* config/tc-hppa.c (evaluate_absolute): Avoid relying on
[deliverable/binutils-gdb.git] / gas / config / tc-hppa.c
1 /* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
23
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #include "as.h"
28 #include "subsegs.h"
29
30 #include "../bfd/libhppa.h"
31 #include "../bfd/libbfd.h"
32
33 /* Be careful, this file includes data *declarations*. */
34 #include "opcode/hppa.h"
35
36 /* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
38 #ifdef OBJ_ELF
39 /* Names of various debugging spaces/subspaces. */
40 #define GDB_DEBUG_SPACE_NAME ".stab"
41 #define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42 #define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43 #define UNWIND_SECTION_NAME ".hppa_unwind"
44 /* Nonzero if CODE is a fixup code needing further processing. */
45
46 /* Object file formats specify relocation types. */
47 typedef elf32_hppa_reloc_type reloc_type;
48
49 /* Object file formats specify BFD symbol types. */
50 typedef elf_symbol_type obj_symbol_type;
51
52 /* How to generate a relocation. */
53 #define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
55 /* Who knows. */
56 #define obj_version obj_elf_version
57
58 /* Use space aliases. */
59 #define USE_ALIASES 1
60
61 /* Some local functions only used by ELF. */
62 static void pa_build_symextn_section PARAMS ((void));
63 static void hppa_tc_make_symextn_section PARAMS ((void));
64 #endif
65
66 #ifdef OBJ_SOM
67 /* Names of various debugging spaces/subspaces. */
68 #define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
69 #define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
70 #define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
71 #define UNWIND_SECTION_NAME "$UNWIND$"
72
73 /* Object file formats specify relocation types. */
74 typedef int reloc_type;
75
76 /* Who knows. */
77 #define obj_version obj_som_version
78
79 /* Do not use space aliases. */
80 #define USE_ALIASES 0
81
82 /* How to generate a relocation. */
83 #define hppa_gen_reloc_type hppa_som_gen_reloc_type
84
85 /* Object file formats specify BFD symbol types. */
86 typedef som_symbol_type obj_symbol_type;
87 #endif
88
89 /* Various structures and types used internally in tc-hppa.c. */
90
91 /* Unwind table and descriptor. FIXME: Sync this with GDB version. */
92
93 struct unwind_desc
94 {
95 unsigned int cannot_unwind:1;
96 unsigned int millicode:1;
97 unsigned int millicode_save_rest:1;
98 unsigned int region_desc:2;
99 unsigned int save_sr:2;
100 unsigned int entry_fr:4;
101 unsigned int entry_gr:5;
102 unsigned int args_stored:1;
103 unsigned int call_fr:5;
104 unsigned int call_gr:5;
105 unsigned int save_sp:1;
106 unsigned int save_rp:1;
107 unsigned int save_rp_in_frame:1;
108 unsigned int extn_ptr_defined:1;
109 unsigned int cleanup_defined:1;
110
111 unsigned int hpe_interrupt_marker:1;
112 unsigned int hpux_interrupt_marker:1;
113 unsigned int reserved:3;
114 unsigned int frame_size:27;
115 };
116
117 struct unwind_table
118 {
119 /* Starting and ending offsets of the region described by
120 descriptor. */
121 unsigned int start_offset;
122 unsigned int end_offset;
123 struct unwind_desc descriptor;
124 };
125
126 /* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
127 control the entry and exit code they generate. It is also used in
128 creation of the correct stack unwind descriptors.
129
130 NOTE: GAS does not support .enter and .leave for the generation of
131 prologues and epilogues. FIXME.
132
133 The fields in structure roughly correspond to the arguments available on the
134 .callinfo pseudo-op. */
135
136 struct call_info
137 {
138 /* Should sr3 be saved in the prologue? */
139 int entry_sr;
140
141 /* Does this function make calls? */
142 int makes_calls;
143
144 /* The unwind descriptor being built. */
145 struct unwind_table ci_unwind;
146
147 /* Name of this function. */
148 symbolS *start_symbol;
149
150 /* (temporary) symbol used to mark the end of this function. */
151 symbolS *end_symbol;
152
153 /* frags associated with start and end of this function. */
154 fragS *start_frag;
155 fragS *end_frag;
156
157 /* frags for starting/ending offset of this descriptor. */
158 fragS *start_offset_frag;
159 fragS *end_offset_frag;
160
161 /* The location within {start,end}_offset_frag to find the
162 {start,end}_offset. */
163 int start_frag_where;
164 int end_frag_where;
165
166 /* Fixups (relocations) for start_offset and end_offset. */
167 fixS *start_fix;
168 fixS *end_fix;
169
170 /* Next entry in the chain. */
171 struct call_info *ci_next;
172 };
173
174 /* Operand formats for FP instructions. Note not all FP instructions
175 allow all four formats to be used (for example fmpysub only allows
176 SGL and DBL). */
177 typedef enum
178 {
179 SGL, DBL, ILLEGAL_FMT, QUAD
180 }
181 fp_operand_format;
182
183 /* This fully describes the symbol types which may be attached to
184 an EXPORT or IMPORT directive. Only SOM uses this formation
185 (ELF has no need for it). */
186 typedef enum
187 {
188 SYMBOL_TYPE_UNKNOWN,
189 SYMBOL_TYPE_ABSOLUTE,
190 SYMBOL_TYPE_CODE,
191 SYMBOL_TYPE_DATA,
192 SYMBOL_TYPE_ENTRY,
193 SYMBOL_TYPE_MILLICODE,
194 SYMBOL_TYPE_PLABEL,
195 SYMBOL_TYPE_PRI_PROG,
196 SYMBOL_TYPE_SEC_PROG,
197 } pa_symbol_type;
198
199 /* This structure contains information needed to assemble
200 individual instructions. */
201 struct pa_it
202 {
203 /* Holds the opcode after parsing by pa_ip. */
204 unsigned long opcode;
205
206 /* Holds an expression associated with the current instruction. */
207 expressionS exp;
208
209 /* Does this instruction use PC-relative addressing. */
210 int pcrel;
211
212 /* Floating point formats for operand1 and operand2. */
213 fp_operand_format fpof1;
214 fp_operand_format fpof2;
215
216 /* Holds the field selector for this instruction
217 (for example L%, LR%, etc). */
218 long field_selector;
219
220 /* Holds any argument relocation bits associated with this
221 instruction. (instruction should be some sort of call). */
222 long arg_reloc;
223
224 /* The format specification for this instruction. */
225 int format;
226
227 /* The relocation (if any) associated with this instruction. */
228 reloc_type reloc;
229 };
230
231 /* PA-89 floating point registers are arranged like this:
232
233
234 +--------------+--------------+
235 | 0 or 16L | 16 or 16R |
236 +--------------+--------------+
237 | 1 or 17L | 17 or 17R |
238 +--------------+--------------+
239 | | |
240
241 . . .
242 . . .
243 . . .
244
245 | | |
246 +--------------+--------------+
247 | 14 or 30L | 30 or 30R |
248 +--------------+--------------+
249 | 15 or 31L | 31 or 31R |
250 +--------------+--------------+
251
252
253 The following is a version of pa_parse_number that
254 handles the L/R notation and returns the correct
255 value to put into the instruction register field.
256 The correct value to put into the instruction is
257 encoded in the structure 'pa_89_fp_reg_struct'. */
258
259 struct pa_89_fp_reg_struct
260 {
261 /* The register number. */
262 char number_part;
263
264 /* L/R selector. */
265 char l_r_select;
266 };
267
268 /* Additional information needed to build argument relocation stubs. */
269 struct call_desc
270 {
271 /* The argument relocation specification. */
272 unsigned int arg_reloc;
273
274 /* Number of arguments. */
275 unsigned int arg_count;
276 };
277
278 /* This structure defines an entry in the subspace dictionary
279 chain. */
280
281 struct subspace_dictionary_chain
282 {
283 /* Index of containing space. */
284 unsigned long ssd_space_index;
285
286 /* Nonzero if this space has been defined by the user code. */
287 unsigned int ssd_defined;
288
289 /* Which quadrant within the space this subspace should be loaded into. */
290 unsigned char ssd_quadrant;
291
292 /* Alignment (in bytes) for this subspace. */
293 unsigned long ssd_alignment;
294
295 /* Access control bits to determine read/write/execute permissions
296 as well as gateway privilege promotions. */
297 unsigned char ssd_access_control_bits;
298
299 /* A sorting key so that it is possible to specify ordering of
300 subspaces within a space. */
301 unsigned char ssd_sort_key;
302
303 /* Nonzero of this space should be zero filled. */
304 unsigned long ssd_zero;
305
306 /* Nonzero if this is a common subspace. */
307 unsigned char ssd_common;
308
309 /* Nonzero if this is a common subspace which allows symbols to be
310 multiply defined. */
311 unsigned char ssd_dup_common;
312
313 /* Nonzero if this subspace is loadable. Note loadable subspaces
314 must be contained within loadable spaces; unloadable subspaces
315 must be contained in unloadable spaces. */
316 unsigned char ssd_loadable;
317
318 /* Nonzero if this subspace contains only code. */
319 unsigned char ssd_code_only;
320
321 /* Starting offset of this subspace. */
322 unsigned long ssd_subspace_start;
323
324 /* Length of this subspace. */
325 unsigned long ssd_subspace_length;
326
327 /* Name of this subspace. */
328 char *ssd_name;
329
330 /* GAS segment and subsegment associated with this subspace. */
331 asection *ssd_seg;
332 int ssd_subseg;
333
334 /* Index of this subspace within the subspace dictionary of the object
335 file. Not used until object file is written. */
336 int object_file_index;
337
338 /* The size of the last alignment request for this subspace. */
339 int ssd_last_align;
340
341 /* Next space in the subspace dictionary chain. */
342 struct subspace_dictionary_chain *ssd_next;
343 };
344
345 typedef struct subspace_dictionary_chain ssd_chain_struct;
346
347 /* This structure defines an entry in the subspace dictionary
348 chain. */
349
350 struct space_dictionary_chain
351 {
352
353 /* Holds the index into the string table of the name of this
354 space. */
355 unsigned int sd_name_index;
356
357 /* Nonzero if the space is loadable. */
358 unsigned int sd_loadable;
359
360 /* Nonzero if this space has been defined by the user code or
361 as a default space. */
362 unsigned int sd_defined;
363
364 /* Nonzero if this spaces has been defined by the user code. */
365 unsigned int sd_user_defined;
366
367 /* Nonzero if this space is not sharable. */
368 unsigned int sd_private;
369
370 /* The space number (or index). */
371 unsigned int sd_spnum;
372
373 /* The sort key for this space. May be used to determine how to lay
374 out the spaces within the object file. */
375 unsigned char sd_sort_key;
376
377 /* The name of this subspace. */
378 char *sd_name;
379
380 /* GAS segment to which this subspace corresponds. */
381 asection *sd_seg;
382
383 /* Current subsegment number being used. */
384 int sd_last_subseg;
385
386 /* The chain of subspaces contained within this space. */
387 ssd_chain_struct *sd_subspaces;
388
389 /* The next entry in the space dictionary chain. */
390 struct space_dictionary_chain *sd_next;
391 };
392
393 typedef struct space_dictionary_chain sd_chain_struct;
394
395 /* Structure for previous label tracking. Needed so that alignments,
396 callinfo declarations, etc can be easily attached to a particular
397 label. */
398 typedef struct label_symbol_struct
399 {
400 struct symbol *lss_label;
401 sd_chain_struct *lss_space;
402 struct label_symbol_struct *lss_next;
403 }
404 label_symbol_struct;
405
406 /* This structure defines attributes of the default subspace
407 dictionary entries. */
408
409 struct default_subspace_dict
410 {
411 /* Name of the subspace. */
412 char *name;
413
414 /* FIXME. Is this still needed? */
415 char defined;
416
417 /* Nonzero if this subspace is loadable. */
418 char loadable;
419
420 /* Nonzero if this subspace contains only code. */
421 char code_only;
422
423 /* Nonzero if this is a common subspace. */
424 char common;
425
426 /* Nonzero if this is a common subspace which allows symbols
427 to be multiply defined. */
428 char dup_common;
429
430 /* Nonzero if this subspace should be zero filled. */
431 char zero;
432
433 /* Sort key for this subspace. */
434 unsigned char sort;
435
436 /* Access control bits for this subspace. Can represent RWX access
437 as well as privilege level changes for gateways. */
438 int access;
439
440 /* Index of containing space. */
441 int space_index;
442
443 /* Alignment (in bytes) of this subspace. */
444 int alignment;
445
446 /* Quadrant within space where this subspace should be loaded. */
447 int quadrant;
448
449 /* An index into the default spaces array. */
450 int def_space_index;
451
452 /* An alias for this section (or NULL if no alias exists). */
453 char *alias;
454
455 /* Subsegment associated with this subspace. */
456 subsegT subsegment;
457 };
458
459 /* This structure defines attributes of the default space
460 dictionary entries. */
461
462 struct default_space_dict
463 {
464 /* Name of the space. */
465 char *name;
466
467 /* Space number. It is possible to identify spaces within
468 assembly code numerically! */
469 int spnum;
470
471 /* Nonzero if this space is loadable. */
472 char loadable;
473
474 /* Nonzero if this space is "defined". FIXME is still needed */
475 char defined;
476
477 /* Nonzero if this space can not be shared. */
478 char private;
479
480 /* Sort key for this space. */
481 unsigned char sort;
482
483 /* Segment associated with this space. */
484 asection *segment;
485
486 /* An alias for this section (or NULL if no alias exists). */
487 char *alias;
488 };
489
490 /* Extra information needed to perform fixups (relocations) on the PA. */
491 struct hppa_fix_struct
492 {
493 /* The field selector. */
494 int fx_r_field;
495
496 /* Type of fixup. */
497 int fx_r_type;
498
499 /* Format of fixup. */
500 int fx_r_format;
501
502 /* Argument relocation bits. */
503 long fx_arg_reloc;
504
505 /* The unwind descriptor associated with this fixup. */
506 char fx_unwind[8];
507 };
508
509 /* Structure to hold information about predefined registers. */
510
511 struct pd_reg
512 {
513 char *name;
514 int value;
515 };
516
517 /* This structure defines the mapping from a FP condition string
518 to a condition number which can be recorded in an instruction. */
519 struct fp_cond_map
520 {
521 char *string;
522 int cond;
523 };
524
525 /* This structure defines a mapping from a field selector
526 string to a field selector type. */
527 struct selector_entry
528 {
529 char *prefix;
530 int field_selector;
531 };
532
533 /* Prototypes for functions local to tc-hppa.c. */
534
535 static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
536 static void pa_cons PARAMS ((int));
537 static void pa_data PARAMS ((int));
538 static void pa_desc PARAMS ((int));
539 static void pa_float_cons PARAMS ((int));
540 static void pa_fill PARAMS ((int));
541 static void pa_lcomm PARAMS ((int));
542 static void pa_lsym PARAMS ((int));
543 static void pa_stringer PARAMS ((int));
544 static void pa_text PARAMS ((int));
545 static void pa_version PARAMS ((int));
546 static int pa_parse_fp_cmp_cond PARAMS ((char **));
547 static int get_expression PARAMS ((char *));
548 static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
549 static int evaluate_absolute PARAMS ((struct pa_it *));
550 static unsigned int pa_build_arg_reloc PARAMS ((char *));
551 static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
552 static int pa_parse_nullif PARAMS ((char **));
553 static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
554 static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
555 static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
556 static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
557 static void pa_block PARAMS ((int));
558 static void pa_call PARAMS ((int));
559 static void pa_call_args PARAMS ((struct call_desc *));
560 static void pa_callinfo PARAMS ((int));
561 static void pa_code PARAMS ((int));
562 static void pa_comm PARAMS ((int));
563 static void pa_copyright PARAMS ((int));
564 static void pa_end PARAMS ((int));
565 static void pa_enter PARAMS ((int));
566 static void pa_entry PARAMS ((int));
567 static void pa_equ PARAMS ((int));
568 static void pa_exit PARAMS ((int));
569 static void pa_export PARAMS ((int));
570 static void pa_type_args PARAMS ((symbolS *, int));
571 static void pa_import PARAMS ((int));
572 static void pa_label PARAMS ((int));
573 static void pa_leave PARAMS ((int));
574 static void pa_origin PARAMS ((int));
575 static void pa_proc PARAMS ((int));
576 static void pa_procend PARAMS ((int));
577 static void pa_space PARAMS ((int));
578 static void pa_spnum PARAMS ((int));
579 static void pa_subspace PARAMS ((int));
580 static void pa_param PARAMS ((int));
581 static void pa_undefine_label PARAMS ((void));
582 static int need_89_opcode PARAMS ((struct pa_it *,
583 struct pa_89_fp_reg_struct *));
584 static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
585 static label_symbol_struct *pa_get_label PARAMS ((void));
586 static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
587 char, char, char,
588 asection *, int));
589 static ssd_chain_struct * create_new_subspace PARAMS ((sd_chain_struct *,
590 char *, char, char,
591 char, char, char,
592 char, int, int, int,
593 int, asection *));
594 static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
595 char *, char, char, char,
596 char, char, char, int,
597 int, int, int,
598 asection *));
599 static sd_chain_struct *is_defined_space PARAMS ((char *));
600 static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
601 static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
602 static ssd_chain_struct * pa_subsegment_to_subspace PARAMS ((asection *,
603 subsegT));
604 static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
605 static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
606 static void pa_ip PARAMS ((char *));
607 static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
608 long, expressionS *, int,
609 bfd_reloc_code_real_type, long,
610 int, long, char *));
611 static void md_apply_fix_1 PARAMS ((fixS *, long));
612 static int is_end_of_statement PARAMS ((void));
613 static int reg_name_search PARAMS ((char *));
614 static int pa_chk_field_selector PARAMS ((char **));
615 static int is_same_frag PARAMS ((fragS *, fragS *));
616 static void pa_build_unwind_subspace PARAMS ((struct call_info *));
617 static void process_exit PARAMS ((void));
618 static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
619 static void pa_align_subseg PARAMS ((asection *, subsegT));
620 static int log2 PARAMS ((int));
621 static int pa_next_subseg PARAMS ((sd_chain_struct *));
622 static unsigned int pa_stringer_aux PARAMS ((char *));
623 static void pa_spaces_begin PARAMS ((void));
624
625
626 /* File and gloally scoped variable declarations. */
627
628 /* Root and final entry in the space chain. */
629 static sd_chain_struct *space_dict_root;
630 static sd_chain_struct *space_dict_last;
631
632 /* The current space and subspace. */
633 static sd_chain_struct *current_space;
634 static ssd_chain_struct *current_subspace;
635
636 /* Root of the call_info chain. */
637 static struct call_info *call_info_root;
638
639 /* The last call_info (for functions) structure
640 seen so it can be associated with fixups and
641 function labels. */
642 static struct call_info *last_call_info;
643
644 /* The last call description (for actual calls). */
645 static struct call_desc last_call_desc;
646
647 /* Relaxation isn't supported for the PA yet. */
648 const relax_typeS md_relax_table[] = {0};
649
650 /* Jumps are always the same size -- one instruction. */
651 int md_short_jump_size = 4;
652 int md_long_jump_size = 4;
653
654 /* handle of the OPCODE hash table */
655 static struct hash_control *op_hash = NULL;
656
657 /* This array holds the chars that always start a comment. If the
658 pre-processor is disabled, these aren't very useful. */
659 const char comment_chars[] = ";";
660
661 /* Table of pseudo ops for the PA. FIXME -- how many of these
662 are now redundant with the overall GAS and the object file
663 dependent tables? */
664 const pseudo_typeS md_pseudo_table[] =
665 {
666 /* align pseudo-ops on the PA specify the actual alignment requested,
667 not the log2 of the requested alignment. */
668 {"align", s_align_bytes, 8},
669 {"ALIGN", s_align_bytes, 8},
670 {"block", pa_block, 1},
671 {"BLOCK", pa_block, 1},
672 {"blockz", pa_block, 0},
673 {"BLOCKZ", pa_block, 0},
674 {"byte", pa_cons, 1},
675 {"BYTE", pa_cons, 1},
676 {"call", pa_call, 0},
677 {"CALL", pa_call, 0},
678 {"callinfo", pa_callinfo, 0},
679 {"CALLINFO", pa_callinfo, 0},
680 {"code", pa_code, 0},
681 {"CODE", pa_code, 0},
682 {"comm", pa_comm, 0},
683 {"COMM", pa_comm, 0},
684 {"copyright", pa_copyright, 0},
685 {"COPYRIGHT", pa_copyright, 0},
686 {"data", pa_data, 0},
687 {"DATA", pa_data, 0},
688 {"desc", pa_desc, 0},
689 {"DESC", pa_desc, 0},
690 {"double", pa_float_cons, 'd'},
691 {"DOUBLE", pa_float_cons, 'd'},
692 {"end", pa_end, 0},
693 {"END", pa_end, 0},
694 {"enter", pa_enter, 0},
695 {"ENTER", pa_enter, 0},
696 {"entry", pa_entry, 0},
697 {"ENTRY", pa_entry, 0},
698 {"equ", pa_equ, 0},
699 {"EQU", pa_equ, 0},
700 {"exit", pa_exit, 0},
701 {"EXIT", pa_exit, 0},
702 {"export", pa_export, 0},
703 {"EXPORT", pa_export, 0},
704 {"fill", pa_fill, 0},
705 {"FILL", pa_fill, 0},
706 {"float", pa_float_cons, 'f'},
707 {"FLOAT", pa_float_cons, 'f'},
708 {"half", pa_cons, 2},
709 {"HALF", pa_cons, 2},
710 {"import", pa_import, 0},
711 {"IMPORT", pa_import, 0},
712 {"int", pa_cons, 4},
713 {"INT", pa_cons, 4},
714 {"label", pa_label, 0},
715 {"LABEL", pa_label, 0},
716 {"lcomm", pa_lcomm, 0},
717 {"LCOMM", pa_lcomm, 0},
718 {"leave", pa_leave, 0},
719 {"LEAVE", pa_leave, 0},
720 {"long", pa_cons, 4},
721 {"LONG", pa_cons, 4},
722 {"lsym", pa_lsym, 0},
723 {"LSYM", pa_lsym, 0},
724 {"octa", pa_cons, 16},
725 {"OCTA", pa_cons, 16},
726 {"org", pa_origin, 0},
727 {"ORG", pa_origin, 0},
728 {"origin", pa_origin, 0},
729 {"ORIGIN", pa_origin, 0},
730 {"param", pa_param, 0},
731 {"PARAM", pa_param, 0},
732 {"proc", pa_proc, 0},
733 {"PROC", pa_proc, 0},
734 {"procend", pa_procend, 0},
735 {"PROCEND", pa_procend, 0},
736 {"quad", pa_cons, 8},
737 {"QUAD", pa_cons, 8},
738 {"reg", pa_equ, 1},
739 {"REG", pa_equ, 1},
740 {"short", pa_cons, 2},
741 {"SHORT", pa_cons, 2},
742 {"single", pa_float_cons, 'f'},
743 {"SINGLE", pa_float_cons, 'f'},
744 {"space", pa_space, 0},
745 {"SPACE", pa_space, 0},
746 {"spnum", pa_spnum, 0},
747 {"SPNUM", pa_spnum, 0},
748 {"string", pa_stringer, 0},
749 {"STRING", pa_stringer, 0},
750 {"stringz", pa_stringer, 1},
751 {"STRINGZ", pa_stringer, 1},
752 {"subspa", pa_subspace, 0},
753 {"SUBSPA", pa_subspace, 0},
754 {"text", pa_text, 0},
755 {"TEXT", pa_text, 0},
756 {"version", pa_version, 0},
757 {"VERSION", pa_version, 0},
758 {"word", pa_cons, 4},
759 {"WORD", pa_cons, 4},
760 {NULL, 0, 0}
761 };
762
763 /* This array holds the chars that only start a comment at the beginning of
764 a line. If the line seems to have the form '# 123 filename'
765 .line and .file directives will appear in the pre-processed output.
