bc20d32a2a32cf31f45e806cfcf97d5d161a2e1b
[deliverable/binutils-gdb.git] / gas / config / tc-d10v.c
1 /* tc-d10v.c -- Assembler code for the Mitsubishi D10V
2
3 Copyright (C) 1996, 1997 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <stdio.h>
23 #include <ctype.h>
24 #include "as.h"
25 #include "subsegs.h"
26 #include "opcode/d10v.h"
27 #include "elf/ppc.h"
28
29 const char comment_chars[] = ";";
30 const char line_comment_chars[] = "#";
31 const char line_separator_chars[] = "";
32 const char *md_shortopts = "O";
33 const char EXP_CHARS[] = "eE";
34 const char FLT_CHARS[] = "dD";
35
36 int Optimizing = 0;
37
38 #define AT_WORD (-1)
39
40 /* fixups */
41 #define MAX_INSN_FIXUPS (5)
42 struct d10v_fixup
43 {
44 expressionS exp;
45 int operand;
46 int pcrel;
47 int size;
48 bfd_reloc_code_real_type reloc;
49 };
50
51 typedef struct _fixups
52 {
53 int fc;
54 struct d10v_fixup fix[MAX_INSN_FIXUPS];
55 struct _fixups *next;
56 } Fixups;
57
58 static Fixups FixUps[2];
59 static Fixups *fixups;
60
61 /* local functions */
62 static int reg_name_search PARAMS ((char *name));
63 static int register_name PARAMS ((expressionS *expressionP));
64 static int check_range PARAMS ((unsigned long num, int bits, int flags));
65 static int postfix PARAMS ((char *p));
66 static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op));
67 static int get_operands PARAMS ((expressionS exp[]));
68 static struct d10v_opcode *find_opcode PARAMS ((struct d10v_opcode *opcode, expressionS ops[]));
69 static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers, unsigned long insn));
70 static void write_long PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
71 static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
72 static int write_2_short PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
73 struct d10v_opcode *opcode2, unsigned long insn2, int exec_type, Fixups *fx));
74 static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode));
75 static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type,
76 offsetT value, int left, fixS *fix));
77 static int parallel_ok PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
78 struct d10v_opcode *opcode2, unsigned long insn2,
79 int exec_type));
80
81 struct option md_longopts[] = {
82 {NULL, no_argument, NULL, 0}
83 };
84 size_t md_longopts_size = sizeof(md_longopts);
85
86 static void d10v_dot_word PARAMS ((int));
87
88 /* The target specific pseudo-ops which we support. */
89 const pseudo_typeS md_pseudo_table[] =
90 {
91 { "word", d10v_dot_word, 2 },
92 { NULL, NULL, 0 }
93 };
94
95 /* Opcode hash table. */
96 static struct hash_control *d10v_hash;
97
98 /* reg_name_search does a binary search of the d10v_predefined_registers
99 array to see if "name" is a valid regiter name. Returns the register
100 number from the array on success, or -1 on failure. */
101
102 static int
103 reg_name_search (name)
104 char *name;
105 {
106 int middle, low, high;
107 int cmp;
108
109 low = 0;
110 high = d10v_reg_name_cnt() - 1;
111
112 do
113 {
114 middle = (low + high) / 2;
115 cmp = strcasecmp (name, d10v_predefined_registers[middle].name);
116 if (cmp < 0)
117 high = middle - 1;
118 else if (cmp > 0)
119 low = middle + 1;
120 else
121 return d10v_predefined_registers[middle].value;
122 }
123 while (low <= high);
124 return -1;
125 }
126
127 /* register_name() checks the string at input_line_pointer
128 to see if it is a valid register name */
129
130 static int
131 register_name (expressionP)
132 expressionS *expressionP;
133 {
134 int reg_number;
135 char c, *p = input_line_pointer;
136
137 while (*p && *p!='\n' && *p!='\r' && *p !=',' && *p!=' ' && *p!=')')
138 p++;
139
140 c = *p;
141 if (c)
142 *p++ = 0;
143
144 /* look to see if it's in the register table */
145 reg_number = reg_name_search (input_line_pointer);
146 if (reg_number >= 0)
147 {
148 expressionP->X_op = O_register;
149 /* temporarily store a pointer to the string here */
150 expressionP->X_op_symbol = (struct symbol *)input_line_pointer;
151 expressionP->X_add_number = reg_number;
152 input_line_pointer = p;
153 return 1;
154 }
155 if (c)
156 *(p-1) = c;
157 return 0;
158 }
159
160
161 static int
162 check_range (num, bits, flags)
163 unsigned long num;
164 int bits;
165 int flags;
166 {
167 long min, max, bit1;
168 int retval=0;
169
170 /* don't bother checking 16-bit values */
171 if (bits == 16)
172 return 0;
173
174 if (flags & OPERAND_SHIFT)
175 {
176 /* all special shift operands are unsigned */
177 /* and <= 16. We allow 0 for now. */
