* config/tc-arm.c (do_t_strexd): Remove
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
188 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
200
201 static const arm_feature_set arm_arch_any = ARM_ANY;
202 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
203 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
204 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
205
206 static const arm_feature_set arm_cext_iwmmxt2 =
207 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
208 static const arm_feature_set arm_cext_iwmmxt =
209 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
210 static const arm_feature_set arm_cext_xscale =
211 ARM_FEATURE (0, ARM_CEXT_XSCALE);
212 static const arm_feature_set arm_cext_maverick =
213 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
214 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
215 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
216 static const arm_feature_set fpu_vfp_ext_v1xd =
217 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
218 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
219 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
220 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
221 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
222 static const arm_feature_set fpu_vfp_ext_d32 =
223 ARM_FEATURE (0, FPU_VFP_EXT_D32);
224 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
225 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
226 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
227 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
228 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
229 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
230
231 static int mfloat_abi_opt = -1;
232 /* Record user cpu selection for object attributes. */
233 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
234 /* Must be long enough to hold any of the names in arm_cpus. */
235 static char selected_cpu_name[16];
236 #ifdef OBJ_ELF
237 # ifdef EABI_DEFAULT
238 static int meabi_flags = EABI_DEFAULT;
239 # else
240 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
241 # endif
242
243 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
244
245 bfd_boolean
246 arm_is_eabi (void)
247 {
248 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
249 }
250 #endif
251
252 #ifdef OBJ_ELF
253 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
254 symbolS * GOT_symbol;
255 #endif
256
257 /* 0: assemble for ARM,
258 1: assemble for Thumb,
259 2: assemble for Thumb even though target CPU does not support thumb
260 instructions. */
261 static int thumb_mode = 0;
262 /* A value distinct from the possible values for thumb_mode that we
263 can use to record whether thumb_mode has been copied into the
264 tc_frag_data field of a frag. */
265 #define MODE_RECORDED (1 << 4)
266
267 /* Specifies the intrinsic IT insn behavior mode. */
268 enum implicit_it_mode
269 {
270 IMPLICIT_IT_MODE_NEVER = 0x00,
271 IMPLICIT_IT_MODE_ARM = 0x01,
272 IMPLICIT_IT_MODE_THUMB = 0x02,
273 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
274 };
275 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
276
277 /* If unified_syntax is true, we are processing the new unified
278 ARM/Thumb syntax. Important differences from the old ARM mode:
279
280 - Immediate operands do not require a # prefix.
281 - Conditional affixes always appear at the end of the
282 instruction. (For backward compatibility, those instructions
283 that formerly had them in the middle, continue to accept them
284 there.)
285 - The IT instruction may appear, and if it does is validated
286 against subsequent conditional affixes. It does not generate
287 machine code.
288
289 Important differences from the old Thumb mode:
290
291 - Immediate operands do not require a # prefix.
292 - Most of the V6T2 instructions are only available in unified mode.
293 - The .N and .W suffixes are recognized and honored (it is an error
294 if they cannot be honored).
295 - All instructions set the flags if and only if they have an 's' affix.
296 - Conditional affixes may be used. They are validated against
297 preceding IT instructions. Unlike ARM mode, you cannot use a
298 conditional affix except in the scope of an IT instruction. */
299
300 static bfd_boolean unified_syntax = FALSE;
301
302 enum neon_el_type
303 {
304 NT_invtype,
305 NT_untyped,
306 NT_integer,
307 NT_float,
308 NT_poly,
309 NT_signed,
310 NT_unsigned
311 };
312
313 struct neon_type_el
314 {
315 enum neon_el_type type;
316 unsigned size;
317 };
318
319 #define NEON_MAX_TYPE_ELS 4
320
321 struct neon_type
322 {
323 struct neon_type_el el[NEON_MAX_TYPE_ELS];
324 unsigned elems;
325 };
326
327 enum it_instruction_type
328 {
329 OUTSIDE_IT_INSN,
330 INSIDE_IT_INSN,
331 INSIDE_IT_LAST_INSN,
332 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
333 if inside, should be the last one. */
334 NEUTRAL_IT_INSN, /* This could be either inside or outside,
335 i.e. BKPT and NOP. */
336 IT_INSN /* The IT insn has been parsed. */
337 };
338
339 struct arm_it
340 {
341 const char * error;
342 unsigned long instruction;
343 int size;
344 int size_req;
345 int cond;
346 /* "uncond_value" is set to the value in place of the conditional field in
347 unconditional versions of the instruction, or -1 if nothing is
348 appropriate. */
349 int uncond_value;
350 struct neon_type vectype;
351 /* This does not indicate an actual NEON instruction, only that
352 the mnemonic accepts neon-style type suffixes. */
353 int is_neon;
354 /* Set to the opcode if the instruction needs relaxation.
355 Zero if the instruction is not relaxed. */
356 unsigned long relax;
357 struct
358 {
359 bfd_reloc_code_real_type type;
360 expressionS exp;
361 int pc_rel;
362 } reloc;
363
364 enum it_instruction_type it_insn_type;
365
366 struct
367 {
368 unsigned reg;
369 signed int imm;
370 struct neon_type_el vectype;
371 unsigned present : 1; /* Operand present. */
372 unsigned isreg : 1; /* Operand was a register. */
373 unsigned immisreg : 1; /* .imm field is a second register. */
374 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
375 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
376 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
377 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
378 instructions. This allows us to disambiguate ARM <-> vector insns. */
379 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
380 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
381 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
382 unsigned issingle : 1; /* Operand is VFP single-precision register. */
383 unsigned hasreloc : 1; /* Operand has relocation suffix. */
384 unsigned writeback : 1; /* Operand has trailing ! */
385 unsigned preind : 1; /* Preindexed address. */
386 unsigned postind : 1; /* Postindexed address. */
387 unsigned negative : 1; /* Index register was negated. */
388 unsigned shifted : 1; /* Shift applied to operation. */
389 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
390 } operands[6];
391 };
392
393 static struct arm_it inst;
394
395 #define NUM_FLOAT_VALS 8
396
397 const char * fp_const[] =
398 {
399 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
400 };
401
402 /* Number of littlenums required to hold an extended precision number. */
403 #define MAX_LITTLENUMS 6
404
405 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
406
407 #define FAIL (-1)
408 #define SUCCESS (0)
409
410 #define SUFF_S 1
411 #define SUFF_D 2
412 #define SUFF_E 3
413 #define SUFF_P 4
414
415 #define CP_T_X 0x00008000
416 #define CP_T_Y 0x00400000
417
418 #define CONDS_BIT 0x00100000
419 #define LOAD_BIT 0x00100000
420
421 #define DOUBLE_LOAD_FLAG 0x00000001
422
423 struct asm_cond
424 {
425 const char * template_name;
426 unsigned long value;
427 };
428
429 #define COND_ALWAYS 0xE
430
431 struct asm_psr
432 {
433 const char * template_name;
434 unsigned long field;
435 };
436
437 struct asm_barrier_opt
438 {
439 const char * template_name;
440 unsigned long value;
441 };
442
443 /* The bit that distinguishes CPSR and SPSR. */
444 #define SPSR_BIT (1 << 22)
445
446 /* The individual PSR flag bits. */
447 #define PSR_c (1 << 16)
448 #define PSR_x (1 << 17)
449 #define PSR_s (1 << 18)
450 #define PSR_f (1 << 19)
451
452 struct reloc_entry
453 {
454 char * name;
455 bfd_reloc_code_real_type reloc;
456 };
457
458 enum vfp_reg_pos
459 {
460 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
461 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
462 };
463
464 enum vfp_ldstm_type
465 {
466 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
467 };
468
469 /* Bits for DEFINED field in neon_typed_alias. */
470 #define NTA_HASTYPE 1
471 #define NTA_HASINDEX 2
472
473 struct neon_typed_alias
474 {
475 unsigned char defined;
476 unsigned char index;
477 struct neon_type_el eltype;
478 };
479
480 /* ARM register categories. This includes coprocessor numbers and various
481 architecture extensions' registers. */
482 enum arm_reg_type
483 {
484 REG_TYPE_RN,
485 REG_TYPE_CP,
486 REG_TYPE_CN,
487 REG_TYPE_FN,
488 REG_TYPE_VFS,
489 REG_TYPE_VFD,
490 REG_TYPE_NQ,
491 REG_TYPE_VFSD,
492 REG_TYPE_NDQ,
493 REG_TYPE_NSDQ,
494 REG_TYPE_VFC,
495 REG_TYPE_MVF,
496 REG_TYPE_MVD,
497 REG_TYPE_MVFX,
498 REG_TYPE_MVDX,
499 REG_TYPE_MVAX,
500 REG_TYPE_DSPSC,
501 REG_TYPE_MMXWR,
502 REG_TYPE_MMXWC,
503 REG_TYPE_MMXWCG,
504 REG_TYPE_XSCALE,
505 };
506
507 /* Structure for a hash table entry for a register.
508 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
509 information which states whether a vector type or index is specified (for a
510 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
511 struct reg_entry
512 {
513 const char * name;
514 unsigned char number;
515 unsigned char type;
516 unsigned char builtin;
517 struct neon_typed_alias * neon;
518 };
519
520 /* Diagnostics used when we don't get a register of the expected type. */
521 const char * const reg_expected_msgs[] =
522 {
523 N_("ARM register expected"),
524 N_("bad or missing co-processor number"),
525 N_("co-processor register expected"),
526 N_("FPA register expected"),
527 N_("VFP single precision register expected"),
528 N_("VFP/Neon double precision register expected"),
529 N_("Neon quad precision register expected"),
530 N_("VFP single or double precision register expected"),
531 N_("Neon double or quad precision register expected"),
532 N_("VFP single, double or Neon quad precision register expected"),
533 N_("VFP system register expected"),
534 N_("Maverick MVF register expected"),
535 N_("Maverick MVD register expected"),
536 N_("Maverick MVFX register expected"),
537 N_("Maverick MVDX register expected"),
538 N_("Maverick MVAX register expected"),
539 N_("Maverick DSPSC register expected"),
540 N_("iWMMXt data register expected"),
541 N_("iWMMXt control register expected"),
542 N_("iWMMXt scalar register expected"),
543 N_("XScale accumulator register expected"),
544 };
545
546 /* Some well known registers that we refer to directly elsewhere. */
547 #define REG_SP 13
548 #define REG_LR 14
549 #define REG_PC 15
550
551 /* ARM instructions take 4bytes in the object file, Thumb instructions
552 take 2: */
553 #define INSN_SIZE 4
554
555 struct asm_opcode
556 {
557 /* Basic string to match. */
558 const char * template_name;
559
560 /* Parameters to instruction. */
561 unsigned int operands[8];
562
563 /* Conditional tag - see opcode_lookup. */
564 unsigned int tag : 4;
565
566 /* Basic instruction code. */
567 unsigned int avalue : 28;
568
569 /* Thumb-format instruction code. */
570 unsigned int tvalue;
571
572 /* Which architecture variant provides this instruction. */
573 const arm_feature_set * avariant;
574 const arm_feature_set * tvariant;
575
576 /* Function to call to encode instruction in ARM format. */
577 void (* aencode) (void);
578
579 /* Function to call to encode instruction in Thumb format. */
580 void (* tencode) (void);
581 };
582
583 /* Defines for various bits that we will want to toggle. */
584 #define INST_IMMEDIATE 0x02000000
585 #define OFFSET_REG 0x02000000
586 #define HWOFFSET_IMM 0x00400000
587 #define SHIFT_BY_REG 0x00000010
588 #define PRE_INDEX 0x01000000
589 #define INDEX_UP 0x00800000
590 #define WRITE_BACK 0x00200000
591 #define LDM_TYPE_2_OR_3 0x00400000
592 #define CPSI_MMOD 0x00020000
593
594 #define LITERAL_MASK 0xf000f000
595 #define OPCODE_MASK 0xfe1fffff
596 #define V4_STR_BIT 0x00000020
597
598 #define T2_SUBS_PC_LR 0xf3de8f00
599
600 #define DATA_OP_SHIFT 21
601
602 #define T2_OPCODE_MASK 0xfe1fffff
603 #define T2_DATA_OP_SHIFT 21
604
605 /* Codes to distinguish the arithmetic instructions. */
606 #define OPCODE_AND 0
607 #define OPCODE_EOR 1
608 #define OPCODE_SUB 2
609 #define OPCODE_RSB 3
610 #define OPCODE_ADD 4
611 #define OPCODE_ADC 5
612 #define OPCODE_SBC 6
613 #define OPCODE_RSC 7
614 #define OPCODE_TST 8
615 #define OPCODE_TEQ 9
616 #define OPCODE_CMP 10
617 #define OPCODE_CMN 11
618 #define OPCODE_ORR 12
619 #define OPCODE_MOV 13
620 #define OPCODE_BIC 14
621 #define OPCODE_MVN 15
622
623 #define T2_OPCODE_AND 0
624 #define T2_OPCODE_BIC 1
625 #define T2_OPCODE_ORR 2
626 #define T2_OPCODE_ORN 3
627 #define T2_OPCODE_EOR 4
628 #define T2_OPCODE_ADD 8
629 #define T2_OPCODE_ADC 10
630 #define T2_OPCODE_SBC 11
631 #define T2_OPCODE_SUB 13
632 #define T2_OPCODE_RSB 14
633
634 #define T_OPCODE_MUL 0x4340
635 #define T_OPCODE_TST 0x4200
636 #define T_OPCODE_CMN 0x42c0
637 #define T_OPCODE_NEG 0x4240
638 #define T_OPCODE_MVN 0x43c0
639
640 #define T_OPCODE_ADD_R3 0x1800
641 #define T_OPCODE_SUB_R3 0x1a00
642 #define T_OPCODE_ADD_HI 0x4400
643 #define T_OPCODE_ADD_ST 0xb000
644 #define T_OPCODE_SUB_ST 0xb080
645 #define T_OPCODE_ADD_SP 0xa800
646 #define T_OPCODE_ADD_PC 0xa000
647 #define T_OPCODE_ADD_I8 0x3000
648 #define T_OPCODE_SUB_I8 0x3800
649 #define T_OPCODE_ADD_I3 0x1c00
650 #define T_OPCODE_SUB_I3 0x1e00
651
652 #define T_OPCODE_ASR_R 0x4100
653 #define T_OPCODE_LSL_R 0x4080
654 #define T_OPCODE_LSR_R 0x40c0
655 #define T_OPCODE_ROR_R 0x41c0
656 #define T_OPCODE_ASR_I 0x1000
657 #define T_OPCODE_LSL_I 0x0000
658 #define T_OPCODE_LSR_I 0x0800
659
660 #define T_OPCODE_MOV_I8 0x2000
661 #define T_OPCODE_CMP_I8 0x2800
662 #define T_OPCODE_CMP_LR 0x4280
663 #define T_OPCODE_MOV_HR 0x4600
664 #define T_OPCODE_CMP_HR 0x4500
665
666 #define T_OPCODE_LDR_PC 0x4800
667 #define T_OPCODE_LDR_SP 0x9800
668 #define T_OPCODE_STR_SP 0x9000
669 #define T_OPCODE_LDR_IW 0x6800
670 #define T_OPCODE_STR_IW 0x6000
671 #define T_OPCODE_LDR_IH 0x8800
672 #define T_OPCODE_STR_IH 0x8000
673 #define T_OPCODE_LDR_IB 0x7800
674 #define T_OPCODE_STR_IB 0x7000
675 #define T_OPCODE_LDR_RW 0x5800
676 #define T_OPCODE_STR_RW 0x5000
677 #define T_OPCODE_LDR_RH 0x5a00
678 #define T_OPCODE_STR_RH 0x5200
679 #define T_OPCODE_LDR_RB 0x5c00
680 #define T_OPCODE_STR_RB 0x5400
681
682 #define T_OPCODE_PUSH 0xb400
683 #define T_OPCODE_POP 0xbc00
684
685 #define T_OPCODE_BRANCH 0xe000
686
687 #define THUMB_SIZE 2 /* Size of thumb instruction. */
688 #define THUMB_PP_PC_LR 0x0100
689 #define THUMB_LOAD_BIT 0x0800
690 #define THUMB2_LOAD_BIT 0x00100000
691
692 #define BAD_ARGS _("bad arguments to instruction")
693 #define BAD_SP _("r13 not allowed here")
694 #define BAD_PC _("r15 not allowed here")
695 #define BAD_COND _("instruction cannot be conditional")
696 #define BAD_OVERLAP _("registers may not be the same")
697 #define BAD_HIREG _("lo register required")
698 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
699 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
700 #define BAD_BRANCH _("branch must be last instruction in IT block")
701 #define BAD_NOT_IT _("instruction not allowed in IT block")
702 #define BAD_FPU _("selected FPU does not support instruction")
703 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
704 #define BAD_IT_COND _("incorrect condition in IT block")
705 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
706 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
707 #define BAD_PC_ADDRESSING \
708 _("cannot use register index with PC-relative addressing")
709 #define BAD_PC_WRITEBACK \
710 _("cannot use writeback with PC-relative addressing")
711
712 static struct hash_control * arm_ops_hsh;
713 static struct hash_control * arm_cond_hsh;
714 static struct hash_control * arm_shift_hsh;
715 static struct hash_control * arm_psr_hsh;
716 static struct hash_control * arm_v7m_psr_hsh;
717 static struct hash_control * arm_reg_hsh;
718 static struct hash_control * arm_reloc_hsh;
719 static struct hash_control * arm_barrier_opt_hsh;
720
721 /* Stuff needed to resolve the label ambiguity
722 As:
723 ...
724 label: <insn>
725 may differ from:
726 ...
727 label:
728 <insn> */
729
730 symbolS * last_label_seen;
731 static int label_is_thumb_function_name = FALSE;
732
733 /* Literal pool structure. Held on a per-section
734 and per-sub-section basis. */
735
736 #define MAX_LITERAL_POOL_SIZE 1024
737 typedef struct literal_pool
738 {
739 expressionS literals [MAX_LITERAL_POOL_SIZE];
740 unsigned int next_free_entry;
741 unsigned int id;
742 symbolS * symbol;
743 segT section;
744 subsegT sub_section;
745 struct literal_pool * next;
746 } literal_pool;
747
748 /* Pointer to a linked list of literal pools. */
749 literal_pool * list_of_pools = NULL;
750
751 #ifdef OBJ_ELF
752 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
753 #else
754 static struct current_it now_it;
755 #endif
756
757 static inline int
758 now_it_compatible (int cond)
759 {
760 return (cond & ~1) == (now_it.cc & ~1);
761 }
762
763 static inline int
764 conditional_insn (void)
765 {
766 return inst.cond != COND_ALWAYS;
767 }
768
769 static int in_it_block (void);
770
771 static int handle_it_state (void);
772
773 static void force_automatic_it_block_close (void);
774
775 static void it_fsm_post_encode (void);
776
777 #define set_it_insn_type(type) \
778 do \
779 { \
780 inst.it_insn_type = type; \
781 if (handle_it_state () == FAIL) \
782 return; \
783 } \
784 while (0)
785
786 #define set_it_insn_type_nonvoid(type, failret) \
787 do \
788 { \
789 inst.it_insn_type = type; \
790 if (handle_it_state () == FAIL) \
791 return failret; \
792 } \
793 while(0)
794
795 #define set_it_insn_type_last() \
796 do \
797 { \
798 if (inst.cond == COND_ALWAYS) \
799 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
800 else \
801 set_it_insn_type (INSIDE_IT_LAST_INSN); \
802 } \
803 while (0)
804
805 /* Pure syntax. */
806
807 /* This array holds the chars that always start a comment. If the
808 pre-processor is disabled, these aren't very useful. */
809 const char comment_chars[] = "@";
810
811 /* This array holds the chars that only start a comment at the beginning of
812 a line. If the line seems to have the form '# 123 filename'
813 .line and .file directives will appear in the pre-processed output. */
814 /* Note that input_file.c hand checks for '#' at the beginning of the
815 first line of the input file. This is because the compiler outputs
816 #NO_APP at the beginning of its output. */
817 /* Also note that comments like this one will always work. */
818 const char line_comment_chars[] = "#";
819
820 const char line_separator_chars[] = ";";
821
822 /* Chars that can be used to separate mant
823 from exp in floating point numbers. */
824 const char EXP_CHARS[] = "eE";
825
826 /* Chars that mean this number is a floating point constant. */
827 /* As in 0f12.456 */
828 /* or 0d1.2345e12 */
829
830 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
831
832 /* Prefix characters that indicate the start of an immediate
833 value. */
834 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
835
836 /* Separator character handling. */
837
838 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
839
840 static inline int
841 skip_past_char (char ** str, char c)
842 {
843 if (**str == c)
844 {
845 (*str)++;
846 return SUCCESS;
847 }
848 else
849 return FAIL;
850 }
851
852 #define skip_past_comma(str) skip_past_char (str, ',')
853
854 /* Arithmetic expressions (possibly involving symbols). */
855
856 /* Return TRUE if anything in the expression is a bignum. */
857
858 static int
859 walk_no_bignums (symbolS * sp)
860 {
861 if (symbol_get_value_expression (sp)->X_op == O_big)
862 return 1;
863
864 if (symbol_get_value_expression (sp)->X_add_symbol)
865 {
866 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
867 || (symbol_get_value_expression (sp)->X_op_symbol
868 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
869 }
870
871 return 0;
872 }
873
874 static int in_my_get_expression = 0;
875
876 /* Third argument to my_get_expression. */
877 #define GE_NO_PREFIX 0
878 #define GE_IMM_PREFIX 1
879 #define GE_OPT_PREFIX 2
880 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
881 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
882 #define GE_OPT_PREFIX_BIG 3
883
884 static int
885 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
886 {
887 char * save_in;
888 segT seg;
889
890 /* In unified syntax, all prefixes are optional. */
891 if (unified_syntax)
892 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
893 : GE_OPT_PREFIX;
894
895 switch (prefix_mode)
896 {
897 case GE_NO_PREFIX: break;
898 case GE_IMM_PREFIX:
899 if (!is_immediate_prefix (**str))
900 {
901 inst.error = _("immediate expression requires a # prefix");
902 return FAIL;
903 }
904 (*str)++;
905 break;
906 case GE_OPT_PREFIX:
907 case GE_OPT_PREFIX_BIG:
908 if (is_immediate_prefix (**str))
909 (*str)++;
910 break;
911 default: abort ();
912 }
913
914 memset (ep, 0, sizeof (expressionS));
915
916 save_in = input_line_pointer;
917 input_line_pointer = *str;
918 in_my_get_expression = 1;
919 seg = expression (ep);
920 in_my_get_expression = 0;
921
922 if (ep->X_op == O_illegal || ep->X_op == O_absent)
923 {
924 /* We found a bad or missing expression in md_operand(). */
925 *str = input_line_pointer;
926 input_line_pointer = save_in;
927 if (inst.error == NULL)
928 inst.error = (ep->X_op == O_absent
929 ? _("missing expression") :_("bad expression"));
930 return 1;
931 }
932
933 #ifdef OBJ_AOUT
934 if (seg != absolute_section
935 && seg != text_section
936 && seg != data_section
937 && seg != bss_section
938 && seg != undefined_section)
939 {
940 inst.error = _("bad segment");
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 return 1;
944 }
945 #endif
946
947 /* Get rid of any bignums now, so that we don't generate an error for which
948 we can't establish a line number later on. Big numbers are never valid
949 in instructions, which is where this routine is always called. */
950 if (prefix_mode != GE_OPT_PREFIX_BIG
951 && (ep->X_op == O_big
952 || (ep->X_add_symbol
953 && (walk_no_bignums (ep->X_add_symbol)
954 || (ep->X_op_symbol
955 && walk_no_bignums (ep->X_op_symbol))))))
956 {
957 inst.error = _("invalid constant");
958 *str = input_line_pointer;
959 input_line_pointer = save_in;
960 return 1;
961 }
962
963 *str = input_line_pointer;
964 input_line_pointer = save_in;
965 return 0;
966 }
967
968 /* Turn a string in input_line_pointer into a floating point constant
969 of type TYPE, and store the appropriate bytes in *LITP. The number
970 of LITTLENUMS emitted is stored in *SIZEP. An error message is
971 returned, or NULL on OK.
972
973 Note that fp constants aren't represent in the normal way on the ARM.
974 In big endian mode, things are as expected. However, in little endian
975 mode fp constants are big-endian word-wise, and little-endian byte-wise
976 within the words. For example, (double) 1.1 in big endian mode is
977 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
978 the byte sequence 99 99 f1 3f 9a 99 99 99.
979
980 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
981
982 char *
983 md_atof (int type, char * litP, int * sizeP)
984 {
985 int prec;
986 LITTLENUM_TYPE words[MAX_LITTLENUMS];
987 char *t;
988 int i;
989
990 switch (type)
991 {
992 case 'f':
993 case 'F':
994 case 's':
995 case 'S':
996 prec = 2;
997 break;
998
999 case 'd':
1000 case 'D':
1001 case 'r':
1002 case 'R':
1003 prec = 4;
1004 break;
1005
1006 case 'x':
1007 case 'X':
1008 prec = 5;
1009 break;
1010
1011 case 'p':
1012 case 'P':
1013 prec = 5;
1014 break;
1015
1016 default:
1017 *sizeP = 0;
1018 return _("Unrecognized or unsupported floating point constant");
1019 }
1020
1021 t = atof_ieee (input_line_pointer, type, words);
1022 if (t)
1023 input_line_pointer = t;
1024 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1025
1026 if (target_big_endian)
1027 {
1028 for (i = 0; i < prec; i++)
1029 {
1030 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1031 litP += sizeof (LITTLENUM_TYPE);
1032 }
1033 }
1034 else
1035 {
1036 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1037 for (i = prec - 1; i >= 0; i--)
1038 {
1039 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1040 litP += sizeof (LITTLENUM_TYPE);
1041 }
1042 else
1043 /* For a 4 byte float the order of elements in `words' is 1 0.
1044 For an 8 byte float the order is 1 0 3 2. */
1045 for (i = 0; i < prec; i += 2)
1046 {
1047 md_number_to_chars (litP, (valueT) words[i + 1],
1048 sizeof (LITTLENUM_TYPE));
1049 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1050 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1051 litP += 2 * sizeof (LITTLENUM_TYPE);
1052 }
1053 }
1054
1055 return NULL;
1056 }
1057
1058 /* We handle all bad expressions here, so that we can report the faulty
1059 instruction in the error message. */
1060 void
1061 md_operand (expressionS * exp)
1062 {
1063 if (in_my_get_expression)
1064 exp->X_op = O_illegal;
1065 }
1066
1067 /* Immediate values. */
1068
1069 /* Generic immediate-value read function for use in directives.
1070 Accepts anything that 'expression' can fold to a constant.
1071 *val receives the number. */
1072 #ifdef OBJ_ELF
1073 static int
1074 immediate_for_directive (int *val)
1075 {
1076 expressionS exp;
1077 exp.X_op = O_illegal;
1078
1079 if (is_immediate_prefix (*input_line_pointer))
1080 {
1081 input_line_pointer++;
1082 expression (&exp);
1083 }
1084
1085 if (exp.X_op != O_constant)
1086 {
1087 as_bad (_("expected #constant"));
1088 ignore_rest_of_line ();
1089 return FAIL;
1090 }
1091 *val = exp.X_add_number;
1092 return SUCCESS;
1093 }
1094 #endif
1095
1096 /* Register parsing. */
1097
1098 /* Generic register parser. CCP points to what should be the
1099 beginning of a register name. If it is indeed a valid register
1100 name, advance CCP over it and return the reg_entry structure;
1101 otherwise return NULL. Does not issue diagnostics. */
1102
1103 static struct reg_entry *
1104 arm_reg_parse_multi (char **ccp)
1105 {
1106 char *start = *ccp;
1107 char *p;
1108 struct reg_entry *reg;
1109
1110 #ifdef REGISTER_PREFIX
1111 if (*start != REGISTER_PREFIX)
1112 return NULL;
1113 start++;
1114 #endif
1115 #ifdef OPTIONAL_REGISTER_PREFIX
1116 if (*start == OPTIONAL_REGISTER_PREFIX)
1117 start++;
1118 #endif
1119
1120 p = start;
1121 if (!ISALPHA (*p) || !is_name_beginner (*p))
1122 return NULL;
1123
1124 do
1125 p++;
1126 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1127
1128 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1129
1130 if (!reg)
1131 return NULL;
1132
1133 *ccp = p;
1134 return reg;
1135 }
1136
1137 static int
1138 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1139 enum arm_reg_type type)
1140 {
1141 /* Alternative syntaxes are accepted for a few register classes. */
1142 switch (type)
1143 {
1144 case REG_TYPE_MVF:
1145 case REG_TYPE_MVD:
1146 case REG_TYPE_MVFX:
1147 case REG_TYPE_MVDX:
1148 /* Generic coprocessor register names are allowed for these. */
1149 if (reg && reg->type == REG_TYPE_CN)
1150 return reg->number;
1151 break;
1152
1153 case REG_TYPE_CP:
1154 /* For backward compatibility, a bare number is valid here. */
1155 {
1156 unsigned long processor = strtoul (start, ccp, 10);
1157 if (*ccp != start && processor <= 15)
1158 return processor;
1159 }
1160
1161 case REG_TYPE_MMXWC:
1162 /* WC includes WCG. ??? I'm not sure this is true for all
1163 instructions that take WC registers. */
1164 if (reg && reg->type == REG_TYPE_MMXWCG)
1165 return reg->number;
1166 break;
1167
1168 default:
1169 break;
1170 }
1171
1172 return FAIL;
1173 }
1174
1175 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1176 return value is the register number or FAIL. */
1177
1178 static int
1179 arm_reg_parse (char **ccp, enum arm_reg_type type)
1180 {
1181 char *start = *ccp;
1182 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1183 int ret;
1184
1185 /* Do not allow a scalar (reg+index) to parse as a register. */
1186 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1187 return FAIL;
1188
1189 if (reg && reg->type == type)
1190 return reg->number;
1191
1192 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1193 return ret;
1194
1195 *ccp = start;
1196 return FAIL;
1197 }
1198
1199 /* Parse a Neon type specifier. *STR should point at the leading '.'
1200 character. Does no verification at this stage that the type fits the opcode
1201 properly. E.g.,
1202
1203 .i32.i32.s16
1204 .s32.f32
1205 .u16
1206
1207 Can all be legally parsed by this function.
1208
1209 Fills in neon_type struct pointer with parsed information, and updates STR
1210 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1211 type, FAIL if not. */
1212
1213 static int
1214 parse_neon_type (struct neon_type *type, char **str)
1215 {
1216 char *ptr = *str;
1217
1218 if (type)
1219 type->elems = 0;
1220
1221 while (type->elems < NEON_MAX_TYPE_ELS)
1222 {
1223 enum neon_el_type thistype = NT_untyped;
1224 unsigned thissize = -1u;
1225
1226 if (*ptr != '.')
1227 break;
1228
1229 ptr++;
1230
1231 /* Just a size without an explicit type. */
1232 if (ISDIGIT (*ptr))
1233 goto parsesize;
1234
1235 switch (TOLOWER (*ptr))
1236 {
1237 case 'i': thistype = NT_integer; break;
1238 case 'f': thistype = NT_float; break;
1239 case 'p': thistype = NT_poly; break;
1240 case 's': thistype = NT_signed; break;
1241 case 'u': thistype = NT_unsigned; break;
1242 case 'd':
1243 thistype = NT_float;
1244 thissize = 64;
1245 ptr++;
1246 goto done;
1247 default:
1248 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1249 return FAIL;
1250 }
1251
1252 ptr++;
1253
1254 /* .f is an abbreviation for .f32. */
1255 if (thistype == NT_float && !ISDIGIT (*ptr))
1256 thissize = 32;
1257 else
1258 {
1259 parsesize:
1260 thissize = strtoul (ptr, &ptr, 10);
1261
1262 if (thissize != 8 && thissize != 16 && thissize != 32
1263 && thissize != 64)
1264 {
1265 as_bad (_("bad size %d in type specifier"), thissize);
1266 return FAIL;
1267 }
1268 }
1269
1270 done:
1271 if (type)
1272 {
1273 type->el[type->elems].type = thistype;
1274 type->el[type->elems].size = thissize;
1275 type->elems++;
1276 }
1277 }
1278
1279 /* Empty/missing type is not a successful parse. */
1280 if (type->elems == 0)
1281 return FAIL;
1282
1283 *str = ptr;
1284
1285 return SUCCESS;
1286 }
1287
1288 /* Errors may be set multiple times during parsing or bit encoding
1289 (particularly in the Neon bits), but usually the earliest error which is set
1290 will be the most meaningful. Avoid overwriting it with later (cascading)
1291 errors by calling this function. */
1292
1293 static void
1294 first_error (const char *err)
1295 {
1296 if (!inst.error)
1297 inst.error = err;
1298 }
1299
1300 /* Parse a single type, e.g. ".s32", leading period included. */
1301 static int
1302 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1303 {
1304 char *str = *ccp;
1305 struct neon_type optype;
1306
1307 if (*str == '.')
1308 {
1309 if (parse_neon_type (&optype, &str) == SUCCESS)
1310 {
1311 if (optype.elems == 1)
1312 *vectype = optype.el[0];
1313 else
1314 {
1315 first_error (_("only one type should be specified for operand"));
1316 return FAIL;
1317 }
1318 }
1319 else
1320 {
1321 first_error (_("vector type expected"));
1322 return FAIL;
1323 }
1324 }
1325 else
1326 return FAIL;
1327
1328 *ccp = str;
1329
1330 return SUCCESS;
1331 }
1332
1333 /* Special meanings for indices (which have a range of 0-7), which will fit into
1334 a 4-bit integer. */
1335
1336 #define NEON_ALL_LANES 15
1337 #define NEON_INTERLEAVE_LANES 14
1338
1339 /* Parse either a register or a scalar, with an optional type. Return the
1340 register number, and optionally fill in the actual type of the register
1341 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1342 type/index information in *TYPEINFO. */
1343
1344 static int
1345 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1346 enum arm_reg_type *rtype,
1347 struct neon_typed_alias *typeinfo)
1348 {
1349 char *str = *ccp;
1350 struct reg_entry *reg = arm_reg_parse_multi (&str);
1351 struct neon_typed_alias atype;
1352 struct neon_type_el parsetype;
1353
1354 atype.defined = 0;
1355 atype.index = -1;
1356 atype.eltype.type = NT_invtype;
1357 atype.eltype.size = -1;
1358
1359 /* Try alternate syntax for some types of register. Note these are mutually
1360 exclusive with the Neon syntax extensions. */
1361 if (reg == NULL)
1362 {
1363 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1364 if (altreg != FAIL)
1365 *ccp = str;
1366 if (typeinfo)
1367 *typeinfo = atype;
1368 return altreg;
1369 }
1370
1371 /* Undo polymorphism when a set of register types may be accepted. */
1372 if ((type == REG_TYPE_NDQ
1373 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1374 || (type == REG_TYPE_VFSD
1375 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1376 || (type == REG_TYPE_NSDQ
1377 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1378 || reg->type == REG_TYPE_NQ))
1379 || (type == REG_TYPE_MMXWC
1380 && (reg->type == REG_TYPE_MMXWCG)))
1381 type = (enum arm_reg_type) reg->type;
1382
1383 if (type != reg->type)
1384 return FAIL;
1385
1386 if (reg->neon)
1387 atype = *reg->neon;
1388
1389 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1390 {
1391 if ((atype.defined & NTA_HASTYPE) != 0)
1392 {
1393 first_error (_("can't redefine type for operand"));
1394 return FAIL;
1395 }
1396 atype.defined |= NTA_HASTYPE;
1397 atype.eltype = parsetype;
1398 }
1399
1400 if (skip_past_char (&str, '[') == SUCCESS)
1401 {
1402 if (type != REG_TYPE_VFD)
1403 {
1404 first_error (_("only D registers may be indexed"));
1405 return FAIL;
1406 }
1407
1408 if ((atype.defined & NTA_HASINDEX) != 0)
1409 {
1410 first_error (_("can't change index for operand"));
1411 return FAIL;
1412 }
1413
1414 atype.defined |= NTA_HASINDEX;
1415
1416 if (skip_past_char (&str, ']') == SUCCESS)
1417 atype.index = NEON_ALL_LANES;
1418 else
1419 {
1420 expressionS exp;
1421
1422 my_get_expression (&exp, &str, GE_NO_PREFIX);
1423
1424 if (exp.X_op != O_constant)
1425 {
1426 first_error (_("constant expression required"));
1427 return FAIL;
1428 }
1429
1430 if (skip_past_char (&str, ']') == FAIL)
1431 return FAIL;
1432
1433 atype.index = exp.X_add_number;
1434 }
1435 }
1436
1437 if (typeinfo)
1438 *typeinfo = atype;
1439
1440 if (rtype)
1441 *rtype = type;
1442
1443 *ccp = str;
1444
1445 return reg->number;
1446 }
1447
1448 /* Like arm_reg_parse, but allow allow the following extra features:
1449 - If RTYPE is non-zero, return the (possibly restricted) type of the
1450 register (e.g. Neon double or quad reg when either has been requested).
1451 - If this is a Neon vector type with additional type information, fill
1452 in the struct pointed to by VECTYPE (if non-NULL).
1453 This function will fault on encountering a scalar. */
1454
1455 static int
1456 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1457 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1458 {
1459 struct neon_typed_alias atype;
1460 char *str = *ccp;
1461 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1462
1463 if (reg == FAIL)
1464 return FAIL;
1465
1466 /* Do not allow a scalar (reg+index) to parse as a register. */
1467 if ((atype.defined & NTA_HASINDEX) != 0)
1468 {
1469 first_error (_("register operand expected, but got scalar"));
1470 return FAIL;
1471 }
1472
1473 if (vectype)
1474 *vectype = atype.eltype;
1475
1476 *ccp = str;
1477
1478 return reg;
1479 }
1480
1481 #define NEON_SCALAR_REG(X) ((X) >> 4)
1482 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1483
1484 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1485 have enough information to be able to do a good job bounds-checking. So, we
1486 just do easy checks here, and do further checks later. */
1487
1488 static int
1489 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1490 {
1491 int reg;
1492 char *str = *ccp;
1493 struct neon_typed_alias atype;
1494
1495 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1496
1497 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1498 return FAIL;
1499
1500 if (atype.index == NEON_ALL_LANES)
1501 {
1502 first_error (_("scalar must have an index"));
1503 return FAIL;
1504 }
1505 else if (atype.index >= 64 / elsize)
1506 {
1507 first_error (_("scalar index out of range"));
1508 return FAIL;
1509 }
1510
1511 if (type)
1512 *type = atype.eltype;
1513
1514 *ccp = str;
1515
1516 return reg * 16 + atype.index;
1517 }
1518
1519 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1520
1521 static long
1522 parse_reg_list (char ** strp)
1523 {
1524 char * str = * strp;
1525 long range = 0;
1526 int another_range;
1527
1528 /* We come back here if we get ranges concatenated by '+' or '|'. */
1529 do
1530 {
1531 another_range = 0;
1532
1533 if (*str == '{')
1534 {
1535 int in_range = 0;
1536 int cur_reg = -1;
1537
1538 str++;
1539 do
1540 {
1541 int reg;
1542
1543 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1544 {
1545 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1546 return FAIL;
1547 }
1548
1549 if (in_range)
1550 {
1551 int i;
1552
1553 if (reg <= cur_reg)
1554 {
1555 first_error (_("bad range in register list"));
1556 return FAIL;
1557 }
1558
1559 for (i = cur_reg + 1; i < reg; i++)
1560 {
1561 if (range & (1 << i))
1562 as_tsktsk
1563 (_("Warning: duplicated register (r%d) in register list"),
1564 i);
1565 else
1566 range |= 1 << i;
1567 }
1568 in_range = 0;
1569 }
1570
1571 if (range & (1 << reg))
1572 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1573 reg);
1574 else if (reg <= cur_reg)
1575 as_tsktsk (_("Warning: register range not in ascending order"));
1576
1577 range |= 1 << reg;
1578 cur_reg = reg;
1579 }
1580 while (skip_past_comma (&str) != FAIL
1581 || (in_range = 1, *str++ == '-'));
1582 str--;
1583
1584 if (*str++ != '}')
1585 {
1586 first_error (_("missing `}'"));
1587 return FAIL;
1588 }
1589 }
1590 else
1591 {
1592 expressionS exp;
1593
1594 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1595 return FAIL;
1596
1597 if (exp.X_op == O_constant)
1598 {
1599 if (exp.X_add_number
1600 != (exp.X_add_number & 0x0000ffff))
1601 {
1602 inst.error = _("invalid register mask");
1603 return FAIL;
1604 }
1605
1606 if ((range & exp.X_add_number) != 0)
1607 {
1608 int regno = range & exp.X_add_number;
1609
1610 regno &= -regno;
1611 regno = (1 << regno) - 1;
1612 as_tsktsk
1613 (_("Warning: duplicated register (r%d) in register list"),
1614 regno);
1615 }
1616
1617 range |= exp.X_add_number;
1618 }
1619 else
1620 {
1621 if (inst.reloc.type != 0)
1622 {
1623 inst.error = _("expression too complex");
1624 return FAIL;
1625 }
1626
1627 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1628 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1629 inst.reloc.pc_rel = 0;
1630 }
1631 }
1632
1633 if (*str == '|' || *str == '+')
1634 {
1635 str++;
1636 another_range = 1;
1637 }
1638 }
1639 while (another_range);
1640
1641 *strp = str;
1642 return range;
1643 }
1644
1645 /* Types of registers in a list. */
1646
1647 enum reg_list_els
1648 {
1649 REGLIST_VFP_S,
1650 REGLIST_VFP_D,
1651 REGLIST_NEON_D
1652 };
1653
1654 /* Parse a VFP register list. If the string is invalid return FAIL.
1655 Otherwise return the number of registers, and set PBASE to the first
1656 register. Parses registers of type ETYPE.
1657 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1658 - Q registers can be used to specify pairs of D registers
1659 - { } can be omitted from around a singleton register list
1660 FIXME: This is not implemented, as it would require backtracking in
1661 some cases, e.g.:
1662 vtbl.8 d3,d4,d5
1663 This could be done (the meaning isn't really ambiguous), but doesn't
1664 fit in well with the current parsing framework.
1665 - 32 D registers may be used (also true for VFPv3).
1666 FIXME: Types are ignored in these register lists, which is probably a
1667 bug. */
1668
1669 static int
1670 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1671 {
1672 char *str = *ccp;
1673 int base_reg;
1674 int new_base;
1675 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1676 int max_regs = 0;
1677 int count = 0;
1678 int warned = 0;
1679 unsigned long mask = 0;
1680 int i;
1681
1682 if (*str != '{')
1683 {
1684 inst.error = _("expecting {");
1685 return FAIL;
1686 }
1687
1688 str++;
1689
1690 switch (etype)
1691 {
1692 case REGLIST_VFP_S:
1693 regtype = REG_TYPE_VFS;
1694 max_regs = 32;
1695 break;
1696
1697 case REGLIST_VFP_D:
1698 regtype = REG_TYPE_VFD;
1699 break;
1700
1701 case REGLIST_NEON_D:
1702 regtype = REG_TYPE_NDQ;
1703 break;
1704 }
1705
1706 if (etype != REGLIST_VFP_S)
1707 {
1708 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1709 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1710 {
1711 max_regs = 32;
1712 if (thumb_mode)
1713 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1714 fpu_vfp_ext_d32);
1715 else
1716 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1717 fpu_vfp_ext_d32);
1718 }
1719 else
1720 max_regs = 16;
1721 }
1722
1723 base_reg = max_regs;
1724
1725 do
1726 {
1727 int setmask = 1, addregs = 1;
1728
1729 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1730
1731 if (new_base == FAIL)
1732 {
1733 first_error (_(reg_expected_msgs[regtype]));
1734 return FAIL;
1735 }
1736
1737 if (new_base >= max_regs)
1738 {
1739 first_error (_("register out of range in list"));
1740 return FAIL;
1741 }
1742
1743 /* Note: a value of 2 * n is returned for the register Q<n>. */
1744 if (regtype == REG_TYPE_NQ)
1745 {
1746 setmask = 3;
1747 addregs = 2;
1748 }
1749
1750 if (new_base < base_reg)
1751 base_reg = new_base;
1752
1753 if (mask & (setmask << new_base))
1754 {
1755 first_error (_("invalid register list"));
1756 return FAIL;
1757 }
1758
1759 if ((mask >> new_base) != 0 && ! warned)
1760 {
1761 as_tsktsk (_("register list not in ascending order"));
1762 warned = 1;
1763 }
1764
1765 mask |= setmask << new_base;
1766 count += addregs;
1767
1768 if (*str == '-') /* We have the start of a range expression */
1769 {
1770 int high_range;
1771
1772 str++;
1773
1774 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1775 == FAIL)
1776 {
1777 inst.error = gettext (reg_expected_msgs[regtype]);
1778 return FAIL;
1779 }
1780
1781 if (high_range >= max_regs)
1782 {
1783 first_error (_("register out of range in list"));
1784 return FAIL;
1785 }
1786
1787 if (regtype == REG_TYPE_NQ)
1788 high_range = high_range + 1;
1789
1790 if (high_range <= new_base)
1791 {
1792 inst.error = _("register range not in ascending order");
1793 return FAIL;
1794 }
1795
1796 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1797 {
1798 if (mask & (setmask << new_base))
1799 {
1800 inst.error = _("invalid register list");
1801 return FAIL;
1802 }
1803
1804 mask |= setmask << new_base;
1805 count += addregs;
1806 }
1807 }
1808 }
1809 while (skip_past_comma (&str) != FAIL);
1810
1811 str++;
1812
1813 /* Sanity check -- should have raised a parse error above. */
1814 if (count == 0 || count > max_regs)
1815 abort ();
1816
1817 *pbase = base_reg;
1818
1819 /* Final test -- the registers must be consecutive. */
1820 mask >>= base_reg;
1821 for (i = 0; i < count; i++)
1822 {
1823 if ((mask & (1u << i)) == 0)
1824 {
1825 inst.error = _("non-contiguous register range");
1826 return FAIL;
1827 }
1828 }
1829
1830 *ccp = str;
1831
1832 return count;
1833 }
1834
1835 /* True if two alias types are the same. */
1836
1837 static bfd_boolean
1838 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1839 {
1840 if (!a && !b)
1841 return TRUE;
1842
1843 if (!a || !b)
1844 return FALSE;
1845
1846 if (a->defined != b->defined)
1847 return FALSE;
1848
1849 if ((a->defined & NTA_HASTYPE) != 0
1850 && (a->eltype.type != b->eltype.type
1851 || a->eltype.size != b->eltype.size))
1852 return FALSE;
1853
1854 if ((a->defined & NTA_HASINDEX) != 0
1855 && (a->index != b->index))
1856 return FALSE;
1857
1858 return TRUE;
1859 }
1860
1861 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1862 The base register is put in *PBASE.
1863 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1864 the return value.
1865 The register stride (minus one) is put in bit 4 of the return value.
1866 Bits [6:5] encode the list length (minus one).
1867 The type of the list elements is put in *ELTYPE, if non-NULL. */
1868
1869 #define NEON_LANE(X) ((X) & 0xf)
1870 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1871 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1872
1873 static int
1874 parse_neon_el_struct_list (char **str, unsigned *pbase,
1875 struct neon_type_el *eltype)
1876 {
1877 char *ptr = *str;
1878 int base_reg = -1;
1879 int reg_incr = -1;
1880 int count = 0;
1881 int lane = -1;
1882 int leading_brace = 0;
1883 enum arm_reg_type rtype = REG_TYPE_NDQ;
1884 int addregs = 1;
1885 const char *const incr_error = _("register stride must be 1 or 2");
1886 const char *const type_error = _("mismatched element/structure types in list");
1887 struct neon_typed_alias firsttype;
1888
1889 if (skip_past_char (&ptr, '{') == SUCCESS)
1890 leading_brace = 1;
1891
1892 do
1893 {
1894 struct neon_typed_alias atype;
1895 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1896
1897 if (getreg == FAIL)
1898 {
1899 first_error (_(reg_expected_msgs[rtype]));
1900 return FAIL;
1901 }
1902
1903 if (base_reg == -1)
1904 {
1905 base_reg = getreg;
1906 if (rtype == REG_TYPE_NQ)
1907 {
1908 reg_incr = 1;
1909 addregs = 2;
1910 }
1911 firsttype = atype;
1912 }
1913 else if (reg_incr == -1)
1914 {
1915 reg_incr = getreg - base_reg;
1916 if (reg_incr < 1 || reg_incr > 2)
1917 {
1918 first_error (_(incr_error));
1919 return FAIL;
1920 }
1921 }
1922 else if (getreg != base_reg + reg_incr * count)
1923 {
1924 first_error (_(incr_error));
1925 return FAIL;
1926 }
1927
1928 if (! neon_alias_types_same (&atype, &firsttype))
1929 {
1930 first_error (_(type_error));
1931 return FAIL;
1932 }
1933
1934 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1935 modes. */
1936 if (ptr[0] == '-')
1937 {
1938 struct neon_typed_alias htype;
1939 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1940 if (lane == -1)
1941 lane = NEON_INTERLEAVE_LANES;
1942 else if (lane != NEON_INTERLEAVE_LANES)
1943 {
1944 first_error (_(type_error));
1945 return FAIL;
1946 }
1947 if (reg_incr == -1)
1948 reg_incr = 1;
1949 else if (reg_incr != 1)
1950 {
1951 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1952 return FAIL;
1953 }
1954 ptr++;
1955 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1956 if (hireg == FAIL)
1957 {
1958 first_error (_(reg_expected_msgs[rtype]));
1959 return FAIL;
1960 }
1961 if (! neon_alias_types_same (&htype, &firsttype))
1962 {
1963 first_error (_(type_error));
1964 return FAIL;
1965 }
1966 count += hireg + dregs - getreg;
1967 continue;
1968 }
1969
1970 /* If we're using Q registers, we can't use [] or [n] syntax. */
1971 if (rtype == REG_TYPE_NQ)
1972 {
1973 count += 2;
1974 continue;
1975 }
1976
1977 if ((atype.defined & NTA_HASINDEX) != 0)
1978 {
1979 if (lane == -1)
1980 lane = atype.index;
1981 else if (lane != atype.index)
1982 {
1983 first_error (_(type_error));
1984 return FAIL;
1985 }
1986 }
1987 else if (lane == -1)
1988 lane = NEON_INTERLEAVE_LANES;
1989 else if (lane != NEON_INTERLEAVE_LANES)
1990 {
1991 first_error (_(type_error));
1992 return FAIL;
1993 }
1994 count++;
1995 }
1996 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1997
1998 /* No lane set by [x]. We must be interleaving structures. */
1999 if (lane == -1)
2000 lane = NEON_INTERLEAVE_LANES;
2001
2002 /* Sanity check. */
2003 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2004 || (count > 1 && reg_incr == -1))
2005 {
2006 first_error (_("error parsing element/structure list"));
2007 return FAIL;
2008 }
2009
2010 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2011 {
2012 first_error (_("expected }"));
2013 return FAIL;
2014 }
2015
2016 if (reg_incr == -1)
2017 reg_incr = 1;
2018
2019 if (eltype)
2020 *eltype = firsttype.eltype;
2021
2022 *pbase = base_reg;
2023 *str = ptr;
2024
2025 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2026 }
2027
2028 /* Parse an explicit relocation suffix on an expression. This is
2029 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2030 arm_reloc_hsh contains no entries, so this function can only
2031 succeed if there is no () after the word. Returns -1 on error,
2032 BFD_RELOC_UNUSED if there wasn't any suffix. */
2033 static int
2034 parse_reloc (char **str)
2035 {
2036 struct reloc_entry *r;
2037 char *p, *q;
2038
2039 if (**str != '(')
2040 return BFD_RELOC_UNUSED;
2041
2042 p = *str + 1;
2043 q = p;
2044
2045 while (*q && *q != ')' && *q != ',')
2046 q++;
2047 if (*q != ')')
2048 return -1;
2049
2050 if ((r = (struct reloc_entry *)
2051 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2052 return -1;
2053
2054 *str = q + 1;
2055 return r->reloc;
2056 }
2057
2058 /* Directives: register aliases. */
2059
2060 static struct reg_entry *
2061 insert_reg_alias (char *str, int number, int type)
2062 {
2063 struct reg_entry *new_reg;
2064 const char *name;
2065
2066 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2067 {
2068 if (new_reg->builtin)
2069 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2070
2071 /* Only warn about a redefinition if it's not defined as the
2072 same register. */
2073 else if (new_reg->number != number || new_reg->type != type)
2074 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2075
2076 return NULL;
2077 }
2078
2079 name = xstrdup (str);
2080 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2081
2082 new_reg->name = name;
2083 new_reg->number = number;
2084 new_reg->type = type;
2085 new_reg->builtin = FALSE;
2086 new_reg->neon = NULL;
2087
2088 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2089 abort ();
2090
2091 return new_reg;
2092 }
2093
2094 static void
2095 insert_neon_reg_alias (char *str, int number, int type,
2096 struct neon_typed_alias *atype)
2097 {
2098 struct reg_entry *reg = insert_reg_alias (str, number, type);
2099
2100 if (!reg)
2101 {
2102 first_error (_("attempt to redefine typed alias"));
2103 return;
2104 }
2105
2106 if (atype)
2107 {
2108 reg->neon = (struct neon_typed_alias *)
2109 xmalloc (sizeof (struct neon_typed_alias));
2110 *reg->neon = *atype;
2111 }
2112 }
2113
2114 /* Look for the .req directive. This is of the form:
2115
2116 new_register_name .req existing_register_name
2117
2118 If we find one, or if it looks sufficiently like one that we want to
2119 handle any error here, return TRUE. Otherwise return FALSE. */
2120
2121 static bfd_boolean
2122 create_register_alias (char * newname, char *p)
2123 {
2124 struct reg_entry *old;
2125 char *oldname, *nbuf;
2126 size_t nlen;
2127
2128 /* The input scrubber ensures that whitespace after the mnemonic is
2129 collapsed to single spaces. */
2130 oldname = p;
2131 if (strncmp (oldname, " .req ", 6) != 0)
2132 return FALSE;
2133
2134 oldname += 6;
2135 if (*oldname == '\0')
2136 return FALSE;
2137
2138 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2139 if (!old)
2140 {
2141 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2142 return TRUE;
2143 }
2144
2145 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2146 the desired alias name, and p points to its end. If not, then
2147 the desired alias name is in the global original_case_string. */
2148 #ifdef TC_CASE_SENSITIVE
2149 nlen = p - newname;
2150 #else
2151 newname = original_case_string;
2152 nlen = strlen (newname);
2153 #endif
2154
2155 nbuf = (char *) alloca (nlen + 1);
2156 memcpy (nbuf, newname, nlen);
2157 nbuf[nlen] = '\0';
2158
2159 /* Create aliases under the new name as stated; an all-lowercase
2160 version of the new name; and an all-uppercase version of the new
2161 name. */
2162 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2163 {
2164 for (p = nbuf; *p; p++)
2165 *p = TOUPPER (*p);
2166
2167 if (strncmp (nbuf, newname, nlen))
2168 {
2169 /* If this attempt to create an additional alias fails, do not bother
2170 trying to create the all-lower case alias. We will fail and issue
2171 a second, duplicate error message. This situation arises when the
2172 programmer does something like:
2173 foo .req r0
2174 Foo .req r1
2175 The second .req creates the "Foo" alias but then fails to create
2176 the artificial FOO alias because it has already been created by the
2177 first .req. */
2178 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2179 return TRUE;
2180 }
2181
2182 for (p = nbuf; *p; p++)
2183 *p = TOLOWER (*p);
2184
2185 if (strncmp (nbuf, newname, nlen))
2186 insert_reg_alias (nbuf, old->number, old->type);
2187 }
2188
2189 return TRUE;
2190 }
2191
2192 /* Create a Neon typed/indexed register alias using directives, e.g.:
2193 X .dn d5.s32[1]
2194 Y .qn 6.s16
2195 Z .dn d7
2196 T .dn Z[0]
2197 These typed registers can be used instead of the types specified after the
2198 Neon mnemonic, so long as all operands given have types. Types can also be
2199 specified directly, e.g.:
2200 vadd d0.s32, d1.s32, d2.s32 */
2201
2202 static bfd_boolean
2203 create_neon_reg_alias (char *newname, char *p)
2204 {
2205 enum arm_reg_type basetype;
2206 struct reg_entry *basereg;
2207 struct reg_entry mybasereg;
2208 struct neon_type ntype;
2209 struct neon_typed_alias typeinfo;
2210 char *namebuf, *nameend;
2211 int namelen;
2212
2213 typeinfo.defined = 0;
2214 typeinfo.eltype.type = NT_invtype;
2215 typeinfo.eltype.size = -1;
2216 typeinfo.index = -1;
2217
2218 nameend = p;
2219
2220 if (strncmp (p, " .dn ", 5) == 0)
2221 basetype = REG_TYPE_VFD;
2222 else if (strncmp (p, " .qn ", 5) == 0)
2223 basetype = REG_TYPE_NQ;
2224 else
2225 return FALSE;
2226
2227 p += 5;
2228
2229 if (*p == '\0')
2230 return FALSE;
2231
2232 basereg = arm_reg_parse_multi (&p);
2233
2234 if (basereg && basereg->type != basetype)
2235 {
2236 as_bad (_("bad type for register"));
2237 return FALSE;
2238 }
2239
2240 if (basereg == NULL)
2241 {
2242 expressionS exp;
2243 /* Try parsing as an integer. */
2244 my_get_expression (&exp, &p, GE_NO_PREFIX);
2245 if (exp.X_op != O_constant)
2246 {
2247 as_bad (_("expression must be constant"));
2248 return FALSE;
2249 }
2250 basereg = &mybasereg;
2251 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2252 : exp.X_add_number;
2253 basereg->neon = 0;
2254 }
2255
2256 if (basereg->neon)
2257 typeinfo = *basereg->neon;
2258
2259 if (parse_neon_type (&ntype, &p) == SUCCESS)
2260 {
2261 /* We got a type. */
2262 if (typeinfo.defined & NTA_HASTYPE)
2263 {
2264 as_bad (_("can't redefine the type of a register alias"));
2265 return FALSE;
2266 }
2267
2268 typeinfo.defined |= NTA_HASTYPE;
2269 if (ntype.elems != 1)
2270 {
2271 as_bad (_("you must specify a single type only"));
2272 return FALSE;
2273 }
2274 typeinfo.eltype = ntype.el[0];
2275 }
2276
2277 if (skip_past_char (&p, '[') == SUCCESS)
2278 {
2279 expressionS exp;
2280 /* We got a scalar index. */
2281
2282 if (typeinfo.defined & NTA_HASINDEX)
2283 {
2284 as_bad (_("can't redefine the index of a scalar alias"));
2285 return FALSE;
2286 }
2287
2288 my_get_expression (&exp, &p, GE_NO_PREFIX);
2289
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("scalar index must be constant"));
2293 return FALSE;
2294 }
2295
2296 typeinfo.defined |= NTA_HASINDEX;
2297 typeinfo.index = exp.X_add_number;
2298
2299 if (skip_past_char (&p, ']') == FAIL)
2300 {
2301 as_bad (_("expecting ]"));
2302 return FALSE;
2303 }
2304 }
2305
2306 namelen = nameend - newname;
2307 namebuf = (char *) alloca (namelen + 1);
2308 strncpy (namebuf, newname, namelen);
2309 namebuf[namelen] = '\0';
2310
2311 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2312 typeinfo.defined != 0 ? &typeinfo : NULL);
2313
2314 /* Insert name in all uppercase. */
2315 for (p = namebuf; *p; p++)
2316 *p = TOUPPER (*p);
2317
2318 if (strncmp (namebuf, newname, namelen))
2319 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2320 typeinfo.defined != 0 ? &typeinfo : NULL);
2321
2322 /* Insert name in all lowercase. */
2323 for (p = namebuf; *p; p++)
2324 *p = TOLOWER (*p);
2325
2326 if (strncmp (namebuf, newname, namelen))
2327 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2328 typeinfo.defined != 0 ? &typeinfo : NULL);
2329
2330 return TRUE;
2331 }
2332
2333 /* Should never be called, as .req goes between the alias and the
2334 register name, not at the beginning of the line. */
2335
2336 static void
2337 s_req (int a ATTRIBUTE_UNUSED)
2338 {
2339 as_bad (_("invalid syntax for .req directive"));
2340 }
2341
2342 static void
2343 s_dn (int a ATTRIBUTE_UNUSED)
2344 {
2345 as_bad (_("invalid syntax for .dn directive"));
2346 }
2347
2348 static void
2349 s_qn (int a ATTRIBUTE_UNUSED)
2350 {
2351 as_bad (_("invalid syntax for .qn directive"));
2352 }
2353
2354 /* The .unreq directive deletes an alias which was previously defined
2355 by .req. For example:
2356
2357 my_alias .req r11
2358 .unreq my_alias */
2359
2360 static void
2361 s_unreq (int a ATTRIBUTE_UNUSED)
2362 {
2363 char * name;
2364 char saved_char;
2365
2366 name = input_line_pointer;
2367
2368 while (*input_line_pointer != 0
2369 && *input_line_pointer != ' '
2370 && *input_line_pointer != '\n')
2371 ++input_line_pointer;
2372
2373 saved_char = *input_line_pointer;
2374 *input_line_pointer = 0;
2375
2376 if (!*name)
2377 as_bad (_("invalid syntax for .unreq directive"));
2378 else
2379 {
2380 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2381 name);
2382
2383 if (!reg)
2384 as_bad (_("unknown register alias '%s'"), name);
2385 else if (reg->builtin)
2386 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2387 name);
2388 else
2389 {
2390 char * p;
2391 char * nbuf;
2392
2393 hash_delete (arm_reg_hsh, name, FALSE);
2394 free ((char *) reg->name);
2395 if (reg->neon)
2396 free (reg->neon);
2397 free (reg);
2398
2399 /* Also locate the all upper case and all lower case versions.
2400 Do not complain if we cannot find one or the other as it
2401 was probably deleted above. */
2402
2403 nbuf = strdup (name);
2404 for (p = nbuf; *p; p++)
2405 *p = TOUPPER (*p);
2406 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2407 if (reg)
2408 {
2409 hash_delete (arm_reg_hsh, nbuf, FALSE);
2410 free ((char *) reg->name);
2411 if (reg->neon)
2412 free (reg->neon);
2413 free (reg);
2414 }
2415
2416 for (p = nbuf; *p; p++)
2417 *p = TOLOWER (*p);
2418 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2419 if (reg)
2420 {
2421 hash_delete (arm_reg_hsh, nbuf, FALSE);
2422 free ((char *) reg->name);
2423 if (reg->neon)
2424 free (reg->neon);
2425 free (reg);
2426 }
2427
2428 free (nbuf);
2429 }
2430 }
2431
2432 *input_line_pointer = saved_char;
2433 demand_empty_rest_of_line ();
2434 }
2435
2436 /* Directives: Instruction set selection. */
2437
2438 #ifdef OBJ_ELF
2439 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2440 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2441 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2442 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2443
2444 /* Create a new mapping symbol for the transition to STATE. */
2445
2446 static void
2447 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2448 {
2449 symbolS * symbolP;
2450 const char * symname;
2451 int type;
2452
2453 switch (state)
2454 {
2455 case MAP_DATA:
2456 symname = "$d";
2457 type = BSF_NO_FLAGS;
2458 break;
2459 case MAP_ARM:
2460 symname = "$a";
2461 type = BSF_NO_FLAGS;
2462 break;
2463 case MAP_THUMB:
2464 symname = "$t";
2465 type = BSF_NO_FLAGS;
2466 break;
2467 default:
2468 abort ();
2469 }
2470
2471 symbolP = symbol_new (symname, now_seg, value, frag);
2472 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2473
2474 switch (state)
2475 {
2476 case MAP_ARM:
2477 THUMB_SET_FUNC (symbolP, 0);
2478 ARM_SET_THUMB (symbolP, 0);
2479 ARM_SET_INTERWORK (symbolP, support_interwork);
2480 break;
2481
2482 case MAP_THUMB:
2483 THUMB_SET_FUNC (symbolP, 1);
2484 ARM_SET_THUMB (symbolP, 1);
2485 ARM_SET_INTERWORK (symbolP, support_interwork);
2486 break;
2487
2488 case MAP_DATA:
2489 default:
2490 break;
2491 }
2492
2493 /* Save the mapping symbols for future reference. Also check that
2494 we do not place two mapping symbols at the same offset within a
2495 frag. We'll handle overlap between frags in
2496 check_mapping_symbols. */
2497 if (value == 0)
2498 {
2499 know (frag->tc_frag_data.first_map == NULL);
2500 frag->tc_frag_data.first_map = symbolP;
2501 }
2502 if (frag->tc_frag_data.last_map != NULL)
2503 know (S_GET_VALUE (frag->tc_frag_data.last_map) < S_GET_VALUE (symbolP));
2504 frag->tc_frag_data.last_map = symbolP;
2505 }
2506
2507 /* We must sometimes convert a region marked as code to data during
2508 code alignment, if an odd number of bytes have to be padded. The
2509 code mapping symbol is pushed to an aligned address. */
2510
2511 static void
2512 insert_data_mapping_symbol (enum mstate state,
2513 valueT value, fragS *frag, offsetT bytes)
2514 {
2515 /* If there was already a mapping symbol, remove it. */
2516 if (frag->tc_frag_data.last_map != NULL
2517 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2518 {
2519 symbolS *symp = frag->tc_frag_data.last_map;
2520
2521 if (value == 0)
2522 {
2523 know (frag->tc_frag_data.first_map == symp);
2524 frag->tc_frag_data.first_map = NULL;
2525 }
2526 frag->tc_frag_data.last_map = NULL;
2527 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2528 }
2529
2530 make_mapping_symbol (MAP_DATA, value, frag);
2531 make_mapping_symbol (state, value + bytes, frag);
2532 }
2533
2534 static void mapping_state_2 (enum mstate state, int max_chars);
2535
2536 /* Set the mapping state to STATE. Only call this when about to
2537 emit some STATE bytes to the file. */
2538
2539 void
2540 mapping_state (enum mstate state)
2541 {
2542 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2543
2544 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2545
2546 if (mapstate == state)
2547 /* The mapping symbol has already been emitted.
2548 There is nothing else to do. */
2549 return;
2550 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2551 /* This case will be evaluated later in the next else. */
2552 return;
2553 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2554 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2555 {
2556 /* Only add the symbol if the offset is > 0:
2557 if we're at the first frag, check it's size > 0;
2558 if we're not at the first frag, then for sure
2559 the offset is > 0. */
2560 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2561 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2562
2563 if (add_symbol)
2564 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2565 }
2566
2567 mapping_state_2 (state, 0);
2568 #undef TRANSITION
2569 }
2570
2571 /* Same as mapping_state, but MAX_CHARS bytes have already been
2572 allocated. Put the mapping symbol that far back. */
2573
2574 static void
2575 mapping_state_2 (enum mstate state, int max_chars)
2576 {
2577 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2578
2579 if (!SEG_NORMAL (now_seg))
2580 return;
2581
2582 if (mapstate == state)
2583 /* The mapping symbol has already been emitted.
2584 There is nothing else to do. */
2585 return;
2586
2587 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2588 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2589 }
2590 #else
2591 #define mapping_state(x) ((void)0)
2592 #define mapping_state_2(x, y) ((void)0)
2593 #endif
2594
2595 /* Find the real, Thumb encoded start of a Thumb function. */
2596
2597 #ifdef OBJ_COFF
2598 static symbolS *
2599 find_real_start (symbolS * symbolP)
2600 {
2601 char * real_start;
2602 const char * name = S_GET_NAME (symbolP);
2603 symbolS * new_target;
2604
2605 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2606 #define STUB_NAME ".real_start_of"
2607
2608 if (name == NULL)
2609 abort ();
2610
2611 /* The compiler may generate BL instructions to local labels because
2612 it needs to perform a branch to a far away location. These labels
2613 do not have a corresponding ".real_start_of" label. We check
2614 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2615 the ".real_start_of" convention for nonlocal branches. */
2616 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2617 return symbolP;
2618
2619 real_start = ACONCAT ((STUB_NAME, name, NULL));
2620 new_target = symbol_find (real_start);
2621
2622 if (new_target == NULL)
2623 {
2624 as_warn (_("Failed to find real start of function: %s\n"), name);
2625 new_target = symbolP;
2626 }
2627
2628 return new_target;
2629 }
2630 #endif
2631
2632 static void
2633 opcode_select (int width)
2634 {
2635 switch (width)
2636 {
2637 case 16:
2638 if (! thumb_mode)
2639 {
2640 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2641 as_bad (_("selected processor does not support THUMB opcodes"));
2642
2643 thumb_mode = 1;
2644 /* No need to force the alignment, since we will have been
2645 coming from ARM mode, which is word-aligned. */
2646 record_alignment (now_seg, 1);
2647 }
2648 break;
2649
2650 case 32:
2651 if (thumb_mode)
2652 {
2653 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2654 as_bad (_("selected processor does not support ARM opcodes"));
2655
2656 thumb_mode = 0;
2657
2658 if (!need_pass_2)
2659 frag_align (2, 0, 0);
2660
2661 record_alignment (now_seg, 1);
2662 }
2663 break;
2664
2665 default:
2666 as_bad (_("invalid instruction size selected (%d)"), width);
2667 }
2668 }
2669
2670 static void
2671 s_arm (int ignore ATTRIBUTE_UNUSED)
2672 {
2673 opcode_select (32);
2674 demand_empty_rest_of_line ();
2675 }
2676
2677 static void
2678 s_thumb (int ignore ATTRIBUTE_UNUSED)
2679 {
2680 opcode_select (16);
2681 demand_empty_rest_of_line ();
2682 }
2683
2684 static void
2685 s_code (int unused ATTRIBUTE_UNUSED)
2686 {
2687 int temp;
2688
2689 temp = get_absolute_expression ();
2690 switch (temp)
2691 {
2692 case 16:
2693 case 32:
2694 opcode_select (temp);
2695 break;
2696
2697 default:
2698 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2699 }
2700 }
2701
2702 static void
2703 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2704 {
2705 /* If we are not already in thumb mode go into it, EVEN if
2706 the target processor does not support thumb instructions.
2707 This is used by gcc/config/arm/lib1funcs.asm for example
2708 to compile interworking support functions even if the
2709 target processor should not support interworking. */
2710 if (! thumb_mode)
2711 {
2712 thumb_mode = 2;
2713 record_alignment (now_seg, 1);
2714 }
2715
2716 demand_empty_rest_of_line ();
2717 }
2718
2719 static void
2720 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2721 {
2722 s_thumb (0);
2723
2724 /* The following label is the name/address of the start of a Thumb function.
2725 We need to know this for the interworking support. */
2726 label_is_thumb_function_name = TRUE;
2727 }
2728
2729 /* Perform a .set directive, but also mark the alias as
2730 being a thumb function. */
2731
2732 static void
2733 s_thumb_set (int equiv)
2734 {
2735 /* XXX the following is a duplicate of the code for s_set() in read.c
2736 We cannot just call that code as we need to get at the symbol that
2737 is created. */
2738 char * name;
2739 char delim;
2740 char * end_name;
2741 symbolS * symbolP;
2742
2743 /* Especial apologies for the random logic:
2744 This just grew, and could be parsed much more simply!
2745 Dean - in haste. */
2746 name = input_line_pointer;
2747 delim = get_symbol_end ();
2748 end_name = input_line_pointer;
2749 *end_name = delim;
2750
2751 if (*input_line_pointer != ',')
2752 {
2753 *end_name = 0;
2754 as_bad (_("expected comma after name \"%s\""), name);
2755 *end_name = delim;
2756 ignore_rest_of_line ();
2757 return;
2758 }
2759
2760 input_line_pointer++;
2761 *end_name = 0;
2762
2763 if (name[0] == '.' && name[1] == '\0')
2764 {
2765 /* XXX - this should not happen to .thumb_set. */
2766 abort ();
2767 }
2768
2769 if ((symbolP = symbol_find (name)) == NULL
2770 && (symbolP = md_undefined_symbol (name)) == NULL)
2771 {
2772 #ifndef NO_LISTING
2773 /* When doing symbol listings, play games with dummy fragments living
2774 outside the normal fragment chain to record the file and line info
2775 for this symbol. */
2776 if (listing & LISTING_SYMBOLS)
2777 {
2778 extern struct list_info_struct * listing_tail;
2779 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2780
2781 memset (dummy_frag, 0, sizeof (fragS));
2782 dummy_frag->fr_type = rs_fill;
2783 dummy_frag->line = listing_tail;
2784 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2785 dummy_frag->fr_symbol = symbolP;
2786 }
2787 else
2788 #endif
2789 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2790
2791 #ifdef OBJ_COFF
2792 /* "set" symbols are local unless otherwise specified. */
2793 SF_SET_LOCAL (symbolP);
2794 #endif /* OBJ_COFF */
2795 } /* Make a new symbol. */
2796
2797 symbol_table_insert (symbolP);
2798
2799 * end_name = delim;
2800
2801 if (equiv
2802 && S_IS_DEFINED (symbolP)
2803 && S_GET_SEGMENT (symbolP) != reg_section)
2804 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2805
2806 pseudo_set (symbolP);
2807
2808 demand_empty_rest_of_line ();
2809
2810 /* XXX Now we come to the Thumb specific bit of code. */
2811
2812 THUMB_SET_FUNC (symbolP, 1);
2813 ARM_SET_THUMB (symbolP, 1);
2814 #if defined OBJ_ELF || defined OBJ_COFF
2815 ARM_SET_INTERWORK (symbolP, support_interwork);
2816 #endif
2817 }
2818
2819 /* Directives: Mode selection. */
2820
2821 /* .syntax [unified|divided] - choose the new unified syntax
2822 (same for Arm and Thumb encoding, modulo slight differences in what
2823 can be represented) or the old divergent syntax for each mode. */
2824 static void
2825 s_syntax (int unused ATTRIBUTE_UNUSED)
2826 {
2827 char *name, delim;
2828
2829 name = input_line_pointer;
2830 delim = get_symbol_end ();
2831
2832 if (!strcasecmp (name, "unified"))
2833 unified_syntax = TRUE;
2834 else if (!strcasecmp (name, "divided"))
2835 unified_syntax = FALSE;
2836 else
2837 {
2838 as_bad (_("unrecognized syntax mode \"%s\""), name);
2839 return;
2840 }
2841 *input_line_pointer = delim;
2842 demand_empty_rest_of_line ();
2843 }
2844
2845 /* Directives: sectioning and alignment. */
2846
2847 /* Same as s_align_ptwo but align 0 => align 2. */
2848
2849 static void
2850 s_align (int unused ATTRIBUTE_UNUSED)
2851 {
2852 int temp;
2853 bfd_boolean fill_p;
2854 long temp_fill;
2855 long max_alignment = 15;
2856
2857 temp = get_absolute_expression ();
2858 if (temp > max_alignment)
2859 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2860 else if (temp < 0)
2861 {
2862 as_bad (_("alignment negative. 0 assumed."));
2863 temp = 0;
2864 }
2865
2866 if (*input_line_pointer == ',')
2867 {
2868 input_line_pointer++;
2869 temp_fill = get_absolute_expression ();
2870 fill_p = TRUE;
2871 }
2872 else
2873 {
2874 fill_p = FALSE;
2875 temp_fill = 0;
2876 }
2877
2878 if (!temp)
2879 temp = 2;
2880
2881 /* Only make a frag if we HAVE to. */
2882 if (temp && !need_pass_2)
2883 {
2884 if (!fill_p && subseg_text_p (now_seg))
2885 frag_align_code (temp, 0);
2886 else
2887 frag_align (temp, (int) temp_fill, 0);
2888 }
2889 demand_empty_rest_of_line ();
2890
2891 record_alignment (now_seg, temp);
2892 }
2893
2894 static void
2895 s_bss (int ignore ATTRIBUTE_UNUSED)
2896 {
2897 /* We don't support putting frags in the BSS segment, we fake it by
2898 marking in_bss, then looking at s_skip for clues. */
2899 subseg_set (bss_section, 0);
2900 demand_empty_rest_of_line ();
2901
2902 #ifdef md_elf_section_change_hook
2903 md_elf_section_change_hook ();
2904 #endif
2905 }
2906
2907 static void
2908 s_even (int ignore ATTRIBUTE_UNUSED)
2909 {
2910 /* Never make frag if expect extra pass. */
2911 if (!need_pass_2)
2912 frag_align (1, 0, 0);
2913
2914 record_alignment (now_seg, 1);
2915
2916 demand_empty_rest_of_line ();
2917 }
2918
2919 /* Directives: Literal pools. */
2920
2921 static literal_pool *
2922 find_literal_pool (void)
2923 {
2924 literal_pool * pool;
2925
2926 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2927 {
2928 if (pool->section == now_seg
2929 && pool->sub_section == now_subseg)
2930 break;
2931 }
2932
2933 return pool;
2934 }
2935
2936 static literal_pool *
2937 find_or_make_literal_pool (void)
2938 {
2939 /* Next literal pool ID number. */
2940 static unsigned int latest_pool_num = 1;
2941 literal_pool * pool;
2942
2943 pool = find_literal_pool ();
2944
2945 if (pool == NULL)
2946 {
2947 /* Create a new pool. */
2948 pool = (literal_pool *) xmalloc (sizeof (* pool));
2949 if (! pool)
2950 return NULL;
2951
2952 pool->next_free_entry = 0;
2953 pool->section = now_seg;
2954 pool->sub_section = now_subseg;
2955 pool->next = list_of_pools;
2956 pool->symbol = NULL;
2957
2958 /* Add it to the list. */
2959 list_of_pools = pool;
2960 }
2961
2962 /* New pools, and emptied pools, will have a NULL symbol. */
2963 if (pool->symbol == NULL)
2964 {
2965 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2966 (valueT) 0, &zero_address_frag);
2967 pool->id = latest_pool_num ++;
2968 }
2969
2970 /* Done. */
2971 return pool;
2972 }
2973
2974 /* Add the literal in the global 'inst'
2975 structure to the relevant literal pool. */
2976
2977 static int
2978 add_to_lit_pool (void)
2979 {
2980 literal_pool * pool;
2981 unsigned int entry;
2982
2983 pool = find_or_make_literal_pool ();
2984
2985 /* Check if this literal value is already in the pool. */
2986 for (entry = 0; entry < pool->next_free_entry; entry ++)
2987 {
2988 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2989 && (inst.reloc.exp.X_op == O_constant)
2990 && (pool->literals[entry].X_add_number
2991 == inst.reloc.exp.X_add_number)
2992 && (pool->literals[entry].X_unsigned
2993 == inst.reloc.exp.X_unsigned))
2994 break;
2995
2996 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2997 && (inst.reloc.exp.X_op == O_symbol)
2998 && (pool->literals[entry].X_add_number
2999 == inst.reloc.exp.X_add_number)
3000 && (pool->literals[entry].X_add_symbol
3001 == inst.reloc.exp.X_add_symbol)
3002 && (pool->literals[entry].X_op_symbol
3003 == inst.reloc.exp.X_op_symbol))
3004 break;
3005 }
3006
3007 /* Do we need to create a new entry? */
3008 if (entry == pool->next_free_entry)
3009 {
3010 if (entry >= MAX_LITERAL_POOL_SIZE)
3011 {
3012 inst.error = _("literal pool overflow");
3013 return FAIL;
3014 }
3015
3016 pool->literals[entry] = inst.reloc.exp;
3017 pool->next_free_entry += 1;
3018 }
3019
3020 inst.reloc.exp.X_op = O_symbol;
3021 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3022 inst.reloc.exp.X_add_symbol = pool->symbol;
3023
3024 return SUCCESS;
3025 }
3026
3027 /* Can't use symbol_new here, so have to create a symbol and then at
3028 a later date assign it a value. Thats what these functions do. */
3029
3030 static void
3031 symbol_locate (symbolS * symbolP,
3032 const char * name, /* It is copied, the caller can modify. */
3033 segT segment, /* Segment identifier (SEG_<something>). */
3034 valueT valu, /* Symbol value. */
3035 fragS * frag) /* Associated fragment. */
3036 {
3037 unsigned int name_length;
3038 char * preserved_copy_of_name;
3039
3040 name_length = strlen (name) + 1; /* +1 for \0. */
3041 obstack_grow (&notes, name, name_length);
3042 preserved_copy_of_name = (char *) obstack_finish (&notes);
3043
3044 #ifdef tc_canonicalize_symbol_name
3045 preserved_copy_of_name =
3046 tc_canonicalize_symbol_name (preserved_copy_of_name);
3047 #endif
3048
3049 S_SET_NAME (symbolP, preserved_copy_of_name);
3050
3051 S_SET_SEGMENT (symbolP, segment);
3052 S_SET_VALUE (symbolP, valu);
3053 symbol_clear_list_pointers (symbolP);
3054
3055 symbol_set_frag (symbolP, frag);
3056
3057 /* Link to end of symbol chain. */
3058 {
3059 extern int symbol_table_frozen;
3060
3061 if (symbol_table_frozen)
3062 abort ();
3063 }
3064
3065 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3066
3067 obj_symbol_new_hook (symbolP);
3068
3069 #ifdef tc_symbol_new_hook
3070 tc_symbol_new_hook (symbolP);
3071 #endif
3072
3073 #ifdef DEBUG_SYMS
3074 verify_symbol_chain (symbol_rootP, symbol_lastP);
3075 #endif /* DEBUG_SYMS */
3076 }
3077
3078
3079 static void
3080 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3081 {
3082 unsigned int entry;
3083 literal_pool * pool;
3084 char sym_name[20];
3085
3086 pool = find_literal_pool ();
3087 if (pool == NULL
3088 || pool->symbol == NULL
3089 || pool->next_free_entry == 0)
3090 return;
3091
3092 mapping_state (MAP_DATA);
3093
3094 /* Align pool as you have word accesses.
