* config/tc-hppa.c (pa_type_args): Renamed from pa_export_args.
[deliverable/binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* Who knows. */
56 #define obj_version obj_elf_version
57
58 /* Use space aliases. */
59 #define USE_ALIASES 1
60
61 /* Some local functions only used by ELF. */
62 static void pa_build_symextn_section PARAMS ((void));
63 static void hppa_tc_make_symextn_section PARAMS ((void));
64 #endif
65
66 #ifdef OBJ_SOM
67 /* Names of various debugging spaces/subspaces. */
68 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
69 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
70 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
71 #define UNWIND_SECTION_NAME "$UNWIND$"
72
73 /* Object file formats specify relocation types. */
74 typedef int reloc_type;
75
76 /* Who knows. */
77 #define obj_version obj_som_version
78
79 /* Do not use space aliases. */
80 #define USE_ALIASES 0
81
82 /* How to generate a relocation. */
83 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
84
85 /* Object file formats specify BFD symbol types. */
86 typedef som_symbol_type obj_symbol_type;
87 #endif
88
89 /* Various structures and types used internally in tc-hppa.c. */
90
91 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
92
93 struct unwind_desc
94 {
95 unsigned int cannot_unwind:1;
96 unsigned int millicode:1;
97 unsigned int millicode_save_rest:1;
98 unsigned int region_desc:2;
99 unsigned int save_sr:2;
100 unsigned int entry_fr:4;
101 unsigned int entry_gr:5;
102 unsigned int args_stored:1;
103 unsigned int call_fr:5;
104 unsigned int call_gr:5;
105 unsigned int save_sp:1;
106 unsigned int save_rp:1;
107 unsigned int save_rp_in_frame:1;
108 unsigned int extn_ptr_defined:1;
109 unsigned int cleanup_defined:1;
110
111 unsigned int hpe_interrupt_marker:1;
112 unsigned int hpux_interrupt_marker:1;
113 unsigned int reserved:3;
114 unsigned int frame_size:27;
115 };
116
117 struct unwind_table
118 {
119 /* Starting and ending offsets of the region described by
120 descriptor. */
121 unsigned int start_offset;
122 unsigned int end_offset;
123 struct unwind_desc descriptor;
124 };
125
126 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
127 control the entry and exit code they generate. It is also used in
128 creation of the correct stack unwind descriptors.
129
130 NOTE: GAS does not support .enter and .leave for the generation of
131 prologues and epilogues. FIXME.
132
133 The fields in structure roughly correspond to the arguments available on the
134 .callinfo pseudo-op. */
135
136 struct call_info
137 {
138 /* Should sr3 be saved in the prologue? */
139 int entry_sr;
140
141 /* Does this function make calls? */
142 int makes_calls;
143
144 /* The unwind descriptor being built. */
145 struct unwind_table ci_unwind;
146
147 /* Name of this function. */
148 symbolS *start_symbol;
149
150 /* (temporary) symbol used to mark the end of this function. */
151 symbolS *end_symbol;
152
153 /* frags associated with start and end of this function. */
154 fragS *start_frag;
155 fragS *end_frag;
156
157 /* frags for starting/ending offset of this descriptor. */
158 fragS *start_offset_frag;
159 fragS *end_offset_frag;
160
161 /* The location within {start,end}_offset_frag to find the
162 {start,end}_offset. */
163 int start_frag_where;
164 int end_frag_where;
165
166 /* Fixups (relocations) for start_offset and end_offset. */
167 fixS *start_fix;
168 fixS *end_fix;
169
170 /* Next entry in the chain. */
171 struct call_info *ci_next;
172 };
173
174 /* Operand formats for FP instructions. Note not all FP instructions
175 allow all four formats to be used (for example fmpysub only allows
176 SGL and DBL). */
177 typedef enum
178 {
179 SGL, DBL, ILLEGAL_FMT, QUAD
180 }
181 fp_operand_format;
182
183 /* This fully describes the symbol types which may be attached to
184 an EXPORT or IMPORT directive. Only SOM uses this formation
185 (ELF has no need for it). */
186 typedef enum
187 {
188 SYMBOL_TYPE_UNKNOWN,
189 SYMBOL_TYPE_ABSOLUTE,
190 SYMBOL_TYPE_CODE,
191 SYMBOL_TYPE_DATA,
192 SYMBOL_TYPE_ENTRY,
193 SYMBOL_TYPE_MILLICODE,
194 SYMBOL_TYPE_PLABEL,
195 SYMBOL_TYPE_PRI_PROG,
196 SYMBOL_TYPE_SEC_PROG,
197 } pa_symbol_type;
198
199 /* This structure contains information needed to assemble
200 individual instructions. */
201 struct pa_it
202 {
203 /* Holds the opcode after parsing by pa_ip. */
204 unsigned long opcode;
205
206 /* Holds an expression associated with the current instruction. */
207 expressionS exp;
208
209 /* Does this instruction use PC-relative addressing. */
210 int pcrel;
211
212 /* Floating point formats for operand1 and operand2. */
213 fp_operand_format fpof1;
214 fp_operand_format fpof2;
215
216 /* Holds the field selector for this instruction
217 (for example L%, LR%, etc). */
218 long field_selector;
219
220 /* Holds any argument relocation bits associated with this
221 instruction. (instruction should be some sort of call). */
222 long arg_reloc;
223
224 /* The format specification for this instruction. */
225 int format;
226
227 /* The relocation (if any) associated with this instruction. */
228 reloc_type reloc;
229 };
230
231 /* PA-89 floating point registers are arranged like this:
232
233
234 +--------------+--------------+
235 | 0 or 16L | 16 or 16R |
236 +--------------+--------------+
237 | 1 or 17L | 17 or 17R |
238 +--------------+--------------+
239 | | |
240
241 . . .
242 . . .
243 . . .
244
245 | | |
246 +--------------+--------------+
247 | 14 or 30L | 30 or 30R |
248 +--------------+--------------+
249 | 15 or 31L | 31 or 31R |
250 +--------------+--------------+
251
252
253 The following is a version of pa_parse_number that
254 handles the L/R notation and returns the correct
255 value to put into the instruction register field.
256 The correct value to put into the instruction is
257 encoded in the structure 'pa_89_fp_reg_struct'. */
258
259 struct pa_89_fp_reg_struct
260 {
261 /* The register number. */
262 char number_part;
263
264 /* L/R selector. */
265 char l_r_select;
266 };
267
268 /* Additional information needed to build argument relocation stubs. */
269 struct call_desc
270 {
271 /* The argument relocation specification. */
272 unsigned int arg_reloc;
273
274 /* Number of arguments. */
275 unsigned int arg_count;
276 };
277
278 /* This structure defines an entry in the subspace dictionary
279 chain. */
280
281 struct subspace_dictionary_chain
282 {
283 /* Index of containing space. */
284 unsigned long ssd_space_index;
285
286 /* Nonzero if this space has been defined by the user code. */
287 unsigned int ssd_defined;
288
289 /* Which quadrant within the space this subspace should be loaded into. */
290 unsigned char ssd_quadrant;
291
292 /* Alignment (in bytes) for this subspace. */
293 unsigned long ssd_alignment;
294
295 /* Access control bits to determine read/write/execute permissions
296 as well as gateway privilege promotions. */
297 unsigned char ssd_access_control_bits;
298
299 /* A sorting key so that it is possible to specify ordering of
300 subspaces within a space. */
301 unsigned char ssd_sort_key;
302
303 /* Nonzero of this space should be zero filled. */
304 unsigned long ssd_zero;
305
306 /* Nonzero if this is a common subspace. */
307 unsigned char ssd_common;
308
309 /* Nonzero if this is a common subspace which allows symbols to be
310 multiply defined. */
311 unsigned char ssd_dup_common;
312
313 /* Nonzero if this subspace is loadable. Note loadable subspaces
314 must be contained within loadable spaces; unloadable subspaces
315 must be contained in unloadable spaces. */
316 unsigned char ssd_loadable;
317
318 /* Nonzero if this subspace contains only code. */
319 unsigned char ssd_code_only;
320
321 /* Starting offset of this subspace. */
322 unsigned long ssd_subspace_start;
323
324 /* Length of this subspace. */
325 unsigned long ssd_subspace_length;
326
327 /* Name of this subspace. */
328 char *ssd_name;
329
330 /* GAS segment and subsegment associated with this subspace. */
331 asection *ssd_seg;
332 int ssd_subseg;
333
334 /* Index of this subspace within the subspace dictionary of the object
335 file. Not used until object file is written. */
336 int object_file_index;
337
338 /* The size of the last alignment request for this subspace. */
339 int ssd_last_align;
340
341 /* Next space in the subspace dictionary chain. */
342 struct subspace_dictionary_chain *ssd_next;
343 };
344
345 typedef struct subspace_dictionary_chain ssd_chain_struct;
346
347 /* This structure defines an entry in the subspace dictionary
348 chain. */
349
350 struct space_dictionary_chain
351 {
352
353 /* Holds the index into the string table of the name of this
354 space. */
355 unsigned int sd_name_index;
356
357 /* Nonzero if the space is loadable. */
358 unsigned int sd_loadable;
359
360 /* Nonzero if this space has been defined by the user code or
361 as a default space. */
362 unsigned int sd_defined;
363
364 /* Nonzero if this spaces has been defined by the user code. */
365 unsigned int sd_user_defined;
366
367 /* Nonzero if this space is not sharable. */
368 unsigned int sd_private;
369
370 /* The space number (or index). */
371 unsigned int sd_spnum;
372
373 /* The sort key for this space. May be used to determine how to lay
374 out the spaces within the object file. */
375 unsigned char sd_sort_key;
376
377 /* The name of this subspace. */
378 char *sd_name;
379
380 /* GAS segment to which this subspace corresponds. */
381 asection *sd_seg;
382
383 /* Current subsegment number being used. */
384 int sd_last_subseg;
385
386 /* The chain of subspaces contained within this space. */
387 ssd_chain_struct *sd_subspaces;
388
389 /* The next entry in the space dictionary chain. */
390 struct space_dictionary_chain *sd_next;
391 };
392
393 typedef struct space_dictionary_chain sd_chain_struct;
394
395 /* Structure for previous label tracking. Needed so that alignments,
396 callinfo declarations, etc can be easily attached to a particular
397 label. */
398 typedef struct label_symbol_struct
399 {
400 struct symbol *lss_label;
401 sd_chain_struct *lss_space;
402 struct label_symbol_struct *lss_next;
403 }
404 label_symbol_struct;
405
406 /* This structure defines attributes of the default subspace
407 dictionary entries. */
408
409 struct default_subspace_dict
410 {
411 /* Name of the subspace. */
412 char *name;
413
414 /* FIXME. Is this still needed? */
415 char defined;
416
417 /* Nonzero if this subspace is loadable. */
418 char loadable;
419
420 /* Nonzero if this subspace contains only code. */
421 char code_only;
422
423 /* Nonzero if this is a common subspace. */
424 char common;
425
426 /* Nonzero if this is a common subspace which allows symbols
427 to be multiply defined. */
428 char dup_common;
429
430 /* Nonzero if this subspace should be zero filled. */
431 char zero;
432
433 /* Sort key for this subspace. */
434 unsigned char sort;
435
436 /* Access control bits for this subspace. Can represent RWX access
437 as well as privilege level changes for gateways. */
438 int access;
439
440 /* Index of containing space. */
441 int space_index;
442
443 /* Alignment (in bytes) of this subspace. */
444 int alignment;
445
446 /* Quadrant within space where this subspace should be loaded. */
447 int quadrant;
448
449 /* An index into the default spaces array. */
450 int def_space_index;
451
452 /* An alias for this section (or NULL if no alias exists). */
453 char *alias;
454
455 /* Subsegment associated with this subspace. */
456 subsegT subsegment;
457 };
458
459 /* This structure defines attributes of the default space
460 dictionary entries. */
461
462 struct default_space_dict
463 {
464 /* Name of the space. */
465 char *name;
466
467 /* Space number. It is possible to identify spaces within
468 assembly code numerically! */
469 int spnum;
470
471 /* Nonzero if this space is loadable. */
472 char loadable;
473
474 /* Nonzero if this space is "defined". FIXME is still needed */
475 char defined;
476
477 /* Nonzero if this space can not be shared. */
478 char private;
479
480 /* Sort key for this space. */
481 unsigned char sort;
482
483 /* Segment associated with this space. */
484 asection *segment;
485
486 /* An alias for this section (or NULL if no alias exists). */
487 char *alias;
488 };
489
490 /* Extra information needed to perform fixups (relocations) on the PA. */
491 struct hppa_fix_struct
492 {
493 /* The field selector. */
494 int fx_r_field;
495
496 /* Type of fixup. */
497 int fx_r_type;
498
499 /* Format of fixup. */
500 int fx_r_format;
501
502 /* Argument relocation bits. */
503 long fx_arg_reloc;
504
505 /* The unwind descriptor associated with this fixup. */
506 char fx_unwind[8];
507 };
508
509 /* Structure to hold information about predefined registers. */
510
511 struct pd_reg
512 {
513 char *name;
514 int value;
515 };
516
517 /* This structure defines the mapping from a FP condition string
518 to a condition number which can be recorded in an instruction. */
519 struct fp_cond_map
520 {
521 char *string;
522 int cond;
523 };
524
525 /* This structure defines a mapping from a field selector
526 string to a field selector type. */
527 struct selector_entry
528 {
529 char *prefix;
530 int field_selector;
531 };
532
533 /* Prototypes for functions local to tc-hppa.c. */
534
535 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
536 static void pa_cons PARAMS ((int));
537 static void pa_data PARAMS ((int));
538 static void pa_desc PARAMS ((int));
539 static void pa_float_cons PARAMS ((int));
540 static void pa_fill PARAMS ((int));
541 static void pa_lcomm PARAMS ((int));
542 static void pa_lsym PARAMS ((int));
543 static void pa_stringer PARAMS ((int));
544 static void pa_text PARAMS ((int));
545 static void pa_version PARAMS ((int));
546 static int pa_parse_fp_cmp_cond PARAMS ((char **));
547 static int get_expression PARAMS ((char *));
548 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
549 static int evaluate_absolute PARAMS ((struct pa_it *));
550 static unsigned int pa_build_arg_reloc PARAMS ((char *));
551 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
552 static int pa_parse_nullif PARAMS ((char **));
553 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
554 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
555 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
556 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
557 static void pa_block PARAMS ((int));
558 static void pa_call PARAMS ((int));
559 static void pa_call_args PARAMS ((struct call_desc *));
560 static void pa_callinfo PARAMS ((int));
561 static void pa_code PARAMS ((int));
562 static void pa_comm PARAMS ((int));
563 static void pa_copyright PARAMS ((int));
564 static void pa_end PARAMS ((int));
565 static void pa_enter PARAMS ((int));
566 static void pa_entry PARAMS ((int));
567 static void pa_equ PARAMS ((int));
568 static void pa_exit PARAMS ((int));
569 static void pa_export PARAMS ((int));
570 static void pa_type_args PARAMS ((symbolS *, int));
571 static void pa_import PARAMS ((int));
572 static void pa_label PARAMS ((int));
573 static void pa_leave PARAMS ((int));
574 static void pa_origin PARAMS ((int));
575 static void pa_proc PARAMS ((int));
576 static void pa_procend PARAMS ((int));
577 static void pa_space PARAMS ((int));
578 static void pa_spnum PARAMS ((int));
579 static void pa_subspace PARAMS ((int));
580 static void pa_param PARAMS ((int));
581 static void pa_undefine_label PARAMS ((void));
582 static int need_89_opcode PARAMS ((struct pa_it *,
583 struct pa_89_fp_reg_struct *));
584 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
585 static label_symbol_struct *pa_get_label PARAMS ((void));
586 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
587 char, char, char,
588 asection *, int));
589 static ssd_chain_struct * create_new_subspace PARAMS ((sd_chain_struct *,
590 char *, char, char,
591 char, char, char,
592 char, int, int, int,
593 int, asection *));
594 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
595 char *, char, char, char,
596 char, char, char, int,
597 int, int, int,
598 asection *));
599 static sd_chain_struct *is_defined_space PARAMS ((char *));
600 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
601 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
602 static ssd_chain_struct * pa_subsegment_to_subspace PARAMS ((asection *,
603 subsegT));
604 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
605 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
606 static void pa_ip PARAMS ((char *));
607 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
608 long, expressionS *, int,
609 bfd_reloc_code_real_type, long,
610 int, long, char *));
611 static void md_apply_fix_1 PARAMS ((fixS *, long));
612 static int is_end_of_statement PARAMS ((void));
613 static int reg_name_search PARAMS ((char *));
614 static int pa_chk_field_selector PARAMS ((char **));
615 static int is_same_frag PARAMS ((fragS *, fragS *));
616 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
617 static void process_exit PARAMS ((void));
618 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
619 static void pa_align_subseg PARAMS ((asection *, subsegT));
620 static int log2 PARAMS ((int));
621 static int pa_next_subseg PARAMS ((sd_chain_struct *));
622 static unsigned int pa_stringer_aux PARAMS ((char *));
623 static void pa_spaces_begin PARAMS ((void));
624
625
626 /* File and gloally scoped variable declarations. */
627
628 /* Root and final entry in the space chain. */
629 static sd_chain_struct *space_dict_root;
630 static sd_chain_struct *space_dict_last;
631
632 /* The current space and subspace. */
633 static sd_chain_struct *current_space;
634 static ssd_chain_struct *current_subspace;
635
636 /* Root of the call_info chain. */
637 static struct call_info *call_info_root;
638
639 /* The last call_info (for functions) structure
640 seen so it can be associated with fixups and
641 function labels. */
642 static struct call_info *last_call_info;
643
644 /* The last call description (for actual calls). */
645 static struct call_desc last_call_desc;
646
647 /* Relaxation isn't supported for the PA yet. */
648 const relax_typeS md_relax_table[] = {0};
649
650 /* Jumps are always the same size -- one instruction. */
651 int md_short_jump_size = 4;
652 int md_long_jump_size = 4;
653
654 /* handle of the OPCODE hash table */
655 static struct hash_control *op_hash = NULL;
656
657 /* This array holds the chars that always start a comment. If the
658 pre-processor is disabled, these aren't very useful. */
659 const char comment_chars[] = ";";
660
661 /* Table of pseudo ops for the PA. FIXME -- how many of these
662 are now redundant with the overall GAS and the object file
663 dependent tables? */
664 const pseudo_typeS md_pseudo_table[] =
665 {
666 /* align pseudo-ops on the PA specify the actual alignment requested,
667 not the log2 of the requested alignment. */
668 {"align", s_align_bytes, 8},
669 {"ALIGN", s_align_bytes, 8},
670 {"block", pa_block, 1},
671 {"BLOCK", pa_block, 1},
672 {"blockz", pa_block, 0},
673 {"BLOCKZ", pa_block, 0},
674 {"byte", pa_cons, 1},
675 {"BYTE", pa_cons, 1},
676 {"call", pa_call, 0},
677 {"CALL", pa_call, 0},
678 {"callinfo", pa_callinfo, 0},
679 {"CALLINFO", pa_callinfo, 0},
680 {"code", pa_code, 0},
681 {"CODE", pa_code, 0},
682 {"comm", pa_comm, 0},
683 {"COMM", pa_comm, 0},
684 {"copyright", pa_copyright, 0},
685 {"COPYRIGHT", pa_copyright, 0},
686 {"data", pa_data, 0},
687 {"DATA", pa_data, 0},
688 {"desc", pa_desc, 0},
689 {"DESC", pa_desc, 0},
690 {"double", pa_float_cons, 'd'},
691 {"DOUBLE", pa_float_cons, 'd'},
692 {"end", pa_end, 0},
693 {"END", pa_end, 0},
694 {"enter", pa_enter, 0},
695 {"ENTER", pa_enter, 0},
696 {"entry", pa_entry, 0},
697 {"ENTRY", pa_entry, 0},
698 {"equ", pa_equ, 0},
699 {"EQU", pa_equ, 0},
700 {"exit", pa_exit, 0},
701 {"EXIT", pa_exit, 0},
702 {"export", pa_export, 0},
703 {"EXPORT", pa_export, 0},
704 {"fill", pa_fill, 0},
705 {"FILL", pa_fill, 0},
706 {"float", pa_float_cons, 'f'},
707 {"FLOAT", pa_float_cons, 'f'},
708 {"half", pa_cons, 2},
709 {"HALF", pa_cons, 2},
710 {"import", pa_import, 0},
711 {"IMPORT", pa_import, 0},
712 {"int", pa_cons, 4},
713 {"INT", pa_cons, 4},
714 {"label", pa_label, 0},
715 {"LABEL", pa_label, 0},
716 {"lcomm", pa_lcomm, 0},
717 {"LCOMM", pa_lcomm, 0},
718 {"leave", pa_leave, 0},
719 {"LEAVE", pa_leave, 0},
720 {"long", pa_cons, 4},
721 {"LONG", pa_cons, 4},
722 {"lsym", pa_lsym, 0},
723 {"LSYM", pa_lsym, 0},
724 {"octa", pa_cons, 16},
725 {"OCTA", pa_cons, 16},
726 {"org", pa_origin, 0},
727 {"ORG", pa_origin, 0},
728 {"origin", pa_origin, 0},
729 {"ORIGIN", pa_origin, 0},
730 {"param", pa_param, 0},
731 {"PARAM", pa_param, 0},
732 {"proc", pa_proc, 0},
733 {"PROC", pa_proc, 0},
734 {"procend", pa_procend, 0},
735 {"PROCEND", pa_procend, 0},
736 {"quad", pa_cons, 8},
737 {"QUAD", pa_cons, 8},
738 {"reg", pa_equ, 1},
739 {"REG", pa_equ, 1},
740 {"short", pa_cons, 2},
741 {"SHORT", pa_cons, 2},
742 {"single", pa_float_cons, 'f'},
743 {"SINGLE", pa_float_cons, 'f'},
744 {"space", pa_space, 0},
745 {"SPACE", pa_space, 0},
746 {"spnum", pa_spnum, 0},
747 {"SPNUM", pa_spnum, 0},
748 {"string", pa_stringer, 0},
749 {"STRING", pa_stringer, 0},
750 {"stringz", pa_stringer, 1},
751 {"STRINGZ", pa_stringer, 1},
752 {"subspa", pa_subspace, 0},
753 {"SUBSPA", pa_subspace, 0},
754 {"text", pa_text, 0},
755 {"TEXT", pa_text, 0},
756 {"version", pa_version, 0},
757 {"VERSION", pa_version, 0},
758 {"word", pa_cons, 4},
759 {"WORD", pa_cons, 4},
760 {NULL, 0, 0}
761 };
762
763 /* This array holds the chars that only start a comment at the beginning of
764 a line. If the line seems to have the form '# 123 filename'
765 .line and .file directives will appear in the pre-processed output.
766
767 Note that input_file.c hand checks for '#' at the beginning of the
768 first line of the input file. This is because the compiler outputs
769 #NO_APP at the beginning of its output.
770
771 Also note that '/*' will always start a comment. */
772 const char line_comment_chars[] = "#";
773
774 /* This array holds the characters which act as line separators. */
775 const char line_separator_chars[] = "!";
776
777 /* Chars that can be used to separate mant from exp in floating point nums. */
778 const char EXP_CHARS[] = "eE";
779
780 /* Chars that mean this number is a floating point constant.
781 As in 0f12.456 or 0d1.2345e12.
782
783 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
784 changed in read.c. Ideally it shouldn't hae to know abou it at
785 all, but nothing is ideal around here. */
786 const char FLT_CHARS[] = "rRsSfFdDxXpP";
787
788 static struct pa_it the_insn;
789
790 /* Points to the end of an expression just parsed by get_expressoin
791 and friends. FIXME. This shouldn't be handled with a file-global
792 variable. */
793 static char *expr_end;
794
795 /* Nonzero if a .callinfo appeared within the current procedure. */
796 static int callinfo_found;
797
798 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
799 static int within_entry_exit;
800
801 /* Nonzero if the assembler has completed exit processing for the
802 current procedure. */
803 static int exit_processing_complete;
804
805 /* Nonzero if the assembler is currently within a procedure definition. */
806 static int within_procedure;
807
808 /* Handle on strucutre which keep track of the last symbol
809 seen in each subspace. */
810 static label_symbol_struct *label_symbols_rootp = NULL;
811
812 /* Holds the last field selector. */
813 static int hppa_field_selector;
814
815 /* Nonzero if errors are to be printed. */
816 static int print_errors = 1;
817
818 /* List of registers that are pre-defined:
819
820 Each general register has one predefined name of the form
821 %r<REGNUM> which has the value <REGNUM>.