178 if (num>16)
179 return 1;
180 else
181 return 0;
182 }
183
184 if (flags & OPERAND_SIGNED)
185 {
186 max = (1 << (bits - 1))-1;
187 min = - (1 << (bits - 1));
188 if (((long)num > max) || ((long)num < min))
189 retval = 1;
190 }
191 else
192 {
193 max = (1 << bits) - 1;
194 min = 0;
195 if ((num > max) || (num < min))
196 retval = 1;
197 }
198 return retval;
199 }
200
201
202 void
203 md_show_usage (stream)
204 FILE *stream;
205 {
206 fprintf(stream, "D10V options:\n\
207 -O optimize. Will do some operations in parallel.\n");
208 }
209
210 int
211 md_parse_option (c, arg)
212 int c;
213 char *arg;
214 {
215 switch (c)
216 {
217 case 'O':
218 /* Optimize. Will attempt to parallelize operations */
219 Optimizing = 1;
220 break;
221 default:
222 return 0;
223 }
224 return 1;
225 }
226
227 symbolS *
228 md_undefined_symbol (name)
229 char *name;
230 {
231 return 0;
232 }
233
234 /* Turn a string in input_line_pointer into a floating point constant of type
235 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
236 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
237 */
238 char *
239 md_atof (type, litP, sizeP)
240 int type;
241 char *litP;
242 int *sizeP;
243 {
244 int prec;
245 LITTLENUM_TYPE words[4];
246 char *t;
247 int i;
248
249 switch (type)
250 {
251 case 'f':
252 prec = 2;
253 break;
254 case 'd':
255 prec = 4;
256 break;
257 default:
258 *sizeP = 0;
259 return "bad call to md_atof";
260 }
261
262 t = atof_ieee (input_line_pointer, type, words);
263 if (t)
264 input_line_pointer = t;
265
266 *sizeP = prec * 2;
267
268 for (i = 0; i < prec; i++)
269 {
270 md_number_to_chars (litP, (valueT) words[i], 2);
271 litP += 2;
272 }
273 return NULL;
274 }
275
276 void
277 md_convert_frag (abfd, sec, fragP)
278 bfd *abfd;
279 asection *sec;
280 fragS *fragP;
281 {
282 abort ();
283 }
284
285 valueT
286 md_section_align (seg, addr)
287 asection *seg;
288 valueT addr;
289 {
290 int align = bfd_get_section_alignment (stdoutput, seg);
291 return ((addr + (1 << align) - 1) & (-1 << align));
292 }
293
294
295 void
296 md_begin ()
297 {
298 char *prev_name = "";
299 struct d10v_opcode *opcode;
300 d10v_hash = hash_new();
301
302 /* Insert unique names into hash table. The D10v instruction set
303 has many identical opcode names that have different opcodes based
304 on the operands. This hash table then provides a quick index to
305 the first opcode with a particular name in the opcode table. */
306
307 for (opcode = (struct d10v_opcode *)d10v_opcodes; opcode->name; opcode++)
308 {
309 if (strcmp (prev_name, opcode->name))
310 {
311 prev_name = (char *)opcode->name;
312 hash_insert (d10v_hash, opcode->name, (char *) opcode);
313 }
314 }
315
316 fixups = &FixUps[0];
317 FixUps[0].next = &FixUps[1];
318 FixUps[1].next = &FixUps[0];
319 }
320
321
322 /* this function removes the postincrement or postdecrement
323 operator ( '+' or '-' ) from an expression */
324
325 static int postfix (p)
326 char *p;
327 {
328 while (*p != '-' && *p != '+')
329 {
330 if (*p==0 || *p=='\n' || *p=='\r')
331 break;
332 p++;
333 }
334
335 if (*p == '-')
336 {
337 *p = ' ';
338 return (-1);
339 }
340 if (*p == '+')
341 {
342 *p = ' ';
343 return (1);
344 }
345
346 return (0);
347 }
348
349
350 static bfd_reloc_code_real_type
351 get_reloc (op)
352 struct d10v_operand *op;
353 {
354 int bits = op->bits;
355
356 if (bits <= 4)
357 return (0);
358
359 if (op->flags & OPERAND_ADDR)
360 {
361 if (bits == 8)
362 return (BFD_RELOC_D10V_10_PCREL_R);
363 else
364 return (BFD_RELOC_D10V_18_PCREL);
365 }
366
367 return (BFD_RELOC_16);
368 }
369
370
371 /* get_operands parses a string of operands and returns
372 an array of expressions */
373
374 static int
375 get_operands (exp)
376 expressionS exp[];
377 {
378 char *p = input_line_pointer;
379 int numops = 0;
380 int post = 0;
381
382 while (*p)
383 {
384 while (*p == ' ' || *p == '\t' || *p == ',')
385 p++;
386 if (*p==0 || *p=='\n' || *p=='\r')
387 break;
388
389 if (*p == '@')
390 {
391 p++;
392 exp[numops].X_op = O_absent;
393 if (*p == '(')
394 {
395 p++;
396 exp[numops].X_add_number = OPERAND_ATPAR;
397 }
398 else if (*p == '-')
399 {
400 p++;
401 exp[numops].X_add_number = OPERAND_ATMINUS;
402 }
403 else
404 {
405 exp[numops].X_add_number = OPERAND_ATSIGN;
406 post = postfix (p);
407 }
408 numops++;
409 continue;
410 }
411
412 if (*p == ')')
413 {
414 /* just skip the trailing paren */
415 p++;
416 continue;
417 }
418
419 input_line_pointer = p;
420
421 /* check to see if it might be a register name */
