Add support for the Cortex-A55 and Cortex-A75 versions of the AArch64 architecture.
[deliverable/binutils-gdb.git] / gas / config / tc-avr.c
1 /* tc-avr.c -- Assembler code for the ATMEL AVR
2
3 Copyright (C) 1999-2017 Free Software Foundation, Inc.
4 Contributed by Denis Chertykov <denisc@overta.ru>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "as.h"
24 #include "safe-ctype.h"
25 #include "subsegs.h"
26 #include "dwarf2dbg.h"
27 #include "dw2gencfi.h"
28 #include "elf/avr.h"
29 #include "elf32-avr.h"
30
31 /* For building a linked list of AVR_PROPERTY_RECORD structures. */
32 struct avr_property_record_link
33 {
34 struct avr_property_record record;
35 struct avr_property_record_link *next;
36 };
37
38 struct avr_opcodes_s
39 {
40 const char * name;
41 const char * constraints;
42 const char * opcode;
43 int insn_size; /* In words. */
44 int isa;
45 unsigned int bin_opcode;
46 };
47
48 #define AVR_INSN(NAME, CONSTR, OPCODE, SIZE, ISA, BIN) \
49 {#NAME, CONSTR, OPCODE, SIZE, ISA, BIN},
50
51 struct avr_opcodes_s avr_opcodes[] =
52 {
53 #include "opcode/avr.h"
54 {NULL, NULL, NULL, 0, 0, 0}
55 };
56
57 const char comment_chars[] = ";";
58 const char line_comment_chars[] = "#";
59 const char line_separator_chars[] = "$";
60
61 const char *md_shortopts = "m:";
62 struct mcu_type_s
63 {
64 const char *name;
65 int isa;
66 int mach;
67 };
68
69 /* XXX - devices that don't seem to exist (renamed, replaced with larger
70 ones, or planned but never produced), left here for compatibility. */
71
72 static struct mcu_type_s mcu_types[] =
73 {
74 {"avr1", AVR_ISA_AVR1, bfd_mach_avr1},
75 /* TODO: instruction set for avr2 architecture should be AVR_ISA_AVR2,
76 but set to AVR_ISA_AVR25 for some following version
77 of GCC (from 4.3) for backward compatibility. */
78 {"avr2", AVR_ISA_AVR25, bfd_mach_avr2},
79 {"avr25", AVR_ISA_AVR25, bfd_mach_avr25},
80 /* TODO: instruction set for avr3 architecture should be AVR_ISA_AVR3,
81 but set to AVR_ISA_AVR3_ALL for some following version
82 of GCC (from 4.3) for backward compatibility. */
83 {"avr3", AVR_ISA_AVR3_ALL, bfd_mach_avr3},
84 {"avr31", AVR_ISA_AVR31, bfd_mach_avr31},
85 {"avr35", AVR_ISA_AVR35, bfd_mach_avr35},
86 {"avr4", AVR_ISA_AVR4, bfd_mach_avr4},
87 /* TODO: instruction set for avr5 architecture should be AVR_ISA_AVR5,
88 but set to AVR_ISA_AVR51 for some following version
89 of GCC (from 4.3) for backward compatibility. */
90 {"avr5", AVR_ISA_AVR51, bfd_mach_avr5},
91 {"avr51", AVR_ISA_AVR51, bfd_mach_avr51},
92 {"avr6", AVR_ISA_AVR6, bfd_mach_avr6},
93 {"avrxmega1", AVR_ISA_XMEGA, bfd_mach_avrxmega1},
94 {"avrxmega2", AVR_ISA_XMEGA, bfd_mach_avrxmega2},
95 {"avrxmega3", AVR_ISA_XMEGA, bfd_mach_avrxmega3},
96 {"avrxmega4", AVR_ISA_XMEGA, bfd_mach_avrxmega4},
97 {"avrxmega5", AVR_ISA_XMEGA, bfd_mach_avrxmega5},
98 {"avrxmega6", AVR_ISA_XMEGA, bfd_mach_avrxmega6},
99 {"avrxmega7", AVR_ISA_XMEGA, bfd_mach_avrxmega7},
100 {"avrtiny", AVR_ISA_AVRTINY, bfd_mach_avrtiny},
101 {"at90s1200", AVR_ISA_1200, bfd_mach_avr1},
102 {"attiny11", AVR_ISA_AVR1, bfd_mach_avr1},
103 {"attiny12", AVR_ISA_AVR1, bfd_mach_avr1},
104 {"attiny15", AVR_ISA_AVR1, bfd_mach_avr1},
105 {"attiny28", AVR_ISA_AVR1, bfd_mach_avr1},
106 {"at90s2313", AVR_ISA_AVR2, bfd_mach_avr2},
107 {"at90s2323", AVR_ISA_AVR2, bfd_mach_avr2},
108 {"at90s2333", AVR_ISA_AVR2, bfd_mach_avr2}, /* XXX -> 4433 */
109 {"at90s2343", AVR_ISA_AVR2, bfd_mach_avr2},
110 {"attiny22", AVR_ISA_AVR2, bfd_mach_avr2}, /* XXX -> 2343 */
111 {"attiny26", AVR_ISA_2xxe, bfd_mach_avr2},
112 {"at90s4414", AVR_ISA_AVR2, bfd_mach_avr2}, /* XXX -> 8515 */
113 {"at90s4433", AVR_ISA_AVR2, bfd_mach_avr2},
114 {"at90s4434", AVR_ISA_AVR2, bfd_mach_avr2}, /* XXX -> 8535 */
115 {"at90s8515", AVR_ISA_AVR2, bfd_mach_avr2},
116 {"at90c8534", AVR_ISA_AVR2, bfd_mach_avr2},
117 {"at90s8535", AVR_ISA_AVR2, bfd_mach_avr2},
118 {"ata5272", AVR_ISA_AVR25, bfd_mach_avr25},
119 {"attiny13", AVR_ISA_AVR25, bfd_mach_avr25},
120 {"attiny13a", AVR_ISA_AVR25, bfd_mach_avr25},
121 {"attiny2313", AVR_ISA_AVR25, bfd_mach_avr25},
122 {"attiny2313a",AVR_ISA_AVR25, bfd_mach_avr25},
123 {"attiny24", AVR_ISA_AVR25, bfd_mach_avr25},
124 {"attiny24a", AVR_ISA_AVR25, bfd_mach_avr25},
125 {"attiny4313", AVR_ISA_AVR25, bfd_mach_avr25},
126 {"attiny44", AVR_ISA_AVR25, bfd_mach_avr25},
127 {"attiny44a", AVR_ISA_AVR25, bfd_mach_avr25},
128 {"attiny84", AVR_ISA_AVR25, bfd_mach_avr25},
129 {"attiny84a", AVR_ISA_AVR25, bfd_mach_avr25},
130 {"attiny25", AVR_ISA_AVR25, bfd_mach_avr25},
131 {"attiny45", AVR_ISA_AVR25, bfd_mach_avr25},
132 {"attiny85", AVR_ISA_AVR25, bfd_mach_avr25},
133 {"attiny261", AVR_ISA_AVR25, bfd_mach_avr25},
134 {"attiny261a", AVR_ISA_AVR25, bfd_mach_avr25},
135 {"attiny461", AVR_ISA_AVR25, bfd_mach_avr25},
136 {"attiny461a", AVR_ISA_AVR25, bfd_mach_avr25},
137 {"attiny861", AVR_ISA_AVR25, bfd_mach_avr25},
138 {"attiny861a", AVR_ISA_AVR25, bfd_mach_avr25},
139 {"attiny87", AVR_ISA_AVR25, bfd_mach_avr25},
140 {"attiny43u", AVR_ISA_AVR25, bfd_mach_avr25},
141 {"attiny48", AVR_ISA_AVR25, bfd_mach_avr25},
142 {"attiny88", AVR_ISA_AVR25, bfd_mach_avr25},
143 {"attiny828", AVR_ISA_AVR25, bfd_mach_avr25},
144 {"at86rf401", AVR_ISA_RF401, bfd_mach_avr25},
145 {"at43usb355", AVR_ISA_AVR3, bfd_mach_avr3},
146 {"at76c711", AVR_ISA_AVR3, bfd_mach_avr3},
147 {"atmega103", AVR_ISA_AVR31, bfd_mach_avr31},
148 {"at43usb320", AVR_ISA_AVR31, bfd_mach_avr31},
149 {"attiny167", AVR_ISA_AVR35, bfd_mach_avr35},
150 {"at90usb82", AVR_ISA_AVR35, bfd_mach_avr35},
151 {"at90usb162", AVR_ISA_AVR35, bfd_mach_avr35},
152 {"ata5505", AVR_ISA_AVR35, bfd_mach_avr35},
153 {"atmega8u2", AVR_ISA_AVR35, bfd_mach_avr35},
154 {"atmega16u2", AVR_ISA_AVR35, bfd_mach_avr35},
155 {"atmega32u2", AVR_ISA_AVR35, bfd_mach_avr35},
156 {"attiny1634", AVR_ISA_AVR35, bfd_mach_avr35},
157 {"atmega8", AVR_ISA_M8, bfd_mach_avr4},
158 {"ata6289", AVR_ISA_AVR4, bfd_mach_avr4},
159 {"atmega8a", AVR_ISA_M8, bfd_mach_avr4},
160 {"ata6285", AVR_ISA_AVR4, bfd_mach_avr4},
161 {"ata6286", AVR_ISA_AVR4, bfd_mach_avr4},
162 {"atmega48", AVR_ISA_AVR4, bfd_mach_avr4},
163 {"atmega48a", AVR_ISA_AVR4, bfd_mach_avr4},
164 {"atmega48pa", AVR_ISA_AVR4, bfd_mach_avr4},
165 {"atmega48p", AVR_ISA_AVR4, bfd_mach_avr4},
166 {"atmega88", AVR_ISA_AVR4, bfd_mach_avr4},
167 {"atmega88a", AVR_ISA_AVR4, bfd_mach_avr4},
168 {"atmega88p", AVR_ISA_AVR4, bfd_mach_avr4},
169 {"atmega88pa", AVR_ISA_AVR4, bfd_mach_avr4},
170 {"atmega8515", AVR_ISA_M8, bfd_mach_avr4},
171 {"atmega8535", AVR_ISA_M8, bfd_mach_avr4},
172 {"atmega8hva", AVR_ISA_AVR4, bfd_mach_avr4},
173 {"at90pwm1", AVR_ISA_AVR4, bfd_mach_avr4},
174 {"at90pwm2", AVR_ISA_AVR4, bfd_mach_avr4},
175 {"at90pwm2b", AVR_ISA_AVR4, bfd_mach_avr4},
176 {"at90pwm3", AVR_ISA_AVR4, bfd_mach_avr4},
177 {"at90pwm3b", AVR_ISA_AVR4, bfd_mach_avr4},
178 {"at90pwm81", AVR_ISA_AVR4, bfd_mach_avr4},
179 {"at90pwm161", AVR_ISA_AVR5, bfd_mach_avr5},
180 {"ata5790", AVR_ISA_AVR5, bfd_mach_avr5},
181 {"ata5795", AVR_ISA_AVR5, bfd_mach_avr5},
182 {"atmega16", AVR_ISA_AVR5, bfd_mach_avr5},
183 {"atmega16a", AVR_ISA_AVR5, bfd_mach_avr5},
