* config/tc-mn10200.c (mn10200_insert_operand): Don't
[deliverable/binutils-gdb.git] / gas / config / tc-d10v.c
1 /* tc-d10v.c -- Assembler code for the Mitsubishi D10V
2
3 Copyright (C) 1996 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <stdio.h>
23 #include <ctype.h>
24 #include "as.h"
25 #include "subsegs.h"
26 #include "opcode/d10v.h"
27 #include "elf/ppc.h"
28
29 const char comment_chars[] = ";";
30 const char line_comment_chars[] = "#";
31 const char line_separator_chars[] = "";
32 const char *md_shortopts = "O";
33 const char EXP_CHARS[] = "eE";
34 const char FLT_CHARS[] = "dD";
35
36 int Optimizing = 0;
37
38 #define AT_WORD (-1)
39
40 /* fixups */
41 #define MAX_INSN_FIXUPS (5)
42 struct d10v_fixup
43 {
44 expressionS exp;
45 int operand;
46 int pcrel;
47 int size;
48 bfd_reloc_code_real_type reloc;
49 };
50
51 typedef struct _fixups
52 {
53 int fc;
54 struct d10v_fixup fix[MAX_INSN_FIXUPS];
55 struct _fixups *next;
56 } Fixups;
57
58 static Fixups FixUps[2];
59 static Fixups *fixups;
60
61 /* local functions */
62 static int reg_name_search PARAMS ((char *name));
63 static int register_name PARAMS ((expressionS *expressionP));
64 static int check_range PARAMS ((unsigned long num, int bits, int flags));
65 static int postfix PARAMS ((char *p));
66 static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op));
67 static int get_operands PARAMS ((expressionS exp[]));
68 static struct d10v_opcode *find_opcode PARAMS ((struct d10v_opcode *opcode, expressionS ops[]));
69 static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers, unsigned long insn));
70 static void write_long PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
71 static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
72 static int write_2_short PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
73 struct d10v_opcode *opcode2, unsigned long insn2, int exec_type, Fixups *fx));
74 static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode));
75 static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type,
76 offsetT value, int left, fixS *fix));
77 static int parallel_ok PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
78 struct d10v_opcode *opcode2, unsigned long insn2,
79 int exec_type));
80
81 struct option md_longopts[] = {
82 {NULL, no_argument, NULL, 0}
83 };
84 size_t md_longopts_size = sizeof(md_longopts);
85
86 static void d10v_dot_word PARAMS ((int));
87
88 /* The target specific pseudo-ops which we support. */
89 const pseudo_typeS md_pseudo_table[] =
90 {
91 { "word", d10v_dot_word, 2 },
92 { NULL, NULL, 0 }
93 };
94
95 /* Opcode hash table. */
96 static struct hash_control *d10v_hash;
97
98 /* reg_name_search does a binary search of the pre_defined_registers
99 array to see if "name" is a valid regiter name. Returns the register
100 number from the array on success, or -1 on failure. */
101
102 static int
103 reg_name_search (name)
104 char *name;
105 {
106 int middle, low, high;
107 int cmp;
108
109 low = 0;
110 high = reg_name_cnt() - 1;
111
112 do
113 {
114 middle = (low + high) / 2;
115 cmp = strcasecmp (name, pre_defined_registers[middle].name);
116 if (cmp < 0)
117 high = middle - 1;
118 else if (cmp > 0)
119 low = middle + 1;
120 else
121 return pre_defined_registers[middle].value;
122 }
123 while (low <= high);
124 return -1;
125 }
126
127 /* register_name() checks the string at input_line_pointer
128 to see if it is a valid register name */
129
130 static int
131 register_name (expressionP)
132 expressionS *expressionP;
133 {
134 int reg_number;
135 char c, *p = input_line_pointer;
136
137 while (*p && *p!='\n' && *p!='\r' && *p !=',' && *p!=' ' && *p!=')')
138 p++;
139
140 c = *p;
141 if (c)
142 *p++ = 0;
143
144 /* look to see if it's in the register table */
145 reg_number = reg_name_search (input_line_pointer);
146 if (reg_number >= 0)
147 {
148 expressionP->X_op = O_register;
149 /* temporarily store a pointer to the string here */
150 expressionP->X_op_symbol = (struct symbol *)input_line_pointer;
151 expressionP->X_add_number = reg_number;
152 input_line_pointer = p;
153 return 1;
154 }
155 if (c)
156 *(p-1) = c;
157 return 0;
158 }
159
160
161 static int
162 check_range (num, bits, flags)
163 unsigned long num;
164 int bits;
165 int flags;
166 {
167 long min, max, bit1;
168 int retval=0;
169
170 /* don't bother checking 16-bit values */
171 if (bits == 16)
172 return 0;
173
174 if (flags & OPERAND_SHIFT)
175 {
176 /* all special shift operands are unsigned */
