2004-11-29 Tomer Levi <Tomer.Levi@nsc.com>
[deliverable/binutils-gdb.git] / gas / config / tc-crx.c
1 /* tc-crx.c -- Assembler code for the CRX CPU core.
2 Copyright 2004 Free Software Foundation, Inc.
3
4 Contributed by Tomer Levi, NSC, Israel.
5 Originally written for GAS 2.12 by Tomer Levi, NSC, Israel.
6 Updates, BFDizing, GNUifying and ELF support by Tomer Levi.
7
8 This file is part of GAS, the GNU Assembler.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the
22 Free Software Foundation, 59 Temple Place - Suite 330, Boston,
23 MA 02111-1307, USA. */
24
25 #include "as.h"
26 #include "safe-ctype.h"
27 #include "dwarf2dbg.h"
28 #include "opcode/crx.h"
29 #include "elf/crx.h"
30
31 /* Word is considered here as a 16-bit unsigned short int. */
32 #define WORD_SHIFT 16
33
34 /* Register is 4-bit size. */
35 #define REG_SIZE 4
36
37 /* Maximum size of a single instruction (in words). */
38 #define INSN_MAX_SIZE 3
39
40 /* Maximum bits which may be set in a `mask16' operand. */
41 #define MAX_REGS_IN_MASK16 8
42
43 /* Utility macros for string comparison. */
44 #define streq(a, b) (strcmp (a, b) == 0)
45 #define strneq(a, b, c) (strncmp (a, b, c) == 0)
46
47 /* Assign a number NUM, shifted by SHIFT bytes, into a location
48 pointed by index BYTE of array 'output_opcode'. */
49 #define CRX_PRINT(BYTE, NUM, SHIFT) output_opcode[BYTE] |= (NUM << SHIFT)
50
51 /* Operand errors. */
52 typedef enum
53 {
54 OP_LEGAL = 0, /* Legal operand. */
55 OP_OUT_OF_RANGE, /* Operand not within permitted range. */
56 OP_NOT_EVEN, /* Operand is Odd number, should be even. */
57 OP_ILLEGAL_DISPU4, /* Operand is not within DISPU4 range. */
58 OP_ILLEGAL_CST4, /* Operand is not within CST4 range. */
59 OP_NOT_UPPER_64KB /* Operand is not within the upper 64KB
60 (0xFFFF0000-0xFFFFFFFF). */
61 }
62 op_err;
63
64 /* Opcode mnemonics hash table. */
65 static struct hash_control *crx_inst_hash;
66 /* CRX registers hash table. */
67 static struct hash_control *reg_hash;
68 /* CRX coprocessor registers hash table. */
69 static struct hash_control *copreg_hash;
70 /* Current instruction we're assembling. */
71 const inst *instruction;
72
73 /* Global variables. */
74
75 /* Array to hold an instruction encoding. */
76 long output_opcode[2];
77
78 /* Nonzero means a relocatable symbol. */
79 int relocatable;
80
81 /* A copy of the original instruction (used in error messages). */
82 char ins_parse[MAX_INST_LEN];
83
84 /* The current processed argument number. */
85 int cur_arg_num;
86
87 /* Generic assembler global variables which must be defined by all targets. */
88
89 /* Characters which always start a comment. */
90 const char comment_chars[] = "#";
91
92 /* Characters which start a comment at the beginning of a line. */
93 const char line_comment_chars[] = "#";
94
95 /* This array holds machine specific line separator characters. */
96 const char line_separator_chars[] = ";";
97
98 /* Chars that can be used to separate mant from exp in floating point nums. */
99 const char EXP_CHARS[] = "eE";
100
101 /* Chars that mean this number is a floating point constant as in 0f12.456 */
102 const char FLT_CHARS[] = "f'";
103
104 /* Target-specific multicharacter options, not const-declared at usage. */
105 const char *md_shortopts = "";
106 struct option md_longopts[] =
107 {
108 {NULL, no_argument, NULL, 0}
109 };
110 size_t md_longopts_size = sizeof (md_longopts);
111
112 /* This table describes all the machine specific pseudo-ops
113 the assembler has to support. The fields are:
114 *** Pseudo-op name without dot.
115 *** Function to call to execute this pseudo-op.
116 *** Integer arg to pass to the function. */
117
118 const pseudo_typeS md_pseudo_table[] =
119 {
120 /* In CRX machine, align is in bytes (not a ptwo boundary). */
121 {"align", s_align_bytes, 0},
122 {0, 0, 0}
123 };
124
125 /* CRX relaxation table. */
126 const relax_typeS md_relax_table[] =
127 {
128 /* bCC */
129 {0xfa, -0x100, 2, 1}, /* 8 */
130 {0xfffe, -0x10000, 4, 2}, /* 16 */
131 {0xfffffffe, -0xfffffffe, 6, 0}, /* 32 */
132
133 /* bal */
134 {0xfffe, -0x10000, 4, 4}, /* 16 */
135 {0xfffffffe, -0xfffffffe, 6, 0}, /* 32 */
136
137 /* cmpbr */
138 {0xfe, -0x100, 4, 6}, /* 8 */
139 {0xfffffe, -0x1000000, 6, 0} /* 24 */
140 };
141
142 static void reset_vars (char *);
143 static reg get_register (char *);
144 static copreg get_copregister (char *);
145 static argtype get_optype (operand_type);
146 static int get_opbits (operand_type);
147 static int get_opflags (operand_type);
148 static int get_number_of_operands (void);
149 static void parse_operand (char *, ins *);
150 static int gettrap (char *);
151 static void handle_LoadStor (char *);
152 static int get_cinv_parameters (char *);
153 static long getconstant (long, int);
154 static op_err check_range (long *, int, unsigned int, int);
155 static int getreg_image (reg);
156 static void parse_operands (ins *, char *);
157 static void parse_insn (ins *, char *);
158 static void print_operand (int, int, argument *);
159 static void print_constant (int, int, argument *);
160 static int exponent2scale (int);
161 static void mask_reg (int, unsigned short *);
162 static void process_label_constant (char *, ins *);
163 static void set_operand (char *, ins *);
164 static char * preprocess_reglist (char *, int *);
165 static int assemble_insn (char *, ins *);
166 static void print_insn (ins *);
167 static void warn_if_needed (ins *);
168 static int adjust_if_needed (ins *);
169
170 /* Return the bit size for a given operand. */
171
172 static int
173 get_opbits (operand_type op)
174 {
175 if (op < MAX_OPRD)
176 return crx_optab[op].bit_size;
177 else
178 return 0;
179 }
180
181 /* Return the argument type of a given operand. */
182
183 static argtype
184 get_optype (operand_type op)
185 {
186 if (op < MAX_OPRD)
187 return crx_optab[op].arg_type;
188 else
189 return nullargs;
190 }
191
192 /* Return the flags of a given operand. */
193
194 static int
195 get_opflags (operand_type op)
196 {
197 if (op < MAX_OPRD)
198 return crx_optab[op].flags;
199 else
200 return 0;
201 }
202
203 /* Get the core processor register 'reg_name'. */
204
205 static reg
206 get_register (char *reg_name)
207 {
208 const reg_entry *reg;
209
210 reg = (const reg_entry *) hash_find (reg_hash, reg_name);
211
212 if (reg != NULL)
213 return reg->value.reg_val;
214 else
215 return nullregister;
216 }
217
218 /* Get the coprocessor register 'copreg_name'. */
219
220 static copreg
221 get_copregister (char *copreg_name)
222 {
223 const reg_entry *copreg;
224
225 copreg = (const reg_entry *) hash_find (copreg_hash, copreg_name);
226
227 if (copreg != NULL)
228 return copreg->value.copreg_val;
229 else
230 return nullcopregister;
231 }
232
233 /* Round up a section size to the appropriate boundary. */
234
235 valueT
236 md_section_align (segT seg, valueT val)
237 {
238 /* Round .text section to a multiple of 2. */
239 if (seg == text_section)
240 return (val + 1) & ~1;
241 return val;
242 }
243
244 /* Parse an operand that is machine-specific (remove '*'). */
245
246 void
247 md_operand (expressionS * exp)
248 {
249 char c = *input_line_pointer;
250
251 switch (c)
252 {
253 case '*':
254 input_line_pointer++;
255 expression (exp);
256 break;
257 default:
258 break;
259 }
260 }
261
262 /* Reset global variables before parsing a new instruction. */
263
264 static void
265 reset_vars (char *op)
266 {
267 cur_arg_num = relocatable = 0;
268 memset (& output_opcode, '\0', sizeof (output_opcode));
269
270 /* Save a copy of the original OP (used in error messages). */
271 strcpy (ins_parse, op);
272 }
273
274 /* This macro decides whether a particular reloc is an entry in a
275 switch table. It is used when relaxing, because the linker needs
276 to know about all such entries so that it can adjust them if
277 necessary. */
278
279 #define SWITCH_TABLE(fix) \
280 ( (fix)->fx_addsy != NULL \
281 && (fix)->fx_subsy != NULL \
282 && S_GET_SEGMENT ((fix)->fx_addsy) == \
283 S_GET_SEGMENT ((fix)->fx_subsy) \
284 && S_GET_SEGMENT (fix->fx_addsy) != undefined_section \
285 && ( (fix)->fx_r_type == BFD_RELOC_CRX_NUM8 \
286 || (fix)->fx_r_type == BFD_RELOC_CRX_NUM16 \
287 || (fix)->fx_r_type == BFD_RELOC_CRX_NUM32))
288
289 /* See whether we need to force a relocation into the output file.