766
767 Note that input_file.c hand checks for '#' at the beginning of the
768 first line of the input file. This is because the compiler outputs
769 #NO_APP at the beginning of its output.
770
771 Also note that '/*' will always start a comment. */
772 const char line_comment_chars[] = "#";
773
774 /* This array holds the characters which act as line separators. */
775 const char line_separator_chars[] = "!";
776
777 /* Chars that can be used to separate mant from exp in floating point nums. */
778 const char EXP_CHARS[] = "eE";
779
780 /* Chars that mean this number is a floating point constant.
781 As in 0f12.456 or 0d1.2345e12.
782
783 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
784 changed in read.c. Ideally it shouldn't hae to know abou it at
785 all, but nothing is ideal around here. */
786 const char FLT_CHARS[] = "rRsSfFdDxXpP";
787
788 static struct pa_it the_insn;
789
790 /* Points to the end of an expression just parsed by get_expressoin
791 and friends. FIXME. This shouldn't be handled with a file-global
792 variable. */
793 static char *expr_end;
794
795 /* Nonzero if a .callinfo appeared within the current procedure. */
796 static int callinfo_found;
797
798 /* Nonzero if the assembler is currently within a .entry/.exit pair. */
799 static int within_entry_exit;
800
801 /* Nonzero if the assembler has completed exit processing for the
802 current procedure. */
803 static int exit_processing_complete;
804
805 /* Nonzero if the assembler is currently within a procedure definition. */
806 static int within_procedure;
807
808 /* Handle on strucutre which keep track of the last symbol
809 seen in each subspace. */
810 static label_symbol_struct *label_symbols_rootp = NULL;
811
812 /* Holds the last field selector. */
813 static int hppa_field_selector;
814
815 /* Nonzero if errors are to be printed. */
816 static int print_errors = 1;
817
818 /* List of registers that are pre-defined:
819
820 Each general register has one predefined name of the form
821 %r<REGNUM> which has the value <REGNUM>.
822
823 Space and control registers are handled in a similar manner,
824 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
825
826 Likewise for the floating point registers, but of the form
827 %fr<REGNUM>. Floating point registers have additional predefined
828 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
829 again have the value <REGNUM>.
830
831 Many registers also have synonyms:
832
833 %r26 - %r23 have %arg0 - %arg3 as synonyms
834 %r28 - %r29 have %ret0 - %ret1 as synonyms
835 %r30 has %sp as a synonym
836 %r27 has %dp as a synonym
837 %r2 has %rp as a synonym
838
839 Almost every control register has a synonym; they are not listed
840 here for brevity.
841
842 The table is sorted. Suitable for searching by a binary search. */
843
844 static const struct pd_reg pre_defined_registers[] =
845 {
846 {"%arg0", 26},
847 {"%arg1", 25},
848 {"%arg2", 24},
849 {"%arg3", 23},
850 {"%cr0", 0},
851 {"%cr10", 10},
852 {"%cr11", 11},
853 {"%cr12", 12},
854 {"%cr13", 13},
855 {"%cr14", 14},
856 {"%cr15", 15},
857 {"%cr16", 16},
858 {"%cr17", 17},
859 {"%cr18", 18},
860 {"%cr19", 19},
861 {"%cr20", 20},
862 {"%cr21", 21},
863 {"%cr22", 22},
864 {"%cr23", 23},
865 {"%cr24", 24},
866 {"%cr25", 25},
867 {"%cr26", 26},
868 {"%cr27", 27},
869 {"%cr28", 28},
870 {"%cr29", 29},
871 {"%cr30", 30},
872 {"%cr31", 31},
873 {"%cr8", 8},
874 {"%cr9", 9},
875 {"%dp", 27},
876 {"%eiem", 15},
877 {"%eirr", 23},
878 {"%fr0", 0},
879 {"%fr0L", 0},
880 {"%fr0R", 0},
881 {"%fr1", 1},
882 {"%fr10", 10},
883 {"%fr10L", 10},
884 {"%fr10R", 10},
885 {"%fr11", 11},
886 {"%fr11L", 11},
887 {"%fr11R", 11},
888 {"%fr12", 12},
889 {"%fr12L", 12},
890 {"%fr12R", 12},
891 {"%fr13", 13},
892 {"%fr13L", 13},
893 {"%fr13R", 13},
894 {"%fr14", 14},
895 {"%fr14L", 14},
896 {"%fr14R", 14},
897 {"%fr15", 15},
898 {"%fr15L", 15},
899 {"%fr15R", 15},
900 {"%fr16", 16},
901 {"%fr16L", 16},
902 {"%fr16R", 16},
903 {"%fr17", 17},
904 {"%fr17L", 17},
905 {"%fr17R", 17},
906 {"%fr18", 18},
907 {"%fr18L", 18},
908 {"%fr18R", 18},
909 {"%fr19", 19},
910 {"%fr19L", 19},
911 {"%fr19R", 19},
912 {"%fr1L", 1},
913 {"%fr1R", 1},
914 {"%fr2", 2},
915 {"%fr20", 20},
916 {"%fr20L", 20},
917 {"%fr20R", 20},
918 {"%fr21", 21},
919 {"%fr21L", 21},
920 {"%fr21R", 21},
921 {"%fr22", 22},
922 {"%fr22L", 22},
923 {"%fr22R", 22},
924 {"%fr23", 23},
925 {"%fr23L", 23},
926 {"%fr23R", 23},
927 {"%fr24", 24},
928 {"%fr24L", 24},
929 {"%fr24R", 24},
930 {"%fr25", 25},
931 {"%fr25L", 25},
932 {"%fr25R", 25},
933 {"%fr26", 26},
934 {"%fr26L", 26},
935 {"%fr26R", 26},
936 {"%fr27", 27},
937 {"%fr27L", 27},
938 {"%fr27R", 27},
939 {"%fr28", 28},
940 {"%fr28L", 28},
941 {"%fr28R", 28},
942 {"%fr29", 29},
943 {"%fr29L", 29},
944 {"%fr29R", 29},
945 {"%fr2L", 2},
946 {"%fr2R", 2},
947 {"%fr3", 3},
948 {"%fr30", 30},
949 {"%fr30L", 30},
950 {"%fr30R", 30},
951 {"%fr31", 31},
952 {"%fr31L", 31},
953 {"%fr31R", 31},
954 {"%fr3L", 3},
955 {"%fr3R", 3},
956 {"%fr4", 4},
957 {"%fr4L", 4},
958 {"%fr4R", 4},
959 {"%fr5", 5},
960 {"%fr5L", 5},
961 {"%fr5R", 5},
962 {"%fr6", 6},
963 {"%fr6L", 6},
964 {"%fr6R", 6},
965 {"%fr7", 7},
966 {"%fr7L", 7},
967 {"%fr7R", 7},
968 {"%fr8", 8},
969 {"%fr8L", 8},
970 {"%fr8R", 8},
971 {"%fr9", 9},
972 {"%fr9L", 9},
973 {"%fr9R", 9},
974 {"%hta", 25},
975 {"%iir", 19},
976 {"%ior", 21},
977 {"%ipsw", 22},
978 {"%isr", 20},
979 {"%itmr", 16},
980 {"%iva", 14},
981 {"%pcoq", 18},
982 {"%pcsq", 17},
983 {"%pidr1", 8},
984 {"%pidr2", 9},
985 {"%pidr3", 12},
986 {"%pidr4", 13},
987 {"%ppda", 24},
988 {"%r0", 0},
989 {"%r1", 1},
990 {"%r10", 10},
991 {"%r11", 11},
992 {"%r12", 12},
993 {"%r13", 13},
994 {"%r14", 14},
995 {"%r15", 15},
996 {"%r16", 16},
997 {"%r17", 17},
998 {"%r18", 18},
999 {"%r19", 19},
1000 {"%r2", 2},
1001 {"%r20", 20},
1002 {"%r21", 21},
1003 {"%r22", 22},
1004 {"%r23", 23},
1005 {"%r24", 24},
1006 {"%r25", 25},
1007 {"%r26", 26},
1008 {"%r27", 27},
1009 {"%r28", 28},
1010 {"%r29", 29},
1011 {"%r3", 3},
1012 {"%r30", 30},
1013 {"%r31", 31},
1014 {"%r4", 4},
1015 {"%r4L", 4},
1016 {"%r4R", 4},
1017 {"%r5", 5},
1018 {"%r5L", 5},
1019 {"%r5R", 5},
1020 {"%r6", 6},
1021 {"%r6L", 6},
1022 {"%r6R", 6},
1023 {"%r7", 7},
1024 {"%r7L", 7},
1025 {"%r7R", 7},
1026 {"%r8", 8},
1027 {"%r8L", 8},
1028 {"%r8R", 8},
1029 {"%r9", 9},
1030 {"%r9L", 9},
1031 {"%r9R", 9},
1032 {"%rctr", 0},
1033 {"%ret0", 28},
1034 {"%ret1", 29},
1035 {"%rp", 2},
1036 {"%sar", 11},
1037 {"%sp", 30},
1038 {"%sr0", 0},
1039 {"%sr1", 1},
1040 {"%sr2", 2},
1041 {"%sr3", 3},
1042 {"%sr4", 4},
1043 {"%sr5", 5},
1044 {"%sr6", 6},
1045 {"%sr7", 7},
1046 {"%tr0", 24},
1047 {"%tr1", 25},
1048 {"%tr2", 26},
1049 {"%tr3", 27},
1050 {"%tr4", 28},
1051 {"%tr5", 29},
1052 {"%tr6", 30},
1053 {"%tr7", 31}
1054 };
1055
1056 /* This table is sorted by order of the length of the string. This is
1057 so we check for <> before we check for <. If we had a <> and checked
1058 for < first, we would get a false match. */
1059 static const struct fp_cond_map fp_cond_map [] =
1060 {
1061 {"false?", 0},
1062 {"false", 1},
1063 {"true?", 30},
1064 {"true", 31},
1065 {"!<=>", 3},
1066 {"!?>=", 8},
1067 {"!?<=", 16},
1068 {"!<>", 7},
1069 {"!>=", 11},
1070 {"!?>", 12},
1071 {"?<=", 14},
1072 {"!<=", 19},
1073 {"!?<", 20},
1074 {"?>=", 22},
1075 {"!?=", 24},
1076 {"!=t", 27},
1077 {"<=>", 29},
1078 {"=t", 5},
1079 {"?=", 6},
1080 {"?<", 10},
1081 {"<=", 13},
1082 {"!>", 15},
1083 {"?>", 18},
1084 {">=", 21},
1085 {"!<", 23},
1086 {"<>", 25},
1087 {"!=", 26},
1088 {"!?", 28},
1089 {"?", 2},
1090 {"=", 4},
1091 {"<", 9},
1092 {">", 17}
1093 };
1094
1095 static const struct selector_entry selector_table[] =
1096 {
1097 {"F'", e_fsel},
1098 {"F%", e_fsel},
1099 {"LS'", e_lssel},
1100 {"LS%", e_lssel},
1101 {"RS'", e_rssel},
1102 {"RS%", e_rssel},
1103 {"L'", e_lsel},
1104 {"L%", e_lsel},
1105 {"R'", e_rsel},
1106 {"R%", e_rsel},
1107 {"LD'", e_ldsel},
1108 {"LD%", e_ldsel},
1109 {"RD'", e_rdsel},
1110 {"RD%", e_rdsel},
1111 {"LR'", e_lrsel},
1112 {"LR%", e_lrsel},
1113 {"RR'", e_rrsel},
1114 {"RR%", e_rrsel},
1115 {"P'", e_psel},
1116 {"P%", e_psel},
1117 {"RP'", e_rpsel},
1118 {"RP%", e_rpsel},
1119 {"LP'", e_lpsel},
1120 {"LP%", e_lpsel},
1121 {"T'", e_tsel},
1122 {"T%", e_tsel},
1123 {"RT'", e_rtsel},
1124 {"RT%", e_rtsel},
1125 {"LT'", e_ltsel},
1126 {"LT%", e_ltsel},
1127 {NULL, e_fsel}
1128 };
1129
1130 /* default space and subspace dictionaries */
1131
1132 #define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1133 #define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
1134
1135 /* pre-defined subsegments (subspaces) for the HPPA. */
1136 #define SUBSEG_CODE 0
1137 #define SUBSEG_DATA 0
1138 #define SUBSEG_LIT 1
1139 #define SUBSEG_BSS 2
1140 #define SUBSEG_UNWIND 3
1141 #define SUBSEG_GDB_STRINGS 0
1142 #define SUBSEG_GDB_SYMBOLS 1
1143
1144 static struct default_subspace_dict pa_def_subspaces[] =
1145 {
1146 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1147 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1148 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1149 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
1150 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
1151 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1152 };
1153
1154 static struct default_space_dict pa_def_spaces[] =
1155 {
1156 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1157 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
1158 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1159 };
1160
1161 /* Misc local definitions used by the assembler. */
1162
1163 /* Return nonzero if the string pointed to by S potentially represents
1164 a right or left half of a FP register */
1165 #define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1166 #define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1167
1168 /* These macros are used to maintain spaces/subspaces. */
1169 #define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1170 #define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1171 #define SPACE_PRIVATE(space_chain) (space_chain)->sd_private
1172 #define SPACE_LOADABLE(space_chain) (space_chain)->sd_loadable
1173 #define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1174 #define SPACE_SORT(space_chain) (space_chain)->sd_sort_key
1175 #define SPACE_NAME(space_chain) (space_chain)->sd_name
1176 #define SPACE_NAME_INDEX(space_chain) (space_chain)->sd_name_index
1177
1178 #define SUBSPACE_SPACE_INDEX(ss_chain) (ss_chain)->ssd_space_index
1179 #define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
1180 #define SUBSPACE_QUADRANT(ss_chain) (ss_chain)->ssd_quadrant
1181 #define SUBSPACE_ALIGN(ss_chain) (ss_chain)->ssd_alignment
1182 #define SUBSPACE_ACCESS(ss_chain) (ss_chain)->ssd_access_control_bits
1183 #define SUBSPACE_SORT(ss_chain) (ss_chain)->ssd_sort_key
1184 #define SUBSPACE_COMMON(ss_chain) (ss_chain)->ssd_common
1185 #define SUBSPACE_ZERO(ss_chain) (ss_chain)->ssd_zero
1186 #define SUBSPACE_DUP_COMM(ss_chain) (ss_chain)->ssd_dup_common
1187 #define SUBSPACE_CODE_ONLY(ss_chain) (ss_chain)->ssd_code_only
1188 #define SUBSPACE_LOADABLE(ss_chain) (ss_chain)->ssd_loadable
1189 #define SUBSPACE_SUBSPACE_START(ss_chain) (ss_chain)->ssd_subspace_start
1190 #define SUBSPACE_SUBSPACE_LENGTH(ss_chain) (ss_chain)->ssd_subspace_length
1191 #define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1192
1193 /* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1194 main loop after insertion. */
1195
1196 #define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1197 { \
1198 ((OPCODE) |= (FIELD) << (START)); \
1199 continue; \
1200 }
1201
1202 /* Simple range checking for FIELD againt HIGH and LOW bounds.