822
823 Space and control registers are handled in a similar manner,
824 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
825
826 Likewise for the floating point registers, but of the form
827 %fr<REGNUM>. Floating point registers have additional predefined
828 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
829 again have the value <REGNUM>.
830
831 Many registers also have synonyms:
832
833 %r26 - %r23 have %arg0 - %arg3 as synonyms
834 %r28 - %r29 have %ret0 - %ret1 as synonyms
835 %r30 has %sp as a synonym
836 %r27 has %dp as a synonym
837 %r2 has %rp as a synonym
838
839 Almost every control register has a synonym; they are not listed
840 here for brevity.
841
842 The table is sorted. Suitable for searching by a binary search. */
843
844 static const struct pd_reg pre_defined_registers[] =
845 {
846 {"%arg0", 26},
847 {"%arg1", 25},
848 {"%arg2", 24},
849 {"%arg3", 23},
850 {"%cr0", 0},
851 {"%cr10", 10},
852 {"%cr11", 11},
853 {"%cr12", 12},
854 {"%cr13", 13},
855 {"%cr14", 14},
856 {"%cr15", 15},
857 {"%cr16", 16},
858 {"%cr17", 17},
859 {"%cr18", 18},
860 {"%cr19", 19},
861 {"%cr20", 20},
862 {"%cr21", 21},
863 {"%cr22", 22},
864 {"%cr23", 23},
865 {"%cr24", 24},
866 {"%cr25", 25},
867 {"%cr26", 26},
868 {"%cr27", 27},
869 {"%cr28", 28},
870 {"%cr29", 29},
871 {"%cr30", 30},
872 {"%cr31", 31},
873 {"%cr8", 8},
874 {"%cr9", 9},
875 {"%dp", 27},
876 {"%eiem", 15},
877 {"%eirr", 23},
878 {"%fr0", 0},
879 {"%fr0L", 0},
880 {"%fr0R", 0},
881 {"%fr1", 1},
882 {"%fr10", 10},
883 {"%fr10L", 10},
884 {"%fr10R", 10},
885 {"%fr11", 11},
886 {"%fr11L", 11},
887 {"%fr11R", 11},
888 {"%fr12", 12},
889 {"%fr12L", 12},
890 {"%fr12R", 12},
891 {"%fr13", 13},
892 {"%fr13L", 13},
893 {"%fr13R", 13},
894 {"%fr14", 14},
895 {"%fr14L", 14},
896 {"%fr14R", 14},
897 {"%fr15", 15},
898 {"%fr15L", 15},
899 {"%fr15R", 15},
900 {"%fr16", 16},
901 {"%fr16L", 16},
902 {"%fr16R", 16},
903 {"%fr17", 17},
904 {"%fr17L", 17},
905 {"%fr17R", 17},
906 {"%fr18", 18},
907 {"%fr18L", 18},
908 {"%fr18R", 18},
909 {"%fr19", 19},
910 {"%fr19L", 19},
911 {"%fr19R", 19},
912 {"%fr1L", 1},
913 {"%fr1R", 1},
914 {"%fr2", 2},
915 {"%fr20", 20},
916 {"%fr20L", 20},
917 {"%fr20R", 20},
918 {"%fr21", 21},
919 {"%fr21L", 21},
920 {"%fr21R", 21},
921 {"%fr22", 22},
922 {"%fr22L", 22},
923 {"%fr22R", 22},
924 {"%fr23", 23},
925 {"%fr23L", 23},
926 {"%fr23R", 23},
927 {"%fr24", 24},
928 {"%fr24L", 24},
929 {"%fr24R", 24},
930 {"%fr25", 25},
931 {"%fr25L", 25},
932 {"%fr25R", 25},
933 {"%fr26", 26},
934 {"%fr26L", 26},
935 {"%fr26R", 26},
936 {"%fr27", 27},
937 {"%fr27L", 27},
938 {"%fr27R", 27},
939 {"%fr28", 28},
940 {"%fr28L", 28},
941 {"%fr28R", 28},
942 {"%fr29", 29},
943 {"%fr29L", 29},
944 {"%fr29R", 29},
945 {"%fr2L", 2},
946 {"%fr2R", 2},
947 {"%fr3", 3},
948 {"%fr30", 30},
949 {"%fr30L", 30},
950 {"%fr30R", 30},
951 {"%fr31", 31},
952 {"%fr31L", 31},
953 {"%fr31R", 31},
954 {"%fr3L", 3},
955 {"%fr3R", 3},
956 {"%fr4", 4},
957 {"%fr4L", 4},
958 {"%fr4R", 4},
959 {"%fr5", 5},
960 {"%fr5L", 5},
961 {"%fr5R", 5},
962 {"%fr6", 6},
963 {"%fr6L", 6},
964 {"%fr6R", 6},
965 {"%fr7", 7},
966 {"%fr7L", 7},
967 {"%fr7R", 7},
968 {"%fr8", 8},
969 {"%fr8L", 8},
970 {"%fr8R", 8},
971 {"%fr9", 9},
972 {"%fr9L", 9},
973 {"%fr9R", 9},
974 {"%hta", 25},
975 {"%iir", 19},
976 {"%ior", 21},
977 {"%ipsw", 22},
978 {"%isr", 20},
979 {"%itmr", 16},
980 {"%iva", 14},
981 {"%pcoq", 18},
982 {"%pcsq", 17},
983 {"%pidr1", 8},
984 {"%pidr2", 9},
985 {"%pidr3", 12},
986 {"%pidr4", 13},
987 {"%ppda", 24},
988 {"%r0", 0},
989 {"%r1", 1},
990 {"%r10", 10},
991 {"%r11", 11},
992 {"%r12", 12},
993 {"%r13", 13},
994 {"%r14", 14},
995 {"%r15", 15},
996 {"%r16", 16},
997 {"%r17", 17},
998 {"%r18", 18},
999 {"%r19", 19},
1000 {"%r2", 2},
1001 {"%r20", 20},
1002 {"%r21", 21},
1003 {"%r22", 22},
1004 {"%r23", 23},
1005 {"%r24", 24},
1006 {"%r25", 25},
1007 {"%r26", 26},
1008 {"%r27", 27},
1009 {"%r28", 28},
1010 {"%r29", 29},
1011 {"%r3", 3},
1012 {"%r30", 30},
1013 {"%r31", 31},
1014 {"%r4", 4},
1015 {"%r4L", 4},
1016 {"%r4R", 4},
1017 {"%r5", 5},
1018 {"%r5L", 5},
1019 {"%r5R", 5},
1020 {"%r6", 6},
1021 {"%r6L", 6},
1022 {"%r6R", 6},
1023 {"%r7", 7},
1024 {"%r7L", 7},
1025 {"%r7R", 7},
1026 {"%r8", 8},
1027 {"%r8L", 8},
1028 {"%r8R", 8},
1029 {"%r9", 9},
1030 {"%r9L", 9},
1031 {"%r9R", 9},
1032 {"%rctr", 0},
1033 {"%ret0", 28},
1034 {"%ret1", 29},
1035 {"%rp", 2},
1036 {"%sar", 11},
1037 {"%sp", 30},
1038 {"%sr0", 0},
1039 {"%sr1", 1},
1040 {"%sr2", 2},
1041 {"%sr3", 3},
1042 {"%sr4", 4},
1043 {"%sr5", 5},
1044 {"%sr6", 6},
1045 {"%sr7", 7},
1046 {"%tr0", 24},
1047 {"%tr1", 25},
1048 {"%tr2", 26},
1049 {"%tr3", 27},
1050 {"%tr4", 28},
1051 {"%tr5", 29},
1052 {"%tr6", 30},
1053 {"%tr7", 31}
1054 };
1055
1056 /* This table is sorted by order of the length of the string. This is
1057 so we check for <> before we check for <. If we had a <> and checked
1058 for < first, we would get a false match. */
1059 static const struct fp_cond_map fp_cond_map [] =
1060 {
1061 {"false?", 0},
1062 {"false", 1},
1063 {"true?", 30},
1064 {"true", 31},
1065 {"!<=>", 3},
1066 {"!?>=", 8},
1067 {"!?<=", 16},
1068 {"!<>", 7},
1069 {"!>=", 11},
1070 {"!?>", 12},
1071 {"?<=", 14},
1072 {"!<=", 19},
1073 {"!?<", 20},
1074 {"?>=", 22},
1075 {"!?=", 24},
1076 {"!=t", 27},
1077 {"<=>", 29},
1078 {"=t", 5},
1079 {"?=", 6},
1080 {"?<", 10},
1081 {"<=", 13},
1082 {"!>", 15},
1083 {"?>", 18},
1084 {">=", 21},
1085 {"!<", 23},
1086 {"<>", 25},
1087 {"!=", 26},
1088 {"!?", 28},
1089 {"?", 2},
1090 {"=", 4},
1091 {"<", 9},
1092 {">", 17}
1093 };
1094
1095 static const struct selector_entry selector_table[] =
1096 {
1097 {"F'", e_fsel},
1098 {"F%", e_fsel},
1099 {"LS'", e_lssel},
1100 {"LS%", e_lssel},
1101 {"RS'", e_rssel},
1102 {"RS%", e_rssel},
1103 {"L'", e_lsel},
1104 {"L%", e_lsel},
1105 {"R'", e_rsel},
1106 {"R%", e_rsel},
1107 {"LD'", e_ldsel},
1108 {"LD%", e_ldsel},
1109 {"RD'", e_rdsel},
1110 {"RD%", e_rdsel},
1111 {"LR'", e_lrsel},
1112 {"LR%", e_lrsel},
1113 {"RR'", e_rrsel},
1114 {"RR%", e_rrsel},
1115 {"P'", e_psel},
1116 {"P%", e_psel},
1117 {"RP'", e_rpsel},
1118 {"RP%", e_rpsel},
1119 {"LP'", e_lpsel},
1120 {"LP%", e_lpsel},
1121 {"T'", e_tsel},
1122 {"T%", e_tsel},
1123 {"RT'", e_rtsel},
1124 {"RT%", e_rtsel},
1125 {"LT'", e_ltsel},
1126 {"LT%", e_ltsel},
1127 {NULL, e_fsel}
1128 };
1129
1130 /* default space and subspace dictionaries */
1131
1132 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1133 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1134
1135 /* pre-defined subsegments (subspaces) for the HPPA. */
1136 #define SUBSEG_CODE 0
1137 #define SUBSEG_DATA 0
1138 #define SUBSEG_LIT 1
1139 #define SUBSEG_BSS 2
1140 #define SUBSEG_UNWIND 3
1141 #define SUBSEG_GDB_STRINGS 0
1142 #define SUBSEG_GDB_SYMBOLS 1
1143
1144 static struct default_subspace_dict pa_def_subspaces[] =
1145 {
1146 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1147 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1148 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1149 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1150 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1151 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1152 };
1153
1154 static struct default_space_dict pa_def_spaces[] =
1155 {
1156 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1157 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1158 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1159 };
1160
1161 /* Misc local definitions used by the assembler. */
1162
1163 /* Return nonzero if the string pointed to by S potentially represents
1164 a right or left half of a FP register */
1165 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1166 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1167
1168 /* These macros are used to maintain spaces/subspaces. */
1169 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1170 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1171 #define SPACE_PRIVATE(space_chain) (space_chain)->sd_private
1172 #define SPACE_LOADABLE(space_chain) (space_chain)->sd_loadable
1173 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1174 #define SPACE_SORT(space_chain) (space_chain)->sd_sort_key
1175 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1176 #define SPACE_NAME_INDEX(space_chain) (space_chain)->sd_name_index
1177
1178 #define SUBSPACE_SPACE_INDEX(ss_chain) (ss_chain)->ssd_space_index
1179 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1180 #define SUBSPACE_QUADRANT(ss_chain) (ss_chain)->ssd_quadrant
1181 #define SUBSPACE_ALIGN(ss_chain) (ss_chain)->ssd_alignment
1182 #define SUBSPACE_ACCESS(ss_chain) (ss_chain)->ssd_access_control_bits
1183 #define SUBSPACE_SORT(ss_chain) (ss_chain)->ssd_sort_key
1184 #define SUBSPACE_COMMON(ss_chain) (ss_chain)->ssd_common
1185 #define SUBSPACE_ZERO(ss_chain) (ss_chain)->ssd_zero
1186 #define SUBSPACE_DUP_COMM(ss_chain) (ss_chain)->ssd_dup_common
1187 #define SUBSPACE_CODE_ONLY(ss_chain) (ss_chain)->ssd_code_only
1188 #define SUBSPACE_LOADABLE(ss_chain) (ss_chain)->ssd_loadable
1189 #define SUBSPACE_SUBSPACE_START(ss_chain) (ss_chain)->ssd_subspace_start
1190 #define SUBSPACE_SUBSPACE_LENGTH(ss_chain) (ss_chain)->ssd_subspace_length
1191 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1192
1193 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1194 main loop after insertion. */
1195
1196 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1197 { \
1198 ((OPCODE) |= (FIELD) << (START)); \
1199 continue; \
1200 }
1201
1202 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1203 IGNORE is used to suppress the error message. */
1204
1205 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1206 { \
1207 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1208 { \
1209 if (! IGNORE) \
1210 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1211 (int) (FIELD));\
1212 break; \
1213 } \
1214 }
1215
1216 #define is_DP_relative(exp) \
1217 ((exp).X_op == O_subtract \
1218 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1219
1220 #define is_PC_relative(exp) \
1221 ((exp).X_op == O_subtract \
1222 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1223
1224 #define is_complex(exp) \
1225 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1226
1227 /* Actual functions to implement the PA specific code for the assembler. */
1228
1229 /* Returns a pointer to the label_symbol_struct for the current space.
1230 or NULL if no label_symbol_struct exists for the current space. */
1231
1232 static label_symbol_struct *
1233 pa_get_label ()
1234 {
1235 label_symbol_struct *label_chain;
1236 sd_chain_struct *space_chain = current_space;
1237
1238 for (label_chain = label_symbols_rootp;
1239 label_chain;
1240 label_chain = label_chain->lss_next)
1241 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1242 return label_chain;
1243
1244 return NULL;
1245 }
1246
1247 /* Defines a label for the current space. If one is already defined,
1248 this function will replace it with the new label. */
1249
1250 void
1251 pa_define_label (symbol)
1252 symbolS *symbol;
1253 {
1254 label_symbol_struct *label_chain = pa_get_label ();
1255 sd_chain_struct *space_chain = current_space;
1256
1257 if (label_chain)
1258 label_chain->lss_label = symbol;
1259 else
1260 {
1261 /* Create a new label entry and add it to the head of the chain. */
1262 label_chain
1263 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1264 label_chain->lss_label = symbol;
1265 label_chain->lss_space = space_chain;
1266 label_chain->lss_next = NULL;
1267
1268 if (label_symbols_rootp)
1269 label_chain->lss_next = label_symbols_rootp;
1270
1271 label_symbols_rootp = label_chain;
1272 }
1273 }
1274
1275 /* Removes a label definition for the current space.
1276 If there is no label_symbol_struct entry, then no action is taken. */
1277
1278 static void
1279 pa_undefine_label ()
1280 {
1281 label_symbol_struct *label_chain;
1282 label_symbol_struct *prev_label_chain = NULL;
1283 sd_chain_struct *space_chain = current_space;
1284
1285 for (label_chain = label_symbols_rootp;
1286 label_chain;
1287 label_chain = label_chain->lss_next)
1288 {
1289 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1290 {
1291 /* Remove the label from the chain and free its memory. */
1292 if (prev_label_chain)
1293 prev_label_chain->lss_next = label_chain->lss_next;
1294 else
1295 label_symbols_rootp = label_chain->lss_next;
1296
1297 free (label_chain);
1298 break;
1299 }
1300 prev_label_chain = label_chain;
1301 }
1302 }
1303
1304
1305 /* An HPPA-specific version of fix_new. This is required because the HPPA
1306 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1307 results in the creation of an instance of an hppa_fix_struct. An
1308 hppa_fix_struct stores the extra information along with a pointer to the
1309 original fixS. This is attached to the original fixup via the
1310 tc_fix_data field. */
1311
1312 static void
1313 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1314 r_type, r_field, r_format, arg_reloc, unwind_desc)
1315 fragS *frag;
1316 int where;
1317 short int size;
1318 symbolS *add_symbol;
1319 long offset;
1320 expressionS *exp;
1321 int pcrel;
1322 bfd_reloc_code_real_type r_type;
1323 long r_field;
1324 int r_format;
1325 long arg_reloc;
1326 char *unwind_desc;
1327 {
1328 fixS *new_fix;
1329
1330 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1331 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1332
1333 if (exp != NULL)
1334 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1335 else
1336 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1337 new_fix->tc_fix_data = hppa_fix;
1338 hppa_fix->fx_r_type = r_type;
1339 hppa_fix->fx_r_field = r_field;
1340 hppa_fix->fx_r_format = r_format;
1341 hppa_fix->fx_arg_reloc = arg_reloc;
1342 if (unwind_desc)
1343 {
1344 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1345
1346 /* If necessary call BFD backend function to attach the
1347 unwind bits to the target dependent parts of a BFD symbol.
1348 Yuk. */
1349 #ifdef obj_attach_unwind_info
1350 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1351 #endif
1352 }
1353
1354 /* foo-$global$ is used to access non-automatic storage. $global$
1355 is really just a marker and has served its purpose, so eliminate
1356 it now so as not to confuse write.c. */
1357 if (!strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1358 new_fix->fx_subsy = NULL;
1359 }
1360
1361 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1362 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1363
1364 void
1365 parse_cons_expression_hppa (exp)
1366 expressionS *exp;
1367 {
1368 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1369 expression (exp);
1370 }
1371
1372 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1373 hppa_field_selector is set by the parse_cons_expression_hppa. */
1374
1375 void
1376 cons_fix_new_hppa (frag, where, size, exp)
1377 fragS *frag;
1378 int where;
1379 int size;
1380 expressionS *exp;
1381 {
1382 unsigned int reloc_type;
1383
1384 if (is_DP_relative (*exp))
1385 reloc_type = R_HPPA_GOTOFF;
1386 else if (is_complex (*exp))
1387 reloc_type = R_HPPA_COMPLEX;
1388 else
1389 reloc_type = R_HPPA;
1390
1391 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1392 as_warn ("Invalid field selector. Assuming F%%.");
1393
1394 fix_new_hppa (frag, where, size,
1395 (symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
1396 hppa_field_selector, 32, 0, (char *) 0);
1397
1398 /* Reset field selector to its default state. */
1399 hppa_field_selector = 0;
1400 }
1401
1402 /* This function is called once, at assembler startup time. It should
1403 set up all the tables, etc. that the MD part of the assembler will need. */
1404
1405 void
1406 md_begin ()
1407 {
1408 const char *retval = NULL;
1409 int lose = 0;
1410 unsigned int i = 0;
1411
1412 last_call_info = NULL;
1413 call_info_root = NULL;
1414
1415 /* Folding of text and data segments fails miserably on the PA.
1416 Warn user and disable "-R" option. */
1417 if (flagseen['R'])
1418 {
1419 as_warn ("-R option not supported on this target.");
1420 flag_readonly_data_in_text = 0;
1421 flagseen['R'] = 0;
1422 }
1423
1424 pa_spaces_begin ();
1425
1426 op_hash = hash_new ();
1427 if (op_hash == NULL)
1428 as_fatal ("Virtual memory exhausted");
1429
1430 while (i < NUMOPCODES)
1431 {
1432 const char *name = pa_opcodes[i].name;
1433 retval = hash_insert (op_hash, name, (struct pa_opcode *)&pa_opcodes[i]);
1434 if (retval != NULL && *retval != '\0')
1435 {
1436 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1437 lose = 1;
1438 }
1439 do
1440 {
1441 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1442 != pa_opcodes[i].match)
1443 {
1444 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1445 pa_opcodes[i].name, pa_opcodes[i].args);
1446 lose = 1;
1447 }
1448 ++i;
1449 }
1450 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1451 }
1452
1453 if (lose)
1454 as_fatal ("Broken assembler. No assembly attempted.");
1455
1456 /* SOM will change text_section. To make sure we never put
1457 anything into the old one switch to the new one now. */
1458 subseg_set (text_section, 0);
1459 }
1460
1461 /* Called at the end of assembling a source file. Nothing to do
1462 at this point on the PA. */
1463
1464 void
1465 md_end ()
1466 {
1467 return;
1468 }
1469
1470 /* Assemble a single instruction storing it into a frag. */
1471 void
1472 md_assemble (str)
1473 char *str;
1474 {
1475 char *to;
1476
1477 /* The had better be something to assemble. */
1478 assert (str);
1479
1480 /* Assemble the instruction. Results are saved into "the_insn". */
1481 pa_ip (str);
1482
1483 /* Get somewhere to put the assembled instrution. */
1484 to = frag_more (4);
1485
1486 /* Output the opcode. */
1487 md_number_to_chars (to, the_insn.opcode, 4);
1488
1489 /* If necessary output more stuff. */
1490 if (the_insn.reloc != R_HPPA_NONE)
1491 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1492 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1493 the_insn.reloc, the_insn.field_selector,
1494 the_insn.format, the_insn.arg_reloc, NULL);
1495
1496 }
1497
1498 /* Do the real work for assembling a single instruction. Store results
1499 into the global "the_insn" variable.