290 This is used to force out switch and PC relative relocations when
291 relaxing. */
292
293 int
294 crx_force_relocation (fixS *fix)
295 {
296 if (generic_force_reloc (fix) || SWITCH_TABLE (fix))
297 return 1;
298
299 return 0;
300 }
301
302 /* Generate a relocation entry for a fixup. */
303
304 arelent *
305 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS * fixP)
306 {
307 arelent * reloc;
308
309 reloc = xmalloc (sizeof (arelent));
310 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
311 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
312 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
313 reloc->addend = fixP->fx_offset;
314
315 if (fixP->fx_subsy != NULL)
316 {
317 if (SWITCH_TABLE (fixP))
318 {
319 /* Keep the current difference in the addend. */
320 reloc->addend = (S_GET_VALUE (fixP->fx_addsy)
321 - S_GET_VALUE (fixP->fx_subsy) + fixP->fx_offset);
322
323 switch (fixP->fx_r_type)
324 {
325 case BFD_RELOC_CRX_NUM8:
326 fixP->fx_r_type = BFD_RELOC_CRX_SWITCH8;
327 break;
328 case BFD_RELOC_CRX_NUM16:
329 fixP->fx_r_type = BFD_RELOC_CRX_SWITCH16;
330 break;
331 case BFD_RELOC_CRX_NUM32:
332 fixP->fx_r_type = BFD_RELOC_CRX_SWITCH32;
333 break;
334 default:
335 abort ();
336 break;
337 }
338 }
339 else
340 {
341 /* We only resolve difference expressions in the same section. */
342 as_bad_where (fixP->fx_file, fixP->fx_line,
343 _("can't resolve `%s' {%s section} - `%s' {%s section}"),
344 fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : "0",
345 segment_name (fixP->fx_addsy
346 ? S_GET_SEGMENT (fixP->fx_addsy)
347 : absolute_section),
348 S_GET_NAME (fixP->fx_subsy),
349 segment_name (S_GET_SEGMENT (fixP->fx_addsy)));
350 }
351 }
352
353 assert ((int) fixP->fx_r_type > 0);
354 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
355
356 if (reloc->howto == (reloc_howto_type *) NULL)
357 {
358 as_bad_where (fixP->fx_file, fixP->fx_line,
359 _("internal error: reloc %d (`%s') not supported by object file format"),
360 fixP->fx_r_type,
361 bfd_get_reloc_code_name (fixP->fx_r_type));
362 return NULL;
363 }
364 assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
365
366 return reloc;
367 }
368
369 /* Prepare machine-dependent frags for relaxation. */
370
371 int
372 md_estimate_size_before_relax (fragS *fragp, asection *seg)
373 {
374 /* If symbol is undefined or located in a different section,
375 select the largest supported relocation. */
376 relax_substateT subtype;
377 relax_substateT rlx_state[] = {0, 2,
378 3, 4,
379 5, 6};
380
381 for (subtype = 0; subtype < ARRAY_SIZE (rlx_state); subtype += 2)
382 {
383 if (fragp->fr_subtype == rlx_state[subtype]
384 && (!S_IS_DEFINED (fragp->fr_symbol)
385 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
386 {
387 fragp->fr_subtype = rlx_state[subtype + 1];
388 break;
389 }
390 }
391
392 if (fragp->fr_subtype >= ARRAY_SIZE (md_relax_table))
393 abort ();
394
395 return md_relax_table[fragp->fr_subtype].rlx_length;
396 }
397
398 void
399 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, fragS *fragP)
400 {
401 /* 'opcode' points to the start of the instruction, whether
402 we need to change the instruction's fixed encoding. */
403 char *opcode = fragP->fr_literal + fragP->fr_fix;
404 bfd_reloc_code_real_type reloc;
405
406 subseg_change (sec, 0);
407
408 switch (fragP->fr_subtype)
409 {
410 case 0:
411 reloc = BFD_RELOC_CRX_REL8;
412 break;
413 case 1:
414 *opcode = 0x7e;
415 reloc = BFD_RELOC_CRX_REL16;
416 break;
417 case 2:
418 *opcode = 0x7f;
419 reloc = BFD_RELOC_CRX_REL32;
420 break;
421 case 3:
422 reloc = BFD_RELOC_CRX_REL16;
423 break;
424 case 4:
425 *++opcode = 0x31;
426 reloc = BFD_RELOC_CRX_REL32;
427 break;
428 case 5:
429 reloc = BFD_RELOC_CRX_REL8_CMP;
430 break;
431 case 6:
432 *++opcode = 0x31;
433 reloc = BFD_RELOC_CRX_REL24;
434 break;
435 default:
436 abort ();
437 break;
438 }
439
440 fix_new (fragP, fragP->fr_fix,
441 bfd_get_reloc_size (bfd_reloc_type_lookup (stdoutput, reloc)),
442 fragP->fr_symbol, fragP->fr_offset, 1, reloc);
443 fragP->fr_var = 0;
444 fragP->fr_fix += md_relax_table[fragP->fr_subtype].rlx_length;
445 }
446
447 /* Process machine-dependent command line options. Called once for
448 each option on the command line that the machine-independent part of
449 GAS does not understand. */
450
451 int
452 md_parse_option (int c ATTRIBUTE_UNUSED, char *arg ATTRIBUTE_UNUSED)
453 {
454 return 0;
455 }
456
457 /* Machine-dependent usage-output. */
458
459 void
460 md_show_usage (FILE *stream ATTRIBUTE_UNUSED)
461 {
462 return;
463 }
464
465 /* Turn a string in input_line_pointer into a floating point constant
466 of type TYPE, and store the appropriate bytes in *LITP. The number
467 of LITTLENUMS emitted is stored in *SIZEP. An error message is
468 returned, or NULL on OK. */
469
470 char *
471 md_atof (int type, char *litP, int *sizeP)
472 {
473 int prec;
474 LITTLENUM_TYPE words[4];
475 char *t;
476 int i;
477
478 switch (type)
479 {
480 case 'f':
481 prec = 2;
482 break;
483
484 case 'd':
485 prec = 4;
486 break;
487
488 default:
489 *sizeP = 0;
490 return _("bad call to md_atof");
491 }
492
493 t = atof_ieee (input_line_pointer, type, words);
494 if (t)
495 input_line_pointer = t;
496
497 *sizeP = prec * 2;
498
499 if (! target_big_endian)
500 {
501 for (i = prec - 1; i >= 0; i--)
502 {
503 md_number_to_chars (litP, (valueT) words[i], 2);
504 litP += 2;
505 }
506 }
507 else
508 {
509 for (i = 0; i < prec; i++)
510 {
511 md_number_to_chars (litP, (valueT) words[i], 2);
512 litP += 2;
513 }
514 }
515
516 return NULL;
517 }
518
519 /* Apply a fixS (fixup of an instruction or data that we didn't have
520 enough info to complete immediately) to the data in a frag.