184 {"atmega161", AVR_ISA_M161, bfd_mach_avr5},
185 {"atmega162", AVR_ISA_AVR5, bfd_mach_avr5},
186 {"atmega163", AVR_ISA_M161, bfd_mach_avr5},
187 {"atmega164a", AVR_ISA_AVR5, bfd_mach_avr5},
188 {"atmega164p", AVR_ISA_AVR5, bfd_mach_avr5},
189 {"atmega164pa",AVR_ISA_AVR5, bfd_mach_avr5},
190 {"atmega165", AVR_ISA_AVR5, bfd_mach_avr5},
191 {"atmega165a", AVR_ISA_AVR5, bfd_mach_avr5},
192 {"atmega165p", AVR_ISA_AVR5, bfd_mach_avr5},
193 {"atmega165pa",AVR_ISA_AVR5, bfd_mach_avr5},
194 {"atmega168", AVR_ISA_AVR5, bfd_mach_avr5},
195 {"atmega168a", AVR_ISA_AVR5, bfd_mach_avr5},
196 {"atmega168p", AVR_ISA_AVR5, bfd_mach_avr5},
197 {"atmega168pa",AVR_ISA_AVR5, bfd_mach_avr5},
198 {"atmega169", AVR_ISA_AVR5, bfd_mach_avr5},
199 {"atmega169a", AVR_ISA_AVR5, bfd_mach_avr5},
200 {"atmega169p", AVR_ISA_AVR5, bfd_mach_avr5},
201 {"atmega169pa",AVR_ISA_AVR5, bfd_mach_avr5},
202 {"atmega32", AVR_ISA_AVR5, bfd_mach_avr5},
203 {"atmega32a", AVR_ISA_AVR5, bfd_mach_avr5},
204 {"atmega323", AVR_ISA_AVR5, bfd_mach_avr5},
205 {"atmega324a", AVR_ISA_AVR5, bfd_mach_avr5},
206 {"atmega324p", AVR_ISA_AVR5, bfd_mach_avr5},
207 {"atmega324pa",AVR_ISA_AVR5, bfd_mach_avr5},
208 {"atmega325", AVR_ISA_AVR5, bfd_mach_avr5},
209 {"atmega325a", AVR_ISA_AVR5, bfd_mach_avr5},
210 {"atmega325p", AVR_ISA_AVR5, bfd_mach_avr5},
211 {"atmega325pa",AVR_ISA_AVR5, bfd_mach_avr5},
212 {"atmega3250", AVR_ISA_AVR5, bfd_mach_avr5},
213 {"atmega3250a",AVR_ISA_AVR5, bfd_mach_avr5},
214 {"atmega3250p",AVR_ISA_AVR5, bfd_mach_avr5},
215 {"atmega3250pa",AVR_ISA_AVR5, bfd_mach_avr5},
216 {"atmega328", AVR_ISA_AVR5, bfd_mach_avr5},
217 {"atmega328p", AVR_ISA_AVR5, bfd_mach_avr5},
218 {"atmega329", AVR_ISA_AVR5, bfd_mach_avr5},
219 {"atmega329a", AVR_ISA_AVR5, bfd_mach_avr5},
220 {"atmega329p", AVR_ISA_AVR5, bfd_mach_avr5},
221 {"atmega329pa",AVR_ISA_AVR5, bfd_mach_avr5},
222 {"atmega3290", AVR_ISA_AVR5, bfd_mach_avr5},
223 {"atmega3290a",AVR_ISA_AVR5, bfd_mach_avr5},
224 {"atmega3290p",AVR_ISA_AVR5, bfd_mach_avr5},
225 {"atmega3290pa",AVR_ISA_AVR5, bfd_mach_avr5},
226 {"atmega406", AVR_ISA_AVR5, bfd_mach_avr5},
227 {"atmega64rfr2", AVR_ISA_AVR5, bfd_mach_avr5},
228 {"atmega644rfr2",AVR_ISA_AVR5, bfd_mach_avr5},
229 {"atmega64", AVR_ISA_AVR5, bfd_mach_avr5},
230 {"atmega64a", AVR_ISA_AVR5, bfd_mach_avr5},
231 {"atmega640", AVR_ISA_AVR5, bfd_mach_avr5},
232 {"atmega644", AVR_ISA_AVR5, bfd_mach_avr5},
233 {"atmega644a", AVR_ISA_AVR5, bfd_mach_avr5},
234 {"atmega644p", AVR_ISA_AVR5, bfd_mach_avr5},
235 {"atmega644pa",AVR_ISA_AVR5, bfd_mach_avr5},
236 {"atmega645", AVR_ISA_AVR5, bfd_mach_avr5},
237 {"atmega645a", AVR_ISA_AVR5, bfd_mach_avr5},
238 {"atmega645p", AVR_ISA_AVR5, bfd_mach_avr5},
239 {"atmega649", AVR_ISA_AVR5, bfd_mach_avr5},
240 {"atmega649a", AVR_ISA_AVR5, bfd_mach_avr5},
241 {"atmega649p", AVR_ISA_AVR5, bfd_mach_avr5},
242 {"atmega6450", AVR_ISA_AVR5, bfd_mach_avr5},
243 {"atmega6450a",AVR_ISA_AVR5, bfd_mach_avr5},
244 {"atmega6450p",AVR_ISA_AVR5, bfd_mach_avr5},
245 {"atmega6490", AVR_ISA_AVR5, bfd_mach_avr5},
246 {"atmega6490a",AVR_ISA_AVR5, bfd_mach_avr5},
247 {"atmega6490p",AVR_ISA_AVR5, bfd_mach_avr5},
248 {"atmega64rfr2",AVR_ISA_AVR5, bfd_mach_avr5},
249 {"atmega644rfr2",AVR_ISA_AVR5, bfd_mach_avr5},
250 {"atmega16hva",AVR_ISA_AVR5, bfd_mach_avr5},
251 {"atmega16hva2",AVR_ISA_AVR5, bfd_mach_avr5},
252 {"atmega16hvb",AVR_ISA_AVR5, bfd_mach_avr5},
253 {"atmega16hvbrevb",AVR_ISA_AVR5,bfd_mach_avr5},
254 {"atmega32hvb",AVR_ISA_AVR5, bfd_mach_avr5},
255 {"atmega32hvbrevb",AVR_ISA_AVR5,bfd_mach_avr5},
256 {"atmega64hve",AVR_ISA_AVR5, bfd_mach_avr5},
257 {"at90can32" , AVR_ISA_AVR5, bfd_mach_avr5},
258 {"at90can64" , AVR_ISA_AVR5, bfd_mach_avr5},
259 {"at90pwm161", AVR_ISA_AVR5, bfd_mach_avr5},
260 {"at90pwm216", AVR_ISA_AVR5, bfd_mach_avr5},
261 {"at90pwm316", AVR_ISA_AVR5, bfd_mach_avr5},
262 {"atmega32c1", AVR_ISA_AVR5, bfd_mach_avr5},
263 {"atmega64c1", AVR_ISA_AVR5, bfd_mach_avr5},
264 {"atmega16m1", AVR_ISA_AVR5, bfd_mach_avr5},
265 {"atmega32m1", AVR_ISA_AVR5, bfd_mach_avr5},
266 {"atmega64m1", AVR_ISA_AVR5, bfd_mach_avr5},
267 {"atmega16u4", AVR_ISA_AVR5, bfd_mach_avr5},
268 {"atmega32u4", AVR_ISA_AVR5, bfd_mach_avr5},
269 {"atmega32u6", AVR_ISA_AVR5, bfd_mach_avr5},
270 {"at90usb646", AVR_ISA_AVR5, bfd_mach_avr5},
271 {"at90usb647", AVR_ISA_AVR5, bfd_mach_avr5},
272 {"at90scr100", AVR_ISA_AVR5, bfd_mach_avr5},
273 {"at94k", AVR_ISA_94K, bfd_mach_avr5},
274 {"m3000", AVR_ISA_AVR5, bfd_mach_avr5},
275 {"atmega128", AVR_ISA_AVR51, bfd_mach_avr51},
276 {"atmega128a", AVR_ISA_AVR51, bfd_mach_avr51},
277 {"atmega1280", AVR_ISA_AVR51, bfd_mach_avr51},
278 {"atmega1281", AVR_ISA_AVR51, bfd_mach_avr51},
279 {"atmega1284", AVR_ISA_AVR51, bfd_mach_avr51},
280 {"atmega1284p",AVR_ISA_AVR51, bfd_mach_avr51},
281 {"atmega128rfa1",AVR_ISA_AVR51, bfd_mach_avr51},
282 {"atmega128rfr2",AVR_ISA_AVR51, bfd_mach_avr51},
283 {"atmega1284rfr2",AVR_ISA_AVR51, bfd_mach_avr51},
284 {"at90can128", AVR_ISA_AVR51, bfd_mach_avr51},
285 {"at90usb1286",AVR_ISA_AVR51, bfd_mach_avr51},
286 {"at90usb1287",AVR_ISA_AVR51, bfd_mach_avr51},
287 {"atmega2560", AVR_ISA_AVR6, bfd_mach_avr6},
288 {"atmega2561", AVR_ISA_AVR6, bfd_mach_avr6},
289 {"atmega256rfr2", AVR_ISA_AVR6, bfd_mach_avr6},
290 {"atmega2564rfr2", AVR_ISA_AVR6, bfd_mach_avr6},
291 {"atxmega16a4", AVR_ISA_XMEGA, bfd_mach_avrxmega2},
292 {"atxmega16a4u",AVR_ISA_XMEGAU, bfd_mach_avrxmega2},
293 {"atxmega16c4", AVR_ISA_XMEGAU, bfd_mach_avrxmega2},
294 {"atxmega16d4", AVR_ISA_XMEGA, bfd_mach_avrxmega2},
295 {"atxmega32a4", AVR_ISA_XMEGA, bfd_mach_avrxmega2},
296 {"atxmega32a4u",AVR_ISA_XMEGAU, bfd_mach_avrxmega2},
297 {"atxmega32c4", AVR_ISA_XMEGAU, bfd_mach_avrxmega2},
298 {"atxmega32d4", AVR_ISA_XMEGA, bfd_mach_avrxmega2},
299 {"atxmega32e5", AVR_ISA_XMEGA, bfd_mach_avrxmega2},
300 {"atxmega16e5", AVR_ISA_XMEGA, bfd_mach_avrxmega2},
301 {"atxmega8e5", AVR_ISA_XMEGA, bfd_mach_avrxmega2},
302 {"atxmega32x1", AVR_ISA_XMEGA, bfd_mach_avrxmega2},
303 {"attiny416", AVR_ISA_XMEGA, bfd_mach_avrxmega3},
304 {"attiny417", AVR_ISA_XMEGA, bfd_mach_avrxmega3},
305 {"attiny816", AVR_ISA_XMEGA, bfd_mach_avrxmega3},
306 {"attiny817", AVR_ISA_XMEGA, bfd_mach_avrxmega3},
307 {"atxmega64a3", AVR_ISA_XMEGA, bfd_mach_avrxmega4},
308 {"atxmega64a3u",AVR_ISA_XMEGAU, bfd_mach_avrxmega4},
309 {"atxmega64a4u",AVR_ISA_XMEGAU, bfd_mach_avrxmega4},
310 {"atxmega64b1", AVR_ISA_XMEGAU, bfd_mach_avrxmega4},
311 {"atxmega64b3", AVR_ISA_XMEGAU, bfd_mach_avrxmega4},
312 {"atxmega64c3", AVR_ISA_XMEGAU, bfd_mach_avrxmega4},
313 {"atxmega64d3", AVR_ISA_XMEGA, bfd_mach_avrxmega4},
314 {"atxmega64d4", AVR_ISA_XMEGA, bfd_mach_avrxmega4},
315 {"atxmega64a1", AVR_ISA_XMEGA, bfd_mach_avrxmega5},
316 {"atxmega64a1u",AVR_ISA_XMEGAU, bfd_mach_avrxmega5},
317 {"atxmega128a3", AVR_ISA_XMEGA, bfd_mach_avrxmega6},
318 {"atxmega128a3u",AVR_ISA_XMEGAU,bfd_mach_avrxmega6},
319 {"atxmega128b1", AVR_ISA_XMEGAU, bfd_mach_avrxmega6},
320 {"atxmega128b3", AVR_ISA_XMEGAU,bfd_mach_avrxmega6},
321 {"atxmega128c3", AVR_ISA_XMEGAU,bfd_mach_avrxmega6},
322 {"atxmega128d3", AVR_ISA_XMEGA, bfd_mach_avrxmega6},