1203 IGNORE is used to suppress the error message. */
1204
1205 #define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1206 { \
1207 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1208 { \
1209 if (! IGNORE) \
1210 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1211 (int) (FIELD));\
1212 break; \
1213 } \
1214 }
1215
1216 #define is_DP_relative(exp) \
1217 ((exp).X_op == O_subtract \
1218 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1219
1220 #define is_PC_relative(exp) \
1221 ((exp).X_op == O_subtract \
1222 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1223
1224 #define is_complex(exp) \
1225 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1226
1227 /* Actual functions to implement the PA specific code for the assembler. */
1228
1229 /* Returns a pointer to the label_symbol_struct for the current space.
1230 or NULL if no label_symbol_struct exists for the current space. */
1231
1232 static label_symbol_struct *
1233 pa_get_label ()
1234 {
1235 label_symbol_struct *label_chain;
1236 sd_chain_struct *space_chain = current_space;
1237
1238 for (label_chain = label_symbols_rootp;
1239 label_chain;
1240 label_chain = label_chain->lss_next)
1241 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1242 return label_chain;
1243
1244 return NULL;
1245 }
1246
1247 /* Defines a label for the current space. If one is already defined,
1248 this function will replace it with the new label. */
1249
1250 void
1251 pa_define_label (symbol)
1252 symbolS *symbol;
1253 {
1254 label_symbol_struct *label_chain = pa_get_label ();
1255 sd_chain_struct *space_chain = current_space;
1256
1257 if (label_chain)
1258 label_chain->lss_label = symbol;
1259 else
1260 {
1261 /* Create a new label entry and add it to the head of the chain. */
1262 label_chain
1263 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1264 label_chain->lss_label = symbol;
1265 label_chain->lss_space = space_chain;
1266 label_chain->lss_next = NULL;
1267
1268 if (label_symbols_rootp)
1269 label_chain->lss_next = label_symbols_rootp;
1270
1271 label_symbols_rootp = label_chain;
1272 }
1273 }
1274
1275 /* Removes a label definition for the current space.
1276 If there is no label_symbol_struct entry, then no action is taken. */
1277
1278 static void
1279 pa_undefine_label ()
1280 {
1281 label_symbol_struct *label_chain;
1282 label_symbol_struct *prev_label_chain = NULL;
1283 sd_chain_struct *space_chain = current_space;
1284
1285 for (label_chain = label_symbols_rootp;
1286 label_chain;
1287 label_chain = label_chain->lss_next)
1288 {
1289 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1290 {
1291 /* Remove the label from the chain and free its memory. */
1292 if (prev_label_chain)
1293 prev_label_chain->lss_next = label_chain->lss_next;
1294 else
1295 label_symbols_rootp = label_chain->lss_next;
1296
1297 free (label_chain);
1298 break;
1299 }
1300 prev_label_chain = label_chain;
1301 }
1302 }
1303
1304
1305 /* An HPPA-specific version of fix_new. This is required because the HPPA
1306 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1307 results in the creation of an instance of an hppa_fix_struct. An
1308 hppa_fix_struct stores the extra information along with a pointer to the
1309 original fixS. This is attached to the original fixup via the
1310 tc_fix_data field. */
1311
1312 static void
1313 fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1314 r_type, r_field, r_format, arg_reloc, unwind_desc)
1315 fragS *frag;
1316 int where;
1317 short int size;
1318 symbolS *add_symbol;
1319 long offset;
1320 expressionS *exp;
1321 int pcrel;
1322 bfd_reloc_code_real_type r_type;
1323 long r_field;
1324 int r_format;
1325 long arg_reloc;
1326 char *unwind_desc;
1327 {
1328 fixS *new_fix;
1329
1330 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
1331 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
1332
1333 if (exp != NULL)
1334 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1335 else
1336 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
1337 new_fix->tc_fix_data = hppa_fix;
1338 hppa_fix->fx_r_type = r_type;
1339 hppa_fix->fx_r_field = r_field;
1340 hppa_fix->fx_r_format = r_format;
1341 hppa_fix->fx_arg_reloc = arg_reloc;
1342 if (unwind_desc)
1343 {
1344 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
1345
1346 /* If necessary call BFD backend function to attach the
1347 unwind bits to the target dependent parts of a BFD symbol.
1348 Yuk. */
1349 #ifdef obj_attach_unwind_info
1350 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1351 #endif
1352 }
1353
1354 /* foo-$global$ is used to access non-automatic storage. $global$
1355 is really just a marker and has served its purpose, so eliminate
1356 it now so as not to confuse write.c. */
1357 if (!strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
1358 new_fix->fx_subsy = NULL;
1359 }
1360
1361 /* Parse a .byte, .word, .long expression for the HPPA. Called by
1362 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1363
1364 void
1365 parse_cons_expression_hppa (exp)
1366 expressionS *exp;
1367 {
1368 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
1369 expression (exp);
1370 }
1371
1372 /* This fix_new is called by cons via TC_CONS_FIX_NEW.
1373 hppa_field_selector is set by the parse_cons_expression_hppa. */
1374
1375 void
1376 cons_fix_new_hppa (frag, where, size, exp)
1377 fragS *frag;
1378 int where;
1379 int size;
1380 expressionS *exp;
1381 {
1382 unsigned int reloc_type;
1383
1384 if (is_DP_relative (*exp))
1385 reloc_type = R_HPPA_GOTOFF;
1386 else if (is_complex (*exp))
1387 reloc_type = R_HPPA_COMPLEX;
1388 else
1389 reloc_type = R_HPPA;
1390
1391 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
1392 as_warn ("Invalid field selector. Assuming F%%.");
1393
1394 fix_new_hppa (frag, where, size,
1395 (symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
1396 hppa_field_selector, 32, 0, (char *) 0);
1397
1398 /* Reset field selector to its default state. */
1399 hppa_field_selector = 0;
1400 }
1401
1402 /* This function is called once, at assembler startup time. It should
1403 set up all the tables, etc. that the MD part of the assembler will need. */
1404
1405 void
1406 md_begin ()
1407 {
1408 const char *retval = NULL;
1409 int lose = 0;
1410 unsigned int i = 0;
1411
1412 last_call_info = NULL;
1413 call_info_root = NULL;
1414
1415 /* Folding of text and data segments fails miserably on the PA.
1416 Warn user and disable "-R" option. */
1417 if (flagseen['R'])
1418 {
1419 as_warn ("-R option not supported on this target.");
1420 flag_readonly_data_in_text = 0;
1421 flagseen['R'] = 0;
1422 }
1423
1424 pa_spaces_begin ();
1425
1426 op_hash = hash_new ();
1427 if (op_hash == NULL)
1428 as_fatal ("Virtual memory exhausted");
1429
1430 while (i < NUMOPCODES)
1431 {
1432 const char *name = pa_opcodes[i].name;
1433 retval = hash_insert (op_hash, name, (struct pa_opcode *)&pa_opcodes[i]);
1434 if (retval != NULL && *retval != '\0')
1435 {
1436 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
1437 lose = 1;
1438 }
1439 do
1440 {
1441 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
1442 != pa_opcodes[i].match)
1443 {
1444 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1445 pa_opcodes[i].name, pa_opcodes[i].args);
1446 lose = 1;
1447 }
1448 ++i;
1449 }
1450 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
1451 }
1452
1453 if (lose)
1454 as_fatal ("Broken assembler. No assembly attempted.");
1455
1456 /* SOM will change text_section. To make sure we never put
1457 anything into the old one switch to the new one now. */
1458 subseg_set (text_section, 0);
1459 }
1460
1461 /* Called at the end of assembling a source file. Nothing to do
1462 at this point on the PA. */
1463
1464 void
1465 md_end ()
1466 {
1467 return;
1468 }
1469
1470 /* Assemble a single instruction storing it into a frag. */
1471 void
1472 md_assemble (str)
1473 char *str;
1474 {
1475 char *to;
1476
1477 /* The had better be something to assemble. */
1478 assert (str);
1479
1480 /* Assemble the instruction. Results are saved into "the_insn". */
1481 pa_ip (str);
1482
1483 /* Get somewhere to put the assembled instrution. */
1484 to = frag_more (4);
1485
1486 /* Output the opcode. */
1487 md_number_to_chars (to, the_insn.opcode, 4);
1488
1489 /* If necessary output more stuff. */
1490 if (the_insn.reloc != R_HPPA_NONE)
1491 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1492 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1493 the_insn.reloc, the_insn.field_selector,
1494 the_insn.format, the_insn.arg_reloc, NULL);
1495
1496 }
1497
1498 /* Do the real work for assembling a single instruction. Store results
1499 into the global "the_insn" variable.
1500
1501 FIXME: Should define and use some functions/macros to handle
1502 various common insertions of information into the opcode. */
1503
1504 static void
1505 pa_ip (str)
1506 char *str;
1507 {
1508 char *error_message = "";
1509 char *s, c, *argstart, *name, *save_s;
1510 const char *args;
1511 int match = FALSE;
1512 int comma = 0;
1513 int cmpltr, nullif, flag, cond, num;
1514 unsigned long opcode;
1515 struct pa_opcode *insn;
1516
1517 /* Skip to something interesting. */
1518 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1519 ;
1520
1521 switch (*s)
1522 {
1523
1524 case '\0':
1525 break;
1526
1527 case ',':
1528 comma = 1;
1529
1530 /*FALLTHROUGH */
1531
1532 case ' ':
1533 *s++ = '\0';
1534 break;
1535
1536 default:
1537 as_bad ("Unknown opcode: `%s'", str);
1538 exit (1);
1539 }
1540
1541 save_s = str;
1542
1543 /* Convert everything into lower case. */
1544 while (*save_s)
1545 {
1546 if (isupper (*save_s))
1547 *save_s = tolower (*save_s);
1548 save_s++;
1549 }
1550
1551 /* Look up the opcode in the has table. */
1552 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1553 {
1554 as_bad ("Unknown opcode: `%s'", str);
1555 return;
1556 }
1557
1558 if (comma)
1559 {
1560 *--s = ',';
1561 }
1562
1563 /* Mark the location where arguments for the instruction start, then
1564 start processing them. */
1565 argstart = s;
1566 for (;;)
1567 {
1568 /* Do some initialization. */
1569 opcode = insn->match;
1570 bzero (&the_insn, sizeof (the_insn));
1571
1572 the_insn.reloc = R_HPPA_NONE;
1573
1574 /* Build the opcode, checking as we go to make
1575 sure that the operands match. */
1576 for (args = insn->args;; ++args)
1577 {
1578 switch (*args)
1579 {
1580
1581 /* End of arguments. */
1582 case '\0':
1583 if (*s == '\0')
1584 match = TRUE;
1585 break;
1586
1587 case '+':
1588 if (*s == '+')
1589 {
1590 ++s;
1591 continue;
1592 }
1593 if (*s == '-')
1594 continue;
1595 break;
1596
1597 /* These must match exactly. */
1598 case '(':
1599 case ')':
1600 case ',':
1601 case ' ':
1602 if (*s++ == *args)
1603 continue;
1604 break;
1605
1606 /* Handle a 5 bit register or control register field at 10. */
1607 case 'b':
1608 case '^':
1609 num = pa_parse_number (&s, 0);
1610 CHECK_FIELD (num, 31, 0, 0);
1611 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
1612
1613 /* Handle a 5 bit register field at 15. */
1614 case 'x':
1615 num = pa_parse_number (&s, 0);
1616 CHECK_FIELD (num, 31, 0, 0);
1617 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1618
1619 /* Handle a 5 bit register field at 31. */
1620 case 'y':
1621 case 't':
1622 num = pa_parse_number (&s, 0);
1623 CHECK_FIELD (num, 31, 0, 0);
1624 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1625
1626 /* Handle a 5 bit field length at 31. */
1627 case 'T':
1628 num = pa_get_absolute_expression (&the_insn, &s);
1629 s = expr_end;
1630 CHECK_FIELD (num, 32, 1, 0);
1631 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
1632
1633 /* Handle a 5 bit immediate at 15. */
1634 case '5':
1635 num = pa_get_absolute_expression (&the_insn, &s);
1636 s = expr_end;
1637 CHECK_FIELD (num, 15, -16, 0);
1638 low_sign_unext (num, 5, &num);
1639 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1640
1641 /* Handle a 5 bit immediate at 31. */
1642 case 'V':
1643 num = pa_get_absolute_expression (&the_insn, &s);
1644 s = expr_end;
1645 CHECK_FIELD (num, 15, -16, 0)
1646 low_sign_unext (num, 5, &num);
1647 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1648
1649 /* Handle an unsigned 5 bit immediate at 31. */
1650 case 'r':
1651 num = pa_get_absolute_expression (&the_insn, &s);
1652 s = expr_end;
1653 CHECK_FIELD (num, 31, 0, 0);
1654 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1655
1656 /* Handle an unsigned 5 bit immediate at 15. */
1657 case 'R':
1658 num = pa_get_absolute_expression (&the_insn, &s);
1659 s = expr_end;
1660 CHECK_FIELD (num, 31, 0, 0);
1661 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
1662
1663 /* Handle a 2 bit space identifier at 17. */
1664 case 's':
1665 num = pa_parse_number (&s, 0);
1666 CHECK_FIELD (num, 3, 0, 1);
1667 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
1668
1669 /* Handle a 3 bit space identifier at 18. */
1670 case 'S':
1671 num = pa_parse_number (&s, 0);
1672 CHECK_FIELD (num, 7, 0, 1);
1673 dis_assemble_3 (num, &num);
1674 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
1675
1676 /* Handle a completer for an indexing load or store. */
1677 case 'c':
1678 {
1679 int uu = 0;
1680 int m = 0;
1681 int i = 0;
1682 while (*s == ',' && i < 2)
1683 {
1684 s++;
1685 if (strncasecmp (s, "sm", 2) == 0)
1686 {
1687 uu = 1;
1688 m = 1;
1689 s++;
1690 i++;
1691 }
1692 else if (strncasecmp (s, "m", 1) == 0)
1693 m = 1;
1694 else if (strncasecmp (s, "s", 1) == 0)
1695 uu = 1;
1696 else
1697 as_bad ("Invalid Indexed Load Completer.");
1698 s++;
1699 i++;
1700 }
1701 if (i > 2)
1702 as_bad ("Invalid Indexed Load Completer Syntax.");
1703 opcode |= m << 5;
1704 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1705 }
1706
1707 /* Handle a short load/store completer. */
1708 case 'C':
1709 {
1710 int a = 0;
1711 int m = 0;
1712 if (*s == ',')
1713 {
1714 s++;
1715 if (strncasecmp (s, "ma", 2) == 0)
1716 {
1717 a = 0;
1718 m = 1;
1719 }
1720 else if (strncasecmp (s, "mb", 2) == 0)
1721 {
1722 a = 1;
1723 m = 1;
1724 }
1725 else
1726 as_bad ("Invalid Short Load/Store Completer.");
1727 s += 2;
1728 }
1729 opcode |= m << 5;
1730 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1731 }
1732
1733 /* Handle a stbys completer. */
1734 case 'Y':
1735 {
1736 int a = 0;
1737 int m = 0;
1738 int i = 0;
1739 while (*s == ',' && i < 2)
1740 {
1741 s++;
1742 if (strncasecmp (s, "m", 1) == 0)
1743 m = 1;
1744 else if (strncasecmp (s, "b", 1) == 0)
1745 a = 0;
1746 else if (strncasecmp (s, "e", 1) == 0)
1747 a = 1;
1748 else
1749 as_bad ("Invalid Store Bytes Short Completer");
1750 s++;
1751 i++;
1752 }
1753 if (i > 2)
1754 as_bad ("Invalid Store Bytes Short Completer");
1755 opcode |= m << 5;
1756 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1757 }
1758
1759 /* Handle a non-negated compare/stubtract condition. */
1760 case '<':
1761 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1762 if (cmpltr < 0)
1763 {
1764 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
1765 cmpltr = 0;
1766 }
1767 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1768
1769 /* Handle a negated or non-negated compare/subtract condition. */
1770 case '?':
1771 save_s = s;
1772 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
1773 if (cmpltr < 0)
1774 {
1775 s = save_s;
1776 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
1777 if (cmpltr < 0)
1778 {
1779 as_bad ("Invalid Compare/Subtract Condition.");
1780 cmpltr = 0;
1781 }
1782 else
1783 {
1784 /* Negated condition requires an opcode change. */
1785 opcode |= 1 << 27;
1786 }
1787 }
1788 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1789
1790 /* Handle a negated or non-negated add condition. */
1791 case '!':
1792 save_s = s;
1793 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
1794 if (cmpltr < 0)
1795 {
1796 s = save_s;
1797 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
1798 if (cmpltr < 0)
1799 {
1800 as_bad ("Invalid Compare/Subtract Condition");
1801 cmpltr = 0;
1802 }
1803 else
1804 {
1805 /* Negated condition requires an opcode change. */
1806 opcode |= 1 << 27;
1807 }
1808 }
1809 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
1810
1811 /* Handle a compare/subtract condition. */
1812 case 'a':
1813 cmpltr = 0;
1814 flag = 0;
1815 save_s = s;
1816 if (*s == ',')
1817 {
1818 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
1819 if (cmpltr < 0)
1820 {
1821 flag = 1;
1822 s = save_s;
1823 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
1824 if (cmpltr < 0)
1825 {
1826 as_bad ("Invalid Compare/Subtract Condition");
1827 }
1828 }
1829 }
1830 opcode |= cmpltr << 13;
1831 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1832
1833 /* Handle a non-negated add condition. */
1834 case 'd':
1835 cmpltr = 0;
1836 nullif = 0;
1837 flag = 0;
1838 if (*s == ',')