521 Since linkrelax is nonzero and TC_LINKRELAX_FIXUP is defined to disable
522 relaxation of debug sections, this function is called only when
523 fixuping relocations of debug sections. */
524
525 void
526 md_apply_fix3 (fixS *fixP, valueT *valP, segT seg)
527 {
528 valueT val = * valP;
529 char *buf = fixP->fx_frag->fr_literal + fixP->fx_where;
530 fixP->fx_offset = 0;
531
532 switch (fixP->fx_r_type)
533 {
534 case BFD_RELOC_CRX_NUM8:
535 bfd_put_8 (stdoutput, (unsigned char) val, buf);
536 break;
537 case BFD_RELOC_CRX_NUM16:
538 bfd_put_16 (stdoutput, val, buf);
539 break;
540 case BFD_RELOC_CRX_NUM32:
541 bfd_put_32 (stdoutput, val, buf);
542 break;
543 default:
544 /* We shouldn't ever get here because linkrelax is nonzero. */
545 abort ();
546 break;
547 }
548
549 fixP->fx_done = 0;
550
551 if (fixP->fx_addsy == NULL
552 && fixP->fx_pcrel == 0)
553 fixP->fx_done = 1;
554
555 if (fixP->fx_pcrel == 1
556 && fixP->fx_addsy != NULL
557 && S_GET_SEGMENT (fixP->fx_addsy) == seg)
558 fixP->fx_done = 1;
559 }
560
561 /* The location from which a PC relative jump should be calculated,
562 given a PC relative reloc. */
563
564 long
565 md_pcrel_from (fixS *fixp)
566 {
567 return fixp->fx_frag->fr_address + fixp->fx_where;
568 }
569
570 /* This function is called once, at assembler startup time. This should
571 set up all the tables, etc that the MD part of the assembler needs. */
572
573 void
574 md_begin (void)
575 {
576 const char *hashret = NULL;
577 int i = 0;
578
579 /* Set up a hash table for the instructions. */
580 if ((crx_inst_hash = hash_new ()) == NULL)
581 as_fatal (_("Virtual memory exhausted"));
582
583 while (crx_instruction[i].mnemonic != NULL)
584 {
585 const char *mnemonic = crx_instruction[i].mnemonic;
586
587 hashret = hash_insert (crx_inst_hash, mnemonic,
588 (PTR) &crx_instruction[i]);
589
590 if (hashret != NULL && *hashret != '\0')
591 as_fatal (_("Can't hash `%s': %s\n"), crx_instruction[i].mnemonic,
592 *hashret == 0 ? _("(unknown reason)") : hashret);
593
594 /* Insert unique names into hash table. The CRX instruction set
595 has many identical opcode names that have different opcodes based
596 on the operands. This hash table then provides a quick index to
597 the first opcode with a particular name in the opcode table. */
598 do
599 {
600 ++i;
601 }
602 while (crx_instruction[i].mnemonic != NULL
603 && streq (crx_instruction[i].mnemonic, mnemonic));
604 }
605
606 /* Initialize reg_hash hash table. */
607 if ((reg_hash = hash_new ()) == NULL)
608 as_fatal (_("Virtual memory exhausted"));
609
610 {
611 const reg_entry *regtab;
612
613 for (regtab = crx_regtab;
614 regtab < (crx_regtab + NUMREGS); regtab++)
615 {
616 hashret = hash_insert (reg_hash, regtab->name, (PTR) regtab);
617 if (hashret)
618 as_fatal (_("Internal Error: Can't hash %s: %s"),
619 regtab->name,
620 hashret);
621 }
622 }
623
624 /* Initialize copreg_hash hash table. */
625 if ((copreg_hash = hash_new ()) == NULL)
626 as_fatal (_("Virtual memory exhausted"));
627
628 {
629 const reg_entry *copregtab;
630
631 for (copregtab = crx_copregtab; copregtab < (crx_copregtab + NUMCOPREGS);
632 copregtab++)
633 {
634 hashret = hash_insert (copreg_hash, copregtab->name, (PTR) copregtab);
635 if (hashret)
636 as_fatal (_("Internal Error: Can't hash %s: %s"),
637 copregtab->name,
638 hashret);
639 }
640 }
641 /* Set linkrelax here to avoid fixups in most sections. */
642 linkrelax = 1;
643 }
644
645 /* Process constants (immediate/absolute)
646 and labels (jump targets/Memory locations). */
647
648 static void
649 process_label_constant (char *str, ins * crx_ins)
650 {
651 char *saved_input_line_pointer;
652 argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */
653
654 saved_input_line_pointer = input_line_pointer;
655 input_line_pointer = str;
656
657 expression (&crx_ins->exp);
658
659 switch (crx_ins->exp.X_op)
660 {
661 case O_big:
662 case O_absent:
663 /* Missing or bad expr becomes absolute 0. */
664 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
665 str);
666 crx_ins->exp.X_op = O_constant;
667 crx_ins->exp.X_add_number = 0;
668 crx_ins->exp.X_add_symbol = (symbolS *) 0;
669 crx_ins->exp.X_op_symbol = (symbolS *) 0;
670 /* Fall through. */
671
672 case O_constant:
673 cur_arg->X_op = O_constant;
674 cur_arg->constant = crx_ins->exp.X_add_number;
675 break;
676
677 case O_symbol:
678 case O_subtract:
679 case O_add:
680 cur_arg->X_op = O_symbol;
681 crx_ins->rtype = BFD_RELOC_NONE;
682 relocatable = 1;
683
684 switch (cur_arg->type)
685 {
686 case arg_cr:
687 if (IS_INSN_TYPE (LD_STOR_INS_INC))
688 crx_ins->rtype = BFD_RELOC_CRX_REGREL12;
689 else if (IS_INSN_TYPE (CSTBIT_INS)
690 || IS_INSN_TYPE (STOR_IMM_INS))
691 crx_ins->rtype = BFD_RELOC_CRX_REGREL28;
692 else
693 crx_ins->rtype = BFD_RELOC_CRX_REGREL32;
694 break;
695
696 case arg_idxr:
697 crx_ins->rtype = BFD_RELOC_CRX_REGREL22;
698 break;
699
700 case arg_c:
701 if (IS_INSN_MNEMONIC ("bal") || IS_INSN_TYPE (DCR_BRANCH_INS))
702 crx_ins->rtype = BFD_RELOC_CRX_REL16;
703 else if (IS_INSN_TYPE (BRANCH_INS))
704 crx_ins->rtype = BFD_RELOC_CRX_REL8;
705 else if (IS_INSN_TYPE (LD_STOR_INS) || IS_INSN_TYPE (STOR_IMM_INS)
706 || IS_INSN_TYPE (CSTBIT_INS))
707 crx_ins->rtype = BFD_RELOC_CRX_ABS32;
708 else if (IS_INSN_TYPE (BRANCH_NEQ_INS))
709 crx_ins->rtype = BFD_RELOC_CRX_REL4;
710 else if (IS_INSN_TYPE (CMPBR_INS))
711 crx_ins->rtype = BFD_RELOC_CRX_REL8_CMP;
712 else if (IS_INSN_TYPE (COP_BRANCH_INS))
713 crx_ins->rtype = BFD_RELOC_CRX_REL24;
714 break;
715
716 case arg_ic:
717 if (IS_INSN_TYPE (ARITH_INS))
718 crx_ins->rtype = BFD_RELOC_CRX_IMM32;
719 else if (IS_INSN_TYPE (ARITH_BYTE_INS))
720 crx_ins->rtype = BFD_RELOC_CRX_IMM16;
721 break;
722 default:
723 break;
724 }
725 break;
726
727 default:
728 cur_arg->X_op = crx_ins->exp.X_op;
729 break;
730 }
731
732 input_line_pointer = saved_input_line_pointer;
733 return;
734 }
735
736 /* Get the values of the scale to be encoded -
737 used for the scaled index mode of addressing. */
738
739 static int
740 exponent2scale (int val)
741 {
742 int exponent;
743
744 /* If 'val' is 0, the following 'for' will be an endless loop. */
745 if (val == 0)
746 return 0;
747
748 for (exponent = 0; (val != 1); val >>= 1, exponent++)
749 ;
750
751 return exponent;
752 }
753
754 /* Parsing different types of operands
755 -> constants Immediate/Absolute/Relative numbers
756 -> Labels Relocatable symbols
757 -> (rbase) Register base
758 -> disp(rbase) Register relative
759 -> disp(rbase)+ Post-increment mode
760 -> disp(rbase,ridx,scl) Register index mode */
761
762 static void
763 set_operand (char *operand, ins * crx_ins)
764 {
765 char *operandS; /* Pointer to start of sub-opearand. */
766 char *operandE; /* Pointer to end of sub-opearand. */
767 expressionS scale;
768 int scale_val;
769 char *input_save, c;
770 argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */
771
772 /* Initialize pointers. */
773 operandS = operandE = operand;
774
775 switch (cur_arg->type)
776 {
777 case arg_sc: /* Case *+0x18. */
778 case arg_ic: /* Case $0x18. */
779 operandS++;
780 case arg_c: /* Case 0x18. */
781 /* Set constant. */
782 process_label_constant (operandS, crx_ins);
783
784 if (cur_arg->type != arg_ic)
785 cur_arg->type = arg_c;
786 break;
787
788 case arg_icr: /* Case $0x18(r1). */
789 operandS++;
790 case arg_cr: /* Case 0x18(r1). */
791 /* Set displacement constant. */
792 while (*operandE != '(')
793 operandE++;
794 *operandE = '\0';
795 process_label_constant (operandS, crx_ins);
796 operandS = operandE;
797 case arg_rbase: /* Case (r1). */
798 operandS++;
799 /* Set register base. */
800 while (*operandE != ')')
801 operandE++;
802 *operandE = '\0';
803 if ((cur_arg->r = get_register (operandS)) == nullregister)
804 as_bad (_("Illegal register `%s' in Instruction `%s'"),
805 operandS, ins_parse);
806
807 if (cur_arg->type != arg_rbase)
808 cur_arg->type = arg_cr;
809 break;
810
811 case arg_idxr:
812 /* Set displacement constant. */
813 while (*operandE != '(')
814 operandE++;
815 *operandE = '\0';
816 process_label_constant (operandS, crx_ins);
817 operandS = ++operandE;
818
819 /* Set register base. */
820 while ((*operandE != ',') && (! ISSPACE (*operandE)))
821 operandE++;
822 *operandE++ = '\0';
823 if ((cur_arg->r = get_register (operandS)) == nullregister)
824 as_bad (_("Illegal register `%s' in Instruction `%s'"),
825 operandS, ins_parse);
826
827 /* Skip leading white space. */
828 while (ISSPACE (*operandE))
829 operandE++;
830 operandS = operandE;
831
832 /* Set register index. */
833 while ((*operandE != ')') && (*operandE != ','))
834 operandE++;
835 c = *operandE;
836 *operandE++ = '\0';
837
838 if ((cur_arg->i_r = get_register (operandS)) == nullregister)
839 as_bad (_("Illegal register `%s' in Instruction `%s'"),
840 operandS, ins_parse);
841
842 /* Skip leading white space. */
843 while (ISSPACE (*operandE))
844 operandE++;
845 operandS = operandE;
846
847 /* Set the scale. */
848 if (c == ')')
849 cur_arg->scale = 0;
850 else
851 {
852 while (*operandE != ')')
853 operandE++;
854 *operandE = '\0';
855
856 /* Preprocess the scale string. */
857 input_save = input_line_pointer;
858 input_line_pointer = operandS;
859 expression (&scale);
860 input_line_pointer = input_save;
861
862 scale_val = scale.X_add_number;
863
864 /* Check if the scale value is legal. */
865 if (scale_val != 1 && scale_val != 2
866 && scale_val != 4 && scale_val != 8)
867 as_bad (_("Illegal Scale - `%d'"), scale_val);
868
869 cur_arg->scale = exponent2scale (scale_val);
870 }
871 break;
872
873 default:
874 break;
875 }
876 }
877
878 /* Parse a single operand.
