Fri Oct 10 11:22:45 1997 Martin M. Hunt <hunt@cygnus.com>
[deliverable/binutils-gdb.git] / gas / config / tc-d10v.c
1 /* tc-d10v.c -- Assembler code for the Mitsubishi D10V
2
3 Copyright (C) 1996, 1997 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <stdio.h>
23 #include <ctype.h>
24 #include "as.h"
25 #include "subsegs.h"
26 #include "opcode/d10v.h"
27 #include "elf/ppc.h"
28
29 const char comment_chars[] = ";";
30 const char line_comment_chars[] = "#";
31 const char line_separator_chars[] = "";
32 const char *md_shortopts = "O";
33 const char EXP_CHARS[] = "eE";
34 const char FLT_CHARS[] = "dD";
35
36 int Optimizing = 0;
37
38 #define AT_WORD (-1)
39
40 /* fixups */
41 #define MAX_INSN_FIXUPS (5)
42 struct d10v_fixup
43 {
44 expressionS exp;
45 int operand;
46 int pcrel;
47 int size;
48 bfd_reloc_code_real_type reloc;
49 };
50
51 typedef struct _fixups
52 {
53 int fc;
54 struct d10v_fixup fix[MAX_INSN_FIXUPS];
55 struct _fixups *next;
56 } Fixups;
57
58 static Fixups FixUps[2];
59 static Fixups *fixups;
60
61 /* local functions */
62 static int reg_name_search PARAMS ((char *name));
63 static int register_name PARAMS ((expressionS *expressionP));
64 static int check_range PARAMS ((unsigned long num, int bits, int flags));
65 static int postfix PARAMS ((char *p));
66 static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op));
67 static int get_operands PARAMS ((expressionS exp[]));
68 static struct d10v_opcode *find_opcode PARAMS ((struct d10v_opcode *opcode, expressionS ops[]));
69 static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers, unsigned long insn));
70 static void write_long PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
71 static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
72 static int write_2_short PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
73 struct d10v_opcode *opcode2, unsigned long insn2, int exec_type, Fixups *fx));
74 static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode));
75 static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type,
76 offsetT value, int left, fixS *fix));
77 static int parallel_ok PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
78 struct d10v_opcode *opcode2, unsigned long insn2,
79 int exec_type));
80
81 struct option md_longopts[] = {
82 {NULL, no_argument, NULL, 0}
83 };
84 size_t md_longopts_size = sizeof(md_longopts);
85
86 static void d10v_dot_word PARAMS ((int));
87
88 /* The target specific pseudo-ops which we support. */
89 const pseudo_typeS md_pseudo_table[] =
90 {
91 { "word", d10v_dot_word, 2 },
92 { NULL, NULL, 0 }
93 };
94
95 /* Opcode hash table. */
96 static struct hash_control *d10v_hash;
97
98 /* reg_name_search does a binary search of the d10v_predefined_registers
99 array to see if "name" is a valid regiter name. Returns the register
100 number from the array on success, or -1 on failure. */
101
102 static int
103 reg_name_search (name)
104 char *name;
105 {
106 int middle, low, high;
107 int cmp;
108
109 low = 0;
110 high = d10v_reg_name_cnt() - 1;
111
112 do
113 {
114 middle = (low + high) / 2;
115 cmp = strcasecmp (name, d10v_predefined_registers[middle].name);
116 if (cmp < 0)
117 high = middle - 1;
118 else if (cmp > 0)
119 low = middle + 1;
120 else
121 return d10v_predefined_registers[middle].value;
122 }
123 while (low <= high);
124 return -1;
125 }
126
127 /* register_name() checks the string at input_line_pointer
128 to see if it is a valid register name */
129
130 static int
131 register_name (expressionP)
132 expressionS *expressionP;
133 {
134 int reg_number;
135 char c, *p = input_line_pointer;
136
137 while (*p && *p!='\n' && *p!='\r' && *p !=',' && *p!=' ' && *p!=')')
138 p++;
139
140 c = *p;
141 if (c)
142 *p++ = 0;
143
144 /* look to see if it's in the register table */
145 reg_number = reg_name_search (input_line_pointer);
146 if (reg_number >= 0)
147 {
148 expressionP->X_op = O_register;
149 /* temporarily store a pointer to the string here */
150 expressionP->X_op_symbol = (struct symbol *)input_line_pointer;
151 expressionP->X_add_number = reg_number;
152 input_line_pointer = p;
153 return 1;
154 }
155 if (c)
156 *(p-1) = c;
157 return 0;
158 }
159
160
161 static int
162 check_range (num, bits, flags)
163 unsigned long num;
164 int bits;
165 int flags;
166 {
167 long min, max, bit1;
168 int retval=0;
169
170 /* don't bother checking 16-bit values */
171 if (bits == 16)
172 return 0;
173
174 if (flags & OPERAND_SHIFT)
175 {
176 /* all special shift operands are unsigned */
177 /* and <= 16. We allow 0 for now. */
