Fix casts to allow for a 64-bit host.
[deliverable/binutils-gdb.git] / gas / config / tc-crx.c
1 /* tc-crx.c -- Assembler code for the CRX CPU core.
2 Copyright 2004 Free Software Foundation, Inc.
3
4 Contributed by Tomer Levi, NSC, Israel.
5 Originally written for GAS 2.12 by Tomer Levi, NSC, Israel.
6 Updates, BFDizing, GNUifying and ELF support by Tomer Levi.
7
8 This file is part of GAS, the GNU Assembler.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the
22 Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
24
25 #include "as.h"
26 #include "safe-ctype.h"
27 #include "dwarf2dbg.h"
28 #include "opcode/crx.h"
29 #include "elf/crx.h"
30
31 /* Word is considered here as a 16-bit unsigned short int. */
32 #define WORD_SHIFT 16
33
34 /* Register is 4-bit size. */
35 #define REG_SIZE 4
36
37 /* Maximum size of a single instruction (in words). */
38 #define INSN_MAX_SIZE 3
39
40 /* Maximum bits which may be set in a `mask16' operand. */
41 #define MAX_REGS_IN_MASK16 8
42
43 /* Utility macros for string comparison. */
44 #define streq(a, b) (strcmp (a, b) == 0)
45 #define strneq(a, b, c) (strncmp (a, b, c) == 0)
46
47 /* Assign a number NUM, shifted by SHIFT bytes, into a location
48 pointed by index BYTE of array 'output_opcode'. */
49 #define CRX_PRINT(BYTE, NUM, SHIFT) output_opcode[BYTE] |= (NUM << SHIFT)
50
51 /* Operand errors. */
52 typedef enum
53 {
54 OP_LEGAL = 0, /* Legal operand. */
55 OP_OUT_OF_RANGE, /* Operand not within permitted range. */
56 OP_NOT_EVEN, /* Operand is Odd number, should be even. */
57 OP_ILLEGAL_DISPU4, /* Operand is not within DISPU4 range. */
58 OP_ILLEGAL_CST4, /* Operand is not within CST4 range. */
59 OP_NOT_UPPER_64KB /* Operand is not within the upper 64KB
60 (0xFFFF0000-0xFFFFFFFF). */
61 }
62 op_err;
63
64 /* Opcode mnemonics hash table. */
65 static struct hash_control *crx_inst_hash;
66 /* CRX registers hash table. */
67 static struct hash_control *reg_hash;
68 /* CRX coprocessor registers hash table. */
69 static struct hash_control *copreg_hash;
70 /* Current instruction we're assembling. */
71 const inst *instruction;
72
73 /* Global variables. */
74
75 /* Array to hold an instruction encoding. */
76 long output_opcode[2];
77
78 /* Nonzero means a relocatable symbol. */
79 int relocatable;
80
81 /* A copy of the original instruction (used in error messages). */
82 char ins_parse[MAX_INST_LEN];
83
84 /* The current processed argument number. */
85 int cur_arg_num;
86
87 /* Generic assembler global variables which must be defined by all targets. */
88
89 /* Characters which always start a comment. */
90 const char comment_chars[] = "#";
91
92 /* Characters which start a comment at the beginning of a line. */
93 const char line_comment_chars[] = "#";
94
95 /* This array holds machine specific line separator characters. */
96 const char line_separator_chars[] = ";";
97
98 /* Chars that can be used to separate mant from exp in floating point nums. */
99 const char EXP_CHARS[] = "eE";
100
101 /* Chars that mean this number is a floating point constant as in 0f12.456 */
102 const char FLT_CHARS[] = "f'";
103
104 /* Target-specific multicharacter options, not const-declared at usage. */
105 const char *md_shortopts = "";
106 struct option md_longopts[] =
107 {
108 {NULL, no_argument, NULL, 0}
109 };
110 size_t md_longopts_size = sizeof (md_longopts);
111
112 /* This table describes all the machine specific pseudo-ops
113 the assembler has to support. The fields are:
114 *** Pseudo-op name without dot.
115 *** Function to call to execute this pseudo-op.
116 *** Integer arg to pass to the function. */
117
118 const pseudo_typeS md_pseudo_table[] =
119 {
120 /* In CRX machine, align is in bytes (not a ptwo boundary). */
121 {"align", s_align_bytes, 0},
122 {0, 0, 0}
123 };
124
125 /* CRX relaxation table. */
126 const relax_typeS md_relax_table[] =
127 {
128 /* bCC */
129 {0xfa, -0x100, 2, 1}, /* 8 */
130 {0xfffe, -0x10000, 4, 2}, /* 16 */
131 {0xfffffffe, -0xfffffffe, 6, 0}, /* 32 */
132
133 /* bal */
134 {0xfffe, -0x10000, 4, 4}, /* 16 */
135 {0xfffffffe, -0xfffffffe, 6, 0}, /* 32 */
136
137 /* cmpbr/bcop */
138 {0xfe, -0x100, 4, 6}, /* 8 */
139 {0xfffffe, -0x1000000, 6, 0} /* 24 */
140 };
141
142 static void reset_vars (char *);
143 static reg get_register (char *);
144 static copreg get_copregister (char *);
145 static argtype get_optype (operand_type);
146 static int get_opbits (operand_type);
147 static int get_opflags (operand_type);
148 static int get_number_of_operands (void);
149 static void parse_operand (char *, ins *);
150 static int gettrap (char *);
151 static void handle_LoadStor (char *);
152 static int get_cinv_parameters (char *);
153 static long getconstant (long, int);
154 static op_err check_range (long *, int, unsigned int, int);
155 static int getreg_image (reg);
156 static void parse_operands (ins *, char *);
157 static void parse_insn (ins *, char *);
158 static void print_operand (int, int, argument *);
159 static void print_constant (int, int, argument *);
160 static int exponent2scale (int);
161 static void mask_reg (int, unsigned short *);
162 static void process_label_constant (char *, ins *);
163 static void set_operand (char *, ins *);
164 static char * preprocess_reglist (char *, int *);
165 static int assemble_insn (char *, ins *);
166 static void print_insn (ins *);
167 static void warn_if_needed (ins *);
168 static int adjust_if_needed (ins *);
169
170 /* Return the bit size for a given operand. */
171
172 static int
173 get_opbits (operand_type op)
174 {
175 if (op < MAX_OPRD)
176 return crx_optab[op].bit_size;
177 else
178 return 0;
179 }
180
181 /* Return the argument type of a given operand. */
182
183 static argtype
184 get_optype (operand_type op)
185 {
186 if (op < MAX_OPRD)
187 return crx_optab[op].arg_type;
188 else
189 return nullargs;
190 }
191
192 /* Return the flags of a given operand. */
193
194 static int
195 get_opflags (operand_type op)
196 {
197 if (op < MAX_OPRD)
198 return crx_optab[op].flags;
199 else
200 return 0;
201 }
202
203 /* Get the core processor register 'reg_name'. */
204
205 static reg
206 get_register (char *reg_name)
207 {
208 const reg_entry *reg;
209
210 reg = (const reg_entry *) hash_find (reg_hash, reg_name);
211
212 if (reg != NULL)
213 return reg->value.reg_val;
214 else
215 return nullregister;
216 }
217
218 /* Get the coprocessor register 'copreg_name'. */
219
220 static copreg
221 get_copregister (char *copreg_name)
222 {
223 const reg_entry *copreg;
224
225 copreg = (const reg_entry *) hash_find (copreg_hash, copreg_name);
226
227 if (copreg != NULL)
228 return copreg->value.copreg_val;
229 else
230 return nullcopregister;
231 }
232
233 /* Round up a section size to the appropriate boundary. */
234
235 valueT
236 md_section_align (segT seg, valueT val)
237 {
238 /* Round .text section to a multiple of 2. */
239 if (seg == text_section)
240 return (val + 1) & ~1;
241 return val;
242 }
243
244 /* Parse an operand that is machine-specific (remove '*'). */
245
246 void
247 md_operand (expressionS * exp)
248 {
249 char c = *input_line_pointer;
250
251 switch (c)
252 {
253 case '*':
254 input_line_pointer++;
255 expression (exp);
256 break;
257 default:
258 break;
259 }
260 }
261
262 /* Reset global variables before parsing a new instruction. */
263
264 static void
265 reset_vars (char *op)
266 {
267 cur_arg_num = relocatable = 0;
268 memset (& output_opcode, '\0', sizeof (output_opcode));
269
270 /* Save a copy of the original OP (used in error messages). */
271 strncpy (ins_parse, op, sizeof ins_parse - 1);
272 ins_parse [sizeof ins_parse - 1] = 0;
273 }
274
275 /* This macro decides whether a particular reloc is an entry in a
276 switch table. It is used when relaxing, because the linker needs
277 to know about all such entries so that it can adjust them if
278 necessary. */
279
280 #define SWITCH_TABLE(fix) \
281 ( (fix)->fx_addsy != NULL \
282 && (fix)->fx_subsy != NULL \
283 && S_GET_SEGMENT ((fix)->fx_addsy) == \
284 S_GET_SEGMENT ((fix)->fx_subsy) \
285 && S_GET_SEGMENT (fix->fx_addsy) != undefined_section \
286 && ( (fix)->fx_r_type == BFD_RELOC_CRX_NUM8 \
287 || (fix)->fx_r_type == BFD_RELOC_CRX_NUM16 \
288 || (fix)->fx_r_type == BFD_RELOC_CRX_NUM32))
289
290 /* See whether we need to force a relocation into the output file.