879 operand - Current operand to parse.
880 crx_ins - Current assembled instruction. */
881
882 static void
883 parse_operand (char *operand, ins * crx_ins)
884 {
885 int ret_val;
886 argument *cur_arg = &crx_ins->arg[cur_arg_num]; /* Current argument. */
887
888 /* Initialize the type to NULL before parsing. */
889 cur_arg->type = nullargs;
890
891 /* Check whether this is a general processor register. */
892 if ((ret_val = get_register (operand)) != nullregister)
893 {
894 cur_arg->type = arg_r;
895 cur_arg->r = ret_val;
896 cur_arg->X_op = O_register;
897 return;
898 }
899
900 /* Check whether this is a core [special] coprocessor register. */
901 if ((ret_val = get_copregister (operand)) != nullcopregister)
902 {
903 cur_arg->type = arg_copr;
904 if (ret_val >= cs0)
905 cur_arg->type = arg_copsr;
906 cur_arg->cr = ret_val;
907 cur_arg->X_op = O_register;
908 return;
909 }
910
911 /* Deal with special characters. */
912 switch (operand[0])
913 {
914 case '$':
915 if (strchr (operand, '(') != NULL)
916 cur_arg->type = arg_icr;
917 else
918 cur_arg->type = arg_ic;
919 goto set_params;
920 break;
921
922 case '*':
923 cur_arg->type = arg_sc;
924 goto set_params;
925 break;
926
927 case '(':
928 cur_arg->type = arg_rbase;
929 goto set_params;
930 break;
931
932 default:
933 break;
934 }
935
936 if (strchr (operand, '(') != NULL)
937 {
938 if (strchr (operand, ',') != NULL
939 && (strchr (operand, ',') > strchr (operand, '(')))
940 cur_arg->type = arg_idxr;
941 else
942 cur_arg->type = arg_cr;
943 }
944 else
945 cur_arg->type = arg_c;
946 goto set_params;
947
948 /* Parse an operand according to its type. */
949 set_params:
950 cur_arg->constant = 0;
951 set_operand (operand, crx_ins);
952 }
953
954 /* Parse the various operands. Each operand is then analyzed to fillup
955 the fields in the crx_ins data structure. */
956
957 static void
958 parse_operands (ins * crx_ins, char *operands)
959 {
960 char *operandS; /* Operands string. */
961 char *operandH, *operandT; /* Single operand head/tail pointers. */
962 int allocated = 0; /* Indicates a new operands string was allocated. */
963 char *operand[MAX_OPERANDS]; /* Separating the operands. */
964 int op_num = 0; /* Current operand number we are parsing. */
965 int bracket_flag = 0; /* Indicates a bracket '(' was found. */
966 int sq_bracket_flag = 0; /* Indicates a square bracket '[' was found. */
967
968 /* Preprocess the list of registers, if necessary. */
969 operandS = operandH = operandT = (INST_HAS_REG_LIST) ?
970 preprocess_reglist (operands, &allocated) : operands;
971
972 while (*operandT != '\0')
973 {
974 if (*operandT == ',' && bracket_flag != 1 && sq_bracket_flag != 1)
975 {
976 *operandT++ = '\0';
977 operand[op_num++] = strdup (operandH);
978 operandH = operandT;
979 continue;
980 }
981
982 if (*operandT == ' ')
983 as_bad (_("Illegal operands (whitespace): `%s'"), ins_parse);
984
985 if (*operandT == '(')
986 bracket_flag = 1;
987 else if (*operandT == '[')
988 sq_bracket_flag = 1;
989
990 if (*operandT == ')')
991 {
992 if (bracket_flag)
993 bracket_flag = 0;
994 else
995 as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
996 }
997 else if (*operandT == ']')
998 {
999 if (sq_bracket_flag)
1000 sq_bracket_flag = 0;
1001 else
1002 as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
1003 }
1004
1005 if (bracket_flag == 1 && *operandT == ')')
1006 bracket_flag = 0;
1007 else if (sq_bracket_flag == 1 && *operandT == ']')
1008 sq_bracket_flag = 0;
1009
1010 operandT++;
1011 }
1012
1013 /* Adding the last operand. */
1014 operand[op_num++] = strdup (operandH);
1015 crx_ins->nargs = op_num;
1016
1017 /* Verifying correct syntax of operands (all brackets should be closed). */
1018 if (bracket_flag || sq_bracket_flag)
1019 as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
1020
1021 /* Now we parse each operand separately. */
1022 for (op_num = 0; op_num < crx_ins->nargs; op_num++)
1023 {
1024 cur_arg_num = op_num;
1025 parse_operand (operand[op_num], crx_ins);
1026 free (operand[op_num]);
1027 }
1028
1029 if (allocated)
1030 free (operandS);
1031 }
1032
1033 /* Get the trap index in dispatch table, given its name.
1034 This routine is used by assembling the 'excp' instruction. */
1035
1036 static int
1037 gettrap (char *s)
1038 {
1039 const trap_entry *trap;
1040
1041 for (trap = crx_traps; trap < (crx_traps + NUMTRAPS); trap++)
1042 if (strcasecmp (trap->name, s) == 0)
1043 return trap->entry;
1044
1045 as_bad (_("Unknown exception: `%s'"), s);
1046 return 0;
1047 }
1048
1049 /* Post-Increment instructions, as well as Store-Immediate instructions, are a
1050 sub-group within load/stor instruction groups.
1051 Therefore, when parsing a Post-Increment/Store-Immediate insn, we have to
1052 advance the instruction pointer to the start of that sub-group (that is, up
1053 to the first instruction of that type).
1054 Otherwise, the insn will be mistakenly identified as of type LD_STOR_INS. */
1055
1056 static void
1057 handle_LoadStor (char *operands)
1058 {
1059 /* Post-Increment instructions precede Store-Immediate instructions in
1060 CRX instruction table, hence they are handled before.
1061 This synchronization should be kept. */
1062
1063 /* Assuming Post-Increment insn has the following format :
1064 'MNEMONIC DISP(REG)+, REG' (e.g. 'loadw 12(r5)+, r6').
1065 LD_STOR_INS_INC are the only store insns containing a plus sign (+). */
1066 if (strstr (operands, ")+") != NULL)
1067 {
1068 while (! IS_INSN_TYPE (LD_STOR_INS_INC))
1069 instruction++;
1070 return;
1071 }
1072
1073 /* Assuming Store-Immediate insn has the following format :
1074 'MNEMONIC $DISP, ...' (e.g. 'storb $1, 12(r5)').