1500
1501 FIXME: Should define and use some functions/macros to handle
1502 various common insertions of information into the opcode. */
1503
1504 static void
1505 pa_ip (str)
1506 char *str;
1507 {
1508 char *error_message = "";
1509 char *s, c, *argstart, *name, *save_s;
1510 const char *args;
1511 int match = FALSE;
1512 int comma = 0;
1513 int cmpltr, nullif, flag, cond, num;
1514 unsigned long opcode;
1515 struct pa_opcode *insn;
1516
1517 /* Skip to something interesting. */
1518 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1519 ;
1520
1521 switch (*s)
1522 {
1523
1524 case '\0':
1525 break;
1526
1527 case ',':
1528 comma = 1;
1529
1530 /*FALLTHROUGH */
1531
1532 case ' ':
1533 *s++ = '\0';
1534 break;
1535
1536 default:
1537 as_bad ("Unknown opcode: `%s'", str);
1538 exit (1);
1539 }
1540
1541 save_s = str;
1542
1543 /* Convert everything into lower case. */
1544 while (*save_s)
1545 {
1546 if (isupper (*save_s))
1547 *save_s = tolower (*save_s);
1548 save_s++;
1549 }
1550
1551 /* Look up the opcode in the has table. */
1552 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1553 {
1554 as_bad ("Unknown opcode: `%s'", str);
1555 return;
1556 }
1557
1558 if (comma)
1559 {
1560 *--s = ',';
1561 }
1562
1563 /* Mark the location where arguments for the instruction start, then
1564 start processing them. */
1565 argstart = s;
1566 for (;;)
1567 {
1568 /* Do some initialization. */
1569 opcode = insn->match;
1570 bzero (&the_insn, sizeof (the_insn));
1571
1572 the_insn.reloc = R_HPPA_NONE;
1573
1574 /* Build the opcode, checking as we go to make
1575 sure that the operands match. */
1576 for (args = insn->args;; ++args)
1577 {
1578 switch (*args)
1579 {
1580
1581 /* End of arguments. */
1582 case '\0':
1583 if (*s == '\0')
1584 match = TRUE;
1585 break;
1586
1587 case '+':
1588 if (*s == '+')
1589 {
1590 ++s;
1591 continue;
1592 }
1593 if (*s == '-')
1594 continue;
1595 break;
1596
1597 /* These must match exactly. */
1598 case '(':
1599 case ')':
1600 case ',':
1601 case ' ':
1602 if (*s++ == *args)
1603 continue;
1604 break;
1605
1606 /* Handle a 5 bit register or control register field at 10. */
1607 case 'b':
1608 case '^':
1609 num = pa_parse_number (&s, 0);
1610 CHECK_FIELD (num, 31, 0, 0);
1611 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1612
1613 /* Handle a 5 bit register field at 15. */
1614 case 'x':
1615 num = pa_parse_number (&s, 0);
1616 CHECK_FIELD (num, 31, 0, 0);
1617 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1618
1619 /* Handle a 5 bit register field at 31. */
1620 case 'y':
1621 case 't':
1622 num = pa_parse_number (&s, 0);
1623 CHECK_FIELD (num, 31, 0, 0);
1624 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1625
1626 /* Handle a 5 bit field length at 31. */
1627 case 'T':
1628 num = pa_get_absolute_expression (&the_insn, &s);
1629 s = expr_end;
1630 CHECK_FIELD (num, 32, 1, 0);
1631 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1632
1633 /* Handle a 5 bit immediate at 15. */
1634 case '5':
1635 num = pa_get_absolute_expression (&the_insn, &s);
1636 s = expr_end;
1637 CHECK_FIELD (num, 15, -16, 0);
1638 low_sign_unext (num, 5, &num);
1639 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1640
1641 /* Handle a 5 bit immediate at 31. */
1642 case 'V':
1643 num = pa_get_absolute_expression (&the_insn, &s);
1644 s = expr_end;
1645 CHECK_FIELD (num, 15, -16, 0)
1646 low_sign_unext (num, 5, &num);
1647 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1648
1649 /* Handle an unsigned 5 bit immediate at 31. */
1650 case 'r':
1651 num = pa_get_absolute_expression (&the_insn, &s);
1652 s = expr_end;
1653 CHECK_FIELD (num, 31, 0, 0);
1654 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1655
1656 /* Handle an unsigned 5 bit immediate at 15. */
1657 case 'R':
1658 num = pa_get_absolute_expression (&the_insn, &s);
1659 s = expr_end;
1660 CHECK_FIELD (num, 31, 0, 0);
1661 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1662
1663 /* Handle a 2 bit space identifier at 17. */
1664 case 's':
1665 num = pa_parse_number (&s, 0);
1666 CHECK_FIELD (num, 3, 0, 1);
1667 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1668
1669 /* Handle a 3 bit space identifier at 18. */
1670 case 'S':
1671 num = pa_parse_number (&s, 0);
1672 CHECK_FIELD (num, 7, 0, 1);
1673 dis_assemble_3 (num, &num);
1674 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1675
1676 /* Handle a completer for an indexing load or store. */
1677 case 'c':
1678 {
1679 int uu = 0;
1680 int m = 0;
1681 int i = 0;
1682 while (*s == ',' && i < 2)
1683 {
1684 s++;
1685 if (strncasecmp (s, "sm", 2) == 0)
1686 {
1687 uu = 1;
1688 m = 1;
1689 s++;
1690 i++;
1691 }
1692 else if (strncasecmp (s, "m", 1) == 0)
1693 m = 1;
1694 else if (strncasecmp (s, "s", 1) == 0)
1695 uu = 1;
1696 else
1697 as_bad ("Invalid Indexed Load Completer.");
1698 s++;
1699 i++;
1700 }
1701 if (i > 2)
1702 as_bad ("Invalid Indexed Load Completer Syntax.");
1703 opcode |= m << 5;
1704 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1705 }
1706
1707 /* Handle a short load/store completer. */
1708 case 'C':
1709 {
1710 int a = 0;
1711 int m = 0;
1712 if (*s == ',')
1713 {
1714 s++;
1715 if (strncasecmp (s, "ma", 2) == 0)
1716 {
1717 a = 0;
1718 m = 1;
1719 }
1720 else if (strncasecmp (s, "mb", 2) == 0)
1721 {
1722 a = 1;
1723 m = 1;
1724 }
1725 else
1726 as_bad ("Invalid Short Load/Store Completer.");
1727 s += 2;
1728 }
1729 opcode |= m << 5;
1730 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1731 }
1732
1733 /* Handle a stbys completer. */
1734 case 'Y':
1735 {
1736 int a = 0;
1737 int m = 0;
1738 int i = 0;
1739 while (*s == ',' && i < 2)
1740 {
1741 s++;
1742 if (strncasecmp (s, "m", 1) == 0)
1743 m = 1;
1744 else if (strncasecmp (s, "b", 1) == 0)
1745 a = 0;
1746 else if (strncasecmp (s, "e", 1) == 0)
1747 a = 1;
1748 else
1749 as_bad ("Invalid Store Bytes Short Completer");
1750 s++;
1751 i++;
1752 }
1753 if (i > 2)
1754 as_bad ("Invalid Store Bytes Short Completer");
1755 opcode |= m << 5;
1756 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1757 }
1758
1759 /* Handle a non-negated compare/stubtract condition. */
1760 case '<':
1761 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1762 if (cmpltr < 0)
1763 {
1764 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1765 cmpltr = 0;
1766 }
1767 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1768
1769 /* Handle a negated or non-negated compare/subtract condition. */
1770 case '?':
1771 save_s = s;
1772 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1773 if (cmpltr < 0)
1774 {
1775 s = save_s;
1776 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1777 if (cmpltr < 0)
1778 {
1779 as_bad ("Invalid Compare/Subtract Condition.");
1780 cmpltr = 0;
1781 }
1782 else
1783 {
1784 /* Negated condition requires an opcode change. */
1785 opcode |= 1 << 27;
1786 }
1787 }
1788 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1789
1790 /* Handle a negated or non-negated add condition. */
1791 case '!':
1792 save_s = s;
1793 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1794 if (cmpltr < 0)
1795 {
1796 s = save_s;
1797 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1798 if (cmpltr < 0)
1799 {
1800 as_bad ("Invalid Compare/Subtract Condition");
1801 cmpltr = 0;
1802 }
1803 else
1804 {
1805 /* Negated condition requires an opcode change. */
1806 opcode |= 1 << 27;
1807 }
1808 }
1809 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1810
1811 /* Handle a compare/subtract condition. */
1812 case 'a':
1813 cmpltr = 0;
1814 flag = 0;
1815 save_s = s;
1816 if (*s == ',')
1817 {
1818 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1819 if (cmpltr < 0)
1820 {
1821 flag = 1;
1822 s = save_s;
1823 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1824 if (cmpltr < 0)
1825 {
1826 as_bad ("Invalid Compare/Subtract Condition");
1827 }
1828 }
1829 }
1830 opcode |= cmpltr << 13;
1831 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1832
1833 /* Handle a non-negated add condition. */
1834 case 'd':
1835 cmpltr = 0;
1836 nullif = 0;
1837 flag = 0;
1838 if (*s == ',')
1839 {
1840 s++;
1841 name = s;
1842 while (*s != ',' && *s != ' ' && *s != '\t')
1843 s += 1;
1844 c = *s;
1845 *s = 0x00;
1846 if (strcmp (name, "=") == 0)
1847 cmpltr = 1;
1848 else if (strcmp (name, "<") == 0)
1849 cmpltr = 2;
1850 else if (strcmp (name, "<=") == 0)
1851 cmpltr = 3;
1852 else if (strcasecmp (name, "nuv") == 0)
1853 cmpltr = 4;
1854 else if (strcasecmp (name, "znv") == 0)
1855 cmpltr = 5;
1856 else if (strcasecmp (name, "sv") == 0)
1857 cmpltr = 6;
1858 else if (strcasecmp (name, "od") == 0)
1859 cmpltr = 7;
1860 else if (strcasecmp (name, "n") == 0)
1861 nullif = 1;
1862 else if (strcasecmp (name, "tr") == 0)
1863 {
1864 cmpltr = 0;
1865 flag = 1;
1866 }
1867 else if (strcasecmp (name, "<>") == 0)
1868 {
1869 cmpltr = 1;
1870 flag = 1;
1871 }
1872 else if (strcasecmp (name, ">=") == 0)
1873 {
1874 cmpltr = 2;
1875 flag = 1;
1876 }
1877 else if (strcasecmp (name, ">") == 0)
1878 {
1879 cmpltr = 3;
1880 flag = 1;
1881 }
1882 else if (strcasecmp (name, "uv") == 0)
1883 {
1884 cmpltr = 4;
1885 flag = 1;
1886 }
1887 else if (strcasecmp (name, "vnz") == 0)
1888 {
1889 cmpltr = 5;
1890 flag = 1;
1891 }
1892 else if (strcasecmp (name, "nsv") == 0)
1893 {
1894 cmpltr = 6;
1895 flag = 1;
1896 }
1897 else if (strcasecmp (name, "ev") == 0)
1898 {
1899 cmpltr = 7;
1900 flag = 1;
1901 }
1902 else
1903 as_bad ("Invalid Add Condition: %s", name);
1904 *s = c;
1905 }
1906 nullif = pa_parse_nullif (&s);
1907 opcode |= nullif << 1;
1908 opcode |= cmpltr << 13;
1909 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1910
1911 /* HANDLE a logical instruction condition. */
1912 case '&':
1913 cmpltr = 0;
1914 flag = 0;
1915 if (*s == ',')
1916 {
1917 s++;
1918 name = s;
1919 while (*s != ',' && *s != ' ' && *s != '\t')
1920 s += 1;
1921 c = *s;
1922 *s = 0x00;
1923 if (strcmp (name, "=") == 0)
1924 cmpltr = 1;
1925 else if (strcmp (name, "<") == 0)
1926 cmpltr = 2;
1927 else if (strcmp (name, "<=") == 0)
1928 cmpltr = 3;
1929 else if (strcasecmp (name, "od") == 0)
1930 cmpltr = 7;
1931 else if (strcasecmp (name, "tr") == 0)
1932 {
1933 cmpltr = 0;
1934 flag = 1;
1935 }
1936 else if (strcmp (name, "<>") == 0)
1937 {
1938 cmpltr = 1;
1939 flag = 1;
1940 }
1941 else if (strcmp (name, ">=") == 0)
1942 {
1943 cmpltr = 2;
1944 flag = 1;
1945 }
1946 else if (strcmp (name, ">") == 0)
1947 {
1948 cmpltr = 3;
1949 flag = 1;
1950 }
1951 else if (strcasecmp (name, "ev") == 0)
1952 {
1953 cmpltr = 7;
1954 flag = 1;
1955 }
1956 else
1957 as_bad ("Invalid Logical Instruction Condition.");
1958 *s = c;
1959 }
1960 opcode |= cmpltr << 13;
1961 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1962
1963 /* Handle a unit instruction condition. */
1964 case 'U':
1965 cmpltr = 0;
1966 flag = 0;
1967 if (*s == ',')
1968 {
1969 s++;
1970 if (strncasecmp (s, "sbz", 3) == 0)
1971 {
1972 cmpltr = 2;
1973 s += 3;
1974 }
1975 else if (strncasecmp (s, "shz", 3) == 0)
1976 {
1977 cmpltr = 3;
1978 s += 3;
1979 }
1980 else if (strncasecmp (s, "sdc", 3) == 0)
1981 {
1982 cmpltr = 4;
1983 s += 3;
1984 }
1985 else if (strncasecmp (s, "sbc", 3) == 0)
1986 {
1987 cmpltr = 6;
1988 s += 3;
1989 }
1990 else if (strncasecmp (s, "shc", 3) == 0)
1991 {
1992 cmpltr = 7;
1993 s += 3;
1994 }
1995 else if (strncasecmp (s, "tr", 2) == 0)
1996 {
1997 cmpltr = 0;
1998 flag = 1;
1999 s += 2;
2000 }
2001 else if (strncasecmp (s, "nbz", 3) == 0)
2002 {
2003 cmpltr = 2;
2004 flag = 1;
2005 s += 3;
2006 }
2007 else if (strncasecmp (s, "nhz", 3) == 0)
2008 {
2009 cmpltr = 3;
2010 flag = 1;
2011 s += 3;
2012 }
2013 else if (strncasecmp (s, "ndc", 3) == 0)
2014 {
2015 cmpltr = 4;
2016 flag = 1;
2017 s += 3;
2018 }
2019 else if (strncasecmp (s, "nbc", 3) == 0)
2020 {
2021 cmpltr = 6;
2022 flag = 1;
2023 s += 3;
2024 }
2025 else if (strncasecmp (s, "nhc", 3) == 0)
2026 {
2027 cmpltr = 7;
2028 flag = 1;
2029 s += 3;
2030 }
2031 else
2032 as_bad ("Invalid Logical Instruction Condition.");
2033 }
2034 opcode |= cmpltr << 13;
2035 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
2036
2037 /* Handle a shift/extract/deposit condition. */
2038 case '|':
2039 case '>':
2040 cmpltr = 0;
2041 if (*s == ',')
2042 {
2043 save_s = s++;
2044 name = s;
2045 while (*s != ',' && *s != ' ' && *s != '\t')
2046 s += 1;
2047 c = *s;
2048 *s = 0x00;
2049 if (strcmp (name, "=") == 0)
2050 cmpltr = 1;
2051 else if (strcmp (name, "<") == 0)
2052 cmpltr = 2;
2053 else if (strcasecmp (name, "od") == 0)
2054 cmpltr = 3;
2055 else if (strcasecmp (name, "tr") == 0)
2056 cmpltr = 4;
2057 else if (strcmp (name, "<>") == 0)
2058 cmpltr = 5;
2059 else if (strcmp (name, ">=") == 0)
2060 cmpltr = 6;
2061 else if (strcasecmp (name, "ev") == 0)
2062 cmpltr = 7;
2063 /* Handle movb,n. Put things back the way they were.
2064 This includes moving s back to where it started. */
2065 else if (strcasecmp (name, "n") == 0 && *args == '|')
2066 {
2067 *s = c;
2068 s = save_s;
2069 continue;
2070 }
2071 else
2072 as_bad ("Invalid Shift/Extract/Deposit Condition.");
2073 *s = c;
2074 }
2075 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2076
2077 /* Handle bvb and bb conditions. */
2078 case '~':
2079 cmpltr = 0;
2080 if (*s == ',')
2081 {
2082 s++;
2083 if (strncmp (s, "<", 1) == 0)
2084 {
2085 cmpltr = 2;
2086 s++;
2087 }
2088 else if (strncmp (s, ">=", 2) == 0)
2089 {
2090 cmpltr = 6;
2091 s += 2;
2092 }
2093 else
2094 as_bad ("Invalid Bit Branch Condition: %c", *s);
2095 }
2096 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2097
2098 /* Handle a system control completer. */
2099 case 'Z':
2100 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2101 {
2102 flag = 1;
2103 s += 2;
2104 }
2105 else
2106 flag = 0;
2107
2108 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2109
2110 /* Handle a nullification completer for branch instructions. */
2111 case 'n':
2112 nullif = pa_parse_nullif (&s);
2113 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2114
2115 /* Handle a 11 bit immediate at 31. */
2116 case 'i':
2117 the_insn.field_selector = pa_chk_field_selector (&s);
2118 get_expression (s);
2119 s = expr_end;
2120 if (the_insn.exp.X_op == O_constant)
2121 {
2122 num = evaluate_absolute (&the_insn);
2123 CHECK_FIELD (num, 1023, -1024, 0);
2124 low_sign_unext (num, 11, &num);
2125 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2126 }
2127 else
2128 {
2129 if (is_DP_relative (the_insn.exp))
2130 the_insn.reloc = R_HPPA_GOTOFF;
2131 else if (is_PC_relative (the_insn.exp))
2132 the_insn.reloc = R_HPPA_PCREL_CALL;
2133 else if (is_complex (the_insn.exp))
2134 the_insn.reloc = R_HPPA_COMPLEX;
2135 else
2136 the_insn.reloc = R_HPPA;
2137 the_insn.format = 11;
2138 continue;
2139 }
2140
2141 /* Handle a 14 bit immediate at 31. */
2142 case 'j':
2143 the_insn.field_selector = pa_chk_field_selector (&s);
2144 get_expression (s);
2145 s = expr_end;
2146 if (the_insn.exp.X_op == O_constant)
2147 {
2148 num = evaluate_absolute (&the_insn);
2149 CHECK_FIELD (num, 8191, -8192, 0);
2150 low_sign_unext (num, 14, &num);
2151 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2152 }
2153 else
2154 {
2155 if (is_DP_relative (the_insn.exp))
2156 the_insn.reloc = R_HPPA_GOTOFF;
2157 else if (is_PC_relative (the_insn.exp))
2158 the_insn.reloc = R_HPPA_PCREL_CALL;
2159 else if (is_complex (the_insn.exp))
2160 the_insn.reloc = R_HPPA_COMPLEX;
2161 else
2162 the_insn.reloc = R_HPPA;
2163 the_insn.format = 14;
2164 continue;
2165 }
2166
2167 /* Handle a 21 bit immediate at 31. */
2168 case 'k':
2169 the_insn.field_selector = pa_chk_field_selector (&s);
2170 get_expression (s);
2171 s = expr_end;
2172 if (the_insn.exp.X_op == O_constant)
2173 {
2174 num = evaluate_absolute (&the_insn);
2175 CHECK_FIELD (num, 2097151, 0, 0);
2176 dis_assemble_21 (num, &num);
2177 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2178 }
2179 else
2180 {
2181 if (is_DP_relative (the_insn.exp))
2182 the_insn.reloc = R_HPPA_GOTOFF;
2183 else if (is_PC_relative (the_insn.exp))
2184 the_insn.reloc = R_HPPA_PCREL_CALL;
2185 else if (is_complex (the_insn.exp))
2186 the_insn.reloc = R_HPPA_COMPLEX;
2187 else
2188 the_insn.reloc = R_HPPA;
2189 the_insn.format = 21;
2190 continue;
2191 }
2192
2193 /* Handle a 12 bit branch displacement. */
2194 case 'w':
2195 the_insn.field_selector = pa_chk_field_selector (&s);
2196 get_expression (s);
2197 s = expr_end;
2198 the_insn.pcrel = 1;
2199 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2200 {
2201 unsigned int w1, w, result;
2202
2203 num = evaluate_absolute (&the_insn);
2204 if (num % 4)
2205 {
2206 as_bad ("Branch to unaligned address");
2207 break;
2208 }
2209 CHECK_FIELD (num, 8191, -8192, 0);
2210 sign_unext ((num - 8) >> 2, 12, &result);
2211 dis_assemble_12 (result, &w1, &w);
2212 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2213 }
2214 else
2215 {
2216 if (is_complex (the_insn.exp))
2217 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2218 else
2219 the_insn.reloc = R_HPPA_PCREL_CALL;
2220 the_insn.format = 12;
2221 the_insn.arg_reloc = last_call_desc.arg_reloc;
2222 bzero (&last_call_desc, sizeof (struct call_desc));
2223 s = expr_end;
2224 continue;
2225 }
2226
2227 /* Handle a 17 bit branch displacement. */
2228 case 'W':
2229 the_insn.field_selector = pa_chk_field_selector (&s);
2230 get_expression (s);
2231 s = expr_end;
2232 the_insn.pcrel = 1;
2233 if (! the_insn.exp.X_add_symbol
2234 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2235 "L$0\001"))
2236 {
2237 unsigned int w2, w1, w, result;
2238
2239 num = evaluate_absolute (&the_insn);
2240 if (num % 4)
2241 {
2242 as_bad ("Branch to unaligned address");
2243 break;
2244 }
2245 CHECK_FIELD (num, 262143, -262144, 0);
2246
2247 if (the_insn.exp.X_add_symbol)
2248 num -= 8;
2249
2250 sign_unext (num >> 2, 17, &result);
2251 dis_assemble_17 (result, &w1, &w2, &w);
2252 INSERT_FIELD_AND_CONTINUE (opcode,
2253 ((w2 << 2) | (w1 << 16) | w), 0);
2254 }
2255 else
2256 {
2257 if (is_complex (the_insn.exp))
2258 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2259 else
2260 the_insn.reloc = R_HPPA_PCREL_CALL;
2261 the_insn.format = 17;
2262 the_insn.arg_reloc = last_call_desc.arg_reloc;
2263 bzero (&last_call_desc, sizeof (struct call_desc));
2264 continue;
2265 }
2266
2267 /* Handle an absolute 17 bit branch target. */
2268 case 'z':
2269 the_insn.field_selector = pa_chk_field_selector (&s);
2270 get_expression (s);
2271 s = expr_end;
2272 the_insn.pcrel = 0;
2273 if (! the_insn.exp.X_add_symbol
2274 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2275 "L$0\001"))
2276 {
2277 unsigned int w2, w1, w, result;
2278
2279 num = evaluate_absolute (&the_insn);
2280 if (num % 4)
2281 {
2282 as_bad ("Branch to unaligned address");
2283 break;
2284 }
2285 CHECK_FIELD (num, 262143, -262144, 0);
2286
2287 if (the_insn.exp.X_add_symbol)
2288 num -= 8;
2289
2290 sign_unext (num >> 2, 17, &result);
2291 dis_assemble_17 (result, &w1, &w2, &w);
2292 INSERT_FIELD_AND_CONTINUE (opcode,
2293 ((w2 << 2) | (w1 << 16) | w), 0);
2294 }
2295 else
2296 {
2297 if (is_complex (the_insn.exp))
2298 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2299 else
2300 the_insn.reloc = R_HPPA_ABS_CALL;
2301 the_insn.format = 17;
2302 continue;
2303 }
2304
2305 /* Handle a 5 bit shift count at 26. */
2306 case 'p':
2307 num = pa_get_absolute_expression (&the_insn, &s);
2308 s = expr_end;
2309 CHECK_FIELD (num, 31, 0, 0);
2310 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2311
2312 /* Handle a 5 bit bit position at 26. */
2313 case 'P':
2314 num = pa_get_absolute_expression (&the_insn, &s);
2315 s = expr_end;
2316 CHECK_FIELD (num, 31, 0, 0);
2317 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2318
2319 /* Handle a 5 bit immediate at 10. */
2320 case 'Q':
2321 num = pa_get_absolute_expression (&the_insn, &s);
2322 s = expr_end;
2323 CHECK_FIELD (num, 31, 0, 0);
2324 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2325
2326 /* Handle a 13 bit immediate at 18. */
2327 case 'A':
2328 num = pa_get_absolute_expression (&the_insn, &s);
2329 s = expr_end;
2330 CHECK_FIELD (num, 4095, -4096, 0);
2331 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2332
2333 /* Handle a 26 bit immediate at 31. */
2334 case 'D':
2335 num = pa_get_absolute_expression (&the_insn, &s);
2336 s = expr_end;
2337 CHECK_FIELD (num, 671108864, 0, 0);
2338 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2339
2340 /* Handle a 3 bit SFU identifier at 25. */
2341 case 'f':
2342 num = pa_get_absolute_expression (&the_insn, &s);
2343 s = expr_end;
2344 CHECK_FIELD (num, 7, 0, 0);
2345 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2346
2347 /* We don't support any of these. FIXME. */
2348 case 'O':
2349 get_expression (s);
2350 s = expr_end;
2351 abort ();
2352 continue;
2353
2354 /* Handle a source FP operand format completer. */
2355 case 'F':
2356 flag = pa_parse_fp_format (&s);
2357 the_insn.fpof1 = flag;
2358 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2359
2360 /* Handle a destination FP operand format completer. */
2361 case 'G':
2362 /* pa_parse_format needs the ',' prefix. */
2363 s--;
2364 flag = pa_parse_fp_format (&s);
2365 the_insn.fpof2 = flag;
2366 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2367
2368 /* Handle FP compare conditions. */
2369 case 'M':
2370 cond = pa_parse_fp_cmp_cond (&s);
2371 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2372
2373 /* Handle L/R register halves like 't'. */
2374 case 'v':
2375 {
2376 struct pa_89_fp_reg_struct result;
2377
2378 pa_parse_number (&s, &result);
2379 CHECK_FIELD (result.number_part, 31, 0, 0);
2380 opcode |= result.number_part;
2381
2382 /* 0x30 opcodes are FP arithmetic operation opcodes
2383 and need to be turned into 0x38 opcodes. This
2384 is not necessary for loads/stores. */
2385 if (need_89_opcode (&the_insn, &result)
2386 && ((opcode & 0xfc000000) == 0x30000000))
2387 opcode |= 1 << 27;
2388
2389 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2390 }
2391
2392 /* Handle L/R register halves like 'b'. */
2393 case 'E':
2394 {
2395 struct pa_89_fp_reg_struct result;
2396
2397 pa_parse_number (&s, &result);
2398 CHECK_FIELD (result.number_part, 31, 0, 0);
2399 opcode |= result.number_part << 21;
2400 if (need_89_opcode (&the_insn, &result))
2401 {
2402 opcode |= (result.l_r_select & 1) << 7;
2403 opcode |= 1 << 27;
2404 }
2405 continue;
2406 }
2407
2408 /* Handle L/R register halves like 'x'. */
2409 case 'X':
2410 {
2411 struct pa_89_fp_reg_struct result;
2412
2413 pa_parse_number (&s, &result);
2414 CHECK_FIELD (result.number_part, 31, 0, 0);
2415 opcode |= (result.number_part & 0x1f) << 16;
2416 if (need_89_opcode (&the_insn, &result))
2417 {
2418 opcode |= (result.l_r_select & 1) << 12;
2419 opcode |= 1 << 27;
2420 }
2421 continue;
2422 }
2423
2424 /* Handle a 5 bit register field at 10. */
2425 case '4':
2426 {
2427 struct pa_89_fp_reg_struct result;
2428
2429 pa_parse_number (&s, &result);
2430 CHECK_FIELD (result.number_part, 31, 0, 0);
2431 if (the_insn.fpof1 == SGL)
2432 {
2433 result.number_part &= 0xF;
2434 result.number_part |= (result.l_r_select & 1) << 4;
2435 }
2436 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2437 }
2438
2439 /* Handle a 5 bit register field at 15. */
2440 case '6':
2441 {
2442 struct pa_89_fp_reg_struct result;
2443
2444 pa_parse_number (&s, &result);
2445 CHECK_FIELD (result.number_part, 31, 0, 0);
2446 if (the_insn.fpof1 == SGL)
2447 {
2448 result.number_part &= 0xF;
2449 result.number_part |= (result.l_r_select & 1) << 4;
2450 }
2451 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2452 }
2453
2454 /* Handle a 5 bit register field at 31. */
2455 case '7':
2456 {
2457 struct pa_89_fp_reg_struct result;
2458
2459 pa_parse_number (&s, &result);
2460 CHECK_FIELD (result.number_part, 31, 0, 0);
2461 if (the_insn.fpof1 == SGL)
2462 {
2463 result.number_part &= 0xF;
2464 result.number_part |= (result.l_r_select & 1) << 4;
2465 }
2466 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2467 }
2468
2469 /* Handle a 5 bit register field at 20. */
2470 case '8':
2471 {
2472 struct pa_89_fp_reg_struct result;
2473
2474 pa_parse_number (&s, &result);
2475 CHECK_FIELD (result.number_part, 31, 0, 0);
2476 if (the_insn.fpof1 == SGL)
2477 {
2478 result.number_part &= 0xF;
2479 result.number_part |= (result.l_r_select & 1) << 4;
2480 }
2481 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2482 }
2483
2484 /* Handle a 5 bit register field at 25. */
2485 case '9':
2486 {
2487 struct pa_89_fp_reg_struct result;
2488
2489 pa_parse_number (&s, &result);
2490 CHECK_FIELD (result.number_part, 31, 0, 0);
2491 if (the_insn.fpof1 == SGL)
2492 {
2493 result.number_part &= 0xF;
2494 result.number_part |= (result.l_r_select & 1) << 4;
2495 }
2496 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2497 }
2498
2499 /* Handle a floating point operand format at 26.
