a7e98b7689721112db0b235963d06ea32ed814d7
[deliverable/binutils-gdb.git] / gas / config / tc-d10v.c
1 /* tc-d10v.c -- Assembler code for the Mitsubishi D10V
2
3 Copyright (C) 1996 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <stdio.h>
23 #include <ctype.h>
24 #include "as.h"
25 #include "subsegs.h"
26 #include "opcode/d10v.h"
27 #include "elf/ppc.h"
28
29 const char comment_chars[] = ";";
30 const char line_comment_chars[] = "#";
31 const char line_separator_chars[] = "";
32 const char *md_shortopts = "O";
33 const char EXP_CHARS[] = "eE";
34 const char FLT_CHARS[] = "dD";
35
36 int Optimizing = 0;
37
38 #define AT_WORD (-1)
39
40 /* fixups */
41 #define MAX_INSN_FIXUPS (5)
42 struct d10v_fixup
43 {
44 expressionS exp;
45 int operand;
46 int pcrel;
47 int size;
48 bfd_reloc_code_real_type reloc;
49 };
50
51 typedef struct _fixups
52 {
53 int fc;
54 struct d10v_fixup fix[MAX_INSN_FIXUPS];
55 struct _fixups *next;
56 } Fixups;
57
58 static Fixups FixUps[2];
59 static Fixups *fixups;
60
61 /* local functions */
62 static int reg_name_search PARAMS ((char *name));
63 static int register_name PARAMS ((expressionS *expressionP));
64 static int check_range PARAMS ((unsigned long num, int bits, int flags));
65 static int postfix PARAMS ((char *p));
66 static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op));
67 static int get_operands PARAMS ((expressionS exp[]));
68 static struct d10v_opcode *find_opcode PARAMS ((struct d10v_opcode *opcode, expressionS ops[]));
69 static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers, unsigned long insn));
70 static void write_long PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
71 static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
72 static int write_2_short PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
73 struct d10v_opcode *opcode2, unsigned long insn2, int exec_type, Fixups *fx));
74 static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode));
75 static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type,
76 offsetT value, int left, fixS *fix));
77 static int parallel_ok PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
78 struct d10v_opcode *opcode2, unsigned long insn2));
79
80
81 struct option md_longopts[] = {
82 {NULL, no_argument, NULL, 0}
83 };
84 size_t md_longopts_size = sizeof(md_longopts);
85
86 static void d10v_dot_word PARAMS ((int));
87
88 /* The target specific pseudo-ops which we support. */
89 const pseudo_typeS md_pseudo_table[] =
90 {
91 { "word", d10v_dot_word, 2 },
92 { NULL, NULL, 0 }
93 };
94
95 /* Opcode hash table. */
96 static struct hash_control *d10v_hash;
97
98 /* reg_name_search does a binary search of the pre_defined_registers
99 array to see if "name" is a valid regiter name. Returns the register
100 number from the array on success, or -1 on failure. */
101
102 static int
103 reg_name_search (name)
104 char *name;
105 {
106 int middle, low, high;
107 int cmp;
108
109 low = 0;
110 high = reg_name_cnt() - 1;
111
112 do
113 {
114 middle = (low + high) / 2;
115 cmp = strcasecmp (name, pre_defined_registers[middle].name);
116 if (cmp < 0)
117 high = middle - 1;
118 else if (cmp > 0)
119 low = middle + 1;
120 else
121 return pre_defined_registers[middle].value;
122 }
123 while (low <= high);
124 return -1;
125 }
126
127 /* register_name() checks the string at input_line_pointer
128 to see if it is a valid register name */
129
130 static int
131 register_name (expressionP)
132 expressionS *expressionP;
133 {
134 int reg_number;
135 char c, *p = input_line_pointer;
136
137 while (*p && *p!='\n' && *p!='\r' && *p !=',' && *p!=' ' && *p!=')')
138 p++;
139
140 c = *p;
141 if (c)
142 *p++ = 0;
143
144 /* look to see if it's in the register table */
145 reg_number = reg_name_search (input_line_pointer);
146 if (reg_number >= 0)
147 {
148 expressionP->X_op = O_register;
149 /* temporarily store a pointer to the string here */
150 expressionP->X_op_symbol = (struct symbol *)input_line_pointer;
151 expressionP->X_add_number = reg_number;
152 input_line_pointer = p;
153 return 1;
154 }
155 if (c)
156 *(p-1) = c;
157 return 0;
158 }
159
160
161 static int
162 check_range (num, bits, flags)
163 unsigned long num;
164 int bits;
165 int flags;
166 {
167 long min, max, bit1;
168 int retval=0;
169
170 /* don't bother checking 16-bit values */
171 if (bits == 16)
172 return 0;
173
174 if (flags & OPERAND_SHIFT)
175 {
176 /* all special shift operands are unsigned */
177 /* and <= 16. We allow 0 for now. */
178 if (num>16)
179 return 1;
180 else
181 return 0;
182 }
183
184 if (flags & OPERAND_SIGNED)
185 {
