Lots of changes for:
[deliverable/binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* Who knows. */
56 #define obj_version obj_elf_version
57
58 /* Use space aliases. */
59 #define USE_ALIASES 1
60
61 /* Some local functions only used by ELF. */
62 static void pa_build_symextn_section PARAMS ((void));
63 static void hppa_tc_make_symextn_section PARAMS ((void));
64 #endif
65
66 #ifdef OBJ_SOM
67 /* Names of various debugging spaces/subspaces. */
68 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
69 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
70 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
71 #define UNWIND_SECTION_NAME "$UNWIND$"
72
73 /* Object file formats specify relocation types. */
74 typedef int reloc_type;
75
76 /* Who knows. */
77 #define obj_version obj_som_version
78
79 /* Do not use space aliases. */
80 #define USE_ALIASES 0
81
82 /* How to generate a relocation. */
83 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
84
85 /* Object file formats specify BFD symbol types. */
86 typedef som_symbol_type obj_symbol_type;
87 #endif
88
89 /* Various structures and types used internally in tc-hppa.c. */
90
91 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
92
93 struct unwind_desc
94 {
95 unsigned int cannot_unwind:1;
96 unsigned int millicode:1;
97 unsigned int millicode_save_rest:1;
98 unsigned int region_desc:2;
99 unsigned int save_sr:2;
100 unsigned int entry_fr:4;
101 unsigned int entry_gr:5;
102 unsigned int args_stored:1;
103 unsigned int call_fr:5;
104 unsigned int call_gr:5;
105 unsigned int save_sp:1;
106 unsigned int save_rp:1;
107 unsigned int save_rp_in_frame:1;
108 unsigned int extn_ptr_defined:1;
109 unsigned int cleanup_defined:1;
110
111 unsigned int hpe_interrupt_marker:1;
112 unsigned int hpux_interrupt_marker:1;
113 unsigned int reserved:3;
114 unsigned int frame_size:27;
115 };
116
117 struct unwind_table
118 {
119 /* Starting and ending offsets of the region described by
120 descriptor. */
121 unsigned int start_offset;
122 unsigned int end_offset;
123 struct unwind_desc descriptor;
124 };
125
126 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
127 control the entry and exit code they generate. It is also used in
128 creation of the correct stack unwind descriptors.
129
130 NOTE: GAS does not support .enter and .leave for the generation of
131 prologues and epilogues. FIXME.
132
133 The fields in structure roughly correspond to the arguments available on the
134 .callinfo pseudo-op. */
135
136 struct call_info
137 {
138 /* Should sr3 be saved in the prologue? */
139 int entry_sr;
140
141 /* Does this function make calls? */
142 int makes_calls;
143
144 /* The unwind descriptor being built. */
145 struct unwind_table ci_unwind;
146
147 /* Name of this function. */
148 symbolS *start_symbol;
149
150 /* (temporary) symbol used to mark the end of this function. */
151 symbolS *end_symbol;
152
153 /* frags associated with start and end of this function. */
154 fragS *start_frag;
155 fragS *end_frag;
156
157 /* frags for starting/ending offset of this descriptor. */
158 fragS *start_offset_frag;
159 fragS *end_offset_frag;
160
161 /* The location within {start,end}_offset_frag to find the
162 {start,end}_offset. */
163 int start_frag_where;
164 int end_frag_where;
165
166 /* Fixups (relocations) for start_offset and end_offset. */
167 fixS *start_fix;
168 fixS *end_fix;
169
170 /* Next entry in the chain. */
171 struct call_info *ci_next;
172 };
173
174 /* Operand formats for FP instructions. Note not all FP instructions
175 allow all four formats to be used (for example fmpysub only allows
176 SGL and DBL). */
177 typedef enum
178 {
179 SGL, DBL, ILLEGAL_FMT, QUAD
180 }
181 fp_operand_format;
182
183 /* This fully describes the symbol types which may be attached to
184 an EXPORT or IMPORT directive. Only SOM uses this formation
185 (ELF has no need for it). */
186 typedef enum
187 {
188 SYMBOL_TYPE_UNKNOWN,
189 SYMBOL_TYPE_ABSOLUTE,
190 SYMBOL_TYPE_CODE,
191 SYMBOL_TYPE_DATA,
192 SYMBOL_TYPE_ENTRY,
193 SYMBOL_TYPE_MILLICODE,
194 SYMBOL_TYPE_PLABEL,
195 SYMBOL_TYPE_PRI_PROG,
196 SYMBOL_TYPE_SEC_PROG,
197 }
198 pa_symbol_type;
199
200 /* This structure contains information needed to assemble
201 individual instructions. */
202 struct pa_it
203 {
204 /* Holds the opcode after parsing by pa_ip. */
205 unsigned long opcode;
206
207 /* Holds an expression associated with the current instruction. */
208 expressionS exp;
209
210 /* Does this instruction use PC-relative addressing. */
211 int pcrel;
212
213 /* Floating point formats for operand1 and operand2. */
214 fp_operand_format fpof1;
215 fp_operand_format fpof2;
216
217 /* Holds the field selector for this instruction
218 (for example L%, LR%, etc). */
219 long field_selector;
220
221 /* Holds any argument relocation bits associated with this
222 instruction. (instruction should be some sort of call). */
223 long arg_reloc;
224
225 /* The format specification for this instruction. */
226 int format;
227
228 /* The relocation (if any) associated with this instruction. */
229 reloc_type reloc;
230 };
231
232 /* PA-89 floating point registers are arranged like this:
233
234
235 +--------------+--------------+
236 | 0 or 16L | 16 or 16R |
237 +--------------+--------------+
238 | 1 or 17L | 17 or 17R |
239 +--------------+--------------+
240 | | |
241
242 . . .
243 . . .
244 . . .
245
246 | | |
247 +--------------+--------------+
248 | 14 or 30L | 30 or 30R |
249 +--------------+--------------+
250 | 15 or 31L | 31 or 31R |
251 +--------------+--------------+
252
253
254 The following is a version of pa_parse_number that
255 handles the L/R notation and returns the correct
256 value to put into the instruction register field.
257 The correct value to put into the instruction is
258 encoded in the structure 'pa_89_fp_reg_struct'. */
259
260 struct pa_89_fp_reg_struct
261 {
262 /* The register number. */
263 char number_part;
264
265 /* L/R selector. */
266 char l_r_select;
267 };
268
269 /* Additional information needed to build argument relocation stubs. */
270 struct call_desc
271 {
272 /* The argument relocation specification. */
273 unsigned int arg_reloc;
274
275 /* Number of arguments. */
276 unsigned int arg_count;
277 };
278
279 /* This structure defines an entry in the subspace dictionary
280 chain. */
281
282 struct subspace_dictionary_chain
283 {
284 /* Index of containing space. */
285 unsigned long ssd_space_index;
286
287 /* Nonzero if this space has been defined by the user code. */
288 unsigned int ssd_defined;
289
290 /* Which quadrant within the space this subspace should be loaded into. */
291 unsigned char ssd_quadrant;
292
293 /* Alignment (in bytes) for this subspace. */
294 unsigned long ssd_alignment;
295
296 /* Access control bits to determine read/write/execute permissions
297 as well as gateway privilege promotions. */
298 unsigned char ssd_access_control_bits;
299
300 /* A sorting key so that it is possible to specify ordering of
301 subspaces within a space. */
302 unsigned char ssd_sort_key;
303
304 /* Nonzero of this space should be zero filled. */
305 unsigned long ssd_zero;
306
307 /* Nonzero if this is a common subspace. */
308 unsigned char ssd_common;
309
310 /* Nonzero if this is a common subspace which allows symbols to be
311 multiply defined. */
312 unsigned char ssd_dup_common;
313
314 /* Nonzero if this subspace is loadable. Note loadable subspaces
315 must be contained within loadable spaces; unloadable subspaces
316 must be contained in unloadable spaces. */
317 unsigned char ssd_loadable;
318
319 /* Nonzero if this subspace contains only code. */
320 unsigned char ssd_code_only;
321
322 /* Starting offset of this subspace. */
323 unsigned long ssd_subspace_start;
324
325 /* Length of this subspace. */
326 unsigned long ssd_subspace_length;
327
328 /* Name of this subspace. */
329 char *ssd_name;
330
331 /* GAS segment and subsegment associated with this subspace. */
332 asection *ssd_seg;
333 int ssd_subseg;
334
335 /* Index of this subspace within the subspace dictionary of the object
336 file. Not used until object file is written. */
337 int object_file_index;
338
339 /* The size of the last alignment request for this subspace. */
340 int ssd_last_align;
341
342 /* Next space in the subspace dictionary chain. */
343 struct subspace_dictionary_chain *ssd_next;
344 };
345
346 typedef struct subspace_dictionary_chain ssd_chain_struct;
347
348 /* This structure defines an entry in the subspace dictionary
349 chain. */
350
351 struct space_dictionary_chain
352 {
353
354 /* Holds the index into the string table of the name of this
355 space. */
356 unsigned int sd_name_index;
357
358 /* Nonzero if the space is loadable. */
359 unsigned int sd_loadable;
360
361 /* Nonzero if this space has been defined by the user code or
362 as a default space. */
363 unsigned int sd_defined;
364
365 /* Nonzero if this spaces has been defined by the user code. */
366 unsigned int sd_user_defined;
367
368 /* Nonzero if this space is not sharable. */
369 unsigned int sd_private;
370
371 /* The space number (or index). */
372 unsigned int sd_spnum;
373
374 /* The sort key for this space. May be used to determine how to lay
375 out the spaces within the object file. */
376 unsigned char sd_sort_key;
377
378 /* The name of this subspace. */
379 char *sd_name;
380
381 /* GAS segment to which this subspace corresponds. */
382 asection *sd_seg;
383
384 /* Current subsegment number being used. */
385 int sd_last_subseg;
386
387 /* The chain of subspaces contained within this space. */
388 ssd_chain_struct *sd_subspaces;
389
390 /* The next entry in the space dictionary chain. */
391 struct space_dictionary_chain *sd_next;
392 };
393
394 typedef struct space_dictionary_chain sd_chain_struct;
395
396 /* Structure for previous label tracking. Needed so that alignments,
397 callinfo declarations, etc can be easily attached to a particular
398 label. */
399 typedef struct label_symbol_struct
400 {
401 struct symbol *lss_label;
402 sd_chain_struct *lss_space;
403 struct label_symbol_struct *lss_next;
404 }
405 label_symbol_struct;
406
407 /* This structure defines attributes of the default subspace
408 dictionary entries. */
409
410 struct default_subspace_dict
411 {
412 /* Name of the subspace. */
413 char *name;
414
415 /* FIXME. Is this still needed? */
416 char defined;
417
418 /* Nonzero if this subspace is loadable. */
419 char loadable;
420
421 /* Nonzero if this subspace contains only code. */
422 char code_only;
423
424 /* Nonzero if this is a common subspace. */
425 char common;
426
427 /* Nonzero if this is a common subspace which allows symbols
428 to be multiply defined. */
429 char dup_common;
430
431 /* Nonzero if this subspace should be zero filled. */
432 char zero;
433
434 /* Sort key for this subspace. */
435 unsigned char sort;
436
437 /* Access control bits for this subspace. Can represent RWX access
438 as well as privilege level changes for gateways. */
439 int access;
440
441 /* Index of containing space. */
442 int space_index;
443
444 /* Alignment (in bytes) of this subspace. */
445 int alignment;
446
447 /* Quadrant within space where this subspace should be loaded. */
448 int quadrant;
449
450 /* An index into the default spaces array. */
451 int def_space_index;
452
453 /* An alias for this section (or NULL if no alias exists). */
454 char *alias;
455
456 /* Subsegment associated with this subspace. */
457 subsegT subsegment;
458 };
459
460 /* This structure defines attributes of the default space
461 dictionary entries. */
462
463 struct default_space_dict
464 {
465 /* Name of the space. */
466 char *name;
467
468 /* Space number. It is possible to identify spaces within
469 assembly code numerically! */
470 int spnum;
471
472 /* Nonzero if this space is loadable. */
473 char loadable;
474
475 /* Nonzero if this space is "defined". FIXME is still needed */
476 char defined;
477
478 /* Nonzero if this space can not be shared. */
479 char private;
480
481 /* Sort key for this space. */
482 unsigned char sort;
483
484 /* Segment associated with this space. */
485 asection *segment;
486
487 /* An alias for this section (or NULL if no alias exists). */
488 char *alias;
489 };
490
491 /* Extra information needed to perform fixups (relocations) on the PA. */
492 struct hppa_fix_struct
493 {
494 /* The field selector. */
495 enum hppa_reloc_field_selector_type fx_r_field;
496
497 /* Type of fixup. */
498 int fx_r_type;
499
500 /* Format of fixup. */
501 int fx_r_format;
502
503 /* Argument relocation bits. */
504 long fx_arg_reloc;
505
506 /* The unwind descriptor associated with this fixup. */
507 char fx_unwind[8];
508 };
509
510 /* Structure to hold information about predefined registers. */
511
512 struct pd_reg
513 {
514 char *name;
515 int value;
516 };
517
518 /* This structure defines the mapping from a FP condition string
519 to a condition number which can be recorded in an instruction. */
520 struct fp_cond_map
521 {
522 char *string;
523 int cond;
524 };
525
526 /* This structure defines a mapping from a field selector
527 string to a field selector type. */
528 struct selector_entry
529 {
530 char *prefix;
531 int field_selector;
532 };
533
534 /* Prototypes for functions local to tc-hppa.c. */
535
536 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
537 static void pa_cons PARAMS ((int));
538 static void pa_data PARAMS ((int));
539 static void pa_desc PARAMS ((int));
540 static void pa_float_cons PARAMS ((int));
541 static void pa_fill PARAMS ((int));
542 static void pa_lcomm PARAMS ((int));
543 static void pa_lsym PARAMS ((int));
544 static void pa_stringer PARAMS ((int));
545 static void pa_text PARAMS ((int));
546 static void pa_version PARAMS ((int));
547 static int pa_parse_fp_cmp_cond PARAMS ((char **));
548 static int get_expression PARAMS ((char *));
549 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
550 static int evaluate_absolute PARAMS ((struct pa_it *));
551 static unsigned int pa_build_arg_reloc PARAMS ((char *));
552 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
553 static int pa_parse_nullif PARAMS ((char **));
554 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
555 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
556 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
557 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
558 static void pa_block PARAMS ((int));
559 static void pa_call PARAMS ((int));
560 static void pa_call_args PARAMS ((struct call_desc *));
561 static void pa_callinfo PARAMS ((int));
562 static void pa_code PARAMS ((int));
563 static void pa_comm PARAMS ((int));
564 static void pa_copyright PARAMS ((int));
565 static void pa_end PARAMS ((int));
566 static void pa_enter PARAMS ((int));
567 static void pa_entry PARAMS ((int));
568 static void pa_equ PARAMS ((int));
569 static void pa_exit PARAMS ((int));
570 static void pa_export PARAMS ((int));
571 static void pa_type_args PARAMS ((symbolS *, int));
572 static void pa_import PARAMS ((int));
573 static void pa_label PARAMS ((int));
574 static void pa_leave PARAMS ((int));
575 static void pa_origin PARAMS ((int));
576 static void pa_proc PARAMS ((int));
577 static void pa_procend PARAMS ((int));
578 static void pa_space PARAMS ((int));
579 static void pa_spnum PARAMS ((int));
580 static void pa_subspace PARAMS ((int));
581 static void pa_param PARAMS ((int));
582 static void pa_undefine_label PARAMS ((void));
583 static int need_89_opcode PARAMS ((struct pa_it *,
584 struct pa_89_fp_reg_struct *));
585 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
586 static label_symbol_struct *pa_get_label PARAMS ((void));
587 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
588 char, char, char,
589 asection *, int));
590 static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
591 char *, char, char,
592 char, char, char,
593 char, int, int, int,
594 int, asection *));
595 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
596 char *, char, char, char,
597 char, char, char, int,
598 int, int, int,
599 asection *));
600 static sd_chain_struct *is_defined_space PARAMS ((char *));
601 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
602 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
603 static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
604 subsegT));
605 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
606 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
607 static void pa_ip PARAMS ((char *));
608 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
609 long, expressionS *, int,
610 bfd_reloc_code_real_type,
611 enum hppa_reloc_field_selector_type,
612 int, long, char *));
613 static void md_apply_fix_1 PARAMS ((fixS *, long));
614 static int is_end_of_statement PARAMS ((void));
615 static int reg_name_search PARAMS ((char *));
616 static int pa_chk_field_selector PARAMS ((char **));
617 static int is_same_frag PARAMS ((fragS *, fragS *));
618 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
619 static void process_exit PARAMS ((void));
620 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
621 static int log2 PARAMS ((int));
622 static int pa_next_subseg PARAMS ((sd_chain_struct *));
623 static unsigned int pa_stringer_aux PARAMS ((char *));
624 static void pa_spaces_begin PARAMS ((void));
625 static void hppa_elf_mark_end_of_function PARAMS ((void));
626
627 /* File and gloally scoped variable declarations. */
628
629 /* Root and final entry in the space chain. */
630 static sd_chain_struct *space_dict_root;
631 static sd_chain_struct *space_dict_last;
632
633 /* The current space and subspace. */
634 static sd_chain_struct *current_space;
635 static ssd_chain_struct *current_subspace;
636
637 /* Root of the call_info chain. */
638 static struct call_info *call_info_root;
639
640 /* The last call_info (for functions) structure
641 seen so it can be associated with fixups and
642 function labels. */
643 static struct call_info *last_call_info;
644
645 /* The last call description (for actual calls). */
646 static struct call_desc last_call_desc;
647
648 /* Relaxation isn't supported for the PA yet. */
649 const relax_typeS md_relax_table[] =
650 {0};
651
652 /* Jumps are always the same size -- one instruction. */
653 int md_short_jump_size = 4;
654 int md_long_jump_size = 4;
655
656 /* handle of the OPCODE hash table */
657 static struct hash_control *op_hash = NULL;
658
659 /* This array holds the chars that always start a comment. If the
660 pre-processor is disabled, these aren't very useful. */
661 const char comment_chars[] = ";";
662
663 /* Table of pseudo ops for the PA. FIXME -- how many of these
664 are now redundant with the overall GAS and the object file
665 dependent tables? */
666 const pseudo_typeS md_pseudo_table[] =
667 {
668 /* align pseudo-ops on the PA specify the actual alignment requested,
669 not the log2 of the requested alignment. */
670 {"align", s_align_bytes, 8},
671 {"ALIGN", s_align_bytes, 8},
672 {"block", pa_block, 1},
673 {"BLOCK", pa_block, 1},
674 {"blockz", pa_block, 0},
675 {"BLOCKZ", pa_block, 0},
676 {"byte", pa_cons, 1},
677 {"BYTE", pa_cons, 1},
678 {"call", pa_call, 0},
679 {"CALL", pa_call, 0},
680 {"callinfo", pa_callinfo, 0},
681 {"CALLINFO", pa_callinfo, 0},
682 {"code", pa_code, 0},
683 {"CODE", pa_code, 0},
684 {"comm", pa_comm, 0},
685 {"COMM", pa_comm, 0},
686 {"copyright", pa_copyright, 0},
687 {"COPYRIGHT", pa_copyright, 0},
688 {"data", pa_data, 0},
689 {"DATA", pa_data, 0},
690 {"desc", pa_desc, 0},
691 {"DESC", pa_desc, 0},
692 {"double", pa_float_cons, 'd'},
693 {"DOUBLE", pa_float_cons, 'd'},
694 {"end", pa_end, 0},
695 {"END", pa_end, 0},
696 {"enter", pa_enter, 0},
697 {"ENTER", pa_enter, 0},
698 {"entry", pa_entry, 0},
699 {"ENTRY", pa_entry, 0},
700 {"equ", pa_equ, 0},
701 {"EQU", pa_equ, 0},
702 {"exit", pa_exit, 0},
703 {"EXIT", pa_exit, 0},
704 {"export", pa_export, 0},
705 {"EXPORT", pa_export, 0},
706 {"fill", pa_fill, 0},
707 {"FILL", pa_fill, 0},
708 {"float", pa_float_cons, 'f'},
709 {"FLOAT", pa_float_cons, 'f'},
710 {"half", pa_cons, 2},
711 {"HALF", pa_cons, 2},
712 {"import", pa_import, 0},
713 {"IMPORT", pa_import, 0},
714 {"int", pa_cons, 4},
715 {"INT", pa_cons, 4},
716 {"label", pa_label, 0},
717 {"LABEL", pa_label, 0},
718 {"lcomm", pa_lcomm, 0},
719 {"LCOMM", pa_lcomm, 0},
720 {"leave", pa_leave, 0},
721 {"LEAVE", pa_leave, 0},
722 {"long", pa_cons, 4},
723 {"LONG", pa_cons, 4},
724 {"lsym", pa_lsym, 0},
725 {"LSYM", pa_lsym, 0},
726 {"octa", pa_cons, 16},
727 {"OCTA", pa_cons, 16},
728 {"org", pa_origin, 0},
729 {"ORG", pa_origin, 0},
730 {"origin", pa_origin, 0},
731 {"ORIGIN", pa_origin, 0},
732 {"param", pa_param, 0},
733 {"PARAM", pa_param, 0},
734 {"proc", pa_proc, 0},
735 {"PROC", pa_proc, 0},
736 {"procend", pa_procend, 0},
737 {"PROCEND", pa_procend, 0},
738 {"quad", pa_cons, 8},
739 {"QUAD", pa_cons, 8},
740 {"reg", pa_equ, 1},
741 {"REG", pa_equ, 1},
742 {"short", pa_cons, 2},
743 {"SHORT", pa_cons, 2},
744 {"single", pa_float_cons, 'f'},
745 {"SINGLE", pa_float_cons, 'f'},
746 {"space", pa_space, 0},
747 {"SPACE", pa_space, 0},
748 {"spnum", pa_spnum, 0},
749 {"SPNUM", pa_spnum, 0},
750 {"string", pa_stringer, 0},
751 {"STRING", pa_stringer, 0},
752 {"stringz", pa_stringer, 1},
753 {"STRINGZ", pa_stringer, 1},
754 {"subspa", pa_subspace, 0},
755 {"SUBSPA", pa_subspace, 0},
756 {"text", pa_text, 0},
757 {"TEXT", pa_text, 0},
758 {"version", pa_version, 0},
759 {"VERSION", pa_version, 0},
760 {"word", pa_cons, 4},
761 {"WORD", pa_cons, 4},
762 {NULL, 0, 0}
763 };
764
765 /* This array holds the chars that only start a comment at the beginning of
766 a line. If the line seems to have the form '# 123 filename'
767 .line and .file directives will appear in the pre-processed output.
768
769 Note that input_file.c hand checks for '#' at the beginning of the
770 first line of the input file. This is because the compiler outputs
771 #NO_APP at the beginning of its output.
772
773 Also note that '/*' will always start a comment. */
774 const char line_comment_chars[] = "#";
775
776 /* This array holds the characters which act as line separators. */
777 const char line_separator_chars[] = "!";
778
779 /* Chars that can be used to separate mant from exp in floating point nums. */
780 const char EXP_CHARS[] = "eE";
781
782 /* Chars that mean this number is a floating point constant.
783 As in 0f12.456 or 0d1.2345e12.
784
785 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
786 changed in read.c. Ideally it shouldn't hae to know abou it at
787 all, but nothing is ideal around here. */
788 const char FLT_CHARS[] = "rRsSfFdDxXpP";
789
790 static struct pa_it the_insn;
791
792 /* Points to the end of an expression just parsed by get_expressoin
793 and friends. FIXME. This shouldn't be handled with a file-global
794 variable. */
795 static char *expr_end;
796
797 /* Nonzero if a .callinfo appeared within the current procedure. */
798 static int callinfo_found;
799
800 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
801 static int within_entry_exit;
802
803 /* Nonzero if the assembler is currently within a procedure definition. */
804 static int within_procedure;
805
806 /* Handle on strucutre which keep track of the last symbol
807 seen in each subspace. */
808 static label_symbol_struct *label_symbols_rootp = NULL;
809
810 /* Holds the last field selector. */
811 static int hppa_field_selector;
812
813 /* Nonzero if errors are to be printed. */
814 static int print_errors = 1;
815
816 /* List of registers that are pre-defined:
817
818 Each general register has one predefined name of the form
819 %r<REGNUM> which has the value <REGNUM>.