2500 Only allows single and double precision. */
2501 case 'H':
2502 flag = pa_parse_fp_format (&s);
2503 switch (flag)
2504 {
2505 case SGL:
2506 opcode |= 0x20;
2507 case DBL:
2508 the_insn.fpof1 = flag;
2509 continue;
2510
2511 case QUAD:
2512 case ILLEGAL_FMT:
2513 default:
2514 as_bad ("Invalid Floating Point Operand Format.");
2515 }
2516 break;
2517
2518 default:
2519 abort ();
2520 }
2521 break;
2522 }
2523
2524 /* Check if the args matched. */
2525 if (match == FALSE)
2526 {
2527 if (&insn[1] - pa_opcodes < NUMOPCODES
2528 && !strcmp (insn->name, insn[1].name))
2529 {
2530 ++insn;
2531 s = argstart;
2532 continue;
2533 }
2534 else
2535 {
2536 as_bad ("Invalid operands %s", error_message);
2537 return;
2538 }
2539 }
2540 break;
2541 }
2542
2543 the_insn.opcode = opcode;
2544 return;
2545 }
2546
2547 /* Turn a string in input_line_pointer into a floating point constant of type
2548 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2549 emitted is stored in *sizeP . An error message or NULL is returned. */
2550
2551 #define MAX_LITTLENUMS 6
2552
2553 char *
2554 md_atof (type, litP, sizeP)
2555 char type;
2556 char *litP;
2557 int *sizeP;
2558 {
2559 int prec;
2560 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2561 LITTLENUM_TYPE *wordP;
2562 char *t;
2563
2564 switch (type)
2565 {
2566
2567 case 'f':
2568 case 'F':
2569 case 's':
2570 case 'S':
2571 prec = 2;
2572 break;
2573
2574 case 'd':
2575 case 'D':
2576 case 'r':
2577 case 'R':
2578 prec = 4;
2579 break;
2580
2581 case 'x':
2582 case 'X':
2583 prec = 6;
2584 break;
2585
2586 case 'p':
2587 case 'P':
2588 prec = 6;
2589 break;
2590
2591 default:
2592 *sizeP = 0;
2593 return "Bad call to MD_ATOF()";
2594 }
2595 t = atof_ieee (input_line_pointer, type, words);
2596 if (t)
2597 input_line_pointer = t;
2598 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2599 for (wordP = words; prec--;)
2600 {
2601 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2602 litP += sizeof (LITTLENUM_TYPE);
2603 }
2604 return NULL;
2605 }
2606
2607 /* Write out big-endian. */
2608
2609 void
2610 md_number_to_chars (buf, val, n)
2611 char *buf;
2612 valueT val;
2613 int n;
2614 {
2615
2616 switch (n)
2617 {
2618 case 4:
2619 *buf++ = val >> 24;
2620 *buf++ = val >> 16;
2621 case 2:
2622 *buf++ = val >> 8;
2623 case 1:
2624 *buf = val;
2625 break;
2626 default:
2627 abort ();
2628 }
2629 return;
2630 }
2631
2632 /* Translate internal representation of relocation info to BFD target
2633 format. */
2634
2635 arelent **
2636 tc_gen_reloc (section, fixp)
2637 asection *section;
2638 fixS *fixp;
2639 {
2640 arelent *reloc;
2641 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2642 bfd_reloc_code_real_type code;
2643 static int unwind_reloc_fixp_cnt = 0;
2644 static arelent *unwind_reloc_entryP = NULL;
2645 static arelent *no_relocs = NULL;
2646 arelent **relocs;
2647 bfd_reloc_code_real_type **codes;
2648 int n_relocs;
2649 int i;
2650
2651 if (fixp->fx_addsy == 0)
2652 return &no_relocs;
2653 assert (hppa_fixp != 0);
2654 assert (section != 0);
2655
2656 #ifdef OBJ_ELF
2657 /* Yuk. I would really like to push all this ELF specific unwind
2658 crud into BFD and the linker. That's how SOM does it -- and
2659 if we could make ELF emulate that then we could share more code
2660 in GAS (and potentially a gnu-linker later).
2661
2662 Unwind section relocations are handled in a special way.
2663 The relocations for the .unwind section are originally
2664 built in the usual way. That is, for each unwind table
2665 entry there are two relocations: one for the beginning of
2666 the function and one for the end.
2667
2668 The first time we enter this function we create a
2669 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2670 of the relocation is initialized to 0. Each additional
2671 pair of times this function is called for the unwind
2672 section represents an additional unwind table entry. Thus,
2673 the addend of the relocation should end up to be the number
2674 of unwind table entries. */
2675 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2676 {
2677 if (unwind_reloc_entryP == NULL)
2678 {
2679 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2680 sizeof (arelent));
2681 assert (reloc != 0);
2682 unwind_reloc_entryP = reloc;
2683 unwind_reloc_fixp_cnt++;
2684 unwind_reloc_entryP->address
2685 = fixp->fx_frag->fr_address + fixp->fx_where;
2686 /* A pointer to any function will do. We only
2687 need one to tell us what section the unwind
2688 relocations are for. */
2689 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2690 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2691 fixp->fx_r_type = R_HPPA_UNWIND;
2692 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2693 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2694 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2695 sizeof (arelent *) * 2);
2696 assert (relocs != 0);
2697 relocs[0] = unwind_reloc_entryP;
2698 relocs[1] = NULL;
2699 return relocs;
2700 }
2701 unwind_reloc_fixp_cnt++;
2702 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2703
2704 return &no_relocs;
2705 }
2706 #endif
2707
2708 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2709 assert (reloc != 0);
2710
2711 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2712 codes = hppa_gen_reloc_type (stdoutput,
2713 fixp->fx_r_type,
2714 hppa_fixp->fx_r_format,
2715 hppa_fixp->fx_r_field);
2716
2717 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2718 ;
2719
2720 relocs = (arelent **)
2721 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2722 assert (relocs != 0);
2723
2724 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2725 sizeof (arelent) * n_relocs);
2726 if (n_relocs > 0)
2727 assert (reloc != 0);
2728
2729 for (i = 0; i < n_relocs; i++)
2730 relocs[i] = &reloc[i];
2731
2732 relocs[n_relocs] = NULL;
2733
2734 #ifdef OBJ_ELF
2735 switch (fixp->fx_r_type)
2736 {
2737 case R_HPPA_COMPLEX:
2738 case R_HPPA_COMPLEX_PCREL_CALL:
2739 case R_HPPA_COMPLEX_ABS_CALL:
2740 assert (n_relocs == 5);
2741
2742 for (i = 0; i < n_relocs; i++)
2743 {
2744 reloc[i].sym_ptr_ptr = NULL;
2745 reloc[i].address = 0;
2746 reloc[i].addend = 0;
2747 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2748 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2749 }
2750
2751 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2752 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2753 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2754
2755 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2756 reloc[3].addend = fixp->fx_addnumber;
2757 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2758 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2759 reloc[1].addend = fixp->fx_addnumber;
2760
2761 break;
2762
2763 default:
2764 assert (n_relocs == 1);
2765
2766 code = *codes[0];
2767
2768 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2769 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2770 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2771 reloc->addend = 0; /* default */
2772
2773 assert (reloc->howto && code == reloc->howto->type);
2774
2775 /* Now, do any processing that is dependent on the relocation type. */
2776 switch (code)
2777 {
2778 case R_HPPA_PLABEL_32:
2779 case R_HPPA_PLABEL_11:
2780 case R_HPPA_PLABEL_14:
2781 case R_HPPA_PLABEL_L21:
2782 case R_HPPA_PLABEL_R11:
2783 case R_HPPA_PLABEL_R14:
2784 /* For plabel relocations, the addend of the
2785 relocation should be either 0 (no static link) or 2
2786 (static link required).
2787
2788 FIXME: assume that fx_addnumber contains this
2789 information */
2790 reloc->addend = fixp->fx_addnumber;
2791 break;
2792
2793 case R_HPPA_ABS_CALL_11:
2794 case R_HPPA_ABS_CALL_14:
2795 case R_HPPA_ABS_CALL_17:
2796 case R_HPPA_ABS_CALL_L21:
2797 case R_HPPA_ABS_CALL_R11:
2798 case R_HPPA_ABS_CALL_R14:
2799 case R_HPPA_ABS_CALL_R17:
2800 case R_HPPA_ABS_CALL_LS21:
2801 case R_HPPA_ABS_CALL_RS11:
2802 case R_HPPA_ABS_CALL_RS14:
2803 case R_HPPA_ABS_CALL_RS17:
2804 case R_HPPA_ABS_CALL_LD21:
2805 case R_HPPA_ABS_CALL_RD11:
2806 case R_HPPA_ABS_CALL_RD14:
2807 case R_HPPA_ABS_CALL_RD17:
2808 case R_HPPA_ABS_CALL_LR21:
2809 case R_HPPA_ABS_CALL_RR14:
2810 case R_HPPA_ABS_CALL_RR17:
2811
2812 case R_HPPA_PCREL_CALL_11:
2813 case R_HPPA_PCREL_CALL_14:
2814 case R_HPPA_PCREL_CALL_17:
2815 case R_HPPA_PCREL_CALL_L21:
2816 case R_HPPA_PCREL_CALL_R11:
2817 case R_HPPA_PCREL_CALL_R14:
2818 case R_HPPA_PCREL_CALL_R17:
2819 case R_HPPA_PCREL_CALL_LS21:
2820 case R_HPPA_PCREL_CALL_RS11:
2821 case R_HPPA_PCREL_CALL_RS14:
2822 case R_HPPA_PCREL_CALL_RS17:
2823 case R_HPPA_PCREL_CALL_LD21:
2824 case R_HPPA_PCREL_CALL_RD11:
2825 case R_HPPA_PCREL_CALL_RD14:
2826 case R_HPPA_PCREL_CALL_RD17:
2827 case R_HPPA_PCREL_CALL_LR21:
2828 case R_HPPA_PCREL_CALL_RR14:
2829 case R_HPPA_PCREL_CALL_RR17:
2830 /* The constant is stored in the instruction. */
2831 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2832 break;
2833 default:
2834 reloc->addend = fixp->fx_addnumber;
2835 break;
2836 }
2837 break;
2838 }
2839 #else /* OBJ_SOM */
2840
2841 /* Preliminary relocation handling for SOM. Needs to handle
2842 COMPLEX relocations (yes, I've seen them occur) and it will
2843 need to handle R_ENTRY/R_EXIT relocations in the very near future
2844 (for generating unwinds). */
2845 switch (fixp->fx_r_type)
2846 {
2847 case R_HPPA_COMPLEX:
2848 case R_HPPA_COMPLEX_PCREL_CALL:
2849 case R_HPPA_COMPLEX_ABS_CALL:
2850 abort();
2851 break;
2852 default:
2853 assert (n_relocs == 1);
2854
2855 code = *codes[0];
2856
2857 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2858 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2859 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where ;
2860 reloc->addend = 0;
2861
2862 switch (code)
2863 {
2864 case R_PCREL_CALL:
2865 case R_ABS_CALL:
2866 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2867 break;
2868 default:
2869 reloc->addend = fixp->fx_addnumber;
2870 break;
2871 }
2872 break;
2873 }
2874 #endif
2875
2876 return relocs;
2877 }
2878
2879 /* Process any machine dependent frag types. */
2880
2881 void
2882 md_convert_frag (abfd, sec, fragP)
2883 register bfd *abfd;
2884 register asection *sec;
2885 register fragS *fragP;
2886 {
2887 unsigned int address;
2888
2889 if (fragP->fr_type == rs_machine_dependent)
2890 {
2891 switch ((int) fragP->fr_subtype)
2892 {
2893 case 0:
2894 fragP->fr_type = rs_fill;
2895 know (fragP->fr_var == 1);
2896 know (fragP->fr_next);
2897 address = fragP->fr_address + fragP->fr_fix;
2898 if (address % fragP->fr_offset)
2899 {
2900 fragP->fr_offset =
2901 fragP->fr_next->fr_address
2902 - fragP->fr_address
2903 - fragP->fr_fix;
2904 }
2905 else
2906 fragP->fr_offset = 0;
2907 break;
2908 }
2909 }
2910 }
2911
2912 /* Round up a section size to the appropriate boundary. */
2913
2914 valueT
2915 md_section_align (segment, size)
2916 asection *segment;
2917 valueT size;
2918 {
2919 int align = bfd_get_section_alignment (stdoutput, segment);
2920 int align2 = (1 << align) - 1;
2921
2922 return (size + align2) & ~align2;
2923
2924 }
2925
2926 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2927 void
2928 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2929 char *ptr;
2930 addressT from_addr, to_addr;
2931 fragS *frag;
2932 symbolS *to_symbol;
2933 {
2934 fprintf (stderr, "pa_create_short_jmp\n");
2935 abort ();
2936 }
2937
2938 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2939 void
2940 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2941 char *ptr;
2942 addressT from_addr, to_addr;
2943 fragS *frag;
2944 symbolS *to_symbol;
2945 {
2946 fprintf (stderr, "pa_create_long_jump\n");
2947 abort ();
2948 }
2949
2950 /* Return the approximate size of a frag before relaxation has occurred. */
2951 int
2952 md_estimate_size_before_relax (fragP, segment)
2953 register fragS *fragP;
2954 asection *segment;
2955 {
2956 int size;
2957
2958 size = 0;
2959
2960 while ((fragP->fr_fix + size) % fragP->fr_offset)
2961 size++;
2962
2963 return size;
2964 }
2965
2966 /* Parse machine dependent options. There are none on the PA. */
2967 int
2968 md_parse_option (argP, cntP, vecP)
2969 char **argP;
2970 int *cntP;
2971 char ***vecP;
2972 {
2973 return 1;
2974 }
2975
2976 /* We have no need to default values of symbols. */
2977
2978 symbolS *
2979 md_undefined_symbol (name)
2980 char *name;
2981 {
2982 return 0;
2983 }
2984
2985 /* Parse an operand that is machine-specific.
2986 We just return without modifying the expression as we have nothing
2987 to do on the PA. */
2988
2989 void
2990 md_operand (expressionP)
2991 expressionS *expressionP;
2992 {
2993 }
2994
2995 /* Helper function for md_apply_fix. Actually determine if the fix
2996 can be applied, and if so, apply it.
2997
2998 If a fix is applied, then set fx_addsy to NULL which indicates
2999 the fix was applied and need not be emitted into the object file. */
3000
3001 static void
3002 md_apply_fix_1 (fixP, val)
3003 fixS *fixP;
3004 long val;
3005 {
3006 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
3007 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
3008 long new_val, result;
3009 unsigned int w1, w2, w;
3010
3011 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
3012 never be "applied". They must always be emitted. */
3013 #ifdef OBJ_SOM
3014 if (fixP->fx_r_type == R_HPPA_ENTRY
3015 || fixP->fx_r_type == R_HPPA_EXIT)
3016 return;
3017 #endif
3018
3019 /* There should have been an HPPA specific fixup associated
3020 with the GAS fixup. */
3021 if (hppa_fixP)
3022 {
3023 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
3024 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
3025
3026 if (fixP->fx_r_type == R_HPPA_NONE)
3027 fmt = 0;
3028
3029 /* Remember this value for emit_reloc. FIXME, is this braindamage
3030 documented anywhere!?! */
3031 fixP->fx_addnumber = val;
3032
3033 /* Check if this is an undefined symbol. No relocation can
3034 possibly be performed in this case. */
3035 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
3036 || (fixP->fx_subsy
3037 && fixP->fx_subsy->bsym->section == &bfd_und_section))
3038 return;
3039
3040 if (fmt != 0 && fmt != 32)
3041 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3042 else
3043 new_val = 0;
3044
3045 switch (fmt)
3046 {
3047 /* Handle all opcodes with the 'j' operand type. */
3048 case 14:
3049 CHECK_FIELD (new_val, 8191, -8192, 0);
3050
3051 /* Mask off 14 bits to be changed. */
3052 bfd_put_32 (stdoutput,
3053 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3054 buf);
3055 low_sign_unext (new_val, 14, &result);
3056 break;
3057
3058 /* Handle all opcodes with the 'k' operand type. */
3059 case 21:
3060 CHECK_FIELD (new_val, 2097152, 0, 0);
3061
3062 /* Mask off 21 bits to be changed. */
3063 bfd_put_32 (stdoutput,
3064 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3065 buf);
3066 dis_assemble_21 (new_val, &result);
3067 break;
3068
3069 /* Handle all the opcodes with the 'i' operand type. */
3070 case 11:
3071 CHECK_FIELD (new_val, 1023, -1023, 0);
3072
3073 /* Mask off 11 bits to be changed. */
3074 bfd_put_32 (stdoutput,
3075 bfd_get_32 (stdoutput, buf) & 0xffff800,
3076 buf);
3077 low_sign_unext (new_val, 11, &result);
3078 break;
3079
3080 /* Handle all the opcodes with the 'w' operand type. */
3081 case 12:
3082 CHECK_FIELD (new_val, 8191, -8192, 0)
3083
3084 /* Mask off 11 bits to be changed. */
3085 sign_unext ((new_val - 8) >> 2, 12, &result);
3086 bfd_put_32 (stdoutput,
3087 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3088 buf);
3089
3090 dis_assemble_12 (result, &w1, &w);
3091 result = ((w1 << 2) | w);
3092 fixP->fx_addsy = NULL;
3093 break;
3094
3095 #define stub_needed(CALLER, CALLEE) \
3096 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3097
3098 /* Handle some of the opcodes with the 'W' operand type. */
3099 case 17:
3100 /* If a long-call stub or argument relocation stub is
3101 needed, then we can not apply this relocation, instead
3102 the linker must handle it. */
3103 if (new_val > 262143 || new_val < -262144
3104 || stub_needed (((obj_symbol_type *)
3105 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3106 hppa_fixP->fx_arg_reloc))
3107 return;
3108
3109 /* No stubs were needed, we can perform this relocation. */
3110 CHECK_FIELD (new_val, 262143, -262144, 0);
3111
3112 /* Mask off 17 bits to be changed. */
3113 bfd_put_32 (stdoutput,
3114 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3115 buf);
3116 sign_unext ((new_val - 8) >> 2, 17, &result);
3117 dis_assemble_17 (result, &w1, &w2, &w);
3118 result = ((w2 << 2) | (w1 << 16) | w);
3119 fixP->fx_addsy = NULL;
3120 break;
3121
3122 #undef too_far
3123 #undef stub_needed
3124
3125 case 32:
3126 #ifdef OBJ_ELF
3127 /* These are ELF specific relocations. ELF unfortunately
3128 handles unwinds in a completely different manner. */
3129 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3130 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3131 result = fixP->fx_addnumber;
3132 else
3133 #endif
3134 {
3135 result = 0;
3136 fixP->fx_addnumber = fixP->fx_offset;
3137 bfd_put_32 (stdoutput, 0, buf);
3138 return;
3139 }
3140 break;
3141
3142 case 0:
3143 return;
3144
3145 default:
3146 as_bad ("Unknown relocation encountered in md_apply_fix.");
3147 return;
3148 }
3149
3150 /* Insert the relocation. */
3151 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3152 }
3153 else
3154 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3155 (unsigned int) fixP, fixP->fx_r_type);
3156 }
3157
3158 /* Apply a fix into a frag's data (if possible). */
3159
3160 int
3161 md_apply_fix (fixP, valp)
3162 fixS *fixP;
3163 valueT *valp;
3164 {
3165 md_apply_fix_1 (fixP, (long) *valp);
3166 return 1;
3167 }
3168
3169 /* Exactly what point is a PC-relative offset relative TO?
3170 On the PA, they're relative to the address of the offset. */
3171
3172 long
3173 md_pcrel_from (fixP)
3174 fixS *fixP;
3175 {
3176 return fixP->fx_where + fixP->fx_frag->fr_address;
3177 }
3178
3179 /* Return nonzero if the input line pointer is at the end of
3180 a statement. */
3181
3182 static int
3183 is_end_of_statement ()
3184 {
3185 return ((*input_line_pointer == '\n')
3186 || (*input_line_pointer == ';')
3187 || (*input_line_pointer == '!'));
3188 }
3189
3190 /* Read a number from S. The number might come in one of many forms,
3191 the most common will be a hex or decimal constant, but it could be
3192 a pre-defined register (Yuk!), or an absolute symbol.