291 This is used to force out switch and PC relative relocations when
292 relaxing. */
293
294 int
295 crx_force_relocation (fixS *fix)
296 {
297 if (generic_force_reloc (fix) || SWITCH_TABLE (fix))
298 return 1;
299
300 return 0;
301 }
302
303 /* Generate a relocation entry for a fixup. */
304
305 arelent *
306 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS * fixP)
307 {
308 arelent * reloc;
309
310 reloc = xmalloc (sizeof (arelent));
311 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
312 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
313 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
314 reloc->addend = fixP->fx_offset;
315
316 if (fixP->fx_subsy != NULL)
317 {
318 if (SWITCH_TABLE (fixP))
319 {
320 /* Keep the current difference in the addend. */
321 reloc->addend = (S_GET_VALUE (fixP->fx_addsy)
322 - S_GET_VALUE (fixP->fx_subsy) + fixP->fx_offset);
323
324 switch (fixP->fx_r_type)
325 {
326 case BFD_RELOC_CRX_NUM8:
327 fixP->fx_r_type = BFD_RELOC_CRX_SWITCH8;
328 break;
329 case BFD_RELOC_CRX_NUM16:
330 fixP->fx_r_type = BFD_RELOC_CRX_SWITCH16;
331 break;
332 case BFD_RELOC_CRX_NUM32:
333 fixP->fx_r_type = BFD_RELOC_CRX_SWITCH32;
334 break;
335 default:
336 abort ();
337 break;
338 }
339 }
340 else
341 {
342 /* We only resolve difference expressions in the same section. */
343 as_bad_where (fixP->fx_file, fixP->fx_line,
344 _("can't resolve `%s' {%s section} - `%s' {%s section}"),
345 fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : "0",
346 segment_name (fixP->fx_addsy
347 ? S_GET_SEGMENT (fixP->fx_addsy)
348 : absolute_section),
349 S_GET_NAME (fixP->fx_subsy),
350 segment_name (S_GET_SEGMENT (fixP->fx_addsy)));
351 }
352 }
353
354 assert ((int) fixP->fx_r_type > 0);
355 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
356
357 if (reloc->howto == (reloc_howto_type *) NULL)
358 {
359 as_bad_where (fixP->fx_file, fixP->fx_line,
360 _("internal error: reloc %d (`%s') not supported by object file format"),
361 fixP->fx_r_type,
362 bfd_get_reloc_code_name (fixP->fx_r_type));
363 return NULL;
364 }
365 assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
366
367 return reloc;
368 }
369
370 /* Prepare machine-dependent frags for relaxation. */
371
372 int
373 md_estimate_size_before_relax (fragS *fragp, asection *seg)
374 {
375 /* If symbol is undefined or located in a different section,
376 select the largest supported relocation. */
377 relax_substateT subtype;
378 relax_substateT rlx_state[] = {0, 2,
379 3, 4,
380 5, 6};
381
382 for (subtype = 0; subtype < ARRAY_SIZE (rlx_state); subtype += 2)
383 {
384 if (fragp->fr_subtype == rlx_state[subtype]
385 && (!S_IS_DEFINED (fragp->fr_symbol)
386 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
387 {
388 fragp->fr_subtype = rlx_state[subtype + 1];
389 break;
390 }
391 }
392
393 if (fragp->fr_subtype >= ARRAY_SIZE (md_relax_table))
394 abort ();
395
396 return md_relax_table[fragp->fr_subtype].rlx_length;
397 }
398
399 void
400 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, fragS *fragP)
401 {
402 /* 'opcode' points to the start of the instruction, whether
403 we need to change the instruction's fixed encoding. */
404 char *opcode = fragP->fr_literal + fragP->fr_fix;
405 bfd_reloc_code_real_type reloc;
406
407 subseg_change (sec, 0);
408
409 switch (fragP->fr_subtype)
410 {
411 case 0:
412 reloc = BFD_RELOC_CRX_REL8;
413 break;
414 case 1:
415 *opcode = 0x7e;
416 reloc = BFD_RELOC_CRX_REL16;
417 break;
418 case 2:
419 *opcode = 0x7f;
420 reloc = BFD_RELOC_CRX_REL32;
421 break;
422 case 3:
423 reloc = BFD_RELOC_CRX_REL16;
424 break;
425 case 4:
426 *++opcode = 0x31;
427 reloc = BFD_RELOC_CRX_REL32;
428 break;
429 case 5:
430 reloc = BFD_RELOC_CRX_REL8_CMP;
431 break;
432 case 6:
433 *++opcode = 0x31;
434 reloc = BFD_RELOC_CRX_REL24;
435 break;
436 default:
437 abort ();
438 break;
439 }
440
441 fix_new (fragP, fragP->fr_fix,
442 bfd_get_reloc_size (bfd_reloc_type_lookup (stdoutput, reloc)),
443 fragP->fr_symbol, fragP->fr_offset, 1, reloc);
444 fragP->fr_var = 0;
445 fragP->fr_fix += md_relax_table[fragP->fr_subtype].rlx_length;
446 }
447
448 /* Process machine-dependent command line options. Called once for
449 each option on the command line that the machine-independent part of
450 GAS does not understand. */
451
452 int
453 md_parse_option (int c ATTRIBUTE_UNUSED, char *arg ATTRIBUTE_UNUSED)
454 {
455 return 0;
456 }
457
458 /* Machine-dependent usage-output. */
459
460 void
461 md_show_usage (FILE *stream ATTRIBUTE_UNUSED)
462 {
463 return;
464 }
465
466 /* Turn a string in input_line_pointer into a floating point constant
467 of type TYPE, and store the appropriate bytes in *LITP. The number
468 of LITTLENUMS emitted is stored in *SIZEP. An error message is
469 returned, or NULL on OK. */
470
471 char *
472 md_atof (int type, char *litP, int *sizeP)
473 {
474 int prec;
475 LITTLENUM_TYPE words[4];
476 char *t;
477 int i;
478
479 switch (type)
480 {
481 case 'f':
482 prec = 2;
483 break;
484
485 case 'd':
486 prec = 4;
487 break;
488
489 default:
490 *sizeP = 0;
491 return _("bad call to md_atof");
492 }
493
494 t = atof_ieee (input_line_pointer, type, words);
495 if (t)
496 input_line_pointer = t;
497
498 *sizeP = prec * 2;
499
500 if (! target_big_endian)
501 {
502 for (i = prec - 1; i >= 0; i--)
503 {
504 md_number_to_chars (litP, (valueT) words[i], 2);
505 litP += 2;
506 }
507 }
508 else
509 {
510 for (i = 0; i < prec; i++)
511 {
512 md_number_to_chars (litP, (valueT) words[i], 2);
513 litP += 2;
514 }
515 }
516
517 return NULL;
518 }
519
520 /* Apply a fixS (fixup of an instruction or data that we didn't have
521 enough info to complete immediately) to the data in a frag.