178 if (num>16)
179 return 1;
180 else
181 return 0;
182 }
183
184 if (flags & OPERAND_SIGNED)
185 {
186 max = (1 << (bits - 1))-1;
187 min = - (1 << (bits - 1));
188 if (((long)num > max) || ((long)num < min))
189 retval = 1;
190 }
191 else
192 {
193 max = (1 << bits) - 1;
194 min = 0;
195 if ((num > max) || (num < min))
196 retval = 1;
197 }
198 return retval;
199 }
200
201
202 void
203 md_show_usage (stream)
204 FILE *stream;
205 {
206 fprintf(stream, "D10V options:\n\
207 -O optimize. Will do some operations in parallel.\n");
208 }
209
210 int
211 md_parse_option (c, arg)
212 int c;
213 char *arg;
214 {
215 switch (c)
216 {
217 case 'O':
218 /* Optimize. Will attempt to parallelize operations */
219 Optimizing = 1;
220 break;
221 default:
222 return 0;
223 }
224 return 1;
225 }
226
227 symbolS *
228 md_undefined_symbol (name)
229 char *name;
230 {
231 return 0;
232 }
233
234 /* Turn a string in input_line_pointer into a floating point constant of type
235 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
236 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
237 */
238 char *
239 md_atof (type, litP, sizeP)
240 int type;
241 char *litP;
242 int *sizeP;
243 {
244 int prec;
245 LITTLENUM_TYPE words[4];
246 char *t;
247 int i;
248
249 switch (type)
250 {
251 case 'f':
252 prec = 2;
253 break;
254 case 'd':
255 prec = 4;
256 break;
257 default:
258 *sizeP = 0;
259 return "bad call to md_atof";
260 }
261
262 t = atof_ieee (input_line_pointer, type, words);
263 if (t)
264 input_line_pointer = t;
265
266 *sizeP = prec * 2;
267
268 for (i = 0; i < prec; i++)
269 {
270 md_number_to_chars (litP, (valueT) words[i], 2);
271 litP += 2;
272 }
273 return NULL;
274 }
275
276 void
277 md_convert_frag (abfd, sec, fragP)
278 bfd *abfd;
279 asection *sec;
280 fragS *fragP;
281 {
282 abort ();
283 }
284
285 valueT
286 md_section_align (seg, addr)
287 asection *seg;
288 valueT addr;
289 {
290 int align = bfd_get_section_alignment (stdoutput, seg);
291 return ((addr + (1 << align) - 1) & (-1 << align));
292 }
293
294
295 void
296 md_begin ()
297 {
298 char *prev_name = "";
299 struct d10v_opcode *opcode;
300 d10v_hash = hash_new();
301
302 /* Insert unique names into hash table. The D10v instruction set
303 has many identical opcode names that have different opcodes based
304 on the operands. This hash table then provides a quick index to
305 the first opcode with a particular name in the opcode table. */
306
307 for (opcode = (struct d10v_opcode *)d10v_opcodes; opcode->name; opcode++)
308 {
309 if (strcmp (prev_name, opcode->name))
310 {
311 prev_name = (char *)opcode->name;
312 hash_insert (d10v_hash, opcode->name, (char *) opcode);
313 }
314 }
315
316 fixups = &FixUps[0];
317 FixUps[0].next = &FixUps[1];
318 FixUps[1].next = &FixUps[0];
319 }
320
321
322 /* this function removes the postincrement or postdecrement
323 operator ( '+' or '-' ) from an expression */
324
325 static int postfix (p)
326 char *p;
327 {
328 while (*p != '-' && *p != '+')
329 {
330 if (*p==0 || *p=='\n' || *p=='\r')
331 break;
332 p++;
333 }
334
335 if (*p == '-')
336 {
337 *p = ' ';
338 return (-1);
339 }
340 if (*p == '+')
341 {
342 *p = ' ';
343 return (1);
344 }
345
346 return (0);
347 }
348
349
350 static bfd_reloc_code_real_type
351 get_reloc (op)
352 struct d10v_operand *op;
353 {
354 int bits = op->bits;
355
356 if (bits <= 4)
357 return (0);
358
359 if (op->flags & OPERAND_ADDR)
360 {
361 if (bits == 8)
362 return (BFD_RELOC_D10V_10_PCREL_R);
363 else
364 return (BFD_RELOC_D10V_18_PCREL);
365 }
366
367 return (BFD_RELOC_16);
368 }
369
370
371 /* get_operands parses a string of operands and returns
372 an array of expressions */
373
374 static int
375 get_operands (exp)
376 expressionS exp[];
377 {
378 char *p = input_line_pointer;
379 int numops = 0;
380 int post = 0;
381
382 while (*p)
383 {
384 while (*p == ' ' || *p == '\t' || *p == ',')
385 p++;
386 if (*p==0 || *p=='\n' || *p=='\r')
387 break;
388
389 if (*p == '@')
390 {
391 p++;
392 exp[numops].X_op = O_absent;
393 if (*p == '(')
394 {
395 p++;
396 exp[numops].X_add_number = OPERAND_ATPAR;
397 }
398 else if (*p == '-')
399 {
400 p++;
401 exp[numops].X_add_number = OPERAND_ATMINUS;
402 }
403 else
404 {
405 exp[numops].X_add_number = OPERAND_ATSIGN;
406 post = postfix (p);
407 }
408 numops++;
409 continue;
410 }
411
412 if (*p == ')')
413 {
414 /* just skip the trailing paren */
415 p++;
416 continue;
417 }
418
419 input_line_pointer = p;
420
421 /* check to see if it might be a register name */