820
821 Space and control registers are handled in a similar manner,
822 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
823
824 Likewise for the floating point registers, but of the form
825 %fr<REGNUM>. Floating point registers have additional predefined
826 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
827 again have the value <REGNUM>.
828
829 Many registers also have synonyms:
830
831 %r26 - %r23 have %arg0 - %arg3 as synonyms
832 %r28 - %r29 have %ret0 - %ret1 as synonyms
833 %r30 has %sp as a synonym
834 %r27 has %dp as a synonym
835 %r2 has %rp as a synonym
836
837 Almost every control register has a synonym; they are not listed
838 here for brevity.
839
840 The table is sorted. Suitable for searching by a binary search. */
841
842 static const struct pd_reg pre_defined_registers[] =
843 {
844 {"%arg0", 26},
845 {"%arg1", 25},
846 {"%arg2", 24},
847 {"%arg3", 23},
848 {"%cr0", 0},
849 {"%cr10", 10},
850 {"%cr11", 11},
851 {"%cr12", 12},
852 {"%cr13", 13},
853 {"%cr14", 14},
854 {"%cr15", 15},
855 {"%cr16", 16},
856 {"%cr17", 17},
857 {"%cr18", 18},
858 {"%cr19", 19},
859 {"%cr20", 20},
860 {"%cr21", 21},
861 {"%cr22", 22},
862 {"%cr23", 23},
863 {"%cr24", 24},
864 {"%cr25", 25},
865 {"%cr26", 26},
866 {"%cr27", 27},
867 {"%cr28", 28},
868 {"%cr29", 29},
869 {"%cr30", 30},
870 {"%cr31", 31},
871 {"%cr8", 8},
872 {"%cr9", 9},
873 {"%dp", 27},
874 {"%eiem", 15},
875 {"%eirr", 23},
876 {"%fr0", 0},
877 {"%fr0L", 0},
878 {"%fr0R", 0},
879 {"%fr1", 1},
880 {"%fr10", 10},
881 {"%fr10L", 10},
882 {"%fr10R", 10},
883 {"%fr11", 11},
884 {"%fr11L", 11},
885 {"%fr11R", 11},
886 {"%fr12", 12},
887 {"%fr12L", 12},
888 {"%fr12R", 12},
889 {"%fr13", 13},
890 {"%fr13L", 13},
891 {"%fr13R", 13},
892 {"%fr14", 14},
893 {"%fr14L", 14},
894 {"%fr14R", 14},
895 {"%fr15", 15},
896 {"%fr15L", 15},
897 {"%fr15R", 15},
898 {"%fr16", 16},
899 {"%fr16L", 16},
900 {"%fr16R", 16},
901 {"%fr17", 17},
902 {"%fr17L", 17},
903 {"%fr17R", 17},
904 {"%fr18", 18},
905 {"%fr18L", 18},
906 {"%fr18R", 18},
907 {"%fr19", 19},
908 {"%fr19L", 19},
909 {"%fr19R", 19},
910 {"%fr1L", 1},
911 {"%fr1R", 1},
912 {"%fr2", 2},
913 {"%fr20", 20},
914 {"%fr20L", 20},
915 {"%fr20R", 20},
916 {"%fr21", 21},
917 {"%fr21L", 21},
918 {"%fr21R", 21},
919 {"%fr22", 22},
920 {"%fr22L", 22},
921 {"%fr22R", 22},
922 {"%fr23", 23},
923 {"%fr23L", 23},
924 {"%fr23R", 23},
925 {"%fr24", 24},
926 {"%fr24L", 24},
927 {"%fr24R", 24},
928 {"%fr25", 25},
929 {"%fr25L", 25},
930 {"%fr25R", 25},
931 {"%fr26", 26},
932 {"%fr26L", 26},
933 {"%fr26R", 26},
934 {"%fr27", 27},
935 {"%fr27L", 27},
936 {"%fr27R", 27},
937 {"%fr28", 28},
938 {"%fr28L", 28},
939 {"%fr28R", 28},
940 {"%fr29", 29},
941 {"%fr29L", 29},
942 {"%fr29R", 29},
943 {"%fr2L", 2},
944 {"%fr2R", 2},
945 {"%fr3", 3},
946 {"%fr30", 30},
947 {"%fr30L", 30},
948 {"%fr30R", 30},
949 {"%fr31", 31},
950 {"%fr31L", 31},
951 {"%fr31R", 31},
952 {"%fr3L", 3},
953 {"%fr3R", 3},
954 {"%fr4", 4},
955 {"%fr4L", 4},
956 {"%fr4R", 4},
957 {"%fr5", 5},
958 {"%fr5L", 5},
959 {"%fr5R", 5},
960 {"%fr6", 6},
961 {"%fr6L", 6},
962 {"%fr6R", 6},
963 {"%fr7", 7},
964 {"%fr7L", 7},
965 {"%fr7R", 7},
966 {"%fr8", 8},
967 {"%fr8L", 8},
968 {"%fr8R", 8},
969 {"%fr9", 9},
970 {"%fr9L", 9},
971 {"%fr9R", 9},
972 {"%hta", 25},
973 {"%iir", 19},
974 {"%ior", 21},
975 {"%ipsw", 22},
976 {"%isr", 20},
977 {"%itmr", 16},
978 {"%iva", 14},
979 {"%pcoq", 18},
980 {"%pcsq", 17},
981 {"%pidr1", 8},
982 {"%pidr2", 9},
983 {"%pidr3", 12},
984 {"%pidr4", 13},
985 {"%ppda", 24},
986 {"%r0", 0},
987 {"%r1", 1},
988 {"%r10", 10},
989 {"%r11", 11},
990 {"%r12", 12},
991 {"%r13", 13},
992 {"%r14", 14},
993 {"%r15", 15},
994 {"%r16", 16},
995 {"%r17", 17},
996 {"%r18", 18},
997 {"%r19", 19},
998 {"%r2", 2},
999 {"%r20", 20},
1000 {"%r21", 21},
1001 {"%r22", 22},
1002 {"%r23", 23},
1003 {"%r24", 24},
1004 {"%r25", 25},
1005 {"%r26", 26},
1006 {"%r27", 27},
1007 {"%r28", 28},
1008 {"%r29", 29},
1009 {"%r3", 3},
1010 {"%r30", 30},
1011 {"%r31", 31},
1012 {"%r4", 4},
1013 {"%r4L", 4},
1014 {"%r4R", 4},
1015 {"%r5", 5},
1016 {"%r5L", 5},
1017 {"%r5R", 5},
1018 {"%r6", 6},
1019 {"%r6L", 6},
1020 {"%r6R", 6},
1021 {"%r7", 7},
1022 {"%r7L", 7},
1023 {"%r7R", 7},
1024 {"%r8", 8},
1025 {"%r8L", 8},
1026 {"%r8R", 8},
1027 {"%r9", 9},
1028 {"%r9L", 9},
1029 {"%r9R", 9},
1030 {"%rctr", 0},
1031 {"%ret0", 28},
1032 {"%ret1", 29},
1033 {"%rp", 2},
1034 {"%sar", 11},
1035 {"%sp", 30},
1036 {"%sr0", 0},
1037 {"%sr1", 1},
1038 {"%sr2", 2},
1039 {"%sr3", 3},
1040 {"%sr4", 4},
1041 {"%sr5", 5},
1042 {"%sr6", 6},
1043 {"%sr7", 7},
1044 {"%tr0", 24},
1045 {"%tr1", 25},
1046 {"%tr2", 26},
1047 {"%tr3", 27},
1048 {"%tr4", 28},
1049 {"%tr5", 29},
1050 {"%tr6", 30},
1051 {"%tr7", 31}
1052 };
1053
1054 /* This table is sorted by order of the length of the string. This is
1055 so we check for <> before we check for <. If we had a <> and checked
1056 for < first, we would get a false match. */
1057 static const struct fp_cond_map fp_cond_map[] =
1058 {
1059 {"false?", 0},
1060 {"false", 1},
1061 {"true?", 30},
1062 {"true", 31},
1063 {"!<=>", 3},
1064 {"!?>=", 8},
1065 {"!?<=", 16},
1066 {"!<>", 7},
1067 {"!>=", 11},
1068 {"!?>", 12},
1069 {"?<=", 14},
1070 {"!<=", 19},
1071 {"!?<", 20},
1072 {"?>=", 22},
1073 {"!?=", 24},
1074 {"!=t", 27},
1075 {"<=>", 29},
1076 {"=t", 5},
1077 {"?=", 6},
1078 {"?<", 10},
1079 {"<=", 13},
1080 {"!>", 15},
1081 {"?>", 18},
1082 {">=", 21},
1083 {"!<", 23},
1084 {"<>", 25},
1085 {"!=", 26},
1086 {"!?", 28},
1087 {"?", 2},
1088 {"=", 4},
1089 {"<", 9},
1090 {">", 17}
1091 };
1092
1093 static const struct selector_entry selector_table[] =
1094 {
1095 {"F'", e_fsel},
1096 {"F%", e_fsel},
1097 {"LS'", e_lssel},
1098 {"LS%", e_lssel},
1099 {"RS'", e_rssel},
1100 {"RS%", e_rssel},
1101 {"L'", e_lsel},
1102 {"L%", e_lsel},
1103 {"R'", e_rsel},
1104 {"R%", e_rsel},
1105 {"LD'", e_ldsel},
1106 {"LD%", e_ldsel},
1107 {"RD'", e_rdsel},
1108 {"RD%", e_rdsel},
1109 {"LR'", e_lrsel},
1110 {"LR%", e_lrsel},
1111 {"RR'", e_rrsel},
1112 {"RR%", e_rrsel},
1113 {"P'", e_psel},
1114 {"P%", e_psel},
1115 {"RP'", e_rpsel},
1116 {"RP%", e_rpsel},
1117 {"LP'", e_lpsel},
1118 {"LP%", e_lpsel},
1119 {"T'", e_tsel},
1120 {"T%", e_tsel},
1121 {"RT'", e_rtsel},
1122 {"RT%", e_rtsel},
1123 {"LT'", e_ltsel},
1124 {"LT%", e_ltsel},
1125 {NULL, e_fsel}
1126 };
1127
1128 /* default space and subspace dictionaries */
1129
1130 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1131 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1132
1133 /* pre-defined subsegments (subspaces) for the HPPA. */
1134 #define SUBSEG_CODE 0
1135 #define SUBSEG_DATA 0
1136 #define SUBSEG_LIT 1
1137 #define SUBSEG_BSS 2
1138 #define SUBSEG_UNWIND 3
1139 #define SUBSEG_GDB_STRINGS 0
1140 #define SUBSEG_GDB_SYMBOLS 1
1141
1142 static struct default_subspace_dict pa_def_subspaces[] =
1143 {
1144 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1145 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1146 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1147 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1148 #ifdef OBJ_ELF
1149 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1150 #endif
1151 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1152 };
1153
1154 static struct default_space_dict pa_def_spaces[] =
1155 {
1156 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1157 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1158 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1159 };
1160
1161 /* Misc local definitions used by the assembler. */
1162
1163 /* Return nonzero if the string pointed to by S potentially represents
1164 a right or left half of a FP register */
1165 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1166 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1167
1168 /* These macros are used to maintain spaces/subspaces. */
1169 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1170 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1171 #define SPACE_PRIVATE(space_chain) (space_chain)->sd_private
1172 #define SPACE_LOADABLE(space_chain) (space_chain)->sd_loadable
1173 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1174 #define SPACE_SORT(space_chain) (space_chain)->sd_sort_key
1175 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1176 #define SPACE_NAME_INDEX(space_chain) (space_chain)->sd_name_index
1177
1178 #define SUBSPACE_SPACE_INDEX(ss_chain) (ss_chain)->ssd_space_index
1179 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1180 #define SUBSPACE_QUADRANT(ss_chain) (ss_chain)->ssd_quadrant
1181 #define SUBSPACE_ALIGN(ss_chain) (ss_chain)->ssd_alignment
1182 #define SUBSPACE_ACCESS(ss_chain) (ss_chain)->ssd_access_control_bits
1183 #define SUBSPACE_SORT(ss_chain) (ss_chain)->ssd_sort_key
1184 #define SUBSPACE_COMMON(ss_chain) (ss_chain)->ssd_common
1185 #define SUBSPACE_ZERO(ss_chain) (ss_chain)->ssd_zero
1186 #define SUBSPACE_DUP_COMM(ss_chain) (ss_chain)->ssd_dup_common
1187 #define SUBSPACE_CODE_ONLY(ss_chain) (ss_chain)->ssd_code_only
1188 #define SUBSPACE_LOADABLE(ss_chain) (ss_chain)->ssd_loadable
1189 #define SUBSPACE_SUBSPACE_START(ss_chain) (ss_chain)->ssd_subspace_start
1190 #define SUBSPACE_SUBSPACE_LENGTH(ss_chain) (ss_chain)->ssd_subspace_length
1191 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1192
1193 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1194 main loop after insertion. */
1195
1196 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1197 { \
1198 ((OPCODE) |= (FIELD) << (START)); \
1199 continue; \
1200 }
1201
1202 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1203 IGNORE is used to suppress the error message. */
1204
1205 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1206 { \
1207 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1208 { \
1209 if (! IGNORE) \
1210 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1211 (int) (FIELD));\
1212 break; \
1213 } \
1214 }
1215
1216 #define is_DP_relative(exp) \
1217 ((exp).X_op == O_subtract \
1218 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1219
1220 #define is_PC_relative(exp) \
1221 ((exp).X_op == O_subtract \
1222 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1223
1224 #define is_complex(exp) \
1225 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1226
1227 /* Actual functions to implement the PA specific code for the assembler. */
1228
1229 /* Returns a pointer to the label_symbol_struct for the current space.
1230 or NULL if no label_symbol_struct exists for the current space. */
1231
1232 static label_symbol_struct *
1233 pa_get_label ()
1234 {
1235 label_symbol_struct *label_chain;
1236 sd_chain_struct *space_chain = current_space;
1237
1238 for (label_chain = label_symbols_rootp;
1239 label_chain;
1240 label_chain = label_chain->lss_next)
1241 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1242 return label_chain;
1243
1244 return NULL;
1245 }
1246
1247 /* Defines a label for the current space. If one is already defined,
1248 this function will replace it with the new label. */
1249
1250 void
1251 pa_define_label (symbol)
1252 symbolS *symbol;
1253 {
1254 label_symbol_struct *label_chain = pa_get_label ();
1255 sd_chain_struct *space_chain = current_space;
1256
1257 if (label_chain)
1258 label_chain->lss_label = symbol;
1259 else
1260 {
1261 /* Create a new label entry and add it to the head of the chain. */
1262 label_chain
1263 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1264 label_chain->lss_label = symbol;
1265 label_chain->lss_space = space_chain;
1266 label_chain->lss_next = NULL;
1267
1268 if (label_symbols_rootp)
1269 label_chain->lss_next = label_symbols_rootp;
1270
1271 label_symbols_rootp = label_chain;
1272 }
1273 }
1274
1275 /* Removes a label definition for the current space.
1276 If there is no label_symbol_struct entry, then no action is taken. */
1277
1278 static void
1279 pa_undefine_label ()
1280 {
1281 label_symbol_struct *label_chain;
1282 label_symbol_struct *prev_label_chain = NULL;
1283 sd_chain_struct *space_chain = current_space;
1284
1285 for (label_chain = label_symbols_rootp;
1286 label_chain;
1287 label_chain = label_chain->lss_next)
1288 {
1289 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1290 {
1291 /* Remove the label from the chain and free its memory. */
1292 if (prev_label_chain)
1293 prev_label_chain->lss_next = label_chain->lss_next;
1294 else
1295 label_symbols_rootp = label_chain->lss_next;
1296
1297 free (label_chain);
1298 break;
1299 }
1300 prev_label_chain = label_chain;
1301 }
1302 }
1303
1304
1305 /* An HPPA-specific version of fix_new. This is required because the HPPA
1306 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1307 results in the creation of an instance of an hppa_fix_struct. An
1308 hppa_fix_struct stores the extra information along with a pointer to the
1309 original fixS. This is attached to the original fixup via the
1310 tc_fix_data field. */
1311
1312 static void
1313 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1314 r_type, r_field, r_format, arg_reloc, unwind_desc)
1315 fragS *frag;
1316 int where;
1317 short int size;
1318 symbolS *add_symbol;
1319 long offset;
1320 expressionS *exp;
1321 int pcrel;
1322 bfd_reloc_code_real_type r_type;
1323 enum hppa_reloc_field_selector_type r_field;
1324 int r_format;
1325 long arg_reloc;
1326 char *unwind_desc;
1327 {
1328 fixS *new_fix;
1329
1330 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1331 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1332
1333 if (exp != NULL)
1334 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1335 else
1336 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1337 new_fix->tc_fix_data = hppa_fix;
1338 hppa_fix->fx_r_type = r_type;
1339 hppa_fix->fx_r_field = r_field;
1340 hppa_fix->fx_r_format = r_format;
1341 hppa_fix->fx_arg_reloc = arg_reloc;
1342 if (unwind_desc)
1343 {
1344 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1345
1346 /* If necessary call BFD backend function to attach the
1347 unwind bits to the target dependent parts of a BFD symbol.
1348 Yuk. */
1349 #ifdef obj_attach_unwind_info
1350 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1351 #endif
1352 }
1353
1354 /* foo-$global$ is used to access non-automatic storage. $global$
1355 is really just a marker and has served its purpose, so eliminate
1356 it now so as not to confuse write.c. */
1357 if (new_fix->fx_subsy
1358 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1359 new_fix->fx_subsy = NULL;
1360 }
1361
1362 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1363 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1364
1365 void
1366 parse_cons_expression_hppa (exp)
1367 expressionS *exp;
1368 {
1369 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1370 expression (exp);
1371 }
1372
1373 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1374 hppa_field_selector is set by the parse_cons_expression_hppa. */
1375
1376 void
1377 cons_fix_new_hppa (frag, where, size, exp)
1378 fragS *frag;
1379 int where;
1380 int size;
1381 expressionS *exp;
1382 {
1383 unsigned int reloc_type;
1384
1385 if (is_DP_relative (*exp))
1386 reloc_type = R_HPPA_GOTOFF;
1387 else if (is_complex (*exp))
1388 reloc_type = R_HPPA_COMPLEX;
1389 else
1390 reloc_type = R_HPPA;
1391
1392 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1393 as_warn ("Invalid field selector. Assuming F%%.");
1394
1395 fix_new_hppa (frag, where, size,
1396 (symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
1397 hppa_field_selector, 32, 0, (char *) 0);
1398
1399 /* Reset field selector to its default state. */
1400 hppa_field_selector = 0;
1401 }
1402
1403 /* This function is called once, at assembler startup time. It should
1404 set up all the tables, etc. that the MD part of the assembler will need. */
1405
1406 void
1407 md_begin ()
1408 {
1409 const char *retval = NULL;
1410 int lose = 0;
1411 unsigned int i = 0;
1412
1413 last_call_info = NULL;
1414 call_info_root = NULL;
1415
1416 /* Folding of text and data segments fails miserably on the PA.
1417 Warn user and disable "-R" option. */
1418 if (flagseen['R'])
1419 {
1420 as_warn ("-R option not supported on this target.");
1421 flag_readonly_data_in_text = 0;
1422 flagseen['R'] = 0;
1423 }
1424
1425 pa_spaces_begin ();
1426
1427 op_hash = hash_new ();
1428 if (op_hash == NULL)
1429 as_fatal ("Virtual memory exhausted");
1430
1431 while (i < NUMOPCODES)
1432 {
1433 const char *name = pa_opcodes[i].name;
1434 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
1435 if (retval != NULL && *retval != '\0')
1436 {
1437 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1438 lose = 1;
1439 }
1440 do
1441 {
1442 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1443 != pa_opcodes[i].match)
1444 {
1445 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1446 pa_opcodes[i].name, pa_opcodes[i].args);
1447 lose = 1;
1448 }
1449 ++i;
1450 }
1451 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1452 }
1453
1454 if (lose)
1455 as_fatal ("Broken assembler. No assembly attempted.");
1456
1457 /* SOM will change text_section. To make sure we never put
1458 anything into the old one switch to the new one now. */
1459 subseg_set (text_section, 0);
1460 }
1461
1462 /* Called at the end of assembling a source file. Nothing to do
1463 at this point on the PA. */
1464
1465 void
1466 md_end ()
1467 {
1468 return;
1469 }
1470
1471 /* Assemble a single instruction storing it into a frag. */
1472 void
1473 md_assemble (str)
1474 char *str;
1475 {
1476 char *to;
1477
1478 /* The had better be something to assemble. */
1479 assert (str);
1480
1481 /* Assemble the instruction. Results are saved into "the_insn". */
1482 pa_ip (str);
1483
1484 /* Get somewhere to put the assembled instrution. */
1485 to = frag_more (4);
1486
1487 /* Output the opcode. */
1488 md_number_to_chars (to, the_insn.opcode, 4);
1489
1490 /* If necessary output more stuff. */
1491 if (the_insn.reloc != R_HPPA_NONE)
1492 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1493 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1494 the_insn.reloc, the_insn.field_selector,
1495 the_insn.format, the_insn.arg_reloc, NULL);
1496
1497 }
1498
1499 /* Do the real work for assembling a single instruction. Store results
1500 into the global "the_insn" variable.