177 /* and <= 16. We allow 0 for now. */
178 if (num>16)
179 return 1;
180 else
181 return 0;
182 }
183
184 if (flags & OPERAND_SIGNED)
185 {
186 max = (1 << (bits - 1))-1;
187 min = - (1 << (bits - 1));
188 if (((long)num > max) || ((long)num < min))
189 retval = 1;
190 }
191 else
192 {
193 max = (1 << bits) - 1;
194 min = 0;
195 if ((num > max) || (num < min))
196 retval = 1;
197 }
198 return retval;
199 }
200
201
202 void
203 md_show_usage (stream)
204 FILE *stream;
205 {
206 fprintf(stream, "D10V options:\n\
207 -O optimize. Will do some operations in parallel.\n");
208 }
209
210 int
211 md_parse_option (c, arg)
212 int c;
213 char *arg;
214 {
215 switch (c)
216 {
217 case 'O':
218 /* Optimize. Will attempt to parallelize operations */
219 Optimizing = 1;
220 break;
221 default:
222 return 0;
223 }
224 return 1;
225 }
226
227 symbolS *
228 md_undefined_symbol (name)
229 char *name;
230 {
231 return 0;
232 }
233
234 /* Turn a string in input_line_pointer into a floating point constant of type
235 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
236 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
237 */
238 char *
239 md_atof (type, litP, sizeP)
240 int type;
241 char *litP;
242 int *sizeP;
243 {
244 int prec;
245 LITTLENUM_TYPE words[4];
246 char *t;
247 int i;
248
249 switch (type)
250 {
251 case 'f':
252 prec = 2;
253 break;
254 case 'd':
255 prec = 4;
256 break;
257 default:
258 *sizeP = 0;
259 return "bad call to md_atof";
260 }
261
262 t = atof_ieee (input_line_pointer, type, words);
263 if (t)
264 input_line_pointer = t;
265
266 *sizeP = prec * 2;
267
268 for (i = 0; i < prec; i++)
269 {
270 md_number_to_chars (litP, (valueT) words[i], 2);
271 litP += 2;
272 }
273 return NULL;
274 }
275
276 void
277 md_convert_frag (abfd, sec, fragP)
278 bfd *abfd;
279 asection *sec;
280 fragS *fragP;
281 {
282 abort ();
283 }
284
285 valueT
286 md_section_align (seg, addr)
287 asection *seg;
288 valueT addr;
289 {
290 int align = bfd_get_section_alignment (stdoutput, seg);
291 return ((addr + (1 << align) - 1) & (-1 << align));
292 }
293
294
295 void
296 md_begin ()
297 {
298 char *prev_name = "";
299 struct d10v_opcode *opcode;
300 d10v_hash = hash_new();
301
302 /* Insert unique names into hash table. The D10v instruction set
303 has many identical opcode names that have different opcodes based
304 on the operands. This hash table then provides a quick index to
305 the first opcode with a particular name in the opcode table. */
306
307 for (opcode = (struct d10v_opcode *)d10v_opcodes; opcode->name; opcode++)
308 {
309 if (strcmp (prev_name, opcode->name))
310 {
311 prev_name = (char *)opcode->name;
312 hash_insert (d10v_hash, opcode->name, (char *) opcode);
313 }
314 }
315
316 fixups = &FixUps[0];
317 FixUps[0].next = &FixUps[1];
318 FixUps[1].next = &FixUps[0];
319 }
320
321
322 /* this function removes the postincrement or postdecrement
323 operator ( '+' or '-' ) from an expression */
324
325 static int postfix (p)
326 char *p;
327 {
328 while (*p != '-' && *p != '+')
329 {
330 if (*p==0 || *p=='\n' || *p=='\r')
331 break;
332 p++;
333 }
334
335 if (*p == '-')
336 {
337 *p = ' ';
338 return (-1);
339 }
340 if (*p == '+')
341 {
342 *p = ' ';
343 return (1);
344 }
345
346 return (0);
347 }
348
349
350 static bfd_reloc_code_real_type
351 get_reloc (op)
352 struct d10v_operand *op;
353 {
354 int bits = op->bits;
355
356 if (bits <= 4)
357 return (0);
358
359 if (op->flags & OPERAND_ADDR)
360 {
361 if (bits == 8)
362 return (BFD_RELOC_D10V_10_PCREL_R);
363 else
364 return (BFD_RELOC_D10V_18_PCREL);
365 }
366
367 return (BFD_RELOC_16);
368 }
369
370
371 /* get_operands parses a string of operands and returns
372 an array of expressions */
373
374 static int
375 get_operands (exp)
376 expressionS exp[];
377 {
378 char *p = input_line_pointer;
379 int numops = 0;
380 int post = 0;
381
382 while (*p)
383 {
384 while (*p == ' ' || *p == '\t' || *p == ',')
385 p++;
386 if (*p==0 || *p=='\n' || *p=='\r')
387 break;
388
389 if (*p == '@')
390 {
391 p++;
392 exp[numops].X_op = O_absent;
393 if (*p == '(')
394 {
395 p++;
396 exp[numops].X_add_number = OPERAND_ATPAR;
397 }
398 else if (*p == '-')
399 {
400 p++;
401 exp[numops].X_add_number = OPERAND_ATMINUS;
402 }
403 else
404 {
405 exp[numops].X_add_number = OPERAND_ATSIGN;
406 post = postfix (p);
407 }
408 numops++;
409 continue;
410 }
411
412 if (*p == ')')
413 {
414 /* just skip the trailing paren */
415 p++;
416 continue;
417 }
418
419 input_line_pointer = p;
420