3193
3194 Return a number or -1 for failure.
3195
3196 When parsing PA-89 FP register numbers RESULT will be
3197 the address of a structure to return information about
3198 L/R half of FP registers, store results there as appropriate.
3199
3200 pa_parse_number can not handle negative constants and will fail
3201 horribly if it is passed such a constant. */
3202
3203 static int
3204 pa_parse_number (s, result)
3205 char **s;
3206 struct pa_89_fp_reg_struct *result;
3207 {
3208 int num;
3209 char *name;
3210 char c;
3211 symbolS *sym;
3212 int status;
3213 char *p = *s;
3214
3215 /* Skip whitespace before the number. */
3216 while (*p == ' ' || *p == '\t')
3217 p = p + 1;
3218
3219 /* Store info in RESULT if requested by caller. */
3220 if (result)
3221 {
3222 result->number_part = -1;
3223 result->l_r_select = -1;
3224 }
3225 num = -1;
3226
3227 if (isdigit (*p))
3228 {
3229 /* Looks like a number. */
3230 num = 0;
3231
3232 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3233 {
3234 /* The number is specified in hex. */
3235 p += 2;
3236 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3237 || ((*p >= 'A') && (*p <= 'F')))
3238 {
3239 if (isdigit (*p))
3240 num = num * 16 + *p - '0';
3241 else if (*p >= 'a' && *p <= 'f')
3242 num = num * 16 + *p - 'a' + 10;
3243 else
3244 num = num * 16 + *p - 'A' + 10;
3245 ++p;
3246 }
3247 }
3248 else
3249 {
3250 /* The number is specified in decimal. */
3251 while (isdigit (*p))
3252 {
3253 num = num * 10 + *p - '0';
3254 ++p;
3255 }
3256 }
3257
3258 /* Store info in RESULT if requested by the caller. */
3259 if (result)
3260 {
3261 result->number_part = num;
3262
3263 if (IS_R_SELECT (p))
3264 {
3265 result->l_r_select = 1;
3266 ++p;
3267 }
3268 else if (IS_L_SELECT (p))
3269 {
3270 result->l_r_select = 0;
3271 ++p;
3272 }
3273 else
3274 result->l_r_select = 0;
3275 }
3276 }
3277 else if (*p == '%')
3278 {
3279 /* The number might be a predefined register. */
3280 num = 0;
3281 name = p;
3282 p++;
3283 c = *p;
3284 /* Tege hack: Special case for general registers as the general
3285 code makes a binary search with case translation, and is VERY
3286 slow. */
3287 if (c == 'r')
3288 {
3289 p++;
3290 if (*p == 'e' && *(p + 1) == 't'
3291 && (*(p + 2) == '0' || *(p + 2) == '1'))
3292 {
3293 p += 2;
3294 num = *p - '0' + 28;
3295 p++;
3296 }
3297 else if (*p == 'p')
3298 {
3299 num = 2;
3300 p++;
3301 }
3302 else if (!isdigit (*p))
3303 {
3304 if (print_errors)
3305 as_bad ("Undefined register: '%s'.", name);
3306 num = -1;
3307 }
3308 else
3309 {
3310 do
3311 num = num * 10 + *p++ - '0';
3312 while (isdigit (*p));
3313 }
3314 }
3315 else
3316 {
3317 /* Do a normal register search. */
3318 while (is_part_of_name (c))
3319 {
3320 p = p + 1;
3321 c = *p;
3322 }
3323 *p = 0;
3324 status = reg_name_search (name);
3325 if (status >= 0)
3326 num = status;
3327 else
3328 {
3329 if (print_errors)
3330 as_bad ("Undefined register: '%s'.", name);
3331 num = -1;
3332 }
3333 *p = c;
3334 }
3335
3336 /* Store info in RESULT if requested by caller. */
3337 if (result)
3338 {
3339 result->number_part = num;
3340 if (IS_R_SELECT (p - 1))
3341 result->l_r_select = 1;
3342 else if (IS_L_SELECT (p - 1))
3343 result->l_r_select = 0;
3344 else
3345 result->l_r_select = 0;
3346 }
3347 }
3348 else
3349 {
3350 /* And finally, it could be a symbol in the absolute section which
3351 is effectively a constant. */
3352 num = 0;
3353 name = p;
3354 c = *p;
3355 while (is_part_of_name (c))
3356 {
3357 p = p + 1;
3358 c = *p;
3359 }
3360 *p = 0;
3361 if ((sym = symbol_find (name)) != NULL)
3362 {
3363 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3364 num = S_GET_VALUE (sym);
3365 else
3366 {
3367 if (print_errors)
3368 as_bad ("Non-absolute symbol: '%s'.", name);
3369 num = -1;
3370 }
3371 }
3372 else
3373 {
3374 /* There is where we'd come for an undefined symbol
3375 or for an empty string. For an empty string we
3376 will return zero. That's a concession made for
3377 compatability with the braindamaged HP assemblers. */
3378 if (*name == 0)
3379 num = 0;
3380 else
3381 {
3382 if (print_errors)
3383 as_bad ("Undefined absolute constant: '%s'.", name);
3384 num = -1;
3385 }
3386 }
3387 *p = c;
3388
3389 /* Store info in RESULT if requested by caller. */
3390 if (result)
3391 {
3392 result->number_part = num;
3393 if (IS_R_SELECT (p - 1))
3394 result->l_r_select = 1;
3395 else if (IS_L_SELECT (p - 1))
3396 result->l_r_select = 0;
3397 else
3398 result->l_r_select = 0;
3399 }
3400 }
3401
3402 *s = p;
3403 return num;
3404 }
3405
3406 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3407
3408 /* Given NAME, find the register number associated with that name, return
3409 the integer value associated with the given name or -1 on failure. */
3410
3411 static int
3412 reg_name_search (name)
3413 char *name;
3414 {
3415 int middle, low, high;
3416
3417 low = 0;
3418 high = REG_NAME_CNT - 1;
3419
3420 do
3421 {
3422 middle = (low + high) / 2;
3423 if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
3424 high = middle - 1;
3425 else
3426 low = middle + 1;
3427 }
3428 while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
3429 (low > high)));
3430
3431 if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
3432 return (pre_defined_registers[middle].value);
3433 else
3434 return (-1);
3435 }
3436
3437
3438 /* Return nonzero if the given INSN and L/R information will require
3439 a new PA-89 opcode. */
3440
3441 static int
3442 need_89_opcode (insn, result)
3443 struct pa_it *insn;
3444 struct pa_89_fp_reg_struct *result;
3445 {
3446 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3447 return TRUE;
3448 else
3449 return FALSE;
3450 }
3451
3452 /* Parse a condition for a fcmp instruction. Return the numerical
3453 code associated with the condition. */
3454
3455 static int
3456 pa_parse_fp_cmp_cond (s)
3457 char **s;
3458 {
3459 int cond, i;
3460
3461 cond = 0;
3462
3463 for (i = 0; i < 32; i++)
3464 {
3465 if (strncasecmp (*s, fp_cond_map[i].string,
3466 strlen (fp_cond_map[i].string)) == 0)
3467 {
3468 cond = fp_cond_map[i].cond;
3469 *s += strlen (fp_cond_map[i].string);
3470 while (**s == ' ' || **s == '\t')
3471 *s = *s + 1;
3472 return cond;
3473 }
3474 }
3475
3476 as_bad ("Invalid FP Compare Condition: %c", **s);
3477 return 0;
3478 }
3479
3480 /* Parse an FP operand format completer returning the completer
3481 type. */
3482
3483 static fp_operand_format
3484 pa_parse_fp_format (s)
3485 char **s;
3486 {
3487 int format;
3488
3489 format = SGL;
3490 if (**s == ',')
3491 {
3492 *s += 1;
3493 if (strncasecmp (*s, "sgl", 3) == 0)
3494 {
3495 format = SGL;
3496 *s += 4;
3497 }
3498 else if (strncasecmp (*s, "dbl", 3) == 0)
3499 {
3500 format = DBL;
3501 *s += 4;
3502 }
3503 else if (strncasecmp (*s, "quad", 4) == 0)
3504 {
3505 format = QUAD;
3506 *s += 5;
3507 }
3508 else
3509 {
3510 format = ILLEGAL_FMT;
3511 as_bad ("Invalid FP Operand Format: %3s", *s);
3512 }
3513 }
3514
3515 return format;
3516 }
3517
3518 /* Convert from a selector string into a selector type. */
3519
3520 static int
3521 pa_chk_field_selector (str)
3522 char **str;
3523 {
3524 int selector;
3525 const struct selector_entry *tablep;
3526
3527 selector = e_fsel;
3528
3529 /* Read past any whitespace. */
3530 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3531 *str = *str + 1;
3532
3533 /* Yuk. Looks like a linear search through the table. With the
3534 frequence of some selectors it might make sense to sort the
3535 table by usage. */
3536 for (tablep = selector_table; tablep->prefix; tablep++)
3537 {
3538 if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
3539 {
3540 *str += strlen (tablep->prefix);
3541 selector = tablep->field_selector;
3542 break;
3543 }
3544 }
3545 return selector;
3546 }
3547
3548 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3549
3550 static int
3551 get_expression (str)
3552 char *str;
3553 {
3554 char *save_in;
3555 asection *seg;
3556
3557 save_in = input_line_pointer;
3558 input_line_pointer = str;
3559 seg = expression (&the_insn.exp);
3560 if (!(seg == absolute_section
3561 || seg == undefined_section
3562 || SEG_NORMAL (seg)))
3563 {
3564 as_warn ("Bad segment in expression.");
3565 expr_end = input_line_pointer;
3566 input_line_pointer = save_in;
3567 return 1;
3568 }
3569 expr_end = input_line_pointer;
3570 input_line_pointer = save_in;
3571 return 0;
3572 }
3573
3574 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3575 static int
3576 pa_get_absolute_expression (insn, strp)
3577 struct pa_it *insn;
3578 char **strp;
3579 {
3580 char *save_in;
3581
3582 insn->field_selector = pa_chk_field_selector (strp);
3583 save_in = input_line_pointer;
3584 input_line_pointer = *strp;
3585 expression (&insn->exp);
3586 if (insn->exp.X_op != O_constant)
3587 {
3588 as_bad ("Bad segment (should be absolute).");
3589 expr_end = input_line_pointer;
3590 input_line_pointer = save_in;
3591 return 0;
3592 }
3593 expr_end = input_line_pointer;
3594 input_line_pointer = save_in;
3595 return evaluate_absolute (insn);
3596 }
3597
3598 /* Evaluate an absolute expression EXP which may be modified by
3599 the selector FIELD_SELECTOR. Return the value of the expression. */
3600 static int
3601 evaluate_absolute (insn)
3602 struct pa_it *insn;
3603 {
3604 int value;
3605 expressionS exp = insn->exp;
3606 int field_selector = insn->field_selector;
3607
3608 value = exp.X_add_number;
3609
3610 switch (field_selector)
3611 {
3612 /* No change. */
3613 case e_fsel:
3614 break;
3615
3616 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3617 case e_lssel:
3618 if (value & 0x00000400)
3619 value += 0x800;
3620 value = (value & 0xfffff800) >> 11;
3621 break;
3622
3623 /* Sign extend from bit 21. */
3624 case e_rssel:
3625 if (value & 0x00000400)
3626 value |= 0xfffff800;
3627 else
3628 value &= 0x7ff;
3629 break;
3630
3631 /* Arithmetic shift right 11 bits. */
3632 case e_lsel:
3633 value = (value & 0xfffff800) >> 11;
3634 break;
3635
3636 /* Set bits 0-20 to zero. */
3637 case e_rsel:
3638 value = value & 0x7ff;
3639 break;
3640
3641 /* Add 0x800 and arithmetic shift right 11 bits. */
3642 case e_ldsel:
3643 value += 0x800;
3644
3645
3646 value = (value & 0xfffff800) >> 11;
3647 break;
3648
3649 /* Set bitgs 0-21 to one. */
3650 case e_rdsel:
3651 value |= 0xfffff800;
3652 break;
3653
3654 /* This had better get fixed. It looks like we're quickly moving
3655 to LR/RR. FIXME. */
3656 case e_rrsel:
3657 case e_lrsel:
3658 abort ();
3659
3660 default:
3661 BAD_CASE (field_selector);
3662 break;
3663 }
3664 return value;
3665 }
3666
3667 /* Given an argument location specification return the associated
3668 argument location number. */
3669
3670 static unsigned int
3671 pa_build_arg_reloc (type_name)
3672 char *type_name;
3673 {
3674
3675 if (strncasecmp (type_name, "no", 2) == 0)
3676 return 0;
3677 if (strncasecmp (type_name, "gr", 2) == 0)
3678 return 1;
3679 else if (strncasecmp (type_name, "fr", 2) == 0)
3680 return 2;
3681 else if (strncasecmp (type_name, "fu", 2) == 0)
3682 return 3;
3683 else
3684 as_bad ("Invalid argument location: %s\n", type_name);
3685
3686 return 0;
3687 }
3688
3689 /* Encode and return an argument relocation specification for
3690 the given register in the location specified by arg_reloc. */
3691
3692 static unsigned int
3693 pa_align_arg_reloc (reg, arg_reloc)
3694 unsigned int reg;
3695 unsigned int arg_reloc;
3696 {
3697 unsigned int new_reloc;
3698
3699 new_reloc = arg_reloc;
3700 switch (reg)
3701 {
3702 case 0:
3703 new_reloc <<= 8;
3704 break;
3705 case 1:
3706 new_reloc <<= 6;
3707 break;
3708 case 2:
3709 new_reloc <<= 4;
3710 break;
3711 case 3:
3712 new_reloc <<= 2;
3713 break;
3714 default:
3715 as_bad ("Invalid argument description: %d", reg);
3716 }
3717
3718 return new_reloc;
3719 }
3720
3721 /* Parse a PA nullification completer (,n). Return nonzero if the
3722 completer was found; return zero if no completer was found. */
3723
3724 static int
3725 pa_parse_nullif (s)
3726 char **s;
3727 {
3728 int nullif;
3729
3730 nullif = 0;
3731 if (**s == ',')
3732 {
3733 *s = *s + 1;
3734 if (strncasecmp (*s, "n", 1) == 0)
3735 nullif = 1;
3736 else
3737 {
3738 as_bad ("Invalid Nullification: (%c)", **s);
3739 nullif = 0;
3740 }
3741 *s = *s + 1;
3742 }
3743
3744 return nullif;
3745 }
3746
3747 /* Parse a non-negated compare/subtract completer returning the
3748 number (for encoding in instrutions) of the given completer.
3749
3750 ISBRANCH specifies whether or not this is parsing a condition
3751 completer for a branch (vs a nullification completer for a
3752 computational instruction. */
3753
3754 static int
3755 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3756 char **s;
3757 int isbranch;
3758 {
3759 int cmpltr;
3760 char *name = *s + 1;
3761 char c;
3762 char *save_s = *s;
3763
3764 cmpltr = 0;
3765 if (**s == ',')
3766 {
3767 *s += 1;
3768 while (**s != ',' && **s != ' ' && **s != '\t')
3769 *s += 1;
3770 c = **s;
3771 **s = 0x00;
3772 if (strcmp (name, "=") == 0)
3773 {
3774 cmpltr = 1;
3775 }
3776 else if (strcmp (name, "<") == 0)
3777 {
3778 cmpltr = 2;
3779 }
3780 else if (strcmp (name, "<=") == 0)
3781 {
3782 cmpltr = 3;
3783 }
3784 else if (strcmp (name, "<<") == 0)
3785 {
3786 cmpltr = 4;
3787 }
3788 else if (strcmp (name, "<<=") == 0)
3789 {
3790 cmpltr = 5;
3791 }
3792 else if (strcasecmp (name, "sv") == 0)
3793 {
3794 cmpltr = 6;
3795 }
3796 else if (strcasecmp (name, "od") == 0)
3797 {
3798 cmpltr = 7;
3799 }
3800 /* If we have something like addb,n then there is no condition
3801 completer. */
3802 else if (strcasecmp (name, "n") == 0 && isbranch)
3803 {
3804 cmpltr = 0;
3805 }
3806 else
3807 {
3808 cmpltr = -1;
3809 }
3810 **s = c;
3811 }
3812
3813 /* Reset pointers if this was really a ,n for a branch instruction. */
3814 if (cmpltr == 0 && *name == 'n' && isbranch)
3815 *s = save_s;
3816
3817 return cmpltr;
3818 }
3819
3820 /* Parse a negated compare/subtract completer returning the
3821 number (for encoding in instrutions) of the given completer.
3822
3823 ISBRANCH specifies whether or not this is parsing a condition
3824 completer for a branch (vs a nullification completer for a
3825 computational instruction. */
3826
3827 static int
3828 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3829 char **s;
3830 int isbranch;
3831 {
3832 int cmpltr;
3833 char *name = *s + 1;
3834 char c;
3835 char *save_s = *s;
3836
3837 cmpltr = 0;
3838 if (**s == ',')
3839 {
3840 *s += 1;
3841 while (**s != ',' && **s != ' ' && **s != '\t')
3842 *s += 1;
3843 c = **s;
3844 **s = 0x00;
3845 if (strcasecmp (name, "tr") == 0)
3846 {
3847 cmpltr = 0;
3848 }
3849 else if (strcmp (name, "<>") == 0)
3850 {
3851 cmpltr = 1;
3852 }
3853 else if (strcmp (name, ">=") == 0)
3854 {
3855 cmpltr = 2;
3856 }
3857 else if (strcmp (name, ">") == 0)
3858 {
3859 cmpltr = 3;
3860 }
3861 else if (strcmp (name, ">>=") == 0)
3862 {
3863 cmpltr = 4;
3864 }
3865 else if (strcmp (name, ">>") == 0)
3866 {
3867 cmpltr = 5;
3868 }
3869 else if (strcasecmp (name, "nsv") == 0)
3870 {
3871 cmpltr = 6;
3872 }
3873 else if (strcasecmp (name, "ev") == 0)
3874 {
3875 cmpltr = 7;
3876 }
3877 /* If we have something like addb,n then there is no condition
3878 completer. */
3879 else if (strcasecmp (name, "n") == 0 && isbranch)
3880 {
3881 cmpltr = 0;
3882 }
3883 else
3884 {
3885 cmpltr = -1;
3886 }
3887 **s = c;
3888 }
3889
3890 /* Reset pointers if this was really a ,n for a branch instruction. */
3891 if (cmpltr == 0 && *name == 'n' && isbranch)
3892 *s = save_s;
3893
3894 return cmpltr;
3895 }
3896
3897 /* Parse a non-negated addition completer returning the number
3898 (for encoding in instrutions) of the given completer.
3899
3900 ISBRANCH specifies whether or not this is parsing a condition
3901 completer for a branch (vs a nullification completer for a
3902 computational instruction. */
3903
3904 static int
3905 pa_parse_nonneg_add_cmpltr (s, isbranch)
3906 char **s;
3907 int isbranch;
3908 {
3909 int cmpltr;
3910 char *name = *s + 1;
3911 char c;
3912 char *save_s = *s;
3913
3914 cmpltr = 0;
3915 if (**s == ',')
3916 {
3917 *s += 1;
3918 while (**s != ',' && **s != ' ' && **s != '\t')
3919 *s += 1;
3920 c = **s;
3921 **s = 0x00;
3922 if (strcmp (name, "=") == 0)
3923 {
3924 cmpltr = 1;
3925 }
3926 else if (strcmp (name, "<") == 0)
3927 {
3928 cmpltr = 2;
3929 }
3930 else if (strcmp (name, "<=") == 0)
3931 {
3932 cmpltr = 3;
3933 }
3934 else if (strcasecmp (name, "nuv") == 0)
3935 {
3936 cmpltr = 4;
3937 }
3938 else if (strcasecmp (name, "znv") == 0)
3939 {
3940 cmpltr = 5;
3941 }
3942 else if (strcasecmp (name, "sv") == 0)
3943 {
3944 cmpltr = 6;
3945 }
3946 else if (strcasecmp (name, "od") == 0)
3947 {
3948 cmpltr = 7;
3949 }
3950 /* If we have something like addb,n then there is no condition
3951 completer. */
3952 else if (strcasecmp (name, "n") == 0 && isbranch)
3953 {
3954 cmpltr = 0;
3955 }
3956 else
3957 {
3958 cmpltr = -1;
3959 }
3960 **s = c;
3961 }
3962
3963 /* Reset pointers if this was really a ,n for a branch instruction. */
3964 if (cmpltr == 0 && *name == 'n' && isbranch)
3965 *s = save_s;
3966
3967 return cmpltr;
3968 }
3969
3970 /* Parse a negated addition completer returning the number
3971 (for encoding in instrutions) of the given completer.