422 if (!register_name (&exp[numops]))
423 {
424 /* parse as an expression */
425 expression (&exp[numops]);
426 }
427
428 if (!strncasecmp (input_line_pointer, "@word", 5))
429 {
430 if (exp[numops].X_op == O_register)
431 {
432 /* if it looked like a register name but was followed by "@word" */
433 /* then it was really a symbol, so change it to one */
434 exp[numops].X_op = O_symbol;
435 exp[numops].X_add_symbol = symbol_find_or_make ((char *)exp[numops].X_op_symbol);
436 }
437 exp[numops].X_op_symbol = (struct symbol *)-1;
438 exp[numops].X_add_number = AT_WORD;
439 input_line_pointer += 5;
440 }
441
442 if (exp[numops].X_op == O_illegal)
443 as_bad ("illegal operand");
444 else if (exp[numops].X_op == O_absent)
445 as_bad ("missing operand");
446
447 numops++;
448 p = input_line_pointer;
449 }
450
451 switch (post)
452 {
453 case -1: /* postdecrement mode */
454 exp[numops].X_op = O_absent;
455 exp[numops++].X_add_number = OPERAND_MINUS;
456 break;
457 case 1: /* postincrement mode */
458 exp[numops].X_op = O_absent;
459 exp[numops++].X_add_number = OPERAND_PLUS;
460 break;
461 }
462
463 exp[numops].X_op = 0;
464 return (numops);
465 }
466
467 static unsigned long
468 d10v_insert_operand (insn, op_type, value, left, fix)
469 unsigned long insn;
470 int op_type;
471 offsetT value;
472 int left;
473 fixS *fix;
474 {
475 int shift, bits;
476
477 shift = d10v_operands[op_type].shift;
478 if (left)
479 shift += 15;
480
481 bits = d10v_operands[op_type].bits;
482
483 /* truncate to the proper number of bits */
484 if (check_range (value, bits, d10v_operands[op_type].flags))
485 as_bad_where (fix->fx_file, fix->fx_line, "operand out of range: %d", value);
486
487 value &= 0x7FFFFFFF >> (31 - bits);
488 insn |= (value << shift);
489
490 return insn;
491 }
492
493
494 /* build_insn takes a pointer to the opcode entry in the opcode table
495 and the array of operand expressions and returns the instruction */
496
497 static unsigned long
498 build_insn (opcode, opers, insn)
499 struct d10v_opcode *opcode;
500 expressionS *opers;
501 unsigned long insn;
502 {
503 int i, bits, shift, flags, format;
504 unsigned int number;
505
506 /* the insn argument is only used for the DIVS kludge */
507 if (insn)
508 format = LONG_R;
509 else
510 {
511 insn = opcode->opcode;
512 format = opcode->format;
513 }
514
515 for (i=0;opcode->operands[i];i++)
516 {
517 flags = d10v_operands[opcode->operands[i]].flags;
518 bits = d10v_operands[opcode->operands[i]].bits;
519 shift = d10v_operands[opcode->operands[i]].shift;
520 number = opers[i].X_add_number;
521
522 if (flags & OPERAND_REG)
523 {
524 number &= REGISTER_MASK;
525 if (format == LONG_L)
526 shift += 15;
527 }
528
529 if (opers[i].X_op != O_register && opers[i].X_op != O_constant)
530 {
531 /* now create a fixup */
532
533 if (fixups->fc >= MAX_INSN_FIXUPS)
534 as_fatal ("too many fixups");
535
536 if (opers[i].X_op == O_symbol && number == AT_WORD &&
537 opers[i].X_op_symbol == (struct symbol *)-1 )
538 {
539 number = opers[i].X_add_number = 0;
540 fixups->fix[fixups->fc].reloc = BFD_RELOC_D10V_18;
541 } else
542 fixups->fix[fixups->fc].reloc =
543 get_reloc((struct d10v_operand *)&d10v_operands[opcode->operands[i]]);
544
545 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_16 ||
546 fixups->fix[fixups->fc].reloc == BFD_RELOC_D10V_18)
547 fixups->fix[fixups->fc].size = 2;
548 else
549 fixups->fix[fixups->fc].size = 4;
550
551 fixups->fix[fixups->fc].exp = opers[i];
552 fixups->fix[fixups->fc].operand = opcode->operands[i];
553 fixups->fix[fixups->fc].pcrel = (flags & OPERAND_ADDR) ? true : false;
554 (fixups->fc)++;
555 }
556
557 /* truncate to the proper number of bits */
558 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
559 as_bad("operand out of range: %d",number);
560 number &= 0x7FFFFFFF >> (31 - bits);
561 insn = insn | (number << shift);
562 }
563
564 /* kludge: for DIVS, we need to put the operands in twice */
565 /* on the second pass, format is changed to LONG_R to force */
566 /* the second set of operands to not be shifted over 15 */
567 if ((opcode->opcode == OPCODE_DIVS) && (format==LONG_L))
568 insn = build_insn (opcode, opers, insn);
569
570 return insn;
571 }
572
573 /* write out a long form instruction */
574 static void
575 write_long (opcode, insn, fx)
576 struct d10v_opcode *opcode;
577 unsigned long insn;
578 Fixups *fx;
579 {
580 int i, where;
581 char *f = frag_more(4);
582
583 insn |= FM11;
584 number_to_chars_bigendian (f, insn, 4);
585
586 for (i=0; i < fx->fc; i++)
587 {
588 if (fx->fix[i].reloc)