323 {"atxmega128d4", AVR_ISA_XMEGA, bfd_mach_avrxmega6},
324 {"atxmega192a3", AVR_ISA_XMEGA, bfd_mach_avrxmega6},
325 {"atxmega192a3u",AVR_ISA_XMEGAU,bfd_mach_avrxmega6},
326 {"atxmega192c3", AVR_ISA_XMEGAU, bfd_mach_avrxmega6},
327 {"atxmega192d3", AVR_ISA_XMEGA, bfd_mach_avrxmega6},
328 {"atxmega256a3", AVR_ISA_XMEGA, bfd_mach_avrxmega6},
329 {"atxmega256a3u",AVR_ISA_XMEGAU,bfd_mach_avrxmega6},
330 {"atxmega256a3b",AVR_ISA_XMEGA, bfd_mach_avrxmega6},
331 {"atxmega256a3bu",AVR_ISA_XMEGAU, bfd_mach_avrxmega6},
332 {"atxmega256c3", AVR_ISA_XMEGAU,bfd_mach_avrxmega6},
333 {"atxmega256d3", AVR_ISA_XMEGA, bfd_mach_avrxmega6},
334 {"atxmega384c3", AVR_ISA_XMEGAU,bfd_mach_avrxmega6},
335 {"atxmega384d3", AVR_ISA_XMEGA, bfd_mach_avrxmega6},
336 {"atxmega128a1", AVR_ISA_XMEGA, bfd_mach_avrxmega7},
337 {"atxmega128a1u", AVR_ISA_XMEGAU, bfd_mach_avrxmega7},
338 {"atxmega128a4u", AVR_ISA_XMEGAU, bfd_mach_avrxmega7},
339 {"attiny4", AVR_ISA_AVRTINY, bfd_mach_avrtiny},
340 {"attiny5", AVR_ISA_AVRTINY, bfd_mach_avrtiny},
341 {"attiny9", AVR_ISA_AVRTINY, bfd_mach_avrtiny},
342 {"attiny10", AVR_ISA_AVRTINY, bfd_mach_avrtiny},
343 {"attiny20", AVR_ISA_AVRTINY, bfd_mach_avrtiny},
344 {"attiny40", AVR_ISA_AVRTINY, bfd_mach_avrtiny},
345 {NULL, 0, 0}
346 };
347
348
349 /* Current MCU type. */
350 static struct mcu_type_s default_mcu = {"avr2", AVR_ISA_AVR2, bfd_mach_avr2};
351 static struct mcu_type_s specified_mcu;
352 static struct mcu_type_s * avr_mcu = & default_mcu;
353
354 /* AVR target-specific switches. */
355 struct avr_opt_s
356 {
357 int all_opcodes; /* -mall-opcodes: accept all known AVR opcodes. */
358 int no_skip_bug; /* -mno-skip-bug: no warnings for skipping 2-word insns. */
359 int no_wrap; /* -mno-wrap: reject rjmp/rcall with 8K wrap-around. */
360 int no_link_relax; /* -mno-link-relax / -mlink-relax: generate (or not)
361 relocations for linker relaxation. */
362 };
363
364 static struct avr_opt_s avr_opt = { 0, 0, 0, 0 };
365
366 const char EXP_CHARS[] = "eE";
367 const char FLT_CHARS[] = "dD";
368
369 static void avr_set_arch (int);
370
371 /* The target specific pseudo-ops which we support. */
372 const pseudo_typeS md_pseudo_table[] =
373 {
374 {"arch", avr_set_arch, 0},
375 { NULL, NULL, 0}
376 };
377
378 #define LDI_IMMEDIATE(x) (((x) & 0xf) | (((x) << 4) & 0xf00))
379
380 #define EXP_MOD_NAME(i) exp_mod[i].name
381 #define EXP_MOD_RELOC(i) exp_mod[i].reloc
382 #define EXP_MOD_NEG_RELOC(i) exp_mod[i].neg_reloc
383 #define HAVE_PM_P(i) exp_mod[i].have_pm
384
385 struct exp_mod_s
386 {
387 const char * name;
388 bfd_reloc_code_real_type reloc;
389 bfd_reloc_code_real_type neg_reloc;
390 int have_pm;
391 };
392
393 static struct exp_mod_s exp_mod[] =
394 {
395 {"hh8", BFD_RELOC_AVR_HH8_LDI, BFD_RELOC_AVR_HH8_LDI_NEG, 1},
396 {"pm_hh8", BFD_RELOC_AVR_HH8_LDI_PM, BFD_RELOC_AVR_HH8_LDI_PM_NEG, 0},
397 {"hi8", BFD_RELOC_AVR_HI8_LDI, BFD_RELOC_AVR_HI8_LDI_NEG, 1},
398 {"pm_hi8", BFD_RELOC_AVR_HI8_LDI_PM, BFD_RELOC_AVR_HI8_LDI_PM_NEG, 0},
399 {"lo8", BFD_RELOC_AVR_LO8_LDI, BFD_RELOC_AVR_LO8_LDI_NEG, 1},
400 {"pm_lo8", BFD_RELOC_AVR_LO8_LDI_PM, BFD_RELOC_AVR_LO8_LDI_PM_NEG, 0},
401 {"hlo8", BFD_RELOC_AVR_HH8_LDI, BFD_RELOC_AVR_HH8_LDI_NEG, 0},
402 {"hhi8", BFD_RELOC_AVR_MS8_LDI, BFD_RELOC_AVR_MS8_LDI_NEG, 0},
403 };
404
405 /* A union used to store indices into the exp_mod[] array
406 in a hash table which expects void * data types. */
407 typedef union
408 {
409 void * ptr;
410 int index;
411 } mod_index;
412
413 /* Opcode hash table. */
414 static struct hash_control *avr_hash;
415
416 /* Reloc modifiers hash control (hh8,hi8,lo8,pm_xx). */
417 static struct hash_control *avr_mod_hash;
418
419 #define OPTION_MMCU 'm'
420 enum options
421 {
422 OPTION_ALL_OPCODES = OPTION_MD_BASE + 1,
423 OPTION_NO_SKIP_BUG,
424 OPTION_NO_WRAP,
425 OPTION_ISA_RMW,
426 OPTION_LINK_RELAX,
427 OPTION_NO_LINK_RELAX
428 };
429
430 struct option md_longopts[] =
431 {
432 { "mmcu", required_argument, NULL, OPTION_MMCU },
433 { "mall-opcodes", no_argument, NULL, OPTION_ALL_OPCODES },
434 { "mno-skip-bug", no_argument, NULL, OPTION_NO_SKIP_BUG },
435 { "mno-wrap", no_argument, NULL, OPTION_NO_WRAP },
436 { "mrmw", no_argument, NULL, OPTION_ISA_RMW },
437 { "mlink-relax", no_argument, NULL, OPTION_LINK_RELAX },
438 { "mno-link-relax", no_argument, NULL, OPTION_NO_LINK_RELAX },
439 { NULL, no_argument, NULL, 0 }
440 };
441
442 size_t md_longopts_size = sizeof (md_longopts);
443
444 /* Display nicely formatted list of known MCU names. */
445
446 static void
447 show_mcu_list (FILE *stream)
448 {
449 int i, x;
450
451 fprintf (stream, _("Known MCU names:"));
452 x = 1000;
453
454 for (i = 0; mcu_types[i].name; i++)
455 {
456 int len = strlen (mcu_types[i].name);
457
458 x += len + 1;
459
460 if (x < 75)
461 fprintf (stream, " %s", mcu_types[i].name);
462 else
463 {
464 fprintf (stream, "\n %s", mcu_types[i].name);
465 x = len + 2;
466 }
467 }
468
469 fprintf (stream, "\n");
470 }
471
472 static inline char *
473 skip_space (char *s)
474 {
475 while (*s == ' ' || *s == '\t')
476 ++s;
477 return s;
478 }
479
480 /* Extract one word from FROM and copy it to TO. */
481
482 static char *
483 extract_word (char *from, char *to, int limit)
484 {
485 char *op_end;
486 int size = 0;
487
488 /* Drop leading whitespace. */
489 from = skip_space (from);
490 *to = 0;
491
492 /* Find the op code end. */
493 for (op_end = from; *op_end != 0 && is_part_of_name (*op_end);)
494 {
495 to[size++] = *op_end++;
496 if (size + 1 >= limit)
497 break;
498 }
499
500 to[size] = 0;
501 return op_end;
502 }
503
504 int
505 md_estimate_size_before_relax (fragS *fragp ATTRIBUTE_UNUSED,
506 asection *seg ATTRIBUTE_UNUSED)
507 {
508 abort ();
509 return 0;
510 }
511
512 void
513 md_show_usage (FILE *stream)
514 {
515 fprintf (stream,
516 _("AVR Assembler options:\n"
517 " -mmcu=[avr-name] select microcontroller variant\n"
518 " [avr-name] can be:\n"
519 " avr1 - classic AVR core without data RAM\n"
520 " avr2 - classic AVR core with up to 8K program memory\n"
521 " avr25 - classic AVR core with up to 8K program memory\n"
522 " plus the MOVW instruction\n"
523 " avr3 - classic AVR core with up to 64K program memory\n"
524 " avr31 - classic AVR core with up to 128K program memory\n"
525 " avr35 - classic AVR core with up to 64K program memory\n"
526 " plus the MOVW instruction\n"
527 " avr4 - enhanced AVR core with up to 8K program memory\n"
528 " avr5 - enhanced AVR core with up to 64K program memory\n"
529 " avr51 - enhanced AVR core with up to 128K program memory\n"
530 " avr6 - enhanced AVR core with up to 256K program memory\n"
531 " avrxmega2 - XMEGA, > 8K, < 64K FLASH, < 64K RAM\n"
532 " avrxmega3 - XMEGA, > 8K, <= 64K FLASH, > 64K RAM\n"
533 " avrxmega4 - XMEGA, > 64K, <= 128K FLASH, <= 64K RAM\n"
534 " avrxmega5 - XMEGA, > 64K, <= 128K FLASH, > 64K RAM\n"
535 " avrxmega6 - XMEGA, > 128K, <= 256K FLASH, <= 64K RAM\n"
536 " avrxmega7 - XMEGA, > 128K, <= 256K FLASH, > 64K RAM\n"
537 " avrtiny - AVR Tiny core with 16 gp registers\n"));
538 fprintf (stream,