186 max = (1 << (bits - 1))-1;
187 min = - (1 << (bits - 1));
188 if (((long)num > max) || ((long)num < min))
189 retval = 1;
190 }
191 else
192 {
193 max = (1 << bits) - 1;
194 min = 0;
195 if ((num > max) || (num < min))
196 retval = 1;
197 }
198 return retval;
199 }
200
201
202 void
203 md_show_usage (stream)
204 FILE *stream;
205 {
206 fprintf(stream, "D10V options:\n\
207 -O optimize. Will do some operations in parallel.\n");
208 }
209
210 int
211 md_parse_option (c, arg)
212 int c;
213 char *arg;
214 {
215 switch (c)
216 {
217 case 'O':
218 /* Optimize. Will attempt to parallelize operations */
219 Optimizing = 1;
220 break;
221 default:
222 return 0;
223 }
224 return 1;
225 }
226
227 symbolS *
228 md_undefined_symbol (name)
229 char *name;
230 {
231 return 0;
232 }
233
234 /* Turn a string in input_line_pointer into a floating point constant of type
235 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
236 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
237 */
238 char *
239 md_atof (type, litP, sizeP)
240 int type;
241 char *litP;
242 int *sizeP;
243 {
244 int prec;
245 LITTLENUM_TYPE words[4];
246 char *t;
247 int i;
248
249 switch (type)
250 {
251 case 'f':
252 prec = 2;
253 break;
254 case 'd':
255 prec = 4;
256 break;
257 default:
258 *sizeP = 0;
259 return "bad call to md_atof";
260 }
261
262 t = atof_ieee (input_line_pointer, type, words);
263 if (t)
264 input_line_pointer = t;
265
266 *sizeP = prec * 2;
267
268 for (i = 0; i < prec; i++)
269 {
270 md_number_to_chars (litP, (valueT) words[i], 2);
271 litP += 2;
272 }
273 return NULL;
274 }
275
276 void
277 md_convert_frag (abfd, sec, fragP)
278 bfd *abfd;
279 asection *sec;
280 fragS *fragP;
281 {
282 printf ("call to md_convert_frag \n");
283 abort ();
284 }
285
286 valueT
287 md_section_align (seg, addr)
288 asection *seg;
289 valueT addr;
290 {
291 int align = bfd_get_section_alignment (stdoutput, seg);
292 return ((addr + (1 << align) - 1) & (-1 << align));
293 }
294
295
296 void
297 md_begin ()
298 {
299 char *prev_name = "";
300 struct d10v_opcode *opcode;
301 d10v_hash = hash_new();
302
303 /* Insert unique names into hash table. The D10v instruction set
304 has many identical opcode names that have different opcodes based
305 on the operands. This hash table then provides a quick index to
306 the first opcode with a particular name in the opcode table. */
307
308 for (opcode = (struct d10v_opcode *)d10v_opcodes; opcode->name; opcode++)
309 {
310 if (strcmp (prev_name, opcode->name))
311 {
312 prev_name = (char *)opcode->name;
313 hash_insert (d10v_hash, opcode->name, (char *) opcode);
314 }
315 }
316
317 fixups = &FixUps[0];
318 FixUps[0].next = &FixUps[1];
319 FixUps[1].next = &FixUps[0];
320 }
321
322
323 /* this function removes the postincrement or postdecrement
324 operator ( '+' or '-' ) from an expression */
325
326 static int postfix (p)
327 char *p;
328 {
329 while (*p != '-' && *p != '+')
330 {
331 if (*p==0 || *p=='\n' || *p=='\r')
332 break;
333 p++;
334 }
335
336 if (*p == '-')
337 {
338 *p = ' ';
339 return (-1);
340 }
341 if (*p == '+')
342 {
343 *p = ' ';
344 return (1);
345 }
346
347 return (0);
348 }
349
350
351 static bfd_reloc_code_real_type
352 get_reloc (op)
353 struct d10v_operand *op;
354 {
355 int bits = op->bits;
356
357 /* printf("get_reloc: bits=%d address=%d\n",bits,op->flags & OPERAND_ADDR); */
358 if (bits <= 4)
359 return (0);
360
361 if (op->flags & OPERAND_ADDR)
362 {
363 if (bits == 8)
364 return (BFD_RELOC_D10V_10_PCREL_R);
365 else
366 return (BFD_RELOC_D10V_18_PCREL);
367 }
368
369 return (BFD_RELOC_16);
370 }
371
372
373 /* get_operands parses a string of operands and returns
374 an array of expressions */
375
376 static int
377 get_operands (exp)
378 expressionS exp[];
379 {
380 char *p = input_line_pointer;
381 int numops = 0;
382 int post = 0;
383
384 while (*p)
385 {
386 while (*p == ' ' || *p == '\t' || *p == ',')
387 p++;
388 if (*p==0 || *p=='\n' || *p=='\r')
389 break;
390
391 if (*p == '@')
392 {
393 p++;
394 exp[numops].X_op = O_absent;
395 if (*p == '(')
396 {
397 p++;
398 exp[numops].X_add_number = OPERAND_ATPAR;
399 }
400 else if (*p == '-')
401 {
402 p++;
403 exp[numops].X_add_number = OPERAND_ATMINUS;
404 }
405 else
406 {
407 exp[numops].X_add_number = OPERAND_ATSIGN;
408 post = postfix (p);
409 }
410 numops++;
411 continue;
412 }
413
414 if (*p == ')')
415 {
416 /* just skip the trailing paren */
417 p++;
418 continue;
419 }
420
421 input_line_pointer = p;
422
423 /* check to see if it might be a register name */
424 if (!register_name (&exp[numops]))
425 {
426 /* parse as an expression */