3095 Only make a frag if we have to. */
3096 if (!need_pass_2)
3097 frag_align (2, 0, 0);
3098
3099 record_alignment (now_seg, 2);
3100
3101 sprintf (sym_name, "$$lit_\002%x", pool->id);
3102
3103 symbol_locate (pool->symbol, sym_name, now_seg,
3104 (valueT) frag_now_fix (), frag_now);
3105 symbol_table_insert (pool->symbol);
3106
3107 ARM_SET_THUMB (pool->symbol, thumb_mode);
3108
3109 #if defined OBJ_COFF || defined OBJ_ELF
3110 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3111 #endif
3112
3113 for (entry = 0; entry < pool->next_free_entry; entry ++)
3114 /* First output the expression in the instruction to the pool. */
3115 emit_expr (&(pool->literals[entry]), 4); /* .word */
3116
3117 /* Mark the pool as empty. */
3118 pool->next_free_entry = 0;
3119 pool->symbol = NULL;
3120 }
3121
3122 #ifdef OBJ_ELF
3123 /* Forward declarations for functions below, in the MD interface
3124 section. */
3125 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3126 static valueT create_unwind_entry (int);
3127 static void start_unwind_section (const segT, int);
3128 static void add_unwind_opcode (valueT, int);
3129 static void flush_pending_unwind (void);
3130
3131 /* Directives: Data. */
3132
3133 static void
3134 s_arm_elf_cons (int nbytes)
3135 {
3136 expressionS exp;
3137
3138 #ifdef md_flush_pending_output
3139 md_flush_pending_output ();
3140 #endif
3141
3142 if (is_it_end_of_statement ())
3143 {
3144 demand_empty_rest_of_line ();
3145 return;
3146 }
3147
3148 #ifdef md_cons_align
3149 md_cons_align (nbytes);
3150 #endif
3151
3152 mapping_state (MAP_DATA);
3153 do
3154 {
3155 int reloc;
3156 char *base = input_line_pointer;
3157
3158 expression (& exp);
3159
3160 if (exp.X_op != O_symbol)
3161 emit_expr (&exp, (unsigned int) nbytes);
3162 else
3163 {
3164 char *before_reloc = input_line_pointer;
3165 reloc = parse_reloc (&input_line_pointer);
3166 if (reloc == -1)
3167 {
3168 as_bad (_("unrecognized relocation suffix"));
3169 ignore_rest_of_line ();
3170 return;
3171 }
3172 else if (reloc == BFD_RELOC_UNUSED)
3173 emit_expr (&exp, (unsigned int) nbytes);
3174 else
3175 {
3176 reloc_howto_type *howto = (reloc_howto_type *)
3177 bfd_reloc_type_lookup (stdoutput,
3178 (bfd_reloc_code_real_type) reloc);
3179 int size = bfd_get_reloc_size (howto);
3180
3181 if (reloc == BFD_RELOC_ARM_PLT32)
3182 {
3183 as_bad (_("(plt) is only valid on branch targets"));
3184 reloc = BFD_RELOC_UNUSED;
3185 size = 0;
3186 }
3187
3188 if (size > nbytes)
3189 as_bad (_("%s relocations do not fit in %d bytes"),
3190 howto->name, nbytes);
3191 else
3192 {
3193 /* We've parsed an expression stopping at O_symbol.
3194 But there may be more expression left now that we
3195 have parsed the relocation marker. Parse it again.
3196 XXX Surely there is a cleaner way to do this. */
3197 char *p = input_line_pointer;
3198 int offset;
3199 char *save_buf = (char *) alloca (input_line_pointer - base);
3200 memcpy (save_buf, base, input_line_pointer - base);
3201 memmove (base + (input_line_pointer - before_reloc),
3202 base, before_reloc - base);
3203
3204 input_line_pointer = base + (input_line_pointer-before_reloc);
3205 expression (&exp);
3206 memcpy (base, save_buf, p - base);
3207
3208 offset = nbytes - size;
3209 p = frag_more ((int) nbytes);
3210 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3211 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3212 }
3213 }
3214 }
3215 }
3216 while (*input_line_pointer++ == ',');
3217
3218 /* Put terminator back into stream. */
3219 input_line_pointer --;
3220 demand_empty_rest_of_line ();
3221 }
3222
3223 /* Emit an expression containing a 32-bit thumb instruction.
3224 Implementation based on put_thumb32_insn. */
3225
3226 static void
3227 emit_thumb32_expr (expressionS * exp)
3228 {
3229 expressionS exp_high = *exp;
3230
3231 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3232 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3233 exp->X_add_number &= 0xffff;
3234 emit_expr (exp, (unsigned int) THUMB_SIZE);
3235 }
3236
3237 /* Guess the instruction size based on the opcode. */
3238
3239 static int
3240 thumb_insn_size (int opcode)
3241 {
3242 if ((unsigned int) opcode < 0xe800u)
3243 return 2;
3244 else if ((unsigned int) opcode >= 0xe8000000u)
3245 return 4;
3246 else
3247 return 0;
3248 }
3249
3250 static bfd_boolean
3251 emit_insn (expressionS *exp, int nbytes)
3252 {
3253 int size = 0;
3254
3255 if (exp->X_op == O_constant)
3256 {
3257 size = nbytes;
3258
3259 if (size == 0)
3260 size = thumb_insn_size (exp->X_add_number);
3261
3262 if (size != 0)
3263 {
3264 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3265 {
3266 as_bad (_(".inst.n operand too big. "\
3267 "Use .inst.w instead"));
3268 size = 0;
3269 }
3270 else
3271 {
3272 if (now_it.state == AUTOMATIC_IT_BLOCK)
3273 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3274 else
3275 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3276
3277 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3278 emit_thumb32_expr (exp);
3279 else
3280 emit_expr (exp, (unsigned int) size);
3281
3282 it_fsm_post_encode ();
3283 }
3284 }
3285 else
3286 as_bad (_("cannot determine Thumb instruction size. " \
3287 "Use .inst.n/.inst.w instead"));
3288 }
3289 else
3290 as_bad (_("constant expression required"));
3291
3292 return (size != 0);
3293 }
3294
3295 /* Like s_arm_elf_cons but do not use md_cons_align and
3296 set the mapping state to MAP_ARM/MAP_THUMB. */
3297
3298 static void
3299 s_arm_elf_inst (int nbytes)
3300 {
3301 if (is_it_end_of_statement ())
3302 {
3303 demand_empty_rest_of_line ();
3304 return;
3305 }
3306
3307 /* Calling mapping_state () here will not change ARM/THUMB,
3308 but will ensure not to be in DATA state. */
3309
3310 if (thumb_mode)
3311 mapping_state (MAP_THUMB);
3312 else
3313 {
3314 if (nbytes != 0)
3315 {
3316 as_bad (_("width suffixes are invalid in ARM mode"));
3317 ignore_rest_of_line ();
3318 return;
3319 }
3320
3321 nbytes = 4;
3322
3323 mapping_state (MAP_ARM);
3324 }
3325
3326 do
3327 {
3328 expressionS exp;
3329
3330 expression (& exp);
3331
3332 if (! emit_insn (& exp, nbytes))
3333 {
3334 ignore_rest_of_line ();
3335 return;
3336 }
3337 }
3338 while (*input_line_pointer++ == ',');
3339
3340 /* Put terminator back into stream. */
3341 input_line_pointer --;
3342 demand_empty_rest_of_line ();
3343 }
3344
3345 /* Parse a .rel31 directive. */
3346
3347 static void
3348 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3349 {
3350 expressionS exp;
3351 char *p;
3352 valueT highbit;
3353
3354 highbit = 0;
3355 if (*input_line_pointer == '1')
3356 highbit = 0x80000000;
3357 else if (*input_line_pointer != '0')
3358 as_bad (_("expected 0 or 1"));
3359
3360 input_line_pointer++;
3361 if (*input_line_pointer != ',')
3362 as_bad (_("missing comma"));
3363 input_line_pointer++;
3364
3365 #ifdef md_flush_pending_output
3366 md_flush_pending_output ();
3367 #endif
3368
3369 #ifdef md_cons_align
3370 md_cons_align (4);
3371 #endif
3372
3373 mapping_state (MAP_DATA);
3374
3375 expression (&exp);
3376
3377 p = frag_more (4);
3378 md_number_to_chars (p, highbit, 4);
3379 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3380 BFD_RELOC_ARM_PREL31);
3381
3382 demand_empty_rest_of_line ();
3383 }
3384
3385 /* Directives: AEABI stack-unwind tables. */
3386
3387 /* Parse an unwind_fnstart directive. Simply records the current location. */
3388
3389 static void
3390 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3391 {
3392 demand_empty_rest_of_line ();
3393 if (unwind.proc_start)
3394 {
3395 as_bad (_("duplicate .fnstart directive"));
3396 return;
3397 }
3398
3399 /* Mark the start of the function. */
3400 unwind.proc_start = expr_build_dot ();
3401
3402 /* Reset the rest of the unwind info. */
3403 unwind.opcode_count = 0;
3404 unwind.table_entry = NULL;
3405 unwind.personality_routine = NULL;
3406 unwind.personality_index = -1;
3407 unwind.frame_size = 0;
3408 unwind.fp_offset = 0;
3409 unwind.fp_reg = REG_SP;
3410 unwind.fp_used = 0;
3411 unwind.sp_restored = 0;
3412 }
3413
3414
3415 /* Parse a handlerdata directive. Creates the exception handling table entry
3416 for the function. */
3417
3418 static void
3419 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3420 {
3421 demand_empty_rest_of_line ();
3422 if (!unwind.proc_start)
3423 as_bad (MISSING_FNSTART);
3424
3425 if (unwind.table_entry)
3426 as_bad (_("duplicate .handlerdata directive"));
3427
3428 create_unwind_entry (1);
3429 }
3430
3431 /* Parse an unwind_fnend directive. Generates the index table entry. */
3432
3433 static void
3434 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3435 {
3436 long where;
3437 char *ptr;
3438 valueT val;
3439 unsigned int marked_pr_dependency;
3440
3441 demand_empty_rest_of_line ();
3442
3443 if (!unwind.proc_start)
3444 {
3445 as_bad (_(".fnend directive without .fnstart"));
3446 return;
3447 }
3448
3449 /* Add eh table entry. */
3450 if (unwind.table_entry == NULL)
3451 val = create_unwind_entry (0);
3452 else
3453 val = 0;
3454
3455 /* Add index table entry. This is two words. */
3456 start_unwind_section (unwind.saved_seg, 1);
3457 frag_align (2, 0, 0);
3458 record_alignment (now_seg, 2);
3459
3460 ptr = frag_more (8);
3461 where = frag_now_fix () - 8;
3462
3463 /* Self relative offset of the function start. */
3464 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3465 BFD_RELOC_ARM_PREL31);
3466
3467 /* Indicate dependency on EHABI-defined personality routines to the
3468 linker, if it hasn't been done already. */
3469 marked_pr_dependency
3470 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3471 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3472 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3473 {
3474 static const char *const name[] =
3475 {
3476 "__aeabi_unwind_cpp_pr0",
3477 "__aeabi_unwind_cpp_pr1",
3478 "__aeabi_unwind_cpp_pr2"
3479 };
3480 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3481 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3482 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3483 |= 1 << unwind.personality_index;
3484 }
3485
3486 if (val)
3487 /* Inline exception table entry. */
3488 md_number_to_chars (ptr + 4, val, 4);
3489 else
3490 /* Self relative offset of the table entry. */
3491 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3492 BFD_RELOC_ARM_PREL31);
3493
3494 /* Restore the original section. */
3495 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3496
3497 unwind.proc_start = NULL;
3498 }
3499
3500
3501 /* Parse an unwind_cantunwind directive. */
3502
3503 static void
3504 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3505 {
3506 demand_empty_rest_of_line ();
3507 if (!unwind.proc_start)
3508 as_bad (MISSING_FNSTART);
3509
3510 if (unwind.personality_routine || unwind.personality_index != -1)
3511 as_bad (_("personality routine specified for cantunwind frame"));
3512
3513 unwind.personality_index = -2;
3514 }
3515
3516
3517 /* Parse a personalityindex directive. */
3518
3519 static void
3520 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3521 {
3522 expressionS exp;
3523
3524 if (!unwind.proc_start)
3525 as_bad (MISSING_FNSTART);
3526
3527 if (unwind.personality_routine || unwind.personality_index != -1)
3528 as_bad (_("duplicate .personalityindex directive"));
3529
3530 expression (&exp);
3531
3532 if (exp.X_op != O_constant
3533 || exp.X_add_number < 0 || exp.X_add_number > 15)
3534 {
3535 as_bad (_("bad personality routine number"));
3536 ignore_rest_of_line ();
3537 return;
3538 }
3539
3540 unwind.personality_index = exp.X_add_number;
3541
3542 demand_empty_rest_of_line ();
3543 }
3544
3545
3546 /* Parse a personality directive. */
3547
3548 static void
3549 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3550 {
3551 char *name, *p, c;
3552
3553 if (!unwind.proc_start)
3554 as_bad (MISSING_FNSTART);
3555
3556 if (unwind.personality_routine || unwind.personality_index != -1)
3557 as_bad (_("duplicate .personality directive"));
3558
3559 name = input_line_pointer;
3560 c = get_symbol_end ();
3561 p = input_line_pointer;
3562 unwind.personality_routine = symbol_find_or_make (name);
3563 *p = c;
3564 demand_empty_rest_of_line ();
3565 }
3566
3567
3568 /* Parse a directive saving core registers. */
3569
3570 static void
3571 s_arm_unwind_save_core (void)
3572 {
3573 valueT op;
3574 long range;
3575 int n;
3576
3577 range = parse_reg_list (&input_line_pointer);
3578 if (range == FAIL)
3579 {
3580 as_bad (_("expected register list"));
3581 ignore_rest_of_line ();
3582 return;
3583 }
3584
3585 demand_empty_rest_of_line ();
3586
3587 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3588 into .unwind_save {..., sp...}. We aren't bothered about the value of
3589 ip because it is clobbered by calls. */
3590 if (unwind.sp_restored && unwind.fp_reg == 12
3591 && (range & 0x3000) == 0x1000)
3592 {
3593 unwind.opcode_count--;
3594 unwind.sp_restored = 0;
3595 range = (range | 0x2000) & ~0x1000;
3596 unwind.pending_offset = 0;
3597 }
3598
3599 /* Pop r4-r15. */
3600 if (range & 0xfff0)
3601 {
3602 /* See if we can use the short opcodes. These pop a block of up to 8
3603 registers starting with r4, plus maybe r14. */
3604 for (n = 0; n < 8; n++)
3605 {
3606 /* Break at the first non-saved register. */
3607 if ((range & (1 << (n + 4))) == 0)
3608 break;
3609 }
3610 /* See if there are any other bits set. */
3611 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3612 {
3613 /* Use the long form. */
3614 op = 0x8000 | ((range >> 4) & 0xfff);
3615 add_unwind_opcode (op, 2);
3616 }
3617 else
3618 {
3619 /* Use the short form. */
3620 if (range & 0x4000)
3621 op = 0xa8; /* Pop r14. */
3622 else
3623 op = 0xa0; /* Do not pop r14. */
3624 op |= (n - 1);
3625 add_unwind_opcode (op, 1);
3626 }
3627 }
3628
3629 /* Pop r0-r3. */
3630 if (range & 0xf)
3631 {
3632 op = 0xb100 | (range & 0xf);
3633 add_unwind_opcode (op, 2);
3634 }
3635
3636 /* Record the number of bytes pushed. */
3637 for (n = 0; n < 16; n++)
3638 {
3639 if (range & (1 << n))
3640 unwind.frame_size += 4;
3641 }
3642 }
3643
3644
3645 /* Parse a directive saving FPA registers. */
3646
3647 static void
3648 s_arm_unwind_save_fpa (int reg)
3649 {
3650 expressionS exp;
3651 int num_regs;
3652 valueT op;
3653
3654 /* Get Number of registers to transfer. */
3655 if (skip_past_comma (&input_line_pointer) != FAIL)
3656 expression (&exp);
3657 else
3658 exp.X_op = O_illegal;
3659
3660 if (exp.X_op != O_constant)
3661 {
3662 as_bad (_("expected , <constant>"));
3663 ignore_rest_of_line ();
3664 return;
3665 }
3666
3667 num_regs = exp.X_add_number;
3668
3669 if (num_regs < 1 || num_regs > 4)
3670 {
3671 as_bad (_("number of registers must be in the range [1:4]"));
3672 ignore_rest_of_line ();
3673 return;
3674 }
3675
3676 demand_empty_rest_of_line ();
3677
3678 if (reg == 4)
3679 {
3680 /* Short form. */
3681 op = 0xb4 | (num_regs - 1);
3682 add_unwind_opcode (op, 1);
3683 }
3684 else
3685 {
3686 /* Long form. */
3687 op = 0xc800 | (reg << 4) | (num_regs - 1);
3688 add_unwind_opcode (op, 2);
3689 }
3690 unwind.frame_size += num_regs * 12;
3691 }
3692
3693
3694 /* Parse a directive saving VFP registers for ARMv6 and above. */
3695
3696 static void
3697 s_arm_unwind_save_vfp_armv6 (void)
3698 {
3699 int count;
3700 unsigned int start;
3701 valueT op;
3702 int num_vfpv3_regs = 0;
3703 int num_regs_below_16;
3704
3705 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3706 if (count == FAIL)
3707 {
3708 as_bad (_("expected register list"));
3709 ignore_rest_of_line ();
3710 return;
3711 }
3712
3713 demand_empty_rest_of_line ();
3714
3715 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3716 than FSTMX/FLDMX-style ones). */
3717
3718 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3719 if (start >= 16)
3720 num_vfpv3_regs = count;
3721 else if (start + count > 16)
3722 num_vfpv3_regs = start + count - 16;
3723
3724 if (num_vfpv3_regs > 0)
3725 {
3726 int start_offset = start > 16 ? start - 16 : 0;
3727 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3728 add_unwind_opcode (op, 2);
3729 }
3730
3731 /* Generate opcode for registers numbered in the range 0 .. 15. */
3732 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3733 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3734 if (num_regs_below_16 > 0)
3735 {
3736 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3737 add_unwind_opcode (op, 2);
3738 }
3739
3740 unwind.frame_size += count * 8;
3741 }
3742
3743
3744 /* Parse a directive saving VFP registers for pre-ARMv6. */
3745
3746 static void
3747 s_arm_unwind_save_vfp (void)
3748 {
3749 int count;
3750 unsigned int reg;
3751 valueT op;
3752
3753 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3754 if (count == FAIL)
3755 {
3756 as_bad (_("expected register list"));
3757 ignore_rest_of_line ();
3758 return;
3759 }
3760
3761 demand_empty_rest_of_line ();
3762
3763 if (reg == 8)
3764 {
3765 /* Short form. */
3766 op = 0xb8 | (count - 1);
3767 add_unwind_opcode (op, 1);
3768 }
3769 else
3770 {
3771 /* Long form. */
3772 op = 0xb300 | (reg << 4) | (count - 1);
3773 add_unwind_opcode (op, 2);
3774 }
3775 unwind.frame_size += count * 8 + 4;
3776 }
3777
3778
3779 /* Parse a directive saving iWMMXt data registers. */
3780
3781 static void
3782 s_arm_unwind_save_mmxwr (void)
3783 {
3784 int reg;
3785 int hi_reg;
3786 int i;
3787 unsigned mask = 0;
3788 valueT op;
3789
3790 if (*input_line_pointer == '{')
3791 input_line_pointer++;
3792
3793 do
3794 {
3795 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3796
3797 if (reg == FAIL)
3798 {
3799 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3800 goto error;
3801 }
3802
3803 if (mask >> reg)
3804 as_tsktsk (_("register list not in ascending order"));
3805 mask |= 1 << reg;
3806
3807 if (*input_line_pointer == '-')
3808 {
3809 input_line_pointer++;
3810 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3811 if (hi_reg == FAIL)
3812 {
3813 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3814 goto error;
3815 }
3816 else if (reg >= hi_reg)
3817 {
3818 as_bad (_("bad register range"));
3819 goto error;
3820 }
3821 for (; reg < hi_reg; reg++)
3822 mask |= 1 << reg;
3823 }
3824 }
3825 while (skip_past_comma (&input_line_pointer) != FAIL);
3826
3827 if (*input_line_pointer == '}')
3828 input_line_pointer++;
3829
3830 demand_empty_rest_of_line ();
3831
3832 /* Generate any deferred opcodes because we're going to be looking at
3833 the list. */
3834 flush_pending_unwind ();
3835
3836 for (i = 0; i < 16; i++)
3837 {
3838 if (mask & (1 << i))
3839 unwind.frame_size += 8;
3840 }
3841
3842 /* Attempt to combine with a previous opcode. We do this because gcc
3843 likes to output separate unwind directives for a single block of
3844 registers. */
3845 if (unwind.opcode_count > 0)
3846 {
3847 i = unwind.opcodes[unwind.opcode_count - 1];
3848 if ((i & 0xf8) == 0xc0)
3849 {
3850 i &= 7;
3851 /* Only merge if the blocks are contiguous. */
3852 if (i < 6)
3853 {
3854 if ((mask & 0xfe00) == (1 << 9))
3855 {
3856 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3857 unwind.opcode_count--;
3858 }
3859 }
3860 else if (i == 6 && unwind.opcode_count >= 2)
3861 {
3862 i = unwind.opcodes[unwind.opcode_count - 2];
3863 reg = i >> 4;
3864 i &= 0xf;
3865
3866 op = 0xffff << (reg - 1);
3867 if (reg > 0
3868 && ((mask & op) == (1u << (reg - 1))))
3869 {
3870 op = (1 << (reg + i + 1)) - 1;
3871 op &= ~((1 << reg) - 1);
3872 mask |= op;
3873 unwind.opcode_count -= 2;
3874 }
3875 }
3876 }
3877 }
3878
3879 hi_reg = 15;
3880 /* We want to generate opcodes in the order the registers have been
3881 saved, ie. descending order. */
3882 for (reg = 15; reg >= -1; reg--)
3883 {
3884 /* Save registers in blocks. */
3885 if (reg < 0
3886 || !(mask & (1 << reg)))
3887 {
3888 /* We found an unsaved reg. Generate opcodes to save the
3889 preceding block. */
3890 if (reg != hi_reg)
3891 {
3892 if (reg == 9)
3893 {
3894 /* Short form. */
3895 op = 0xc0 | (hi_reg - 10);
3896 add_unwind_opcode (op, 1);
3897 }
3898 else
3899 {
3900 /* Long form. */
3901 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3902 add_unwind_opcode (op, 2);
3903 }
3904 }
3905 hi_reg = reg - 1;
3906 }
3907 }
3908
3909 return;
3910 error:
3911 ignore_rest_of_line ();
3912 }
3913
3914 static void
3915 s_arm_unwind_save_mmxwcg (void)
3916 {
3917 int reg;
3918 int hi_reg;
3919 unsigned mask = 0;
3920 valueT op;
3921
3922 if (*input_line_pointer == '{')
3923 input_line_pointer++;
3924
3925 do
3926 {
3927 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3928
3929 if (reg == FAIL)
3930 {
3931 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3932 goto error;
3933 }
3934
3935 reg -= 8;
3936 if (mask >> reg)
3937 as_tsktsk (_("register list not in ascending order"));
3938 mask |= 1 << reg;
3939
3940 if (*input_line_pointer == '-')
3941 {
3942 input_line_pointer++;
3943 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3944 if (hi_reg == FAIL)
3945 {
3946 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3947 goto error;
3948 }
3949 else if (reg >= hi_reg)
3950 {
3951 as_bad (_("bad register range"));
3952 goto error;
3953 }
3954 for (; reg < hi_reg; reg++)
3955 mask |= 1 << reg;
3956 }
3957 }
3958 while (skip_past_comma (&input_line_pointer) != FAIL);
3959
3960 if (*input_line_pointer == '}')
3961 input_line_pointer++;
3962
3963 demand_empty_rest_of_line ();
3964
3965 /* Generate any deferred opcodes because we're going to be looking at
3966 the list. */
3967 flush_pending_unwind ();
3968
3969 for (reg = 0; reg < 16; reg++)
3970 {
3971 if (mask & (1 << reg))
3972 unwind.frame_size += 4;
3973 }
3974 op = 0xc700 | mask;
3975 add_unwind_opcode (op, 2);
3976 return;
3977 error:
3978 ignore_rest_of_line ();
3979 }
3980
3981
3982 /* Parse an unwind_save directive.
3983 If the argument is non-zero, this is a .vsave directive. */
3984
3985 static void
3986 s_arm_unwind_save (int arch_v6)
3987 {
3988 char *peek;
3989 struct reg_entry *reg;
3990 bfd_boolean had_brace = FALSE;
3991
3992 if (!unwind.proc_start)
3993 as_bad (MISSING_FNSTART);
3994
3995 /* Figure out what sort of save we have. */
3996 peek = input_line_pointer;
3997
3998 if (*peek == '{')
3999 {
4000 had_brace = TRUE;
4001 peek++;
4002 }
4003
4004 reg = arm_reg_parse_multi (&peek);
4005
4006 if (!reg)
4007 {
4008 as_bad (_("register expected"));
4009 ignore_rest_of_line ();
4010 return;
4011 }
4012
4013 switch (reg->type)
4014 {
4015 case REG_TYPE_FN:
4016 if (had_brace)
4017 {
4018 as_bad (_("FPA .unwind_save does not take a register list"));
4019 ignore_rest_of_line ();
4020 return;
4021 }
4022 input_line_pointer = peek;
4023 s_arm_unwind_save_fpa (reg->number);
4024 return;
4025
4026 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4027 case REG_TYPE_VFD:
4028 if (arch_v6)
4029 s_arm_unwind_save_vfp_armv6 ();
4030 else
4031 s_arm_unwind_save_vfp ();
4032 return;
4033 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4034 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4035
4036 default:
4037 as_bad (_(".unwind_save does not support this kind of register"));
4038 ignore_rest_of_line ();
4039 }
4040 }
4041
4042
4043 /* Parse an unwind_movsp directive. */
4044
4045 static void
4046 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4047 {
4048 int reg;
4049 valueT op;
4050 int offset;
4051
4052 if (!unwind.proc_start)
4053 as_bad (MISSING_FNSTART);
4054
4055 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4056 if (reg == FAIL)
4057 {
4058 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4059 ignore_rest_of_line ();
4060 return;
4061 }
4062
4063 /* Optional constant. */
4064 if (skip_past_comma (&input_line_pointer) != FAIL)
4065 {
4066 if (immediate_for_directive (&offset) == FAIL)
4067 return;
4068 }
4069 else
4070 offset = 0;
4071
4072 demand_empty_rest_of_line ();
4073
4074 if (reg == REG_SP || reg == REG_PC)
4075 {
4076 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4077 return;
4078 }
4079
4080 if (unwind.fp_reg != REG_SP)
4081 as_bad (_("unexpected .unwind_movsp directive"));
4082
4083 /* Generate opcode to restore the value. */
4084 op = 0x90 | reg;
4085 add_unwind_opcode (op, 1);
4086
4087 /* Record the information for later. */
4088 unwind.fp_reg = reg;
4089 unwind.fp_offset = unwind.frame_size - offset;
4090 unwind.sp_restored = 1;
4091 }
4092
4093 /* Parse an unwind_pad directive. */
4094
4095 static void
4096 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4097 {
4098 int offset;
4099
4100 if (!unwind.proc_start)
4101 as_bad (MISSING_FNSTART);
4102
4103 if (immediate_for_directive (&offset) == FAIL)
4104 return;
4105
4106 if (offset & 3)
4107 {
4108 as_bad (_("stack increment must be multiple of 4"));
4109 ignore_rest_of_line ();
4110 return;
4111 }
4112
4113 /* Don't generate any opcodes, just record the details for later. */
4114 unwind.frame_size += offset;
4115 unwind.pending_offset += offset;
4116
4117 demand_empty_rest_of_line ();
4118 }
4119
4120 /* Parse an unwind_setfp directive. */
4121
4122 static void
4123 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4124 {
4125 int sp_reg;
4126 int fp_reg;
4127 int offset;
4128
4129 if (!unwind.proc_start)
4130 as_bad (MISSING_FNSTART);
4131
4132 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4133 if (skip_past_comma (&input_line_pointer) == FAIL)
4134 sp_reg = FAIL;
4135 else
4136 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4137
4138 if (fp_reg == FAIL || sp_reg == FAIL)
4139 {
4140 as_bad (_("expected <reg>, <reg>"));
4141 ignore_rest_of_line ();
4142 return;
4143 }
4144
4145 /* Optional constant. */
4146 if (skip_past_comma (&input_line_pointer) != FAIL)
4147 {
4148 if (immediate_for_directive (&offset) == FAIL)
4149 return;
4150 }
4151 else
4152 offset = 0;
4153
4154 demand_empty_rest_of_line ();
4155
4156 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4157 {
4158 as_bad (_("register must be either sp or set by a previous"
4159 "unwind_movsp directive"));
4160 return;
4161 }
4162
4163 /* Don't generate any opcodes, just record the information for later. */
4164 unwind.fp_reg = fp_reg;
4165 unwind.fp_used = 1;
4166 if (sp_reg == REG_SP)
4167 unwind.fp_offset = unwind.frame_size - offset;
4168 else
4169 unwind.fp_offset -= offset;
4170 }
4171
4172 /* Parse an unwind_raw directive. */
4173
4174 static void
4175 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4176 {
4177 expressionS exp;
4178 /* This is an arbitrary limit. */
4179 unsigned char op[16];
4180 int count;
4181
4182 if (!unwind.proc_start)
4183 as_bad (MISSING_FNSTART);
4184
4185 expression (&exp);
4186 if (exp.X_op == O_constant
4187 && skip_past_comma (&input_line_pointer) != FAIL)
4188 {
4189 unwind.frame_size += exp.X_add_number;
4190 expression (&exp);
4191 }
4192 else
4193 exp.X_op = O_illegal;
4194
4195 if (exp.X_op != O_constant)
4196 {
4197 as_bad (_("expected <offset>, <opcode>"));
4198 ignore_rest_of_line ();
4199 return;
4200 }
4201
4202 count = 0;
4203
4204 /* Parse the opcode. */
4205 for (;;)
4206 {
4207 if (count >= 16)
4208 {
4209 as_bad (_("unwind opcode too long"));
4210 ignore_rest_of_line ();
4211 }
4212 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4213 {
4214 as_bad (_("invalid unwind opcode"));
4215 ignore_rest_of_line ();
4216 return;
4217 }
4218 op[count++] = exp.X_add_number;
4219
4220 /* Parse the next byte. */
4221 if (skip_past_comma (&input_line_pointer) == FAIL)
4222 break;
4223
4224 expression (&exp);
4225 }
4226
4227 /* Add the opcode bytes in reverse order. */
4228 while (count--)
4229 add_unwind_opcode (op[count], 1);
4230
4231 demand_empty_rest_of_line ();
4232 }
4233
4234
4235 /* Parse a .eabi_attribute directive. */
4236
4237 static void
4238 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4239 {
4240 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4241
4242 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4243 attributes_set_explicitly[tag] = 1;
4244 }
4245 #endif /* OBJ_ELF */
4246
4247 static void s_arm_arch (int);
4248 static void s_arm_object_arch (int);
4249 static void s_arm_cpu (int);
4250 static void s_arm_fpu (int);
4251
4252 #ifdef TE_PE
4253
4254 static void
4255 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4256 {
4257 expressionS exp;
4258
4259 do
4260 {
4261 expression (&exp);
4262 if (exp.X_op == O_symbol)
4263 exp.X_op = O_secrel;
4264
4265 emit_expr (&exp, 4);
4266 }
4267 while (*input_line_pointer++ == ',');
4268
4269 input_line_pointer--;
4270 demand_empty_rest_of_line ();
4271 }
4272 #endif /* TE_PE */
4273
4274 /* This table describes all the machine specific pseudo-ops the assembler
4275 has to support. The fields are:
4276 pseudo-op name without dot
4277 function to call to execute this pseudo-op
4278 Integer arg to pass to the function. */
4279
4280 const pseudo_typeS md_pseudo_table[] =
4281 {
4282 /* Never called because '.req' does not start a line. */
4283 { "req", s_req, 0 },
4284 /* Following two are likewise never called. */
4285 { "dn", s_dn, 0 },
4286 { "qn", s_qn, 0 },
4287 { "unreq", s_unreq, 0 },
4288 { "bss", s_bss, 0 },
4289 { "align", s_align, 0 },
4290 { "arm", s_arm, 0 },
4291 { "thumb", s_thumb, 0 },
4292 { "code", s_code, 0 },
4293 { "force_thumb", s_force_thumb, 0 },
4294 { "thumb_func", s_thumb_func, 0 },
4295 { "thumb_set", s_thumb_set, 0 },
4296 { "even", s_even, 0 },
4297 { "ltorg", s_ltorg, 0 },
4298 { "pool", s_ltorg, 0 },
4299 { "syntax", s_syntax, 0 },
4300 { "cpu", s_arm_cpu, 0 },
4301 { "arch", s_arm_arch, 0 },
4302 { "object_arch", s_arm_object_arch, 0 },
4303 { "fpu", s_arm_fpu, 0 },
4304 #ifdef OBJ_ELF
4305 { "word", s_arm_elf_cons, 4 },
4306 { "long", s_arm_elf_cons, 4 },
4307 { "inst.n", s_arm_elf_inst, 2 },
4308 { "inst.w", s_arm_elf_inst, 4 },
4309 { "inst", s_arm_elf_inst, 0 },
4310 { "rel31", s_arm_rel31, 0 },
4311 { "fnstart", s_arm_unwind_fnstart, 0 },
4312 { "fnend", s_arm_unwind_fnend, 0 },
4313 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4314 { "personality", s_arm_unwind_personality, 0 },
4315 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4316 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4317 { "save", s_arm_unwind_save, 0 },
4318 { "vsave", s_arm_unwind_save, 1 },
4319 { "movsp", s_arm_unwind_movsp, 0 },
4320 { "pad", s_arm_unwind_pad, 0 },
4321 { "setfp", s_arm_unwind_setfp, 0 },
4322 { "unwind_raw", s_arm_unwind_raw, 0 },
4323 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4324 #else
4325 { "word", cons, 4},
4326
4327 /* These are used for dwarf. */
4328 {"2byte", cons, 2},
4329 {"4byte", cons, 4},
4330 {"8byte", cons, 8},
4331 /* These are used for dwarf2. */
4332 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4333 { "loc", dwarf2_directive_loc, 0 },
4334 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4335 #endif
4336 { "extend", float_cons, 'x' },
4337 { "ldouble", float_cons, 'x' },
4338 { "packed", float_cons, 'p' },
4339 #ifdef TE_PE
4340 {"secrel32", pe_directive_secrel, 0},
4341 #endif
4342 { 0, 0, 0 }
4343 };
4344 \f
4345 /* Parser functions used exclusively in instruction operands. */
4346
4347 /* Generic immediate-value read function for use in insn parsing.
4348 STR points to the beginning of the immediate (the leading #);
4349 VAL receives the value; if the value is outside [MIN, MAX]
4350 issue an error. PREFIX_OPT is true if the immediate prefix is
4351 optional. */
4352
4353 static int
4354 parse_immediate (char **str, int *val, int min, int max,
4355 bfd_boolean prefix_opt)
4356 {
4357 expressionS exp;
4358 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4359 if (exp.X_op != O_constant)
4360 {
4361 inst.error = _("constant expression required");
4362 return FAIL;
4363 }
4364
4365 if (exp.X_add_number < min || exp.X_add_number > max)
4366 {
4367 inst.error = _("immediate value out of range");
4368 return FAIL;
4369 }
4370
4371 *val = exp.X_add_number;
4372 return SUCCESS;
4373 }
4374
4375 /* Less-generic immediate-value read function with the possibility of loading a
4376 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4377 instructions. Puts the result directly in inst.operands[i]. */
4378
4379 static int
4380 parse_big_immediate (char **str, int i)
4381 {
4382 expressionS exp;
4383 char *ptr = *str;
4384
4385 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4386
4387 if (exp.X_op == O_constant)
4388 {
4389 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4390 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4391 O_constant. We have to be careful not to break compilation for
4392 32-bit X_add_number, though. */
4393 if ((exp.X_add_number & ~0xffffffffl) != 0)
4394 {
4395 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4396 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4397 inst.operands[i].regisimm = 1;
4398 }
4399 }
4400 else if (exp.X_op == O_big
4401 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4402 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4403 {
4404 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4405 /* Bignums have their least significant bits in
4406 generic_bignum[0]. Make sure we put 32 bits in imm and
4407 32 bits in reg, in a (hopefully) portable way. */
4408 gas_assert (parts != 0);
4409 inst.operands[i].imm = 0;
4410 for (j = 0; j < parts; j++, idx++)
4411 inst.operands[i].imm |= generic_bignum[idx]
4412 << (LITTLENUM_NUMBER_OF_BITS * j);
4413 inst.operands[i].reg = 0;
4414 for (j = 0; j < parts; j++, idx++)
4415 inst.operands[i].reg |= generic_bignum[idx]
4416 << (LITTLENUM_NUMBER_OF_BITS * j);
4417 inst.operands[i].regisimm = 1;
4418 }
4419 else
4420 return FAIL;
4421
4422 *str = ptr;
4423
4424 return SUCCESS;
4425 }
4426
4427 /* Returns the pseudo-register number of an FPA immediate constant,
4428 or FAIL if there isn't a valid constant here. */
4429
4430 static int
4431 parse_fpa_immediate (char ** str)
4432 {
4433 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4434 char * save_in;
4435 expressionS exp;
4436 int i;
4437 int j;
4438
4439 /* First try and match exact strings, this is to guarantee
4440 that some formats will work even for cross assembly. */
4441
4442 for (i = 0; fp_const[i]; i++)
4443 {
4444 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4445 {
4446 char *start = *str;
4447
4448 *str += strlen (fp_const[i]);
4449 if (is_end_of_line[(unsigned char) **str])
4450 return i + 8;
4451 *str = start;
4452 }
4453 }
4454
4455 /* Just because we didn't get a match doesn't mean that the constant
4456 isn't valid, just that it is in a format that we don't
4457 automatically recognize. Try parsing it with the standard
4458 expression routines. */
4459
4460 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4461
4462 /* Look for a raw floating point number. */
4463 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4464 && is_end_of_line[(unsigned char) *save_in])
4465 {
4466 for (i = 0; i < NUM_FLOAT_VALS; i++)
4467 {
4468 for (j = 0; j < MAX_LITTLENUMS; j++)
4469 {
4470 if (words[j] != fp_values[i][j])
4471 break;
4472 }
4473
4474 if (j == MAX_LITTLENUMS)
4475 {
4476 *str = save_in;
4477 return i + 8;
4478 }
4479 }
4480 }
4481
4482 /* Try and parse a more complex expression, this will probably fail
4483 unless the code uses a floating point prefix (eg "0f"). */
4484 save_in = input_line_pointer;
4485 input_line_pointer = *str;
4486 if (expression (&exp) == absolute_section
4487 && exp.X_op == O_big
4488 && exp.X_add_number < 0)
4489 {
4490 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4491 Ditto for 15. */
4492 if (gen_to_words (words, 5, (long) 15) == 0)
4493 {
4494 for (i = 0; i < NUM_FLOAT_VALS; i++)
4495 {
4496 for (j = 0; j < MAX_LITTLENUMS; j++)
4497 {
4498 if (words[j] != fp_values[i][j])
4499 break;
4500 }
4501
4502 if (j == MAX_LITTLENUMS)
4503 {
4504 *str = input_line_pointer;
4505 input_line_pointer = save_in;
4506 return i + 8;
4507 }
4508 }
4509 }
4510 }
4511
4512 *str = input_line_pointer;
4513 input_line_pointer = save_in;
4514 inst.error = _("invalid FPA immediate expression");
4515 return FAIL;
4516 }
4517
4518 /* Returns 1 if a number has "quarter-precision" float format
4519 0baBbbbbbc defgh000 00000000 00000000. */
4520
4521 static int
4522 is_quarter_float (unsigned imm)
4523 {
4524 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4525 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4526 }
4527
4528 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4529 0baBbbbbbc defgh000 00000000 00000000.
4530 The zero and minus-zero cases need special handling, since they can't be
4531 encoded in the "quarter-precision" float format, but can nonetheless be
4532 loaded as integer constants. */
4533
4534 static unsigned
4535 parse_qfloat_immediate (char **ccp, int *immed)
4536 {
4537 char *str = *ccp;
4538 char *fpnum;
4539 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4540 int found_fpchar = 0;
4541
4542 skip_past_char (&str, '#');
4543
4544 /* We must not accidentally parse an integer as a floating-point number. Make
4545 sure that the value we parse is not an integer by checking for special
4546 characters '.' or 'e'.
4547 FIXME: This is a horrible hack, but doing better is tricky because type
4548 information isn't in a very usable state at parse time. */
4549 fpnum = str;
4550 skip_whitespace (fpnum);
4551
4552 if (strncmp (fpnum, "0x", 2) == 0)
4553 return FAIL;
4554 else
4555 {
4556 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4557 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4558 {
4559 found_fpchar = 1;
4560 break;
4561 }
4562
4563 if (!found_fpchar)
4564 return FAIL;
4565 }
4566
4567 if ((str = atof_ieee (str, 's', words)) != NULL)
4568 {
4569 unsigned fpword = 0;
4570 int i;
4571
4572 /* Our FP word must be 32 bits (single-precision FP). */
4573 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4574 {
4575 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4576 fpword |= words[i];
4577 }
4578
4579 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4580 *immed = fpword;
4581 else
4582 return FAIL;
4583
4584 *ccp = str;
4585
4586 return SUCCESS;
4587 }
4588
4589 return FAIL;
4590 }
4591
4592 /* Shift operands. */
4593 enum shift_kind
4594 {
4595 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4596 };
4597
4598 struct asm_shift_name
4599 {
4600 const char *name;
4601 enum shift_kind kind;
4602 };
4603
4604 /* Third argument to parse_shift. */
4605 enum parse_shift_mode
4606 {
4607 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4608 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4609 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4610 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4611 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4612 };
4613
4614 /* Parse a <shift> specifier on an ARM data processing instruction.
4615 This has three forms:
4616
4617 (LSL|LSR|ASL|ASR|ROR) Rs
4618 (LSL|LSR|ASL|ASR|ROR) #imm
4619 RRX
4620
4621 Note that ASL is assimilated to LSL in the instruction encoding, and
4622 RRX to ROR #0 (which cannot be written as such). */
4623
4624 static int
4625 parse_shift (char **str, int i, enum parse_shift_mode mode)
4626 {
4627 const struct asm_shift_name *shift_name;
4628 enum shift_kind shift;
4629 char *s = *str;
4630 char *p = s;
4631 int reg;
4632
4633 for (p = *str; ISALPHA (*p); p++)
4634 ;
4635
4636 if (p == *str)
4637 {
4638 inst.error = _("shift expression expected");
4639 return FAIL;
4640 }
4641
4642 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4643 p - *str);
4644
4645 if (shift_name == NULL)
4646 {
4647 inst.error = _("shift expression expected");
4648 return FAIL;
4649 }
4650
4651 shift = shift_name->kind;
4652
4653 switch (mode)
4654 {
4655 case NO_SHIFT_RESTRICT:
4656 case SHIFT_IMMEDIATE: break;
4657
4658 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4659 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4660 {
4661 inst.error = _("'LSL' or 'ASR' required");
4662 return FAIL;
4663 }
4664 break;
4665
4666 case SHIFT_LSL_IMMEDIATE:
4667 if (shift != SHIFT_LSL)
4668 {
4669 inst.error = _("'LSL' required");
4670 return FAIL;
4671 }
4672 break;
4673
4674 case SHIFT_ASR_IMMEDIATE:
4675 if (shift != SHIFT_ASR)
4676 {
4677 inst.error = _("'ASR' required");
4678 return FAIL;
4679 }
4680 break;
4681
4682 default: abort ();
4683 }
4684
4685 if (shift != SHIFT_RRX)
4686 {
4687 /* Whitespace can appear here if the next thing is a bare digit. */
4688 skip_whitespace (p);
4689
4690 if (mode == NO_SHIFT_RESTRICT
4691 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4692 {
4693 inst.operands[i].imm = reg;
4694 inst.operands[i].immisreg = 1;
4695 }
4696 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4697 return FAIL;
4698 }
4699 inst.operands[i].shift_kind = shift;
4700 inst.operands[i].shifted = 1;
4701 *str = p;
4702 return SUCCESS;
4703 }
4704
4705 /* Parse a <shifter_operand> for an ARM data processing instruction:
4706
4707 #<immediate>
4708 #<immediate>, <rotate>
4709 <Rm>
4710 <Rm>, <shift>
4711
4712 where <shift> is defined by parse_shift above, and <rotate> is a
4713 multiple of 2 between 0 and 30. Validation of immediate operands
4714 is deferred to md_apply_fix. */
4715
4716 static int
4717 parse_shifter_operand (char **str, int i)
4718 {
4719 int value;
4720 expressionS exp;
4721
4722 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4723 {
4724 inst.operands[i].reg = value;
4725 inst.operands[i].isreg = 1;
4726
4727 /* parse_shift will override this if appropriate */
4728 inst.reloc.exp.X_op = O_constant;
4729 inst.reloc.exp.X_add_number = 0;
4730
4731 if (skip_past_comma (str) == FAIL)
4732 return SUCCESS;
4733
4734 /* Shift operation on register. */
4735 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4736 }
4737
4738 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4739 return FAIL;
4740
4741 if (skip_past_comma (str) == SUCCESS)
4742 {
4743 /* #x, y -- ie explicit rotation by Y. */
4744 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4745 return FAIL;
4746
4747 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4748 {
4749 inst.error = _("constant expression expected");
4750 return FAIL;
4751 }
4752
4753 value = exp.X_add_number;
4754 if (value < 0 || value > 30 || value % 2 != 0)
4755 {
4756 inst.error = _("invalid rotation");
4757 return FAIL;
4758 }
4759 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4760 {
4761 inst.error = _("invalid constant");
4762 return FAIL;
4763 }
4764
4765 /* Convert to decoded value. md_apply_fix will put it back. */
4766 inst.reloc.exp.X_add_number
4767 = (((inst.reloc.exp.X_add_number << (32 - value))
4768 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4769 }
4770
4771 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4772 inst.reloc.pc_rel = 0;
4773 return SUCCESS;
4774 }
4775
4776 /* Group relocation information. Each entry in the table contains the
4777 textual name of the relocation as may appear in assembler source
4778 and must end with a colon.
4779 Along with this textual name are the relocation codes to be used if
4780 the corresponding instruction is an ALU instruction (ADD or SUB only),
4781 an LDR, an LDRS, or an LDC. */
4782
4783 struct group_reloc_table_entry
4784 {
4785 const char *name;
4786 int alu_code;
4787 int ldr_code;
4788 int ldrs_code;
4789 int ldc_code;
4790 };
4791
4792 typedef enum
4793 {
4794 /* Varieties of non-ALU group relocation. */
4795
4796 GROUP_LDR,
4797 GROUP_LDRS,
4798 GROUP_LDC
4799 } group_reloc_type;
4800
4801 static struct group_reloc_table_entry group_reloc_table[] =
4802 { /* Program counter relative: */
4803 { "pc_g0_nc",
4804 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4805 0, /* LDR */
4806 0, /* LDRS */
4807 0 }, /* LDC */
4808 { "pc_g0",
4809 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4810 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4811 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4812 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4813 { "pc_g1_nc",
4814 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4815 0, /* LDR */
4816 0, /* LDRS */
4817 0 }, /* LDC */
4818 { "pc_g1",
4819 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4820 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4821 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4822 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4823 { "pc_g2",
4824 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4825 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4826 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4827 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4828 /* Section base relative */
4829 { "sb_g0_nc",
4830 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4831 0, /* LDR */
4832 0, /* LDRS */
4833 0 }, /* LDC */
4834 { "sb_g0",
4835 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4836 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4837 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4838 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4839 { "sb_g1_nc",
4840 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4841 0, /* LDR */
4842 0, /* LDRS */
4843 0 }, /* LDC */
4844 { "sb_g1",
4845 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4846 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4847 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4848 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4849 { "sb_g2",
4850 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4851 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4852 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4853 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4854
4855 /* Given the address of a pointer pointing to the textual name of a group
4856 relocation as may appear in assembler source, attempt to find its details
4857 in group_reloc_table. The pointer will be updated to the character after
4858 the trailing colon. On failure, FAIL will be returned; SUCCESS
4859 otherwise. On success, *entry will be updated to point at the relevant
4860 group_reloc_table entry. */
4861
4862 static int
4863 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4864 {
4865 unsigned int i;
4866 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4867 {
4868 int length = strlen (group_reloc_table[i].name);
4869
4870 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4871 && (*str)[length] == ':')
4872 {
4873 *out = &group_reloc_table[i];
4874 *str += (length + 1);
4875 return SUCCESS;
4876 }
4877 }
4878
4879 return FAIL;
4880 }
4881
4882 /* Parse a <shifter_operand> for an ARM data processing instruction
4883 (as for parse_shifter_operand) where group relocations are allowed:
4884
4885 #<immediate>
4886 #<immediate>, <rotate>
4887 #:<group_reloc>:<expression>
4888 <Rm>
4889 <Rm>, <shift>
4890
4891 where <group_reloc> is one of the strings defined in group_reloc_table.
4892 The hashes are optional.
4893
4894 Everything else is as for parse_shifter_operand. */
4895
4896 static parse_operand_result
4897 parse_shifter_operand_group_reloc (char **str, int i)
4898 {
4899 /* Determine if we have the sequence of characters #: or just :
4900 coming next. If we do, then we check for a group relocation.
4901 If we don't, punt the whole lot to parse_shifter_operand. */
4902
4903 if (((*str)[0] == '#' && (*str)[1] == ':')
4904 || (*str)[0] == ':')
4905 {
4906 struct group_reloc_table_entry *entry;
4907
4908 if ((*str)[0] == '#')
4909 (*str) += 2;
4910 else
4911 (*str)++;
4912
4913 /* Try to parse a group relocation. Anything else is an error. */
4914 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4915 {
4916 inst.error = _("unknown group relocation");
4917 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4918 }
4919
4920 /* We now have the group relocation table entry corresponding to
4921 the name in the assembler source. Next, we parse the expression. */
4922 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4923 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4924
4925 /* Record the relocation type (always the ALU variant here). */
4926 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
4927 gas_assert (inst.reloc.type != 0);
4928
4929 return PARSE_OPERAND_SUCCESS;
4930 }
4931 else
4932 return parse_shifter_operand (str, i) == SUCCESS
4933 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4934
4935 /* Never reached. */
4936 }
4937
4938 /* Parse all forms of an ARM address expression. Information is written
4939 to inst.operands[i] and/or inst.reloc.
4940
4941 Preindexed addressing (.preind=1):
4942
4943 [Rn, #offset] .reg=Rn .reloc.exp=offset
4944 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4945 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4946 .shift_kind=shift .reloc.exp=shift_imm
4947
4948 These three may have a trailing ! which causes .writeback to be set also.
4949
4950 Postindexed addressing (.postind=1, .writeback=1):
4951
4952 [Rn], #offset .reg=Rn .reloc.exp=offset
4953 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4954 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4955 .shift_kind=shift .reloc.exp=shift_imm
4956
4957 Unindexed addressing (.preind=0, .postind=0):
4958
4959 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4960
4961 Other:
4962
4963 [Rn]{!} shorthand for [Rn,#0]{!}
4964 =immediate .isreg=0 .reloc.exp=immediate
4965 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4966
4967 It is the caller's responsibility to check for addressing modes not
4968 supported by the instruction, and to set inst.reloc.type. */
4969
4970 static parse_operand_result
4971 parse_address_main (char **str, int i, int group_relocations,
4972 group_reloc_type group_type)
4973 {
4974 char *p = *str;
4975 int reg;
4976
4977 if (skip_past_char (&p, '[') == FAIL)
4978 {
4979 if (skip_past_char (&p, '=') == FAIL)
4980 {
4981 /* Bare address - translate to PC-relative offset. */
4982 inst.reloc.pc_rel = 1;
4983 inst.operands[i].reg = REG_PC;
4984 inst.operands[i].isreg = 1;
4985 inst.operands[i].preind = 1;
4986 }
4987 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
4988
4989 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4990 return PARSE_OPERAND_FAIL;
4991
4992 *str = p;
4993 return PARSE_OPERAND_SUCCESS;
4994 }
4995
4996 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4997 {
4998 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4999 return PARSE_OPERAND_FAIL;
5000 }
5001 inst.operands[i].reg = reg;
5002 inst.operands[i].isreg = 1;
5003
5004 if (skip_past_comma (&p) == SUCCESS)
5005 {
5006 inst.operands[i].preind = 1;
5007
5008 if (*p == '+') p++;
5009 else if (*p == '-') p++, inst.operands[i].negative = 1;
5010
5011 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5012 {
5013 inst.operands[i].imm = reg;
5014 inst.operands[i].immisreg = 1;
5015
5016 if (skip_past_comma (&p) == SUCCESS)
5017 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5018 return PARSE_OPERAND_FAIL;
5019 }
5020 else if (skip_past_char (&p, ':') == SUCCESS)
5021 {
5022 /* FIXME: '@' should be used here, but it's filtered out by generic
5023 code before we get to see it here. This may be subject to
5024 change. */
5025 expressionS exp;
5026 my_get_expression (&exp, &p, GE_NO_PREFIX);
5027 if (exp.X_op != O_constant)
5028 {
5029 inst.error = _("alignment must be constant");
5030 return PARSE_OPERAND_FAIL;
5031 }
5032 inst.operands[i].imm = exp.X_add_number << 8;
5033 inst.operands[i].immisalign = 1;
5034 /* Alignments are not pre-indexes. */
5035 inst.operands[i].preind = 0;
5036 }
5037 else
5038 {
5039 if (inst.operands[i].negative)
5040 {
5041 inst.operands[i].negative = 0;
5042 p--;
5043 }
5044
5045 if (group_relocations
5046 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5047 {
5048 struct group_reloc_table_entry *entry;
5049
5050 /* Skip over the #: or : sequence. */
5051 if (*p == '#')
5052 p += 2;
5053 else
5054 p++;
5055
5056 /* Try to parse a group relocation. Anything else is an
5057 error. */
5058 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5059 {
5060 inst.error = _("unknown group relocation");
5061 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5062 }
5063
5064 /* We now have the group relocation table entry corresponding to
5065 the name in the assembler source. Next, we parse the
5066 expression. */
5067 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5068 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5069
5070 /* Record the relocation type. */
5071 switch (group_type)
5072 {
5073 case GROUP_LDR:
5074 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5075 break;
5076
5077 case GROUP_LDRS:
5078 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5079 break;
5080
5081 case GROUP_LDC:
5082 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5083 break;
5084
5085 default:
5086 gas_assert (0);
5087 }
5088
5089 if (inst.reloc.type == 0)
5090 {
5091 inst.error = _("this group relocation is not allowed on this instruction");
5092 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5093 }
5094 }
5095 else
5096 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5097 return PARSE_OPERAND_FAIL;
5098 }
5099 }
5100
5101 if (skip_past_char (&p, ']') == FAIL)
5102 {
5103 inst.error = _("']' expected");
5104 return PARSE_OPERAND_FAIL;
5105 }
5106
5107 if (skip_past_char (&p, '!') == SUCCESS)
5108 inst.operands[i].writeback = 1;
5109
5110 else if (skip_past_comma (&p) == SUCCESS)
5111 {
5112 if (skip_past_char (&p, '{') == SUCCESS)
5113 {
5114 /* [Rn], {expr} - unindexed, with option */
5115 if (parse_immediate (&p, &inst.operands[i].imm,
5116 0, 255, TRUE) == FAIL)
5117 return PARSE_OPERAND_FAIL;
5118
5119 if (skip_past_char (&p, '}') == FAIL)
5120 {
5121 inst.error = _("'}' expected at end of 'option' field");
5122 return PARSE_OPERAND_FAIL;
5123 }
5124 if (inst.operands[i].preind)
5125 {
5126 inst.error = _("cannot combine index with option");
5127 return PARSE_OPERAND_FAIL;
5128 }
5129 *str = p;
5130 return PARSE_OPERAND_SUCCESS;
5131 }
5132 else
5133 {
5134 inst.operands[i].postind = 1;
5135 inst.operands[i].writeback = 1;
5136
5137 if (inst.operands[i].preind)
5138 {
5139 inst.error = _("cannot combine pre- and post-indexing");
5140 return PARSE_OPERAND_FAIL;
5141 }
5142
5143 if (*p == '+') p++;
5144 else if (*p == '-') p++, inst.operands[i].negative = 1;
5145
5146 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5147 {
5148 /* We might be using the immediate for alignment already. If we
5149 are, OR the register number into the low-order bits. */
5150 if (inst.operands[i].immisalign)
5151 inst.operands[i].imm |= reg;
5152 else
5153 inst.operands[i].imm = reg;
5154 inst.operands[i].immisreg = 1;
5155
5156 if (skip_past_comma (&p) == SUCCESS)
5157 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5158 return PARSE_OPERAND_FAIL;
5159 }
5160 else
5161 {
5162 if (inst.operands[i].negative)
5163 {
5164 inst.operands[i].negative = 0;
5165 p--;
5166 }
5167 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5168 return PARSE_OPERAND_FAIL;
5169 }
5170 }
5171 }
5172
5173 /* If at this point neither .preind nor .postind is set, we have a
5174 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5175 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5176 {
5177 inst.operands[i].preind = 1;
5178 inst.reloc.exp.X_op = O_constant;
5179 inst.reloc.exp.X_add_number = 0;
5180 }
5181 *str = p;
5182 return PARSE_OPERAND_SUCCESS;
5183 }
5184
5185 static int
5186 parse_address (char **str, int i)
5187 {
5188 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5189 ? SUCCESS : FAIL;
5190 }
5191
5192 static parse_operand_result
5193 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5194 {
5195 return parse_address_main (str, i, 1, type);
5196 }
5197
5198 /* Parse an operand for a MOVW or MOVT instruction. */
5199 static int
5200 parse_half (char **str)
5201 {
5202 char * p;
5203
5204 p = *str;
5205 skip_past_char (&p, '#');
5206 if (strncasecmp (p, ":lower16:", 9) == 0)
5207 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5208 else if (strncasecmp (p, ":upper16:", 9) == 0)
5209 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5210
5211 if (inst.reloc.type != BFD_RELOC_UNUSED)
5212 {
5213 p += 9;
5214 skip_whitespace (p);
5215 }
5216
5217 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5218 return FAIL;
5219
5220 if (inst.reloc.type == BFD_RELOC_UNUSED)
5221 {
5222 if (inst.reloc.exp.X_op != O_constant)
5223 {
5224 inst.error = _("constant expression expected");
5225 return FAIL;
5226 }
5227 if (inst.reloc.exp.X_add_number < 0
5228 || inst.reloc.exp.X_add_number > 0xffff)
5229 {
5230 inst.error = _("immediate value out of range");
5231 return FAIL;
5232 }
5233 }
5234 *str = p;
5235 return SUCCESS;
5236 }
5237
5238 /* Miscellaneous. */
5239
5240 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5241 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5242 static int
5243 parse_psr (char **str)
5244 {
5245 char *p;
5246 unsigned long psr_field;
5247 const struct asm_psr *psr;
5248 char *start;
5249
5250 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5251 feature for ease of use and backwards compatibility. */
5252 p = *str;
5253 if (strncasecmp (p, "SPSR", 4) == 0)
5254 psr_field = SPSR_BIT;
5255 else if (strncasecmp (p, "CPSR", 4) == 0)
5256 psr_field = 0;
5257 else
5258 {
5259 start = p;
5260 do
5261 p++;
5262 while (ISALNUM (*p) || *p == '_');
5263
5264 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5265 p - start);
5266 if (!psr)
5267 return FAIL;
5268
5269 *str = p;
5270 return psr->field;
5271 }
5272
5273 p += 4;
5274 if (*p == '_')
5275 {
5276 /* A suffix follows. */
5277 p++;
5278 start = p;
5279
5280 do
5281 p++;
5282 while (ISALNUM (*p) || *p == '_');
5283
5284 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5285 p - start);
5286 if (!psr)
5287 goto error;
5288
5289 psr_field |= psr->field;
5290 }
5291 else
5292 {
5293 if (ISALNUM (*p))
5294 goto error; /* Garbage after "[CS]PSR". */
5295
5296 psr_field |= (PSR_c | PSR_f);
5297 }
5298 *str = p;
5299 return psr_field;
5300
5301 error:
5302 inst.error = _("flag for {c}psr instruction expected");
5303 return FAIL;
5304 }
5305
5306 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5307 value suitable for splatting into the AIF field of the instruction. */
5308
5309 static int
5310 parse_cps_flags (char **str)
5311 {
5312 int val = 0;
5313 int saw_a_flag = 0;
5314 char *s = *str;
5315
5316 for (;;)
5317 switch (*s++)
5318 {
5319 case '\0': case ',':
5320 goto done;
5321
5322 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5323 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5324 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5325
5326 default:
5327 inst.error = _("unrecognized CPS flag");
5328 return FAIL;
5329 }
5330
5331 done:
5332 if (saw_a_flag == 0)
5333 {
5334 inst.error = _("missing CPS flags");
5335 return FAIL;
5336 }
5337
5338 *str = s - 1;
5339 return val;
5340 }
5341
5342 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5343 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5344
5345 static int
5346 parse_endian_specifier (char **str)
5347 {
5348 int little_endian;
5349 char *s = *str;
5350
5351 if (strncasecmp (s, "BE", 2))
5352 little_endian = 0;
5353 else if (strncasecmp (s, "LE", 2))
5354 little_endian = 1;
5355 else
5356 {
5357 inst.error = _("valid endian specifiers are be or le");
5358 return FAIL;
5359 }
5360
5361 if (ISALNUM (s[2]) || s[2] == '_')
5362 {
5363 inst.error = _("valid endian specifiers are be or le");
5364 return FAIL;
5365 }
5366
5367 *str = s + 2;
5368 return little_endian;
5369 }
5370
5371 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5372 value suitable for poking into the rotate field of an sxt or sxta
5373 instruction, or FAIL on error. */
5374
5375 static int
5376 parse_ror (char **str)
5377 {
5378 int rot;
5379 char *s = *str;
5380
5381 if (strncasecmp (s, "ROR", 3) == 0)
5382 s += 3;
5383 else
5384 {
5385 inst.error = _("missing rotation field after comma");
5386 return FAIL;
5387 }
5388
5389 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5390 return FAIL;
5391
5392 switch (rot)
5393 {
5394 case 0: *str = s; return 0x0;
5395 case 8: *str = s; return 0x1;
5396 case 16: *str = s; return 0x2;
5397 case 24: *str = s; return 0x3;
5398
5399 default:
5400 inst.error = _("rotation can only be 0, 8, 16, or 24");
5401 return FAIL;
5402 }
5403 }
5404
5405 /* Parse a conditional code (from conds[] below). The value returned is in the
5406 range 0 .. 14, or FAIL. */
5407 static int
5408 parse_cond (char **str)
5409 {
5410 char *q;
5411 const struct asm_cond *c;
5412 int n;
5413 /* Condition codes are always 2 characters, so matching up to
5414 3 characters is sufficient. */
5415 char cond[3];
5416
5417 q = *str;
5418 n = 0;
5419 while (ISALPHA (*q) && n < 3)
5420 {
5421 cond[n] = TOLOWER (*q);
5422 q++;
5423 n++;
5424 }
5425
5426 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5427 if (!c)
5428 {
5429 inst.error = _("condition required");
5430 return FAIL;
5431 }
5432
5433 *str = q;
5434 return c->value;
5435 }
5436
5437 /* Parse an option for a barrier instruction. Returns the encoding for the
5438 option, or FAIL. */
5439 static int
5440 parse_barrier (char **str)
5441 {
5442 char *p, *q;
5443 const struct asm_barrier_opt *o;
5444
5445 p = q = *str;
5446 while (ISALPHA (*q))
5447 q++;
5448
5449 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5450 q - p);
5451 if (!o)
5452 return FAIL;
5453
5454 *str = q;
5455 return o->value;
5456 }
5457
5458 /* Parse the operands of a table branch instruction. Similar to a memory
5459 operand. */
5460 static int
5461 parse_tb (char **str)
5462 {
5463 char * p = *str;
5464 int reg;
5465
5466 if (skip_past_char (&p, '[') == FAIL)
5467 {
5468 inst.error = _("'[' expected");
5469 return FAIL;
5470 }
5471
5472 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5473 {
5474 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5475 return FAIL;
5476 }
5477 inst.operands[0].reg = reg;
5478
5479 if (skip_past_comma (&p) == FAIL)
5480 {
5481 inst.error = _("',' expected");
5482 return FAIL;
5483 }
5484
5485 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5486 {
5487 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5488 return FAIL;
5489 }
5490 inst.operands[0].imm = reg;
5491
5492 if (skip_past_comma (&p) == SUCCESS)
5493 {
5494 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5495 return FAIL;
5496 if (inst.reloc.exp.X_add_number != 1)
5497 {
5498 inst.error = _("invalid shift");
5499 return FAIL;
5500 }
5501 inst.operands[0].shifted = 1;
5502 }
5503
5504 if (skip_past_char (&p, ']') == FAIL)
5505 {
5506 inst.error = _("']' expected");
5507 return FAIL;
5508 }
5509 *str = p;
5510 return SUCCESS;
5511 }
5512
5513 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5514 information on the types the operands can take and how they are encoded.
5515 Up to four operands may be read; this function handles setting the
5516 ".present" field for each read operand itself.
5517 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5518 else returns FAIL. */
5519
5520 static int
5521 parse_neon_mov (char **str, int *which_operand)
5522 {
5523 int i = *which_operand, val;
5524 enum arm_reg_type rtype;
5525 char *ptr = *str;
5526 struct neon_type_el optype;
5527
5528 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5529 {
5530 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5531 inst.operands[i].reg = val;
5532 inst.operands[i].isscalar = 1;
5533 inst.operands[i].vectype = optype;
5534 inst.operands[i++].present = 1;
5535
5536 if (skip_past_comma (&ptr) == FAIL)
5537 goto wanted_comma;
5538
5539 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5540 goto wanted_arm;
5541
5542 inst.operands[i].reg = val;
5543 inst.operands[i].isreg = 1;
5544 inst.operands[i].present = 1;
5545 }
5546 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5547 != FAIL)
5548 {
5549 /* Cases 0, 1, 2, 3, 5 (D only). */
5550 if (skip_past_comma (&ptr) == FAIL)
5551 goto wanted_comma;
5552
5553 inst.operands[i].reg = val;
5554 inst.operands[i].isreg = 1;
5555 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5556 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5557 inst.operands[i].isvec = 1;
5558 inst.operands[i].vectype = optype;
5559 inst.operands[i++].present = 1;
5560
5561 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5562 {
5563 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5564 Case 13: VMOV <Sd>, <Rm> */
5565 inst.operands[i].reg = val;
5566 inst.operands[i].isreg = 1;
5567 inst.operands[i].present = 1;
5568
5569 if (rtype == REG_TYPE_NQ)
5570 {
5571 first_error (_("can't use Neon quad register here"));
5572 return FAIL;
5573 }
5574 else if (rtype != REG_TYPE_VFS)
5575 {
5576 i++;
5577 if (skip_past_comma (&ptr) == FAIL)
5578 goto wanted_comma;
5579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5580 goto wanted_arm;
5581 inst.operands[i].reg = val;
5582 inst.operands[i].isreg = 1;
5583 inst.operands[i].present = 1;
5584 }
5585 }
5586 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5587 &optype)) != FAIL)
5588 {
5589 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5590 Case 1: VMOV<c><q> <Dd>, <Dm>
5591 Case 8: VMOV.F32 <Sd>, <Sm>
5592 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5593
5594 inst.operands[i].reg = val;
5595 inst.operands[i].isreg = 1;
5596 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5597 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5598 inst.operands[i].isvec = 1;
5599 inst.operands[i].vectype = optype;
5600 inst.operands[i].present = 1;
5601
5602 if (skip_past_comma (&ptr) == SUCCESS)
5603 {
5604 /* Case 15. */
5605 i++;
5606
5607 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5608 goto wanted_arm;
5609
5610 inst.operands[i].reg = val;
5611 inst.operands[i].isreg = 1;
5612 inst.operands[i++].present = 1;
5613
5614 if (skip_past_comma (&ptr) == FAIL)
5615 goto wanted_comma;
5616
5617 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5618 goto wanted_arm;
5619
5620 inst.operands[i].reg = val;
5621 inst.operands[i].isreg = 1;
5622 inst.operands[i++].present = 1;
5623 }
5624 }
5625 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5626 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5627 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5628 Case 10: VMOV.F32 <Sd>, #<imm>
5629 Case 11: VMOV.F64 <Dd>, #<imm> */
5630 inst.operands[i].immisfloat = 1;
5631 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5632 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5633 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5634 ;
5635 else
5636 {
5637 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5638 return FAIL;
5639 }
5640 }
5641 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5642 {
5643 /* Cases 6, 7. */
5644 inst.operands[i].reg = val;
5645 inst.operands[i].isreg = 1;
5646 inst.operands[i++].present = 1;
5647
5648 if (skip_past_comma (&ptr) == FAIL)
5649 goto wanted_comma;
5650
5651 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5652 {
5653 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5654 inst.operands[i].reg = val;
5655 inst.operands[i].isscalar = 1;
5656 inst.operands[i].present = 1;
5657 inst.operands[i].vectype = optype;
5658 }
5659 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5660 {
5661 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5662 inst.operands[i].reg = val;
5663 inst.operands[i].isreg = 1;
5664 inst.operands[i++].present = 1;
5665
5666 if (skip_past_comma (&ptr) == FAIL)
5667 goto wanted_comma;
5668
5669 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5670 == FAIL)
5671 {
5672 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5673 return FAIL;
5674 }
5675
5676 inst.operands[i].reg = val;
5677 inst.operands[i].isreg = 1;
5678 inst.operands[i].isvec = 1;
5679 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5680 inst.operands[i].vectype = optype;
5681 inst.operands[i].present = 1;
5682
5683 if (rtype == REG_TYPE_VFS)
5684 {
5685 /* Case 14. */
5686 i++;
5687 if (skip_past_comma (&ptr) == FAIL)
5688 goto wanted_comma;
5689 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5690 &optype)) == FAIL)
5691 {
5692 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5693 return FAIL;
5694 }
5695 inst.operands[i].reg = val;
5696 inst.operands[i].isreg = 1;
5697 inst.operands[i].isvec = 1;
5698 inst.operands[i].issingle = 1;
5699 inst.operands[i].vectype = optype;
5700 inst.operands[i].present = 1;
5701 }
5702 }
5703 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5704 != FAIL)
5705 {
5706 /* Case 13. */
5707 inst.operands[i].reg = val;
5708 inst.operands[i].isreg = 1;
5709 inst.operands[i].isvec = 1;
5710 inst.operands[i].issingle = 1;
5711 inst.operands[i].vectype = optype;
5712 inst.operands[i++].present = 1;
5713 }
5714 }
5715 else
5716 {
5717 first_error (_("parse error"));
5718 return FAIL;
5719 }
5720
5721 /* Successfully parsed the operands. Update args. */
5722 *which_operand = i;
5723 *str = ptr;
5724 return SUCCESS;
5725
5726 wanted_comma:
5727 first_error (_("expected comma"));
5728 return FAIL;
5729
5730 wanted_arm:
5731 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5732 return FAIL;
5733 }
5734
5735 /* Use this macro when the operand constraints are different
5736 for ARM and THUMB (e.g. ldrd). */
5737 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5738 ((arm_operand) | ((thumb_operand) << 16))
5739
5740 /* Matcher codes for parse_operands. */
5741 enum operand_parse_code
5742 {
5743 OP_stop, /* end of line */
5744
5745 OP_RR, /* ARM register */
5746 OP_RRnpc, /* ARM register, not r15 */
5747 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
5748 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5749 OP_RRw, /* ARM register, not r15, optional trailing ! */
5750 OP_RCP, /* Coprocessor number */
5751 OP_RCN, /* Coprocessor register */
5752 OP_RF, /* FPA register */
5753 OP_RVS, /* VFP single precision register */
5754 OP_RVD, /* VFP double precision register (0..15) */
5755 OP_RND, /* Neon double precision register (0..31) */
5756 OP_RNQ, /* Neon quad precision register */
5757 OP_RVSD, /* VFP single or double precision register */
5758 OP_RNDQ, /* Neon double or quad precision register */
5759 OP_RNSDQ, /* Neon single, double or quad precision register */
5760 OP_RNSC, /* Neon scalar D[X] */
5761 OP_RVC, /* VFP control register */
5762 OP_RMF, /* Maverick F register */
5763 OP_RMD, /* Maverick D register */
5764 OP_RMFX, /* Maverick FX register */
5765 OP_RMDX, /* Maverick DX register */
5766 OP_RMAX, /* Maverick AX register */
5767 OP_RMDS, /* Maverick DSPSC register */
5768 OP_RIWR, /* iWMMXt wR register */
5769 OP_RIWC, /* iWMMXt wC register */
5770 OP_RIWG, /* iWMMXt wCG register */
5771 OP_RXA, /* XScale accumulator register */
5772
5773 OP_REGLST, /* ARM register list */
5774 OP_VRSLST, /* VFP single-precision register list */
5775 OP_VRDLST, /* VFP double-precision register list */
5776 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5777 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5778 OP_NSTRLST, /* Neon element/structure list */
5779
5780 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5781 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5782 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5783 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5784 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5785 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5786 OP_VMOV, /* Neon VMOV operands. */
5787 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5788 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5789 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5790
5791 OP_I0, /* immediate zero */
5792 OP_I7, /* immediate value 0 .. 7 */
5793 OP_I15, /* 0 .. 15 */
5794 OP_I16, /* 1 .. 16 */
5795 OP_I16z, /* 0 .. 16 */
5796 OP_I31, /* 0 .. 31 */
5797 OP_I31w, /* 0 .. 31, optional trailing ! */
5798 OP_I32, /* 1 .. 32 */
5799 OP_I32z, /* 0 .. 32 */
5800 OP_I63, /* 0 .. 63 */
5801 OP_I63s, /* -64 .. 63 */
5802 OP_I64, /* 1 .. 64 */
5803 OP_I64z, /* 0 .. 64 */
5804 OP_I255, /* 0 .. 255 */
5805
5806 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5807 OP_I7b, /* 0 .. 7 */
5808 OP_I15b, /* 0 .. 15 */
5809 OP_I31b, /* 0 .. 31 */
5810
5811 OP_SH, /* shifter operand */
5812 OP_SHG, /* shifter operand with possible group relocation */
5813 OP_ADDR, /* Memory address expression (any mode) */
5814 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5815 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5816 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5817 OP_EXP, /* arbitrary expression */
5818 OP_EXPi, /* same, with optional immediate prefix */
5819 OP_EXPr, /* same, with optional relocation suffix */
5820 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5821
5822 OP_CPSF, /* CPS flags */
5823 OP_ENDI, /* Endianness specifier */
5824 OP_PSR, /* CPSR/SPSR mask for msr */
5825 OP_COND, /* conditional code */
5826 OP_TB, /* Table branch. */
5827
5828 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5829 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5830
5831 OP_RRnpc_I0, /* ARM register or literal 0 */
5832 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5833 OP_RR_EXi, /* ARM register or expression with imm prefix */
5834 OP_RF_IF, /* FPA register or immediate */
5835 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5836 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5837
5838 /* Optional operands. */
5839 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5840 OP_oI31b, /* 0 .. 31 */
5841 OP_oI32b, /* 1 .. 32 */
5842 OP_oIffffb, /* 0 .. 65535 */
5843 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5844
5845 OP_oRR, /* ARM register */
5846 OP_oRRnpc, /* ARM register, not the PC */
5847 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
5848 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5849 OP_oRND, /* Optional Neon double precision register */
5850 OP_oRNQ, /* Optional Neon quad precision register */
5851 OP_oRNDQ, /* Optional Neon double or quad precision register */
5852 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5853 OP_oSHll, /* LSL immediate */
5854 OP_oSHar, /* ASR immediate */
5855 OP_oSHllar, /* LSL or ASR immediate */
5856 OP_oROR, /* ROR 0/8/16/24 */
5857 OP_oBARRIER, /* Option argument for a barrier instruction. */
5858
5859 /* Some pre-defined mixed (ARM/THUMB) operands. */
5860 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5861 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5862 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5863
5864 OP_FIRST_OPTIONAL = OP_oI7b
5865 };
5866
5867 /* Generic instruction operand parser. This does no encoding and no
5868 semantic validation; it merely squirrels values away in the inst
5869 structure. Returns SUCCESS or FAIL depending on whether the
5870 specified grammar matched. */
5871 static int
5872 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
5873 {
5874 unsigned const int *upat = pattern;
5875 char *backtrack_pos = 0;
5876 const char *backtrack_error = 0;
5877 int i, val, backtrack_index = 0;
5878 enum arm_reg_type rtype;
5879 parse_operand_result result;
5880 unsigned int op_parse_code;
5881
5882 #define po_char_or_fail(chr) \
5883 do \
5884 { \
5885 if (skip_past_char (&str, chr) == FAIL) \
5886 goto bad_args; \
5887 } \
5888 while (0)
5889
5890 #define po_reg_or_fail(regtype) \
5891 do \
5892 { \
5893 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5894 & inst.operands[i].vectype); \
5895 if (val == FAIL) \
5896 { \
5897 first_error (_(reg_expected_msgs[regtype])); \
5898 goto failure; \
5899 } \
5900 inst.operands[i].reg = val; \
5901 inst.operands[i].isreg = 1; \
5902 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5903 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5904 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5905 || rtype == REG_TYPE_VFD \
5906 || rtype == REG_TYPE_NQ); \
5907 } \
5908 while (0)
5909
5910 #define po_reg_or_goto(regtype, label) \
5911 do \
5912 { \
5913 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5914 & inst.operands[i].vectype); \
5915 if (val == FAIL) \
5916 goto label; \
5917 \
5918 inst.operands[i].reg = val; \
5919 inst.operands[i].isreg = 1; \
5920 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5921 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5922 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5923 || rtype == REG_TYPE_VFD \
5924 || rtype == REG_TYPE_NQ); \
5925 } \
5926 while (0)
5927
5928 #define po_imm_or_fail(min, max, popt) \
5929 do \
5930 { \
5931 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5932 goto failure; \
5933 inst.operands[i].imm = val; \
5934 } \
5935 while (0)
5936
5937 #define po_scalar_or_goto(elsz, label) \
5938 do \
5939 { \
5940 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5941 if (val == FAIL) \
5942 goto label; \
5943 inst.operands[i].reg = val; \
5944 inst.operands[i].isscalar = 1; \
5945 } \
5946 while (0)
5947
5948 #define po_misc_or_fail(expr) \
5949 do \
5950 { \
5951 if (expr) \
5952 goto failure; \
5953 } \
5954 while (0)
5955
5956 #define po_misc_or_fail_no_backtrack(expr) \
5957 do \
5958 { \
5959 result = expr; \
5960 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5961 backtrack_pos = 0; \
5962 if (result != PARSE_OPERAND_SUCCESS) \
5963 goto failure; \
5964 } \
5965 while (0)
5966
5967 skip_whitespace (str);
5968
5969 for (i = 0; upat[i] != OP_stop; i++)
5970 {
5971 op_parse_code = upat[i];
5972 if (op_parse_code >= 1<<16)
5973 op_parse_code = thumb ? (op_parse_code >> 16)
5974 : (op_parse_code & ((1<<16)-1));
5975
5976 if (op_parse_code >= OP_FIRST_OPTIONAL)
5977 {
5978 /* Remember where we are in case we need to backtrack. */
5979 gas_assert (!backtrack_pos);
5980 backtrack_pos = str;
5981 backtrack_error = inst.error;
5982 backtrack_index = i;
5983 }
5984
5985 if (i > 0 && (i > 1 || inst.operands[0].present))
5986 po_char_or_fail (',');
5987
5988 switch (op_parse_code)
5989 {
5990 /* Registers */
5991 case OP_oRRnpc:
5992 case OP_oRRnpcsp:
5993 case OP_RRnpc:
5994 case OP_RRnpcsp:
5995 case OP_oRR:
5996 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5997 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5998 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5999 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6000 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6001 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6002 case OP_oRND:
6003 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6004 case OP_RVC:
6005 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6006 break;
6007 /* Also accept generic coprocessor regs for unknown registers. */
6008 coproc_reg:
6009 po_reg_or_fail (REG_TYPE_CN);
6010 break;
6011 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6012 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6013 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6014 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6015 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6016 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6017 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6018 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6019 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6020 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6021 case OP_oRNQ:
6022 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6023 case OP_oRNDQ:
6024 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6025 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6026 case OP_oRNSDQ:
6027 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6028
6029 /* Neon scalar. Using an element size of 8 means that some invalid
6030 scalars are accepted here, so deal with those in later code. */
6031 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6032
6033 case OP_RNDQ_I0:
6034 {
6035 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6036 break;
6037 try_imm0:
6038 po_imm_or_fail (0, 0, TRUE);
6039 }
6040 break;
6041
6042 case OP_RVSD_I0:
6043 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6044 break;
6045
6046 case OP_RR_RNSC:
6047 {
6048 po_scalar_or_goto (8, try_rr);
6049 break;
6050 try_rr:
6051 po_reg_or_fail (REG_TYPE_RN);
6052 }
6053 break;
6054
6055 case OP_RNSDQ_RNSC:
6056 {
6057 po_scalar_or_goto (8, try_nsdq);
6058 break;
6059 try_nsdq:
6060 po_reg_or_fail (REG_TYPE_NSDQ);
6061 }
6062 break;
6063
6064 case OP_RNDQ_RNSC:
6065 {
6066 po_scalar_or_goto (8, try_ndq);
6067 break;
6068 try_ndq:
6069 po_reg_or_fail (REG_TYPE_NDQ);
6070 }
6071 break;
6072
6073 case OP_RND_RNSC:
6074 {
6075 po_scalar_or_goto (8, try_vfd);
6076 break;
6077 try_vfd:
6078 po_reg_or_fail (REG_TYPE_VFD);
6079 }
6080 break;
6081
6082 case OP_VMOV:
6083 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6084 not careful then bad things might happen. */
6085 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6086 break;
6087
6088 case OP_RNDQ_Ibig:
6089 {
6090 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6091 break;
6092 try_immbig:
6093 /* There's a possibility of getting a 64-bit immediate here, so
6094 we need special handling. */
6095 if (parse_big_immediate (&str, i) == FAIL)
6096 {
6097 inst.error = _("immediate value is out of range");
6098 goto failure;
6099 }
6100 }
6101 break;
6102
6103 case OP_RNDQ_I63b:
6104 {
6105 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6106 break;
6107 try_shimm:
6108 po_imm_or_fail (0, 63, TRUE);
6109 }
6110 break;
6111
6112 case OP_RRnpcb:
6113 po_char_or_fail ('[');
6114 po_reg_or_fail (REG_TYPE_RN);
6115 po_char_or_fail (']');
6116 break;
6117
6118 case OP_RRw:
6119 case OP_oRRw:
6120 po_reg_or_fail (REG_TYPE_RN);
6121 if (skip_past_char (&str, '!') == SUCCESS)
6122 inst.operands[i].writeback = 1;
6123 break;
6124
6125 /* Immediates */
6126 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6127 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6128 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6129 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6130 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6131 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6132 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6133 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6134 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6135 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6136 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6137 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6138
6139 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6140 case OP_oI7b:
6141 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6142 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6143 case OP_oI31b:
6144 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6145 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6146 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6147
6148 /* Immediate variants */
6149 case OP_oI255c:
6150 po_char_or_fail ('{');
6151 po_imm_or_fail (0, 255, TRUE);
6152 po_char_or_fail ('}');
6153 break;
6154
6155 case OP_I31w:
6156 /* The expression parser chokes on a trailing !, so we have
6157 to find it first and zap it. */
6158 {
6159 char *s = str;
6160 while (*s && *s != ',')
6161 s++;
6162 if (s[-1] == '!')