539 _(" -mall-opcodes accept all AVR opcodes, even if not supported by MCU\n"
540 " -mno-skip-bug disable warnings for skipping two-word instructions\n"
541 " (default for avr4, avr5)\n"
542 " -mno-wrap reject rjmp/rcall instructions with 8K wrap-around\n"
543 " (default for avr3, avr5)\n"
544 " -mrmw accept Read-Modify-Write instructions\n"
545 " -mlink-relax generate relocations for linker relaxation (default)\n"
546 " -mno-link-relax don't generate relocations for linker relaxation.\n"
547 ));
548 show_mcu_list (stream);
549 }
550
551 static void
552 avr_set_arch (int dummy ATTRIBUTE_UNUSED)
553 {
554 char str[20];
555
556 input_line_pointer = extract_word (input_line_pointer, str, 20);
557 md_parse_option (OPTION_MMCU, str);
558 bfd_set_arch_mach (stdoutput, TARGET_ARCH, avr_mcu->mach);
559 }
560
561 int
562 md_parse_option (int c, const char *arg)
563 {
564 switch (c)
565 {
566 case OPTION_MMCU:
567 {
568 int i;
569
570 for (i = 0; mcu_types[i].name; ++i)
571 if (strcasecmp (mcu_types[i].name, arg) == 0)
572 break;
573
574 if (!mcu_types[i].name)
575 {
576 show_mcu_list (stderr);
577 as_fatal (_("unknown MCU: %s\n"), arg);
578 }
579
580 /* It is OK to redefine mcu type within the same avr[1-5] bfd machine
581 type - this for allows passing -mmcu=... via gcc ASM_SPEC as well
582 as .arch ... in the asm output at the same time. */
583 if (avr_mcu == &default_mcu || avr_mcu->mach == mcu_types[i].mach)
584 {
585 specified_mcu.name = mcu_types[i].name;
586 specified_mcu.isa |= mcu_types[i].isa;
587 specified_mcu.mach = mcu_types[i].mach;
588 avr_mcu = &specified_mcu;
589 }
590 else
591 as_fatal (_("redefinition of mcu type `%s' to `%s'"),
592 avr_mcu->name, mcu_types[i].name);
593 return 1;
594 }
595 case OPTION_ALL_OPCODES:
596 avr_opt.all_opcodes = 1;
597 return 1;
598 case OPTION_NO_SKIP_BUG:
599 avr_opt.no_skip_bug = 1;
600 return 1;
601 case OPTION_NO_WRAP:
602 avr_opt.no_wrap = 1;
603 return 1;
604 case OPTION_ISA_RMW:
605 specified_mcu.isa |= AVR_ISA_RMW;
606 return 1;
607 case OPTION_LINK_RELAX:
608 avr_opt.no_link_relax = 0;
609 return 1;
610 case OPTION_NO_LINK_RELAX:
611 avr_opt.no_link_relax = 1;
612 return 1;
613 }
614
615 return 0;
616 }
617
618 symbolS *
619 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
620 {
621 return NULL;
622 }
623
624 const char *
625 md_atof (int type, char *litP, int *sizeP)
626 {
627 return ieee_md_atof (type, litP, sizeP, FALSE);
628 }
629
630 void
631 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
632 asection *sec ATTRIBUTE_UNUSED,
633 fragS *fragP ATTRIBUTE_UNUSED)
634 {
635 abort ();
636 }
637
638 void
639 md_begin (void)
640 {
641 unsigned int i;
642 struct avr_opcodes_s *opcode;
643
644 avr_hash = hash_new ();
645
646 /* Insert unique names into hash table. This hash table then provides a
647 quick index to the first opcode with a particular name in the opcode
648 table. */
649 for (opcode = avr_opcodes; opcode->name; opcode++)
650 hash_insert (avr_hash, opcode->name, (char *) opcode);
651
652 avr_mod_hash = hash_new ();
653
654 for (i = 0; i < ARRAY_SIZE (exp_mod); ++i)
655 {
656 mod_index m;
657
658 m.index = i + 10;
659 hash_insert (avr_mod_hash, EXP_MOD_NAME (i), m.ptr);
660 }
661
662 bfd_set_arch_mach (stdoutput, TARGET_ARCH, avr_mcu->mach);
663 linkrelax = !avr_opt.no_link_relax;
664 }
665
666 /* Resolve STR as a constant expression and return the result.
667 If result greater than MAX then error. */
668
669 static unsigned int
670 avr_get_constant (char *str, int max)
671 {
672 expressionS ex;
673
674 str = skip_space (str);
675 input_line_pointer = str;
676 expression (& ex);
677
678 if (ex.X_op != O_constant)
679 as_bad (_("constant value required"));
680
681 if (ex.X_add_number > max || ex.X_add_number < 0)
682 as_bad (_("number must be positive and less than %d"), max + 1);
683
684 return ex.X_add_number;
685 }
686
687 /* Parse for ldd/std offset. */
688
689 static void
690 avr_offset_expression (expressionS *exp)
691 {
692 char *str = input_line_pointer;
693 char *tmp;
694 char op[8];
695
696 tmp = str;
697 str = extract_word (str, op, sizeof (op));
698
699 input_line_pointer = tmp;
700 expression (exp);
701
702 /* Warn about expressions that fail to use lo8 (). */
703 if (exp->X_op == O_constant)
704 {
705 int x = exp->X_add_number;
706
707 if (x < -255 || x > 255)
708 as_warn (_("constant out of 8-bit range: %d"), x);
709 }
710 }
711
712 /* Parse ordinary expression. */
713
714 static char *
715 parse_exp (char *s, expressionS *op)
716 {
717 input_line_pointer = s;
718 expression (op);
719 if (op->X_op == O_absent)
720 as_bad (_("missing operand"));
721 return input_line_pointer;
722 }
723
724 /* Parse special expressions (needed for LDI command):
725 xx8 (address)
726 xx8 (-address)
727 pm_xx8 (address)
728 pm_xx8 (-address)
729 where xx is: hh, hi, lo. */
730
731 static bfd_reloc_code_real_type
732 avr_ldi_expression (expressionS *exp)
733 {
734 char *str = input_line_pointer;
735 char *tmp;
736 char op[8];
737 int mod;
738 int linker_stubs_should_be_generated = 0;
739
740 tmp = str;
741
742 str = extract_word (str, op, sizeof (op));
743
744 if (op[0])
745 {
746 mod_index m;
747
748 m.ptr = hash_find (avr_mod_hash, op);
749 mod = m.index;
750
751 if (mod)
752 {
753 int closes = 0;
754
755 mod -= 10;
756 str = skip_space (str);
757
758 if (*str == '(')
759 {
760 bfd_reloc_code_real_type reloc_to_return;
761 int neg_p = 0;
762
763 ++str;
764
765 if (strncmp ("pm(", str, 3) == 0
766 || strncmp ("gs(",str,3) == 0
767 || strncmp ("-(gs(",str,5) == 0
768 || strncmp ("-(pm(", str, 5) == 0)
769 {
770 if (HAVE_PM_P (mod))
771 {
772 ++mod;
773 ++closes;
774 }
775 else
776 as_bad (_("illegal expression"));
777
778 if (str[0] == 'g' || str[2] == 'g')
779 linker_stubs_should_be_generated = 1;
780
781 if (*str == '-')
782 {
783 neg_p = 1;
784 ++closes;
785 str += 5;
786 }
787 else
788 str += 3;
789 }
790
791 if (*str == '-' && *(str + 1) == '(')
792 {
793 neg_p ^= 1;
794 ++closes;
795 str += 2;
796 }
797
798 input_line_pointer = str;
799 expression (exp);
800
801 do
802 {
803 if (*input_line_pointer != ')')
804 {
805 as_bad (_("`)' required"));
806 break;
807 }
808 input_line_pointer++;
809 }
810 while (closes--);
811
812 reloc_to_return =
813 neg_p ? EXP_MOD_NEG_RELOC (mod) : EXP_MOD_RELOC (mod);
814 if (linker_stubs_should_be_generated)
815 {
816 switch (reloc_to_return)
817 {
818 case BFD_RELOC_AVR_LO8_LDI_PM:
819 reloc_to_return = BFD_RELOC_AVR_LO8_LDI_GS;
820 break;
821 case BFD_RELOC_AVR_HI8_LDI_PM:
822 reloc_to_return = BFD_RELOC_AVR_HI8_LDI_GS;
823 break;
824
825 default:
826 /* PR 5523: Do not generate a warning here,
827 legitimate code can trigger this case. */
828 break;
829 }
830 }
831 return reloc_to_return;
832 }
833 }
834 }
835
836 input_line_pointer = tmp;
837 expression (exp);
838
839 /* Warn about expressions that fail to use lo8 (). */
840 if (exp->X_op == O_constant)
841 {
842 int x = exp->X_add_number;
843
844 if (x < -255 || x > 255)
845 as_warn (_("constant out of 8-bit range: %d"), x);
846 }
847
848 return BFD_RELOC_AVR_LDI;
849 }
850
851 /* Parse one instruction operand.