421 /* check to see if it might be a register name */
422 if (!register_name (&exp[numops]))
423 {
424 /* parse as an expression */
425 expression (&exp[numops]);
426 }
427
428 if (!strncasecmp (input_line_pointer, "@word", 5))
429 {
430 if (exp[numops].X_op == O_register)
431 {
432 /* if it looked like a register name but was followed by "@word" */
433 /* then it was really a symbol, so change it to one */
434 exp[numops].X_op = O_symbol;
435 exp[numops].X_add_symbol = symbol_find_or_make ((char *)exp[numops].X_op_symbol);
436 exp[numops].X_op_symbol = NULL;
437 }
438 exp[numops].X_add_number = AT_WORD;
439 input_line_pointer += 5;
440 }
441
442 if (exp[numops].X_op == O_illegal)
443 as_bad ("illegal operand");
444 else if (exp[numops].X_op == O_absent)
445 as_bad ("missing operand");
446
447 numops++;
448 p = input_line_pointer;
449 }
450
451 switch (post)
452 {
453 case -1: /* postdecrement mode */
454 exp[numops].X_op = O_absent;
455 exp[numops++].X_add_number = OPERAND_MINUS;
456 break;
457 case 1: /* postincrement mode */
458 exp[numops].X_op = O_absent;
459 exp[numops++].X_add_number = OPERAND_PLUS;
460 break;
461 }
462
463 exp[numops].X_op = 0;
464 return (numops);
465 }
466
467 static unsigned long
468 d10v_insert_operand (insn, op_type, value, left, fix)
469 unsigned long insn;
470 int op_type;
471 offsetT value;
472 int left;
473 fixS *fix;
474 {
475 int shift, bits;
476
477 shift = d10v_operands[op_type].shift;
478 if (left)
479 shift += 15;
480
481 bits = d10v_operands[op_type].bits;
482
483 /* truncate to the proper number of bits */
484 if (check_range (value, bits, d10v_operands[op_type].flags))
485 as_bad_where (fix->fx_file, fix->fx_line, "operand out of range: %d", value);
486
487 value &= 0x7FFFFFFF >> (31 - bits);
488 insn |= (value << shift);
489
490 return insn;
491 }
492
493
494 /* build_insn takes a pointer to the opcode entry in the opcode table
495 and the array of operand expressions and returns the instruction */
496
497 static unsigned long
498 build_insn (opcode, opers, insn)
499 struct d10v_opcode *opcode;
500 expressionS *opers;
501 unsigned long insn;
502 {
503 int i, bits, shift, flags, format;
504 unsigned int number;
505
506 /* the insn argument is only used for the DIVS kludge */
507 if (insn)
508 format = LONG_R;
509 else
510 {
511 insn = opcode->opcode;
512 format = opcode->format;
513 }
514
515 for (i=0;opcode->operands[i];i++)
516 {
517 flags = d10v_operands[opcode->operands[i]].flags;
518 bits = d10v_operands[opcode->operands[i]].bits;
519 shift = d10v_operands[opcode->operands[i]].shift;
520 number = opers[i].X_add_number;
521
522 if (flags & OPERAND_REG)
523 {
524 number &= REGISTER_MASK;
525 if (format == LONG_L)
526 shift += 15;
527 }
528
529 if (opers[i].X_op != O_register && opers[i].X_op != O_constant)
530 {
531 /* now create a fixup */
532
533 if (fixups->fc >= MAX_INSN_FIXUPS)
534 as_fatal ("too many fixups");
535
536 if (opers[i].X_op == O_symbol && number == AT_WORD)
537 {
538 number = opers[i].X_add_number = 0;
539 fixups->fix[fixups->fc].reloc = BFD_RELOC_D10V_18;
540 } else
541 fixups->fix[fixups->fc].reloc =
542 get_reloc((struct d10v_operand *)&d10v_operands[opcode->operands[i]]);
543
544 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_16 ||
545 fixups->fix[fixups->fc].reloc == BFD_RELOC_D10V_18)
546 fixups->fix[fixups->fc].size = 2;
547 else
548 fixups->fix[fixups->fc].size = 4;
549
550 fixups->fix[fixups->fc].exp = opers[i];
551 fixups->fix[fixups->fc].operand = opcode->operands[i];
552 fixups->fix[fixups->fc].pcrel = (flags & OPERAND_ADDR) ? true : false;
553 (fixups->fc)++;
554 }
555
556 /* truncate to the proper number of bits */
557 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
558 as_bad("operand out of range: %d",number);
559 number &= 0x7FFFFFFF >> (31 - bits);
560 insn = insn | (number << shift);
561 }
562
563 /* kludge: for DIVS, we need to put the operands in twice */
564 /* on the second pass, format is changed to LONG_R to force */
565 /* the second set of operands to not be shifted over 15 */
566 if ((opcode->opcode == OPCODE_DIVS) && (format==LONG_L))
567 insn = build_insn (opcode, opers, insn);
568
569 return insn;
570 }
571
572 /* write out a long form instruction */
573 static void
574 write_long (opcode, insn, fx)
575 struct d10v_opcode *opcode;
576 unsigned long insn;
577 Fixups *fx;
578 {
579 int i, where;
580 char *f = frag_more(4);
581
582 insn |= FM11;
583 number_to_chars_bigendian (f, insn, 4);
584
585 for (i=0; i < fx->fc; i++)