427 expression (&exp[numops]);
428 }
429
430 if (!strncasecmp (input_line_pointer, "@word", 5))
431 {
432 if (exp[numops].X_op == O_register)
433 {
434 /* if it looked like a register name but was followed by "@word" */
435 /* then it was really a symbol, so change it to one */
436 exp[numops].X_op = O_symbol;
437 exp[numops].X_add_symbol = symbol_find_or_make ((char *)exp[numops].X_op_symbol);
438 exp[numops].X_op_symbol = NULL;
439 }
440 exp[numops].X_add_number = AT_WORD;
441 input_line_pointer += 5;
442 }
443
444 if (exp[numops].X_op == O_illegal)
445 as_bad ("illegal operand");
446 else if (exp[numops].X_op == O_absent)
447 as_bad ("missing operand");
448
449 numops++;
450 p = input_line_pointer;
451 }
452
453 switch (post)
454 {
455 case -1: /* postdecrement mode */
456 exp[numops].X_op = O_absent;
457 exp[numops++].X_add_number = OPERAND_MINUS;
458 break;
459 case 1: /* postincrement mode */
460 exp[numops].X_op = O_absent;
461 exp[numops++].X_add_number = OPERAND_PLUS;
462 break;
463 }
464
465 exp[numops].X_op = 0;
466 return (numops);
467 }
468
469 static unsigned long
470 d10v_insert_operand (insn, op_type, value, left, fix)
471 unsigned long insn;
472 int op_type;
473 offsetT value;
474 int left;
475 fixS *fix;
476 {
477 int shift, bits;
478
479 shift = d10v_operands[op_type].shift;
480 if (left)
481 shift += 15;
482
483 bits = d10v_operands[op_type].bits;
484
485 /* truncate to the proper number of bits */
486 if (check_range (value, bits, d10v_operands[op_type].flags))
487 as_bad_where (fix->fx_file, fix->fx_line, "operand out of range: %d", value);
488
489 value &= 0x7FFFFFFF >> (31 - bits);
490 insn |= (value << shift);
491
492 return insn;
493 }
494
495
496 /* build_insn takes a pointer to the opcode entry in the opcode table
497 and the array of operand expressions and returns the instruction */
498
499 static unsigned long
500 build_insn (opcode, opers, insn)
501 struct d10v_opcode *opcode;
502 expressionS *opers;
503 unsigned long insn;
504 {
505 int i, bits, shift, flags, format;
506 unsigned int number;
507
508 /* the insn argument is only used for the DIVS kludge */
509 if (insn)
510 format = LONG_R;
511 else
512 {
513 insn = opcode->opcode;
514 format = opcode->format;
515 }
516
517 for (i=0;opcode->operands[i];i++)
518 {
519 flags = d10v_operands[opcode->operands[i]].flags;
520 bits = d10v_operands[opcode->operands[i]].bits;
521 shift = d10v_operands[opcode->operands[i]].shift;
522 number = opers[i].X_add_number;
523
524 if (flags & OPERAND_REG)
525 {
526 number &= REGISTER_MASK;
527 if (format == LONG_L)
528 shift += 15;
529 }
530
531 if (opers[i].X_op != O_register && opers[i].X_op != O_constant)
532 {
533 /* now create a fixup */
534
535 /*
536 printf("need a fixup: ");
537 print_expr_1(stdout,&opers[i]);
538 printf("\n");
539 */
540
541 if (fixups->fc >= MAX_INSN_FIXUPS)
542 as_fatal ("too many fixups");
543
544 if (opers[i].X_op == O_symbol && number == AT_WORD)
545 {
546 number = opers[i].X_add_number = 0;
547 fixups->fix[fixups->fc].reloc = BFD_RELOC_D10V_18;
548 } else
549 fixups->fix[fixups->fc].reloc =
550 get_reloc((struct d10v_operand *)&d10v_operands[opcode->operands[i]]);
551
552 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_16 ||
553 fixups->fix[fixups->fc].reloc == BFD_RELOC_D10V_18)
554 fixups->fix[fixups->fc].size = 2;
555 else
556 fixups->fix[fixups->fc].size = 4;
557
558 fixups->fix[fixups->fc].exp = opers[i];
559 fixups->fix[fixups->fc].operand = opcode->operands[i];
560 fixups->fix[fixups->fc].pcrel = (flags & OPERAND_ADDR) ? true : false;
561 (fixups->fc)++;
562 }
563
564 /* truncate to the proper number of bits */
565 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
566 as_bad("operand out of range: %d",number);
567 number &= 0x7FFFFFFF >> (31 - bits);
568 insn = insn | (number << shift);
569 }
570
571 /* kludge: for DIVS, we need to put the operands in twice */
572 /* on the second pass, format is changed to LONG_R to force */
573 /* the second set of operands to not be shifted over 15 */
574 if ((opcode->opcode == OPCODE_DIVS) && (format==LONG_L))
575 insn = build_insn (opcode, opers, insn);
576
577 return insn;
578 }
579
580 /* write out a long form instruction */
581 static void
582 write_long (opcode, insn, fx)
583 struct d10v_opcode *opcode;
584 unsigned long insn;
585 Fixups *fx;
586 {
587 int i, where;
588 char *f = frag_more(4);
589
590 insn |= FM11;
591 /* printf("INSN: %08x\n",insn); */
592 number_to_chars_bigendian (f, insn, 4);
593
594 for (i=0; i < fx->fc; i++)
595 {
596 if (fx->fix[i].reloc)
597 {
598 where = f - frag_now->fr_literal;