852 Return operand bitmask. Also fixups can be generated. */
853
854 static unsigned int
855 avr_operand (struct avr_opcodes_s *opcode,
856 int where,
857 const char *op,
858 char **line)
859 {
860 expressionS op_expr;
861 unsigned int op_mask = 0;
862 char *str = skip_space (*line);
863
864 switch (*op)
865 {
866 /* Any register operand. */
867 case 'w':
868 case 'd':
869 case 'r':
870 case 'a':
871 case 'v':
872 {
873 char * old_str = str;
874 char *lower;
875 char r_name[20];
876
877 str = extract_word (str, r_name, sizeof (r_name));
878 for (lower = r_name; *lower; ++lower)
879 {
880 if (*lower >= 'A' && *lower <= 'Z')
881 *lower += 'a' - 'A';
882 }
883
884 if (r_name[0] == 'r' && ISDIGIT (r_name[1]) && r_name[2] == 0)
885 /* Single-digit register number, ie r0-r9. */
886 op_mask = r_name[1] - '0';
887 else if (r_name[0] == 'r' && ISDIGIT (r_name[1])
888 && ISDIGIT (r_name[2]) && r_name[3] == 0)
889 /* Double-digit register number, ie r10 - r32. */
890 op_mask = (r_name[1] - '0') * 10 + r_name[2] - '0';
891 else if (r_name[0] >= 'x' && r_name[0] <= 'z'
892 && (r_name[1] == 'l' || r_name[1] == 'h') && r_name[2] == 0)
893 /* Registers r26-r31 referred to by name, ie xl, xh, yl, yh, zl, zh. */
894 op_mask = (r_name[0] - 'x') * 2 + (r_name[1] == 'h') + 26;
895 else if ((*op == 'v' || *op == 'w')
896 && r_name[0] >= 'x' && r_name[0] <= 'z' && r_name[1] == 0)
897 /* For the movw and addiw instructions, refer to registers x, y and z by name. */
898 op_mask = (r_name[0] - 'x') * 2 + 26;
899 else
900 {
901 /* Numeric or symbolic constant register number. */
902 op_mask = avr_get_constant (old_str, 31);
903 str = input_line_pointer;
904 }
905 }
906
907 if (avr_mcu->mach == bfd_mach_avrtiny)
908 {
909 if (op_mask < 16 || op_mask > 31)
910 {
911 as_bad (_("register name or number from 16 to 31 required"));
912 break;
913 }
914 }
915 else if (op_mask > 31)
916 {
917 as_bad (_("register name or number from 0 to 31 required"));
918 break;
919 }
920
921 switch (*op)
922 {
923 case 'a':
924 if (op_mask < 16 || op_mask > 23)
925 as_bad (_("register r16-r23 required"));
926 op_mask -= 16;
927 break;
928
929 case 'd':
930 if (op_mask < 16)
931 as_bad (_("register number above 15 required"));
932 op_mask -= 16;
933 break;
934
935 case 'v':
936 if (op_mask & 1)
937 as_bad (_("even register number required"));
938 op_mask >>= 1;
939 break;
940
941 case 'w':
942 if ((op_mask & 1) || op_mask < 24)
943 as_bad (_("register r24, r26, r28 or r30 required"));
944 op_mask = (op_mask - 24) >> 1;
945 break;
946 }
947 break;
948
949 case 'e':
950 {
951 char c;
952
953 if (*str == '-')
954 {
955 str = skip_space (str + 1);
956 op_mask = 0x1002;
957 }
958 c = TOLOWER (*str);
959 if (c == 'x')
960 op_mask |= 0x100c;
961 else if (c == 'y')
962 op_mask |= 0x8;
963 else if (c != 'z')
964 as_bad (_("pointer register (X, Y or Z) required"));
965
966 str = skip_space (str + 1);
967 if (*str == '+')
968 {
969 ++str;
970 if (op_mask & 2)
971 as_bad (_("cannot both predecrement and postincrement"));
972 op_mask |= 0x1001;
973 }
974
975 /* avr1 can do "ld r,Z" and "st Z,r" but no other pointer
976 registers, no predecrement, no postincrement. */
977 if (!avr_opt.all_opcodes && (op_mask & 0x100F)
978 && !(avr_mcu->isa & AVR_ISA_SRAM))
979 as_bad (_("addressing mode not supported"));
980 }
981 break;
982
983 case 'z':
984 if (*str == '-')
985 as_bad (_("can't predecrement"));
986
987 if (! (*str == 'z' || *str == 'Z'))
988 as_bad (_("pointer register Z required"));
989
990 str = skip_space (str + 1);
991
992 if (*str == '+')
993 {
994 ++str;
995 const char *s;
996 for (s = opcode->opcode; *s; ++s)
997 {
998 if (*s == '+')
999 op_mask |= (1 << (15 - (s - opcode->opcode)));
1000 }
1001 }
1002
1003 /* attiny26 can do "lpm" and "lpm r,Z" but not "lpm r,Z+". */
1004 if (!avr_opt.all_opcodes
1005 && (op_mask & 0x0001)
1006 && !(avr_mcu->isa & AVR_ISA_MOVW))
1007 as_bad (_("postincrement not supported"));
1008 break;
1009
1010 case 'b':
1011 {
1012 char c = TOLOWER (*str++);
1013
1014 if (c == 'y')
1015 op_mask |= 0x8;
1016 else if (c != 'z')
1017 as_bad (_("pointer register (Y or Z) required"));
1018 str = skip_space (str);
1019 if (*str++ == '+')
1020 {
1021 input_line_pointer = str;
1022 avr_offset_expression (& op_expr);
1023 str = input_line_pointer;
1024 fix_new_exp (frag_now, where, 3,
1025 &op_expr, FALSE, BFD_RELOC_AVR_6);
1026 }
1027 }
1028 break;
1029
1030 case 'h':
1031 str = parse_exp (str, &op_expr);
1032 fix_new_exp (frag_now, where, opcode->insn_size * 2,
1033 &op_expr, FALSE, BFD_RELOC_AVR_CALL);
1034 break;
1035
1036 case 'L':
1037 str = parse_exp (str, &op_expr);
1038 fix_new_exp (frag_now, where, opcode->insn_size * 2,
1039 &op_expr, TRUE, BFD_RELOC_AVR_13_PCREL);
1040 break;
1041
1042 case 'l':
1043 str = parse_exp (str, &op_expr);
1044 fix_new_exp (frag_now, where, opcode->insn_size * 2,
1045 &op_expr, TRUE, BFD_RELOC_AVR_7_PCREL);
1046 break;
1047
1048 case 'i':
1049 str = parse_exp (str, &op_expr);
1050 fix_new_exp (frag_now, where + 2, opcode->insn_size * 2,
1051 &op_expr, FALSE, BFD_RELOC_16);
1052 break;
1053
1054 case 'j':
1055 str = parse_exp (str, &op_expr);
1056 fix_new_exp (frag_now, where, opcode->insn_size * 2,
1057 &op_expr, FALSE, BFD_RELOC_AVR_LDS_STS_16);
1058 break;
1059
1060 case 'M':
1061 {
1062 bfd_reloc_code_real_type r_type;
1063
1064 input_line_pointer = str;
1065 r_type = avr_ldi_expression (&op_expr);
1066 str = input_line_pointer;
1067 fix_new_exp (frag_now, where, 3,
1068 &op_expr, FALSE, r_type);
1069 }
1070 break;
1071
1072 case 'n':
1073 {
1074 unsigned int x;
1075
1076 x = ~avr_get_constant (str, 255);
1077 str = input_line_pointer;
1078 op_mask |= (x & 0xf) | ((x << 4) & 0xf00);
1079 }
1080 break;
1081
1082 case 'K':
1083 input_line_pointer = str;
1084 avr_offset_expression (& op_expr);
1085 str = input_line_pointer;
1086 fix_new_exp (frag_now, where, 3,
1087 & op_expr, FALSE, BFD_RELOC_AVR_6_ADIW);
1088 break;
1089
1090 case 'S':
1091 case 's':
1092 {
1093 unsigned int x;
1094
1095 x = avr_get_constant (str, 7);
1096 str = input_line_pointer;
1097 if (*op == 'S')
1098 x <<= 4;
1099 op_mask |= x;
1100 }
1101 break;
1102
1103 case 'P':
1104 str = parse_exp (str, &op_expr);
1105 fix_new_exp (frag_now, where, opcode->insn_size * 2,
1106 &op_expr, FALSE, BFD_RELOC_AVR_PORT6);
1107 break;
1108
1109 case 'p':
1110 str = parse_exp (str, &op_expr);
1111 fix_new_exp (frag_now, where, opcode->insn_size * 2,
1112 &op_expr, FALSE, BFD_RELOC_AVR_PORT5);
1113 break;
1114
1115 case 'E':
1116 {
1117 unsigned int x;
1118
1119 x = avr_get_constant (str, 15);
1120 str = input_line_pointer;
1121 op_mask |= (x << 4);
1122 }
1123 break;
1124
1125 case '?':
1126 break;
1127
1128 default:
1129 as_bad (_("unknown constraint `%c'"), *op);
1130 }
1131
1132 *line = str;
1133 return op_mask;
1134 }
1135
1136 /* Parse instruction operands.
1137 Return binary opcode. */
1138
1139 static unsigned int
1140 avr_operands (struct avr_opcodes_s *opcode, char **line)
1141 {
1142 const char *op = opcode->constraints;
1143 unsigned int bin = opcode->bin_opcode;
1144 char *frag = frag_more (opcode->insn_size * 2);
1145 char *str = *line;
1146 int where = frag - frag_now->fr_literal;
1147 static unsigned int prev = 0; /* Previous opcode. */
1148
1149 /* Opcode have operands. */
1150 if (*op)
1151 {
1152 unsigned int reg1 = 0;
1153 unsigned int reg2 = 0;
1154 int reg1_present = 0;
1155 int reg2_present = 0;
1156
1157 /* Parse first operand. */
1158 if (REGISTER_P (*op))
1159 reg1_present = 1;
1160 reg1 = avr_operand (opcode, where, op, &str);
1161 ++op;
1162
1163 /* Parse second operand. */
1164 if (*op)
1165 {
1166 if (*op == ',')
1167 ++op;
1168
1169 if (*op == '=')
1170 {
1171 reg2 = reg1;
1172 reg2_present = 1;
1173 }
1174 else
1175 {
1176 if (REGISTER_P (*op))
1177 reg2_present = 1;
1178
1179 str = skip_space (str);
1180 if (*str++ != ',')
1181 as_bad (_("`,' required"));
1182 str = skip_space (str);
1183
1184 reg2 = avr_operand (opcode, where, op, &str);
1185 }
1186
1187 if (reg1_present && reg2_present)
1188 reg2 = (reg2 & 0xf) | ((reg2 << 5) & 0x200);
1189 else if (reg2_present)
1190 reg2 <<= 4;
1191 }
1192 if (reg1_present)
1193 reg1 <<= 4;
1194 bin |= reg1 | reg2;
1195 }
1196
1197 /* Detect undefined combinations (like ld r31,Z+). */
1198 if (!avr_opt.all_opcodes && AVR_UNDEF_P (bin))
1199 as_warn (_("undefined combination of operands"));
1200
1201 if (opcode->insn_size == 2)
1202 {
1203 /* Warn if the previous opcode was cpse/sbic/sbis/sbrc/sbrs
1204 (AVR core bug, fixed in the newer devices). */
1205 if (!(avr_opt.no_skip_bug ||
1206 (avr_mcu->isa & (AVR_ISA_MUL | AVR_ISA_MOVW)))
1207 && AVR_SKIP_P (prev))
1208 as_warn (_("skipping two-word instruction"));
1209
1210 bfd_putl32 ((bfd_vma) bin, frag);
1211 }
1212 else
1213 bfd_putl16 ((bfd_vma) bin, frag);
1214
1215 prev = bin;
1216 *line = str;
1217 return bin;
1218 }
1219
1220 /* GAS will call this function for each section at the end of the assembly,
1221 to permit the CPU backend to adjust the alignment of a section. */
1222
1223 valueT
1224 md_section_align (asection *seg, valueT addr)
1225 {
1226 int align = bfd_get_section_alignment (stdoutput, seg);
1227 return ((addr + (1 << align) - 1) & (-1UL << align));
1228 }
1229
1230 /* If you define this macro, it should return the offset between the
1231 address of a PC relative fixup and the position from which the PC
1232 relative adjustment should be made. On many processors, the base
1233 of a PC relative instruction is the next instruction, so this
1234 macro would return the length of an instruction. */
1235
1236 long
1237 md_pcrel_from_section (fixS *fixp, segT sec)
1238 {
1239 if (fixp->fx_addsy != (symbolS *) NULL
1240 && (!S_IS_DEFINED (fixp->fx_addsy)
1241 || (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
1242 return 0;
1243
1244 return fixp->fx_frag->fr_address + fixp->fx_where;
1245 }
1246
1247 static bfd_boolean
1248 relaxable_section (asection *sec)
1249 {
1250 return ((sec->flags & SEC_DEBUGGING) == 0
1251 && (sec->flags & SEC_CODE) != 0
1252 && (sec->flags & SEC_ALLOC) != 0);
1253 }
1254
1255 /* Does whatever the xtensa port does. */
1256 int
1257 avr_validate_fix_sub (fixS *fix)
1258 {
1259 segT add_symbol_segment, sub_symbol_segment;
1260
1261 /* The difference of two symbols should be resolved by the assembler when
1262 linkrelax is not set. If the linker may relax the section containing
1263 the symbols, then an Xtensa DIFF relocation must be generated so that
1264 the linker knows to adjust the difference value. */
1265 if (!linkrelax || fix->fx_addsy == NULL)
1266 return 0;
1267
1268 /* Make sure both symbols are in the same segment, and that segment is
1269 "normal" and relaxable. If the segment is not "normal", then the
1270 fix is not valid. If the segment is not "relaxable", then the fix
1271 should have been handled earlier. */
1272 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
1273 if (! SEG_NORMAL (add_symbol_segment) ||
1274 ! relaxable_section (add_symbol_segment))
1275 return 0;
1276
1277 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
1278 return (sub_symbol_segment == add_symbol_segment);
1279 }
1280
1281 /* TC_FORCE_RELOCATION hook */
1282
1283 /* If linkrelax is turned on, and the symbol to relocate
1284 against is in a relaxable segment, don't compute the value -
1285 generate a relocation instead. */
1286 int
1287 avr_force_relocation (fixS *fix)
1288 {
1289 if (linkrelax && fix->fx_addsy
1290 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
1291 return 1;
1292
1293 return generic_force_reloc (fix);
1294 }
1295
1296 /* GAS will call this for each fixup. It should store the correct
1297 value in the object file. */
1298
1299 void
1300 md_apply_fix (fixS *fixP, valueT * valP, segT seg)
1301 {
1302 unsigned char *where;
1303 unsigned long insn;
1304 long value = *valP;
1305
1306 if (fixP->fx_addsy == (symbolS *) NULL)
1307 fixP->fx_done = 1;
1308
1309 else if (fixP->fx_pcrel)
1310 {
1311 segT s = S_GET_SEGMENT (fixP->fx_addsy);
1312
1313 if (s == seg || s == absolute_section)
1314 {
1315 value += S_GET_VALUE (fixP->fx_addsy);
1316 fixP->fx_done = 1;
1317 }
1318 }
1319 else if (linkrelax && fixP->fx_subsy)
1320 {
1321 /* For a subtraction relocation expression, generate one
1322 of the DIFF relocs, with the value being the difference.