586 {
587 if (fx->fix[i].reloc)
588 {
589 where = f - frag_now->fr_literal;
590 if (fx->fix[i].size == 2)
591 where += 2;
592
593 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
594 fx->fix[i].operand |= 4096;
595
596 fix_new_exp (frag_now,
597 where,
598 fx->fix[i].size,
599 &(fx->fix[i].exp),
600 fx->fix[i].pcrel,
601 fx->fix[i].operand|2048);
602 }
603 }
604 fx->fc = 0;
605 }
606
607
608 /* write out a short form instruction by itself */
609 static void
610 write_1_short (opcode, insn, fx)
611 struct d10v_opcode *opcode;
612 unsigned long insn;
613 Fixups *fx;
614 {
615 char *f = frag_more(4);
616 int i, where;
617
618 if (opcode->exec_type & PARONLY)
619 as_fatal ("Instruction must be executed in parallel with another instruction.");
620
621 /* the other container needs to be NOP */
622 /* according to 4.3.1: for FM=00, sub-instructions performed only
623 by IU cannot be encoded in L-container. */
624 if (opcode->unit == IU)
625 insn |= FM00 | (NOP << 15); /* right container */
626 else
627 insn = FM00 | (insn << 15) | NOP; /* left container */
628
629 number_to_chars_bigendian (f, insn, 4);
630 for (i=0; i < fx->fc; i++)
631 {
632 if (fx->fix[i].reloc)
633 {
634 where = f - frag_now->fr_literal;
635 if (fx->fix[i].size == 2)
636 where += 2;
637
638 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
639 fx->fix[i].operand |= 4096;
640
641 /* if it's an R reloc, we may have to switch it to L */
642 if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (opcode->unit != IU) )
643 fx->fix[i].operand |= 1024;
644
645 fix_new_exp (frag_now,
646 where,
647 fx->fix[i].size,
648 &(fx->fix[i].exp),
649 fx->fix[i].pcrel,
650 fx->fix[i].operand|2048);
651 }
652 }
653 fx->fc = 0;
654 }
655
656 /* write out a short form instruction if possible */
657 /* return number of instructions not written out */
658 static int
659 write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
660 struct d10v_opcode *opcode1, *opcode2;
661 unsigned long insn1, insn2;
662 int exec_type;
663 Fixups *fx;
664 {
665 unsigned long insn;
666 char *f;
667 int i,j, where;
668
669 if ( (exec_type != 1) && ((opcode1->exec_type & PARONLY)
670 || (opcode2->exec_type & PARONLY)))
671 as_fatal("Instruction must be executed in parallel");
672
673 if ( (opcode1->format & LONG_OPCODE) || (opcode2->format & LONG_OPCODE))
674 as_fatal ("Long instructions may not be combined.");
675
676 if(opcode1->exec_type & BRANCH_LINK && opcode2->exec_type != PARONLY)
677 {
678 /* subroutines must be called from 32-bit boundaries */
679 /* so the return address will be correct */
680 write_1_short (opcode1, insn1, fx->next);
681 return (1);
682 }
683
684 switch (exec_type)
685 {
686 case 0: /* order not specified */
687 if ( Optimizing && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type))
688 {
689 /* parallel */
690 if (opcode1->unit == IU)
691 insn = FM00 | (insn2 << 15) | insn1;
692 else if (opcode2->unit == MU)
693 insn = FM00 | (insn2 << 15) | insn1;
694 else
695 {
696 insn = FM00 | (insn1 << 15) | insn2;
697 fx = fx->next;
698 }
699 }
700 else if (opcode1->unit == IU)
701 {
702 /* reverse sequential */
703 insn = FM10 | (insn2 << 15) | insn1;
704 }
705 else
706 {
707 /* sequential */
708 insn = FM01 | (insn1 << 15) | insn2;
709 fx = fx->next;
710 }
711 break;
712 case 1: /* parallel */
713 if (opcode1->exec_type & SEQ || opcode2->exec_type & SEQ)
714 as_fatal ("One of these instructions may not be executed in parallel.");
715
716 if ( !parallel_ok (opcode1, insn1, opcode2, insn2, exec_type)
717 && (opcode1->exec_type & PARONLY) == 0
718 && (opcode2->exec_type & PARONLY) == 0)
719 as_fatal ("Two instructions may not be executed in parallel with each other.");
720
721 if (opcode1->unit == IU)
722 {
723 if (opcode2->unit == IU)
724 as_fatal ("Two IU instructions may not be executed in parallel");
725 as_warn ("Swapping instruction order");
726 insn = FM00 | (insn2 << 15) | insn1;
727 }
728 else if (opcode2->unit == MU)
729 {
730 if (opcode1->unit == MU)
731 as_fatal ("Two MU instructions may not be executed in parallel");
732 as_warn ("Swapping instruction order");
733 insn = FM00 | (insn2 << 15) | insn1;
734 }
735 else
736 {
737 insn = FM00 | (insn1 << 15) | insn2;
738 fx = fx->next;
739 }
740 break;
741 case 2: /* sequential */
742 if (opcode1->unit == IU)
743 as_fatal ("IU instruction may not be in the left container");
744 insn = FM01 | (insn1 << 15) | insn2;
745 fx = fx->next;
746 break;
747 case 3: /* reverse sequential */