522 Since linkrelax is nonzero and TC_LINKRELAX_FIXUP is defined to disable
523 relaxation of debug sections, this function is called only when
524 fixuping relocations of debug sections. */
525
526 void
527 md_apply_fix (fixS *fixP, valueT *valP, segT seg)
528 {
529 valueT val = * valP;
530 char *buf = fixP->fx_frag->fr_literal + fixP->fx_where;
531 fixP->fx_offset = 0;
532
533 switch (fixP->fx_r_type)
534 {
535 case BFD_RELOC_CRX_NUM8:
536 bfd_put_8 (stdoutput, (unsigned char) val, buf);
537 break;
538 case BFD_RELOC_CRX_NUM16:
539 bfd_put_16 (stdoutput, val, buf);
540 break;
541 case BFD_RELOC_CRX_NUM32:
542 bfd_put_32 (stdoutput, val, buf);
543 break;
544 default:
545 /* We shouldn't ever get here because linkrelax is nonzero. */
546 abort ();
547 break;
548 }
549
550 fixP->fx_done = 0;
551
552 if (fixP->fx_addsy == NULL
553 && fixP->fx_pcrel == 0)
554 fixP->fx_done = 1;
555
556 if (fixP->fx_pcrel == 1
557 && fixP->fx_addsy != NULL
558 && S_GET_SEGMENT (fixP->fx_addsy) == seg)
559 fixP->fx_done = 1;
560 }
561
562 /* The location from which a PC relative jump should be calculated,
563 given a PC relative reloc. */
564
565 long
566 md_pcrel_from (fixS *fixp)
567 {
568 return fixp->fx_frag->fr_address + fixp->fx_where;
569 }
570
571 /* This function is called once, at assembler startup time. This should
572 set up all the tables, etc that the MD part of the assembler needs. */
573
574 void
575 md_begin (void)
576 {
577 const char *hashret = NULL;
578 int i = 0;
579
580 /* Set up a hash table for the instructions. */
581 if ((crx_inst_hash = hash_new ()) == NULL)
582 as_fatal (_("Virtual memory exhausted"));
583
584 while (crx_instruction[i].mnemonic != NULL)
585 {
586 const char *mnemonic = crx_instruction[i].mnemonic;
587
588 hashret = hash_insert (crx_inst_hash, mnemonic,
589 (PTR) &crx_instruction[i]);
590
591 if (hashret != NULL && *hashret != '\0')
592 as_fatal (_("Can't hash `%s': %s\n"), crx_instruction[i].mnemonic,
593 *hashret == 0 ? _("(unknown reason)") : hashret);
594
595 /* Insert unique names into hash table. The CRX instruction set
596 has many identical opcode names that have different opcodes based
597 on the operands. This hash table then provides a quick index to
598 the first opcode with a particular name in the opcode table. */
599 do
600 {
601 ++i;
602 }
603 while (crx_instruction[i].mnemonic != NULL
604 && streq (crx_instruction[i].mnemonic, mnemonic));
605 }
606
607 /* Initialize reg_hash hash table. */
608 if ((reg_hash = hash_new ()) == NULL)
609 as_fatal (_("Virtual memory exhausted"));
610
611 {
612 const reg_entry *regtab;
613
614 for (regtab = crx_regtab;
615 regtab < (crx_regtab + NUMREGS); regtab++)
616 {
617 hashret = hash_insert (reg_hash, regtab->name, (PTR) regtab);
618 if (hashret)
619 as_fatal (_("Internal Error: Can't hash %s: %s"),
620 regtab->name,
621 hashret);
622 }
623 }
624
625 /* Initialize copreg_hash hash table. */
626 if ((copreg_hash = hash_new ()) == NULL)
627 as_fatal (_("Virtual memory exhausted"));
628
629 {
630 const reg_entry *copregtab;
631
632 for (copregtab = crx_copregtab; copregtab < (crx_copregtab + NUMCOPREGS);
633 copregtab++)
634 {
635 hashret = hash_insert (copreg_hash, copregtab->name, (PTR) copregtab);
636 if (hashret)
637 as_fatal (_("Internal Error: Can't hash %s: %s"),
638 copregtab->name,
639 hashret);
640 }
641 }
642 /* Set linkrelax here to avoid fixups in most sections. */
643 linkrelax = 1;
644 }
645
646 /* Process constants (immediate/absolute)
647 and labels (jump targets/Memory locations). */
648
649 static void
650 process_label_constant (char *str, ins * crx_ins)
651 {
652 char *saved_input_line_pointer;
653 argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */
654
655 saved_input_line_pointer = input_line_pointer;
656 input_line_pointer = str;
657
658 expression (&crx_ins->exp);
659
660 switch (crx_ins->exp.X_op)
661 {
662 case O_big:
663 case O_absent:
664 /* Missing or bad expr becomes absolute 0. */
665 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
666 str);
667 crx_ins->exp.X_op = O_constant;
668 crx_ins->exp.X_add_number = 0;
669 crx_ins->exp.X_add_symbol = (symbolS *) 0;
670 crx_ins->exp.X_op_symbol = (symbolS *) 0;
671 /* Fall through. */
672
673 case O_constant:
674 cur_arg->X_op = O_constant;
675 cur_arg->constant = crx_ins->exp.X_add_number;
676 break;
677
678 case O_symbol:
679 case O_subtract:
680 case O_add:
681 cur_arg->X_op = O_symbol;
682 crx_ins->rtype = BFD_RELOC_NONE;
683 relocatable = 1;
684
685 switch (cur_arg->type)
686 {
687 case arg_cr:
688 if (IS_INSN_TYPE (LD_STOR_INS_INC))
689 crx_ins->rtype = BFD_RELOC_CRX_REGREL12;
690 else if (IS_INSN_TYPE (CSTBIT_INS)
691 || IS_INSN_TYPE (STOR_IMM_INS))
692 crx_ins->rtype = BFD_RELOC_CRX_REGREL28;
693 else
694 crx_ins->rtype = BFD_RELOC_CRX_REGREL32;
695 break;
696
697 case arg_idxr:
698 crx_ins->rtype = BFD_RELOC_CRX_REGREL22;
699 break;
700
701 case arg_c:
702 if (IS_INSN_MNEMONIC ("bal") || IS_INSN_TYPE (DCR_BRANCH_INS))
703 crx_ins->rtype = BFD_RELOC_CRX_REL16;
704 else if (IS_INSN_TYPE (BRANCH_INS))
705 crx_ins->rtype = BFD_RELOC_CRX_REL8;
706 else if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (STOR_IMM_INS)
707 || IS_INSN_TYPE (CSTBIT_INS))
708 crx_ins->rtype = BFD_RELOC_CRX_ABS32;
709 else if (IS_INSN_TYPE (BRANCH_NEQ_INS))
710 crx_ins->rtype = BFD_RELOC_CRX_REL4;
711 else if (IS_INSN_TYPE (CMPBR_INS) || IS_INSN_TYPE (COP_BRANCH_INS))
712 crx_ins->rtype = BFD_RELOC_CRX_REL8_CMP;
713 break;
714
715 case arg_ic:
716 if (IS_INSN_TYPE (ARITH_INS))
717 crx_ins->rtype = BFD_RELOC_CRX_IMM32;
718 else if (IS_INSN_TYPE (ARITH_BYTE_INS))
719 crx_ins->rtype = BFD_RELOC_CRX_IMM16;
720 break;
721 default:
722 break;
723 }
724 break;
725
726 default:
727 cur_arg->X_op = crx_ins->exp.X_op;
728 break;
729 }
730
731 input_line_pointer = saved_input_line_pointer;
732 return;
733 }
734
735 /* Get the values of the scale to be encoded -
736 used for the scaled index mode of addressing. */
737
738 static int
739 exponent2scale (int val)
740 {
741 int exponent;
742
743 /* If 'val' is 0, the following 'for' will be an endless loop. */
744 if (val == 0)
745 return 0;
746
747 for (exponent = 0; (val != 1); val >>= 1, exponent++)
748 ;
749
750 return exponent;
751 }
752
753 /* Parsing different types of operands
754 -> constants Immediate/Absolute/Relative numbers
755 -> Labels Relocatable symbols
756 -> (rbase) Register base
757 -> disp(rbase) Register relative
758 -> disp(rbase)+ Post-increment mode
759 -> disp(rbase,ridx,scl) Register index mode */
760
761 static void
762 set_operand (char *operand, ins * crx_ins)
763 {
764 char *operandS; /* Pointer to start of sub-opearand. */
765 char *operandE; /* Pointer to end of sub-opearand. */
766 expressionS scale;
767 int scale_val;
768 char *input_save, c;
769 argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */
770
771 /* Initialize pointers. */
772 operandS = operandE = operand;
773
774 switch (cur_arg->type)
775 {
776 case arg_sc: /* Case *+0x18. */
777 case arg_ic: /* Case $0x18. */
778 operandS++;
779 case arg_c: /* Case 0x18. */
780 /* Set constant. */
781 process_label_constant (operandS, crx_ins);
782
783 if (cur_arg->type != arg_ic)
784 cur_arg->type = arg_c;
785 break;
786
787 case arg_icr: /* Case $0x18(r1). */
788 operandS++;
789 case arg_cr: /* Case 0x18(r1). */
790 /* Set displacement constant. */
791 while (*operandE != '(')
792 operandE++;
793 *operandE = '\0';
794 process_label_constant (operandS, crx_ins);
795 operandS = operandE;
796 case arg_rbase: /* Case (r1). */
797 operandS++;
798 /* Set register base. */
799 while (*operandE != ')')
800 operandE++;
801 *operandE = '\0';
802 if ((cur_arg->r = get_register (operandS)) == nullregister)
803 as_bad (_("Illegal register `%s' in Instruction `%s'"),
804 operandS, ins_parse);
805
806 if (cur_arg->type != arg_rbase)
807 cur_arg->type = arg_cr;
808 break;
809
810 case arg_idxr:
811 /* Set displacement constant. */
812 while (*operandE != '(')
813 operandE++;
814 *operandE = '\0';
815 process_label_constant (operandS, crx_ins);
816 operandS = ++operandE;
817
818 /* Set register base. */
819 while ((*operandE != ',') && (! ISSPACE (*operandE)))
820 operandE++;
821 *operandE++ = '\0';
822 if ((cur_arg->r = get_register (operandS)) == nullregister)
823 as_bad (_("Illegal register `%s' in Instruction `%s'"),
824 operandS, ins_parse);
825
826 /* Skip leading white space. */
827 while (ISSPACE (*operandE))
828 operandE++;
829 operandS = operandE;
830
831 /* Set register index. */
832 while ((*operandE != ')') && (*operandE != ','))
833 operandE++;
834 c = *operandE;
835 *operandE++ = '\0';
836
837 if ((cur_arg->i_r = get_register (operandS)) == nullregister)
838 as_bad (_("Illegal register `%s' in Instruction `%s'"),
839 operandS, ins_parse);
840
841 /* Skip leading white space. */
842 while (ISSPACE (*operandE))
843 operandE++;
844 operandS = operandE;
845
846 /* Set the scale. */
847 if (c == ')')
848 cur_arg->scale = 0;
849 else
850 {
851 while (*operandE != ')')
852 operandE++;
853 *operandE = '\0';
854
855 /* Preprocess the scale string. */
856 input_save = input_line_pointer;
857 input_line_pointer = operandS;
858 expression (&scale);
859 input_line_pointer = input_save;
860
861 scale_val = scale.X_add_number;
862
863 /* Check if the scale value is legal. */
864 if (scale_val != 1 && scale_val != 2
865 && scale_val != 4 && scale_val != 8)
866 as_bad (_("Illegal Scale - `%d'"), scale_val);
867
868 cur_arg->scale = exponent2scale (scale_val);
869 }
870 break;
871
872 default:
873 break;
874 }
875 }
876
877 /* Parse a single operand.