6163 {
6164 s[-1] = '\0';
6165 inst.operands[i].writeback = 1;
6166 }
6167 po_imm_or_fail (0, 31, TRUE);
6168 if (str == s - 1)
6169 str = s;
6170 }
6171 break;
6172
6173 /* Expressions */
6174 case OP_EXPi: EXPi:
6175 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6176 GE_OPT_PREFIX));
6177 break;
6178
6179 case OP_EXP:
6180 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6181 GE_NO_PREFIX));
6182 break;
6183
6184 case OP_EXPr: EXPr:
6185 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6186 GE_NO_PREFIX));
6187 if (inst.reloc.exp.X_op == O_symbol)
6188 {
6189 val = parse_reloc (&str);
6190 if (val == -1)
6191 {
6192 inst.error = _("unrecognized relocation suffix");
6193 goto failure;
6194 }
6195 else if (val != BFD_RELOC_UNUSED)
6196 {
6197 inst.operands[i].imm = val;
6198 inst.operands[i].hasreloc = 1;
6199 }
6200 }
6201 break;
6202
6203 /* Operand for MOVW or MOVT. */
6204 case OP_HALF:
6205 po_misc_or_fail (parse_half (&str));
6206 break;
6207
6208 /* Register or expression. */
6209 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6210 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6211
6212 /* Register or immediate. */
6213 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6214 I0: po_imm_or_fail (0, 0, FALSE); break;
6215
6216 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6217 IF:
6218 if (!is_immediate_prefix (*str))
6219 goto bad_args;
6220 str++;
6221 val = parse_fpa_immediate (&str);
6222 if (val == FAIL)
6223 goto failure;
6224 /* FPA immediates are encoded as registers 8-15.
6225 parse_fpa_immediate has already applied the offset. */
6226 inst.operands[i].reg = val;
6227 inst.operands[i].isreg = 1;
6228 break;
6229
6230 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6231 I32z: po_imm_or_fail (0, 32, FALSE); break;
6232
6233 /* Two kinds of register. */
6234 case OP_RIWR_RIWC:
6235 {
6236 struct reg_entry *rege = arm_reg_parse_multi (&str);
6237 if (!rege
6238 || (rege->type != REG_TYPE_MMXWR
6239 && rege->type != REG_TYPE_MMXWC
6240 && rege->type != REG_TYPE_MMXWCG))
6241 {
6242 inst.error = _("iWMMXt data or control register expected");
6243 goto failure;
6244 }
6245 inst.operands[i].reg = rege->number;
6246 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6247 }
6248 break;
6249
6250 case OP_RIWC_RIWG:
6251 {
6252 struct reg_entry *rege = arm_reg_parse_multi (&str);
6253 if (!rege
6254 || (rege->type != REG_TYPE_MMXWC
6255 && rege->type != REG_TYPE_MMXWCG))
6256 {
6257 inst.error = _("iWMMXt control register expected");
6258 goto failure;
6259 }
6260 inst.operands[i].reg = rege->number;
6261 inst.operands[i].isreg = 1;
6262 }
6263 break;
6264
6265 /* Misc */
6266 case OP_CPSF: val = parse_cps_flags (&str); break;
6267 case OP_ENDI: val = parse_endian_specifier (&str); break;
6268 case OP_oROR: val = parse_ror (&str); break;
6269 case OP_PSR: val = parse_psr (&str); break;
6270 case OP_COND: val = parse_cond (&str); break;
6271 case OP_oBARRIER:val = parse_barrier (&str); break;
6272
6273 case OP_RVC_PSR:
6274 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6275 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6276 break;
6277 try_psr:
6278 val = parse_psr (&str);
6279 break;
6280
6281 case OP_APSR_RR:
6282 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6283 break;
6284 try_apsr:
6285 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6286 instruction). */
6287 if (strncasecmp (str, "APSR_", 5) == 0)
6288 {
6289 unsigned found = 0;
6290 str += 5;
6291 while (found < 15)
6292 switch (*str++)
6293 {
6294 case 'c': found = (found & 1) ? 16 : found | 1; break;
6295 case 'n': found = (found & 2) ? 16 : found | 2; break;
6296 case 'z': found = (found & 4) ? 16 : found | 4; break;
6297 case 'v': found = (found & 8) ? 16 : found | 8; break;
6298 default: found = 16;
6299 }
6300 if (found != 15)
6301 goto failure;
6302 inst.operands[i].isvec = 1;
6303 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6304 inst.operands[i].reg = REG_PC;
6305 }
6306 else
6307 goto failure;
6308 break;
6309
6310 case OP_TB:
6311 po_misc_or_fail (parse_tb (&str));
6312 break;
6313
6314 /* Register lists. */
6315 case OP_REGLST:
6316 val = parse_reg_list (&str);
6317 if (*str == '^')
6318 {
6319 inst.operands[1].writeback = 1;
6320 str++;
6321 }
6322 break;
6323
6324 case OP_VRSLST:
6325 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6326 break;
6327
6328 case OP_VRDLST:
6329 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6330 break;
6331
6332 case OP_VRSDLST:
6333 /* Allow Q registers too. */
6334 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6335 REGLIST_NEON_D);
6336 if (val == FAIL)
6337 {
6338 inst.error = NULL;
6339 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6340 REGLIST_VFP_S);
6341 inst.operands[i].issingle = 1;
6342 }
6343 break;
6344
6345 case OP_NRDLST:
6346 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6347 REGLIST_NEON_D);
6348 break;
6349
6350 case OP_NSTRLST:
6351 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6352 &inst.operands[i].vectype);
6353 break;
6354
6355 /* Addressing modes */
6356 case OP_ADDR:
6357 po_misc_or_fail (parse_address (&str, i));
6358 break;
6359
6360 case OP_ADDRGLDR:
6361 po_misc_or_fail_no_backtrack (
6362 parse_address_group_reloc (&str, i, GROUP_LDR));
6363 break;
6364
6365 case OP_ADDRGLDRS:
6366 po_misc_or_fail_no_backtrack (
6367 parse_address_group_reloc (&str, i, GROUP_LDRS));
6368 break;
6369
6370 case OP_ADDRGLDC:
6371 po_misc_or_fail_no_backtrack (
6372 parse_address_group_reloc (&str, i, GROUP_LDC));
6373 break;
6374
6375 case OP_SH:
6376 po_misc_or_fail (parse_shifter_operand (&str, i));
6377 break;
6378
6379 case OP_SHG:
6380 po_misc_or_fail_no_backtrack (
6381 parse_shifter_operand_group_reloc (&str, i));
6382 break;
6383
6384 case OP_oSHll:
6385 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6386 break;
6387
6388 case OP_oSHar:
6389 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6390 break;
6391
6392 case OP_oSHllar:
6393 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6394 break;
6395
6396 default:
6397 as_fatal (_("unhandled operand code %d"), op_parse_code);
6398 }
6399
6400 /* Various value-based sanity checks and shared operations. We
6401 do not signal immediate failures for the register constraints;
6402 this allows a syntax error to take precedence. */
6403 switch (op_parse_code)
6404 {
6405 case OP_oRRnpc:
6406 case OP_RRnpc:
6407 case OP_RRnpcb:
6408 case OP_RRw:
6409 case OP_oRRw:
6410 case OP_RRnpc_I0:
6411 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6412 inst.error = BAD_PC;
6413 break;
6414
6415 case OP_oRRnpcsp:
6416 case OP_RRnpcsp:
6417 if (inst.operands[i].isreg)
6418 {
6419 if (inst.operands[i].reg == REG_PC)
6420 inst.error = BAD_PC;
6421 else if (inst.operands[i].reg == REG_SP)
6422 inst.error = BAD_SP;
6423 }
6424 break;
6425
6426 case OP_CPSF:
6427 case OP_ENDI:
6428 case OP_oROR:
6429 case OP_PSR:
6430 case OP_RVC_PSR:
6431 case OP_COND:
6432 case OP_oBARRIER:
6433 case OP_REGLST:
6434 case OP_VRSLST:
6435 case OP_VRDLST:
6436 case OP_VRSDLST:
6437 case OP_NRDLST:
6438 case OP_NSTRLST:
6439 if (val == FAIL)
6440 goto failure;
6441 inst.operands[i].imm = val;
6442 break;
6443
6444 default:
6445 break;
6446 }
6447
6448 /* If we get here, this operand was successfully parsed. */
6449 inst.operands[i].present = 1;
6450 continue;
6451
6452 bad_args:
6453 inst.error = BAD_ARGS;
6454
6455 failure:
6456 if (!backtrack_pos)
6457 {
6458 /* The parse routine should already have set inst.error, but set a
6459 default here just in case. */
6460 if (!inst.error)
6461 inst.error = _("syntax error");
6462 return FAIL;
6463 }
6464
6465 /* Do not backtrack over a trailing optional argument that
6466 absorbed some text. We will only fail again, with the
6467 'garbage following instruction' error message, which is
6468 probably less helpful than the current one. */
6469 if (backtrack_index == i && backtrack_pos != str
6470 && upat[i+1] == OP_stop)
6471 {
6472 if (!inst.error)
6473 inst.error = _("syntax error");
6474 return FAIL;
6475 }
6476
6477 /* Try again, skipping the optional argument at backtrack_pos. */
6478 str = backtrack_pos;
6479 inst.error = backtrack_error;
6480 inst.operands[backtrack_index].present = 0;
6481 i = backtrack_index;
6482 backtrack_pos = 0;
6483 }
6484
6485 /* Check that we have parsed all the arguments. */
6486 if (*str != '\0' && !inst.error)
6487 inst.error = _("garbage following instruction");
6488
6489 return inst.error ? FAIL : SUCCESS;
6490 }
6491
6492 #undef po_char_or_fail
6493 #undef po_reg_or_fail
6494 #undef po_reg_or_goto
6495 #undef po_imm_or_fail
6496 #undef po_scalar_or_fail
6497
6498 /* Shorthand macro for instruction encoding functions issuing errors. */
6499 #define constraint(expr, err) \
6500 do \
6501 { \
6502 if (expr) \
6503 { \
6504 inst.error = err; \
6505 return; \
6506 } \
6507 } \
6508 while (0)
6509
6510 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6511 instructions are unpredictable if these registers are used. This
6512 is the BadReg predicate in ARM's Thumb-2 documentation. */
6513 #define reject_bad_reg(reg) \
6514 do \
6515 if (reg == REG_SP || reg == REG_PC) \
6516 { \
6517 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6518 return; \
6519 } \
6520 while (0)
6521
6522 /* If REG is R13 (the stack pointer), warn that its use is
6523 deprecated. */
6524 #define warn_deprecated_sp(reg) \
6525 do \
6526 if (warn_on_deprecated && reg == REG_SP) \
6527 as_warn (_("use of r13 is deprecated")); \
6528 while (0)
6529
6530 /* Functions for operand encoding. ARM, then Thumb. */
6531
6532 #define rotate_left(v, n) (v << n | v >> (32 - n))
6533
6534 /* If VAL can be encoded in the immediate field of an ARM instruction,
6535 return the encoded form. Otherwise, return FAIL. */
6536
6537 static unsigned int
6538 encode_arm_immediate (unsigned int val)
6539 {
6540 unsigned int a, i;
6541
6542 for (i = 0; i < 32; i += 2)
6543 if ((a = rotate_left (val, i)) <= 0xff)
6544 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6545
6546 return FAIL;
6547 }
6548
6549 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6550 return the encoded form. Otherwise, return FAIL. */
6551 static unsigned int
6552 encode_thumb32_immediate (unsigned int val)
6553 {
6554 unsigned int a, i;
6555
6556 if (val <= 0xff)
6557 return val;
6558
6559 for (i = 1; i <= 24; i++)
6560 {
6561 a = val >> i;
6562 if ((val & ~(0xff << i)) == 0)
6563 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6564 }
6565
6566 a = val & 0xff;
6567 if (val == ((a << 16) | a))
6568 return 0x100 | a;
6569 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6570 return 0x300 | a;
6571
6572 a = val & 0xff00;
6573 if (val == ((a << 16) | a))
6574 return 0x200 | (a >> 8);
6575
6576 return FAIL;
6577 }
6578 /* Encode a VFP SP or DP register number into inst.instruction. */
6579
6580 static void
6581 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6582 {
6583 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6584 && reg > 15)
6585 {
6586 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6587 {
6588 if (thumb_mode)
6589 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6590 fpu_vfp_ext_d32);
6591 else
6592 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6593 fpu_vfp_ext_d32);
6594 }
6595 else
6596 {
6597 first_error (_("D register out of range for selected VFP version"));
6598 return;
6599 }
6600 }
6601
6602 switch (pos)
6603 {
6604 case VFP_REG_Sd:
6605 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6606 break;
6607
6608 case VFP_REG_Sn:
6609 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6610 break;
6611
6612 case VFP_REG_Sm:
6613 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6614 break;
6615
6616 case VFP_REG_Dd:
6617 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6618 break;
6619
6620 case VFP_REG_Dn:
6621 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6622 break;
6623
6624 case VFP_REG_Dm:
6625 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6626 break;
6627
6628 default:
6629 abort ();
6630 }
6631 }
6632
6633 /* Encode a <shift> in an ARM-format instruction. The immediate,
6634 if any, is handled by md_apply_fix. */
6635 static void
6636 encode_arm_shift (int i)
6637 {
6638 if (inst.operands[i].shift_kind == SHIFT_RRX)
6639 inst.instruction |= SHIFT_ROR << 5;
6640 else
6641 {
6642 inst.instruction |= inst.operands[i].shift_kind << 5;
6643 if (inst.operands[i].immisreg)
6644 {
6645 inst.instruction |= SHIFT_BY_REG;
6646 inst.instruction |= inst.operands[i].imm << 8;
6647 }
6648 else
6649 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6650 }
6651 }
6652
6653 static void
6654 encode_arm_shifter_operand (int i)
6655 {
6656 if (inst.operands[i].isreg)
6657 {
6658 inst.instruction |= inst.operands[i].reg;
6659 encode_arm_shift (i);
6660 }
6661 else
6662 inst.instruction |= INST_IMMEDIATE;
6663 }
6664
6665 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6666 static void
6667 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6668 {
6669 gas_assert (inst.operands[i].isreg);
6670 inst.instruction |= inst.operands[i].reg << 16;
6671
6672 if (inst.operands[i].preind)
6673 {
6674 if (is_t)
6675 {
6676 inst.error = _("instruction does not accept preindexed addressing");
6677 return;
6678 }
6679 inst.instruction |= PRE_INDEX;
6680 if (inst.operands[i].writeback)
6681 inst.instruction |= WRITE_BACK;
6682
6683 }
6684 else if (inst.operands[i].postind)
6685 {
6686 gas_assert (inst.operands[i].writeback);
6687 if (is_t)
6688 inst.instruction |= WRITE_BACK;
6689 }
6690 else /* unindexed - only for coprocessor */
6691 {
6692 inst.error = _("instruction does not accept unindexed addressing");
6693 return;
6694 }
6695
6696 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6697 && (((inst.instruction & 0x000f0000) >> 16)
6698 == ((inst.instruction & 0x0000f000) >> 12)))
6699 as_warn ((inst.instruction & LOAD_BIT)
6700 ? _("destination register same as write-back base")
6701 : _("source register same as write-back base"));
6702 }
6703
6704 /* inst.operands[i] was set up by parse_address. Encode it into an
6705 ARM-format mode 2 load or store instruction. If is_t is true,
6706 reject forms that cannot be used with a T instruction (i.e. not
6707 post-indexed). */
6708 static void
6709 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6710 {
6711 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6712
6713 encode_arm_addr_mode_common (i, is_t);
6714
6715 if (inst.operands[i].immisreg)
6716 {
6717 constraint ((inst.operands[i].imm == REG_PC
6718 || (is_pc && inst.operands[i].writeback)),
6719 BAD_PC_ADDRESSING);
6720 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6721 inst.instruction |= inst.operands[i].imm;
6722 if (!inst.operands[i].negative)
6723 inst.instruction |= INDEX_UP;
6724 if (inst.operands[i].shifted)
6725 {
6726 if (inst.operands[i].shift_kind == SHIFT_RRX)
6727 inst.instruction |= SHIFT_ROR << 5;
6728 else
6729 {
6730 inst.instruction |= inst.operands[i].shift_kind << 5;
6731 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6732 }
6733 }
6734 }
6735 else /* immediate offset in inst.reloc */
6736 {
6737 if (is_pc && !inst.reloc.pc_rel)
6738 {
6739 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
6740 /* BAD_PC_ADDRESSING Condition =
6741 is_load => is_t
6742 which becomes !is_load || is_t. */
6743 constraint ((!is_load || is_t),
6744 BAD_PC_ADDRESSING);
6745 }
6746
6747 if (inst.reloc.type == BFD_RELOC_UNUSED)
6748 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6749 }
6750 }
6751
6752 /* inst.operands[i] was set up by parse_address. Encode it into an
6753 ARM-format mode 3 load or store instruction. Reject forms that
6754 cannot be used with such instructions. If is_t is true, reject
6755 forms that cannot be used with a T instruction (i.e. not
6756 post-indexed). */
6757 static void
6758 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6759 {
6760 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6761 {
6762 inst.error = _("instruction does not accept scaled register index");
6763 return;
6764 }
6765
6766 encode_arm_addr_mode_common (i, is_t);
6767
6768 if (inst.operands[i].immisreg)
6769 {
6770 constraint ((inst.operands[i].imm == REG_PC
6771 || inst.operands[i].reg == REG_PC),
6772 BAD_PC_ADDRESSING);
6773 inst.instruction |= inst.operands[i].imm;
6774 if (!inst.operands[i].negative)
6775 inst.instruction |= INDEX_UP;
6776 }
6777 else /* immediate offset in inst.reloc */
6778 {
6779 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6780 && inst.operands[i].writeback),
6781 BAD_PC_WRITEBACK);
6782 inst.instruction |= HWOFFSET_IMM;
6783 if (inst.reloc.type == BFD_RELOC_UNUSED)
6784 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6785 }
6786 }
6787
6788 /* inst.operands[i] was set up by parse_address. Encode it into an
6789 ARM-format instruction. Reject all forms which cannot be encoded
6790 into a coprocessor load/store instruction. If wb_ok is false,
6791 reject use of writeback; if unind_ok is false, reject use of
6792 unindexed addressing. If reloc_override is not 0, use it instead
6793 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6794 (in which case it is preserved). */
6795
6796 static int
6797 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6798 {
6799 inst.instruction |= inst.operands[i].reg << 16;
6800
6801 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6802
6803 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6804 {
6805 gas_assert (!inst.operands[i].writeback);
6806 if (!unind_ok)
6807 {
6808 inst.error = _("instruction does not support unindexed addressing");
6809 return FAIL;
6810 }
6811 inst.instruction |= inst.operands[i].imm;
6812 inst.instruction |= INDEX_UP;
6813 return SUCCESS;
6814 }
6815
6816 if (inst.operands[i].preind)
6817 inst.instruction |= PRE_INDEX;
6818
6819 if (inst.operands[i].writeback)
6820 {
6821 if (inst.operands[i].reg == REG_PC)
6822 {
6823 inst.error = _("pc may not be used with write-back");
6824 return FAIL;
6825 }
6826 if (!wb_ok)
6827 {
6828 inst.error = _("instruction does not support writeback");
6829 return FAIL;
6830 }
6831 inst.instruction |= WRITE_BACK;
6832 }
6833
6834 if (reloc_override)
6835 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
6836 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6837 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6838 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6839 {
6840 if (thumb_mode)
6841 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6842 else
6843 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6844 }
6845
6846 return SUCCESS;
6847 }
6848
6849 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6850 Determine whether it can be performed with a move instruction; if
6851 it can, convert inst.instruction to that move instruction and
6852 return TRUE; if it can't, convert inst.instruction to a literal-pool
6853 load and return FALSE. If this is not a valid thing to do in the
6854 current context, set inst.error and return TRUE.
6855
6856 inst.operands[i] describes the destination register. */
6857
6858 static bfd_boolean
6859 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6860 {
6861 unsigned long tbit;
6862
6863 if (thumb_p)
6864 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6865 else
6866 tbit = LOAD_BIT;
6867
6868 if ((inst.instruction & tbit) == 0)
6869 {
6870 inst.error = _("invalid pseudo operation");
6871 return TRUE;
6872 }
6873 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6874 {
6875 inst.error = _("constant expression expected");
6876 return TRUE;
6877 }
6878 if (inst.reloc.exp.X_op == O_constant)
6879 {
6880 if (thumb_p)
6881 {
6882 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6883 {
6884 /* This can be done with a mov(1) instruction. */
6885 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6886 inst.instruction |= inst.reloc.exp.X_add_number;
6887 return TRUE;
6888 }
6889 }
6890 else
6891 {
6892 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6893 if (value != FAIL)
6894 {
6895 /* This can be done with a mov instruction. */
6896 inst.instruction &= LITERAL_MASK;
6897 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6898 inst.instruction |= value & 0xfff;
6899 return TRUE;
6900 }
6901
6902 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6903 if (value != FAIL)
6904 {
6905 /* This can be done with a mvn instruction. */
6906 inst.instruction &= LITERAL_MASK;
6907 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6908 inst.instruction |= value & 0xfff;
6909 return TRUE;
6910 }
6911 }
6912 }
6913
6914 if (add_to_lit_pool () == FAIL)
6915 {
6916 inst.error = _("literal pool insertion failed");
6917 return TRUE;
6918 }
6919 inst.operands[1].reg = REG_PC;
6920 inst.operands[1].isreg = 1;
6921 inst.operands[1].preind = 1;
6922 inst.reloc.pc_rel = 1;
6923 inst.reloc.type = (thumb_p
6924 ? BFD_RELOC_ARM_THUMB_OFFSET
6925 : (mode_3
6926 ? BFD_RELOC_ARM_HWLITERAL
6927 : BFD_RELOC_ARM_LITERAL));
6928 return FALSE;
6929 }
6930
6931 /* Functions for instruction encoding, sorted by sub-architecture.
6932 First some generics; their names are taken from the conventional
6933 bit positions for register arguments in ARM format instructions. */
6934
6935 static void
6936 do_noargs (void)
6937 {
6938 }
6939
6940 static void
6941 do_rd (void)
6942 {
6943 inst.instruction |= inst.operands[0].reg << 12;
6944 }
6945
6946 static void
6947 do_rd_rm (void)
6948 {
6949 inst.instruction |= inst.operands[0].reg << 12;
6950 inst.instruction |= inst.operands[1].reg;
6951 }
6952
6953 static void
6954 do_rd_rn (void)
6955 {
6956 inst.instruction |= inst.operands[0].reg << 12;
6957 inst.instruction |= inst.operands[1].reg << 16;
6958 }
6959
6960 static void
6961 do_rn_rd (void)
6962 {
6963 inst.instruction |= inst.operands[0].reg << 16;
6964 inst.instruction |= inst.operands[1].reg << 12;
6965 }
6966
6967 static void
6968 do_rd_rm_rn (void)
6969 {
6970 unsigned Rn = inst.operands[2].reg;
6971 /* Enforce restrictions on SWP instruction. */
6972 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6973 {
6974 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6975 _("Rn must not overlap other operands"));
6976
6977 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
6978 if (warn_on_deprecated
6979 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
6980 as_warn (_("swp{b} use is deprecated for this architecture"));
6981
6982 }
6983 inst.instruction |= inst.operands[0].reg << 12;
6984 inst.instruction |= inst.operands[1].reg;
6985 inst.instruction |= Rn << 16;
6986 }
6987
6988 static void
6989 do_rd_rn_rm (void)
6990 {
6991 inst.instruction |= inst.operands[0].reg << 12;
6992 inst.instruction |= inst.operands[1].reg << 16;
6993 inst.instruction |= inst.operands[2].reg;
6994 }
6995
6996 static void
6997 do_rm_rd_rn (void)
6998 {
6999 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7000 constraint (((inst.reloc.exp.X_op != O_constant
7001 && inst.reloc.exp.X_op != O_illegal)
7002 || inst.reloc.exp.X_add_number != 0),
7003 BAD_ADDR_MODE);
7004 inst.instruction |= inst.operands[0].reg;
7005 inst.instruction |= inst.operands[1].reg << 12;
7006 inst.instruction |= inst.operands[2].reg << 16;
7007 }
7008
7009 static void
7010 do_imm0 (void)
7011 {
7012 inst.instruction |= inst.operands[0].imm;
7013 }
7014
7015 static void
7016 do_rd_cpaddr (void)
7017 {
7018 inst.instruction |= inst.operands[0].reg << 12;
7019 encode_arm_cp_address (1, TRUE, TRUE, 0);
7020 }
7021
7022 /* ARM instructions, in alphabetical order by function name (except
7023 that wrapper functions appear immediately after the function they
7024 wrap). */
7025
7026 /* This is a pseudo-op of the form "adr rd, label" to be converted
7027 into a relative address of the form "add rd, pc, #label-.-8". */
7028
7029 static void
7030 do_adr (void)
7031 {
7032 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7033
7034 /* Frag hacking will turn this into a sub instruction if the offset turns
7035 out to be negative. */
7036 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7037 inst.reloc.pc_rel = 1;
7038 inst.reloc.exp.X_add_number -= 8;
7039 }
7040
7041 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7042 into a relative address of the form:
7043 add rd, pc, #low(label-.-8)"
7044 add rd, rd, #high(label-.-8)" */
7045
7046 static void
7047 do_adrl (void)
7048 {
7049 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7050
7051 /* Frag hacking will turn this into a sub instruction if the offset turns
7052 out to be negative. */
7053 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7054 inst.reloc.pc_rel = 1;
7055 inst.size = INSN_SIZE * 2;
7056 inst.reloc.exp.X_add_number -= 8;
7057 }
7058
7059 static void
7060 do_arit (void)
7061 {
7062 if (!inst.operands[1].present)
7063 inst.operands[1].reg = inst.operands[0].reg;
7064 inst.instruction |= inst.operands[0].reg << 12;
7065 inst.instruction |= inst.operands[1].reg << 16;
7066 encode_arm_shifter_operand (2);
7067 }
7068
7069 static void
7070 do_barrier (void)
7071 {
7072 if (inst.operands[0].present)
7073 {
7074 constraint ((inst.instruction & 0xf0) != 0x40
7075 && inst.operands[0].imm != 0xf,
7076 _("bad barrier type"));
7077 inst.instruction |= inst.operands[0].imm;
7078 }
7079 else
7080 inst.instruction |= 0xf;
7081 }
7082
7083 static void
7084 do_bfc (void)
7085 {
7086 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7087 constraint (msb > 32, _("bit-field extends past end of register"));
7088 /* The instruction encoding stores the LSB and MSB,
7089 not the LSB and width. */
7090 inst.instruction |= inst.operands[0].reg << 12;
7091 inst.instruction |= inst.operands[1].imm << 7;
7092 inst.instruction |= (msb - 1) << 16;
7093 }
7094
7095 static void
7096 do_bfi (void)
7097 {
7098 unsigned int msb;
7099
7100 /* #0 in second position is alternative syntax for bfc, which is
7101 the same instruction but with REG_PC in the Rm field. */
7102 if (!inst.operands[1].isreg)
7103 inst.operands[1].reg = REG_PC;
7104
7105 msb = inst.operands[2].imm + inst.operands[3].imm;
7106 constraint (msb > 32, _("bit-field extends past end of register"));
7107 /* The instruction encoding stores the LSB and MSB,
7108 not the LSB and width. */
7109 inst.instruction |= inst.operands[0].reg << 12;
7110 inst.instruction |= inst.operands[1].reg;
7111 inst.instruction |= inst.operands[2].imm << 7;
7112 inst.instruction |= (msb - 1) << 16;
7113 }
7114
7115 static void
7116 do_bfx (void)
7117 {
7118 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7119 _("bit-field extends past end of register"));
7120 inst.instruction |= inst.operands[0].reg << 12;
7121 inst.instruction |= inst.operands[1].reg;
7122 inst.instruction |= inst.operands[2].imm << 7;
7123 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7124 }
7125
7126 /* ARM V5 breakpoint instruction (argument parse)
7127 BKPT <16 bit unsigned immediate>
7128 Instruction is not conditional.
7129 The bit pattern given in insns[] has the COND_ALWAYS condition,
7130 and it is an error if the caller tried to override that. */
7131
7132 static void
7133 do_bkpt (void)
7134 {
7135 /* Top 12 of 16 bits to bits 19:8. */
7136 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7137
7138 /* Bottom 4 of 16 bits to bits 3:0. */
7139 inst.instruction |= inst.operands[0].imm & 0xf;
7140 }
7141
7142 static void
7143 encode_branch (int default_reloc)
7144 {
7145 if (inst.operands[0].hasreloc)
7146 {
7147 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7148 _("the only suffix valid here is '(plt)'"));
7149 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7150 }
7151 else
7152 {
7153 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7154 }
7155 inst.reloc.pc_rel = 1;
7156 }
7157
7158 static void
7159 do_branch (void)
7160 {
7161 #ifdef OBJ_ELF
7162 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7163 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7164 else
7165 #endif
7166 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7167 }
7168
7169 static void
7170 do_bl (void)
7171 {
7172 #ifdef OBJ_ELF
7173 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7174 {
7175 if (inst.cond == COND_ALWAYS)
7176 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7177 else
7178 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7179 }
7180 else
7181 #endif
7182 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7183 }
7184
7185 /* ARM V5 branch-link-exchange instruction (argument parse)
7186 BLX <target_addr> ie BLX(1)
7187 BLX{<condition>} <Rm> ie BLX(2)
7188 Unfortunately, there are two different opcodes for this mnemonic.
7189 So, the insns[].value is not used, and the code here zaps values
7190 into inst.instruction.
7191 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7192
7193 static void
7194 do_blx (void)
7195 {
7196 if (inst.operands[0].isreg)
7197 {
7198 /* Arg is a register; the opcode provided by insns[] is correct.
7199 It is not illegal to do "blx pc", just useless. */
7200 if (inst.operands[0].reg == REG_PC)
7201 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7202
7203 inst.instruction |= inst.operands[0].reg;
7204 }
7205 else
7206 {
7207 /* Arg is an address; this instruction cannot be executed
7208 conditionally, and the opcode must be adjusted.
7209 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7210 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7211 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7212 inst.instruction = 0xfa000000;
7213 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7214 }
7215 }
7216
7217 static void
7218 do_bx (void)
7219 {
7220 bfd_boolean want_reloc;
7221
7222 if (inst.operands[0].reg == REG_PC)
7223 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7224
7225 inst.instruction |= inst.operands[0].reg;
7226 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7227 it is for ARMv4t or earlier. */
7228 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7229 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7230 want_reloc = TRUE;
7231
7232 #ifdef OBJ_ELF
7233 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7234 #endif
7235 want_reloc = FALSE;
7236
7237 if (want_reloc)
7238 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7239 }
7240
7241
7242 /* ARM v5TEJ. Jump to Jazelle code. */
7243
7244 static void
7245 do_bxj (void)
7246 {
7247 if (inst.operands[0].reg == REG_PC)
7248 as_tsktsk (_("use of r15 in bxj is not really useful"));
7249
7250 inst.instruction |= inst.operands[0].reg;
7251 }
7252
7253 /* Co-processor data operation:
7254 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7255 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7256 static void
7257 do_cdp (void)
7258 {
7259 inst.instruction |= inst.operands[0].reg << 8;
7260 inst.instruction |= inst.operands[1].imm << 20;
7261 inst.instruction |= inst.operands[2].reg << 12;
7262 inst.instruction |= inst.operands[3].reg << 16;
7263 inst.instruction |= inst.operands[4].reg;
7264 inst.instruction |= inst.operands[5].imm << 5;
7265 }
7266
7267 static void
7268 do_cmp (void)
7269 {
7270 inst.instruction |= inst.operands[0].reg << 16;
7271 encode_arm_shifter_operand (1);
7272 }
7273
7274 /* Transfer between coprocessor and ARM registers.
7275 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7276 MRC2
7277 MCR{cond}
7278 MCR2
7279
7280 No special properties. */
7281
7282 static void
7283 do_co_reg (void)
7284 {
7285 unsigned Rd;
7286
7287 Rd = inst.operands[2].reg;
7288 if (thumb_mode)
7289 {
7290 if (inst.instruction == 0xee000010
7291 || inst.instruction == 0xfe000010)
7292 /* MCR, MCR2 */
7293 reject_bad_reg (Rd);
7294 else
7295 /* MRC, MRC2 */
7296 constraint (Rd == REG_SP, BAD_SP);
7297 }
7298 else
7299 {
7300 /* MCR */
7301 if (inst.instruction == 0xe000010)
7302 constraint (Rd == REG_PC, BAD_PC);
7303 }
7304
7305
7306 inst.instruction |= inst.operands[0].reg << 8;
7307 inst.instruction |= inst.operands[1].imm << 21;
7308 inst.instruction |= Rd << 12;
7309 inst.instruction |= inst.operands[3].reg << 16;
7310 inst.instruction |= inst.operands[4].reg;
7311 inst.instruction |= inst.operands[5].imm << 5;
7312 }
7313
7314 /* Transfer between coprocessor register and pair of ARM registers.
7315 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7316 MCRR2
7317 MRRC{cond}
7318 MRRC2
7319
7320 Two XScale instructions are special cases of these:
7321
7322 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7323 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7324
7325 Result unpredictable if Rd or Rn is R15. */
7326
7327 static void
7328 do_co_reg2c (void)
7329 {
7330 unsigned Rd, Rn;
7331
7332 Rd = inst.operands[2].reg;
7333 Rn = inst.operands[3].reg;
7334
7335 if (thumb_mode)
7336 {
7337 reject_bad_reg (Rd);
7338 reject_bad_reg (Rn);
7339 }
7340 else
7341 {
7342 constraint (Rd == REG_PC, BAD_PC);
7343 constraint (Rn == REG_PC, BAD_PC);
7344 }
7345
7346 inst.instruction |= inst.operands[0].reg << 8;
7347 inst.instruction |= inst.operands[1].imm << 4;
7348 inst.instruction |= Rd << 12;
7349 inst.instruction |= Rn << 16;
7350 inst.instruction |= inst.operands[4].reg;
7351 }
7352
7353 static void
7354 do_cpsi (void)
7355 {
7356 inst.instruction |= inst.operands[0].imm << 6;
7357 if (inst.operands[1].present)
7358 {
7359 inst.instruction |= CPSI_MMOD;
7360 inst.instruction |= inst.operands[1].imm;
7361 }
7362 }
7363
7364 static void
7365 do_dbg (void)
7366 {
7367 inst.instruction |= inst.operands[0].imm;
7368 }
7369
7370 static void
7371 do_it (void)
7372 {
7373 /* There is no IT instruction in ARM mode. We
7374 process it to do the validation as if in
7375 thumb mode, just in case the code gets
7376 assembled for thumb using the unified syntax. */
7377
7378 inst.size = 0;
7379 if (unified_syntax)
7380 {
7381 set_it_insn_type (IT_INSN);
7382 now_it.mask = (inst.instruction & 0xf) | 0x10;
7383 now_it.cc = inst.operands[0].imm;
7384 }
7385 }
7386
7387 static void
7388 do_ldmstm (void)
7389 {
7390 int base_reg = inst.operands[0].reg;
7391 int range = inst.operands[1].imm;
7392
7393 inst.instruction |= base_reg << 16;
7394 inst.instruction |= range;
7395
7396 if (inst.operands[1].writeback)
7397 inst.instruction |= LDM_TYPE_2_OR_3;
7398
7399 if (inst.operands[0].writeback)
7400 {
7401 inst.instruction |= WRITE_BACK;
7402 /* Check for unpredictable uses of writeback. */
7403 if (inst.instruction & LOAD_BIT)
7404 {
7405 /* Not allowed in LDM type 2. */
7406 if ((inst.instruction & LDM_TYPE_2_OR_3)
7407 && ((range & (1 << REG_PC)) == 0))
7408 as_warn (_("writeback of base register is UNPREDICTABLE"));
7409 /* Only allowed if base reg not in list for other types. */
7410 else if (range & (1 << base_reg))
7411 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7412 }
7413 else /* STM. */
7414 {
7415 /* Not allowed for type 2. */
7416 if (inst.instruction & LDM_TYPE_2_OR_3)
7417 as_warn (_("writeback of base register is UNPREDICTABLE"));
7418 /* Only allowed if base reg not in list, or first in list. */
7419 else if ((range & (1 << base_reg))
7420 && (range & ((1 << base_reg) - 1)))
7421 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7422 }
7423 }
7424 }
7425
7426 /* ARMv5TE load-consecutive (argument parse)
7427 Mode is like LDRH.
7428
7429 LDRccD R, mode
7430 STRccD R, mode. */
7431
7432 static void
7433 do_ldrd (void)
7434 {
7435 constraint (inst.operands[0].reg % 2 != 0,
7436 _("first destination register must be even"));
7437 constraint (inst.operands[1].present
7438 && inst.operands[1].reg != inst.operands[0].reg + 1,
7439 _("can only load two consecutive registers"));
7440 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7441 constraint (!inst.operands[2].isreg, _("'[' expected"));
7442
7443 if (!inst.operands[1].present)
7444 inst.operands[1].reg = inst.operands[0].reg + 1;
7445
7446 if (inst.instruction & LOAD_BIT)
7447 {
7448 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7449 register and the first register written; we have to diagnose
7450 overlap between the base and the second register written here. */
7451
7452 if (inst.operands[2].reg == inst.operands[1].reg
7453 && (inst.operands[2].writeback || inst.operands[2].postind))
7454 as_warn (_("base register written back, and overlaps "
7455 "second destination register"));
7456
7457 /* For an index-register load, the index register must not overlap the
7458 destination (even if not write-back). */
7459 else if (inst.operands[2].immisreg
7460 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7461 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7462 as_warn (_("index register overlaps destination register"));
7463 }
7464
7465 inst.instruction |= inst.operands[0].reg << 12;
7466 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7467 }
7468
7469 static void
7470 do_ldrex (void)
7471 {
7472 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7473 || inst.operands[1].postind || inst.operands[1].writeback
7474 || inst.operands[1].immisreg || inst.operands[1].shifted
7475 || inst.operands[1].negative
7476 /* This can arise if the programmer has written
7477 strex rN, rM, foo
7478 or if they have mistakenly used a register name as the last
7479 operand, eg:
7480 strex rN, rM, rX
7481 It is very difficult to distinguish between these two cases
7482 because "rX" might actually be a label. ie the register
7483 name has been occluded by a symbol of the same name. So we
7484 just generate a general 'bad addressing mode' type error
7485 message and leave it up to the programmer to discover the
7486 true cause and fix their mistake. */
7487 || (inst.operands[1].reg == REG_PC),
7488 BAD_ADDR_MODE);
7489
7490 constraint (inst.reloc.exp.X_op != O_constant
7491 || inst.reloc.exp.X_add_number != 0,
7492 _("offset must be zero in ARM encoding"));
7493
7494 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7495
7496 inst.instruction |= inst.operands[0].reg << 12;
7497 inst.instruction |= inst.operands[1].reg << 16;
7498 inst.reloc.type = BFD_RELOC_UNUSED;
7499 }
7500
7501 static void
7502 do_ldrexd (void)
7503 {
7504 constraint (inst.operands[0].reg % 2 != 0,
7505 _("even register required"));
7506 constraint (inst.operands[1].present
7507 && inst.operands[1].reg != inst.operands[0].reg + 1,
7508 _("can only load two consecutive registers"));
7509 /* If op 1 were present and equal to PC, this function wouldn't
7510 have been called in the first place. */
7511 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7512
7513 inst.instruction |= inst.operands[0].reg << 12;
7514 inst.instruction |= inst.operands[2].reg << 16;
7515 }
7516
7517 static void
7518 do_ldst (void)
7519 {
7520 inst.instruction |= inst.operands[0].reg << 12;
7521 if (!inst.operands[1].isreg)
7522 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7523 return;
7524 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7525 }
7526
7527 static void
7528 do_ldstt (void)
7529 {
7530 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7531 reject [Rn,...]. */
7532 if (inst.operands[1].preind)
7533 {
7534 constraint (inst.reloc.exp.X_op != O_constant
7535 || inst.reloc.exp.X_add_number != 0,
7536 _("this instruction requires a post-indexed address"));
7537
7538 inst.operands[1].preind = 0;
7539 inst.operands[1].postind = 1;
7540 inst.operands[1].writeback = 1;
7541 }
7542 inst.instruction |= inst.operands[0].reg << 12;
7543 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7544 }
7545
7546 /* Halfword and signed-byte load/store operations. */
7547
7548 static void
7549 do_ldstv4 (void)
7550 {
7551 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7552 inst.instruction |= inst.operands[0].reg << 12;
7553 if (!inst.operands[1].isreg)
7554 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7555 return;
7556 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7557 }
7558
7559 static void
7560 do_ldsttv4 (void)
7561 {
7562 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7563 reject [Rn,...]. */
7564 if (inst.operands[1].preind)
7565 {
7566 constraint (inst.reloc.exp.X_op != O_constant
7567 || inst.reloc.exp.X_add_number != 0,
7568 _("this instruction requires a post-indexed address"));
7569
7570 inst.operands[1].preind = 0;
7571 inst.operands[1].postind = 1;
7572 inst.operands[1].writeback = 1;
7573 }
7574 inst.instruction |= inst.operands[0].reg << 12;
7575 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7576 }
7577
7578 /* Co-processor register load/store.
7579 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7580 static void
7581 do_lstc (void)
7582 {
7583 inst.instruction |= inst.operands[0].reg << 8;
7584 inst.instruction |= inst.operands[1].reg << 12;
7585 encode_arm_cp_address (2, TRUE, TRUE, 0);
7586 }
7587
7588 static void
7589 do_mlas (void)
7590 {
7591 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7592 if (inst.operands[0].reg == inst.operands[1].reg
7593 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7594 && !(inst.instruction & 0x00400000))
7595 as_tsktsk (_("Rd and Rm should be different in mla"));
7596
7597 inst.instruction |= inst.operands[0].reg << 16;
7598 inst.instruction |= inst.operands[1].reg;
7599 inst.instruction |= inst.operands[2].reg << 8;
7600 inst.instruction |= inst.operands[3].reg << 12;
7601 }
7602
7603 static void
7604 do_mov (void)
7605 {
7606 inst.instruction |= inst.operands[0].reg << 12;
7607 encode_arm_shifter_operand (1);
7608 }
7609
7610 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7611 static void
7612 do_mov16 (void)
7613 {
7614 bfd_vma imm;
7615 bfd_boolean top;
7616
7617 top = (inst.instruction & 0x00400000) != 0;
7618 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7619 _(":lower16: not allowed this instruction"));
7620 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7621 _(":upper16: not allowed instruction"));
7622 inst.instruction |= inst.operands[0].reg << 12;
7623 if (inst.reloc.type == BFD_RELOC_UNUSED)
7624 {
7625 imm = inst.reloc.exp.X_add_number;
7626 /* The value is in two pieces: 0:11, 16:19. */
7627 inst.instruction |= (imm & 0x00000fff);
7628 inst.instruction |= (imm & 0x0000f000) << 4;
7629 }
7630 }
7631
7632 static void do_vfp_nsyn_opcode (const char *);
7633
7634 static int
7635 do_vfp_nsyn_mrs (void)
7636 {
7637 if (inst.operands[0].isvec)
7638 {
7639 if (inst.operands[1].reg != 1)
7640 first_error (_("operand 1 must be FPSCR"));
7641 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7642 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7643 do_vfp_nsyn_opcode ("fmstat");
7644 }
7645 else if (inst.operands[1].isvec)
7646 do_vfp_nsyn_opcode ("fmrx");
7647 else
7648 return FAIL;
7649
7650 return SUCCESS;
7651 }
7652
7653 static int
7654 do_vfp_nsyn_msr (void)
7655 {
7656 if (inst.operands[0].isvec)
7657 do_vfp_nsyn_opcode ("fmxr");
7658 else
7659 return FAIL;
7660
7661 return SUCCESS;
7662 }
7663
7664 static void
7665 do_vmrs (void)
7666 {
7667 unsigned Rt = inst.operands[0].reg;
7668
7669 if (thumb_mode && inst.operands[0].reg == REG_SP)
7670 {
7671 inst.error = BAD_SP;
7672 return;
7673 }
7674
7675 /* APSR_ sets isvec. All other refs to PC are illegal. */
7676 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7677 {
7678 inst.error = BAD_PC;
7679 return;
7680 }
7681
7682 if (inst.operands[1].reg != 1)
7683 first_error (_("operand 1 must be FPSCR"));
7684
7685 inst.instruction |= (Rt << 12);
7686 }
7687
7688 static void
7689 do_vmsr (void)
7690 {
7691 unsigned Rt = inst.operands[1].reg;
7692
7693 if (thumb_mode)
7694 reject_bad_reg (Rt);
7695 else if (Rt == REG_PC)
7696 {
7697 inst.error = BAD_PC;
7698 return;
7699 }
7700
7701 if (inst.operands[0].reg != 1)
7702 first_error (_("operand 0 must be FPSCR"));
7703
7704 inst.instruction |= (Rt << 12);
7705 }
7706
7707 static void
7708 do_mrs (void)
7709 {
7710 if (do_vfp_nsyn_mrs () == SUCCESS)
7711 return;
7712
7713 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7714 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7715 != (PSR_c|PSR_f),
7716 _("'CPSR' or 'SPSR' expected"));
7717 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7718 inst.instruction |= inst.operands[0].reg << 12;
7719 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7720 }
7721
7722 /* Two possible forms:
7723 "{C|S}PSR_<field>, Rm",
7724 "{C|S}PSR_f, #expression". */
7725
7726 static void
7727 do_msr (void)
7728 {
7729 if (do_vfp_nsyn_msr () == SUCCESS)
7730 return;
7731
7732 inst.instruction |= inst.operands[0].imm;
7733 if (inst.operands[1].isreg)
7734 inst.instruction |= inst.operands[1].reg;
7735 else
7736 {
7737 inst.instruction |= INST_IMMEDIATE;
7738 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7739 inst.reloc.pc_rel = 0;
7740 }
7741 }
7742
7743 static void
7744 do_mul (void)
7745 {
7746 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7747
7748 if (!inst.operands[2].present)
7749 inst.operands[2].reg = inst.operands[0].reg;
7750 inst.instruction |= inst.operands[0].reg << 16;
7751 inst.instruction |= inst.operands[1].reg;
7752 inst.instruction |= inst.operands[2].reg << 8;
7753
7754 if (inst.operands[0].reg == inst.operands[1].reg
7755 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7756 as_tsktsk (_("Rd and Rm should be different in mul"));
7757 }
7758
7759 /* Long Multiply Parser
7760 UMULL RdLo, RdHi, Rm, Rs
7761 SMULL RdLo, RdHi, Rm, Rs
7762 UMLAL RdLo, RdHi, Rm, Rs
7763 SMLAL RdLo, RdHi, Rm, Rs. */
7764
7765 static void
7766 do_mull (void)
7767 {
7768 inst.instruction |= inst.operands[0].reg << 12;
7769 inst.instruction |= inst.operands[1].reg << 16;
7770 inst.instruction |= inst.operands[2].reg;
7771 inst.instruction |= inst.operands[3].reg << 8;
7772
7773 /* rdhi and rdlo must be different. */
7774 if (inst.operands[0].reg == inst.operands[1].reg)
7775 as_tsktsk (_("rdhi and rdlo must be different"));
7776
7777 /* rdhi, rdlo and rm must all be different before armv6. */
7778 if ((inst.operands[0].reg == inst.operands[2].reg
7779 || inst.operands[1].reg == inst.operands[2].reg)
7780 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7781 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7782 }
7783
7784 static void
7785 do_nop (void)
7786 {
7787 if (inst.operands[0].present
7788 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7789 {
7790 /* Architectural NOP hints are CPSR sets with no bits selected. */
7791 inst.instruction &= 0xf0000000;
7792 inst.instruction |= 0x0320f000;
7793 if (inst.operands[0].present)
7794 inst.instruction |= inst.operands[0].imm;
7795 }
7796 }
7797
7798 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7799 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7800 Condition defaults to COND_ALWAYS.
7801 Error if Rd, Rn or Rm are R15. */
7802
7803 static void
7804 do_pkhbt (void)
7805 {
7806 inst.instruction |= inst.operands[0].reg << 12;
7807 inst.instruction |= inst.operands[1].reg << 16;
7808 inst.instruction |= inst.operands[2].reg;
7809 if (inst.operands[3].present)
7810 encode_arm_shift (3);
7811 }
7812
7813 /* ARM V6 PKHTB (Argument Parse). */
7814
7815 static void
7816 do_pkhtb (void)
7817 {
7818 if (!inst.operands[3].present)
7819 {
7820 /* If the shift specifier is omitted, turn the instruction
7821 into pkhbt rd, rm, rn. */
7822 inst.instruction &= 0xfff00010;
7823 inst.instruction |= inst.operands[0].reg << 12;
7824 inst.instruction |= inst.operands[1].reg;
7825 inst.instruction |= inst.operands[2].reg << 16;
7826 }
7827 else
7828 {
7829 inst.instruction |= inst.operands[0].reg << 12;
7830 inst.instruction |= inst.operands[1].reg << 16;
7831 inst.instruction |= inst.operands[2].reg;
7832 encode_arm_shift (3);
7833 }
7834 }
7835
7836 /* ARMv5TE: Preload-Cache
7837
7838 PLD <addr_mode>
7839
7840 Syntactically, like LDR with B=1, W=0, L=1. */
7841
7842 static void
7843 do_pld (void)
7844 {
7845 constraint (!inst.operands[0].isreg,
7846 _("'[' expected after PLD mnemonic"));
7847 constraint (inst.operands[0].postind,
7848 _("post-indexed expression used in preload instruction"));
7849 constraint (inst.operands[0].writeback,
7850 _("writeback used in preload instruction"));
7851 constraint (!inst.operands[0].preind,
7852 _("unindexed addressing used in preload instruction"));
7853 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7854 }
7855
7856 /* ARMv7: PLI <addr_mode> */
7857 static void
7858 do_pli (void)
7859 {
7860 constraint (!inst.operands[0].isreg,
7861 _("'[' expected after PLI mnemonic"));
7862 constraint (inst.operands[0].postind,
7863 _("post-indexed expression used in preload instruction"));
7864 constraint (inst.operands[0].writeback,
7865 _("writeback used in preload instruction"));
7866 constraint (!inst.operands[0].preind,
7867 _("unindexed addressing used in preload instruction"));
7868 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7869 inst.instruction &= ~PRE_INDEX;
7870 }
7871
7872 static void
7873 do_push_pop (void)
7874 {
7875 inst.operands[1] = inst.operands[0];
7876 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7877 inst.operands[0].isreg = 1;
7878 inst.operands[0].writeback = 1;
7879 inst.operands[0].reg = REG_SP;
7880 do_ldmstm ();
7881 }
7882
7883 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7884 word at the specified address and the following word
7885 respectively.
7886 Unconditionally executed.
7887 Error if Rn is R15. */
7888
7889 static void
7890 do_rfe (void)
7891 {
7892 inst.instruction |= inst.operands[0].reg << 16;
7893 if (inst.operands[0].writeback)
7894 inst.instruction |= WRITE_BACK;
7895 }
7896
7897 /* ARM V6 ssat (argument parse). */
7898
7899 static void
7900 do_ssat (void)
7901 {
7902 inst.instruction |= inst.operands[0].reg << 12;
7903 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7904 inst.instruction |= inst.operands[2].reg;
7905
7906 if (inst.operands[3].present)
7907 encode_arm_shift (3);
7908 }
7909
7910 /* ARM V6 usat (argument parse). */
7911
7912 static void
7913 do_usat (void)
7914 {
7915 inst.instruction |= inst.operands[0].reg << 12;
7916 inst.instruction |= inst.operands[1].imm << 16;
7917 inst.instruction |= inst.operands[2].reg;
7918
7919 if (inst.operands[3].present)
7920 encode_arm_shift (3);
7921 }
7922
7923 /* ARM V6 ssat16 (argument parse). */
7924
7925 static void
7926 do_ssat16 (void)
7927 {
7928 inst.instruction |= inst.operands[0].reg << 12;
7929 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7930 inst.instruction |= inst.operands[2].reg;
7931 }
7932
7933 static void
7934 do_usat16 (void)
7935 {
7936 inst.instruction |= inst.operands[0].reg << 12;
7937 inst.instruction |= inst.operands[1].imm << 16;
7938 inst.instruction |= inst.operands[2].reg;
7939 }
7940
7941 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7942 preserving the other bits.
7943
7944 setend <endian_specifier>, where <endian_specifier> is either
7945 BE or LE. */
7946
7947 static void
7948 do_setend (void)
7949 {
7950 if (inst.operands[0].imm)
7951 inst.instruction |= 0x200;
7952 }
7953
7954 static void
7955 do_shift (void)
7956 {
7957 unsigned int Rm = (inst.operands[1].present
7958 ? inst.operands[1].reg
7959 : inst.operands[0].reg);
7960
7961 inst.instruction |= inst.operands[0].reg << 12;
7962 inst.instruction |= Rm;
7963 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7964 {
7965 inst.instruction |= inst.operands[2].reg << 8;
7966 inst.instruction |= SHIFT_BY_REG;
7967 }
7968 else
7969 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7970 }
7971
7972 static void
7973 do_smc (void)
7974 {
7975 inst.reloc.type = BFD_RELOC_ARM_SMC;
7976 inst.reloc.pc_rel = 0;
7977 }
7978
7979 static void
7980 do_swi (void)
7981 {
7982 inst.reloc.type = BFD_RELOC_ARM_SWI;
7983 inst.reloc.pc_rel = 0;
7984 }
7985
7986 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7987 SMLAxy{cond} Rd,Rm,Rs,Rn
7988 SMLAWy{cond} Rd,Rm,Rs,Rn
7989 Error if any register is R15. */
7990
7991 static void
7992 do_smla (void)
7993 {
7994 inst.instruction |= inst.operands[0].reg << 16;
7995 inst.instruction |= inst.operands[1].reg;
7996 inst.instruction |= inst.operands[2].reg << 8;
7997 inst.instruction |= inst.operands[3].reg << 12;
7998 }
7999
8000 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8001 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8002 Error if any register is R15.
8003 Warning if Rdlo == Rdhi. */
8004
8005 static void
8006 do_smlal (void)
8007 {
8008 inst.instruction |= inst.operands[0].reg << 12;
8009 inst.instruction |= inst.operands[1].reg << 16;
8010 inst.instruction |= inst.operands[2].reg;
8011 inst.instruction |= inst.operands[3].reg << 8;
8012
8013 if (inst.operands[0].reg == inst.operands[1].reg)
8014 as_tsktsk (_("rdhi and rdlo must be different"));
8015 }
8016
8017 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8018 SMULxy{cond} Rd,Rm,Rs
8019 Error if any register is R15. */
8020
8021 static void
8022 do_smul (void)
8023 {
8024 inst.instruction |= inst.operands[0].reg << 16;
8025 inst.instruction |= inst.operands[1].reg;
8026 inst.instruction |= inst.operands[2].reg << 8;
8027 }
8028
8029 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8030 the same for both ARM and Thumb-2. */
8031
8032 static void
8033 do_srs (void)
8034 {
8035 int reg;
8036
8037 if (inst.operands[0].present)
8038 {
8039 reg = inst.operands[0].reg;
8040 constraint (reg != REG_SP, _("SRS base register must be r13"));
8041 }
8042 else
8043 reg = REG_SP;
8044
8045 inst.instruction |= reg << 16;
8046 inst.instruction |= inst.operands[1].imm;
8047 if (inst.operands[0].writeback || inst.operands[1].writeback)
8048 inst.instruction |= WRITE_BACK;
8049 }
8050
8051 /* ARM V6 strex (argument parse). */
8052
8053 static void
8054 do_strex (void)
8055 {
8056 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8057 || inst.operands[2].postind || inst.operands[2].writeback
8058 || inst.operands[2].immisreg || inst.operands[2].shifted
8059 || inst.operands[2].negative
8060 /* See comment in do_ldrex(). */
8061 || (inst.operands[2].reg == REG_PC),
8062 BAD_ADDR_MODE);
8063
8064 constraint (inst.operands[0].reg == inst.operands[1].reg
8065 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8066
8067 constraint (inst.reloc.exp.X_op != O_constant
8068 || inst.reloc.exp.X_add_number != 0,
8069 _("offset must be zero in ARM encoding"));
8070
8071 inst.instruction |= inst.operands[0].reg << 12;
8072 inst.instruction |= inst.operands[1].reg;
8073 inst.instruction |= inst.operands[2].reg << 16;
8074 inst.reloc.type = BFD_RELOC_UNUSED;
8075 }
8076
8077 static void
8078 do_strexd (void)
8079 {
8080 constraint (inst.operands[1].reg % 2 != 0,
8081 _("even register required"));
8082 constraint (inst.operands[2].present
8083 && inst.operands[2].reg != inst.operands[1].reg + 1,
8084 _("can only store two consecutive registers"));
8085 /* If op 2 were present and equal to PC, this function wouldn't
8086 have been called in the first place. */
8087 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8088
8089 constraint (inst.operands[0].reg == inst.operands[1].reg
8090 || inst.operands[0].reg == inst.operands[1].reg + 1
8091 || inst.operands[0].reg == inst.operands[3].reg,
8092 BAD_OVERLAP);
8093
8094 inst.instruction |= inst.operands[0].reg << 12;
8095 inst.instruction |= inst.operands[1].reg;
8096 inst.instruction |= inst.operands[3].reg << 16;
8097 }
8098
8099 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8100 extends it to 32-bits, and adds the result to a value in another
8101 register. You can specify a rotation by 0, 8, 16, or 24 bits
8102 before extracting the 16-bit value.
8103 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8104 Condition defaults to COND_ALWAYS.
8105 Error if any register uses R15. */
8106
8107 static void
8108 do_sxtah (void)
8109 {
8110 inst.instruction |= inst.operands[0].reg << 12;
8111 inst.instruction |= inst.operands[1].reg << 16;
8112 inst.instruction |= inst.operands[2].reg;
8113 inst.instruction |= inst.operands[3].imm << 10;
8114 }
8115
8116 /* ARM V6 SXTH.
8117
8118 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8119 Condition defaults to COND_ALWAYS.
8120 Error if any register uses R15. */
8121
8122 static void
8123 do_sxth (void)
8124 {
8125 inst.instruction |= inst.operands[0].reg << 12;
8126 inst.instruction |= inst.operands[1].reg;
8127 inst.instruction |= inst.operands[2].imm << 10;
8128 }
8129 \f
8130 /* VFP instructions. In a logical order: SP variant first, monad
8131 before dyad, arithmetic then move then load/store. */
8132
8133 static void
8134 do_vfp_sp_monadic (void)
8135 {
8136 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8137 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8138 }
8139
8140 static void
8141 do_vfp_sp_dyadic (void)
8142 {
8143 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8144 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8145 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8146 }
8147
8148 static void
8149 do_vfp_sp_compare_z (void)
8150 {
8151 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8152 }
8153
8154 static void
8155 do_vfp_dp_sp_cvt (void)
8156 {
8157 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8158 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8159 }
8160
8161 static void
8162 do_vfp_sp_dp_cvt (void)
8163 {
8164 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8165 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8166 }
8167
8168 static void
8169 do_vfp_reg_from_sp (void)
8170 {
8171 inst.instruction |= inst.operands[0].reg << 12;
8172 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8173 }
8174
8175 static void
8176 do_vfp_reg2_from_sp2 (void)
8177 {
8178 constraint (inst.operands[2].imm != 2,
8179 _("only two consecutive VFP SP registers allowed here"));
8180 inst.instruction |= inst.operands[0].reg << 12;
8181 inst.instruction |= inst.operands[1].reg << 16;
8182 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8183 }
8184
8185 static void
8186 do_vfp_sp_from_reg (void)
8187 {
8188 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8189 inst.instruction |= inst.operands[1].reg << 12;
8190 }
8191
8192 static void
8193 do_vfp_sp2_from_reg2 (void)
8194 {
8195 constraint (inst.operands[0].imm != 2,
8196 _("only two consecutive VFP SP registers allowed here"));
8197 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8198 inst.instruction |= inst.operands[1].reg << 12;
8199 inst.instruction |= inst.operands[2].reg << 16;
8200 }
8201
8202 static void
8203 do_vfp_sp_ldst (void)
8204 {
8205 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8206 encode_arm_cp_address (1, FALSE, TRUE, 0);
8207 }
8208
8209 static void
8210 do_vfp_dp_ldst (void)
8211 {
8212 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8213 encode_arm_cp_address (1, FALSE, TRUE, 0);
8214 }
8215
8216
8217 static void
8218 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8219 {
8220 if (inst.operands[0].writeback)
8221 inst.instruction |= WRITE_BACK;
8222 else
8223 constraint (ldstm_type != VFP_LDSTMIA,
8224 _("this addressing mode requires base-register writeback"));
8225 inst.instruction |= inst.operands[0].reg << 16;
8226 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8227 inst.instruction |= inst.operands[1].imm;
8228 }
8229
8230 static void
8231 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8232 {
8233 int count;
8234
8235 if (inst.operands[0].writeback)
8236 inst.instruction |= WRITE_BACK;
8237 else
8238 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8239 _("this addressing mode requires base-register writeback"));
8240
8241 inst.instruction |= inst.operands[0].reg << 16;
8242 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8243
8244 count = inst.operands[1].imm << 1;
8245 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8246 count += 1;
8247
8248 inst.instruction |= count;
8249 }
8250
8251 static void
8252 do_vfp_sp_ldstmia (void)
8253 {
8254 vfp_sp_ldstm (VFP_LDSTMIA);
8255 }
8256
8257 static void
8258 do_vfp_sp_ldstmdb (void)
8259 {
8260 vfp_sp_ldstm (VFP_LDSTMDB);
8261 }
8262
8263 static void
8264 do_vfp_dp_ldstmia (void)
8265 {
8266 vfp_dp_ldstm (VFP_LDSTMIA);
8267 }
8268
8269 static void
8270 do_vfp_dp_ldstmdb (void)
8271 {
8272 vfp_dp_ldstm (VFP_LDSTMDB);
8273 }
8274
8275 static void
8276 do_vfp_xp_ldstmia (void)
8277 {
8278 vfp_dp_ldstm (VFP_LDSTMIAX);
8279 }
8280
8281 static void
8282 do_vfp_xp_ldstmdb (void)
8283 {
8284 vfp_dp_ldstm (VFP_LDSTMDBX);
8285 }
8286
8287 static void
8288 do_vfp_dp_rd_rm (void)
8289 {
8290 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8291 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8292 }
8293
8294 static void
8295 do_vfp_dp_rn_rd (void)
8296 {
8297 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8298 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8299 }
8300
8301 static void
8302 do_vfp_dp_rd_rn (void)
8303 {
8304 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8305 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8306 }
8307
8308 static void
8309 do_vfp_dp_rd_rn_rm (void)
8310 {
8311 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8312 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8313 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8314 }
8315
8316 static void
8317 do_vfp_dp_rd (void)
8318 {
8319 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8320 }
8321
8322 static void
8323 do_vfp_dp_rm_rd_rn (void)
8324 {
8325 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8326 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8327 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8328 }
8329
8330 /* VFPv3 instructions. */
8331 static void
8332 do_vfp_sp_const (void)
8333 {
8334 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8335 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8336 inst.instruction |= (inst.operands[1].imm & 0x0f);
8337 }
8338
8339 static void
8340 do_vfp_dp_const (void)
8341 {
8342 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8343 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8344 inst.instruction |= (inst.operands[1].imm & 0x0f);
8345 }
8346
8347 static void
8348 vfp_conv (int srcsize)
8349 {
8350 unsigned immbits = srcsize - inst.operands[1].imm;
8351 inst.instruction |= (immbits & 1) << 5;
8352 inst.instruction |= (immbits >> 1);
8353 }
8354
8355 static void
8356 do_vfp_sp_conv_16 (void)
8357 {
8358 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8359 vfp_conv (16);
8360 }
8361
8362 static void
8363 do_vfp_dp_conv_16 (void)
8364 {
8365 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8366 vfp_conv (16);
8367 }
8368
8369 static void
8370 do_vfp_sp_conv_32 (void)
8371 {
8372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8373 vfp_conv (32);
8374 }
8375
8376 static void
8377 do_vfp_dp_conv_32 (void)
8378 {
8379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8380 vfp_conv (32);
8381 }
8382 \f
8383 /* FPA instructions. Also in a logical order. */
8384
8385 static void
8386 do_fpa_cmp (void)
8387 {
8388 inst.instruction |= inst.operands[0].reg << 16;
8389 inst.instruction |= inst.operands[1].reg;
8390 }
8391
8392 static void
8393 do_fpa_ldmstm (void)
8394 {
8395 inst.instruction |= inst.operands[0].reg << 12;
8396 switch (inst.operands[1].imm)
8397 {
8398 case 1: inst.instruction |= CP_T_X; break;
8399 case 2: inst.instruction |= CP_T_Y; break;
8400 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8401 case 4: break;
8402 default: abort ();
8403 }
8404
8405 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8406 {
8407 /* The instruction specified "ea" or "fd", so we can only accept
8408 [Rn]{!}. The instruction does not really support stacking or
8409 unstacking, so we have to emulate these by setting appropriate
8410 bits and offsets. */
8411 constraint (inst.reloc.exp.X_op != O_constant
8412 || inst.reloc.exp.X_add_number != 0,
8413 _("this instruction does not support indexing"));
8414
8415 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8416 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8417
8418 if (!(inst.instruction & INDEX_UP))
8419 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8420
8421 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8422 {
8423 inst.operands[2].preind = 0;
8424 inst.operands[2].postind = 1;
8425 }
8426 }
8427
8428 encode_arm_cp_address (2, TRUE, TRUE, 0);
8429 }
8430 \f
8431 /* iWMMXt instructions: strictly in alphabetical order. */
8432
8433 static void
8434 do_iwmmxt_tandorc (void)
8435 {
8436 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8437 }
8438
8439 static void
8440 do_iwmmxt_textrc (void)
8441 {
8442 inst.instruction |= inst.operands[0].reg << 12;
8443 inst.instruction |= inst.operands[1].imm;
8444 }
8445
8446 static void
8447 do_iwmmxt_textrm (void)
8448 {
8449 inst.instruction |= inst.operands[0].reg << 12;
8450 inst.instruction |= inst.operands[1].reg << 16;
8451 inst.instruction |= inst.operands[2].imm;
8452 }
8453
8454 static void
8455 do_iwmmxt_tinsr (void)
8456 {
8457 inst.instruction |= inst.operands[0].reg << 16;
8458 inst.instruction |= inst.operands[1].reg << 12;
8459 inst.instruction |= inst.operands[2].imm;
8460 }
8461
8462 static void
8463 do_iwmmxt_tmia (void)
8464 {
8465 inst.instruction |= inst.operands[0].reg << 5;
8466 inst.instruction |= inst.operands[1].reg;
8467 inst.instruction |= inst.operands[2].reg << 12;
8468 }
8469
8470 static void
8471 do_iwmmxt_waligni (void)
8472 {
8473 inst.instruction |= inst.operands[0].reg << 12;
8474 inst.instruction |= inst.operands[1].reg << 16;
8475 inst.instruction |= inst.operands[2].reg;
8476 inst.instruction |= inst.operands[3].imm << 20;
8477 }
8478
8479 static void
8480 do_iwmmxt_wmerge (void)
8481 {
8482 inst.instruction |= inst.operands[0].reg << 12;
8483 inst.instruction |= inst.operands[1].reg << 16;
8484 inst.instruction |= inst.operands[2].reg;
8485 inst.instruction |= inst.operands[3].imm << 21;
8486 }
8487
8488 static void
8489 do_iwmmxt_wmov (void)
8490 {
8491 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8492 inst.instruction |= inst.operands[0].reg << 12;
8493 inst.instruction |= inst.operands[1].reg << 16;
8494 inst.instruction |= inst.operands[1].reg;
8495 }
8496
8497 static void
8498 do_iwmmxt_wldstbh (void)
8499 {
8500 int reloc;
8501 inst.instruction |= inst.operands[0].reg << 12;
8502 if (thumb_mode)
8503 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8504 else
8505 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8506 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8507 }
8508
8509 static void
8510 do_iwmmxt_wldstw (void)
8511 {
8512 /* RIWR_RIWC clears .isreg for a control register. */
8513 if (!inst.operands[0].isreg)
8514 {
8515 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8516 inst.instruction |= 0xf0000000;
8517 }
8518
8519 inst.instruction |= inst.operands[0].reg << 12;
8520 encode_arm_cp_address (1, TRUE, TRUE, 0);
8521 }
8522
8523 static void
8524 do_iwmmxt_wldstd (void)
8525 {
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8528 && inst.operands[1].immisreg)
8529 {
8530 inst.instruction &= ~0x1a000ff;
8531 inst.instruction |= (0xf << 28);
8532 if (inst.operands[1].preind)
8533 inst.instruction |= PRE_INDEX;
8534 if (!inst.operands[1].negative)
8535 inst.instruction |= INDEX_UP;
8536 if (inst.operands[1].writeback)
8537 inst.instruction |= WRITE_BACK;
8538 inst.instruction |= inst.operands[1].reg << 16;
8539 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8540 inst.instruction |= inst.operands[1].imm;
8541 }
8542 else
8543 encode_arm_cp_address (1, TRUE, FALSE, 0);
8544 }
8545
8546 static void
8547 do_iwmmxt_wshufh (void)
8548 {
8549 inst.instruction |= inst.operands[0].reg << 12;
8550 inst.instruction |= inst.operands[1].reg << 16;
8551 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8552 inst.instruction |= (inst.operands[2].imm & 0x0f);
8553 }
8554
8555 static void
8556 do_iwmmxt_wzero (void)
8557 {
8558 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8559 inst.instruction |= inst.operands[0].reg;
8560 inst.instruction |= inst.operands[0].reg << 12;
8561 inst.instruction |= inst.operands[0].reg << 16;
8562 }
8563
8564 static void
8565 do_iwmmxt_wrwrwr_or_imm5 (void)
8566 {
8567 if (inst.operands[2].isreg)
8568 do_rd_rn_rm ();
8569 else {
8570 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8571 _("immediate operand requires iWMMXt2"));
8572 do_rd_rn ();
8573 if (inst.operands[2].imm == 0)
8574 {
8575 switch ((inst.instruction >> 20) & 0xf)
8576 {
8577 case 4:
8578 case 5:
8579 case 6:
8580 case 7:
8581 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8582 inst.operands[2].imm = 16;
8583 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8584 break;
8585 case 8:
8586 case 9:
8587 case 10:
8588 case 11:
8589 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8590 inst.operands[2].imm = 32;
8591 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8592 break;
8593 case 12:
8594 case 13:
8595 case 14:
8596 case 15:
8597 {
8598 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8599 unsigned long wrn;
8600 wrn = (inst.instruction >> 16) & 0xf;
8601 inst.instruction &= 0xff0fff0f;
8602 inst.instruction |= wrn;
8603 /* Bail out here; the instruction is now assembled. */
8604 return;
8605 }
8606 }
8607 }
8608 /* Map 32 -> 0, etc. */
8609 inst.operands[2].imm &= 0x1f;
8610 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8611 }
8612 }
8613 \f
8614 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8615 operations first, then control, shift, and load/store. */
8616
8617 /* Insns like "foo X,Y,Z". */
8618
8619 static void
8620 do_mav_triple (void)
8621 {
8622 inst.instruction |= inst.operands[0].reg << 16;
8623 inst.instruction |= inst.operands[1].reg;
8624 inst.instruction |= inst.operands[2].reg << 12;
8625 }
8626
8627 /* Insns like "foo W,X,Y,Z".