1839 {
1840 s++;
1841 name = s;
1842 while (*s != ',' && *s != ' ' && *s != '\t')
1843 s += 1;
1844 c = *s;
1845 *s = 0x00;
1846 if (strcmp (name, "=") == 0)
1847 cmpltr = 1;
1848 else if (strcmp (name, "<") == 0)
1849 cmpltr = 2;
1850 else if (strcmp (name, "<=") == 0)
1851 cmpltr = 3;
1852 else if (strcasecmp (name, "nuv") == 0)
1853 cmpltr = 4;
1854 else if (strcasecmp (name, "znv") == 0)
1855 cmpltr = 5;
1856 else if (strcasecmp (name, "sv") == 0)
1857 cmpltr = 6;
1858 else if (strcasecmp (name, "od") == 0)
1859 cmpltr = 7;
1860 else if (strcasecmp (name, "n") == 0)
1861 nullif = 1;
1862 else if (strcasecmp (name, "tr") == 0)
1863 {
1864 cmpltr = 0;
1865 flag = 1;
1866 }
1867 else if (strcasecmp (name, "<>") == 0)
1868 {
1869 cmpltr = 1;
1870 flag = 1;
1871 }
1872 else if (strcasecmp (name, ">=") == 0)
1873 {
1874 cmpltr = 2;
1875 flag = 1;
1876 }
1877 else if (strcasecmp (name, ">") == 0)
1878 {
1879 cmpltr = 3;
1880 flag = 1;
1881 }
1882 else if (strcasecmp (name, "uv") == 0)
1883 {
1884 cmpltr = 4;
1885 flag = 1;
1886 }
1887 else if (strcasecmp (name, "vnz") == 0)
1888 {
1889 cmpltr = 5;
1890 flag = 1;
1891 }
1892 else if (strcasecmp (name, "nsv") == 0)
1893 {
1894 cmpltr = 6;
1895 flag = 1;
1896 }
1897 else if (strcasecmp (name, "ev") == 0)
1898 {
1899 cmpltr = 7;
1900 flag = 1;
1901 }
1902 else
1903 as_bad ("Invalid Add Condition: %s", name);
1904 *s = c;
1905 }
1906 nullif = pa_parse_nullif (&s);
1907 opcode |= nullif << 1;
1908 opcode |= cmpltr << 13;
1909 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1910
1911 /* HANDLE a logical instruction condition. */
1912 case '&':
1913 cmpltr = 0;
1914 flag = 0;
1915 if (*s == ',')
1916 {
1917 s++;
1918 name = s;
1919 while (*s != ',' && *s != ' ' && *s != '\t')
1920 s += 1;
1921 c = *s;
1922 *s = 0x00;
1923 if (strcmp (name, "=") == 0)
1924 cmpltr = 1;
1925 else if (strcmp (name, "<") == 0)
1926 cmpltr = 2;
1927 else if (strcmp (name, "<=") == 0)
1928 cmpltr = 3;
1929 else if (strcasecmp (name, "od") == 0)
1930 cmpltr = 7;
1931 else if (strcasecmp (name, "tr") == 0)
1932 {
1933 cmpltr = 0;
1934 flag = 1;
1935 }
1936 else if (strcmp (name, "<>") == 0)
1937 {
1938 cmpltr = 1;
1939 flag = 1;
1940 }
1941 else if (strcmp (name, ">=") == 0)
1942 {
1943 cmpltr = 2;
1944 flag = 1;
1945 }
1946 else if (strcmp (name, ">") == 0)
1947 {
1948 cmpltr = 3;
1949 flag = 1;
1950 }
1951 else if (strcasecmp (name, "ev") == 0)
1952 {
1953 cmpltr = 7;
1954 flag = 1;
1955 }
1956 else
1957 as_bad ("Invalid Logical Instruction Condition.");
1958 *s = c;
1959 }
1960 opcode |= cmpltr << 13;
1961 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
1962
1963 /* Handle a unit instruction condition. */
1964 case 'U':
1965 cmpltr = 0;
1966 flag = 0;
1967 if (*s == ',')
1968 {
1969 s++;
1970 if (strncasecmp (s, "sbz", 3) == 0)
1971 {
1972 cmpltr = 2;
1973 s += 3;
1974 }
1975 else if (strncasecmp (s, "shz", 3) == 0)
1976 {
1977 cmpltr = 3;
1978 s += 3;
1979 }
1980 else if (strncasecmp (s, "sdc", 3) == 0)
1981 {
1982 cmpltr = 4;
1983 s += 3;
1984 }
1985 else if (strncasecmp (s, "sbc", 3) == 0)
1986 {
1987 cmpltr = 6;
1988 s += 3;
1989 }
1990 else if (strncasecmp (s, "shc", 3) == 0)
1991 {
1992 cmpltr = 7;
1993 s += 3;
1994 }
1995 else if (strncasecmp (s, "tr", 2) == 0)
1996 {
1997 cmpltr = 0;
1998 flag = 1;
1999 s += 2;
2000 }
2001 else if (strncasecmp (s, "nbz", 3) == 0)
2002 {
2003 cmpltr = 2;
2004 flag = 1;
2005 s += 3;
2006 }
2007 else if (strncasecmp (s, "nhz", 3) == 0)
2008 {
2009 cmpltr = 3;
2010 flag = 1;
2011 s += 3;
2012 }
2013 else if (strncasecmp (s, "ndc", 3) == 0)
2014 {
2015 cmpltr = 4;
2016 flag = 1;
2017 s += 3;
2018 }
2019 else if (strncasecmp (s, "nbc", 3) == 0)
2020 {
2021 cmpltr = 6;
2022 flag = 1;
2023 s += 3;
2024 }
2025 else if (strncasecmp (s, "nhc", 3) == 0)
2026 {
2027 cmpltr = 7;
2028 flag = 1;
2029 s += 3;
2030 }
2031 else
2032 as_bad ("Invalid Logical Instruction Condition.");
2033 }
2034 opcode |= cmpltr << 13;
2035 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
2036
2037 /* Handle a shift/extract/deposit condition. */
2038 case '|':
2039 case '>':
2040 cmpltr = 0;
2041 if (*s == ',')
2042 {
2043 save_s = s++;
2044 name = s;
2045 while (*s != ',' && *s != ' ' && *s != '\t')
2046 s += 1;
2047 c = *s;
2048 *s = 0x00;
2049 if (strcmp (name, "=") == 0)
2050 cmpltr = 1;
2051 else if (strcmp (name, "<") == 0)
2052 cmpltr = 2;
2053 else if (strcasecmp (name, "od") == 0)
2054 cmpltr = 3;
2055 else if (strcasecmp (name, "tr") == 0)
2056 cmpltr = 4;
2057 else if (strcmp (name, "<>") == 0)
2058 cmpltr = 5;
2059 else if (strcmp (name, ">=") == 0)
2060 cmpltr = 6;
2061 else if (strcasecmp (name, "ev") == 0)
2062 cmpltr = 7;
2063 /* Handle movb,n. Put things back the way they were.
2064 This includes moving s back to where it started. */
2065 else if (strcasecmp (name, "n") == 0 && *args == '|')
2066 {
2067 *s = c;
2068 s = save_s;
2069 continue;
2070 }
2071 else
2072 as_bad ("Invalid Shift/Extract/Deposit Condition.");
2073 *s = c;
2074 }
2075 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2076
2077 /* Handle bvb and bb conditions. */
2078 case '~':
2079 cmpltr = 0;
2080 if (*s == ',')
2081 {
2082 s++;
2083 if (strncmp (s, "<", 1) == 0)
2084 {
2085 cmpltr = 2;
2086 s++;
2087 }
2088 else if (strncmp (s, ">=", 2) == 0)
2089 {
2090 cmpltr = 6;
2091 s += 2;
2092 }
2093 else
2094 as_bad ("Invalid Bit Branch Condition: %c", *s);
2095 }
2096 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
2097
2098 /* Handle a system control completer. */
2099 case 'Z':
2100 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
2101 {
2102 flag = 1;
2103 s += 2;
2104 }
2105 else
2106 flag = 0;
2107
2108 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2109
2110 /* Handle a nullification completer for branch instructions. */
2111 case 'n':
2112 nullif = pa_parse_nullif (&s);
2113 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
2114
2115 /* Handle a 11 bit immediate at 31. */
2116 case 'i':
2117 the_insn.field_selector = pa_chk_field_selector (&s);
2118 get_expression (s);
2119 s = expr_end;
2120 if (the_insn.exp.X_op == O_constant)
2121 {
2122 num = evaluate_absolute (&the_insn);
2123 CHECK_FIELD (num, 1023, -1024, 0);
2124 low_sign_unext (num, 11, &num);
2125 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2126 }
2127 else
2128 {
2129 if (is_DP_relative (the_insn.exp))
2130 the_insn.reloc = R_HPPA_GOTOFF;
2131 else if (is_PC_relative (the_insn.exp))
2132 the_insn.reloc = R_HPPA_PCREL_CALL;
2133 else if (is_complex (the_insn.exp))
2134 the_insn.reloc = R_HPPA_COMPLEX;
2135 else
2136 the_insn.reloc = R_HPPA;
2137 the_insn.format = 11;
2138 continue;
2139 }
2140
2141 /* Handle a 14 bit immediate at 31. */
2142 case 'j':
2143 the_insn.field_selector = pa_chk_field_selector (&s);
2144 get_expression (s);
2145 s = expr_end;
2146 if (the_insn.exp.X_op == O_constant)
2147 {
2148 num = evaluate_absolute (&the_insn);
2149 CHECK_FIELD (num, 8191, -8192, 0);
2150 low_sign_unext (num, 14, &num);
2151 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2152 }
2153 else
2154 {
2155 if (is_DP_relative (the_insn.exp))
2156 the_insn.reloc = R_HPPA_GOTOFF;
2157 else if (is_PC_relative (the_insn.exp))
2158 the_insn.reloc = R_HPPA_PCREL_CALL;
2159 else if (is_complex (the_insn.exp))
2160 the_insn.reloc = R_HPPA_COMPLEX;
2161 else
2162 the_insn.reloc = R_HPPA;
2163 the_insn.format = 14;
2164 continue;
2165 }
2166
2167 /* Handle a 21 bit immediate at 31. */
2168 case 'k':
2169 the_insn.field_selector = pa_chk_field_selector (&s);
2170 get_expression (s);
2171 s = expr_end;
2172 if (the_insn.exp.X_op == O_constant)
2173 {
2174 num = evaluate_absolute (&the_insn);
2175 CHECK_FIELD (num, 2097151, 0, 0);
2176 dis_assemble_21 (num, &num);
2177 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
2178 }
2179 else
2180 {
2181 if (is_DP_relative (the_insn.exp))
2182 the_insn.reloc = R_HPPA_GOTOFF;
2183 else if (is_PC_relative (the_insn.exp))
2184 the_insn.reloc = R_HPPA_PCREL_CALL;
2185 else if (is_complex (the_insn.exp))
2186 the_insn.reloc = R_HPPA_COMPLEX;
2187 else
2188 the_insn.reloc = R_HPPA;
2189 the_insn.format = 21;
2190 continue;
2191 }
2192
2193 /* Handle a 12 bit branch displacement. */
2194 case 'w':
2195 the_insn.field_selector = pa_chk_field_selector (&s);
2196 get_expression (s);
2197 s = expr_end;
2198 the_insn.pcrel = 1;
2199 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
2200 {
2201 unsigned int w1, w, result;
2202
2203 num = evaluate_absolute (&the_insn);
2204 if (num % 4)
2205 {
2206 as_bad ("Branch to unaligned address");
2207 break;
2208 }
2209 CHECK_FIELD (num, 8191, -8192, 0);
2210 sign_unext ((num - 8) >> 2, 12, &result);
2211 dis_assemble_12 (result, &w1, &w);
2212 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
2213 }
2214 else
2215 {
2216 if (is_complex (the_insn.exp))
2217 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2218 else
2219 the_insn.reloc = R_HPPA_PCREL_CALL;
2220 the_insn.format = 12;
2221 the_insn.arg_reloc = last_call_desc.arg_reloc;
2222 bzero (&last_call_desc, sizeof (struct call_desc));
2223 s = expr_end;
2224 continue;
2225 }
2226
2227 /* Handle a 17 bit branch displacement. */
2228 case 'W':
2229 the_insn.field_selector = pa_chk_field_selector (&s);
2230 get_expression (s);
2231 s = expr_end;
2232 the_insn.pcrel = 1;
2233 if (! the_insn.exp.X_add_symbol
2234 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2235 "L$0\001"))
2236 {
2237 unsigned int w2, w1, w, result;
2238
2239 num = evaluate_absolute (&the_insn);
2240 if (num % 4)
2241 {
2242 as_bad ("Branch to unaligned address");
2243 break;
2244 }
2245 CHECK_FIELD (num, 262143, -262144, 0);
2246
2247 if (the_insn.exp.X_add_symbol)
2248 num -= 8;
2249
2250 sign_unext (num >> 2, 17, &result);
2251 dis_assemble_17 (result, &w1, &w2, &w);
2252 INSERT_FIELD_AND_CONTINUE (opcode,
2253 ((w2 << 2) | (w1 << 16) | w), 0);
2254 }
2255 else
2256 {
2257 if (is_complex (the_insn.exp))
2258 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2259 else
2260 the_insn.reloc = R_HPPA_PCREL_CALL;
2261 the_insn.format = 17;
2262 the_insn.arg_reloc = last_call_desc.arg_reloc;
2263 bzero (&last_call_desc, sizeof (struct call_desc));
2264 continue;
2265 }
2266
2267 /* Handle an absolute 17 bit branch target. */
2268 case 'z':
2269 the_insn.field_selector = pa_chk_field_selector (&s);
2270 get_expression (s);
2271 s = expr_end;
2272 the_insn.pcrel = 0;
2273 if (! the_insn.exp.X_add_symbol
2274 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2275 "L$0\001"))
2276 {
2277 unsigned int w2, w1, w, result;
2278
2279 num = evaluate_absolute (&the_insn);
2280 if (num % 4)
2281 {
2282 as_bad ("Branch to unaligned address");
2283 break;
2284 }
2285 CHECK_FIELD (num, 262143, -262144, 0);
2286
2287 if (the_insn.exp.X_add_symbol)
2288 num -= 8;
2289
2290 sign_unext (num >> 2, 17, &result);
2291 dis_assemble_17 (result, &w1, &w2, &w);
2292 INSERT_FIELD_AND_CONTINUE (opcode,
2293 ((w2 << 2) | (w1 << 16) | w), 0);
2294 }
2295 else
2296 {
2297 if (is_complex (the_insn.exp))
2298 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2299 else
2300 the_insn.reloc = R_HPPA_ABS_CALL;
2301 the_insn.format = 17;
2302 continue;
2303 }
2304
2305 /* Handle a 5 bit shift count at 26. */
2306 case 'p':
2307 num = pa_get_absolute_expression (&the_insn, &s);
2308 s = expr_end;
2309 CHECK_FIELD (num, 31, 0, 0);
2310 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
2311
2312 /* Handle a 5 bit bit position at 26. */
2313 case 'P':
2314 num = pa_get_absolute_expression (&the_insn, &s);
2315 s = expr_end;
2316 CHECK_FIELD (num, 31, 0, 0);
2317 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
2318
2319 /* Handle a 5 bit immediate at 10. */
2320 case 'Q':
2321 num = pa_get_absolute_expression (&the_insn, &s);
2322 s = expr_end;
2323 CHECK_FIELD (num, 31, 0, 0);
2324 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
2325
2326 /* Handle a 13 bit immediate at 18. */
2327 case 'A':
2328 num = pa_get_absolute_expression (&the_insn, &s);
2329 s = expr_end;
2330 CHECK_FIELD (num, 4095, -4096, 0);
2331 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
2332
2333 /* Handle a 26 bit immediate at 31. */
2334 case 'D':
2335 num = pa_get_absolute_expression (&the_insn, &s);
2336 s = expr_end;
2337 CHECK_FIELD (num, 671108864, 0, 0);
2338 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
2339
2340 /* Handle a 3 bit SFU identifier at 25. */
2341 case 'f':
2342 num = pa_get_absolute_expression (&the_insn, &s);
2343 s = expr_end;
2344 CHECK_FIELD (num, 7, 0, 0);
2345 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
2346
2347 /* We don't support any of these. FIXME. */
2348 case 'O':
2349 get_expression (s);
2350 s = expr_end;
2351 abort ();
2352 continue;
2353
2354 /* Handle a source FP operand format completer. */
2355 case 'F':
2356 flag = pa_parse_fp_format (&s);
2357 the_insn.fpof1 = flag;
2358 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
2359
2360 /* Handle a destination FP operand format completer. */
2361 case 'G':
2362 /* pa_parse_format needs the ',' prefix. */
2363 s--;
2364 flag = pa_parse_fp_format (&s);
2365 the_insn.fpof2 = flag;
2366 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
2367
2368 /* Handle FP compare conditions. */
2369 case 'M':
2370 cond = pa_parse_fp_cmp_cond (&s);
2371 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
2372
2373 /* Handle L/R register halves like 't'. */
2374 case 'v':
2375 {
2376 struct pa_89_fp_reg_struct result;
2377
2378 pa_parse_number (&s, &result);
2379 CHECK_FIELD (result.number_part, 31, 0, 0);
2380 opcode |= result.number_part;
2381
2382 /* 0x30 opcodes are FP arithmetic operation opcodes
2383 and need to be turned into 0x38 opcodes. This
2384 is not necessary for loads/stores. */
2385 if (need_89_opcode (&the_insn, &result)
2386 && ((opcode & 0xfc000000) == 0x30000000))
2387 opcode |= 1 << 27;
2388
2389 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
2390 }
2391
2392 /* Handle L/R register halves like 'b'. */
2393 case 'E':
2394 {
2395 struct pa_89_fp_reg_struct result;
2396
2397 pa_parse_number (&s, &result);
2398 CHECK_FIELD (result.number_part, 31, 0, 0);
2399 opcode |= result.number_part << 21;
2400 if (need_89_opcode (&the_insn, &result))
2401 {
2402 opcode |= (result.l_r_select & 1) << 7;
2403 opcode |= 1 << 27;
2404 }
2405 continue;
2406 }
2407
2408 /* Handle L/R register halves like 'x'. */
2409 case 'X':
2410 {
2411 struct pa_89_fp_reg_struct result;
2412
2413 pa_parse_number (&s, &result);
2414 CHECK_FIELD (result.number_part, 31, 0, 0);
2415 opcode |= (result.number_part & 0x1f) << 16;
2416 if (need_89_opcode (&the_insn, &result))
2417 {
2418 opcode |= (result.l_r_select & 1) << 12;
2419 opcode |= 1 << 27;
2420 }
2421 continue;
2422 }
2423
2424 /* Handle a 5 bit register field at 10. */
2425 case '4':
2426 {
2427 struct pa_89_fp_reg_struct result;
2428
2429 pa_parse_number (&s, &result);
2430 CHECK_FIELD (result.number_part, 31, 0, 0);
2431 if (the_insn.fpof1 == SGL)
2432 {
2433 result.number_part &= 0xF;
2434 result.number_part |= (result.l_r_select & 1) << 4;
2435 }
2436 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
2437 }
2438
2439 /* Handle a 5 bit register field at 15. */
2440 case '6':
2441 {
2442 struct pa_89_fp_reg_struct result;
2443
2444 pa_parse_number (&s, &result);
2445 CHECK_FIELD (result.number_part, 31, 0, 0);
2446 if (the_insn.fpof1 == SGL)
2447 {
2448 result.number_part &= 0xF;
2449 result.number_part |= (result.l_r_select & 1) << 4;
2450 }
2451 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
2452 }
2453
2454 /* Handle a 5 bit register field at 31. */
2455 case '7':
2456 {
2457 struct pa_89_fp_reg_struct result;
2458
2459 pa_parse_number (&s, &result);
2460 CHECK_FIELD (result.number_part, 31, 0, 0);
2461 if (the_insn.fpof1 == SGL)
2462 {
2463 result.number_part &= 0xF;
2464 result.number_part |= (result.l_r_select & 1) << 4;
2465 }
2466 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
2467 }
2468
2469 /* Handle a 5 bit register field at 20. */
2470 case '8':
2471 {
2472 struct pa_89_fp_reg_struct result;
2473
2474 pa_parse_number (&s, &result);
2475 CHECK_FIELD (result.number_part, 31, 0, 0);
2476 if (the_insn.fpof1 == SGL)
2477 {
2478 result.number_part &= 0xF;
2479 result.number_part |= (result.l_r_select & 1) << 4;
2480 }
2481 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
2482 }
2483
2484 /* Handle a 5 bit register field at 25. */
2485 case '9':
2486 {
2487 struct pa_89_fp_reg_struct result;
2488
2489 pa_parse_number (&s, &result);
2490 CHECK_FIELD (result.number_part, 31, 0, 0);
2491 if (the_insn.fpof1 == SGL)
2492 {
2493 result.number_part &= 0xF;
2494 result.number_part |= (result.l_r_select & 1) << 4;
2495 }
2496 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
2497 }
2498
2499 /* Handle a floating point operand format at 26.