748 if (opcode2->unit == MU)
749 as_fatal ("MU instruction may not be in the right container");
750 insn = FM10 | (insn1 << 15) | insn2;
751 fx = fx->next;
752 break;
753 default:
754 as_fatal("unknown execution type passed to write_2_short()");
755 }
756
757 f = frag_more(4);
758 number_to_chars_bigendian (f, insn, 4);
759
760 for (j=0; j<2; j++)
761 {
762 for (i=0; i < fx->fc; i++)
763 {
764 if (fx->fix[i].reloc)
765 {
766 where = f - frag_now->fr_literal;
767 if (fx->fix[i].size == 2)
768 where += 2;
769
770 if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
771 fx->fix[i].operand |= 1024;
772
773 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
774 fx->fix[i].operand |= 4096;
775
776 fix_new_exp (frag_now,
777 where,
778 fx->fix[i].size,
779 &(fx->fix[i].exp),
780 fx->fix[i].pcrel,
781 fx->fix[i].operand|2048);
782 }
783 }
784 fx->fc = 0;
785 fx = fx->next;
786 }
787 return (0);
788 }
789
790
791 /* Check 2 instructions and determine if they can be safely */
792 /* executed in parallel. Returns 1 if they can be. */
793 static int
794 parallel_ok (op1, insn1, op2, insn2, exec_type)
795 struct d10v_opcode *op1, *op2;
796 unsigned long insn1, insn2;
797 int exec_type;
798 {
799 int i, j, flags, mask, shift, regno;
800 unsigned long ins, mod[2], used[2];
801 struct d10v_opcode *op;
802
803 if ((op1->exec_type & SEQ) != 0 || (op2->exec_type & SEQ) != 0
804 || (op1->exec_type & PAR) == 0 || (op2->exec_type & PAR) == 0
805 || (op1->unit == BOTH) || (op2->unit == BOTH)
806 || (op1->unit == IU && op2->unit == IU)
807 || (op1->unit == MU && op2->unit == MU))
808 return 0;
809
810 /* If the first instruction is a branch and this is auto parallazation,
811 don't combine with any second instruction. */
812 if (exec_type == 0 && (op1->exec_type & BRANCH) != 0)
813 return 0;
814
815 /* The idea here is to create two sets of bitmasks (mod and used) */
816 /* which indicate which registers are modified or used by each instruction. */
817 /* The operation can only be done in parallel if instruction 1 and instruction 2 */
818 /* modify different registers, and neither instruction modifies any registers */
819 /* the other is using. Accesses to control registers, PSW, and memory are treated */
820 /* as accesses to a single register. So if both instructions write memory or one */
821 /* instruction writes memory and the other reads, then they cannot be done in parallel. */
822 /* Likewise, if one instruction mucks with the psw and the other reads the PSW */
823 /* (which includes C, F0, and F1), then they cannot operate safely in parallel. */
824
825 /* the bitmasks (mod and used) look like this (bit 31 = MSB) */
826 /* r0-r15 0-15 */
827 /* a0-a1 16-17 */
828 /* cr (not psw) 18 */
829 /* psw 19 */
830 /* mem 20 */
831
832 for (j=0;j<2;j++)
833 {
834 if (j == 0)
835 {
836 op = op1;
837 ins = insn1;
838 }
839 else
840 {
841 op = op2;
842 ins = insn2;
843 }
844 mod[j] = used[j] = 0;
845 if (op->exec_type & BRANCH_LINK)
846 mod[j] |= 1 << 13;
847
848 for (i = 0; op->operands[i]; i++)
849 {
850 flags = d10v_operands[op->operands[i]].flags;
851 shift = d10v_operands[op->operands[i]].shift;
852 mask = 0x7FFFFFFF >> (31 - d10v_operands[op->operands[i]].bits);
853 if (flags & OPERAND_REG)
854 {
855 regno = (ins >> shift) & mask;
856 if (flags & OPERAND_ACC)
857 regno += 16;
858 else if (flags & OPERAND_CONTROL) /* mvtc or mvfc */
859 {
860 if (regno == 0)
861 regno = 19;
862 else
863 regno = 18;
864 }
865 else if (flags & OPERAND_FLAG)
866 regno = 19;
867
868 if ( flags & OPERAND_DEST )
869 {
870 mod[j] |= 1 << regno;
871 if (flags & OPERAND_EVEN)
872 mod[j] |= 1 << (regno + 1);
873 }
874 else
875 {
876 used[j] |= 1 << regno ;
877 if (flags & OPERAND_EVEN)
878 used[j] |= 1 << (regno + 1);
879 }
880 }
881 }
882 if (op->exec_type & RMEM)
883 used[j] |= 1 << 20;
884 else if (op->exec_type & WMEM)
885 mod[j] |= 1 << 20;
886 else if (op->exec_type & RF0)
887 used[j] |= 1 << 19;
888 else if (op->exec_type & WF0)
889 mod[j] |= 1 << 19;
890 else if (op->exec_type & WCAR)
891 mod[j] |= 1 << 19;
892 }
893 if ((mod[0] & mod[1]) == 0 && (mod[0] & used[1]) == 0 && (mod[1] & used[0]) == 0)
894 return 1;
895 return 0;
896 }
897
898
899 /* This is the main entry point for the machine-dependent assembler. str points to a
900 machine-dependent instruction. This function is supposed to emit the frags/bytes
901 it assembles to. For the D10V, it mostly handles the special VLIW parsing and packing
902 and leaves the difficult stuff to do_assemble().