878 operand - Current operand to parse.
879 crx_ins - Current assembled instruction. */
880
881 static void
882 parse_operand (char *operand, ins * crx_ins)
883 {
884 int ret_val;
885 argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */
886
887 /* Initialize the type to NULL before parsing. */
888 cur_arg->type = nullargs;
889
890 /* Check whether this is a general processor register. */
891 if ((ret_val = get_register (operand)) != nullregister)
892 {
893 cur_arg->type = arg_r;
894 cur_arg->r = ret_val;
895 cur_arg->X_op = O_register;
896 return;
897 }
898
899 /* Check whether this is a core [special] coprocessor register. */
900 if ((ret_val = get_copregister (operand)) != nullcopregister)
901 {
902 cur_arg->type = arg_copr;
903 if (ret_val >= cs0)
904 cur_arg->type = arg_copsr;
905 cur_arg->cr = ret_val;
906 cur_arg->X_op = O_register;
907 return;
908 }
909
910 /* Deal with special characters. */
911 switch (operand[0])
912 {
913 case '$':
914 if (strchr (operand, '(') != NULL)
915 cur_arg->type = arg_icr;
916 else
917 cur_arg->type = arg_ic;
918 goto set_params;
919 break;
920
921 case '*':
922 cur_arg->type = arg_sc;
923 goto set_params;
924 break;
925
926 case '(':
927 cur_arg->type = arg_rbase;
928 goto set_params;
929 break;
930
931 default:
932 break;
933 }
934
935 if (strchr (operand, '(') != NULL)
936 {
937 if (strchr (operand, ',') != NULL
938 && (strchr (operand, ',') > strchr (operand, '(')))
939 cur_arg->type = arg_idxr;
940 else
941 cur_arg->type = arg_cr;
942 }
943 else
944 cur_arg->type = arg_c;
945 goto set_params;
946
947 /* Parse an operand according to its type. */
948 set_params:
949 cur_arg->constant = 0;
950 set_operand (operand, crx_ins);
951 }
952
953 /* Parse the various operands. Each operand is then analyzed to fillup
954 the fields in the crx_ins data structure. */
955
956 static void
957 parse_operands (ins * crx_ins, char *operands)
958 {
959 char *operandS; /* Operands string. */
960 char *operandH, *operandT; /* Single operand head/tail pointers. */
961 int allocated = 0; /* Indicates a new operands string was allocated. */
962 char *operand[MAX_OPERANDS]; /* Separating the operands. */
963 int op_num = 0; /* Current operand number we are parsing. */
964 int bracket_flag = 0; /* Indicates a bracket '(' was found. */
965 int sq_bracket_flag = 0; /* Indicates a square bracket '[' was found. */
966
967 /* Preprocess the list of registers, if necessary. */
968 operandS = operandH = operandT = (INST_HAS_REG_LIST) ?
969 preprocess_reglist (operands, &allocated) : operands;
970
971 while (*operandT != '\0')
972 {
973 if (*operandT == ',' && bracket_flag != 1 && sq_bracket_flag != 1)
974 {
975 *operandT++ = '\0';
976 operand[op_num++] = strdup (operandH);
977 operandH = operandT;
978 continue;
979 }
980
981 if (*operandT == ' ')
982 as_bad (_("Illegal operands (whitespace): `%s'"), ins_parse);
983
984 if (*operandT == '(')
985 bracket_flag = 1;
986 else if (*operandT == '[')
987 sq_bracket_flag = 1;
988
989 if (*operandT == ')')
990 {
991 if (bracket_flag)
992 bracket_flag = 0;
993 else
994 as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
995 }
996 else if (*operandT == ']')
997 {
998 if (sq_bracket_flag)
999 sq_bracket_flag = 0;
1000 else
1001 as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
1002 }
1003
1004 if (bracket_flag == 1 && *operandT == ')')
1005 bracket_flag = 0;
1006 else if (sq_bracket_flag == 1 && *operandT == ']')
1007 sq_bracket_flag = 0;
1008
1009 operandT++;
1010 }
1011
1012 /* Adding the last operand. */
1013 operand[op_num++] = strdup (operandH);
1014 crx_ins->nargs = op_num;
1015
1016 /* Verifying correct syntax of operands (all brackets should be closed). */
1017 if (bracket_flag || sq_bracket_flag)
1018 as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
1019
1020 /* Now we parse each operand separately. */
1021 for (op_num = 0; op_num < crx_ins->nargs; op_num++)
1022 {
1023 cur_arg_num = op_num;
1024 parse_operand (operand[op_num], crx_ins);
1025 free (operand[op_num]);
1026 }
1027
1028 if (allocated)
1029 free (operandS);
1030 }
1031
1032 /* Get the trap index in dispatch table, given its name.
1033 This routine is used by assembling the 'excp' instruction. */
1034
1035 static int
1036 gettrap (char *s)
1037 {
1038 const trap_entry *trap;
1039
1040 for (trap = crx_traps; trap < (crx_traps + NUMTRAPS); trap++)
1041 if (strcasecmp (trap->name, s) == 0)
1042 return trap->entry;
1043
1044 as_bad (_("Unknown exception: `%s'"), s);
1045 return 0;
1046 }
1047
1048 /* Post-Increment instructions, as well as Store-Immediate instructions, are a
1049 sub-group within load/stor instruction groups.
1050 Therefore, when parsing a Post-Increment/Store-Immediate insn, we have to
1051 advance the instruction pointer to the start of that sub-group (that is, up
1052 to the first instruction of that type).
1053 Otherwise, the insn will be mistakenly identified as of type LD_STOR_INS. */
1054
1055 static void
1056 handle_LoadStor (char *operands)
1057 {
1058 /* Post-Increment instructions precede Store-Immediate instructions in
1059 CRX instruction table, hence they are handled before.
1060 This synchronization should be kept. */
1061
1062 /* Assuming Post-Increment insn has the following format :
1063 'MNEMONIC DISP(REG)+, REG' (e.g. 'loadw 12(r5)+, r6').
1064 LD_STOR_INS_INC are the only store insns containing a plus sign (+). */
1065 if (strstr (operands, ")+") != NULL)
1066 {
1067 while (! IS_INSN_TYPE (LD_STOR_INS_INC))
1068 instruction++;
1069 return;
1070 }
1071
1072 /* Assuming Store-Immediate insn has the following format :
1073 'MNEMONIC $DISP, ...' (e.g. 'storb $1, 12(r5)').