3972
3973 ISBRANCH specifies whether or not this is parsing a condition
3974 completer for a branch (vs a nullification completer for a
3975 computational instruction. */
3976
3977 static int
3978 pa_parse_neg_add_cmpltr (s, isbranch)
3979 char **s;
3980 int isbranch;
3981 {
3982 int cmpltr;
3983 char *name = *s + 1;
3984 char c;
3985 char *save_s = *s;
3986
3987 cmpltr = 0;
3988 if (**s == ',')
3989 {
3990 *s += 1;
3991 while (**s != ',' && **s != ' ' && **s != '\t')
3992 *s += 1;
3993 c = **s;
3994 **s = 0x00;
3995 if (strcasecmp (name, "tr") == 0)
3996 {
3997 cmpltr = 0;
3998 }
3999 else if (strcmp (name, "<>") == 0)
4000 {
4001 cmpltr = 1;
4002 }
4003 else if (strcmp (name, ">=") == 0)
4004 {
4005 cmpltr = 2;
4006 }
4007 else if (strcmp (name, ">") == 0)
4008 {
4009 cmpltr = 3;
4010 }
4011 else if (strcmp (name, "uv") == 0)
4012 {
4013 cmpltr = 4;
4014 }
4015 else if (strcmp (name, "vnz") == 0)
4016 {
4017 cmpltr = 5;
4018 }
4019 else if (strcasecmp (name, "nsv") == 0)
4020 {
4021 cmpltr = 6;
4022 }
4023 else if (strcasecmp (name, "ev") == 0)
4024 {
4025 cmpltr = 7;
4026 }
4027 /* If we have something like addb,n then there is no condition
4028 completer. */
4029 else if (strcasecmp (name, "n") == 0 && isbranch)
4030 {
4031 cmpltr = 0;
4032 }
4033 else
4034 {
4035 cmpltr = -1;
4036 }
4037 **s = c;
4038 }
4039
4040 /* Reset pointers if this was really a ,n for a branch instruction. */
4041 if (cmpltr == 0 && *name == 'n' && isbranch)
4042 *s = save_s;
4043
4044 return cmpltr;
4045 }
4046
4047 /* Handle a .BLOCK type pseudo-op. */
4048
4049 static void
4050 pa_block (z)
4051 int z;
4052 {
4053 char *p;
4054 long int temp_fill;
4055 unsigned int temp_size;
4056 int i;
4057
4058 temp_size = get_absolute_expression ();
4059
4060 /* Always fill with zeros, that's what the HP assembler does. */
4061 temp_fill = 0;
4062
4063 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4064 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4065 bzero (p, temp_size);
4066
4067 /* Convert 2 bytes at a time. */
4068
4069 for (i = 0; i < temp_size; i += 2)
4070 {
4071 md_number_to_chars (p + i,
4072 (valueT) temp_fill,
4073 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4074 }
4075
4076 pa_undefine_label ();
4077 demand_empty_rest_of_line ();
4078 return;
4079 }
4080
4081 /* Handle a .CALL pseudo-op. This involves storing away information
4082 about where arguments are to be found so the linker can detect
4083 (and correct) argument location mismatches between caller and callee. */
4084
4085 static void
4086 pa_call (unused)
4087 int unused;
4088 {
4089 pa_call_args (&last_call_desc);
4090 demand_empty_rest_of_line ();
4091 return;
4092 }
4093
4094 /* Do the dirty work of building a call descriptor which describes
4095 where the caller placed arguments to a function call. */
4096
4097 static void
4098 pa_call_args (call_desc)
4099 struct call_desc *call_desc;
4100 {
4101 char *name, c, *p;
4102 unsigned int temp, arg_reloc;
4103
4104 while (!is_end_of_statement ())
4105 {
4106 name = input_line_pointer;
4107 c = get_symbol_end ();
4108 /* Process a source argument. */
4109 if ((strncasecmp (name, "argw", 4) == 0))
4110 {
4111 temp = atoi (name + 4);
4112 p = input_line_pointer;
4113 *p = c;
4114 input_line_pointer++;
4115 name = input_line_pointer;
4116 c = get_symbol_end ();
4117 arg_reloc = pa_build_arg_reloc (name);
4118 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4119 }
4120 /* Process a return value. */
4121 else if ((strncasecmp (name, "rtnval", 6) == 0))
4122 {
4123 p = input_line_pointer;
4124 *p = c;
4125 input_line_pointer++;
4126 name = input_line_pointer;
4127 c = get_symbol_end ();
4128 arg_reloc = pa_build_arg_reloc (name);
4129 call_desc->arg_reloc |= (arg_reloc & 0x3);
4130 }
4131 else
4132 {
4133 as_bad ("Invalid .CALL argument: %s", name);
4134 }
4135 p = input_line_pointer;
4136 *p = c;
4137 if (!is_end_of_statement ())
4138 input_line_pointer++;
4139 }
4140 }
4141
4142 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4143
4144 static int
4145 is_same_frag (frag1, frag2)
4146 fragS *frag1;
4147 fragS *frag2;
4148 {
4149
4150 if (frag1 == NULL)
4151 return (FALSE);
4152 else if (frag2 == NULL)
4153 return (FALSE);
4154 else if (frag1 == frag2)
4155 return (TRUE);
4156 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4157 return (is_same_frag (frag1, frag2->fr_next));
4158 else
4159 return (FALSE);
4160 }
4161
4162 #ifdef OBJ_ELF
4163 /* Build an entry in the UNWIND subspace from the given function
4164 attributes in CALL_INFO. This is not needed for SOM as using
4165 R_ENTRY and R_EXIT relocations allow the linker to handle building
4166 of the unwind spaces. */
4167
4168 static void
4169 pa_build_unwind_subspace (call_info)
4170 struct call_info *call_info;
4171 {
4172 char *unwind;
4173 asection *seg, *save_seg;
4174 subsegT subseg, save_subseg;
4175 int i;
4176 char c, *p;
4177
4178 /* Get into the right seg/subseg. This may involve creating
4179 the seg the first time through. Make sure to have the
4180 old seg/subseg so that we can reset things when we are done. */
4181 subseg = SUBSEG_UNWIND;
4182 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4183 if (seg == ASEC_NULL)
4184 {
4185 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4186 bfd_set_section_flags (stdoutput, seg,
4187 SEC_READONLY | SEC_HAS_CONTENTS
4188 | SEC_LOAD | SEC_RELOC);
4189 }
4190
4191 save_seg = now_seg;
4192 save_subseg = now_subseg;
4193 subseg_set (seg, subseg);
4194
4195
4196 /* Get some space to hold relocation information for the unwind
4197 descriptor. */
4198 p = frag_more (4);
4199 call_info->start_offset_frag = frag_now;
4200 call_info->start_frag_where = p - frag_now->fr_literal;
4201
4202 /* Relocation info. for start offset of the function. */
4203 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4204 call_info->start_symbol, (offsetT) 0,
4205 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4206 (char *) 0);
4207
4208 /* We need to search for the first relocation involving the start_symbol of
4209 this call_info descriptor. */
4210 {
4211 fixS *fixP;
4212
4213 call_info->start_fix = seg_info (now_seg)->fix_root;
4214 for (fixP = call_info->start_fix; fixP; fixP = fixP->fx_next)
4215 {
4216 if (fixP->fx_addsy == call_info->start_symbol
4217 || fixP->fx_subsy == call_info->start_symbol)
4218 {
4219 call_info->start_fix = fixP;
4220 break;
4221 }
4222 }
4223 }
4224
4225 p = frag_more (4);
4226 call_info->end_offset_frag = frag_now;
4227 call_info->end_frag_where = p - frag_now->fr_literal;
4228
4229 /* Relocation info. for end offset of the function. */
4230 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4231 call_info->end_symbol, (offsetT) 0,
4232 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4233 (char *) 0);
4234
4235 /* We need to search for the first relocation involving the end_symbol of
4236 this call_info descriptor. */
4237 {
4238 fixS *fixP;
4239
4240 call_info->end_fix = seg_info (now_seg)->fix_root; /* the default */
4241 for (fixP = call_info->end_fix; fixP; fixP = fixP->fx_next)
4242 {
4243 if (fixP->fx_addsy == call_info->end_symbol
4244 || fixP->fx_subsy == call_info->end_symbol)
4245 {
4246 call_info->end_fix = fixP;
4247 break;
4248 }
4249 }
4250 }
4251
4252 /* Dump it. */
4253 unwind = (char *) &call_info->ci_unwind;
4254 for (i = 8; i < sizeof (struct unwind_table); i++)
4255 {
4256 c = *(unwind + i);
4257 {
4258 FRAG_APPEND_1_CHAR (c);
4259 }
4260 }
4261
4262 /* Return back to the original segment/subsegment. */
4263 subseg_set (save_seg, save_subseg);
4264 }
4265 #endif
4266
4267 /* Process a .CALLINFO pseudo-op. This information is used later
4268 to build unwind descriptors and maybe one day to support
4269 .ENTER and .LEAVE. */
4270
4271 static void
4272 pa_callinfo (unused)
4273 int unused;
4274 {
4275 char *name, c, *p;
4276 int temp;
4277
4278 /* .CALLINFO must appear within a procedure definition. */
4279 if (!within_procedure)
4280 as_bad (".callinfo is not within a procedure definition");
4281
4282 /* Mark the fact that we found the .CALLINFO for the
4283 current procedure. */
4284 callinfo_found = TRUE;
4285
4286 /* Iterate over the .CALLINFO arguments. */
4287 while (!is_end_of_statement ())
4288 {
4289 name = input_line_pointer;
4290 c = get_symbol_end ();
4291 /* Frame size specification. */
4292 if ((strncasecmp (name, "frame", 5) == 0))
4293 {
4294 p = input_line_pointer;
4295 *p = c;
4296 input_line_pointer++;
4297 temp = get_absolute_expression ();
4298 if ((temp & 0x3) != 0)
4299 {
4300 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4301 temp = 0;
4302 }
4303
4304 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4305 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4306
4307 }
4308 /* Entry register (GR, GR and SR) specifications. */
4309 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4310 {
4311 p = input_line_pointer;
4312 *p = c;
4313 input_line_pointer++;
4314 temp = get_absolute_expression ();
4315 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4316 even though %r19 is caller saved. I think this is a bug in
4317 the HP assembler, and we are not going to emulate it. */
4318 if (temp < 3 || temp > 18)
4319 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4320 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4321 }
4322 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4323 {
4324 p = input_line_pointer;
4325 *p = c;
4326 input_line_pointer++;
4327 temp = get_absolute_expression ();
4328 /* Similarly the HP assembler takes 31 as the high bound even
4329 though %fr21 is the last callee saved floating point register. */
4330 if (temp < 12 || temp > 21)
4331 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4332 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4333 }
4334 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4335 {
4336 p = input_line_pointer;
4337 *p = c;
4338 input_line_pointer++;
4339 temp = get_absolute_expression ();
4340 if (temp != 3)
4341 as_bad ("Value for ENTRY_SR must be 3\n");
4342 last_call_info->entry_sr = temp - 2;
4343 }
4344 /* Note whether or not this function performs any calls. */
4345 else if ((strncasecmp (name, "calls", 5) == 0) ||
4346 (strncasecmp (name, "caller", 6) == 0))
4347 {
4348 p = input_line_pointer;
4349 *p = c;
4350 last_call_info->makes_calls = 1;
4351 }
4352 else if ((strncasecmp (name, "no_calls", 8) == 0))
4353 {
4354 p = input_line_pointer;
4355 *p = c;
4356 last_call_info->makes_calls = 0;
4357 }
4358 /* Should RP be saved into the stack. */
4359 else if ((strncasecmp (name, "save_rp", 7) == 0))
4360 {
4361 p = input_line_pointer;
4362 *p = c;
4363 last_call_info->ci_unwind.descriptor.save_rp = 1;
4364 }
4365 /* Likewise for SP. */
4366 else if ((strncasecmp (name, "save_sp", 7) == 0))
4367 {
4368 p = input_line_pointer;
4369 *p = c;
4370 last_call_info->ci_unwind.descriptor.save_sp = 1;
4371 }
4372 /* Is this an unwindable procedure. If so mark it so
4373 in the unwind descriptor. */
4374 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4375 {
4376 p = input_line_pointer;
4377 *p = c;
4378 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4379 }
4380 /* Is this an interrupt routine. If so mark it in the
4381 unwind descriptor. */
4382 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4383 {
4384 p = input_line_pointer;
4385 *p = c;
4386 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4387 }
4388 else
4389 {
4390 as_bad ("Invalid .CALLINFO argument: %s", name);
4391 }
4392 if (!is_end_of_statement ())
4393 input_line_pointer++;
4394 }
4395
4396 demand_empty_rest_of_line ();
4397 return;
4398 }
4399
4400 /* Switch into the code subspace. */
4401
4402 static void
4403 pa_code (unused)
4404 int unused;
4405 {
4406 sd_chain_struct *sdchain;
4407
4408 /* First time through it might be necessary to create the
4409 $TEXT$ space. */
4410 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4411 {
4412 sdchain = create_new_space (pa_def_spaces[0].name,
4413 pa_def_spaces[0].spnum,
4414 pa_def_spaces[0].loadable,
4415 pa_def_spaces[0].defined,
4416 pa_def_spaces[0].private,
4417 pa_def_spaces[0].sort,
4418 pa_def_spaces[0].segment, 0);
4419 }
4420
4421 SPACE_DEFINED (sdchain) = 1;
4422 subseg_set (text_section, SUBSEG_CODE);
4423 demand_empty_rest_of_line ();
4424 return;
4425 }
4426
4427 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4428 the .comm pseudo-op has the following symtax:
4429
4430 <label> .comm <length>
4431
4432 where <label> is optional and is a symbol whose address will be the start of
4433 a block of memory <length> bytes long. <length> must be an absolute
4434 expression. <length> bytes will be allocated in the current space
4435 and subspace. */
4436
4437 static void
4438 pa_comm (unused)
4439 int unused;
4440 {
4441 unsigned int size;
4442 symbolS *symbol;
4443 label_symbol_struct *label_symbol = pa_get_label ();
4444
4445 if (label_symbol)
4446 symbol = label_symbol->lss_label;
4447 else
4448 symbol = NULL;
4449
4450 SKIP_WHITESPACE ();
4451 size = get_absolute_expression ();
4452
4453 if (symbol)
4454 {
4455 /* It is incorrect to check S_IS_DEFINED at this point as
4456 the symbol will *always* be defined. FIXME. How to
4457 correctly determine when this label really as been
4458 defined before. */
4459 if (S_GET_VALUE (symbol))
4460 {
4461 if (S_GET_VALUE (symbol) != size)
4462 {
4463 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4464 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4465 return;
4466 }
4467 }
4468 else
4469 {
4470 S_SET_VALUE (symbol, size);
4471 S_SET_SEGMENT (symbol, &bfd_und_section);
4472 S_SET_EXTERNAL (symbol);
4473 }
4474 }
4475 demand_empty_rest_of_line ();
4476 }
4477
4478 /* Process a .COPYRIGHT pseudo-op. */
4479
4480 static void
4481 pa_copyright (unused)
4482 int unused;
4483 {
4484 char *name;
4485 char c;
4486
4487 SKIP_WHITESPACE ();
4488 if (*input_line_pointer == '\"')
4489 {
4490 ++input_line_pointer;
4491 name = input_line_pointer;
4492 while ((c = next_char_of_string ()) >= 0)
4493 ;
4494 c = *input_line_pointer;
4495 *input_line_pointer = '\0';
4496 *(input_line_pointer - 1) = '\0';
4497 {
4498 /* FIXME. Not supported */
4499 abort ();
4500 }
4501 *input_line_pointer = c;
4502 }
4503 else
4504 {
4505 as_bad ("Expected \"-ed string");
4506 }
4507 pa_undefine_label ();
4508 demand_empty_rest_of_line ();
4509 }
4510
4511 /* Process a .END pseudo-op. */
4512
4513 static void
4514 pa_end (unused)
4515 int unused;
4516 {
4517 demand_empty_rest_of_line ();
4518 return;
4519 }
4520
4521 /* Process a .ENTER pseudo-op. This is not supported. */
4522 static void
4523 pa_enter (unused)
4524 int unused;
4525 {
4526 abort();
4527 return;
4528 }
4529
4530 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4531 procesure. */
4532 static void
4533 pa_entry (unused)
4534 int unused;
4535 {
4536 if (!within_procedure)
4537 as_bad ("Misplaced .entry. Ignored.");
4538 else
4539 {
4540 if (!callinfo_found)
4541 as_bad ("Missing .callinfo.");
4542
4543 last_call_info->start_frag = frag_now;
4544 }
4545 demand_empty_rest_of_line ();
4546 within_entry_exit = TRUE;
4547
4548 /* Go back to the last symbol and turn on the BSF_FUNCTION flag.
4549 It will not be on if no .EXPORT pseudo-op exists (static function). */
4550 last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
4551
4552 #ifdef OBJ_SOM
4553 /* SOM defers building of unwind descriptors until the link phase.
4554 The assembler is responsible for creating an R_ENTRY relocation
4555 to mark the beginning of a region and hold the unwind bits, and
4556 for creating an R_EXIT relocation to mark the end of the region.
4557
4558 FIXME. ELF should be using the same conventions! The problem
4559 is an unwind requires too much relocation space. Hmmm. Maybe
4560 if we split the unwind bits up between the relocations which
4561 denote the entry and exit points. */
4562 {
4563 char *where = frag_more (0);
4564
4565 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4566 last_call_info->start_symbol, (offsetT) 0, NULL,
4567 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4568 (char *)&last_call_info->ci_unwind.descriptor);
4569 }
4570 #endif
4571
4572 return;
4573 }
4574
4575 /* Handle a .EQU pseudo-op. */
4576
4577 static void
4578 pa_equ (reg)
4579 int reg;
4580 {
4581 label_symbol_struct *label_symbol = pa_get_label ();
4582 symbolS *symbol;
4583
4584 if (label_symbol)
4585 {
4586 symbol = label_symbol->lss_label;
4587 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4588 S_SET_SEGMENT (symbol, &bfd_abs_section);
4589 }
4590 else
4591 {
4592 if (reg)
4593 as_bad (".REG must use a label");
4594 else
4595 as_bad (".EQU must use a label");
4596 }
4597
4598 pa_undefine_label ();
4599 demand_empty_rest_of_line ();
4600 return;
4601 }
4602
4603 /* Helper function. Does processing for the end of a function. This
4604 usually involves creating some relocations or building special
4605 symbols to mark the end of the function. */
4606
4607 static void
4608 process_exit ()
4609 {
4610 char *where;
4611
4612 where = frag_more (0);
4613
4614 #ifdef OBJ_ELF
4615 /* ELF does not have EXIT relocations. All we do is create a
4616 temporary symbol marking the end of the function. */
4617 {
4618 char *name = (char *) xmalloc (strlen ("L$\001end_") +
4619 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
4620
4621 if (name)
4622 {
4623 symbolS *symbolP;
4624
4625 strcpy (name, "L$\001end_");
4626 strcat (name, S_GET_NAME (last_call_info->start_symbol));
4627
4628 symbolP = symbol_find (name);
4629 if (symbolP)
4630 as_warn ("Symbol '%s' already defined.", name);
4631 else
4632 {
4633 /* symbol value should be the offset of the
4634 last instruction of the function */
4635 symbolP = symbol_new (name, now_seg,
4636 (valueT) (obstack_next_free (&frags)
4637 - frag_now->fr_literal - 4),
4638 frag_now);
4639
4640 assert (symbolP);
4641 symbolP->bsym->flags = BSF_LOCAL;
4642 symbol_table_insert (symbolP);
4643 }
4644 if (symbolP)
4645 last_call_info->end_symbol = symbolP;
4646 else
4647 as_bad ("Symbol '%s' could not be created.", name);
4648
4649 }
4650 else
4651 as_bad ("No memory for symbol name.");
4652 }
4653
4654 /* Stuff away the location of the frag for the end of the function,
4655 and call pa_build_unwind_subspace to add an entry in the unwind
4656 table. */
4657 last_call_info->end_frag = frag_now;
4658 pa_build_unwind_subspace (last_call_info);
4659 #else
4660 /* SOM defers building of unwind descriptors until the link phase.
4661 The assembler is responsible for creating an R_ENTRY relocation
4662 to mark the beginning of a region and hold the unwind bits, and
4663 for creating an R_EXIT relocation to mark the end of the region.
4664
4665 FIXME. ELF should be using the same conventions! The problem
4666 is an unwind requires too much relocation space. Hmmm. Maybe
4667 if we split the unwind bits up between the relocations which
4668 denote the entry and exit points. */
4669 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4670 last_call_info->start_symbol, (offsetT) 0,
4671 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4672 #endif
4673
4674 exit_processing_complete = TRUE;
4675 }
4676
4677 /* Process a .EXIT pseudo-op. */
4678
4679 static void
4680 pa_exit (unused)
4681 int unused;
4682 {
4683 if (!within_procedure)
4684 as_bad (".EXIT must appear within a procedure");
4685 else
4686 {
4687 if (!callinfo_found)
4688 as_bad ("Missing .callinfo");
4689 else
4690 {
4691 if (!within_entry_exit)
4692 as_bad ("No .ENTRY for this .EXIT");
4693 else
4694 {
4695 within_entry_exit = FALSE;
4696 process_exit ();
4697 }
4698 }
4699 }
4700 demand_empty_rest_of_line ();
4701 return;
4702 }
4703
4704 /* Process a .EXPORT directive. This makes functions external
4705 and provides information such as argument relocation entries
4706 to callers. */
4707
4708 static void
4709 pa_export (unused)
4710 int unused;
4711 {
4712 char *name, c, *p;
4713 symbolS *symbol;
4714
4715 name = input_line_pointer;
4716 c = get_symbol_end ();
4717 /* Make sure the given symbol exists. */
4718 if ((symbol = symbol_find_or_make (name)) == NULL)
4719 {
4720 as_bad ("Cannot define export symbol: %s\n", name);
4721 p = input_line_pointer;
4722 *p = c;
4723 input_line_pointer++;
4724 }
4725 else
4726 {
4727 /* OK. Set the external bits and process argument relocations. */
4728 S_SET_EXTERNAL (symbol);
4729 p = input_line_pointer;
4730 *p = c;
4731 if (!is_end_of_statement ())
4732 {
4733 input_line_pointer++;
4734 pa_type_args (symbol, 1);
4735 #ifdef OBJ_ELF
4736 pa_build_symextn_section ();
4737 #endif
4738 }
4739 }
4740
4741 demand_empty_rest_of_line ();
4742 return;
4743 }
4744
4745 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4746
4747 static void
4748 pa_type_args (symbolP, is_export)
4749 symbolS *symbolP;
4750 int is_export;
4751 {
4752 char *name, c, *p;
4753 unsigned int temp, arg_reloc;
4754 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4755 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4756
4757 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4758
4759 {
4760 input_line_pointer += 8;
4761 symbolP->bsym->flags &= ~BSF_FUNCTION;
4762 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4763 type = SYMBOL_TYPE_ABSOLUTE;
4764 }
4765 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4766 {
4767 input_line_pointer += 4;
4768 if (is_export && (symbolP->bsym->flags & BSF_FUNCTION))
4769 {
4770 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4771 symbolP->bsym->flags |= BSF_FUNCTION;
4772 type = SYMBOL_TYPE_ENTRY;
4773 }
4774 else
4775 {
4776 symbolP->bsym->flags &= ~BSF_FUNCTION;
4777 type = SYMBOL_TYPE_CODE;
4778 }
4779 }
4780 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4781 {
4782 input_line_pointer += 4;
4783 symbolP->bsym->flags &= ~BSF_FUNCTION;
4784 type = SYMBOL_TYPE_DATA;
4785 }
4786 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4787 {
4788 input_line_pointer += 5;
4789 symbolP->bsym->flags |= BSF_FUNCTION;
4790 type = SYMBOL_TYPE_ENTRY;
4791 }
4792 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4793 {
4794 input_line_pointer += 9;
4795 symbolP->bsym->flags |= BSF_FUNCTION;
4796 type = SYMBOL_TYPE_MILLICODE;
4797 }
4798 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4799 {
4800 input_line_pointer += 6;
4801 symbolP->bsym->flags &= ~BSF_FUNCTION;
4802 type = SYMBOL_TYPE_PLABEL;
4803 }
4804 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4805 {
4806 input_line_pointer += 8;
4807 symbolP->bsym->flags |= BSF_FUNCTION;
4808 type = SYMBOL_TYPE_PRI_PROG;
4809 }
4810 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4811 {
4812 input_line_pointer += 8;
4813 symbolP->bsym->flags |= BSF_FUNCTION;
4814 type = SYMBOL_TYPE_SEC_PROG;
4815 }
4816
4817 /* SOM requires much more information about symbol types
4818 than BFD understands. This is how we get this information
4819 to the SOM BFD backend. */
4820 #ifdef obj_set_symbol_type
4821 obj_set_symbol_type (symbolP->bsym, (int) type);
4822 #endif
4823
4824 /* Now that the type of the exported symbol has been handled,
4825 handle any argument relocation information. */
4826 while (!is_end_of_statement ())
4827 {
4828 if (*input_line_pointer == ',')
4829 input_line_pointer++;
4830 name = input_line_pointer;
4831 c = get_symbol_end ();
4832 /* Argument sources. */
4833 if ((strncasecmp (name, "argw", 4) == 0))
4834 {
4835 p = input_line_pointer;
4836 *p = c;
4837 input_line_pointer++;
4838 temp = atoi (name + 4);
4839 name = input_line_pointer;
4840 c = get_symbol_end ();
4841 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4842 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4843 *input_line_pointer = c;
4844 }
4845 /* The return value. */
4846 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4847 {
4848 p = input_line_pointer;
4849 *p = c;
4850 input_line_pointer++;
4851 name = input_line_pointer;
4852 c = get_symbol_end ();
4853 arg_reloc = pa_build_arg_reloc (name);
4854 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4855 *input_line_pointer = c;
4856 }
4857 /* Privelege level. */
4858 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4859 {
4860 p = input_line_pointer;
4861 *p = c;
4862 input_line_pointer++;
4863 temp = atoi (input_line_pointer);
4864 c = get_symbol_end ();
4865 *input_line_pointer = c;
4866 }
4867 else
4868 {
4869 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4870 p = input_line_pointer;
4871 *p = c;
4872 }
4873 if (!is_end_of_statement ())