8628 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8629
8630 static void
8631 do_mav_quad (void)
8632 {
8633 inst.instruction |= inst.operands[0].reg << 5;
8634 inst.instruction |= inst.operands[1].reg << 12;
8635 inst.instruction |= inst.operands[2].reg << 16;
8636 inst.instruction |= inst.operands[3].reg;
8637 }
8638
8639 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8640 static void
8641 do_mav_dspsc (void)
8642 {
8643 inst.instruction |= inst.operands[1].reg << 12;
8644 }
8645
8646 /* Maverick shift immediate instructions.
8647 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8648 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8649
8650 static void
8651 do_mav_shift (void)
8652 {
8653 int imm = inst.operands[2].imm;
8654
8655 inst.instruction |= inst.operands[0].reg << 12;
8656 inst.instruction |= inst.operands[1].reg << 16;
8657
8658 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8659 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8660 Bit 4 should be 0. */
8661 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8662
8663 inst.instruction |= imm;
8664 }
8665 \f
8666 /* XScale instructions. Also sorted arithmetic before move. */
8667
8668 /* Xscale multiply-accumulate (argument parse)
8669 MIAcc acc0,Rm,Rs
8670 MIAPHcc acc0,Rm,Rs
8671 MIAxycc acc0,Rm,Rs. */
8672
8673 static void
8674 do_xsc_mia (void)
8675 {
8676 inst.instruction |= inst.operands[1].reg;
8677 inst.instruction |= inst.operands[2].reg << 12;
8678 }
8679
8680 /* Xscale move-accumulator-register (argument parse)
8681
8682 MARcc acc0,RdLo,RdHi. */
8683
8684 static void
8685 do_xsc_mar (void)
8686 {
8687 inst.instruction |= inst.operands[1].reg << 12;
8688 inst.instruction |= inst.operands[2].reg << 16;
8689 }
8690
8691 /* Xscale move-register-accumulator (argument parse)
8692
8693 MRAcc RdLo,RdHi,acc0. */
8694
8695 static void
8696 do_xsc_mra (void)
8697 {
8698 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8699 inst.instruction |= inst.operands[0].reg << 12;
8700 inst.instruction |= inst.operands[1].reg << 16;
8701 }
8702 \f
8703 /* Encoding functions relevant only to Thumb. */
8704
8705 /* inst.operands[i] is a shifted-register operand; encode
8706 it into inst.instruction in the format used by Thumb32. */
8707
8708 static void
8709 encode_thumb32_shifted_operand (int i)
8710 {
8711 unsigned int value = inst.reloc.exp.X_add_number;
8712 unsigned int shift = inst.operands[i].shift_kind;
8713
8714 constraint (inst.operands[i].immisreg,
8715 _("shift by register not allowed in thumb mode"));
8716 inst.instruction |= inst.operands[i].reg;
8717 if (shift == SHIFT_RRX)
8718 inst.instruction |= SHIFT_ROR << 4;
8719 else
8720 {
8721 constraint (inst.reloc.exp.X_op != O_constant,
8722 _("expression too complex"));
8723
8724 constraint (value > 32
8725 || (value == 32 && (shift == SHIFT_LSL
8726 || shift == SHIFT_ROR)),
8727 _("shift expression is too large"));
8728
8729 if (value == 0)
8730 shift = SHIFT_LSL;
8731 else if (value == 32)
8732 value = 0;
8733
8734 inst.instruction |= shift << 4;
8735 inst.instruction |= (value & 0x1c) << 10;
8736 inst.instruction |= (value & 0x03) << 6;
8737 }
8738 }
8739
8740
8741 /* inst.operands[i] was set up by parse_address. Encode it into a
8742 Thumb32 format load or store instruction. Reject forms that cannot
8743 be used with such instructions. If is_t is true, reject forms that
8744 cannot be used with a T instruction; if is_d is true, reject forms
8745 that cannot be used with a D instruction. If it is a store insn,
8746 reject PC in Rn. */
8747
8748 static void
8749 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8750 {
8751 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8752
8753 constraint (!inst.operands[i].isreg,
8754 _("Instruction does not support =N addresses"));
8755
8756 inst.instruction |= inst.operands[i].reg << 16;
8757 if (inst.operands[i].immisreg)
8758 {
8759 constraint (is_pc, BAD_PC_ADDRESSING);
8760 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8761 constraint (inst.operands[i].negative,
8762 _("Thumb does not support negative register indexing"));
8763 constraint (inst.operands[i].postind,
8764 _("Thumb does not support register post-indexing"));
8765 constraint (inst.operands[i].writeback,
8766 _("Thumb does not support register indexing with writeback"));
8767 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8768 _("Thumb supports only LSL in shifted register indexing"));
8769
8770 inst.instruction |= inst.operands[i].imm;
8771 if (inst.operands[i].shifted)
8772 {
8773 constraint (inst.reloc.exp.X_op != O_constant,
8774 _("expression too complex"));
8775 constraint (inst.reloc.exp.X_add_number < 0
8776 || inst.reloc.exp.X_add_number > 3,
8777 _("shift out of range"));
8778 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8779 }
8780 inst.reloc.type = BFD_RELOC_UNUSED;
8781 }
8782 else if (inst.operands[i].preind)
8783 {
8784 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
8785 constraint (is_t && inst.operands[i].writeback,
8786 _("cannot use writeback with this instruction"));
8787 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8788 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
8789
8790 if (is_d)
8791 {
8792 inst.instruction |= 0x01000000;
8793 if (inst.operands[i].writeback)
8794 inst.instruction |= 0x00200000;
8795 }
8796 else
8797 {
8798 inst.instruction |= 0x00000c00;
8799 if (inst.operands[i].writeback)
8800 inst.instruction |= 0x00000100;
8801 }
8802 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8803 }
8804 else if (inst.operands[i].postind)
8805 {
8806 gas_assert (inst.operands[i].writeback);
8807 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8808 constraint (is_t, _("cannot use post-indexing with this instruction"));
8809
8810 if (is_d)
8811 inst.instruction |= 0x00200000;
8812 else
8813 inst.instruction |= 0x00000900;
8814 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8815 }
8816 else /* unindexed - only for coprocessor */
8817 inst.error = _("instruction does not accept unindexed addressing");
8818 }
8819
8820 /* Table of Thumb instructions which exist in both 16- and 32-bit
8821 encodings (the latter only in post-V6T2 cores). The index is the
8822 value used in the insns table below. When there is more than one
8823 possible 16-bit encoding for the instruction, this table always
8824 holds variant (1).
8825 Also contains several pseudo-instructions used during relaxation. */
8826 #define T16_32_TAB \
8827 X(_adc, 4140, eb400000), \
8828 X(_adcs, 4140, eb500000), \
8829 X(_add, 1c00, eb000000), \
8830 X(_adds, 1c00, eb100000), \
8831 X(_addi, 0000, f1000000), \
8832 X(_addis, 0000, f1100000), \
8833 X(_add_pc,000f, f20f0000), \
8834 X(_add_sp,000d, f10d0000), \
8835 X(_adr, 000f, f20f0000), \
8836 X(_and, 4000, ea000000), \
8837 X(_ands, 4000, ea100000), \
8838 X(_asr, 1000, fa40f000), \
8839 X(_asrs, 1000, fa50f000), \
8840 X(_b, e000, f000b000), \
8841 X(_bcond, d000, f0008000), \
8842 X(_bic, 4380, ea200000), \
8843 X(_bics, 4380, ea300000), \
8844 X(_cmn, 42c0, eb100f00), \
8845 X(_cmp, 2800, ebb00f00), \
8846 X(_cpsie, b660, f3af8400), \
8847 X(_cpsid, b670, f3af8600), \
8848 X(_cpy, 4600, ea4f0000), \
8849 X(_dec_sp,80dd, f1ad0d00), \
8850 X(_eor, 4040, ea800000), \
8851 X(_eors, 4040, ea900000), \
8852 X(_inc_sp,00dd, f10d0d00), \
8853 X(_ldmia, c800, e8900000), \
8854 X(_ldr, 6800, f8500000), \
8855 X(_ldrb, 7800, f8100000), \
8856 X(_ldrh, 8800, f8300000), \
8857 X(_ldrsb, 5600, f9100000), \
8858 X(_ldrsh, 5e00, f9300000), \
8859 X(_ldr_pc,4800, f85f0000), \
8860 X(_ldr_pc2,4800, f85f0000), \
8861 X(_ldr_sp,9800, f85d0000), \
8862 X(_lsl, 0000, fa00f000), \
8863 X(_lsls, 0000, fa10f000), \
8864 X(_lsr, 0800, fa20f000), \
8865 X(_lsrs, 0800, fa30f000), \
8866 X(_mov, 2000, ea4f0000), \
8867 X(_movs, 2000, ea5f0000), \
8868 X(_mul, 4340, fb00f000), \
8869 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8870 X(_mvn, 43c0, ea6f0000), \
8871 X(_mvns, 43c0, ea7f0000), \
8872 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8873 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8874 X(_orr, 4300, ea400000), \
8875 X(_orrs, 4300, ea500000), \
8876 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8877 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8878 X(_rev, ba00, fa90f080), \
8879 X(_rev16, ba40, fa90f090), \
8880 X(_revsh, bac0, fa90f0b0), \
8881 X(_ror, 41c0, fa60f000), \
8882 X(_rors, 41c0, fa70f000), \
8883 X(_sbc, 4180, eb600000), \
8884 X(_sbcs, 4180, eb700000), \
8885 X(_stmia, c000, e8800000), \
8886 X(_str, 6000, f8400000), \
8887 X(_strb, 7000, f8000000), \
8888 X(_strh, 8000, f8200000), \
8889 X(_str_sp,9000, f84d0000), \
8890 X(_sub, 1e00, eba00000), \
8891 X(_subs, 1e00, ebb00000), \
8892 X(_subi, 8000, f1a00000), \
8893 X(_subis, 8000, f1b00000), \
8894 X(_sxtb, b240, fa4ff080), \
8895 X(_sxth, b200, fa0ff080), \
8896 X(_tst, 4200, ea100f00), \
8897 X(_uxtb, b2c0, fa5ff080), \
8898 X(_uxth, b280, fa1ff080), \
8899 X(_nop, bf00, f3af8000), \
8900 X(_yield, bf10, f3af8001), \
8901 X(_wfe, bf20, f3af8002), \
8902 X(_wfi, bf30, f3af8003), \
8903 X(_sev, bf40, f3af8004),
8904
8905 /* To catch errors in encoding functions, the codes are all offset by
8906 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8907 as 16-bit instructions. */
8908 #define X(a,b,c) T_MNEM##a
8909 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8910 #undef X
8911
8912 #define X(a,b,c) 0x##b
8913 static const unsigned short thumb_op16[] = { T16_32_TAB };
8914 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8915 #undef X
8916
8917 #define X(a,b,c) 0x##c
8918 static const unsigned int thumb_op32[] = { T16_32_TAB };
8919 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8920 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8921 #undef X
8922 #undef T16_32_TAB
8923
8924 /* Thumb instruction encoders, in alphabetical order. */
8925
8926 /* ADDW or SUBW. */
8927
8928 static void
8929 do_t_add_sub_w (void)
8930 {
8931 int Rd, Rn;
8932
8933 Rd = inst.operands[0].reg;
8934 Rn = inst.operands[1].reg;
8935
8936 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8937 is the SP-{plus,minus}-immediate form of the instruction. */
8938 if (Rn == REG_SP)
8939 constraint (Rd == REG_PC, BAD_PC);
8940 else
8941 reject_bad_reg (Rd);
8942
8943 inst.instruction |= (Rn << 16) | (Rd << 8);
8944 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8945 }
8946
8947 /* Parse an add or subtract instruction. We get here with inst.instruction
8948 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8949
8950 static void
8951 do_t_add_sub (void)
8952 {
8953 int Rd, Rs, Rn;
8954
8955 Rd = inst.operands[0].reg;
8956 Rs = (inst.operands[1].present
8957 ? inst.operands[1].reg /* Rd, Rs, foo */
8958 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8959
8960 if (Rd == REG_PC)
8961 set_it_insn_type_last ();
8962
8963 if (unified_syntax)
8964 {
8965 bfd_boolean flags;
8966 bfd_boolean narrow;
8967 int opcode;
8968
8969 flags = (inst.instruction == T_MNEM_adds
8970 || inst.instruction == T_MNEM_subs);
8971 if (flags)
8972 narrow = !in_it_block ();
8973 else
8974 narrow = in_it_block ();
8975 if (!inst.operands[2].isreg)
8976 {
8977 int add;
8978
8979 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8980
8981 add = (inst.instruction == T_MNEM_add
8982 || inst.instruction == T_MNEM_adds);
8983 opcode = 0;
8984 if (inst.size_req != 4)
8985 {
8986 /* Attempt to use a narrow opcode, with relaxation if
8987 appropriate. */
8988 if (Rd == REG_SP && Rs == REG_SP && !flags)
8989 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8990 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8991 opcode = T_MNEM_add_sp;
8992 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8993 opcode = T_MNEM_add_pc;
8994 else if (Rd <= 7 && Rs <= 7 && narrow)
8995 {
8996 if (flags)
8997 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8998 else
8999 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9000 }
9001 if (opcode)
9002 {
9003 inst.instruction = THUMB_OP16(opcode);
9004 inst.instruction |= (Rd << 4) | Rs;
9005 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9006 if (inst.size_req != 2)
9007 inst.relax = opcode;
9008 }
9009 else
9010 constraint (inst.size_req == 2, BAD_HIREG);
9011 }
9012 if (inst.size_req == 4
9013 || (inst.size_req != 2 && !opcode))
9014 {
9015 if (Rd == REG_PC)
9016 {
9017 constraint (add, BAD_PC);
9018 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9019 _("only SUBS PC, LR, #const allowed"));
9020 constraint (inst.reloc.exp.X_op != O_constant,
9021 _("expression too complex"));
9022 constraint (inst.reloc.exp.X_add_number < 0
9023 || inst.reloc.exp.X_add_number > 0xff,
9024 _("immediate value out of range"));
9025 inst.instruction = T2_SUBS_PC_LR
9026 | inst.reloc.exp.X_add_number;
9027 inst.reloc.type = BFD_RELOC_UNUSED;
9028 return;
9029 }
9030 else if (Rs == REG_PC)
9031 {
9032 /* Always use addw/subw. */
9033 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9034 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9035 }
9036 else
9037 {
9038 inst.instruction = THUMB_OP32 (inst.instruction);
9039 inst.instruction = (inst.instruction & 0xe1ffffff)
9040 | 0x10000000;
9041 if (flags)
9042 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9043 else
9044 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9045 }
9046 inst.instruction |= Rd << 8;
9047 inst.instruction |= Rs << 16;
9048 }
9049 }
9050 else
9051 {
9052 Rn = inst.operands[2].reg;
9053 /* See if we can do this with a 16-bit instruction. */
9054 if (!inst.operands[2].shifted && inst.size_req != 4)
9055 {
9056 if (Rd > 7 || Rs > 7 || Rn > 7)
9057 narrow = FALSE;
9058
9059 if (narrow)
9060 {
9061 inst.instruction = ((inst.instruction == T_MNEM_adds
9062 || inst.instruction == T_MNEM_add)
9063 ? T_OPCODE_ADD_R3
9064 : T_OPCODE_SUB_R3);
9065 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9066 return;
9067 }
9068
9069 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9070 {
9071 /* Thumb-1 cores (except v6-M) require at least one high
9072 register in a narrow non flag setting add. */
9073 if (Rd > 7 || Rn > 7
9074 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9075 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9076 {
9077 if (Rd == Rn)
9078 {
9079 Rn = Rs;
9080 Rs = Rd;
9081 }
9082 inst.instruction = T_OPCODE_ADD_HI;
9083 inst.instruction |= (Rd & 8) << 4;
9084 inst.instruction |= (Rd & 7);
9085 inst.instruction |= Rn << 3;
9086 return;
9087 }
9088 }
9089 }
9090
9091 constraint (Rd == REG_PC, BAD_PC);
9092 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9093 constraint (Rs == REG_PC, BAD_PC);
9094 reject_bad_reg (Rn);
9095
9096 /* If we get here, it can't be done in 16 bits. */
9097 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9098 _("shift must be constant"));
9099 inst.instruction = THUMB_OP32 (inst.instruction);
9100 inst.instruction |= Rd << 8;
9101 inst.instruction |= Rs << 16;
9102 encode_thumb32_shifted_operand (2);
9103 }
9104 }
9105 else
9106 {
9107 constraint (inst.instruction == T_MNEM_adds
9108 || inst.instruction == T_MNEM_subs,
9109 BAD_THUMB32);
9110
9111 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9112 {
9113 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9114 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9115 BAD_HIREG);
9116
9117 inst.instruction = (inst.instruction == T_MNEM_add
9118 ? 0x0000 : 0x8000);
9119 inst.instruction |= (Rd << 4) | Rs;
9120 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9121 return;
9122 }
9123
9124 Rn = inst.operands[2].reg;
9125 constraint (inst.operands[2].shifted, _("unshifted register required"));
9126
9127 /* We now have Rd, Rs, and Rn set to registers. */
9128 if (Rd > 7 || Rs > 7 || Rn > 7)
9129 {
9130 /* Can't do this for SUB. */
9131 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9132 inst.instruction = T_OPCODE_ADD_HI;
9133 inst.instruction |= (Rd & 8) << 4;
9134 inst.instruction |= (Rd & 7);
9135 if (Rs == Rd)
9136 inst.instruction |= Rn << 3;
9137 else if (Rn == Rd)
9138 inst.instruction |= Rs << 3;
9139 else
9140 constraint (1, _("dest must overlap one source register"));
9141 }
9142 else
9143 {
9144 inst.instruction = (inst.instruction == T_MNEM_add
9145 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9146 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9147 }
9148 }
9149 }
9150
9151 static void
9152 do_t_adr (void)
9153 {
9154 unsigned Rd;
9155
9156 Rd = inst.operands[0].reg;
9157 reject_bad_reg (Rd);
9158
9159 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9160 {
9161 /* Defer to section relaxation. */
9162 inst.relax = inst.instruction;
9163 inst.instruction = THUMB_OP16 (inst.instruction);
9164 inst.instruction |= Rd << 4;
9165 }
9166 else if (unified_syntax && inst.size_req != 2)
9167 {
9168 /* Generate a 32-bit opcode. */
9169 inst.instruction = THUMB_OP32 (inst.instruction);
9170 inst.instruction |= Rd << 8;
9171 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9172 inst.reloc.pc_rel = 1;
9173 }
9174 else
9175 {
9176 /* Generate a 16-bit opcode. */
9177 inst.instruction = THUMB_OP16 (inst.instruction);
9178 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9179 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9180 inst.reloc.pc_rel = 1;
9181
9182 inst.instruction |= Rd << 4;
9183 }
9184 }
9185
9186 /* Arithmetic instructions for which there is just one 16-bit
9187 instruction encoding, and it allows only two low registers.
9188 For maximal compatibility with ARM syntax, we allow three register
9189 operands even when Thumb-32 instructions are not available, as long
9190 as the first two are identical. For instance, both "sbc r0,r1" and
9191 "sbc r0,r0,r1" are allowed. */
9192 static void
9193 do_t_arit3 (void)
9194 {
9195 int Rd, Rs, Rn;
9196
9197 Rd = inst.operands[0].reg;
9198 Rs = (inst.operands[1].present
9199 ? inst.operands[1].reg /* Rd, Rs, foo */
9200 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9201 Rn = inst.operands[2].reg;
9202
9203 reject_bad_reg (Rd);
9204 reject_bad_reg (Rs);
9205 if (inst.operands[2].isreg)
9206 reject_bad_reg (Rn);
9207
9208 if (unified_syntax)
9209 {
9210 if (!inst.operands[2].isreg)
9211 {
9212 /* For an immediate, we always generate a 32-bit opcode;
9213 section relaxation will shrink it later if possible. */
9214 inst.instruction = THUMB_OP32 (inst.instruction);
9215 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9216 inst.instruction |= Rd << 8;
9217 inst.instruction |= Rs << 16;
9218 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9219 }
9220 else
9221 {
9222 bfd_boolean narrow;
9223
9224 /* See if we can do this with a 16-bit instruction. */
9225 if (THUMB_SETS_FLAGS (inst.instruction))
9226 narrow = !in_it_block ();
9227 else
9228 narrow = in_it_block ();
9229
9230 if (Rd > 7 || Rn > 7 || Rs > 7)
9231 narrow = FALSE;
9232 if (inst.operands[2].shifted)
9233 narrow = FALSE;
9234 if (inst.size_req == 4)
9235 narrow = FALSE;
9236
9237 if (narrow
9238 && Rd == Rs)
9239 {
9240 inst.instruction = THUMB_OP16 (inst.instruction);
9241 inst.instruction |= Rd;
9242 inst.instruction |= Rn << 3;
9243 return;
9244 }
9245
9246 /* If we get here, it can't be done in 16 bits. */
9247 constraint (inst.operands[2].shifted
9248 && inst.operands[2].immisreg,
9249 _("shift must be constant"));
9250 inst.instruction = THUMB_OP32 (inst.instruction);
9251 inst.instruction |= Rd << 8;
9252 inst.instruction |= Rs << 16;
9253 encode_thumb32_shifted_operand (2);
9254 }
9255 }
9256 else
9257 {
9258 /* On its face this is a lie - the instruction does set the
9259 flags. However, the only supported mnemonic in this mode
9260 says it doesn't. */
9261 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9262
9263 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9264 _("unshifted register required"));
9265 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9266 constraint (Rd != Rs,
9267 _("dest and source1 must be the same register"));
9268
9269 inst.instruction = THUMB_OP16 (inst.instruction);
9270 inst.instruction |= Rd;
9271 inst.instruction |= Rn << 3;
9272 }
9273 }
9274
9275 /* Similarly, but for instructions where the arithmetic operation is
9276 commutative, so we can allow either of them to be different from
9277 the destination operand in a 16-bit instruction. For instance, all
9278 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9279 accepted. */
9280 static void
9281 do_t_arit3c (void)
9282 {
9283 int Rd, Rs, Rn;
9284
9285 Rd = inst.operands[0].reg;
9286 Rs = (inst.operands[1].present
9287 ? inst.operands[1].reg /* Rd, Rs, foo */
9288 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9289 Rn = inst.operands[2].reg;
9290
9291 reject_bad_reg (Rd);
9292 reject_bad_reg (Rs);
9293 if (inst.operands[2].isreg)
9294 reject_bad_reg (Rn);
9295
9296 if (unified_syntax)
9297 {
9298 if (!inst.operands[2].isreg)
9299 {
9300 /* For an immediate, we always generate a 32-bit opcode;
9301 section relaxation will shrink it later if possible. */
9302 inst.instruction = THUMB_OP32 (inst.instruction);
9303 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9304 inst.instruction |= Rd << 8;
9305 inst.instruction |= Rs << 16;
9306 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9307 }
9308 else
9309 {
9310 bfd_boolean narrow;
9311
9312 /* See if we can do this with a 16-bit instruction. */
9313 if (THUMB_SETS_FLAGS (inst.instruction))
9314 narrow = !in_it_block ();
9315 else
9316 narrow = in_it_block ();
9317
9318 if (Rd > 7 || Rn > 7 || Rs > 7)
9319 narrow = FALSE;
9320 if (inst.operands[2].shifted)
9321 narrow = FALSE;
9322 if (inst.size_req == 4)
9323 narrow = FALSE;
9324
9325 if (narrow)
9326 {
9327 if (Rd == Rs)
9328 {
9329 inst.instruction = THUMB_OP16 (inst.instruction);
9330 inst.instruction |= Rd;
9331 inst.instruction |= Rn << 3;
9332 return;
9333 }
9334 if (Rd == Rn)
9335 {
9336 inst.instruction = THUMB_OP16 (inst.instruction);
9337 inst.instruction |= Rd;
9338 inst.instruction |= Rs << 3;
9339 return;
9340 }
9341 }
9342
9343 /* If we get here, it can't be done in 16 bits. */
9344 constraint (inst.operands[2].shifted
9345 && inst.operands[2].immisreg,
9346 _("shift must be constant"));
9347 inst.instruction = THUMB_OP32 (inst.instruction);
9348 inst.instruction |= Rd << 8;
9349 inst.instruction |= Rs << 16;
9350 encode_thumb32_shifted_operand (2);
9351 }
9352 }
9353 else
9354 {
9355 /* On its face this is a lie - the instruction does set the
9356 flags. However, the only supported mnemonic in this mode
9357 says it doesn't. */
9358 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9359
9360 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9361 _("unshifted register required"));
9362 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9363
9364 inst.instruction = THUMB_OP16 (inst.instruction);
9365 inst.instruction |= Rd;
9366
9367 if (Rd == Rs)
9368 inst.instruction |= Rn << 3;
9369 else if (Rd == Rn)
9370 inst.instruction |= Rs << 3;
9371 else
9372 constraint (1, _("dest must overlap one source register"));
9373 }
9374 }
9375
9376 static void
9377 do_t_barrier (void)
9378 {
9379 if (inst.operands[0].present)
9380 {
9381 constraint ((inst.instruction & 0xf0) != 0x40
9382 && inst.operands[0].imm != 0xf,
9383 _("bad barrier type"));
9384 inst.instruction |= inst.operands[0].imm;
9385 }
9386 else
9387 inst.instruction |= 0xf;
9388 }
9389
9390 static void
9391 do_t_bfc (void)
9392 {
9393 unsigned Rd;
9394 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9395 constraint (msb > 32, _("bit-field extends past end of register"));
9396 /* The instruction encoding stores the LSB and MSB,
9397 not the LSB and width. */
9398 Rd = inst.operands[0].reg;
9399 reject_bad_reg (Rd);
9400 inst.instruction |= Rd << 8;
9401 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9402 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9403 inst.instruction |= msb - 1;
9404 }
9405
9406 static void
9407 do_t_bfi (void)
9408 {
9409 int Rd, Rn;
9410 unsigned int msb;
9411
9412 Rd = inst.operands[0].reg;
9413 reject_bad_reg (Rd);
9414
9415 /* #0 in second position is alternative syntax for bfc, which is
9416 the same instruction but with REG_PC in the Rm field. */
9417 if (!inst.operands[1].isreg)
9418 Rn = REG_PC;
9419 else
9420 {
9421 Rn = inst.operands[1].reg;
9422 reject_bad_reg (Rn);
9423 }
9424
9425 msb = inst.operands[2].imm + inst.operands[3].imm;
9426 constraint (msb > 32, _("bit-field extends past end of register"));
9427 /* The instruction encoding stores the LSB and MSB,
9428 not the LSB and width. */
9429 inst.instruction |= Rd << 8;
9430 inst.instruction |= Rn << 16;
9431 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9432 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9433 inst.instruction |= msb - 1;
9434 }
9435
9436 static void
9437 do_t_bfx (void)
9438 {
9439 unsigned Rd, Rn;
9440
9441 Rd = inst.operands[0].reg;
9442 Rn = inst.operands[1].reg;
9443
9444 reject_bad_reg (Rd);
9445 reject_bad_reg (Rn);
9446
9447 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9448 _("bit-field extends past end of register"));
9449 inst.instruction |= Rd << 8;
9450 inst.instruction |= Rn << 16;
9451 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9452 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9453 inst.instruction |= inst.operands[3].imm - 1;
9454 }
9455
9456 /* ARM V5 Thumb BLX (argument parse)
9457 BLX <target_addr> which is BLX(1)
9458 BLX <Rm> which is BLX(2)
9459 Unfortunately, there are two different opcodes for this mnemonic.
9460 So, the insns[].value is not used, and the code here zaps values
9461 into inst.instruction.
9462
9463 ??? How to take advantage of the additional two bits of displacement
9464 available in Thumb32 mode? Need new relocation? */
9465
9466 static void
9467 do_t_blx (void)
9468 {
9469 set_it_insn_type_last ();
9470
9471 if (inst.operands[0].isreg)
9472 {
9473 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9474 /* We have a register, so this is BLX(2). */
9475 inst.instruction |= inst.operands[0].reg << 3;
9476 }
9477 else
9478 {
9479 /* No register. This must be BLX(1). */
9480 inst.instruction = 0xf000e800;
9481 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9482 inst.reloc.pc_rel = 1;
9483 }
9484 }
9485
9486 static void
9487 do_t_branch (void)
9488 {
9489 int opcode;
9490 int cond;
9491
9492 cond = inst.cond;
9493 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9494
9495 if (in_it_block ())
9496 {
9497 /* Conditional branches inside IT blocks are encoded as unconditional
9498 branches. */
9499 cond = COND_ALWAYS;
9500 }
9501 else
9502 cond = inst.cond;
9503
9504 if (cond != COND_ALWAYS)
9505 opcode = T_MNEM_bcond;
9506 else
9507 opcode = inst.instruction;
9508
9509 if (unified_syntax && inst.size_req == 4)
9510 {
9511 inst.instruction = THUMB_OP32(opcode);
9512 if (cond == COND_ALWAYS)
9513 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9514 else
9515 {
9516 gas_assert (cond != 0xF);
9517 inst.instruction |= cond << 22;
9518 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9519 }
9520 }
9521 else
9522 {
9523 inst.instruction = THUMB_OP16(opcode);
9524 if (cond == COND_ALWAYS)
9525 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9526 else
9527 {
9528 inst.instruction |= cond << 8;
9529 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9530 }
9531 /* Allow section relaxation. */
9532 if (unified_syntax && inst.size_req != 2)
9533 inst.relax = opcode;
9534 }
9535
9536 inst.reloc.pc_rel = 1;
9537 }
9538
9539 static void
9540 do_t_bkpt (void)
9541 {
9542 constraint (inst.cond != COND_ALWAYS,
9543 _("instruction is always unconditional"));
9544 if (inst.operands[0].present)
9545 {
9546 constraint (inst.operands[0].imm > 255,
9547 _("immediate value out of range"));
9548 inst.instruction |= inst.operands[0].imm;
9549 set_it_insn_type (NEUTRAL_IT_INSN);
9550 }
9551 }
9552
9553 static void
9554 do_t_branch23 (void)
9555 {
9556 set_it_insn_type_last ();
9557 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9558 inst.reloc.pc_rel = 1;
9559
9560 #if defined(OBJ_COFF)
9561 /* If the destination of the branch is a defined symbol which does not have
9562 the THUMB_FUNC attribute, then we must be calling a function which has
9563 the (interfacearm) attribute. We look for the Thumb entry point to that
9564 function and change the branch to refer to that function instead. */
9565 if ( inst.reloc.exp.X_op == O_symbol
9566 && inst.reloc.exp.X_add_symbol != NULL
9567 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9568 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9569 inst.reloc.exp.X_add_symbol =
9570 find_real_start (inst.reloc.exp.X_add_symbol);
9571 #endif
9572 }
9573
9574 static void
9575 do_t_bx (void)
9576 {
9577 set_it_insn_type_last ();
9578 inst.instruction |= inst.operands[0].reg << 3;
9579 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9580 should cause the alignment to be checked once it is known. This is
9581 because BX PC only works if the instruction is word aligned. */
9582 }
9583
9584 static void
9585 do_t_bxj (void)
9586 {
9587 int Rm;
9588
9589 set_it_insn_type_last ();
9590 Rm = inst.operands[0].reg;
9591 reject_bad_reg (Rm);
9592 inst.instruction |= Rm << 16;
9593 }
9594
9595 static void
9596 do_t_clz (void)
9597 {
9598 unsigned Rd;
9599 unsigned Rm;
9600
9601 Rd = inst.operands[0].reg;
9602 Rm = inst.operands[1].reg;
9603
9604 reject_bad_reg (Rd);
9605 reject_bad_reg (Rm);
9606
9607 inst.instruction |= Rd << 8;
9608 inst.instruction |= Rm << 16;
9609 inst.instruction |= Rm;
9610 }
9611
9612 static void
9613 do_t_cps (void)
9614 {
9615 set_it_insn_type (OUTSIDE_IT_INSN);
9616 inst.instruction |= inst.operands[0].imm;
9617 }
9618
9619 static void
9620 do_t_cpsi (void)
9621 {
9622 set_it_insn_type (OUTSIDE_IT_INSN);
9623 if (unified_syntax
9624 && (inst.operands[1].present || inst.size_req == 4)
9625 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9626 {
9627 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9628 inst.instruction = 0xf3af8000;
9629 inst.instruction |= imod << 9;
9630 inst.instruction |= inst.operands[0].imm << 5;
9631 if (inst.operands[1].present)
9632 inst.instruction |= 0x100 | inst.operands[1].imm;
9633 }
9634 else
9635 {
9636 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9637 && (inst.operands[0].imm & 4),
9638 _("selected processor does not support 'A' form "
9639 "of this instruction"));
9640 constraint (inst.operands[1].present || inst.size_req == 4,
9641 _("Thumb does not support the 2-argument "
9642 "form of this instruction"));
9643 inst.instruction |= inst.operands[0].imm;
9644 }
9645 }
9646
9647 /* THUMB CPY instruction (argument parse). */
9648
9649 static void
9650 do_t_cpy (void)
9651 {
9652 if (inst.size_req == 4)
9653 {
9654 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9655 inst.instruction |= inst.operands[0].reg << 8;
9656 inst.instruction |= inst.operands[1].reg;
9657 }
9658 else
9659 {
9660 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9661 inst.instruction |= (inst.operands[0].reg & 0x7);
9662 inst.instruction |= inst.operands[1].reg << 3;
9663 }
9664 }
9665
9666 static void
9667 do_t_cbz (void)
9668 {
9669 set_it_insn_type (OUTSIDE_IT_INSN);
9670 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9671 inst.instruction |= inst.operands[0].reg;
9672 inst.reloc.pc_rel = 1;
9673 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9674 }
9675
9676 static void
9677 do_t_dbg (void)
9678 {
9679 inst.instruction |= inst.operands[0].imm;
9680 }
9681
9682 static void
9683 do_t_div (void)
9684 {
9685 unsigned Rd, Rn, Rm;
9686
9687 Rd = inst.operands[0].reg;
9688 Rn = (inst.operands[1].present
9689 ? inst.operands[1].reg : Rd);
9690 Rm = inst.operands[2].reg;
9691
9692 reject_bad_reg (Rd);
9693 reject_bad_reg (Rn);
9694 reject_bad_reg (Rm);
9695
9696 inst.instruction |= Rd << 8;
9697 inst.instruction |= Rn << 16;
9698 inst.instruction |= Rm;
9699 }
9700
9701 static void
9702 do_t_hint (void)
9703 {
9704 if (unified_syntax && inst.size_req == 4)
9705 inst.instruction = THUMB_OP32 (inst.instruction);
9706 else
9707 inst.instruction = THUMB_OP16 (inst.instruction);
9708 }
9709
9710 static void
9711 do_t_it (void)
9712 {
9713 unsigned int cond = inst.operands[0].imm;
9714
9715 set_it_insn_type (IT_INSN);
9716 now_it.mask = (inst.instruction & 0xf) | 0x10;
9717 now_it.cc = cond;
9718
9719 /* If the condition is a negative condition, invert the mask. */
9720 if ((cond & 0x1) == 0x0)
9721 {
9722 unsigned int mask = inst.instruction & 0x000f;
9723
9724 if ((mask & 0x7) == 0)
9725 /* no conversion needed */;
9726 else if ((mask & 0x3) == 0)
9727 mask ^= 0x8;
9728 else if ((mask & 0x1) == 0)
9729 mask ^= 0xC;
9730 else
9731 mask ^= 0xE;
9732
9733 inst.instruction &= 0xfff0;
9734 inst.instruction |= mask;
9735 }
9736
9737 inst.instruction |= cond << 4;
9738 }
9739
9740 /* Helper function used for both push/pop and ldm/stm. */
9741 static void
9742 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9743 {
9744 bfd_boolean load;
9745
9746 load = (inst.instruction & (1 << 20)) != 0;
9747
9748 if (mask & (1 << 13))
9749 inst.error = _("SP not allowed in register list");
9750 if (load)
9751 {
9752 if (mask & (1 << 15))
9753 {
9754 if (mask & (1 << 14))
9755 inst.error = _("LR and PC should not both be in register list");
9756 else
9757 set_it_insn_type_last ();
9758 }
9759
9760 if ((mask & (1 << base)) != 0
9761 && writeback)
9762 as_warn (_("base register should not be in register list "
9763 "when written back"));
9764 }
9765 else
9766 {
9767 if (mask & (1 << 15))
9768 inst.error = _("PC not allowed in register list");
9769
9770 if (mask & (1 << base))
9771 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9772 }
9773
9774 if ((mask & (mask - 1)) == 0)
9775 {
9776 /* Single register transfers implemented as str/ldr. */
9777 if (writeback)
9778 {
9779 if (inst.instruction & (1 << 23))
9780 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9781 else
9782 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9783 }
9784 else
9785 {
9786 if (inst.instruction & (1 << 23))
9787 inst.instruction = 0x00800000; /* ia -> [base] */
9788 else
9789 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9790 }
9791
9792 inst.instruction |= 0xf8400000;
9793 if (load)
9794 inst.instruction |= 0x00100000;
9795
9796 mask = ffs (mask) - 1;
9797 mask <<= 12;
9798 }
9799 else if (writeback)
9800 inst.instruction |= WRITE_BACK;
9801
9802 inst.instruction |= mask;
9803 inst.instruction |= base << 16;
9804 }
9805
9806 static void
9807 do_t_ldmstm (void)
9808 {
9809 /* This really doesn't seem worth it. */
9810 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9811 _("expression too complex"));
9812 constraint (inst.operands[1].writeback,
9813 _("Thumb load/store multiple does not support {reglist}^"));
9814
9815 if (unified_syntax)
9816 {
9817 bfd_boolean narrow;
9818 unsigned mask;
9819
9820 narrow = FALSE;
9821 /* See if we can use a 16-bit instruction. */
9822 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9823 && inst.size_req != 4
9824 && !(inst.operands[1].imm & ~0xff))
9825 {
9826 mask = 1 << inst.operands[0].reg;
9827
9828 if (inst.operands[0].reg <= 7
9829 && (inst.instruction == T_MNEM_stmia
9830 ? inst.operands[0].writeback
9831 : (inst.operands[0].writeback
9832 == !(inst.operands[1].imm & mask))))
9833 {
9834 if (inst.instruction == T_MNEM_stmia
9835 && (inst.operands[1].imm & mask)
9836 && (inst.operands[1].imm & (mask - 1)))
9837 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9838 inst.operands[0].reg);
9839
9840 inst.instruction = THUMB_OP16 (inst.instruction);
9841 inst.instruction |= inst.operands[0].reg << 8;
9842 inst.instruction |= inst.operands[1].imm;
9843 narrow = TRUE;
9844 }
9845 else if (inst.operands[0] .reg == REG_SP
9846 && inst.operands[0].writeback)
9847 {
9848 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9849 ? T_MNEM_push : T_MNEM_pop);
9850 inst.instruction |= inst.operands[1].imm;
9851 narrow = TRUE;
9852 }
9853 }
9854
9855 if (!narrow)
9856 {
9857 if (inst.instruction < 0xffff)
9858 inst.instruction = THUMB_OP32 (inst.instruction);
9859
9860 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9861 inst.operands[0].writeback);
9862 }
9863 }
9864 else
9865 {
9866 constraint (inst.operands[0].reg > 7
9867 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9868 constraint (inst.instruction != T_MNEM_ldmia
9869 && inst.instruction != T_MNEM_stmia,
9870 _("Thumb-2 instruction only valid in unified syntax"));
9871 if (inst.instruction == T_MNEM_stmia)
9872 {
9873 if (!inst.operands[0].writeback)
9874 as_warn (_("this instruction will write back the base register"));
9875 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9876 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9877 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9878 inst.operands[0].reg);
9879 }
9880 else
9881 {
9882 if (!inst.operands[0].writeback
9883 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9884 as_warn (_("this instruction will write back the base register"));
9885 else if (inst.operands[0].writeback
9886 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9887 as_warn (_("this instruction will not write back the base register"));
9888 }
9889
9890 inst.instruction = THUMB_OP16 (inst.instruction);
9891 inst.instruction |= inst.operands[0].reg << 8;
9892 inst.instruction |= inst.operands[1].imm;
9893 }
9894 }
9895
9896 static void
9897 do_t_ldrex (void)
9898 {
9899 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9900 || inst.operands[1].postind || inst.operands[1].writeback
9901 || inst.operands[1].immisreg || inst.operands[1].shifted
9902 || inst.operands[1].negative,
9903 BAD_ADDR_MODE);
9904
9905 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9906
9907 inst.instruction |= inst.operands[0].reg << 12;
9908 inst.instruction |= inst.operands[1].reg << 16;
9909 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9910 }
9911
9912 static void
9913 do_t_ldrexd (void)
9914 {
9915 if (!inst.operands[1].present)
9916 {
9917 constraint (inst.operands[0].reg == REG_LR,
9918 _("r14 not allowed as first register "
9919 "when second register is omitted"));
9920 inst.operands[1].reg = inst.operands[0].reg + 1;
9921 }
9922 constraint (inst.operands[0].reg == inst.operands[1].reg,
9923 BAD_OVERLAP);
9924
9925 inst.instruction |= inst.operands[0].reg << 12;
9926 inst.instruction |= inst.operands[1].reg << 8;
9927 inst.instruction |= inst.operands[2].reg << 16;
9928 }
9929
9930 static void
9931 do_t_ldst (void)
9932 {
9933 unsigned long opcode;
9934 int Rn;
9935
9936 if (inst.operands[0].isreg
9937 && !inst.operands[0].preind
9938 && inst.operands[0].reg == REG_PC)
9939 set_it_insn_type_last ();
9940
9941 opcode = inst.instruction;
9942 if (unified_syntax)
9943 {
9944 if (!inst.operands[1].isreg)
9945 {
9946 if (opcode <= 0xffff)
9947 inst.instruction = THUMB_OP32 (opcode);
9948 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9949 return;
9950 }
9951 if (inst.operands[1].isreg
9952 && !inst.operands[1].writeback
9953 && !inst.operands[1].shifted && !inst.operands[1].postind
9954 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9955 && opcode <= 0xffff
9956 && inst.size_req != 4)
9957 {
9958 /* Insn may have a 16-bit form. */
9959 Rn = inst.operands[1].reg;
9960 if (inst.operands[1].immisreg)
9961 {
9962 inst.instruction = THUMB_OP16 (opcode);
9963 /* [Rn, Rik] */
9964 if (Rn <= 7 && inst.operands[1].imm <= 7)
9965 goto op16;
9966 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
9967 reject_bad_reg (inst.operands[1].imm);
9968 }
9969 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9970 && opcode != T_MNEM_ldrsb)
9971 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9972 || (Rn == REG_SP && opcode == T_MNEM_str))
9973 {
9974 /* [Rn, #const] */
9975 if (Rn > 7)
9976 {
9977 if (Rn == REG_PC)
9978 {
9979 if (inst.reloc.pc_rel)
9980 opcode = T_MNEM_ldr_pc2;
9981 else
9982 opcode = T_MNEM_ldr_pc;
9983 }
9984 else
9985 {
9986 if (opcode == T_MNEM_ldr)
9987 opcode = T_MNEM_ldr_sp;
9988 else
9989 opcode = T_MNEM_str_sp;
9990 }
9991 inst.instruction = inst.operands[0].reg << 8;
9992 }
9993 else
9994 {
9995 inst.instruction = inst.operands[0].reg;
9996 inst.instruction |= inst.operands[1].reg << 3;
9997 }
9998 inst.instruction |= THUMB_OP16 (opcode);
9999 if (inst.size_req == 2)
10000 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10001 else
10002 inst.relax = opcode;
10003 return;
10004 }
10005 }
10006 /* Definitely a 32-bit variant. */
10007
10008 /* Do some validations regarding addressing modes. */
10009 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10010 && opcode != T_MNEM_str)
10011 reject_bad_reg (inst.operands[1].imm);
10012
10013 inst.instruction = THUMB_OP32 (opcode);
10014 inst.instruction |= inst.operands[0].reg << 12;
10015 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10016 return;
10017 }
10018
10019 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10020
10021 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10022 {
10023 /* Only [Rn,Rm] is acceptable. */
10024 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10025 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10026 || inst.operands[1].postind || inst.operands[1].shifted
10027 || inst.operands[1].negative,
10028 _("Thumb does not support this addressing mode"));
10029 inst.instruction = THUMB_OP16 (inst.instruction);
10030 goto op16;
10031 }
10032
10033 inst.instruction = THUMB_OP16 (inst.instruction);
10034 if (!inst.operands[1].isreg)
10035 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10036 return;
10037
10038 constraint (!inst.operands[1].preind
10039 || inst.operands[1].shifted
10040 || inst.operands[1].writeback,
10041 _("Thumb does not support this addressing mode"));
10042 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10043 {
10044 constraint (inst.instruction & 0x0600,
10045 _("byte or halfword not valid for base register"));
10046 constraint (inst.operands[1].reg == REG_PC
10047 && !(inst.instruction & THUMB_LOAD_BIT),
10048 _("r15 based store not allowed"));
10049 constraint (inst.operands[1].immisreg,
10050 _("invalid base register for register offset"));
10051
10052 if (inst.operands[1].reg == REG_PC)
10053 inst.instruction = T_OPCODE_LDR_PC;
10054 else if (inst.instruction & THUMB_LOAD_BIT)
10055 inst.instruction = T_OPCODE_LDR_SP;
10056 else
10057 inst.instruction = T_OPCODE_STR_SP;
10058
10059 inst.instruction |= inst.operands[0].reg << 8;
10060 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10061 return;
10062 }
10063
10064 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10065 if (!inst.operands[1].immisreg)
10066 {
10067 /* Immediate offset. */
10068 inst.instruction |= inst.operands[0].reg;
10069 inst.instruction |= inst.operands[1].reg << 3;
10070 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10071 return;
10072 }
10073
10074 /* Register offset. */
10075 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10076 constraint (inst.operands[1].negative,
10077 _("Thumb does not support this addressing mode"));
10078
10079 op16:
10080 switch (inst.instruction)
10081 {
10082 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10083 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10084 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10085 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10086 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10087 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10088 case 0x5600 /* ldrsb */:
10089 case 0x5e00 /* ldrsh */: break;
10090 default: abort ();
10091 }
10092
10093 inst.instruction |= inst.operands[0].reg;
10094 inst.instruction |= inst.operands[1].reg << 3;
10095 inst.instruction |= inst.operands[1].imm << 6;
10096 }
10097
10098 static void
10099 do_t_ldstd (void)
10100 {
10101 if (!inst.operands[1].present)
10102 {
10103 inst.operands[1].reg = inst.operands[0].reg + 1;
10104 constraint (inst.operands[0].reg == REG_LR,
10105 _("r14 not allowed here"));
10106 }
10107 inst.instruction |= inst.operands[0].reg << 12;
10108 inst.instruction |= inst.operands[1].reg << 8;
10109 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10110 }
10111
10112 static void
10113 do_t_ldstt (void)
10114 {
10115 inst.instruction |= inst.operands[0].reg << 12;
10116 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10117 }
10118
10119 static void
10120 do_t_mla (void)
10121 {
10122 unsigned Rd, Rn, Rm, Ra;
10123
10124 Rd = inst.operands[0].reg;
10125 Rn = inst.operands[1].reg;
10126 Rm = inst.operands[2].reg;
10127 Ra = inst.operands[3].reg;
10128
10129 reject_bad_reg (Rd);
10130 reject_bad_reg (Rn);
10131 reject_bad_reg (Rm);
10132 reject_bad_reg (Ra);
10133
10134 inst.instruction |= Rd << 8;
10135 inst.instruction |= Rn << 16;
10136 inst.instruction |= Rm;
10137 inst.instruction |= Ra << 12;
10138 }
10139
10140 static void
10141 do_t_mlal (void)
10142 {
10143 unsigned RdLo, RdHi, Rn, Rm;
10144
10145 RdLo = inst.operands[0].reg;
10146 RdHi = inst.operands[1].reg;
10147 Rn = inst.operands[2].reg;
10148 Rm = inst.operands[3].reg;
10149
10150 reject_bad_reg (RdLo);
10151 reject_bad_reg (RdHi);
10152 reject_bad_reg (Rn);
10153 reject_bad_reg (Rm);
10154
10155 inst.instruction |= RdLo << 12;
10156 inst.instruction |= RdHi << 8;
10157 inst.instruction |= Rn << 16;
10158 inst.instruction |= Rm;
10159 }
10160
10161 static void
10162 do_t_mov_cmp (void)
10163 {
10164 unsigned Rn, Rm;
10165
10166 Rn = inst.operands[0].reg;
10167 Rm = inst.operands[1].reg;
10168
10169 if (Rn == REG_PC)
10170 set_it_insn_type_last ();
10171
10172 if (unified_syntax)
10173 {
10174 int r0off = (inst.instruction == T_MNEM_mov
10175 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10176 unsigned long opcode;
10177 bfd_boolean narrow;
10178 bfd_boolean low_regs;
10179
10180 low_regs = (Rn <= 7 && Rm <= 7);
10181 opcode = inst.instruction;
10182 if (in_it_block ())
10183 narrow = opcode != T_MNEM_movs;
10184 else
10185 narrow = opcode != T_MNEM_movs || low_regs;
10186 if (inst.size_req == 4
10187 || inst.operands[1].shifted)
10188 narrow = FALSE;
10189
10190 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10191 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10192 && !inst.operands[1].shifted
10193 && Rn == REG_PC
10194 && Rm == REG_LR)
10195 {
10196 inst.instruction = T2_SUBS_PC_LR;
10197 return;
10198 }
10199
10200 if (opcode == T_MNEM_cmp)
10201 {
10202 constraint (Rn == REG_PC, BAD_PC);
10203 if (narrow)
10204 {
10205 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10206 but valid. */
10207 warn_deprecated_sp (Rm);
10208 /* R15 was documented as a valid choice for Rm in ARMv6,
10209 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10210 tools reject R15, so we do too. */
10211 constraint (Rm == REG_PC, BAD_PC);
10212 }
10213 else
10214 reject_bad_reg (Rm);
10215 }
10216 else if (opcode == T_MNEM_mov
10217 || opcode == T_MNEM_movs)
10218 {
10219 if (inst.operands[1].isreg)
10220 {
10221 if (opcode == T_MNEM_movs)
10222 {
10223 reject_bad_reg (Rn);
10224 reject_bad_reg (Rm);
10225 }
10226 else if ((Rn == REG_SP || Rn == REG_PC)
10227 && (Rm == REG_SP || Rm == REG_PC))
10228 reject_bad_reg (Rm);
10229 }
10230 else
10231 reject_bad_reg (Rn);
10232 }
10233
10234 if (!inst.operands[1].isreg)
10235 {
10236 /* Immediate operand. */
10237 if (!in_it_block () && opcode == T_MNEM_mov)
10238 narrow = 0;
10239 if (low_regs && narrow)
10240 {
10241 inst.instruction = THUMB_OP16 (opcode);
10242 inst.instruction |= Rn << 8;
10243 if (inst.size_req == 2)
10244 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10245 else
10246 inst.relax = opcode;
10247 }
10248 else
10249 {
10250 inst.instruction = THUMB_OP32 (inst.instruction);
10251 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10252 inst.instruction |= Rn << r0off;
10253 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10254 }
10255 }
10256 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10257 && (inst.instruction == T_MNEM_mov
10258 || inst.instruction == T_MNEM_movs))
10259 {
10260 /* Register shifts are encoded as separate shift instructions. */
10261 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10262
10263 if (in_it_block ())
10264 narrow = !flags;
10265 else
10266 narrow = flags;
10267
10268 if (inst.size_req == 4)
10269 narrow = FALSE;
10270
10271 if (!low_regs || inst.operands[1].imm > 7)
10272 narrow = FALSE;
10273
10274 if (Rn != Rm)
10275 narrow = FALSE;
10276
10277 switch (inst.operands[1].shift_kind)
10278 {
10279 case SHIFT_LSL:
10280 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10281 break;
10282 case SHIFT_ASR:
10283 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10284 break;
10285 case SHIFT_LSR:
10286 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10287 break;
10288 case SHIFT_ROR:
10289 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10290 break;
10291 default:
10292 abort ();
10293 }
10294
10295 inst.instruction = opcode;
10296 if (narrow)
10297 {
10298 inst.instruction |= Rn;
10299 inst.instruction |= inst.operands[1].imm << 3;
10300 }
10301 else
10302 {
10303 if (flags)
10304 inst.instruction |= CONDS_BIT;
10305
10306 inst.instruction |= Rn << 8;
10307 inst.instruction |= Rm << 16;
10308 inst.instruction |= inst.operands[1].imm;
10309 }
10310 }
10311 else if (!narrow)
10312 {
10313 /* Some mov with immediate shift have narrow variants.
10314 Register shifts are handled above. */
10315 if (low_regs && inst.operands[1].shifted
10316 && (inst.instruction == T_MNEM_mov
10317 || inst.instruction == T_MNEM_movs))
10318 {
10319 if (in_it_block ())
10320 narrow = (inst.instruction == T_MNEM_mov);
10321 else
10322 narrow = (inst.instruction == T_MNEM_movs);
10323 }
10324
10325 if (narrow)
10326 {
10327 switch (inst.operands[1].shift_kind)
10328 {
10329 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10330 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10331 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10332 default: narrow = FALSE; break;
10333 }
10334 }
10335
10336 if (narrow)
10337 {
10338 inst.instruction |= Rn;
10339 inst.instruction |= Rm << 3;
10340 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10341 }
10342 else
10343 {
10344 inst.instruction = THUMB_OP32 (inst.instruction);
10345 inst.instruction |= Rn << r0off;
10346 encode_thumb32_shifted_operand (1);
10347 }
10348 }
10349 else
10350 switch (inst.instruction)
10351 {
10352 case T_MNEM_mov:
10353 inst.instruction = T_OPCODE_MOV_HR;
10354 inst.instruction |= (Rn & 0x8) << 4;
10355 inst.instruction |= (Rn & 0x7);
10356 inst.instruction |= Rm << 3;
10357 break;
10358
10359 case T_MNEM_movs:
10360 /* We know we have low registers at this point.
10361 Generate ADD Rd, Rs, #0. */
10362 inst.instruction = T_OPCODE_ADD_I3;
10363 inst.instruction |= Rn;
10364 inst.instruction |= Rm << 3;
10365 break;
10366
10367 case T_MNEM_cmp:
10368 if (low_regs)
10369 {
10370 inst.instruction = T_OPCODE_CMP_LR;
10371 inst.instruction |= Rn;
10372 inst.instruction |= Rm << 3;
10373 }
10374 else
10375 {
10376 inst.instruction = T_OPCODE_CMP_HR;
10377 inst.instruction |= (Rn & 0x8) << 4;
10378 inst.instruction |= (Rn & 0x7);
10379 inst.instruction |= Rm << 3;
10380 }
10381 break;
10382 }
10383 return;
10384 }
10385
10386 inst.instruction = THUMB_OP16 (inst.instruction);
10387
10388 /* PR 10443: Do not silently ignore shifted operands. */
10389 constraint (inst.operands[1].shifted,
10390 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10391
10392 if (inst.operands[1].isreg)
10393 {
10394 if (Rn < 8 && Rm < 8)
10395 {
10396 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10397 since a MOV instruction produces unpredictable results. */
10398 if (inst.instruction == T_OPCODE_MOV_I8)
10399 inst.instruction = T_OPCODE_ADD_I3;
10400 else
10401 inst.instruction = T_OPCODE_CMP_LR;
10402
10403 inst.instruction |= Rn;
10404 inst.instruction |= Rm << 3;
10405 }
10406 else
10407 {
10408 if (inst.instruction == T_OPCODE_MOV_I8)
10409 inst.instruction = T_OPCODE_MOV_HR;
10410 else
10411 inst.instruction = T_OPCODE_CMP_HR;
10412 do_t_cpy ();
10413 }
10414 }
10415 else
10416 {
10417 constraint (Rn > 7,
10418 _("only lo regs allowed with immediate"));
10419 inst.instruction |= Rn << 8;
10420 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10421 }
10422 }
10423
10424 static void
10425 do_t_mov16 (void)
10426 {
10427 unsigned Rd;
10428 bfd_vma imm;
10429 bfd_boolean top;
10430
10431 top = (inst.instruction & 0x00800000) != 0;
10432 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10433 {
10434 constraint (top, _(":lower16: not allowed this instruction"));
10435 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10436 }
10437 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10438 {
10439 constraint (!top, _(":upper16: not allowed this instruction"));
10440 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10441 }
10442
10443 Rd = inst.operands[0].reg;
10444 reject_bad_reg (Rd);
10445
10446 inst.instruction |= Rd << 8;
10447 if (inst.reloc.type == BFD_RELOC_UNUSED)
10448 {
10449 imm = inst.reloc.exp.X_add_number;
10450 inst.instruction |= (imm & 0xf000) << 4;
10451 inst.instruction |= (imm & 0x0800) << 15;
10452 inst.instruction |= (imm & 0x0700) << 4;
10453 inst.instruction |= (imm & 0x00ff);
10454 }
10455 }
10456
10457 static void
10458 do_t_mvn_tst (void)
10459 {
10460 unsigned Rn, Rm;
10461
10462 Rn = inst.operands[0].reg;
10463 Rm = inst.operands[1].reg;
10464
10465 if (inst.instruction == T_MNEM_cmp
10466 || inst.instruction == T_MNEM_cmn)
10467 constraint (Rn == REG_PC, BAD_PC);
10468 else
10469 reject_bad_reg (Rn);
10470 reject_bad_reg (Rm);
10471
10472 if (unified_syntax)
10473 {
10474 int r0off = (inst.instruction == T_MNEM_mvn
10475 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10476 bfd_boolean narrow;
10477
10478 if (inst.size_req == 4
10479 || inst.instruction > 0xffff
10480 || inst.operands[1].shifted
10481 || Rn > 7 || Rm > 7)
10482 narrow = FALSE;
10483 else if (inst.instruction == T_MNEM_cmn)
10484 narrow = TRUE;
10485 else if (THUMB_SETS_FLAGS (inst.instruction))
10486 narrow = !in_it_block ();
10487 else
10488 narrow = in_it_block ();
10489
10490 if (!inst.operands[1].isreg)
10491 {
10492 /* For an immediate, we always generate a 32-bit opcode;
10493 section relaxation will shrink it later if possible. */
10494 if (inst.instruction < 0xffff)
10495 inst.instruction = THUMB_OP32 (inst.instruction);
10496 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10497 inst.instruction |= Rn << r0off;
10498 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10499 }
10500 else
10501 {
10502 /* See if we can do this with a 16-bit instruction. */
10503 if (narrow)
10504 {
10505 inst.instruction = THUMB_OP16 (inst.instruction);
10506 inst.instruction |= Rn;
10507 inst.instruction |= Rm << 3;
10508 }
10509 else
10510 {
10511 constraint (inst.operands[1].shifted
10512 && inst.operands[1].immisreg,
10513 _("shift must be constant"));
10514 if (inst.instruction < 0xffff)
10515 inst.instruction = THUMB_OP32 (inst.instruction);
10516 inst.instruction |= Rn << r0off;
10517 encode_thumb32_shifted_operand (1);
10518 }
10519 }
10520 }
10521 else
10522 {
10523 constraint (inst.instruction > 0xffff
10524 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10525 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10526 _("unshifted register required"));
10527 constraint (Rn > 7 || Rm > 7,
10528 BAD_HIREG);
10529
10530 inst.instruction = THUMB_OP16 (inst.instruction);
10531 inst.instruction |= Rn;
10532 inst.instruction |= Rm << 3;
10533 }
10534 }
10535
10536 static void
10537 do_t_mrs (void)
10538 {
10539 unsigned Rd;
10540 int flags;
10541
10542 if (do_vfp_nsyn_mrs () == SUCCESS)
10543 return;
10544
10545 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10546 if (flags == 0)
10547 {
10548 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10549 _("selected processor does not support "
10550 "requested special purpose register"));
10551 }
10552 else
10553 {
10554 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10555 _("selected processor does not support "
10556 "requested special purpose register"));
10557 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10558 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10559 _("'CPSR' or 'SPSR' expected"));
10560 }
10561
10562 Rd = inst.operands[0].reg;
10563 reject_bad_reg (Rd);
10564
10565 inst.instruction |= Rd << 8;
10566 inst.instruction |= (flags & SPSR_BIT) >> 2;
10567 inst.instruction |= inst.operands[1].imm & 0xff;
10568 }
10569
10570 static void
10571 do_t_msr (void)
10572 {
10573 int flags;
10574 unsigned Rn;
10575
10576 if (do_vfp_nsyn_msr () == SUCCESS)
10577 return;
10578
10579 constraint (!inst.operands[1].isreg,
10580 _("Thumb encoding does not support an immediate here"));
10581 flags = inst.operands[0].imm;
10582 if (flags & ~0xff)
10583 {
10584 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10585 _("selected processor does not support "
10586 "requested special purpose register"));
10587 }
10588 else
10589 {
10590 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10591 _("selected processor does not support "
10592 "requested special purpose register"));
10593 flags |= PSR_f;
10594 }
10595
10596 Rn = inst.operands[1].reg;
10597 reject_bad_reg (Rn);
10598
10599 inst.instruction |= (flags & SPSR_BIT) >> 2;
10600 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10601 inst.instruction |= (flags & 0xff);
10602 inst.instruction |= Rn << 16;
10603 }
10604
10605 static void
10606 do_t_mul (void)
10607 {
10608 bfd_boolean narrow;
10609 unsigned Rd, Rn, Rm;
10610
10611 if (!inst.operands[2].present)
10612 inst.operands[2].reg = inst.operands[0].reg;
10613
10614 Rd = inst.operands[0].reg;
10615 Rn = inst.operands[1].reg;
10616 Rm = inst.operands[2].reg;
10617
10618 if (unified_syntax)
10619 {
10620 if (inst.size_req == 4
10621 || (Rd != Rn
10622 && Rd != Rm)
10623 || Rn > 7
10624 || Rm > 7)
10625 narrow = FALSE;
10626 else if (inst.instruction == T_MNEM_muls)
10627 narrow = !in_it_block ();
10628 else
10629 narrow = in_it_block ();
10630 }
10631 else
10632 {
10633 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10634 constraint (Rn > 7 || Rm > 7,
10635 BAD_HIREG);
10636 narrow = TRUE;
10637 }
10638
10639 if (narrow)
10640 {
10641 /* 16-bit MULS/Conditional MUL. */
10642 inst.instruction = THUMB_OP16 (inst.instruction);
10643 inst.instruction |= Rd;
10644
10645 if (Rd == Rn)
10646 inst.instruction |= Rm << 3;
10647 else if (Rd == Rm)
10648 inst.instruction |= Rn << 3;
10649 else
10650 constraint (1, _("dest must overlap one source register"));
10651 }
10652 else
10653 {
10654 constraint (inst.instruction != T_MNEM_mul,
10655 _("Thumb-2 MUL must not set flags"));
10656 /* 32-bit MUL. */
10657 inst.instruction = THUMB_OP32 (inst.instruction);
10658 inst.instruction |= Rd << 8;
10659 inst.instruction |= Rn << 16;
10660 inst.instruction |= Rm << 0;
10661
10662 reject_bad_reg (Rd);
10663 reject_bad_reg (Rn);
10664 reject_bad_reg (Rm);
10665 }
10666 }
10667
10668 static void
10669 do_t_mull (void)
10670 {
10671 unsigned RdLo, RdHi, Rn, Rm;
10672
10673 RdLo = inst.operands[0].reg;
10674 RdHi = inst.operands[1].reg;
10675 Rn = inst.operands[2].reg;
10676 Rm = inst.operands[3].reg;
10677
10678 reject_bad_reg (RdLo);
10679 reject_bad_reg (RdHi);
10680 reject_bad_reg (Rn);
10681 reject_bad_reg (Rm);
10682
10683 inst.instruction |= RdLo << 12;
10684 inst.instruction |= RdHi << 8;
10685 inst.instruction |= Rn << 16;
10686 inst.instruction |= Rm;
10687
10688 if (RdLo == RdHi)
10689 as_tsktsk (_("rdhi and rdlo must be different"));
10690 }
10691
10692 static void
10693 do_t_nop (void)
10694 {
10695 set_it_insn_type (NEUTRAL_IT_INSN);
10696
10697 if (unified_syntax)
10698 {
10699 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10700 {
10701 inst.instruction = THUMB_OP32 (inst.instruction);
10702 inst.instruction |= inst.operands[0].imm;
10703 }
10704 else
10705 {
10706 /* PR9722: Check for Thumb2 availability before
10707 generating a thumb2 nop instruction. */
10708 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
10709 {
10710 inst.instruction = THUMB_OP16 (inst.instruction);
10711 inst.instruction |= inst.operands[0].imm << 4;
10712 }
10713 else
10714 inst.instruction = 0x46c0;
10715 }
10716 }
10717 else
10718 {
10719 constraint (inst.operands[0].present,
10720 _("Thumb does not support NOP with hints"));
10721 inst.instruction = 0x46c0;
10722 }
10723 }
10724
10725 static void
10726 do_t_neg (void)
10727 {
10728 if (unified_syntax)
10729 {
10730 bfd_boolean narrow;
10731
10732 if (THUMB_SETS_FLAGS (inst.instruction))
10733 narrow = !in_it_block ();
10734 else
10735 narrow = in_it_block ();
10736 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10737 narrow = FALSE;
10738 if (inst.size_req == 4)
10739 narrow = FALSE;
10740
10741 if (!narrow)
10742 {
10743 inst.instruction = THUMB_OP32 (inst.instruction);
10744 inst.instruction |= inst.operands[0].reg << 8;
10745 inst.instruction |= inst.operands[1].reg << 16;
10746 }
10747 else
10748 {
10749 inst.instruction = THUMB_OP16 (inst.instruction);
10750 inst.instruction |= inst.operands[0].reg;
10751 inst.instruction |= inst.operands[1].reg << 3;
10752 }
10753 }
10754 else
10755 {
10756 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10757 BAD_HIREG);
10758 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10759
10760 inst.instruction = THUMB_OP16 (inst.instruction);
10761 inst.instruction |= inst.operands[0].reg;
10762 inst.instruction |= inst.operands[1].reg << 3;
10763 }
10764 }
10765
10766 static void
10767 do_t_orn (void)
10768 {
10769 unsigned Rd, Rn;
10770
10771 Rd = inst.operands[0].reg;
10772 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10773
10774 reject_bad_reg (Rd);
10775 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10776 reject_bad_reg (Rn);
10777
10778 inst.instruction |= Rd << 8;
10779 inst.instruction |= Rn << 16;
10780
10781 if (!inst.operands[2].isreg)
10782 {
10783 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10784 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10785 }
10786 else
10787 {
10788 unsigned Rm;
10789
10790 Rm = inst.operands[2].reg;
10791 reject_bad_reg (Rm);
10792
10793 constraint (inst.operands[2].shifted
10794 && inst.operands[2].immisreg,
10795 _("shift must be constant"));
10796 encode_thumb32_shifted_operand (2);
10797 }
10798 }
10799
10800 static void
10801 do_t_pkhbt (void)
10802 {
10803 unsigned Rd, Rn, Rm;
10804
10805 Rd = inst.operands[0].reg;
10806 Rn = inst.operands[1].reg;
10807 Rm = inst.operands[2].reg;
10808
10809 reject_bad_reg (Rd);
10810 reject_bad_reg (Rn);
10811 reject_bad_reg (Rm);
10812
10813 inst.instruction |= Rd << 8;
10814 inst.instruction |= Rn << 16;
10815 inst.instruction |= Rm;
10816 if (inst.operands[3].present)
10817 {
10818 unsigned int val = inst.reloc.exp.X_add_number;
10819 constraint (inst.reloc.exp.X_op != O_constant,
10820 _("expression too complex"));
10821 inst.instruction |= (val & 0x1c) << 10;
10822 inst.instruction |= (val & 0x03) << 6;
10823 }
10824 }
10825
10826 static void
10827 do_t_pkhtb (void)
10828 {
10829 if (!inst.operands[3].present)
10830 {
10831 unsigned Rtmp;
10832
10833 inst.instruction &= ~0x00000020;
10834
10835 /* PR 10168. Swap the Rm and Rn registers. */
10836 Rtmp = inst.operands[1].reg;
10837 inst.operands[1].reg = inst.operands[2].reg;
10838 inst.operands[2].reg = Rtmp;
10839 }
10840 do_t_pkhbt ();
10841 }
10842
10843 static void
10844 do_t_pld (void)
10845 {
10846 if (inst.operands[0].immisreg)
10847 reject_bad_reg (inst.operands[0].imm);
10848
10849 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10850 }
10851
10852 static void
10853 do_t_push_pop (void)
10854 {
10855 unsigned mask;
10856
10857 constraint (inst.operands[0].writeback,
10858 _("push/pop do not support {reglist}^"));
10859 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10860 _("expression too complex"));
10861
10862 mask = inst.operands[0].imm;
10863 if ((mask & ~0xff) == 0)
10864 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10865 else if ((inst.instruction == T_MNEM_push
10866 && (mask & ~0xff) == 1 << REG_LR)
10867 || (inst.instruction == T_MNEM_pop
10868 && (mask & ~0xff) == 1 << REG_PC))
10869 {
10870 inst.instruction = THUMB_OP16 (inst.instruction);
10871 inst.instruction |= THUMB_PP_PC_LR;
10872 inst.instruction |= mask & 0xff;
10873 }
10874 else if (unified_syntax)
10875 {
10876 inst.instruction = THUMB_OP32 (inst.instruction);
10877 encode_thumb2_ldmstm (13, mask, TRUE);
10878 }
10879 else
10880 {
10881 inst.error = _("invalid register list to push/pop instruction");
10882 return;
10883 }
10884 }
10885
10886 static void
10887 do_t_rbit (void)
10888 {
10889 unsigned Rd, Rm;
10890
10891 Rd = inst.operands[0].reg;
10892 Rm = inst.operands[1].reg;
10893
10894 reject_bad_reg (Rd);
10895 reject_bad_reg (Rm);
10896
10897 inst.instruction |= Rd << 8;
10898 inst.instruction |= Rm << 16;
10899 inst.instruction |= Rm;
10900 }
10901
10902 static void
10903 do_t_rev (void)
10904 {
10905 unsigned Rd, Rm;
10906
10907 Rd = inst.operands[0].reg;
10908 Rm = inst.operands[1].reg;
10909
10910 reject_bad_reg (Rd);
10911 reject_bad_reg (Rm);
10912
10913 if (Rd <= 7 && Rm <= 7
10914 && inst.size_req != 4)
10915 {
10916 inst.instruction = THUMB_OP16 (inst.instruction);
10917 inst.instruction |= Rd;
10918 inst.instruction |= Rm << 3;
10919 }
10920 else if (unified_syntax)
10921 {
10922 inst.instruction = THUMB_OP32 (inst.instruction);
10923 inst.instruction |= Rd << 8;
10924 inst.instruction |= Rm << 16;
10925 inst.instruction |= Rm;
10926 }
10927 else
10928 inst.error = BAD_HIREG;
10929 }
10930
10931 static void
10932 do_t_rrx (void)
10933 {
10934 unsigned Rd, Rm;
10935
10936 Rd = inst.operands[0].reg;
10937 Rm = inst.operands[1].reg;
10938
10939 reject_bad_reg (Rd);
10940 reject_bad_reg (Rm);
10941
10942 inst.instruction |= Rd << 8;
10943 inst.instruction |= Rm;
10944 }
10945
10946 static void
10947 do_t_rsb (void)
10948 {
10949 unsigned Rd, Rs;
10950
10951 Rd = inst.operands[0].reg;
10952 Rs = (inst.operands[1].present
10953 ? inst.operands[1].reg /* Rd, Rs, foo */
10954 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10955
10956 reject_bad_reg (Rd);
10957 reject_bad_reg (Rs);
10958 if (inst.operands[2].isreg)
10959 reject_bad_reg (inst.operands[2].reg);
10960
10961 inst.instruction |= Rd << 8;
10962 inst.instruction |= Rs << 16;
10963 if (!inst.operands[2].isreg)
10964 {
10965 bfd_boolean narrow;
10966
10967 if ((inst.instruction & 0x00100000) != 0)
10968 narrow = !in_it_block ();
10969 else
10970 narrow = in_it_block ();
10971
10972 if (Rd > 7 || Rs > 7)
10973 narrow = FALSE;
10974
10975 if (inst.size_req == 4 || !unified_syntax)
10976 narrow = FALSE;
10977
10978 if (inst.reloc.exp.X_op != O_constant
10979 || inst.reloc.exp.X_add_number != 0)
10980 narrow = FALSE;
10981
10982 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10983 relaxation, but it doesn't seem worth the hassle. */
10984 if (narrow)
10985 {
10986 inst.reloc.type = BFD_RELOC_UNUSED;
10987 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10988 inst.instruction |= Rs << 3;
10989 inst.instruction |= Rd;
10990 }
10991 else
10992 {
10993 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10994 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10995 }
10996 }
10997 else
10998 encode_thumb32_shifted_operand (2);
10999 }
11000
11001 static void
11002 do_t_setend (void)
11003 {
11004 set_it_insn_type (OUTSIDE_IT_INSN);
11005 if (inst.operands[0].imm)
11006 inst.instruction |= 0x8;
11007 }
11008
11009 static void
11010 do_t_shift (void)
11011 {
11012 if (!inst.operands[1].present)
11013 inst.operands[1].reg = inst.operands[0].reg;
11014
11015 if (unified_syntax)
11016 {
11017 bfd_boolean narrow;
11018 int shift_kind;
11019
11020 switch (inst.instruction)
11021 {
11022 case T_MNEM_asr:
11023 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11024 case T_MNEM_lsl:
11025 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11026 case T_MNEM_lsr:
11027 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11028 case T_MNEM_ror:
11029 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11030 default: abort ();
11031 }
11032
11033 if (THUMB_SETS_FLAGS (inst.instruction))
11034 narrow = !in_it_block ();
11035 else
11036 narrow = in_it_block ();
11037 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11038 narrow = FALSE;
11039 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11040 narrow = FALSE;
11041 if (inst.operands[2].isreg
11042 && (inst.operands[1].reg != inst.operands[0].reg
11043 || inst.operands[2].reg > 7))
11044 narrow = FALSE;
11045 if (inst.size_req == 4)
11046 narrow = FALSE;
11047
11048 reject_bad_reg (inst.operands[0].reg);
11049 reject_bad_reg (inst.operands[1].reg);
11050
11051 if (!narrow)
11052 {
11053 if (inst.operands[2].isreg)
11054 {
11055 reject_bad_reg (inst.operands[2].reg);
11056 inst.instruction = THUMB_OP32 (inst.instruction);
11057 inst.instruction |= inst.operands[0].reg << 8;
11058 inst.instruction |= inst.operands[1].reg << 16;
11059 inst.instruction |= inst.operands[2].reg;
11060 }
11061 else
11062 {
11063 inst.operands[1].shifted = 1;
11064 inst.operands[1].shift_kind = shift_kind;
11065 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11066 ? T_MNEM_movs : T_MNEM_mov);
11067 inst.instruction |= inst.operands[0].reg << 8;
11068 encode_thumb32_shifted_operand (1);
11069 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11070 inst.reloc.type = BFD_RELOC_UNUSED;
11071 }
11072 }
11073 else
11074 {
11075 if (inst.operands[2].isreg)
11076 {
11077 switch (shift_kind)
11078 {
11079 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11080 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11081 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11082 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11083 default: abort ();
11084 }
11085
11086 inst.instruction |= inst.operands[0].reg;
11087 inst.instruction |= inst.operands[2].reg << 3;
11088 }
11089 else
11090 {
11091 switch (shift_kind)
11092 {
11093 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11094 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11095 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11096 default: abort ();
11097 }
11098 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11099 inst.instruction |= inst.operands[0].reg;
11100 inst.instruction |= inst.operands[1].reg << 3;
11101 }
11102 }
11103 }
11104 else
11105 {
11106 constraint (inst.operands[0].reg > 7
11107 || inst.operands[1].reg > 7, BAD_HIREG);
11108 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11109
11110 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11111 {
11112 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11113 constraint (inst.operands[0].reg != inst.operands[1].reg,
11114 _("source1 and dest must be same register"));
11115
11116 switch (inst.instruction)
11117 {
11118 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11119 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11120 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11121 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11122 default: abort ();
11123 }
11124
11125 inst.instruction |= inst.operands[0].reg;
11126 inst.instruction |= inst.operands[2].reg << 3;
11127 }
11128 else
11129 {
11130 switch (inst.instruction)
11131 {
11132 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11133 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11134 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11135 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11136 default: abort ();
11137 }
11138 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11139 inst.instruction |= inst.operands[0].reg;
11140 inst.instruction |= inst.operands[1].reg << 3;
11141 }
11142 }
11143 }
11144
11145 static void
11146 do_t_simd (void)
11147 {
11148 unsigned Rd, Rn, Rm;
11149
11150 Rd = inst.operands[0].reg;
11151 Rn = inst.operands[1].reg;
11152 Rm = inst.operands[2].reg;
11153
11154 reject_bad_reg (Rd);
11155 reject_bad_reg (Rn);
11156 reject_bad_reg (Rm);
11157
11158 inst.instruction |= Rd << 8;
11159 inst.instruction |= Rn << 16;
11160 inst.instruction |= Rm;
11161 }
11162
11163 static void
11164 do_t_simd2 (void)
11165 {
11166 unsigned Rd, Rn, Rm;
11167
11168 Rd = inst.operands[0].reg;
11169 Rm = inst.operands[1].reg;
11170 Rn = inst.operands[2].reg;
11171
11172 reject_bad_reg (Rd);
11173 reject_bad_reg (Rn);
11174 reject_bad_reg (Rm);
11175
11176 inst.instruction |= Rd << 8;
11177 inst.instruction |= Rn << 16;
11178 inst.instruction |= Rm;
11179 }
11180
11181 static void
11182 do_t_smc (void)
11183 {
11184 unsigned int value = inst.reloc.exp.X_add_number;
11185 constraint (inst.reloc.exp.X_op != O_constant,
11186 _("expression too complex"));
11187 inst.reloc.type = BFD_RELOC_UNUSED;
11188 inst.instruction |= (value & 0xf000) >> 12;
11189 inst.instruction |= (value & 0x0ff0);
11190 inst.instruction |= (value & 0x000f) << 16;
11191 }
11192
11193 static void
11194 do_t_ssat_usat (int bias)
11195 {
11196 unsigned Rd, Rn;
11197
11198 Rd = inst.operands[0].reg;
11199 Rn = inst.operands[2].reg;
11200
11201 reject_bad_reg (Rd);
11202 reject_bad_reg (Rn);
11203
11204 inst.instruction |= Rd << 8;
11205 inst.instruction |= inst.operands[1].imm - bias;
11206 inst.instruction |= Rn << 16;
11207
11208 if (inst.operands[3].present)
11209 {
11210 offsetT shift_amount = inst.reloc.exp.X_add_number;
11211
11212 inst.reloc.type = BFD_RELOC_UNUSED;
11213
11214 constraint (inst.reloc.exp.X_op != O_constant,
11215 _("expression too complex"));
11216
11217 if (shift_amount != 0)
11218 {
11219 constraint (shift_amount > 31,
11220 _("shift expression is too large"));
11221
11222 if (inst.operands[3].shift_kind == SHIFT_ASR)
11223 inst.instruction |= 0x00200000; /* sh bit. */
11224
11225 inst.instruction |= (shift_amount & 0x1c) << 10;
11226 inst.instruction |= (shift_amount & 0x03) << 6;
11227 }
11228 }
11229 }
11230
11231 static void
11232 do_t_ssat (void)
11233 {
11234 do_t_ssat_usat (1);
11235 }
11236
11237 static void
11238 do_t_ssat16 (void)
11239 {
11240 unsigned Rd, Rn;
11241
11242 Rd = inst.operands[0].reg;
11243 Rn = inst.operands[2].reg;
11244
11245 reject_bad_reg (Rd);
11246 reject_bad_reg (Rn);
11247
11248 inst.instruction |= Rd << 8;
11249 inst.instruction |= inst.operands[1].imm - 1;
11250 inst.instruction |= Rn << 16;
11251 }
11252
11253 static void
11254 do_t_strex (void)
11255 {
11256 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11257 || inst.operands[2].postind || inst.operands[2].writeback
11258 || inst.operands[2].immisreg || inst.operands[2].shifted
11259 || inst.operands[2].negative,
11260 BAD_ADDR_MODE);
11261
11262 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11263
11264 inst.instruction |= inst.operands[0].reg << 8;
11265 inst.instruction |= inst.operands[1].reg << 12;
11266 inst.instruction |= inst.operands[2].reg << 16;
11267 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11268 }
11269
11270 static void
11271 do_t_strexd (void)
11272 {
11273 if (!inst.operands[2].present)
11274 inst.operands[2].reg = inst.operands[1].reg + 1;
11275
11276 constraint (inst.operands[0].reg == inst.operands[1].reg
11277 || inst.operands[0].reg == inst.operands[2].reg
11278 || inst.operands[0].reg == inst.operands[3].reg,
11279 BAD_OVERLAP);
11280
11281 inst.instruction |= inst.operands[0].reg;
11282 inst.instruction |= inst.operands[1].reg << 12;
11283 inst.instruction |= inst.operands[2].reg << 8;
11284 inst.instruction |= inst.operands[3].reg << 16;
11285 }
11286
11287 static void
11288 do_t_sxtah (void)
11289 {
11290 unsigned Rd, Rn, Rm;
11291
11292 Rd = inst.operands[0].reg;
11293 Rn = inst.operands[1].reg;
11294 Rm = inst.operands[2].reg;
11295
11296 reject_bad_reg (Rd);
11297 reject_bad_reg (Rn);
11298 reject_bad_reg (Rm);
11299
11300 inst.instruction |= Rd << 8;
11301 inst.instruction |= Rn << 16;
11302 inst.instruction |= Rm;
11303 inst.instruction |= inst.operands[3].imm << 4;
11304 }
11305
11306 static void
11307 do_t_sxth (void)
11308 {
11309 unsigned Rd, Rm;
11310
11311 Rd = inst.operands[0].reg;
11312 Rm = inst.operands[1].reg;
11313
11314 reject_bad_reg (Rd);
11315 reject_bad_reg (Rm);
11316
11317 if (inst.instruction <= 0xffff
11318 && inst.size_req != 4
11319 && Rd <= 7 && Rm <= 7
11320 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11321 {
11322 inst.instruction = THUMB_OP16 (inst.instruction);
11323 inst.instruction |= Rd;
11324 inst.instruction |= Rm << 3;
11325 }
11326 else if (unified_syntax)
11327 {
11328 if (inst.instruction <= 0xffff)
11329 inst.instruction = THUMB_OP32 (inst.instruction);
11330 inst.instruction |= Rd << 8;
11331 inst.instruction |= Rm;
11332 inst.instruction |= inst.operands[2].imm << 4;
11333 }
11334 else
11335 {
11336 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11337 _("Thumb encoding does not support rotation"));
11338 constraint (1, BAD_HIREG);
11339 }
11340 }
11341
11342 static void
11343 do_t_swi (void)
11344 {
11345 inst.reloc.type = BFD_RELOC_ARM_SWI;
11346 }
11347
11348 static void
11349 do_t_tb (void)
11350 {
11351 unsigned Rn, Rm;
11352 int half;
11353
11354 half = (inst.instruction & 0x10) != 0;
11355 set_it_insn_type_last ();
11356 constraint (inst.operands[0].immisreg,
11357 _("instruction requires register index"));
11358
11359 Rn = inst.operands[0].reg;
11360 Rm = inst.operands[0].imm;
11361
11362 constraint (Rn == REG_SP, BAD_SP);
11363 reject_bad_reg (Rm);
11364
11365 constraint (!half && inst.operands[0].shifted,
11366 _("instruction does not allow shifted index"));
11367 inst.instruction |= (Rn << 16) | Rm;
11368 }
11369
11370 static void
11371 do_t_usat (void)
11372 {
11373 do_t_ssat_usat (0);
11374 }
11375
11376 static void
11377 do_t_usat16 (void)
11378 {
11379 unsigned Rd, Rn;
11380
11381 Rd = inst.operands[0].reg;
11382 Rn = inst.operands[2].reg;
11383
11384 reject_bad_reg (Rd);
11385 reject_bad_reg (Rn);
11386
11387 inst.instruction |= Rd << 8;
11388 inst.instruction |= inst.operands[1].imm;
11389 inst.instruction |= Rn << 16;
11390 }
11391
11392 /* Neon instruction encoder helpers. */
11393
11394 /* Encodings for the different types for various Neon opcodes. */
11395
11396 /* An "invalid" code for the following tables. */
11397 #define N_INV -1u
11398
11399 struct neon_tab_entry
11400 {
11401 unsigned integer;
11402 unsigned float_or_poly;
11403 unsigned scalar_or_imm;
11404 };
11405
11406 /* Map overloaded Neon opcodes to their respective encodings. */
11407 #define NEON_ENC_TAB \
11408 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11409 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11410 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11411 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11412 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11413 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11414 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11415 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11416 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11417 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11418 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11419 /* Register variants of the following two instructions are encoded as
11420 vcge / vcgt with the operands reversed. */ \
11421 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11422 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11423 X(vfma, N_INV, 0x0000c10, N_INV), \
11424 X(vfms, N_INV, 0x0200c10, N_INV), \
11425 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11426 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11427 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11428 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11429 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11430 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11431 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11432 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11433 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11434 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11435 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11436 X(vshl, 0x0000400, N_INV, 0x0800510), \
11437 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11438 X(vand, 0x0000110, N_INV, 0x0800030), \
11439 X(vbic, 0x0100110, N_INV, 0x0800030), \
11440 X(veor, 0x1000110, N_INV, N_INV), \
11441 X(vorn, 0x0300110, N_INV, 0x0800010), \
11442 X(vorr, 0x0200110, N_INV, 0x0800010), \
11443 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11444 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11445 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11446 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11447 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11448 X(vst1, 0x0000000, 0x0800000, N_INV), \
11449 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11450 X(vst2, 0x0000100, 0x0800100, N_INV), \
11451 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11452 X(vst3, 0x0000200, 0x0800200, N_INV), \
11453 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11454 X(vst4, 0x0000300, 0x0800300, N_INV), \
11455 X(vmovn, 0x1b20200, N_INV, N_INV), \
11456 X(vtrn, 0x1b20080, N_INV, N_INV), \
11457 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11458 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11459 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11460 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11461 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11462 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11463 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11464 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11465 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11466 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11467 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11468
11469 enum neon_opc
11470 {
11471 #define X(OPC,I,F,S) N_MNEM_##OPC
11472 NEON_ENC_TAB
11473 #undef X
11474 };
11475
11476 static const struct neon_tab_entry neon_enc_tab[] =
11477 {
11478 #define X(OPC,I,F,S) { (I), (F), (S) }
11479 NEON_ENC_TAB
11480 #undef X
11481 };
11482
11483 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11484 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11485 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11486 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11487 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11488 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11489 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11490 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11491 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11492 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11493 #define NEON_ENC_SINGLE_(X) \
11494 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11495 #define NEON_ENC_DOUBLE_(X) \
11496 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11497
11498 #define NEON_ENCODE(type, inst) \
11499 do \
11500 { \
11501 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11502 inst.is_neon = 1; \
11503 } \
11504 while (0)
11505
11506 #define check_neon_suffixes \
11507 do \
11508 { \
11509 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11510 { \
11511 as_bad (_("invalid neon suffix for non neon instruction")); \
11512 return; \
11513 } \
11514 } \
11515 while (0)
11516
11517 /* Define shapes for instruction operands. The following mnemonic characters
11518 are used in this table:
11519
11520 F - VFP S<n> register
11521 D - Neon D<n> register
11522 Q - Neon Q<n> register
11523 I - Immediate
11524 S - Scalar
11525 R - ARM register
11526 L - D<n> register list
11527
11528 This table is used to generate various data:
11529 - enumerations of the form NS_DDR to be used as arguments to
11530 neon_select_shape.