422 if (!register_name (&exp[numops]))
423 {
424 /* parse as an expression */
425 expression (&exp[numops]);
426 }
427
428 if (!strncasecmp (input_line_pointer, "@word", 5))
429 {
430 if (exp[numops].X_op == O_register)
431 {
432 /* if it looked like a register name but was followed by "@word" */
433 /* then it was really a symbol, so change it to one */
434 exp[numops].X_op = O_symbol;
435 exp[numops].X_add_symbol = symbol_find_or_make ((char *)exp[numops].X_op_symbol);
436 exp[numops].X_op_symbol = NULL;
437 }
438 exp[numops].X_add_number = AT_WORD;
439 input_line_pointer += 5;
440 }
441
442 if (exp[numops].X_op == O_illegal)
443 as_bad ("illegal operand");
444 else if (exp[numops].X_op == O_absent)
445 as_bad ("missing operand");
446
447 numops++;
448 p = input_line_pointer;
449 }
450
451 switch (post)
452 {
453 case -1: /* postdecrement mode */
454 exp[numops].X_op = O_absent;
455 exp[numops++].X_add_number = OPERAND_MINUS;
456 break;
457 case 1: /* postincrement mode */
458 exp[numops].X_op = O_absent;
459 exp[numops++].X_add_number = OPERAND_PLUS;
460 break;
461 }
462
463 exp[numops].X_op = 0;
464 return (numops);
465 }
466
467 static unsigned long
468 d10v_insert_operand (insn, op_type, value, left, fix)
469 unsigned long insn;
470 int op_type;
471 offsetT value;
472 int left;
473 fixS *fix;
474 {
475 int shift, bits;
476
477 shift = d10v_operands[op_type].shift;
478 if (left)
479 shift += 15;
480
481 bits = d10v_operands[op_type].bits;
482
483 /* truncate to the proper number of bits */
484 if (check_range (value, bits, d10v_operands[op_type].flags))
485 as_bad_where (fix->fx_file, fix->fx_line, "operand out of range: %d", value);
486
487 value &= 0x7FFFFFFF >> (31 - bits);
488 insn |= (value << shift);
489
490 return insn;
491 }
492
493
494 /* build_insn takes a pointer to the opcode entry in the opcode table
495 and the array of operand expressions and returns the instruction */
496
497 static unsigned long
498 build_insn (opcode, opers, insn)
499 struct d10v_opcode *opcode;
500 expressionS *opers;
501 unsigned long insn;
502 {
503 int i, bits, shift, flags, format;
504 unsigned int number;
505
506 /* the insn argument is only used for the DIVS kludge */
507 if (insn)
508 format = LONG_R;
509 else
510 {
511 insn = opcode->opcode;
512 format = opcode->format;
513 }
514
515 for (i=0;opcode->operands[i];i++)
516 {
517 flags = d10v_operands[opcode->operands[i]].flags;
518 bits = d10v_operands[opcode->operands[i]].bits;
519 shift = d10v_operands[opcode->operands[i]].shift;
520 number = opers[i].X_add_number;
521
522 if (flags & OPERAND_REG)
523 {
524 number &= REGISTER_MASK;
525 if (format == LONG_L)
526 shift += 15;
527 }
528
529 if (opers[i].X_op != O_register && opers[i].X_op != O_constant)
530 {
531 /* now create a fixup */
532
533 if (fixups->fc >= MAX_INSN_FIXUPS)
534 as_fatal ("too many fixups");
535
536 if (opers[i].X_op == O_symbol && number == AT_WORD)
537 {
538 number = opers[i].X_add_number = 0;
539 fixups->fix[fixups->fc].reloc = BFD_RELOC_D10V_18;
540 } else
541 fixups->fix[fixups->fc].reloc =
542 get_reloc((struct d10v_operand *)&d10v_operands[opcode->operands[i]]);
543
544 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_16 ||
545 fixups->fix[fixups->fc].reloc == BFD_RELOC_D10V_18)
546 fixups->fix[fixups->fc].size = 2;
547 else
548 fixups->fix[fixups->fc].size = 4;
549
550 fixups->fix[fixups->fc].exp = opers[i];
551 fixups->fix[fixups->fc].operand = opcode->operands[i];
552 fixups->fix[fixups->fc].pcrel = (flags & OPERAND_ADDR) ? true : false;
553 (fixups->fc)++;
554 }
555
556 /* truncate to the proper number of bits */
557 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
558 as_bad("operand out of range: %d",number);
559 number &= 0x7FFFFFFF >> (31 - bits);
560 insn = insn | (number << shift);
561 }
562
563 /* kludge: for DIVS, we need to put the operands in twice */
564 /* on the second pass, format is changed to LONG_R to force */
565 /* the second set of operands to not be shifted over 15 */
566 if ((opcode->opcode == OPCODE_DIVS) && (format==LONG_L))
567 insn = build_insn (opcode, opers, insn);
568
569 return insn;
570 }
571
572 /* write out a long form instruction */
573 static void
574 write_long (opcode, insn, fx)
575 struct d10v_opcode *opcode;
576 unsigned long insn;
577 Fixups *fx;
578 {
579 int i, where;
580 char *f = frag_more(4);
581
582 insn |= FM11;
583 number_to_chars_bigendian (f, insn, 4);
584
585 for (i=0; i < fx->fc; i++)
586 {
587 if (fx->fix[i].reloc)
588 {
589 where = f - frag_now->fr_literal;
