
20134 {
20135 mcpu_cpu_opt = &opt->value;
20136 selected_cpu = opt->value;
20137 if (opt->canonical_name)
20138 strcpy(selected_cpu_name, opt->canonical_name);
20139 else
20140 {
20141 int i;
20142 for (i = 0; opt->name[i]; i++)
20143 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20144 selected_cpu_name[i] = 0;
20145 }
20146 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20147 *input_line_pointer = saved_char;
20148 demand_empty_rest_of_line ();
20149 return;
20150 }
20151 as_bad (_("unknown cpu `%s'"), name);
20152 *input_line_pointer = saved_char;
20153 ignore_rest_of_line ();
20154 }
20155
20156
20157 /* Parse a .arch directive. */
20158
20159 static void
20160 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20161 {
20162 const struct arm_arch_option_table *opt;
20163 char saved_char;
20164 char *name;
20165
20166 name = input_line_pointer;
20167 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20168 input_line_pointer++;
20169 saved_char = *input_line_pointer;
20170 *input_line_pointer = 0;
20171
20172 /* Skip the first "all" entry. */
20173 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20174 if (streq (opt->name, name))
20175 {
20176 mcpu_cpu_opt = &opt->value;
20177 selected_cpu = opt->value;
20178 strcpy(selected_cpu_name, opt->name);
20179 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20180 *input_line_pointer = saved_char;
20181 demand_empty_rest_of_line ();
20182 return;
20183 }
20184
20185 as_bad (_("unknown architecture `%s'\n"), name);
20186 *input_line_pointer = saved_char;
20187 ignore_rest_of_line ();
20188 }
20189
20190
20191 /* Parse a .fpu directive. */
20192
20193 static void
20194 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20195 {
20196 const struct arm_option_cpu_value_table *opt;
20197 char saved_char;
20198 char *name;
20199
20200 name = input_line_pointer;
20201 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20202 input_line_pointer++;
20203 saved_char = *input_line_pointer;
20204 *input_line_pointer = 0;
20205
20206 for (opt = arm_fpus; opt->name != NULL; opt++)
20207 if (streq (opt->name, name))
20208 {
20209 mfpu_opt = &opt->value;
20210 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20211 *input_line_pointer = saved_char;
20212 demand_empty_rest_of_line ();
20213 return;
20214 }
20215
20216 as_bad (_("unknown floating point format `%s'\n"), name);
20217 *input_line_pointer = saved_char;
20218 ignore_rest_of_line ();
20219 }
20220
This page took 0.455103 seconds and 5 git commands to generate.