11531 - a table classifying shapes into single, double, quad, mixed.
11532 - a table used to drive neon_select_shape. */
11533
11534 #define NEON_SHAPE_DEF \
11535 X(3, (D, D, D), DOUBLE), \
11536 X(3, (Q, Q, Q), QUAD), \
11537 X(3, (D, D, I), DOUBLE), \
11538 X(3, (Q, Q, I), QUAD), \
11539 X(3, (D, D, S), DOUBLE), \
11540 X(3, (Q, Q, S), QUAD), \
11541 X(2, (D, D), DOUBLE), \
11542 X(2, (Q, Q), QUAD), \
11543 X(2, (D, S), DOUBLE), \
11544 X(2, (Q, S), QUAD), \
11545 X(2, (D, R), DOUBLE), \
11546 X(2, (Q, R), QUAD), \
11547 X(2, (D, I), DOUBLE), \
11548 X(2, (Q, I), QUAD), \
11549 X(3, (D, L, D), DOUBLE), \
11550 X(2, (D, Q), MIXED), \
11551 X(2, (Q, D), MIXED), \
11552 X(3, (D, Q, I), MIXED), \
11553 X(3, (Q, D, I), MIXED), \
11554 X(3, (Q, D, D), MIXED), \
11555 X(3, (D, Q, Q), MIXED), \
11556 X(3, (Q, Q, D), MIXED), \
11557 X(3, (Q, D, S), MIXED), \
11558 X(3, (D, Q, S), MIXED), \
11559 X(4, (D, D, D, I), DOUBLE), \
11560 X(4, (Q, Q, Q, I), QUAD), \
11561 X(2, (F, F), SINGLE), \
11562 X(3, (F, F, F), SINGLE), \
11563 X(2, (F, I), SINGLE), \
11564 X(2, (F, D), MIXED), \
11565 X(2, (D, F), MIXED), \
11566 X(3, (F, F, I), MIXED), \
11567 X(4, (R, R, F, F), SINGLE), \
11568 X(4, (F, F, R, R), SINGLE), \
11569 X(3, (D, R, R), DOUBLE), \
11570 X(3, (R, R, D), DOUBLE), \
11571 X(2, (S, R), SINGLE), \
11572 X(2, (R, S), SINGLE), \
11573 X(2, (F, R), SINGLE), \
11574 X(2, (R, F), SINGLE)
11575
11576 #define S2(A,B) NS_##A##B
11577 #define S3(A,B,C) NS_##A##B##C
11578 #define S4(A,B,C,D) NS_##A##B##C##D
11579
11580 #define X(N, L, C) S##N L
11581
11582 enum neon_shape
11583 {
11584 NEON_SHAPE_DEF,
11585 NS_NULL
11586 };
11587
11588 #undef X
11589 #undef S2
11590 #undef S3
11591 #undef S4
11592
11593 enum neon_shape_class
11594 {
11595 SC_SINGLE,
11596 SC_DOUBLE,
11597 SC_QUAD,
11598 SC_MIXED
11599 };
11600
11601 #define X(N, L, C) SC_##C
11602
11603 static enum neon_shape_class neon_shape_class[] =
11604 {
11605 NEON_SHAPE_DEF
11606 };
11607
11608 #undef X
11609
11610 enum neon_shape_el
11611 {
11612 SE_F,
11613 SE_D,
11614 SE_Q,
11615 SE_I,
11616 SE_S,
11617 SE_R,
11618 SE_L
11619 };
11620
11621 /* Register widths of above. */
11622 static unsigned neon_shape_el_size[] =
11623 {
11624 32,
11625 64,
11626 128,
11627 0,
11628 32,
11629 32,
11630 0
11631 };
11632
11633 struct neon_shape_info
11634 {
11635 unsigned els;
11636 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11637 };
11638
11639 #define S2(A,B) { SE_##A, SE_##B }
11640 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11641 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11642
11643 #define X(N, L, C) { N, S##N L }
11644
11645 static struct neon_shape_info neon_shape_tab[] =
11646 {
11647 NEON_SHAPE_DEF
11648 };
11649
11650 #undef X
11651 #undef S2
11652 #undef S3
11653 #undef S4
11654
11655 /* Bit masks used in type checking given instructions.
11656 'N_EQK' means the type must be the same as (or based on in some way) the key
11657 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11658 set, various other bits can be set as well in order to modify the meaning of
11659 the type constraint. */
11660
11661 enum neon_type_mask
11662 {
11663 N_S8 = 0x0000001,
11664 N_S16 = 0x0000002,
11665 N_S32 = 0x0000004,
11666 N_S64 = 0x0000008,
11667 N_U8 = 0x0000010,
11668 N_U16 = 0x0000020,
11669 N_U32 = 0x0000040,
11670 N_U64 = 0x0000080,
11671 N_I8 = 0x0000100,
11672 N_I16 = 0x0000200,
11673 N_I32 = 0x0000400,
11674 N_I64 = 0x0000800,
11675 N_8 = 0x0001000,
11676 N_16 = 0x0002000,
11677 N_32 = 0x0004000,
11678 N_64 = 0x0008000,
11679 N_P8 = 0x0010000,
11680 N_P16 = 0x0020000,
11681 N_F16 = 0x0040000,
11682 N_F32 = 0x0080000,
11683 N_F64 = 0x0100000,
11684 N_KEY = 0x1000000, /* Key element (main type specifier). */
11685 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11686 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11687 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11688 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11689 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11690 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11691 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11692 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11693 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11694 N_UTYP = 0,
11695 N_MAX_NONSPECIAL = N_F64
11696 };
11697
11698 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11699
11700 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11701 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11702 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11703 #define N_SUF_32 (N_SU_32 | N_F32)
11704 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11705 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11706
11707 /* Pass this as the first type argument to neon_check_type to ignore types
11708 altogether. */
11709 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11710
11711 /* Select a "shape" for the current instruction (describing register types or
11712 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11713 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11714 function of operand parsing, so this function doesn't need to be called.
11715 Shapes should be listed in order of decreasing length. */
11716
11717 static enum neon_shape
11718 neon_select_shape (enum neon_shape shape, ...)
11719 {
11720 va_list ap;
11721 enum neon_shape first_shape = shape;
11722
11723 /* Fix missing optional operands. FIXME: we don't know at this point how
11724 many arguments we should have, so this makes the assumption that we have
11725 > 1. This is true of all current Neon opcodes, I think, but may not be
11726 true in the future. */
11727 if (!inst.operands[1].present)
11728 inst.operands[1] = inst.operands[0];
11729
11730 va_start (ap, shape);
11731
11732 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
11733 {
11734 unsigned j;
11735 int matches = 1;
11736
11737 for (j = 0; j < neon_shape_tab[shape].els; j++)
11738 {
11739 if (!inst.operands[j].present)
11740 {
11741 matches = 0;
11742 break;
11743 }
11744
11745 switch (neon_shape_tab[shape].el[j])
11746 {
11747 case SE_F:
11748 if (!(inst.operands[j].isreg
11749 && inst.operands[j].isvec
11750 && inst.operands[j].issingle
11751 && !inst.operands[j].isquad))
11752 matches = 0;
11753 break;
11754
11755 case SE_D:
11756 if (!(inst.operands[j].isreg
11757 && inst.operands[j].isvec
11758 && !inst.operands[j].isquad
11759 && !inst.operands[j].issingle))
11760 matches = 0;
11761 break;
11762
11763 case SE_R:
11764 if (!(inst.operands[j].isreg
11765 && !inst.operands[j].isvec))
11766 matches = 0;
11767 break;
11768
11769 case SE_Q:
11770 if (!(inst.operands[j].isreg
11771 && inst.operands[j].isvec
11772 && inst.operands[j].isquad
11773 && !inst.operands[j].issingle))
11774 matches = 0;
11775 break;
11776
11777 case SE_I:
11778 if (!(!inst.operands[j].isreg
11779 && !inst.operands[j].isscalar))
11780 matches = 0;
11781 break;
11782
11783 case SE_S:
11784 if (!(!inst.operands[j].isreg
11785 && inst.operands[j].isscalar))
11786 matches = 0;
11787 break;
11788
11789 case SE_L:
11790 break;
11791 }
11792 if (!matches)
11793 break;
11794 }
11795 if (matches)
11796 break;
11797 }
11798
11799 va_end (ap);
11800
11801 if (shape == NS_NULL && first_shape != NS_NULL)
11802 first_error (_("invalid instruction shape"));
11803
11804 return shape;
11805 }
11806
11807 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11808 means the Q bit should be set). */
11809
11810 static int
11811 neon_quad (enum neon_shape shape)
11812 {
11813 return neon_shape_class[shape] == SC_QUAD;
11814 }
11815
11816 static void
11817 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11818 unsigned *g_size)
11819 {
11820 /* Allow modification to be made to types which are constrained to be
11821 based on the key element, based on bits set alongside N_EQK. */
11822 if ((typebits & N_EQK) != 0)
11823 {
11824 if ((typebits & N_HLF) != 0)
11825 *g_size /= 2;
11826 else if ((typebits & N_DBL) != 0)
11827 *g_size *= 2;
11828 if ((typebits & N_SGN) != 0)
11829 *g_type = NT_signed;
11830 else if ((typebits & N_UNS) != 0)
11831 *g_type = NT_unsigned;
11832 else if ((typebits & N_INT) != 0)
11833 *g_type = NT_integer;
11834 else if ((typebits & N_FLT) != 0)
11835 *g_type = NT_float;
11836 else if ((typebits & N_SIZ) != 0)
11837 *g_type = NT_untyped;
11838 }
11839 }
11840
11841 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11842 operand type, i.e. the single type specified in a Neon instruction when it
11843 is the only one given. */
11844
11845 static struct neon_type_el
11846 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11847 {
11848 struct neon_type_el dest = *key;
11849
11850 gas_assert ((thisarg & N_EQK) != 0);
11851
11852 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11853
11854 return dest;
11855 }
11856
11857 /* Convert Neon type and size into compact bitmask representation. */
11858
11859 static enum neon_type_mask
11860 type_chk_of_el_type (enum neon_el_type type, unsigned size)
11861 {
11862 switch (type)
11863 {
11864 case NT_untyped:
11865 switch (size)
11866 {
11867 case 8: return N_8;
11868 case 16: return N_16;
11869 case 32: return N_32;
11870 case 64: return N_64;
11871 default: ;
11872 }
11873 break;
11874
11875 case NT_integer:
11876 switch (size)
11877 {
11878 case 8: return N_I8;
11879 case 16: return N_I16;
11880 case 32: return N_I32;
11881 case 64: return N_I64;
11882 default: ;
11883 }
11884 break;
11885
11886 case NT_float:
11887 switch (size)
11888 {
11889 case 16: return N_F16;
11890 case 32: return N_F32;
11891 case 64: return N_F64;
11892 default: ;
11893 }
11894 break;
11895
11896 case NT_poly:
11897 switch (size)
11898 {
11899 case 8: return N_P8;
11900 case 16: return N_P16;
11901 default: ;
11902 }
11903 break;
11904
11905 case NT_signed:
11906 switch (size)
11907 {
11908 case 8: return N_S8;
11909 case 16: return N_S16;
11910 case 32: return N_S32;
11911 case 64: return N_S64;
11912 default: ;
11913 }
11914 break;
11915
11916 case NT_unsigned:
11917 switch (size)
11918 {
11919 case 8: return N_U8;
11920 case 16: return N_U16;
11921 case 32: return N_U32;
11922 case 64: return N_U64;
11923 default: ;
11924 }
11925 break;
11926
11927 default: ;
11928 }
11929
11930 return N_UTYP;
11931 }
11932
11933 /* Convert compact Neon bitmask type representation to a type and size. Only
11934 handles the case where a single bit is set in the mask. */
11935
11936 static int
11937 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11938 enum neon_type_mask mask)
11939 {
11940 if ((mask & N_EQK) != 0)
11941 return FAIL;
11942
11943 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11944 *size = 8;
11945 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
11946 *size = 16;
11947 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
11948 *size = 32;
11949 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
11950 *size = 64;
11951 else
11952 return FAIL;
11953
11954 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11955 *type = NT_signed;
11956 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
11957 *type = NT_unsigned;
11958 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
11959 *type = NT_integer;
11960 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
11961 *type = NT_untyped;
11962 else if ((mask & (N_P8 | N_P16)) != 0)
11963 *type = NT_poly;
11964 else if ((mask & (N_F32 | N_F64)) != 0)
11965 *type = NT_float;
11966 else
11967 return FAIL;
11968
11969 return SUCCESS;
11970 }
11971
11972 /* Modify a bitmask of allowed types. This is only needed for type
11973 relaxation. */
11974
11975 static unsigned
11976 modify_types_allowed (unsigned allowed, unsigned mods)
11977 {
11978 unsigned size;
11979 enum neon_el_type type;
11980 unsigned destmask;
11981 int i;
11982
11983 destmask = 0;
11984
11985 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11986 {
11987 if (el_type_of_type_chk (&type, &size,
11988 (enum neon_type_mask) (allowed & i)) == SUCCESS)
11989 {
11990 neon_modify_type_size (mods, &type, &size);
11991 destmask |= type_chk_of_el_type (type, size);
11992 }
11993 }
11994
11995 return destmask;
11996 }
11997
11998 /* Check type and return type classification.
11999 The manual states (paraphrase): If one datatype is given, it indicates the
12000 type given in:
12001 - the second operand, if there is one
12002 - the operand, if there is no second operand
12003 - the result, if there are no operands.
12004 This isn't quite good enough though, so we use a concept of a "key" datatype
12005 which is set on a per-instruction basis, which is the one which matters when
12006 only one data type is written.
12007 Note: this function has side-effects (e.g. filling in missing operands). All
12008 Neon instructions should call it before performing bit encoding. */
12009
12010 static struct neon_type_el
12011 neon_check_type (unsigned els, enum neon_shape ns, ...)
12012 {
12013 va_list ap;
12014 unsigned i, pass, key_el = 0;
12015 unsigned types[NEON_MAX_TYPE_ELS];
12016 enum neon_el_type k_type = NT_invtype;
12017 unsigned k_size = -1u;
12018 struct neon_type_el badtype = {NT_invtype, -1};
12019 unsigned key_allowed = 0;
12020
12021 /* Optional registers in Neon instructions are always (not) in operand 1.
12022 Fill in the missing operand here, if it was omitted. */
12023 if (els > 1 && !inst.operands[1].present)
12024 inst.operands[1] = inst.operands[0];
12025
12026 /* Suck up all the varargs. */
12027 va_start (ap, ns);
12028 for (i = 0; i < els; i++)
12029 {
12030 unsigned thisarg = va_arg (ap, unsigned);
12031 if (thisarg == N_IGNORE_TYPE)
12032 {
12033 va_end (ap);
12034 return badtype;
12035 }
12036 types[i] = thisarg;
12037 if ((thisarg & N_KEY) != 0)
12038 key_el = i;
12039 }
12040 va_end (ap);
12041
12042 if (inst.vectype.elems > 0)
12043 for (i = 0; i < els; i++)
12044 if (inst.operands[i].vectype.type != NT_invtype)
12045 {
12046 first_error (_("types specified in both the mnemonic and operands"));
12047 return badtype;
12048 }
12049
12050 /* Duplicate inst.vectype elements here as necessary.
12051 FIXME: No idea if this is exactly the same as the ARM assembler,
12052 particularly when an insn takes one register and one non-register
12053 operand. */
12054 if (inst.vectype.elems == 1 && els > 1)
12055 {
12056 unsigned j;
12057 inst.vectype.elems = els;
12058 inst.vectype.el[key_el] = inst.vectype.el[0];
12059 for (j = 0; j < els; j++)
12060 if (j != key_el)
12061 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12062 types[j]);
12063 }
12064 else if (inst.vectype.elems == 0 && els > 0)
12065 {
12066 unsigned j;
12067 /* No types were given after the mnemonic, so look for types specified
12068 after each operand. We allow some flexibility here; as long as the
12069 "key" operand has a type, we can infer the others. */
12070 for (j = 0; j < els; j++)
12071 if (inst.operands[j].vectype.type != NT_invtype)
12072 inst.vectype.el[j] = inst.operands[j].vectype;
12073
12074 if (inst.operands[key_el].vectype.type != NT_invtype)
12075 {
12076 for (j = 0; j < els; j++)
12077 if (inst.operands[j].vectype.type == NT_invtype)
12078 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12079 types[j]);
12080 }
12081 else
12082 {
12083 first_error (_("operand types can't be inferred"));
12084 return badtype;
12085 }
12086 }
12087 else if (inst.vectype.elems != els)
12088 {
12089 first_error (_("type specifier has the wrong number of parts"));
12090 return badtype;
12091 }
12092
12093 for (pass = 0; pass < 2; pass++)
12094 {
12095 for (i = 0; i < els; i++)
12096 {
12097 unsigned thisarg = types[i];
12098 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12099 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12100 enum neon_el_type g_type = inst.vectype.el[i].type;
12101 unsigned g_size = inst.vectype.el[i].size;
12102
12103 /* Decay more-specific signed & unsigned types to sign-insensitive
12104 integer types if sign-specific variants are unavailable. */
12105 if ((g_type == NT_signed || g_type == NT_unsigned)
12106 && (types_allowed & N_SU_ALL) == 0)
12107 g_type = NT_integer;
12108
12109 /* If only untyped args are allowed, decay any more specific types to
12110 them. Some instructions only care about signs for some element
12111 sizes, so handle that properly. */
12112 if ((g_size == 8 && (types_allowed & N_8) != 0)
12113 || (g_size == 16 && (types_allowed & N_16) != 0)
12114 || (g_size == 32 && (types_allowed & N_32) != 0)
12115 || (g_size == 64 && (types_allowed & N_64) != 0))
12116 g_type = NT_untyped;
12117
12118 if (pass == 0)
12119 {
12120 if ((thisarg & N_KEY) != 0)
12121 {
12122 k_type = g_type;
12123 k_size = g_size;
12124 key_allowed = thisarg & ~N_KEY;
12125 }
12126 }
12127 else
12128 {
12129 if ((thisarg & N_VFP) != 0)
12130 {
12131 enum neon_shape_el regshape;
12132 unsigned regwidth, match;
12133
12134 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12135 if (ns == NS_NULL)
12136 {
12137 first_error (_("invalid instruction shape"));
12138 return badtype;
12139 }
12140 regshape = neon_shape_tab[ns].el[i];
12141 regwidth = neon_shape_el_size[regshape];
12142
12143 /* In VFP mode, operands must match register widths. If we
12144 have a key operand, use its width, else use the width of
12145 the current operand. */
12146 if (k_size != -1u)
12147 match = k_size;
12148 else
12149 match = g_size;
12150
12151 if (regwidth != match)
12152 {
12153 first_error (_("operand size must match register width"));
12154 return badtype;
12155 }
12156 }
12157
12158 if ((thisarg & N_EQK) == 0)
12159 {
12160 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12161
12162 if ((given_type & types_allowed) == 0)
12163 {
12164 first_error (_("bad type in Neon instruction"));
12165 return badtype;
12166 }
12167 }
12168 else
12169 {
12170 enum neon_el_type mod_k_type = k_type;
12171 unsigned mod_k_size = k_size;
12172 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12173 if (g_type != mod_k_type || g_size != mod_k_size)
12174 {
12175 first_error (_("inconsistent types in Neon instruction"));
12176 return badtype;
12177 }
12178 }
12179 }
12180 }
12181 }
12182
12183 return inst.vectype.el[key_el];
12184 }
12185
12186 /* Neon-style VFP instruction forwarding. */
12187
12188 /* Thumb VFP instructions have 0xE in the condition field. */
12189
12190 static void
12191 do_vfp_cond_or_thumb (void)
12192 {
12193 inst.is_neon = 1;
12194
12195 if (thumb_mode)
12196 inst.instruction |= 0xe0000000;
12197 else
12198 inst.instruction |= inst.cond << 28;
12199 }
12200
12201 /* Look up and encode a simple mnemonic, for use as a helper function for the
12202 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12203 etc. It is assumed that operand parsing has already been done, and that the
12204 operands are in the form expected by the given opcode (this isn't necessarily
12205 the same as the form in which they were parsed, hence some massaging must
12206 take place before this function is called).
12207 Checks current arch version against that in the looked-up opcode. */
12208
12209 static void
12210 do_vfp_nsyn_opcode (const char *opname)
12211 {
12212 const struct asm_opcode *opcode;
12213
12214 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12215
12216 if (!opcode)
12217 abort ();
12218
12219 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12220 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12221 _(BAD_FPU));
12222
12223 inst.is_neon = 1;
12224
12225 if (thumb_mode)
12226 {
12227 inst.instruction = opcode->tvalue;
12228 opcode->tencode ();
12229 }
12230 else
12231 {
12232 inst.instruction = (inst.cond << 28) | opcode->avalue;
12233 opcode->aencode ();
12234 }
12235 }
12236
12237 static void
12238 do_vfp_nsyn_add_sub (enum neon_shape rs)
12239 {
12240 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12241
12242 if (rs == NS_FFF)
12243 {
12244 if (is_add)
12245 do_vfp_nsyn_opcode ("fadds");
12246 else
12247 do_vfp_nsyn_opcode ("fsubs");
12248 }
12249 else
12250 {
12251 if (is_add)
12252 do_vfp_nsyn_opcode ("faddd");
12253 else
12254 do_vfp_nsyn_opcode ("fsubd");
12255 }
12256 }
12257
12258 /* Check operand types to see if this is a VFP instruction, and if so call
12259 PFN (). */
12260
12261 static int
12262 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12263 {
12264 enum neon_shape rs;
12265 struct neon_type_el et;
12266
12267 switch (args)
12268 {
12269 case 2:
12270 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12271 et = neon_check_type (2, rs,
12272 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12273 break;
12274
12275 case 3:
12276 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12277 et = neon_check_type (3, rs,
12278 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12279 break;
12280
12281 default:
12282 abort ();
12283 }
12284
12285 if (et.type != NT_invtype)
12286 {
12287 pfn (rs);
12288 return SUCCESS;
12289 }
12290
12291 inst.error = NULL;
12292 return FAIL;
12293 }
12294
12295 static void
12296 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12297 {
12298 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12299
12300 if (rs == NS_FFF)
12301 {
12302 if (is_mla)
12303 do_vfp_nsyn_opcode ("fmacs");
12304 else
12305 do_vfp_nsyn_opcode ("fnmacs");
12306 }
12307 else
12308 {
12309 if (is_mla)
12310 do_vfp_nsyn_opcode ("fmacd");
12311 else
12312 do_vfp_nsyn_opcode ("fnmacd");
12313 }
12314 }
12315
12316 static void
12317 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12318 {
12319 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12320
12321 if (rs == NS_FFF)
12322 {
12323 if (is_fma)
12324 do_vfp_nsyn_opcode ("ffmas");
12325 else
12326 do_vfp_nsyn_opcode ("ffnmas");
12327 }
12328 else
12329 {
12330 if (is_fma)
12331 do_vfp_nsyn_opcode ("ffmad");
12332 else
12333 do_vfp_nsyn_opcode ("ffnmad");
12334 }
12335 }
12336
12337 static void
12338 do_vfp_nsyn_mul (enum neon_shape rs)
12339 {
12340 if (rs == NS_FFF)
12341 do_vfp_nsyn_opcode ("fmuls");
12342 else
12343 do_vfp_nsyn_opcode ("fmuld");
12344 }
12345
12346 static void
12347 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12348 {
12349 int is_neg = (inst.instruction & 0x80) != 0;
12350 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12351
12352 if (rs == NS_FF)
12353 {
12354 if (is_neg)
12355 do_vfp_nsyn_opcode ("fnegs");
12356 else
12357 do_vfp_nsyn_opcode ("fabss");
12358 }
12359 else
12360 {
12361 if (is_neg)
12362 do_vfp_nsyn_opcode ("fnegd");
12363 else
12364 do_vfp_nsyn_opcode ("fabsd");
12365 }
12366 }
12367
12368 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12369 insns belong to Neon, and are handled elsewhere. */
12370
12371 static void
12372 do_vfp_nsyn_ldm_stm (int is_dbmode)
12373 {
12374 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12375 if (is_ldm)
12376 {
12377 if (is_dbmode)
12378 do_vfp_nsyn_opcode ("fldmdbs");
12379 else
12380 do_vfp_nsyn_opcode ("fldmias");
12381 }
12382 else
12383 {
12384 if (is_dbmode)
12385 do_vfp_nsyn_opcode ("fstmdbs");
12386 else
12387 do_vfp_nsyn_opcode ("fstmias");
12388 }
12389 }
12390
12391 static void
12392 do_vfp_nsyn_sqrt (void)
12393 {
12394 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12395 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12396
12397 if (rs == NS_FF)
12398 do_vfp_nsyn_opcode ("fsqrts");
12399 else
12400 do_vfp_nsyn_opcode ("fsqrtd");
12401 }
12402
12403 static void
12404 do_vfp_nsyn_div (void)
12405 {
12406 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12407 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12408 N_F32 | N_F64 | N_KEY | N_VFP);
12409
12410 if (rs == NS_FFF)
12411 do_vfp_nsyn_opcode ("fdivs");
12412 else
12413 do_vfp_nsyn_opcode ("fdivd");
12414 }
12415
12416 static void
12417 do_vfp_nsyn_nmul (void)
12418 {
12419 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12420 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12421 N_F32 | N_F64 | N_KEY | N_VFP);
12422
12423 if (rs == NS_FFF)
12424 {
12425 NEON_ENCODE (SINGLE, inst);
12426 do_vfp_sp_dyadic ();
12427 }
12428 else
12429 {
12430 NEON_ENCODE (DOUBLE, inst);
12431 do_vfp_dp_rd_rn_rm ();
12432 }
12433 do_vfp_cond_or_thumb ();
12434 }
12435
12436 static void
12437 do_vfp_nsyn_cmp (void)
12438 {
12439 if (inst.operands[1].isreg)
12440 {
12441 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12442 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12443
12444 if (rs == NS_FF)
12445 {
12446 NEON_ENCODE (SINGLE, inst);
12447 do_vfp_sp_monadic ();
12448 }
12449 else
12450 {
12451 NEON_ENCODE (DOUBLE, inst);
12452 do_vfp_dp_rd_rm ();
12453 }
12454 }
12455 else
12456 {
12457 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12458 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12459
12460 switch (inst.instruction & 0x0fffffff)
12461 {
12462 case N_MNEM_vcmp:
12463 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12464 break;
12465 case N_MNEM_vcmpe:
12466 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12467 break;
12468 default:
12469 abort ();
12470 }
12471
12472 if (rs == NS_FI)
12473 {
12474 NEON_ENCODE (SINGLE, inst);
12475 do_vfp_sp_compare_z ();
12476 }
12477 else
12478 {
12479 NEON_ENCODE (DOUBLE, inst);
12480 do_vfp_dp_rd ();
12481 }
12482 }
12483 do_vfp_cond_or_thumb ();
12484 }
12485
12486 static void
12487 nsyn_insert_sp (void)
12488 {
12489 inst.operands[1] = inst.operands[0];
12490 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12491 inst.operands[0].reg = REG_SP;
12492 inst.operands[0].isreg = 1;
12493 inst.operands[0].writeback = 1;
12494 inst.operands[0].present = 1;
12495 }
12496
12497 static void
12498 do_vfp_nsyn_push (void)
12499 {
12500 nsyn_insert_sp ();
12501 if (inst.operands[1].issingle)
12502 do_vfp_nsyn_opcode ("fstmdbs");
12503 else
12504 do_vfp_nsyn_opcode ("fstmdbd");
12505 }
12506
12507 static void
12508 do_vfp_nsyn_pop (void)
12509 {
12510 nsyn_insert_sp ();
12511 if (inst.operands[1].issingle)
12512 do_vfp_nsyn_opcode ("fldmias");
12513 else
12514 do_vfp_nsyn_opcode ("fldmiad");
12515 }
12516
12517 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12518 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12519
12520 static void
12521 neon_dp_fixup (struct arm_it* insn)
12522 {
12523 unsigned int i = insn->instruction;
12524 insn->is_neon = 1;
12525
12526 if (thumb_mode)
12527 {
12528 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12529 if (i & (1 << 24))
12530 i |= 1 << 28;
12531
12532 i &= ~(1 << 24);
12533
12534 i |= 0xef000000;
12535 }
12536 else
12537 i |= 0xf2000000;
12538
12539 insn->instruction = i;
12540 }
12541
12542 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12543 (0, 1, 2, 3). */
12544
12545 static unsigned
12546 neon_logbits (unsigned x)
12547 {
12548 return ffs (x) - 4;
12549 }
12550
12551 #define LOW4(R) ((R) & 0xf)
12552 #define HI1(R) (((R) >> 4) & 1)
12553
12554 /* Encode insns with bit pattern:
12555
12556 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12557 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12558
12559 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12560 different meaning for some instruction. */
12561
12562 static void
12563 neon_three_same (int isquad, int ubit, int size)
12564 {
12565 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12566 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12567 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12568 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12569 inst.instruction |= LOW4 (inst.operands[2].reg);
12570 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12571 inst.instruction |= (isquad != 0) << 6;
12572 inst.instruction |= (ubit != 0) << 24;
12573 if (size != -1)
12574 inst.instruction |= neon_logbits (size) << 20;
12575
12576 neon_dp_fixup (&inst);
12577 }
12578
12579 /* Encode instructions of the form:
12580
12581 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12582 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12583
12584 Don't write size if SIZE == -1. */
12585
12586 static void
12587 neon_two_same (int qbit, int ubit, int size)
12588 {
12589 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12590 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12591 inst.instruction |= LOW4 (inst.operands[1].reg);
12592 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12593 inst.instruction |= (qbit != 0) << 6;
12594 inst.instruction |= (ubit != 0) << 24;
12595
12596 if (size != -1)
12597 inst.instruction |= neon_logbits (size) << 18;
12598
12599 neon_dp_fixup (&inst);
12600 }
12601
12602 /* Neon instruction encoders, in approximate order of appearance. */
12603
12604 static void
12605 do_neon_dyadic_i_su (void)
12606 {
12607 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12608 struct neon_type_el et = neon_check_type (3, rs,
12609 N_EQK, N_EQK, N_SU_32 | N_KEY);
12610 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12611 }
12612
12613 static void
12614 do_neon_dyadic_i64_su (void)
12615 {
12616 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12617 struct neon_type_el et = neon_check_type (3, rs,
12618 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12619 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12620 }
12621
12622 static void
12623 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12624 unsigned immbits)
12625 {
12626 unsigned size = et.size >> 3;
12627 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12628 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12629 inst.instruction |= LOW4 (inst.operands[1].reg);
12630 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12631 inst.instruction |= (isquad != 0) << 6;
12632 inst.instruction |= immbits << 16;
12633 inst.instruction |= (size >> 3) << 7;
12634 inst.instruction |= (size & 0x7) << 19;
12635 if (write_ubit)
12636 inst.instruction |= (uval != 0) << 24;
12637
12638 neon_dp_fixup (&inst);
12639 }
12640
12641 static void
12642 do_neon_shl_imm (void)
12643 {
12644 if (!inst.operands[2].isreg)
12645 {
12646 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12647 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12648 NEON_ENCODE (IMMED, inst);
12649 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12650 }
12651 else
12652 {
12653 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12654 struct neon_type_el et = neon_check_type (3, rs,
12655 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12656 unsigned int tmp;
12657
12658 /* VSHL/VQSHL 3-register variants have syntax such as:
12659 vshl.xx Dd, Dm, Dn
12660 whereas other 3-register operations encoded by neon_three_same have
12661 syntax like:
12662 vadd.xx Dd, Dn, Dm
12663 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12664 here. */
12665 tmp = inst.operands[2].reg;
12666 inst.operands[2].reg = inst.operands[1].reg;
12667 inst.operands[1].reg = tmp;
12668 NEON_ENCODE (INTEGER, inst);
12669 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12670 }
12671 }
12672
12673 static void
12674 do_neon_qshl_imm (void)
12675 {
12676 if (!inst.operands[2].isreg)
12677 {
12678 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12679 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12680
12681 NEON_ENCODE (IMMED, inst);
12682 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12683 inst.operands[2].imm);
12684 }
12685 else
12686 {
12687 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12688 struct neon_type_el et = neon_check_type (3, rs,
12689 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12690 unsigned int tmp;
12691
12692 /* See note in do_neon_shl_imm. */
12693 tmp = inst.operands[2].reg;
12694 inst.operands[2].reg = inst.operands[1].reg;
12695 inst.operands[1].reg = tmp;
12696 NEON_ENCODE (INTEGER, inst);
12697 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12698 }
12699 }
12700
12701 static void
12702 do_neon_rshl (void)
12703 {
12704 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12705 struct neon_type_el et = neon_check_type (3, rs,
12706 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12707 unsigned int tmp;
12708
12709 tmp = inst.operands[2].reg;
12710 inst.operands[2].reg = inst.operands[1].reg;
12711 inst.operands[1].reg = tmp;
12712 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12713 }
12714
12715 static int
12716 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12717 {
12718 /* Handle .I8 pseudo-instructions. */
12719 if (size == 8)
12720 {
12721 /* Unfortunately, this will make everything apart from zero out-of-range.
12722 FIXME is this the intended semantics? There doesn't seem much point in
12723 accepting .I8 if so. */
12724 immediate |= immediate << 8;
12725 size = 16;
12726 }
12727
12728 if (size >= 32)
12729 {
12730 if (immediate == (immediate & 0x000000ff))
12731 {
12732 *immbits = immediate;
12733 return 0x1;
12734 }
12735 else if (immediate == (immediate & 0x0000ff00))
12736 {
12737 *immbits = immediate >> 8;
12738 return 0x3;
12739 }
12740 else if (immediate == (immediate & 0x00ff0000))
12741 {
12742 *immbits = immediate >> 16;
12743 return 0x5;
12744 }
12745 else if (immediate == (immediate & 0xff000000))
12746 {
12747 *immbits = immediate >> 24;
12748 return 0x7;
12749 }
12750 if ((immediate & 0xffff) != (immediate >> 16))
12751 goto bad_immediate;
12752 immediate &= 0xffff;
12753 }
12754
12755 if (immediate == (immediate & 0x000000ff))
12756 {
12757 *immbits = immediate;
12758 return 0x9;
12759 }
12760 else if (immediate == (immediate & 0x0000ff00))
12761 {
12762 *immbits = immediate >> 8;
12763 return 0xb;
12764 }
12765
12766 bad_immediate:
12767 first_error (_("immediate value out of range"));
12768 return FAIL;
12769 }
12770
12771 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12772 A, B, C, D. */
12773
12774 static int
12775 neon_bits_same_in_bytes (unsigned imm)
12776 {
12777 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12778 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12779 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12780 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12781 }
12782
12783 /* For immediate of above form, return 0bABCD. */
12784
12785 static unsigned
12786 neon_squash_bits (unsigned imm)
12787 {
12788 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12789 | ((imm & 0x01000000) >> 21);
12790 }
12791
12792 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12793
12794 static unsigned
12795 neon_qfloat_bits (unsigned imm)
12796 {
12797 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12798 }
12799
12800 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12801 the instruction. *OP is passed as the initial value of the op field, and
12802 may be set to a different value depending on the constant (i.e.
12803 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12804 MVN). If the immediate looks like a repeated pattern then also
12805 try smaller element sizes. */
12806
12807 static int
12808 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12809 unsigned *immbits, int *op, int size,
12810 enum neon_el_type type)
12811 {
12812 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12813 float. */
12814 if (type == NT_float && !float_p)
12815 return FAIL;
12816
12817 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12818 {
12819 if (size != 32 || *op == 1)
12820 return FAIL;
12821 *immbits = neon_qfloat_bits (immlo);
12822 return 0xf;
12823 }
12824
12825 if (size == 64)
12826 {
12827 if (neon_bits_same_in_bytes (immhi)
12828 && neon_bits_same_in_bytes (immlo))
12829 {
12830 if (*op == 1)
12831 return FAIL;
12832 *immbits = (neon_squash_bits (immhi) << 4)
12833 | neon_squash_bits (immlo);
12834 *op = 1;
12835 return 0xe;
12836 }
12837
12838 if (immhi != immlo)
12839 return FAIL;
12840 }
12841
12842 if (size >= 32)
12843 {
12844 if (immlo == (immlo & 0x000000ff))
12845 {
12846 *immbits = immlo;
12847 return 0x0;
12848 }
12849 else if (immlo == (immlo & 0x0000ff00))
12850 {
12851 *immbits = immlo >> 8;
12852 return 0x2;
12853 }
12854 else if (immlo == (immlo & 0x00ff0000))
12855 {
12856 *immbits = immlo >> 16;
12857 return 0x4;
12858 }
12859 else if (immlo == (immlo & 0xff000000))
12860 {
12861 *immbits = immlo >> 24;
12862 return 0x6;
12863 }
12864 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12865 {
12866 *immbits = (immlo >> 8) & 0xff;
12867 return 0xc;
12868 }
12869 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12870 {
12871 *immbits = (immlo >> 16) & 0xff;
12872 return 0xd;
12873 }
12874
12875 if ((immlo & 0xffff) != (immlo >> 16))
12876 return FAIL;
12877 immlo &= 0xffff;
12878 }
12879
12880 if (size >= 16)
12881 {
12882 if (immlo == (immlo & 0x000000ff))
12883 {
12884 *immbits = immlo;
12885 return 0x8;
12886 }
12887 else if (immlo == (immlo & 0x0000ff00))
12888 {
12889 *immbits = immlo >> 8;
12890 return 0xa;
12891 }
12892
12893 if ((immlo & 0xff) != (immlo >> 8))
12894 return FAIL;
12895 immlo &= 0xff;
12896 }
12897
12898 if (immlo == (immlo & 0x000000ff))
12899 {
12900 /* Don't allow MVN with 8-bit immediate. */
12901 if (*op == 1)
12902 return FAIL;
12903 *immbits = immlo;
12904 return 0xe;
12905 }
12906
12907 return FAIL;
12908 }
12909
12910 /* Write immediate bits [7:0] to the following locations:
12911
12912 |28/24|23 19|18 16|15 4|3 0|
12913 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12914
12915 This function is used by VMOV/VMVN/VORR/VBIC. */
12916
12917 static void
12918 neon_write_immbits (unsigned immbits)
12919 {
12920 inst.instruction |= immbits & 0xf;
12921 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12922 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12923 }
12924
12925 /* Invert low-order SIZE bits of XHI:XLO. */
12926
12927 static void
12928 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12929 {
12930 unsigned immlo = xlo ? *xlo : 0;
12931 unsigned immhi = xhi ? *xhi : 0;
12932
12933 switch (size)
12934 {
12935 case 8:
12936 immlo = (~immlo) & 0xff;
12937 break;
12938
12939 case 16:
12940 immlo = (~immlo) & 0xffff;
12941 break;
12942
12943 case 64:
12944 immhi = (~immhi) & 0xffffffff;
12945 /* fall through. */
12946
12947 case 32:
12948 immlo = (~immlo) & 0xffffffff;
12949 break;
12950
12951 default:
12952 abort ();
12953 }
12954
12955 if (xlo)
12956 *xlo = immlo;
12957
12958 if (xhi)
12959 *xhi = immhi;
12960 }
12961
12962 static void
12963 do_neon_logic (void)
12964 {
12965 if (inst.operands[2].present && inst.operands[2].isreg)
12966 {
12967 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12968 neon_check_type (3, rs, N_IGNORE_TYPE);
12969 /* U bit and size field were set as part of the bitmask. */
12970 NEON_ENCODE (INTEGER, inst);
12971 neon_three_same (neon_quad (rs), 0, -1);
12972 }
12973 else
12974 {
12975 const int three_ops_form = (inst.operands[2].present
12976 && !inst.operands[2].isreg);
12977 const int immoperand = (three_ops_form ? 2 : 1);
12978 enum neon_shape rs = (three_ops_form
12979 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
12980 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
12981 struct neon_type_el et = neon_check_type (2, rs,
12982 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12983 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
12984 unsigned immbits;
12985 int cmode;
12986
12987 if (et.type == NT_invtype)
12988 return;
12989
12990 if (three_ops_form)
12991 constraint (inst.operands[0].reg != inst.operands[1].reg,
12992 _("first and second operands shall be the same register"));
12993
12994 NEON_ENCODE (IMMED, inst);
12995
12996 immbits = inst.operands[immoperand].imm;
12997 if (et.size == 64)
12998 {
12999 /* .i64 is a pseudo-op, so the immediate must be a repeating
13000 pattern. */
13001 if (immbits != (inst.operands[immoperand].regisimm ?
13002 inst.operands[immoperand].reg : 0))
13003 {
13004 /* Set immbits to an invalid constant. */
13005 immbits = 0xdeadbeef;
13006 }
13007 }
13008
13009 switch (opcode)
13010 {
13011 case N_MNEM_vbic:
13012 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13013 break;
13014
13015 case N_MNEM_vorr:
13016 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13017 break;
13018
13019 case N_MNEM_vand:
13020 /* Pseudo-instruction for VBIC. */
13021 neon_invert_size (&immbits, 0, et.size);
13022 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13023 break;
13024
13025 case N_MNEM_vorn:
13026 /* Pseudo-instruction for VORR. */
13027 neon_invert_size (&immbits, 0, et.size);
13028 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13029 break;
13030
13031 default:
13032 abort ();
13033 }
13034
13035 if (cmode == FAIL)
13036 return;
13037
13038 inst.instruction |= neon_quad (rs) << 6;
13039 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13040 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13041 inst.instruction |= cmode << 8;
13042 neon_write_immbits (immbits);
13043
13044 neon_dp_fixup (&inst);
13045 }
13046 }
13047
13048 static void
13049 do_neon_bitfield (void)
13050 {
13051 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13052 neon_check_type (3, rs, N_IGNORE_TYPE);
13053 neon_three_same (neon_quad (rs), 0, -1);
13054 }
13055
13056 static void
13057 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13058 unsigned destbits)
13059 {
13060 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13061 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13062 types | N_KEY);
13063 if (et.type == NT_float)
13064 {
13065 NEON_ENCODE (FLOAT, inst);
13066 neon_three_same (neon_quad (rs), 0, -1);
13067 }
13068 else
13069 {
13070 NEON_ENCODE (INTEGER, inst);
13071 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13072 }
13073 }
13074
13075 static void
13076 do_neon_dyadic_if_su (void)
13077 {
13078 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13079 }
13080
13081 static void
13082 do_neon_dyadic_if_su_d (void)
13083 {
13084 /* This version only allow D registers, but that constraint is enforced during
13085 operand parsing so we don't need to do anything extra here. */
13086 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13087 }
13088
13089 static void
13090 do_neon_dyadic_if_i_d (void)
13091 {
13092 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13093 affected if we specify unsigned args. */
13094 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13095 }
13096
13097 enum vfp_or_neon_is_neon_bits
13098 {
13099 NEON_CHECK_CC = 1,
13100 NEON_CHECK_ARCH = 2
13101 };
13102
13103 /* Call this function if an instruction which may have belonged to the VFP or
13104 Neon instruction sets, but turned out to be a Neon instruction (due to the
13105 operand types involved, etc.). We have to check and/or fix-up a couple of
13106 things:
13107
13108 - Make sure the user hasn't attempted to make a Neon instruction
13109 conditional.
13110 - Alter the value in the condition code field if necessary.
13111 - Make sure that the arch supports Neon instructions.
13112
13113 Which of these operations take place depends on bits from enum
13114 vfp_or_neon_is_neon_bits.
13115
13116 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13117 current instruction's condition is COND_ALWAYS, the condition field is
13118 changed to inst.uncond_value. This is necessary because instructions shared
13119 between VFP and Neon may be conditional for the VFP variants only, and the
13120 unconditional Neon version must have, e.g., 0xF in the condition field. */
13121
13122 static int
13123 vfp_or_neon_is_neon (unsigned check)
13124 {
13125 /* Conditions are always legal in Thumb mode (IT blocks). */
13126 if (!thumb_mode && (check & NEON_CHECK_CC))
13127 {
13128 if (inst.cond != COND_ALWAYS)
13129 {
13130 first_error (_(BAD_COND));
13131 return FAIL;
13132 }
13133 if (inst.uncond_value != -1)
13134 inst.instruction |= inst.uncond_value << 28;
13135 }
13136
13137 if ((check & NEON_CHECK_ARCH)
13138 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13139 {
13140 first_error (_(BAD_FPU));
13141 return FAIL;
13142 }
13143
13144 return SUCCESS;
13145 }
13146
13147 static void
13148 do_neon_addsub_if_i (void)
13149 {
13150 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13151 return;
13152
13153 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13154 return;
13155
13156 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13157 affected if we specify unsigned args. */
13158 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13159 }
13160
13161 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13162 result to be:
13163 V<op> A,B (A is operand 0, B is operand 2)
13164 to mean:
13165 V<op> A,B,A
13166 not:
13167 V<op> A,B,B
13168 so handle that case specially. */
13169
13170 static void
13171 neon_exchange_operands (void)
13172 {
13173 void *scratch = alloca (sizeof (inst.operands[0]));
13174 if (inst.operands[1].present)
13175 {
13176 /* Swap operands[1] and operands[2]. */
13177 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13178 inst.operands[1] = inst.operands[2];
13179 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13180 }
13181 else
13182 {
13183 inst.operands[1] = inst.operands[2];
13184 inst.operands[2] = inst.operands[0];
13185 }
13186 }
13187
13188 static void
13189 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13190 {
13191 if (inst.operands[2].isreg)
13192 {
13193 if (invert)
13194 neon_exchange_operands ();
13195 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13196 }
13197 else
13198 {
13199 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13200 struct neon_type_el et = neon_check_type (2, rs,
13201 N_EQK | N_SIZ, immtypes | N_KEY);
13202
13203 NEON_ENCODE (IMMED, inst);
13204 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13205 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13206 inst.instruction |= LOW4 (inst.operands[1].reg);
13207 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13208 inst.instruction |= neon_quad (rs) << 6;
13209 inst.instruction |= (et.type == NT_float) << 10;
13210 inst.instruction |= neon_logbits (et.size) << 18;
13211
13212 neon_dp_fixup (&inst);
13213 }
13214 }
13215
13216 static void
13217 do_neon_cmp (void)
13218 {
13219 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13220 }
13221
13222 static void
13223 do_neon_cmp_inv (void)
13224 {
13225 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13226 }
13227
13228 static void
13229 do_neon_ceq (void)
13230 {
13231 neon_compare (N_IF_32, N_IF_32, FALSE);
13232 }
13233
13234 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13235 scalars, which are encoded in 5 bits, M : Rm.
13236 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13237 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13238 index in M. */
13239
13240 static unsigned
13241 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13242 {
13243 unsigned regno = NEON_SCALAR_REG (scalar);
13244 unsigned elno = NEON_SCALAR_INDEX (scalar);
13245
13246 switch (elsize)
13247 {
13248 case 16:
13249 if (regno > 7 || elno > 3)
13250 goto bad_scalar;
13251 return regno | (elno << 3);
13252
13253 case 32:
13254 if (regno > 15 || elno > 1)
13255 goto bad_scalar;
13256 return regno | (elno << 4);
13257
13258 default:
13259 bad_scalar:
13260 first_error (_("scalar out of range for multiply instruction"));
13261 }
13262
13263 return 0;
13264 }
13265
13266 /* Encode multiply / multiply-accumulate scalar instructions. */
13267
13268 static void
13269 neon_mul_mac (struct neon_type_el et, int ubit)
13270 {
13271 unsigned scalar;
13272
13273 /* Give a more helpful error message if we have an invalid type. */
13274 if (et.type == NT_invtype)
13275 return;
13276
13277 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13278 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13279 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13280 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13281 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13282 inst.instruction |= LOW4 (scalar);
13283 inst.instruction |= HI1 (scalar) << 5;
13284 inst.instruction |= (et.type == NT_float) << 8;
13285 inst.instruction |= neon_logbits (et.size) << 20;
13286 inst.instruction |= (ubit != 0) << 24;
13287
13288 neon_dp_fixup (&inst);
13289 }
13290
13291 static void
13292 do_neon_mac_maybe_scalar (void)
13293 {
13294 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13295 return;
13296
13297 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13298 return;
13299
13300 if (inst.operands[2].isscalar)
13301 {
13302 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13303 struct neon_type_el et = neon_check_type (3, rs,
13304 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13305 NEON_ENCODE (SCALAR, inst);
13306 neon_mul_mac (et, neon_quad (rs));
13307 }
13308 else
13309 {
13310 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13311 affected if we specify unsigned args. */
13312 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13313 }
13314 }
13315
13316 static void
13317 do_neon_fmac (void)
13318 {
13319 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13320 return;
13321
13322 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13323 return;
13324
13325 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13326 }
13327
13328 static void
13329 do_neon_tst (void)
13330 {
13331 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13332 struct neon_type_el et = neon_check_type (3, rs,
13333 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13334 neon_three_same (neon_quad (rs), 0, et.size);
13335 }
13336
13337 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13338 same types as the MAC equivalents. The polynomial type for this instruction
13339 is encoded the same as the integer type. */
13340
13341 static void
13342 do_neon_mul (void)
13343 {
13344 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13345 return;
13346
13347 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13348 return;
13349
13350 if (inst.operands[2].isscalar)
13351 do_neon_mac_maybe_scalar ();
13352 else
13353 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13354 }
13355
13356 static void
13357 do_neon_qdmulh (void)
13358 {
13359 if (inst.operands[2].isscalar)
13360 {
13361 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13362 struct neon_type_el et = neon_check_type (3, rs,
13363 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13364 NEON_ENCODE (SCALAR, inst);
13365 neon_mul_mac (et, neon_quad (rs));
13366 }
13367 else
13368 {
13369 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13370 struct neon_type_el et = neon_check_type (3, rs,
13371 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13372 NEON_ENCODE (INTEGER, inst);
13373 /* The U bit (rounding) comes from bit mask. */
13374 neon_three_same (neon_quad (rs), 0, et.size);
13375 }
13376 }
13377
13378 static void
13379 do_neon_fcmp_absolute (void)
13380 {
13381 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13382 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13383 /* Size field comes from bit mask. */
13384 neon_three_same (neon_quad (rs), 1, -1);
13385 }
13386
13387 static void
13388 do_neon_fcmp_absolute_inv (void)
13389 {
13390 neon_exchange_operands ();
13391 do_neon_fcmp_absolute ();
13392 }
13393
13394 static void
13395 do_neon_step (void)
13396 {
13397 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13398 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13399 neon_three_same (neon_quad (rs), 0, -1);
13400 }
13401
13402 static void
13403 do_neon_abs_neg (void)
13404 {
13405 enum neon_shape rs;
13406 struct neon_type_el et;
13407
13408 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13409 return;
13410
13411 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13412 return;
13413
13414 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13415 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13416
13417 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13418 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13419 inst.instruction |= LOW4 (inst.operands[1].reg);
13420 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13421 inst.instruction |= neon_quad (rs) << 6;
13422 inst.instruction |= (et.type == NT_float) << 10;
13423 inst.instruction |= neon_logbits (et.size) << 18;
13424
13425 neon_dp_fixup (&inst);
13426 }
13427
13428 static void
13429 do_neon_sli (void)
13430 {
13431 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13432 struct neon_type_el et = neon_check_type (2, rs,
13433 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13434 int imm = inst.operands[2].imm;
13435 constraint (imm < 0 || (unsigned)imm >= et.size,
13436 _("immediate out of range for insert"));
13437 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13438 }
13439
13440 static void
13441 do_neon_sri (void)
13442 {
13443 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13444 struct neon_type_el et = neon_check_type (2, rs,
13445 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13446 int imm = inst.operands[2].imm;
13447 constraint (imm < 1 || (unsigned)imm > et.size,
13448 _("immediate out of range for insert"));
13449 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13450 }
13451
13452 static void
13453 do_neon_qshlu_imm (void)
13454 {
13455 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13456 struct neon_type_el et = neon_check_type (2, rs,
13457 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13458 int imm = inst.operands[2].imm;
13459 constraint (imm < 0 || (unsigned)imm >= et.size,
13460 _("immediate out of range for shift"));
13461 /* Only encodes the 'U present' variant of the instruction.
13462 In this case, signed types have OP (bit 8) set to 0.
13463 Unsigned types have OP set to 1. */
13464 inst.instruction |= (et.type == NT_unsigned) << 8;
13465 /* The rest of the bits are the same as other immediate shifts. */
13466 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13467 }
13468
13469 static void
13470 do_neon_qmovn (void)
13471 {
13472 struct neon_type_el et = neon_check_type (2, NS_DQ,
13473 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13474 /* Saturating move where operands can be signed or unsigned, and the
13475 destination has the same signedness. */
13476 NEON_ENCODE (INTEGER, inst);
13477 if (et.type == NT_unsigned)
13478 inst.instruction |= 0xc0;
13479 else
13480 inst.instruction |= 0x80;
13481 neon_two_same (0, 1, et.size / 2);
13482 }
13483
13484 static void
13485 do_neon_qmovun (void)
13486 {
13487 struct neon_type_el et = neon_check_type (2, NS_DQ,
13488 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13489 /* Saturating move with unsigned results. Operands must be signed. */
13490 NEON_ENCODE (INTEGER, inst);
13491 neon_two_same (0, 1, et.size / 2);
13492 }
13493
13494 static void
13495 do_neon_rshift_sat_narrow (void)
13496 {
13497 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13498 or unsigned. If operands are unsigned, results must also be unsigned. */
13499 struct neon_type_el et = neon_check_type (2, NS_DQI,
13500 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13501 int imm = inst.operands[2].imm;
13502 /* This gets the bounds check, size encoding and immediate bits calculation
13503 right. */
13504 et.size /= 2;
13505
13506 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13507 VQMOVN.I<size> <Dd>, <Qm>. */
13508 if (imm == 0)
13509 {
13510 inst.operands[2].present = 0;
13511 inst.instruction = N_MNEM_vqmovn;
13512 do_neon_qmovn ();
13513 return;
13514 }
13515
13516 constraint (imm < 1 || (unsigned)imm > et.size,
13517 _("immediate out of range"));
13518 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13519 }
13520
13521 static void
13522 do_neon_rshift_sat_narrow_u (void)
13523 {
13524 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13525 or unsigned. If operands are unsigned, results must also be unsigned. */
13526 struct neon_type_el et = neon_check_type (2, NS_DQI,
13527 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13528 int imm = inst.operands[2].imm;
13529 /* This gets the bounds check, size encoding and immediate bits calculation
13530 right. */
13531 et.size /= 2;
13532
13533 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13534 VQMOVUN.I<size> <Dd>, <Qm>. */
13535 if (imm == 0)
13536 {
13537 inst.operands[2].present = 0;
13538 inst.instruction = N_MNEM_vqmovun;
13539 do_neon_qmovun ();
13540 return;
13541 }
13542
13543 constraint (imm < 1 || (unsigned)imm > et.size,
13544 _("immediate out of range"));
13545 /* FIXME: The manual is kind of unclear about what value U should have in
13546 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13547 must be 1. */
13548 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13549 }
13550
13551 static void
13552 do_neon_movn (void)
13553 {
13554 struct neon_type_el et = neon_check_type (2, NS_DQ,
13555 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13556 NEON_ENCODE (INTEGER, inst);
13557 neon_two_same (0, 1, et.size / 2);
13558 }
13559
13560 static void
13561 do_neon_rshift_narrow (void)
13562 {
13563 struct neon_type_el et = neon_check_type (2, NS_DQI,
13564 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13565 int imm = inst.operands[2].imm;
13566 /* This gets the bounds check, size encoding and immediate bits calculation
13567 right. */
13568 et.size /= 2;
13569
13570 /* If immediate is zero then we are a pseudo-instruction for
13571 VMOVN.I<size> <Dd>, <Qm> */
13572 if (imm == 0)
13573 {
13574 inst.operands[2].present = 0;
13575 inst.instruction = N_MNEM_vmovn;
13576 do_neon_movn ();
13577 return;
13578 }
13579
13580 constraint (imm < 1 || (unsigned)imm > et.size,
13581 _("immediate out of range for narrowing operation"));
13582 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13583 }
13584
13585 static void
13586 do_neon_shll (void)
13587 {
13588 /* FIXME: Type checking when lengthening. */
13589 struct neon_type_el et = neon_check_type (2, NS_QDI,
13590 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13591 unsigned imm = inst.operands[2].imm;
13592
13593 if (imm == et.size)
13594 {
13595 /* Maximum shift variant. */
13596 NEON_ENCODE (INTEGER, inst);
13597 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13598 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13599 inst.instruction |= LOW4 (inst.operands[1].reg);
13600 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13601 inst.instruction |= neon_logbits (et.size) << 18;
13602
13603 neon_dp_fixup (&inst);
13604 }
13605 else
13606 {
13607 /* A more-specific type check for non-max versions. */
13608 et = neon_check_type (2, NS_QDI,
13609 N_EQK | N_DBL, N_SU_32 | N_KEY);
13610 NEON_ENCODE (IMMED, inst);
13611 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13612 }
13613 }
13614
13615 /* Check the various types for the VCVT instruction, and return which version
13616 the current instruction is. */
13617
13618 static int
13619 neon_cvt_flavour (enum neon_shape rs)
13620 {
13621 #define CVT_VAR(C,X,Y) \
13622 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13623 if (et.type != NT_invtype) \
13624 { \
13625 inst.error = NULL; \
13626 return (C); \
13627 }
13628 struct neon_type_el et;
13629 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13630 || rs == NS_FF) ? N_VFP : 0;
13631 /* The instruction versions which take an immediate take one register
13632 argument, which is extended to the width of the full register. Thus the
13633 "source" and "destination" registers must have the same width. Hack that
13634 here by making the size equal to the key (wider, in this case) operand. */
13635 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13636
13637 CVT_VAR (0, N_S32, N_F32);
13638 CVT_VAR (1, N_U32, N_F32);
13639 CVT_VAR (2, N_F32, N_S32);
13640 CVT_VAR (3, N_F32, N_U32);
13641 /* Half-precision conversions. */
13642 CVT_VAR (4, N_F32, N_F16);
13643 CVT_VAR (5, N_F16, N_F32);
13644
13645 whole_reg = N_VFP;
13646
13647 /* VFP instructions. */
13648 CVT_VAR (6, N_F32, N_F64);
13649 CVT_VAR (7, N_F64, N_F32);
13650 CVT_VAR (8, N_S32, N_F64 | key);
13651 CVT_VAR (9, N_U32, N_F64 | key);
13652 CVT_VAR (10, N_F64 | key, N_S32);
13653 CVT_VAR (11, N_F64 | key, N_U32);
13654 /* VFP instructions with bitshift. */
13655 CVT_VAR (12, N_F32 | key, N_S16);
13656 CVT_VAR (13, N_F32 | key, N_U16);
13657 CVT_VAR (14, N_F64 | key, N_S16);
13658 CVT_VAR (15, N_F64 | key, N_U16);
13659 CVT_VAR (16, N_S16, N_F32 | key);
13660 CVT_VAR (17, N_U16, N_F32 | key);
13661 CVT_VAR (18, N_S16, N_F64 | key);
13662 CVT_VAR (19, N_U16, N_F64 | key);
13663
13664 return -1;
13665 #undef CVT_VAR
13666 }
13667
13668 /* Neon-syntax VFP conversions. */
13669
13670 static void
13671 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13672 {
13673 const char *opname = 0;
13674
13675 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13676 {
13677 /* Conversions with immediate bitshift. */
13678 const char *enc[] =
13679 {
13680 "ftosls",
13681 "ftouls",
13682 "fsltos",
13683 "fultos",
13684 NULL,
13685 NULL,
13686 NULL,
13687 NULL,
13688 "ftosld",
13689 "ftould",
13690 "fsltod",
13691 "fultod",
13692 "fshtos",
13693 "fuhtos",
13694 "fshtod",
13695 "fuhtod",
13696 "ftoshs",
13697 "ftouhs",
13698 "ftoshd",
13699 "ftouhd"
13700 };
13701
13702 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13703 {
13704 opname = enc[flavour];
13705 constraint (inst.operands[0].reg != inst.operands[1].reg,
13706 _("operands 0 and 1 must be the same register"));
13707 inst.operands[1] = inst.operands[2];
13708 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13709 }
13710 }
13711 else
13712 {
13713 /* Conversions without bitshift. */
13714 const char *enc[] =
13715 {
13716 "ftosis",
13717 "ftouis",
13718 "fsitos",
13719 "fuitos",
13720 "NULL",
13721 "NULL",
13722 "fcvtsd",
13723 "fcvtds",
13724 "ftosid",
13725 "ftouid",
13726 "fsitod",
13727 "fuitod"
13728 };
13729
13730 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13731 opname = enc[flavour];
13732 }
13733
13734 if (opname)
13735 do_vfp_nsyn_opcode (opname);
13736 }
13737
13738 static void
13739 do_vfp_nsyn_cvtz (void)
13740 {
13741 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13742 int flavour = neon_cvt_flavour (rs);
13743 const char *enc[] =
13744 {
13745 "ftosizs",
13746 "ftouizs",
13747 NULL,
13748 NULL,
13749 NULL,
13750 NULL,
13751 NULL,
13752 NULL,
13753 "ftosizd",
13754 "ftouizd"
13755 };
13756
13757 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13758 do_vfp_nsyn_opcode (enc[flavour]);
13759 }
13760
13761 static void
13762 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
13763 {
13764 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13765 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13766 int flavour = neon_cvt_flavour (rs);
13767
13768 /* PR11109: Handle round-to-zero for VCVT conversions. */
13769 if (round_to_zero
13770 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
13771 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
13772 && (rs == NS_FD || rs == NS_FF))
13773 {
13774 do_vfp_nsyn_cvtz ();
13775 return;
13776 }
13777
13778 /* VFP rather than Neon conversions. */
13779 if (flavour >= 6)
13780 {
13781 do_vfp_nsyn_cvt (rs, flavour);
13782 return;
13783 }
13784
13785 switch (rs)
13786 {
13787 case NS_DDI:
13788 case NS_QQI:
13789 {
13790 unsigned immbits;
13791 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13792
13793 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13794 return;
13795
13796 /* Fixed-point conversion with #0 immediate is encoded as an
13797 integer conversion. */
13798 if (inst.operands[2].present && inst.operands[2].imm == 0)
13799 goto int_encode;
13800 immbits = 32 - inst.operands[2].imm;
13801 NEON_ENCODE (IMMED, inst);
13802 if (flavour != -1)
13803 inst.instruction |= enctab[flavour];
13804 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13805 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13806 inst.instruction |= LOW4 (inst.operands[1].reg);
13807 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13808 inst.instruction |= neon_quad (rs) << 6;
13809 inst.instruction |= 1 << 21;
13810 inst.instruction |= immbits << 16;
13811
13812 neon_dp_fixup (&inst);
13813 }
13814 break;
13815
13816 case NS_DD:
13817 case NS_QQ:
13818 int_encode:
13819 {
13820 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13821
13822 NEON_ENCODE (INTEGER, inst);
13823
13824 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13825 return;
13826
13827 if (flavour != -1)
13828 inst.instruction |= enctab[flavour];
13829
13830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13832 inst.instruction |= LOW4 (inst.operands[1].reg);
13833 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13834 inst.instruction |= neon_quad (rs) << 6;
13835 inst.instruction |= 2 << 18;
13836
13837 neon_dp_fixup (&inst);
13838 }
13839 break;
13840
13841 /* Half-precision conversions for Advanced SIMD -- neon. */
13842 case NS_QD:
13843 case NS_DQ:
13844
13845 if ((rs == NS_DQ)
13846 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13847 {
13848 as_bad (_("operand size must match register width"));
13849 break;
13850 }
13851
13852 if ((rs == NS_QD)
13853 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13854 {
13855 as_bad (_("operand size must match register width"));
13856 break;
13857 }
13858
13859 if (rs == NS_DQ)
13860 inst.instruction = 0x3b60600;
13861 else
13862 inst.instruction = 0x3b60700;
13863
13864 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13865 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13866 inst.instruction |= LOW4 (inst.operands[1].reg);
13867 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13868 neon_dp_fixup (&inst);
13869 break;
13870
13871 default:
13872 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13873 do_vfp_nsyn_cvt (rs, flavour);
13874 }
13875 }
13876
13877 static void
13878 do_neon_cvtr (void)
13879 {
13880 do_neon_cvt_1 (FALSE);
13881 }
13882
13883 static void
13884 do_neon_cvt (void)
13885 {
13886 do_neon_cvt_1 (TRUE);
13887 }
13888
13889 static void
13890 do_neon_cvtb (void)
13891 {
13892 inst.instruction = 0xeb20a40;
13893
13894 /* The sizes are attached to the mnemonic. */
13895 if (inst.vectype.el[0].type != NT_invtype
13896 && inst.vectype.el[0].size == 16)
13897 inst.instruction |= 0x00010000;
13898
13899 /* Programmer's syntax: the sizes are attached to the operands. */
13900 else if (inst.operands[0].vectype.type != NT_invtype
13901 && inst.operands[0].vectype.size == 16)
13902 inst.instruction |= 0x00010000;
13903
13904 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13905 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13906 do_vfp_cond_or_thumb ();
13907 }
13908
13909
13910 static void
13911 do_neon_cvtt (void)
13912 {
13913 do_neon_cvtb ();
13914 inst.instruction |= 0x80;
13915 }
13916
13917 static void
13918 neon_move_immediate (void)
13919 {
13920 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13921 struct neon_type_el et = neon_check_type (2, rs,
13922 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13923 unsigned immlo, immhi = 0, immbits;
13924 int op, cmode, float_p;
13925
13926 constraint (et.type == NT_invtype,
13927 _("operand size must be specified for immediate VMOV"));
13928
13929 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13930 op = (inst.instruction & (1 << 5)) != 0;
13931
13932 immlo = inst.operands[1].imm;
13933 if (inst.operands[1].regisimm)
13934 immhi = inst.operands[1].reg;
13935
13936 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13937 _("immediate has bits set outside the operand size"));
13938
13939 float_p = inst.operands[1].immisfloat;
13940
13941 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
13942 et.size, et.type)) == FAIL)
13943 {
13944 /* Invert relevant bits only. */
13945 neon_invert_size (&immlo, &immhi, et.size);
13946 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13947 with one or the other; those cases are caught by
13948 neon_cmode_for_move_imm. */
13949 op = !op;
13950 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13951 &op, et.size, et.type)) == FAIL)
13952 {
13953 first_error (_("immediate out of range"));
13954 return;
13955 }
13956 }
13957
13958 inst.instruction &= ~(1 << 5);
13959 inst.instruction |= op << 5;
13960
13961 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13962 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13963 inst.instruction |= neon_quad (rs) << 6;
13964 inst.instruction |= cmode << 8;
13965
13966 neon_write_immbits (immbits);
13967 }
13968
13969 static void
13970 do_neon_mvn (void)
13971 {
13972 if (inst.operands[1].isreg)
13973 {
13974 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13975
13976 NEON_ENCODE (INTEGER, inst);
13977 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13978 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13979 inst.instruction |= LOW4 (inst.operands[1].reg);
13980 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13981 inst.instruction |= neon_quad (rs) << 6;
13982 }
13983 else
13984 {
13985 NEON_ENCODE (IMMED, inst);
13986 neon_move_immediate ();
13987 }
13988
13989 neon_dp_fixup (&inst);
13990 }
13991
13992 /* Encode instructions of form:
13993
13994 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13995 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
13996
13997 static void
13998 neon_mixed_length (struct neon_type_el et, unsigned size)
13999 {
14000 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14001 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14002 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14003 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14004 inst.instruction |= LOW4 (inst.operands[2].reg);
14005 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14006 inst.instruction |= (et.type == NT_unsigned) << 24;
14007 inst.instruction |= neon_logbits (size) << 20;
14008
14009 neon_dp_fixup (&inst);
14010 }
14011
14012 static void
14013 do_neon_dyadic_long (void)
14014 {
14015 /* FIXME: Type checking for lengthening op. */
14016 struct neon_type_el et = neon_check_type (3, NS_QDD,
14017 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14018 neon_mixed_length (et, et.size);
14019 }
14020
14021 static void
14022 do_neon_abal (void)
14023 {
14024 struct neon_type_el et = neon_check_type (3, NS_QDD,
14025 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14026 neon_mixed_length (et, et.size);
14027 }
14028
14029 static void
14030 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14031 {
14032 if (inst.operands[2].isscalar)
14033 {
14034 struct neon_type_el et = neon_check_type (3, NS_QDS,
14035 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14036 NEON_ENCODE (SCALAR, inst);
14037 neon_mul_mac (et, et.type == NT_unsigned);
14038 }
14039 else
14040 {
14041 struct neon_type_el et = neon_check_type (3, NS_QDD,
14042 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14043 NEON_ENCODE (INTEGER, inst);
14044 neon_mixed_length (et, et.size);
14045 }
14046 }
14047
14048 static void
14049 do_neon_mac_maybe_scalar_long (void)
14050 {
14051 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14052 }
14053
14054 static void
14055 do_neon_dyadic_wide (void)
14056 {
14057 struct neon_type_el et = neon_check_type (3, NS_QQD,
14058 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14059 neon_mixed_length (et, et.size);
14060 }
14061
14062 static void
14063 do_neon_dyadic_narrow (void)
14064 {
14065 struct neon_type_el et = neon_check_type (3, NS_QDD,
14066 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14067 /* Operand sign is unimportant, and the U bit is part of the opcode,
14068 so force the operand type to integer. */
14069 et.type = NT_integer;
14070 neon_mixed_length (et, et.size / 2);
14071 }
14072
14073 static void
14074 do_neon_mul_sat_scalar_long (void)
14075 {
14076 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14077 }
14078
14079 static void
14080 do_neon_vmull (void)
14081 {
14082 if (inst.operands[2].isscalar)
14083 do_neon_mac_maybe_scalar_long ();
14084 else
14085 {
14086 struct neon_type_el et = neon_check_type (3, NS_QDD,
14087 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14088 if (et.type == NT_poly)
14089 NEON_ENCODE (POLY, inst);
14090 else
14091 NEON_ENCODE (INTEGER, inst);
14092 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14093 zero. Should be OK as-is. */
14094 neon_mixed_length (et, et.size);
14095 }
14096 }
14097
14098 static void
14099 do_neon_ext (void)
14100 {
14101 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14102 struct neon_type_el et = neon_check_type (3, rs,
14103 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14104 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14105
14106 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14107 _("shift out of range"));
14108 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14109 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14110 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14111 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14112 inst.instruction |= LOW4 (inst.operands[2].reg);
14113 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14114 inst.instruction |= neon_quad (rs) << 6;
14115 inst.instruction |= imm << 8;
14116
14117 neon_dp_fixup (&inst);
14118 }
14119
14120 static void
14121 do_neon_rev (void)
14122 {
14123 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14124 struct neon_type_el et = neon_check_type (2, rs,
14125 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14126 unsigned op = (inst.instruction >> 7) & 3;
14127 /* N (width of reversed regions) is encoded as part of the bitmask. We
14128 extract it here to check the elements to be reversed are smaller.