1501
1502 FIXME: Should define and use some functions/macros to handle
1503 various common insertions of information into the opcode. */
1504
1505 static void
1506 pa_ip (str)
1507 char *str;
1508 {
1509 char *error_message = "";
1510 char *s, c, *argstart, *name, *save_s;
1511 const char *args;
1512 int match = FALSE;
1513 int comma = 0;
1514 int cmpltr, nullif, flag, cond, num;
1515 unsigned long opcode;
1516 struct pa_opcode *insn;
1517
1518 /* Skip to something interesting. */
1519 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1520 ;
1521
1522 switch (*s)
1523 {
1524
1525 case '\0':
1526 break;
1527
1528 case ',':
1529 comma = 1;
1530
1531 /*FALLTHROUGH */
1532
1533 case ' ':
1534 *s++ = '\0';
1535 break;
1536
1537 default:
1538 as_bad ("Unknown opcode: `%s'", str);
1539 exit (1);
1540 }
1541
1542 save_s = str;
1543
1544 /* Convert everything into lower case. */
1545 while (*save_s)
1546 {
1547 if (isupper (*save_s))
1548 *save_s = tolower (*save_s);
1549 save_s++;
1550 }
1551
1552 /* Look up the opcode in the has table. */
1553 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1554 {
1555 as_bad ("Unknown opcode: `%s'", str);
1556 return;
1557 }
1558
1559 if (comma)
1560 {
1561 *--s = ',';
1562 }
1563
1564 /* Mark the location where arguments for the instruction start, then
1565 start processing them. */
1566 argstart = s;
1567 for (;;)
1568 {
1569 /* Do some initialization. */
1570 opcode = insn->match;
1571 bzero (&the_insn, sizeof (the_insn));
1572
1573 the_insn.reloc = R_HPPA_NONE;
1574
1575 /* Build the opcode, checking as we go to make
1576 sure that the operands match. */
1577 for (args = insn->args;; ++args)
1578 {
1579 switch (*args)
1580 {
1581
1582 /* End of arguments. */
1583 case '\0':
1584 if (*s == '\0')
1585 match = TRUE;
1586 break;
1587
1588 case '+':
1589 if (*s == '+')
1590 {
1591 ++s;
1592 continue;
1593 }
1594 if (*s == '-')
1595 continue;
1596 break;
1597
1598 /* These must match exactly. */
1599 case '(':
1600 case ')':
1601 case ',':
1602 case ' ':
1603 if (*s++ == *args)
1604 continue;
1605 break;
1606
1607 /* Handle a 5 bit register or control register field at 10. */
1608 case 'b':
1609 case '^':
1610 num = pa_parse_number (&s, 0);
1611 CHECK_FIELD (num, 31, 0, 0);
1612 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1613
1614 /* Handle a 5 bit register field at 15. */
1615 case 'x':
1616 num = pa_parse_number (&s, 0);
1617 CHECK_FIELD (num, 31, 0, 0);
1618 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1619
1620 /* Handle a 5 bit register field at 31. */
1621 case 'y':
1622 case 't':
1623 num = pa_parse_number (&s, 0);
1624 CHECK_FIELD (num, 31, 0, 0);
1625 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1626
1627 /* Handle a 5 bit field length at 31. */
1628 case 'T':
1629 num = pa_get_absolute_expression (&the_insn, &s);
1630 s = expr_end;
1631 CHECK_FIELD (num, 32, 1, 0);
1632 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1633
1634 /* Handle a 5 bit immediate at 15. */
1635 case '5':
1636 num = pa_get_absolute_expression (&the_insn, &s);
1637 s = expr_end;
1638 CHECK_FIELD (num, 15, -16, 0);
1639 low_sign_unext (num, 5, &num);
1640 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1641
1642 /* Handle a 5 bit immediate at 31. */
1643 case 'V':
1644 num = pa_get_absolute_expression (&the_insn, &s);
1645 s = expr_end;
1646 CHECK_FIELD (num, 15, -16, 0)
1647 low_sign_unext (num, 5, &num);
1648 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1649
1650 /* Handle an unsigned 5 bit immediate at 31. */
1651 case 'r':
1652 num = pa_get_absolute_expression (&the_insn, &s);
1653 s = expr_end;
1654 CHECK_FIELD (num, 31, 0, 0);
1655 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1656
1657 /* Handle an unsigned 5 bit immediate at 15. */
1658 case 'R':
1659 num = pa_get_absolute_expression (&the_insn, &s);
1660 s = expr_end;
1661 CHECK_FIELD (num, 31, 0, 0);
1662 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1663
1664 /* Handle a 2 bit space identifier at 17. */
1665 case 's':
1666 num = pa_parse_number (&s, 0);
1667 CHECK_FIELD (num, 3, 0, 1);
1668 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1669
1670 /* Handle a 3 bit space identifier at 18. */
1671 case 'S':
1672 num = pa_parse_number (&s, 0);
1673 CHECK_FIELD (num, 7, 0, 1);
1674 dis_assemble_3 (num, &num);
1675 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1676
1677 /* Handle a completer for an indexing load or store. */
1678 case 'c':
1679 {
1680 int uu = 0;
1681 int m = 0;
1682 int i = 0;
1683 while (*s == ',' && i < 2)
1684 {
1685 s++;
1686 if (strncasecmp (s, "sm", 2) == 0)
1687 {
1688 uu = 1;
1689 m = 1;
1690 s++;
1691 i++;
1692 }
1693 else if (strncasecmp (s, "m", 1) == 0)
1694 m = 1;
1695 else if (strncasecmp (s, "s", 1) == 0)
1696 uu = 1;
1697 else
1698 as_bad ("Invalid Indexed Load Completer.");
1699 s++;
1700 i++;
1701 }
1702 if (i > 2)
1703 as_bad ("Invalid Indexed Load Completer Syntax.");
1704 opcode |= m << 5;
1705 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1706 }
1707
1708 /* Handle a short load/store completer. */
1709 case 'C':
1710 {
1711 int a = 0;
1712 int m = 0;
1713 if (*s == ',')
1714 {
1715 s++;
1716 if (strncasecmp (s, "ma", 2) == 0)
1717 {
1718 a = 0;
1719 m = 1;
1720 }
1721 else if (strncasecmp (s, "mb", 2) == 0)
1722 {
1723 a = 1;
1724 m = 1;
1725 }
1726 else
1727 as_bad ("Invalid Short Load/Store Completer.");
1728 s += 2;
1729 }
1730 opcode |= m << 5;
1731 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1732 }
1733
1734 /* Handle a stbys completer. */
1735 case 'Y':
1736 {
1737 int a = 0;
1738 int m = 0;
1739 int i = 0;
1740 while (*s == ',' && i < 2)
1741 {
1742 s++;
1743 if (strncasecmp (s, "m", 1) == 0)
1744 m = 1;
1745 else if (strncasecmp (s, "b", 1) == 0)
1746 a = 0;
1747 else if (strncasecmp (s, "e", 1) == 0)
1748 a = 1;
1749 else
1750 as_bad ("Invalid Store Bytes Short Completer");
1751 s++;
1752 i++;
1753 }
1754 if (i > 2)
1755 as_bad ("Invalid Store Bytes Short Completer");
1756 opcode |= m << 5;
1757 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1758 }
1759
1760 /* Handle a non-negated compare/stubtract condition. */
1761 case '<':
1762 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1763 if (cmpltr < 0)
1764 {
1765 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1766 cmpltr = 0;
1767 }
1768 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1769
1770 /* Handle a negated or non-negated compare/subtract condition. */
1771 case '?':
1772 save_s = s;
1773 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1774 if (cmpltr < 0)
1775 {
1776 s = save_s;
1777 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1778 if (cmpltr < 0)
1779 {
1780 as_bad ("Invalid Compare/Subtract Condition.");
1781 cmpltr = 0;
1782 }
1783 else
1784 {
1785 /* Negated condition requires an opcode change. */
1786 opcode |= 1 << 27;
1787 }
1788 }
1789 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1790
1791 /* Handle a negated or non-negated add condition. */
1792 case '!':
1793 save_s = s;
1794 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1795 if (cmpltr < 0)
1796 {
1797 s = save_s;
1798 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1799 if (cmpltr < 0)
1800 {
1801 as_bad ("Invalid Compare/Subtract Condition");
1802 cmpltr = 0;
1803 }
1804 else
1805 {
1806 /* Negated condition requires an opcode change. */
1807 opcode |= 1 << 27;
1808 }
1809 }
1810 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1811
1812 /* Handle a compare/subtract condition. */
1813 case 'a':
1814 cmpltr = 0;
1815 flag = 0;
1816 save_s = s;
1817 if (*s == ',')
1818 {
1819 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1820 if (cmpltr < 0)
1821 {
1822 flag = 1;
1823 s = save_s;
1824 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1825 if (cmpltr < 0)
1826 {
1827 as_bad ("Invalid Compare/Subtract Condition");
1828 }
1829 }
1830 }
1831 opcode |= cmpltr << 13;
1832 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1833
1834 /* Handle a non-negated add condition. */
1835 case 'd':
1836 cmpltr = 0;
1837 nullif = 0;
1838 flag = 0;
1839 if (*s == ',')
1840 {
1841 s++;
1842 name = s;
1843 while (*s != ',' && *s != ' ' && *s != '\t')
1844 s += 1;
1845 c = *s;
1846 *s = 0x00;
1847 if (strcmp (name, "=") == 0)
1848 cmpltr = 1;
1849 else if (strcmp (name, "<") == 0)
1850 cmpltr = 2;
1851 else if (strcmp (name, "<=") == 0)
1852 cmpltr = 3;
1853 else if (strcasecmp (name, "nuv") == 0)
1854 cmpltr = 4;
1855 else if (strcasecmp (name, "znv") == 0)
1856 cmpltr = 5;
1857 else if (strcasecmp (name, "sv") == 0)
1858 cmpltr = 6;
1859 else if (strcasecmp (name, "od") == 0)
1860 cmpltr = 7;
1861 else if (strcasecmp (name, "n") == 0)
1862 nullif = 1;
1863 else if (strcasecmp (name, "tr") == 0)
1864 {
1865 cmpltr = 0;
1866 flag = 1;
1867 }
1868 else if (strcasecmp (name, "<>") == 0)
1869 {
1870 cmpltr = 1;
1871 flag = 1;
1872 }
1873 else if (strcasecmp (name, ">=") == 0)
1874 {
1875 cmpltr = 2;
1876 flag = 1;
1877 }
1878 else if (strcasecmp (name, ">") == 0)
1879 {
1880 cmpltr = 3;
1881 flag = 1;
1882 }
1883 else if (strcasecmp (name, "uv") == 0)
1884 {
1885 cmpltr = 4;
1886 flag = 1;
1887 }
1888 else if (strcasecmp (name, "vnz") == 0)
1889 {
1890 cmpltr = 5;
1891 flag = 1;
1892 }
1893 else if (strcasecmp (name, "nsv") == 0)
1894 {
1895 cmpltr = 6;
1896 flag = 1;
1897 }
1898 else if (strcasecmp (name, "ev") == 0)
1899 {
1900 cmpltr = 7;
1901 flag = 1;
1902 }
1903 else
1904 as_bad ("Invalid Add Condition: %s", name);
1905 *s = c;
1906 }
1907 nullif = pa_parse_nullif (&s);
1908 opcode |= nullif << 1;
1909 opcode |= cmpltr << 13;
1910 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1911
1912 /* HANDLE a logical instruction condition. */
1913 case '&':
1914 cmpltr = 0;
1915 flag = 0;
1916 if (*s == ',')
1917 {
1918 s++;
1919 name = s;
1920 while (*s != ',' && *s != ' ' && *s != '\t')
1921 s += 1;
1922 c = *s;
1923 *s = 0x00;
1924 if (strcmp (name, "=") == 0)
1925 cmpltr = 1;
1926 else if (strcmp (name, "<") == 0)
1927 cmpltr = 2;
1928 else if (strcmp (name, "<=") == 0)
1929 cmpltr = 3;
1930 else if (strcasecmp (name, "od") == 0)
1931 cmpltr = 7;
1932 else if (strcasecmp (name, "tr") == 0)
1933 {
1934 cmpltr = 0;
1935 flag = 1;
1936 }
1937 else if (strcmp (name, "<>") == 0)
1938 {
1939 cmpltr = 1;
1940 flag = 1;
1941 }
1942 else if (strcmp (name, ">=") == 0)
1943 {
1944 cmpltr = 2;
1945 flag = 1;
1946 }
1947 else if (strcmp (name, ">") == 0)
1948 {
1949 cmpltr = 3;
1950 flag = 1;
1951 }
1952 else if (strcasecmp (name, "ev") == 0)
1953 {
1954 cmpltr = 7;
1955 flag = 1;
1956 }
1957 else
1958 as_bad ("Invalid Logical Instruction Condition.");
1959 *s = c;
1960 }
1961 opcode |= cmpltr << 13;
1962 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1963
1964 /* Handle a unit instruction condition. */
1965 case 'U':
1966 cmpltr = 0;
1967 flag = 0;
1968 if (*s == ',')
1969 {
1970 s++;
1971 if (strncasecmp (s, "sbz", 3) == 0)
1972 {
1973 cmpltr = 2;
1974 s += 3;
1975 }
1976 else if (strncasecmp (s, "shz", 3) == 0)
1977 {
1978 cmpltr = 3;
1979 s += 3;
1980 }
1981 else if (strncasecmp (s, "sdc", 3) == 0)
1982 {
1983 cmpltr = 4;
1984 s += 3;
1985 }
1986 else if (strncasecmp (s, "sbc", 3) == 0)
1987 {
1988 cmpltr = 6;
1989 s += 3;
1990 }
1991 else if (strncasecmp (s, "shc", 3) == 0)
1992 {
1993 cmpltr = 7;
1994 s += 3;
1995 }
1996 else if (strncasecmp (s, "tr", 2) == 0)
1997 {
1998 cmpltr = 0;
1999 flag = 1;
2000 s += 2;
2001 }
2002 else if (strncasecmp (s, "nbz", 3) == 0)
2003 {
2004 cmpltr = 2;
2005 flag = 1;
2006 s += 3;
2007 }
2008 else if (strncasecmp (s, "nhz", 3) == 0)
2009 {
2010 cmpltr = 3;
2011 flag = 1;
2012 s += 3;
2013 }
2014 else if (strncasecmp (s, "ndc", 3) == 0)
2015 {
2016 cmpltr = 4;
2017 flag = 1;
2018 s += 3;
2019 }
2020 else if (strncasecmp (s, "nbc", 3) == 0)
2021 {
2022 cmpltr = 6;
2023 flag = 1;
2024 s += 3;
2025 }
2026 else if (strncasecmp (s, "nhc", 3) == 0)
2027 {
2028 cmpltr = 7;
2029 flag = 1;
2030 s += 3;
2031 }
2032 else
2033 as_bad ("Invalid Logical Instruction Condition.");
2034 }
2035 opcode |= cmpltr << 13;
2036 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
2037
2038 /* Handle a shift/extract/deposit condition. */
2039 case '|':
2040 case '>':
2041 cmpltr = 0;
2042 if (*s == ',')
2043 {
2044 save_s = s++;
2045 name = s;
2046 while (*s != ',' && *s != ' ' && *s != '\t')
2047 s += 1;
2048 c = *s;
2049 *s = 0x00;
2050 if (strcmp (name, "=") == 0)
2051 cmpltr = 1;
2052 else if (strcmp (name, "<") == 0)
2053 cmpltr = 2;
2054 else if (strcasecmp (name, "od") == 0)
2055 cmpltr = 3;
2056 else if (strcasecmp (name, "tr") == 0)
2057 cmpltr = 4;
2058 else if (strcmp (name, "<>") == 0)
2059 cmpltr = 5;
2060 else if (strcmp (name, ">=") == 0)
2061 cmpltr = 6;
2062 else if (strcasecmp (name, "ev") == 0)
2063 cmpltr = 7;
2064 /* Handle movb,n. Put things back the way they were.
2065 This includes moving s back to where it started. */
2066 else if (strcasecmp (name, "n") == 0 && *args == '|')
2067 {
2068 *s = c;
2069 s = save_s;
2070 continue;
2071 }
2072 else
2073 as_bad ("Invalid Shift/Extract/Deposit Condition.");
2074 *s = c;
2075 }
2076 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2077
2078 /* Handle bvb and bb conditions. */
2079 case '~':
2080 cmpltr = 0;
2081 if (*s == ',')
2082 {
2083 s++;
2084 if (strncmp (s, "<", 1) == 0)
2085 {
2086 cmpltr = 2;
2087 s++;
2088 }
2089 else if (strncmp (s, ">=", 2) == 0)
2090 {
2091 cmpltr = 6;
2092 s += 2;
2093 }
2094 else
2095 as_bad ("Invalid Bit Branch Condition: %c", *s);
2096 }
2097 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2098
2099 /* Handle a system control completer. */
2100 case 'Z':
2101 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2102 {
2103 flag = 1;
2104 s += 2;
2105 }
2106 else
2107 flag = 0;
2108
2109 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2110
2111 /* Handle a nullification completer for branch instructions. */
2112 case 'n':
2113 nullif = pa_parse_nullif (&s);
2114 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2115
2116 /* Handle a 11 bit immediate at 31. */
2117 case 'i':
2118 the_insn.field_selector = pa_chk_field_selector (&s);
2119 get_expression (s);
2120 s = expr_end;
2121 if (the_insn.exp.X_op == O_constant)
2122 {
2123 num = evaluate_absolute (&the_insn);
2124 CHECK_FIELD (num, 1023, -1024, 0);
2125 low_sign_unext (num, 11, &num);
2126 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2127 }
2128 else
2129 {
2130 if (is_DP_relative (the_insn.exp))
2131 the_insn.reloc = R_HPPA_GOTOFF;
2132 else if (is_PC_relative (the_insn.exp))
2133 the_insn.reloc = R_HPPA_PCREL_CALL;
2134 else if (is_complex (the_insn.exp))
2135 the_insn.reloc = R_HPPA_COMPLEX;
2136 else
2137 the_insn.reloc = R_HPPA;
2138 the_insn.format = 11;
2139 continue;
2140 }
2141
2142 /* Handle a 14 bit immediate at 31. */
2143 case 'j':
2144 the_insn.field_selector = pa_chk_field_selector (&s);
2145 get_expression (s);
2146 s = expr_end;
2147 if (the_insn.exp.X_op == O_constant)
2148 {
2149 num = evaluate_absolute (&the_insn);
2150 CHECK_FIELD (num, 8191, -8192, 0);
2151 low_sign_unext (num, 14, &num);
2152 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2153 }
2154 else
2155 {
2156 if (is_DP_relative (the_insn.exp))
2157 the_insn.reloc = R_HPPA_GOTOFF;
2158 else if (is_PC_relative (the_insn.exp))
2159 the_insn.reloc = R_HPPA_PCREL_CALL;
2160 else if (is_complex (the_insn.exp))
2161 the_insn.reloc = R_HPPA_COMPLEX;
2162 else
2163 the_insn.reloc = R_HPPA;
2164 the_insn.format = 14;
2165 continue;
2166 }
2167
2168 /* Handle a 21 bit immediate at 31. */
2169 case 'k':
2170 the_insn.field_selector = pa_chk_field_selector (&s);
2171 get_expression (s);
2172 s = expr_end;
2173 if (the_insn.exp.X_op == O_constant)
2174 {
2175 num = evaluate_absolute (&the_insn);
2176 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
2177 dis_assemble_21 (num, &num);
2178 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2179 }
2180 else
2181 {
2182 if (is_DP_relative (the_insn.exp))
2183 the_insn.reloc = R_HPPA_GOTOFF;
2184 else if (is_PC_relative (the_insn.exp))
2185 the_insn.reloc = R_HPPA_PCREL_CALL;
2186 else if (is_complex (the_insn.exp))
2187 the_insn.reloc = R_HPPA_COMPLEX;
2188 else
2189 the_insn.reloc = R_HPPA;
2190 the_insn.format = 21;
2191 continue;
2192 }
2193
2194 /* Handle a 12 bit branch displacement. */
2195 case 'w':
2196 the_insn.field_selector = pa_chk_field_selector (&s);
2197 get_expression (s);
2198 s = expr_end;
2199 the_insn.pcrel = 1;
2200 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2201 {
2202 unsigned int w1, w, result;
2203
2204 num = evaluate_absolute (&the_insn);
2205 if (num % 4)
2206 {
2207 as_bad ("Branch to unaligned address");
2208 break;
2209 }
2210 CHECK_FIELD (num, 8191, -8192, 0);
2211 sign_unext ((num - 8) >> 2, 12, &result);
2212 dis_assemble_12 (result, &w1, &w);
2213 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2214 }
2215 else
2216 {
2217 if (is_complex (the_insn.exp))
2218 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2219 else
2220 the_insn.reloc = R_HPPA_PCREL_CALL;
2221 the_insn.format = 12;
2222 the_insn.arg_reloc = last_call_desc.arg_reloc;
2223 bzero (&last_call_desc, sizeof (struct call_desc));
2224 s = expr_end;
2225 continue;
2226 }
2227
2228 /* Handle a 17 bit branch displacement. */
2229 case 'W':
2230 the_insn.field_selector = pa_chk_field_selector (&s);
2231 get_expression (s);
2232 s = expr_end;
2233 the_insn.pcrel = 1;
2234 if (!the_insn.exp.X_add_symbol
2235 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2236 "L$0\001"))
2237 {
2238 unsigned int w2, w1, w, result;
2239
2240 num = evaluate_absolute (&the_insn);
2241 if (num % 4)
2242 {
2243 as_bad ("Branch to unaligned address");
2244 break;
2245 }
2246 CHECK_FIELD (num, 262143, -262144, 0);
2247
2248 if (the_insn.exp.X_add_symbol)
2249 num -= 8;
2250
2251 sign_unext (num >> 2, 17, &result);
2252 dis_assemble_17 (result, &w1, &w2, &w);
2253 INSERT_FIELD_AND_CONTINUE (opcode,
2254 ((w2 << 2) | (w1 << 16) | w), 0);
2255 }
2256 else
2257 {
2258 if (is_complex (the_insn.exp))
2259 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2260 else
2261 the_insn.reloc = R_HPPA_PCREL_CALL;
2262 the_insn.format = 17;
2263 the_insn.arg_reloc = last_call_desc.arg_reloc;
2264 bzero (&last_call_desc, sizeof (struct call_desc));
2265 continue;
2266 }
2267
2268 /* Handle an absolute 17 bit branch target. */
2269 case 'z':
2270 the_insn.field_selector = pa_chk_field_selector (&s);
2271 get_expression (s);
2272 s = expr_end;
2273 the_insn.pcrel = 0;
2274 if (!the_insn.exp.X_add_symbol
2275 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2276 "L$0\001"))
2277 {
2278 unsigned int w2, w1, w, result;
2279
2280 num = evaluate_absolute (&the_insn);
2281 if (num % 4)
2282 {
2283 as_bad ("Branch to unaligned address");
2284 break;
2285 }
2286 CHECK_FIELD (num, 262143, -262144, 0);
2287
2288 if (the_insn.exp.X_add_symbol)
2289 num -= 8;
2290
2291 sign_unext (num >> 2, 17, &result);
2292 dis_assemble_17 (result, &w1, &w2, &w);
2293 INSERT_FIELD_AND_CONTINUE (opcode,
2294 ((w2 << 2) | (w1 << 16) | w), 0);
2295 }
2296 else
2297 {
2298 if (is_complex (the_insn.exp))
2299 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2300 else
2301 the_insn.reloc = R_HPPA_ABS_CALL;
2302 the_insn.format = 17;
2303 continue;
2304 }
2305
2306 /* Handle a 5 bit shift count at 26. */
2307 case 'p':
2308 num = pa_get_absolute_expression (&the_insn, &s);
2309 s = expr_end;
2310 CHECK_FIELD (num, 31, 0, 0);
2311 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2312
2313 /* Handle a 5 bit bit position at 26. */
2314 case 'P':
2315 num = pa_get_absolute_expression (&the_insn, &s);
2316 s = expr_end;
2317 CHECK_FIELD (num, 31, 0, 0);
2318 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2319
2320 /* Handle a 5 bit immediate at 10. */
2321 case 'Q':
2322 num = pa_get_absolute_expression (&the_insn, &s);
2323 s = expr_end;
2324 CHECK_FIELD (num, 31, 0, 0);
2325 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2326
2327 /* Handle a 13 bit immediate at 18. */
2328 case 'A':
2329 num = pa_get_absolute_expression (&the_insn, &s);
2330 s = expr_end;
2331 CHECK_FIELD (num, 4095, -4096, 0);
2332 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2333
2334 /* Handle a 26 bit immediate at 31. */
2335 case 'D':
2336 num = pa_get_absolute_expression (&the_insn, &s);
2337 s = expr_end;
2338 CHECK_FIELD (num, 671108864, 0, 0);
2339 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2340
2341 /* Handle a 3 bit SFU identifier at 25. */
2342 case 'f':
2343 num = pa_get_absolute_expression (&the_insn, &s);
2344 s = expr_end;
2345 CHECK_FIELD (num, 7, 0, 0);
2346 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2347
2348 /* We don't support any of these. FIXME. */
2349 case 'O':
2350 get_expression (s);
2351 s = expr_end;
2352 abort ();
2353 continue;
2354
2355 /* Handle a source FP operand format completer. */
2356 case 'F':
2357 flag = pa_parse_fp_format (&s);
2358 the_insn.fpof1 = flag;
2359 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2360
2361 /* Handle a destination FP operand format completer. */
2362 case 'G':
2363 /* pa_parse_format needs the ',' prefix. */
2364 s--;
2365 flag = pa_parse_fp_format (&s);
2366 the_insn.fpof2 = flag;
2367 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2368
2369 /* Handle FP compare conditions. */
2370 case 'M':
2371 cond = pa_parse_fp_cmp_cond (&s);
2372 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2373
2374 /* Handle L/R register halves like 't'. */
2375 case 'v':
2376 {
2377 struct pa_89_fp_reg_struct result;
2378
2379 pa_parse_number (&s, &result);
2380 CHECK_FIELD (result.number_part, 31, 0, 0);
2381 opcode |= result.number_part;
2382
2383 /* 0x30 opcodes are FP arithmetic operation opcodes
2384 and need to be turned into 0x38 opcodes. This
2385 is not necessary for loads/stores. */
2386 if (need_89_opcode (&the_insn, &result)
2387 && ((opcode & 0xfc000000) == 0x30000000))
2388 opcode |= 1 << 27;
2389
2390 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2391 }
2392
2393 /* Handle L/R register halves like 'b'. */
2394 case 'E':
2395 {
2396 struct pa_89_fp_reg_struct result;
2397
2398 pa_parse_number (&s, &result);
2399 CHECK_FIELD (result.number_part, 31, 0, 0);
2400 opcode |= result.number_part << 21;
2401 if (need_89_opcode (&the_insn, &result))
2402 {
2403 opcode |= (result.l_r_select & 1) << 7;
2404 opcode |= 1 << 27;
2405 }
2406 continue;
2407 }
2408
2409 /* Handle L/R register halves like 'x'. */
2410 case 'X':
2411 {
2412 struct pa_89_fp_reg_struct result;
2413
2414 pa_parse_number (&s, &result);
2415 CHECK_FIELD (result.number_part, 31, 0, 0);
2416 opcode |= (result.number_part & 0x1f) << 16;
2417 if (need_89_opcode (&the_insn, &result))
2418 {
2419 opcode |= (result.l_r_select & 1) << 12;
2420 opcode |= 1 << 27;
2421 }
2422 continue;
2423 }
2424
2425 /* Handle a 5 bit register field at 10. */
2426 case '4':
2427 {
2428 struct pa_89_fp_reg_struct result;
2429
2430 pa_parse_number (&s, &result);
2431 CHECK_FIELD (result.number_part, 31, 0, 0);
2432 if (the_insn.fpof1 == SGL)
2433 {
2434 result.number_part &= 0xF;
2435 result.number_part |= (result.l_r_select & 1) << 4;
2436 }
2437 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2438 }
2439
2440 /* Handle a 5 bit register field at 15. */
2441 case '6':
2442 {
2443 struct pa_89_fp_reg_struct result;
2444
2445 pa_parse_number (&s, &result);
2446 CHECK_FIELD (result.number_part, 31, 0, 0);
2447 if (the_insn.fpof1 == SGL)
2448 {
2449 result.number_part &= 0xF;
2450 result.number_part |= (result.l_r_select & 1) << 4;
2451 }
2452 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2453 }
2454
2455 /* Handle a 5 bit register field at 31. */
2456 case '7':
2457 {
2458 struct pa_89_fp_reg_struct result;
2459
2460 pa_parse_number (&s, &result);
2461 CHECK_FIELD (result.number_part, 31, 0, 0);
2462 if (the_insn.fpof1 == SGL)
2463 {
2464 result.number_part &= 0xF;
2465 result.number_part |= (result.l_r_select & 1) << 4;
2466 }
2467 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2468 }
2469
2470 /* Handle a 5 bit register field at 20. */
2471 case '8':
2472 {
2473 struct pa_89_fp_reg_struct result;
2474
2475 pa_parse_number (&s, &result);
2476 CHECK_FIELD (result.number_part, 31, 0, 0);
2477 if (the_insn.fpof1 == SGL)
2478 {
2479 result.number_part &= 0xF;
2480 result.number_part |= (result.l_r_select & 1) << 4;
2481 }
2482 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2483 }
2484
2485 /* Handle a 5 bit register field at 25. */
2486 case '9':
2487 {
2488 struct pa_89_fp_reg_struct result;
2489
2490 pa_parse_number (&s, &result);
2491 CHECK_FIELD (result.number_part, 31, 0, 0);
2492 if (the_insn.fpof1 == SGL)
2493 {
2494 result.number_part &= 0xF;
2495 result.number_part |= (result.l_r_select & 1) << 4;
2496 }
2497 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2498 }
2499
2500 /* Handle a floating point operand format at 26.