1323 Note that a sym1 - sym2 expression is adjusted into a
1324 section_start_sym + sym4_offset_from_section_start - sym1
1325 expression. fixP->fx_addsy holds the section start symbol,
1326 fixP->fx_offset holds sym2's offset, and fixP->fx_subsy
1327 holds sym1. Calculate the current difference and write value,
1328 but leave fx_offset as is - during relaxation,
1329 fx_offset - value gives sym1's value. */
1330
1331 switch (fixP->fx_r_type)
1332 {
1333 case BFD_RELOC_8:
1334 fixP->fx_r_type = BFD_RELOC_AVR_DIFF8;
1335 break;
1336 case BFD_RELOC_16:
1337 fixP->fx_r_type = BFD_RELOC_AVR_DIFF16;
1338 break;
1339 case BFD_RELOC_32:
1340 fixP->fx_r_type = BFD_RELOC_AVR_DIFF32;
1341 break;
1342 default:
1343 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
1344 break;
1345 }
1346
1347 value = S_GET_VALUE (fixP->fx_addsy) +
1348 fixP->fx_offset - S_GET_VALUE (fixP->fx_subsy);
1349 *valP = value;
1350
1351 fixP->fx_subsy = NULL;
1352 }
1353 /* We don't actually support subtracting a symbol. */
1354 if (fixP->fx_subsy != (symbolS *) NULL)
1355 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
1356
1357 /* For the DIFF relocs, write the value into the object file while still
1358 keeping fx_done FALSE, as both the difference (recorded in the object file)
1359 and the sym offset (part of fixP) are needed at link relax time. */
1360 where = (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where;
1361 switch (fixP->fx_r_type)
1362 {
1363 default:
1364 fixP->fx_no_overflow = 1;
1365 break;
1366 case BFD_RELOC_AVR_7_PCREL:
1367 case BFD_RELOC_AVR_13_PCREL:
1368 case BFD_RELOC_32:
1369 case BFD_RELOC_16:
1370 break;
1371 case BFD_RELOC_AVR_DIFF8:
1372 *where = value;
1373 break;
1374 case BFD_RELOC_AVR_DIFF16:
1375 bfd_putl16 ((bfd_vma) value, where);
1376 break;
1377 case BFD_RELOC_AVR_DIFF32:
1378 bfd_putl32 ((bfd_vma) value, where);
1379 break;
1380 case BFD_RELOC_AVR_CALL:
1381 break;
1382 }
1383
1384 if (fixP->fx_done)
1385 {
1386 /* Fetch the instruction, insert the fully resolved operand
1387 value, and stuff the instruction back again. */
1388 where = (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where;
1389 insn = bfd_getl16 (where);
1390
1391 switch (fixP->fx_r_type)
1392 {
1393 case BFD_RELOC_AVR_7_PCREL:
1394 if (value & 1)
1395 as_bad_where (fixP->fx_file, fixP->fx_line,
1396 _("odd address operand: %ld"), value);
1397
1398 /* Instruction addresses are always right-shifted by 1. */
1399 value >>= 1;
1400 --value; /* Correct PC. */
1401
1402 if (value < -64 || value > 63)
1403 as_bad_where (fixP->fx_file, fixP->fx_line,
1404 _("operand out of range: %ld"), value);
1405 value = (value << 3) & 0x3f8;
1406 bfd_putl16 ((bfd_vma) (value | insn), where);
1407 break;
1408
1409 case BFD_RELOC_AVR_13_PCREL:
1410 if (value & 1)
1411 as_bad_where (fixP->fx_file, fixP->fx_line,
1412 _("odd address operand: %ld"), value);
1413
1414 /* Instruction addresses are always right-shifted by 1. */
1415 value >>= 1;
1416 --value; /* Correct PC. */
1417
1418 if (value < -2048 || value > 2047)
1419 {
1420 /* No wrap for devices with >8K of program memory. */
1421 if ((avr_mcu->isa & AVR_ISA_MEGA) || avr_opt.no_wrap)
1422 as_bad_where (fixP->fx_file, fixP->fx_line,
1423 _("operand out of range: %ld"), value);
1424 }
1425
1426 value &= 0xfff;
1427 bfd_putl16 ((bfd_vma) (value | insn), where);
1428 break;
1429
1430 case BFD_RELOC_32:
1431 bfd_putl32 ((bfd_vma) value, where);
1432 break;
1433
1434 case BFD_RELOC_16:
1435 bfd_putl16 ((bfd_vma) value, where);
1436 break;
1437
1438 case BFD_RELOC_8:
1439 if (value > 255 || value < -128)
1440 as_warn_where (fixP->fx_file, fixP->fx_line,
1441 _("operand out of range: %ld"), value);
1442 *where = value;
1443 break;
1444
1445 case BFD_RELOC_AVR_16_PM:
1446 bfd_putl16 ((bfd_vma) (value >> 1), where);
1447 break;
1448
1449 case BFD_RELOC_AVR_LDI:
1450 if (value > 255)
1451 as_bad_where (fixP->fx_file, fixP->fx_line,
1452 _("operand out of range: %ld"), value);
1453 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value), where);
1454 break;
1455
1456 case BFD_RELOC_AVR_LDS_STS_16:
1457 if ((value < 0x40) || (value > 0xBF))
1458 as_warn_where (fixP->fx_file, fixP->fx_line,
1459 _("operand out of range: 0x%lx"),
1460 (unsigned long)value);
1461 insn |= ((value & 0xF) | ((value & 0x30) << 5) | ((value & 0x40) << 2));
1462 bfd_putl16 ((bfd_vma) insn, where);
1463 break;
1464
1465 case BFD_RELOC_AVR_6:
1466 if ((value > 63) || (value < 0))
1467 as_bad_where (fixP->fx_file, fixP->fx_line,
1468 _("operand out of range: %ld"), value);
1469 bfd_putl16 ((bfd_vma) insn | ((value & 7) | ((value & (3 << 3)) << 7)
1470 | ((value & (1 << 5)) << 8)), where);
1471 break;
1472
1473 case BFD_RELOC_AVR_6_ADIW:
1474 if ((value > 63) || (value < 0))
1475 as_bad_where (fixP->fx_file, fixP->fx_line,
1476 _("operand out of range: %ld"), value);
1477 bfd_putl16 ((bfd_vma) insn | (value & 0xf) | ((value & 0x30) << 2), where);
1478 break;
1479
1480 case BFD_RELOC_AVR_LO8_LDI:
1481 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value), where);
1482 break;
1483
1484 case BFD_RELOC_AVR_HI8_LDI:
1485 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 8), where);
1486 break;
1487
1488 case BFD_RELOC_AVR_MS8_LDI:
1489 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 24), where);
1490 break;
1491
1492 case BFD_RELOC_AVR_HH8_LDI:
1493 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 16), where);
1494 break;
1495
1496 case BFD_RELOC_AVR_LO8_LDI_NEG:
1497 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value), where);
1498 break;
1499
1500 case BFD_RELOC_AVR_HI8_LDI_NEG:
1501 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 8), where);
1502 break;
1503
1504 case BFD_RELOC_AVR_MS8_LDI_NEG:
1505 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 24), where);
1506 break;
1507
1508 case BFD_RELOC_AVR_HH8_LDI_NEG:
1509 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 16), where);
1510 break;
1511
1512 case BFD_RELOC_AVR_LO8_LDI_PM:
1513 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 1), where);
1514 break;
1515
1516 case BFD_RELOC_AVR_HI8_LDI_PM:
1517 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 9), where);
1518 break;
1519
1520 case BFD_RELOC_AVR_HH8_LDI_PM:
1521 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 17), where);
1522 break;
1523
1524 case BFD_RELOC_AVR_LO8_LDI_PM_NEG:
1525 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 1), where);
1526 break;
1527
1528 case BFD_RELOC_AVR_HI8_LDI_PM_NEG:
1529 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 9), where);
1530 break;
1531
1532 case BFD_RELOC_AVR_HH8_LDI_PM_NEG:
1533 bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 17), where);
1534 break;
1535
1536 case BFD_RELOC_AVR_CALL:
1537 {
1538 unsigned long x;
1539
1540 x = bfd_getl16 (where);
1541 if (value & 1)
1542 as_bad_where (fixP->fx_file, fixP->fx_line,
1543 _("odd address operand: %ld"), value);
1544 value >>= 1;
1545 x |= ((value & 0x10000) | ((value << 3) & 0x1f00000)) >> 16;
1546 bfd_putl16 ((bfd_vma) x, where);
1547 bfd_putl16 ((bfd_vma) (value & 0xffff), where + 2);
1548 }
1549 break;
1550
1551 case BFD_RELOC_AVR_8_LO:
1552 *where = 0xff & value;
1553 break;
1554
1555 case BFD_RELOC_AVR_8_HI:
1556 *where = 0xff & (value >> 8);
1557 break;
1558
1559 case BFD_RELOC_AVR_8_HLO:
1560 *where = 0xff & (value >> 16);
1561 break;
1562
1563 default:
1564 as_fatal (_("line %d: unknown relocation type: 0x%x"),
1565 fixP->fx_line, fixP->fx_r_type);
1566 break;
1567
1568 case BFD_RELOC_AVR_PORT6:
1569 if (value > 63)
1570 as_bad_where (fixP->fx_file, fixP->fx_line,
1571 _("operand out of range: %ld"), value);
1572 bfd_putl16 ((bfd_vma) insn | ((value & 0x30) << 5) | (value & 0x0f), where);
1573 break;
1574
1575 case BFD_RELOC_AVR_PORT5:
1576 if (value > 31)
1577 as_bad_where (fixP->fx_file, fixP->fx_line,
1578 _("operand out of range: %ld"), value);
1579 bfd_putl16 ((bfd_vma) insn | ((value & 0x1f) << 3), where);
1580 break;
1581 }
1582 }
1583 else
1584 {
1585 switch ((int) fixP->fx_r_type)
1586 {
1587 case -BFD_RELOC_AVR_HI8_LDI_NEG:
1588 case -BFD_RELOC_AVR_HI8_LDI:
1589 case -BFD_RELOC_AVR_LO8_LDI_NEG:
1590 case -BFD_RELOC_AVR_LO8_LDI:
1591 as_bad_where (fixP->fx_file, fixP->fx_line,
1592 _("only constant expression allowed"));
1593 fixP->fx_done = 1;
1594 break;
1595 default:
1596 break;
1597 }
1598 }
1599 }
1600