14129 Otherwise we'd get a reserved instruction. */
14130 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14131 gas_assert (elsize != 0);
14132 constraint (et.size >= elsize,
14133 _("elements must be smaller than reversal region"));
14134 neon_two_same (neon_quad (rs), 1, et.size);
14135 }
14136
14137 static void
14138 do_neon_dup (void)
14139 {
14140 if (inst.operands[1].isscalar)
14141 {
14142 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14143 struct neon_type_el et = neon_check_type (2, rs,
14144 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14145 unsigned sizebits = et.size >> 3;
14146 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14147 int logsize = neon_logbits (et.size);
14148 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14149
14150 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14151 return;
14152
14153 NEON_ENCODE (SCALAR, inst);
14154 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14155 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14156 inst.instruction |= LOW4 (dm);
14157 inst.instruction |= HI1 (dm) << 5;
14158 inst.instruction |= neon_quad (rs) << 6;
14159 inst.instruction |= x << 17;
14160 inst.instruction |= sizebits << 16;
14161
14162 neon_dp_fixup (&inst);
14163 }
14164 else
14165 {
14166 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14167 struct neon_type_el et = neon_check_type (2, rs,
14168 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14169 /* Duplicate ARM register to lanes of vector. */
14170 NEON_ENCODE (ARMREG, inst);
14171 switch (et.size)
14172 {
14173 case 8: inst.instruction |= 0x400000; break;
14174 case 16: inst.instruction |= 0x000020; break;
14175 case 32: inst.instruction |= 0x000000; break;
14176 default: break;
14177 }
14178 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14179 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14180 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14181 inst.instruction |= neon_quad (rs) << 21;
14182 /* The encoding for this instruction is identical for the ARM and Thumb
14183 variants, except for the condition field. */
14184 do_vfp_cond_or_thumb ();
14185 }
14186 }
14187
14188 /* VMOV has particularly many variations. It can be one of:
14189 0. VMOV<c><q> <Qd>, <Qm>
14190 1. VMOV<c><q> <Dd>, <Dm>
14191 (Register operations, which are VORR with Rm = Rn.)
14192 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14193 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14194 (Immediate loads.)
14195 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14196 (ARM register to scalar.)
14197 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14198 (Two ARM registers to vector.)
14199 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14200 (Scalar to ARM register.)
14201 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14202 (Vector to two ARM registers.)
14203 8. VMOV.F32 <Sd>, <Sm>
14204 9. VMOV.F64 <Dd>, <Dm>
14205 (VFP register moves.)
14206 10. VMOV.F32 <Sd>, #imm
14207 11. VMOV.F64 <Dd>, #imm
14208 (VFP float immediate load.)
14209 12. VMOV <Rd>, <Sm>
14210 (VFP single to ARM reg.)
14211 13. VMOV <Sd>, <Rm>
14212 (ARM reg to VFP single.)
14213 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14214 (Two ARM regs to two VFP singles.)
14215 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14216 (Two VFP singles to two ARM regs.)
14217
14218 These cases can be disambiguated using neon_select_shape, except cases 1/9
14219 and 3/11 which depend on the operand type too.
14220
14221 All the encoded bits are hardcoded by this function.
14222
14223 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14224 Cases 5, 7 may be used with VFPv2 and above.
14225
14226 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14227 can specify a type where it doesn't make sense to, and is ignored). */
14228
14229 static void
14230 do_neon_mov (void)
14231 {
14232 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14233 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14234 NS_NULL);
14235 struct neon_type_el et;
14236 const char *ldconst = 0;
14237
14238 switch (rs)
14239 {
14240 case NS_DD: /* case 1/9. */
14241 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14242 /* It is not an error here if no type is given. */
14243 inst.error = NULL;
14244 if (et.type == NT_float && et.size == 64)
14245 {
14246 do_vfp_nsyn_opcode ("fcpyd");
14247 break;
14248 }
14249 /* fall through. */
14250
14251 case NS_QQ: /* case 0/1. */
14252 {
14253 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14254 return;
14255 /* The architecture manual I have doesn't explicitly state which
14256 value the U bit should have for register->register moves, but
14257 the equivalent VORR instruction has U = 0, so do that. */
14258 inst.instruction = 0x0200110;
14259 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14260 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14261 inst.instruction |= LOW4 (inst.operands[1].reg);
14262 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14263 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14264 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14265 inst.instruction |= neon_quad (rs) << 6;
14266
14267 neon_dp_fixup (&inst);
14268 }
14269 break;
14270
14271 case NS_DI: /* case 3/11. */
14272 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14273 inst.error = NULL;
14274 if (et.type == NT_float && et.size == 64)
14275 {
14276 /* case 11 (fconstd). */
14277 ldconst = "fconstd";
14278 goto encode_fconstd;
14279 }
14280 /* fall through. */
14281
14282 case NS_QI: /* case 2/3. */
14283 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14284 return;
14285 inst.instruction = 0x0800010;
14286 neon_move_immediate ();
14287 neon_dp_fixup (&inst);
14288 break;
14289
14290 case NS_SR: /* case 4. */
14291 {
14292 unsigned bcdebits = 0;
14293 int logsize;
14294 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14295 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14296
14297 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14298 logsize = neon_logbits (et.size);
14299
14300 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14301 _(BAD_FPU));
14302 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14303 && et.size != 32, _(BAD_FPU));
14304 constraint (et.type == NT_invtype, _("bad type for scalar"));
14305 constraint (x >= 64 / et.size, _("scalar index out of range"));
14306
14307 switch (et.size)
14308 {
14309 case 8: bcdebits = 0x8; break;
14310 case 16: bcdebits = 0x1; break;
14311 case 32: bcdebits = 0x0; break;
14312 default: ;
14313 }
14314
14315 bcdebits |= x << logsize;
14316
14317 inst.instruction = 0xe000b10;
14318 do_vfp_cond_or_thumb ();
14319 inst.instruction |= LOW4 (dn) << 16;
14320 inst.instruction |= HI1 (dn) << 7;
14321 inst.instruction |= inst.operands[1].reg << 12;
14322 inst.instruction |= (bcdebits & 3) << 5;
14323 inst.instruction |= (bcdebits >> 2) << 21;
14324 }
14325 break;
14326
14327 case NS_DRR: /* case 5 (fmdrr). */
14328 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14329 _(BAD_FPU));
14330
14331 inst.instruction = 0xc400b10;
14332 do_vfp_cond_or_thumb ();
14333 inst.instruction |= LOW4 (inst.operands[0].reg);
14334 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14335 inst.instruction |= inst.operands[1].reg << 12;
14336 inst.instruction |= inst.operands[2].reg << 16;
14337 break;
14338
14339 case NS_RS: /* case 6. */
14340 {
14341 unsigned logsize;
14342 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14343 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14344 unsigned abcdebits = 0;
14345
14346 et = neon_check_type (2, NS_NULL,
14347 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14348 logsize = neon_logbits (et.size);
14349
14350 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14351 _(BAD_FPU));
14352 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14353 && et.size != 32, _(BAD_FPU));
14354 constraint (et.type == NT_invtype, _("bad type for scalar"));
14355 constraint (x >= 64 / et.size, _("scalar index out of range"));
14356
14357 switch (et.size)
14358 {
14359 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14360 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14361 case 32: abcdebits = 0x00; break;
14362 default: ;
14363 }
14364
14365 abcdebits |= x << logsize;
14366 inst.instruction = 0xe100b10;
14367 do_vfp_cond_or_thumb ();
14368 inst.instruction |= LOW4 (dn) << 16;
14369 inst.instruction |= HI1 (dn) << 7;
14370 inst.instruction |= inst.operands[0].reg << 12;
14371 inst.instruction |= (abcdebits & 3) << 5;
14372 inst.instruction |= (abcdebits >> 2) << 21;
14373 }
14374 break;
14375
14376 case NS_RRD: /* case 7 (fmrrd). */
14377 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14378 _(BAD_FPU));
14379
14380 inst.instruction = 0xc500b10;
14381 do_vfp_cond_or_thumb ();
14382 inst.instruction |= inst.operands[0].reg << 12;
14383 inst.instruction |= inst.operands[1].reg << 16;
14384 inst.instruction |= LOW4 (inst.operands[2].reg);
14385 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14386 break;
14387
14388 case NS_FF: /* case 8 (fcpys). */
14389 do_vfp_nsyn_opcode ("fcpys");
14390 break;
14391
14392 case NS_FI: /* case 10 (fconsts). */
14393 ldconst = "fconsts";
14394 encode_fconstd:
14395 if (is_quarter_float (inst.operands[1].imm))
14396 {
14397 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14398 do_vfp_nsyn_opcode (ldconst);
14399 }
14400 else
14401 first_error (_("immediate out of range"));
14402 break;
14403
14404 case NS_RF: /* case 12 (fmrs). */
14405 do_vfp_nsyn_opcode ("fmrs");
14406 break;
14407
14408 case NS_FR: /* case 13 (fmsr). */
14409 do_vfp_nsyn_opcode ("fmsr");
14410 break;
14411
14412 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14413 (one of which is a list), but we have parsed four. Do some fiddling to
14414 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14415 expect. */
14416 case NS_RRFF: /* case 14 (fmrrs). */
14417 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14418 _("VFP registers must be adjacent"));
14419 inst.operands[2].imm = 2;
14420 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14421 do_vfp_nsyn_opcode ("fmrrs");
14422 break;
14423
14424 case NS_FFRR: /* case 15 (fmsrr). */
14425 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14426 _("VFP registers must be adjacent"));
14427 inst.operands[1] = inst.operands[2];
14428 inst.operands[2] = inst.operands[3];
14429 inst.operands[0].imm = 2;
14430 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14431 do_vfp_nsyn_opcode ("fmsrr");
14432 break;
14433
14434 default:
14435 abort ();
14436 }
14437 }
14438
14439 static void
14440 do_neon_rshift_round_imm (void)
14441 {
14442 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14443 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14444 int imm = inst.operands[2].imm;
14445
14446 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14447 if (imm == 0)
14448 {
14449 inst.operands[2].present = 0;
14450 do_neon_mov ();
14451 return;
14452 }
14453
14454 constraint (imm < 1 || (unsigned)imm > et.size,
14455 _("immediate out of range for shift"));
14456 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14457 et.size - imm);
14458 }
14459
14460 static void
14461 do_neon_movl (void)
14462 {
14463 struct neon_type_el et = neon_check_type (2, NS_QD,
14464 N_EQK | N_DBL, N_SU_32 | N_KEY);
14465 unsigned sizebits = et.size >> 3;
14466 inst.instruction |= sizebits << 19;
14467 neon_two_same (0, et.type == NT_unsigned, -1);
14468 }
14469
14470 static void
14471 do_neon_trn (void)
14472 {
14473 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14474 struct neon_type_el et = neon_check_type (2, rs,
14475 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14476 NEON_ENCODE (INTEGER, inst);
14477 neon_two_same (neon_quad (rs), 1, et.size);
14478 }
14479
14480 static void
14481 do_neon_zip_uzp (void)
14482 {
14483 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14484 struct neon_type_el et = neon_check_type (2, rs,
14485 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14486 if (rs == NS_DD && et.size == 32)
14487 {
14488 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14489 inst.instruction = N_MNEM_vtrn;
14490 do_neon_trn ();
14491 return;
14492 }
14493 neon_two_same (neon_quad (rs), 1, et.size);
14494 }
14495
14496 static void
14497 do_neon_sat_abs_neg (void)
14498 {
14499 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14500 struct neon_type_el et = neon_check_type (2, rs,
14501 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14502 neon_two_same (neon_quad (rs), 1, et.size);
14503 }
14504
14505 static void
14506 do_neon_pair_long (void)
14507 {
14508 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14509 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14510 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14511 inst.instruction |= (et.type == NT_unsigned) << 7;
14512 neon_two_same (neon_quad (rs), 1, et.size);
14513 }
14514
14515 static void
14516 do_neon_recip_est (void)
14517 {
14518 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14519 struct neon_type_el et = neon_check_type (2, rs,
14520 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14521 inst.instruction |= (et.type == NT_float) << 8;
14522 neon_two_same (neon_quad (rs), 1, et.size);
14523 }
14524
14525 static void
14526 do_neon_cls (void)
14527 {
14528 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14529 struct neon_type_el et = neon_check_type (2, rs,
14530 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14531 neon_two_same (neon_quad (rs), 1, et.size);
14532 }
14533
14534 static void
14535 do_neon_clz (void)
14536 {
14537 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14538 struct neon_type_el et = neon_check_type (2, rs,
14539 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14540 neon_two_same (neon_quad (rs), 1, et.size);
14541 }
14542
14543 static void
14544 do_neon_cnt (void)
14545 {
14546 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14547 struct neon_type_el et = neon_check_type (2, rs,
14548 N_EQK | N_INT, N_8 | N_KEY);
14549 neon_two_same (neon_quad (rs), 1, et.size);
14550 }
14551
14552 static void
14553 do_neon_swp (void)
14554 {
14555 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14556 neon_two_same (neon_quad (rs), 1, -1);
14557 }
14558
14559 static void
14560 do_neon_tbl_tbx (void)
14561 {
14562 unsigned listlenbits;
14563 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14564
14565 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14566 {
14567 first_error (_("bad list length for table lookup"));
14568 return;
14569 }
14570
14571 listlenbits = inst.operands[1].imm - 1;
14572 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14573 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14574 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14575 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14576 inst.instruction |= LOW4 (inst.operands[2].reg);
14577 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14578 inst.instruction |= listlenbits << 8;
14579
14580 neon_dp_fixup (&inst);
14581 }
14582
14583 static void
14584 do_neon_ldm_stm (void)
14585 {
14586 /* P, U and L bits are part of bitmask. */
14587 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14588 unsigned offsetbits = inst.operands[1].imm * 2;
14589
14590 if (inst.operands[1].issingle)
14591 {
14592 do_vfp_nsyn_ldm_stm (is_dbmode);
14593 return;
14594 }
14595
14596 constraint (is_dbmode && !inst.operands[0].writeback,
14597 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14598
14599 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14600 _("register list must contain at least 1 and at most 16 "
14601 "registers"));
14602
14603 inst.instruction |= inst.operands[0].reg << 16;
14604 inst.instruction |= inst.operands[0].writeback << 21;
14605 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14606 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14607
14608 inst.instruction |= offsetbits;
14609
14610 do_vfp_cond_or_thumb ();
14611 }
14612
14613 static void
14614 do_neon_ldr_str (void)
14615 {
14616 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14617
14618 if (inst.operands[0].issingle)
14619 {
14620 if (is_ldr)
14621 do_vfp_nsyn_opcode ("flds");
14622 else
14623 do_vfp_nsyn_opcode ("fsts");
14624 }
14625 else
14626 {
14627 if (is_ldr)
14628 do_vfp_nsyn_opcode ("fldd");
14629 else
14630 do_vfp_nsyn_opcode ("fstd");
14631 }
14632 }
14633
14634 /* "interleave" version also handles non-interleaving register VLD1/VST1
14635 instructions. */
14636
14637 static void
14638 do_neon_ld_st_interleave (void)
14639 {
14640 struct neon_type_el et = neon_check_type (1, NS_NULL,
14641 N_8 | N_16 | N_32 | N_64);
14642 unsigned alignbits = 0;
14643 unsigned idx;
14644 /* The bits in this table go:
14645 0: register stride of one (0) or two (1)
14646 1,2: register list length, minus one (1, 2, 3, 4).
14647 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14648 We use -1 for invalid entries. */
14649 const int typetable[] =
14650 {
14651 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14652 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14653 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14654 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14655 };
14656 int typebits;
14657
14658 if (et.type == NT_invtype)
14659 return;
14660
14661 if (inst.operands[1].immisalign)
14662 switch (inst.operands[1].imm >> 8)
14663 {
14664 case 64: alignbits = 1; break;
14665 case 128:
14666 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14667 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14668 goto bad_alignment;
14669 alignbits = 2;
14670 break;
14671 case 256:
14672 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14673 goto bad_alignment;
14674 alignbits = 3;
14675 break;
14676 default:
14677 bad_alignment:
14678 first_error (_("bad alignment"));
14679 return;
14680 }
14681
14682 inst.instruction |= alignbits << 4;
14683 inst.instruction |= neon_logbits (et.size) << 6;
14684
14685 /* Bits [4:6] of the immediate in a list specifier encode register stride
14686 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14687 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14688 up the right value for "type" in a table based on this value and the given
14689 list style, then stick it back. */
14690 idx = ((inst.operands[0].imm >> 4) & 7)
14691 | (((inst.instruction >> 8) & 3) << 3);
14692
14693 typebits = typetable[idx];
14694
14695 constraint (typebits == -1, _("bad list type for instruction"));
14696
14697 inst.instruction &= ~0xf00;
14698 inst.instruction |= typebits << 8;
14699 }
14700
14701 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14702 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14703 otherwise. The variable arguments are a list of pairs of legal (size, align)
14704 values, terminated with -1. */
14705
14706 static int
14707 neon_alignment_bit (int size, int align, int *do_align, ...)
14708 {
14709 va_list ap;
14710 int result = FAIL, thissize, thisalign;
14711
14712 if (!inst.operands[1].immisalign)
14713 {
14714 *do_align = 0;
14715 return SUCCESS;
14716 }
14717
14718 va_start (ap, do_align);
14719
14720 do
14721 {
14722 thissize = va_arg (ap, int);
14723 if (thissize == -1)
14724 break;
14725 thisalign = va_arg (ap, int);
14726
14727 if (size == thissize && align == thisalign)
14728 result = SUCCESS;
14729 }
14730 while (result != SUCCESS);
14731
14732 va_end (ap);
14733
14734 if (result == SUCCESS)
14735 *do_align = 1;
14736 else
14737 first_error (_("unsupported alignment for instruction"));
14738
14739 return result;
14740 }
14741
14742 static void
14743 do_neon_ld_st_lane (void)
14744 {
14745 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14746 int align_good, do_align = 0;
14747 int logsize = neon_logbits (et.size);
14748 int align = inst.operands[1].imm >> 8;
14749 int n = (inst.instruction >> 8) & 3;
14750 int max_el = 64 / et.size;
14751
14752 if (et.type == NT_invtype)
14753 return;
14754
14755 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14756 _("bad list length"));
14757 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14758 _("scalar index out of range"));
14759 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14760 && et.size == 8,
14761 _("stride of 2 unavailable when element size is 8"));
14762
14763 switch (n)
14764 {
14765 case 0: /* VLD1 / VST1. */
14766 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14767 32, 32, -1);
14768 if (align_good == FAIL)
14769 return;
14770 if (do_align)
14771 {
14772 unsigned alignbits = 0;
14773 switch (et.size)
14774 {
14775 case 16: alignbits = 0x1; break;
14776 case 32: alignbits = 0x3; break;
14777 default: ;
14778 }
14779 inst.instruction |= alignbits << 4;
14780 }
14781 break;
14782
14783 case 1: /* VLD2 / VST2. */
14784 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14785 32, 64, -1);
14786 if (align_good == FAIL)
14787 return;
14788 if (do_align)
14789 inst.instruction |= 1 << 4;
14790 break;
14791
14792 case 2: /* VLD3 / VST3. */
14793 constraint (inst.operands[1].immisalign,
14794 _("can't use alignment with this instruction"));
14795 break;
14796
14797 case 3: /* VLD4 / VST4. */
14798 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14799 16, 64, 32, 64, 32, 128, -1);
14800 if (align_good == FAIL)
14801 return;
14802 if (do_align)
14803 {
14804 unsigned alignbits = 0;
14805 switch (et.size)
14806 {
14807 case 8: alignbits = 0x1; break;
14808 case 16: alignbits = 0x1; break;
14809 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14810 default: ;
14811 }
14812 inst.instruction |= alignbits << 4;
14813 }
14814 break;
14815
14816 default: ;
14817 }
14818
14819 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14820 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14821 inst.instruction |= 1 << (4 + logsize);
14822
14823 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14824 inst.instruction |= logsize << 10;
14825 }
14826
14827 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14828
14829 static void
14830 do_neon_ld_dup (void)
14831 {
14832 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14833 int align_good, do_align = 0;
14834
14835 if (et.type == NT_invtype)
14836 return;
14837
14838 switch ((inst.instruction >> 8) & 3)
14839 {
14840 case 0: /* VLD1. */
14841 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14842 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14843 &do_align, 16, 16, 32, 32, -1);
14844 if (align_good == FAIL)
14845 return;
14846 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14847 {
14848 case 1: break;
14849 case 2: inst.instruction |= 1 << 5; break;
14850 default: first_error (_("bad list length")); return;
14851 }
14852 inst.instruction |= neon_logbits (et.size) << 6;
14853 break;
14854
14855 case 1: /* VLD2. */
14856 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14857 &do_align, 8, 16, 16, 32, 32, 64, -1);
14858 if (align_good == FAIL)
14859 return;
14860 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14861 _("bad list length"));
14862 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14863 inst.instruction |= 1 << 5;
14864 inst.instruction |= neon_logbits (et.size) << 6;
14865 break;
14866
14867 case 2: /* VLD3. */
14868 constraint (inst.operands[1].immisalign,
14869 _("can't use alignment with this instruction"));
14870 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14871 _("bad list length"));
14872 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14873 inst.instruction |= 1 << 5;
14874 inst.instruction |= neon_logbits (et.size) << 6;
14875 break;
14876
14877 case 3: /* VLD4. */
14878 {
14879 int align = inst.operands[1].imm >> 8;
14880 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14881 16, 64, 32, 64, 32, 128, -1);
14882 if (align_good == FAIL)
14883 return;
14884 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14885 _("bad list length"));
14886 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14887 inst.instruction |= 1 << 5;
14888 if (et.size == 32 && align == 128)
14889 inst.instruction |= 0x3 << 6;
14890 else
14891 inst.instruction |= neon_logbits (et.size) << 6;
14892 }
14893 break;
14894
14895 default: ;
14896 }
14897
14898 inst.instruction |= do_align << 4;
14899 }
14900
14901 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14902 apart from bits [11:4]. */
14903
14904 static void
14905 do_neon_ldx_stx (void)
14906 {
14907 if (inst.operands[1].isreg)
14908 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
14909
14910 switch (NEON_LANE (inst.operands[0].imm))
14911 {
14912 case NEON_INTERLEAVE_LANES:
14913 NEON_ENCODE (INTERLV, inst);
14914 do_neon_ld_st_interleave ();
14915 break;
14916
14917 case NEON_ALL_LANES:
14918 NEON_ENCODE (DUP, inst);
14919 do_neon_ld_dup ();
14920 break;
14921
14922 default:
14923 NEON_ENCODE (LANE, inst);
14924 do_neon_ld_st_lane ();
14925 }
14926
14927 /* L bit comes from bit mask. */
14928 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14929 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14930 inst.instruction |= inst.operands[1].reg << 16;
14931
14932 if (inst.operands[1].postind)
14933 {
14934 int postreg = inst.operands[1].imm & 0xf;
14935 constraint (!inst.operands[1].immisreg,
14936 _("post-index must be a register"));
14937 constraint (postreg == 0xd || postreg == 0xf,
14938 _("bad register for post-index"));
14939 inst.instruction |= postreg;
14940 }
14941 else if (inst.operands[1].writeback)
14942 {
14943 inst.instruction |= 0xd;
14944 }
14945 else
14946 inst.instruction |= 0xf;
14947
14948 if (thumb_mode)
14949 inst.instruction |= 0xf9000000;
14950 else
14951 inst.instruction |= 0xf4000000;
14952 }
14953 \f
14954 /* Overall per-instruction processing. */
14955
14956 /* We need to be able to fix up arbitrary expressions in some statements.
14957 This is so that we can handle symbols that are an arbitrary distance from
14958 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14959 which returns part of an address in a form which will be valid for
14960 a data instruction. We do this by pushing the expression into a symbol
14961 in the expr_section, and creating a fix for that. */
14962
14963 static void
14964 fix_new_arm (fragS * frag,
14965 int where,
14966 short int size,
14967 expressionS * exp,
14968 int pc_rel,
14969 int reloc)
14970 {
14971 fixS * new_fix;
14972
14973 switch (exp->X_op)
14974 {
14975 case O_constant:
14976 case O_symbol:
14977 case O_add:
14978 case O_subtract:
14979 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
14980 (enum bfd_reloc_code_real) reloc);
14981 break;
14982
14983 default:
14984 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
14985 pc_rel, (enum bfd_reloc_code_real) reloc);
14986 break;
14987 }
14988
14989 /* Mark whether the fix is to a THUMB instruction, or an ARM
14990 instruction. */
14991 new_fix->tc_fix_data = thumb_mode;
14992 }
14993
14994 /* Create a frg for an instruction requiring relaxation. */
14995 static void
14996 output_relax_insn (void)
14997 {
14998 char * to;
14999 symbolS *sym;
15000 int offset;
15001
15002 /* The size of the instruction is unknown, so tie the debug info to the
15003 start of the instruction. */
15004 dwarf2_emit_insn (0);
15005
15006 switch (inst.reloc.exp.X_op)
15007 {
15008 case O_symbol:
15009 sym = inst.reloc.exp.X_add_symbol;
15010 offset = inst.reloc.exp.X_add_number;
15011 break;
15012 case O_constant:
15013 sym = NULL;
15014 offset = inst.reloc.exp.X_add_number;
15015 break;
15016 default:
15017 sym = make_expr_symbol (&inst.reloc.exp);
15018 offset = 0;
15019 break;
15020 }
15021 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15022 inst.relax, sym, offset, NULL/*offset, opcode*/);
15023 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15024 }
15025
15026 /* Write a 32-bit thumb instruction to buf. */
15027 static void
15028 put_thumb32_insn (char * buf, unsigned long insn)
15029 {
15030 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15031 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15032 }
15033
15034 static void
15035 output_inst (const char * str)
15036 {
15037 char * to = NULL;
15038
15039 if (inst.error)
15040 {
15041 as_bad ("%s -- `%s'", inst.error, str);
15042 return;
15043 }
15044 if (inst.relax)
15045 {
15046 output_relax_insn ();
15047 return;
15048 }
15049 if (inst.size == 0)
15050 return;
15051
15052 to = frag_more (inst.size);
15053 /* PR 9814: Record the thumb mode into the current frag so that we know
15054 what type of NOP padding to use, if necessary. We override any previous
15055 setting so that if the mode has changed then the NOPS that we use will
15056 match the encoding of the last instruction in the frag. */
15057 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15058
15059 if (thumb_mode && (inst.size > THUMB_SIZE))
15060 {
15061 gas_assert (inst.size == (2 * THUMB_SIZE));
15062 put_thumb32_insn (to, inst.instruction);
15063 }
15064 else if (inst.size > INSN_SIZE)
15065 {
15066 gas_assert (inst.size == (2 * INSN_SIZE));
15067 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15068 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15069 }
15070 else
15071 md_number_to_chars (to, inst.instruction, inst.size);
15072
15073 if (inst.reloc.type != BFD_RELOC_UNUSED)
15074 fix_new_arm (frag_now, to - frag_now->fr_literal,
15075 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15076 inst.reloc.type);
15077
15078 dwarf2_emit_insn (inst.size);
15079 }
15080
15081 static char *
15082 output_it_inst (int cond, int mask, char * to)
15083 {
15084 unsigned long instruction = 0xbf00;
15085
15086 mask &= 0xf;
15087 instruction |= mask;
15088 instruction |= cond << 4;
15089
15090 if (to == NULL)
15091 {
15092 to = frag_more (2);
15093 #ifdef OBJ_ELF
15094 dwarf2_emit_insn (2);
15095 #endif
15096 }
15097
15098 md_number_to_chars (to, instruction, 2);
15099
15100 return to;
15101 }
15102
15103 /* Tag values used in struct asm_opcode's tag field. */
15104 enum opcode_tag
15105 {
15106 OT_unconditional, /* Instruction cannot be conditionalized.
15107 The ARM condition field is still 0xE. */
15108 OT_unconditionalF, /* Instruction cannot be conditionalized
15109 and carries 0xF in its ARM condition field. */
15110 OT_csuffix, /* Instruction takes a conditional suffix. */
15111 OT_csuffixF, /* Some forms of the instruction take a conditional
15112 suffix, others place 0xF where the condition field
15113 would be. */
15114 OT_cinfix3, /* Instruction takes a conditional infix,
15115 beginning at character index 3. (In
15116 unified mode, it becomes a suffix.) */
15117 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15118 tsts, cmps, cmns, and teqs. */
15119 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15120 character index 3, even in unified mode. Used for
15121 legacy instructions where suffix and infix forms
15122 may be ambiguous. */
15123 OT_csuf_or_in3, /* Instruction takes either a conditional
15124 suffix or an infix at character index 3. */
15125 OT_odd_infix_unc, /* This is the unconditional variant of an
15126 instruction that takes a conditional infix
15127 at an unusual position. In unified mode,
15128 this variant will accept a suffix. */
15129 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15130 are the conditional variants of instructions that
15131 take conditional infixes in unusual positions.
15132 The infix appears at character index
15133 (tag - OT_odd_infix_0). These are not accepted
15134 in unified mode. */
15135 };
15136
15137 /* Subroutine of md_assemble, responsible for looking up the primary
15138 opcode from the mnemonic the user wrote. STR points to the
15139 beginning of the mnemonic.
15140
15141 This is not simply a hash table lookup, because of conditional
15142 variants. Most instructions have conditional variants, which are
15143 expressed with a _conditional affix_ to the mnemonic. If we were
15144 to encode each conditional variant as a literal string in the opcode
15145 table, it would have approximately 20,000 entries.
15146
15147 Most mnemonics take this affix as a suffix, and in unified syntax,
15148 'most' is upgraded to 'all'. However, in the divided syntax, some
15149 instructions take the affix as an infix, notably the s-variants of
15150 the arithmetic instructions. Of those instructions, all but six
15151 have the infix appear after the third character of the mnemonic.
15152
15153 Accordingly, the algorithm for looking up primary opcodes given
15154 an identifier is:
15155
15156 1. Look up the identifier in the opcode table.
15157 If we find a match, go to step U.
15158
15159 2. Look up the last two characters of the identifier in the
15160 conditions table. If we find a match, look up the first N-2
15161 characters of the identifier in the opcode table. If we
15162 find a match, go to step CE.
15163
15164 3. Look up the fourth and fifth characters of the identifier in
15165 the conditions table. If we find a match, extract those
15166 characters from the identifier, and look up the remaining
15167 characters in the opcode table. If we find a match, go
15168 to step CM.
15169
15170 4. Fail.
15171
15172 U. Examine the tag field of the opcode structure, in case this is
15173 one of the six instructions with its conditional infix in an
15174 unusual place. If it is, the tag tells us where to find the
15175 infix; look it up in the conditions table and set inst.cond
15176 accordingly. Otherwise, this is an unconditional instruction.
15177 Again set inst.cond accordingly. Return the opcode structure.
15178
15179 CE. Examine the tag field to make sure this is an instruction that
15180 should receive a conditional suffix. If it is not, fail.
15181 Otherwise, set inst.cond from the suffix we already looked up,
15182 and return the opcode structure.
15183
15184 CM. Examine the tag field to make sure this is an instruction that
15185 should receive a conditional infix after the third character.
15186 If it is not, fail. Otherwise, undo the edits to the current
15187 line of input and proceed as for case CE. */
15188
15189 static const struct asm_opcode *
15190 opcode_lookup (char **str)
15191 {
15192 char *end, *base;
15193 char *affix;
15194 const struct asm_opcode *opcode;
15195 const struct asm_cond *cond;
15196 char save[2];
15197
15198 /* Scan up to the end of the mnemonic, which must end in white space,
15199 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15200 for (base = end = *str; *end != '\0'; end++)
15201 if (*end == ' ' || *end == '.')
15202 break;
15203
15204 if (end == base)
15205 return NULL;
15206
15207 /* Handle a possible width suffix and/or Neon type suffix. */
15208 if (end[0] == '.')
15209 {
15210 int offset = 2;
15211
15212 /* The .w and .n suffixes are only valid if the unified syntax is in
15213 use. */
15214 if (unified_syntax && end[1] == 'w')
15215 inst.size_req = 4;
15216 else if (unified_syntax && end[1] == 'n')
15217 inst.size_req = 2;
15218 else
15219 offset = 0;
15220
15221 inst.vectype.elems = 0;
15222
15223 *str = end + offset;
15224
15225 if (end[offset] == '.')
15226 {
15227 /* See if we have a Neon type suffix (possible in either unified or
15228 non-unified ARM syntax mode). */
15229 if (parse_neon_type (&inst.vectype, str) == FAIL)
15230 return NULL;
15231 }
15232 else if (end[offset] != '\0' && end[offset] != ' ')
15233 return NULL;
15234 }
15235 else
15236 *str = end;
15237
15238 /* Look for unaffixed or special-case affixed mnemonic. */
15239 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15240 end - base);
15241 if (opcode)
15242 {
15243 /* step U */
15244 if (opcode->tag < OT_odd_infix_0)
15245 {
15246 inst.cond = COND_ALWAYS;
15247 return opcode;
15248 }
15249
15250 if (warn_on_deprecated && unified_syntax)
15251 as_warn (_("conditional infixes are deprecated in unified syntax"));
15252 affix = base + (opcode->tag - OT_odd_infix_0);
15253 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15254 gas_assert (cond);
15255
15256 inst.cond = cond->value;
15257 return opcode;
15258 }
15259
15260 /* Cannot have a conditional suffix on a mnemonic of less than two
15261 characters. */
15262 if (end - base < 3)
15263 return NULL;
15264
15265 /* Look for suffixed mnemonic. */
15266 affix = end - 2;
15267 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15268 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15269 affix - base);
15270 if (opcode && cond)
15271 {
15272 /* step CE */
15273 switch (opcode->tag)
15274 {
15275 case OT_cinfix3_legacy:
15276 /* Ignore conditional suffixes matched on infix only mnemonics. */
15277 break;
15278
15279 case OT_cinfix3:
15280 case OT_cinfix3_deprecated:
15281 case OT_odd_infix_unc:
15282 if (!unified_syntax)
15283 return 0;
15284 /* else fall through */
15285
15286 case OT_csuffix:
15287 case OT_csuffixF:
15288 case OT_csuf_or_in3:
15289 inst.cond = cond->value;
15290 return opcode;
15291
15292 case OT_unconditional:
15293 case OT_unconditionalF:
15294 if (thumb_mode)
15295 inst.cond = cond->value;
15296 else
15297 {
15298 /* Delayed diagnostic. */
15299 inst.error = BAD_COND;
15300 inst.cond = COND_ALWAYS;
15301 }
15302 return opcode;
15303
15304 default:
15305 return NULL;
15306 }
15307 }
15308
15309 /* Cannot have a usual-position infix on a mnemonic of less than
15310 six characters (five would be a suffix). */
15311 if (end - base < 6)
15312 return NULL;
15313
15314 /* Look for infixed mnemonic in the usual position. */
15315 affix = base + 3;
15316 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15317 if (!cond)
15318 return NULL;
15319
15320 memcpy (save, affix, 2);
15321 memmove (affix, affix + 2, (end - affix) - 2);
15322 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15323 (end - base) - 2);
15324 memmove (affix + 2, affix, (end - affix) - 2);
15325 memcpy (affix, save, 2);
15326
15327 if (opcode
15328 && (opcode->tag == OT_cinfix3
15329 || opcode->tag == OT_cinfix3_deprecated
15330 || opcode->tag == OT_csuf_or_in3
15331 || opcode->tag == OT_cinfix3_legacy))
15332 {
15333 /* Step CM. */
15334 if (warn_on_deprecated && unified_syntax
15335 && (opcode->tag == OT_cinfix3
15336 || opcode->tag == OT_cinfix3_deprecated))
15337 as_warn (_("conditional infixes are deprecated in unified syntax"));
15338
15339 inst.cond = cond->value;
15340 return opcode;
15341 }
15342
15343 return NULL;
15344 }
15345
15346 /* This function generates an initial IT instruction, leaving its block
15347 virtually open for the new instructions. Eventually,
15348 the mask will be updated by now_it_add_mask () each time
15349 a new instruction needs to be included in the IT block.
15350 Finally, the block is closed with close_automatic_it_block ().
15351 The block closure can be requested either from md_assemble (),
15352 a tencode (), or due to a label hook. */
15353
15354 static void
15355 new_automatic_it_block (int cond)
15356 {
15357 now_it.state = AUTOMATIC_IT_BLOCK;
15358 now_it.mask = 0x18;
15359 now_it.cc = cond;
15360 now_it.block_length = 1;
15361 mapping_state (MAP_THUMB);
15362 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15363 }
15364
15365 /* Close an automatic IT block.
15366 See comments in new_automatic_it_block (). */
15367
15368 static void
15369 close_automatic_it_block (void)
15370 {
15371 now_it.mask = 0x10;
15372 now_it.block_length = 0;
15373 }
15374
15375 /* Update the mask of the current automatically-generated IT
15376 instruction. See comments in new_automatic_it_block (). */
15377
15378 static void
15379 now_it_add_mask (int cond)
15380 {
15381 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15382 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15383 | ((bitvalue) << (nbit)))
15384 const int resulting_bit = (cond & 1);
15385
15386 now_it.mask &= 0xf;
15387 now_it.mask = SET_BIT_VALUE (now_it.mask,
15388 resulting_bit,
15389 (5 - now_it.block_length));
15390 now_it.mask = SET_BIT_VALUE (now_it.mask,
15391 1,
15392 ((5 - now_it.block_length) - 1) );
15393 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15394
15395 #undef CLEAR_BIT
15396 #undef SET_BIT_VALUE
15397 }
15398
15399 /* The IT blocks handling machinery is accessed through the these functions:
15400 it_fsm_pre_encode () from md_assemble ()
15401 set_it_insn_type () optional, from the tencode functions
15402 set_it_insn_type_last () ditto
15403 in_it_block () ditto
15404 it_fsm_post_encode () from md_assemble ()
15405 force_automatic_it_block_close () from label habdling functions
15406
15407 Rationale:
15408 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15409 initializing the IT insn type with a generic initial value depending
15410 on the inst.condition.
15411 2) During the tencode function, two things may happen:
15412 a) The tencode function overrides the IT insn type by
15413 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15414 b) The tencode function queries the IT block state by
15415 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15416
15417 Both set_it_insn_type and in_it_block run the internal FSM state
15418 handling function (handle_it_state), because: a) setting the IT insn
15419 type may incur in an invalid state (exiting the function),
15420 and b) querying the state requires the FSM to be updated.
15421 Specifically we want to avoid creating an IT block for conditional
15422 branches, so it_fsm_pre_encode is actually a guess and we can't
15423 determine whether an IT block is required until the tencode () routine
15424 has decided what type of instruction this actually it.
15425 Because of this, if set_it_insn_type and in_it_block have to be used,
15426 set_it_insn_type has to be called first.
15427
15428 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15429 determines the insn IT type depending on the inst.cond code.
15430 When a tencode () routine encodes an instruction that can be
15431 either outside an IT block, or, in the case of being inside, has to be
15432 the last one, set_it_insn_type_last () will determine the proper
15433 IT instruction type based on the inst.cond code. Otherwise,
15434 set_it_insn_type can be called for overriding that logic or
15435 for covering other cases.
15436
15437 Calling handle_it_state () may not transition the IT block state to
15438 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15439 still queried. Instead, if the FSM determines that the state should
15440 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15441 after the tencode () function: that's what it_fsm_post_encode () does.
15442
15443 Since in_it_block () calls the state handling function to get an
15444 updated state, an error may occur (due to invalid insns combination).
15445 In that case, inst.error is set.
15446 Therefore, inst.error has to be checked after the execution of
15447 the tencode () routine.
15448
15449 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15450 any pending state change (if any) that didn't take place in
15451 handle_it_state () as explained above. */
15452
15453 static void
15454 it_fsm_pre_encode (void)
15455 {
15456 if (inst.cond != COND_ALWAYS)
15457 inst.it_insn_type = INSIDE_IT_INSN;
15458 else
15459 inst.it_insn_type = OUTSIDE_IT_INSN;
15460
15461 now_it.state_handled = 0;
15462 }
15463
15464 /* IT state FSM handling function. */
15465
15466 static int
15467 handle_it_state (void)
15468 {
15469 now_it.state_handled = 1;
15470
15471 switch (now_it.state)
15472 {
15473 case OUTSIDE_IT_BLOCK:
15474 switch (inst.it_insn_type)
15475 {
15476 case OUTSIDE_IT_INSN:
15477 break;
15478
15479 case INSIDE_IT_INSN:
15480 case INSIDE_IT_LAST_INSN:
15481 if (thumb_mode == 0)
15482 {
15483 if (unified_syntax
15484 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15485 as_tsktsk (_("Warning: conditional outside an IT block"\
15486 " for Thumb."));
15487 }
15488 else
15489 {
15490 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15491 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15492 {
15493 /* Automatically generate the IT instruction. */
15494 new_automatic_it_block (inst.cond);
15495 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15496 close_automatic_it_block ();
15497 }
15498 else
15499 {
15500 inst.error = BAD_OUT_IT;
15501 return FAIL;
15502 }
15503 }
15504 break;
15505
15506 case IF_INSIDE_IT_LAST_INSN:
15507 case NEUTRAL_IT_INSN:
15508 break;
15509
15510 case IT_INSN:
15511 now_it.state = MANUAL_IT_BLOCK;
15512 now_it.block_length = 0;
15513 break;
15514 }
15515 break;
15516
15517 case AUTOMATIC_IT_BLOCK:
15518 /* Three things may happen now:
15519 a) We should increment current it block size;
15520 b) We should close current it block (closing insn or 4 insns);
15521 c) We should close current it block and start a new one (due
15522 to incompatible conditions or
15523 4 insns-length block reached). */
15524
15525 switch (inst.it_insn_type)
15526 {
15527 case OUTSIDE_IT_INSN:
15528 /* The closure of the block shall happen immediatelly,
15529 so any in_it_block () call reports the block as closed. */
15530 force_automatic_it_block_close ();
15531 break;
15532
15533 case INSIDE_IT_INSN:
15534 case INSIDE_IT_LAST_INSN:
15535 case IF_INSIDE_IT_LAST_INSN:
15536 now_it.block_length++;
15537
15538 if (now_it.block_length > 4
15539 || !now_it_compatible (inst.cond))
15540 {
15541 force_automatic_it_block_close ();
15542 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15543 new_automatic_it_block (inst.cond);
15544 }
15545 else
15546 {
15547 now_it_add_mask (inst.cond);
15548 }
15549
15550 if (now_it.state == AUTOMATIC_IT_BLOCK
15551 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15552 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15553 close_automatic_it_block ();
15554 break;
15555
15556 case NEUTRAL_IT_INSN:
15557 now_it.block_length++;
15558
15559 if (now_it.block_length > 4)
15560 force_automatic_it_block_close ();
15561 else
15562 now_it_add_mask (now_it.cc & 1);
15563 break;
15564
15565 case IT_INSN:
15566 close_automatic_it_block ();
15567 now_it.state = MANUAL_IT_BLOCK;
15568 break;
15569 }
15570 break;
15571
15572 case MANUAL_IT_BLOCK:
15573 {
15574 /* Check conditional suffixes. */
15575 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15576 int is_last;
15577 now_it.mask <<= 1;
15578 now_it.mask &= 0x1f;
15579 is_last = (now_it.mask == 0x10);
15580
15581 switch (inst.it_insn_type)
15582 {
15583 case OUTSIDE_IT_INSN:
15584 inst.error = BAD_NOT_IT;
15585 return FAIL;
15586
15587 case INSIDE_IT_INSN:
15588 if (cond != inst.cond)
15589 {
15590 inst.error = BAD_IT_COND;
15591 return FAIL;
15592 }
15593 break;
15594
15595 case INSIDE_IT_LAST_INSN:
15596 case IF_INSIDE_IT_LAST_INSN:
15597 if (cond != inst.cond)
15598 {
15599 inst.error = BAD_IT_COND;
15600 return FAIL;
15601 }
15602 if (!is_last)
15603 {
15604 inst.error = BAD_BRANCH;
15605 return FAIL;
15606 }
15607 break;
15608
15609 case NEUTRAL_IT_INSN:
15610 /* The BKPT instruction is unconditional even in an IT block. */
15611 break;
15612
15613 case IT_INSN:
15614 inst.error = BAD_IT_IT;
15615 return FAIL;
15616 }
15617 }
15618 break;
15619 }
15620
15621 return SUCCESS;
15622 }
15623
15624 static void
15625 it_fsm_post_encode (void)
15626 {
15627 int is_last;
15628
15629 if (!now_it.state_handled)
15630 handle_it_state ();
15631
15632 is_last = (now_it.mask == 0x10);
15633 if (is_last)
15634 {
15635 now_it.state = OUTSIDE_IT_BLOCK;
15636 now_it.mask = 0;
15637 }
15638 }
15639
15640 static void
15641 force_automatic_it_block_close (void)
15642 {
15643 if (now_it.state == AUTOMATIC_IT_BLOCK)
15644 {
15645 close_automatic_it_block ();
15646 now_it.state = OUTSIDE_IT_BLOCK;
15647 now_it.mask = 0;
15648 }
15649 }
15650
15651 static int
15652 in_it_block (void)
15653 {
15654 if (!now_it.state_handled)
15655 handle_it_state ();
15656
15657 return now_it.state != OUTSIDE_IT_BLOCK;
15658 }
15659
15660 void
15661 md_assemble (char *str)
15662 {
15663 char *p = str;
15664 const struct asm_opcode * opcode;
15665
15666 /* Align the previous label if needed. */
15667 if (last_label_seen != NULL)
15668 {
15669 symbol_set_frag (last_label_seen, frag_now);
15670 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15671 S_SET_SEGMENT (last_label_seen, now_seg);
15672 }
15673
15674 memset (&inst, '\0', sizeof (inst));
15675 inst.reloc.type = BFD_RELOC_UNUSED;
15676
15677 opcode = opcode_lookup (&p);
15678 if (!opcode)
15679 {
15680 /* It wasn't an instruction, but it might be a register alias of
15681 the form alias .req reg, or a Neon .dn/.qn directive. */
15682 if (! create_register_alias (str, p)
15683 && ! create_neon_reg_alias (str, p))
15684 as_bad (_("bad instruction `%s'"), str);
15685
15686 return;
15687 }
15688
15689 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15690 as_warn (_("s suffix on comparison instruction is deprecated"));
15691
15692 /* The value which unconditional instructions should have in place of the
15693 condition field. */
15694 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15695
15696 if (thumb_mode)
15697 {
15698 arm_feature_set variant;
15699
15700 variant = cpu_variant;
15701 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15702 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15703 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15704 /* Check that this instruction is supported for this CPU. */
15705 if (!opcode->tvariant
15706 || (thumb_mode == 1
15707 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15708 {
15709 as_bad (_("selected processor does not support `%s'"), str);
15710 return;
15711 }
15712 if (inst.cond != COND_ALWAYS && !unified_syntax
15713 && opcode->tencode != do_t_branch)
15714 {
15715 as_bad (_("Thumb does not support conditional execution"));
15716 return;
15717 }
15718
15719 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
15720 {
15721 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
15722 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15723 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15724 {
15725 /* Two things are addressed here.
15726 1) Implicit require narrow instructions on Thumb-1.
15727 This avoids relaxation accidentally introducing Thumb-2
15728 instructions.
15729 2) Reject wide instructions in non Thumb-2 cores. */
15730 if (inst.size_req == 0)
15731 inst.size_req = 2;
15732 else if (inst.size_req == 4)
15733 {
15734 as_bad (_("selected processor does not support `%s'"), str);
15735 return;
15736 }
15737 }
15738 }
15739
15740 inst.instruction = opcode->tvalue;
15741
15742 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
15743 {
15744 /* Prepare the it_insn_type for those encodings that don't set
15745 it. */
15746 it_fsm_pre_encode ();
15747
15748 opcode->tencode ();
15749
15750 it_fsm_post_encode ();
15751 }
15752
15753 if (!(inst.error || inst.relax))
15754 {
15755 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
15756 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15757 if (inst.size_req && inst.size_req != inst.size)
15758 {
15759 as_bad (_("cannot honor width suffix -- `%s'"), str);
15760 return;
15761 }
15762 }
15763
15764 /* Something has gone badly wrong if we try to relax a fixed size
15765 instruction. */
15766 gas_assert (inst.size_req == 0 || !inst.relax);
15767
15768 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15769 *opcode->tvariant);
15770 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
15771 set those bits when Thumb-2 32-bit instructions are seen. ie.
15772 anything other than bl/blx and v6-M instructions.
15773 This is overly pessimistic for relaxable instructions. */
15774 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15775 || inst.relax)
15776 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15777 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
15778 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15779 arm_ext_v6t2);
15780
15781 check_neon_suffixes;
15782
15783 if (!inst.error)
15784 {
15785 mapping_state (MAP_THUMB);
15786 }
15787 }
15788 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
15789 {
15790 bfd_boolean is_bx;
15791
15792 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15793 is_bx = (opcode->aencode == do_bx);
15794
15795 /* Check that this instruction is supported for this CPU. */
15796 if (!(is_bx && fix_v4bx)
15797 && !(opcode->avariant &&
15798 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
15799 {
15800 as_bad (_("selected processor does not support `%s'"), str);
15801 return;
15802 }
15803 if (inst.size_req)
15804 {
15805 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15806 return;
15807 }
15808
15809 inst.instruction = opcode->avalue;
15810 if (opcode->tag == OT_unconditionalF)
15811 inst.instruction |= 0xF << 28;
15812 else
15813 inst.instruction |= inst.cond << 28;
15814 inst.size = INSN_SIZE;
15815 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
15816 {
15817 it_fsm_pre_encode ();
15818 opcode->aencode ();
15819 it_fsm_post_encode ();
15820 }
15821 /* Arm mode bx is marked as both v4T and v5 because it's still required
15822 on a hypothetical non-thumb v5 core. */
15823 if (is_bx)
15824 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
15825 else
15826 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15827 *opcode->avariant);
15828
15829 check_neon_suffixes;
15830
15831 if (!inst.error)
15832 {
15833 mapping_state (MAP_ARM);
15834 }
15835 }
15836 else
15837 {
15838 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15839 "-- `%s'"), str);
15840 return;
15841 }
15842 output_inst (str);
15843 }
15844
15845 static void
15846 check_it_blocks_finished (void)
15847 {
15848 #ifdef OBJ_ELF
15849 asection *sect;
15850
15851 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15852 if (seg_info (sect)->tc_segment_info_data.current_it.state
15853 == MANUAL_IT_BLOCK)
15854 {
15855 as_warn (_("section '%s' finished with an open IT block."),
15856 sect->name);
15857 }
15858 #else
15859 if (now_it.state == MANUAL_IT_BLOCK)
15860 as_warn (_("file finished with an open IT block."));
15861 #endif
15862 }
15863
15864 /* Various frobbings of labels and their addresses. */
15865
15866 void
15867 arm_start_line_hook (void)
15868 {
15869 last_label_seen = NULL;
15870 }
15871
15872 void
15873 arm_frob_label (symbolS * sym)
15874 {
15875 last_label_seen = sym;
15876
15877 ARM_SET_THUMB (sym, thumb_mode);
15878
15879 #if defined OBJ_COFF || defined OBJ_ELF
15880 ARM_SET_INTERWORK (sym, support_interwork);
15881 #endif
15882
15883 force_automatic_it_block_close ();
15884
15885 /* Note - do not allow local symbols (.Lxxx) to be labelled
15886 as Thumb functions. This is because these labels, whilst
15887 they exist inside Thumb code, are not the entry points for
15888 possible ARM->Thumb calls. Also, these labels can be used
15889 as part of a computed goto or switch statement. eg gcc
15890 can generate code that looks like this:
15891
15892 ldr r2, [pc, .Laaa]
15893 lsl r3, r3, #2
15894 ldr r2, [r3, r2]
15895 mov pc, r2
15896
15897 .Lbbb: .word .Lxxx
15898 .Lccc: .word .Lyyy
15899 ..etc...
15900 .Laaa: .word Lbbb
15901
15902 The first instruction loads the address of the jump table.
15903 The second instruction converts a table index into a byte offset.
15904 The third instruction gets the jump address out of the table.
15905 The fourth instruction performs the jump.
15906
15907 If the address stored at .Laaa is that of a symbol which has the
15908 Thumb_Func bit set, then the linker will arrange for this address
15909 to have the bottom bit set, which in turn would mean that the
15910 address computation performed by the third instruction would end
15911 up with the bottom bit set. Since the ARM is capable of unaligned
15912 word loads, the instruction would then load the incorrect address
15913 out of the jump table, and chaos would ensue. */
15914 if (label_is_thumb_function_name
15915 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15916 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
15917 {
15918 /* When the address of a Thumb function is taken the bottom
15919 bit of that address should be set. This will allow
15920 interworking between Arm and Thumb functions to work
15921 correctly. */
15922
15923 THUMB_SET_FUNC (sym, 1);
15924
15925 label_is_thumb_function_name = FALSE;
15926 }
15927
15928 dwarf2_emit_label (sym);
15929 }
15930
15931 bfd_boolean
15932 arm_data_in_code (void)
15933 {
15934 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
15935 {
15936 *input_line_pointer = '/';
15937 input_line_pointer += 5;
15938 *input_line_pointer = 0;
15939 return TRUE;
15940 }
15941
15942 return FALSE;
15943 }
15944
15945 char *
15946 arm_canonicalize_symbol_name (char * name)
15947 {
15948 int len;
15949
15950 if (thumb_mode && (len = strlen (name)) > 5
15951 && streq (name + len - 5, "/data"))
15952 *(name + len - 5) = 0;
15953
15954 return name;
15955 }
15956 \f
15957 /* Table of all register names defined by default. The user can
15958 define additional names with .req. Note that all register names
15959 should appear in both upper and lowercase variants. Some registers
15960 also have mixed-case names. */
15961
15962 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
15963 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
15964 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
15965 #define REGSET(p,t) \
15966 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15967 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15968 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15969 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
15970 #define REGSETH(p,t) \
15971 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15972 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15973 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15974 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15975 #define REGSET2(p,t) \
15976 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15977 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15978 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15979 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
15980
15981 static const struct reg_entry reg_names[] =
15982 {
15983 /* ARM integer registers. */
15984 REGSET(r, RN), REGSET(R, RN),
15985
15986 /* ATPCS synonyms. */
15987 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
15988 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
15989 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
15990
15991 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
15992 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
15993 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
15994
15995 /* Well-known aliases. */
15996 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
15997 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15998
15999 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16000 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16001
16002 /* Coprocessor numbers. */
16003 REGSET(p, CP), REGSET(P, CP),
16004
16005 /* Coprocessor register numbers. The "cr" variants are for backward
16006 compatibility. */
16007 REGSET(c, CN), REGSET(C, CN),
16008 REGSET(cr, CN), REGSET(CR, CN),
16009
16010 /* FPA registers. */
16011 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16012 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16013
16014 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16015 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16016
16017 /* VFP SP registers. */
16018 REGSET(s,VFS), REGSET(S,VFS),
16019 REGSETH(s,VFS), REGSETH(S,VFS),
16020
16021 /* VFP DP Registers. */
16022 REGSET(d,VFD), REGSET(D,VFD),
16023 /* Extra Neon DP registers. */
16024 REGSETH(d,VFD), REGSETH(D,VFD),
16025
16026 /* Neon QP registers. */
16027 REGSET2(q,NQ), REGSET2(Q,NQ),
16028
16029 /* VFP control registers. */
16030 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16031 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16032 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16033 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16034 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16035 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16036
16037 /* Maverick DSP coprocessor registers. */
16038 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16039 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16040
16041 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16042 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16043 REGDEF(dspsc,0,DSPSC),
16044
16045 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16046 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16047 REGDEF(DSPSC,0,DSPSC),
16048
16049 /* iWMMXt data registers - p0, c0-15. */
16050 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16051
16052 /* iWMMXt control registers - p1, c0-3. */
16053 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16054 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16055 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16056 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16057
16058 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16059 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16060 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16061 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16062 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16063
16064 /* XScale accumulator registers. */
16065 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16066 };
16067 #undef REGDEF
16068 #undef REGNUM
16069 #undef REGSET
16070
16071 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16072 within psr_required_here. */
16073 static const struct asm_psr psrs[] =
16074 {
16075 /* Backward compatibility notation. Note that "all" is no longer
16076 truly all possible PSR bits. */
16077 {"all", PSR_c | PSR_f},
16078 {"flg", PSR_f},
16079 {"ctl", PSR_c},
16080
16081 /* Individual flags. */
16082 {"f", PSR_f},
16083 {"c", PSR_c},
16084 {"x", PSR_x},
16085 {"s", PSR_s},
16086 /* Combinations of flags. */
16087 {"fs", PSR_f | PSR_s},
16088 {"fx", PSR_f | PSR_x},
16089 {"fc", PSR_f | PSR_c},
16090 {"sf", PSR_s | PSR_f},
16091 {"sx", PSR_s | PSR_x},
16092 {"sc", PSR_s | PSR_c},
16093 {"xf", PSR_x | PSR_f},
16094 {"xs", PSR_x | PSR_s},
16095 {"xc", PSR_x | PSR_c},
16096 {"cf", PSR_c | PSR_f},
16097 {"cs", PSR_c | PSR_s},
16098 {"cx", PSR_c | PSR_x},
16099 {"fsx", PSR_f | PSR_s | PSR_x},
16100 {"fsc", PSR_f | PSR_s | PSR_c},
16101 {"fxs", PSR_f | PSR_x | PSR_s},
16102 {"fxc", PSR_f | PSR_x | PSR_c},
16103 {"fcs", PSR_f | PSR_c | PSR_s},
16104 {"fcx", PSR_f | PSR_c | PSR_x},
16105 {"sfx", PSR_s | PSR_f | PSR_x},
16106 {"sfc", PSR_s | PSR_f | PSR_c},
16107 {"sxf", PSR_s | PSR_x | PSR_f},
16108 {"sxc", PSR_s | PSR_x | PSR_c},
16109 {"scf", PSR_s | PSR_c | PSR_f},
16110 {"scx", PSR_s | PSR_c | PSR_x},
16111 {"xfs", PSR_x | PSR_f | PSR_s},
16112 {"xfc", PSR_x | PSR_f | PSR_c},
16113 {"xsf", PSR_x | PSR_s | PSR_f},
16114 {"xsc", PSR_x | PSR_s | PSR_c},
16115 {"xcf", PSR_x | PSR_c | PSR_f},
16116 {"xcs", PSR_x | PSR_c | PSR_s},
16117 {"cfs", PSR_c | PSR_f | PSR_s},
16118 {"cfx", PSR_c | PSR_f | PSR_x},
16119 {"csf", PSR_c | PSR_s | PSR_f},
16120 {"csx", PSR_c | PSR_s | PSR_x},
16121 {"cxf", PSR_c | PSR_x | PSR_f},
16122 {"cxs", PSR_c | PSR_x | PSR_s},
16123 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16124 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16125 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16126 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16127 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16128 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16129 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16130 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16131 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16132 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16133 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16134 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16135 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16136 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16137 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16138 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16139 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16140 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16141 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16142 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16143 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16144 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16145 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16146 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16147 };
16148
16149 /* Table of V7M psr names. */
16150 static const struct asm_psr v7m_psrs[] =
16151 {
16152 {"apsr", 0 }, {"APSR", 0 },
16153 {"iapsr", 1 }, {"IAPSR", 1 },
16154 {"eapsr", 2 }, {"EAPSR", 2 },
16155 {"psr", 3 }, {"PSR", 3 },
16156 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16157 {"ipsr", 5 }, {"IPSR", 5 },
16158 {"epsr", 6 }, {"EPSR", 6 },
16159 {"iepsr", 7 }, {"IEPSR", 7 },
16160 {"msp", 8 }, {"MSP", 8 },
16161 {"psp", 9 }, {"PSP", 9 },
16162 {"primask", 16}, {"PRIMASK", 16},
16163 {"basepri", 17}, {"BASEPRI", 17},
16164 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16165 {"faultmask", 19}, {"FAULTMASK", 19},
16166 {"control", 20}, {"CONTROL", 20}
16167 };
16168
16169 /* Table of all shift-in-operand names. */
16170 static const struct asm_shift_name shift_names [] =
16171 {
16172 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16173 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16174 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16175 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16176 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16177 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16178 };
16179
16180 /* Table of all explicit relocation names. */
16181 #ifdef OBJ_ELF
16182 static struct reloc_entry reloc_names[] =
16183 {
16184 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16185 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16186 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16187 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16188 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16189 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16190 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16191 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16192 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16193 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16194 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
16195 };
16196 #endif
16197
16198 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16199 static const struct asm_cond conds[] =
16200 {
16201 {"eq", 0x0},
16202 {"ne", 0x1},
16203 {"cs", 0x2}, {"hs", 0x2},
16204 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16205 {"mi", 0x4},
16206 {"pl", 0x5},
16207 {"vs", 0x6},
16208 {"vc", 0x7},
16209 {"hi", 0x8},
16210 {"ls", 0x9},
16211 {"ge", 0xa},
16212 {"lt", 0xb},
16213 {"gt", 0xc},
16214 {"le", 0xd},
16215 {"al", 0xe}
16216 };
16217
16218 static struct asm_barrier_opt barrier_opt_names[] =
16219 {
16220 { "sy", 0xf },
16221 { "un", 0x7 },
16222 { "st", 0xe },
16223 { "unst", 0x6 }
16224 };
16225
16226 /* Table of ARM-format instructions. */
16227
16228 /* Macros for gluing together operand strings. N.B. In all cases
16229 other than OPS0, the trailing OP_stop comes from default
16230 zero-initialization of the unspecified elements of the array. */
16231 #define OPS0() { OP_stop, }
16232 #define OPS1(a) { OP_##a, }
16233 #define OPS2(a,b) { OP_##a,OP_##b, }
16234 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16235 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16236 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16237 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16238
16239 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16240 This is useful when mixing operands for ARM and THUMB, i.e. using the
16241 MIX_ARM_THUMB_OPERANDS macro.
16242 In order to use these macros, prefix the number of operands with _
16243 e.g. _3. */
16244 #define OPS_1(a) { a, }
16245 #define OPS_2(a,b) { a,b, }
16246 #define OPS_3(a,b,c) { a,b,c, }
16247 #define OPS_4(a,b,c,d) { a,b,c,d, }
16248 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16249 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16250
16251 /* These macros abstract out the exact format of the mnemonic table and
16252 save some repeated characters. */
16253
16254 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16255 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16256 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16257 THUMB_VARIANT, do_##ae, do_##te }
16258
16259 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16260 a T_MNEM_xyz enumerator. */
16261 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16262 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16263 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16264 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16265
16266 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16267 infix after the third character. */
16268 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16269 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16270 THUMB_VARIANT, do_##ae, do_##te }
16271 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16272 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16273 THUMB_VARIANT, do_##ae, do_##te }
16274 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16275 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16276 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16277 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16278 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16279 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16280 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16281 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16282
16283 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16284 appear in the condition table. */
16285 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16286 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16287 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16288
16289 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16290 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16291 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16292 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16293 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16294 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16295 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16296 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16297 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16298 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16299 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16300 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16301 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16302 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16303 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16304 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16305 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16306 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16307 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16308 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16309
16310 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16311 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16312 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16313 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16314
16315 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16316 field is still 0xE. Many of the Thumb variants can be executed
16317 conditionally, so this is checked separately. */
16318 #define TUE(mnem, op, top, nops, ops, ae, te) \
16319 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16320 THUMB_VARIANT, do_##ae, do_##te }
16321
16322 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16323 condition code field. */
16324 #define TUF(mnem, op, top, nops, ops, ae, te) \
16325 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16326 THUMB_VARIANT, do_##ae, do_##te }
16327
16328 /* ARM-only variants of all the above. */
16329 #define CE(mnem, op, nops, ops, ae) \
16330 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16331
16332 #define C3(mnem, op, nops, ops, ae) \
16333 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16334
16335 /* Legacy mnemonics that always have conditional infix after the third
16336 character. */
16337 #define CL(mnem, op, nops, ops, ae) \
16338 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16339 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16340
16341 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16342 #define cCE(mnem, op, nops, ops, ae) \
16343 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16344
16345 /* Legacy coprocessor instructions where conditional infix and conditional
16346 suffix are ambiguous. For consistency this includes all FPA instructions,
16347 not just the potentially ambiguous ones. */
16348 #define cCL(mnem, op, nops, ops, ae) \
16349 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16350 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16351
16352 /* Coprocessor, takes either a suffix or a position-3 infix
16353 (for an FPA corner case). */
16354 #define C3E(mnem, op, nops, ops, ae) \
16355 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16356 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16357
16358 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16359 { m1 #m2 m3, OPS##nops ops, \
16360 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16361 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16362
16363 #define CM(m1, m2, op, nops, ops, ae) \
16364 xCM_ (m1, , m2, op, nops, ops, ae), \
16365 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16366 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16367 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16368 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16369 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16370 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16371 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16372 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16373 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16374 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16375 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16376 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16377 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16378 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16379 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16380 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16381 xCM_ (m1, le, m2, op, nops, ops, ae), \
16382 xCM_ (m1, al, m2, op, nops, ops, ae)
16383
16384 #define UE(mnem, op, nops, ops, ae) \
16385 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16386
16387 #define UF(mnem, op, nops, ops, ae) \
16388 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16389
16390 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16391 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16392 use the same encoding function for each. */
16393 #define NUF(mnem, op, nops, ops, enc) \
16394 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16395 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16396
16397 /* Neon data processing, version which indirects through neon_enc_tab for
16398 the various overloaded versions of opcodes. */
16399 #define nUF(mnem, op, nops, ops, enc) \
16400 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16401 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16402
16403 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16404 version. */
16405 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16406 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16407 THUMB_VARIANT, do_##enc, do_##enc }
16408
16409 #define NCE(mnem, op, nops, ops, enc) \
16410 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16411
16412 #define NCEF(mnem, op, nops, ops, enc) \
16413 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16414
16415 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16416 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16417 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16418 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16419
16420 #define nCE(mnem, op, nops, ops, enc) \
16421 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16422
16423 #define nCEF(mnem, op, nops, ops, enc) \
16424 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16425
16426 #define do_0 0
16427
16428 /* Thumb-only, unconditional. */
16429 #define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
16430
16431 static const struct asm_opcode insns[] =
16432 {
16433 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16434 #define THUMB_VARIANT &arm_ext_v4t
16435 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16436 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16437 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16438 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16439 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16440 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16441 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16442 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16443 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16444 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16445 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16446 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16447 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16448 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16449 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16450 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16451
16452 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16453 for setting PSR flag bits. They are obsolete in V6 and do not
16454 have Thumb equivalents. */
16455 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16456 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16457 CL("tstp", 110f000, 2, (RR, SH), cmp),
16458 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16459 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16460 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16461 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16462 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16463 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16464
16465 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16466 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16467 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16468 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16469
16470 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16471 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16472 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16473 OP_RRnpc),
16474 OP_ADDRGLDR),ldst, t_ldst),
16475 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16476
16477 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16478 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16479 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16480 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16481 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16482 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16483
16484 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16485 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16486 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16487 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16488
16489 /* Pseudo ops. */
16490 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16491 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16492 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16493
16494 /* Thumb-compatibility pseudo ops. */
16495 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16496 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16497 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16498 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16499 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16500 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16501 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16502 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16503 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16504 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16505 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16506 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16507
16508 /* These may simplify to neg. */
16509 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16510 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16511
16512 #undef THUMB_VARIANT
16513 #define THUMB_VARIANT & arm_ext_v6
16514
16515 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16516
16517 /* V1 instructions with no Thumb analogue prior to V6T2. */
16518 #undef THUMB_VARIANT
16519 #define THUMB_VARIANT & arm_ext_v6t2
16520
16521 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16522 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16523 CL("teqp", 130f000, 2, (RR, SH), cmp),
16524
16525 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16526 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16527 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16528 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16529
16530 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16531 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16532
16533 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16534 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16535
16536 /* V1 instructions with no Thumb analogue at all. */
16537 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16538 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16539
16540 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16541 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16542 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16543 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16544 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16545 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16546 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16547 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16548
16549 #undef ARM_VARIANT
16550 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16551 #undef THUMB_VARIANT
16552 #define THUMB_VARIANT & arm_ext_v4t
16553
16554 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16555 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16556
16557 #undef THUMB_VARIANT
16558 #define THUMB_VARIANT & arm_ext_v6t2
16559
16560 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16561 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16562
16563 /* Generic coprocessor instructions. */
16564 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16565 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16566 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16567 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16568 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16569 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16570 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16571
16572 #undef ARM_VARIANT
16573 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16574
16575 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16576 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16577
16578 #undef ARM_VARIANT
16579 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16580 #undef THUMB_VARIANT
16581 #define THUMB_VARIANT & arm_ext_msr
16582
16583 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16584 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16585
16586 #undef ARM_VARIANT
16587 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16588 #undef THUMB_VARIANT
16589 #define THUMB_VARIANT & arm_ext_v6t2
16590
16591 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16592 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16593 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16594 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16595 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16596 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16597 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16598 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16599
16600 #undef ARM_VARIANT
16601 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16602 #undef THUMB_VARIANT
16603 #define THUMB_VARIANT & arm_ext_v4t
16604
16605 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16606 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16607 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16608 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16609 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16610 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16611
16612 #undef ARM_VARIANT
16613 #define ARM_VARIANT & arm_ext_v4t_5
16614
16615 /* ARM Architecture 4T. */
16616 /* Note: bx (and blx) are required on V5, even if the processor does
16617 not support Thumb. */
16618 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16619
16620 #undef ARM_VARIANT
16621 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16622 #undef THUMB_VARIANT
16623 #define THUMB_VARIANT & arm_ext_v5t
16624
16625 /* Note: blx has 2 variants; the .value coded here is for
16626 BLX(2). Only this variant has conditional execution. */
16627 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16628 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16629
16630 #undef THUMB_VARIANT
16631 #define THUMB_VARIANT & arm_ext_v6t2
16632
16633 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16634 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16635 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16636 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16637 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16638 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16639 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16640 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16641
16642 #undef ARM_VARIANT
16643 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16644 #undef THUMB_VARIANT
16645 #define THUMB_VARIANT &arm_ext_v5exp
16646
16647 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16648 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16649 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16650 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16651
16652 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16653 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16654
16655 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16656 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16657 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16658 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16659
16660 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16661 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16662 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16663 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16664
16665 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16666 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16667
16668 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16669 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16670 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16671 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16672
16673 #undef ARM_VARIANT
16674 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16675 #undef THUMB_VARIANT
16676 #define THUMB_VARIANT &arm_ext_v6t2
16677
16678 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
16679 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
16680 ldrd, t_ldstd),
16681 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
16682 ADDRGLDRS), ldrd, t_ldstd),
16683
16684 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16685 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16686
16687 #undef ARM_VARIANT
16688 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16689
16690 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
16691
16692 #undef ARM_VARIANT
16693 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16694 #undef THUMB_VARIANT
16695 #define THUMB_VARIANT & arm_ext_v6
16696
16697 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16698 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16699 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16700 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16701 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16702 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16703 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16704 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16705 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16706 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
16707
16708 #undef THUMB_VARIANT
16709 #define THUMB_VARIANT & arm_ext_v6t2
16710
16711 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
16712 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16713 strex, t_strex),
16714 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16715 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16716
16717 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16718 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
16719
16720 /* ARM V6 not included in V7M. */
16721 #undef THUMB_VARIANT
16722 #define THUMB_VARIANT & arm_ext_v6_notm
16723 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16724 UF(rfeib, 9900a00, 1, (RRw), rfe),
16725 UF(rfeda, 8100a00, 1, (RRw), rfe),
16726 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16727 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16728 UF(rfefa, 9900a00, 1, (RRw), rfe),
16729 UF(rfeea, 8100a00, 1, (RRw), rfe),
16730 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16731 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16732 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16733 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16734 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
16735
16736 /* ARM V6 not included in V7M (eg. integer SIMD). */
16737 #undef THUMB_VARIANT
16738 #define THUMB_VARIANT & arm_ext_v6_dsp
16739 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16740 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16741 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16742 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16743 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16744 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16745 /* Old name for QASX. */
16746 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16747 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16748 /* Old name for QSAX. */
16749 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16750 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16751 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16752 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16753 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16754 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16755 /* Old name for SASX. */
16756 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16757 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16758 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16759 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16760 /* Old name for SHASX. */
16761 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16762 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16763 /* Old name for SHSAX. */
16764 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16765 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16766 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16767 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16768 /* Old name for SSAX. */
16769 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16770 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16771 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16772 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16773 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16774 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16775 /* Old name for UASX. */
16776 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16777 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16778 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16779 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16780 /* Old name for UHASX. */
16781 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16782 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16783 /* Old name for UHSAX. */
16784 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16785 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16786 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16787 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16788 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16789 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16790 /* Old name for UQASX. */
16791 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16792 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16793 /* Old name for UQSAX. */
16794 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16795 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16796 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16797 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16798 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16799 /* Old name for USAX. */
16800 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16801 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16802 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16803 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16804 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16805 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16806 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16807 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16808 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16809 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16810 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16811 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16812 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16813 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16814 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16815 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16816 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16817 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16818 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16819 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16820 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16821 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16822 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16823 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16824 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16825 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16826 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16827 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16828 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16829 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16830 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16831 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16832 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16833 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
16834
16835 #undef ARM_VARIANT
16836 #define ARM_VARIANT & arm_ext_v6k
16837 #undef THUMB_VARIANT
16838 #define THUMB_VARIANT & arm_ext_v6k
16839
16840 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16841 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16842 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16843 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
16844
16845 #undef THUMB_VARIANT
16846 #define THUMB_VARIANT & arm_ext_v6_notm
16847 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
16848 ldrexd, t_ldrexd),
16849 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
16850 RRnpcb), strexd, t_strexd),
16851
16852 #undef THUMB_VARIANT
16853 #define THUMB_VARIANT & arm_ext_v6t2
16854 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
16855 rd_rn, rd_rn),
16856 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
16857 rd_rn, rd_rn),
16858 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16859 strex, rm_rd_rn),
16860 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16861 strex, rm_rd_rn),
16862 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
16863
16864 #undef ARM_VARIANT
16865 #define ARM_VARIANT & arm_ext_v6z
16866
16867 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
16868
16869 #undef ARM_VARIANT
16870 #define ARM_VARIANT & arm_ext_v6t2
16871
16872 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16873 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16874 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16875 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16876
16877 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16878 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16879 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16880 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
16881
16882 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16883 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16884 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16885 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16886
16887 UT("cbnz", b900, 2, (RR, EXP), t_cbz),
16888 UT("cbz", b100, 2, (RR, EXP), t_cbz),
16889
16890 /* ARM does not really have an IT instruction, so always allow it.
16891 The opcode is copied from Thumb in order to allow warnings in
16892 -mimplicit-it=[never | arm] modes. */
16893 #undef ARM_VARIANT
16894 #define ARM_VARIANT & arm_ext_v1
16895
16896 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16897 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16898 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16899 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16900 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16901 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16902 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16903 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16904 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16905 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16906 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16907 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16908 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16909 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16910 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
16911 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
16912 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16913 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
16914
16915 /* Thumb2 only instructions. */
16916 #undef ARM_VARIANT
16917 #define ARM_VARIANT NULL
16918
16919 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16920 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16921 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16922 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16923 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16924 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
16925
16926 /* Thumb-2 hardware division instructions (R and M profiles only). */
16927 #undef THUMB_VARIANT
16928 #define THUMB_VARIANT & arm_ext_div
16929
16930 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16931 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
16932
16933 /* ARM V6M/V7 instructions. */
16934 #undef ARM_VARIANT
16935 #define ARM_VARIANT & arm_ext_barrier
16936 #undef THUMB_VARIANT
16937 #define THUMB_VARIANT & arm_ext_barrier
16938
16939 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16940 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16941 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
16942
16943 /* ARM V7 instructions. */
16944 #undef ARM_VARIANT
16945 #define ARM_VARIANT & arm_ext_v7
16946 #undef THUMB_VARIANT
16947 #define THUMB_VARIANT & arm_ext_v7
16948
16949 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
16950 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
16951
16952 #undef ARM_VARIANT
16953 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16954
16955 cCE("wfs", e200110, 1, (RR), rd),
16956 cCE("rfs", e300110, 1, (RR), rd),
16957 cCE("wfc", e400110, 1, (RR), rd),
16958 cCE("rfc", e500110, 1, (RR), rd),
16959
16960 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16961 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16962 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16963 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16964
16965 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16966 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16967 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16968 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16969
16970 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
16971 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
16972 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
16973 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
16974 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
16975 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
16976 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
16977 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
16978 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
16979 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
16980 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
16981 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
16982
16983 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
16984 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
16985 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
16986 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
16987 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
16988 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
16989 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
16990 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
16991 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
16992 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
16993 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
16994 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
16995
16996 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
16997 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
16998 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
16999 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17000 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17001 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17002 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17003 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17004 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17005 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17006 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17007 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17008
17009 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17010 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17011 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17012 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17013 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17014 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17015 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17016 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17017 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17018 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17019 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17020 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17021
17022 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17023 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17024 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17025 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17026 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17027 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17028 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17029 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17030 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17031 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17032 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17033 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17034
17035 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17036 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17037 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17038 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17039 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17040 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17041 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17042 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17043 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17044 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17045 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17046 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17047
17048 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17049 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17050 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17051 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17052 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17053 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17054 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17055 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17056 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17057 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17058 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17059 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17060
17061 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17062 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17063 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17064 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17065 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17066 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17067 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17068 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17069 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17070 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17071 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17072 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17073
17074 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17075 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17076 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17077 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17078 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17079 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17080 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17081 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17082 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17083 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17084 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17085 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17086
17087 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17088 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17089 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17090 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17091 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17092 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17093 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17094 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17095 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17096 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17097 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17098 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17099
17100 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17101 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17102 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17103 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17104 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17105 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17106 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17107 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17108 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17109 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17110 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17111 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17112
17113 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17114 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17115 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17116 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17117 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17118 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17119 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17120 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17121 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17122 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17123 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17124 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17125
17126 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17127 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17128 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17129 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17130 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17131 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17132 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17133 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17134 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17135 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17136 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17137 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17138
17139 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17140 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17141 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17142 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17143 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17144 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17145 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17146 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17147 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17148 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17149 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17150 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17151
17152 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17153 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17154 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17155 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17156 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17157 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17158 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17159 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17160 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17161 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17162 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17163 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17164
17165 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17166 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17167 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17168 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17169 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17170 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17171 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17172 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17173 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17174 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17175 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17176 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17177
17178 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17179 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17180 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17181 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17182 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17183 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17184 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17185 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17186 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17187 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17188 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17189 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17190
17191 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17192 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17193 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17194 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17195 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17196 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17197 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17198 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17199 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17200 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17201 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17202 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17203
17204 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17205 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17206 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17207 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17208 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17209 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17210 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17211 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17212 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17213 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17214 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17215 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17216
17217 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17218 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17219 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17220 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17221 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17222 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17223 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17224 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17225 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17226 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17227 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17228 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17229
17230 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17231 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17232 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17233 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17234 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17235 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17236 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17237 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17238 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17239 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17240 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17241 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17242
17243 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17244 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17245 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17246 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17247 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17248 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17249 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17250 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17251 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17252 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17253 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17254 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17255
17256 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17257 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17258 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17259 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17260 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17261 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17262 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17263 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17264 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17265 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17266 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17267 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17268
17269 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17270 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17271 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17272 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17273 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17274 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17275 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17276 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17277 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17278 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17279 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17280 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17281
17282 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17283 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17284 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17285 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17286 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17287 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17288 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17289 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17290 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17291 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17292 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17293 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17294
17295 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17296 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17297 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17298 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17299 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17300 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17301 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17302 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17303 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17304 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17305 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17306 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17307
17308 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17309 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17310 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17311 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17312 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17313 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17314 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17315 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17316 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17317 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17318 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17319 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17320
17321 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17322 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17323 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17324 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17325 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17326 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17327 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17328 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17329 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17330 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17331 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17332 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17333
17334 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17335 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17336 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17337 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17338 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17339 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17340 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17341 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17342 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17343 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17344 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17345 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17346
17347 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17348 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17349 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17350 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17351
17352 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17353 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17354 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17355 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17356 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17357 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17358 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17359 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17360 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17361 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17362 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17363 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17364
17365 /* The implementation of the FIX instruction is broken on some
17366 assemblers, in that it accepts a precision specifier as well as a
17367 rounding specifier, despite the fact that this is meaningless.