2501 Only allows single and double precision. */
2502 case 'H':
2503 flag = pa_parse_fp_format (&s);
2504 switch (flag)
2505 {
2506 case SGL:
2507 opcode |= 0x20;
2508 case DBL:
2509 the_insn.fpof1 = flag;
2510 continue;
2511
2512 case QUAD:
2513 case ILLEGAL_FMT:
2514 default:
2515 as_bad ("Invalid Floating Point Operand Format.");
2516 }
2517 break;
2518
2519 default:
2520 abort ();
2521 }
2522 break;
2523 }
2524
2525 /* Check if the args matched. */
2526 if (match == FALSE)
2527 {
2528 if (&insn[1] - pa_opcodes < NUMOPCODES
2529 && !strcmp (insn->name, insn[1].name))
2530 {
2531 ++insn;
2532 s = argstart;
2533 continue;
2534 }
2535 else
2536 {
2537 as_bad ("Invalid operands %s", error_message);
2538 return;
2539 }
2540 }
2541 break;
2542 }
2543
2544 the_insn.opcode = opcode;
2545 return;
2546 }
2547
2548 /* Turn a string in input_line_pointer into a floating point constant of type
2549 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2550 emitted is stored in *sizeP . An error message or NULL is returned. */
2551
2552 #define MAX_LITTLENUMS 6
2553
2554 char *
2555 md_atof (type, litP, sizeP)
2556 char type;
2557 char *litP;
2558 int *sizeP;
2559 {
2560 int prec;
2561 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2562 LITTLENUM_TYPE *wordP;
2563 char *t;
2564
2565 switch (type)
2566 {
2567
2568 case 'f':
2569 case 'F':
2570 case 's':
2571 case 'S':
2572 prec = 2;
2573 break;
2574
2575 case 'd':
2576 case 'D':
2577 case 'r':
2578 case 'R':
2579 prec = 4;
2580 break;
2581
2582 case 'x':
2583 case 'X':
2584 prec = 6;
2585 break;
2586
2587 case 'p':
2588 case 'P':
2589 prec = 6;
2590 break;
2591
2592 default:
2593 *sizeP = 0;
2594 return "Bad call to MD_ATOF()";
2595 }
2596 t = atof_ieee (input_line_pointer, type, words);
2597 if (t)
2598 input_line_pointer = t;
2599 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2600 for (wordP = words; prec--;)
2601 {
2602 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2603 litP += sizeof (LITTLENUM_TYPE);
2604 }
2605 return NULL;
2606 }
2607
2608 /* Write out big-endian. */
2609
2610 void
2611 md_number_to_chars (buf, val, n)
2612 char *buf;
2613 valueT val;
2614 int n;
2615 {
2616 number_to_chars_bigendian (buf, val, n);
2617 }
2618
2619 /* Translate internal representation of relocation info to BFD target
2620 format. */
2621
2622 arelent **
2623 tc_gen_reloc (section, fixp)
2624 asection *section;
2625 fixS *fixp;
2626 {
2627 arelent *reloc;
2628 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2629 bfd_reloc_code_real_type code;
2630 static int unwind_reloc_fixp_cnt = 0;
2631 static arelent *unwind_reloc_entryP = NULL;
2632 static arelent *no_relocs = NULL;
2633 arelent **relocs;
2634 bfd_reloc_code_real_type **codes;
2635 int n_relocs;
2636 int i;
2637
2638 if (fixp->fx_addsy == 0)
2639 return &no_relocs;
2640 assert (hppa_fixp != 0);
2641 assert (section != 0);
2642
2643 #ifdef OBJ_ELF
2644 /* Yuk. I would really like to push all this ELF specific unwind
2645 crud into BFD and the linker. That's how SOM does it -- and
2646 if we could make ELF emulate that then we could share more code
2647 in GAS (and potentially a gnu-linker later).
2648
2649 Unwind section relocations are handled in a special way.
2650 The relocations for the .unwind section are originally
2651 built in the usual way. That is, for each unwind table
2652 entry there are two relocations: one for the beginning of
2653 the function and one for the end.
2654
2655 The first time we enter this function we create a
2656 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2657 of the relocation is initialized to 0. Each additional
2658 pair of times this function is called for the unwind
2659 section represents an additional unwind table entry. Thus,
2660 the addend of the relocation should end up to be the number
2661 of unwind table entries. */
2662 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2663 {
2664 if (unwind_reloc_entryP == NULL)
2665 {
2666 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2667 sizeof (arelent));
2668 assert (reloc != 0);
2669 unwind_reloc_entryP = reloc;
2670 unwind_reloc_fixp_cnt++;
2671 unwind_reloc_entryP->address
2672 = fixp->fx_frag->fr_address + fixp->fx_where;
2673 /* A pointer to any function will do. We only
2674 need one to tell us what section the unwind
2675 relocations are for. */
2676 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2677 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2678 fixp->fx_r_type = R_HPPA_UNWIND;
2679 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2680 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2681 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2682 sizeof (arelent *) * 2);
2683 assert (relocs != 0);
2684 relocs[0] = unwind_reloc_entryP;
2685 relocs[1] = NULL;
2686 return relocs;
2687 }
2688 unwind_reloc_fixp_cnt++;
2689 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2690
2691 return &no_relocs;
2692 }
2693 #endif
2694
2695 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2696 assert (reloc != 0);
2697
2698 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2699 codes = hppa_gen_reloc_type (stdoutput,
2700 fixp->fx_r_type,
2701 hppa_fixp->fx_r_format,
2702 hppa_fixp->fx_r_field);
2703
2704 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2705 ;
2706
2707 relocs = (arelent **)
2708 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2709 assert (relocs != 0);
2710
2711 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2712 sizeof (arelent) * n_relocs);
2713 if (n_relocs > 0)
2714 assert (reloc != 0);
2715
2716 for (i = 0; i < n_relocs; i++)
2717 relocs[i] = &reloc[i];
2718
2719 relocs[n_relocs] = NULL;
2720
2721 #ifdef OBJ_ELF
2722 switch (fixp->fx_r_type)
2723 {
2724 case R_HPPA_COMPLEX:
2725 case R_HPPA_COMPLEX_PCREL_CALL:
2726 case R_HPPA_COMPLEX_ABS_CALL:
2727 assert (n_relocs == 5);
2728
2729 for (i = 0; i < n_relocs; i++)
2730 {
2731 reloc[i].sym_ptr_ptr = NULL;
2732 reloc[i].address = 0;
2733 reloc[i].addend = 0;
2734 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2735 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2736 }
2737
2738 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2739 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2740 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2741
2742 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2743 reloc[3].addend = fixp->fx_addnumber;
2744 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2745 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2746 reloc[1].addend = fixp->fx_addnumber;
2747
2748 break;
2749
2750 default:
2751 assert (n_relocs == 1);
2752
2753 code = *codes[0];
2754
2755 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2756 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2757 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2758 reloc->addend = 0; /* default */
2759
2760 assert (reloc->howto && code == reloc->howto->type);
2761
2762 /* Now, do any processing that is dependent on the relocation type. */
2763 switch (code)
2764 {
2765 case R_HPPA_PLABEL_32:
2766 case R_HPPA_PLABEL_11:
2767 case R_HPPA_PLABEL_14:
2768 case R_HPPA_PLABEL_L21:
2769 case R_HPPA_PLABEL_R11:
2770 case R_HPPA_PLABEL_R14:
2771 /* For plabel relocations, the addend of the
2772 relocation should be either 0 (no static link) or 2
2773 (static link required).
2774
2775 FIXME: assume that fx_addnumber contains this
2776 information */
2777 reloc->addend = fixp->fx_addnumber;
2778 break;
2779
2780 case R_HPPA_ABS_CALL_11:
2781 case R_HPPA_ABS_CALL_14:
2782 case R_HPPA_ABS_CALL_17:
2783 case R_HPPA_ABS_CALL_L21:
2784 case R_HPPA_ABS_CALL_R11:
2785 case R_HPPA_ABS_CALL_R14:
2786 case R_HPPA_ABS_CALL_R17:
2787 case R_HPPA_ABS_CALL_LS21:
2788 case R_HPPA_ABS_CALL_RS11:
2789 case R_HPPA_ABS_CALL_RS14:
2790 case R_HPPA_ABS_CALL_RS17:
2791 case R_HPPA_ABS_CALL_LD21:
2792 case R_HPPA_ABS_CALL_RD11:
2793 case R_HPPA_ABS_CALL_RD14:
2794 case R_HPPA_ABS_CALL_RD17:
2795 case R_HPPA_ABS_CALL_LR21:
2796 case R_HPPA_ABS_CALL_RR14:
2797 case R_HPPA_ABS_CALL_RR17:
2798
2799 case R_HPPA_PCREL_CALL_11:
2800 case R_HPPA_PCREL_CALL_14:
2801 case R_HPPA_PCREL_CALL_17:
2802 case R_HPPA_PCREL_CALL_L21:
2803 case R_HPPA_PCREL_CALL_R11:
2804 case R_HPPA_PCREL_CALL_R14:
2805 case R_HPPA_PCREL_CALL_R17:
2806 case R_HPPA_PCREL_CALL_LS21:
2807 case R_HPPA_PCREL_CALL_RS11:
2808 case R_HPPA_PCREL_CALL_RS14:
2809 case R_HPPA_PCREL_CALL_RS17:
2810 case R_HPPA_PCREL_CALL_LD21:
2811 case R_HPPA_PCREL_CALL_RD11:
2812 case R_HPPA_PCREL_CALL_RD14:
2813 case R_HPPA_PCREL_CALL_RD17:
2814 case R_HPPA_PCREL_CALL_LR21:
2815 case R_HPPA_PCREL_CALL_RR14:
2816 case R_HPPA_PCREL_CALL_RR17:
2817 /* The constant is stored in the instruction. */
2818 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2819 break;
2820 default:
2821 reloc->addend = fixp->fx_addnumber;
2822 break;
2823 }
2824 break;
2825 }
2826 #else /* OBJ_SOM */
2827
2828 /* Preliminary relocation handling for SOM. Needs to handle
2829 COMPLEX relocations (yes, I've seen them occur) and it will
2830 need to handle R_ENTRY/R_EXIT relocations in the very near future
2831 (for generating unwinds). */
2832 switch (fixp->fx_r_type)
2833 {
2834 case R_HPPA_COMPLEX:
2835 case R_HPPA_COMPLEX_PCREL_CALL:
2836 case R_HPPA_COMPLEX_ABS_CALL:
2837 abort ();
2838 break;
2839 default:
2840 assert (n_relocs == 1);
2841
2842 code = *codes[0];
2843
2844 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2845 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2846 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2847
2848 switch (code)
2849 {
2850 case R_PCREL_CALL:
2851 case R_ABS_CALL:
2852 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2853 break;
2854
2855 case R_DATA_PLABEL:
2856 case R_CODE_PLABEL:
2857 /* For plabel relocations, the addend of the
2858 relocation should be either 0 (no static link) or 2
2859 (static link required).
2860
2861 FIXME: We always assume no static link! */
2862 reloc->addend = 0;
2863 break;
2864
2865 default:
2866 reloc->addend = fixp->fx_addnumber;
2867 break;
2868 }
2869 break;
2870 }
2871 #endif
2872
2873 return relocs;
2874 }
2875
2876 /* Process any machine dependent frag types. */
2877
2878 void
2879 md_convert_frag (abfd, sec, fragP)
2880 register bfd *abfd;
2881 register asection *sec;
2882 register fragS *fragP;
2883 {
2884 unsigned int address;
2885
2886 if (fragP->fr_type == rs_machine_dependent)
2887 {
2888 switch ((int) fragP->fr_subtype)
2889 {
2890 case 0:
2891 fragP->fr_type = rs_fill;
2892 know (fragP->fr_var == 1);
2893 know (fragP->fr_next);
2894 address = fragP->fr_address + fragP->fr_fix;
2895 if (address % fragP->fr_offset)
2896 {
2897 fragP->fr_offset =
2898 fragP->fr_next->fr_address
2899 - fragP->fr_address
2900 - fragP->fr_fix;
2901 }
2902 else
2903 fragP->fr_offset = 0;
2904 break;
2905 }
2906 }
2907 }
2908
2909 /* Round up a section size to the appropriate boundary. */
2910
2911 valueT
2912 md_section_align (segment, size)
2913 asection *segment;
2914 valueT size;
2915 {
2916 int align = bfd_get_section_alignment (stdoutput, segment);
2917 int align2 = (1 << align) - 1;
2918
2919 return (size + align2) & ~align2;
2920
2921 }
2922
2923 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2924 void
2925 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2926 char *ptr;
2927 addressT from_addr, to_addr;
2928 fragS *frag;
2929 symbolS *to_symbol;
2930 {
2931 fprintf (stderr, "pa_create_short_jmp\n");
2932 abort ();
2933 }
2934
2935 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2936 void
2937 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2938 char *ptr;
2939 addressT from_addr, to_addr;
2940 fragS *frag;
2941 symbolS *to_symbol;
2942 {
2943 fprintf (stderr, "pa_create_long_jump\n");
2944 abort ();
2945 }
2946
2947 /* Return the approximate size of a frag before relaxation has occurred. */
2948 int
2949 md_estimate_size_before_relax (fragP, segment)
2950 register fragS *fragP;
2951 asection *segment;
2952 {
2953 int size;
2954
2955 size = 0;
2956
2957 while ((fragP->fr_fix + size) % fragP->fr_offset)
2958 size++;
2959
2960 return size;
2961 }
2962
2963 /* Parse machine dependent options. There are none on the PA. */
2964 int
2965 md_parse_option (argP, cntP, vecP)
2966 char **argP;
2967 int *cntP;
2968 char ***vecP;
2969 {
2970 return 1;
2971 }
2972
2973 /* We have no need to default values of symbols. */
2974
2975 symbolS *
2976 md_undefined_symbol (name)
2977 char *name;
2978 {
2979 return 0;
2980 }
2981
2982 /* Parse an operand that is machine-specific.
2983 We just return without modifying the expression as we have nothing
2984 to do on the PA. */
2985
2986 void
2987 md_operand (expressionP)
2988 expressionS *expressionP;
2989 {
2990 }
2991
2992 /* Helper function for md_apply_fix. Actually determine if the fix
2993 can be applied, and if so, apply it.
2994
2995 If a fix is applied, then set fx_addsy to NULL which indicates
2996 the fix was applied and need not be emitted into the object file. */
2997
2998 static void
2999 md_apply_fix_1 (fixP, val)
3000 fixS *fixP;
3001 long val;
3002 {
3003 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
3004 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
3005 long new_val, result;
3006 unsigned int w1, w2, w;
3007
3008 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
3009 never be "applied". They must always be emitted. */
3010 #ifdef OBJ_SOM
3011 if (fixP->fx_r_type == R_HPPA_ENTRY
3012 || fixP->fx_r_type == R_HPPA_EXIT)
3013 return;
3014 #endif
3015
3016 /* There should have been an HPPA specific fixup associated
3017 with the GAS fixup. */
3018 if (hppa_fixP)
3019 {
3020 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
3021 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
3022
3023 if (fixP->fx_r_type == R_HPPA_NONE)
3024 fmt = 0;
3025
3026 /* Remember this value for emit_reloc. FIXME, is this braindamage
3027 documented anywhere!?! */
3028 fixP->fx_addnumber = val;
3029
3030 /* Check if this is an undefined symbol. No relocation can
3031 possibly be performed in this case. */
3032 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
3033 || (fixP->fx_subsy
3034 && fixP->fx_subsy->bsym->section == &bfd_und_section))
3035 return;
3036
3037 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
3038 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
3039 && hppa_fixP->fx_r_field != R_HPPA_RPSEL)
3040 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3041 else
3042 new_val = 0;
3043
3044 switch (fmt)
3045 {
3046 /* Handle all opcodes with the 'j' operand type. */
3047 case 14:
3048 CHECK_FIELD (new_val, 8191, -8192, 0);
3049
3050 /* Mask off 14 bits to be changed. */
3051 bfd_put_32 (stdoutput,
3052 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3053 buf);
3054 low_sign_unext (new_val, 14, &result);
3055 break;
3056
3057 /* Handle all opcodes with the 'k' operand type. */
3058 case 21:
3059 CHECK_FIELD (new_val, 2097152, 0, 0);
3060
3061 /* Mask off 21 bits to be changed. */
3062 bfd_put_32 (stdoutput,
3063 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3064 buf);
3065 dis_assemble_21 (new_val, &result);
3066 break;
3067
3068 /* Handle all the opcodes with the 'i' operand type. */
3069 case 11:
3070 CHECK_FIELD (new_val, 1023, -1023, 0);
3071
3072 /* Mask off 11 bits to be changed. */
3073 bfd_put_32 (stdoutput,
3074 bfd_get_32 (stdoutput, buf) & 0xffff800,
3075 buf);
3076 low_sign_unext (new_val, 11, &result);
3077 break;
3078
3079 /* Handle all the opcodes with the 'w' operand type. */
3080 case 12:
3081 CHECK_FIELD (new_val, 8191, -8192, 0)
3082
3083 /* Mask off 11 bits to be changed. */
3084 sign_unext ((new_val - 8) >> 2, 12, &result);
3085 bfd_put_32 (stdoutput,
3086 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3087 buf);
3088
3089 dis_assemble_12 (result, &w1, &w);
3090 result = ((w1 << 2) | w);
3091 break;
3092
3093 #define stub_needed(CALLER, CALLEE) \
3094 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3095
3096 /* Handle some of the opcodes with the 'W' operand type. */
3097 case 17:
3098 /* If a long-call stub or argument relocation stub is
3099 needed, then we can not apply this relocation, instead
3100 the linker must handle it. */
3101 if (new_val > 262143 || new_val < -262144
3102 || stub_needed (((obj_symbol_type *)
3103 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3104 hppa_fixP->fx_arg_reloc))
3105 return;
3106
3107 /* No stubs were needed, we can perform this relocation. */
3108 CHECK_FIELD (new_val, 262143, -262144, 0);
3109
3110 /* Mask off 17 bits to be changed. */
3111 bfd_put_32 (stdoutput,
3112 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3113 buf);
3114 sign_unext ((new_val - 8) >> 2, 17, &result);
3115 dis_assemble_17 (result, &w1, &w2, &w);
3116 result = ((w2 << 2) | (w1 << 16) | w);
3117 break;
3118
3119 #undef too_far
3120 #undef stub_needed
3121
3122 case 32:
3123 #ifdef OBJ_ELF
3124 /* These are ELF specific relocations. ELF unfortunately
3125 handles unwinds in a completely different manner. */
3126 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3127 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3128 result = fixP->fx_addnumber;
3129 else
3130 #endif
3131 {
3132 result = 0;
3133 fixP->fx_addnumber = fixP->fx_offset;
3134 bfd_put_32 (stdoutput, 0, buf);
3135 return;
3136 }
3137 break;
3138
3139 case 0:
3140 return;
3141
3142 default:
3143 as_bad ("Unknown relocation encountered in md_apply_fix.");
3144 return;
3145 }
3146
3147 /* Insert the relocation. */
3148 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3149 }
3150 else
3151 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3152 (unsigned int) fixP, fixP->fx_r_type);
3153 }
3154
3155 /* Apply a fix into a frag's data (if possible). */
3156
3157 int
3158 md_apply_fix (fixP, valp)
3159 fixS *fixP;
3160 valueT *valp;
3161 {
3162 md_apply_fix_1 (fixP, (long) *valp);
3163 return 1;
3164 }
3165
3166 /* Exactly what point is a PC-relative offset relative TO?
3167 On the PA, they're relative to the address of the offset. */
3168
3169 long
3170 md_pcrel_from (fixP)
3171 fixS *fixP;
3172 {
3173 return fixP->fx_where + fixP->fx_frag->fr_address;
3174 }
3175
3176 /* Return nonzero if the input line pointer is at the end of
3177 a statement. */
3178
3179 static int
3180 is_end_of_statement ()
3181 {
3182 return ((*input_line_pointer == '\n')
3183 || (*input_line_pointer == ';')
3184 || (*input_line_pointer == '!'));
3185 }
3186
3187 /* Read a number from S. The number might come in one of many forms,
3188 the most common will be a hex or decimal constant, but it could be
3189 a pre-defined register (Yuk!), or an absolute symbol.