589 {
590 where = f - frag_now->fr_literal;
591 if (fx->fix[i].size == 2)
592 where += 2;
593
594 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
595 fx->fix[i].operand |= 4096;
596
597 fix_new_exp (frag_now,
598 where,
599 fx->fix[i].size,
600 &(fx->fix[i].exp),
601 fx->fix[i].pcrel,
602 fx->fix[i].operand|2048);
603 }
604 }
605 fx->fc = 0;
606 }
607
608
609 /* write out a short form instruction by itself */
610 static void
611 write_1_short (opcode, insn, fx)
612 struct d10v_opcode *opcode;
613 unsigned long insn;
614 Fixups *fx;
615 {
616 char *f = frag_more(4);
617 int i, where;
618
619 if (opcode->exec_type & PARONLY)
620 as_fatal ("Instruction must be executed in parallel with another instruction.");
621
622 /* the other container needs to be NOP */
623 /* according to 4.3.1: for FM=00, sub-instructions performed only
624 by IU cannot be encoded in L-container. */
625 if (opcode->unit == IU)
626 insn |= FM00 | (NOP << 15); /* right container */
627 else
628 insn = FM00 | (insn << 15) | NOP; /* left container */
629
630 number_to_chars_bigendian (f, insn, 4);
631 for (i=0; i < fx->fc; i++)
632 {
633 if (fx->fix[i].reloc)
634 {
635 where = f - frag_now->fr_literal;
636 if (fx->fix[i].size == 2)
637 where += 2;
638
639 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
640 fx->fix[i].operand |= 4096;
641
642 /* if it's an R reloc, we may have to switch it to L */
643 if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (opcode->unit != IU) )
644 fx->fix[i].operand |= 1024;
645
646 fix_new_exp (frag_now,
647 where,
648 fx->fix[i].size,
649 &(fx->fix[i].exp),
650 fx->fix[i].pcrel,
651 fx->fix[i].operand|2048);
652 }
653 }
654 fx->fc = 0;
655 }
656
657 /* write out a short form instruction if possible */
658 /* return number of instructions not written out */
659 static int
660 write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
661 struct d10v_opcode *opcode1, *opcode2;
662 unsigned long insn1, insn2;
663 int exec_type;
664 Fixups *fx;
665 {
666 unsigned long insn;
667 char *f;
668 int i,j, where;
669
670 if ( (exec_type != 1) && ((opcode1->exec_type & PARONLY)
671 || (opcode2->exec_type & PARONLY)))
672 as_fatal("Instruction must be executed in parallel");
673
674 if ( (opcode1->format & LONG_OPCODE) || (opcode2->format & LONG_OPCODE))
675 as_fatal ("Long instructions may not be combined.");
676
677 if(opcode1->exec_type & BRANCH_LINK && exec_type == 0)
678 {
679 /* Instructions paired with a subroutine call are executed before the
680 subroutine, so don't do these pairings unless explicitly requested. */
681 write_1_short (opcode1, insn1, fx->next);
682 return (1);
683 }
684
685 switch (exec_type)
686 {
687 case 0: /* order not specified */
688 if ( Optimizing && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type))
689 {
690 /* parallel */
691 if (opcode1->unit == IU)
692 insn = FM00 | (insn2 << 15) | insn1;
693 else if (opcode2->unit == MU)
694 insn = FM00 | (insn2 << 15) | insn1;
695 else
696 {
697 insn = FM00 | (insn1 << 15) | insn2;
698 fx = fx->next;
699 }
700 }
701 else if (opcode1->unit == IU)
702 {
703 /* reverse sequential */
704 insn = FM10 | (insn2 << 15) | insn1;
705 }
706 else
707 {
708 /* sequential */
709 insn = FM01 | (insn1 << 15) | insn2;
710 fx = fx->next;
711 }
712 break;
713 case 1: /* parallel */
714 if (opcode1->exec_type & SEQ || opcode2->exec_type & SEQ)
715 as_fatal ("One of these instructions may not be executed in parallel.");
716
717 if (opcode1->unit == IU)
718 {
719 if (opcode2->unit == IU)
720 as_fatal ("Two IU instructions may not be executed in parallel");
721 as_warn ("Swapping instruction order");
722 insn = FM00 | (insn2 << 15) | insn1;
723 }
724 else if (opcode2->unit == MU)
725 {
726 if (opcode1->unit == MU)
727 as_fatal ("Two MU instructions may not be executed in parallel");
728 as_warn ("Swapping instruction order");
729 insn = FM00 | (insn2 << 15) | insn1;
730 }
731 else
732 {
733 insn = FM00 | (insn1 << 15) | insn2;
734 fx = fx->next;
735 }
736 break;
737 case 2: /* sequential */
738 if (opcode1->unit == IU)
739 as_fatal ("IU instruction may not be in the left container");
740 insn = FM01 | (insn1 << 15) | insn2;
741 fx = fx->next;
742 break;
743 case 3: /* reverse sequential */
744 if (opcode2->unit == MU)
745 as_fatal ("MU instruction may not be in the right container");
746 insn = FM10 | (insn1 << 15) | insn2;
747 fx = fx->next;
748 break;
749 default:
750 as_fatal("unknown execution type passed to write_2_short()");
751 }
752
753 f = frag_more(4);
754 number_to_chars_bigendian (f, insn, 4);