17368 To be more compatible, we accept it as well, though of course it
17369 does not set any bits. */
17370 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17371 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17372 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17373 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17374 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17375 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17376 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17377 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17378 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17379 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17380 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17381 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17382 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17383
17384 /* Instructions that were new with the real FPA, call them V2. */
17385 #undef ARM_VARIANT
17386 #define ARM_VARIANT & fpu_fpa_ext_v2
17387
17388 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17389 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17390 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17391 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17392 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17393 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17394
17395 #undef ARM_VARIANT
17396 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17397
17398 /* Moves and type conversions. */
17399 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17400 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17401 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17402 cCE("fmstat", ef1fa10, 0, (), noargs),
17403 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17404 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17405 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17406 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17407 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17408 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17409 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17410 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17411 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17412 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17413
17414 /* Memory operations. */
17415 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17416 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17417 cCE("fldmias", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17418 cCE("fldmfds", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17419 cCE("fldmdbs", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17420 cCE("fldmeas", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17421 cCE("fldmiax", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17422 cCE("fldmfdx", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17423 cCE("fldmdbx", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17424 cCE("fldmeax", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17425 cCE("fstmias", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17426 cCE("fstmeas", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17427 cCE("fstmdbs", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17428 cCE("fstmfds", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17429 cCE("fstmiax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17430 cCE("fstmeax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17431 cCE("fstmdbx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17432 cCE("fstmfdx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17433
17434 /* Monadic operations. */
17435 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17436 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17437 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17438
17439 /* Dyadic operations. */
17440 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17441 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17442 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17443 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17444 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17445 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17446 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17447 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17448 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17449
17450 /* Comparisons. */
17451 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17452 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17453 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17454 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17455
17456 /* Double precision load/store are still present on single precision
17457 implementations. */
17458 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17459 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17460 cCE("fldmiad", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17461 cCE("fldmfdd", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17462 cCE("fldmdbd", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17463 cCE("fldmead", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17464 cCE("fstmiad", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17465 cCE("fstmead", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17466 cCE("fstmdbd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17467 cCE("fstmfdd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17468
17469 #undef ARM_VARIANT
17470 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17471
17472 /* Moves and type conversions. */
17473 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17474 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17475 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17476 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17477 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17478 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17479 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17480 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17481 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17482 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17483 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17484 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17485 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17486
17487 /* Monadic operations. */
17488 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17489 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17490 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17491
17492 /* Dyadic operations. */
17493 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17494 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17495 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17496 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17497 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17498 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17499 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17500 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17501 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17502
17503 /* Comparisons. */
17504 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17505 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17506 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17507 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17508
17509 #undef ARM_VARIANT
17510 #define ARM_VARIANT & fpu_vfp_ext_v2
17511
17512 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17513 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17514 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17515 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17516
17517 /* Instructions which may belong to either the Neon or VFP instruction sets.
17518 Individual encoder functions perform additional architecture checks. */
17519 #undef ARM_VARIANT
17520 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17521 #undef THUMB_VARIANT
17522 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17523
17524 /* These mnemonics are unique to VFP. */
17525 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17526 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17527 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17528 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17529 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17530 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17531 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17532 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17533 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17534 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17535
17536 /* Mnemonics shared by Neon and VFP. */
17537 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17538 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17539 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17540
17541 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17542 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17543
17544 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17545 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17546
17547 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17548 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17549 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17550 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17551 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17552 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17553 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17554 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17555
17556 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17557 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
17558 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17559 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17560
17561
17562 /* NOTE: All VMOV encoding is special-cased! */
17563 NCE(vmov, 0, 1, (VMOV), neon_mov),
17564 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17565
17566 #undef THUMB_VARIANT
17567 #define THUMB_VARIANT & fpu_neon_ext_v1
17568 #undef ARM_VARIANT
17569 #define ARM_VARIANT & fpu_neon_ext_v1
17570
17571 /* Data processing with three registers of the same length. */
17572 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17573 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17574 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17575 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17576 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17577 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17578 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17579 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17580 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17581 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17582 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17583 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17584 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17585 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17586 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17587 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17588 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17589 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17590 /* If not immediate, fall back to neon_dyadic_i64_su.
17591 shl_imm should accept I8 I16 I32 I64,
17592 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17593 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17594 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17595 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17596 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17597 /* Logic ops, types optional & ignored. */
17598 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17599 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17600 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17601 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17602 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17603 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17604 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17605 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17606 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17607 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17608 /* Bitfield ops, untyped. */
17609 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17610 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17611 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17612 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17613 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17614 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17615 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17616 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17617 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17618 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17619 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17620 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17621 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17622 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17623 back to neon_dyadic_if_su. */
17624 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17625 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17626 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17627 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17628 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17629 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17630 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17631 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17632 /* Comparison. Type I8 I16 I32 F32. */
17633 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17634 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17635 /* As above, D registers only. */
17636 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17637 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17638 /* Int and float variants, signedness unimportant. */
17639 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17640 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17641 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17642 /* Add/sub take types I8 I16 I32 I64 F32. */
17643 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17644 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17645 /* vtst takes sizes 8, 16, 32. */
17646 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17647 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17648 /* VMUL takes I8 I16 I32 F32 P8. */
17649 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
17650 /* VQD{R}MULH takes S16 S32. */
17651 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17652 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17653 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17654 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17655 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17656 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17657 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17658 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17659 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17660 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17661 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17662 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17663 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17664 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17665 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17666 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17667
17668 /* Two address, int/float. Types S8 S16 S32 F32. */
17669 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
17670 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17671
17672 /* Data processing with two registers and a shift amount. */
17673 /* Right shifts, and variants with rounding.
17674 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17675 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17676 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17677 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17678 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17679 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17680 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17681 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17682 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17683 /* Shift and insert. Sizes accepted 8 16 32 64. */
17684 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17685 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17686 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17687 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17688 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17689 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17690 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17691 /* Right shift immediate, saturating & narrowing, with rounding variants.
17692 Types accepted S16 S32 S64 U16 U32 U64. */
17693 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17694 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17695 /* As above, unsigned. Types accepted S16 S32 S64. */
17696 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17697 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17698 /* Right shift narrowing. Types accepted I16 I32 I64. */
17699 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17700 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17701 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
17702 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
17703 /* CVT with optional immediate for fixed-point variant. */
17704 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
17705
17706 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
17707 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
17708
17709 /* Data processing, three registers of different lengths. */
17710 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17711 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17712 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17713 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17714 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17715 /* If not scalar, fall back to neon_dyadic_long.
17716 Vector types as above, scalar types S16 S32 U16 U32. */
17717 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17718 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17719 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17720 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17721 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17722 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17723 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17724 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17725 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17726 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17727 /* Saturating doubling multiplies. Types S16 S32. */
17728 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17729 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17730 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17731 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17732 S16 S32 U16 U32. */
17733 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
17734
17735 /* Extract. Size 8. */
17736 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17737 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
17738
17739 /* Two registers, miscellaneous. */
17740 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17741 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17742 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17743 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17744 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17745 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17746 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17747 /* Vector replicate. Sizes 8 16 32. */
17748 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17749 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
17750 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17751 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17752 /* VMOVN. Types I16 I32 I64. */
17753 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
17754 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
17755 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
17756 /* VQMOVUN. Types S16 S32 S64. */
17757 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
17758 /* VZIP / VUZP. Sizes 8 16 32. */
17759 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17760 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17761 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17762 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17763 /* VQABS / VQNEG. Types S8 S16 S32. */
17764 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17765 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17766 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17767 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17768 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17769 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17770 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17771 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17772 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17773 /* Reciprocal estimates. Types U32 F32. */
17774 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17775 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17776 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17777 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17778 /* VCLS. Types S8 S16 S32. */
17779 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17780 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17781 /* VCLZ. Types I8 I16 I32. */
17782 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17783 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17784 /* VCNT. Size 8. */
17785 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17786 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17787 /* Two address, untyped. */
17788 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17789 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17790 /* VTRN. Sizes 8 16 32. */
17791 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17792 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
17793
17794 /* Table lookup. Size 8. */
17795 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17796 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17797
17798 #undef THUMB_VARIANT
17799 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17800 #undef ARM_VARIANT
17801 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17802
17803 /* Neon element/structure load/store. */
17804 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17805 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17806 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17807 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17808 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17809 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17810 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17811 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17812
17813 #undef THUMB_VARIANT
17814 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
17815 #undef ARM_VARIANT
17816 #define ARM_VARIANT &fpu_vfp_ext_v3xd
17817 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17818 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17819 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17820 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17821 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17822 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17823 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17824 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17825 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17826
17827 #undef THUMB_VARIANT
17828 #define THUMB_VARIANT & fpu_vfp_ext_v3
17829 #undef ARM_VARIANT
17830 #define ARM_VARIANT & fpu_vfp_ext_v3
17831
17832 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
17833 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17834 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17835 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17836 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17837 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17838 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17839 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17840 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17841
17842 #undef ARM_VARIANT
17843 #define ARM_VARIANT &fpu_vfp_ext_fma
17844 #undef THUMB_VARIANT
17845 #define THUMB_VARIANT &fpu_vfp_ext_fma
17846 /* Mnemonics shared by Neon and VFP. These are included in the
17847 VFP FMA variant; NEON and VFP FMA always includes the NEON
17848 FMA instructions. */
17849 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17850 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17851 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17852 the v form should always be used. */
17853 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17854 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17855 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17856 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17857 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17858 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17859
17860 #undef THUMB_VARIANT
17861 #undef ARM_VARIANT
17862 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17863
17864 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17865 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17866 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17867 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17868 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17869 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17870 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17871 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
17872
17873 #undef ARM_VARIANT
17874 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17875
17876 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17877 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17878 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17879 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17880 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17881 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17882 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17883 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17884 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17885 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17886 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17887 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17888 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17889 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17890 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17891 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17892 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17893 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17894 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17895 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17896 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17897 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17898 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17899 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17900 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17901 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17902 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17903 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17904 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17905 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17906 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17907 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17908 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17909 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17910 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17911 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17912 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17913 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17914 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17915 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17916 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17917 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17918 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17919 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17920 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17921 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17922 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17923 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17924 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17925 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17926 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17927 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17928 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17929 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17930 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17931 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17932 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17933 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17934 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17935 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17936 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17937 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17938 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17939 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17940 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17941 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17942 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17943 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17944 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17945 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17946 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17947 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17948 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17949 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17950 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17951 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17952 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17953 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17954 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17955 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17956 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17957 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17958 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17959 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17960 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17961 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17962 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17963 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17964 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17965 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17966 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17967 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17968 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17969 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17970 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17971 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17972 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17973 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17974 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17975 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17976 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17977 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17978 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17979 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17980 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17981 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17982 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17983 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17984 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17985 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17986 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
17987 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17988 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17989 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17990 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17991 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17992 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17993 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17994 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17995 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17996 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17997 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17998 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17999 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18000 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18001 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18002 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18003 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18004 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18005 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18006 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18007 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18008 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18009 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18010 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18011 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18012 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18013 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18014 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18015 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18016 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18017 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18018 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18019 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18020 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18021 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18022 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18023 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18024 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18025 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18026 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18027 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18028 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18029 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18030 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18031 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18032 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18033 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18034 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18035 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18036 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18037 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18038
18039 #undef ARM_VARIANT
18040 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18041
18042 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18043 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18044 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18045 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18046 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18047 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18048 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18049 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18050 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18051 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18052 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18053 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18054 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18055 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18056 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18057 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18058 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18059 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18060 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18061 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18062 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18063 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18064 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18065 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18066 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18067 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18068 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18069 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18070 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18071 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18072 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18073 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18074 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18075 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18076 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18077 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18078 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18079 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18080 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18081 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18082 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18083 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18084 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18085 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18086 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18087 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18088 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18089 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18090 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18091 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18092 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18093 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18094 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18095 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18096 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18097 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18098 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18099
18100 #undef ARM_VARIANT
18101 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18102
18103 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18104 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18105 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18106 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18107 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18108 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18109 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18110 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18111 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18112 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18113 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18114 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18115 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18116 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18117 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18118 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18119 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18120 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18121 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18122 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18123 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18124 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18125 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18126 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18127 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18128 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18129 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18130 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18131 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18132 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18133 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18134 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18135 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18136 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18137 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18138 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18139 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18140 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18141 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18142 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18143 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18144 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18145 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18146 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18147 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18148 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18149 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18150 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18151 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18152 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18153 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18154 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18155 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18156 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18157 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18158 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18159 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18160 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18161 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18162 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18163 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18164 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18165 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18166 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18167 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18168 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18169 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18170 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18171 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18172 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18173 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18174 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18175 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18176 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18177 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18178 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18179 };
18180 #undef ARM_VARIANT
18181 #undef THUMB_VARIANT
18182 #undef TCE
18183 #undef TCM
18184 #undef TUE
18185 #undef TUF
18186 #undef TCC
18187 #undef cCE
18188 #undef cCL
18189 #undef C3E
18190 #undef CE
18191 #undef CM
18192 #undef UE
18193 #undef UF
18194 #undef UT
18195 #undef NUF
18196 #undef nUF
18197 #undef NCE
18198 #undef nCE
18199 #undef OPS0
18200 #undef OPS1
18201 #undef OPS2
18202 #undef OPS3
18203 #undef OPS4
18204 #undef OPS5
18205 #undef OPS6
18206 #undef do_0
18207 \f
18208 /* MD interface: bits in the object file. */
18209
18210 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18211 for use in the a.out file, and stores them in the array pointed to by buf.
18212 This knows about the endian-ness of the target machine and does
18213 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18214 2 (short) and 4 (long) Floating numbers are put out as a series of
18215 LITTLENUMS (shorts, here at least). */
18216
18217 void
18218 md_number_to_chars (char * buf, valueT val, int n)
18219 {
18220 if (target_big_endian)
18221 number_to_chars_bigendian (buf, val, n);
18222 else
18223 number_to_chars_littleendian (buf, val, n);
18224 }
18225
18226 static valueT
18227 md_chars_to_number (char * buf, int n)
18228 {
18229 valueT result = 0;
18230 unsigned char * where = (unsigned char *) buf;
18231
18232 if (target_big_endian)
18233 {
18234 while (n--)
18235 {
18236 result <<= 8;
18237 result |= (*where++ & 255);
18238 }
18239 }
18240 else
18241 {
18242 while (n--)
18243 {
18244 result <<= 8;
18245 result |= (where[n] & 255);
18246 }
18247 }
18248
18249 return result;
18250 }
18251
18252 /* MD interface: Sections. */
18253
18254 /* Estimate the size of a frag before relaxing. Assume everything fits in
18255 2 bytes. */
18256
18257 int
18258 md_estimate_size_before_relax (fragS * fragp,
18259 segT segtype ATTRIBUTE_UNUSED)
18260 {
18261 fragp->fr_var = 2;
18262 return 2;
18263 }
18264
18265 /* Convert a machine dependent frag. */
18266
18267 void
18268 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18269 {
18270 unsigned long insn;
18271 unsigned long old_op;
18272 char *buf;
18273 expressionS exp;
18274 fixS *fixp;
18275 int reloc_type;
18276 int pc_rel;
18277 int opcode;
18278
18279 buf = fragp->fr_literal + fragp->fr_fix;
18280
18281 old_op = bfd_get_16(abfd, buf);
18282 if (fragp->fr_symbol)
18283 {
18284 exp.X_op = O_symbol;
18285 exp.X_add_symbol = fragp->fr_symbol;
18286 }
18287 else
18288 {
18289 exp.X_op = O_constant;
18290 }
18291 exp.X_add_number = fragp->fr_offset;
18292 opcode = fragp->fr_subtype;
18293 switch (opcode)
18294 {
18295 case T_MNEM_ldr_pc:
18296 case T_MNEM_ldr_pc2:
18297 case T_MNEM_ldr_sp:
18298 case T_MNEM_str_sp:
18299 case T_MNEM_ldr:
18300 case T_MNEM_ldrb:
18301 case T_MNEM_ldrh:
18302 case T_MNEM_str:
18303 case T_MNEM_strb:
18304 case T_MNEM_strh:
18305 if (fragp->fr_var == 4)
18306 {
18307 insn = THUMB_OP32 (opcode);
18308 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18309 {
18310 insn |= (old_op & 0x700) << 4;
18311 }
18312 else
18313 {
18314 insn |= (old_op & 7) << 12;
18315 insn |= (old_op & 0x38) << 13;
18316 }
18317 insn |= 0x00000c00;
18318 put_thumb32_insn (buf, insn);
18319 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18320 }
18321 else
18322 {
18323 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18324 }
18325 pc_rel = (opcode == T_MNEM_ldr_pc2);
18326 break;
18327 case T_MNEM_adr:
18328 if (fragp->fr_var == 4)
18329 {
18330 insn = THUMB_OP32 (opcode);
18331 insn |= (old_op & 0xf0) << 4;
18332 put_thumb32_insn (buf, insn);
18333 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18334 }
18335 else
18336 {
18337 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18338 exp.X_add_number -= 4;
18339 }
18340 pc_rel = 1;
18341 break;
18342 case T_MNEM_mov:
18343 case T_MNEM_movs:
18344 case T_MNEM_cmp:
18345 case T_MNEM_cmn:
18346 if (fragp->fr_var == 4)
18347 {
18348 int r0off = (opcode == T_MNEM_mov
18349 || opcode == T_MNEM_movs) ? 0 : 8;
18350 insn = THUMB_OP32 (opcode);
18351 insn = (insn & 0xe1ffffff) | 0x10000000;
18352 insn |= (old_op & 0x700) << r0off;
18353 put_thumb32_insn (buf, insn);
18354 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18355 }
18356 else
18357 {
18358 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18359 }
18360 pc_rel = 0;
18361 break;
18362 case T_MNEM_b:
18363 if (fragp->fr_var == 4)
18364 {
18365 insn = THUMB_OP32(opcode);
18366 put_thumb32_insn (buf, insn);
18367 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18368 }
18369 else
18370 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18371 pc_rel = 1;
18372 break;
18373 case T_MNEM_bcond:
18374 if (fragp->fr_var == 4)
18375 {
18376 insn = THUMB_OP32(opcode);
18377 insn |= (old_op & 0xf00) << 14;
18378 put_thumb32_insn (buf, insn);
18379 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18380 }
18381 else
18382 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18383 pc_rel = 1;
18384 break;
18385 case T_MNEM_add_sp:
18386 case T_MNEM_add_pc:
18387 case T_MNEM_inc_sp:
18388 case T_MNEM_dec_sp:
18389 if (fragp->fr_var == 4)
18390 {
18391 /* ??? Choose between add and addw. */
18392 insn = THUMB_OP32 (opcode);
18393 insn |= (old_op & 0xf0) << 4;
18394 put_thumb32_insn (buf, insn);
18395 if (opcode == T_MNEM_add_pc)
18396 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18397 else
18398 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18399 }
18400 else
18401 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18402 pc_rel = 0;
18403 break;
18404
18405 case T_MNEM_addi:
18406 case T_MNEM_addis:
18407 case T_MNEM_subi:
18408 case T_MNEM_subis:
18409 if (fragp->fr_var == 4)
18410 {
18411 insn = THUMB_OP32 (opcode);
18412 insn |= (old_op & 0xf0) << 4;
18413 insn |= (old_op & 0xf) << 16;
18414 put_thumb32_insn (buf, insn);
18415 if (insn & (1 << 20))
18416 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18417 else
18418 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18419 }
18420 else
18421 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18422 pc_rel = 0;
18423 break;
18424 default:
18425 abort ();
18426 }
18427 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18428 (enum bfd_reloc_code_real) reloc_type);
18429 fixp->fx_file = fragp->fr_file;
18430 fixp->fx_line = fragp->fr_line;
18431 fragp->fr_fix += fragp->fr_var;
18432 }
18433
18434 /* Return the size of a relaxable immediate operand instruction.
18435 SHIFT and SIZE specify the form of the allowable immediate. */
18436 static int
18437 relax_immediate (fragS *fragp, int size, int shift)
18438 {
18439 offsetT offset;
18440 offsetT mask;
18441 offsetT low;
18442
18443 /* ??? Should be able to do better than this. */
18444 if (fragp->fr_symbol)
18445 return 4;
18446
18447 low = (1 << shift) - 1;
18448 mask = (1 << (shift + size)) - (1 << shift);
18449 offset = fragp->fr_offset;
18450 /* Force misaligned offsets to 32-bit variant. */
18451 if (offset & low)
18452 return 4;
18453 if (offset & ~mask)
18454 return 4;
18455 return 2;
18456 }
18457
18458 /* Get the address of a symbol during relaxation. */
18459 static addressT
18460 relaxed_symbol_addr (fragS *fragp, long stretch)
18461 {
18462 fragS *sym_frag;
18463 addressT addr;
18464 symbolS *sym;
18465
18466 sym = fragp->fr_symbol;
18467 sym_frag = symbol_get_frag (sym);
18468 know (S_GET_SEGMENT (sym) != absolute_section
18469 || sym_frag == &zero_address_frag);
18470 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18471
18472 /* If frag has yet to be reached on this pass, assume it will
18473 move by STRETCH just as we did. If this is not so, it will
18474 be because some frag between grows, and that will force
18475 another pass. */
18476
18477 if (stretch != 0
18478 && sym_frag->relax_marker != fragp->relax_marker)
18479 {
18480 fragS *f;
18481
18482 /* Adjust stretch for any alignment frag. Note that if have
18483 been expanding the earlier code, the symbol may be
18484 defined in what appears to be an earlier frag. FIXME:
18485 This doesn't handle the fr_subtype field, which specifies
18486 a maximum number of bytes to skip when doing an
18487 alignment. */
18488 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18489 {
18490 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18491 {
18492 if (stretch < 0)
18493 stretch = - ((- stretch)
18494 & ~ ((1 << (int) f->fr_offset) - 1));
18495 else
18496 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18497 if (stretch == 0)
18498 break;
18499 }
18500 }
18501 if (f != NULL)
18502 addr += stretch;
18503 }
18504
18505 return addr;
18506 }
18507
18508 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18509 load. */
18510 static int
18511 relax_adr (fragS *fragp, asection *sec, long stretch)
18512 {
18513 addressT addr;
18514 offsetT val;
18515
18516 /* Assume worst case for symbols not known to be in the same section. */
18517 if (fragp->fr_symbol == NULL
18518 || !S_IS_DEFINED (fragp->fr_symbol)
18519 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18520 return 4;
18521
18522 val = relaxed_symbol_addr (fragp, stretch);
18523 addr = fragp->fr_address + fragp->fr_fix;
18524 addr = (addr + 4) & ~3;
18525 /* Force misaligned targets to 32-bit variant. */
18526 if (val & 3)
18527 return 4;
18528 val -= addr;
18529 if (val < 0 || val > 1020)
18530 return 4;
18531 return 2;
18532 }
18533
18534 /* Return the size of a relaxable add/sub immediate instruction. */
18535 static int
18536 relax_addsub (fragS *fragp, asection *sec)
18537 {
18538 char *buf;
18539 int op;
18540
18541 buf = fragp->fr_literal + fragp->fr_fix;
18542 op = bfd_get_16(sec->owner, buf);
18543 if ((op & 0xf) == ((op >> 4) & 0xf))
18544 return relax_immediate (fragp, 8, 0);
18545 else
18546 return relax_immediate (fragp, 3, 0);
18547 }
18548
18549
18550 /* Return the size of a relaxable branch instruction. BITS is the
18551 size of the offset field in the narrow instruction. */
18552
18553 static int
18554 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18555 {
18556 addressT addr;
18557 offsetT val;
18558 offsetT limit;
18559
18560 /* Assume worst case for symbols not known to be in the same section. */
18561 if (!S_IS_DEFINED (fragp->fr_symbol)
18562 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18563 return 4;
18564
18565 #ifdef OBJ_ELF
18566 if (S_IS_DEFINED (fragp->fr_symbol)
18567 && ARM_IS_FUNC (fragp->fr_symbol))
18568 return 4;
18569 #endif
18570
18571 val = relaxed_symbol_addr (fragp, stretch);
18572 addr = fragp->fr_address + fragp->fr_fix + 4;
18573 val -= addr;
18574
18575 /* Offset is a signed value *2 */
18576 limit = 1 << bits;
18577 if (val >= limit || val < -limit)
18578 return 4;
18579 return 2;
18580 }
18581
18582
18583 /* Relax a machine dependent frag. This returns the amount by which
18584 the current size of the frag should change. */
18585
18586 int
18587 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18588 {
18589 int oldsize;
18590 int newsize;
18591
18592 oldsize = fragp->fr_var;
18593 switch (fragp->fr_subtype)
18594 {
18595 case T_MNEM_ldr_pc2:
18596 newsize = relax_adr (fragp, sec, stretch);
18597 break;
18598 case T_MNEM_ldr_pc:
18599 case T_MNEM_ldr_sp:
18600 case T_MNEM_str_sp:
18601 newsize = relax_immediate (fragp, 8, 2);
18602 break;
18603 case T_MNEM_ldr:
18604 case T_MNEM_str:
18605 newsize = relax_immediate (fragp, 5, 2);
18606 break;
18607 case T_MNEM_ldrh:
18608 case T_MNEM_strh:
18609 newsize = relax_immediate (fragp, 5, 1);
18610 break;
18611 case T_MNEM_ldrb:
18612 case T_MNEM_strb:
18613 newsize = relax_immediate (fragp, 5, 0);
18614 break;
18615 case T_MNEM_adr:
18616 newsize = relax_adr (fragp, sec, stretch);
18617 break;
18618 case T_MNEM_mov:
18619 case T_MNEM_movs:
18620 case T_MNEM_cmp:
18621 case T_MNEM_cmn:
18622 newsize = relax_immediate (fragp, 8, 0);
18623 break;
18624 case T_MNEM_b:
18625 newsize = relax_branch (fragp, sec, 11, stretch);
18626 break;
18627 case T_MNEM_bcond:
18628 newsize = relax_branch (fragp, sec, 8, stretch);
18629 break;
18630 case T_MNEM_add_sp:
18631 case T_MNEM_add_pc:
18632 newsize = relax_immediate (fragp, 8, 2);
18633 break;
18634 case T_MNEM_inc_sp:
18635 case T_MNEM_dec_sp:
18636 newsize = relax_immediate (fragp, 7, 2);
18637 break;
18638 case T_MNEM_addi:
18639 case T_MNEM_addis:
18640 case T_MNEM_subi:
18641 case T_MNEM_subis:
18642 newsize = relax_addsub (fragp, sec);
18643 break;
18644 default:
18645 abort ();
18646 }
18647
18648 fragp->fr_var = newsize;
18649 /* Freeze wide instructions that are at or before the same location as
18650 in the previous pass. This avoids infinite loops.
18651 Don't freeze them unconditionally because targets may be artificially
18652 misaligned by the expansion of preceding frags. */
18653 if (stretch <= 0 && newsize > 2)
18654 {
18655 md_convert_frag (sec->owner, sec, fragp);
18656 frag_wane (fragp);
18657 }
18658
18659 return newsize - oldsize;
18660 }
18661
18662 /* Round up a section size to the appropriate boundary. */
18663
18664 valueT
18665 md_section_align (segT segment ATTRIBUTE_UNUSED,
18666 valueT size)
18667 {
18668 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18669 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18670 {
18671 /* For a.out, force the section size to be aligned. If we don't do
18672 this, BFD will align it for us, but it will not write out the
18673 final bytes of the section. This may be a bug in BFD, but it is
18674 easier to fix it here since that is how the other a.out targets
18675 work. */
18676 int align;
18677
18678 align = bfd_get_section_alignment (stdoutput, segment);
18679 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18680 }
18681 #endif
18682
18683 return size;
18684 }
18685
18686 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18687 of an rs_align_code fragment. */
18688
18689 void
18690 arm_handle_align (fragS * fragP)
18691 {
18692 static char const arm_noop[2][2][4] =
18693 {
18694 { /* ARMv1 */
18695 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18696 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18697 },
18698 { /* ARMv6k */
18699 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18700 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18701 },
18702 };
18703 static char const thumb_noop[2][2][2] =
18704 {
18705 { /* Thumb-1 */
18706 {0xc0, 0x46}, /* LE */
18707 {0x46, 0xc0}, /* BE */
18708 },
18709 { /* Thumb-2 */
18710 {0x00, 0xbf}, /* LE */
18711 {0xbf, 0x00} /* BE */
18712 }
18713 };
18714 static char const wide_thumb_noop[2][4] =
18715 { /* Wide Thumb-2 */
18716 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18717 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18718 };
18719
18720 unsigned bytes, fix, noop_size;
18721 char * p;
18722 const char * noop;
18723 const char *narrow_noop = NULL;
18724 #ifdef OBJ_ELF
18725 enum mstate state;
18726 #endif
18727
18728 if (fragP->fr_type != rs_align_code)
18729 return;
18730
18731 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18732 p = fragP->fr_literal + fragP->fr_fix;
18733 fix = 0;
18734
18735 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18736 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
18737
18738 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
18739
18740 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
18741 {
18742 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18743 {
18744 narrow_noop = thumb_noop[1][target_big_endian];
18745 noop = wide_thumb_noop[target_big_endian];
18746 }
18747 else
18748 noop = thumb_noop[0][target_big_endian];
18749 noop_size = 2;
18750 #ifdef OBJ_ELF
18751 state = MAP_THUMB;
18752 #endif
18753 }
18754 else
18755 {
18756 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18757 [target_big_endian];
18758 noop_size = 4;
18759 #ifdef OBJ_ELF
18760 state = MAP_ARM;
18761 #endif
18762 }
18763
18764 fragP->fr_var = noop_size;
18765
18766 if (bytes & (noop_size - 1))
18767 {
18768 fix = bytes & (noop_size - 1);
18769 #ifdef OBJ_ELF
18770 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18771 #endif
18772 memset (p, 0, fix);
18773 p += fix;
18774 bytes -= fix;
18775 }
18776
18777 if (narrow_noop)
18778 {
18779 if (bytes & noop_size)
18780 {
18781 /* Insert a narrow noop. */
18782 memcpy (p, narrow_noop, noop_size);
18783 p += noop_size;
18784 bytes -= noop_size;
18785 fix += noop_size;
18786 }
18787
18788 /* Use wide noops for the remainder */
18789 noop_size = 4;
18790 }
18791
18792 while (bytes >= noop_size)
18793 {
18794 memcpy (p, noop, noop_size);
18795 p += noop_size;
18796 bytes -= noop_size;
18797 fix += noop_size;
18798 }
18799
18800 fragP->fr_fix += fix;
18801 }
18802
18803 /* Called from md_do_align. Used to create an alignment
18804 frag in a code section. */
18805
18806 void
18807 arm_frag_align_code (int n, int max)
18808 {
18809 char * p;
18810
18811 /* We assume that there will never be a requirement
18812 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
18813 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
18814 {
18815 char err_msg[128];
18816
18817 sprintf (err_msg,
18818 _("alignments greater than %d bytes not supported in .text sections."),
18819 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
18820 as_fatal ("%s", err_msg);
18821 }
18822
18823 p = frag_var (rs_align_code,
18824 MAX_MEM_FOR_RS_ALIGN_CODE,
18825 1,
18826 (relax_substateT) max,
18827 (symbolS *) NULL,
18828 (offsetT) n,
18829 (char *) NULL);
18830 *p = 0;
18831 }
18832
18833 /* Perform target specific initialisation of a frag.
18834 Note - despite the name this initialisation is not done when the frag
18835 is created, but only when its type is assigned. A frag can be created
18836 and used a long time before its type is set, so beware of assuming that
18837 this initialisationis performed first. */
18838
18839 #ifndef OBJ_ELF
18840 void
18841 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18842 {
18843 /* Record whether this frag is in an ARM or a THUMB area. */
18844 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18845 }
18846
18847 #else /* OBJ_ELF is defined. */
18848 void
18849 arm_init_frag (fragS * fragP, int max_chars)
18850 {
18851 /* If the current ARM vs THUMB mode has not already
18852 been recorded into this frag then do so now. */
18853 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18854 {
18855 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18856
18857 /* Record a mapping symbol for alignment frags. We will delete this
18858 later if the alignment ends up empty. */
18859 switch (fragP->fr_type)
18860 {
18861 case rs_align:
18862 case rs_align_test:
18863 case rs_fill:
18864 mapping_state_2 (MAP_DATA, max_chars);
18865 break;
18866 case rs_align_code:
18867 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18868 break;
18869 default:
18870 break;
18871 }
18872 }
18873 }
18874
18875 /* When we change sections we need to issue a new mapping symbol. */
18876
18877 void
18878 arm_elf_change_section (void)
18879 {
18880 /* Link an unlinked unwind index table section to the .text section. */
18881 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18882 && elf_linked_to_section (now_seg) == NULL)
18883 elf_linked_to_section (now_seg) = text_section;
18884 }
18885
18886 int
18887 arm_elf_section_type (const char * str, size_t len)
18888 {
18889 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18890 return SHT_ARM_EXIDX;
18891
18892 return -1;
18893 }
18894 \f
18895 /* Code to deal with unwinding tables. */
18896
18897 static void add_unwind_adjustsp (offsetT);
18898
18899 /* Generate any deferred unwind frame offset. */
18900
18901 static void
18902 flush_pending_unwind (void)
18903 {
18904 offsetT offset;
18905
18906 offset = unwind.pending_offset;
18907 unwind.pending_offset = 0;
18908 if (offset != 0)
18909 add_unwind_adjustsp (offset);
18910 }
18911
18912 /* Add an opcode to this list for this function. Two-byte opcodes should
18913 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18914 order. */
18915
18916 static void
18917 add_unwind_opcode (valueT op, int length)
18918 {
18919 /* Add any deferred stack adjustment. */
18920 if (unwind.pending_offset)
18921 flush_pending_unwind ();
18922
18923 unwind.sp_restored = 0;
18924
18925 if (unwind.opcode_count + length > unwind.opcode_alloc)
18926 {
18927 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18928 if (unwind.opcodes)
18929 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18930 unwind.opcode_alloc);
18931 else
18932 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
18933 }
18934 while (length > 0)
18935 {
18936 length--;
18937 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18938 op >>= 8;
18939 unwind.opcode_count++;
18940 }
18941 }
18942
18943 /* Add unwind opcodes to adjust the stack pointer. */
18944
18945 static void
18946 add_unwind_adjustsp (offsetT offset)
18947 {
18948 valueT op;
18949
18950 if (offset > 0x200)
18951 {
18952 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18953 char bytes[5];
18954 int n;
18955 valueT o;
18956
18957 /* Long form: 0xb2, uleb128. */
18958 /* This might not fit in a word so add the individual bytes,
18959 remembering the list is built in reverse order. */
18960 o = (valueT) ((offset - 0x204) >> 2);
18961 if (o == 0)
18962 add_unwind_opcode (0, 1);
18963
18964 /* Calculate the uleb128 encoding of the offset. */
18965 n = 0;
18966 while (o)
18967 {
18968 bytes[n] = o & 0x7f;
18969 o >>= 7;
18970 if (o)
18971 bytes[n] |= 0x80;
18972 n++;
18973 }
18974 /* Add the insn. */
18975 for (; n; n--)
18976 add_unwind_opcode (bytes[n - 1], 1);
18977 add_unwind_opcode (0xb2, 1);
18978 }
18979 else if (offset > 0x100)
18980 {
18981 /* Two short opcodes. */
18982 add_unwind_opcode (0x3f, 1);
18983 op = (offset - 0x104) >> 2;
18984 add_unwind_opcode (op, 1);
18985 }
18986 else if (offset > 0)
18987 {
18988 /* Short opcode. */
18989 op = (offset - 4) >> 2;
18990 add_unwind_opcode (op, 1);
18991 }
18992 else if (offset < 0)
18993 {
18994 offset = -offset;
18995 while (offset > 0x100)
18996 {
18997 add_unwind_opcode (0x7f, 1);
18998 offset -= 0x100;
18999 }
19000 op = ((offset - 4) >> 2) | 0x40;
19001 add_unwind_opcode (op, 1);
19002 }
19003 }
19004
19005 /* Finish the list of unwind opcodes for this function. */
19006 static void
19007 finish_unwind_opcodes (void)
19008 {
19009 valueT op;
19010
19011 if (unwind.fp_used)
19012 {
19013 /* Adjust sp as necessary. */
19014 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19015 flush_pending_unwind ();
19016
19017 /* After restoring sp from the frame pointer. */
19018 op = 0x90 | unwind.fp_reg;
19019 add_unwind_opcode (op, 1);
19020 }
19021 else
19022 flush_pending_unwind ();
19023 }
19024
19025
19026 /* Start an exception table entry. If idx is nonzero this is an index table
19027 entry. */
19028
19029 static void
19030 start_unwind_section (const segT text_seg, int idx)
19031 {
19032 const char * text_name;
19033 const char * prefix;
19034 const char * prefix_once;
19035 const char * group_name;
19036 size_t prefix_len;
19037 size_t text_len;
19038 char * sec_name;
19039 size_t sec_name_len;
19040 int type;
19041 int flags;
19042 int linkonce;
19043
19044 if (idx)
19045 {
19046 prefix = ELF_STRING_ARM_unwind;
19047 prefix_once = ELF_STRING_ARM_unwind_once;
19048 type = SHT_ARM_EXIDX;
19049 }
19050 else
19051 {
19052 prefix = ELF_STRING_ARM_unwind_info;
19053 prefix_once = ELF_STRING_ARM_unwind_info_once;
19054 type = SHT_PROGBITS;
19055 }
19056
19057 text_name = segment_name (text_seg);
19058 if (streq (text_name, ".text"))
19059 text_name = "";
19060
19061 if (strncmp (text_name, ".gnu.linkonce.t.",
19062 strlen (".gnu.linkonce.t.")) == 0)
19063 {
19064 prefix = prefix_once;
19065 text_name += strlen (".gnu.linkonce.t.");
19066 }
19067
19068 prefix_len = strlen (prefix);
19069 text_len = strlen (text_name);
19070 sec_name_len = prefix_len + text_len;
19071 sec_name = (char *) xmalloc (sec_name_len + 1);
19072 memcpy (sec_name, prefix, prefix_len);
19073 memcpy (sec_name + prefix_len, text_name, text_len);
19074 sec_name[prefix_len + text_len] = '\0';
19075
19076 flags = SHF_ALLOC;
19077 linkonce = 0;
19078 group_name = 0;
19079
19080 /* Handle COMDAT group. */
19081 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19082 {
19083 group_name = elf_group_name (text_seg);
19084 if (group_name == NULL)
19085 {
19086 as_bad (_("Group section `%s' has no group signature"),
19087 segment_name (text_seg));
19088 ignore_rest_of_line ();
19089 return;
19090 }
19091 flags |= SHF_GROUP;
19092 linkonce = 1;
19093 }
19094
19095 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19096
19097 /* Set the section link for index tables. */
19098 if (idx)
19099 elf_linked_to_section (now_seg) = text_seg;
19100 }
19101
19102
19103 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19104 personality routine data. Returns zero, or the index table value for
19105 and inline entry. */
19106
19107 static valueT
19108 create_unwind_entry (int have_data)
19109 {
19110 int size;
19111 addressT where;
19112 char *ptr;
19113 /* The current word of data. */
19114 valueT data;
19115 /* The number of bytes left in this word. */
19116 int n;
19117
19118 finish_unwind_opcodes ();
19119
19120 /* Remember the current text section. */
19121 unwind.saved_seg = now_seg;
19122 unwind.saved_subseg = now_subseg;
19123
19124 start_unwind_section (now_seg, 0);
19125
19126 if (unwind.personality_routine == NULL)
19127 {
19128 if (unwind.personality_index == -2)
19129 {
19130 if (have_data)
19131 as_bad (_("handlerdata in cantunwind frame"));
19132 return 1; /* EXIDX_CANTUNWIND. */
19133 }
19134
19135 /* Use a default personality routine if none is specified. */
19136 if (unwind.personality_index == -1)
19137 {
19138 if (unwind.opcode_count > 3)
19139 unwind.personality_index = 1;
19140 else
19141 unwind.personality_index = 0;
19142 }
19143
19144 /* Space for the personality routine entry. */
19145 if (unwind.personality_index == 0)
19146 {
19147 if (unwind.opcode_count > 3)
19148 as_bad (_("too many unwind opcodes for personality routine 0"));
19149
19150 if (!have_data)
19151 {
19152 /* All the data is inline in the index table. */
19153 data = 0x80;
19154 n = 3;
19155 while (unwind.opcode_count > 0)
19156 {
19157 unwind.opcode_count--;
19158 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19159 n--;
19160 }
19161
19162 /* Pad with "finish" opcodes. */
19163 while (n--)
19164 data = (data << 8) | 0xb0;
19165
19166 return data;
19167 }
19168 size = 0;
19169 }
19170 else
19171 /* We get two opcodes "free" in the first word. */
19172 size = unwind.opcode_count - 2;
19173 }
19174 else
19175 /* An extra byte is required for the opcode count. */
19176 size = unwind.opcode_count + 1;
19177
19178 size = (size + 3) >> 2;
19179 if (size > 0xff)
19180 as_bad (_("too many unwind opcodes"));
19181
19182 frag_align (2, 0, 0);
19183 record_alignment (now_seg, 2);
19184 unwind.table_entry = expr_build_dot ();
19185
19186 /* Allocate the table entry. */
19187 ptr = frag_more ((size << 2) + 4);
19188 where = frag_now_fix () - ((size << 2) + 4);
19189
19190 switch (unwind.personality_index)
19191 {
19192 case -1:
19193 /* ??? Should this be a PLT generating relocation? */
19194 /* Custom personality routine. */
19195 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19196 BFD_RELOC_ARM_PREL31);
19197
19198 where += 4;
19199 ptr += 4;
19200
19201 /* Set the first byte to the number of additional words. */
19202 data = size - 1;
19203 n = 3;
19204 break;
19205
19206 /* ABI defined personality routines. */
19207 case 0:
19208 /* Three opcodes bytes are packed into the first word. */
19209 data = 0x80;
19210 n = 3;
19211 break;
19212
19213 case 1:
19214 case 2:
19215 /* The size and first two opcode bytes go in the first word. */
19216 data = ((0x80 + unwind.personality_index) << 8) | size;
19217 n = 2;
19218 break;
19219
19220 default:
19221 /* Should never happen. */
19222 abort ();
19223 }
19224
19225 /* Pack the opcodes into words (MSB first), reversing the list at the same
19226 time. */
19227 while (unwind.opcode_count > 0)
19228 {
19229 if (n == 0)
19230 {
19231 md_number_to_chars (ptr, data, 4);
19232 ptr += 4;
19233 n = 4;
19234 data = 0;
19235 }
19236 unwind.opcode_count--;
19237 n--;
19238 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19239 }
19240
19241 /* Finish off the last word. */
19242 if (n < 4)
19243 {
19244 /* Pad with "finish" opcodes. */
19245 while (n--)
19246 data = (data << 8) | 0xb0;
19247
19248 md_number_to_chars (ptr, data, 4);
19249 }
19250
19251 if (!have_data)
19252 {
19253 /* Add an empty descriptor if there is no user-specified data. */
19254 ptr = frag_more (4);
19255 md_number_to_chars (ptr, 0, 4);
19256 }
19257
19258 return 0;
19259 }
19260
19261
19262 /* Initialize the DWARF-2 unwind information for this procedure. */
19263
19264 void
19265 tc_arm_frame_initial_instructions (void)
19266 {
19267 cfi_add_CFA_def_cfa (REG_SP, 0);
19268 }
19269 #endif /* OBJ_ELF */
19270
19271 /* Convert REGNAME to a DWARF-2 register number. */
19272
19273 int
19274 tc_arm_regname_to_dw2regnum (char *regname)
19275 {
19276 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19277
19278 if (reg == FAIL)
19279 return -1;
19280
19281 return reg;
19282 }
19283
19284 #ifdef TE_PE
19285 void
19286 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19287 {
19288 expressionS exp;
19289
19290 exp.X_op = O_secrel;
19291 exp.X_add_symbol = symbol;
19292 exp.X_add_number = 0;
19293 emit_expr (&exp, size);
19294 }
19295 #endif
19296
19297 /* MD interface: Symbol and relocation handling. */
19298
19299 /* Return the address within the segment that a PC-relative fixup is
19300 relative to. For ARM, PC-relative fixups applied to instructions
19301 are generally relative to the location of the fixup plus 8 bytes.
19302 Thumb branches are offset by 4, and Thumb loads relative to PC
19303 require special handling. */
19304
19305 long
19306 md_pcrel_from_section (fixS * fixP, segT seg)
19307 {
19308 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19309
19310 /* If this is pc-relative and we are going to emit a relocation
19311 then we just want to put out any pipeline compensation that the linker
19312 will need. Otherwise we want to use the calculated base.
19313 For WinCE we skip the bias for externals as well, since this
19314 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19315 if (fixP->fx_pcrel
19316 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19317 || (arm_force_relocation (fixP)
19318 #ifdef TE_WINCE
19319 && !S_IS_EXTERNAL (fixP->fx_addsy)
19320 #endif
19321 )))
19322 base = 0;
19323
19324
19325 switch (fixP->fx_r_type)
19326 {
19327 /* PC relative addressing on the Thumb is slightly odd as the
19328 bottom two bits of the PC are forced to zero for the
19329 calculation. This happens *after* application of the
19330 pipeline offset. However, Thumb adrl already adjusts for
19331 this, so we need not do it again. */
19332 case BFD_RELOC_ARM_THUMB_ADD:
19333 return base & ~3;
19334
19335 case BFD_RELOC_ARM_THUMB_OFFSET:
19336 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19337 case BFD_RELOC_ARM_T32_ADD_PC12:
19338 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19339 return (base + 4) & ~3;
19340
19341 /* Thumb branches are simply offset by +4. */
19342 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19343 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19344 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19345 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19346 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19347 return base + 4;
19348
19349 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19350 if (fixP->fx_addsy
19351 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19352 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19353 && ARM_IS_FUNC (fixP->fx_addsy)
19354 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19355 base = fixP->fx_where + fixP->fx_frag->fr_address;
19356 return base + 4;
19357
19358 /* BLX is like branches above, but forces the low two bits of PC to
19359 zero. */
19360 case BFD_RELOC_THUMB_PCREL_BLX:
19361 if (fixP->fx_addsy
19362 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19363 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19364 && THUMB_IS_FUNC (fixP->fx_addsy)
19365 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19366 base = fixP->fx_where + fixP->fx_frag->fr_address;
19367 return (base + 4) & ~3;
19368
19369 /* ARM mode branches are offset by +8. However, the Windows CE
19370 loader expects the relocation not to take this into account. */
19371 case BFD_RELOC_ARM_PCREL_BLX:
19372 if (fixP->fx_addsy
19373 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19374 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19375 && ARM_IS_FUNC (fixP->fx_addsy)
19376 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19377 base = fixP->fx_where + fixP->fx_frag->fr_address;
19378 return base + 8;
19379
19380 case BFD_RELOC_ARM_PCREL_CALL:
19381 if (fixP->fx_addsy
19382 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19383 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19384 && THUMB_IS_FUNC (fixP->fx_addsy)
19385 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19386 base = fixP->fx_where + fixP->fx_frag->fr_address;
19387 return base + 8;
19388
19389 case BFD_RELOC_ARM_PCREL_BRANCH:
19390 case BFD_RELOC_ARM_PCREL_JUMP:
19391 case BFD_RELOC_ARM_PLT32:
19392 #ifdef TE_WINCE
19393 /* When handling fixups immediately, because we have already
19394 discovered the value of a symbol, or the address of the frag involved
19395 we must account for the offset by +8, as the OS loader will never see the reloc.
19396 see fixup_segment() in write.c
19397 The S_IS_EXTERNAL test handles the case of global symbols.
19398 Those need the calculated base, not just the pipe compensation the linker will need. */
19399 if (fixP->fx_pcrel
19400 && fixP->fx_addsy != NULL
19401 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19402 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19403 return base + 8;
19404 return base;
19405 #else
19406 return base + 8;
19407 #endif
19408
19409
19410 /* ARM mode loads relative to PC are also offset by +8. Unlike
19411 branches, the Windows CE loader *does* expect the relocation
19412 to take this into account. */
19413 case BFD_RELOC_ARM_OFFSET_IMM:
19414 case BFD_RELOC_ARM_OFFSET_IMM8:
19415 case BFD_RELOC_ARM_HWLITERAL:
19416 case BFD_RELOC_ARM_LITERAL:
19417 case BFD_RELOC_ARM_CP_OFF_IMM:
19418 return base + 8;
19419
19420
19421 /* Other PC-relative relocations are un-offset. */
19422 default:
19423 return base;
19424 }
19425 }
19426
19427 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19428 Otherwise we have no need to default values of symbols. */
19429
19430 symbolS *
19431 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19432 {
19433 #ifdef OBJ_ELF
19434 if (name[0] == '_' && name[1] == 'G'
19435 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19436 {
19437 if (!GOT_symbol)
19438 {
19439 if (symbol_find (name))
19440 as_bad (_("GOT already in the symbol table"));
19441
19442 GOT_symbol = symbol_new (name, undefined_section,
19443 (valueT) 0, & zero_address_frag);
19444 }
19445
19446 return GOT_symbol;
19447 }
19448 #endif
19449
19450 return NULL;
19451 }
19452
19453 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19454 computed as two separate immediate values, added together. We
19455 already know that this value cannot be computed by just one ARM
19456 instruction. */
19457
19458 static unsigned int
19459 validate_immediate_twopart (unsigned int val,
19460 unsigned int * highpart)
19461 {
19462 unsigned int a;
19463 unsigned int i;
19464
19465 for (i = 0; i < 32; i += 2)
19466 if (((a = rotate_left (val, i)) & 0xff) != 0)
19467 {
19468 if (a & 0xff00)
19469 {
19470 if (a & ~ 0xffff)
19471 continue;
19472 * highpart = (a >> 8) | ((i + 24) << 7);
19473 }
19474 else if (a & 0xff0000)
19475 {
19476 if (a & 0xff000000)
19477 continue;
19478 * highpart = (a >> 16) | ((i + 16) << 7);
19479 }
19480 else
19481 {
19482 gas_assert (a & 0xff000000);
19483 * highpart = (a >> 24) | ((i + 8) << 7);
19484 }
19485
19486 return (a & 0xff) | (i << 7);
19487 }
19488
19489 return FAIL;
19490 }
19491
19492 static int
19493 validate_offset_imm (unsigned int val, int hwse)
19494 {
19495 if ((hwse && val > 255) || val > 4095)
19496 return FAIL;
19497 return val;
19498 }
19499
19500 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19501 negative immediate constant by altering the instruction. A bit of
19502 a hack really.
19503 MOV <-> MVN
19504 AND <-> BIC
19505 ADC <-> SBC
19506 by inverting the second operand, and
19507 ADD <-> SUB
19508 CMP <-> CMN
19509 by negating the second operand. */
19510
19511 static int
19512 negate_data_op (unsigned long * instruction,
19513 unsigned long value)
19514 {
19515 int op, new_inst;
19516 unsigned long negated, inverted;
19517
19518 negated = encode_arm_immediate (-value);
19519 inverted = encode_arm_immediate (~value);
19520
19521 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19522 switch (op)
19523 {
19524 /* First negates. */
19525 case OPCODE_SUB: /* ADD <-> SUB */
19526 new_inst = OPCODE_ADD;
19527 value = negated;
19528 break;
19529
19530 case OPCODE_ADD:
19531 new_inst = OPCODE_SUB;
19532 value = negated;
19533 break;
19534
19535 case OPCODE_CMP: /* CMP <-> CMN */
19536 new_inst = OPCODE_CMN;
19537 value = negated;
19538 break;
19539
19540 case OPCODE_CMN:
19541 new_inst = OPCODE_CMP;
19542 value = negated;
19543 break;
19544
19545 /* Now Inverted ops. */
19546 case OPCODE_MOV: /* MOV <-> MVN */
19547 new_inst = OPCODE_MVN;
19548 value = inverted;
19549 break;
19550
19551 case OPCODE_MVN:
19552 new_inst = OPCODE_MOV;
19553 value = inverted;
19554 break;
19555
19556 case OPCODE_AND: /* AND <-> BIC */
19557 new_inst = OPCODE_BIC;
19558 value = inverted;
19559 break;
19560
19561 case OPCODE_BIC:
19562 new_inst = OPCODE_AND;
19563 value = inverted;
19564 break;
19565
19566 case OPCODE_ADC: /* ADC <-> SBC */
19567 new_inst = OPCODE_SBC;
19568 value = inverted;
19569 break;
19570
19571 case OPCODE_SBC:
19572 new_inst = OPCODE_ADC;
19573 value = inverted;
19574 break;
19575
19576 /* We cannot do anything. */
19577 default:
19578 return FAIL;
19579 }
19580
19581 if (value == (unsigned) FAIL)
19582 return FAIL;
19583
19584 *instruction &= OPCODE_MASK;
19585 *instruction |= new_inst << DATA_OP_SHIFT;
19586 return value;
19587 }
19588
19589 /* Like negate_data_op, but for Thumb-2. */
19590
19591 static unsigned int
19592 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19593 {
19594 int op, new_inst;
19595 int rd;
19596 unsigned int negated, inverted;
19597
19598 negated = encode_thumb32_immediate (-value);
19599 inverted = encode_thumb32_immediate (~value);
19600
19601 rd = (*instruction >> 8) & 0xf;
19602 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19603 switch (op)
19604 {
19605 /* ADD <-> SUB. Includes CMP <-> CMN. */
19606 case T2_OPCODE_SUB:
19607 new_inst = T2_OPCODE_ADD;
19608 value = negated;
19609 break;
19610
19611 case T2_OPCODE_ADD:
19612 new_inst = T2_OPCODE_SUB;
19613 value = negated;
19614 break;
19615
19616 /* ORR <-> ORN. Includes MOV <-> MVN. */
19617 case T2_OPCODE_ORR:
19618 new_inst = T2_OPCODE_ORN;
19619 value = inverted;
19620 break;
19621
19622 case T2_OPCODE_ORN:
19623 new_inst = T2_OPCODE_ORR;
19624 value = inverted;
19625 break;
19626
19627 /* AND <-> BIC. TST has no inverted equivalent. */
19628 case T2_OPCODE_AND:
19629 new_inst = T2_OPCODE_BIC;
19630 if (rd == 15)
19631 value = FAIL;
19632 else
19633 value = inverted;
19634 break;
19635
19636 case T2_OPCODE_BIC:
19637 new_inst = T2_OPCODE_AND;
19638 value = inverted;
19639 break;
19640
19641 /* ADC <-> SBC */
19642 case T2_OPCODE_ADC:
19643 new_inst = T2_OPCODE_SBC;
19644 value = inverted;
19645 break;
19646
19647 case T2_OPCODE_SBC:
19648 new_inst = T2_OPCODE_ADC;
19649 value = inverted;
19650 break;
19651
19652 /* We cannot do anything. */
19653 default:
19654 return FAIL;
19655 }
19656
19657 if (value == (unsigned int)FAIL)
19658 return FAIL;
19659
19660 *instruction &= T2_OPCODE_MASK;
19661 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19662 return value;
19663 }
19664
19665 /* Read a 32-bit thumb instruction from buf. */
19666 static unsigned long
19667 get_thumb32_insn (char * buf)
19668 {
19669 unsigned long insn;
19670 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19671 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19672
19673 return insn;
19674 }
19675
19676
19677 /* We usually want to set the low bit on the address of thumb function
19678 symbols. In particular .word foo - . should have the low bit set.
19679 Generic code tries to fold the difference of two symbols to
19680 a constant. Prevent this and force a relocation when the first symbols
19681 is a thumb function. */
19682
19683 bfd_boolean
19684 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19685 {
19686 if (op == O_subtract
19687 && l->X_op == O_symbol
19688 && r->X_op == O_symbol
19689 && THUMB_IS_FUNC (l->X_add_symbol))
19690 {
19691 l->X_op = O_subtract;
19692 l->X_op_symbol = r->X_add_symbol;
19693 l->X_add_number -= r->X_add_number;
19694 return TRUE;
19695 }
19696
19697 /* Process as normal. */
19698 return FALSE;
19699 }
19700
19701 /* Encode Thumb2 unconditional branches and calls. The encoding
19702 for the 2 are identical for the immediate values. */
19703
19704 static void
19705 encode_thumb2_b_bl_offset (char * buf, offsetT value)
19706 {
19707 #define T2I1I2MASK ((1 << 13) | (1 << 11))
19708 offsetT newval;
19709 offsetT newval2;
19710 addressT S, I1, I2, lo, hi;
19711
19712 S = (value >> 24) & 0x01;
19713 I1 = (value >> 23) & 0x01;
19714 I2 = (value >> 22) & 0x01;
19715 hi = (value >> 12) & 0x3ff;
19716 lo = (value >> 1) & 0x7ff;
19717 newval = md_chars_to_number (buf, THUMB_SIZE);
19718 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19719 newval |= (S << 10) | hi;
19720 newval2 &= ~T2I1I2MASK;
19721 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
19722 md_number_to_chars (buf, newval, THUMB_SIZE);
19723 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19724 }
19725
19726 void
19727 md_apply_fix (fixS * fixP,
19728 valueT * valP,
19729 segT seg)
19730 {
19731 offsetT value = * valP;
19732 offsetT newval;
19733 unsigned int newimm;
19734 unsigned long temp;
19735 int sign;
19736 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
19737
19738 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
19739
19740 /* Note whether this will delete the relocation. */
19741
19742 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19743 fixP->fx_done = 1;
19744
19745 /* On a 64-bit host, silently truncate 'value' to 32 bits for
19746 consistency with the behaviour on 32-bit hosts. Remember value
19747 for emit_reloc. */
19748 value &= 0xffffffff;
19749 value ^= 0x80000000;
19750 value -= 0x80000000;
19751
19752 *valP = value;
19753 fixP->fx_addnumber = value;
19754
19755 /* Same treatment for fixP->fx_offset. */
19756 fixP->fx_offset &= 0xffffffff;
19757 fixP->fx_offset ^= 0x80000000;
19758 fixP->fx_offset -= 0x80000000;
19759
19760 switch (fixP->fx_r_type)
19761 {
19762 case BFD_RELOC_NONE:
19763 /* This will need to go in the object file. */
19764 fixP->fx_done = 0;
19765 break;
19766
19767 case BFD_RELOC_ARM_IMMEDIATE:
19768 /* We claim that this fixup has been processed here,
19769 even if in fact we generate an error because we do
19770 not have a reloc for it, so tc_gen_reloc will reject it. */
19771 fixP->fx_done = 1;
19772
19773 if (fixP->fx_addsy
19774 && ! S_IS_DEFINED (fixP->fx_addsy))
19775 {
19776 as_bad_where (fixP->fx_file, fixP->fx_line,
19777 _("undefined symbol %s used as an immediate value"),
19778 S_GET_NAME (fixP->fx_addsy));
19779 break;
19780 }
19781
19782 if (fixP->fx_addsy
19783 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19784 {
19785 as_bad_where (fixP->fx_file, fixP->fx_line,
19786 _("symbol %s is in a different section"),
19787 S_GET_NAME (fixP->fx_addsy));
19788 break;
19789 }
19790
19791 newimm = encode_arm_immediate (value);
19792 temp = md_chars_to_number (buf, INSN_SIZE);
19793
19794 /* If the instruction will fail, see if we can fix things up by
19795 changing the opcode. */
19796 if (newimm == (unsigned int) FAIL
19797 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
19798 {
19799 as_bad_where (fixP->fx_file, fixP->fx_line,
19800 _("invalid constant (%lx) after fixup"),
19801 (unsigned long) value);
19802 break;
19803 }
19804
19805 newimm |= (temp & 0xfffff000);
19806 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19807 break;
19808
19809 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19810 {
19811 unsigned int highpart = 0;
19812 unsigned int newinsn = 0xe1a00000; /* nop. */
19813
19814 if (fixP->fx_addsy
19815 && ! S_IS_DEFINED (fixP->fx_addsy))
19816 {
19817 as_bad_where (fixP->fx_file, fixP->fx_line,
19818 _("undefined symbol %s used as an immediate value"),
19819 S_GET_NAME (fixP->fx_addsy));
19820 break;
19821 }
19822
19823 if (fixP->fx_addsy
19824 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19825 {
19826 as_bad_where (fixP->fx_file, fixP->fx_line,
19827 _("symbol %s is in a different section"),
19828 S_GET_NAME (fixP->fx_addsy));
19829 break;
19830 }
19831
19832 newimm = encode_arm_immediate (value);
19833 temp = md_chars_to_number (buf, INSN_SIZE);
19834
19835 /* If the instruction will fail, see if we can fix things up by
19836 changing the opcode. */
19837 if (newimm == (unsigned int) FAIL
19838 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19839 {
19840 /* No ? OK - try using two ADD instructions to generate
19841 the value. */
19842 newimm = validate_immediate_twopart (value, & highpart);
19843
19844 /* Yes - then make sure that the second instruction is
19845 also an add. */
19846 if (newimm != (unsigned int) FAIL)
19847 newinsn = temp;
19848 /* Still No ? Try using a negated value. */
19849 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19850 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19851 /* Otherwise - give up. */
19852 else
19853 {
19854 as_bad_where (fixP->fx_file, fixP->fx_line,
19855 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19856 (long) value);
19857 break;
19858 }
19859
19860 /* Replace the first operand in the 2nd instruction (which
19861 is the PC) with the destination register. We have
19862 already added in the PC in the first instruction and we
19863 do not want to do it again. */
19864 newinsn &= ~ 0xf0000;
19865 newinsn |= ((newinsn & 0x0f000) << 4);
19866 }
19867
19868 newimm |= (temp & 0xfffff000);
19869 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19870
19871 highpart |= (newinsn & 0xfffff000);
19872 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19873 }
19874 break;
19875
19876 case BFD_RELOC_ARM_OFFSET_IMM:
19877 if (!fixP->fx_done && seg->use_rela_p)
19878 value = 0;
19879
19880 case BFD_RELOC_ARM_LITERAL:
19881 sign = value >= 0;
19882
19883 if (value < 0)
19884 value = - value;
19885
19886 if (validate_offset_imm (value, 0) == FAIL)
19887 {
19888 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19889 as_bad_where (fixP->fx_file, fixP->fx_line,
19890 _("invalid literal constant: pool needs to be closer"));
19891 else
19892 as_bad_where (fixP->fx_file, fixP->fx_line,
19893 _("bad immediate value for offset (%ld)"),
19894 (long) value);
19895 break;
19896 }
19897
19898 newval = md_chars_to_number (buf, INSN_SIZE);
19899 newval &= 0xff7ff000;
19900 newval |= value | (sign ? INDEX_UP : 0);
19901 md_number_to_chars (buf, newval, INSN_SIZE);
19902 break;
19903
19904 case BFD_RELOC_ARM_OFFSET_IMM8:
19905 case BFD_RELOC_ARM_HWLITERAL:
19906 sign = value >= 0;
19907
19908 if (value < 0)
19909 value = - value;
19910
19911 if (validate_offset_imm (value, 1) == FAIL)
19912 {
19913 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19914 as_bad_where (fixP->fx_file, fixP->fx_line,
19915 _("invalid literal constant: pool needs to be closer"));
19916 else
19917 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
19918 (long) value);
19919 break;
19920 }
19921
19922 newval = md_chars_to_number (buf, INSN_SIZE);
19923 newval &= 0xff7ff0f0;
19924 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19925 md_number_to_chars (buf, newval, INSN_SIZE);
19926 break;
19927
19928 case BFD_RELOC_ARM_T32_OFFSET_U8:
19929 if (value < 0 || value > 1020 || value % 4 != 0)
19930 as_bad_where (fixP->fx_file, fixP->fx_line,
19931 _("bad immediate value for offset (%ld)"), (long) value);
19932 value /= 4;
19933
19934 newval = md_chars_to_number (buf+2, THUMB_SIZE);
19935 newval |= value;
19936 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19937 break;
19938
19939 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19940 /* This is a complicated relocation used for all varieties of Thumb32
19941 load/store instruction with immediate offset:
19942
19943 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19944 *4, optional writeback(W)
19945 (doubleword load/store)
19946
19947 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19948 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19949 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19950 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19951 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19952
19953 Uppercase letters indicate bits that are already encoded at
19954 this point. Lowercase letters are our problem. For the
19955 second block of instructions, the secondary opcode nybble
19956 (bits 8..11) is present, and bit 23 is zero, even if this is
19957 a PC-relative operation. */
19958 newval = md_chars_to_number (buf, THUMB_SIZE);
19959 newval <<= 16;
19960 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
19961
19962 if ((newval & 0xf0000000) == 0xe0000000)
19963 {
19964 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19965 if (value >= 0)
19966 newval |= (1 << 23);
19967 else
19968 value = -value;
19969 if (value % 4 != 0)
19970 {
19971 as_bad_where (fixP->fx_file, fixP->fx_line,
19972 _("offset not a multiple of 4"));
19973 break;
19974 }
19975 value /= 4;
19976 if (value > 0xff)
19977 {
19978 as_bad_where (fixP->fx_file, fixP->fx_line,
19979 _("offset out of range"));
19980 break;
19981 }
19982 newval &= ~0xff;
19983 }
19984 else if ((newval & 0x000f0000) == 0x000f0000)
19985 {
19986 /* PC-relative, 12-bit offset. */
19987 if (value >= 0)
19988 newval |= (1 << 23);
19989 else
19990 value = -value;
19991 if (value > 0xfff)
19992 {
19993 as_bad_where (fixP->fx_file, fixP->fx_line,
19994 _("offset out of range"));
19995 break;
19996 }
19997 newval &= ~0xfff;
19998 }
19999 else if ((newval & 0x00000100) == 0x00000100)
20000 {
20001 /* Writeback: 8-bit, +/- offset. */
20002 if (value >= 0)
20003 newval |= (1 << 9);
20004 else
20005 value = -value;
20006 if (value > 0xff)
20007 {
20008 as_bad_where (fixP->fx_file, fixP->fx_line,
20009 _("offset out of range"));
20010 break;
20011 }
20012 newval &= ~0xff;
20013 }
20014 else if ((newval & 0x00000f00) == 0x00000e00)
20015 {
20016 /* T-instruction: positive 8-bit offset. */
20017 if (value < 0 || value > 0xff)
20018 {
20019 as_bad_where (fixP->fx_file, fixP->fx_line,
20020 _("offset out of range"));
20021 break;
20022 }
20023 newval &= ~0xff;
20024 newval |= value;
20025 }
20026 else
20027 {
20028 /* Positive 12-bit or negative 8-bit offset. */
20029 int limit;
20030 if (value >= 0)
20031 {
20032 newval |= (1 << 23);
20033 limit = 0xfff;
20034 }
20035 else
20036 {
20037 value = -value;
20038 limit = 0xff;
20039 }
20040 if (value > limit)
20041 {
20042 as_bad_where (fixP->fx_file, fixP->fx_line,
20043 _("offset out of range"));
20044 break;
20045 }
20046 newval &= ~limit;
20047 }
20048
20049 newval |= value;
20050 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20051 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20052 break;
20053
20054 case BFD_RELOC_ARM_SHIFT_IMM:
20055 newval = md_chars_to_number (buf, INSN_SIZE);
20056 if (((unsigned long) value) > 32
20057 || (value == 32
20058 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20059 {
20060 as_bad_where (fixP->fx_file, fixP->fx_line,
20061 _("shift expression is too large"));
20062 break;
20063 }
20064
20065 if (value == 0)
20066 /* Shifts of zero must be done as lsl. */
20067 newval &= ~0x60;
20068 else if (value == 32)
20069 value = 0;
20070 newval &= 0xfffff07f;
20071 newval |= (value & 0x1f) << 7;
20072 md_number_to_chars (buf, newval, INSN_SIZE);
20073 break;
20074
20075 case BFD_RELOC_ARM_T32_IMMEDIATE:
20076 case BFD_RELOC_ARM_T32_ADD_IMM:
20077 case BFD_RELOC_ARM_T32_IMM12:
20078 case BFD_RELOC_ARM_T32_ADD_PC12:
20079 /* We claim that this fixup has been processed here,
20080 even if in fact we generate an error because we do
20081 not have a reloc for it, so tc_gen_reloc will reject it. */
20082 fixP->fx_done = 1;
20083
20084 if (fixP->fx_addsy
20085 && ! S_IS_DEFINED (fixP->fx_addsy))
20086 {
20087 as_bad_where (fixP->fx_file, fixP->fx_line,
20088 _("undefined symbol %s used as an immediate value"),
20089 S_GET_NAME (fixP->fx_addsy));
20090 break;
20091 }
20092
20093 newval = md_chars_to_number (buf, THUMB_SIZE);
20094 newval <<= 16;
20095 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20096
20097 newimm = FAIL;
20098 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20099 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20100 {
20101 newimm = encode_thumb32_immediate (value);
20102 if (newimm == (unsigned int) FAIL)
20103 newimm = thumb32_negate_data_op (&newval, value);
20104 }
20105 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20106 && newimm == (unsigned int) FAIL)
20107 {
20108 /* Turn add/sum into addw/subw. */
20109 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20110 newval = (newval & 0xfeffffff) | 0x02000000;
20111
20112 /* 12 bit immediate for addw/subw. */
20113 if (value < 0)
20114 {
20115 value = -value;
20116 newval ^= 0x00a00000;
20117 }
20118 if (value > 0xfff)
20119 newimm = (unsigned int) FAIL;
20120 else
20121 newimm = value;
20122 }
20123
20124 if (newimm == (unsigned int)FAIL)
20125 {
20126 as_bad_where (fixP->fx_file, fixP->fx_line,
20127 _("invalid constant (%lx) after fixup"),
20128 (unsigned long) value);
20129 break;
20130 }
20131
20132 newval |= (newimm & 0x800) << 15;
20133 newval |= (newimm & 0x700) << 4;
20134 newval |= (newimm & 0x0ff);
20135
20136 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20137 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20138 break;
20139
20140 case BFD_RELOC_ARM_SMC:
20141 if (((unsigned long) value) > 0xffff)
20142 as_bad_where (fixP->fx_file, fixP->fx_line,
20143 _("invalid smc expression"));
20144 newval = md_chars_to_number (buf, INSN_SIZE);
20145 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20146 md_number_to_chars (buf, newval, INSN_SIZE);
20147 break;
20148
20149 case BFD_RELOC_ARM_SWI:
20150 if (fixP->tc_fix_data != 0)
20151 {
20152 if (((unsigned long) value) > 0xff)
20153 as_bad_where (fixP->fx_file, fixP->fx_line,
20154 _("invalid swi expression"));
20155 newval = md_chars_to_number (buf, THUMB_SIZE);
20156 newval |= value;
20157 md_number_to_chars (buf, newval, THUMB_SIZE);
20158 }
20159 else
20160 {
20161 if (((unsigned long) value) > 0x00ffffff)
20162 as_bad_where (fixP->fx_file, fixP->fx_line,
20163 _("invalid swi expression"));
20164 newval = md_chars_to_number (buf, INSN_SIZE);
20165 newval |= value;
20166 md_number_to_chars (buf, newval, INSN_SIZE);
20167 }
20168 break;
20169
20170 case BFD_RELOC_ARM_MULTI:
20171 if (((unsigned long) value) > 0xffff)
20172 as_bad_where (fixP->fx_file, fixP->fx_line,
20173 _("invalid expression in load/store multiple"));
20174 newval = value | md_chars_to_number (buf, INSN_SIZE);
20175 md_number_to_chars (buf, newval, INSN_SIZE);
20176 break;
20177
20178 #ifdef OBJ_ELF
20179 case BFD_RELOC_ARM_PCREL_CALL:
20180
20181 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20182 && fixP->fx_addsy
20183 && !S_IS_EXTERNAL (fixP->fx_addsy)
20184 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20185 && THUMB_IS_FUNC (fixP->fx_addsy))
20186 /* Flip the bl to blx. This is a simple flip
20187 bit here because we generate PCREL_CALL for
20188 unconditional bls. */
20189 {
20190 newval = md_chars_to_number (buf, INSN_SIZE);
20191 newval = newval | 0x10000000;
20192 md_number_to_chars (buf, newval, INSN_SIZE);
20193 temp = 1;
20194 fixP->fx_done = 1;
20195 }
20196 else
20197 temp = 3;
20198 goto arm_branch_common;
20199
20200 case BFD_RELOC_ARM_PCREL_JUMP:
20201 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20202 && fixP->fx_addsy
20203 && !S_IS_EXTERNAL (fixP->fx_addsy)
20204 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20205 && THUMB_IS_FUNC (fixP->fx_addsy))
20206 {
20207 /* This would map to a bl<cond>, b<cond>,
20208 b<always> to a Thumb function. We
20209 need to force a relocation for this particular
20210 case. */
20211 newval = md_chars_to_number (buf, INSN_SIZE);
20212 fixP->fx_done = 0;
20213 }
20214
20215 case BFD_RELOC_ARM_PLT32:
20216 #endif
20217 case BFD_RELOC_ARM_PCREL_BRANCH:
20218 temp = 3;
20219 goto arm_branch_common;
20220
20221 case BFD_RELOC_ARM_PCREL_BLX:
20222
20223 temp = 1;
20224 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20225 && fixP->fx_addsy
20226 && !S_IS_EXTERNAL (fixP->fx_addsy)
20227 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20228 && ARM_IS_FUNC (fixP->fx_addsy))
20229 {
20230 /* Flip the blx to a bl and warn. */
20231 const char *name = S_GET_NAME (fixP->fx_addsy);
20232 newval = 0xeb000000;
20233 as_warn_where (fixP->fx_file, fixP->fx_line,
20234 _("blx to '%s' an ARM ISA state function changed to bl"),
20235 name);
20236 md_number_to_chars (buf, newval, INSN_SIZE);
20237 temp = 3;
20238 fixP->fx_done = 1;
20239 }
20240
20241 #ifdef OBJ_ELF
20242 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20243 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20244 #endif
20245
20246 arm_branch_common:
20247 /* We are going to store value (shifted right by two) in the
20248 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20249 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20250 also be be clear. */
20251 if (value & temp)
20252 as_bad_where (fixP->fx_file, fixP->fx_line,
20253 _("misaligned branch destination"));
20254 if ((value & (offsetT)0xfe000000) != (offsetT)0
20255 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20256 as_bad_where (fixP->fx_file, fixP->fx_line,
20257 _("branch out of range"));
20258
20259 if (fixP->fx_done || !seg->use_rela_p)
20260 {
20261 newval = md_chars_to_number (buf, INSN_SIZE);
20262 newval |= (value >> 2) & 0x00ffffff;
20263 /* Set the H bit on BLX instructions. */
20264 if (temp == 1)
20265 {
20266 if (value & 2)
20267 newval |= 0x01000000;
20268 else
20269 newval &= ~0x01000000;
20270 }
20271 md_number_to_chars (buf, newval, INSN_SIZE);
20272 }
20273 break;
20274
20275 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20276 /* CBZ can only branch forward. */
20277
20278 /* Attempts to use CBZ to branch to the next instruction
20279 (which, strictly speaking, are prohibited) will be turned into
20280 no-ops.