2500 Only allows single and double precision. */
2501 case 'H':
2502 flag = pa_parse_fp_format (&s);
2503 switch (flag)
2504 {
2505 case SGL:
2506 opcode |= 0x20;
2507 case DBL:
2508 the_insn.fpof1 = flag;
2509 continue;
2510
2511 case QUAD:
2512 case ILLEGAL_FMT:
2513 default:
2514 as_bad ("Invalid Floating Point Operand Format.");
2515 }
2516 break;
2517
2518 default:
2519 abort ();
2520 }
2521 break;
2522 }
2523
2524 /* Check if the args matched. */
2525 if (match == FALSE)
2526 {
2527 if (&insn[1] - pa_opcodes < NUMOPCODES
2528 && !strcmp (insn->name, insn[1].name))
2529 {
2530 ++insn;
2531 s = argstart;
2532 continue;
2533 }
2534 else
2535 {
2536 as_bad ("Invalid operands %s", error_message);
2537 return;
2538 }
2539 }
2540 break;
2541 }
2542
2543 the_insn.opcode = opcode;
2544 return;
2545 }
2546
2547 /* Turn a string in input_line_pointer into a floating point constant of type
2548 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
2549 emitted is stored in *sizeP . An error message or NULL is returned. */
2550
2551 #define MAX_LITTLENUMS 6
2552
2553 char *
2554 md_atof (type, litP, sizeP)
2555 char type;
2556 char *litP;
2557 int *sizeP;
2558 {
2559 int prec;
2560 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2561 LITTLENUM_TYPE *wordP;
2562 char *t;
2563
2564 switch (type)
2565 {
2566
2567 case 'f':
2568 case 'F':
2569 case 's':
2570 case 'S':
2571 prec = 2;
2572 break;
2573
2574 case 'd':
2575 case 'D':
2576 case 'r':
2577 case 'R':
2578 prec = 4;
2579 break;
2580
2581 case 'x':
2582 case 'X':
2583 prec = 6;
2584 break;
2585
2586 case 'p':
2587 case 'P':
2588 prec = 6;
2589 break;
2590
2591 default:
2592 *sizeP = 0;
2593 return "Bad call to MD_ATOF()";
2594 }
2595 t = atof_ieee (input_line_pointer, type, words);
2596 if (t)
2597 input_line_pointer = t;
2598 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2599 for (wordP = words; prec--;)
2600 {
2601 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
2602 litP += sizeof (LITTLENUM_TYPE);
2603 }
2604 return NULL;
2605 }
2606
2607 /* Write out big-endian. */
2608
2609 void
2610 md_number_to_chars (buf, val, n)
2611 char *buf;
2612 valueT val;
2613 int n;
2614 {
2615
2616 switch (n)
2617 {
2618 case 4:
2619 *buf++ = val >> 24;
2620 *buf++ = val >> 16;
2621 case 2:
2622 *buf++ = val >> 8;
2623 case 1:
2624 *buf = val;
2625 break;
2626 default:
2627 abort ();
2628 }
2629 return;
2630 }
2631
2632 /* Translate internal representation of relocation info to BFD target
2633 format. */
2634
2635 arelent **
2636 tc_gen_reloc (section, fixp)
2637 asection *section;
2638 fixS *fixp;
2639 {
2640 arelent *reloc;
2641 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
2642 bfd_reloc_code_real_type code;
2643 static int unwind_reloc_fixp_cnt = 0;
2644 static arelent *unwind_reloc_entryP = NULL;
2645 static arelent *no_relocs = NULL;
2646 arelent **relocs;
2647 bfd_reloc_code_real_type **codes;
2648 int n_relocs;
2649 int i;
2650
2651 if (fixp->fx_addsy == 0)
2652 return &no_relocs;
2653 assert (hppa_fixp != 0);
2654 assert (section != 0);
2655
2656 #ifdef OBJ_ELF
2657 /* Yuk. I would really like to push all this ELF specific unwind
2658 crud into BFD and the linker. That's how SOM does it -- and
2659 if we could make ELF emulate that then we could share more code
2660 in GAS (and potentially a gnu-linker later).
2661
2662 Unwind section relocations are handled in a special way.
2663 The relocations for the .unwind section are originally
2664 built in the usual way. That is, for each unwind table
2665 entry there are two relocations: one for the beginning of
2666 the function and one for the end.
2667
2668 The first time we enter this function we create a
2669 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2670 of the relocation is initialized to 0. Each additional
2671 pair of times this function is called for the unwind
2672 section represents an additional unwind table entry. Thus,
2673 the addend of the relocation should end up to be the number
2674 of unwind table entries. */
2675 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2676 {
2677 if (unwind_reloc_entryP == NULL)
2678 {
2679 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2680 sizeof (arelent));
2681 assert (reloc != 0);
2682 unwind_reloc_entryP = reloc;
2683 unwind_reloc_fixp_cnt++;
2684 unwind_reloc_entryP->address
2685 = fixp->fx_frag->fr_address + fixp->fx_where;
2686 /* A pointer to any function will do. We only
2687 need one to tell us what section the unwind
2688 relocations are for. */
2689 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2690 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2691 fixp->fx_r_type = R_HPPA_UNWIND;
2692 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2693 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2694 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2695 sizeof (arelent *) * 2);
2696 assert (relocs != 0);
2697 relocs[0] = unwind_reloc_entryP;
2698 relocs[1] = NULL;
2699 return relocs;
2700 }
2701 unwind_reloc_fixp_cnt++;
2702 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2703
2704 return &no_relocs;
2705 }
2706 #endif
2707
2708 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2709 assert (reloc != 0);
2710
2711 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2712 codes = hppa_gen_reloc_type (stdoutput,
2713 fixp->fx_r_type,
2714 hppa_fixp->fx_r_format,
2715 hppa_fixp->fx_r_field);
2716
2717 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2718 ;
2719
2720 relocs = (arelent **)
2721 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
2722 assert (relocs != 0);
2723
2724 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2725 sizeof (arelent) * n_relocs);
2726 if (n_relocs > 0)
2727 assert (reloc != 0);
2728
2729 for (i = 0; i < n_relocs; i++)
2730 relocs[i] = &reloc[i];
2731
2732 relocs[n_relocs] = NULL;
2733
2734 #ifdef OBJ_ELF
2735 switch (fixp->fx_r_type)
2736 {
2737 case R_HPPA_COMPLEX:
2738 case R_HPPA_COMPLEX_PCREL_CALL:
2739 case R_HPPA_COMPLEX_ABS_CALL:
2740 assert (n_relocs == 5);
2741
2742 for (i = 0; i < n_relocs; i++)
2743 {
2744 reloc[i].sym_ptr_ptr = NULL;
2745 reloc[i].address = 0;
2746 reloc[i].addend = 0;
2747 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2748 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2749 }
2750
2751 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2752 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2753 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2754
2755 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2756 reloc[3].addend = fixp->fx_addnumber;
2757 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2758 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2759 reloc[1].addend = fixp->fx_addnumber;
2760
2761 break;
2762
2763 default:
2764 assert (n_relocs == 1);
2765
2766 code = *codes[0];
2767
2768 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2769 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2770 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2771 reloc->addend = 0; /* default */
2772
2773 assert (reloc->howto && code == reloc->howto->type);
2774
2775 /* Now, do any processing that is dependent on the relocation type. */
2776 switch (code)
2777 {
2778 case R_HPPA_PLABEL_32:
2779 case R_HPPA_PLABEL_11:
2780 case R_HPPA_PLABEL_14:
2781 case R_HPPA_PLABEL_L21:
2782 case R_HPPA_PLABEL_R11:
2783 case R_HPPA_PLABEL_R14:
2784 /* For plabel relocations, the addend of the
2785 relocation should be either 0 (no static link) or 2
2786 (static link required).
2787
2788 FIXME: assume that fx_addnumber contains this
2789 information */
2790 reloc->addend = fixp->fx_addnumber;
2791 break;
2792
2793 case R_HPPA_ABS_CALL_11:
2794 case R_HPPA_ABS_CALL_14:
2795 case R_HPPA_ABS_CALL_17:
2796 case R_HPPA_ABS_CALL_L21:
2797 case R_HPPA_ABS_CALL_R11:
2798 case R_HPPA_ABS_CALL_R14:
2799 case R_HPPA_ABS_CALL_R17:
2800 case R_HPPA_ABS_CALL_LS21:
2801 case R_HPPA_ABS_CALL_RS11:
2802 case R_HPPA_ABS_CALL_RS14:
2803 case R_HPPA_ABS_CALL_RS17:
2804 case R_HPPA_ABS_CALL_LD21:
2805 case R_HPPA_ABS_CALL_RD11:
2806 case R_HPPA_ABS_CALL_RD14:
2807 case R_HPPA_ABS_CALL_RD17:
2808 case R_HPPA_ABS_CALL_LR21:
2809 case R_HPPA_ABS_CALL_RR14:
2810 case R_HPPA_ABS_CALL_RR17:
2811
2812 case R_HPPA_PCREL_CALL_11:
2813 case R_HPPA_PCREL_CALL_14:
2814 case R_HPPA_PCREL_CALL_17:
2815 case R_HPPA_PCREL_CALL_L21:
2816 case R_HPPA_PCREL_CALL_R11:
2817 case R_HPPA_PCREL_CALL_R14:
2818 case R_HPPA_PCREL_CALL_R17:
2819 case R_HPPA_PCREL_CALL_LS21:
2820 case R_HPPA_PCREL_CALL_RS11:
2821 case R_HPPA_PCREL_CALL_RS14:
2822 case R_HPPA_PCREL_CALL_RS17:
2823 case R_HPPA_PCREL_CALL_LD21:
2824 case R_HPPA_PCREL_CALL_RD11:
2825 case R_HPPA_PCREL_CALL_RD14:
2826 case R_HPPA_PCREL_CALL_RD17:
2827 case R_HPPA_PCREL_CALL_LR21:
2828 case R_HPPA_PCREL_CALL_RR14:
2829 case R_HPPA_PCREL_CALL_RR17:
2830 /* The constant is stored in the instruction. */
2831 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2832 break;
2833 default:
2834 reloc->addend = fixp->fx_addnumber;
2835 break;
2836 }
2837 break;
2838 }
2839 #else /* OBJ_SOM */
2840
2841 /* Preliminary relocation handling for SOM. Needs to handle
2842 COMPLEX relocations (yes, I've seen them occur) and it will
2843 need to handle R_ENTRY/R_EXIT relocations in the very near future
2844 (for generating unwinds). */
2845 switch (fixp->fx_r_type)
2846 {
2847 case R_HPPA_COMPLEX:
2848 case R_HPPA_COMPLEX_PCREL_CALL:
2849 case R_HPPA_COMPLEX_ABS_CALL:
2850 abort();
2851 break;
2852 default:
2853 assert (n_relocs == 1);
2854
2855 code = *codes[0];
2856
2857 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2858 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2859 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where ;
2860 reloc->addend = 0;
2861
2862 switch (code)
2863 {
2864 case R_PCREL_CALL:
2865 case R_ABS_CALL:
2866 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2867 break;
2868 default:
2869 reloc->addend = fixp->fx_addnumber;
2870 break;
2871 }
2872 break;
2873 }
2874 #endif
2875
2876 return relocs;
2877 }
2878
2879 /* Process any machine dependent frag types. */
2880
2881 void
2882 md_convert_frag (abfd, sec, fragP)
2883 register bfd *abfd;
2884 register asection *sec;
2885 register fragS *fragP;
2886 {
2887 unsigned int address;
2888
2889 if (fragP->fr_type == rs_machine_dependent)
2890 {
2891 switch ((int) fragP->fr_subtype)
2892 {
2893 case 0:
2894 fragP->fr_type = rs_fill;
2895 know (fragP->fr_var == 1);
2896 know (fragP->fr_next);
2897 address = fragP->fr_address + fragP->fr_fix;
2898 if (address % fragP->fr_offset)
2899 {
2900 fragP->fr_offset =
2901 fragP->fr_next->fr_address
2902 - fragP->fr_address
2903 - fragP->fr_fix;
2904 }
2905 else
2906 fragP->fr_offset = 0;
2907 break;
2908 }
2909 }
2910 }
2911
2912 /* Round up a section size to the appropriate boundary. */
2913
2914 valueT
2915 md_section_align (segment, size)
2916 asection *segment;
2917 valueT size;
2918 {
2919 int align = bfd_get_section_alignment (stdoutput, segment);
2920 int align2 = (1 << align) - 1;
2921
2922 return (size + align2) & ~align2;
2923
2924 }
2925
2926 /* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2927 void
2928 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2929 char *ptr;
2930 addressT from_addr, to_addr;
2931 fragS *frag;
2932 symbolS *to_symbol;
2933 {
2934 fprintf (stderr, "pa_create_short_jmp\n");
2935 abort ();
2936 }
2937
2938 /* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2939 void
2940 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2941 char *ptr;
2942 addressT from_addr, to_addr;
2943 fragS *frag;
2944 symbolS *to_symbol;
2945 {
2946 fprintf (stderr, "pa_create_long_jump\n");
2947 abort ();
2948 }
2949
2950 /* Return the approximate size of a frag before relaxation has occurred. */
2951 int
2952 md_estimate_size_before_relax (fragP, segment)
2953 register fragS *fragP;
2954 asection *segment;
2955 {
2956 int size;
2957
2958 size = 0;
2959
2960 while ((fragP->fr_fix + size) % fragP->fr_offset)
2961 size++;
2962
2963 return size;
2964 }
2965
2966 /* Parse machine dependent options. There are none on the PA. */
2967 int
2968 md_parse_option (argP, cntP, vecP)
2969 char **argP;
2970 int *cntP;
2971 char ***vecP;
2972 {
2973 return 1;
2974 }
2975
2976 /* We have no need to default values of symbols. */
2977
2978 symbolS *
2979 md_undefined_symbol (name)
2980 char *name;
2981 {
2982 return 0;
2983 }
2984
2985 /* Parse an operand that is machine-specific.
2986 We just return without modifying the expression as we have nothing
2987 to do on the PA. */
2988
2989 void
2990 md_operand (expressionP)
2991 expressionS *expressionP;
2992 {
2993 }
2994
2995 /* Helper function for md_apply_fix. Actually determine if the fix
2996 can be applied, and if so, apply it.