1075 STOR_IMM_INS are the only store insns containing a dollar sign ($). */
1076 if (strstr (operands, "$") != NULL)
1077 while (! IS_INSN_TYPE (STOR_IMM_INS))
1078 instruction++;
1079 }
1080
1081 /* Top level module where instruction parsing starts.
1082 crx_ins - data structure holds some information.
1083 operands - holds the operands part of the whole instruction. */
1084
1085 static void
1086 parse_insn (ins *insn, char *operands)
1087 {
1088 int i;
1089
1090 /* Handle instructions with no operands. */
1091 for (i = 0; no_op_insn[i] != NULL; i++)
1092 {
1093 if (streq (no_op_insn[i], instruction->mnemonic))
1094 {
1095 insn->nargs = 0;
1096 return;
1097 }
1098 }
1099
1100 /* Handle 'excp'/'cinv' instructions. */
1101 if (IS_INSN_MNEMONIC ("excp") || IS_INSN_MNEMONIC ("cinv"))
1102 {
1103 insn->nargs = 1;
1104 insn->arg[0].type = arg_ic;
1105 insn->arg[0].constant = IS_INSN_MNEMONIC ("excp") ?
1106 gettrap (operands) : get_cinv_parameters (operands);
1107 insn->arg[0].X_op = O_constant;
1108 return;
1109 }
1110
1111 /* Handle load/stor unique instructions before parsing. */
1112 if (IS_INSN_TYPE (LD_STOR_INS))
1113 handle_LoadStor (operands);
1114
1115 if (operands != NULL)
1116 parse_operands (insn, operands);
1117 }
1118
1119 /* Cinv instruction requires special handling. */
1120
1121 static int
1122 get_cinv_parameters (char * operand)
1123 {
1124 char *p = operand;
1125 int d_used = 0, i_used = 0, u_used = 0, b_used = 0;
1126
1127 while (*++p != ']')
1128 {
1129 if (*p == ',' || *p == ' ')
1130 continue;
1131
1132 if (*p == 'd')
1133 d_used = 1;
1134 else if (*p == 'i')
1135 i_used = 1;
1136 else if (*p == 'u')
1137 u_used = 1;
1138 else if (*p == 'b')
1139 b_used = 1;
1140 else
1141 as_bad (_("Illegal `cinv' parameter: `%c'"), *p);
1142 }
1143
1144 return ((b_used ? 8 : 0)
1145 + (d_used ? 4 : 0)
1146 + (i_used ? 2 : 0)
1147 + (u_used ? 1 : 0));
1148 }
1149
1150 /* Retrieve the opcode image of a given register.
1151 If the register is illegal for the current instruction,
1152 issue an error. */
1153
1154 static int
1155 getreg_image (reg r)
1156 {
1157 const reg_entry *reg;
1158 char *reg_name;
1159 int is_procreg = 0; /* Nonzero means argument should be processor reg. */
1160
1161 if (((IS_INSN_MNEMONIC ("mtpr")) && (cur_arg_num == 1))
1162 || ((IS_INSN_MNEMONIC ("mfpr")) && (cur_arg_num == 0)) )
1163 is_procreg = 1;
1164
1165 /* Check whether the register is in registers table. */
1166 if (r < MAX_REG)
1167 reg = &crx_regtab[r];
1168 /* Check whether the register is in coprocessor registers table. */
1169 else if (r < MAX_COPREG)
1170 reg = &crx_copregtab[r-MAX_REG];
1171 /* Register not found. */
1172 else
1173 {
1174 as_bad (_("Unknown register: `%d'"), r);
1175 return 0;
1176 }
1177
1178 reg_name = reg->name;
1179
1180 /* Issue a error message when register is illegal. */
1181 #define IMAGE_ERR \
1182 as_bad (_("Illegal register (`%s') in Instruction: `%s'"), \
1183 reg_name, ins_parse); \
1184 break;
1185
1186 switch (reg->type)
1187 {
1188 case CRX_U_REGTYPE:
1189 if (is_procreg || (instruction->flags & USER_REG))
1190 return reg->image;
1191 else
1192 IMAGE_ERR;
1193
1194 case CRX_CFG_REGTYPE:
1195 if (is_procreg)
1196 return reg->image;
1197 else
1198 IMAGE_ERR;
1199
1200 case CRX_R_REGTYPE:
1201 if (! is_procreg)
1202 return reg->image;
1203 else
1204 IMAGE_ERR;
1205
1206 case CRX_C_REGTYPE:
1207 case CRX_CS_REGTYPE:
1208 return reg->image;
1209 break;
1210
1211 default:
1212 IMAGE_ERR;
1213 }
1214
1215 return 0;
1216 }
1217
1218 /* Routine used to represent integer X using NBITS bits. */
1219
1220 static long
1221 getconstant (long x, int nbits)
1222 {
1223 /* The following expression avoids overflow if
1224 'nbits' is the number of bits in 'bfd_vma'. */
1225 return (x & ((((1 << (nbits - 1)) - 1) << 1) | 1));
1226 }
1227
1228 /* Print a constant value to 'output_opcode':
1229 ARG holds the operand's type and value.
1230 SHIFT represents the location of the operand to be print into.
1231 NBITS determines the size (in bits) of the constant. */
1232
1233 static void
1234 print_constant (int nbits, int shift, argument *arg)
1235 {
1236 unsigned long mask = 0;
1237
1238 long constant = getconstant (arg->constant, nbits);
1239
1240 switch (nbits)
1241 {
1242 case 32:
1243 case 28:
1244 case 24:
1245 case 22:
1246 /* mask the upper part of the constant, that is, the bits
1247 going to the lowest byte of output_opcode[0].
1248 The upper part of output_opcode[1] is always filled,
1249 therefore it is always masked with 0xFFFF. */
1250 mask = (1 << (nbits - 16)) - 1;
1251 /* Divide the constant between two consecutive words :
1252 0 1 2 3
1253 +---------+---------+---------+---------+
1254 | | X X X X | X X X X | |
1255 +---------+---------+---------+---------+
1256 output_opcode[0] output_opcode[1] */
1257
1258 CRX_PRINT (0, (constant >> WORD_SHIFT) & mask, 0);
1259 CRX_PRINT (1, (constant & 0xFFFF), WORD_SHIFT);
1260 break;
1261
1262 case 16:
1263 case 12:
1264 /* Special case - in arg_cr, the SHIFT represents the location
1265 of the REGISTER, not the constant, which is itself not shifted. */
1266 if (arg->type == arg_cr)
1267 {
1268 CRX_PRINT (0, constant, 0);
1269 break;
1270 }
1271
1272 /* When instruction size is 3 and 'shift' is 16, a 16-bit constant is
1273 always filling the upper part of output_opcode[1]. If we mistakenly
1274 write it to output_opcode[0], the constant prefix (that is, 'match')
1275 will be overriden.
1276 0 1 2 3
1277 +---------+---------+---------+---------+
1278 | 'match' | | X X X X | |
1279 +---------+---------+---------+---------+
1280 output_opcode[0] output_opcode[1] */
1281
1282 if ((instruction->size > 2) && (shift == WORD_SHIFT))
1283 CRX_PRINT (1, constant, WORD_SHIFT);
1284 else
1285 CRX_PRINT (0, constant, shift);
1286 break;
1287
1288 default:
1289 CRX_PRINT (0, constant, shift);
1290 break;
1291 }
1292 }
1293
1294 /* Print an operand to 'output_opcode', which later on will be
1295 printed to the object file:
1296 ARG holds the operand's type, size and value.
1297 SHIFT represents the printing location of operand.
1298 NBITS determines the size (in bits) of a constant operand. */
1299
1300 static void
1301 print_operand (int nbits, int shift, argument *arg)
1302 {
1303 switch (arg->type)
1304 {
1305 case arg_r:
1306 CRX_PRINT (0, getreg_image (arg->r), shift);
1307 break;
1308
1309 case arg_copr:
1310 if (arg->cr < c0 || arg->cr > c15)
1311 as_bad (_("Illegal Co-processor register in Instruction `%s' "),
1312 ins_parse);
1313 CRX_PRINT (0, getreg_image (arg->cr), shift);
1314 break;
1315
1316 case arg_copsr:
1317 if (arg->cr < cs0 || arg->cr > cs15)
1318 as_bad (_("Illegal Co-processor special register in Instruction `%s' "),
1319 ins_parse);
1320 CRX_PRINT (0, getreg_image (arg->cr), shift);
1321 break;
1322
1323 case arg_idxr:
1324 /* 16 12 8 6 0
1325 +--------------------------------+
1326 | r_base | r_idx | scl| disp |
1327 +--------------------------------+ */
1328 CRX_PRINT (0, getreg_image (arg->r), 12);
1329 CRX_PRINT (0, getreg_image (arg->i_r), 8);
1330 CRX_PRINT (0, arg->scale, 6);
1331 case arg_ic:
1332 case arg_c:
1333 print_constant (nbits, shift, arg);
1334 break;
1335
1336 case arg_rbase:
1337 CRX_PRINT (0, getreg_image (arg->r), shift);
1338 break;
1339
1340 case arg_cr:
1341 /* case base_cst4. */
1342 if (instruction->flags & DISPU4MAP)
1343 print_constant (nbits, shift + REG_SIZE, arg);
1344 else
1345 /* rbase_disps<NN> and other such cases. */
1346 print_constant (nbits, shift, arg);
1347 /* Add the register argument to the output_opcode. */
1348 CRX_PRINT (0, getreg_image (arg->r), shift);
1349 break;
1350
1351 default:
1352 break;
1353 }
1354 }
1355
1356 /* Retrieve the number of operands for the current assembled instruction. */
1357
1358 static int
1359 get_number_of_operands (void)
1360 {
1361 int i;
1362
1363 for (i = 0; instruction->operands[i].op_type && i < MAX_OPERANDS; i++)
1364 ;
1365 return i;
1366 }
1367
1368 /* Verify that the number NUM can be represented in BITS bits (that is,
1369 within its permitted range), based on the instruction's FLAGS.
1370 If UPDATE is nonzero, update the value of NUM if necessary.
1371 Return OP_LEGAL upon success, actual error type upon failure. */
1372
1373 static op_err
1374 check_range (long *num, int bits, int unsigned flags, int update)
1375 {
1376 long min, max;
1377 int retval = OP_LEGAL;
1378 int bin;
1379 long upper_64kb = 0xFFFF0000;
1380 long value = *num;
1381
1382 /* Verify operand value is even. */
1383 if (flags & OP_EVEN)
1384 {
1385 if (value % 2)
1386 return OP_NOT_EVEN;
1387 }
1388
1389 if (flags & OP_UPPER_64KB)
1390 {
1391 /* Check if value is to be mapped to upper 64 KB memory area. */
1392 if ((value & upper_64kb) == upper_64kb)
1393 {
1394 value -= upper_64kb;
1395 if (update)
1396 *num = value;
1397 }
1398 else
1399 return OP_NOT_UPPER_64KB;
1400 }
1401
1402 if (flags & OP_SHIFT)
1403 {
1404 value >>= 1;
1405 if (update)
1406 *num = value;
1407 }
1408 else if (flags & OP_SHIFT_DEC)
1409 {
1410 value = (value >> 1) - 1;
1411 if (update)
1412 *num = value;
1413 }
1414
1415 if (flags & OP_ESC)
1416 {
1417 /* 0x7e and 0x7f are reserved escape sequences of dispe9. */
1418 if (value == 0x7e || value == 0x7f)
1419 return OP_OUT_OF_RANGE;
1420 }
1421
1422 if (flags & OP_DISPU4)
1423 {
1424 int is_dispu4 = 0;
1425
1426 int mul = (instruction->flags & DISPUB4) ? 1
1427 : (instruction->flags & DISPUW4) ? 2
1428 : (instruction->flags & DISPUD4) ? 4 : 0;
1429
1430 for (bin = 0; bin < cst4_maps; bin++)
1431 {
1432 if (value == (mul * bin))
1433 {
1434 is_dispu4 = 1;
1435 if (update)
1436 *num = bin;
1437 break;
1438 }
1439 }
1440 if (!is_dispu4)
1441 retval = OP_ILLEGAL_DISPU4;
1442 }
1443 else if (flags & OP_CST4)
1444 {
1445 int is_cst4 = 0;
1446
1447 for (bin = 0; bin < cst4_maps; bin++)
1448 {
1449 if (value == cst4_map[bin])
1450 {
1451 is_cst4 = 1;
1452 if (update)
1453 *num = bin;
1454 break;
1455 }
1456 }
1457 if (!is_cst4)
1458 retval = OP_ILLEGAL_CST4;
1459 }
1460 else if (flags & OP_SIGNED)
1461 {
1462 max = (1 << (bits - 1)) - 1;
1463 min = - (1 << (bits - 1));
1464 if ((value > max) || (value < min))
1465 retval = OP_OUT_OF_RANGE;
1466 }
1467 else if (flags & OP_UNSIGNED)
1468 {
1469 max = ((((1 << (bits - 1)) - 1) << 1) | 1);
1470 min = 0;
1471 if (((unsigned long) value > (unsigned long) max)
1472 || ((unsigned long) value < (unsigned long) min))
1473 retval = OP_OUT_OF_RANGE;
1474 }
1475 return retval;
1476 }
1477
1478 /* Assemble a single instruction:
1479 INSN is already parsed (that is, all operand values and types are set).
1480 For instruction to be assembled, we need to find an appropriate template in
1481 the instruction table, meeting the following conditions:
1482 1: Has the same number of operands.
1483 2: Has the same operand types.
1484 3: Each operand size is sufficient to represent the instruction's values.
1485 Returns 1 upon success, 0 upon failure. */
1486
1487 static int
1488 assemble_insn (char *mnemonic, ins *insn)
1489 {
1490 /* Type of each operand in the current template. */
1491 argtype cur_type[MAX_OPERANDS];
1492 /* Size (in bits) of each operand in the current template. */
1493 unsigned int cur_size[MAX_OPERANDS];
1494 /* Flags of each operand in the current template. */
1495 unsigned int cur_flags[MAX_OPERANDS];
1496 /* Instruction type to match. */
1497 unsigned int ins_type;
1498 /* Boolean flag to mark whether a match was found. */
1499 int match = 0;
1500 int i;
1501 /* Nonzero if an instruction with same number of operands was found. */
1502 int found_same_number_of_operands = 0;
1503 /* Nonzero if an instruction with same argument types was found. */
1504 int found_same_argument_types = 0;
1505 /* Nonzero if a constant was found within the required range. */
1506 int found_const_within_range = 0;
1507 /* Argument number of an operand with invalid type. */
1508 int invalid_optype = -1;
1509 /* Argument number of an operand with invalid constant value. */
1510 int invalid_const = -1;
1511 /* Operand error (used for issuing various constant error messages). */
1512 op_err op_error, const_err = OP_LEGAL;
1513
1514 /* Retrieve data (based on FUNC) for each operand of a given instruction. */
1515 #define GET_CURRENT_DATA(FUNC, ARRAY) \
1516 for (i = 0; i < insn->nargs; i++) \
1517 ARRAY[i] = FUNC (instruction->operands[i].op_type)
1518
1519 #define GET_CURRENT_TYPE GET_CURRENT_DATA(get_optype, cur_type)
1520 #define GET_CURRENT_SIZE GET_CURRENT_DATA(get_opbits, cur_size)
1521 #define GET_CURRENT_FLAGS GET_CURRENT_DATA(get_opflags, cur_flags)
1522
1523 /* Instruction has no operands -> only copy the constant opcode. */
1524 if (insn->nargs == 0)
1525 {
1526 output_opcode[0] = BIN (instruction->match, instruction->match_bits);
1527 return 1;
1528 }
1529
1530 /* In some case, same mnemonic can appear with different instruction types.
1531 For example, 'storb' is supported with 3 different types :
1532 LD_STOR_INS, LD_STOR_INS_INC, STOR_IMM_INS.
1533 We assume that when reaching this point, the instruction type was
1534 pre-determined. We need to make sure that the type stays the same
1535 during a search for matching instruction. */
1536 ins_type = CRX_INS_TYPE(instruction->flags);
1537
1538 while (/* Check that match is still not found. */
1539 match != 1
1540 /* Check we didn't get to end of table. */
1541 && instruction->mnemonic != NULL
1542 /* Check that the actual mnemonic is still available. */
1543 && IS_INSN_MNEMONIC (mnemonic)
1544 /* Check that the instruction type wasn't changed. */
1545 && IS_INSN_TYPE(ins_type))
1546 {
1547 /* Check whether number of arguments is legal. */
1548 if (get_number_of_operands () != insn->nargs)
1549 goto next_insn;
1550 found_same_number_of_operands = 1;
1551
1552 /* Initialize arrays with data of each operand in current template. */
1553 GET_CURRENT_TYPE;
1554 GET_CURRENT_SIZE;
1555 GET_CURRENT_FLAGS;
1556
1557 /* Check for type compatibility. */
1558 for (i = 0; i < insn->nargs; i++)
1559 {
1560 if (cur_type[i] != insn->arg[i].type)
1561 {
1562 if (invalid_optype == -1)
1563 invalid_optype = i + 1;
1564 goto next_insn;
1565 }
1566 }
1567 found_same_argument_types = 1;
1568
1569 for (i = 0; i < insn->nargs; i++)
1570 {
1571 /* Reverse the operand indices for certain opcodes:
1572 Index 0 -->> 1
1573 Index 1 -->> 0
1574 Other index -->> stays the same. */
1575 int j = instruction->flags & REVERSE_MATCH ?