755
756 for (j=0; j<2; j++)
757 {
758 for (i=0; i < fx->fc; i++)
759 {
760 if (fx->fix[i].reloc)
761 {
762 where = f - frag_now->fr_literal;
763 if (fx->fix[i].size == 2)
764 where += 2;
765
766 if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
767 fx->fix[i].operand |= 1024;
768
769 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
770 fx->fix[i].operand |= 4096;
771
772 fix_new_exp (frag_now,
773 where,
774 fx->fix[i].size,
775 &(fx->fix[i].exp),
776 fx->fix[i].pcrel,
777 fx->fix[i].operand|2048);
778 }
779 }
780 fx->fc = 0;
781 fx = fx->next;
782 }
783 return (0);
784 }
785
786
787 /* Check 2 instructions and determine if they can be safely */
788 /* executed in parallel. Returns 1 if they can be. */
789 static int
790 parallel_ok (op1, insn1, op2, insn2, exec_type)
791 struct d10v_opcode *op1, *op2;
792 unsigned long insn1, insn2;
793 int exec_type;
794 {
795 int i, j, flags, mask, shift, regno;
796 unsigned long ins, mod[2], used[2];
797 struct d10v_opcode *op;
798
799 if ((op1->exec_type & SEQ) != 0 || (op2->exec_type & SEQ) != 0
800 || (op1->exec_type & PAR) == 0 || (op2->exec_type & PAR) == 0
801 || (op1->unit == BOTH) || (op2->unit == BOTH)
802 || (op1->unit == IU && op2->unit == IU)
803 || (op1->unit == MU && op2->unit == MU))
804 return 0;
805
806 /* If the first instruction is a branch and this is auto parallazation,
807 don't combine with any second instruction. */
808 if (exec_type == 0 && (op1->exec_type & BRANCH) != 0)
809 return 0;
810
811 /* The idea here is to create two sets of bitmasks (mod and used) */
812 /* which indicate which registers are modified or used by each instruction. */
813 /* The operation can only be done in parallel if instruction 1 and instruction 2 */
814 /* modify different registers, and neither instruction modifies any registers */
815 /* the other is using. Accesses to control registers, PSW, and memory are treated */
816 /* as accesses to a single register. So if both instructions write memory or one */
817 /* instruction writes memory and the other reads, then they cannot be done in parallel. */
818 /* Likewise, if one instruction mucks with the psw and the other reads the PSW */
819 /* (which includes C, F0, and F1), then they cannot operate safely in parallel. */
820
821 /* the bitmasks (mod and used) look like this (bit 31 = MSB) */
822 /* r0-r15 0-15 */
823 /* a0-a1 16-17 */
824 /* cr (not psw) 18 */
825 /* psw 19 */
826 /* mem 20 */
827
828 for (j=0;j<2;j++)
829 {
830 if (j == 0)
831 {
832 op = op1;
833 ins = insn1;
834 }
835 else
836 {
837 op = op2;
838 ins = insn2;
839 }
840 mod[j] = used[j] = 0;
841 if (op->exec_type & BRANCH_LINK)
842 mod[j] |= 1 << 13;
843
844 for (i = 0; op->operands[i]; i++)
845 {
846 flags = d10v_operands[op->operands[i]].flags;
847 shift = d10v_operands[op->operands[i]].shift;
848 mask = 0x7FFFFFFF >> (31 - d10v_operands[op->operands[i]].bits);
849 if (flags & OPERAND_REG)
850 {
851 regno = (ins >> shift) & mask;
852 if (flags & OPERAND_ACC)
853 regno += 16;
854 else if (flags & OPERAND_CONTROL) /* mvtc or mvfc */
855 {
856 if (regno == 0)
857 regno = 19;
858 else
859 regno = 18;
860 }
861 else if (flags & OPERAND_FLAG)
862 regno = 19;
863
864 if ( flags & OPERAND_DEST )
865 {
866 mod[j] |= 1 << regno;
867 if (flags & OPERAND_EVEN)
868 mod[j] |= 1 << (regno + 1);
869 }
870 else
871 {
872 used[j] |= 1 << regno ;
873 if (flags & OPERAND_EVEN)
874 used[j] |= 1 << (regno + 1);
875
876 /* Auto inc/dec also modifies the register. */
877 if (op->operands[i+1] != 0
878 && (d10v_operands[op->operands[i+1]].flags
879 & (OPERAND_PLUS | OPERAND_MINUS)) != 0)
880 mod[j] |= 1 << regno;
881 }
882 }
883 else if (flags & OPERAND_ATMINUS)
884 {
885 /* SP implicitly used/modified */
886 mod[j] |= 1 << 15;
887 used[j] |= 1 << 15;
888 }
889 }
890 if (op->exec_type & RMEM)
891 used[j] |= 1 << 20;
892 else if (op->exec_type & WMEM)
893 mod[j] |= 1 << 20;
894 else if (op->exec_type & RF0)
895 used[j] |= 1 << 19;
896 else if (op->exec_type & WF0)
897 mod[j] |= 1 << 19;
898 else if (op->exec_type & WCAR)
899 mod[j] |= 1 << 19;
900 }
901 if ((mod[0] & mod[1]) == 0 && (mod[0] & used[1]) == 0 && (mod[1] & used[0]) == 0)
902 return 1;
903 return 0;
904 }
905
906
907 /* This is the main entry point for the machine-dependent assembler. str points to a
908 machine-dependent instruction. This function is supposed to emit the frags/bytes
909 it assembles to. For the D10V, it mostly handles the special VLIW parsing and packing
910 and leaves the difficult stuff to do_assemble().