903 */
904
905 static unsigned long prev_insn;
906 static struct d10v_opcode *prev_opcode = 0;
907 static subsegT prev_subseg;
908 static segT prev_seg = 0;;
909
910 void
911 md_assemble (str)
912 char *str;
913 {
914 struct d10v_opcode *opcode;
915 unsigned long insn;
916 int extype=0; /* execution type; parallel, etc */
917 static int etype=0; /* saved extype. used for multiline instructions */
918 char *str2;
919
920 if (etype == 0)
921 {
922 /* look for the special multiple instruction separators */
923 str2 = strstr (str, "||");
924 if (str2)
925 extype = 1;
926 else
927 {
928 str2 = strstr (str, "->");
929 if (str2)
930 extype = 2;
931 else
932 {
933 str2 = strstr (str, "<-");
934 if (str2)
935 extype = 3;
936 }
937 }
938 /* str2 points to the separator, if one */
939 if (str2)
940 {
941 *str2 = 0;
942
943 /* if two instructions are present and we already have one saved
944 then first write it out */
945 d10v_cleanup();
946
947 /* assemble first instruction and save it */
948 prev_insn = do_assemble (str, &prev_opcode);
949 if (prev_insn == -1)
950 as_fatal ("can't find opcode ");
951 fixups = fixups->next;
952 str = str2 + 2;
953 }
954 }
955
956 insn = do_assemble (str, &opcode);
957 if (insn == -1)
958 {
959 if (extype)
960 {
961 etype = extype;
962 return;
963 }
964 as_fatal ("can't find opcode ");
965 }
966
967 if (etype)
968 {
969 extype = etype;
970 etype = 0;
971 }
972
973 /* if this is a long instruction, write it and any previous short instruction */
974 if (opcode->format & LONG_OPCODE)
975 {
976 if (extype)
977 as_fatal("Unable to mix instructions as specified");
978 d10v_cleanup();
979 write_long (opcode, insn, fixups);
980 prev_opcode = NULL;
981 return;
982 }
983
984 if (prev_opcode && prev_seg && ((prev_seg != now_seg) || (prev_subseg != now_subseg)))
985 d10v_cleanup();
986
987 if (prev_opcode && (write_2_short (prev_opcode, prev_insn, opcode, insn, extype, fixups) == 0))
988 {
989 /* no instructions saved */
990 prev_opcode = NULL;
991 }
992 else
993 {
994 if (extype)
995 as_fatal("Unable to mix instructions as specified");
996 /* save off last instruction so it may be packed on next pass */
997 prev_opcode = opcode;
998 prev_insn = insn;
999 prev_seg = now_seg;
1000 prev_subseg = now_subseg;
1001 fixups = fixups->next;
1002 }
1003 }
1004
1005
1006 /* do_assemble assembles a single instruction and returns an opcode */
1007 /* it returns -1 (an invalid opcode) on error */
1008
1009 static unsigned long
1010 do_assemble (str, opcode)
1011 char *str;
1012 struct d10v_opcode **opcode;
1013 {
1014 unsigned char *op_start, *save;
1015 unsigned char *op_end;
1016 char name[20];
1017 int nlen = 0;
1018 expressionS myops[6];
1019 unsigned long insn;
1020
1021 /* Drop leading whitespace */
1022 while (*str == ' ')
1023 str++;
1024
1025 /* find the opcode end */
1026 for (op_start = op_end = (unsigned char *) (str);
1027 *op_end
1028 && nlen < 20
1029 && !is_end_of_line[*op_end] && *op_end != ' ';
1030 op_end++)
1031 {
1032 name[nlen] = op_start[nlen];
1033 nlen++;
1034 }
1035 name[nlen] = 0;
1036
1037 if (nlen == 0)
1038 return (-1);
1039
1040 /* find the first opcode with the proper name */
1041 *opcode = (struct d10v_opcode *)hash_find (d10v_hash, name);
1042 if (*opcode == NULL)
1043 as_fatal ("unknown opcode: %s",name);
1044
1045 save = input_line_pointer;
1046 input_line_pointer = op_end;
1047 *opcode = find_opcode (*opcode, myops);
1048 if (*opcode == 0)
1049 return -1;
1050 input_line_pointer = save;
1051
1052 insn = build_insn ((*opcode), myops, 0);
1053 return (insn);
1054 }
1055
1056 /* find_opcode() gets a pointer to an entry in the opcode table. */
1057 /* It must look at all opcodes with the same name and use the operands */
1058 /* to choose the correct opcode. */
1059
1060 static struct d10v_opcode *
1061 find_opcode (opcode, myops)
1062 struct d10v_opcode *opcode;
1063 expressionS myops[];
1064 {
1065 int i, match, done, numops;
1066 struct d10v_opcode *next_opcode;
1067
1068 /* get all the operands and save them as expressions */
1069 numops = get_operands (myops);
1070
1071 /* now see if the operand is a fake. If so, find the correct size */
1072 /* instruction, if possible */
1073 if (opcode->format == OPCODE_FAKE)
1074 {
1075 int opnum = opcode->operands[0];
1076
1077 if (myops[opnum].X_op == O_register)
1078 {
1079 myops[opnum].X_op = O_symbol;
1080 myops[opnum].X_add_symbol = symbol_find_or_make ((char *)myops[opnum].X_op_symbol);
1081 myops[opnum].X_add_number = 0;
1082 myops[opnum].X_op_symbol = NULL;
1083 }
1084
1085 if (myops[opnum].X_op == O_constant || (myops[opnum].X_op == O_symbol &&
1086 S_IS_DEFINED(myops[opnum].X_add_symbol) &&
1087 (S_GET_SEGMENT(myops[opnum].X_add_symbol) == now_seg)))