3190
3191 Return a number or -1 for failure.
3192
3193 When parsing PA-89 FP register numbers RESULT will be
3194 the address of a structure to return information about
3195 L/R half of FP registers, store results there as appropriate.
3196
3197 pa_parse_number can not handle negative constants and will fail
3198 horribly if it is passed such a constant. */
3199
3200 static int
3201 pa_parse_number (s, result)
3202 char **s;
3203 struct pa_89_fp_reg_struct *result;
3204 {
3205 int num;
3206 char *name;
3207 char c;
3208 symbolS *sym;
3209 int status;
3210 char *p = *s;
3211
3212 /* Skip whitespace before the number. */
3213 while (*p == ' ' || *p == '\t')
3214 p = p + 1;
3215
3216 /* Store info in RESULT if requested by caller. */
3217 if (result)
3218 {
3219 result->number_part = -1;
3220 result->l_r_select = -1;
3221 }
3222 num = -1;
3223
3224 if (isdigit (*p))
3225 {
3226 /* Looks like a number. */
3227 num = 0;
3228
3229 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3230 {
3231 /* The number is specified in hex. */
3232 p += 2;
3233 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3234 || ((*p >= 'A') && (*p <= 'F')))
3235 {
3236 if (isdigit (*p))
3237 num = num * 16 + *p - '0';
3238 else if (*p >= 'a' && *p <= 'f')
3239 num = num * 16 + *p - 'a' + 10;
3240 else
3241 num = num * 16 + *p - 'A' + 10;
3242 ++p;
3243 }
3244 }
3245 else
3246 {
3247 /* The number is specified in decimal. */
3248 while (isdigit (*p))
3249 {
3250 num = num * 10 + *p - '0';
3251 ++p;
3252 }
3253 }
3254
3255 /* Store info in RESULT if requested by the caller. */
3256 if (result)
3257 {
3258 result->number_part = num;
3259
3260 if (IS_R_SELECT (p))
3261 {
3262 result->l_r_select = 1;
3263 ++p;
3264 }
3265 else if (IS_L_SELECT (p))
3266 {
3267 result->l_r_select = 0;
3268 ++p;
3269 }
3270 else
3271 result->l_r_select = 0;
3272 }
3273 }
3274 else if (*p == '%')
3275 {
3276 /* The number might be a predefined register. */
3277 num = 0;
3278 name = p;
3279 p++;
3280 c = *p;
3281 /* Tege hack: Special case for general registers as the general
3282 code makes a binary search with case translation, and is VERY
3283 slow. */
3284 if (c == 'r')
3285 {
3286 p++;
3287 if (*p == 'e' && *(p + 1) == 't'
3288 && (*(p + 2) == '0' || *(p + 2) == '1'))
3289 {
3290 p += 2;
3291 num = *p - '0' + 28;
3292 p++;
3293 }
3294 else if (*p == 'p')
3295 {
3296 num = 2;
3297 p++;
3298 }
3299 else if (!isdigit (*p))
3300 {
3301 if (print_errors)
3302 as_bad ("Undefined register: '%s'.", name);
3303 num = -1;
3304 }
3305 else
3306 {
3307 do
3308 num = num * 10 + *p++ - '0';
3309 while (isdigit (*p));
3310 }
3311 }
3312 else
3313 {
3314 /* Do a normal register search. */
3315 while (is_part_of_name (c))
3316 {
3317 p = p + 1;
3318 c = *p;
3319 }
3320 *p = 0;
3321 status = reg_name_search (name);
3322 if (status >= 0)
3323 num = status;
3324 else
3325 {
3326 if (print_errors)
3327 as_bad ("Undefined register: '%s'.", name);
3328 num = -1;
3329 }
3330 *p = c;
3331 }
3332
3333 /* Store info in RESULT if requested by caller. */
3334 if (result)
3335 {
3336 result->number_part = num;
3337 if (IS_R_SELECT (p - 1))
3338 result->l_r_select = 1;
3339 else if (IS_L_SELECT (p - 1))
3340 result->l_r_select = 0;
3341 else
3342 result->l_r_select = 0;
3343 }
3344 }
3345 else
3346 {
3347 /* And finally, it could be a symbol in the absolute section which
3348 is effectively a constant. */
3349 num = 0;
3350 name = p;
3351 c = *p;
3352 while (is_part_of_name (c))
3353 {
3354 p = p + 1;
3355 c = *p;
3356 }
3357 *p = 0;
3358 if ((sym = symbol_find (name)) != NULL)
3359 {
3360 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3361 num = S_GET_VALUE (sym);
3362 else
3363 {
3364 if (print_errors)
3365 as_bad ("Non-absolute symbol: '%s'.", name);
3366 num = -1;
3367 }
3368 }
3369 else
3370 {
3371 /* There is where we'd come for an undefined symbol
3372 or for an empty string. For an empty string we
3373 will return zero. That's a concession made for
3374 compatability with the braindamaged HP assemblers. */
3375 if (*name == 0)
3376 num = 0;
3377 else
3378 {
3379 if (print_errors)
3380 as_bad ("Undefined absolute constant: '%s'.", name);
3381 num = -1;
3382 }
3383 }
3384 *p = c;
3385
3386 /* Store info in RESULT if requested by caller. */
3387 if (result)
3388 {
3389 result->number_part = num;
3390 if (IS_R_SELECT (p - 1))
3391 result->l_r_select = 1;
3392 else if (IS_L_SELECT (p - 1))
3393 result->l_r_select = 0;
3394 else
3395 result->l_r_select = 0;
3396 }
3397 }
3398
3399 *s = p;
3400 return num;
3401 }
3402
3403 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3404
3405 /* Given NAME, find the register number associated with that name, return
3406 the integer value associated with the given name or -1 on failure. */
3407
3408 static int
3409 reg_name_search (name)
3410 char *name;
3411 {
3412 int middle, low, high;
3413
3414 low = 0;
3415 high = REG_NAME_CNT - 1;
3416
3417 do
3418 {
3419 middle = (low + high) / 2;
3420 if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
3421 high = middle - 1;
3422 else
3423 low = middle + 1;
3424 }
3425 while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
3426 (low > high)));
3427
3428 if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
3429 return (pre_defined_registers[middle].value);
3430 else
3431 return (-1);
3432 }
3433
3434
3435 /* Return nonzero if the given INSN and L/R information will require
3436 a new PA-89 opcode. */
3437
3438 static int
3439 need_89_opcode (insn, result)
3440 struct pa_it *insn;
3441 struct pa_89_fp_reg_struct *result;
3442 {
3443 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3444 return TRUE;
3445 else
3446 return FALSE;
3447 }
3448
3449 /* Parse a condition for a fcmp instruction. Return the numerical
3450 code associated with the condition. */
3451
3452 static int
3453 pa_parse_fp_cmp_cond (s)
3454 char **s;
3455 {
3456 int cond, i;
3457
3458 cond = 0;
3459
3460 for (i = 0; i < 32; i++)
3461 {
3462 if (strncasecmp (*s, fp_cond_map[i].string,
3463 strlen (fp_cond_map[i].string)) == 0)
3464 {
3465 cond = fp_cond_map[i].cond;
3466 *s += strlen (fp_cond_map[i].string);
3467 while (**s == ' ' || **s == '\t')
3468 *s = *s + 1;
3469 return cond;
3470 }
3471 }
3472
3473 as_bad ("Invalid FP Compare Condition: %c", **s);
3474 return 0;
3475 }
3476
3477 /* Parse an FP operand format completer returning the completer
3478 type. */
3479
3480 static fp_operand_format
3481 pa_parse_fp_format (s)
3482 char **s;
3483 {
3484 int format;
3485
3486 format = SGL;
3487 if (**s == ',')
3488 {
3489 *s += 1;
3490 if (strncasecmp (*s, "sgl", 3) == 0)
3491 {
3492 format = SGL;
3493 *s += 4;
3494 }
3495 else if (strncasecmp (*s, "dbl", 3) == 0)
3496 {
3497 format = DBL;
3498 *s += 4;
3499 }
3500 else if (strncasecmp (*s, "quad", 4) == 0)
3501 {
3502 format = QUAD;
3503 *s += 5;
3504 }
3505 else
3506 {
3507 format = ILLEGAL_FMT;
3508 as_bad ("Invalid FP Operand Format: %3s", *s);
3509 }
3510 }
3511
3512 return format;
3513 }
3514
3515 /* Convert from a selector string into a selector type. */
3516
3517 static int
3518 pa_chk_field_selector (str)
3519 char **str;
3520 {
3521 int selector;
3522 const struct selector_entry *tablep;
3523
3524 selector = e_fsel;
3525
3526 /* Read past any whitespace. */
3527 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3528 *str = *str + 1;
3529
3530 /* Yuk. Looks like a linear search through the table. With the
3531 frequence of some selectors it might make sense to sort the
3532 table by usage. */
3533 for (tablep = selector_table; tablep->prefix; tablep++)
3534 {
3535 if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
3536 {
3537 *str += strlen (tablep->prefix);
3538 selector = tablep->field_selector;
3539 break;
3540 }
3541 }
3542 return selector;
3543 }
3544
3545 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3546
3547 static int
3548 get_expression (str)
3549 char *str;
3550 {
3551 char *save_in;
3552 asection *seg;
3553
3554 save_in = input_line_pointer;
3555 input_line_pointer = str;
3556 seg = expression (&the_insn.exp);
3557 if (!(seg == absolute_section
3558 || seg == undefined_section
3559 || SEG_NORMAL (seg)))
3560 {
3561 as_warn ("Bad segment in expression.");
3562 expr_end = input_line_pointer;
3563 input_line_pointer = save_in;
3564 return 1;
3565 }
3566 expr_end = input_line_pointer;
3567 input_line_pointer = save_in;
3568 return 0;
3569 }
3570
3571 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3572 static int
3573 pa_get_absolute_expression (insn, strp)
3574 struct pa_it *insn;
3575 char **strp;
3576 {
3577 char *save_in;
3578
3579 insn->field_selector = pa_chk_field_selector (strp);
3580 save_in = input_line_pointer;
3581 input_line_pointer = *strp;
3582 expression (&insn->exp);
3583 if (insn->exp.X_op != O_constant)
3584 {
3585 as_bad ("Bad segment (should be absolute).");
3586 expr_end = input_line_pointer;
3587 input_line_pointer = save_in;
3588 return 0;
3589 }
3590 expr_end = input_line_pointer;
3591 input_line_pointer = save_in;
3592 return evaluate_absolute (insn);
3593 }
3594
3595 /* Evaluate an absolute expression EXP which may be modified by
3596 the selector FIELD_SELECTOR. Return the value of the expression. */
3597 static int
3598 evaluate_absolute (insn)
3599 struct pa_it *insn;
3600 {
3601 int value;
3602 expressionS exp;
3603 int field_selector = insn->field_selector;
3604
3605 exp = insn->exp;
3606 value = exp.X_add_number;
3607
3608 switch (field_selector)
3609 {
3610 /* No change. */
3611 case e_fsel:
3612 break;
3613
3614 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3615 case e_lssel:
3616 if (value & 0x00000400)
3617 value += 0x800;
3618 value = (value & 0xfffff800) >> 11;
3619 break;
3620
3621 /* Sign extend from bit 21. */
3622 case e_rssel:
3623 if (value & 0x00000400)
3624 value |= 0xfffff800;
3625 else
3626 value &= 0x7ff;
3627 break;
3628
3629 /* Arithmetic shift right 11 bits. */
3630 case e_lsel:
3631 value = (value & 0xfffff800) >> 11;
3632 break;
3633
3634 /* Set bits 0-20 to zero. */
3635 case e_rsel:
3636 value = value & 0x7ff;
3637 break;
3638
3639 /* Add 0x800 and arithmetic shift right 11 bits. */
3640 case e_ldsel:
3641 value += 0x800;
3642
3643
3644 value = (value & 0xfffff800) >> 11;
3645 break;
3646
3647 /* Set bitgs 0-21 to one. */
3648 case e_rdsel:
3649 value |= 0xfffff800;
3650 break;
3651
3652 /* This had better get fixed. It looks like we're quickly moving
3653 to LR/RR. FIXME. */
3654 case e_rrsel:
3655 case e_lrsel:
3656 abort ();
3657
3658 default:
3659 BAD_CASE (field_selector);
3660 break;
3661 }
3662 return value;
3663 }
3664
3665 /* Given an argument location specification return the associated
3666 argument location number. */
3667
3668 static unsigned int
3669 pa_build_arg_reloc (type_name)
3670 char *type_name;
3671 {
3672
3673 if (strncasecmp (type_name, "no", 2) == 0)
3674 return 0;
3675 if (strncasecmp (type_name, "gr", 2) == 0)
3676 return 1;
3677 else if (strncasecmp (type_name, "fr", 2) == 0)
3678 return 2;
3679 else if (strncasecmp (type_name, "fu", 2) == 0)
3680 return 3;
3681 else
3682 as_bad ("Invalid argument location: %s\n", type_name);
3683
3684 return 0;
3685 }
3686
3687 /* Encode and return an argument relocation specification for
3688 the given register in the location specified by arg_reloc. */
3689
3690 static unsigned int
3691 pa_align_arg_reloc (reg, arg_reloc)
3692 unsigned int reg;
3693 unsigned int arg_reloc;
3694 {
3695 unsigned int new_reloc;
3696
3697 new_reloc = arg_reloc;
3698 switch (reg)
3699 {
3700 case 0:
3701 new_reloc <<= 8;
3702 break;
3703 case 1:
3704 new_reloc <<= 6;
3705 break;
3706 case 2:
3707 new_reloc <<= 4;
3708 break;
3709 case 3:
3710 new_reloc <<= 2;
3711 break;
3712 default:
3713 as_bad ("Invalid argument description: %d", reg);
3714 }
3715
3716 return new_reloc;
3717 }
3718
3719 /* Parse a PA nullification completer (,n). Return nonzero if the
3720 completer was found; return zero if no completer was found. */
3721
3722 static int
3723 pa_parse_nullif (s)
3724 char **s;
3725 {
3726 int nullif;
3727
3728 nullif = 0;
3729 if (**s == ',')
3730 {
3731 *s = *s + 1;
3732 if (strncasecmp (*s, "n", 1) == 0)
3733 nullif = 1;
3734 else
3735 {
3736 as_bad ("Invalid Nullification: (%c)", **s);
3737 nullif = 0;
3738 }
3739 *s = *s + 1;
3740 }
3741
3742 return nullif;
3743 }
3744
3745 /* Parse a non-negated compare/subtract completer returning the
3746 number (for encoding in instrutions) of the given completer.
3747
3748 ISBRANCH specifies whether or not this is parsing a condition
3749 completer for a branch (vs a nullification completer for a
3750 computational instruction. */
3751
3752 static int
3753 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3754 char **s;
3755 int isbranch;
3756 {
3757 int cmpltr;
3758 char *name = *s + 1;
3759 char c;
3760 char *save_s = *s;
3761
3762 cmpltr = 0;
3763 if (**s == ',')
3764 {
3765 *s += 1;
3766 while (**s != ',' && **s != ' ' && **s != '\t')
3767 *s += 1;
3768 c = **s;
3769 **s = 0x00;
3770 if (strcmp (name, "=") == 0)
3771 {
3772 cmpltr = 1;
3773 }
3774 else if (strcmp (name, "<") == 0)
3775 {
3776 cmpltr = 2;
3777 }
3778 else if (strcmp (name, "<=") == 0)
3779 {
3780 cmpltr = 3;
3781 }
3782 else if (strcmp (name, "<<") == 0)
3783 {
3784 cmpltr = 4;
3785 }
3786 else if (strcmp (name, "<<=") == 0)
3787 {
3788 cmpltr = 5;
3789 }
3790 else if (strcasecmp (name, "sv") == 0)
3791 {
3792 cmpltr = 6;
3793 }
3794 else if (strcasecmp (name, "od") == 0)
3795 {
3796 cmpltr = 7;
3797 }
3798 /* If we have something like addb,n then there is no condition
3799 completer. */
3800 else if (strcasecmp (name, "n") == 0 && isbranch)
3801 {
3802 cmpltr = 0;
3803 }
3804 else
3805 {
3806 cmpltr = -1;
3807 }
3808 **s = c;
3809 }
3810
3811 /* Reset pointers if this was really a ,n for a branch instruction. */
3812 if (cmpltr == 0 && *name == 'n' && isbranch)
3813 *s = save_s;
3814
3815 return cmpltr;
3816 }
3817
3818 /* Parse a negated compare/subtract completer returning the
3819 number (for encoding in instrutions) of the given completer.
3820
3821 ISBRANCH specifies whether or not this is parsing a condition
3822 completer for a branch (vs a nullification completer for a
3823 computational instruction. */
3824
3825 static int
3826 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3827 char **s;
3828 int isbranch;
3829 {
3830 int cmpltr;
3831 char *name = *s + 1;
3832 char c;
3833 char *save_s = *s;
3834
3835 cmpltr = 0;
3836 if (**s == ',')
3837 {
3838 *s += 1;
3839 while (**s != ',' && **s != ' ' && **s != '\t')
3840 *s += 1;
3841 c = **s;
3842 **s = 0x00;
3843 if (strcasecmp (name, "tr") == 0)
3844 {
3845 cmpltr = 0;
3846 }
3847 else if (strcmp (name, "<>") == 0)
3848 {
3849 cmpltr = 1;
3850 }
3851 else if (strcmp (name, ">=") == 0)
3852 {
3853 cmpltr = 2;
3854 }
3855 else if (strcmp (name, ">") == 0)
3856 {
3857 cmpltr = 3;
3858 }
3859 else if (strcmp (name, ">>=") == 0)
3860 {
3861 cmpltr = 4;
3862 }
3863 else if (strcmp (name, ">>") == 0)
3864 {
3865 cmpltr = 5;
3866 }
3867 else if (strcasecmp (name, "nsv") == 0)
3868 {
3869 cmpltr = 6;
3870 }
3871 else if (strcasecmp (name, "ev") == 0)
3872 {
3873 cmpltr = 7;
3874 }
3875 /* If we have something like addb,n then there is no condition
3876 completer. */
3877 else if (strcasecmp (name, "n") == 0 && isbranch)
3878 {
3879 cmpltr = 0;
3880 }
3881 else
3882 {
3883 cmpltr = -1;
3884 }
3885 **s = c;
3886 }
3887
3888 /* Reset pointers if this was really a ,n for a branch instruction. */
3889 if (cmpltr == 0 && *name == 'n' && isbranch)
3890 *s = save_s;
3891
3892 return cmpltr;
3893 }
3894
3895 /* Parse a non-negated addition completer returning the number
3896 (for encoding in instrutions) of the given completer.
3897
3898 ISBRANCH specifies whether or not this is parsing a condition
3899 completer for a branch (vs a nullification completer for a
3900 computational instruction. */
3901
3902 static int
3903 pa_parse_nonneg_add_cmpltr (s, isbranch)
3904 char **s;
3905 int isbranch;
3906 {
3907 int cmpltr;
3908 char *name = *s + 1;
3909 char c;
3910 char *save_s = *s;
3911
3912 cmpltr = 0;
3913 if (**s == ',')
3914 {
3915 *s += 1;
3916 while (**s != ',' && **s != ' ' && **s != '\t')
3917 *s += 1;
3918 c = **s;
3919 **s = 0x00;
3920 if (strcmp (name, "=") == 0)
3921 {
3922 cmpltr = 1;
3923 }
3924 else if (strcmp (name, "<") == 0)
3925 {
3926 cmpltr = 2;
3927 }
3928 else if (strcmp (name, "<=") == 0)
3929 {
3930 cmpltr = 3;
3931 }
3932 else if (strcasecmp (name, "nuv") == 0)
3933 {
3934 cmpltr = 4;
3935 }
3936 else if (strcasecmp (name, "znv") == 0)
3937 {
3938 cmpltr = 5;
3939 }
3940 else if (strcasecmp (name, "sv") == 0)
3941 {
3942 cmpltr = 6;
3943 }
3944 else if (strcasecmp (name, "od") == 0)
3945 {
3946 cmpltr = 7;
3947 }
3948 /* If we have something like addb,n then there is no condition
3949 completer. */
3950 else if (strcasecmp (name, "n") == 0 && isbranch)
3951 {
3952 cmpltr = 0;
3953 }
3954 else
3955 {
3956 cmpltr = -1;
3957 }
3958 **s = c;
3959 }
3960
3961 /* Reset pointers if this was really a ,n for a branch instruction. */
3962 if (cmpltr == 0 && *name == 'n' && isbranch)
3963 *s = save_s;
3964
3965 return cmpltr;
3966 }
3967
3968 /* Parse a negated addition completer returning the number
3969 (for encoding in instrutions) of the given completer.