2997
2998 If a fix is applied, then set fx_addsy to NULL which indicates
2999 the fix was applied and need not be emitted into the object file. */
3000
3001 static void
3002 md_apply_fix_1 (fixP, val)
3003 fixS *fixP;
3004 long val;
3005 {
3006 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
3007 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
3008 long new_val, result;
3009 unsigned int w1, w2, w;
3010
3011 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
3012 never be "applied". They must always be emitted. */
3013 #ifdef OBJ_SOM
3014 if (fixP->fx_r_type == R_HPPA_ENTRY
3015 || fixP->fx_r_type == R_HPPA_EXIT)
3016 return;
3017 #endif
3018
3019 /* There should have been an HPPA specific fixup associated
3020 with the GAS fixup. */
3021 if (hppa_fixP)
3022 {
3023 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
3024 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
3025
3026 if (fixP->fx_r_type == R_HPPA_NONE)
3027 fmt = 0;
3028
3029 /* Remember this value for emit_reloc. FIXME, is this braindamage
3030 documented anywhere!?! */
3031 fixP->fx_addnumber = val;
3032
3033 /* Check if this is an undefined symbol. No relocation can
3034 possibly be performed in this case. */
3035 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
3036 || (fixP->fx_subsy
3037 && fixP->fx_subsy->bsym->section == &bfd_und_section))
3038 return;
3039
3040 if (fmt != 0 && fmt != 32)
3041 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3042 else
3043 new_val = 0;
3044
3045 switch (fmt)
3046 {
3047 /* Handle all opcodes with the 'j' operand type. */
3048 case 14:
3049 CHECK_FIELD (new_val, 8191, -8192, 0);
3050
3051 /* Mask off 14 bits to be changed. */
3052 bfd_put_32 (stdoutput,
3053 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3054 buf);
3055 low_sign_unext (new_val, 14, &result);
3056 break;
3057
3058 /* Handle all opcodes with the 'k' operand type. */
3059 case 21:
3060 CHECK_FIELD (new_val, 2097152, 0, 0);
3061
3062 /* Mask off 21 bits to be changed. */
3063 bfd_put_32 (stdoutput,
3064 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3065 buf);
3066 dis_assemble_21 (new_val, &result);
3067 break;
3068
3069 /* Handle all the opcodes with the 'i' operand type. */
3070 case 11:
3071 CHECK_FIELD (new_val, 1023, -1023, 0);
3072
3073 /* Mask off 11 bits to be changed. */
3074 bfd_put_32 (stdoutput,
3075 bfd_get_32 (stdoutput, buf) & 0xffff800,
3076 buf);
3077 low_sign_unext (new_val, 11, &result);
3078 break;
3079
3080 /* Handle all the opcodes with the 'w' operand type. */
3081 case 12:
3082 CHECK_FIELD (new_val, 8191, -8192, 0)
3083
3084 /* Mask off 11 bits to be changed. */
3085 sign_unext ((new_val - 8) >> 2, 12, &result);
3086 bfd_put_32 (stdoutput,
3087 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3088 buf);
3089
3090 dis_assemble_12 (result, &w1, &w);
3091 result = ((w1 << 2) | w);
3092 fixP->fx_addsy = NULL;
3093 break;
3094
3095 #define stub_needed(CALLER, CALLEE) \
3096 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3097
3098 /* Handle some of the opcodes with the 'W' operand type. */
3099 case 17:
3100 /* If a long-call stub or argument relocation stub is
3101 needed, then we can not apply this relocation, instead
3102 the linker must handle it. */
3103 if (new_val > 262143 || new_val < -262144
3104 || stub_needed (((obj_symbol_type *)
3105 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3106 hppa_fixP->fx_arg_reloc))
3107 return;
3108
3109 /* No stubs were needed, we can perform this relocation. */
3110 CHECK_FIELD (new_val, 262143, -262144, 0);
3111
3112 /* Mask off 17 bits to be changed. */
3113 bfd_put_32 (stdoutput,
3114 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3115 buf);
3116 sign_unext ((new_val - 8) >> 2, 17, &result);
3117 dis_assemble_17 (result, &w1, &w2, &w);
3118 result = ((w2 << 2) | (w1 << 16) | w);
3119 fixP->fx_addsy = NULL;
3120 break;
3121
3122 #undef too_far
3123 #undef stub_needed
3124
3125 case 32:
3126 #ifdef OBJ_ELF
3127 /* These are ELF specific relocations. ELF unfortunately
3128 handles unwinds in a completely different manner. */
3129 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3130 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3131 result = fixP->fx_addnumber;
3132 else
3133 #endif
3134 {
3135 result = 0;
3136 fixP->fx_addnumber = fixP->fx_offset;
3137 bfd_put_32 (stdoutput, 0, buf);
3138 return;
3139 }
3140 break;
3141
3142 case 0:
3143 return;
3144
3145 default:
3146 as_bad ("Unknown relocation encountered in md_apply_fix.");
3147 return;
3148 }
3149
3150 /* Insert the relocation. */
3151 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
3152 }
3153 else
3154 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3155 (unsigned int) fixP, fixP->fx_r_type);
3156 }
3157
3158 /* Apply a fix into a frag's data (if possible). */
3159
3160 int
3161 md_apply_fix (fixP, valp)
3162 fixS *fixP;
3163 valueT *valp;
3164 {
3165 md_apply_fix_1 (fixP, (long) *valp);
3166 return 1;
3167 }
3168
3169 /* Exactly what point is a PC-relative offset relative TO?
3170 On the PA, they're relative to the address of the offset. */
3171
3172 long
3173 md_pcrel_from (fixP)
3174 fixS *fixP;
3175 {
3176 return fixP->fx_where + fixP->fx_frag->fr_address;
3177 }
3178
3179 /* Return nonzero if the input line pointer is at the end of
3180 a statement. */
3181
3182 static int
3183 is_end_of_statement ()
3184 {
3185 return ((*input_line_pointer == '\n')
3186 || (*input_line_pointer == ';')
3187 || (*input_line_pointer == '!'));
3188 }
3189
3190 /* Read a number from S. The number might come in one of many forms,
3191 the most common will be a hex or decimal constant, but it could be
3192 a pre-defined register (Yuk!), or an absolute symbol.
3193
3194 Return a number or -1 for failure.
3195
3196 When parsing PA-89 FP register numbers RESULT will be
3197 the address of a structure to return information about
3198 L/R half of FP registers, store results there as appropriate.
3199
3200 pa_parse_number can not handle negative constants and will fail
3201 horribly if it is passed such a constant. */
3202
3203 static int
3204 pa_parse_number (s, result)
3205 char **s;
3206 struct pa_89_fp_reg_struct *result;
3207 {
3208 int num;
3209 char *name;
3210 char c;
3211 symbolS *sym;
3212 int status;
3213 char *p = *s;
3214
3215 /* Skip whitespace before the number. */
3216 while (*p == ' ' || *p == '\t')
3217 p = p + 1;
3218
3219 /* Store info in RESULT if requested by caller. */
3220 if (result)
3221 {
3222 result->number_part = -1;
3223 result->l_r_select = -1;
3224 }
3225 num = -1;
3226
3227 if (isdigit (*p))
3228 {
3229 /* Looks like a number. */
3230 num = 0;
3231
3232 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
3233 {
3234 /* The number is specified in hex. */
3235 p += 2;
3236 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3237 || ((*p >= 'A') && (*p <= 'F')))
3238 {
3239 if (isdigit (*p))
3240 num = num * 16 + *p - '0';
3241 else if (*p >= 'a' && *p <= 'f')
3242 num = num * 16 + *p - 'a' + 10;
3243 else
3244 num = num * 16 + *p - 'A' + 10;
3245 ++p;
3246 }
3247 }
3248 else
3249 {
3250 /* The number is specified in decimal. */
3251 while (isdigit (*p))
3252 {
3253 num = num * 10 + *p - '0';
3254 ++p;
3255 }
3256 }
3257
3258 /* Store info in RESULT if requested by the caller. */
3259 if (result)
3260 {
3261 result->number_part = num;
3262
3263 if (IS_R_SELECT (p))
3264 {
3265 result->l_r_select = 1;
3266 ++p;
3267 }
3268 else if (IS_L_SELECT (p))
3269 {
3270 result->l_r_select = 0;
3271 ++p;
3272 }
3273 else
3274 result->l_r_select = 0;
3275 }
3276 }
3277 else if (*p == '%')
3278 {
3279 /* The number might be a predefined register. */
3280 num = 0;
3281 name = p;
3282 p++;
3283 c = *p;
3284 /* Tege hack: Special case for general registers as the general
3285 code makes a binary search with case translation, and is VERY
3286 slow. */
3287 if (c == 'r')
3288 {
3289 p++;
3290 if (*p == 'e' && *(p + 1) == 't'
3291 && (*(p + 2) == '0' || *(p + 2) == '1'))
3292 {
3293 p += 2;
3294 num = *p - '0' + 28;
3295 p++;
3296 }
3297 else if (*p == 'p')
3298 {
3299 num = 2;
3300 p++;
3301 }
3302 else if (!isdigit (*p))
3303 {
3304 if (print_errors)
3305 as_bad ("Undefined register: '%s'.", name);
3306 num = -1;
3307 }
3308 else
3309 {
3310 do
3311 num = num * 10 + *p++ - '0';
3312 while (isdigit (*p));
3313 }
3314 }
3315 else
3316 {
3317 /* Do a normal register search. */
3318 while (is_part_of_name (c))
3319 {
3320 p = p + 1;
3321 c = *p;
3322 }
3323 *p = 0;
3324 status = reg_name_search (name);
3325 if (status >= 0)
3326 num = status;
3327 else
3328 {
3329 if (print_errors)
3330 as_bad ("Undefined register: '%s'.", name);
3331 num = -1;
3332 }
3333 *p = c;
3334 }
3335
3336 /* Store info in RESULT if requested by caller. */
3337 if (result)
3338 {
3339 result->number_part = num;
3340 if (IS_R_SELECT (p - 1))
3341 result->l_r_select = 1;
3342 else if (IS_L_SELECT (p - 1))
3343 result->l_r_select = 0;
3344 else
3345 result->l_r_select = 0;
3346 }
3347 }
3348 else
3349 {
3350 /* And finally, it could be a symbol in the absolute section which
3351 is effectively a constant. */
3352 num = 0;
3353 name = p;
3354 c = *p;
3355 while (is_part_of_name (c))
3356 {
3357 p = p + 1;
3358 c = *p;
3359 }
3360 *p = 0;
3361 if ((sym = symbol_find (name)) != NULL)
3362 {
3363 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
3364 num = S_GET_VALUE (sym);
3365 else
3366 {
3367 if (print_errors)
3368 as_bad ("Non-absolute symbol: '%s'.", name);
3369 num = -1;
3370 }
3371 }
3372 else
3373 {
3374 /* There is where we'd come for an undefined symbol
3375 or for an empty string. For an empty string we
3376 will return zero. That's a concession made for
3377 compatability with the braindamaged HP assemblers. */
3378 if (*name == 0)
3379 num = 0;
3380 else
3381 {
3382 if (print_errors)
3383 as_bad ("Undefined absolute constant: '%s'.", name);
3384 num = -1;
3385 }
3386 }
3387 *p = c;
3388
3389 /* Store info in RESULT if requested by caller. */
3390 if (result)
3391 {
3392 result->number_part = num;
3393 if (IS_R_SELECT (p - 1))
3394 result->l_r_select = 1;
3395 else if (IS_L_SELECT (p - 1))
3396 result->l_r_select = 0;
3397 else
3398 result->l_r_select = 0;
3399 }
3400 }
3401
3402 *s = p;
3403 return num;
3404 }
3405
3406 #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3407
3408 /* Given NAME, find the register number associated with that name, return
3409 the integer value associated with the given name or -1 on failure. */
3410
3411 static int
3412 reg_name_search (name)
3413 char *name;
3414 {
3415 int middle, low, high;
3416
3417 low = 0;
3418 high = REG_NAME_CNT - 1;
3419
3420 do
3421 {
3422 middle = (low + high) / 2;
3423 if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
3424 high = middle - 1;
3425 else
3426 low = middle + 1;
3427 }
3428 while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
3429 (low > high)));
3430
3431 if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
3432 return (pre_defined_registers[middle].value);
3433 else
3434 return (-1);
3435 }
3436
3437
3438 /* Return nonzero if the given INSN and L/R information will require
3439 a new PA-89 opcode. */
3440
3441 static int
3442 need_89_opcode (insn, result)
3443 struct pa_it *insn;
3444 struct pa_89_fp_reg_struct *result;
3445 {
3446 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3447 return TRUE;
3448 else
3449 return FALSE;
3450 }
3451
3452 /* Parse a condition for a fcmp instruction. Return the numerical
3453 code associated with the condition. */
3454
3455 static int
3456 pa_parse_fp_cmp_cond (s)
3457 char **s;
3458 {
3459 int cond, i;
3460
3461 cond = 0;
3462
3463 for (i = 0; i < 32; i++)
3464 {
3465 if (strncasecmp (*s, fp_cond_map[i].string,
3466 strlen (fp_cond_map[i].string)) == 0)
3467 {
3468 cond = fp_cond_map[i].cond;
3469 *s += strlen (fp_cond_map[i].string);
3470 while (**s == ' ' || **s == '\t')
3471 *s = *s + 1;
3472 return cond;
3473 }
3474 }
3475
3476 as_bad ("Invalid FP Compare Condition: %c", **s);
3477 return 0;
3478 }
3479
3480 /* Parse an FP operand format completer returning the completer
3481 type. */
3482
3483 static fp_operand_format
3484 pa_parse_fp_format (s)
3485 char **s;
3486 {
3487 int format;
3488
3489 format = SGL;
3490 if (**s == ',')
3491 {
3492 *s += 1;
3493 if (strncasecmp (*s, "sgl", 3) == 0)
3494 {
3495 format = SGL;
3496 *s += 4;
3497 }
3498 else if (strncasecmp (*s, "dbl", 3) == 0)
3499 {
3500 format = DBL;
3501 *s += 4;
3502 }
3503 else if (strncasecmp (*s, "quad", 4) == 0)
3504 {
3505 format = QUAD;
3506 *s += 5;
3507 }
3508 else
3509 {
3510 format = ILLEGAL_FMT;
3511 as_bad ("Invalid FP Operand Format: %3s", *s);
3512 }
3513 }
3514
3515 return format;
3516 }
3517
3518 /* Convert from a selector string into a selector type. */
3519
3520 static int
3521 pa_chk_field_selector (str)
3522 char **str;
3523 {
3524 int selector;
3525 const struct selector_entry *tablep;
3526
3527 selector = e_fsel;
3528
3529 /* Read past any whitespace. */
3530 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
3531 *str = *str + 1;
3532
3533 /* Yuk. Looks like a linear search through the table. With the
3534 frequence of some selectors it might make sense to sort the
3535 table by usage. */
3536 for (tablep = selector_table; tablep->prefix; tablep++)
3537 {
3538 if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
3539 {
3540 *str += strlen (tablep->prefix);
3541 selector = tablep->field_selector;
3542 break;
3543 }
3544 }
3545 return selector;
3546 }
3547
3548 /* Mark (via expr_end) the end of an expression (I think). FIXME. */
3549
3550 static int
3551 get_expression (str)
3552 char *str;
3553 {
3554 char *save_in;
3555 asection *seg;
3556
3557 save_in = input_line_pointer;
3558 input_line_pointer = str;
3559 seg = expression (&the_insn.exp);
3560 if (!(seg == absolute_section
3561 || seg == undefined_section
3562 || SEG_NORMAL (seg)))
3563 {
3564 as_warn ("Bad segment in expression.");
3565 expr_end = input_line_pointer;
3566 input_line_pointer = save_in;
3567 return 1;
3568 }
3569 expr_end = input_line_pointer;
3570 input_line_pointer = save_in;
3571 return 0;
3572 }
3573
3574 /* Mark (via expr_end) the end of an absolute expression. FIXME. */
3575 static int
3576 pa_get_absolute_expression (insn, strp)
3577 struct pa_it *insn;
3578 char **strp;
3579 {
3580 char *save_in;
3581
3582 insn->field_selector = pa_chk_field_selector (strp);
3583 save_in = input_line_pointer;
3584 input_line_pointer = *strp;
3585 expression (&insn->exp);
3586 if (insn->exp.X_op != O_constant)
3587 {
3588 as_bad ("Bad segment (should be absolute).");
3589 expr_end = input_line_pointer;
3590 input_line_pointer = save_in;
3591 return 0;
3592 }
3593 expr_end = input_line_pointer;
3594 input_line_pointer = save_in;
3595 return evaluate_absolute (insn);
3596 }
3597
3598 /* Evaluate an absolute expression EXP which may be modified by
3599 the selector FIELD_SELECTOR. Return the value of the expression. */
3600 static int
3601 evaluate_absolute (insn)
3602 struct pa_it *insn;
3603 {
3604 int value;
3605 expressionS exp;
3606 int field_selector = insn->field_selector;
3607
3608 exp = insn->exp;
3609 value = exp.X_add_number;
3610
3611 switch (field_selector)
3612 {
3613 /* No change. */
3614 case e_fsel:
3615 break;
3616
3617 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3618 case e_lssel:
3619 if (value & 0x00000400)
3620 value += 0x800;
3621 value = (value & 0xfffff800) >> 11;
3622 break;
3623
3624 /* Sign extend from bit 21. */
3625 case e_rssel:
3626 if (value & 0x00000400)
3627 value |= 0xfffff800;
3628 else
3629 value &= 0x7ff;
3630 break;
3631
3632 /* Arithmetic shift right 11 bits. */
3633 case e_lsel:
3634 value = (value & 0xfffff800) >> 11;
3635 break;
3636
3637 /* Set bits 0-20 to zero. */
3638 case e_rsel:
3639 value = value & 0x7ff;
3640 break;
3641
3642 /* Add 0x800 and arithmetic shift right 11 bits. */
3643 case e_ldsel:
3644 value += 0x800;
3645
3646
3647 value = (value & 0xfffff800) >> 11;
3648 break;
3649
3650 /* Set bitgs 0-21 to one. */
3651 case e_rdsel:
3652 value |= 0xfffff800;
3653 break;
3654
3655 /* This had better get fixed. It looks like we're quickly moving
3656 to LR/RR. FIXME. */
3657 case e_rrsel:
3658 case e_lrsel:
3659 abort ();
3660
3661 default:
3662 BAD_CASE (field_selector);
3663 break;
3664 }
3665 return value;
3666 }
3667
3668 /* Given an argument location specification return the associated
3669 argument location number. */
3670
3671 static unsigned int
3672 pa_build_arg_reloc (type_name)
3673 char *type_name;
3674 {
3675
3676 if (strncasecmp (type_name, "no", 2) == 0)
3677 return 0;
3678 if (strncasecmp (type_name, "gr", 2) == 0)
3679 return 1;
3680 else if (strncasecmp (type_name, "fr", 2) == 0)
3681 return 2;
3682 else if (strncasecmp (type_name, "fu", 2) == 0)
3683 return 3;
3684 else
3685 as_bad ("Invalid argument location: %s\n", type_name);
3686
3687 return 0;
3688 }
3689
3690 /* Encode and return an argument relocation specification for
3691 the given register in the location specified by arg_reloc. */
3692
3693 static unsigned int
3694 pa_align_arg_reloc (reg, arg_reloc)
3695 unsigned int reg;
3696 unsigned int arg_reloc;
3697 {
3698 unsigned int new_reloc;
3699
3700 new_reloc = arg_reloc;
3701 switch (reg)
3702 {
3703 case 0:
3704 new_reloc <<= 8;
3705 break;
3706 case 1:
3707 new_reloc <<= 6;
3708 break;
3709 case 2:
3710 new_reloc <<= 4;
3711 break;
3712 case 3:
3713 new_reloc <<= 2;
3714 break;
3715 default:
3716 as_bad ("Invalid argument description: %d", reg);
3717 }
3718
3719 return new_reloc;
3720 }
3721
3722 /* Parse a PA nullification completer (,n). Return nonzero if the
3723 completer was found; return zero if no completer was found. */
3724
3725 static int
3726 pa_parse_nullif (s)
3727 char **s;
3728 {
3729 int nullif;
3730
3731 nullif = 0;
3732 if (**s == ',')
3733 {
3734 *s = *s + 1;
3735 if (strncasecmp (*s, "n", 1) == 0)
3736 nullif = 1;
3737 else
3738 {
3739 as_bad ("Invalid Nullification: (%c)", **s);
3740 nullif = 0;
3741 }
3742 *s = *s + 1;
3743 }
3744
3745 return nullif;
3746 }
3747
3748 /* Parse a non-negated compare/subtract completer returning the
3749 number (for encoding in instrutions) of the given completer.