911 */
912
913 static unsigned long prev_insn;
914 static struct d10v_opcode *prev_opcode = 0;
915 static subsegT prev_subseg;
916 static segT prev_seg = 0;;
917
918 void
919 md_assemble (str)
920 char *str;
921 {
922 struct d10v_opcode *opcode;
923 unsigned long insn;
924 int extype=0; /* execution type; parallel, etc */
925 static int etype=0; /* saved extype. used for multiline instructions */
926 char *str2;
927
928 if (etype == 0)
929 {
930 /* look for the special multiple instruction separators */
931 str2 = strstr (str, "||");
932 if (str2)
933 extype = 1;
934 else
935 {
936 str2 = strstr (str, "->");
937 if (str2)
938 extype = 2;
939 else
940 {
941 str2 = strstr (str, "<-");
942 if (str2)
943 extype = 3;
944 }
945 }
946 /* str2 points to the separator, if one */
947 if (str2)
948 {
949 *str2 = 0;
950
951 /* if two instructions are present and we already have one saved
952 then first write it out */
953 d10v_cleanup();
954
955 /* assemble first instruction and save it */
956 prev_insn = do_assemble (str, &prev_opcode);
957 if (prev_insn == -1)
958 as_fatal ("can't find opcode ");
959 fixups = fixups->next;
960 str = str2 + 2;
961 }
962 }
963
964 insn = do_assemble (str, &opcode);
965 if (insn == -1)
966 {
967 if (extype)
968 {
969 etype = extype;
970 return;
971 }
972 as_fatal ("can't find opcode ");
973 }
974
975 if (etype)
976 {
977 extype = etype;
978 etype = 0;
979 }
980
981 /* if this is a long instruction, write it and any previous short instruction */
982 if (opcode->format & LONG_OPCODE)
983 {
984 if (extype)
985 as_fatal("Unable to mix instructions as specified");
986 d10v_cleanup();
987 write_long (opcode, insn, fixups);
988 prev_opcode = NULL;
989 return;
990 }
991
992 if (prev_opcode && prev_seg && ((prev_seg != now_seg) || (prev_subseg != now_subseg)))
993 d10v_cleanup();
994
995 if (prev_opcode && (write_2_short (prev_opcode, prev_insn, opcode, insn, extype, fixups) == 0))
996 {
997 /* no instructions saved */
998 prev_opcode = NULL;
999 }
1000 else
1001 {
1002 if (extype)
1003 as_fatal("Unable to mix instructions as specified");
1004 /* save off last instruction so it may be packed on next pass */
1005 prev_opcode = opcode;
1006 prev_insn = insn;
1007 prev_seg = now_seg;
1008 prev_subseg = now_subseg;
1009 fixups = fixups->next;
1010 }
1011 }
1012
1013
1014 /* do_assemble assembles a single instruction and returns an opcode */
1015 /* it returns -1 (an invalid opcode) on error */
1016
1017 static unsigned long
1018 do_assemble (str, opcode)
1019 char *str;
1020 struct d10v_opcode **opcode;
1021 {
1022 unsigned char *op_start, *save;
1023 unsigned char *op_end;
1024 char name[20];
1025 int nlen = 0;
1026 expressionS myops[6];
1027 unsigned long insn;
1028
1029 /* Drop leading whitespace */
1030 while (*str == ' ')
1031 str++;
1032
1033 /* find the opcode end */
1034 for (op_start = op_end = (unsigned char *) (str);
1035 *op_end
1036 && nlen < 20
1037 && !is_end_of_line[*op_end] && *op_end != ' ';
1038 op_end++)
1039 {
1040 name[nlen] = tolower(op_start[nlen]);
1041 nlen++;
1042 }
1043 name[nlen] = 0;
1044
1045 if (nlen == 0)
1046 return (-1);
1047
1048 /* find the first opcode with the proper name */
1049 *opcode = (struct d10v_opcode *)hash_find (d10v_hash, name);
1050 if (*opcode == NULL)
1051 as_fatal ("unknown opcode: %s",name);
1052
1053 save = input_line_pointer;
1054 input_line_pointer = op_end;
1055 *opcode = find_opcode (*opcode, myops);
1056 if (*opcode == 0)
1057 return -1;
1058 input_line_pointer = save;
1059
1060 insn = build_insn ((*opcode), myops, 0);
1061 return (insn);
1062 }
1063
1064 /* find_opcode() gets a pointer to an entry in the opcode table. */
1065 /* It must look at all opcodes with the same name and use the operands */
1066 /* to choose the correct opcode. */
1067
1068 static struct d10v_opcode *
1069 find_opcode (opcode, myops)
1070 struct d10v_opcode *opcode;
1071 expressionS myops[];
1072 {
1073 int i, match, done;
1074 struct d10v_opcode *next_opcode;
1075
1076 /* get all the operands and save them as expressions */
1077 get_operands (myops);
1078
1079 /* now see if the operand is a fake. If so, find the correct size */
1080 /* instruction, if possible */
1081 if (opcode->format == OPCODE_FAKE)
1082 {
1083 int opnum = opcode->operands[0];
1084
1085 if (myops[opnum].X_op == O_register)
1086 {
1087 myops[opnum].X_op = O_symbol;
1088 myops[opnum].X_add_symbol = symbol_find_or_make ((char *)myops[opnum].X_op_symbol);
1089 myops[opnum].X_add_number = 0;
1090 myops[opnum].X_op_symbol = NULL;
1091 }
1092
1093 if (myops[opnum].X_op == O_constant || (myops[opnum].X_op == O_symbol &&
1094 S_IS_DEFINED(myops[opnum].X_add_symbol) &&
1095 (S_GET_SEGMENT(myops[opnum].X_add_symbol) == now_seg)))
1096 {
1097 next_opcode=opcode+1;