1601 /* GAS will call this to generate a reloc, passing the resulting reloc
1602 to `bfd_install_relocation'. This currently works poorly, as
1603 `bfd_install_relocation' often does the wrong thing, and instances of
1604 `tc_gen_reloc' have been written to work around the problems, which
1605 in turns makes it difficult to fix `bfd_install_relocation'. */
1606
1607 /* If while processing a fixup, a reloc really needs to be created
1608 then it is done here. */
1609
1610 arelent *
1611 tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED,
1612 fixS *fixp)
1613 {
1614 arelent *reloc;
1615 bfd_reloc_code_real_type code = fixp->fx_r_type;
1616
1617 if (fixp->fx_subsy != NULL)
1618 {
1619 as_bad_where (fixp->fx_file, fixp->fx_line, _("expression too complex"));
1620 return NULL;
1621 }
1622
1623 reloc = XNEW (arelent);
1624
1625 reloc->sym_ptr_ptr = XNEW (asymbol *);
1626 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
1627
1628 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1629
1630 if ((fixp->fx_r_type == BFD_RELOC_32) && (fixp->fx_pcrel))
1631 {
1632 if (seg->use_rela_p)
1633 fixp->fx_offset -= md_pcrel_from_section (fixp, seg);
1634 else
1635 fixp->fx_offset = reloc->address;
1636
1637 code = BFD_RELOC_32_PCREL;
1638 }
1639
1640 reloc->addend = fixp->fx_offset;
1641
1642 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
1643
1644 if (reloc->howto == (reloc_howto_type *) NULL)
1645 {
1646 as_bad_where (fixp->fx_file, fixp->fx_line,
1647 _("reloc %d not supported by object file format"),
1648 (int) fixp->fx_r_type);
1649 return NULL;
1650 }
1651
1652 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1653 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1654 reloc->address = fixp->fx_offset;
1655
1656
1657 return reloc;
1658 }
1659
1660 void
1661 md_assemble (char *str)
1662 {
1663 struct avr_opcodes_s *opcode;
1664 char op[11];
1665
1666 str = skip_space (extract_word (str, op, sizeof (op)));
1667
1668 if (!op[0])
1669 as_bad (_("can't find opcode "));
1670
1671 opcode = (struct avr_opcodes_s *) hash_find (avr_hash, op);
1672
1673 if (opcode && !avr_opt.all_opcodes)
1674 {
1675 /* Check if the instruction's ISA bit is ON in the ISA bits of the part
1676 specified by the user. If not look for other instructions
1677 specifications with same mnemonic who's ISA bits matches.
1678
1679 This requires include/opcode/avr.h to have the instructions with
1680 same mnemonic to be specified in sequence. */
1681
1682 while ((opcode->isa & avr_mcu->isa) != opcode->isa)
1683 {
1684 opcode++;
1685
1686 if (opcode->name && strcmp(op, opcode->name))
1687 {
1688 as_bad (_("illegal opcode %s for mcu %s"),
1689 opcode->name, avr_mcu->name);
1690 return;
1691 }
1692 }
1693 }
1694
1695 if (opcode == NULL)
1696 {
1697 as_bad (_("unknown opcode `%s'"), op);
1698 return;
1699 }
1700
1701 /* Special case for opcodes with optional operands (lpm, elpm) -
1702 version with operands exists in avr_opcodes[] in the next entry. */
1703
1704 if (*str && *opcode->constraints == '?')
1705 ++opcode;
1706
1707 dwarf2_emit_insn (0);
1708
1709 /* We used to set input_line_pointer to the result of get_operands,
1710 but that is wrong. Our caller assumes we don't change it. */
1711 {
1712 char *t = input_line_pointer;
1713
1714 avr_operands (opcode, &str);
1715 if (*skip_space (str))
1716 as_bad (_("garbage at end of line"));
1717 input_line_pointer = t;
1718 }
1719 }
1720
1721 const exp_mod_data_t exp_mod_data[] =
1722 {
1723 /* Default, must be first. */
1724 { "", 0, BFD_RELOC_16, "" },
1725 /* Divides by 2 to get word address. Generate Stub. */
1726 { "gs", 2, BFD_RELOC_AVR_16_PM, "`gs' " },
1727 { "pm", 2, BFD_RELOC_AVR_16_PM, "`pm' " },
1728 /* The following are used together with avr-gcc's __memx address space
1729 in order to initialize a 24-bit pointer variable with a 24-bit address.
1730 For address in flash, hlo8 will contain the flash segment if the
1731 symbol is located in flash. If the symbol is located in RAM; hlo8
1732 will contain 0x80 which matches avr-gcc's notion of how 24-bit RAM/flash
1733 addresses linearize address space. */
1734 { "lo8", 1, BFD_RELOC_AVR_8_LO, "`lo8' " },
1735 { "hi8", 1, BFD_RELOC_AVR_8_HI, "`hi8' " },
1736 { "hlo8", 1, BFD_RELOC_AVR_8_HLO, "`hlo8' " },
1737 { "hh8", 1, BFD_RELOC_AVR_8_HLO, "`hh8' " },
1738 };
1739
1740 /* Parse special CONS expression: pm (expression) or alternatively
1741 gs (expression). These are used for addressing program memory. Moreover,
1742 define lo8 (expression), hi8 (expression) and hlo8 (expression). */
1743
1744 const exp_mod_data_t *
1745 avr_parse_cons_expression (expressionS *exp, int nbytes)
1746 {
1747 char *tmp;
1748 unsigned int i;
1749
1750 tmp = input_line_pointer = skip_space (input_line_pointer);
1751
1752 /* The first entry of exp_mod_data[] contains an entry if no
1753 expression modifier is present. Skip it. */
1754
1755 for (i = 0; i < ARRAY_SIZE (exp_mod_data); i++)
1756 {
1757 const exp_mod_data_t *pexp = &exp_mod_data[i];
1758 int len = strlen (pexp->name);
1759
1760 if (nbytes == pexp->nbytes
1761 && strncasecmp (input_line_pointer, pexp->name, len) == 0)
1762 {
1763 input_line_pointer = skip_space (input_line_pointer + len);
1764
1765 if (*input_line_pointer == '(')
1766 {
1767 input_line_pointer = skip_space (input_line_pointer + 1);
1768 expression (exp);
1769
1770 if (*input_line_pointer == ')')
1771 {
1772 ++input_line_pointer;
1773 return pexp;
1774 }
1775 else
1776 {
1777 as_bad (_("`)' required"));
1778 return &exp_mod_data[0];
1779 }
1780 }
1781
1782 input_line_pointer = tmp;
1783
1784 break;
1785 }
1786 }
1787
1788 expression (exp);
1789 return &exp_mod_data[0];
1790 }
1791
1792 void
1793 avr_cons_fix_new (fragS *frag,
1794 int where,
1795 int nbytes,
1796 expressionS *exp,
1797 const exp_mod_data_t *pexp_mod_data)
1798 {
1799 int bad = 0;
1800
1801 switch (pexp_mod_data->reloc)
1802 {
1803 default:
1804 if (nbytes == 1)
1805 fix_new_exp (frag, where, nbytes, exp, FALSE, BFD_RELOC_8);
1806 else if (nbytes == 2)
1807 fix_new_exp (frag, where, nbytes, exp, FALSE, BFD_RELOC_16);
1808 else if (nbytes == 4)
1809 fix_new_exp (frag, where, nbytes, exp, FALSE, BFD_RELOC_32);
1810 else
1811 bad = 1;
1812 break;
1813
1814 case BFD_RELOC_AVR_16_PM:
1815 case BFD_RELOC_AVR_8_LO:
1816 case BFD_RELOC_AVR_8_HI:
1817 case BFD_RELOC_AVR_8_HLO:
1818 if (nbytes == pexp_mod_data->nbytes)
1819 fix_new_exp (frag, where, nbytes, exp, FALSE, pexp_mod_data->reloc);
1820 else
1821 bad = 1;
1822 break;
1823 }
1824
1825 if (bad)
1826 as_bad (_("illegal %s relocation size: %d"), pexp_mod_data->error, nbytes);
1827 }
1828
1829 static bfd_boolean
1830 mcu_has_3_byte_pc (void)
1831 {
1832 int mach = avr_mcu->mach;
1833
1834 return mach == bfd_mach_avr6
1835 || mach == bfd_mach_avrxmega6
1836 || mach == bfd_mach_avrxmega7;
1837 }
1838
1839 void
1840 tc_cfi_frame_initial_instructions (void)
1841 {
1842 /* AVR6 pushes 3 bytes for calls. */
1843 int return_size = (mcu_has_3_byte_pc () ? 3 : 2);
1844
1845 /* The CFA is the caller's stack location before the call insn. */
1846 /* Note that the stack pointer is dwarf register number 32. */
1847 cfi_add_CFA_def_cfa (32, return_size);
1848
1849 /* Note that AVR consistently uses post-decrement, which means that things
1850 do not line up the same way as for targets that use pre-decrement. */
1851 cfi_add_CFA_offset (DWARF2_DEFAULT_RETURN_COLUMN, 1-return_size);
1852 }
1853
1854 bfd_boolean
1855 avr_allow_local_subtract (expressionS * left,
1856 expressionS * right,
1857 segT section)
1858 {
1859 /* If we are not in relaxation mode, subtraction is OK. */
1860 if (!linkrelax)
1861 return TRUE;
1862
1863 /* If the symbols are not in a code section then they are OK. */
1864 if ((section->flags & SEC_CODE) == 0)
1865 return TRUE;
1866
1867 if (left->X_add_symbol == right->X_add_symbol)
1868 return TRUE;
1869
1870 /* We have to assume that there may be instructions between the
1871 two symbols and that relaxation may increase the distance between
1872 them. */
1873 return FALSE;
1874 }
1875
1876 void
1877 avr_elf_final_processing (void)
1878 {
1879 if (linkrelax)
1880 elf_elfheader (stdoutput)->e_flags |= EF_AVR_LINKRELAX_PREPARED;
1881 }
1882
1883 /* Write out the header of a .avr.prop section into the area pointed to by
1884 DATA. The RECORD_COUNT will be placed in the header as the number of
1885 records that are to follow.