3970
3971 ISBRANCH specifies whether or not this is parsing a condition
3972 completer for a branch (vs a nullification completer for a
3973 computational instruction. */
3974
3975 static int
3976 pa_parse_neg_add_cmpltr (s, isbranch)
3977 char **s;
3978 int isbranch;
3979 {
3980 int cmpltr;
3981 char *name = *s + 1;
3982 char c;
3983 char *save_s = *s;
3984
3985 cmpltr = 0;
3986 if (**s == ',')
3987 {
3988 *s += 1;
3989 while (**s != ',' && **s != ' ' && **s != '\t')
3990 *s += 1;
3991 c = **s;
3992 **s = 0x00;
3993 if (strcasecmp (name, "tr") == 0)
3994 {
3995 cmpltr = 0;
3996 }
3997 else if (strcmp (name, "<>") == 0)
3998 {
3999 cmpltr = 1;
4000 }
4001 else if (strcmp (name, ">=") == 0)
4002 {
4003 cmpltr = 2;
4004 }
4005 else if (strcmp (name, ">") == 0)
4006 {
4007 cmpltr = 3;
4008 }
4009 else if (strcmp (name, "uv") == 0)
4010 {
4011 cmpltr = 4;
4012 }
4013 else if (strcmp (name, "vnz") == 0)
4014 {
4015 cmpltr = 5;
4016 }
4017 else if (strcasecmp (name, "nsv") == 0)
4018 {
4019 cmpltr = 6;
4020 }
4021 else if (strcasecmp (name, "ev") == 0)
4022 {
4023 cmpltr = 7;
4024 }
4025 /* If we have something like addb,n then there is no condition
4026 completer. */
4027 else if (strcasecmp (name, "n") == 0 && isbranch)
4028 {
4029 cmpltr = 0;
4030 }
4031 else
4032 {
4033 cmpltr = -1;
4034 }
4035 **s = c;
4036 }
4037
4038 /* Reset pointers if this was really a ,n for a branch instruction. */
4039 if (cmpltr == 0 && *name == 'n' && isbranch)
4040 *s = save_s;
4041
4042 return cmpltr;
4043 }
4044
4045 /* Handle a .BLOCK type pseudo-op. */
4046
4047 static void
4048 pa_block (z)
4049 int z;
4050 {
4051 char *p;
4052 long int temp_fill;
4053 unsigned int temp_size;
4054 int i;
4055
4056 temp_size = get_absolute_expression ();
4057
4058 /* Always fill with zeros, that's what the HP assembler does. */
4059 temp_fill = 0;
4060
4061 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4062 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4063 bzero (p, temp_size);
4064
4065 /* Convert 2 bytes at a time. */
4066
4067 for (i = 0; i < temp_size; i += 2)
4068 {
4069 md_number_to_chars (p + i,
4070 (valueT) temp_fill,
4071 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4072 }
4073
4074 pa_undefine_label ();
4075 demand_empty_rest_of_line ();
4076 return;
4077 }
4078
4079 /* Handle a .CALL pseudo-op. This involves storing away information
4080 about where arguments are to be found so the linker can detect
4081 (and correct) argument location mismatches between caller and callee. */
4082
4083 static void
4084 pa_call (unused)
4085 int unused;
4086 {
4087 pa_call_args (&last_call_desc);
4088 demand_empty_rest_of_line ();
4089 return;
4090 }
4091
4092 /* Do the dirty work of building a call descriptor which describes
4093 where the caller placed arguments to a function call. */
4094
4095 static void
4096 pa_call_args (call_desc)
4097 struct call_desc *call_desc;
4098 {
4099 char *name, c, *p;
4100 unsigned int temp, arg_reloc;
4101
4102 while (!is_end_of_statement ())
4103 {
4104 name = input_line_pointer;
4105 c = get_symbol_end ();
4106 /* Process a source argument. */
4107 if ((strncasecmp (name, "argw", 4) == 0))
4108 {
4109 temp = atoi (name + 4);
4110 p = input_line_pointer;
4111 *p = c;
4112 input_line_pointer++;
4113 name = input_line_pointer;
4114 c = get_symbol_end ();
4115 arg_reloc = pa_build_arg_reloc (name);
4116 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4117 }
4118 /* Process a return value. */
4119 else if ((strncasecmp (name, "rtnval", 6) == 0))
4120 {
4121 p = input_line_pointer;
4122 *p = c;
4123 input_line_pointer++;
4124 name = input_line_pointer;
4125 c = get_symbol_end ();
4126 arg_reloc = pa_build_arg_reloc (name);
4127 call_desc->arg_reloc |= (arg_reloc & 0x3);
4128 }
4129 else
4130 {
4131 as_bad ("Invalid .CALL argument: %s", name);
4132 }
4133 p = input_line_pointer;
4134 *p = c;
4135 if (!is_end_of_statement ())
4136 input_line_pointer++;
4137 }
4138 }
4139
4140 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4141
4142 static int
4143 is_same_frag (frag1, frag2)
4144 fragS *frag1;
4145 fragS *frag2;
4146 {
4147
4148 if (frag1 == NULL)
4149 return (FALSE);
4150 else if (frag2 == NULL)
4151 return (FALSE);
4152 else if (frag1 == frag2)
4153 return (TRUE);
4154 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4155 return (is_same_frag (frag1, frag2->fr_next));
4156 else
4157 return (FALSE);
4158 }
4159
4160 #ifdef OBJ_ELF
4161 /* Build an entry in the UNWIND subspace from the given function
4162 attributes in CALL_INFO. This is not needed for SOM as using
4163 R_ENTRY and R_EXIT relocations allow the linker to handle building
4164 of the unwind spaces. */
4165
4166 static void
4167 pa_build_unwind_subspace (call_info)
4168 struct call_info *call_info;
4169 {
4170 char *unwind;
4171 asection *seg, *save_seg;
4172 subsegT subseg, save_subseg;
4173 int i;
4174 char c, *p;
4175
4176 /* Get into the right seg/subseg. This may involve creating
4177 the seg the first time through. Make sure to have the
4178 old seg/subseg so that we can reset things when we are done. */
4179 subseg = SUBSEG_UNWIND;
4180 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4181 if (seg == ASEC_NULL)
4182 {
4183 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4184 bfd_set_section_flags (stdoutput, seg,
4185 SEC_READONLY | SEC_HAS_CONTENTS
4186 | SEC_LOAD | SEC_RELOC);
4187 }
4188
4189 save_seg = now_seg;
4190 save_subseg = now_subseg;
4191 subseg_set (seg, subseg);
4192
4193
4194 /* Get some space to hold relocation information for the unwind
4195 descriptor. */
4196 p = frag_more (4);
4197 call_info->start_offset_frag = frag_now;
4198 call_info->start_frag_where = p - frag_now->fr_literal;
4199
4200 /* Relocation info. for start offset of the function. */
4201 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4202 call_info->start_symbol, (offsetT) 0,
4203 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4204 (char *) 0);
4205
4206 /* We need to search for the first relocation involving the start_symbol of
4207 this call_info descriptor. */
4208 {
4209 fixS *fixP;
4210
4211 call_info->start_fix = seg_info (now_seg)->fix_root;
4212 for (fixP = call_info->start_fix; fixP; fixP = fixP->fx_next)
4213 {
4214 if (fixP->fx_addsy == call_info->start_symbol
4215 || fixP->fx_subsy == call_info->start_symbol)
4216 {
4217 call_info->start_fix = fixP;
4218 break;
4219 }
4220 }
4221 }
4222
4223 p = frag_more (4);
4224 call_info->end_offset_frag = frag_now;
4225 call_info->end_frag_where = p - frag_now->fr_literal;
4226
4227 /* Relocation info. for end offset of the function. */
4228 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4229 call_info->end_symbol, (offsetT) 0,
4230 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4231 (char *) 0);
4232
4233 /* We need to search for the first relocation involving the end_symbol of
4234 this call_info descriptor. */
4235 {
4236 fixS *fixP;
4237
4238 call_info->end_fix = seg_info (now_seg)->fix_root; /* the default */
4239 for (fixP = call_info->end_fix; fixP; fixP = fixP->fx_next)
4240 {
4241 if (fixP->fx_addsy == call_info->end_symbol
4242 || fixP->fx_subsy == call_info->end_symbol)
4243 {
4244 call_info->end_fix = fixP;
4245 break;
4246 }
4247 }
4248 }
4249
4250 /* Dump it. */
4251 unwind = (char *) &call_info->ci_unwind;
4252 for (i = 8; i < sizeof (struct unwind_table); i++)
4253 {
4254 c = *(unwind + i);
4255 {
4256 FRAG_APPEND_1_CHAR (c);
4257 }
4258 }
4259
4260 /* Return back to the original segment/subsegment. */
4261 subseg_set (save_seg, save_subseg);
4262 }
4263 #endif
4264
4265 /* Process a .CALLINFO pseudo-op. This information is used later
4266 to build unwind descriptors and maybe one day to support
4267 .ENTER and .LEAVE. */
4268
4269 static void
4270 pa_callinfo (unused)
4271 int unused;
4272 {
4273 char *name, c, *p;
4274 int temp;
4275
4276 /* .CALLINFO must appear within a procedure definition. */
4277 if (!within_procedure)
4278 as_bad (".callinfo is not within a procedure definition");
4279
4280 /* Mark the fact that we found the .CALLINFO for the
4281 current procedure. */
4282 callinfo_found = TRUE;
4283
4284 /* Iterate over the .CALLINFO arguments. */
4285 while (!is_end_of_statement ())
4286 {
4287 name = input_line_pointer;
4288 c = get_symbol_end ();
4289 /* Frame size specification. */
4290 if ((strncasecmp (name, "frame", 5) == 0))
4291 {
4292 p = input_line_pointer;
4293 *p = c;
4294 input_line_pointer++;
4295 temp = get_absolute_expression ();
4296 if ((temp & 0x3) != 0)
4297 {
4298 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4299 temp = 0;
4300 }
4301
4302 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4303 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4304
4305 }
4306 /* Entry register (GR, GR and SR) specifications. */
4307 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4308 {
4309 p = input_line_pointer;
4310 *p = c;
4311 input_line_pointer++;
4312 temp = get_absolute_expression ();
4313 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4314 even though %r19 is caller saved. I think this is a bug in
4315 the HP assembler, and we are not going to emulate it. */
4316 if (temp < 3 || temp > 18)
4317 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4318 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4319 }
4320 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4321 {
4322 p = input_line_pointer;
4323 *p = c;
4324 input_line_pointer++;
4325 temp = get_absolute_expression ();
4326 /* Similarly the HP assembler takes 31 as the high bound even
4327 though %fr21 is the last callee saved floating point register. */
4328 if (temp < 12 || temp > 21)
4329 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4330 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4331 }
4332 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4333 {
4334 p = input_line_pointer;
4335 *p = c;
4336 input_line_pointer++;
4337 temp = get_absolute_expression ();
4338 if (temp != 3)
4339 as_bad ("Value for ENTRY_SR must be 3\n");
4340 last_call_info->entry_sr = temp - 2;
4341 }
4342 /* Note whether or not this function performs any calls. */
4343 else if ((strncasecmp (name, "calls", 5) == 0) ||
4344 (strncasecmp (name, "caller", 6) == 0))
4345 {
4346 p = input_line_pointer;
4347 *p = c;
4348 last_call_info->makes_calls = 1;
4349 }
4350 else if ((strncasecmp (name, "no_calls", 8) == 0))
4351 {
4352 p = input_line_pointer;
4353 *p = c;
4354 last_call_info->makes_calls = 0;
4355 }
4356 /* Should RP be saved into the stack. */
4357 else if ((strncasecmp (name, "save_rp", 7) == 0))
4358 {
4359 p = input_line_pointer;
4360 *p = c;
4361 last_call_info->ci_unwind.descriptor.save_rp = 1;
4362 }
4363 /* Likewise for SP. */
4364 else if ((strncasecmp (name, "save_sp", 7) == 0))
4365 {
4366 p = input_line_pointer;
4367 *p = c;
4368 last_call_info->ci_unwind.descriptor.save_sp = 1;
4369 }
4370 /* Is this an unwindable procedure. If so mark it so
4371 in the unwind descriptor. */
4372 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4373 {
4374 p = input_line_pointer;
4375 *p = c;
4376 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4377 }
4378 /* Is this an interrupt routine. If so mark it in the
4379 unwind descriptor. */
4380 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4381 {
4382 p = input_line_pointer;
4383 *p = c;
4384 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4385 }
4386 else
4387 {
4388 as_bad ("Invalid .CALLINFO argument: %s", name);
4389 }
4390 if (!is_end_of_statement ())
4391 input_line_pointer++;
4392 }
4393
4394 demand_empty_rest_of_line ();
4395 return;
4396 }
4397
4398 /* Switch into the code subspace. */
4399
4400 static void
4401 pa_code (unused)
4402 int unused;
4403 {
4404 sd_chain_struct *sdchain;
4405
4406 /* First time through it might be necessary to create the
4407 $TEXT$ space. */
4408 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4409 {
4410 sdchain = create_new_space (pa_def_spaces[0].name,
4411 pa_def_spaces[0].spnum,
4412 pa_def_spaces[0].loadable,
4413 pa_def_spaces[0].defined,
4414 pa_def_spaces[0].private,
4415 pa_def_spaces[0].sort,
4416 pa_def_spaces[0].segment, 0);
4417 }
4418
4419 SPACE_DEFINED (sdchain) = 1;
4420 subseg_set (text_section, SUBSEG_CODE);
4421 demand_empty_rest_of_line ();
4422 return;
4423 }
4424
4425 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4426 the .comm pseudo-op has the following symtax:
4427
4428 <label> .comm <length>
4429
4430 where <label> is optional and is a symbol whose address will be the start of
4431 a block of memory <length> bytes long. <length> must be an absolute
4432 expression. <length> bytes will be allocated in the current space
4433 and subspace. */
4434
4435 static void
4436 pa_comm (unused)
4437 int unused;
4438 {
4439 unsigned int size;
4440 symbolS *symbol;
4441 label_symbol_struct *label_symbol = pa_get_label ();
4442
4443 if (label_symbol)
4444 symbol = label_symbol->lss_label;
4445 else
4446 symbol = NULL;
4447
4448 SKIP_WHITESPACE ();
4449 size = get_absolute_expression ();
4450
4451 if (symbol)
4452 {
4453 /* It is incorrect to check S_IS_DEFINED at this point as
4454 the symbol will *always* be defined. FIXME. How to
4455 correctly determine when this label really as been
4456 defined before. */
4457 if (S_GET_VALUE (symbol))
4458 {
4459 if (S_GET_VALUE (symbol) != size)
4460 {
4461 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4462 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4463 return;
4464 }
4465 }
4466 else
4467 {
4468 S_SET_VALUE (symbol, size);
4469 S_SET_SEGMENT (symbol, &bfd_und_section);
4470 S_SET_EXTERNAL (symbol);
4471 }
4472 }
4473 demand_empty_rest_of_line ();
4474 }
4475
4476 /* Process a .COPYRIGHT pseudo-op. */
4477
4478 static void
4479 pa_copyright (unused)
4480 int unused;
4481 {
4482 char *name;
4483 char c;
4484
4485 SKIP_WHITESPACE ();
4486 if (*input_line_pointer == '\"')
4487 {
4488 ++input_line_pointer;
4489 name = input_line_pointer;
4490 while ((c = next_char_of_string ()) >= 0)
4491 ;
4492 c = *input_line_pointer;
4493 *input_line_pointer = '\0';
4494 *(input_line_pointer - 1) = '\0';
4495 {
4496 /* FIXME. Not supported */
4497 abort ();
4498 }
4499 *input_line_pointer = c;
4500 }
4501 else
4502 {
4503 as_bad ("Expected \"-ed string");
4504 }
4505 pa_undefine_label ();
4506 demand_empty_rest_of_line ();
4507 }
4508
4509 /* Process a .END pseudo-op. */
4510
4511 static void
4512 pa_end (unused)
4513 int unused;
4514 {
4515 demand_empty_rest_of_line ();
4516 return;
4517 }
4518
4519 /* Process a .ENTER pseudo-op. This is not supported. */
4520 static void
4521 pa_enter (unused)
4522 int unused;
4523 {
4524 abort ();
4525 return;
4526 }
4527
4528 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4529 procesure. */
4530 static void
4531 pa_entry (unused)
4532 int unused;
4533 {
4534 if (!within_procedure)
4535 as_bad ("Misplaced .entry. Ignored.");
4536 else
4537 {
4538 if (!callinfo_found)
4539 as_bad ("Missing .callinfo.");
4540
4541 last_call_info->start_frag = frag_now;
4542 }
4543 demand_empty_rest_of_line ();
4544 within_entry_exit = TRUE;
4545
4546 /* Go back to the last symbol and turn on the BSF_FUNCTION flag.
4547 It will not be on if no .EXPORT pseudo-op exists (static function). */
4548 last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
4549
4550 #ifdef OBJ_SOM
4551 /* SOM defers building of unwind descriptors until the link phase.
4552 The assembler is responsible for creating an R_ENTRY relocation
4553 to mark the beginning of a region and hold the unwind bits, and
4554 for creating an R_EXIT relocation to mark the end of the region.
4555
4556 FIXME. ELF should be using the same conventions! The problem
4557 is an unwind requires too much relocation space. Hmmm. Maybe
4558 if we split the unwind bits up between the relocations which
4559 denote the entry and exit points. */
4560 {
4561 char *where = frag_more (0);
4562
4563 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4564 last_call_info->start_symbol, (offsetT) 0, NULL,
4565 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4566 (char *) &last_call_info->ci_unwind.descriptor);
4567 }
4568 #endif
4569
4570 return;
4571 }
4572
4573 /* Handle a .EQU pseudo-op. */
4574
4575 static void
4576 pa_equ (reg)
4577 int reg;
4578 {
4579 label_symbol_struct *label_symbol = pa_get_label ();
4580 symbolS *symbol;
4581
4582 if (label_symbol)
4583 {
4584 symbol = label_symbol->lss_label;
4585 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4586 S_SET_SEGMENT (symbol, &bfd_abs_section);
4587 }
4588 else
4589 {
4590 if (reg)
4591 as_bad (".REG must use a label");
4592 else
4593 as_bad (".EQU must use a label");
4594 }
4595
4596 pa_undefine_label ();
4597 demand_empty_rest_of_line ();
4598 return;
4599 }
4600
4601 /* Helper function. Does processing for the end of a function. This
4602 usually involves creating some relocations or building special
4603 symbols to mark the end of the function. */
4604
4605 static void
4606 process_exit ()
4607 {
4608 char *where;
4609
4610 where = frag_more (0);
4611
4612 #ifdef OBJ_ELF
4613 /* Mark the end of the function, stuff away the location of the frag
4614 for the end of the function, and finally call pa_build_unwind_subspace
4615 to add an entry in the unwind table. */
4616 hppa_elf_mark_end_of_function ();
4617 last_call_info->end_frag = frag_now;
4618 pa_build_unwind_subspace (last_call_info);
4619 #else
4620 /* SOM defers building of unwind descriptors until the link phase.
4621 The assembler is responsible for creating an R_ENTRY relocation
4622 to mark the beginning of a region and hold the unwind bits, and
4623 for creating an R_EXIT relocation to mark the end of the region.
4624
4625 FIXME. ELF should be using the same conventions! The problem
4626 is an unwind requires too much relocation space. Hmmm. Maybe
4627 if we split the unwind bits up between the relocations which
4628 denote the entry and exit points. */
4629 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4630 last_call_info->start_symbol, (offsetT) 0,
4631 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4632 #endif
4633
4634 }
4635
4636 /* Process a .EXIT pseudo-op. */
4637
4638 static void
4639 pa_exit (unused)
4640 int unused;
4641 {
4642 if (!within_procedure)
4643 as_bad (".EXIT must appear within a procedure");
4644 else
4645 {
4646 if (!callinfo_found)
4647 as_bad ("Missing .callinfo");
4648 else
4649 {
4650 if (!within_entry_exit)
4651 as_bad ("No .ENTRY for this .EXIT");
4652 else
4653 {
4654 within_entry_exit = FALSE;
4655 process_exit ();
4656 }
4657 }
4658 }
4659 demand_empty_rest_of_line ();
4660 return;
4661 }
4662
4663 /* Process a .EXPORT directive. This makes functions external
4664 and provides information such as argument relocation entries
4665 to callers. */
4666
4667 static void
4668 pa_export (unused)
4669 int unused;
4670 {
4671 char *name, c, *p;
4672 symbolS *symbol;
4673
4674 name = input_line_pointer;
4675 c = get_symbol_end ();
4676 /* Make sure the given symbol exists. */
4677 if ((symbol = symbol_find_or_make (name)) == NULL)
4678 {
4679 as_bad ("Cannot define export symbol: %s\n", name);
4680 p = input_line_pointer;
4681 *p = c;
4682 input_line_pointer++;
4683 }
4684 else
4685 {
4686 /* OK. Set the external bits and process argument relocations. */
4687 S_SET_EXTERNAL (symbol);
4688 p = input_line_pointer;
4689 *p = c;
4690 if (!is_end_of_statement ())
4691 {
4692 input_line_pointer++;
4693 pa_type_args (symbol, 1);
4694 #ifdef OBJ_ELF
4695 pa_build_symextn_section ();
4696 #endif
4697 }
4698 }
4699
4700 demand_empty_rest_of_line ();
4701 return;
4702 }
4703
4704 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4705
4706 static void
4707 pa_type_args (symbolP, is_export)
4708 symbolS *symbolP;
4709 int is_export;
4710 {
4711 char *name, c, *p;
4712 unsigned int temp, arg_reloc;
4713 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4714 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4715
4716 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4717
4718 {
4719 input_line_pointer += 8;
4720 symbolP->bsym->flags &= ~BSF_FUNCTION;
4721 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4722 type = SYMBOL_TYPE_ABSOLUTE;
4723 }
4724 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4725 {
4726 input_line_pointer += 4;
4727 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
4728 instead one should be IMPORTing/EXPORTing ENTRY types.