1074 STOR_IMM_INS are the only store insns containing a dollar sign ($). */
1075 if (strstr (operands, "$") != NULL)
1076 while (! IS_INSN_TYPE (STOR_IMM_INS))
1077 instruction++;
1078 }
1079
1080 /* Top level module where instruction parsing starts.
1081 crx_ins - data structure holds some information.
1082 operands - holds the operands part of the whole instruction. */
1083
1084 static void
1085 parse_insn (ins *insn, char *operands)
1086 {
1087 int i;
1088
1089 /* Handle instructions with no operands. */
1090 for (i = 0; no_op_insn[i] != NULL; i++)
1091 {
1092 if (streq (no_op_insn[i], instruction->mnemonic))
1093 {
1094 insn->nargs = 0;
1095 return;
1096 }
1097 }
1098
1099 /* Handle 'excp'/'cinv' instructions. */
1100 if (IS_INSN_MNEMONIC ("excp") || IS_INSN_MNEMONIC ("cinv"))
1101 {
1102 insn->nargs = 1;
1103 insn->arg[0].type = arg_ic;
1104 insn->arg[0].constant = IS_INSN_MNEMONIC ("excp") ?
1105 gettrap (operands) : get_cinv_parameters (operands);
1106 insn->arg[0].X_op = O_constant;
1107 return;
1108 }
1109
1110 /* Handle load/stor unique instructions before parsing. */
1111 if (IS_INSN_TYPE (LD_STOR_INS))
1112 handle_LoadStor (operands);
1113
1114 if (operands != NULL)
1115 parse_operands (insn, operands);
1116 }
1117
1118 /* Cinv instruction requires special handling. */
1119
1120 static int
1121 get_cinv_parameters (char * operand)
1122 {
1123 char *p = operand;
1124 int d_used = 0, i_used = 0, u_used = 0, b_used = 0;
1125
1126 while (*++p != ']')
1127 {
1128 if (*p == ',' || *p == ' ')
1129 continue;
1130
1131 if (*p == 'd')
1132 d_used = 1;
1133 else if (*p == 'i')
1134 i_used = 1;
1135 else if (*p == 'u')
1136 u_used = 1;
1137 else if (*p == 'b')
1138 b_used = 1;
1139 else
1140 as_bad (_("Illegal `cinv' parameter: `%c'"), *p);
1141 }
1142
1143 return ((b_used ? 8 : 0)
1144 + (d_used ? 4 : 0)
1145 + (i_used ? 2 : 0)
1146 + (u_used ? 1 : 0));
1147 }
1148
1149 /* Retrieve the opcode image of a given register.
1150 If the register is illegal for the current instruction,
1151 issue an error. */
1152
1153 static int
1154 getreg_image (reg r)
1155 {
1156 const reg_entry *reg;
1157 char *reg_name;
1158 int is_procreg = 0; /* Nonzero means argument should be processor reg. */
1159
1160 if (((IS_INSN_MNEMONIC ("mtpr")) && (cur_arg_num == 1))
1161 || ((IS_INSN_MNEMONIC ("mfpr")) && (cur_arg_num == 0)) )
1162 is_procreg = 1;
1163
1164 /* Check whether the register is in registers table. */
1165 if (r < MAX_REG)
1166 reg = &crx_regtab[r];
1167 /* Check whether the register is in coprocessor registers table. */
1168 else if (r < MAX_COPREG)
1169 reg = &crx_copregtab[r-MAX_REG];
1170 /* Register not found. */
1171 else
1172 {
1173 as_bad (_("Unknown register: `%d'"), r);
1174 return 0;
1175 }
1176
1177 reg_name = reg->name;
1178
1179 /* Issue a error message when register is illegal. */
1180 #define IMAGE_ERR \
1181 as_bad (_("Illegal register (`%s') in Instruction: `%s'"), \
1182 reg_name, ins_parse); \
1183 break;
1184
1185 switch (reg->type)
1186 {
1187 case CRX_U_REGTYPE:
1188 if (is_procreg || (instruction->flags & USER_REG))
1189 return reg->image;
1190 else
1191 IMAGE_ERR;
1192
1193 case CRX_CFG_REGTYPE:
1194 if (is_procreg)
1195 return reg->image;
1196 else
1197 IMAGE_ERR;
1198
1199 case CRX_R_REGTYPE:
1200 if (! is_procreg)
1201 return reg->image;
1202 else
1203 IMAGE_ERR;
1204
1205 case CRX_C_REGTYPE:
1206 case CRX_CS_REGTYPE:
1207 return reg->image;
1208 break;
1209
1210 default:
1211 IMAGE_ERR;
1212 }
1213
1214 return 0;
1215 }
1216
1217 /* Routine used to represent integer X using NBITS bits. */
1218
1219 static long
1220 getconstant (long x, int nbits)
1221 {
1222 /* The following expression avoids overflow if
1223 'nbits' is the number of bits in 'bfd_vma'. */
1224 return (x & ((((1 << (nbits - 1)) - 1) << 1) | 1));
1225 }
1226
1227 /* Print a constant value to 'output_opcode':
1228 ARG holds the operand's type and value.
1229 SHIFT represents the location of the operand to be print into.
1230 NBITS determines the size (in bits) of the constant. */
1231
1232 static void
1233 print_constant (int nbits, int shift, argument *arg)
1234 {
1235 unsigned long mask = 0;
1236
1237 long constant = getconstant (arg->constant, nbits);
1238
1239 switch (nbits)
1240 {
1241 case 32:
1242 case 28:
1243 case 24:
1244 case 22:
1245 /* mask the upper part of the constant, that is, the bits
1246 going to the lowest byte of output_opcode[0].
1247 The upper part of output_opcode[1] is always filled,
1248 therefore it is always masked with 0xFFFF. */
1249 mask = (1 << (nbits - 16)) - 1;
1250 /* Divide the constant between two consecutive words :
1251 0 1 2 3
1252 +---------+---------+---------+---------+
1253 | | X X X X | X X X X | |
1254 +---------+---------+---------+---------+
1255 output_opcode[0] output_opcode[1] */
1256
1257 CRX_PRINT (0, (constant >> WORD_SHIFT) & mask, 0);
1258 CRX_PRINT (1, (constant & 0xFFFF), WORD_SHIFT);
1259 break;
1260
1261 case 16:
1262 case 12:
1263 /* Special case - in arg_cr, the SHIFT represents the location
1264 of the REGISTER, not the constant, which is itself not shifted. */
1265 if (arg->type == arg_cr)
1266 {
1267 CRX_PRINT (0, constant, 0);
1268 break;
1269 }
1270
1271 /* When instruction size is 3 and 'shift' is 16, a 16-bit constant is
1272 always filling the upper part of output_opcode[1]. If we mistakenly
1273 write it to output_opcode[0], the constant prefix (that is, 'match')
1274 will be overriden.
1275 0 1 2 3
1276 +---------+---------+---------+---------+
1277 | 'match' | | X X X X | |
1278 +---------+---------+---------+---------+
1279 output_opcode[0] output_opcode[1] */
1280
1281 if ((instruction->size > 2) && (shift == WORD_SHIFT))
1282 CRX_PRINT (1, constant, WORD_SHIFT);
1283 else
1284 CRX_PRINT (0, constant, shift);
1285 break;
1286
1287 default:
1288 CRX_PRINT (0, constant, shift);
1289 break;
1290 }
1291 }
1292
1293 /* Print an operand to 'output_opcode', which later on will be
1294 printed to the object file:
1295 ARG holds the operand's type, size and value.
1296 SHIFT represents the printing location of operand.
1297 NBITS determines the size (in bits) of a constant operand. */
1298
1299 static void
1300 print_operand (int nbits, int shift, argument *arg)
1301 {
1302 switch (arg->type)
1303 {
1304 case arg_r:
1305 CRX_PRINT (0, getreg_image (arg->r), shift);
1306 break;
1307
1308 case arg_copr:
1309 if (arg->cr < c0 || arg->cr > c15)
1310 as_bad (_("Illegal Co-processor register in Instruction `%s' "),
1311 ins_parse);
1312 CRX_PRINT (0, getreg_image (arg->cr), shift);
1313 break;
1314
1315 case arg_copsr:
1316 if (arg->cr < cs0 || arg->cr > cs15)
1317 as_bad (_("Illegal Co-processor special register in Instruction `%s' "),
1318 ins_parse);
1319 CRX_PRINT (0, getreg_image (arg->cr), shift);
1320 break;
1321
1322 case arg_idxr:
1323 /* 16 12 8 6 0
1324 +--------------------------------+
1325 | r_base | r_idx | scl| disp |
1326 +--------------------------------+ */
1327 CRX_PRINT (0, getreg_image (arg->r), 12);
1328 CRX_PRINT (0, getreg_image (arg->i_r), 8);
1329 CRX_PRINT (0, arg->scale, 6);
1330 case arg_ic:
1331 case arg_c:
1332 print_constant (nbits, shift, arg);
1333 break;
1334
1335 case arg_rbase:
1336 CRX_PRINT (0, getreg_image (arg->r), shift);
1337 break;
1338
1339 case arg_cr:
1340 /* case base_cst4. */
1341 if (instruction->flags & DISPU4MAP)
1342 print_constant (nbits, shift + REG_SIZE, arg);
1343 else
1344 /* rbase_disps<NN> and other such cases. */
1345 print_constant (nbits, shift, arg);
1346 /* Add the register argument to the output_opcode. */
1347 CRX_PRINT (0, getreg_image (arg->r), shift);
1348 break;
1349
1350 default:
1351 break;
1352 }
1353 }
1354
1355 /* Retrieve the number of operands for the current assembled instruction. */
1356
1357 static int
1358 get_number_of_operands (void)
1359 {
1360 int i;
1361
1362 for (i = 0; instruction->operands[i].op_type && i < MAX_OPERANDS; i++)
1363 ;
1364 return i;
1365 }
1366
1367 /* Verify that the number NUM can be represented in BITS bits (that is,
1368 within its permitted range), based on the instruction's FLAGS.
1369 If UPDATE is nonzero, update the value of NUM if necessary.
1370 Return OP_LEGAL upon success, actual error type upon failure. */
1371
1372 static op_err
1373 check_range (long *num, int bits, int unsigned flags, int update)
1374 {
1375 long min, max;
1376 int retval = OP_LEGAL;
1377 int bin;
1378 long upper_64kb = 0xFFFF0000;
1379 long value = *num;
1380
1381 /* Verify operand value is even. */
1382 if (flags & OP_EVEN)
1383 {
1384 if (value % 2)
1385 return OP_NOT_EVEN;
1386 }
1387
1388 if (flags & OP_UPPER_64KB)
1389 {
1390 /* Check if value is to be mapped to upper 64 KB memory area. */
1391 if ((value & upper_64kb) == upper_64kb)
1392 {
1393 value -= upper_64kb;
1394 if (update)
1395 *num = value;
1396 }
1397 else
1398 return OP_NOT_UPPER_64KB;
1399 }
1400
1401 if (flags & OP_SHIFT)
1402 {
1403 value >>= 1;
1404 if (update)
1405 *num = value;
1406 }
1407 else if (flags & OP_SHIFT_DEC)
1408 {
1409 value = (value >> 1) - 1;
1410 if (update)
1411 *num = value;
1412 }
1413
1414 if (flags & OP_ESC)
1415 {
1416 /* 0x7e and 0x7f are reserved escape sequences of dispe9. */
1417 if (value == 0x7e || value == 0x7f)
1418 return OP_OUT_OF_RANGE;
1419 }
1420
1421 if (flags & OP_DISPU4)
1422 {
1423 int is_dispu4 = 0;
1424
1425 int mul = (instruction->flags & DISPUB4) ? 1
1426 : (instruction->flags & DISPUW4) ? 2
1427 : (instruction->flags & DISPUD4) ? 4 : 0;
1428
1429 for (bin = 0; bin < cst4_maps; bin++)
1430 {
1431 if (value == (mul * bin))
1432 {
1433 is_dispu4 = 1;
1434 if (update)
1435 *num = bin;
1436 break;
1437 }
1438 }
1439 if (!is_dispu4)
1440 retval = OP_ILLEGAL_DISPU4;
1441 }
1442 else if (flags & OP_CST4)
1443 {
1444 int is_cst4 = 0;
1445
1446 for (bin = 0; bin < cst4_maps; bin++)
1447 {
1448 if (value == cst4_map[bin])
1449 {
1450 is_cst4 = 1;
1451 if (update)
1452 *num = bin;
1453 break;
1454 }
1455 }
1456 if (!is_cst4)
1457 retval = OP_ILLEGAL_CST4;
1458 }
1459 else if (flags & OP_SIGNED)
1460 {
1461 max = (1 << (bits - 1)) - 1;
1462 min = - (1 << (bits - 1));
1463 if ((value > max) || (value < min))
1464 retval = OP_OUT_OF_RANGE;
1465 }
1466 else if (flags & OP_UNSIGNED)
1467 {
1468 max = ((((1 << (bits - 1)) - 1) << 1) | 1);
1469 min = 0;
1470 if (((unsigned long) value > (unsigned long) max)
1471 || ((unsigned long) value < (unsigned long) min))
1472 retval = OP_OUT_OF_RANGE;
1473 }
1474 return retval;
1475 }
1476
1477 /* Assemble a single instruction:
1478 INSN is already parsed (that is, all operand values and types are set).
1479 For instruction to be assembled, we need to find an appropriate template in
1480 the instruction table, meeting the following conditions:
1481 1: Has the same number of operands.
1482 2: Has the same operand types.
1483 3: Each operand size is sufficient to represent the instruction's values.
1484 Returns 1 upon success, 0 upon failure. */
1485
1486 static int
1487 assemble_insn (char *mnemonic, ins *insn)
1488 {
1489 /* Type of each operand in the current template. */
1490 argtype cur_type[MAX_OPERANDS];
1491 /* Size (in bits) of each operand in the current template. */
1492 unsigned int cur_size[MAX_OPERANDS];
1493 /* Flags of each operand in the current template. */
1494 unsigned int cur_flags[MAX_OPERANDS];
1495 /* Instruction type to match. */
1496 unsigned int ins_type;
1497 /* Boolean flag to mark whether a match was found. */
1498 int match = 0;
1499 int i;
1500 /* Nonzero if an instruction with same number of operands was found. */
1501 int found_same_number_of_operands = 0;
1502 /* Nonzero if an instruction with same argument types was found. */
1503 int found_same_argument_types = 0;
1504 /* Nonzero if a constant was found within the required range. */
1505 int found_const_within_range = 0;
1506 /* Argument number of an operand with invalid type. */
1507 int invalid_optype = -1;
1508 /* Argument number of an operand with invalid constant value. */
1509 int invalid_const = -1;
1510 /* Operand error (used for issuing various constant error messages). */
1511 op_err op_error, const_err = OP_LEGAL;
1512
1513 /* Retrieve data (based on FUNC) for each operand of a given instruction. */
1514 #define GET_CURRENT_DATA(FUNC, ARRAY) \
1515 for (i = 0; i < insn->nargs; i++) \
1516 ARRAY[i] = FUNC (instruction->operands[i].op_type)
1517
1518 #define GET_CURRENT_TYPE GET_CURRENT_DATA(get_optype, cur_type)
1519 #define GET_CURRENT_SIZE GET_CURRENT_DATA(get_opbits, cur_size)
1520 #define GET_CURRENT_FLAGS GET_CURRENT_DATA(get_opflags, cur_flags)
1521
1522 /* Instruction has no operands -> only copy the constant opcode. */
1523 if (insn->nargs == 0)
1524 {
1525 output_opcode[0] = BIN (instruction->match, instruction->match_bits);
1526 return 1;
1527 }
1528
1529 /* In some case, same mnemonic can appear with different instruction types.
1530 For example, 'storb' is supported with 3 different types :
1531 LD_STOR_INS, LD_STOR_INS_INC, STOR_IMM_INS.
1532 We assume that when reaching this point, the instruction type was
1533 pre-determined. We need to make sure that the type stays the same
1534 during a search for matching instruction. */
1535 ins_type = CRX_INS_TYPE(instruction->flags);
1536
1537 while (/* Check that match is still not found. */
1538 match != 1
1539 /* Check we didn't get to end of table. */
1540 && instruction->mnemonic != NULL
1541 /* Check that the actual mnemonic is still available. */
1542 && IS_INSN_MNEMONIC (mnemonic)
1543 /* Check that the instruction type wasn't changed. */
1544 && IS_INSN_TYPE(ins_type))
1545 {
1546 /* Check whether number of arguments is legal. */
1547 if (get_number_of_operands () != insn->nargs)
1548 goto next_insn;
1549 found_same_number_of_operands = 1;
1550
1551 /* Initialize arrays with data of each operand in current template. */
1552 GET_CURRENT_TYPE;
1553 GET_CURRENT_SIZE;
1554 GET_CURRENT_FLAGS;
1555
1556 /* Check for type compatibility. */
1557 for (i = 0; i < insn->nargs; i++)
1558 {
1559 if (cur_type[i] != insn->arg[i].type)
1560 {
1561 if (invalid_optype == -1)
1562 invalid_optype = i + 1;
1563 goto next_insn;
1564 }
1565 }
1566 found_same_argument_types = 1;
1567
1568 for (i = 0; i < insn->nargs; i++)
1569 {
1570 /* Reverse the operand indices for certain opcodes:
1571 Index 0 -->> 1
1572 Index 1 -->> 0
1573 Other index -->> stays the same. */
1574 int j = instruction->flags & REVERSE_MATCH ?