599 if (fx->fix[i].size == 2)
600 where += 2;
601 /*
602 printf("fix_new_exp: where:%x size:%d\n ",where,fx->fix[i].size);
603 print_expr_1(stdout,&(fx->fix[i].exp));
604 printf("\n");
605 */
606
607 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
608 fx->fix[i].operand |= 4096;
609
610 fix_new_exp (frag_now,
611 where,
612 fx->fix[i].size,
613 &(fx->fix[i].exp),
614 fx->fix[i].pcrel,
615 fx->fix[i].operand|2048);
616 }
617 }
618 fx->fc = 0;
619 }
620
621
622 /* write out a short form instruction by itself */
623 static void
624 write_1_short (opcode, insn, fx)
625 struct d10v_opcode *opcode;
626 unsigned long insn;
627 Fixups *fx;
628 {
629 char *f = frag_more(4);
630 int i, where;
631
632 if (opcode->exec_type & PARONLY)
633 as_fatal ("Instruction must be executed in parallel with another instruction.");
634
635 /* the other container needs to be NOP */
636 /* according to 4.3.1: for FM=00, sub-instructions performed only
637 by IU cannot be encoded in L-container. */
638 if (opcode->unit == IU)
639 insn |= FM00 | (NOP << 15); /* right container */
640 else
641 insn = FM00 | (insn << 15) | NOP; /* left container */
642
643 /* printf("INSN: %08x\n",insn); */
644 number_to_chars_bigendian (f, insn, 4);
645 for (i=0; i < fx->fc; i++)
646 {
647 if (fx->fix[i].reloc)
648 {
649 where = f - frag_now->fr_literal;
650 if (fx->fix[i].size == 2)
651 where += 2;
652
653 /*
654 printf("fix_new_exp: where:%x size:%d\n ",where, fx->fix[i].size);
655 print_expr_1(stdout,&(fx->fix[i].exp));
656 printf("\n");
657 */
658
659 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
660 fx->fix[i].operand |= 4096;
661
662 /* if it's an R reloc, we may have to switch it to L */
663 if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (opcode->unit != IU) )
664 fx->fix[i].operand |= 1024;
665
666 fix_new_exp (frag_now,
667 where,
668 fx->fix[i].size,
669 &(fx->fix[i].exp),
670 fx->fix[i].pcrel,
671 fx->fix[i].operand|2048);
672 }
673 }
674 fx->fc = 0;
675 }
676
677 /* write out a short form instruction if possible */
678 /* return number of instructions not written out */
679 static int
680 write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
681 struct d10v_opcode *opcode1, *opcode2;
682 unsigned long insn1, insn2;
683 int exec_type;
684 Fixups *fx;
685 {
686 unsigned long insn;
687 char *f;
688 int i,j, where;
689
690 if ( (exec_type != 1) && ((opcode1->exec_type & PARONLY)
691 || (opcode2->exec_type & PARONLY)))
692 as_fatal("Instruction must be executed in parallel");
693
694 if ( (opcode1->format & LONG_OPCODE) || (opcode2->format & LONG_OPCODE))
695 as_fatal ("Long instructions may not be combined.");
696
697 if(opcode1->exec_type & BRANCH_LINK && opcode2->exec_type != PARONLY)
698 {
699 /* subroutines must be called from 32-bit boundaries */
700 /* so the return address will be correct */
701 write_1_short (opcode1, insn1, fx->next);
702 return (1);
703 }
704
705 switch (exec_type)
706 {
707 case 0: /* order not specified */
708 if ( Optimizing && parallel_ok (opcode1, insn1, opcode2, insn2))
709 {
710 /* parallel */
711 if (opcode1->unit == IU)
712 insn = FM00 | (insn2 << 15) | insn1;
713 else if (opcode2->unit == MU)
714 insn = FM00 | (insn2 << 15) | insn1;
715 else
716 {
717 insn = FM00 | (insn1 << 15) | insn2;
718 fx = fx->next;
719 }
720 }
721 else if (opcode1->unit == IU)
722 {
723 /* reverse sequential */
724 insn = FM10 | (insn2 << 15) | insn1;
725 }
726 else
727 {
728 /* sequential */
729 insn = FM01 | (insn1 << 15) | insn2;
730 fx = fx->next;
731 }
732 break;
733 case 1: /* parallel */
734 if (opcode1->exec_type & SEQ || opcode2->exec_type & SEQ)
735 as_fatal ("One of these instructions may not be executed in parallel.");
736
737 if ( !parallel_ok (opcode1, insn1, opcode2, insn2)
738 && (opcode1->exec_type & PARONLY) == 0
739 && (opcode2->exec_type & PARONLY) == 0)
740 as_fatal ("Two instructions may not be executed in parallel with each other.");
741
742 if (opcode1->unit == IU)
743 {
744 if (opcode2->unit == IU)
745 as_fatal ("Two IU instructions may not be executed in parallel");
746 as_warn ("Swapping instruction order");
747 insn = FM00 | (insn2 << 15) | insn1;
748 }
749 else if (opcode2->unit == MU)
750 {
751 if (opcode1->unit == MU)
752 as_fatal ("Two MU instructions may not be executed in parallel");
753 as_warn ("Swapping instruction order");
754 insn = FM00 | (insn2 << 15) | insn1;
755 }
756 else
757 {
758 insn = FM00 | (insn1 << 15) | insn2;
759 fx = fx->next;
760 }
761 break;
762 case 2: /* sequential */
763 if (opcode1->unit == IU)
764 as_fatal ("IU instruction may not be in the left container");