4729
4730 Complain if one tries to EXPORT a CODE type since that's never
4731 done. Both GCC and HP C still try to IMPORT CODE types, so
4732 silently fix them to be ENTRY types. */
4733 if (symbolP->bsym->flags & BSF_FUNCTION)
4734 {
4735 if (is_export)
4736 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4737
4738 symbolP->bsym->flags |= BSF_FUNCTION;
4739 type = SYMBOL_TYPE_ENTRY;
4740 }
4741 else
4742 {
4743 symbolP->bsym->flags &= ~BSF_FUNCTION;
4744 type = SYMBOL_TYPE_CODE;
4745 }
4746 }
4747 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4748 {
4749 input_line_pointer += 4;
4750 symbolP->bsym->flags &= ~BSF_FUNCTION;
4751 type = SYMBOL_TYPE_DATA;
4752 }
4753 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4754 {
4755 input_line_pointer += 5;
4756 symbolP->bsym->flags |= BSF_FUNCTION;
4757 type = SYMBOL_TYPE_ENTRY;
4758 }
4759 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4760 {
4761 input_line_pointer += 9;
4762 symbolP->bsym->flags |= BSF_FUNCTION;
4763 type = SYMBOL_TYPE_MILLICODE;
4764 }
4765 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4766 {
4767 input_line_pointer += 6;
4768 symbolP->bsym->flags &= ~BSF_FUNCTION;
4769 type = SYMBOL_TYPE_PLABEL;
4770 }
4771 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4772 {
4773 input_line_pointer += 8;
4774 symbolP->bsym->flags |= BSF_FUNCTION;
4775 type = SYMBOL_TYPE_PRI_PROG;
4776 }
4777 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4778 {
4779 input_line_pointer += 8;
4780 symbolP->bsym->flags |= BSF_FUNCTION;
4781 type = SYMBOL_TYPE_SEC_PROG;
4782 }
4783
4784 /* SOM requires much more information about symbol types
4785 than BFD understands. This is how we get this information
4786 to the SOM BFD backend. */
4787 #ifdef obj_set_symbol_type
4788 obj_set_symbol_type (symbolP->bsym, (int) type);
4789 #endif
4790
4791 /* Now that the type of the exported symbol has been handled,
4792 handle any argument relocation information. */
4793 while (!is_end_of_statement ())
4794 {
4795 if (*input_line_pointer == ',')
4796 input_line_pointer++;
4797 name = input_line_pointer;
4798 c = get_symbol_end ();
4799 /* Argument sources. */
4800 if ((strncasecmp (name, "argw", 4) == 0))
4801 {
4802 p = input_line_pointer;
4803 *p = c;
4804 input_line_pointer++;
4805 temp = atoi (name + 4);
4806 name = input_line_pointer;
4807 c = get_symbol_end ();
4808 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4809 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4810 *input_line_pointer = c;
4811 }
4812 /* The return value. */
4813 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4814 {
4815 p = input_line_pointer;
4816 *p = c;
4817 input_line_pointer++;
4818 name = input_line_pointer;
4819 c = get_symbol_end ();
4820 arg_reloc = pa_build_arg_reloc (name);
4821 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4822 *input_line_pointer = c;
4823 }
4824 /* Privelege level. */
4825 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4826 {
4827 p = input_line_pointer;
4828 *p = c;
4829 input_line_pointer++;
4830 temp = atoi (input_line_pointer);
4831 c = get_symbol_end ();
4832 *input_line_pointer = c;
4833 }
4834 else
4835 {
4836 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4837 p = input_line_pointer;
4838 *p = c;
4839 }
4840 if (!is_end_of_statement ())
4841 input_line_pointer++;
4842 }
4843 }
4844
4845 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4846 assembly file must either be defined in the assembly file, or
4847 explicitly IMPORTED from another. */
4848
4849 static void
4850 pa_import (unused)
4851 int unused;
4852 {
4853 char *name, c, *p;
4854 symbolS *symbol;
4855
4856 name = input_line_pointer;
4857 c = get_symbol_end ();
4858
4859 symbol = symbol_find_or_make (name);
4860 p = input_line_pointer;
4861 *p = c;
4862
4863 if (!is_end_of_statement ())
4864 {
4865 input_line_pointer++;
4866 pa_type_args (symbol, 0);
4867 }
4868 else
4869 {
4870 /* Sigh. To be compatable with the HP assembler and to help
4871 poorly written assembly code, we assign a type based on
4872 the the current segment. Note only BSF_FUNCTION really
4873 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4874 if (now_seg == text_section)
4875 symbol->bsym->flags |= BSF_FUNCTION;
4876
4877 /* If the section is undefined, then the symbol is undefined
4878 Since this is an import, leave the section undefined. */
4879 S_SET_SEGMENT (symbol, &bfd_und_section);
4880 }
4881
4882 demand_empty_rest_of_line ();
4883 return;
4884 }
4885
4886 /* Handle a .LABEL pseudo-op. */
4887
4888 static void
4889 pa_label (unused)
4890 int unused;
4891 {
4892 char *name, c, *p;
4893
4894 name = input_line_pointer;
4895 c = get_symbol_end ();
4896
4897 if (strlen (name) > 0)
4898 {
4899 colon (name);
4900 p = input_line_pointer;
4901 *p = c;
4902 }
4903 else
4904 {
4905 as_warn ("Missing label name on .LABEL");
4906 }
4907
4908 if (!is_end_of_statement ())
4909 {
4910 as_warn ("extra .LABEL arguments ignored.");
4911 ignore_rest_of_line ();
4912 }
4913 demand_empty_rest_of_line ();
4914 return;
4915 }
4916
4917 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4918
4919 static void
4920 pa_leave (unused)
4921 int unused;
4922 {
4923 abort ();
4924 }
4925
4926 /* Handle a .ORIGIN pseudo-op. */
4927
4928 static void
4929 pa_origin (unused)
4930 int unused;
4931 {
4932 s_org (0);
4933 pa_undefine_label ();
4934 return;
4935 }
4936
4937 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4938 is for static functions. FIXME. Should share more code with .EXPORT. */
4939
4940 static void
4941 pa_param (unused)
4942 int unused;
4943 {
4944 char *name, c, *p;
4945 symbolS *symbol;
4946
4947 name = input_line_pointer;
4948 c = get_symbol_end ();
4949
4950 if ((symbol = symbol_find_or_make (name)) == NULL)
4951 {
4952 as_bad ("Cannot define static symbol: %s\n", name);
4953 p = input_line_pointer;
4954 *p = c;
4955 input_line_pointer++;
4956 }
4957 else
4958 {
4959 S_CLEAR_EXTERNAL (symbol);
4960 p = input_line_pointer;
4961 *p = c;
4962 if (!is_end_of_statement ())
4963 {
4964 input_line_pointer++;
4965 pa_type_args (symbol, 0);
4966 }
4967 }
4968
4969 demand_empty_rest_of_line ();
4970 return;
4971 }
4972
4973 /* Handle a .PROC pseudo-op. It is used to mark the beginning
4974 of a procedure from a syntatical point of view. */
4975
4976 static void
4977 pa_proc (unused)
4978 int unused;
4979 {
4980 struct call_info *call_info;
4981
4982 if (within_procedure)
4983 as_fatal ("Nested procedures");
4984
4985 /* Reset global variables for new procedure. */
4986 callinfo_found = FALSE;
4987 within_procedure = TRUE;
4988
4989 /* Create another call_info structure. */
4990 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
4991
4992 if (!call_info)
4993 as_fatal ("Cannot allocate unwind descriptor\n");
4994
4995 bzero (call_info, sizeof (struct call_info));
4996
4997 call_info->ci_next = NULL;
4998
4999 if (call_info_root == NULL)
5000 {
5001 call_info_root = call_info;
5002 last_call_info = call_info;
5003 }
5004 else
5005 {
5006 last_call_info->ci_next = call_info;
5007 last_call_info = call_info;
5008 }
5009
5010 /* set up defaults on call_info structure */
5011
5012 call_info->ci_unwind.descriptor.cannot_unwind = 0;
5013 call_info->ci_unwind.descriptor.region_desc = 1;
5014 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
5015 call_info->entry_sr = ~0;
5016 call_info->makes_calls = 1;
5017
5018 /* If we got a .PROC pseudo-op, we know that the function is defined
5019 locally. Make sure it gets into the symbol table. */
5020 {
5021 label_symbol_struct *label_symbol = pa_get_label ();
5022
5023 if (label_symbol)
5024 {
5025 if (label_symbol->lss_label)
5026 {
5027 last_call_info->start_symbol = label_symbol->lss_label;
5028 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
5029 }
5030 else
5031 as_bad ("Missing function name for .PROC (corrupted label)");
5032 }
5033 else
5034 as_bad ("Missing function name for .PROC");
5035 }
5036
5037 demand_empty_rest_of_line ();
5038 return;
5039 }
5040
5041 /* Process the syntatical end of a procedure. Make sure all the
5042 appropriate pseudo-ops were found within the procedure. */
5043
5044 static void
5045 pa_procend (unused)
5046 int unused;
5047 {
5048
5049 if (!within_procedure)
5050 as_bad ("misplaced .procend");
5051
5052 if (!callinfo_found)
5053 as_bad ("Missing .callinfo for this procedure");
5054
5055 if (within_entry_exit)
5056 as_bad ("Missing .EXIT for a .ENTRY");
5057
5058 #ifdef OBJ_ELF
5059 /* ELF needs to mark the end of each function so that it can compute
5060 the size of the function (apparently its needed in the symbol table. */
5061 hppa_elf_mark_end_of_function ();
5062 #endif
5063
5064 within_procedure = FALSE;
5065 demand_empty_rest_of_line ();
5066 return;
5067 }
5068
5069 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
5070 then create a new space entry to hold the information specified
5071 by the parameters to the .SPACE directive. */
5072
5073 static sd_chain_struct *
5074 pa_parse_space_stmt (space_name, create_flag)
5075 char *space_name;
5076 int create_flag;
5077 {
5078 char *name, *ptemp, c;
5079 char loadable, defined, private, sort;
5080 int spnum;
5081 asection *seg = NULL;
5082 sd_chain_struct *space;
5083
5084 /* load default values */
5085 spnum = 0;
5086 sort = 0;
5087 loadable = TRUE;
5088 defined = TRUE;
5089 private = FALSE;
5090 if (strcasecmp (space_name, "$TEXT$") == 0)
5091 {
5092 seg = pa_def_spaces[0].segment;
5093 sort = pa_def_spaces[0].sort;
5094 }
5095 else if (strcasecmp (space_name, "$PRIVATE$") == 0)
5096 {
5097 seg = pa_def_spaces[1].segment;
5098 sort = pa_def_spaces[1].sort;
5099 }
5100
5101 if (!is_end_of_statement ())
5102 {
5103 print_errors = FALSE;
5104 ptemp = input_line_pointer + 1;
5105 /* First see if the space was specified as a number rather than
5106 as a name. According to the PA assembly manual the rest of
5107 the line should be ignored. */
5108 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5109 input_line_pointer = ptemp;
5110 else
5111 {
5112 while (!is_end_of_statement ())
5113 {
5114 input_line_pointer++;
5115 name = input_line_pointer;
5116 c = get_symbol_end ();
5117 if ((strncasecmp (name, "SPNUM", 5) == 0))
5118 {
5119 *input_line_pointer = c;
5120 input_line_pointer++;
5121 spnum = get_absolute_expression ();
5122 }
5123 else if ((strncasecmp (name, "SORT", 4) == 0))
5124 {
5125 *input_line_pointer = c;
5126 input_line_pointer++;
5127 sort = get_absolute_expression ();
5128 }
5129 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5130 {
5131 *input_line_pointer = c;
5132 loadable = FALSE;
5133 }
5134 else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
5135 {
5136 *input_line_pointer = c;
5137 defined = FALSE;
5138 }
5139 else if ((strncasecmp (name, "PRIVATE", 7) == 0))
5140 {
5141 *input_line_pointer = c;
5142 private = TRUE;
5143 }
5144 else
5145 {
5146 as_bad ("Invalid .SPACE argument");
5147 *input_line_pointer = c;
5148 if (!is_end_of_statement ())
5149 input_line_pointer++;
5150 }
5151 }
5152 }
5153 print_errors = TRUE;
5154 }
5155
5156 if (create_flag && seg == NULL)
5157 seg = subseg_new (space_name, 0);
5158
5159 /* If create_flag is nonzero, then create the new space with
5160 the attributes computed above. Else set the values in
5161 an already existing space -- this can only happen for
5162 the first occurence of a built-in space. */
5163 if (create_flag)
5164 space = create_new_space (space_name, spnum, loadable, defined,
5165 private, sort, seg, 1);
5166 else
5167 {
5168 space = is_defined_space (space_name);
5169 SPACE_SPNUM (space) = spnum;
5170 SPACE_LOADABLE (space) = loadable & 1;
5171 SPACE_DEFINED (space) = defined & 1;
5172 SPACE_USER_DEFINED (space) = 1;
5173 SPACE_PRIVATE (space) = private & 1;
5174 SPACE_SORT (space) = sort & 0xff;
5175 space->sd_seg = seg;
5176 }
5177
5178 #ifdef obj_set_section_attributes
5179 obj_set_section_attributes (seg, defined, private, sort, spnum);
5180 #endif
5181
5182 return space;
5183 }
5184
5185 /* Handle a .SPACE pseudo-op; this switches the current space to the
5186 given space, creating the new space if necessary. */
5187
5188 static void
5189 pa_space (unused)
5190 int unused;
5191 {
5192 char *name, c, *space_name, *save_s;
5193 int temp;
5194 sd_chain_struct *sd_chain;
5195
5196 if (within_procedure)
5197 {
5198 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5199 ignore_rest_of_line ();
5200 }
5201 else
5202 {
5203 /* Check for some of the predefined spaces. FIXME: most of the code
5204 below is repeated several times, can we extract the common parts
5205 and place them into a subroutine or something similar? */
5206 if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
5207 {
5208 input_line_pointer += 6;
5209 sd_chain = is_defined_space ("$TEXT$");
5210 if (sd_chain == NULL)
5211 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5212 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5213 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5214
5215 current_space = sd_chain;
5216 subseg_set (text_section, sd_chain->sd_last_subseg);
5217 current_subspace
5218 = pa_subsegment_to_subspace (text_section,
5219 sd_chain->sd_last_subseg);
5220 demand_empty_rest_of_line ();
5221 return;
5222 }
5223 if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
5224 {
5225 input_line_pointer += 9;
5226 sd_chain = is_defined_space ("$PRIVATE$");
5227 if (sd_chain == NULL)
5228 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5229 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5230 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5231
5232 current_space = sd_chain;
5233 subseg_set (data_section, sd_chain->sd_last_subseg);
5234 current_subspace
5235 = pa_subsegment_to_subspace (data_section,
5236 sd_chain->sd_last_subseg);
5237 demand_empty_rest_of_line ();
5238 return;
5239 }
5240 if (!strncasecmp (input_line_pointer,
5241 GDB_DEBUG_SPACE_NAME,
5242 strlen (GDB_DEBUG_SPACE_NAME)))
5243 {
5244 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5245 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5246 if (sd_chain == NULL)
5247 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5248 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5249 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5250
5251 current_space = sd_chain;
5252
5253 {
5254 asection *gdb_section
5255 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5256
5257 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5258 current_subspace
5259 = pa_subsegment_to_subspace (gdb_section,
5260 sd_chain->sd_last_subseg);
5261 }
5262 demand_empty_rest_of_line ();
5263 return;
5264 }
5265
5266 /* It could be a space specified by number. */
5267 print_errors = 0;
5268 save_s = input_line_pointer;
5269 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5270 {
5271 if (sd_chain = pa_find_space_by_number (temp))
5272 {
5273 current_space = sd_chain;
5274
5275 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5276 current_subspace
5277 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5278 sd_chain->sd_last_subseg);
5279 demand_empty_rest_of_line ();
5280 return;
5281 }
5282 }
5283
5284 /* Not a number, attempt to create a new space. */
5285 print_errors = 1;
5286 input_line_pointer = save_s;
5287 name = input_line_pointer;
5288 c = get_symbol_end ();
5289 space_name = xmalloc (strlen (name) + 1);
5290 strcpy (space_name, name);
5291 *input_line_pointer = c;
5292
5293 sd_chain = pa_parse_space_stmt (space_name, 1);
5294 current_space = sd_chain;
5295
5296 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5297 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5298 sd_chain->sd_last_subseg);
5299 demand_empty_rest_of_line ();
5300 }
5301 return;
5302 }
5303
5304 /* Switch to a new space. (I think). FIXME. */
5305
5306 static void
5307 pa_spnum (unused)
5308 int unused;
5309 {
5310 char *name;
5311 char c;
5312 char *p;
5313 sd_chain_struct *space;
5314
5315 name = input_line_pointer;
5316 c = get_symbol_end ();
5317 space = is_defined_space (name);
5318 if (space)
5319 {
5320 p = frag_more (4);
5321 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5322 }
5323 else
5324 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5325
5326 *input_line_pointer = c;
5327 demand_empty_rest_of_line ();
5328 return;
5329 }
5330
5331 /* If VALUE is an exact power of two between zero and 2^31, then
5332 return log2 (VALUE). Else return -1. */
5333
5334 static int
5335 log2 (value)
5336 int value;
5337 {
5338 int shift = 0;
5339
5340 while ((1 << shift) != value && shift < 32)
5341 shift++;
5342
5343 if (shift >= 32)
5344 return -1;
5345 else
5346 return shift;
5347 }
5348
5349 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5350 given subspace, creating the new subspace if necessary.
5351
5352 FIXME. Should mirror pa_space more closely, in particular how
5353 they're broken up into subroutines. */
5354
5355 static void
5356 pa_subspace (unused)
5357 int unused;
5358 {
5359 char *name, *ss_name, *alias, c;
5360 char loadable, code_only, common, dup_common, zero, sort;
5361 int i, access, space_index, alignment, quadrant, applicable, flags;
5362 sd_chain_struct *space;
5363 ssd_chain_struct *ssd;
5364 asection *section;
5365
5366 if (within_procedure)
5367 {
5368 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5369 ignore_rest_of_line ();
5370 }
5371 else
5372 {
5373 name = input_line_pointer;
5374 c = get_symbol_end ();
5375 ss_name = xmalloc (strlen (name) + 1);
5376 strcpy (ss_name, name);
5377 *input_line_pointer = c;
5378
5379 /* Load default values. */
5380 sort = 0;
5381 access = 0x7f;
5382 loadable = 1;
5383 common = 0;
5384 dup_common = 0;
5385 code_only = 0;
5386 zero = 0;
5387 space_index = ~0;
5388 alignment = 0;
5389 quadrant = 0;
5390 alias = NULL;
5391
5392 space = current_space;
5393 ssd = is_defined_subspace (ss_name);
5394 /* Allow user to override the builtin attributes of subspaces. But
5395 only allow the attributes to be changed once! */
5396 if (ssd && SUBSPACE_DEFINED (ssd))
5397 {
5398 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5399 if (!is_end_of_statement ())
5400 as_warn ("Parameters of an existing subspace can\'t be modified");
5401 demand_empty_rest_of_line ();
5402 return;
5403 }
5404 else
5405 {
5406 /* A new subspace. Load default values if it matches one of
5407 the builtin subspaces. */
5408 i = 0;
5409 while (pa_def_subspaces[i].name)
5410 {
5411 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5412 {
5413 loadable = pa_def_subspaces[i].loadable;
5414 common = pa_def_subspaces[i].common;
5415 dup_common = pa_def_subspaces[i].dup_common;
5416 code_only = pa_def_subspaces[i].code_only;
5417 zero = pa_def_subspaces[i].zero;
5418 space_index = pa_def_subspaces[i].space_index;
5419 alignment = pa_def_subspaces[i].alignment;
5420 quadrant = pa_def_subspaces[i].quadrant;
5421 access = pa_def_subspaces[i].access;
5422 sort = pa_def_subspaces[i].sort;
5423 if (USE_ALIASES && pa_def_subspaces[i].alias)
5424 alias = pa_def_subspaces[i].alias;
5425 break;
5426 }
5427 i++;
5428 }
5429 }
5430
5431 /* We should be working with a new subspace now. Fill in
5432 any information as specified by the user. */
5433 if (!is_end_of_statement ())
5434 {
5435 input_line_pointer++;
5436 while (!is_end_of_statement ())
5437 {
5438 name = input_line_pointer;
5439 c = get_symbol_end ();
5440 if ((strncasecmp (name, "QUAD", 4) == 0))
5441 {
5442 *input_line_pointer = c;
5443 input_line_pointer++;
5444 quadrant = get_absolute_expression ();
5445 }
5446 else if ((strncasecmp (name, "ALIGN", 5) == 0))
5447 {
5448 *input_line_pointer = c;
5449 input_line_pointer++;
5450 alignment = get_absolute_expression ();
5451 if (log2 (alignment) == -1)
5452 {
5453 as_bad ("Alignment must be a power of 2");
5454 alignment = 1;
5455 }
5456 }
5457 else if ((strncasecmp (name, "ACCESS", 6) == 0))
5458 {
5459 *input_line_pointer = c;
5460 input_line_pointer++;
5461 access = get_absolute_expression ();
5462 }
5463 else if ((strncasecmp (name, "SORT", 4) == 0))
5464 {
5465 *input_line_pointer = c;
5466 input_line_pointer++;
5467 sort = get_absolute_expression ();
5468 }
5469 else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
5470 {
5471 *input_line_pointer = c;
5472 code_only = 1;
5473 }
5474 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5475 {
5476 *input_line_pointer = c;
5477 loadable = 0;
5478 }
5479 else if ((strncasecmp (name, "COMMON", 6) == 0))
5480 {
5481 *input_line_pointer = c;
5482 common = 1;
5483 }
5484 else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
5485 {
5486 *input_line_pointer = c;
5487 dup_common = 1;
5488 }
5489 else if ((strncasecmp (name, "ZERO", 4) == 0))
5490 {
5491 *input_line_pointer = c;
5492 zero = 1;
5493 }
5494 else if ((strncasecmp (name, "FIRST", 5) == 0))
5495 as_bad ("FIRST not supported as a .SUBSPACE argument");
5496 else
5497 as_bad ("Invalid .SUBSPACE argument");
5498 if (!is_end_of_statement ())
5499 input_line_pointer++;
5500 }
5501 }
5502
5503 /* Compute a reasonable set of BFD flags based on the information
5504 in the .subspace directive. */
5505 applicable = bfd_applicable_section_flags (stdoutput);
5506 flags = 0;
5507 if (loadable)
5508 flags |= (SEC_ALLOC | SEC_LOAD);
5509 if (code_only)
5510 flags |= SEC_CODE;
5511 if (common || dup_common)
5512 flags |= SEC_IS_COMMON;
5513
5514 /* This is a zero-filled subspace (eg BSS). */
5515 if (zero)
5516 flags &= ~SEC_LOAD;
5517
5518 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5519 applicable &= flags;
5520
5521 /* If this is an existing subspace, then we want to use the
5522 segment already associated with the subspace.
5523
5524 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5525 lots of sections. It might be a problem in the PA ELF
5526 code, I do not know yet. For now avoid creating anything
5527 but the "standard" sections for ELF. */
5528 if (ssd)
5529 section = ssd->ssd_seg;
5530 else if (alias)
5531 section = subseg_new (alias, 0);
5532 else if (!alias && USE_ALIASES)
5533 {
5534 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5535 demand_empty_rest_of_line ();
5536 return;
5537 }
5538 else
5539 section = subseg_new (ss_name, 0);
5540
5541 /* Now set the flags. */
5542 bfd_set_section_flags (stdoutput, section, applicable);
5543
5544 /* Record any alignment request for this section. */
5545 record_alignment (section, log2 (alignment));
5546
5547 /* Set the starting offset for this section. */
5548 bfd_set_section_vma (stdoutput, section,
5549 pa_subspace_start (space, quadrant));
5550
5551 /* Now that all the flags are set, update an existing subspace,
5552 or create a new one. */
5553 if (ssd)
5554
5555 current_subspace = update_subspace (space, ss_name, loadable,
5556 code_only, common, dup_common,
5557 sort, zero, access, space_index,
5558 alignment, quadrant,
5559 section);
5560 else
5561 current_subspace = create_new_subspace (space, ss_name, loadable,
5562 code_only, common,
5563 dup_common, zero, sort,
5564 access, space_index,
5565 alignment, quadrant, section);
5566
5567 demand_empty_rest_of_line ();
5568 current_subspace->ssd_seg = section;
5569 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5570 }
5571 SUBSPACE_DEFINED (current_subspace) = 1;
5572 return;
5573 }
5574
5575
5576 /* Create default space and subspace dictionaries. */
5577
5578 static void
5579 pa_spaces_begin ()
5580 {
5581 int i;
5582
5583 space_dict_root = NULL;
5584 space_dict_last = NULL;
5585
5586 i = 0;
5587 while (pa_def_spaces[i].name)
5588 {
5589 char *name;
5590
5591 /* Pick the right name to use for the new section. */
5592 if (pa_def_spaces[i].alias && USE_ALIASES)
5593 name = pa_def_spaces[i].alias;
5594 else
5595 name = pa_def_spaces[i].name;
5596
5597 pa_def_spaces[i].segment = subseg_new (name, 0);
5598 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5599 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5600 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5601 pa_def_spaces[i].segment, 0);
5602 i++;
5603 }
5604
5605 i = 0;
5606 while (pa_def_subspaces[i].name)
5607 {
5608 char *name;
5609 int applicable, subsegment;
5610 asection *segment = NULL;
5611 sd_chain_struct *space;
5612
5613 /* Pick the right name for the new section and pick the right
5614 subsegment number. */
5615 if (pa_def_subspaces[i].alias && USE_ALIASES)
5616 {
5617 name = pa_def_subspaces[i].alias;
5618 subsegment = pa_def_subspaces[i].subsegment;
5619 }
5620 else
5621 {
5622 name = pa_def_subspaces[i].name;
5623 subsegment = 0;
5624 }
5625
5626 /* Create the new section. */
5627 segment = subseg_new (name, subsegment);
5628
5629
5630 /* For SOM we want to replace the standard .text, .data, and .bss
5631 sections with our own. */
5632 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
5633 {
5634 text_section = segment;
5635 applicable = bfd_applicable_section_flags (stdoutput);
5636 bfd_set_section_flags (stdoutput, text_section,
5637 applicable & (SEC_ALLOC | SEC_LOAD
5638 | SEC_RELOC | SEC_CODE
5639 | SEC_READONLY
5640 | SEC_HAS_CONTENTS));
5641 }
5642 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
5643 {
5644 data_section = segment;
5645 applicable = bfd_applicable_section_flags (stdoutput);
5646 bfd_set_section_flags (stdoutput, data_section,
5647 applicable & (SEC_ALLOC | SEC_LOAD
5648 | SEC_RELOC
5649 | SEC_HAS_CONTENTS));
5650
5651
5652 }
5653 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
5654 {
5655 bss_section = segment;
5656 applicable = bfd_applicable_section_flags (stdoutput);
5657 bfd_set_section_flags (stdoutput, bss_section,
5658 applicable & SEC_ALLOC);
5659 }
5660
5661 /* Find the space associated with this subspace. */
5662 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5663 def_space_index].segment);
5664 if (space == NULL)
5665 {
5666 as_fatal ("Internal error: Unable to find containing space for %s.",
5667 pa_def_subspaces[i].name);
5668 }
5669
5670 create_new_subspace (space, name,
5671 pa_def_subspaces[i].loadable,
5672 pa_def_subspaces[i].code_only,
5673 pa_def_subspaces[i].common,
5674 pa_def_subspaces[i].dup_common,
5675 pa_def_subspaces[i].zero,
5676 pa_def_subspaces[i].sort,
5677 pa_def_subspaces[i].access,
5678 pa_def_subspaces[i].space_index,
5679 pa_def_subspaces[i].alignment,
5680 pa_def_subspaces[i].quadrant,
5681 segment);
5682 i++;
5683 }
5684 }
5685
5686
5687
5688 /* Create a new space NAME, with the appropriate flags as defined
5689 by the given parameters.
5690
5691 Add the new space to the space dictionary chain in numerical
5692 order as defined by the SORT entries. */
5693
5694 static sd_chain_struct *
5695 create_new_space (name, spnum, loadable, defined, private,
5696 sort, seg, user_defined)
5697 char *name;
5698 int spnum;
5699 char loadable;
5700 char defined;
5701 char private;
5702 char sort;
5703 asection *seg;
5704 int user_defined;
5705 {
5706 sd_chain_struct *chain_entry;
5707
5708 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5709 if (!chain_entry)
5710 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5711 name);
5712
5713 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5714 strcpy (SPACE_NAME (chain_entry), name);
5715 SPACE_NAME_INDEX (chain_entry) = 0;
5716 SPACE_LOADABLE (chain_entry) = loadable;
5717 SPACE_DEFINED (chain_entry) = defined;
5718 SPACE_USER_DEFINED (chain_entry) = user_defined;
5719 SPACE_PRIVATE (chain_entry) = private;
5720 SPACE_SPNUM (chain_entry) = spnum;
5721 SPACE_SORT (chain_entry) = sort;
5722
5723 chain_entry->sd_seg = seg;
5724 chain_entry->sd_last_subseg = -1;
5725 chain_entry->sd_next = NULL;
5726
5727 /* Find spot for the new space based on its sort key. */
5728 if (!space_dict_last)
5729 space_dict_last = chain_entry;
5730
5731 if (space_dict_root == NULL)
5732 space_dict_root = chain_entry;
5733 else
5734 {
5735 sd_chain_struct *chain_pointer;
5736 sd_chain_struct *prev_chain_pointer;
5737
5738 chain_pointer = space_dict_root;
5739 prev_chain_pointer = NULL;
5740
5741 while (chain_pointer)
5742 {
5743 if (SPACE_SORT (chain_pointer) <= SPACE_SORT (chain_entry))
5744 {
5745 prev_chain_pointer = chain_pointer;
5746 chain_pointer = chain_pointer->sd_next;
5747 }
5748 else
5749 break;
5750 }
5751
5752 /* At this point we've found the correct place to add the new
5753 entry. So add it and update the linked lists as appropriate. */
5754 if (prev_chain_pointer)
5755 {
5756 chain_entry->sd_next = chain_pointer;
5757 prev_chain_pointer->sd_next = chain_entry;
5758 }
5759 else
5760 {
5761 space_dict_root = chain_entry;
5762 chain_entry->sd_next = chain_pointer;
5763 }
5764
5765 if (chain_entry->sd_next == NULL)
5766 space_dict_last = chain_entry;
5767 }
5768
5769 /* This is here to catch predefined spaces which do not get
5770 modified by the user's input. Another call is found at
5771 the bottom of pa_parse_space_stmt to handle cases where
5772 the user modifies a predefined space. */
5773 #ifdef obj_set_section_attributes
5774 obj_set_section_attributes (seg, defined, private, sort, spnum);
5775 #endif
5776
5777 return chain_entry;
5778 }
5779
5780 /* Create a new subspace NAME, with the appropriate flags as defined
5781 by the given parameters.