1575 i == 0 ? 1 :
1576 i == 1 ? 0 : i :
1577 i;
1578
1579 /* Only check range - don't update the constant's value, since the
1580 current instruction may not be the last we try to match.
1581 The constant's value will be updated later, right before printing
1582 it to the object file. */
1583 if ((insn->arg[j].X_op == O_constant)
1584 && (op_error = check_range (&insn->arg[j].constant, cur_size[j],
1585 cur_flags[j], 0)))
1586 {
1587 if (invalid_const == -1)
1588 {
1589 invalid_const = j + 1;
1590 const_err = op_error;
1591 }
1592 goto next_insn;
1593 }
1594 /* For symbols, we make sure the relocation size (which was already
1595 determined) is sufficient. */
1596 else if ((insn->arg[j].X_op == O_symbol)
1597 && ((bfd_reloc_type_lookup (stdoutput, insn->rtype))->bitsize
1598 > cur_size[j]))
1599 goto next_insn;
1600 }
1601 found_const_within_range = 1;
1602
1603 /* If we got till here -> Full match is found. */
1604 match = 1;
1605 break;
1606
1607 /* Try again with next instruction. */
1608 next_insn:
1609 instruction++;
1610 }
1611
1612 if (!match)
1613 {
1614 /* We haven't found a match - instruction can't be assembled. */
1615 if (!found_same_number_of_operands)
1616 as_bad (_("Incorrect number of operands"));
1617 else if (!found_same_argument_types)
1618 as_bad (_("Illegal type of operand (arg %d)"), invalid_optype);
1619 else if (!found_const_within_range)
1620 {
1621 switch (const_err)
1622 {
1623 case OP_OUT_OF_RANGE:
1624 as_bad (_("Operand out of range (arg %d)"), invalid_const);
1625 break;
1626 case OP_NOT_EVEN:
1627 as_bad (_("Operand has odd displacement (arg %d)"), invalid_const);
1628 break;
1629 case OP_ILLEGAL_DISPU4:
1630 as_bad (_("Invalid DISPU4 operand value (arg %d)"), invalid_const);
1631 break;
1632 case OP_ILLEGAL_CST4:
1633 as_bad (_("Invalid CST4 operand value (arg %d)"), invalid_const);
1634 break;
1635 case OP_NOT_UPPER_64KB:
1636 as_bad (_("Operand value is not within upper 64 KB (arg %d)"),
1637 invalid_const);
1638 break;
1639 default:
1640 as_bad (_("Illegal operand (arg %d)"), invalid_const);
1641 break;
1642 }
1643 }
1644
1645 return 0;
1646 }
1647 else
1648 /* Full match - print the encoding to output file. */
1649 {
1650 /* Make further checkings (such that couldn't be made earlier).
1651 Warn the user if necessary. */
1652 warn_if_needed (insn);
1653
1654 /* Check whether we need to adjust the instruction pointer. */
1655 if (adjust_if_needed (insn))
1656 /* If instruction pointer was adjusted, we need to update
1657 the size of the current template operands. */
1658 GET_CURRENT_SIZE;
1659
1660 for (i = 0; i < insn->nargs; i++)
1661 {
1662 int j = instruction->flags & REVERSE_MATCH ?
1663 i == 0 ? 1 :
1664 i == 1 ? 0 : i :
1665 i;
1666
1667 /* This time, update constant value before printing it. */
1668 if ((insn->arg[j].X_op == O_constant)
1669 && (check_range (&insn->arg[j].constant, cur_size[j],
1670 cur_flags[j], 1) != OP_LEGAL))
1671 as_fatal (_("Illegal operand (arg %d)"), j+1);
1672 }
1673
1674 /* First, copy the instruction's opcode. */
1675 output_opcode[0] = BIN (instruction->match, instruction->match_bits);
1676
1677 for (i = 0; i < insn->nargs; i++)
1678 {
1679 cur_arg_num = i;
1680 print_operand (cur_size[i], instruction->operands[i].shift,
1681 &insn->arg[i]);
1682 }
1683 }
1684
1685 return 1;
1686 }
1687
1688 /* Bunch of error checkings.
1689 The checks are made after a matching instruction was found. */
1690
1691 void
1692 warn_if_needed (ins *insn)
1693 {
1694 /* If the post-increment address mode is used and the load/store
1695 source register is the same as rbase, the result of the
1696 instruction is undefined. */
1697 if (IS_INSN_TYPE (LD_STOR_INS_INC))
1698 {
1699 /* Enough to verify that one of the arguments is a simple reg. */
1700 if ((insn->arg[0].type == arg_r) || (insn->arg[1].type == arg_r))
1701 if (insn->arg[0].r == insn->arg[1].r)
1702 as_bad (_("Same src/dest register is used (`r%d'), result is undefined"),
1703 insn->arg[0].r);
1704 }
1705
1706 /* Some instruction assume the stack pointer as rptr operand.
1707 Issue an error when the register to be loaded is also SP. */
1708 if (instruction->flags & NO_SP)
1709 {
1710 if (getreg_image (insn->arg[0].r) == getreg_image (sp))
1711 as_bad (_("`%s' has undefined result"), ins_parse);
1712 }
1713
1714 /* If the rptr register is specified as one of the registers to be loaded,
1715 the final contents of rptr are undefined. Thus, we issue an error. */
1716 if (instruction->flags & NO_RPTR)
1717 {
1718 if ((1 << getreg_image (insn->arg[0].r)) & insn->arg[1].constant)
1719 as_bad (_("Same src/dest register is used (`r%d'), result is undefined"),
1720 getreg_image (insn->arg[0].r));
1721 }
1722 }
1723
1724 /* In some cases, we need to adjust the instruction pointer although a
1725 match was already found. Here, we gather all these cases.
1726 Returns 1 if instruction pointer was adjusted, otherwise 0. */
1727
1728 int
1729 adjust_if_needed (ins *insn)
1730 {
1731 int ret_value = 0;
1732
1733 /* Special check for 'addub $0, r0' instruction -
1734 The opcode '0000 0000 0000 0000' is not allowed. */
1735 if (IS_INSN_MNEMONIC ("addub"))
1736 {
1737 if ((instruction->operands[0].op_type == cst4)
1738 && instruction->operands[1].op_type == regr)
1739 {
1740 if (insn->arg[0].constant == 0 && insn->arg[1].r == r0)
1741 {
1742 instruction++;
1743 ret_value = 1;
1744 }
1745 }
1746 }
1747
1748 /* Optimization: Omit a zero displacement in bit operations,
1749 saving 2-byte encoding space (e.g., 'cbitw $8, 0(r1)'). */
1750 if (IS_INSN_TYPE (CSTBIT_INS))
1751 {
1752 if ((instruction->operands[1].op_type == rbase_disps12)
1753 && (insn->arg[1].X_op == O_constant)
1754 && (insn->arg[1].constant == 0))
1755 {
1756 instruction--;
1757 ret_value = 1;
1758 }
1759 }
1760
1761 return ret_value;
1762 }
1763
1764 /* Set the appropriate bit for register 'r' in 'mask'.