765 insn = FM01 | (insn1 << 15) | insn2;
766 fx = fx->next;
767 break;
768 case 3: /* reverse sequential */
769 if (opcode2->unit == MU)
770 as_fatal ("MU instruction may not be in the right container");
771 insn = FM10 | (insn1 << 15) | insn2;
772 fx = fx->next;
773 break;
774 default:
775 as_fatal("unknown execution type passed to write_2_short()");
776 }
777
778 /* printf("INSN: %08x\n",insn); */
779 f = frag_more(4);
780 number_to_chars_bigendian (f, insn, 4);
781
782 for (j=0; j<2; j++)
783 {
784 for (i=0; i < fx->fc; i++)
785 {
786 if (fx->fix[i].reloc)
787 {
788 where = f - frag_now->fr_literal;
789 if (fx->fix[i].size == 2)
790 where += 2;
791
792 if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
793 fx->fix[i].operand |= 1024;
794
795 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
796 fx->fix[i].operand |= 4096;
797
798 /*
799 printf("fix_new_exp: where:%x reloc:%d\n ",where,fx->fix[i].operand);
800 print_expr_1(stdout,&(fx->fix[i].exp));
801 printf("\n");
802 */
803
804 fix_new_exp (frag_now,
805 where,
806 fx->fix[i].size,
807 &(fx->fix[i].exp),
808 fx->fix[i].pcrel,
809 fx->fix[i].operand|2048);
810 }
811 }
812 fx->fc = 0;
813 fx = fx->next;
814 }
815 return (0);
816 }
817
818
819 /* Check 2 instructions and determine if they can be safely */
820 /* executed in parallel. Returns 1 if they can be. */
821 static int
822 parallel_ok (op1, insn1, op2, insn2)
823 struct d10v_opcode *op1, *op2;
824 unsigned long insn1, insn2;
825 {
826 int i, j, flags, mask, shift, regno;
827 unsigned long ins, mod[2], used[2];
828 struct d10v_opcode *op;
829
830 if ((op1->exec_type & SEQ) != 0 || (op2->exec_type & SEQ) != 0
831 || (op1->exec_type & PAR) == 0 || (op2->exec_type & PAR) == 0
832 || (op1->unit == BOTH) || (op2->unit == BOTH)
833 || (op1->unit == IU && op2->unit == IU)
834 || (op1->unit == MU && op2->unit == MU))
835 return 0;
836
837 /* The idea here is to create two sets of bitmasks (mod and used) */
838 /* which indicate which registers are modified or used by each instruction. */
839 /* The operation can only be done in parallel if instruction 1 and instruction 2 */
840 /* modify different registers, and neither instruction modifies any registers */
841 /* the other is using. Accesses to control registers, PSW, and memory are treated */
842 /* as accesses to a single register. So if both instructions write memory or one */
843 /* instruction writes memory and the other reads, then they cannot be done in parallel. */
844 /* Likewise, if one instruction mucks with the psw and the other reads the PSW */
845 /* (which includes C, F0, and F1), then they cannot operate safely in parallel. */
846
847 /* the bitmasks (mod and used) look like this (bit 31 = MSB) */
848 /* r0-r15 0-15 */
849 /* a0-a1 16-17 */
850 /* cr (not psw) 18 */
851 /* psw 19 */
852 /* mem 20 */
853
854 for (j=0;j<2;j++)
855 {
856 if (j == 0)
857 {
858 op = op1;
859 ins = insn1;
860 }
861 else
862 {
863 op = op2;
864 ins = insn2;
865 }
866 mod[j] = used[j] = 0;
867 if (op->exec_type & BRANCH_LINK)
868 mod[j] |= 1 << 13;
869
870 for (i = 0; op->operands[i]; i++)
871 {
872 flags = d10v_operands[op->operands[i]].flags;
873 shift = d10v_operands[op->operands[i]].shift;
874 mask = 0x7FFFFFFF >> (31 - d10v_operands[op->operands[i]].bits);
875 if (flags & OPERAND_REG)
876 {
877 regno = (ins >> shift) & mask;
878 if (flags & OPERAND_ACC)
879 regno += 16;
880 else if (flags & OPERAND_CONTROL) /* mvtc or mvfc */
881 {
882 if (regno == 0)
883 regno = 19;
884 else
885 regno = 18;
886 }
887 else if (flags & OPERAND_FLAG)
888 regno = 19;
889
890 if ( flags & OPERAND_DEST )
891 {
892 mod[j] |= 1 << regno;
893 if (flags & OPERAND_EVEN)
894 mod[j] |= 1 << (regno + 1);
895 }
896 else
897 {
898 used[j] |= 1 << regno ;
899 if (flags & OPERAND_EVEN)
900 used[j] |= 1 << (regno + 1);
901 }
902 }
903 }
904 if (op->exec_type & RMEM)
905 used[j] |= 1 << 20;
906 else if (op->exec_type & WMEM)
907 mod[j] |= 1 << 20;
908 else if (op->exec_type & RF0)
909 used[j] |= 1 << 19;
910 else if (op->exec_type & WF0)
911 mod[j] |= 1 << 19;
912 else if (op->exec_type & WCAR)
913 mod[j] |= 1 << 19;
914 }
915 if ((mod[0] & mod[1]) == 0 && (mod[0] & used[1]) == 0 && (mod[1] & used[0]) == 0)
916 return 1;
917 return 0;
918 }
919
920
921 /* This is the main entry point for the machine-dependent assembler. str points to a
922 machine-dependent instruction. This function is supposed to emit the frags/bytes
923 it assembles to. For the D10V, it mostly handles the special VLIW parsing and packing
924 and leaves the difficult stuff to do_assemble().