1576 i == 0 ? 1 :
1577 i == 1 ? 0 : i :
1578 i;
1579
1580 /* Only check range - don't update the constant's value, since the
1581 current instruction may not be the last we try to match.
1582 The constant's value will be updated later, right before printing
1583 it to the object file. */
1584 if ((insn->arg[j].X_op == O_constant)
1585 && (op_error = check_range (&insn->arg[j].constant, cur_size[j],
1586 cur_flags[j], 0)))
1587 {
1588 if (invalid_const == -1)
1589 {
1590 invalid_const = j + 1;
1591 const_err = op_error;
1592 }
1593 goto next_insn;
1594 }
1595 /* For symbols, we make sure the relocation size (which was already
1596 determined) is sufficient. */
1597 else if ((insn->arg[j].X_op == O_symbol)
1598 && ((bfd_reloc_type_lookup (stdoutput, insn->rtype))->bitsize
1599 > cur_size[j]))
1600 goto next_insn;
1601 }
1602 found_const_within_range = 1;
1603
1604 /* If we got till here -> Full match is found. */
1605 match = 1;
1606 break;
1607
1608 /* Try again with next instruction. */
1609 next_insn:
1610 instruction++;
1611 }
1612
1613 if (!match)
1614 {
1615 /* We haven't found a match - instruction can't be assembled. */
1616 if (!found_same_number_of_operands)
1617 as_bad (_("Incorrect number of operands"));
1618 else if (!found_same_argument_types)
1619 as_bad (_("Illegal type of operand (arg %d)"), invalid_optype);
1620 else if (!found_const_within_range)
1621 {
1622 switch (const_err)
1623 {
1624 case OP_OUT_OF_RANGE:
1625 as_bad (_("Operand out of range (arg %d)"), invalid_const);
1626 break;
1627 case OP_NOT_EVEN:
1628 as_bad (_("Operand has odd displacement (arg %d)"), invalid_const);
1629 break;
1630 case OP_ILLEGAL_DISPU4:
1631 as_bad (_("Invalid DISPU4 operand value (arg %d)"), invalid_const);
1632 break;
1633 case OP_ILLEGAL_CST4:
1634 as_bad (_("Invalid CST4 operand value (arg %d)"), invalid_const);
1635 break;
1636 case OP_NOT_UPPER_64KB:
1637 as_bad (_("Operand value is not within upper 64 KB (arg %d)"),
1638 invalid_const);
1639 break;
1640 default:
1641 as_bad (_("Illegal operand (arg %d)"), invalid_const);
1642 break;
1643 }
1644 }
1645
1646 return 0;
1647 }
1648 else
1649 /* Full match - print the encoding to output file. */
1650 {
1651 /* Make further checkings (such that couldn't be made earlier).
1652 Warn the user if necessary. */
1653 warn_if_needed (insn);
1654
1655 /* Check whether we need to adjust the instruction pointer. */
1656 if (adjust_if_needed (insn))
1657 /* If instruction pointer was adjusted, we need to update
1658 the size of the current template operands. */
1659 GET_CURRENT_SIZE;
1660
1661 for (i = 0; i < insn->nargs; i++)
1662 {
1663 int j = instruction->flags & REVERSE_MATCH ?
1664 i == 0 ? 1 :
1665 i == 1 ? 0 : i :
1666 i;
1667
1668 /* This time, update constant value before printing it. */
1669 if ((insn->arg[j].X_op == O_constant)
1670 && (check_range (&insn->arg[j].constant, cur_size[j],
1671 cur_flags[j], 1) != OP_LEGAL))
1672 as_fatal (_("Illegal operand (arg %d)"), j+1);
1673 }
1674
1675 /* First, copy the instruction's opcode. */
1676 output_opcode[0] = BIN (instruction->match, instruction->match_bits);
1677
1678 for (i = 0; i < insn->nargs; i++)
1679 {
1680 cur_arg_num = i;
1681 print_operand (cur_size[i], instruction->operands[i].shift,
1682 &insn->arg[i]);
1683 }
1684 }
1685
1686 return 1;
1687 }
1688
1689 /* Bunch of error checkings.
1690 The checks are made after a matching instruction was found. */
1691
1692 void
1693 warn_if_needed (ins *insn)
1694 {
1695 /* If the post-increment address mode is used and the load/store
1696 source register is the same as rbase, the result of the
1697 instruction is undefined. */
1698 if (IS_INSN_TYPE (LD_STOR_INS_INC))
1699 {
1700 /* Enough to verify that one of the arguments is a simple reg. */
1701 if ((insn->arg[0].type == arg_r) || (insn->arg[1].type == arg_r))
1702 if (insn->arg[0].r == insn->arg[1].r)
1703 as_bad (_("Same src/dest register is used (`r%d'), result is undefined"),
1704 insn->arg[0].r);
1705 }
1706
1707 /* Some instruction assume the stack pointer as rptr operand.
1708 Issue an error when the register to be loaded is also SP. */
1709 if (instruction->flags & NO_SP)
1710 {
1711 if (getreg_image (insn->arg[0].r) == getreg_image (sp))
1712 as_bad (_("`%s' has undefined result"), ins_parse);
1713 }
1714
1715 /* If the rptr register is specified as one of the registers to be loaded,
1716 the final contents of rptr are undefined. Thus, we issue an error. */
1717 if (instruction->flags & NO_RPTR)
1718 {
1719 if ((1 << getreg_image (insn->arg[0].r)) & insn->arg[1].constant)
1720 as_bad (_("Same src/dest register is used (`r%d'), result is undefined"),
1721 getreg_image (insn->arg[0].r));
1722 }
1723 }
1724
1725 /* In some cases, we need to adjust the instruction pointer although a
1726 match was already found. Here, we gather all these cases.
1727 Returns 1 if instruction pointer was adjusted, otherwise 0. */
1728
1729 int
1730 adjust_if_needed (ins *insn)
1731 {
1732 int ret_value = 0;
1733
1734 /* Special check for 'addub $0, r0' instruction -
1735 The opcode '0000 0000 0000 0000' is not allowed. */
1736 if (IS_INSN_MNEMONIC ("addub"))
1737 {
1738 if ((instruction->operands[0].op_type == cst4)
1739 && instruction->operands[1].op_type == regr)
1740 {
1741 if (insn->arg[0].constant == 0 && insn->arg[1].r == r0)
1742 {
1743 instruction++;
1744 ret_value = 1;
1745 }
1746 }
1747 }
1748
1749 /* Optimization: Omit a zero displacement in bit operations,
1750 saving 2-byte encoding space (e.g., 'cbitw $8, 0(r1)'). */
1751 if (IS_INSN_TYPE (CSTBIT_INS))
1752 {
1753 if ((instruction->operands[1].op_type == rbase_disps12)
1754 && (insn->arg[1].X_op == O_constant)
1755 && (insn->arg[1].constant == 0))
1756 {
1757 instruction--;
1758 ret_value = 1;
1759 }
1760 }
1761
1762 return ret_value;
1763 }
1764
1765 /* Set the appropriate bit for register 'r' in 'mask'.