590 if (fx->fix[i].size == 2)
591 where += 2;
592
593 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
594 fx->fix[i].operand |= 4096;
595
596 fix_new_exp (frag_now,
597 where,
598 fx->fix[i].size,
599 &(fx->fix[i].exp),
600 fx->fix[i].pcrel,
601 fx->fix[i].operand|2048);
602 }
603 }
604 fx->fc = 0;
605 }
606
607
608 /* write out a short form instruction by itself */
609 static void
610 write_1_short (opcode, insn, fx)
611 struct d10v_opcode *opcode;
612 unsigned long insn;
613 Fixups *fx;
614 {
615 char *f = frag_more(4);
616 int i, where;
617
618 if (opcode->exec_type & PARONLY)
619 as_fatal ("Instruction must be executed in parallel with another instruction.");
620
621 /* the other container needs to be NOP */
622 /* according to 4.3.1: for FM=00, sub-instructions performed only
623 by IU cannot be encoded in L-container. */
624 if (opcode->unit == IU)
625 insn |= FM00 | (NOP << 15); /* right container */
626 else
627 insn = FM00 | (insn << 15) | NOP; /* left container */
628
629 number_to_chars_bigendian (f, insn, 4);
630 for (i=0; i < fx->fc; i++)
631 {
632 if (fx->fix[i].reloc)
633 {
634 where = f - frag_now->fr_literal;
635 if (fx->fix[i].size == 2)
636 where += 2;
637
638 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
639 fx->fix[i].operand |= 4096;
640
641 /* if it's an R reloc, we may have to switch it to L */
642 if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (opcode->unit != IU) )
643 fx->fix[i].operand |= 1024;
644
645 fix_new_exp (frag_now,
646 where,
647 fx->fix[i].size,
648 &(fx->fix[i].exp),
649 fx->fix[i].pcrel,
650 fx->fix[i].operand|2048);
651 }
652 }
653 fx->fc = 0;
654 }
655
656 /* write out a short form instruction if possible */
657 /* return number of instructions not written out */
658 static int
659 write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
660 struct d10v_opcode *opcode1, *opcode2;
661 unsigned long insn1, insn2;
662 int exec_type;
663 Fixups *fx;
664 {
665 unsigned long insn;
666 char *f;
667 int i,j, where;
668
669 if ( (exec_type != 1) && ((opcode1->exec_type & PARONLY)
670 || (opcode2->exec_type & PARONLY)))
671 as_fatal("Instruction must be executed in parallel");
672
673 if ( (opcode1->format & LONG_OPCODE) || (opcode2->format & LONG_OPCODE))
674 as_fatal ("Long instructions may not be combined.");
675
676 if(opcode1->exec_type & BRANCH_LINK && exec_type == 0)
677 {
678 /* Instructions paired with a subroutine call are executed before the
679 subroutine, so don't do these pairings unless explicitly requested. */
680 write_1_short (opcode1, insn1, fx->next);
681 return (1);
682 }
683
684 switch (exec_type)
685 {
686 case 0: /* order not specified */
687 if ( Optimizing && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type))
688 {
689 /* parallel */
690 if (opcode1->unit == IU)
691 insn = FM00 | (insn2 << 15) | insn1;
692 else if (opcode2->unit == MU)
693 insn = FM00 | (insn2 << 15) | insn1;
694 else
695 {
696 insn = FM00 | (insn1 << 15) | insn2;
697 fx = fx->next;
698 }
699 }
700 else if (opcode1->unit == IU)
701 {
702 /* reverse sequential */
703 insn = FM10 | (insn2 << 15) | insn1;
704 }
705 else
706 {
707 /* sequential */
708 insn = FM01 | (insn1 << 15) | insn2;
709 fx = fx->next;
710 }
711 break;
712 case 1: /* parallel */
713 if (opcode1->exec_type & SEQ || opcode2->exec_type & SEQ)
714 as_fatal ("One of these instructions may not be executed in parallel.");
715
716 if (opcode1->unit == IU)
717 {
718 if (opcode2->unit == IU)
719 as_fatal ("Two IU instructions may not be executed in parallel");
720 as_warn ("Swapping instruction order");
721 insn = FM00 | (insn2 << 15) | insn1;
722 }
723 else if (opcode2->unit == MU)
724 {
725 if (opcode1->unit == MU)
726 as_fatal ("Two MU instructions may not be executed in parallel");
727 as_warn ("Swapping instruction order");
728 insn = FM00 | (insn2 << 15) | insn1;
729 }
730 else
731 {
732 insn = FM00 | (insn1 << 15) | insn2;
733 fx = fx->next;
734 }
735 break;
736 case 2: /* sequential */
737 if (opcode1->unit == IU)
738 as_fatal ("IU instruction may not be in the left container");
739 insn = FM01 | (insn1 << 15) | insn2;
740 fx = fx->next;
741 break;
742 case 3: /* reverse sequential */
743 if (opcode2->unit == MU)
744 as_fatal ("MU instruction may not be in the right container");
745 insn = FM10 | (insn1 << 15) | insn2;
746 fx = fx->next;
747 break;
748 default:
749 as_fatal("unknown execution type passed to write_2_short()");
750 }
751
752 f = frag_more(4);
753 number_to_chars_bigendian (f, insn, 4);