1088 {
1089 next_opcode=opcode+1;
1090 for (i=0; opcode->operands[i+1]; i++)
1091 {
1092 int bits = d10v_operands[next_opcode->operands[opnum]].bits;
1093 int flags = d10v_operands[next_opcode->operands[opnum]].flags;
1094 if (flags & OPERAND_ADDR)
1095 bits += 2;
1096 if (myops[opnum].X_op == O_constant)
1097 {
1098 if (!check_range (myops[opnum].X_add_number, bits, flags))
1099 return next_opcode;
1100 }
1101 else
1102 {
1103 fragS *f;
1104 long value;
1105 /* calculate the current address by running through the previous frags */
1106 /* and adding our current offset */
1107 for (value = 0, f = frchain_now->frch_root; f; f = f->fr_next)
1108 value += f->fr_fix;
1109
1110 if (flags & OPERAND_ADDR)
1111 value = S_GET_VALUE(myops[opnum].X_add_symbol) - value -
1112 (obstack_next_free(&frchain_now->frch_obstack) - frag_now->fr_literal);
1113 else
1114 value = S_GET_VALUE(myops[opnum].X_add_symbol);
1115
1116 if (myops[opnum].X_add_number == AT_WORD)
1117 {
1118 if (bits > 4)
1119 {
1120 bits += 2;
1121 if (!check_range (value, bits, flags))
1122 return next_opcode;
1123 }
1124 }
1125 else if (!check_range (value, bits, flags))
1126 return next_opcode;
1127 }
1128 next_opcode++;
1129 }
1130 as_fatal ("value out of range");
1131 }
1132 else
1133 {
1134 /* not a constant, so use a long instruction */
1135 return opcode+2;
1136 }
1137 }
1138 else
1139 {
1140 match = 0;
1141 /* now search the opcode table table for one with operands */
1142 /* that matches what we've got */
1143 while (!match)
1144 {
1145 match = 1;
1146 for (i = 0; opcode->operands[i]; i++)
1147 {
1148 int flags = d10v_operands[opcode->operands[i]].flags;
1149 int X_op = myops[i].X_op;
1150 int num = myops[i].X_add_number;
1151
1152 if (X_op==0)
1153 {
1154 match=0;
1155 break;
1156 }
1157
1158 if (flags & OPERAND_REG)
1159 {
1160 if ((X_op != O_register) ||
1161 ((flags & OPERAND_ACC) != (num & OPERAND_ACC)) ||
1162 ((flags & OPERAND_FLAG) != (num & OPERAND_FLAG)) ||
1163 ((flags & OPERAND_CONTROL) != (num & OPERAND_CONTROL)))
1164 {
1165 match=0;
1166 break;
1167 }
1168 }
1169
1170 if (((flags & OPERAND_MINUS) && ((X_op != O_absent) || (num != OPERAND_MINUS))) ||
1171 ((flags & OPERAND_PLUS) && ((X_op != O_absent) || (num != OPERAND_PLUS))) ||
1172 ((flags & OPERAND_ATMINUS) && ((X_op != O_absent) || (num != OPERAND_ATMINUS))) ||
1173 ((flags & OPERAND_ATPAR) && ((X_op != O_absent) || (num != OPERAND_ATPAR))) ||
1174 ((flags & OPERAND_ATSIGN) && ((X_op != O_absent) || (num != OPERAND_ATSIGN))))
1175 {
1176 match=0;
1177 break;
1178 }
1179 }
1180 /* we're only done if the operands matched so far AND there
1181 are no more to check */
1182 if (match && myops[i].X_op==0)
1183 break;
1184 else
1185 match = 0;
1186
1187 next_opcode = opcode+1;
1188 if (next_opcode->opcode == 0)
1189 break;
1190 if (strcmp(next_opcode->name, opcode->name))
1191 break;
1192 opcode = next_opcode;
1193 }
1194 }
1195
1196 if (!match)
1197 {
1198 as_bad ("bad opcode or operands");
1199 return (0);
1200 }
1201
1202 /* Check that all registers that are required to be even are. */
1203 /* Also, if any operands were marked as registers, but were really symbols */
1204 /* fix that here. */
1205 for (i=0; opcode->operands[i]; i++)
1206 {
1207 if ((d10v_operands[opcode->operands[i]].flags & OPERAND_EVEN) &&
1208 (myops[i].X_add_number & 1))
1209 as_fatal("Register number must be EVEN");
1210 if (myops[i].X_op == O_register)
1211 {
1212 if (!(d10v_operands[opcode->operands[i]].flags & OPERAND_REG))
1213 {
1214 myops[i].X_op = O_symbol;
1215 myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol);
1216 myops[i].X_add_number = 0;
1217 myops[i].X_op_symbol = NULL;
1218 }
1219 }
1220 }
1221 return opcode;
1222 }
1223
1224 /* if while processing a fixup, a reloc really needs to be created */
1225 /* then it is done here */
1226
1227 arelent *
1228 tc_gen_reloc (seg, fixp)
1229 asection *seg;
1230 fixS *fixp;
1231 {
1232 arelent *reloc;
1233 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
1234 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
1235 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1236 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1237 if (reloc->howto == (reloc_howto_type *) NULL)
1238 {
1239 as_bad_where (fixp->fx_file, fixp->fx_line,
1240 "reloc %d not supported by object file format", (int)fixp->fx_r_type);
1241 return NULL;
1242 }
1243 reloc->addend = fixp->fx_addnumber;
1244 return reloc;
1245 }
1246
1247 int
1248 md_estimate_size_before_relax (fragp, seg)
1249 fragS *fragp;
1250 asection *seg;
1251 {
1252 abort ();
1253 return 0;
1254 }
1255
1256 long
1257 md_pcrel_from_section (fixp, sec)
1258 fixS *fixp;
1259 segT sec;
1260 {