1098 for (i=0; opcode->operands[i+1]; i++)
1099 {
1100 int bits = d10v_operands[next_opcode->operands[opnum]].bits;
1101 int flags = d10v_operands[next_opcode->operands[opnum]].flags;
1102 if (flags & OPERAND_ADDR)
1103 bits += 2;
1104 if (myops[opnum].X_op == O_constant)
1105 {
1106 if (!check_range (myops[opnum].X_add_number, bits, flags))
1107 return next_opcode;
1108 }
1109 else
1110 {
1111 fragS *f;
1112 long value;
1113 /* calculate the current address by running through the previous frags */
1114 /* and adding our current offset */
1115 for (value = 0, f = frchain_now->frch_root; f; f = f->fr_next)
1116 value += f->fr_fix + f->fr_offset;
1117
1118 if (flags & OPERAND_ADDR)
1119 value = S_GET_VALUE(myops[opnum].X_add_symbol) - value -
1120 (obstack_next_free(&frchain_now->frch_obstack) - frag_now->fr_literal);
1121 else
1122 value = S_GET_VALUE(myops[opnum].X_add_symbol);
1123
1124 if (myops[opnum].X_add_number == AT_WORD &&
1125 myops[opnum].X_op_symbol == (struct symbol *)-1)
1126 {
1127 if (bits > 4)
1128 {
1129 bits += 2;
1130 if (!check_range (value, bits, flags))
1131 return next_opcode;
1132 }
1133 }
1134 else if (!check_range (value, bits, flags))
1135 return next_opcode;
1136 }
1137 next_opcode++;
1138 }
1139 as_fatal ("value out of range");
1140 }
1141 else
1142 {
1143 /* not a constant, so use a long instruction */
1144 return opcode+2;
1145 }
1146 }
1147 else
1148 {
1149 match = 0;
1150 /* now search the opcode table table for one with operands */
1151 /* that matches what we've got */
1152 while (!match)
1153 {
1154 match = 1;
1155 for (i = 0; opcode->operands[i]; i++)
1156 {
1157 int flags = d10v_operands[opcode->operands[i]].flags;
1158 int X_op = myops[i].X_op;
1159 int num = myops[i].X_add_number;
1160
1161 if (X_op==0)
1162 {
1163 match=0;
1164 break;
1165 }
1166
1167 if (flags & OPERAND_REG)
1168 {
1169 if ((X_op != O_register) ||
1170 ((flags & OPERAND_ACC) != (num & OPERAND_ACC)) ||
1171 ((flags & OPERAND_FLAG) != (num & OPERAND_FLAG)) ||
1172 ((flags & OPERAND_CONTROL) != (num & OPERAND_CONTROL)))
1173 {
1174 match=0;
1175 break;
1176 }
1177 }
1178
1179 if (((flags & OPERAND_MINUS) && ((X_op != O_absent) || (num != OPERAND_MINUS))) ||
1180 ((flags & OPERAND_PLUS) && ((X_op != O_absent) || (num != OPERAND_PLUS))) ||
1181 ((flags & OPERAND_ATMINUS) && ((X_op != O_absent) || (num != OPERAND_ATMINUS))) ||
1182 ((flags & OPERAND_ATPAR) && ((X_op != O_absent) || (num != OPERAND_ATPAR))) ||
1183 ((flags & OPERAND_ATSIGN) && ((X_op != O_absent) || (num != OPERAND_ATSIGN))))
1184 {
1185 match=0;
1186 break;
1187 }
1188 }
1189 /* we're only done if the operands matched so far AND there
1190 are no more to check */
1191 if (match && myops[i].X_op==0)
1192 break;
1193 else
1194 match = 0;
1195
1196 next_opcode = opcode+1;
1197 if (next_opcode->opcode == 0)
1198 break;
1199 if (strcmp(next_opcode->name, opcode->name))
1200 break;
1201 opcode = next_opcode;
1202 }
1203 }
1204
1205 if (!match)
1206 {
1207 as_bad ("bad opcode or operands");
1208 return (0);
1209 }
1210
1211 /* Check that all registers that are required to be even are. */
1212 /* Also, if any operands were marked as registers, but were really symbols */
1213 /* fix that here. */
1214 for (i=0; opcode->operands[i]; i++)
1215 {
1216 if ((d10v_operands[opcode->operands[i]].flags & OPERAND_EVEN) &&
1217 (myops[i].X_add_number & 1))
1218 as_fatal("Register number must be EVEN");
1219 if (myops[i].X_op == O_register)
1220 {
1221 if (!(d10v_operands[opcode->operands[i]].flags & OPERAND_REG))
1222 {
1223 myops[i].X_op = O_symbol;
1224 myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol);
1225 myops[i].X_add_number = 0;
1226 myops[i].X_op_symbol = NULL;
1227 }
1228 }
1229 }
1230 return opcode;
1231 }
1232
1233 /* if while processing a fixup, a reloc really needs to be created */
1234 /* then it is done here */
1235
1236 arelent *
1237 tc_gen_reloc (seg, fixp)
1238 asection *seg;
1239 fixS *fixp;
1240 {
1241 arelent *reloc;
1242 reloc = (arelent *) xmalloc (sizeof (arelent));
1243 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
1244 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1245 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1246 if (reloc->howto == (reloc_howto_type *) NULL)
1247 {
1248 as_bad_where (fixp->fx_file, fixp->fx_line,
1249 "reloc %d not supported by object file format", (int)fixp->fx_r_type);
1250 return NULL;
1251 }
1252 reloc->addend = fixp->fx_addnumber;
1253 return reloc;
1254 }
1255
1256 int
1257 md_estimate_size_before_relax (fragp, seg)
1258 fragS *fragp;
1259 asection *seg;
1260 {
1261 abort ();
1262 return 0;
1263 }
1264
1265 long
1266 md_pcrel_from_section (fixp, sec)
1267 fixS *fixp;
1268 segT sec;
1269 {
1270 if (fixp->fx_addsy != (symbolS *)NULL && (!S_IS_DEFINED (fixp->fx_addsy) ||