754
755 for (j=0; j<2; j++)
756 {
757 for (i=0; i < fx->fc; i++)
758 {
759 if (fx->fix[i].reloc)
760 {
761 where = f - frag_now->fr_literal;
762 if (fx->fix[i].size == 2)
763 where += 2;
764
765 if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
766 fx->fix[i].operand |= 1024;
767
768 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
769 fx->fix[i].operand |= 4096;
770
771 fix_new_exp (frag_now,
772 where,
773 fx->fix[i].size,
774 &(fx->fix[i].exp),
775 fx->fix[i].pcrel,
776 fx->fix[i].operand|2048);
777 }
778 }
779 fx->fc = 0;
780 fx = fx->next;
781 }
782 return (0);
783 }
784
785
786 /* Check 2 instructions and determine if they can be safely */
787 /* executed in parallel. Returns 1 if they can be. */
788 static int
789 parallel_ok (op1, insn1, op2, insn2, exec_type)
790 struct d10v_opcode *op1, *op2;
791 unsigned long insn1, insn2;
792 int exec_type;
793 {
794 int i, j, flags, mask, shift, regno;
795 unsigned long ins, mod[2], used[2];
796 struct d10v_opcode *op;
797
798 if ((op1->exec_type & SEQ) != 0 || (op2->exec_type & SEQ) != 0
799 || (op1->exec_type & PAR) == 0 || (op2->exec_type & PAR) == 0
800 || (op1->unit == BOTH) || (op2->unit == BOTH)
801 || (op1->unit == IU && op2->unit == IU)
802 || (op1->unit == MU && op2->unit == MU))
803 return 0;
804
805 /* If the first instruction is a branch and this is auto parallazation,
806 don't combine with any second instruction. */
807 if (exec_type == 0 && (op1->exec_type & BRANCH) != 0)
808 return 0;
809
810 /* The idea here is to create two sets of bitmasks (mod and used) */
811 /* which indicate which registers are modified or used by each instruction. */
812 /* The operation can only be done in parallel if instruction 1 and instruction 2 */
813 /* modify different registers, and neither instruction modifies any registers */
814 /* the other is using. Accesses to control registers, PSW, and memory are treated */
815 /* as accesses to a single register. So if both instructions write memory or one */
816 /* instruction writes memory and the other reads, then they cannot be done in parallel. */
817 /* Likewise, if one instruction mucks with the psw and the other reads the PSW */
818 /* (which includes C, F0, and F1), then they cannot operate safely in parallel. */
819
820 /* the bitmasks (mod and used) look like this (bit 31 = MSB) */
821 /* r0-r15 0-15 */
822 /* a0-a1 16-17 */
823 /* cr (not psw) 18 */
824 /* psw 19 */
825 /* mem 20 */
826
827 for (j=0;j<2;j++)
828 {
829 if (j == 0)
830 {
831 op = op1;
832 ins = insn1;
833 }
834 else
835 {
836 op = op2;
837 ins = insn2;
838 }
839 mod[j] = used[j] = 0;
840 if (op->exec_type & BRANCH_LINK)
841 mod[j] |= 1 << 13;
842
843 for (i = 0; op->operands[i]; i++)
844 {
845 flags = d10v_operands[op->operands[i]].flags;
846 shift = d10v_operands[op->operands[i]].shift;
847 mask = 0x7FFFFFFF >> (31 - d10v_operands[op->operands[i]].bits);
848 if (flags & OPERAND_REG)
849 {
850 regno = (ins >> shift) & mask;
851 if (flags & OPERAND_ACC)
852 regno += 16;
853 else if (flags & OPERAND_CONTROL) /* mvtc or mvfc */
854 {
855 if (regno == 0)
856 regno = 19;
857 else
858 regno = 18;
859 }
860 else if (flags & OPERAND_FLAG)
861 regno = 19;
862
863 if ( flags & OPERAND_DEST )
864 {
865 mod[j] |= 1 << regno;
866 if (flags & OPERAND_EVEN)
867 mod[j] |= 1 << (regno + 1);
868 }
869 else
870 {
871 used[j] |= 1 << regno ;
872 if (flags & OPERAND_EVEN)
873 used[j] |= 1 << (regno + 1);
874
875 /* Auto inc/dec also modifies the register. */
876 if (op->operands[i+1] != 0
877 && (d10v_operands[op->operands[i+1]].flags
878 & (OPERAND_PLUS | OPERAND_MINUS)) != 0)
879 mod[j] |= 1 << regno;
880 }
881 }
882 else if (flags & OPERAND_ATMINUS)
883 {
884 /* SP implicitly used/modified */
885 mod[j] |= 1 << 15;
886 used[j] |= 1 << 15;
887 }
888 }
889 if (op->exec_type & RMEM)
890 used[j] |= 1 << 20;
891 else if (op->exec_type & WMEM)
892 mod[j] |= 1 << 20;
893 else if (op->exec_type & RF0)
894 used[j] |= 1 << 19;
895 else if (op->exec_type & WF0)
896 mod[j] |= 1 << 19;
897 else if (op->exec_type & WCAR)
898 mod[j] |= 1 << 19;
899 }
900 if ((mod[0] & mod[1]) == 0 && (mod[0] & used[1]) == 0 && (mod[1] & used[0]) == 0)
901 return 1;
902 return 0;
903 }
904
905
906 /* This is the main entry point for the machine-dependent assembler. str points to a
907 machine-dependent instruction. This function is supposed to emit the frags/bytes
908 it assembles to. For the D10V, it mostly handles the special VLIW parsing and packing
909 and leaves the difficult stuff to do_assemble().