3750
3751 ISBRANCH specifies whether or not this is parsing a condition
3752 completer for a branch (vs a nullification completer for a
3753 computational instruction. */
3754
3755 static int
3756 pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
3757 char **s;
3758 int isbranch;
3759 {
3760 int cmpltr;
3761 char *name = *s + 1;
3762 char c;
3763 char *save_s = *s;
3764
3765 cmpltr = 0;
3766 if (**s == ',')
3767 {
3768 *s += 1;
3769 while (**s != ',' && **s != ' ' && **s != '\t')
3770 *s += 1;
3771 c = **s;
3772 **s = 0x00;
3773 if (strcmp (name, "=") == 0)
3774 {
3775 cmpltr = 1;
3776 }
3777 else if (strcmp (name, "<") == 0)
3778 {
3779 cmpltr = 2;
3780 }
3781 else if (strcmp (name, "<=") == 0)
3782 {
3783 cmpltr = 3;
3784 }
3785 else if (strcmp (name, "<<") == 0)
3786 {
3787 cmpltr = 4;
3788 }
3789 else if (strcmp (name, "<<=") == 0)
3790 {
3791 cmpltr = 5;
3792 }
3793 else if (strcasecmp (name, "sv") == 0)
3794 {
3795 cmpltr = 6;
3796 }
3797 else if (strcasecmp (name, "od") == 0)
3798 {
3799 cmpltr = 7;
3800 }
3801 /* If we have something like addb,n then there is no condition
3802 completer. */
3803 else if (strcasecmp (name, "n") == 0 && isbranch)
3804 {
3805 cmpltr = 0;
3806 }
3807 else
3808 {
3809 cmpltr = -1;
3810 }
3811 **s = c;
3812 }
3813
3814 /* Reset pointers if this was really a ,n for a branch instruction. */
3815 if (cmpltr == 0 && *name == 'n' && isbranch)
3816 *s = save_s;
3817
3818 return cmpltr;
3819 }
3820
3821 /* Parse a negated compare/subtract completer returning the
3822 number (for encoding in instrutions) of the given completer.
3823
3824 ISBRANCH specifies whether or not this is parsing a condition
3825 completer for a branch (vs a nullification completer for a
3826 computational instruction. */
3827
3828 static int
3829 pa_parse_neg_cmpsub_cmpltr (s, isbranch)
3830 char **s;
3831 int isbranch;
3832 {
3833 int cmpltr;
3834 char *name = *s + 1;
3835 char c;
3836 char *save_s = *s;
3837
3838 cmpltr = 0;
3839 if (**s == ',')
3840 {
3841 *s += 1;
3842 while (**s != ',' && **s != ' ' && **s != '\t')
3843 *s += 1;
3844 c = **s;
3845 **s = 0x00;
3846 if (strcasecmp (name, "tr") == 0)
3847 {
3848 cmpltr = 0;
3849 }
3850 else if (strcmp (name, "<>") == 0)
3851 {
3852 cmpltr = 1;
3853 }
3854 else if (strcmp (name, ">=") == 0)
3855 {
3856 cmpltr = 2;
3857 }
3858 else if (strcmp (name, ">") == 0)
3859 {
3860 cmpltr = 3;
3861 }
3862 else if (strcmp (name, ">>=") == 0)
3863 {
3864 cmpltr = 4;
3865 }
3866 else if (strcmp (name, ">>") == 0)
3867 {
3868 cmpltr = 5;
3869 }
3870 else if (strcasecmp (name, "nsv") == 0)
3871 {
3872 cmpltr = 6;
3873 }
3874 else if (strcasecmp (name, "ev") == 0)
3875 {
3876 cmpltr = 7;
3877 }
3878 /* If we have something like addb,n then there is no condition
3879 completer. */
3880 else if (strcasecmp (name, "n") == 0 && isbranch)
3881 {
3882 cmpltr = 0;
3883 }
3884 else
3885 {
3886 cmpltr = -1;
3887 }
3888 **s = c;
3889 }
3890
3891 /* Reset pointers if this was really a ,n for a branch instruction. */
3892 if (cmpltr == 0 && *name == 'n' && isbranch)
3893 *s = save_s;
3894
3895 return cmpltr;
3896 }
3897
3898 /* Parse a non-negated addition completer returning the number
3899 (for encoding in instrutions) of the given completer.
3900
3901 ISBRANCH specifies whether or not this is parsing a condition
3902 completer for a branch (vs a nullification completer for a
3903 computational instruction. */
3904
3905 static int
3906 pa_parse_nonneg_add_cmpltr (s, isbranch)
3907 char **s;
3908 int isbranch;
3909 {
3910 int cmpltr;
3911 char *name = *s + 1;
3912 char c;
3913 char *save_s = *s;
3914
3915 cmpltr = 0;
3916 if (**s == ',')
3917 {
3918 *s += 1;
3919 while (**s != ',' && **s != ' ' && **s != '\t')
3920 *s += 1;
3921 c = **s;
3922 **s = 0x00;
3923 if (strcmp (name, "=") == 0)
3924 {
3925 cmpltr = 1;
3926 }
3927 else if (strcmp (name, "<") == 0)
3928 {
3929 cmpltr = 2;
3930 }
3931 else if (strcmp (name, "<=") == 0)
3932 {
3933 cmpltr = 3;
3934 }
3935 else if (strcasecmp (name, "nuv") == 0)
3936 {
3937 cmpltr = 4;
3938 }
3939 else if (strcasecmp (name, "znv") == 0)
3940 {
3941 cmpltr = 5;
3942 }
3943 else if (strcasecmp (name, "sv") == 0)
3944 {
3945 cmpltr = 6;
3946 }
3947 else if (strcasecmp (name, "od") == 0)
3948 {
3949 cmpltr = 7;
3950 }
3951 /* If we have something like addb,n then there is no condition
3952 completer. */
3953 else if (strcasecmp (name, "n") == 0 && isbranch)
3954 {
3955 cmpltr = 0;
3956 }
3957 else
3958 {
3959 cmpltr = -1;
3960 }
3961 **s = c;
3962 }
3963
3964 /* Reset pointers if this was really a ,n for a branch instruction. */
3965 if (cmpltr == 0 && *name == 'n' && isbranch)
3966 *s = save_s;
3967
3968 return cmpltr;
3969 }
3970
3971 /* Parse a negated addition completer returning the number
3972 (for encoding in instrutions) of the given completer.
3973
3974 ISBRANCH specifies whether or not this is parsing a condition
3975 completer for a branch (vs a nullification completer for a
3976 computational instruction. */
3977
3978 static int
3979 pa_parse_neg_add_cmpltr (s, isbranch)
3980 char **s;
3981 int isbranch;
3982 {
3983 int cmpltr;
3984 char *name = *s + 1;
3985 char c;
3986 char *save_s = *s;
3987
3988 cmpltr = 0;
3989 if (**s == ',')
3990 {
3991 *s += 1;
3992 while (**s != ',' && **s != ' ' && **s != '\t')
3993 *s += 1;
3994 c = **s;
3995 **s = 0x00;
3996 if (strcasecmp (name, "tr") == 0)
3997 {
3998 cmpltr = 0;
3999 }
4000 else if (strcmp (name, "<>") == 0)
4001 {
4002 cmpltr = 1;
4003 }
4004 else if (strcmp (name, ">=") == 0)
4005 {
4006 cmpltr = 2;
4007 }
4008 else if (strcmp (name, ">") == 0)
4009 {
4010 cmpltr = 3;
4011 }
4012 else if (strcmp (name, "uv") == 0)
4013 {
4014 cmpltr = 4;
4015 }
4016 else if (strcmp (name, "vnz") == 0)
4017 {
4018 cmpltr = 5;
4019 }
4020 else if (strcasecmp (name, "nsv") == 0)
4021 {
4022 cmpltr = 6;
4023 }
4024 else if (strcasecmp (name, "ev") == 0)
4025 {
4026 cmpltr = 7;
4027 }
4028 /* If we have something like addb,n then there is no condition
4029 completer. */
4030 else if (strcasecmp (name, "n") == 0 && isbranch)
4031 {
4032 cmpltr = 0;
4033 }
4034 else
4035 {
4036 cmpltr = -1;
4037 }
4038 **s = c;
4039 }
4040
4041 /* Reset pointers if this was really a ,n for a branch instruction. */
4042 if (cmpltr == 0 && *name == 'n' && isbranch)
4043 *s = save_s;
4044
4045 return cmpltr;
4046 }
4047
4048 /* Handle a .BLOCK type pseudo-op. */
4049
4050 static void
4051 pa_block (z)
4052 int z;
4053 {
4054 char *p;
4055 long int temp_fill;
4056 unsigned int temp_size;
4057 int i;
4058
4059 temp_size = get_absolute_expression ();
4060
4061 /* Always fill with zeros, that's what the HP assembler does. */
4062 temp_fill = 0;
4063
4064 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
4065 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4066 bzero (p, temp_size);
4067
4068 /* Convert 2 bytes at a time. */
4069
4070 for (i = 0; i < temp_size; i += 2)
4071 {
4072 md_number_to_chars (p + i,
4073 (valueT) temp_fill,
4074 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4075 }
4076
4077 pa_undefine_label ();
4078 demand_empty_rest_of_line ();
4079 return;
4080 }
4081
4082 /* Handle a .CALL pseudo-op. This involves storing away information
4083 about where arguments are to be found so the linker can detect
4084 (and correct) argument location mismatches between caller and callee. */
4085
4086 static void
4087 pa_call (unused)
4088 int unused;
4089 {
4090 pa_call_args (&last_call_desc);
4091 demand_empty_rest_of_line ();
4092 return;
4093 }
4094
4095 /* Do the dirty work of building a call descriptor which describes
4096 where the caller placed arguments to a function call. */
4097
4098 static void
4099 pa_call_args (call_desc)
4100 struct call_desc *call_desc;
4101 {
4102 char *name, c, *p;
4103 unsigned int temp, arg_reloc;
4104
4105 while (!is_end_of_statement ())
4106 {
4107 name = input_line_pointer;
4108 c = get_symbol_end ();
4109 /* Process a source argument. */
4110 if ((strncasecmp (name, "argw", 4) == 0))
4111 {
4112 temp = atoi (name + 4);
4113 p = input_line_pointer;
4114 *p = c;
4115 input_line_pointer++;
4116 name = input_line_pointer;
4117 c = get_symbol_end ();
4118 arg_reloc = pa_build_arg_reloc (name);
4119 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4120 }
4121 /* Process a return value. */
4122 else if ((strncasecmp (name, "rtnval", 6) == 0))
4123 {
4124 p = input_line_pointer;
4125 *p = c;
4126 input_line_pointer++;
4127 name = input_line_pointer;
4128 c = get_symbol_end ();
4129 arg_reloc = pa_build_arg_reloc (name);
4130 call_desc->arg_reloc |= (arg_reloc & 0x3);
4131 }
4132 else
4133 {
4134 as_bad ("Invalid .CALL argument: %s", name);
4135 }
4136 p = input_line_pointer;
4137 *p = c;
4138 if (!is_end_of_statement ())
4139 input_line_pointer++;
4140 }
4141 }
4142
4143 /* Return TRUE if FRAG1 and FRAG2 are the same. */
4144
4145 static int
4146 is_same_frag (frag1, frag2)
4147 fragS *frag1;
4148 fragS *frag2;
4149 {
4150
4151 if (frag1 == NULL)
4152 return (FALSE);
4153 else if (frag2 == NULL)
4154 return (FALSE);
4155 else if (frag1 == frag2)
4156 return (TRUE);
4157 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4158 return (is_same_frag (frag1, frag2->fr_next));
4159 else
4160 return (FALSE);
4161 }
4162
4163 #ifdef OBJ_ELF
4164 /* Build an entry in the UNWIND subspace from the given function
4165 attributes in CALL_INFO. This is not needed for SOM as using
4166 R_ENTRY and R_EXIT relocations allow the linker to handle building
4167 of the unwind spaces. */
4168
4169 static void
4170 pa_build_unwind_subspace (call_info)
4171 struct call_info *call_info;
4172 {
4173 char *unwind;
4174 asection *seg, *save_seg;
4175 subsegT subseg, save_subseg;
4176 int i;
4177 char c, *p;
4178
4179 /* Get into the right seg/subseg. This may involve creating
4180 the seg the first time through. Make sure to have the
4181 old seg/subseg so that we can reset things when we are done. */
4182 subseg = SUBSEG_UNWIND;
4183 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4184 if (seg == ASEC_NULL)
4185 {
4186 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4187 bfd_set_section_flags (stdoutput, seg,
4188 SEC_READONLY | SEC_HAS_CONTENTS
4189 | SEC_LOAD | SEC_RELOC);
4190 }
4191
4192 save_seg = now_seg;
4193 save_subseg = now_subseg;
4194 subseg_set (seg, subseg);
4195
4196
4197 /* Get some space to hold relocation information for the unwind
4198 descriptor. */
4199 p = frag_more (4);
4200 call_info->start_offset_frag = frag_now;
4201 call_info->start_frag_where = p - frag_now->fr_literal;
4202
4203 /* Relocation info. for start offset of the function. */
4204 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4205 call_info->start_symbol, (offsetT) 0,
4206 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4207 (char *) 0);
4208
4209 /* We need to search for the first relocation involving the start_symbol of
4210 this call_info descriptor. */
4211 {
4212 fixS *fixP;
4213
4214 call_info->start_fix = seg_info (now_seg)->fix_root;
4215 for (fixP = call_info->start_fix; fixP; fixP = fixP->fx_next)
4216 {
4217 if (fixP->fx_addsy == call_info->start_symbol
4218 || fixP->fx_subsy == call_info->start_symbol)
4219 {
4220 call_info->start_fix = fixP;
4221 break;
4222 }
4223 }
4224 }
4225
4226 p = frag_more (4);
4227 call_info->end_offset_frag = frag_now;
4228 call_info->end_frag_where = p - frag_now->fr_literal;
4229
4230 /* Relocation info. for end offset of the function. */
4231 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4232 call_info->end_symbol, (offsetT) 0,
4233 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4234 (char *) 0);
4235
4236 /* We need to search for the first relocation involving the end_symbol of
4237 this call_info descriptor. */
4238 {
4239 fixS *fixP;
4240
4241 call_info->end_fix = seg_info (now_seg)->fix_root; /* the default */
4242 for (fixP = call_info->end_fix; fixP; fixP = fixP->fx_next)
4243 {
4244 if (fixP->fx_addsy == call_info->end_symbol
4245 || fixP->fx_subsy == call_info->end_symbol)
4246 {
4247 call_info->end_fix = fixP;
4248 break;
4249 }
4250 }
4251 }
4252
4253 /* Dump it. */
4254 unwind = (char *) &call_info->ci_unwind;
4255 for (i = 8; i < sizeof (struct unwind_table); i++)
4256 {
4257 c = *(unwind + i);
4258 {
4259 FRAG_APPEND_1_CHAR (c);
4260 }
4261 }
4262
4263 /* Return back to the original segment/subsegment. */
4264 subseg_set (save_seg, save_subseg);
4265 }
4266 #endif
4267
4268 /* Process a .CALLINFO pseudo-op. This information is used later
4269 to build unwind descriptors and maybe one day to support
4270 .ENTER and .LEAVE. */
4271
4272 static void
4273 pa_callinfo (unused)
4274 int unused;
4275 {
4276 char *name, c, *p;
4277 int temp;
4278
4279 /* .CALLINFO must appear within a procedure definition. */
4280 if (!within_procedure)
4281 as_bad (".callinfo is not within a procedure definition");
4282
4283 /* Mark the fact that we found the .CALLINFO for the
4284 current procedure. */
4285 callinfo_found = TRUE;
4286
4287 /* Iterate over the .CALLINFO arguments. */
4288 while (!is_end_of_statement ())
4289 {
4290 name = input_line_pointer;
4291 c = get_symbol_end ();
4292 /* Frame size specification. */
4293 if ((strncasecmp (name, "frame", 5) == 0))
4294 {
4295 p = input_line_pointer;
4296 *p = c;
4297 input_line_pointer++;
4298 temp = get_absolute_expression ();
4299 if ((temp & 0x3) != 0)
4300 {
4301 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4302 temp = 0;
4303 }
4304
4305 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
4306 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4307
4308 }
4309 /* Entry register (GR, GR and SR) specifications. */
4310 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4311 {
4312 p = input_line_pointer;
4313 *p = c;
4314 input_line_pointer++;
4315 temp = get_absolute_expression ();
4316 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4317 even though %r19 is caller saved. I think this is a bug in
4318 the HP assembler, and we are not going to emulate it. */
4319 if (temp < 3 || temp > 18)
4320 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4321 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
4322 }
4323 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4324 {
4325 p = input_line_pointer;
4326 *p = c;
4327 input_line_pointer++;
4328 temp = get_absolute_expression ();
4329 /* Similarly the HP assembler takes 31 as the high bound even
4330 though %fr21 is the last callee saved floating point register. */
4331 if (temp < 12 || temp > 21)
4332 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4333 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
4334 }
4335 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4336 {
4337 p = input_line_pointer;
4338 *p = c;
4339 input_line_pointer++;
4340 temp = get_absolute_expression ();
4341 if (temp != 3)
4342 as_bad ("Value for ENTRY_SR must be 3\n");
4343 last_call_info->entry_sr = temp - 2;
4344 }
4345 /* Note whether or not this function performs any calls. */
4346 else if ((strncasecmp (name, "calls", 5) == 0) ||
4347 (strncasecmp (name, "caller", 6) == 0))
4348 {
4349 p = input_line_pointer;
4350 *p = c;
4351 last_call_info->makes_calls = 1;
4352 }
4353 else if ((strncasecmp (name, "no_calls", 8) == 0))
4354 {
4355 p = input_line_pointer;
4356 *p = c;
4357 last_call_info->makes_calls = 0;
4358 }
4359 /* Should RP be saved into the stack. */
4360 else if ((strncasecmp (name, "save_rp", 7) == 0))
4361 {
4362 p = input_line_pointer;
4363 *p = c;
4364 last_call_info->ci_unwind.descriptor.save_rp = 1;
4365 }
4366 /* Likewise for SP. */
4367 else if ((strncasecmp (name, "save_sp", 7) == 0))
4368 {
4369 p = input_line_pointer;
4370 *p = c;
4371 last_call_info->ci_unwind.descriptor.save_sp = 1;
4372 }
4373 /* Is this an unwindable procedure. If so mark it so
4374 in the unwind descriptor. */
4375 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4376 {
4377 p = input_line_pointer;
4378 *p = c;
4379 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4380 }
4381 /* Is this an interrupt routine. If so mark it in the
4382 unwind descriptor. */
4383 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4384 {
4385 p = input_line_pointer;
4386 *p = c;
4387 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
4388 }
4389 else
4390 {
4391 as_bad ("Invalid .CALLINFO argument: %s", name);
4392 }
4393 if (!is_end_of_statement ())
4394 input_line_pointer++;
4395 }
4396
4397 demand_empty_rest_of_line ();
4398 return;
4399 }
4400
4401 /* Switch into the code subspace. */
4402
4403 static void
4404 pa_code (unused)
4405 int unused;
4406 {
4407 sd_chain_struct *sdchain;
4408
4409 /* First time through it might be necessary to create the
4410 $TEXT$ space. */
4411 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4412 {
4413 sdchain = create_new_space (pa_def_spaces[0].name,
4414 pa_def_spaces[0].spnum,
4415 pa_def_spaces[0].loadable,
4416 pa_def_spaces[0].defined,
4417 pa_def_spaces[0].private,
4418 pa_def_spaces[0].sort,
4419 pa_def_spaces[0].segment, 0);
4420 }
4421
4422 SPACE_DEFINED (sdchain) = 1;
4423 subseg_set (text_section, SUBSEG_CODE);
4424 demand_empty_rest_of_line ();
4425 return;
4426 }
4427
4428 /* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4429 the .comm pseudo-op has the following symtax:
4430
4431 <label> .comm <length>
4432
4433 where <label> is optional and is a symbol whose address will be the start of
4434 a block of memory <length> bytes long. <length> must be an absolute
4435 expression. <length> bytes will be allocated in the current space
4436 and subspace. */
4437
4438 static void
4439 pa_comm (unused)
4440 int unused;
4441 {
4442 unsigned int size;
4443 symbolS *symbol;
4444 label_symbol_struct *label_symbol = pa_get_label ();
4445
4446 if (label_symbol)
4447 symbol = label_symbol->lss_label;
4448 else
4449 symbol = NULL;
4450
4451 SKIP_WHITESPACE ();
4452 size = get_absolute_expression ();
4453
4454 if (symbol)
4455 {
4456 /* It is incorrect to check S_IS_DEFINED at this point as
4457 the symbol will *always* be defined. FIXME. How to
4458 correctly determine when this label really as been
4459 defined before. */
4460 if (S_GET_VALUE (symbol))
4461 {
4462 if (S_GET_VALUE (symbol) != size)
4463 {
4464 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4465 S_GET_NAME (symbol), S_GET_VALUE (symbol));
4466 return;
4467 }
4468 }
4469 else
4470 {
4471 S_SET_VALUE (symbol, size);
4472 S_SET_SEGMENT (symbol, &bfd_und_section);
4473 S_SET_EXTERNAL (symbol);
4474 }
4475 }
4476 demand_empty_rest_of_line ();
4477 }
4478
4479 /* Process a .COPYRIGHT pseudo-op. */
4480
4481 static void
4482 pa_copyright (unused)
4483 int unused;
4484 {
4485 char *name;
4486 char c;
4487
4488 SKIP_WHITESPACE ();
4489 if (*input_line_pointer == '\"')
4490 {
4491 ++input_line_pointer;
4492 name = input_line_pointer;
4493 while ((c = next_char_of_string ()) >= 0)
4494 ;
4495 c = *input_line_pointer;
4496 *input_line_pointer = '\0';
4497 *(input_line_pointer - 1) = '\0';
4498 {
4499 /* FIXME. Not supported */
4500 abort ();
4501 }
4502 *input_line_pointer = c;
4503 }
4504 else
4505 {
4506 as_bad ("Expected \"-ed string");
4507 }
4508 pa_undefine_label ();
4509 demand_empty_rest_of_line ();
4510 }
4511
4512 /* Process a .END pseudo-op. */
4513
4514 static void
4515 pa_end (unused)
4516 int unused;
4517 {
4518 demand_empty_rest_of_line ();
4519 return;
4520 }
4521
4522 /* Process a .ENTER pseudo-op. This is not supported. */
4523 static void
4524 pa_enter (unused)
4525 int unused;
4526 {
4527 abort();
4528 return;
4529 }
4530
4531 /* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4532 procesure. */
4533 static void
4534 pa_entry (unused)
4535 int unused;
4536 {
4537 if (!within_procedure)
4538 as_bad ("Misplaced .entry. Ignored.");
4539 else
4540 {
4541 if (!callinfo_found)
4542 as_bad ("Missing .callinfo.");
4543
4544 last_call_info->start_frag = frag_now;
4545 }
4546 demand_empty_rest_of_line ();
4547 within_entry_exit = TRUE;
4548
4549 /* Go back to the last symbol and turn on the BSF_FUNCTION flag.