1766 This indicates that this register is loaded or stored by
1767 the instruction. */
1768
1769 static void
1770 mask_reg (int r, unsigned short int *mask)
1771 {
1772 if ((reg)r > (reg)sp)
1773 {
1774 as_bad (_("Invalid Register in Register List"));
1775 return;
1776 }
1777
1778 *mask |= (1 << r);
1779 }
1780
1781 /* Preprocess register list - create a 16-bit mask with one bit for each
1782 of the 16 general purpose registers. If a bit is set, it indicates
1783 that this register is loaded or stored by the instruction. */
1784
1785 static char *
1786 preprocess_reglist (char *param, int *allocated)
1787 {
1788 char reg_name[MAX_REGNAME_LEN]; /* Current parsed register name. */
1789 char *regP; /* Pointer to 'reg_name' string. */
1790 int reg_counter = 0; /* Count number of parsed registers. */
1791 unsigned short int mask = 0; /* Mask for 16 general purpose registers. */
1792 char *new_param; /* New created operands string. */
1793 char *paramP = param; /* Pointer to original opearands string. */
1794 char maskstring[10]; /* Array to print the mask as a string. */
1795 int hi_found = 0, lo_found = 0; /* Boolean flags for hi/lo registers. */
1796 reg r;
1797 copreg cr;
1798
1799 /* If 'param' is already in form of a number, no need to preprocess. */
1800 if (strchr (paramP, '{') == NULL)
1801 return param;
1802
1803 /* Verifying correct syntax of operand. */
1804 if (strchr (paramP, '}') == NULL)
1805 as_fatal (_("Missing matching brackets : `%s'"), ins_parse);
1806
1807 while (*paramP++ != '{');
1808
1809 new_param = (char *)xcalloc (MAX_INST_LEN, sizeof (char));
1810 *allocated = 1;
1811 strncpy (new_param, param, paramP - param - 1);
1812
1813 while (*paramP != '}')
1814 {
1815 regP = paramP;
1816 memset (&reg_name, '\0', sizeof (reg_name));
1817
1818 while (ISALNUM (*paramP))
1819 paramP++;
1820
1821 strncpy (reg_name, regP, paramP - regP);
1822
1823 /* Coprocessor register c<N>. */
1824 if (IS_INSN_TYPE (COP_REG_INS))
1825 {
1826 if (((cr = get_copregister (reg_name)) == nullcopregister)
1827 || (crx_copregtab[cr-MAX_REG].type != CRX_C_REGTYPE))
1828 as_fatal (_("Illegal register `%s' in cop-register list"), reg_name);
1829 mask_reg (getreg_image (cr - c0), &mask);
1830 }
1831 /* Coprocessor Special register cs<N>. */
1832 else if (IS_INSN_TYPE (COPS_REG_INS))
1833 {
1834 if (((cr = get_copregister (reg_name)) == nullcopregister)
1835 || (crx_copregtab[cr-MAX_REG].type != CRX_CS_REGTYPE))
1836 as_fatal (_("Illegal register `%s' in cop-special-register list"),
1837 reg_name);
1838 mask_reg (getreg_image (cr - cs0), &mask);
1839 }
1840 /* User register u<N>. */
1841 else if (instruction->flags & USER_REG)
1842 {
1843 if (streq(reg_name, "uhi"))
1844 {
1845 hi_found = 1;
1846 goto next_inst;
1847 }
1848 else if (streq(reg_name, "ulo"))
1849 {
1850 lo_found = 1;
1851 goto next_inst;
1852 }
1853 else if (((r = get_register (reg_name)) == nullregister)
1854 || (crx_regtab[r].type != CRX_U_REGTYPE))
1855 as_fatal (_("Illegal register `%s' in user register list"), reg_name);
1856
1857 mask_reg (getreg_image (r - u0), &mask);
1858 }
1859 /* General purpose register r<N>. */
1860 else
1861 {
1862 if (streq(reg_name, "hi"))
1863 {
1864 hi_found = 1;
1865 goto next_inst;
1866 }
1867 else if (streq(reg_name, "lo"))
1868 {
1869 lo_found = 1;
1870 goto next_inst;
1871 }
1872 else if (((r = get_register (reg_name)) == nullregister)
1873 || (crx_regtab[r].type != CRX_R_REGTYPE))
1874 as_fatal (_("Illegal register `%s' in register list"), reg_name);
1875
1876 mask_reg (getreg_image (r - r0), &mask);
1877 }
1878
1879 if (++reg_counter > MAX_REGS_IN_MASK16)
1880 as_bad (_("Maximum %d bits may be set in `mask16' operand"),
1881 MAX_REGS_IN_MASK16);
1882
1883 next_inst:
1884 while (!ISALNUM (*paramP) && *paramP != '}')
1885 paramP++;
1886 }
1887
1888 if (*++paramP != '\0')
1889 as_warn (_("rest of line ignored; first ignored character is `%c'"),
1890 *paramP);
1891
1892 switch (hi_found + lo_found)
1893 {
1894 case 0:
1895 /* At least one register should be specified. */
1896 if (mask == 0)
1897 as_bad (_("Illegal `mask16' operand, operation is undefined - `%s'"),
1898 ins_parse);
1899 break;
1900
1901 case 1:
1902 /* HI can't be specified without LO (and vise-versa). */
1903 as_bad (_("HI/LO registers should be specified together"));
1904 break;
1905
1906 case 2:
1907 /* HI/LO registers mustn't be masked with additional registers. */
1908 if (mask != 0)
1909 as_bad (_("HI/LO registers should be specified without additional registers"));
1910
1911 default:
1912 break;
1913 }
1914
1915 sprintf (maskstring, "$0x%x", mask);
1916 strcat (new_param, maskstring);
1917 return new_param;
1918 }
1919
1920 /* Print the instruction.
1921 Handle also cases where the instruction is relaxable/relocatable. */
1922
1923 void
1924 print_insn (ins *insn)
1925 {
1926 unsigned int i, j, insn_size;
1927 char *this_frag;
1928 unsigned short words[4];
1929 int addr_mod;
1930
1931 /* Arrange the insn encodings in a WORD size array. */
1932 for (i = 0, j = 0; i < 2; i++)
1933 {
1934 words[j++] = (output_opcode[i] >> 16) & 0xFFFF;
1935 words[j++] = output_opcode[i] & 0xFFFF;
1936 }
1937
1938 /* Handle relaxtion. */
1939 if ((instruction->flags & RELAXABLE) && relocatable)
1940 {
1941 int relax_subtype;
1942
1943 /* Write the maximal instruction size supported. */
1944 insn_size = INSN_MAX_SIZE;
1945
1946 /* bCC */
1947 if (IS_INSN_TYPE (BRANCH_INS))
1948 relax_subtype = 0;
1949 /* bal */
1950 else if (IS_INSN_TYPE (DCR_BRANCH_INS) || IS_INSN_MNEMONIC ("bal"))
1951 relax_subtype = 3;
1952 /* cmpbr */
1953 else if (IS_INSN_TYPE (CMPBR_INS))
1954 relax_subtype = 5;
1955 else
1956 abort ();
1957
1958 this_frag = frag_var (rs_machine_dependent, insn_size * 2,
1959 4, relax_subtype,
1960 insn->exp.X_add_symbol,
1961 insn->exp.X_add_number,
1962 0);
1963 }
1964 else
1965 {
1966 insn_size = instruction->size;
1967 this_frag = frag_more (insn_size * 2);
1968
1969 /* Handle relocation. */
1970 if ((relocatable) && (insn->rtype != BFD_RELOC_NONE))
1971 {
1972 reloc_howto_type *reloc_howto;
1973 int size;
1974
1975 reloc_howto = bfd_reloc_type_lookup (stdoutput, insn->rtype);
1976
1977 if (!reloc_howto)
1978 abort ();
1979
1980 size = bfd_get_reloc_size (reloc_howto);
1981
1982 if (size < 1 || size > 4)
1983 abort ();
1984
1985 fix_new_exp (frag_now, this_frag - frag_now->fr_literal,
1986 size, &insn->exp, reloc_howto->pc_relative,
1987 insn->rtype);
1988 }
1989 }
1990
1991 /* Verify a 2-byte code alignment. */
1992 addr_mod = frag_now_fix () & 1;
1993 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
1994 as_bad (_("instruction address is not a multiple of 2"));
1995 frag_now->insn_addr = addr_mod;
1996 frag_now->has_code = 1;
1997
1998 /* Write the instruction encoding to frag. */
1999 for (i = 0; i < insn_size; i++)
2000 {
2001 md_number_to_chars (this_frag, (valueT) words[i], 2);
2002 this_frag += 2;
2003 }
2004 }
2005
2006 /* This is the guts of the machine-dependent assembler. OP points to a
2007 machine dependent instruction. This function is supposed to emit
2008 the frags/bytes it assembles to. */
2009
2010 void
2011 md_assemble (char *op)
2012 {
2013 ins crx_ins;
2014 char *param;
2015 char c;
2016
2017 /* Reset global variables for a new instruction. */
2018 reset_vars (op);
2019
2020 /* Strip the mnemonic. */
2021 for (param = op; *param != 0 && !ISSPACE (*param); param++)
2022 ;
2023 c = *param;
2024 *param++ = '\0';
2025
2026 /* Find the instruction. */
2027 instruction = (const inst *) hash_find (crx_inst_hash, op);
2028 if (instruction == NULL)
2029 {
2030 as_bad (_("Unknown opcode: `%s'"), op);
2031 return;
2032 }
2033
2034 /* Tie dwarf2 debug info to the address at the start of the insn. */
2035 dwarf2_emit_insn (0);
2036
2037 /* Parse the instruction's operands. */
2038 parse_insn (&crx_ins, param);
2039
2040 /* Assemble the instruction - return upon failure. */
2041 if (assemble_insn (op, &crx_ins) == 0)
2042 return;
2043
2044 /* Print the instruction. */
2045 print_insn (&crx_ins);
2046 }
This page took 0.104901 seconds and 5 git commands to generate.