910 */
911
912 static unsigned long prev_insn;
913 static struct d10v_opcode *prev_opcode = 0;
914 static subsegT prev_subseg;
915 static segT prev_seg = 0;;
916
917 void
918 md_assemble (str)
919 char *str;
920 {
921 struct d10v_opcode *opcode;
922 unsigned long insn;
923 int extype=0; /* execution type; parallel, etc */
924 static int etype=0; /* saved extype. used for multiline instructions */
925 char *str2;
926
927 if (etype == 0)
928 {
929 /* look for the special multiple instruction separators */
930 str2 = strstr (str, "||");
931 if (str2)
932 extype = 1;
933 else
934 {
935 str2 = strstr (str, "->");
936 if (str2)
937 extype = 2;
938 else
939 {
940 str2 = strstr (str, "<-");
941 if (str2)
942 extype = 3;
943 }
944 }
945 /* str2 points to the separator, if one */
946 if (str2)
947 {
948 *str2 = 0;
949
950 /* if two instructions are present and we already have one saved
951 then first write it out */
952 d10v_cleanup();
953
954 /* assemble first instruction and save it */
955 prev_insn = do_assemble (str, &prev_opcode);
956 if (prev_insn == -1)
957 as_fatal ("can't find opcode ");
958 fixups = fixups->next;
959 str = str2 + 2;
960 }
961 }
962
963 insn = do_assemble (str, &opcode);
964 if (insn == -1)
965 {
966 if (extype)
967 {
968 etype = extype;
969 return;
970 }
971 as_fatal ("can't find opcode ");
972 }
973
974 if (etype)
975 {
976 extype = etype;
977 etype = 0;
978 }
979
980 /* if this is a long instruction, write it and any previous short instruction */
981 if (opcode->format & LONG_OPCODE)
982 {
983 if (extype)
984 as_fatal("Unable to mix instructions as specified");
985 d10v_cleanup();
986 write_long (opcode, insn, fixups);
987 prev_opcode = NULL;
988 return;
989 }
990
991 if (prev_opcode && prev_seg && ((prev_seg != now_seg) || (prev_subseg != now_subseg)))
992 d10v_cleanup();
993
994 if (prev_opcode && (write_2_short (prev_opcode, prev_insn, opcode, insn, extype, fixups) == 0))
995 {
996 /* no instructions saved */
997 prev_opcode = NULL;
998 }
999 else
1000 {
1001 if (extype)
1002 as_fatal("Unable to mix instructions as specified");
1003 /* save off last instruction so it may be packed on next pass */
1004 prev_opcode = opcode;
1005 prev_insn = insn;
1006 prev_seg = now_seg;
1007 prev_subseg = now_subseg;
1008 fixups = fixups->next;
1009 }
1010 }
1011
1012
1013 /* do_assemble assembles a single instruction and returns an opcode */
1014 /* it returns -1 (an invalid opcode) on error */
1015
1016 static unsigned long
1017 do_assemble (str, opcode)
1018 char *str;
1019 struct d10v_opcode **opcode;
1020 {
1021 unsigned char *op_start, *save;
1022 unsigned char *op_end;
1023 char name[20];
1024 int nlen = 0;
1025 expressionS myops[6];
1026 unsigned long insn;
1027
1028 /* Drop leading whitespace */
1029 while (*str == ' ')
1030 str++;
1031
1032 /* find the opcode end */
1033 for (op_start = op_end = (unsigned char *) (str);
1034 *op_end
1035 && nlen < 20
1036 && !is_end_of_line[*op_end] && *op_end != ' ';
1037 op_end++)
1038 {
1039 name[nlen] = tolower(op_start[nlen]);
1040 nlen++;
1041 }
1042 name[nlen] = 0;
1043
1044 if (nlen == 0)
1045 return (-1);
1046
1047 /* find the first opcode with the proper name */
1048 *opcode = (struct d10v_opcode *)hash_find (d10v_hash, name);
1049 if (*opcode == NULL)
1050 as_fatal ("unknown opcode: %s",name);
1051
1052 save = input_line_pointer;
1053 input_line_pointer = op_end;
1054 *opcode = find_opcode (*opcode, myops);
1055 if (*opcode == 0)
1056 return -1;
1057 input_line_pointer = save;
1058
1059 insn = build_insn ((*opcode), myops, 0);
1060 return (insn);
1061 }
1062
1063 /* find_opcode() gets a pointer to an entry in the opcode table. */
1064 /* It must look at all opcodes with the same name and use the operands */
1065 /* to choose the correct opcode. */
1066
1067 static struct d10v_opcode *
1068 find_opcode (opcode, myops)
1069 struct d10v_opcode *opcode;
1070 expressionS myops[];
1071 {
1072 int i, match, done;
1073 struct d10v_opcode *next_opcode;
1074
1075 /* get all the operands and save them as expressions */
1076 get_operands (myops);
1077
1078 /* now see if the operand is a fake. If so, find the correct size */
1079 /* instruction, if possible */
1080 if (opcode->format == OPCODE_FAKE)
1081 {
1082 int opnum = opcode->operands[0];
1083
1084 if (myops[opnum].X_op == O_register)
1085 {
1086 myops[opnum].X_op = O_symbol;
1087 myops[opnum].X_add_symbol = symbol_find_or_make ((char *)myops[opnum].X_op_symbol);
1088 myops[opnum].X_add_number = 0;
1089 myops[opnum].X_op_symbol = NULL;
1090 }
1091
1092 if (myops[opnum].X_op == O_constant || (myops[opnum].X_op == O_symbol &&
1093 S_IS_DEFINED(myops[opnum].X_add_symbol) &&
1094 (S_GET_SEGMENT(myops[opnum].X_add_symbol) == now_seg)))
1095 {