1765 This indicates that this register is loaded or stored by
1766 the instruction. */
1767
1768 static void
1769 mask_reg (int r, unsigned short int *mask)
1770 {
1771 if ((reg)r > (reg)sp)
1772 {
1773 as_bad (_("Invalid Register in Register List"));
1774 return;
1775 }
1776
1777 *mask |= (1 << r);
1778 }
1779
1780 /* Preprocess register list - create a 16-bit mask with one bit for each
1781 of the 16 general purpose registers. If a bit is set, it indicates
1782 that this register is loaded or stored by the instruction. */
1783
1784 static char *
1785 preprocess_reglist (char *param, int *allocated)
1786 {
1787 char reg_name[MAX_REGNAME_LEN]; /* Current parsed register name. */
1788 char *regP; /* Pointer to 'reg_name' string. */
1789 int reg_counter = 0; /* Count number of parsed registers. */
1790 unsigned short int mask = 0; /* Mask for 16 general purpose registers. */
1791 char *new_param; /* New created operands string. */
1792 char *paramP = param; /* Pointer to original opearands string. */
1793 char maskstring[10]; /* Array to print the mask as a string. */
1794 int hi_found = 0, lo_found = 0; /* Boolean flags for hi/lo registers. */
1795 reg r;
1796 copreg cr;
1797
1798 /* If 'param' is already in form of a number, no need to preprocess. */
1799 if (strchr (paramP, '{') == NULL)
1800 return param;
1801
1802 /* Verifying correct syntax of operand. */
1803 if (strchr (paramP, '}') == NULL)
1804 as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
1805
1806 while (*paramP++ != '{');
1807
1808 new_param = (char *)xcalloc (MAX_INST_LEN, sizeof (char));
1809 *allocated = 1;
1810 strncpy (new_param, param, paramP - param - 1);
1811
1812 while (*paramP != '}')
1813 {
1814 regP = paramP;
1815 memset (&reg_name, '\0', sizeof (reg_name));
1816
1817 while (ISALNUM (*paramP))
1818 paramP++;
1819
1820 strncpy (reg_name, regP, paramP - regP);
1821
1822 /* Coprocessor register c<N>. */
1823 if (IS_INSN_TYPE (COP_REG_INS))
1824 {
1825 if (((cr = get_copregister (reg_name)) == nullcopregister)
1826 || (crx_copregtab[cr-MAX_REG].type != CRX_C_REGTYPE))
1827 as_fatal (_("Illegal register `%s' in cop-register list"), reg_name);
1828 mask_reg (getreg_image (cr - c0), &mask);
1829 }
1830 /* Coprocessor Special register cs<N>. */
1831 else if (IS_INSN_TYPE (COPS_REG_INS))
1832 {
1833 if (((cr = get_copregister (reg_name)) == nullcopregister)
1834 || (crx_copregtab[cr-MAX_REG].type != CRX_CS_REGTYPE))
1835 as_fatal (_("Illegal register `%s' in cop-special-register list"),
1836 reg_name);
1837 mask_reg (getreg_image (cr - cs0), &mask);
1838 }
1839 /* User register u<N>. */
1840 else if (instruction->flags & USER_REG)
1841 {
1842 if (streq(reg_name, "uhi"))
1843 {
1844 hi_found = 1;
1845 goto next_inst;
1846 }
1847 else if (streq(reg_name, "ulo"))
1848 {
1849 lo_found = 1;
1850 goto next_inst;
1851 }
1852 else if (((r = get_register (reg_name)) == nullregister)
1853 || (crx_regtab[r].type != CRX_U_REGTYPE))
1854 as_fatal (_("Illegal register `%s' in user register list"), reg_name);
1855
1856 mask_reg (getreg_image (r - u0), &mask);
1857 }
1858 /* General purpose register r<N>. */
1859 else
1860 {
1861 if (streq(reg_name, "hi"))
1862 {
1863 hi_found = 1;
1864 goto next_inst;
1865 }
1866 else if (streq(reg_name, "lo"))
1867 {
1868 lo_found = 1;
1869 goto next_inst;
1870 }
1871 else if (((r = get_register (reg_name)) == nullregister)
1872 || (crx_regtab[r].type != CRX_R_REGTYPE))
1873 as_fatal (_("Illegal register `%s' in register list"), reg_name);
1874
1875 mask_reg (getreg_image (r - r0), &mask);
1876 }
1877
1878 if (++reg_counter > MAX_REGS_IN_MASK16)
1879 as_bad (_("Maximum %d bits may be set in `mask16' operand"),
1880 MAX_REGS_IN_MASK16);
1881
1882 next_inst:
1883 while (!ISALNUM (*paramP) && *paramP != '}')
1884 paramP++;
1885 }
1886
1887 if (*++paramP != '\0')
1888 as_warn (_("rest of line ignored; first ignored character is `%c'"),
1889 *paramP);
1890
1891 switch (hi_found + lo_found)
1892 {
1893 case 0:
1894 /* At least one register should be specified. */
1895 if (mask == 0)
1896 as_bad (_("Illegal `mask16' operand, operation is undefined - `%s'"),
1897 ins_parse);
1898 break;
1899
1900 case 1:
1901 /* HI can't be specified without LO (and vise-versa). */
1902 as_bad (_("HI/LO registers should be specified together"));
1903 break;
1904
1905 case 2:
1906 /* HI/LO registers mustn't be masked with additional registers. */
1907 if (mask != 0)
1908 as_bad (_("HI/LO registers should be specified without additional registers"));
1909
1910 default:
1911 break;
1912 }
1913
1914 sprintf (maskstring, "$0x%x", mask);
1915 strcat (new_param, maskstring);
1916 return new_param;
1917 }
1918
1919 /* Print the instruction.
1920 Handle also cases where the instruction is relaxable/relocatable. */
1921
1922 void
1923 print_insn (ins *insn)
1924 {
1925 unsigned int i, j, insn_size;
1926 char *this_frag;
1927 unsigned short words[4];
1928 int addr_mod;
1929
1930 /* Arrange the insn encodings in a WORD size array. */
1931 for (i = 0, j = 0; i < 2; i++)
1932 {
1933 words[j++] = (output_opcode[i] >> 16) & 0xFFFF;
1934 words[j++] = output_opcode[i] & 0xFFFF;
1935 }
1936
1937 /* Handle relaxtion. */
1938 if ((instruction->flags & RELAXABLE) && relocatable)
1939 {
1940 int relax_subtype;
1941
1942 /* Write the maximal instruction size supported. */
1943 insn_size = INSN_MAX_SIZE;
1944
1945 /* bCC */
1946 if (IS_INSN_TYPE (BRANCH_INS))
1947 relax_subtype = 0;
1948 /* bal */
1949 else if (IS_INSN_TYPE (DCR_BRANCH_INS) || IS_INSN_MNEMONIC ("bal"))
1950 relax_subtype = 3;
1951 /* cmpbr/bcop */
1952 else if (IS_INSN_TYPE (CMPBR_INS) || IS_INSN_TYPE (COP_BRANCH_INS))
1953 relax_subtype = 5;
1954 else
1955 abort ();
1956
1957 this_frag = frag_var (rs_machine_dependent, insn_size * 2,
1958 4, relax_subtype,
1959 insn->exp.X_add_symbol,
1960 insn->exp.X_add_number,
1961 0);
1962 }
1963 else
1964 {
1965 insn_size = instruction->size;
1966 this_frag = frag_more (insn_size * 2);
1967
1968 /* Handle relocation. */
1969 if ((relocatable) && (insn->rtype != BFD_RELOC_NONE))
1970 {
1971 reloc_howto_type *reloc_howto;
1972 int size;
1973
1974 reloc_howto = bfd_reloc_type_lookup (stdoutput, insn->rtype);
1975
1976 if (!reloc_howto)
1977 abort ();
1978
1979 size = bfd_get_reloc_size (reloc_howto);
1980
1981 if (size < 1 || size > 4)
1982 abort ();
1983
1984 fix_new_exp (frag_now, this_frag - frag_now->fr_literal,
1985 size, &insn->exp, reloc_howto->pc_relative,
1986 insn->rtype);
1987 }
1988 }
1989
1990 /* Verify a 2-byte code alignment. */
1991 addr_mod = frag_now_fix () & 1;
1992 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
1993 as_bad (_("instruction address is not a multiple of 2"));
1994 frag_now->insn_addr = addr_mod;
1995 frag_now->has_code = 1;
1996
1997 /* Write the instruction encoding to frag. */
1998 for (i = 0; i < insn_size; i++)
1999 {
2000 md_number_to_chars (this_frag, (valueT) words[i], 2);
2001 this_frag += 2;
2002 }
2003 }
2004
2005 /* This is the guts of the machine-dependent assembler. OP points to a
2006 machine dependent instruction. This function is supposed to emit
2007 the frags/bytes it assembles to. */
2008
2009 void
2010 md_assemble (char *op)
2011 {
2012 ins crx_ins;
2013 char *param;
2014 char c;
2015
2016 /* Reset global variables for a new instruction. */
2017 reset_vars (op);
2018
2019 /* Strip the mnemonic. */
2020 for (param = op; *param != 0 && !ISSPACE (*param); param++)
2021 ;
2022 c = *param;
2023 *param++ = '\0';
2024
2025 /* Find the instruction. */
2026 instruction = (const inst *) hash_find (crx_inst_hash, op);
2027 if (instruction == NULL)
2028 {
2029 as_bad (_("Unknown opcode: `%s'"), op);
2030 return;
2031 }
2032
2033 /* Tie dwarf2 debug info to the address at the start of the insn. */
2034 dwarf2_emit_insn (0);
2035
2036 /* Parse the instruction's operands. */
2037 parse_insn (&crx_ins, param);
2038
2039 /* Assemble the instruction - return upon failure. */
2040 if (assemble_insn (op, &crx_ins) == 0)
2041 return;
2042
2043 /* Print the instruction. */
2044 print_insn (&crx_ins);
2045 }
This page took 0.121057 seconds and 4 git commands to generate.