5782
5783 Add the new subspace to the subspace dictionary chain in numerical
5784 order as defined by the SORT entries. */
5785
5786 static ssd_chain_struct *
5787 create_new_subspace (space, name, loadable, code_only, common,
5788 dup_common, is_zero, sort, access, space_index,
5789 alignment, quadrant, seg)
5790 sd_chain_struct *space;
5791 char *name;
5792 char loadable, code_only, common, dup_common, is_zero;
5793 char sort;
5794 int access;
5795 int space_index;
5796 int alignment;
5797 int quadrant;
5798 asection *seg;
5799 {
5800 ssd_chain_struct *chain_entry;
5801
5802 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5803 if (!chain_entry)
5804 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5805
5806 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5807 strcpy (SUBSPACE_NAME (chain_entry), name);
5808
5809 SUBSPACE_ACCESS (chain_entry) = access;
5810 SUBSPACE_LOADABLE (chain_entry) = loadable;
5811 SUBSPACE_COMMON (chain_entry) = common;
5812 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5813 SUBSPACE_SORT (chain_entry) = sort;
5814 SUBSPACE_CODE_ONLY (chain_entry) = code_only;
5815 SUBSPACE_ALIGN (chain_entry) = alignment;
5816 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5817 SUBSPACE_SUBSPACE_START (chain_entry) = pa_subspace_start (space, quadrant);
5818 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5819 SUBSPACE_ZERO (chain_entry) = is_zero;
5820
5821 /* Initialize subspace_defined. When we hit a .subspace directive
5822 we'll set it to 1 which "locks-in" the subspace attributes. */
5823 SUBSPACE_DEFINED (chain_entry) = 0;
5824
5825 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5826 chain_entry->ssd_seg = seg;
5827 chain_entry->ssd_last_align = 1;
5828 chain_entry->ssd_next = NULL;
5829
5830 /* Find spot for the new subspace based on its sort key. */
5831 if (space->sd_subspaces == NULL)
5832 space->sd_subspaces = chain_entry;
5833 else
5834 {
5835 ssd_chain_struct *chain_pointer;
5836 ssd_chain_struct *prev_chain_pointer;
5837
5838 chain_pointer = space->sd_subspaces;
5839 prev_chain_pointer = NULL;
5840
5841 while (chain_pointer)
5842 {
5843 if (SUBSPACE_SORT (chain_pointer) <= SUBSPACE_SORT (chain_entry))
5844 {
5845 prev_chain_pointer = chain_pointer;
5846 chain_pointer = chain_pointer->ssd_next;
5847 }
5848 else
5849 break;
5850
5851 }
5852
5853 /* Now we have somewhere to put the new entry. Insert it and update
5854 the links. */
5855 if (prev_chain_pointer)
5856 {
5857 chain_entry->ssd_next = chain_pointer;
5858 prev_chain_pointer->ssd_next = chain_entry;
5859 }
5860 else
5861 {
5862 space->sd_subspaces = chain_entry;
5863 chain_entry->ssd_next = chain_pointer;
5864 }
5865 }
5866
5867 #ifdef obj_set_subsection_attributes
5868 obj_set_subsection_attributes (seg, space->sd_seg, access,
5869 sort, quadrant);
5870 #endif
5871
5872 return chain_entry;
5873
5874 }
5875
5876 /* Update the information for the given subspace based upon the
5877 various arguments. Return the modified subspace chain entry. */
5878
5879 static ssd_chain_struct *
5880 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5881 zero, access, space_index, alignment, quadrant, section)
5882 sd_chain_struct *space;
5883 char *name;
5884 char loadable;
5885 char code_only;
5886 char common;
5887 char dup_common;
5888 char zero;
5889 char sort;
5890 int access;
5891 int space_index;
5892 int alignment;
5893 int quadrant;
5894 asection *section;
5895 {
5896 ssd_chain_struct *chain_entry;
5897
5898 if ((chain_entry = is_defined_subspace (name)))
5899 {
5900 SUBSPACE_ACCESS (chain_entry) = access;
5901 SUBSPACE_LOADABLE (chain_entry) = loadable;
5902 SUBSPACE_COMMON (chain_entry) = common;
5903 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5904 SUBSPACE_CODE_ONLY (chain_entry) = 1;
5905 SUBSPACE_SORT (chain_entry) = sort;
5906 SUBSPACE_ALIGN (chain_entry) = alignment;
5907 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5908 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5909 SUBSPACE_ZERO (chain_entry) = zero;
5910 }
5911 else
5912 chain_entry = NULL;
5913
5914 #ifdef obj_set_subsection_attributes
5915 obj_set_subsection_attributes (section, space->sd_seg, access,
5916 sort, quadrant);
5917 #endif
5918
5919 return chain_entry;
5920
5921 }
5922
5923 /* Return the space chain entry for the space with the name NAME or
5924 NULL if no such space exists. */
5925
5926 static sd_chain_struct *
5927 is_defined_space (name)
5928 char *name;
5929 {
5930 sd_chain_struct *chain_pointer;
5931
5932 for (chain_pointer = space_dict_root;
5933 chain_pointer;
5934 chain_pointer = chain_pointer->sd_next)
5935 {
5936 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5937 return chain_pointer;
5938 }
5939
5940 /* No mapping from segment to space was found. Return NULL. */
5941 return NULL;
5942 }
5943
5944 /* Find and return the space associated with the given seg. If no mapping
5945 from the given seg to a space is found, then return NULL.
5946
5947 Unlike subspaces, the number of spaces is not expected to grow much,
5948 so a linear exhaustive search is OK here. */
5949
5950 static sd_chain_struct *
5951 pa_segment_to_space (seg)
5952 asection *seg;
5953 {
5954 sd_chain_struct *space_chain;
5955
5956 /* Walk through each space looking for the correct mapping. */
5957 for (space_chain = space_dict_root;
5958 space_chain;
5959 space_chain = space_chain->sd_next)
5960 {
5961 if (space_chain->sd_seg == seg)
5962 return space_chain;
5963 }
5964
5965 /* Mapping was not found. Return NULL. */
5966 return NULL;
5967 }
5968
5969 /* Return the space chain entry for the subspace with the name NAME or
5970 NULL if no such subspace exists.
5971
5972 Uses a linear search through all the spaces and subspaces, this may
5973 not be appropriate if we ever being placing each function in its
5974 own subspace. */
5975
5976 static ssd_chain_struct *
5977 is_defined_subspace (name)
5978 char *name;
5979 {
5980 sd_chain_struct *space_chain;
5981 ssd_chain_struct *subspace_chain;
5982
5983 /* Walk through each space. */
5984 for (space_chain = space_dict_root;
5985 space_chain;
5986 space_chain = space_chain->sd_next)
5987 {
5988 /* Walk through each subspace looking for a name which matches. */
5989 for (subspace_chain = space_chain->sd_subspaces;
5990 subspace_chain;
5991 subspace_chain = subspace_chain->ssd_next)
5992 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5993 return subspace_chain;
5994 }
5995
5996 /* Subspace wasn't found. Return NULL. */
5997 return NULL;
5998 }
5999
6000 /* Find and return the subspace associated with the given seg. If no
6001 mapping from the given seg to a subspace is found, then return NULL.
6002
6003 If we ever put each procedure/function within its own subspace
6004 (to make life easier on the compiler and linker), then this will have
6005 to become more efficient. */
6006
6007 static ssd_chain_struct *
6008 pa_subsegment_to_subspace (seg, subseg)
6009 asection *seg;
6010 subsegT subseg;
6011 {
6012 sd_chain_struct *space_chain;
6013 ssd_chain_struct *subspace_chain;
6014
6015 /* Walk through each space. */
6016 for (space_chain = space_dict_root;
6017 space_chain;
6018 space_chain = space_chain->sd_next)
6019 {
6020 if (space_chain->sd_seg == seg)
6021 {
6022 /* Walk through each subspace within each space looking for
6023 the correct mapping. */
6024 for (subspace_chain = space_chain->sd_subspaces;
6025 subspace_chain;
6026 subspace_chain = subspace_chain->ssd_next)
6027 if (subspace_chain->ssd_subseg == (int) subseg)
6028 return subspace_chain;
6029 }
6030 }
6031
6032 /* No mapping from subsegment to subspace found. Return NULL. */
6033 return NULL;
6034 }
6035
6036 /* Given a number, try and find a space with the name number.
6037
6038 Return a pointer to a space dictionary chain entry for the space
6039 that was found or NULL on failure. */
6040
6041 static sd_chain_struct *
6042 pa_find_space_by_number (number)
6043 int number;
6044 {
6045 sd_chain_struct *space_chain;
6046
6047 for (space_chain = space_dict_root;
6048 space_chain;
6049 space_chain = space_chain->sd_next)
6050 {
6051 if (SPACE_SPNUM (space_chain) == number)
6052 return space_chain;
6053 }
6054
6055 /* No appropriate space found. Return NULL. */
6056 return NULL;
6057 }
6058
6059 /* Return the starting address for the given subspace. If the starting
6060 address is unknown then return zero. */
6061
6062 static unsigned int
6063 pa_subspace_start (space, quadrant)
6064 sd_chain_struct *space;
6065 int quadrant;
6066 {
6067 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
6068 is not correct for the PA OSF1 port. */
6069 if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
6070 return 0x40000000;
6071 else if (space->sd_seg == data_section && quadrant == 1)
6072 return 0x40000000;
6073 else
6074 return 0;
6075 }
6076
6077 /* FIXME. Needs documentation. */
6078 static int
6079 pa_next_subseg (space)
6080 sd_chain_struct *space;
6081 {
6082
6083 space->sd_last_subseg++;
6084 return space->sd_last_subseg;
6085 }
6086
6087 /* Helper function for pa_stringer. Used to find the end of
6088 a string. */
6089
6090 static unsigned int
6091 pa_stringer_aux (s)
6092 char *s;
6093 {
6094 unsigned int c = *s & CHAR_MASK;
6095 switch (c)
6096 {
6097 case '\"':
6098 c = NOT_A_CHAR;
6099 break;
6100 default:
6101 break;
6102 }
6103 return c;
6104 }
6105
6106 /* Handle a .STRING type pseudo-op. */
6107
6108 static void
6109 pa_stringer (append_zero)
6110 int append_zero;
6111 {
6112 char *s, num_buf[4];
6113 unsigned int c;
6114 int i;
6115
6116 /* Preprocess the string to handle PA-specific escape sequences.
6117 For example, \xDD where DD is a hexidecimal number should be
6118 changed to \OOO where OOO is an octal number. */
6119
6120 /* Skip the opening quote. */
6121 s = input_line_pointer + 1;
6122
6123 while (is_a_char (c = pa_stringer_aux (s++)))
6124 {
6125 if (c == '\\')
6126 {
6127 c = *s;
6128 switch (c)
6129 {
6130 /* Handle \x<num>. */
6131 case 'x':
6132 {
6133 unsigned int number;
6134 int num_digit;
6135 char dg;
6136 char *s_start = s;
6137
6138 /* Get pas the 'x'. */
6139 s++;
6140 for (num_digit = 0, number = 0, dg = *s;
6141 num_digit < 2
6142 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6143 || (dg >= 'A' && dg <= 'F'));
6144 num_digit++)
6145 {
6146 if (isdigit (dg))
6147 number = number * 16 + dg - '0';
6148 else if (dg >= 'a' && dg <= 'f')
6149 number = number * 16 + dg - 'a' + 10;
6150 else
6151 number = number * 16 + dg - 'A' + 10;
6152
6153 s++;
6154 dg = *s;
6155 }
6156 if (num_digit > 0)
6157 {
6158 switch (num_digit)
6159 {
6160 case 1:
6161 sprintf (num_buf, "%02o", number);
6162 break;
6163 case 2:
6164 sprintf (num_buf, "%03o", number);
6165 break;
6166 }
6167 for (i = 0; i <= num_digit; i++)
6168 s_start[i] = num_buf[i];
6169 }
6170 break;
6171 }
6172 /* This might be a "\"", skip over the escaped char. */
6173 default:
6174 s++;
6175 break;
6176 }
6177 }
6178 }
6179 stringer (append_zero);
6180 pa_undefine_label ();
6181 }
6182
6183 /* Handle a .VERSION pseudo-op. */
6184
6185 static void
6186 pa_version (unused)
6187 int unused;
6188 {
6189 obj_version (0);
6190 pa_undefine_label ();
6191 }
6192
6193 /* Just like a normal cons, but when finished we have to undefine
6194 the latest space label. */
6195
6196 static void
6197 pa_cons (nbytes)
6198 int nbytes;
6199 {
6200 cons (nbytes);
6201 pa_undefine_label ();
6202 }
6203
6204 /* Switch to the data space. As usual delete our label. */
6205
6206 static void
6207 pa_data (unused)
6208 int unused;
6209 {
6210 s_data (0);
6211 pa_undefine_label ();
6212 }
6213
6214 /* FIXME. What's the purpose of this pseudo-op? */
6215
6216 static void
6217 pa_desc (unused)
6218 int unused;
6219 {
6220 pa_undefine_label ();
6221 }
6222
6223 /* Like float_cons, but we need to undefine our label. */
6224
6225 static void
6226 pa_float_cons (float_type)
6227 int float_type;
6228 {
6229 float_cons (float_type);
6230 pa_undefine_label ();
6231 }
6232
6233 /* Like s_fill, but delete our label when finished. */
6234
6235 static void
6236 pa_fill (unused)
6237 int unused;
6238 {
6239 s_fill (0);
6240 pa_undefine_label ();
6241 }
6242
6243 /* Like lcomm, but delete our label when finished. */
6244
6245 static void
6246 pa_lcomm (needs_align)
6247 int needs_align;
6248 {
6249 s_lcomm (needs_align);
6250 pa_undefine_label ();
6251 }
6252
6253 /* Like lsym, but delete our label when finished. */
6254
6255 static void
6256 pa_lsym (unused)
6257 int unused;
6258 {
6259 s_lsym (0);
6260 pa_undefine_label ();
6261 }
6262
6263 /* Switch to the text space. Like s_text, but delete our
6264 label when finished. */
6265 static void
6266 pa_text (unused)
6267 int unused;
6268 {
6269 s_text (0);
6270 pa_undefine_label ();
6271 }
6272
6273 /* On the PA relocations which involve function symbols must not be
6274 adjusted. This so that the linker can know when/how to create argument
6275 relocation stubs for indirect calls and calls to static functions.
6276
6277 FIXME. Also reject R_HPPA relocations which are 32 bits
6278 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6279 needs to generate relocations to push the addend and symbol value
6280 onto the stack, add them, then pop the value off the stack and
6281 use it in a relocation -- yuk. */
6282
6283 int
6284 hppa_fix_adjustable (fixp)
6285 fixS *fixp;
6286 {
6287 struct hppa_fix_struct *hppa_fix;
6288
6289 hppa_fix = fixp->tc_fix_data;
6290
6291 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6292 return 0;
6293
6294 if (fixp->fx_addsy == 0
6295 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6296 return 1;
6297
6298 return 0;
6299 }
6300
6301 /* Return nonzero if the fixup in FIXP will require a relocation,
6302 even it if appears that the fixup could be completely handled
6303 within GAS. */
6304
6305 int
6306 hppa_force_relocation (fixp)
6307 fixS *fixp;
6308 {
6309 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6310
6311 #ifdef OBJ_SOM
6312 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6313 return 1;
6314 #endif
6315
6316 #define stub_needed(CALLER, CALLEE) \
6317 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6318
6319 /* It is necessary to force PC-relative calls/jumps to have a relocation
6320 entry if they're going to need either a argument relocation or long
6321 call stub. FIXME. Can't we need the same for absolute calls? */
6322 if (fixp->fx_pcrel
6323 && (stub_needed (((obj_symbol_type *)
6324 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6325 hppa_fixp->fx_arg_reloc)))
6326 return 1;
6327
6328 #undef stub_needed
6329
6330 /* No need (yet) to force another relocations to be emitted. */
6331 return 0;
6332 }
6333
6334 /* Now for some ELF specific code. FIXME. */
6335 #ifdef OBJ_ELF
6336 static symext_chainS *symext_rootP;
6337 static symext_chainS *symext_lastP;
6338
6339 /* Mark the end of a function so that it's possible to compute
6340 the size of the function in hppa_elf_final_processing. */
6341
6342 static void
6343 hppa_elf_mark_end_of_function ()
6344 {
6345 /* ELF does not have EXIT relocations. All we do is create a
6346 temporary symbol marking the end of the function. */
6347 char *name = (char *)
6348 xmalloc (strlen ("L$\001end_") +
6349 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6350
6351 if (name)
6352 {
6353 symbolS *symbolP;
6354
6355 strcpy (name, "L$\001end_");
6356 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6357
6358 /* If we have a .exit followed by a .procend, then the
6359 symbol will have already been defined. */
6360 symbolP = symbol_find (name);
6361 if (symbolP)
6362 {
6363 /* The symbol has already been defined! This can
6364 happen if we have a .exit followed by a .procend.
6365
6366 This is *not* an error. All we want to do is free
6367 the memory we just allocated for the name and continue. */
6368 xfree (name);
6369 }
6370 else
6371 {
6372 /* symbol value should be the offset of the
6373 last instruction of the function */
6374 symbolP = symbol_new (name, now_seg,
6375 (valueT) (obstack_next_free (&frags)
6376 - frag_now->fr_literal - 4),
6377 frag_now);
6378
6379 assert (symbolP);
6380 symbolP->bsym->flags = BSF_LOCAL;
6381 symbol_table_insert (symbolP);
6382 }
6383
6384 if (symbolP)
6385 last_call_info->end_symbol = symbolP;
6386 else
6387 as_bad ("Symbol '%s' could not be created.", name);
6388
6389 }
6390 else
6391 as_bad ("No memory for symbol name.");
6392
6393 /* Stuff away the location of the frag for the end of the function,
6394 and call pa_build_unwind_subspace to add an entry in the unwind
6395 table. */
6396 last_call_info->end_frag = frag_now;
6397 }
6398
6399 /* Do any symbol processing requested by the target-cpu or target-format. */
6400
6401 void
6402 hppa_tc_symbol (abfd, symbolP, sym_idx)
6403 bfd *abfd;
6404 elf_symbol_type *symbolP;
6405 int sym_idx;
6406 {
6407 symext_chainS *symextP;
6408 unsigned int arg_reloc;
6409
6410 /* Only functions can have argument relocations. */
6411 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6412 return;
6413
6414 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6415
6416 /* If there are no argument relocation bits, then no relocation is
6417 necessary. Do not add this to the symextn section. */
6418 if (arg_reloc == 0)
6419 return;
6420
6421 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6422
6423 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6424 symextP[0].next = &symextP[1];
6425
6426 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6427 symextP[1].next = NULL;
6428
6429 if (symext_rootP == NULL)
6430 {
6431 symext_rootP = &symextP[0];
6432 symext_lastP = &symextP[1];
6433 }
6434 else
6435 {
6436 symext_lastP->next = &symextP[0];
6437 symext_lastP = &symextP[1];
6438 }
6439 }
6440
6441 /* Make sections needed by the target cpu and/or target format. */
6442 void
6443 hppa_tc_make_sections (abfd)
6444 bfd *abfd;
6445 {
6446 symext_chainS *symextP;
6447 int size, n;
6448 asection *symextn_sec;
6449 segT save_seg = now_seg;
6450 subsegT save_subseg = now_subseg;
6451
6452 /* Build the symbol extension section. */
6453 hppa_tc_make_symextn_section ();
6454
6455 /* Force some calculation to occur. */
6456 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6457
6458 hppa_elf_stub_finish (abfd);
6459
6460 /* If no symbols for the symbol extension section, then stop now. */
6461 if (symext_rootP == NULL)
6462 return;
6463
6464 /* Count the number of symbols for the symbol extension section. */
6465 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6466 ;
6467
6468 size = sizeof (symext_entryS) * n;
6469
6470 /* Switch to the symbol extension section. */
6471 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6472
6473 frag_wane (frag_now);
6474 frag_new (0);
6475
6476 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6477 {
6478 char *ptr;
6479 int *symtab_map = elf_sym_extra (abfd);
6480 int idx;
6481
6482 /* First, patch the symbol extension record to reflect the true
6483 symbol table index. */
6484
6485 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6486 {
6487 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6488 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6489 symtab_map[idx]);
6490 }
6491
6492 ptr = frag_more (sizeof (symextP->entry));
6493 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6494 }
6495
6496 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6497 frag_wane (frag_now);
6498
6499 /* Switch back to the original segment. */
6500 subseg_set (save_seg, save_subseg);
6501
6502 return;
6503 }
6504
6505 /* Make the symbol extension section. */
6506
6507 static void
6508 hppa_tc_make_symextn_section ()
6509 {
6510 if (symext_rootP)
6511 {
6512 symext_chainS *symextP;
6513 int n;
6514 unsigned int size;
6515 segT symextn_sec;
6516 segT save_seg = now_seg;
6517 subsegT save_subseg = now_subseg;
6518
6519 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6520 ;
6521
6522 size = sizeof (symext_entryS) * n;
6523
6524 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6525
6526 bfd_set_section_flags (stdoutput, symextn_sec,
6527 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6528 bfd_set_section_size (stdoutput, symextn_sec, size);
6529
6530 /* Now, switch back to the original segment. */
6531 subseg_set (save_seg, save_subseg);
6532 }
6533 }
6534
6535 /* Build the symbol extension section. */
6536
6537 static void
6538 pa_build_symextn_section ()
6539 {
6540 segT seg;
6541 asection *save_seg = now_seg;
6542 subsegT subseg = (subsegT) 0;
6543 subsegT save_subseg = now_subseg;
6544
6545 seg = subseg_new (".hppa_symextn", subseg);
6546 bfd_set_section_flags (stdoutput,
6547 seg,
6548 SEC_HAS_CONTENTS | SEC_READONLY
6549 | SEC_ALLOC | SEC_LOAD);
6550
6551 subseg_set (save_seg, save_subseg);
6552
6553 }
6554
6555 /* For ELF, this function serves one purpose: to setup the st_size
6556 field of STT_FUNC symbols. To do this, we need to scan the
6557 call_info structure list, determining st_size in one of two possible
6558 ways:
6559
6560 1. call_info->start_frag->fr_fix has the size of the fragment.
6561 This approach assumes that the function was built into a
6562 single fragment. This works for most cases, but might fail.
6563 For example, if there was a segment change in the middle of
6564 the function.
6565
6566 2. The st_size field is the difference in the addresses of the
6567 call_info->start_frag->fr_address field and the fr_address
6568 field of the next fragment with fr_type == rs_fill and
6569 fr_fix != 0. */
6570
6571 void
6572 elf_hppa_final_processing ()
6573 {
6574 struct call_info *call_info_pointer;
6575
6576 for (call_info_pointer = call_info_root;
6577 call_info_pointer;
6578 call_info_pointer = call_info_pointer->ci_next)
6579 {
6580 elf_symbol_type *esym
6581 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6582 esym->internal_elf_sym.st_size =
6583 S_GET_VALUE (call_info_pointer->end_symbol)
6584 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6585 }
6586 }
6587 #endif
This page took 0.158598 seconds and 5 git commands to generate.