1271 (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
1272 return 0;
1273 return fixp->fx_frag->fr_address + fixp->fx_where;
1274 }
1275
1276 int
1277 md_apply_fix3 (fixp, valuep, seg)
1278 fixS *fixp;
1279 valueT *valuep;
1280 segT seg;
1281 {
1282 char *where;
1283 unsigned long insn;
1284 long value;
1285 int op_type;
1286 int left=0;
1287
1288 if (fixp->fx_addsy == (symbolS *) NULL)
1289 {
1290 value = *valuep;
1291 fixp->fx_done = 1;
1292 }
1293 else if (fixp->fx_pcrel)
1294 value = *valuep;
1295 else
1296 {
1297 value = fixp->fx_offset;
1298 if (fixp->fx_subsy != (symbolS *) NULL)
1299 {
1300 if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
1301 value -= S_GET_VALUE (fixp->fx_subsy);
1302 else
1303 {
1304 /* We don't actually support subtracting a symbol. */
1305 as_bad_where (fixp->fx_file, fixp->fx_line,
1306 "expression too complex");
1307 }
1308 }
1309 }
1310
1311 op_type = fixp->fx_r_type;
1312 if (op_type & 2048)
1313 {
1314 op_type -= 2048;
1315 if (op_type & 1024)
1316 {
1317 op_type -= 1024;
1318 fixp->fx_r_type = BFD_RELOC_D10V_10_PCREL_L;
1319 left = 1;
1320 }
1321 else if (op_type & 4096)
1322 {
1323 op_type -= 4096;
1324 fixp->fx_r_type = BFD_RELOC_D10V_18;
1325 }
1326 else
1327 fixp->fx_r_type = get_reloc((struct d10v_operand *)&d10v_operands[op_type]);
1328 }
1329
1330 /* Fetch the instruction, insert the fully resolved operand
1331 value, and stuff the instruction back again. */
1332 where = fixp->fx_frag->fr_literal + fixp->fx_where;
1333 insn = bfd_getb32 ((unsigned char *) where);
1334
1335 switch (fixp->fx_r_type)
1336 {
1337 case BFD_RELOC_D10V_10_PCREL_L:
1338 case BFD_RELOC_D10V_10_PCREL_R:
1339 case BFD_RELOC_D10V_18_PCREL:
1340 case BFD_RELOC_D10V_18:
1341 /* instruction addresses are always right-shifted by 2 */
1342 value >>= 2;
1343 if (fixp->fx_size == 2)
1344 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1345 else
1346 {
1347 insn = d10v_insert_operand (insn, op_type, (offsetT)value, left, fixp);
1348 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1349 }
1350 break;
1351 case BFD_RELOC_32:
1352 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1353 break;
1354 case BFD_RELOC_16:
1355 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1356 break;
1357 default:
1358 as_fatal ("line %d: unknown relocation type: 0x%x",fixp->fx_line,fixp->fx_r_type);
1359 }
1360 return 0;
1361 }
1362
1363 /* d10v_cleanup() is called after the assembler has finished parsing the input
1364 file or after a label is defined. Because the D10V assembler sometimes saves short
1365 instructions to see if it can package them with the next instruction, there may
1366 be a short instruction that still needs written. */
1367 int
1368 d10v_cleanup ()
1369 {
1370 segT seg;
1371 subsegT subseg;
1372
1373 if (prev_opcode)
1374 {
1375 seg = now_seg;
1376 subseg = now_subseg;
1377 subseg_set (prev_seg, prev_subseg);
1378 write_1_short (prev_opcode, prev_insn, fixups->next);
1379 subseg_set (seg, subseg);
1380 prev_opcode = NULL;
1381 }
1382 return 1;
1383 }
1384
1385 /* Like normal .word, except support @word */
1386 /* clobbers input_line_pointer, checks end-of-line. */
1387 static void
1388 d10v_dot_word (nbytes)
1389 register int nbytes; /* 1=.byte, 2=.word, 4=.long */
1390 {
1391 expressionS exp;
1392 bfd_reloc_code_real_type reloc;
1393 char *p;
1394 int offset;
1395
1396 if (is_it_end_of_statement ())
1397 {
1398 demand_empty_rest_of_line ();
1399 return;
1400 }
1401
1402 do
1403 {
1404 expression (&exp);
1405 if (!strncasecmp (input_line_pointer, "@word", 5))
1406 {
1407 exp.X_add_number = 0;
1408 input_line_pointer += 5;
1409
1410 p = frag_more (2);
1411 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
1412 &exp, 0, BFD_RELOC_D10V_18);
1413 }
1414 else
1415 emit_expr (&exp, 2);
1416 }
1417 while (*input_line_pointer++ == ',');
1418
1419 input_line_pointer--; /* Put terminator back into stream. */
1420 demand_empty_rest_of_line ();
1421 }
1422
1423
1424 /* Mitsubishi asked that we support some old syntax that apparently */
1425 /* had immediate operands starting with '#'. This is in some of their */
1426 /* sample code but is not documented (although it appears in some */
1427 /* examples in their assembler manual). For now, we'll solve this */
1428 /* compatibility problem by simply ignoring any '#' at the beginning */
1429 /* of an operand. */
1430
1431 /* operands that begin with '#' should fall through to here */
1432 /* from expr.c */
1433
1434 void
1435 md_operand (expressionP)
1436 expressionS *expressionP;
1437 {
1438 if (*input_line_pointer == '#')
1439 {
1440 input_line_pointer++;
1441 expression (expressionP);
1442 }
1443 }
1444
This page took 0.061102 seconds and 4 git commands to generate.