1886 The area DATA must be big enough the receive the header, which is
1887 AVR_PROPERTY_SECTION_HEADER_SIZE bytes long. */
1888
1889 static char *
1890 avr_output_property_section_header (char *data,
1891 unsigned int record_count)
1892 {
1893 char *orig_data = data;
1894
1895 md_number_to_chars (data, AVR_PROPERTY_RECORDS_VERSION, 1);
1896 data++;
1897 /* There's space for a single byte flags field, but right now there's
1898 nothing to go in here, so just set the value to zero. */
1899 md_number_to_chars (data, 0, 1);
1900 data++;
1901 md_number_to_chars (data, record_count, 2);
1902 data+=2;
1903
1904 gas_assert (data - orig_data == AVR_PROPERTY_SECTION_HEADER_SIZE);
1905
1906 return data;
1907 }
1908
1909 /* Return the number of bytes required to store RECORD into the .avr.prop
1910 section. The size returned is the compressed size that corresponds to
1911 how the record will be written out in AVR_OUTPUT_PROPERTY_RECORD. */
1912
1913 static int
1914 avr_record_size (const struct avr_property_record *record)
1915 {
1916 /* The first 5 bytes are a 4-byte address, followed by a 1-byte type
1917 identifier. */
1918 int size = 5;
1919
1920 switch (record->type)
1921 {
1922 case RECORD_ORG:
1923 size += 0; /* No extra information. */
1924 break;
1925
1926 case RECORD_ORG_AND_FILL:
1927 size += 4; /* A 4-byte fill value. */
1928 break;
1929
1930 case RECORD_ALIGN:
1931 size += 4; /* A 4-byte alignment value. */
1932 break;
1933
1934 case RECORD_ALIGN_AND_FILL:
1935 size += 8; /* A 4-byte alignment, and 4-byte fill value. */
1936 break;
1937
1938 default:
1939 as_fatal (_("unknown record type %d (in %s)"),
1940 record->type, __PRETTY_FUNCTION__);
1941 }
1942
1943 return size;
1944 }
1945
1946 /* Write out RECORD. FRAG_BASE points to the start of the data area setup
1947 to hold all of the .avr.prop content, FRAG_PTR points to the next
1948 writable location. The data area must be big enough to hold all of the
1949 records. The size of the data written out for this RECORD must match
1950 the size from AVR_RECORD_SIZE. */
1951
1952 static char *
1953 avr_output_property_record (char * const frag_base, char *frag_ptr,
1954 const struct avr_property_record *record)
1955 {
1956 fixS *fix;
1957 int where;
1958 char *init_frag_ptr = frag_ptr;
1959
1960 where = frag_ptr - frag_base;
1961 fix = fix_new (frag_now, where, 4,
1962 section_symbol (record->section),
1963 record->offset, FALSE, BFD_RELOC_32);
1964 fix->fx_file = "<internal>";
1965 fix->fx_line = 0;
1966 frag_ptr += 4;
1967
1968 md_number_to_chars (frag_ptr, (bfd_byte) record->type, 1);
1969 frag_ptr += 1;
1970
1971 /* Write out the rest of the data. */
1972 switch (record->type)
1973 {
1974 case RECORD_ORG:
1975 break;
1976
1977 case RECORD_ORG_AND_FILL:
1978 md_number_to_chars (frag_ptr, record->data.org.fill, 4);
1979 frag_ptr += 4;
1980 break;
1981
1982 case RECORD_ALIGN:
1983 md_number_to_chars (frag_ptr, record->data.align.bytes, 4);
1984 frag_ptr += 4;
1985 break;
1986
1987 case RECORD_ALIGN_AND_FILL:
1988 md_number_to_chars (frag_ptr, record->data.align.bytes, 4);
1989 md_number_to_chars (frag_ptr + 4, record->data.align.fill, 4);
1990 frag_ptr += 8;
1991 break;
1992
1993 default:
1994 as_fatal (_("unknown record type %d (in %s)"),
1995 record->type, __PRETTY_FUNCTION__);
1996 }
1997
1998 gas_assert (frag_ptr - init_frag_ptr == avr_record_size (record));
1999
2000 return frag_ptr;
2001 }
2002
2003 /* Create the section to hold the AVR property information. Return the
2004 section. */
2005
2006 static asection *
2007 avr_create_property_section (void)
2008 {
2009 asection *sec;
2010 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
2011 const char *section_name = AVR_PROPERTY_RECORD_SECTION_NAME;
2012
2013 sec = bfd_make_section (stdoutput, section_name);
2014 if (sec == NULL)
2015 as_fatal (_("Failed to create property section `%s'\n"), section_name);
2016 bfd_set_section_flags (stdoutput, sec, flags);
2017 sec->output_section = sec;
2018 return sec;
2019 }
2020
2021 /* This hook is called when alignment is performed, and allows us to
2022 capture the details of both .org and .align directives. */
2023
2024 void
2025 avr_handle_align (fragS *fragP)
2026 {
2027 if (linkrelax)
2028 {
2029 /* Ignore alignment requests at FR_ADDRESS 0, these are at the very
2030 start of a section, and will be handled by the standard section
2031 alignment mechanism. */
2032 if ((fragP->fr_type == rs_align
2033 || fragP->fr_type == rs_align_code)
2034 && fragP->fr_offset > 0)
2035 {
2036 char *p = fragP->fr_literal + fragP->fr_fix;
2037
2038 fragP->tc_frag_data.is_align = TRUE;
2039 fragP->tc_frag_data.alignment = fragP->fr_offset;
2040 fragP->tc_frag_data.fill = *p;
2041 fragP->tc_frag_data.has_fill = (fragP->tc_frag_data.fill != 0);
2042 }
2043
2044 if (fragP->fr_type == rs_org && fragP->fr_offset > 0)
2045 {
2046 char *p = fragP->fr_literal + fragP->fr_fix;
2047
2048 fragP->tc_frag_data.is_org = TRUE;
2049 fragP->tc_frag_data.fill = *p;
2050 fragP->tc_frag_data.has_fill = (fragP->tc_frag_data.fill != 0);
2051 }
2052 }
2053 }
2054
2055 /* Return TRUE if this section is not one for which we need to record
2056 information in the avr property section. */
2057
2058 static bfd_boolean
2059 exclude_section_from_property_tables (segT sec)
2060 {
2061 /* Only generate property information for sections on which linker
2062 relaxation could be performed. */
2063 return !relaxable_section (sec);
2064 }
2065
2066 /* Create a property record for fragment FRAGP from section SEC and place
2067 it into an AVR_PROPERTY_RECORD_LINK structure, which can then formed
2068 into a linked list by the caller. */
2069
2070 static struct avr_property_record_link *
2071 create_record_for_frag (segT sec, fragS *fragP)
2072 {
2073 struct avr_property_record_link *prop_rec_link;
2074
2075 prop_rec_link = XCNEW (struct avr_property_record_link);
2076 gas_assert (fragP->fr_next != NULL);
2077
2078 if (fragP->tc_frag_data.is_org)
2079 {
2080 prop_rec_link->record.offset = fragP->fr_next->fr_address;
2081 prop_rec_link->record.section = sec;
2082
2083 if (fragP->tc_frag_data.has_fill)
2084 {
2085 prop_rec_link->record.data.org.fill = fragP->tc_frag_data.fill;
2086 prop_rec_link->record.type = RECORD_ORG_AND_FILL;
2087 }
2088 else
2089 prop_rec_link->record.type = RECORD_ORG;
2090 }
2091 else
2092 {
2093 prop_rec_link->record.offset = fragP->fr_next->fr_address;
2094 prop_rec_link->record.section = sec;
2095
2096 gas_assert (fragP->tc_frag_data.is_align);
2097 if (fragP->tc_frag_data.has_fill)
2098 {
2099 prop_rec_link->record.data.align.fill = fragP->tc_frag_data.fill;
2100 prop_rec_link->record.type = RECORD_ALIGN_AND_FILL;
2101 }
2102 else
2103 prop_rec_link->record.type = RECORD_ALIGN;
2104 prop_rec_link->record.data.align.bytes = fragP->tc_frag_data.alignment;
2105 }
2106
2107 return prop_rec_link;
2108 }
2109
2110 /* Build a list of AVR_PROPERTY_RECORD_LINK structures for section SEC, and
2111 merged them onto the list pointed to by NEXT_PTR. Return a pointer to
2112 the last list item created. */
2113
2114 static struct avr_property_record_link **
2115 append_records_for_section (segT sec,
2116 struct avr_property_record_link **next_ptr)
2117 {
2118 segment_info_type *seginfo = seg_info (sec);
2119 fragS *fragP;
2120
2121 if (seginfo && seginfo->frchainP)
2122 {
2123 for (fragP = seginfo->frchainP->frch_root;
2124 fragP;
2125 fragP = fragP->fr_next)
2126 {
2127 if (fragP->tc_frag_data.is_align
2128 || fragP->tc_frag_data.is_org)
2129 {
2130 /* Create a single new entry. */
2131 struct avr_property_record_link *new_link
2132 = create_record_for_frag (sec, fragP);
2133
2134 *next_ptr = new_link;
2135 next_ptr = &new_link->next;
2136 }
2137 }
2138 }
2139
2140 return next_ptr;
2141 }
2142
2143 /* Create the AVR property section and fill it with records of .org and
2144 .align directives that were used. The section is only created if it
2145 will actually have any content. */
2146
2147 static void
2148 avr_create_and_fill_property_section (void)
2149 {
2150 segT *seclist;
2151 asection *prop_sec;
2152 struct avr_property_record_link *r_list, **next_ptr;
2153 char *frag_ptr, *frag_base;
2154 bfd_size_type sec_size;
2155 struct avr_property_record_link *rec;
2156 unsigned int record_count;
2157
2158 /* First walk over all sections. For sections on which linker
2159 relaxation could be applied, extend the record list. The record list
2160 holds information that the linker will need to know. */
2161
2162 prop_sec = NULL;
2163 r_list = NULL;
2164 next_ptr = &r_list;
2165 for (seclist = &stdoutput->sections;
2166 seclist && *seclist;
2167 seclist = &(*seclist)->next)
2168 {
2169 segT sec = *seclist;
2170
2171 if (exclude_section_from_property_tables (sec))
2172 continue;
2173
2174 next_ptr = append_records_for_section (sec, next_ptr);
2175 }
2176
2177 /* Create property section and ensure the size is correct. We've already
2178 passed the point where gas could size this for us. */
2179 sec_size = AVR_PROPERTY_SECTION_HEADER_SIZE;
2180 record_count = 0;
2181 for (rec = r_list; rec != NULL; rec = rec->next)
2182 {
2183 record_count++;
2184 sec_size += avr_record_size (&rec->record);
2185 }
2186
2187 if (record_count == 0)
2188 return;
2189
2190 prop_sec = avr_create_property_section ();
2191 bfd_set_section_size (stdoutput, prop_sec, sec_size);
2192
2193 subseg_set (prop_sec, 0);
2194 frag_base = frag_more (sec_size);
2195
2196 frag_ptr =
2197 avr_output_property_section_header (frag_base, record_count);
2198
2199 for (rec = r_list; rec != NULL; rec = rec->next)
2200 frag_ptr = avr_output_property_record (frag_base, frag_ptr, &rec->record);
2201
2202 frag_wane (frag_now);
2203 frag_new (0);
2204 frag_wane (frag_now);
2205 }
2206
2207 /* We're using this hook to build up the AVR property section. It's called
2208 late in the assembly process which suits our needs. */
2209 void
2210 avr_post_relax_hook (void)
2211 {
2212 avr_create_and_fill_property_section ();
2213 }
This page took 0.076032 seconds and 4 git commands to generate.