1261 if (fixp->fx_addsy != (symbolS *)NULL && !S_IS_DEFINED (fixp->fx_addsy))
1262 return 0;
1263 return fixp->fx_frag->fr_address + fixp->fx_where;
1264 }
1265
1266 int
1267 md_apply_fix3 (fixp, valuep, seg)
1268 fixS *fixp;
1269 valueT *valuep;
1270 segT seg;
1271 {
1272 char *where;
1273 unsigned long insn;
1274 long value;
1275 int op_type;
1276 int left=0;
1277
1278 if (fixp->fx_addsy == (symbolS *) NULL)
1279 {
1280 value = *valuep;
1281 fixp->fx_done = 1;
1282 }
1283 else if (fixp->fx_pcrel)
1284 value = *valuep;
1285 else
1286 {
1287 value = fixp->fx_offset;
1288 if (fixp->fx_subsy != (symbolS *) NULL)
1289 {
1290 if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
1291 value -= S_GET_VALUE (fixp->fx_subsy);
1292 else
1293 {
1294 /* We don't actually support subtracting a symbol. */
1295 as_bad_where (fixp->fx_file, fixp->fx_line,
1296 "expression too complex");
1297 }
1298 }
1299 }
1300
1301 op_type = fixp->fx_r_type;
1302 if (op_type & 2048)
1303 {
1304 op_type -= 2048;
1305 if (op_type & 1024)
1306 {
1307 op_type -= 1024;
1308 fixp->fx_r_type = BFD_RELOC_D10V_10_PCREL_L;
1309 left = 1;
1310 }
1311 else if (op_type & 4096)
1312 {
1313 op_type -= 4096;
1314 fixp->fx_r_type = BFD_RELOC_D10V_18;
1315 }
1316 else
1317 fixp->fx_r_type = get_reloc((struct d10v_operand *)&d10v_operands[op_type]);
1318 }
1319
1320 /* Fetch the instruction, insert the fully resolved operand
1321 value, and stuff the instruction back again. */
1322 where = fixp->fx_frag->fr_literal + fixp->fx_where;
1323 insn = bfd_getb32 ((unsigned char *) where);
1324
1325 switch (fixp->fx_r_type)
1326 {
1327 case BFD_RELOC_D10V_10_PCREL_L:
1328 case BFD_RELOC_D10V_10_PCREL_R:
1329 case BFD_RELOC_D10V_18_PCREL:
1330 case BFD_RELOC_D10V_18:
1331 /* instruction addresses are always right-shifted by 2 */
1332 value >>= 2;
1333 if (fixp->fx_size == 2)
1334 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1335 else
1336 {
1337 insn = d10v_insert_operand (insn, op_type, (offsetT)value, left, fixp);
1338 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1339 }
1340 break;
1341 case BFD_RELOC_32:
1342 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1343 break;
1344 case BFD_RELOC_16:
1345 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1346 break;
1347 default:
1348 as_fatal ("line %d: unknown relocation type: 0x%x",fixp->fx_line,fixp->fx_r_type);
1349 }
1350 return 0;
1351 }
1352
1353 /* d10v_cleanup() is called after the assembler has finished parsing the input
1354 file or after a label is defined. Because the D10V assembler sometimes saves short
1355 instructions to see if it can package them with the next instruction, there may
1356 be a short instruction that still needs written. */
1357 int
1358 d10v_cleanup ()
1359 {
1360 segT seg;
1361 subsegT subseg;
1362
1363 if (prev_opcode)
1364 {
1365 seg = now_seg;
1366 subseg = now_subseg;
1367 subseg_set (prev_seg, prev_subseg);
1368 write_1_short (prev_opcode, prev_insn, fixups->next);
1369 subseg_set (seg, subseg);
1370 prev_opcode = NULL;
1371 }
1372 return 1;
1373 }
1374
1375 /* Like normal .word, except support @word */
1376 /* clobbers input_line_pointer, checks end-of-line. */
1377 static void
1378 d10v_dot_word (nbytes)
1379 register int nbytes; /* 1=.byte, 2=.word, 4=.long */
1380 {
1381 expressionS exp;
1382 bfd_reloc_code_real_type reloc;
1383 char *p;
1384 int offset;
1385
1386 if (is_it_end_of_statement ())
1387 {
1388 demand_empty_rest_of_line ();
1389 return;
1390 }
1391
1392 do
1393 {
1394 expression (&exp);
1395 if (!strncasecmp (input_line_pointer, "@word", 5))
1396 {
1397 exp.X_add_number = 0;
1398 input_line_pointer += 5;
1399
1400 p = frag_more (2);
1401 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
1402 &exp, 0, BFD_RELOC_D10V_18);
1403 }
1404 else
1405 emit_expr (&exp, 2);
1406 }
1407 while (*input_line_pointer++ == ',');
1408
1409 input_line_pointer--; /* Put terminator back into stream. */
1410 demand_empty_rest_of_line ();
1411 }
1412
1413
1414 /* Mitsubishi asked that we support some old syntax that apparently */
1415 /* had immediate operands starting with '#'. This is in some of their */
1416 /* sample code but is not documented (although it appears in some */
1417 /* examples in their assembler manual). For now, we'll solve this */
1418 /* compatibility problem by simply ignoring any '#' at the beginning */
1419 /* of an operand. */
1420
1421 /* operands that begin with '#' should fall through to here */
1422 /* from expr.c */
1423
1424 void
1425 md_operand (expressionP)
1426 expressionS *expressionP;
1427 {
1428 if (*input_line_pointer == '#')
1429 {
1430 input_line_pointer++;
1431 expression (expressionP);
1432 }
1433 }
1434
This page took 0.0600000000000001 seconds and 4 git commands to generate.