4874 input_line_pointer++;
4875 }
4876 }
4877
4878 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4879 assembly file must either be defined in the assembly file, or
4880 explicitly IMPORTED from another. */
4881
4882 static void
4883 pa_import (unused)
4884 int unused;
4885 {
4886 char *name, c, *p;
4887 symbolS *symbol;
4888
4889 name = input_line_pointer;
4890 c = get_symbol_end ();
4891
4892 symbol = symbol_find_or_make (name);
4893 p = input_line_pointer;
4894 *p = c;
4895
4896 if (!is_end_of_statement ())
4897 {
4898 input_line_pointer++;
4899 pa_type_args (symbol, 0);
4900 }
4901 else
4902 {
4903 /* Sigh. To be compatable with the HP assembler and to help
4904 poorly written assembly code, we assign a type based on
4905 the the current segment. Note only BSF_FUNCTION really
4906 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4907 if (now_seg == text_section)
4908 symbol->bsym->flags |= BSF_FUNCTION;
4909
4910 /* If the section is undefined, then the symbol is undefined
4911 Since this is an import, leave the section undefined. */
4912 S_SET_SEGMENT (symbol, &bfd_und_section);
4913 }
4914
4915 demand_empty_rest_of_line ();
4916 return;
4917 }
4918
4919 /* Handle a .LABEL pseudo-op. */
4920
4921 static void
4922 pa_label (unused)
4923 int unused;
4924 {
4925 char *name, c, *p;
4926
4927 name = input_line_pointer;
4928 c = get_symbol_end ();
4929
4930 if (strlen (name) > 0)
4931 {
4932 colon (name);
4933 p = input_line_pointer;
4934 *p = c;
4935 }
4936 else
4937 {
4938 as_warn ("Missing label name on .LABEL");
4939 }
4940
4941 if (!is_end_of_statement ())
4942 {
4943 as_warn ("extra .LABEL arguments ignored.");
4944 ignore_rest_of_line ();
4945 }
4946 demand_empty_rest_of_line ();
4947 return;
4948 }
4949
4950 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4951
4952 static void
4953 pa_leave (unused)
4954 int unused;
4955 {
4956 abort();
4957 }
4958
4959 /* Handle a .ORIGIN pseudo-op. */
4960
4961 static void
4962 pa_origin (unused)
4963 int unused;
4964 {
4965 s_org (0);
4966 pa_undefine_label ();
4967 return;
4968 }
4969
4970 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4971 is for static functions. FIXME. Should share more code with .EXPORT. */
4972
4973 static void
4974 pa_param (unused)
4975 int unused;
4976 {
4977 char *name, c, *p;
4978 symbolS *symbol;
4979
4980 name = input_line_pointer;
4981 c = get_symbol_end ();
4982
4983 if ((symbol = symbol_find_or_make (name)) == NULL)
4984 {
4985 as_bad ("Cannot define static symbol: %s\n", name);
4986 p = input_line_pointer;
4987 *p = c;
4988 input_line_pointer++;
4989 }
4990 else
4991 {
4992 S_CLEAR_EXTERNAL (symbol);
4993 p = input_line_pointer;
4994 *p = c;
4995 if (!is_end_of_statement ())
4996 {
4997 input_line_pointer++;
4998 pa_type_args (symbol, 0);
4999 }
5000 }
5001
5002 demand_empty_rest_of_line ();
5003 return;
5004 }
5005
5006 /* Handle a .PROC pseudo-op. It is used to mark the beginning
5007 of a procedure from a syntatical point of view. */
5008
5009 static void
5010 pa_proc (unused)
5011 int unused;
5012 {
5013 struct call_info *call_info;
5014
5015 if (within_procedure)
5016 as_fatal ("Nested procedures");
5017
5018 /* Reset global variables for new procedure. */
5019 callinfo_found = FALSE;
5020 within_procedure = TRUE;
5021 exit_processing_complete = FALSE;
5022
5023 /* Create another call_info structure. */
5024 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
5025
5026 if (!call_info)
5027 as_fatal ("Cannot allocate unwind descriptor\n");
5028
5029 bzero (call_info, sizeof (struct call_info));
5030
5031 call_info->ci_next = NULL;
5032
5033 if (call_info_root == NULL)
5034 {
5035 call_info_root = call_info;
5036 last_call_info = call_info;
5037 }
5038 else
5039 {
5040 last_call_info->ci_next = call_info;
5041 last_call_info = call_info;
5042 }
5043
5044 /* set up defaults on call_info structure */
5045
5046 call_info->ci_unwind.descriptor.cannot_unwind = 0;
5047 call_info->ci_unwind.descriptor.region_desc = 1;
5048 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
5049 call_info->entry_sr = ~0;
5050 call_info->makes_calls = 1;
5051
5052 /* If we got a .PROC pseudo-op, we know that the function is defined
5053 locally. Make sure it gets into the symbol table. */
5054 {
5055 label_symbol_struct *label_symbol = pa_get_label ();
5056
5057 if (label_symbol)
5058 {
5059 if (label_symbol->lss_label)
5060 {
5061 last_call_info->start_symbol = label_symbol->lss_label;
5062 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
5063 }
5064 else
5065 as_bad ("Missing function name for .PROC (corrupted label)");
5066 }
5067 else
5068 as_bad ("Missing function name for .PROC");
5069 }
5070
5071 demand_empty_rest_of_line ();
5072 return;
5073 }
5074
5075 /* Process the syntatical end of a procedure. Make sure all the
5076 appropriate pseudo-ops were found within the procedure. */
5077
5078 static void
5079 pa_procend (unused)
5080 int unused;
5081 {
5082
5083 if (!within_procedure)
5084 as_bad ("misplaced .procend");
5085
5086 if (!callinfo_found)
5087 as_bad ("Missing .callinfo for this procedure");
5088
5089 if (within_entry_exit)
5090 as_bad ("Missing .EXIT for a .ENTRY");
5091
5092 if (!exit_processing_complete)
5093 process_exit ();
5094
5095 within_procedure = FALSE;
5096 demand_empty_rest_of_line ();
5097 return;
5098 }
5099
5100 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
5101 then create a new space entry to hold the information specified
5102 by the parameters to the .SPACE directive. */
5103
5104 static sd_chain_struct *
5105 pa_parse_space_stmt (space_name, create_flag)
5106 char *space_name;
5107 int create_flag;
5108 {
5109 char *name, *ptemp, c;
5110 char loadable, defined, private, sort;
5111 int spnum;
5112 asection *seg = NULL;
5113 sd_chain_struct *space;
5114
5115 /* load default values */
5116 spnum = 0;
5117 sort = 0;
5118 loadable = TRUE;
5119 defined = TRUE;
5120 private = FALSE;
5121 if (strcasecmp (space_name, "$TEXT$") == 0)
5122 {
5123 seg = pa_def_spaces[0].segment;
5124 sort = pa_def_spaces[0].sort;
5125 }
5126 else if (strcasecmp (space_name, "$PRIVATE$") == 0)
5127 {
5128 seg = pa_def_spaces[1].segment;
5129 sort = pa_def_spaces[1].sort;
5130 }
5131
5132 if (!is_end_of_statement ())
5133 {
5134 print_errors = FALSE;
5135 ptemp = input_line_pointer + 1;
5136 /* First see if the space was specified as a number rather than
5137 as a name. According to the PA assembly manual the rest of
5138 the line should be ignored. */
5139 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5140 input_line_pointer = ptemp;
5141 else
5142 {
5143 while (!is_end_of_statement ())
5144 {
5145 input_line_pointer++;
5146 name = input_line_pointer;
5147 c = get_symbol_end ();
5148 if ((strncasecmp (name, "SPNUM", 5) == 0))
5149 {
5150 *input_line_pointer = c;
5151 input_line_pointer++;
5152 spnum = get_absolute_expression ();
5153 }
5154 else if ((strncasecmp (name, "SORT", 4) == 0))
5155 {
5156 *input_line_pointer = c;
5157 input_line_pointer++;
5158 sort = get_absolute_expression ();
5159 }
5160 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5161 {
5162 *input_line_pointer = c;
5163 loadable = FALSE;
5164 }
5165 else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
5166 {
5167 *input_line_pointer = c;
5168 defined = FALSE;
5169 }
5170 else if ((strncasecmp (name, "PRIVATE", 7) == 0))
5171 {
5172 *input_line_pointer = c;
5173 private = TRUE;
5174 }
5175 else
5176 {
5177 as_bad ("Invalid .SPACE argument");
5178 *input_line_pointer = c;
5179 if (! is_end_of_statement ())
5180 input_line_pointer++;
5181 }
5182 }
5183 }
5184 print_errors = TRUE;
5185 }
5186
5187 if (create_flag && seg == NULL)
5188 seg = subseg_new (space_name, 0);
5189
5190 /* If create_flag is nonzero, then create the new space with
5191 the attributes computed above. Else set the values in
5192 an already existing space -- this can only happen for
5193 the first occurence of a built-in space. */
5194 if (create_flag)
5195 space = create_new_space (space_name, spnum, loadable, defined,
5196 private, sort, seg, 1);
5197 else
5198 {
5199 space = is_defined_space (space_name);
5200 SPACE_SPNUM (space) = spnum;
5201 SPACE_LOADABLE (space) = loadable & 1;
5202 SPACE_DEFINED (space) = defined & 1;
5203 SPACE_USER_DEFINED (space) = 1;
5204 SPACE_PRIVATE (space) = private & 1;
5205 SPACE_SORT (space) = sort & 0xff;
5206 space->sd_seg = seg;
5207 }
5208
5209 #ifdef obj_set_section_attributes
5210 obj_set_section_attributes (seg, defined, private, sort, spnum);
5211 #endif
5212
5213 return space;
5214 }
5215
5216 /* Adjust the frag's alignment according to the alignment needs
5217 of the given subspace/subsegment. */
5218
5219 static void
5220 pa_align_subseg (seg, subseg)
5221 asection *seg;
5222 subsegT subseg;
5223 {
5224 ssd_chain_struct *now_subspace;
5225 int alignment;
5226 int shift = 0;
5227
5228 now_subspace = pa_subsegment_to_subspace (seg, subseg);
5229 if (now_subspace)
5230 {
5231 if (SUBSPACE_ALIGN (now_subspace) == 0)
5232 alignment = now_subspace->ssd_last_align;
5233 else if (now_subspace->ssd_last_align > SUBSPACE_ALIGN (now_subspace))
5234 alignment = now_subspace->ssd_last_align;
5235 else
5236 alignment = SUBSPACE_ALIGN (now_subspace);
5237
5238 while ((1 << shift) < alignment)
5239 shift++;
5240 }
5241 else
5242 shift = bfd_get_section_alignment (stdoutput, seg);
5243
5244 frag_align (shift, 0);
5245 }
5246
5247 /* Handle a .SPACE pseudo-op; this switches the current space to the
5248 given space, creating the new space if necessary. */
5249
5250 static void
5251 pa_space (unused)
5252 int unused;
5253 {
5254 char *name, c, *space_name, *save_s;
5255 int temp;
5256 sd_chain_struct *sd_chain;
5257
5258 if (within_procedure)
5259 {
5260 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5261 ignore_rest_of_line ();
5262 }
5263 else
5264 {
5265 /* Check for some of the predefined spaces. FIXME: most of the code
5266 below is repeated several times, can we extract the common parts
5267 and place them into a subroutine or something similar? */
5268 if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
5269 {
5270 input_line_pointer += 6;
5271 sd_chain = is_defined_space ("$TEXT$");
5272 if (sd_chain == NULL)
5273 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5274 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5275 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5276
5277 current_space = sd_chain;
5278
5279 /* No need to align if we are already there. */
5280 if (now_seg != text_section)
5281 pa_align_subseg (now_seg, now_subseg);
5282
5283 subseg_set (text_section, sd_chain->sd_last_subseg);
5284
5285 current_subspace
5286 = pa_subsegment_to_subspace (text_section,
5287 sd_chain->sd_last_subseg);
5288 demand_empty_rest_of_line ();
5289 return;
5290 }
5291 if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
5292 {
5293 input_line_pointer += 9;
5294 sd_chain = is_defined_space ("$PRIVATE$");
5295 if (sd_chain == NULL)
5296 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5297 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5298 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5299
5300 current_space = sd_chain;
5301
5302 /* No need to align if we are already there. */
5303 if (now_seg != data_section)
5304 pa_align_subseg (now_seg, now_subseg);
5305
5306 subseg_set (data_section, sd_chain->sd_last_subseg);
5307 current_subspace
5308 = pa_subsegment_to_subspace (data_section,
5309 sd_chain->sd_last_subseg);
5310 demand_empty_rest_of_line ();
5311 return;
5312 }
5313 if (!strncasecmp (input_line_pointer,
5314 GDB_DEBUG_SPACE_NAME,
5315 strlen (GDB_DEBUG_SPACE_NAME)))
5316 {
5317 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5318 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5319 if (sd_chain == NULL)
5320 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5321 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5322 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5323
5324 current_space = sd_chain;
5325
5326 {
5327 asection *gdb_section
5328 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5329
5330 /* No need to align if we are already there. */
5331 if (strcmp (segment_name (now_seg), GDB_DEBUG_SPACE_NAME) != 0)
5332 pa_align_subseg (now_seg, now_subseg);
5333
5334 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5335 current_subspace
5336 = pa_subsegment_to_subspace (gdb_section,
5337 sd_chain->sd_last_subseg);
5338 }
5339 demand_empty_rest_of_line ();
5340 return;
5341 }
5342
5343 /* It could be a space specified by number. */
5344 print_errors = 0;
5345 save_s = input_line_pointer;
5346 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5347 {
5348 if (sd_chain = pa_find_space_by_number (temp))
5349 {
5350 current_space = sd_chain;
5351
5352 if (now_seg != sd_chain->sd_seg)
5353 pa_align_subseg (now_seg, now_subseg);
5354 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5355 current_subspace
5356 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5357 sd_chain->sd_last_subseg);
5358 demand_empty_rest_of_line ();
5359 return;
5360 }
5361 }
5362
5363 /* Not a number, attempt to create a new space. */
5364 print_errors = 1;
5365 input_line_pointer = save_s;
5366 name = input_line_pointer;
5367 c = get_symbol_end ();
5368 space_name = xmalloc (strlen (name) + 1);
5369 strcpy (space_name, name);
5370 *input_line_pointer = c;
5371
5372 sd_chain = pa_parse_space_stmt (space_name, 1);
5373 current_space = sd_chain;
5374
5375 if (now_seg != sd_chain->sd_seg)
5376 pa_align_subseg (now_seg, now_subseg);
5377 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5378 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5379 sd_chain->sd_last_subseg);
5380 demand_empty_rest_of_line ();
5381 }
5382 return;
5383 }
5384
5385 /* Switch to a new space. (I think). FIXME. */
5386
5387 static void
5388 pa_spnum (unused)
5389 int unused;
5390 {
5391 char *name;
5392 char c;
5393 char *p;
5394 sd_chain_struct *space;
5395
5396 name = input_line_pointer;
5397 c = get_symbol_end ();
5398 space = is_defined_space (name);
5399 if (space)
5400 {
5401 p = frag_more (4);
5402 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5403 }
5404 else
5405 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5406
5407 *input_line_pointer = c;
5408 demand_empty_rest_of_line ();
5409 return;
5410 }
5411
5412 /* If VALUE is an exact power of two between zero and 2^31, then
5413 return log2 (VALUE). Else return -1. */
5414
5415 static int
5416 log2 (value)
5417 int value;
5418 {
5419 int shift = 0;
5420
5421 while ((1 << shift) != value && shift < 32)
5422 shift++;
5423
5424 if (shift >= 32)
5425 return -1;
5426 else
5427 return shift;
5428 }
5429
5430 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5431 given subspace, creating the new subspace if necessary.
5432
5433 FIXME. Should mirror pa_space more closely, in particular how
5434 they're broken up into subroutines. */
5435
5436 static void
5437 pa_subspace (unused)
5438 int unused;
5439 {
5440 char *name, *ss_name, *alias, c;
5441 char loadable, code_only, common, dup_common, zero, sort;
5442 int i, access, space_index, alignment, quadrant, applicable, flags;
5443 sd_chain_struct *space;
5444 ssd_chain_struct *ssd;
5445 asection *section;
5446
5447 if (within_procedure)
5448 {
5449 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5450 ignore_rest_of_line ();
5451 }
5452 else
5453 {
5454 name = input_line_pointer;
5455 c = get_symbol_end ();
5456 ss_name = xmalloc (strlen (name) + 1);
5457 strcpy (ss_name, name);
5458 *input_line_pointer = c;
5459
5460 /* Load default values. */
5461 sort = 0;
5462 access = 0x7f;
5463 loadable = 1;
5464 common = 0;
5465 dup_common = 0;
5466 code_only = 0;
5467 zero = 0;
5468 space_index = ~0;
5469 alignment = 0;
5470 quadrant = 0;
5471 alias = NULL;
5472
5473 space = current_space;
5474 ssd = is_defined_subspace (ss_name);
5475 /* Allow user to override the builtin attributes of subspaces. But
5476 only allow the attributes to be changed once! */
5477 if (ssd && SUBSPACE_DEFINED (ssd))
5478 {
5479 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5480 if (!is_end_of_statement ())
5481 as_warn ("Parameters of an existing subspace can\'t be modified");
5482 demand_empty_rest_of_line ();
5483 return;
5484 }
5485 else
5486 {
5487 /* A new subspace. Load default values if it matches one of
5488 the builtin subspaces. */
5489 i = 0;
5490 while (pa_def_subspaces[i].name)
5491 {
5492 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5493 {
5494 loadable = pa_def_subspaces[i].loadable;
5495 common = pa_def_subspaces[i].common;
5496 dup_common = pa_def_subspaces[i].dup_common;
5497 code_only = pa_def_subspaces[i].code_only;
5498 zero = pa_def_subspaces[i].zero;
5499 space_index = pa_def_subspaces[i].space_index;
5500 alignment = pa_def_subspaces[i].alignment;
5501 quadrant = pa_def_subspaces[i].quadrant;
5502 access = pa_def_subspaces[i].access;
5503 sort = pa_def_subspaces[i].sort;
5504 if (USE_ALIASES && pa_def_subspaces[i].alias)
5505 alias = pa_def_subspaces[i].alias;
5506 break;
5507 }
5508 i++;
5509 }
5510 }
5511
5512 /* We should be working with a new subspace now. Fill in
5513 any information as specified by the user. */
5514 if (!is_end_of_statement ())
5515 {
5516 input_line_pointer++;
5517 while (!is_end_of_statement ())
5518 {
5519 name = input_line_pointer;
5520 c = get_symbol_end ();
5521 if ((strncasecmp (name, "QUAD", 4) == 0))
5522 {
5523 *input_line_pointer = c;
5524 input_line_pointer++;
5525 quadrant = get_absolute_expression ();
5526 }
5527 else if ((strncasecmp (name, "ALIGN", 5) == 0))
5528 {
5529 *input_line_pointer = c;
5530 input_line_pointer++;
5531 alignment = get_absolute_expression ();
5532 if (log2 (alignment) == -1)
5533 {
5534 as_bad ("Alignment must be a power of 2");
5535 alignment = 1;
5536 }
5537 }
5538 else if ((strncasecmp (name, "ACCESS", 6) == 0))
5539 {
5540 *input_line_pointer = c;
5541 input_line_pointer++;
5542 access = get_absolute_expression ();
5543 }
5544 else if ((strncasecmp (name, "SORT", 4) == 0))
5545 {
5546 *input_line_pointer = c;
5547 input_line_pointer++;
5548 sort = get_absolute_expression ();
5549 }
5550 else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
5551 {
5552 *input_line_pointer = c;
5553 code_only = 1;
5554 }
5555 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5556 {
5557 *input_line_pointer = c;
5558 loadable = 0;
5559 }
5560 else if ((strncasecmp (name, "COMMON", 6) == 0))
5561 {
5562 *input_line_pointer = c;
5563 common = 1;
5564 }
5565 else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
5566 {
5567 *input_line_pointer = c;
5568 dup_common = 1;
5569 }
5570 else if ((strncasecmp (name, "ZERO", 4) == 0))
5571 {
5572 *input_line_pointer = c;
5573 zero = 1;
5574 }
5575 else if ((strncasecmp (name, "FIRST", 5) == 0))
5576 as_bad ("FIRST not supported as a .SUBSPACE argument");
5577 else
5578 as_bad ("Invalid .SUBSPACE argument");
5579 if (!is_end_of_statement ())
5580 input_line_pointer++;
5581 }
5582 }
5583
5584 /* Compute a reasonable set of BFD flags based on the information
5585 in the .subspace directive. */
5586 applicable = bfd_applicable_section_flags (stdoutput);
5587 flags = 0;
5588 if (loadable)
5589 flags |= (SEC_ALLOC | SEC_LOAD);
5590 if (code_only)
5591 flags |= SEC_CODE;
5592 if (common || dup_common)
5593 flags |= SEC_IS_COMMON;
5594
5595 /* This is a zero-filled subspace (eg BSS). */
5596 if (zero)
5597 flags &= ~SEC_LOAD;
5598
5599 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5600 applicable &= flags;
5601
5602 /* If this is an existing subspace, then we want to use the
5603 segment already associated with the subspace.
5604
5605 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5606 lots of sections. It might be a problem in the PA ELF
5607 code, I do not know yet. For now avoid creating anything
5608 but the "standard" sections for ELF. */
5609 if (ssd)
5610 section = ssd->ssd_seg;
5611 else if (alias)
5612 section = subseg_new (alias, 0);
5613 else if (! alias && USE_ALIASES)
5614 {
5615 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5616 demand_empty_rest_of_line ();
5617 return;
5618 }
5619 else
5620 section = subseg_new (ss_name, 0);
5621
5622 /* Now set the flags. */
5623 bfd_set_section_flags (stdoutput, section, applicable);
5624
5625 /* Record any alignment request for this section. */
5626 record_alignment (section, log2 (alignment));
5627
5628 /* Set the starting offset for this section. */
5629 bfd_set_section_vma (stdoutput, section,
5630 pa_subspace_start (space, quadrant));
5631
5632 /* Now that all the flags are set, update an existing subspace,
5633 or create a new one. */
5634 if (ssd)
5635
5636 current_subspace = update_subspace (space, ss_name, loadable,
5637 code_only, common, dup_common,
5638 sort, zero, access, space_index,
5639 alignment, quadrant,
5640 section);
5641 else
5642 current_subspace = create_new_subspace (space, ss_name, loadable,
5643 code_only, common,
5644 dup_common, zero, sort,
5645 access, space_index,
5646 alignment, quadrant, section);
5647
5648 demand_empty_rest_of_line ();
5649 current_subspace->ssd_seg = section;
5650 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5651 }
5652 SUBSPACE_DEFINED (current_subspace) = 1;
5653 return;
5654 }
5655
5656
5657 /* Create default space and subspace dictionaries. */
5658
5659 static void
5660 pa_spaces_begin ()
5661 {
5662 int i;
5663
5664 space_dict_root = NULL;
5665 space_dict_last = NULL;
5666
5667 i = 0;
5668 while (pa_def_spaces[i].name)
5669 {
5670 char *name;
5671
5672 /* Pick the right name to use for the new section. */
5673 if (pa_def_spaces[i].alias && USE_ALIASES)
5674 name = pa_def_spaces[i].alias;
5675 else
5676 name = pa_def_spaces[i].name;
5677
5678 pa_def_spaces[i].segment = subseg_new (name, 0);
5679 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5680 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5681 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5682 pa_def_spaces[i].segment, 0);
5683 i++;
5684 }
5685
5686 i = 0;
5687 while (pa_def_subspaces[i].name)
5688 {
5689 char *name;
5690 int applicable, subsegment;
5691 asection *segment = NULL;
5692 sd_chain_struct *space;
5693
5694 /* Pick the right name for the new section and pick the right
5695 subsegment number. */
5696 if (pa_def_subspaces[i].alias && USE_ALIASES)
5697 {
5698 name = pa_def_subspaces[i].alias;
5699 subsegment = pa_def_subspaces[i].subsegment;
5700 }
5701 else
5702 {
5703 name = pa_def_subspaces[i].name;
5704 subsegment = 0;
5705 }
5706
5707 /* Create the new section. */
5708 segment = subseg_new (name, subsegment);
5709
5710
5711 /* For SOM we want to replace the standard .text, .data, and .bss
5712 sections with our own. */
5713 if (! strcmp (pa_def_subspaces[i].name, "$CODE$") && ! USE_ALIASES)
5714 {
5715 text_section = segment;
5716 applicable = bfd_applicable_section_flags (stdoutput);
5717 bfd_set_section_flags (stdoutput, text_section,
5718 applicable & (SEC_ALLOC | SEC_LOAD
5719 | SEC_RELOC | SEC_CODE
5720 | SEC_READONLY
5721 | SEC_HAS_CONTENTS));
5722 }
5723 else if (! strcmp (pa_def_subspaces[i].name, "$DATA$") && ! USE_ALIASES)
5724 {
5725 data_section = segment;
5726 applicable = bfd_applicable_section_flags (stdoutput);
5727 bfd_set_section_flags (stdoutput, data_section,
5728 applicable & (SEC_ALLOC | SEC_LOAD
5729 | SEC_RELOC
5730 | SEC_HAS_CONTENTS));
5731
5732
5733 }
5734 else if (! strcmp (pa_def_subspaces[i].name, "$BSS$") && ! USE_ALIASES)
5735 {
5736 bss_section = segment;
5737 applicable = bfd_applicable_section_flags (stdoutput);
5738 bfd_set_section_flags (stdoutput, bss_section,
5739 applicable & SEC_ALLOC);
5740 }
5741
5742 /* Find the space associated with this subspace. */
5743 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5744 def_space_index].segment);
5745 if (space == NULL)
5746 {
5747 as_fatal ("Internal error: Unable to find containing space for %s.",
5748 pa_def_subspaces[i].name);
5749 }
5750
5751 create_new_subspace (space, name,
5752 pa_def_subspaces[i].loadable,
5753 pa_def_subspaces[i].code_only,
5754 pa_def_subspaces[i].common,
5755 pa_def_subspaces[i].dup_common,
5756 pa_def_subspaces[i].zero,
5757 pa_def_subspaces[i].sort,
5758 pa_def_subspaces[i].access,
5759 pa_def_subspaces[i].space_index,
5760 pa_def_subspaces[i].alignment,
5761 pa_def_subspaces[i].quadrant,
5762 segment);
5763 i++;
5764 }
5765 }
5766
5767
5768
5769 /* Create a new space NAME, with the appropriate flags as defined
5770 by the given parameters.