925 */
926
927 static unsigned long prev_insn;
928 static struct d10v_opcode *prev_opcode = 0;
929 static subsegT prev_subseg;
930 static segT prev_seg;
931
932 void
933 md_assemble (str)
934 char *str;
935 {
936 struct d10v_opcode *opcode;
937 unsigned long insn;
938 int extype=0; /* execution type; parallel, etc */
939 static int etype=0; /* saved extype. used for multiline instructions */
940 char *str2;
941
942 /* printf("md_assemble: str=%s\n",str); */
943
944 if (etype == 0)
945 {
946 /* look for the special multiple instruction separators */
947 str2 = strstr (str, "||");
948 if (str2)
949 extype = 1;
950 else
951 {
952 str2 = strstr (str, "->");
953 if (str2)
954 extype = 2;
955 else
956 {
957 str2 = strstr (str, "<-");
958 if (str2)
959 extype = 3;
960 }
961 }
962 /* str2 points to the separator, if one */
963 if (str2)
964 {
965 *str2 = 0;
966
967 /* if two instructions are present and we already have one saved
968 then first write it out */
969 if (prev_opcode)
970 write_1_short (prev_opcode, prev_insn, fixups->next);
971
972 /* assemble first instruction and save it */
973 prev_insn = do_assemble (str, &prev_opcode);
974 if (prev_insn == -1)
975 as_fatal ("can't find opcode ");
976 fixups = fixups->next;
977 str = str2 + 2;
978 }
979 }
980
981 insn = do_assemble (str, &opcode);
982 if (insn == -1)
983 {
984 if (extype)
985 {
986 etype = extype;
987 return;
988 }
989 as_fatal ("can't find opcode ");
990 }
991
992 if (etype)
993 {
994 extype = etype;
995 etype = 0;
996 }
997
998 /* if this is a long instruction, write it and any previous short instruction */
999 if (opcode->format & LONG_OPCODE)
1000 {
1001 if (extype)
1002 as_fatal("Unable to mix instructions as specified");
1003 if (prev_opcode)
1004 {
1005 write_1_short (prev_opcode, prev_insn, fixups->next);
1006 prev_opcode = NULL;
1007 }
1008 write_long (opcode, insn, fixups);
1009 prev_opcode = NULL;
1010 return;
1011 }
1012
1013 if (prev_opcode && (write_2_short (prev_opcode, prev_insn, opcode, insn, extype, fixups) == 0))
1014 {
1015 /* no instructions saved */
1016 prev_opcode = NULL;
1017 }
1018 else
1019 {
1020 if (extype)
1021 as_fatal("Unable to mix instructions as specified");
1022 /* save off last instruction so it may be packed on next pass */
1023 prev_opcode = opcode;
1024 prev_insn = insn;
1025 prev_seg = now_seg;
1026 prev_subseg = now_subseg;
1027 fixups = fixups->next;
1028 }
1029 }
1030
1031
1032 /* do_assemble assembles a single instruction and returns an opcode */
1033 /* it returns -1 (an invalid opcode) on error */
1034
1035 static unsigned long
1036 do_assemble (str, opcode)
1037 char *str;
1038 struct d10v_opcode **opcode;
1039 {
1040 unsigned char *op_start, *save;
1041 unsigned char *op_end;
1042 char name[20];
1043 int nlen = 0;
1044 expressionS myops[6];
1045 unsigned long insn;
1046
1047 /* printf("do_assemble: str=%s\n",str); */
1048
1049 /* Drop leading whitespace */
1050 while (*str == ' ')
1051 str++;
1052
1053 /* find the opcode end */
1054 for (op_start = op_end = (unsigned char *) (str);
1055 *op_end
1056 && nlen < 20
1057 && !is_end_of_line[*op_end] && *op_end != ' ';
1058 op_end++)
1059 {
1060 name[nlen] = op_start[nlen];
1061 nlen++;
1062 }
1063 name[nlen] = 0;
1064
1065 if (nlen == 0)
1066 return (-1);
1067
1068 /* find the first opcode with the proper name */
1069 *opcode = (struct d10v_opcode *)hash_find (d10v_hash, name);
1070 if (*opcode == NULL)
1071 as_fatal ("unknown opcode: %s",name);
1072
1073 save = input_line_pointer;
1074 input_line_pointer = op_end;
1075 *opcode = find_opcode (*opcode, myops);
1076 if (*opcode == 0)
1077 return -1;
1078 input_line_pointer = save;
1079
1080 insn = build_insn ((*opcode), myops, 0);
1081 /* printf("sub-insn = %lx\n",insn); */
1082 return (insn);
1083 }
1084
1085 /* find_opcode() gets a pointer to an entry in the opcode table. */
1086 /* It must look at all opcodes with the same name and use the operands */
1087 /* to choose the correct opcode. */
1088
1089 static struct d10v_opcode *
1090 find_opcode (opcode, myops)
1091 struct d10v_opcode *opcode;
1092 expressionS myops[];
1093 {
1094 int i, match, done, numops;
1095 struct d10v_opcode *next_opcode;
1096
1097 /* get all the operands and save them as expressions */
1098 numops = get_operands (myops);
1099
1100 /* now see if the operand is a fake. If so, find the correct size */
1101 /* instruction, if possible */
1102 if (opcode->format == OPCODE_FAKE)
1103 {
1104 int opnum = opcode->operands[0];
1105
1106 if (myops[opnum].X_op == O_register)
1107 {
1108 myops[opnum].X_op = O_symbol;
1109 myops[opnum].X_add_symbol = symbol_find_or_make ((char *)myops[opnum].X_op_symbol);
1110 myops[opnum].X_add_number = 0;
1111 myops[opnum].X_op_symbol = NULL;
1112 }
1113
1114 if (myops[opnum].X_op == O_constant || (myops[opnum].X_op == O_symbol &&
1115 S_IS_DEFINED(myops[opnum].X_add_symbol) &&
1116 (S_GET_SEGMENT(myops[opnum].X_add_symbol) == now_seg)))
1117 {
1118 next_opcode=opcode+1;