1096 next_opcode=opcode+1;
1097 for (i=0; opcode->operands[i+1]; i++)
1098 {
1099 int bits = d10v_operands[next_opcode->operands[opnum]].bits;
1100 int flags = d10v_operands[next_opcode->operands[opnum]].flags;
1101 if (flags & OPERAND_ADDR)
1102 bits += 2;
1103 if (myops[opnum].X_op == O_constant)
1104 {
1105 if (!check_range (myops[opnum].X_add_number, bits, flags))
1106 return next_opcode;
1107 }
1108 else
1109 {
1110 fragS *f;
1111 long value;
1112 /* calculate the current address by running through the previous frags */
1113 /* and adding our current offset */
1114 for (value = 0, f = frchain_now->frch_root; f; f = f->fr_next)
1115 value += f->fr_fix + f->fr_offset;
1116
1117 if (flags & OPERAND_ADDR)
1118 value = S_GET_VALUE(myops[opnum].X_add_symbol) - value -
1119 (obstack_next_free(&frchain_now->frch_obstack) - frag_now->fr_literal);
1120 else
1121 value = S_GET_VALUE(myops[opnum].X_add_symbol);
1122
1123 if (myops[opnum].X_add_number == AT_WORD)
1124 {
1125 if (bits > 4)
1126 {
1127 bits += 2;
1128 if (!check_range (value, bits, flags))
1129 return next_opcode;
1130 }
1131 }
1132 else if (!check_range (value, bits, flags))
1133 return next_opcode;
1134 }
1135 next_opcode++;
1136 }
1137 as_fatal ("value out of range");
1138 }
1139 else
1140 {
1141 /* not a constant, so use a long instruction */
1142 return opcode+2;
1143 }
1144 }
1145 else
1146 {
1147 match = 0;
1148 /* now search the opcode table table for one with operands */
1149 /* that matches what we've got */
1150 while (!match)
1151 {
1152 match = 1;
1153 for (i = 0; opcode->operands[i]; i++)
1154 {
1155 int flags = d10v_operands[opcode->operands[i]].flags;
1156 int X_op = myops[i].X_op;
1157 int num = myops[i].X_add_number;
1158
1159 if (X_op==0)
1160 {
1161 match=0;
1162 break;
1163 }
1164
1165 if (flags & OPERAND_REG)
1166 {
1167 if ((X_op != O_register) ||
1168 ((flags & OPERAND_ACC) != (num & OPERAND_ACC)) ||
1169 ((flags & OPERAND_FLAG) != (num & OPERAND_FLAG)) ||
1170 ((flags & OPERAND_CONTROL) != (num & OPERAND_CONTROL)))
1171 {
1172 match=0;
1173 break;
1174 }
1175 }
1176
1177 if (((flags & OPERAND_MINUS) && ((X_op != O_absent) || (num != OPERAND_MINUS))) ||
1178 ((flags & OPERAND_PLUS) && ((X_op != O_absent) || (num != OPERAND_PLUS))) ||
1179 ((flags & OPERAND_ATMINUS) && ((X_op != O_absent) || (num != OPERAND_ATMINUS))) ||
1180 ((flags & OPERAND_ATPAR) && ((X_op != O_absent) || (num != OPERAND_ATPAR))) ||
1181 ((flags & OPERAND_ATSIGN) && ((X_op != O_absent) || (num != OPERAND_ATSIGN))))
1182 {
1183 match=0;
1184 break;
1185 }
1186 }
1187 /* we're only done if the operands matched so far AND there
1188 are no more to check */
1189 if (match && myops[i].X_op==0)
1190 break;
1191 else
1192 match = 0;
1193
1194 next_opcode = opcode+1;
1195 if (next_opcode->opcode == 0)
1196 break;
1197 if (strcmp(next_opcode->name, opcode->name))
1198 break;
1199 opcode = next_opcode;
1200 }
1201 }
1202
1203 if (!match)
1204 {
1205 as_bad ("bad opcode or operands");
1206 return (0);
1207 }
1208
1209 /* Check that all registers that are required to be even are. */
1210 /* Also, if any operands were marked as registers, but were really symbols */
1211 /* fix that here. */
1212 for (i=0; opcode->operands[i]; i++)
1213 {
1214 if ((d10v_operands[opcode->operands[i]].flags & OPERAND_EVEN) &&
1215 (myops[i].X_add_number & 1))
1216 as_fatal("Register number must be EVEN");
1217 if (myops[i].X_op == O_register)
1218 {
1219 if (!(d10v_operands[opcode->operands[i]].flags & OPERAND_REG))
1220 {
1221 myops[i].X_op = O_symbol;
1222 myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol);
1223 myops[i].X_add_number = 0;
1224 myops[i].X_op_symbol = NULL;
1225 }
1226 }
1227 }
1228 return opcode;
1229 }
1230
1231 /* if while processing a fixup, a reloc really needs to be created */
1232 /* then it is done here */
1233
1234 arelent *
1235 tc_gen_reloc (seg, fixp)
1236 asection *seg;
1237 fixS *fixp;
1238 {
1239 arelent *reloc;
1240 reloc = (arelent *) xmalloc (sizeof (arelent));
1241 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
1242 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1243 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1244 if (reloc->howto == (reloc_howto_type *) NULL)
1245 {
1246 as_bad_where (fixp->fx_file, fixp->fx_line,
1247 "reloc %d not supported by object file format", (int)fixp->fx_r_type);
1248 return NULL;
1249 }
1250 reloc->addend = fixp->fx_addnumber;
1251 return reloc;
1252 }
1253
1254 int
1255 md_estimate_size_before_relax (fragp, seg)
1256 fragS *fragp;
1257 asection *seg;
1258 {
1259 abort ();
1260 return 0;
1261 }
1262
1263 long
1264 md_pcrel_from_section (fixp, sec)
1265 fixS *fixp;
1266 segT sec;
1267 {
1268 if (fixp->fx_addsy != (symbolS *)NULL && (!S_IS_DEFINED (fixp->fx_addsy) ||