5771
5772 Add the new space to the space dictionary chain in numerical
5773 order as defined by the SORT entries. */
5774
5775 static sd_chain_struct *
5776 create_new_space (name, spnum, loadable, defined, private,
5777 sort, seg, user_defined)
5778 char *name;
5779 int spnum;
5780 char loadable;
5781 char defined;
5782 char private;
5783 char sort;
5784 asection *seg;
5785 int user_defined;
5786 {
5787 sd_chain_struct *chain_entry;
5788
5789 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5790 if (!chain_entry)
5791 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5792 name);
5793
5794 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5795 strcpy (SPACE_NAME (chain_entry), name);
5796 SPACE_NAME_INDEX (chain_entry) = 0;
5797 SPACE_LOADABLE (chain_entry) = loadable;
5798 SPACE_DEFINED (chain_entry) = defined;
5799 SPACE_USER_DEFINED (chain_entry) = user_defined;
5800 SPACE_PRIVATE (chain_entry) = private;
5801 SPACE_SPNUM (chain_entry) = spnum;
5802 SPACE_SORT (chain_entry) = sort;
5803
5804 chain_entry->sd_seg = seg;
5805 chain_entry->sd_last_subseg = -1;
5806 chain_entry->sd_next = NULL;
5807
5808 /* Find spot for the new space based on its sort key. */
5809 if (!space_dict_last)
5810 space_dict_last = chain_entry;
5811
5812 if (space_dict_root == NULL)
5813 space_dict_root = chain_entry;
5814 else
5815 {
5816 sd_chain_struct *chain_pointer;
5817 sd_chain_struct *prev_chain_pointer;
5818
5819 chain_pointer = space_dict_root;
5820 prev_chain_pointer = NULL;
5821
5822 while (chain_pointer)
5823 {
5824 if (SPACE_SORT (chain_pointer) <= SPACE_SORT (chain_entry))
5825 {
5826 prev_chain_pointer = chain_pointer;
5827 chain_pointer = chain_pointer->sd_next;
5828 }
5829 else
5830 break;
5831 }
5832
5833 /* At this point we've found the correct place to add the new
5834 entry. So add it and update the linked lists as appropriate. */
5835 if (prev_chain_pointer)
5836 {
5837 chain_entry->sd_next = chain_pointer;
5838 prev_chain_pointer->sd_next = chain_entry;
5839 }
5840 else
5841 {
5842 space_dict_root = chain_entry;
5843 chain_entry->sd_next = chain_pointer;
5844 }
5845
5846 if (chain_entry->sd_next == NULL)
5847 space_dict_last = chain_entry;
5848 }
5849
5850 /* This is here to catch predefined spaces which do not get
5851 modified by the user's input. Another call is found at
5852 the bottom of pa_parse_space_stmt to handle cases where
5853 the user modifies a predefined space. */
5854 #ifdef obj_set_section_attributes
5855 obj_set_section_attributes (seg, defined, private, sort, spnum);
5856 #endif
5857
5858 return chain_entry;
5859 }
5860
5861 /* Create a new subspace NAME, with the appropriate flags as defined
5862 by the given parameters.
5863
5864 Add the new subspace to the subspace dictionary chain in numerical
5865 order as defined by the SORT entries. */
5866
5867 static ssd_chain_struct *
5868 create_new_subspace (space, name, loadable, code_only, common,
5869 dup_common, is_zero, sort, access, space_index,
5870 alignment, quadrant, seg)
5871 sd_chain_struct *space;
5872 char *name;
5873 char loadable, code_only, common, dup_common, is_zero;
5874 char sort;
5875 int access;
5876 int space_index;
5877 int alignment;
5878 int quadrant;
5879 asection *seg;
5880 {
5881 ssd_chain_struct *chain_entry;
5882
5883 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5884 if (!chain_entry)
5885 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5886
5887 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5888 strcpy (SUBSPACE_NAME (chain_entry), name);
5889
5890 SUBSPACE_ACCESS (chain_entry) = access;
5891 SUBSPACE_LOADABLE (chain_entry) = loadable;
5892 SUBSPACE_COMMON (chain_entry) = common;
5893 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5894 SUBSPACE_SORT (chain_entry) = sort;
5895 SUBSPACE_CODE_ONLY (chain_entry) = code_only;
5896 SUBSPACE_ALIGN (chain_entry) = alignment;
5897 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5898 SUBSPACE_SUBSPACE_START (chain_entry) = pa_subspace_start (space, quadrant);
5899 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5900 SUBSPACE_ZERO (chain_entry) = is_zero;
5901
5902 /* Initialize subspace_defined. When we hit a .subspace directive
5903 we'll set it to 1 which "locks-in" the subspace attributes. */
5904 SUBSPACE_DEFINED (chain_entry) = 0;
5905
5906 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5907 chain_entry->ssd_seg = seg;
5908 chain_entry->ssd_last_align = 1;
5909 chain_entry->ssd_next = NULL;
5910
5911 /* Find spot for the new subspace based on its sort key. */
5912 if (space->sd_subspaces == NULL)
5913 space->sd_subspaces = chain_entry;
5914 else
5915 {
5916 ssd_chain_struct *chain_pointer;
5917 ssd_chain_struct *prev_chain_pointer;
5918
5919 chain_pointer = space->sd_subspaces;
5920 prev_chain_pointer = NULL;
5921
5922 while (chain_pointer)
5923 {
5924 if (SUBSPACE_SORT (chain_pointer) <= SUBSPACE_SORT (chain_entry))
5925 {
5926 prev_chain_pointer = chain_pointer;
5927 chain_pointer = chain_pointer->ssd_next;
5928 }
5929 else
5930 break;
5931
5932 }
5933
5934 /* Now we have somewhere to put the new entry. Insert it and update
5935 the links. */
5936 if (prev_chain_pointer)
5937 {
5938 chain_entry->ssd_next = chain_pointer;
5939 prev_chain_pointer->ssd_next = chain_entry;
5940 }
5941 else
5942 {
5943 space->sd_subspaces = chain_entry;
5944 chain_entry->ssd_next = chain_pointer;
5945 }
5946 }
5947
5948 #ifdef obj_set_subsection_attributes
5949 obj_set_subsection_attributes (seg, space->sd_seg, access,
5950 sort, quadrant);
5951 #endif
5952
5953 return chain_entry;
5954
5955 }
5956
5957 /* Update the information for the given subspace based upon the
5958 various arguments. Return the modified subspace chain entry. */
5959
5960 static ssd_chain_struct *
5961 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5962 zero, access, space_index, alignment, quadrant, section)
5963 sd_chain_struct *space;
5964 char *name;
5965 char loadable;
5966 char code_only;
5967 char common;
5968 char dup_common;
5969 char zero;
5970 char sort;
5971 int access;
5972 int space_index;
5973 int alignment;
5974 int quadrant;
5975 asection *section;
5976 {
5977 ssd_chain_struct *chain_entry;
5978
5979 if ((chain_entry = is_defined_subspace (name)))
5980 {
5981 SUBSPACE_ACCESS (chain_entry) = access;
5982 SUBSPACE_LOADABLE (chain_entry) = loadable;
5983 SUBSPACE_COMMON (chain_entry) = common;
5984 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5985 SUBSPACE_CODE_ONLY (chain_entry) = 1;
5986 SUBSPACE_SORT (chain_entry) = sort;
5987 SUBSPACE_ALIGN (chain_entry) = alignment;
5988 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5989 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5990 SUBSPACE_ZERO (chain_entry) = zero;
5991 }
5992 else
5993 chain_entry = NULL;
5994
5995 #ifdef obj_set_subsection_attributes
5996 obj_set_subsection_attributes (section, space->sd_seg, access,
5997 sort, quadrant);
5998 #endif
5999
6000 return chain_entry;
6001
6002 }
6003
6004 /* Return the space chain entry for the space with the name NAME or
6005 NULL if no such space exists. */
6006
6007 static sd_chain_struct *
6008 is_defined_space (name)
6009 char *name;
6010 {
6011 sd_chain_struct *chain_pointer;
6012
6013 for (chain_pointer = space_dict_root;
6014 chain_pointer;
6015 chain_pointer = chain_pointer->sd_next)
6016 {
6017 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
6018 return chain_pointer;
6019 }
6020
6021 /* No mapping from segment to space was found. Return NULL. */
6022 return NULL;
6023 }
6024
6025 /* Find and return the space associated with the given seg. If no mapping
6026 from the given seg to a space is found, then return NULL.
6027
6028 Unlike subspaces, the number of spaces is not expected to grow much,
6029 so a linear exhaustive search is OK here. */
6030
6031 static sd_chain_struct *
6032 pa_segment_to_space (seg)
6033 asection *seg;
6034 {
6035 sd_chain_struct *space_chain;
6036
6037 /* Walk through each space looking for the correct mapping. */
6038 for (space_chain = space_dict_root;
6039 space_chain;
6040 space_chain = space_chain->sd_next)
6041 {
6042 if (space_chain->sd_seg == seg)
6043 return space_chain;
6044 }
6045
6046 /* Mapping was not found. Return NULL. */
6047 return NULL;
6048 }
6049
6050 /* Return the space chain entry for the subspace with the name NAME or
6051 NULL if no such subspace exists.
6052
6053 Uses a linear search through all the spaces and subspaces, this may
6054 not be appropriate if we ever being placing each function in its
6055 own subspace. */
6056
6057 static ssd_chain_struct *
6058 is_defined_subspace (name)
6059 char *name;
6060 {
6061 sd_chain_struct*space_chain;
6062 ssd_chain_struct *subspace_chain;
6063
6064 /* Walk through each space. */
6065 for (space_chain = space_dict_root;
6066 space_chain;
6067 space_chain = space_chain->sd_next)
6068 {
6069 /* Walk through each subspace looking for a name which matches. */
6070 for (subspace_chain = space_chain->sd_subspaces;
6071 subspace_chain;
6072 subspace_chain = subspace_chain->ssd_next)
6073 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
6074 return subspace_chain;
6075 }
6076
6077 /* Subspace wasn't found. Return NULL. */
6078 return NULL;
6079 }
6080
6081 /* Find and return the subspace associated with the given seg. If no
6082 mapping from the given seg to a subspace is found, then return NULL.
6083
6084 If we ever put each procedure/function within its own subspace
6085 (to make life easier on the compiler and linker), then this will have
6086 to become more efficient. */
6087
6088 static ssd_chain_struct *
6089 pa_subsegment_to_subspace (seg, subseg)
6090 asection *seg;
6091 subsegT subseg;
6092 {
6093 sd_chain_struct *space_chain;
6094 ssd_chain_struct *subspace_chain;
6095
6096 /* Walk through each space. */
6097 for (space_chain = space_dict_root;
6098 space_chain;
6099 space_chain = space_chain->sd_next)
6100 {
6101 if (space_chain->sd_seg == seg)
6102 {
6103 /* Walk through each subspace within each space looking for
6104 the correct mapping. */
6105 for (subspace_chain = space_chain->sd_subspaces;
6106 subspace_chain;
6107 subspace_chain = subspace_chain->ssd_next)
6108 if (subspace_chain->ssd_subseg == (int) subseg)
6109 return subspace_chain;
6110 }
6111 }
6112
6113 /* No mapping from subsegment to subspace found. Return NULL. */
6114 return NULL;
6115 }
6116
6117 /* Given a number, try and find a space with the name number.
6118
6119 Return a pointer to a space dictionary chain entry for the space
6120 that was found or NULL on failure. */
6121
6122 static sd_chain_struct *
6123 pa_find_space_by_number (number)
6124 int number;
6125 {
6126 sd_chain_struct *space_chain;
6127
6128 for (space_chain = space_dict_root;
6129 space_chain;
6130 space_chain = space_chain->sd_next)
6131 {
6132 if (SPACE_SPNUM (space_chain) == number)
6133 return space_chain;
6134 }
6135
6136 /* No appropriate space found. Return NULL. */
6137 return NULL;
6138 }
6139
6140 /* Return the starting address for the given subspace. If the starting
6141 address is unknown then return zero. */
6142
6143 static unsigned int
6144 pa_subspace_start (space, quadrant)
6145 sd_chain_struct *space;
6146 int quadrant;
6147 {
6148 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
6149 is not correct for the PA OSF1 port. */
6150 if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
6151 return 0x40000000;
6152 else if (space->sd_seg == data_section && quadrant == 1)
6153 return 0x40000000;
6154 else
6155 return 0;
6156 }
6157
6158 /* FIXME. Needs documentation. */
6159 static int
6160 pa_next_subseg (space)
6161 sd_chain_struct *space;
6162 {
6163
6164 space->sd_last_subseg++;
6165 return space->sd_last_subseg;
6166 }
6167
6168 /* Helper function for pa_stringer. Used to find the end of
6169 a string. */
6170
6171 static unsigned int
6172 pa_stringer_aux (s)
6173 char *s;
6174 {
6175 unsigned int c = *s & CHAR_MASK;
6176 switch (c)
6177 {
6178 case '\"':
6179 c = NOT_A_CHAR;
6180 break;
6181 default:
6182 break;
6183 }
6184 return c;
6185 }
6186
6187 /* Handle a .STRING type pseudo-op. */
6188
6189 static void
6190 pa_stringer (append_zero)
6191 int append_zero;
6192 {
6193 char *s, num_buf[4];
6194 unsigned int c;
6195 int i;
6196
6197 /* Preprocess the string to handle PA-specific escape sequences.
6198 For example, \xDD where DD is a hexidecimal number should be
6199 changed to \OOO where OOO is an octal number. */
6200
6201 /* Skip the opening quote. */
6202 s = input_line_pointer + 1;
6203
6204 while (is_a_char (c = pa_stringer_aux (s++)))
6205 {
6206 if (c == '\\')
6207 {
6208 c = *s;
6209 switch (c)
6210 {
6211 /* Handle \x<num>. */
6212 case 'x':
6213 {
6214 unsigned int number;
6215 int num_digit;
6216 char dg;
6217 char *s_start = s;
6218
6219 /* Get pas the 'x'. */
6220 s++;
6221 for (num_digit = 0, number = 0, dg = *s;
6222 num_digit < 2
6223 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6224 || (dg >= 'A' && dg <= 'F'));
6225 num_digit++)
6226 {
6227 if (isdigit (dg))
6228 number = number * 16 + dg - '0';
6229 else if (dg >= 'a' && dg <= 'f')
6230 number = number * 16 + dg - 'a' + 10;
6231 else
6232 number = number * 16 + dg - 'A' + 10;
6233
6234 s++;
6235 dg = *s;
6236 }
6237 if (num_digit > 0)
6238 {
6239 switch (num_digit)
6240 {
6241 case 1:
6242 sprintf (num_buf, "%02o", number);
6243 break;
6244 case 2:
6245 sprintf (num_buf, "%03o", number);
6246 break;
6247 }
6248 for (i = 0; i <= num_digit; i++)
6249 s_start[i] = num_buf[i];
6250 }
6251 break;
6252 }
6253 /* This might be a "\"", skip over the escaped char. */
6254 default:
6255 s++;
6256 break;
6257 }
6258 }
6259 }
6260 stringer (append_zero);
6261 pa_undefine_label ();
6262 }
6263
6264 /* Handle a .VERSION pseudo-op. */
6265
6266 static void
6267 pa_version (unused)
6268 int unused;
6269 {
6270 obj_version (0);
6271 pa_undefine_label ();
6272 }
6273
6274 /* Just like a normal cons, but when finished we have to undefine
6275 the latest space label. */
6276
6277 static void
6278 pa_cons (nbytes)
6279 int nbytes;
6280 {
6281 cons (nbytes);
6282 pa_undefine_label ();
6283 }
6284
6285 /* Switch to the data space. As usual delete our label. */
6286
6287 static void
6288 pa_data (unused)
6289 int unused;
6290 {
6291 s_data (0);
6292 pa_undefine_label ();
6293 }
6294
6295 /* FIXME. What's the purpose of this pseudo-op? */
6296
6297 static void
6298 pa_desc (unused)
6299 int unused;
6300 {
6301 pa_undefine_label ();
6302 }
6303
6304 /* Like float_cons, but we need to undefine our label. */
6305
6306 static void
6307 pa_float_cons (float_type)
6308 int float_type;
6309 {
6310 float_cons (float_type);
6311 pa_undefine_label ();
6312 }
6313
6314 /* Like s_fill, but delete our label when finished. */
6315
6316 static void
6317 pa_fill (unused)
6318 int unused;
6319 {
6320 s_fill (0);
6321 pa_undefine_label ();
6322 }
6323
6324 /* Like lcomm, but delete our label when finished. */
6325
6326 static void
6327 pa_lcomm (needs_align)
6328 int needs_align;
6329 {
6330 s_lcomm (needs_align);
6331 pa_undefine_label ();
6332 }
6333
6334 /* Like lsym, but delete our label when finished. */
6335
6336 static void
6337 pa_lsym (unused)
6338 int unused;
6339 {
6340 s_lsym (0);
6341 pa_undefine_label ();
6342 }
6343
6344 /* Switch to the text space. Like s_text, but delete our
6345 label when finished. */
6346 static void
6347 pa_text (unused)
6348 int unused;
6349 {
6350 s_text (0);
6351 pa_undefine_label ();
6352 }
6353
6354 /* On the PA relocations which involve function symbols must not be
6355 adjusted. This so that the linker can know when/how to create argument
6356 relocation stubs for indirect calls and calls to static functions.
6357
6358 FIXME. Also reject R_HPPA relocations which are 32 bits
6359 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6360 needs to generate relocations to push the addend and symbol value
6361 onto the stack, add them, then pop the value off the stack and
6362 use it in a relocation -- yuk. */
6363
6364 int
6365 hppa_fix_adjustable (fixp)
6366 fixS *fixp;
6367 {
6368 struct hppa_fix_struct *hppa_fix;
6369
6370 hppa_fix = fixp->tc_fix_data;
6371
6372 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6373 return 0;
6374
6375 if (fixp->fx_addsy == 0
6376 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6377 return 1;
6378
6379 return 0;
6380 }
6381
6382 /* Now for some ELF specific code. FIXME. */
6383 #ifdef OBJ_ELF
6384 static symext_chainS *symext_rootP;
6385 static symext_chainS *symext_lastP;
6386
6387 /* Do any symbol processing requested by the target-cpu or target-format. */
6388
6389 void
6390 hppa_tc_symbol (abfd, symbolP, sym_idx)
6391 bfd *abfd;
6392 elf_symbol_type *symbolP;
6393 int sym_idx;
6394 {
6395 symext_chainS *symextP;
6396 unsigned int arg_reloc;
6397
6398 /* Only functions can have argument relocations. */
6399 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6400 return;
6401
6402 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6403
6404 /* If there are no argument relocation bits, then no relocation is
6405 necessary. Do not add this to the symextn section. */
6406 if (arg_reloc == 0)
6407 return;
6408
6409 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6410
6411 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6412 symextP[0].next = &symextP[1];
6413
6414 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6415 symextP[1].next = NULL;
6416
6417 if (symext_rootP == NULL)
6418 {
6419 symext_rootP = &symextP[0];
6420 symext_lastP = &symextP[1];
6421 }
6422 else
6423 {
6424 symext_lastP->next = &symextP[0];
6425 symext_lastP = &symextP[1];
6426 }
6427 }
6428
6429 /* Make sections needed by the target cpu and/or target format. */
6430 void
6431 hppa_tc_make_sections (abfd)
6432 bfd *abfd;
6433 {
6434 symext_chainS *symextP;
6435 int size, n;
6436 asection *symextn_sec;
6437 segT save_seg = now_seg;
6438 subsegT save_subseg = now_subseg;
6439
6440 /* Build the symbol extension section. */
6441 hppa_tc_make_symextn_section ();
6442
6443 /* Force some calculation to occur. */
6444 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6445
6446 hppa_elf_stub_finish (abfd);
6447
6448 /* If no symbols for the symbol extension section, then stop now. */
6449 if (symext_rootP == NULL)
6450 return;
6451
6452 /* Count the number of symbols for the symbol extension section. */
6453 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6454 ;
6455
6456 size = sizeof (symext_entryS) * n;
6457
6458 /* Switch to the symbol extension section. */
6459 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6460
6461 frag_wane (frag_now);
6462 frag_new (0);
6463
6464 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6465 {
6466 char *ptr;
6467 int *symtab_map = elf_sym_extra (abfd);
6468 int idx;
6469
6470 /* First, patch the symbol extension record to reflect the true
6471 symbol table index. */
6472
6473 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6474 {
6475 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6476 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6477 symtab_map[idx]);
6478 }
6479
6480 ptr = frag_more (sizeof (symextP->entry));
6481 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6482 }
6483
6484 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6485 frag_wane (frag_now);
6486
6487 /* Switch back to the original segment. */
6488 subseg_set (save_seg, save_subseg);
6489
6490 return;
6491 }
6492
6493 /* Make the symbol extension section. */
6494
6495 static void
6496 hppa_tc_make_symextn_section ()
6497 {
6498 if (symext_rootP)
6499 {
6500 symext_chainS *symextP;
6501 int n;
6502 unsigned int size;
6503 segT symextn_sec;
6504 segT save_seg = now_seg;
6505 subsegT save_subseg = now_subseg;
6506
6507 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6508 ;
6509
6510 size = sizeof (symext_entryS) * n;
6511
6512 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6513
6514 bfd_set_section_flags (stdoutput, symextn_sec,
6515 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6516 bfd_set_section_size (stdoutput, symextn_sec, size);
6517
6518 /* Now, switch back to the original segment. */
6519 subseg_set (save_seg, save_subseg);
6520 }
6521 }
6522
6523 /* Build the symbol extension section. */
6524
6525 static void
6526 pa_build_symextn_section ()
6527 {
6528 segT seg;
6529 asection *save_seg = now_seg;
6530 subsegT subseg = (subsegT) 0;
6531 subsegT save_subseg = now_subseg;
6532
6533 seg = subseg_new (".hppa_symextn", subseg);
6534 bfd_set_section_flags (stdoutput,
6535 seg,
6536 SEC_HAS_CONTENTS | SEC_READONLY
6537 | SEC_ALLOC | SEC_LOAD);
6538
6539 subseg_set (save_seg, save_subseg);
6540
6541 }
6542
6543 /* For ELF, this function serves one purpose: to setup the st_size
6544 field of STT_FUNC symbols. To do this, we need to scan the
6545 call_info structure list, determining st_size in one of two possible
6546 ways:
6547
6548 1. call_info->start_frag->fr_fix has the size of the fragment.
6549 This approach assumes that the function was built into a
6550 single fragment. This works for most cases, but might fail.
6551 For example, if there was a segment change in the middle of
6552 the function.
6553
6554 2. The st_size field is the difference in the addresses of the
6555 call_info->start_frag->fr_address field and the fr_address
6556 field of the next fragment with fr_type == rs_fill and
6557 fr_fix != 0. */
6558
6559 void
6560 elf_hppa_final_processing ()
6561 {
6562 struct call_info *call_info_pointer;
6563
6564 for (call_info_pointer = call_info_root;
6565 call_info_pointer;
6566 call_info_pointer = call_info_pointer->ci_next)
6567 {
6568 elf_symbol_type *esym
6569 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6570 esym->internal_elf_sym.st_size =
6571 S_GET_VALUE (call_info_pointer->end_symbol)
6572 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6573 }
6574 }
6575 #endif
This page took 0.169003 seconds and 4 git commands to generate.