1119 for (i=0; opcode->operands[i+1]; i++)
1120 {
1121 int bits = d10v_operands[next_opcode->operands[opnum]].bits;
1122 int flags = d10v_operands[next_opcode->operands[opnum]].flags;
1123 if (flags & OPERAND_ADDR)
1124 bits += 2;
1125 if (myops[opnum].X_op == O_constant)
1126 {
1127 if (!check_range (myops[opnum].X_add_number, bits, flags))
1128 return next_opcode;
1129 }
1130 else
1131 {
1132 fragS *f;
1133 long value;
1134 /* calculate the current address by running through the previous frags */
1135 /* and adding our current offset */
1136 for (value = 0, f = frchain_now->frch_root; f; f = f->fr_next)
1137 value += f->fr_fix;
1138
1139 if (flags & OPERAND_ADDR)
1140 value = S_GET_VALUE(myops[opnum].X_add_symbol) - value -
1141 (obstack_next_free(&frchain_now->frch_obstack) - frag_now->fr_literal);
1142 else
1143 value = S_GET_VALUE(myops[opnum].X_add_symbol);
1144
1145 if (myops[opnum].X_add_number == AT_WORD)
1146 {
1147 if (bits > 4)
1148 {
1149 bits += 2;
1150 if (!check_range (value, bits, flags))
1151 return next_opcode;
1152 }
1153 }
1154 else if (!check_range (value, bits, flags))
1155 return next_opcode;
1156 }
1157 next_opcode++;
1158 }
1159 as_fatal ("value out of range");
1160 }
1161 else
1162 {
1163 /* not a constant, so use a long instruction */
1164 return opcode+2;
1165 }
1166 }
1167 else
1168 {
1169 match = 0;
1170 /* now search the opcode table table for one with operands */
1171 /* that matches what we've got */
1172 while (!match)
1173 {
1174 match = 1;
1175 for (i = 0; opcode->operands[i]; i++)
1176 {
1177 int flags = d10v_operands[opcode->operands[i]].flags;
1178 int X_op = myops[i].X_op;
1179 int num = myops[i].X_add_number;
1180
1181 if (X_op==0)
1182 {
1183 match=0;
1184 break;
1185 }
1186
1187 if (flags & OPERAND_REG)
1188 {
1189 if ((X_op != O_register) ||
1190 ((flags & OPERAND_ACC) != (num & OPERAND_ACC)) ||
1191 ((flags & OPERAND_FLAG) != (num & OPERAND_FLAG)) ||
1192 ((flags & OPERAND_CONTROL) != (num & OPERAND_CONTROL)))
1193 {
1194 match=0;
1195 break;
1196 }
1197 }
1198
1199 if (((flags & OPERAND_MINUS) && ((X_op != O_absent) || (num != OPERAND_MINUS))) ||
1200 ((flags & OPERAND_PLUS) && ((X_op != O_absent) || (num != OPERAND_PLUS))) ||
1201 ((flags & OPERAND_ATMINUS) && ((X_op != O_absent) || (num != OPERAND_ATMINUS))) ||
1202 ((flags & OPERAND_ATPAR) && ((X_op != O_absent) || (num != OPERAND_ATPAR))) ||
1203 ((flags & OPERAND_ATSIGN) && ((X_op != O_absent) || (num != OPERAND_ATSIGN))))
1204 {
1205 match=0;
1206 break;
1207 }
1208 }
1209 /* we're only done if the operands matched so far AND there
1210 are no more to check */
1211 if (match && myops[i].X_op==0)
1212 break;
1213 else
1214 match = 0;
1215
1216 next_opcode = opcode+1;
1217 if (next_opcode->opcode == 0)
1218 break;
1219 if (strcmp(next_opcode->name, opcode->name))
1220 break;
1221 opcode = next_opcode;
1222 }
1223 }
1224
1225 if (!match)
1226 {
1227 as_bad ("bad opcode or operands");
1228 return (0);
1229 }
1230
1231 /* Check that all registers that are required to be even are. */
1232 /* Also, if any operands were marked as registers, but were really symbols */
1233 /* fix that here. */
1234 for (i=0; opcode->operands[i]; i++)
1235 {
1236 if ((d10v_operands[opcode->operands[i]].flags & OPERAND_EVEN) &&
1237 (myops[i].X_add_number & 1))
1238 as_fatal("Register number must be EVEN");
1239 if (myops[i].X_op == O_register)
1240 {
1241 if (!(d10v_operands[opcode->operands[i]].flags & OPERAND_REG))
1242 {
1243 myops[i].X_op = O_symbol;
1244 myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol);
1245 myops[i].X_add_number = 0;
1246 myops[i].X_op_symbol = NULL;
1247 }
1248 }
1249 }
1250 return opcode;
1251 }
1252
1253 /* if while processing a fixup, a reloc really needs to be created */
1254 /* then it is done here */
1255
1256 arelent *
1257 tc_gen_reloc (seg, fixp)
1258 asection *seg;
1259 fixS *fixp;
1260 {
1261 arelent *reloc;
1262 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
1263 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
1264 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1265 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1266 if (reloc->howto == (reloc_howto_type *) NULL)
1267 {
1268 as_bad_where (fixp->fx_file, fixp->fx_line,
1269 "reloc %d not supported by object file format", (int)fixp->fx_r_type);
1270 return NULL;
1271 }
1272 reloc->addend = fixp->fx_addnumber;
1273 /* printf("tc_gen_reloc: addr=%x addend=%x\n", reloc->address, reloc->addend); */
1274 return reloc;
1275 }
1276
1277 int
1278 md_estimate_size_before_relax (fragp, seg)
1279 fragS *fragp;
1280 asection *seg;
1281 {
1282 abort ();
1283 return 0;
1284 }
1285
1286 long
1287 md_pcrel_from_section (fixp, sec)
1288 fixS *fixp;
1289 segT sec;
1290 {
1291 if (fixp->fx_addsy != (symbolS *)NULL && !S_IS_DEFINED (fixp->fx_addsy))
1292 return 0;
1293 /* printf("pcrel_from_section: %x\n", fixp->fx_frag->fr_address + fixp->fx_where); */
1294 return fixp->fx_frag->fr_address + fixp->fx_where;
1295 }
1296