20281
20282 FIXME: It may be better to remove the instruction completely and
20283 perform relaxation. */
20284 if (value == -2)
20285 {
20286 newval = md_chars_to_number (buf, THUMB_SIZE);
20287 newval = 0xbf00; /* NOP encoding T1 */
20288 md_number_to_chars (buf, newval, THUMB_SIZE);
20289 }
20290 else
20291 {
20292 if (value & ~0x7e)
20293 as_bad_where (fixP->fx_file, fixP->fx_line,
20294 _("branch out of range"));
20295
20296 if (fixP->fx_done || !seg->use_rela_p)
20297 {
20298 newval = md_chars_to_number (buf, THUMB_SIZE);
20299 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20300 md_number_to_chars (buf, newval, THUMB_SIZE);
20301 }
20302 }
20303 break;
20304
20305 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20306 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20307 as_bad_where (fixP->fx_file, fixP->fx_line,
20308 _("branch out of range"));
20309
20310 if (fixP->fx_done || !seg->use_rela_p)
20311 {
20312 newval = md_chars_to_number (buf, THUMB_SIZE);
20313 newval |= (value & 0x1ff) >> 1;
20314 md_number_to_chars (buf, newval, THUMB_SIZE);
20315 }
20316 break;
20317
20318 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20319 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20320 as_bad_where (fixP->fx_file, fixP->fx_line,
20321 _("branch out of range"));
20322
20323 if (fixP->fx_done || !seg->use_rela_p)
20324 {
20325 newval = md_chars_to_number (buf, THUMB_SIZE);
20326 newval |= (value & 0xfff) >> 1;
20327 md_number_to_chars (buf, newval, THUMB_SIZE);
20328 }
20329 break;
20330
20331 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20332 if (fixP->fx_addsy
20333 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20334 && !S_IS_EXTERNAL (fixP->fx_addsy)
20335 && S_IS_DEFINED (fixP->fx_addsy)
20336 && ARM_IS_FUNC (fixP->fx_addsy)
20337 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20338 {
20339 /* Force a relocation for a branch 20 bits wide. */
20340 fixP->fx_done = 0;
20341 }
20342 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20343 as_bad_where (fixP->fx_file, fixP->fx_line,
20344 _("conditional branch out of range"));
20345
20346 if (fixP->fx_done || !seg->use_rela_p)
20347 {
20348 offsetT newval2;
20349 addressT S, J1, J2, lo, hi;
20350
20351 S = (value & 0x00100000) >> 20;
20352 J2 = (value & 0x00080000) >> 19;
20353 J1 = (value & 0x00040000) >> 18;
20354 hi = (value & 0x0003f000) >> 12;
20355 lo = (value & 0x00000ffe) >> 1;
20356
20357 newval = md_chars_to_number (buf, THUMB_SIZE);
20358 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20359 newval |= (S << 10) | hi;
20360 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20361 md_number_to_chars (buf, newval, THUMB_SIZE);
20362 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20363 }
20364 break;
20365
20366 case BFD_RELOC_THUMB_PCREL_BLX:
20367
20368 /* If there is a blx from a thumb state function to
20369 another thumb function flip this to a bl and warn
20370 about it. */
20371
20372 if (fixP->fx_addsy
20373 && S_IS_DEFINED (fixP->fx_addsy)
20374 && !S_IS_EXTERNAL (fixP->fx_addsy)
20375 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20376 && THUMB_IS_FUNC (fixP->fx_addsy))
20377 {
20378 const char *name = S_GET_NAME (fixP->fx_addsy);
20379 as_warn_where (fixP->fx_file, fixP->fx_line,
20380 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20381 name);
20382 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20383 newval = newval | 0x1000;
20384 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20385 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20386 fixP->fx_done = 1;
20387 }
20388
20389
20390 goto thumb_bl_common;
20391
20392 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20393
20394 /* A bl from Thumb state ISA to an internal ARM state function
20395 is converted to a blx. */
20396 if (fixP->fx_addsy
20397 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20398 && !S_IS_EXTERNAL (fixP->fx_addsy)
20399 && S_IS_DEFINED (fixP->fx_addsy)
20400 && ARM_IS_FUNC (fixP->fx_addsy)
20401 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20402 {
20403 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20404 newval = newval & ~0x1000;
20405 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20406 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20407 fixP->fx_done = 1;
20408 }
20409
20410 thumb_bl_common:
20411
20412 #ifdef OBJ_ELF
20413 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20414 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20415 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20416 #endif
20417
20418 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20419 /* For a BLX instruction, make sure that the relocation is rounded up
20420 to a word boundary. This follows the semantics of the instruction
20421 which specifies that bit 1 of the target address will come from bit
20422 1 of the base address. */
20423 value = (value + 1) & ~ 1;
20424
20425
20426 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20427 {
20428 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20429 {
20430 as_bad_where (fixP->fx_file, fixP->fx_line,
20431 _("branch out of range"));
20432 }
20433 else if ((value & ~0x1ffffff)
20434 && ((value & ~0x1ffffff) != ~0x1ffffff))
20435 {
20436 as_bad_where (fixP->fx_file, fixP->fx_line,
20437 _("Thumb2 branch out of range"));
20438 }
20439 }
20440
20441 if (fixP->fx_done || !seg->use_rela_p)
20442 encode_thumb2_b_bl_offset (buf, value);
20443
20444 break;
20445
20446 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20447 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20448 as_bad_where (fixP->fx_file, fixP->fx_line,
20449 _("branch out of range"));
20450
20451 if (fixP->fx_done || !seg->use_rela_p)
20452 encode_thumb2_b_bl_offset (buf, value);
20453
20454 break;
20455
20456 case BFD_RELOC_8:
20457 if (fixP->fx_done || !seg->use_rela_p)
20458 md_number_to_chars (buf, value, 1);
20459 break;
20460
20461 case BFD_RELOC_16:
20462 if (fixP->fx_done || !seg->use_rela_p)
20463 md_number_to_chars (buf, value, 2);
20464 break;
20465
20466 #ifdef OBJ_ELF
20467 case BFD_RELOC_ARM_TLS_GD32:
20468 case BFD_RELOC_ARM_TLS_LE32:
20469 case BFD_RELOC_ARM_TLS_IE32:
20470 case BFD_RELOC_ARM_TLS_LDM32:
20471 case BFD_RELOC_ARM_TLS_LDO32:
20472 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20473 /* fall through */
20474
20475 case BFD_RELOC_ARM_GOT32:
20476 case BFD_RELOC_ARM_GOTOFF:
20477 if (fixP->fx_done || !seg->use_rela_p)
20478 md_number_to_chars (buf, 0, 4);
20479 break;
20480
20481 case BFD_RELOC_ARM_TARGET2:
20482 /* TARGET2 is not partial-inplace, so we need to write the
20483 addend here for REL targets, because it won't be written out
20484 during reloc processing later. */
20485 if (fixP->fx_done || !seg->use_rela_p)
20486 md_number_to_chars (buf, fixP->fx_offset, 4);
20487 break;
20488 #endif
20489
20490 case BFD_RELOC_RVA:
20491 case BFD_RELOC_32:
20492 case BFD_RELOC_ARM_TARGET1:
20493 case BFD_RELOC_ARM_ROSEGREL32:
20494 case BFD_RELOC_ARM_SBREL32:
20495 case BFD_RELOC_32_PCREL:
20496 #ifdef TE_PE
20497 case BFD_RELOC_32_SECREL:
20498 #endif
20499 if (fixP->fx_done || !seg->use_rela_p)
20500 #ifdef TE_WINCE
20501 /* For WinCE we only do this for pcrel fixups. */
20502 if (fixP->fx_done || fixP->fx_pcrel)
20503 #endif
20504 md_number_to_chars (buf, value, 4);
20505 break;
20506
20507 #ifdef OBJ_ELF
20508 case BFD_RELOC_ARM_PREL31:
20509 if (fixP->fx_done || !seg->use_rela_p)
20510 {
20511 newval = md_chars_to_number (buf, 4) & 0x80000000;
20512 if ((value ^ (value >> 1)) & 0x40000000)
20513 {
20514 as_bad_where (fixP->fx_file, fixP->fx_line,
20515 _("rel31 relocation overflow"));
20516 }
20517 newval |= value & 0x7fffffff;
20518 md_number_to_chars (buf, newval, 4);
20519 }
20520 break;
20521 #endif
20522
20523 case BFD_RELOC_ARM_CP_OFF_IMM:
20524 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20525 if (value < -1023 || value > 1023 || (value & 3))
20526 as_bad_where (fixP->fx_file, fixP->fx_line,
20527 _("co-processor offset out of range"));
20528 cp_off_common:
20529 sign = value >= 0;
20530 if (value < 0)
20531 value = -value;
20532 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20533 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20534 newval = md_chars_to_number (buf, INSN_SIZE);
20535 else
20536 newval = get_thumb32_insn (buf);
20537 newval &= 0xff7fff00;
20538 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20539 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20540 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20541 md_number_to_chars (buf, newval, INSN_SIZE);
20542 else
20543 put_thumb32_insn (buf, newval);
20544 break;
20545
20546 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20547 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20548 if (value < -255 || value > 255)
20549 as_bad_where (fixP->fx_file, fixP->fx_line,
20550 _("co-processor offset out of range"));
20551 value *= 4;
20552 goto cp_off_common;
20553
20554 case BFD_RELOC_ARM_THUMB_OFFSET:
20555 newval = md_chars_to_number (buf, THUMB_SIZE);
20556 /* Exactly what ranges, and where the offset is inserted depends
20557 on the type of instruction, we can establish this from the
20558 top 4 bits. */
20559 switch (newval >> 12)
20560 {
20561 case 4: /* PC load. */
20562 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20563 forced to zero for these loads; md_pcrel_from has already
20564 compensated for this. */
20565 if (value & 3)
20566 as_bad_where (fixP->fx_file, fixP->fx_line,
20567 _("invalid offset, target not word aligned (0x%08lX)"),
20568 (((unsigned long) fixP->fx_frag->fr_address
20569 + (unsigned long) fixP->fx_where) & ~3)
20570 + (unsigned long) value);
20571
20572 if (value & ~0x3fc)
20573 as_bad_where (fixP->fx_file, fixP->fx_line,
20574 _("invalid offset, value too big (0x%08lX)"),
20575 (long) value);
20576
20577 newval |= value >> 2;
20578 break;
20579
20580 case 9: /* SP load/store. */
20581 if (value & ~0x3fc)
20582 as_bad_where (fixP->fx_file, fixP->fx_line,
20583 _("invalid offset, value too big (0x%08lX)"),
20584 (long) value);
20585 newval |= value >> 2;
20586 break;
20587
20588 case 6: /* Word load/store. */
20589 if (value & ~0x7c)
20590 as_bad_where (fixP->fx_file, fixP->fx_line,
20591 _("invalid offset, value too big (0x%08lX)"),
20592 (long) value);
20593 newval |= value << 4; /* 6 - 2. */
20594 break;
20595
20596 case 7: /* Byte load/store. */
20597 if (value & ~0x1f)
20598 as_bad_where (fixP->fx_file, fixP->fx_line,
20599 _("invalid offset, value too big (0x%08lX)"),
20600 (long) value);
20601 newval |= value << 6;
20602 break;
20603
20604 case 8: /* Halfword load/store. */
20605 if (value & ~0x3e)
20606 as_bad_where (fixP->fx_file, fixP->fx_line,
20607 _("invalid offset, value too big (0x%08lX)"),
20608 (long) value);
20609 newval |= value << 5; /* 6 - 1. */
20610 break;
20611
20612 default:
20613 as_bad_where (fixP->fx_file, fixP->fx_line,
20614 "Unable to process relocation for thumb opcode: %lx",
20615 (unsigned long) newval);
20616 break;
20617 }
20618 md_number_to_chars (buf, newval, THUMB_SIZE);
20619 break;
20620
20621 case BFD_RELOC_ARM_THUMB_ADD:
20622 /* This is a complicated relocation, since we use it for all of
20623 the following immediate relocations:
20624
20625 3bit ADD/SUB
20626 8bit ADD/SUB
20627 9bit ADD/SUB SP word-aligned
20628 10bit ADD PC/SP word-aligned
20629
20630 The type of instruction being processed is encoded in the
20631 instruction field:
20632
20633 0x8000 SUB
20634 0x00F0 Rd
20635 0x000F Rs
20636 */
20637 newval = md_chars_to_number (buf, THUMB_SIZE);
20638 {
20639 int rd = (newval >> 4) & 0xf;
20640 int rs = newval & 0xf;
20641 int subtract = !!(newval & 0x8000);
20642
20643 /* Check for HI regs, only very restricted cases allowed:
20644 Adjusting SP, and using PC or SP to get an address. */
20645 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20646 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20647 as_bad_where (fixP->fx_file, fixP->fx_line,
20648 _("invalid Hi register with immediate"));
20649
20650 /* If value is negative, choose the opposite instruction. */
20651 if (value < 0)
20652 {
20653 value = -value;
20654 subtract = !subtract;
20655 if (value < 0)
20656 as_bad_where (fixP->fx_file, fixP->fx_line,
20657 _("immediate value out of range"));
20658 }
20659
20660 if (rd == REG_SP)
20661 {
20662 if (value & ~0x1fc)
20663 as_bad_where (fixP->fx_file, fixP->fx_line,
20664 _("invalid immediate for stack address calculation"));
20665 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20666 newval |= value >> 2;
20667 }
20668 else if (rs == REG_PC || rs == REG_SP)
20669 {
20670 if (subtract || value & ~0x3fc)
20671 as_bad_where (fixP->fx_file, fixP->fx_line,
20672 _("invalid immediate for address calculation (value = 0x%08lX)"),
20673 (unsigned long) value);
20674 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20675 newval |= rd << 8;
20676 newval |= value >> 2;
20677 }
20678 else if (rs == rd)
20679 {
20680 if (value & ~0xff)
20681 as_bad_where (fixP->fx_file, fixP->fx_line,
20682 _("immediate value out of range"));
20683 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20684 newval |= (rd << 8) | value;
20685 }
20686 else
20687 {
20688 if (value & ~0x7)
20689 as_bad_where (fixP->fx_file, fixP->fx_line,
20690 _("immediate value out of range"));
20691 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20692 newval |= rd | (rs << 3) | (value << 6);
20693 }
20694 }
20695 md_number_to_chars (buf, newval, THUMB_SIZE);
20696 break;
20697
20698 case BFD_RELOC_ARM_THUMB_IMM:
20699 newval = md_chars_to_number (buf, THUMB_SIZE);
20700 if (value < 0 || value > 255)
20701 as_bad_where (fixP->fx_file, fixP->fx_line,
20702 _("invalid immediate: %ld is out of range"),
20703 (long) value);
20704 newval |= value;
20705 md_number_to_chars (buf, newval, THUMB_SIZE);
20706 break;
20707
20708 case BFD_RELOC_ARM_THUMB_SHIFT:
20709 /* 5bit shift value (0..32). LSL cannot take 32. */
20710 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20711 temp = newval & 0xf800;
20712 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20713 as_bad_where (fixP->fx_file, fixP->fx_line,
20714 _("invalid shift value: %ld"), (long) value);
20715 /* Shifts of zero must be encoded as LSL. */
20716 if (value == 0)
20717 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20718 /* Shifts of 32 are encoded as zero. */
20719 else if (value == 32)
20720 value = 0;
20721 newval |= value << 6;
20722 md_number_to_chars (buf, newval, THUMB_SIZE);
20723 break;
20724
20725 case BFD_RELOC_VTABLE_INHERIT:
20726 case BFD_RELOC_VTABLE_ENTRY:
20727 fixP->fx_done = 0;
20728 return;
20729
20730 case BFD_RELOC_ARM_MOVW:
20731 case BFD_RELOC_ARM_MOVT:
20732 case BFD_RELOC_ARM_THUMB_MOVW:
20733 case BFD_RELOC_ARM_THUMB_MOVT:
20734 if (fixP->fx_done || !seg->use_rela_p)
20735 {
20736 /* REL format relocations are limited to a 16-bit addend. */
20737 if (!fixP->fx_done)
20738 {
20739 if (value < -0x8000 || value > 0x7fff)
20740 as_bad_where (fixP->fx_file, fixP->fx_line,
20741 _("offset out of range"));
20742 }
20743 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20744 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20745 {
20746 value >>= 16;
20747 }
20748
20749 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20750 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20751 {
20752 newval = get_thumb32_insn (buf);
20753 newval &= 0xfbf08f00;
20754 newval |= (value & 0xf000) << 4;
20755 newval |= (value & 0x0800) << 15;
20756 newval |= (value & 0x0700) << 4;
20757 newval |= (value & 0x00ff);
20758 put_thumb32_insn (buf, newval);
20759 }
20760 else
20761 {
20762 newval = md_chars_to_number (buf, 4);
20763 newval &= 0xfff0f000;
20764 newval |= value & 0x0fff;
20765 newval |= (value & 0xf000) << 4;
20766 md_number_to_chars (buf, newval, 4);
20767 }
20768 }
20769 return;
20770
20771 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20772 case BFD_RELOC_ARM_ALU_PC_G0:
20773 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20774 case BFD_RELOC_ARM_ALU_PC_G1:
20775 case BFD_RELOC_ARM_ALU_PC_G2:
20776 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20777 case BFD_RELOC_ARM_ALU_SB_G0:
20778 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20779 case BFD_RELOC_ARM_ALU_SB_G1:
20780 case BFD_RELOC_ARM_ALU_SB_G2:
20781 gas_assert (!fixP->fx_done);
20782 if (!seg->use_rela_p)
20783 {
20784 bfd_vma insn;
20785 bfd_vma encoded_addend;
20786 bfd_vma addend_abs = abs (value);
20787
20788 /* Check that the absolute value of the addend can be
20789 expressed as an 8-bit constant plus a rotation. */
20790 encoded_addend = encode_arm_immediate (addend_abs);
20791 if (encoded_addend == (unsigned int) FAIL)
20792 as_bad_where (fixP->fx_file, fixP->fx_line,
20793 _("the offset 0x%08lX is not representable"),
20794 (unsigned long) addend_abs);
20795
20796 /* Extract the instruction. */
20797 insn = md_chars_to_number (buf, INSN_SIZE);
20798
20799 /* If the addend is positive, use an ADD instruction.
20800 Otherwise use a SUB. Take care not to destroy the S bit. */
20801 insn &= 0xff1fffff;
20802 if (value < 0)
20803 insn |= 1 << 22;
20804 else
20805 insn |= 1 << 23;
20806
20807 /* Place the encoded addend into the first 12 bits of the
20808 instruction. */
20809 insn &= 0xfffff000;
20810 insn |= encoded_addend;
20811
20812 /* Update the instruction. */
20813 md_number_to_chars (buf, insn, INSN_SIZE);
20814 }
20815 break;
20816
20817 case BFD_RELOC_ARM_LDR_PC_G0:
20818 case BFD_RELOC_ARM_LDR_PC_G1:
20819 case BFD_RELOC_ARM_LDR_PC_G2:
20820 case BFD_RELOC_ARM_LDR_SB_G0:
20821 case BFD_RELOC_ARM_LDR_SB_G1:
20822 case BFD_RELOC_ARM_LDR_SB_G2:
20823 gas_assert (!fixP->fx_done);
20824 if (!seg->use_rela_p)
20825 {
20826 bfd_vma insn;
20827 bfd_vma addend_abs = abs (value);
20828
20829 /* Check that the absolute value of the addend can be
20830 encoded in 12 bits. */
20831 if (addend_abs >= 0x1000)
20832 as_bad_where (fixP->fx_file, fixP->fx_line,
20833 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
20834 (unsigned long) addend_abs);
20835
20836 /* Extract the instruction. */
20837 insn = md_chars_to_number (buf, INSN_SIZE);
20838
20839 /* If the addend is negative, clear bit 23 of the instruction.
20840 Otherwise set it. */
20841 if (value < 0)
20842 insn &= ~(1 << 23);
20843 else
20844 insn |= 1 << 23;
20845
20846 /* Place the absolute value of the addend into the first 12 bits
20847 of the instruction. */
20848 insn &= 0xfffff000;
20849 insn |= addend_abs;
20850
20851 /* Update the instruction. */
20852 md_number_to_chars (buf, insn, INSN_SIZE);
20853 }
20854 break;
20855
20856 case BFD_RELOC_ARM_LDRS_PC_G0:
20857 case BFD_RELOC_ARM_LDRS_PC_G1:
20858 case BFD_RELOC_ARM_LDRS_PC_G2:
20859 case BFD_RELOC_ARM_LDRS_SB_G0:
20860 case BFD_RELOC_ARM_LDRS_SB_G1:
20861 case BFD_RELOC_ARM_LDRS_SB_G2:
20862 gas_assert (!fixP->fx_done);
20863 if (!seg->use_rela_p)
20864 {
20865 bfd_vma insn;
20866 bfd_vma addend_abs = abs (value);
20867
20868 /* Check that the absolute value of the addend can be
20869 encoded in 8 bits. */
20870 if (addend_abs >= 0x100)
20871 as_bad_where (fixP->fx_file, fixP->fx_line,
20872 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
20873 (unsigned long) addend_abs);
20874
20875 /* Extract the instruction. */
20876 insn = md_chars_to_number (buf, INSN_SIZE);
20877
20878 /* If the addend is negative, clear bit 23 of the instruction.
20879 Otherwise set it. */
20880 if (value < 0)
20881 insn &= ~(1 << 23);
20882 else
20883 insn |= 1 << 23;
20884
20885 /* Place the first four bits of the absolute value of the addend
20886 into the first 4 bits of the instruction, and the remaining
20887 four into bits 8 .. 11. */
20888 insn &= 0xfffff0f0;
20889 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
20890
20891 /* Update the instruction. */
20892 md_number_to_chars (buf, insn, INSN_SIZE);
20893 }
20894 break;
20895
20896 case BFD_RELOC_ARM_LDC_PC_G0:
20897 case BFD_RELOC_ARM_LDC_PC_G1:
20898 case BFD_RELOC_ARM_LDC_PC_G2:
20899 case BFD_RELOC_ARM_LDC_SB_G0:
20900 case BFD_RELOC_ARM_LDC_SB_G1:
20901 case BFD_RELOC_ARM_LDC_SB_G2:
20902 gas_assert (!fixP->fx_done);
20903 if (!seg->use_rela_p)
20904 {
20905 bfd_vma insn;
20906 bfd_vma addend_abs = abs (value);
20907
20908 /* Check that the absolute value of the addend is a multiple of
20909 four and, when divided by four, fits in 8 bits. */
20910 if (addend_abs & 0x3)
20911 as_bad_where (fixP->fx_file, fixP->fx_line,
20912 _("bad offset 0x%08lX (must be word-aligned)"),
20913 (unsigned long) addend_abs);
20914
20915 if ((addend_abs >> 2) > 0xff)
20916 as_bad_where (fixP->fx_file, fixP->fx_line,
20917 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
20918 (unsigned long) addend_abs);
20919
20920 /* Extract the instruction. */
20921 insn = md_chars_to_number (buf, INSN_SIZE);
20922
20923 /* If the addend is negative, clear bit 23 of the instruction.
20924 Otherwise set it. */
20925 if (value < 0)
20926 insn &= ~(1 << 23);
20927 else
20928 insn |= 1 << 23;
20929
20930 /* Place the addend (divided by four) into the first eight
20931 bits of the instruction. */
20932 insn &= 0xfffffff0;
20933 insn |= addend_abs >> 2;
20934
20935 /* Update the instruction. */
20936 md_number_to_chars (buf, insn, INSN_SIZE);
20937 }
20938 break;
20939
20940 case BFD_RELOC_ARM_V4BX:
20941 /* This will need to go in the object file. */
20942 fixP->fx_done = 0;
20943 break;
20944
20945 case BFD_RELOC_UNUSED:
20946 default:
20947 as_bad_where (fixP->fx_file, fixP->fx_line,
20948 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20949 }
20950 }
20951
20952 /* Translate internal representation of relocation info to BFD target
20953 format. */
20954
20955 arelent *
20956 tc_gen_reloc (asection *section, fixS *fixp)
20957 {
20958 arelent * reloc;
20959 bfd_reloc_code_real_type code;
20960
20961 reloc = (arelent *) xmalloc (sizeof (arelent));
20962
20963 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
20964 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20965 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
20966
20967 if (fixp->fx_pcrel)
20968 {
20969 if (section->use_rela_p)
20970 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20971 else
20972 fixp->fx_offset = reloc->address;
20973 }
20974 reloc->addend = fixp->fx_offset;
20975
20976 switch (fixp->fx_r_type)
20977 {
20978 case BFD_RELOC_8:
20979 if (fixp->fx_pcrel)
20980 {
20981 code = BFD_RELOC_8_PCREL;
20982 break;
20983 }
20984
20985 case BFD_RELOC_16:
20986 if (fixp->fx_pcrel)
20987 {
20988 code = BFD_RELOC_16_PCREL;
20989 break;
20990 }
20991
20992 case BFD_RELOC_32:
20993 if (fixp->fx_pcrel)
20994 {
20995 code = BFD_RELOC_32_PCREL;
20996 break;
20997 }
20998
20999 case BFD_RELOC_ARM_MOVW:
21000 if (fixp->fx_pcrel)
21001 {
21002 code = BFD_RELOC_ARM_MOVW_PCREL;
21003 break;
21004 }
21005
21006 case BFD_RELOC_ARM_MOVT:
21007 if (fixp->fx_pcrel)
21008 {
21009 code = BFD_RELOC_ARM_MOVT_PCREL;
21010 break;
21011 }
21012
21013 case BFD_RELOC_ARM_THUMB_MOVW:
21014 if (fixp->fx_pcrel)
21015 {
21016 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21017 break;
21018 }
21019
21020 case BFD_RELOC_ARM_THUMB_MOVT:
21021 if (fixp->fx_pcrel)
21022 {
21023 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21024 break;
21025 }
21026
21027 case BFD_RELOC_NONE:
21028 case BFD_RELOC_ARM_PCREL_BRANCH:
21029 case BFD_RELOC_ARM_PCREL_BLX:
21030 case BFD_RELOC_RVA:
21031 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21032 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21033 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21034 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21035 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21036 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21037 case BFD_RELOC_VTABLE_ENTRY:
21038 case BFD_RELOC_VTABLE_INHERIT:
21039 #ifdef TE_PE
21040 case BFD_RELOC_32_SECREL:
21041 #endif
21042 code = fixp->fx_r_type;
21043 break;
21044
21045 case BFD_RELOC_THUMB_PCREL_BLX:
21046 #ifdef OBJ_ELF
21047 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21048 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21049 else
21050 #endif
21051 code = BFD_RELOC_THUMB_PCREL_BLX;
21052 break;
21053
21054 case BFD_RELOC_ARM_LITERAL:
21055 case BFD_RELOC_ARM_HWLITERAL:
21056 /* If this is called then the a literal has
21057 been referenced across a section boundary. */
21058 as_bad_where (fixp->fx_file, fixp->fx_line,
21059 _("literal referenced across section boundary"));
21060 return NULL;
21061
21062 #ifdef OBJ_ELF
21063 case BFD_RELOC_ARM_GOT32:
21064 case BFD_RELOC_ARM_GOTOFF:
21065 case BFD_RELOC_ARM_PLT32:
21066 case BFD_RELOC_ARM_TARGET1:
21067 case BFD_RELOC_ARM_ROSEGREL32:
21068 case BFD_RELOC_ARM_SBREL32:
21069 case BFD_RELOC_ARM_PREL31:
21070 case BFD_RELOC_ARM_TARGET2:
21071 case BFD_RELOC_ARM_TLS_LE32:
21072 case BFD_RELOC_ARM_TLS_LDO32:
21073 case BFD_RELOC_ARM_PCREL_CALL:
21074 case BFD_RELOC_ARM_PCREL_JUMP:
21075 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21076 case BFD_RELOC_ARM_ALU_PC_G0:
21077 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21078 case BFD_RELOC_ARM_ALU_PC_G1:
21079 case BFD_RELOC_ARM_ALU_PC_G2:
21080 case BFD_RELOC_ARM_LDR_PC_G0:
21081 case BFD_RELOC_ARM_LDR_PC_G1:
21082 case BFD_RELOC_ARM_LDR_PC_G2:
21083 case BFD_RELOC_ARM_LDRS_PC_G0:
21084 case BFD_RELOC_ARM_LDRS_PC_G1:
21085 case BFD_RELOC_ARM_LDRS_PC_G2:
21086 case BFD_RELOC_ARM_LDC_PC_G0:
21087 case BFD_RELOC_ARM_LDC_PC_G1:
21088 case BFD_RELOC_ARM_LDC_PC_G2:
21089 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21090 case BFD_RELOC_ARM_ALU_SB_G0:
21091 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21092 case BFD_RELOC_ARM_ALU_SB_G1:
21093 case BFD_RELOC_ARM_ALU_SB_G2:
21094 case BFD_RELOC_ARM_LDR_SB_G0:
21095 case BFD_RELOC_ARM_LDR_SB_G1:
21096 case BFD_RELOC_ARM_LDR_SB_G2:
21097 case BFD_RELOC_ARM_LDRS_SB_G0:
21098 case BFD_RELOC_ARM_LDRS_SB_G1:
21099 case BFD_RELOC_ARM_LDRS_SB_G2:
21100 case BFD_RELOC_ARM_LDC_SB_G0:
21101 case BFD_RELOC_ARM_LDC_SB_G1:
21102 case BFD_RELOC_ARM_LDC_SB_G2:
21103 case BFD_RELOC_ARM_V4BX:
21104 code = fixp->fx_r_type;
21105 break;
21106
21107 case BFD_RELOC_ARM_TLS_GD32:
21108 case BFD_RELOC_ARM_TLS_IE32:
21109 case BFD_RELOC_ARM_TLS_LDM32:
21110 /* BFD will include the symbol's address in the addend.
21111 But we don't want that, so subtract it out again here. */
21112 if (!S_IS_COMMON (fixp->fx_addsy))
21113 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21114 code = fixp->fx_r_type;
21115 break;
21116 #endif
21117
21118 case BFD_RELOC_ARM_IMMEDIATE:
21119 as_bad_where (fixp->fx_file, fixp->fx_line,
21120 _("internal relocation (type: IMMEDIATE) not fixed up"));
21121 return NULL;
21122
21123 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21124 as_bad_where (fixp->fx_file, fixp->fx_line,
21125 _("ADRL used for a symbol not defined in the same file"));
21126 return NULL;
21127
21128 case BFD_RELOC_ARM_OFFSET_IMM:
21129 if (section->use_rela_p)
21130 {
21131 code = fixp->fx_r_type;
21132 break;
21133 }
21134
21135 if (fixp->fx_addsy != NULL
21136 && !S_IS_DEFINED (fixp->fx_addsy)
21137 && S_IS_LOCAL (fixp->fx_addsy))
21138 {
21139 as_bad_where (fixp->fx_file, fixp->fx_line,
21140 _("undefined local label `%s'"),
21141 S_GET_NAME (fixp->fx_addsy));
21142 return NULL;
21143 }
21144
21145 as_bad_where (fixp->fx_file, fixp->fx_line,
21146 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21147 return NULL;
21148
21149 default:
21150 {
21151 char * type;
21152
21153 switch (fixp->fx_r_type)
21154 {
21155 case BFD_RELOC_NONE: type = "NONE"; break;
21156 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21157 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21158 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21159 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21160 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21161 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21162 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21163 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21164 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21165 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21166 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21167 default: type = _("<unknown>"); break;
21168 }
21169 as_bad_where (fixp->fx_file, fixp->fx_line,
21170 _("cannot represent %s relocation in this object file format"),
21171 type);
21172 return NULL;
21173 }
21174 }
21175
21176 #ifdef OBJ_ELF
21177 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21178 && GOT_symbol
21179 && fixp->fx_addsy == GOT_symbol)
21180 {
21181 code = BFD_RELOC_ARM_GOTPC;
21182 reloc->addend = fixp->fx_offset = reloc->address;
21183 }
21184 #endif
21185
21186 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21187
21188 if (reloc->howto == NULL)
21189 {
21190 as_bad_where (fixp->fx_file, fixp->fx_line,
21191 _("cannot represent %s relocation in this object file format"),
21192 bfd_get_reloc_code_name (code));
21193 return NULL;
21194 }
21195
21196 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21197 vtable entry to be used in the relocation's section offset. */
21198 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21199 reloc->address = fixp->fx_offset;
21200
21201 return reloc;
21202 }
21203
21204 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21205
21206 void
21207 cons_fix_new_arm (fragS * frag,
21208 int where,
21209 int size,
21210 expressionS * exp)
21211 {
21212 bfd_reloc_code_real_type type;
21213 int pcrel = 0;
21214
21215 /* Pick a reloc.
21216 FIXME: @@ Should look at CPU word size. */
21217 switch (size)
21218 {
21219 case 1:
21220 type = BFD_RELOC_8;
21221 break;
21222 case 2:
21223 type = BFD_RELOC_16;
21224 break;
21225 case 4:
21226 default:
21227 type = BFD_RELOC_32;
21228 break;
21229 case 8:
21230 type = BFD_RELOC_64;
21231 break;
21232 }
21233
21234 #ifdef TE_PE
21235 if (exp->X_op == O_secrel)
21236 {
21237 exp->X_op = O_symbol;
21238 type = BFD_RELOC_32_SECREL;
21239 }
21240 #endif
21241
21242 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21243 }
21244
21245 #if defined (OBJ_COFF)
21246 void
21247 arm_validate_fix (fixS * fixP)
21248 {
21249 /* If the destination of the branch is a defined symbol which does not have
21250 the THUMB_FUNC attribute, then we must be calling a function which has
21251 the (interfacearm) attribute. We look for the Thumb entry point to that
21252 function and change the branch to refer to that function instead. */
21253 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21254 && fixP->fx_addsy != NULL
21255 && S_IS_DEFINED (fixP->fx_addsy)
21256 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21257 {
21258 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21259 }
21260 }
21261 #endif
21262
21263
21264 int
21265 arm_force_relocation (struct fix * fixp)
21266 {
21267 #if defined (OBJ_COFF) && defined (TE_PE)
21268 if (fixp->fx_r_type == BFD_RELOC_RVA)
21269 return 1;
21270 #endif
21271
21272 /* In case we have a call or a branch to a function in ARM ISA mode from
21273 a thumb function or vice-versa force the relocation. These relocations
21274 are cleared off for some cores that might have blx and simple transformations
21275 are possible. */
21276
21277 #ifdef OBJ_ELF
21278 switch (fixp->fx_r_type)
21279 {
21280 case BFD_RELOC_ARM_PCREL_JUMP:
21281 case BFD_RELOC_ARM_PCREL_CALL:
21282 case BFD_RELOC_THUMB_PCREL_BLX:
21283 if (THUMB_IS_FUNC (fixp->fx_addsy))
21284 return 1;
21285 break;
21286
21287 case BFD_RELOC_ARM_PCREL_BLX:
21288 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21289 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21290 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21291 if (ARM_IS_FUNC (fixp->fx_addsy))
21292 return 1;
21293 break;
21294
21295 default:
21296 break;
21297 }
21298 #endif
21299
21300 /* Resolve these relocations even if the symbol is extern or weak. */
21301 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21302 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21303 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21304 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21305 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21306 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21307 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21308 return 0;
21309
21310 /* Always leave these relocations for the linker. */
21311 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21312 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21313 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21314 return 1;
21315
21316 /* Always generate relocations against function symbols. */
21317 if (fixp->fx_r_type == BFD_RELOC_32
21318 && fixp->fx_addsy
21319 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21320 return 1;
21321
21322 return generic_force_reloc (fixp);
21323 }
21324
21325 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21326 /* Relocations against function names must be left unadjusted,
21327 so that the linker can use this information to generate interworking
21328 stubs. The MIPS version of this function
21329 also prevents relocations that are mips-16 specific, but I do not
21330 know why it does this.
21331
21332 FIXME:
21333 There is one other problem that ought to be addressed here, but
21334 which currently is not: Taking the address of a label (rather
21335 than a function) and then later jumping to that address. Such
21336 addresses also ought to have their bottom bit set (assuming that
21337 they reside in Thumb code), but at the moment they will not. */
21338
21339 bfd_boolean
21340 arm_fix_adjustable (fixS * fixP)
21341 {
21342 if (fixP->fx_addsy == NULL)
21343 return 1;
21344
21345 /* Preserve relocations against symbols with function type. */
21346 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21347 return FALSE;
21348
21349 if (THUMB_IS_FUNC (fixP->fx_addsy)
21350 && fixP->fx_subsy == NULL)
21351 return FALSE;
21352
21353 /* We need the symbol name for the VTABLE entries. */
21354 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21355 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21356 return FALSE;
21357
21358 /* Don't allow symbols to be discarded on GOT related relocs. */
21359 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21360 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21361 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21362 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21363 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21364 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21365 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21366 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21367 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21368 return FALSE;
21369
21370 /* Similarly for group relocations. */
21371 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21372 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21373 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21374 return FALSE;
21375
21376 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21377 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21378 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21379 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21380 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21381 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21382 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21383 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21384 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21385 return FALSE;
21386
21387 return TRUE;
21388 }
21389 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21390
21391 #ifdef OBJ_ELF
21392
21393 const char *
21394 elf32_arm_target_format (void)
21395 {
21396 #ifdef TE_SYMBIAN
21397 return (target_big_endian
21398 ? "elf32-bigarm-symbian"
21399 : "elf32-littlearm-symbian");
21400 #elif defined (TE_VXWORKS)
21401 return (target_big_endian
21402 ? "elf32-bigarm-vxworks"
21403 : "elf32-littlearm-vxworks");
21404 #else
21405 if (target_big_endian)
21406 return "elf32-bigarm";
21407 else
21408 return "elf32-littlearm";
21409 #endif
21410 }
21411
21412 void
21413 armelf_frob_symbol (symbolS * symp,
21414 int * puntp)
21415 {
21416 elf_frob_symbol (symp, puntp);
21417 }
21418 #endif
21419
21420 /* MD interface: Finalization. */
21421
21422 void
21423 arm_cleanup (void)
21424 {
21425 literal_pool * pool;
21426
21427 /* Ensure that all the IT blocks are properly closed. */
21428 check_it_blocks_finished ();
21429
21430 for (pool = list_of_pools; pool; pool = pool->next)
21431 {
21432 /* Put it at the end of the relevant section. */
21433 subseg_set (pool->section, pool->sub_section);
21434 #ifdef OBJ_ELF
21435 arm_elf_change_section ();
21436 #endif
21437 s_ltorg (0);
21438 }
21439 }
21440
21441 #ifdef OBJ_ELF
21442 /* Remove any excess mapping symbols generated for alignment frags in
21443 SEC. We may have created a mapping symbol before a zero byte
21444 alignment; remove it if there's a mapping symbol after the
21445 alignment. */
21446 static void
21447 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21448 void *dummy ATTRIBUTE_UNUSED)
21449 {
21450 segment_info_type *seginfo = seg_info (sec);
21451 fragS *fragp;
21452
21453 if (seginfo == NULL || seginfo->frchainP == NULL)
21454 return;
21455
21456 for (fragp = seginfo->frchainP->frch_root;
21457 fragp != NULL;
21458 fragp = fragp->fr_next)
21459 {
21460 symbolS *sym = fragp->tc_frag_data.last_map;
21461 fragS *next = fragp->fr_next;
21462
21463 /* Variable-sized frags have been converted to fixed size by
21464 this point. But if this was variable-sized to start with,
21465 there will be a fixed-size frag after it. So don't handle
21466 next == NULL. */
21467 if (sym == NULL || next == NULL)
21468 continue;
21469
21470 if (S_GET_VALUE (sym) < next->fr_address)
21471 /* Not at the end of this frag. */
21472 continue;
21473 know (S_GET_VALUE (sym) == next->fr_address);
21474
21475 do
21476 {
21477 if (next->tc_frag_data.first_map != NULL)
21478 {
21479 /* Next frag starts with a mapping symbol. Discard this
21480 one. */
21481 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21482 break;
21483 }
21484
21485 if (next->fr_next == NULL)
21486 {
21487 /* This mapping symbol is at the end of the section. Discard
21488 it. */
21489 know (next->fr_fix == 0 && next->fr_var == 0);
21490 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21491 break;
21492 }
21493
21494 /* As long as we have empty frags without any mapping symbols,
21495 keep looking. */
21496 /* If the next frag is non-empty and does not start with a
21497 mapping symbol, then this mapping symbol is required. */
21498 if (next->fr_address != next->fr_next->fr_address)
21499 break;
21500
21501 next = next->fr_next;
21502 }
21503 while (next != NULL);
21504 }
21505 }
21506 #endif
21507
21508 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21509 ARM ones. */
21510
21511 void
21512 arm_adjust_symtab (void)
21513 {
21514 #ifdef OBJ_COFF
21515 symbolS * sym;
21516
21517 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21518 {
21519 if (ARM_IS_THUMB (sym))
21520 {
21521 if (THUMB_IS_FUNC (sym))
21522 {
21523 /* Mark the symbol as a Thumb function. */
21524 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21525 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21526 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21527
21528 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21529 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21530 else
21531 as_bad (_("%s: unexpected function type: %d"),
21532 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21533 }
21534 else switch (S_GET_STORAGE_CLASS (sym))
21535 {
21536 case C_EXT:
21537 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21538 break;
21539 case C_STAT:
21540 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21541 break;
21542 case C_LABEL:
21543 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21544 break;
21545 default:
21546 /* Do nothing. */
21547 break;
21548 }
21549 }
21550
21551 if (ARM_IS_INTERWORK (sym))
21552 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21553 }
21554 #endif
21555 #ifdef OBJ_ELF
21556 symbolS * sym;
21557 char bind;
21558
21559 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21560 {
21561 if (ARM_IS_THUMB (sym))
21562 {
21563 elf_symbol_type * elf_sym;
21564
21565 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21566 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21567
21568 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21569 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21570 {
21571 /* If it's a .thumb_func, declare it as so,
21572 otherwise tag label as .code 16. */
21573 if (THUMB_IS_FUNC (sym))
21574 elf_sym->internal_elf_sym.st_info =
21575 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21576 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21577 elf_sym->internal_elf_sym.st_info =
21578 ELF_ST_INFO (bind, STT_ARM_16BIT);
21579 }
21580 }
21581 }
21582
21583 /* Remove any overlapping mapping symbols generated by alignment frags. */
21584 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
21585 #endif
21586 }
21587
21588 /* MD interface: Initialization. */
21589
21590 static void
21591 set_constant_flonums (void)
21592 {
21593 int i;
21594
21595 for (i = 0; i < NUM_FLOAT_VALS; i++)
21596 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21597 abort ();
21598 }
21599
21600 /* Auto-select Thumb mode if it's the only available instruction set for the
21601 given architecture. */
21602
21603 static void
21604 autoselect_thumb_from_cpu_variant (void)
21605 {
21606 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21607 opcode_select (16);
21608 }
21609
21610 void
21611 md_begin (void)
21612 {
21613 unsigned mach;
21614 unsigned int i;
21615
21616 if ( (arm_ops_hsh = hash_new ()) == NULL
21617 || (arm_cond_hsh = hash_new ()) == NULL
21618 || (arm_shift_hsh = hash_new ()) == NULL
21619 || (arm_psr_hsh = hash_new ()) == NULL
21620 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21621 || (arm_reg_hsh = hash_new ()) == NULL
21622 || (arm_reloc_hsh = hash_new ()) == NULL
21623 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
21624 as_fatal (_("virtual memory exhausted"));
21625
21626 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
21627 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
21628 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
21629 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
21630 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
21631 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
21632 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
21633 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
21634 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
21635 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21636 (void *) (v7m_psrs + i));
21637 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
21638 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
21639 for (i = 0;
21640 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21641 i++)
21642 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
21643 (void *) (barrier_opt_names + i));
21644 #ifdef OBJ_ELF
21645 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
21646 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
21647 #endif
21648
21649 set_constant_flonums ();
21650
21651 /* Set the cpu variant based on the command-line options. We prefer
21652 -mcpu= over -march= if both are set (as for GCC); and we prefer
21653 -mfpu= over any other way of setting the floating point unit.
21654 Use of legacy options with new options are faulted. */
21655 if (legacy_cpu)
21656 {
21657 if (mcpu_cpu_opt || march_cpu_opt)
21658 as_bad (_("use of old and new-style options to set CPU type"));
21659
21660 mcpu_cpu_opt = legacy_cpu;
21661 }
21662 else if (!mcpu_cpu_opt)
21663 mcpu_cpu_opt = march_cpu_opt;
21664
21665 if (legacy_fpu)
21666 {
21667 if (mfpu_opt)
21668 as_bad (_("use of old and new-style options to set FPU type"));
21669
21670 mfpu_opt = legacy_fpu;
21671 }
21672 else if (!mfpu_opt)
21673 {
21674 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21675 || defined (TE_NetBSD) || defined (TE_VXWORKS))
21676 /* Some environments specify a default FPU. If they don't, infer it
21677 from the processor. */
21678 if (mcpu_fpu_opt)
21679 mfpu_opt = mcpu_fpu_opt;
21680 else
21681 mfpu_opt = march_fpu_opt;
21682 #else
21683 mfpu_opt = &fpu_default;
21684 #endif
21685 }
21686
21687 if (!mfpu_opt)
21688 {
21689 if (mcpu_cpu_opt != NULL)
21690 mfpu_opt = &fpu_default;
21691 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
21692 mfpu_opt = &fpu_arch_vfp_v2;
21693 else
21694 mfpu_opt = &fpu_arch_fpa;
21695 }
21696
21697 #ifdef CPU_DEFAULT
21698 if (!mcpu_cpu_opt)
21699 {
21700 mcpu_cpu_opt = &cpu_default;
21701 selected_cpu = cpu_default;
21702 }
21703 #else
21704 if (mcpu_cpu_opt)
21705 selected_cpu = *mcpu_cpu_opt;
21706 else
21707 mcpu_cpu_opt = &arm_arch_any;
21708 #endif
21709
21710 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21711
21712 autoselect_thumb_from_cpu_variant ();
21713
21714 arm_arch_used = thumb_arch_used = arm_arch_none;
21715
21716 #if defined OBJ_COFF || defined OBJ_ELF
21717 {
21718 unsigned int flags = 0;
21719
21720 #if defined OBJ_ELF
21721 flags = meabi_flags;
21722
21723 switch (meabi_flags)
21724 {
21725 case EF_ARM_EABI_UNKNOWN:
21726 #endif
21727 /* Set the flags in the private structure. */
21728 if (uses_apcs_26) flags |= F_APCS26;
21729 if (support_interwork) flags |= F_INTERWORK;
21730 if (uses_apcs_float) flags |= F_APCS_FLOAT;
21731 if (pic_code) flags |= F_PIC;
21732 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
21733 flags |= F_SOFT_FLOAT;
21734
21735 switch (mfloat_abi_opt)
21736 {
21737 case ARM_FLOAT_ABI_SOFT:
21738 case ARM_FLOAT_ABI_SOFTFP:
21739 flags |= F_SOFT_FLOAT;
21740 break;
21741
21742 case ARM_FLOAT_ABI_HARD:
21743 if (flags & F_SOFT_FLOAT)
21744 as_bad (_("hard-float conflicts with specified fpu"));
21745 break;
21746 }
21747
21748 /* Using pure-endian doubles (even if soft-float). */
21749 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
21750 flags |= F_VFP_FLOAT;
21751
21752 #if defined OBJ_ELF
21753 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
21754 flags |= EF_ARM_MAVERICK_FLOAT;
21755 break;
21756
21757 case EF_ARM_EABI_VER4:
21758 case EF_ARM_EABI_VER5:
21759 /* No additional flags to set. */
21760 break;
21761
21762 default:
21763 abort ();
21764 }
21765 #endif
21766 bfd_set_private_flags (stdoutput, flags);
21767
21768 /* We have run out flags in the COFF header to encode the
21769 status of ATPCS support, so instead we create a dummy,
21770 empty, debug section called .arm.atpcs. */
21771 if (atpcs)
21772 {
21773 asection * sec;
21774
21775 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21776
21777 if (sec != NULL)
21778 {
21779 bfd_set_section_flags
21780 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21781 bfd_set_section_size (stdoutput, sec, 0);
21782 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21783 }
21784 }
21785 }
21786 #endif
21787
21788 /* Record the CPU type as well. */
21789 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21790 mach = bfd_mach_arm_iWMMXt2;
21791 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
21792 mach = bfd_mach_arm_iWMMXt;
21793 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
21794 mach = bfd_mach_arm_XScale;
21795 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
21796 mach = bfd_mach_arm_ep9312;
21797 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
21798 mach = bfd_mach_arm_5TE;
21799 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
21800 {
21801 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21802 mach = bfd_mach_arm_5T;
21803 else
21804 mach = bfd_mach_arm_5;
21805 }
21806 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
21807 {
21808 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21809 mach = bfd_mach_arm_4T;
21810 else
21811 mach = bfd_mach_arm_4;
21812 }
21813 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
21814 mach = bfd_mach_arm_3M;
21815 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21816 mach = bfd_mach_arm_3;
21817 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21818 mach = bfd_mach_arm_2a;
21819 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21820 mach = bfd_mach_arm_2;
21821 else
21822 mach = bfd_mach_arm_unknown;
21823
21824 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21825 }
21826
21827 /* Command line processing. */
21828
21829 /* md_parse_option
21830 Invocation line includes a switch not recognized by the base assembler.
21831 See if it's a processor-specific option.
21832
21833 This routine is somewhat complicated by the need for backwards
21834 compatibility (since older releases of gcc can't be changed).
21835 The new options try to make the interface as compatible as
21836 possible with GCC.
21837
21838 New options (supported) are:
21839
21840 -mcpu=<cpu name> Assemble for selected processor
21841 -march=<architecture name> Assemble for selected architecture
21842 -mfpu=<fpu architecture> Assemble for selected FPU.
21843 -EB/-mbig-endian Big-endian
21844 -EL/-mlittle-endian Little-endian
21845 -k Generate PIC code
21846 -mthumb Start in Thumb mode
21847 -mthumb-interwork Code supports ARM/Thumb interworking
21848
21849 -m[no-]warn-deprecated Warn about deprecated features
21850
21851 For now we will also provide support for:
21852
21853 -mapcs-32 32-bit Program counter
21854 -mapcs-26 26-bit Program counter
21855 -macps-float Floats passed in FP registers
21856 -mapcs-reentrant Reentrant code
21857 -matpcs
21858 (sometime these will probably be replaced with -mapcs=<list of options>
21859 and -matpcs=<list of options>)
21860
21861 The remaining options are only supported for back-wards compatibility.
21862 Cpu variants, the arm part is optional:
21863 -m[arm]1 Currently not supported.
21864 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21865 -m[arm]3 Arm 3 processor
21866 -m[arm]6[xx], Arm 6 processors
21867 -m[arm]7[xx][t][[d]m] Arm 7 processors
21868 -m[arm]8[10] Arm 8 processors
21869 -m[arm]9[20][tdmi] Arm 9 processors
21870 -mstrongarm[110[0]] StrongARM processors
21871 -mxscale XScale processors
21872 -m[arm]v[2345[t[e]]] Arm architectures
21873 -mall All (except the ARM1)
21874 FP variants:
21875 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21876 -mfpe-old (No float load/store multiples)
21877 -mvfpxd VFP Single precision
21878 -mvfp All VFP
21879 -mno-fpu Disable all floating point instructions
21880
21881 The following CPU names are recognized:
21882 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21883 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21884 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21885 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21886 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21887 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21888 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
21889
21890 */
21891
21892 const char * md_shortopts = "m:k";
21893
21894 #ifdef ARM_BI_ENDIAN
21895 #define OPTION_EB (OPTION_MD_BASE + 0)
21896 #define OPTION_EL (OPTION_MD_BASE + 1)
21897 #else
21898 #if TARGET_BYTES_BIG_ENDIAN
21899 #define OPTION_EB (OPTION_MD_BASE + 0)
21900 #else
21901 #define OPTION_EL (OPTION_MD_BASE + 1)
21902 #endif
21903 #endif
21904 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
21905
21906 struct option md_longopts[] =
21907 {
21908 #ifdef OPTION_EB
21909 {"EB", no_argument, NULL, OPTION_EB},
21910 #endif
21911 #ifdef OPTION_EL
21912 {"EL", no_argument, NULL, OPTION_EL},
21913 #endif
21914 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
21915 {NULL, no_argument, NULL, 0}
21916 };
21917
21918 size_t md_longopts_size = sizeof (md_longopts);
21919
21920 struct arm_option_table
21921 {
21922 char *option; /* Option name to match. */
21923 char *help; /* Help information. */
21924 int *var; /* Variable to change. */
21925 int value; /* What to change it to. */
21926 char *deprecated; /* If non-null, print this message. */
21927 };
21928
21929 struct arm_option_table arm_opts[] =
21930 {
21931 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21932 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21933 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21934 &support_interwork, 1, NULL},
21935 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21936 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21937 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21938 1, NULL},
21939 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21940 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21941 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21942 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21943 NULL},
21944
21945 /* These are recognized by the assembler, but have no affect on code. */
21946 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21947 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
21948
21949 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21950 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21951 &warn_on_deprecated, 0, NULL},
21952 {NULL, NULL, NULL, 0, NULL}
21953 };
21954
21955 struct arm_legacy_option_table
21956 {
21957 char *option; /* Option name to match. */
21958 const arm_feature_set **var; /* Variable to change. */
21959 const arm_feature_set value; /* What to change it to. */
21960 char *deprecated; /* If non-null, print this message. */
21961 };
21962
21963 const struct arm_legacy_option_table arm_legacy_opts[] =
21964 {
21965 /* DON'T add any new processors to this list -- we want the whole list
21966 to go away... Add them to the processors table instead. */
21967 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21968 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21969 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21970 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21971 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21972 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21973 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21974 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21975 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21976 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21977 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21978 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21979 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21980 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21981 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21982 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21983 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21984 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21985 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21986 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21987 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21988 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21989 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21990 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21991 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21992 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21993 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21994 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21995 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21996 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21997 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21998 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21999 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22000 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22001 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22002 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22003 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22004 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22005 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22006 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22007 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22008 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22009 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22010 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22011 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22012 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22013 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22014 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22015 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22016 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22017 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22018 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22019 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22020 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22021 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22022 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22023 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22024 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22025 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22026 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22027 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22028 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22029 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22030 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22031 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22032 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22033 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22034 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22035 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22036 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22037 N_("use -mcpu=strongarm110")},
22038 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22039 N_("use -mcpu=strongarm1100")},
22040 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22041 N_("use -mcpu=strongarm1110")},
22042 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22043 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22044 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22045
22046 /* Architecture variants -- don't add any more to this list either. */
22047 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22048 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22049 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22050 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22051 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22052 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22053 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22054 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22055 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22056 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22057 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22058 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22059 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22060 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22061 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22062 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22063 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22064 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22065
22066 /* Floating point variants -- don't add any more to this list either. */
22067 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22068 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22069 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22070 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22071 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22072
22073 {NULL, NULL, ARM_ARCH_NONE, NULL}
22074 };
22075
22076 struct arm_cpu_option_table
22077 {
22078 char *name;
22079 const arm_feature_set value;
22080 /* For some CPUs we assume an FPU unless the user explicitly sets
22081 -mfpu=... */
22082 const arm_feature_set default_fpu;
22083 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22084 case. */
22085 const char *canonical_name;
22086 };
22087
22088 /* This list should, at a minimum, contain all the cpu names
22089 recognized by GCC. */
22090 static const struct arm_cpu_option_table arm_cpus[] =
22091 {
22092 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22093 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22094 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22095 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22096 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22097 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22098 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22099 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22100 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22101 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22102 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22103 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22104 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22105 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22106 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22107 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22108 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22109 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22110 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22111 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22112 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22113 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22114 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22115 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22116 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22117 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22118 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22119 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22120 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22121 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22122 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22123 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22124 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22125 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22126 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22127 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22128 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22129 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22130 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22131 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22132 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22133 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22134 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22135 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22136 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22137 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22138 /* For V5 or later processors we default to using VFP; but the user
22139 should really set the FPU type explicitly. */
22140 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22141 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22142 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22143 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22144 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22145 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22146 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22147 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22148 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22149 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22150 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22151 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22152 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22153 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22154 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22155 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22156 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22157 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22158 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22159 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22160 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22161 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22162 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22163 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22164 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22165 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22166 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22167 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
22168 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
22169 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22170 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22171 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22172 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22173 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
22174 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22175 | FPU_NEON_EXT_V1),
22176 NULL},
22177 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22178 | FPU_NEON_EXT_V1),
22179 NULL},
22180 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
22181 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
22182 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
22183 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
22184 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
22185 /* ??? XSCALE is really an architecture. */
22186 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22187 /* ??? iwmmxt is not a processor. */
22188 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22189 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22190 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22191 /* Maverick */
22192 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22193 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22194 };
22195
22196 struct arm_arch_option_table
22197 {
22198 char *name;
22199 const arm_feature_set value;
22200 const arm_feature_set default_fpu;
22201 };
22202
22203 /* This list should, at a minimum, contain all the architecture names
22204 recognized by GCC. */
22205 static const struct arm_arch_option_table arm_archs[] =
22206 {
22207 {"all", ARM_ANY, FPU_ARCH_FPA},
22208 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22209 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22210 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22211 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22212 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22213 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22214 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22215 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22216 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22217 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22218 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22219 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22220 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22221 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22222 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22223 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22224 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22225 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22226 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22227 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22228 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22229 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22230 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22231 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22232 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22233 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22234 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22235 /* The official spelling of the ARMv7 profile variants is the dashed form.
22236 Accept the non-dashed form for compatibility with old toolchains. */
22237 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22238 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22239 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22240 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22241 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22242 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22243 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22244 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22245 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22246 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22247 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22248 };
22249
22250 /* ISA extensions in the co-processor space. */
22251 struct arm_option_cpu_value_table
22252 {
22253 char *name;
22254 const arm_feature_set value;
22255 };
22256
22257 static const struct arm_option_cpu_value_table arm_extensions[] =
22258 {
22259 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22260 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22261 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
22262 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
22263 {NULL, ARM_ARCH_NONE}
22264 };
22265
22266 /* This list should, at a minimum, contain all the fpu names
22267 recognized by GCC. */
22268 static const struct arm_option_cpu_value_table arm_fpus[] =
22269 {
22270 {"softfpa", FPU_NONE},
22271 {"fpe", FPU_ARCH_FPE},
22272 {"fpe2", FPU_ARCH_FPE},
22273 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22274 {"fpa", FPU_ARCH_FPA},
22275 {"fpa10", FPU_ARCH_FPA},
22276 {"fpa11", FPU_ARCH_FPA},
22277 {"arm7500fe", FPU_ARCH_FPA},
22278 {"softvfp", FPU_ARCH_VFP},
22279 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22280 {"vfp", FPU_ARCH_VFP_V2},
22281 {"vfp9", FPU_ARCH_VFP_V2},
22282 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22283 {"vfp10", FPU_ARCH_VFP_V2},
22284 {"vfp10-r0", FPU_ARCH_VFP_V1},
22285 {"vfpxd", FPU_ARCH_VFP_V1xD},
22286 {"vfpv2", FPU_ARCH_VFP_V2},
22287 {"vfpv3", FPU_ARCH_VFP_V3},
22288 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22289 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22290 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22291 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22292 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22293 {"arm1020t", FPU_ARCH_VFP_V1},
22294 {"arm1020e", FPU_ARCH_VFP_V2},
22295 {"arm1136jfs", FPU_ARCH_VFP_V2},
22296 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22297 {"maverick", FPU_ARCH_MAVERICK},
22298 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22299 {"neon-fp16", FPU_ARCH_NEON_FP16},
22300 {"vfpv4", FPU_ARCH_VFP_V4},
22301 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22302 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22303 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22304 {NULL, ARM_ARCH_NONE}
22305 };
22306
22307 struct arm_option_value_table
22308 {
22309 char *name;
22310 long value;
22311 };
22312
22313 static const struct arm_option_value_table arm_float_abis[] =
22314 {
22315 {"hard", ARM_FLOAT_ABI_HARD},
22316 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22317 {"soft", ARM_FLOAT_ABI_SOFT},
22318 {NULL, 0}
22319 };
22320
22321 #ifdef OBJ_ELF
22322 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22323 static const struct arm_option_value_table arm_eabis[] =
22324 {
22325 {"gnu", EF_ARM_EABI_UNKNOWN},
22326 {"4", EF_ARM_EABI_VER4},
22327 {"5", EF_ARM_EABI_VER5},
22328 {NULL, 0}
22329 };
22330 #endif
22331
22332 struct arm_long_option_table
22333 {
22334 char * option; /* Substring to match. */
22335 char * help; /* Help information. */
22336 int (* func) (char * subopt); /* Function to decode sub-option. */
22337 char * deprecated; /* If non-null, print this message. */
22338 };
22339
22340 static bfd_boolean
22341 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22342 {
22343 arm_feature_set *ext_set = (arm_feature_set *)
22344 xmalloc (sizeof (arm_feature_set));
22345
22346 /* Copy the feature set, so that we can modify it. */
22347 *ext_set = **opt_p;
22348 *opt_p = ext_set;
22349
22350 while (str != NULL && *str != 0)
22351 {
22352 const struct arm_option_cpu_value_table * opt;
22353 char * ext;
22354 int optlen;
22355
22356 if (*str != '+')
22357 {
22358 as_bad (_("invalid architectural extension"));
22359 return FALSE;
22360 }
22361
22362 str++;
22363 ext = strchr (str, '+');
22364
22365 if (ext != NULL)
22366 optlen = ext - str;
22367 else
22368 optlen = strlen (str);
22369
22370 if (optlen == 0)
22371 {
22372 as_bad (_("missing architectural extension"));
22373 return FALSE;
22374 }
22375
22376 for (opt = arm_extensions; opt->name != NULL; opt++)
22377 if (strncmp (opt->name, str, optlen) == 0)
22378 {
22379 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22380 break;
22381 }
22382
22383 if (opt->name == NULL)
22384 {
22385 as_bad (_("unknown architectural extension `%s'"), str);
22386 return FALSE;
22387 }
22388
22389 str = ext;
22390 };
22391
22392 return TRUE;
22393 }
22394
22395 static bfd_boolean
22396 arm_parse_cpu (char * str)
22397 {
22398 const struct arm_cpu_option_table * opt;
22399 char * ext = strchr (str, '+');
22400 int optlen;
22401
22402 if (ext != NULL)
22403 optlen = ext - str;
22404 else
22405 optlen = strlen (str);
22406
22407 if (optlen == 0)
22408 {
22409 as_bad (_("missing cpu name `%s'"), str);
22410 return FALSE;
22411 }
22412
22413 for (opt = arm_cpus; opt->name != NULL; opt++)
22414 if (strncmp (opt->name, str, optlen) == 0)
22415 {
22416 mcpu_cpu_opt = &opt->value;
22417 mcpu_fpu_opt = &opt->default_fpu;
22418 if (opt->canonical_name)
22419 strcpy (selected_cpu_name, opt->canonical_name);
22420 else
22421 {
22422 int i;
22423
22424 for (i = 0; i < optlen; i++)
22425 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22426 selected_cpu_name[i] = 0;
22427 }
22428
22429 if (ext != NULL)
22430 return arm_parse_extension (ext, &mcpu_cpu_opt);
22431
22432 return TRUE;
22433 }
22434
22435 as_bad (_("unknown cpu `%s'"), str);
22436 return FALSE;
22437 }
22438
22439 static bfd_boolean
22440 arm_parse_arch (char * str)
22441 {
22442 const struct arm_arch_option_table *opt;
22443 char *ext = strchr (str, '+');
22444 int optlen;
22445
22446 if (ext != NULL)
22447 optlen = ext - str;
22448 else
22449 optlen = strlen (str);
22450
22451 if (optlen == 0)
22452 {
22453 as_bad (_("missing architecture name `%s'"), str);
22454 return FALSE;
22455 }
22456
22457 for (opt = arm_archs; opt->name != NULL; opt++)
22458 if (streq (opt->name, str))
22459 {
22460 march_cpu_opt = &opt->value;
22461 march_fpu_opt = &opt->default_fpu;
22462 strcpy (selected_cpu_name, opt->name);
22463
22464 if (ext != NULL)
22465 return arm_parse_extension (ext, &march_cpu_opt);
22466
22467 return TRUE;
22468 }
22469
22470 as_bad (_("unknown architecture `%s'\n"), str);
22471 return FALSE;
22472 }
22473
22474 static bfd_boolean
22475 arm_parse_fpu (char * str)
22476 {
22477 const struct arm_option_cpu_value_table * opt;
22478
22479 for (opt = arm_fpus; opt->name != NULL; opt++)
22480 if (streq (opt->name, str))
22481 {
22482 mfpu_opt = &opt->value;
22483 return TRUE;
22484 }
22485
22486 as_bad (_("unknown floating point format `%s'\n"), str);
22487 return FALSE;
22488 }
22489
22490 static bfd_boolean
22491 arm_parse_float_abi (char * str)
22492 {
22493 const struct arm_option_value_table * opt;
22494
22495 for (opt = arm_float_abis; opt->name != NULL; opt++)
22496 if (streq (opt->name, str))
22497 {
22498 mfloat_abi_opt = opt->value;
22499 return TRUE;
22500 }
22501
22502 as_bad (_("unknown floating point abi `%s'\n"), str);
22503 return FALSE;
22504 }
22505
22506 #ifdef OBJ_ELF
22507 static bfd_boolean
22508 arm_parse_eabi (char * str)
22509 {
22510 const struct arm_option_value_table *opt;
22511
22512 for (opt = arm_eabis; opt->name != NULL; opt++)
22513 if (streq (opt->name, str))
22514 {
22515 meabi_flags = opt->value;
22516 return TRUE;
22517 }
22518 as_bad (_("unknown EABI `%s'\n"), str);
22519 return FALSE;
22520 }
22521 #endif
22522
22523 static bfd_boolean
22524 arm_parse_it_mode (char * str)
22525 {
22526 bfd_boolean ret = TRUE;
22527
22528 if (streq ("arm", str))
22529 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22530 else if (streq ("thumb", str))
22531 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22532 else if (streq ("always", str))
22533 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22534 else if (streq ("never", str))
22535 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22536 else
22537 {
22538 as_bad (_("unknown implicit IT mode `%s', should be "\
22539 "arm, thumb, always, or never."), str);
22540 ret = FALSE;
22541 }
22542
22543 return ret;
22544 }
22545
22546 struct arm_long_option_table arm_long_opts[] =
22547 {
22548 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22549 arm_parse_cpu, NULL},
22550 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22551 arm_parse_arch, NULL},
22552 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22553 arm_parse_fpu, NULL},
22554 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22555 arm_parse_float_abi, NULL},
22556 #ifdef OBJ_ELF
22557 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
22558 arm_parse_eabi, NULL},
22559 #endif
22560 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22561 arm_parse_it_mode, NULL},
22562 {NULL, NULL, 0, NULL}
22563 };
22564
22565 int
22566 md_parse_option (int c, char * arg)
22567 {
22568 struct arm_option_table *opt;
22569 const struct arm_legacy_option_table *fopt;
22570 struct arm_long_option_table *lopt;
22571
22572 switch (c)
22573 {
22574 #ifdef OPTION_EB
22575 case OPTION_EB:
22576 target_big_endian = 1;
22577 break;
22578 #endif
22579
22580 #ifdef OPTION_EL
22581 case OPTION_EL:
22582 target_big_endian = 0;
22583 break;
22584 #endif
22585
22586 case OPTION_FIX_V4BX:
22587 fix_v4bx = TRUE;
22588 break;
22589
22590 case 'a':
22591 /* Listing option. Just ignore these, we don't support additional
22592 ones. */
22593 return 0;
22594
22595 default:
22596 for (opt = arm_opts; opt->option != NULL; opt++)
22597 {
22598 if (c == opt->option[0]
22599 && ((arg == NULL && opt->option[1] == 0)
22600 || streq (arg, opt->option + 1)))
22601 {
22602 /* If the option is deprecated, tell the user. */
22603 if (warn_on_deprecated && opt->deprecated != NULL)
22604 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22605 arg ? arg : "", _(opt->deprecated));
22606
22607 if (opt->var != NULL)
22608 *opt->var = opt->value;
22609
22610 return 1;
22611 }
22612 }
22613
22614 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22615 {
22616 if (c == fopt->option[0]
22617 && ((arg == NULL && fopt->option[1] == 0)
22618 || streq (arg, fopt->option + 1)))
22619 {
22620 /* If the option is deprecated, tell the user. */
22621 if (warn_on_deprecated && fopt->deprecated != NULL)
22622 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22623 arg ? arg : "", _(fopt->deprecated));
22624
22625 if (fopt->var != NULL)
22626 *fopt->var = &fopt->value;
22627
22628 return 1;
22629 }
22630 }
22631
22632 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22633 {
22634 /* These options are expected to have an argument. */
22635 if (c == lopt->option[0]
22636 && arg != NULL
22637 && strncmp (arg, lopt->option + 1,
22638 strlen (lopt->option + 1)) == 0)
22639 {
22640 /* If the option is deprecated, tell the user. */
22641 if (warn_on_deprecated && lopt->deprecated != NULL)
22642 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22643 _(lopt->deprecated));
22644
22645 /* Call the sup-option parser. */
22646 return lopt->func (arg + strlen (lopt->option) - 1);
22647 }
22648 }
22649
22650 return 0;
22651 }
22652
22653 return 1;
22654 }
22655
22656 void
22657 md_show_usage (FILE * fp)
22658 {
22659 struct arm_option_table *opt;
22660 struct arm_long_option_table *lopt;
22661
22662 fprintf (fp, _(" ARM-specific assembler options:\n"));
22663
22664 for (opt = arm_opts; opt->option != NULL; opt++)
22665 if (opt->help != NULL)
22666 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
22667
22668 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22669 if (lopt->help != NULL)
22670 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
22671
22672 #ifdef OPTION_EB
22673 fprintf (fp, _("\
22674 -EB assemble code for a big-endian cpu\n"));
22675 #endif
22676
22677 #ifdef OPTION_EL
22678 fprintf (fp, _("\
22679 -EL assemble code for a little-endian cpu\n"));
22680 #endif
22681
22682 fprintf (fp, _("\
22683 --fix-v4bx Allow BX in ARMv4 code\n"));
22684 }
22685
22686
22687 #ifdef OBJ_ELF
22688 typedef struct
22689 {
22690 int val;
22691 arm_feature_set flags;
22692 } cpu_arch_ver_table;
22693
22694 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22695 least features first. */
22696 static const cpu_arch_ver_table cpu_arch_ver[] =
22697 {
22698 {1, ARM_ARCH_V4},
22699 {2, ARM_ARCH_V4T},
22700 {3, ARM_ARCH_V5},
22701 {3, ARM_ARCH_V5T},
22702 {4, ARM_ARCH_V5TE},
22703 {5, ARM_ARCH_V5TEJ},
22704 {6, ARM_ARCH_V6},
22705 {7, ARM_ARCH_V6Z},
22706 {9, ARM_ARCH_V6K},
22707 {11, ARM_ARCH_V6M},
22708 {8, ARM_ARCH_V6T2},
22709 {10, ARM_ARCH_V7A},
22710 {10, ARM_ARCH_V7R},
22711 {10, ARM_ARCH_V7M},
22712 {0, ARM_ARCH_NONE}
22713 };
22714
22715 /* Set an attribute if it has not already been set by the user. */
22716 static void
22717 aeabi_set_attribute_int (int tag, int value)
22718 {
22719 if (tag < 1
22720 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22721 || !attributes_set_explicitly[tag])
22722 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22723 }
22724
22725 static void
22726 aeabi_set_attribute_string (int tag, const char *value)
22727 {
22728 if (tag < 1
22729 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22730 || !attributes_set_explicitly[tag])
22731 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22732 }
22733
22734 /* Set the public EABI object attributes. */
22735 static void
22736 aeabi_set_public_attributes (void)
22737 {
22738 int arch;
22739 arm_feature_set flags;
22740 arm_feature_set tmp;
22741 const cpu_arch_ver_table *p;
22742
22743 /* Choose the architecture based on the capabilities of the requested cpu
22744 (if any) and/or the instructions actually used. */
22745 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22746 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22747 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
22748 /*Allow the user to override the reported architecture. */
22749 if (object_arch)
22750 {
22751 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22752 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22753 }
22754
22755 tmp = flags;
22756 arch = 0;
22757 for (p = cpu_arch_ver; p->val; p++)
22758 {
22759 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22760 {
22761 arch = p->val;
22762 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22763 }
22764 }
22765
22766 /* The table lookup above finds the last architecture to contribute
22767 a new feature. Unfortunately, Tag13 is a subset of the union of
22768 v6T2 and v7-M, so it is never seen as contributing a new feature.
22769 We can not search for the last entry which is entirely used,
22770 because if no CPU is specified we build up only those flags
22771 actually used. Perhaps we should separate out the specified
22772 and implicit cases. Avoid taking this path for -march=all by
22773 checking for contradictory v7-A / v7-M features. */
22774 if (arch == 10
22775 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
22776 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
22777 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
22778 arch = 13;
22779
22780 /* Tag_CPU_name. */
22781 if (selected_cpu_name[0])
22782 {
22783 char *q;
22784
22785 q = selected_cpu_name;
22786 if (strncmp (q, "armv", 4) == 0)
22787 {
22788 int i;
22789
22790 q += 4;
22791 for (i = 0; q[i]; i++)
22792 q[i] = TOUPPER (q[i]);
22793 }
22794 aeabi_set_attribute_string (Tag_CPU_name, q);
22795 }
22796
22797 /* Tag_CPU_arch. */
22798 aeabi_set_attribute_int (Tag_CPU_arch, arch);
22799
22800 /* Tag_CPU_arch_profile. */
22801 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
22802 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
22803 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
22804 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
22805 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
22806 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
22807
22808 /* Tag_ARM_ISA_use. */
22809 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22810 || arch == 0)
22811 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
22812
22813 /* Tag_THUMB_ISA_use. */
22814 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22815 || arch == 0)
22816 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22817 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
22818
22819 /* Tag_VFP_arch. */
22820 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22821 aeabi_set_attribute_int (Tag_VFP_arch,
22822 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22823 ? 5 : 6);
22824 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
22825 aeabi_set_attribute_int (Tag_VFP_arch, 3);
22826 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
22827 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22828 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22829 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22830 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22831 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22832 aeabi_set_attribute_int (Tag_VFP_arch, 1);
22833
22834 /* Tag_WMMX_arch. */
22835 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22836 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22837 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22838 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
22839
22840 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
22841 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
22842 aeabi_set_attribute_int
22843 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22844 ? 2 : 1));
22845
22846 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
22847 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
22848 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
22849 }
22850
22851 /* Add the default contents for the .ARM.attributes section. */
22852 void
22853 arm_md_end (void)
22854 {
22855 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22856 return;
22857
22858 aeabi_set_public_attributes ();
22859 }
22860 #endif /* OBJ_ELF */
22861
22862
22863 /* Parse a .cpu directive. */
22864
22865 static void
22866 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22867 {
22868 const struct arm_cpu_option_table *opt;
22869 char *name;
22870 char saved_char;
22871
22872 name = input_line_pointer;
22873 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22874 input_line_pointer++;
22875 saved_char = *input_line_pointer;
22876 *input_line_pointer = 0;
22877
22878 /* Skip the first "all" entry. */
22879 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22880 if (streq (opt->name, name))
22881 {
22882 mcpu_cpu_opt = &opt->value;
22883 selected_cpu = opt->value;
22884 if (opt->canonical_name)
22885 strcpy (selected_cpu_name, opt->canonical_name);
22886 else
22887 {
22888 int i;
22889 for (i = 0; opt->name[i]; i++)
22890 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22891 selected_cpu_name[i] = 0;
22892 }
22893 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22894 *input_line_pointer = saved_char;
22895 demand_empty_rest_of_line ();
22896 return;
22897 }
22898 as_bad (_("unknown cpu `%s'"), name);
22899 *input_line_pointer = saved_char;
22900 ignore_rest_of_line ();
22901 }
22902
22903
22904 /* Parse a .arch directive. */
22905
22906 static void
22907 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22908 {
22909 const struct arm_arch_option_table *opt;
22910 char saved_char;
22911 char *name;
22912
22913 name = input_line_pointer;
22914 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22915 input_line_pointer++;
22916 saved_char = *input_line_pointer;
22917 *input_line_pointer = 0;
22918
22919 /* Skip the first "all" entry. */
22920 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22921 if (streq (opt->name, name))
22922 {
22923 mcpu_cpu_opt = &opt->value;
22924 selected_cpu = opt->value;
22925 strcpy (selected_cpu_name, opt->name);
22926 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22927 *input_line_pointer = saved_char;
22928 demand_empty_rest_of_line ();
22929 return;
22930 }
22931
22932 as_bad (_("unknown architecture `%s'\n"), name);
22933 *input_line_pointer = saved_char;
22934 ignore_rest_of_line ();
22935 }
22936
22937
22938 /* Parse a .object_arch directive. */
22939
22940 static void
22941 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22942 {
22943 const struct arm_arch_option_table *opt;
22944 char saved_char;
22945 char *name;
22946
22947 name = input_line_pointer;
22948 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22949 input_line_pointer++;
22950 saved_char = *input_line_pointer;
22951 *input_line_pointer = 0;
22952
22953 /* Skip the first "all" entry. */
22954 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22955 if (streq (opt->name, name))
22956 {
22957 object_arch = &opt->value;
22958 *input_line_pointer = saved_char;
22959 demand_empty_rest_of_line ();
22960 return;
22961 }
22962
22963 as_bad (_("unknown architecture `%s'\n"), name);
22964 *input_line_pointer = saved_char;
22965 ignore_rest_of_line ();
22966 }
22967
22968 /* Parse a .fpu directive. */
22969
22970 static void
22971 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
22972 {
22973 const struct arm_option_cpu_value_table *opt;
22974 char saved_char;
22975 char *name;
22976
22977 name = input_line_pointer;
22978 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22979 input_line_pointer++;
22980 saved_char = *input_line_pointer;
22981 *input_line_pointer = 0;
22982
22983 for (opt = arm_fpus; opt->name != NULL; opt++)
22984 if (streq (opt->name, name))
22985 {
22986 mfpu_opt = &opt->value;
22987 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22988 *input_line_pointer = saved_char;
22989 demand_empty_rest_of_line ();
22990 return;
22991 }
22992
22993 as_bad (_("unknown floating point format `%s'\n"), name);
22994 *input_line_pointer = saved_char;
22995 ignore_rest_of_line ();
22996 }
22997
22998 /* Copy symbol information. */
22999
23000 void
23001 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23002 {
23003 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23004 }
23005
23006 #ifdef OBJ_ELF
23007 /* Given a symbolic attribute NAME, return the proper integer value.
23008 Returns -1 if the attribute is not known. */
23009
23010 int
23011 arm_convert_symbolic_attribute (const char *name)
23012 {
23013 static const struct
23014 {
23015 const char * name;
23016 const int tag;
23017 }
23018 attribute_table[] =
23019 {
23020 /* When you modify this table you should
23021 also modify the list in doc/c-arm.texi. */
23022 #define T(tag) {#tag, tag}
23023 T (Tag_CPU_raw_name),
23024 T (Tag_CPU_name),
23025 T (Tag_CPU_arch),
23026 T (Tag_CPU_arch_profile),
23027 T (Tag_ARM_ISA_use),
23028 T (Tag_THUMB_ISA_use),
23029 T (Tag_VFP_arch),
23030 T (Tag_WMMX_arch),
23031 T (Tag_Advanced_SIMD_arch),
23032 T (Tag_PCS_config),
23033 T (Tag_ABI_PCS_R9_use),
23034 T (Tag_ABI_PCS_RW_data),
23035 T (Tag_ABI_PCS_RO_data),
23036 T (Tag_ABI_PCS_GOT_use),
23037 T (Tag_ABI_PCS_wchar_t),
23038 T (Tag_ABI_FP_rounding),
23039 T (Tag_ABI_FP_denormal),
23040 T (Tag_ABI_FP_exceptions),
23041 T (Tag_ABI_FP_user_exceptions),
23042 T (Tag_ABI_FP_number_model),
23043 T (Tag_ABI_align8_needed),
23044 T (Tag_ABI_align8_preserved),
23045 T (Tag_ABI_enum_size),
23046 T (Tag_ABI_HardFP_use),
23047 T (Tag_ABI_VFP_args),
23048 T (Tag_ABI_WMMX_args),
23049 T (Tag_ABI_optimization_goals),
23050 T (Tag_ABI_FP_optimization_goals),
23051 T (Tag_compatibility),
23052 T (Tag_CPU_unaligned_access),
23053 T (Tag_VFP_HP_extension),
23054 T (Tag_ABI_FP_16bit_format),
23055 T (Tag_MPextension_use),
23056 T (Tag_DIV_use),
23057 T (Tag_nodefaults),
23058 T (Tag_also_compatible_with),
23059 T (Tag_conformance),
23060 T (Tag_T2EE_use),
23061 T (Tag_Virtualization_use),
23062 /* We deliberately do not include Tag_MPextension_use_legacy. */
23063 #undef T
23064 };
23065 unsigned int i;
23066
23067 if (name == NULL)
23068 return -1;
23069
23070 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
23071 if (streq (name, attribute_table[i].name))
23072 return attribute_table[i].tag;
23073
23074 return -1;
23075 }
23076
23077
23078 /* Apply sym value for relocations only in the case that
23079 they are for local symbols and you have the respective
23080 architectural feature for blx and simple switches. */
23081 int
23082 arm_apply_sym_value (struct fix * fixP)
23083 {
23084 if (fixP->fx_addsy
23085 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23086 && !S_IS_EXTERNAL (fixP->fx_addsy))
23087 {
23088 switch (fixP->fx_r_type)
23089 {
23090 case BFD_RELOC_ARM_PCREL_BLX:
23091 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23092 if (ARM_IS_FUNC (fixP->fx_addsy))
23093 return 1;
23094 break;
23095
23096 case BFD_RELOC_ARM_PCREL_CALL:
23097 case BFD_RELOC_THUMB_PCREL_BLX:
23098 if (THUMB_IS_FUNC (fixP->fx_addsy))
23099 return 1;
23100 break;
23101
23102 default:
23103 break;
23104 }
23105
23106 }
23107 return 0;
23108 }
23109 #endif /* OBJ_ELF */
This page took 0.583859 seconds and 5 git commands to generate.