1269 (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
1270 return 0;
1271 return fixp->fx_frag->fr_address + fixp->fx_where;
1272 }
1273
1274 int
1275 md_apply_fix3 (fixp, valuep, seg)
1276 fixS *fixp;
1277 valueT *valuep;
1278 segT seg;
1279 {
1280 char *where;
1281 unsigned long insn;
1282 long value;
1283 int op_type;
1284 int left=0;
1285
1286 if (fixp->fx_addsy == (symbolS *) NULL)
1287 {
1288 value = *valuep;
1289 fixp->fx_done = 1;
1290 }
1291 else if (fixp->fx_pcrel)
1292 value = *valuep;
1293 else
1294 {
1295 value = fixp->fx_offset;
1296 if (fixp->fx_subsy != (symbolS *) NULL)
1297 {
1298 if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
1299 value -= S_GET_VALUE (fixp->fx_subsy);
1300 else
1301 {
1302 /* We don't actually support subtracting a symbol. */
1303 as_bad_where (fixp->fx_file, fixp->fx_line,
1304 "expression too complex");
1305 }
1306 }
1307 }
1308
1309 op_type = fixp->fx_r_type;
1310 if (op_type & 2048)
1311 {
1312 op_type -= 2048;
1313 if (op_type & 1024)
1314 {
1315 op_type -= 1024;
1316 fixp->fx_r_type = BFD_RELOC_D10V_10_PCREL_L;
1317 left = 1;
1318 }
1319 else if (op_type & 4096)
1320 {
1321 op_type -= 4096;
1322 fixp->fx_r_type = BFD_RELOC_D10V_18;
1323 }
1324 else
1325 fixp->fx_r_type = get_reloc((struct d10v_operand *)&d10v_operands[op_type]);
1326 }
1327
1328 /* Fetch the instruction, insert the fully resolved operand
1329 value, and stuff the instruction back again. */
1330 where = fixp->fx_frag->fr_literal + fixp->fx_where;
1331 insn = bfd_getb32 ((unsigned char *) where);
1332
1333 switch (fixp->fx_r_type)
1334 {
1335 case BFD_RELOC_D10V_10_PCREL_L:
1336 case BFD_RELOC_D10V_10_PCREL_R:
1337 case BFD_RELOC_D10V_18_PCREL:
1338 case BFD_RELOC_D10V_18:
1339 /* instruction addresses are always right-shifted by 2 */
1340 value >>= 2;
1341 if (fixp->fx_size == 2)
1342 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1343 else
1344 {
1345 insn = d10v_insert_operand (insn, op_type, (offsetT)value, left, fixp);
1346 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1347 }
1348 break;
1349 case BFD_RELOC_32:
1350 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1351 break;
1352 case BFD_RELOC_16:
1353 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1354 break;
1355 default:
1356 as_fatal ("line %d: unknown relocation type: 0x%x",fixp->fx_line,fixp->fx_r_type);
1357 }
1358 return 0;
1359 }
1360
1361 /* d10v_cleanup() is called after the assembler has finished parsing the input
1362 file or after a label is defined. Because the D10V assembler sometimes saves short
1363 instructions to see if it can package them with the next instruction, there may
1364 be a short instruction that still needs written. */
1365 int
1366 d10v_cleanup ()
1367 {
1368 segT seg;
1369 subsegT subseg;
1370
1371 if (prev_opcode)
1372 {
1373 seg = now_seg;
1374 subseg = now_subseg;
1375 subseg_set (prev_seg, prev_subseg);
1376 write_1_short (prev_opcode, prev_insn, fixups->next);
1377 subseg_set (seg, subseg);
1378 prev_opcode = NULL;
1379 }
1380 return 1;
1381 }
1382
1383 /* Like normal .word, except support @word */
1384 /* clobbers input_line_pointer, checks end-of-line. */
1385 static void
1386 d10v_dot_word (nbytes)
1387 register int nbytes; /* 1=.byte, 2=.word, 4=.long */
1388 {
1389 expressionS exp;
1390 bfd_reloc_code_real_type reloc;
1391 char *p;
1392 int offset;
1393
1394 if (is_it_end_of_statement ())
1395 {
1396 demand_empty_rest_of_line ();
1397 return;
1398 }
1399
1400 do
1401 {
1402 expression (&exp);
1403 if (!strncasecmp (input_line_pointer, "@word", 5))
1404 {
1405 exp.X_add_number = 0;
1406 input_line_pointer += 5;
1407
1408 p = frag_more (2);
1409 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
1410 &exp, 0, BFD_RELOC_D10V_18);
1411 }
1412 else
1413 emit_expr (&exp, 2);
1414 }
1415 while (*input_line_pointer++ == ',');
1416
1417 input_line_pointer--; /* Put terminator back into stream. */
1418 demand_empty_rest_of_line ();
1419 }
1420
1421
1422 /* Mitsubishi asked that we support some old syntax that apparently */
1423 /* had immediate operands starting with '#'. This is in some of their */
1424 /* sample code but is not documented (although it appears in some */
1425 /* examples in their assembler manual). For now, we'll solve this */
1426 /* compatibility problem by simply ignoring any '#' at the beginning */
1427 /* of an operand. */
1428
1429 /* operands that begin with '#' should fall through to here */
1430 /* from expr.c */
1431
1432 void
1433 md_operand (expressionP)
1434 expressionS *expressionP;
1435 {
1436 if (*input_line_pointer == '#')
1437 {
1438 input_line_pointer++;
1439 expression (expressionP);
1440 }
1441 }
1442
This page took 0.060601 seconds and 3 git commands to generate.