1297 int
1298 md_apply_fix3 (fixp, valuep, seg)
1299 fixS *fixp;
1300 valueT *valuep;
1301 segT seg;
1302 {
1303 char *where;
1304 unsigned long insn;
1305 long value;
1306 int op_type;
1307 int left=0;
1308
1309 if (fixp->fx_addsy == (symbolS *) NULL)
1310 {
1311 value = *valuep;
1312 fixp->fx_done = 1;
1313 }
1314 else if (fixp->fx_pcrel)
1315 value = *valuep;
1316 else
1317 {
1318 value = fixp->fx_offset;
1319 if (fixp->fx_subsy != (symbolS *) NULL)
1320 {
1321 if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
1322 value -= S_GET_VALUE (fixp->fx_subsy);
1323 else
1324 {
1325 /* We don't actually support subtracting a symbol. */
1326 as_bad_where (fixp->fx_file, fixp->fx_line,
1327 "expression too complex");
1328 }
1329 }
1330 }
1331
1332 /* printf("md_apply_fix: value=0x%x type=0x%x where=0x%x size=%d line=%d\n", value, fixp->fx_r_type,fixp->fx_where,fixp->fx_size, fixp->fx_line); */
1333
1334 op_type = fixp->fx_r_type;
1335 if (op_type & 2048)
1336 {
1337 op_type -= 2048;
1338 if (op_type & 1024)
1339 {
1340 op_type -= 1024;
1341 fixp->fx_r_type = BFD_RELOC_D10V_10_PCREL_L;
1342 left = 1;
1343 }
1344 else if (op_type & 4096)
1345 {
1346 op_type -= 4096;
1347 fixp->fx_r_type = BFD_RELOC_D10V_18;
1348 }
1349 else
1350 fixp->fx_r_type = get_reloc((struct d10v_operand *)&d10v_operands[op_type]);
1351 }
1352
1353 /* Fetch the instruction, insert the fully resolved operand
1354 value, and stuff the instruction back again. */
1355 where = fixp->fx_frag->fr_literal + fixp->fx_where;
1356 insn = bfd_getb32 ((unsigned char *) where);
1357
1358 switch (fixp->fx_r_type)
1359 {
1360 case BFD_RELOC_D10V_10_PCREL_L:
1361 case BFD_RELOC_D10V_10_PCREL_R:
1362 case BFD_RELOC_D10V_18_PCREL:
1363 case BFD_RELOC_D10V_18:
1364 /* instruction addresses are always right-shifted by 2 */
1365 value >>= 2;
1366 if (fixp->fx_size == 2)
1367 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1368 else
1369 {
1370 /* printf(" insn=%x value=%x where=%x pcrel=%x\n",insn,value,fixp->fx_where,fixp->fx_pcrel); */
1371 insn = d10v_insert_operand (insn, op_type, (offsetT)value, left, fixp);
1372 /* printf(" new insn=%x\n",insn); */
1373 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1374 }
1375 break;
1376 case BFD_RELOC_32:
1377 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1378 break;
1379 case BFD_RELOC_16:
1380 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1381 break;
1382 default:
1383 as_fatal ("line %d: unknown relocation type: 0x%x",fixp->fx_line,fixp->fx_r_type);
1384 }
1385 return 0;
1386 }
1387
1388
1389 /* d10v_cleanup() is called after the assembler has finished parsing the input
1390 file or after a label is defined. Because the D10V assembler sometimes saves short
1391 instructions to see if it can package them with the next instruction, there may
1392 be a short instruction that still needs written. */
1393 int
1394 d10v_cleanup (done)
1395 int done;
1396 {
1397 segT seg;
1398 subsegT subseg;
1399
1400 if ( prev_opcode && (done || (now_seg == prev_seg) && (now_subseg == prev_subseg)))
1401 {
1402 seg = now_seg;
1403 subseg = now_subseg;
1404 subseg_set (prev_seg, prev_subseg);
1405 write_1_short (prev_opcode, prev_insn, fixups->next);
1406 subseg_set (seg, subseg);
1407 prev_opcode = NULL;
1408 }
1409 return 1;
1410 }
1411
1412 /* Like normal .word, except support @word */
1413 /* clobbers input_line_pointer, checks end-of-line. */
1414 static void
1415 d10v_dot_word (nbytes)
1416 register int nbytes; /* 1=.byte, 2=.word, 4=.long */
1417 {
1418 expressionS exp;
1419 bfd_reloc_code_real_type reloc;
1420 char *p;
1421 int offset;
1422
1423 if (is_it_end_of_statement ())
1424 {
1425 demand_empty_rest_of_line ();
1426 return;
1427 }
1428
1429 do
1430 {
1431 expression (&exp);
1432 if (!strncasecmp (input_line_pointer, "@word", 5))
1433 {
1434 exp.X_add_number = 0;
1435 input_line_pointer += 5;
1436
1437 p = frag_more (2);
1438 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
1439 &exp, 0, BFD_RELOC_D10V_18);
1440 }
1441 else
1442 emit_expr (&exp, 2);
1443 }
1444 while (*input_line_pointer++ == ',');
1445
1446 input_line_pointer--; /* Put terminator back into stream. */
1447 demand_empty_rest_of_line ();
1448 }
1449
1450
1451 /* Mitsubishi asked that we support some old syntax that apparently */
1452 /* had immediate operands starting with '#'. This is in some of their */
1453 /* sample code but is not documented (although it appears in some */
1454 /* examples in their assembler manual). For now, we'll solve this */
1455 /* compatibility problem by simply ignoring any '#' at the beginning */
1456 /* of an operand. */
1457
1458 /* operands that begin with '#' should fall through to here */
1459 /* from expr.c */
1460
1461 void
1462 md_operand (expressionP)
1463 expressionS *expressionP;
1464 {
1465 if (*input_line_pointer == '#')
1466 {
1467 input_line_pointer++;
1468 expression (expressionP);
1469 }
1470 }
1471
This page took 0.059661 seconds and 4 git commands to generate.