4550 It will not be on if no .EXPORT pseudo-op exists (static function). */
4551 last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
4552
4553 #ifdef OBJ_SOM
4554 /* SOM defers building of unwind descriptors until the link phase.
4555 The assembler is responsible for creating an R_ENTRY relocation
4556 to mark the beginning of a region and hold the unwind bits, and
4557 for creating an R_EXIT relocation to mark the end of the region.
4558
4559 FIXME. ELF should be using the same conventions! The problem
4560 is an unwind requires too much relocation space. Hmmm. Maybe
4561 if we split the unwind bits up between the relocations which
4562 denote the entry and exit points. */
4563 {
4564 char *where = frag_more (0);
4565
4566 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4567 last_call_info->start_symbol, (offsetT) 0, NULL,
4568 0, R_HPPA_ENTRY, e_fsel, 0, 0,
4569 (char *)&last_call_info->ci_unwind.descriptor);
4570 }
4571 #endif
4572
4573 return;
4574 }
4575
4576 /* Handle a .EQU pseudo-op. */
4577
4578 static void
4579 pa_equ (reg)
4580 int reg;
4581 {
4582 label_symbol_struct *label_symbol = pa_get_label ();
4583 symbolS *symbol;
4584
4585 if (label_symbol)
4586 {
4587 symbol = label_symbol->lss_label;
4588 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4589 S_SET_SEGMENT (symbol, &bfd_abs_section);
4590 }
4591 else
4592 {
4593 if (reg)
4594 as_bad (".REG must use a label");
4595 else
4596 as_bad (".EQU must use a label");
4597 }
4598
4599 pa_undefine_label ();
4600 demand_empty_rest_of_line ();
4601 return;
4602 }
4603
4604 /* Helper function. Does processing for the end of a function. This
4605 usually involves creating some relocations or building special
4606 symbols to mark the end of the function. */
4607
4608 static void
4609 process_exit ()
4610 {
4611 char *where;
4612
4613 where = frag_more (0);
4614
4615 #ifdef OBJ_ELF
4616 /* ELF does not have EXIT relocations. All we do is create a
4617 temporary symbol marking the end of the function. */
4618 {
4619 char *name = (char *) xmalloc (strlen ("L$\001end_") +
4620 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
4621
4622 if (name)
4623 {
4624 symbolS *symbolP;
4625
4626 strcpy (name, "L$\001end_");
4627 strcat (name, S_GET_NAME (last_call_info->start_symbol));
4628
4629 symbolP = symbol_find (name);
4630 if (symbolP)
4631 as_warn ("Symbol '%s' already defined.", name);
4632 else
4633 {
4634 /* symbol value should be the offset of the
4635 last instruction of the function */
4636 symbolP = symbol_new (name, now_seg,
4637 (valueT) (obstack_next_free (&frags)
4638 - frag_now->fr_literal - 4),
4639 frag_now);
4640
4641 assert (symbolP);
4642 symbolP->bsym->flags = BSF_LOCAL;
4643 symbol_table_insert (symbolP);
4644 }
4645 if (symbolP)
4646 last_call_info->end_symbol = symbolP;
4647 else
4648 as_bad ("Symbol '%s' could not be created.", name);
4649
4650 }
4651 else
4652 as_bad ("No memory for symbol name.");
4653 }
4654
4655 /* Stuff away the location of the frag for the end of the function,
4656 and call pa_build_unwind_subspace to add an entry in the unwind
4657 table. */
4658 last_call_info->end_frag = frag_now;
4659 pa_build_unwind_subspace (last_call_info);
4660 #else
4661 /* SOM defers building of unwind descriptors until the link phase.
4662 The assembler is responsible for creating an R_ENTRY relocation
4663 to mark the beginning of a region and hold the unwind bits, and
4664 for creating an R_EXIT relocation to mark the end of the region.
4665
4666 FIXME. ELF should be using the same conventions! The problem
4667 is an unwind requires too much relocation space. Hmmm. Maybe
4668 if we split the unwind bits up between the relocations which
4669 denote the entry and exit points. */
4670 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4671 last_call_info->start_symbol, (offsetT) 0,
4672 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4673 #endif
4674
4675 exit_processing_complete = TRUE;
4676 }
4677
4678 /* Process a .EXIT pseudo-op. */
4679
4680 static void
4681 pa_exit (unused)
4682 int unused;
4683 {
4684 if (!within_procedure)
4685 as_bad (".EXIT must appear within a procedure");
4686 else
4687 {
4688 if (!callinfo_found)
4689 as_bad ("Missing .callinfo");
4690 else
4691 {
4692 if (!within_entry_exit)
4693 as_bad ("No .ENTRY for this .EXIT");
4694 else
4695 {
4696 within_entry_exit = FALSE;
4697 process_exit ();
4698 }
4699 }
4700 }
4701 demand_empty_rest_of_line ();
4702 return;
4703 }
4704
4705 /* Process a .EXPORT directive. This makes functions external
4706 and provides information such as argument relocation entries
4707 to callers. */
4708
4709 static void
4710 pa_export (unused)
4711 int unused;
4712 {
4713 char *name, c, *p;
4714 symbolS *symbol;
4715
4716 name = input_line_pointer;
4717 c = get_symbol_end ();
4718 /* Make sure the given symbol exists. */
4719 if ((symbol = symbol_find_or_make (name)) == NULL)
4720 {
4721 as_bad ("Cannot define export symbol: %s\n", name);
4722 p = input_line_pointer;
4723 *p = c;
4724 input_line_pointer++;
4725 }
4726 else
4727 {
4728 /* OK. Set the external bits and process argument relocations. */
4729 S_SET_EXTERNAL (symbol);
4730 p = input_line_pointer;
4731 *p = c;
4732 if (!is_end_of_statement ())
4733 {
4734 input_line_pointer++;
4735 pa_type_args (symbol, 1);
4736 #ifdef OBJ_ELF
4737 pa_build_symextn_section ();
4738 #endif
4739 }
4740 }
4741
4742 demand_empty_rest_of_line ();
4743 return;
4744 }
4745
4746 /* Helper function to process arguments to a .EXPORT pseudo-op. */
4747
4748 static void
4749 pa_type_args (symbolP, is_export)
4750 symbolS *symbolP;
4751 int is_export;
4752 {
4753 char *name, c, *p;
4754 unsigned int temp, arg_reloc;
4755 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
4756 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
4757
4758 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
4759
4760 {
4761 input_line_pointer += 8;
4762 symbolP->bsym->flags &= ~BSF_FUNCTION;
4763 S_SET_SEGMENT (symbolP, &bfd_abs_section);
4764 type = SYMBOL_TYPE_ABSOLUTE;
4765 }
4766 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
4767 {
4768 input_line_pointer += 4;
4769 if (is_export && (symbolP->bsym->flags & BSF_FUNCTION))
4770 {
4771 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4772 symbolP->bsym->flags |= BSF_FUNCTION;
4773 type = SYMBOL_TYPE_ENTRY;
4774 }
4775 else
4776 {
4777 symbolP->bsym->flags &= ~BSF_FUNCTION;
4778 type = SYMBOL_TYPE_CODE;
4779 }
4780 }
4781 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
4782 {
4783 input_line_pointer += 4;
4784 symbolP->bsym->flags &= ~BSF_FUNCTION;
4785 type = SYMBOL_TYPE_DATA;
4786 }
4787 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4788 {
4789 input_line_pointer += 5;
4790 symbolP->bsym->flags |= BSF_FUNCTION;
4791 type = SYMBOL_TYPE_ENTRY;
4792 }
4793 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4794 {
4795 input_line_pointer += 9;
4796 symbolP->bsym->flags |= BSF_FUNCTION;
4797 type = SYMBOL_TYPE_MILLICODE;
4798 }
4799 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4800 {
4801 input_line_pointer += 6;
4802 symbolP->bsym->flags &= ~BSF_FUNCTION;
4803 type = SYMBOL_TYPE_PLABEL;
4804 }
4805 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4806 {
4807 input_line_pointer += 8;
4808 symbolP->bsym->flags |= BSF_FUNCTION;
4809 type = SYMBOL_TYPE_PRI_PROG;
4810 }
4811 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4812 {
4813 input_line_pointer += 8;
4814 symbolP->bsym->flags |= BSF_FUNCTION;
4815 type = SYMBOL_TYPE_SEC_PROG;
4816 }
4817
4818 /* SOM requires much more information about symbol types
4819 than BFD understands. This is how we get this information
4820 to the SOM BFD backend. */
4821 #ifdef obj_set_symbol_type
4822 obj_set_symbol_type (symbolP->bsym, (int) type);
4823 #endif
4824
4825 /* Now that the type of the exported symbol has been handled,
4826 handle any argument relocation information. */
4827 while (!is_end_of_statement ())
4828 {
4829 if (*input_line_pointer == ',')
4830 input_line_pointer++;
4831 name = input_line_pointer;
4832 c = get_symbol_end ();
4833 /* Argument sources. */
4834 if ((strncasecmp (name, "argw", 4) == 0))
4835 {
4836 p = input_line_pointer;
4837 *p = c;
4838 input_line_pointer++;
4839 temp = atoi (name + 4);
4840 name = input_line_pointer;
4841 c = get_symbol_end ();
4842 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
4843 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4844 *input_line_pointer = c;
4845 }
4846 /* The return value. */
4847 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4848 {
4849 p = input_line_pointer;
4850 *p = c;
4851 input_line_pointer++;
4852 name = input_line_pointer;
4853 c = get_symbol_end ();
4854 arg_reloc = pa_build_arg_reloc (name);
4855 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
4856 *input_line_pointer = c;
4857 }
4858 /* Privelege level. */
4859 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4860 {
4861 p = input_line_pointer;
4862 *p = c;
4863 input_line_pointer++;
4864 temp = atoi (input_line_pointer);
4865 c = get_symbol_end ();
4866 *input_line_pointer = c;
4867 }
4868 else
4869 {
4870 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4871 p = input_line_pointer;
4872 *p = c;
4873 }
4874 if (!is_end_of_statement ())
4875 input_line_pointer++;
4876 }
4877 }
4878
4879 /* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4880 assembly file must either be defined in the assembly file, or
4881 explicitly IMPORTED from another. */
4882
4883 static void
4884 pa_import (unused)
4885 int unused;
4886 {
4887 char *name, c, *p;
4888 symbolS *symbol;
4889
4890 name = input_line_pointer;
4891 c = get_symbol_end ();
4892
4893 symbol = symbol_find_or_make (name);
4894 p = input_line_pointer;
4895 *p = c;
4896
4897 if (!is_end_of_statement ())
4898 {
4899 input_line_pointer++;
4900 pa_type_args (symbol, 0);
4901 }
4902 else
4903 {
4904 /* Sigh. To be compatable with the HP assembler and to help
4905 poorly written assembly code, we assign a type based on
4906 the the current segment. Note only BSF_FUNCTION really
4907 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
4908 if (now_seg == text_section)
4909 symbol->bsym->flags |= BSF_FUNCTION;
4910
4911 /* If the section is undefined, then the symbol is undefined
4912 Since this is an import, leave the section undefined. */
4913 S_SET_SEGMENT (symbol, &bfd_und_section);
4914 }
4915
4916 demand_empty_rest_of_line ();
4917 return;
4918 }
4919
4920 /* Handle a .LABEL pseudo-op. */
4921
4922 static void
4923 pa_label (unused)
4924 int unused;
4925 {
4926 char *name, c, *p;
4927
4928 name = input_line_pointer;
4929 c = get_symbol_end ();
4930
4931 if (strlen (name) > 0)
4932 {
4933 colon (name);
4934 p = input_line_pointer;
4935 *p = c;
4936 }
4937 else
4938 {
4939 as_warn ("Missing label name on .LABEL");
4940 }
4941
4942 if (!is_end_of_statement ())
4943 {
4944 as_warn ("extra .LABEL arguments ignored.");
4945 ignore_rest_of_line ();
4946 }
4947 demand_empty_rest_of_line ();
4948 return;
4949 }
4950
4951 /* Handle a .LEAVE pseudo-op. This is not supported yet. */
4952
4953 static void
4954 pa_leave (unused)
4955 int unused;
4956 {
4957 abort();
4958 }
4959
4960 /* Handle a .ORIGIN pseudo-op. */
4961
4962 static void
4963 pa_origin (unused)
4964 int unused;
4965 {
4966 s_org (0);
4967 pa_undefine_label ();
4968 return;
4969 }
4970
4971 /* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4972 is for static functions. FIXME. Should share more code with .EXPORT. */
4973
4974 static void
4975 pa_param (unused)
4976 int unused;
4977 {
4978 char *name, c, *p;
4979 symbolS *symbol;
4980
4981 name = input_line_pointer;
4982 c = get_symbol_end ();
4983
4984 if ((symbol = symbol_find_or_make (name)) == NULL)
4985 {
4986 as_bad ("Cannot define static symbol: %s\n", name);
4987 p = input_line_pointer;
4988 *p = c;
4989 input_line_pointer++;
4990 }
4991 else
4992 {
4993 S_CLEAR_EXTERNAL (symbol);
4994 p = input_line_pointer;
4995 *p = c;
4996 if (!is_end_of_statement ())
4997 {
4998 input_line_pointer++;
4999 pa_type_args (symbol, 0);
5000 }
5001 }
5002
5003 demand_empty_rest_of_line ();
5004 return;
5005 }
5006
5007 /* Handle a .PROC pseudo-op. It is used to mark the beginning
5008 of a procedure from a syntatical point of view. */
5009
5010 static void
5011 pa_proc (unused)
5012 int unused;
5013 {
5014 struct call_info *call_info;
5015
5016 if (within_procedure)
5017 as_fatal ("Nested procedures");
5018
5019 /* Reset global variables for new procedure. */
5020 callinfo_found = FALSE;
5021 within_procedure = TRUE;
5022 exit_processing_complete = FALSE;
5023
5024 /* Create another call_info structure. */
5025 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
5026
5027 if (!call_info)
5028 as_fatal ("Cannot allocate unwind descriptor\n");
5029
5030 bzero (call_info, sizeof (struct call_info));
5031
5032 call_info->ci_next = NULL;
5033
5034 if (call_info_root == NULL)
5035 {
5036 call_info_root = call_info;
5037 last_call_info = call_info;
5038 }
5039 else
5040 {
5041 last_call_info->ci_next = call_info;
5042 last_call_info = call_info;
5043 }
5044
5045 /* set up defaults on call_info structure */
5046
5047 call_info->ci_unwind.descriptor.cannot_unwind = 0;
5048 call_info->ci_unwind.descriptor.region_desc = 1;
5049 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
5050 call_info->entry_sr = ~0;
5051 call_info->makes_calls = 1;
5052
5053 /* If we got a .PROC pseudo-op, we know that the function is defined
5054 locally. Make sure it gets into the symbol table. */
5055 {
5056 label_symbol_struct *label_symbol = pa_get_label ();
5057
5058 if (label_symbol)
5059 {
5060 if (label_symbol->lss_label)
5061 {
5062 last_call_info->start_symbol = label_symbol->lss_label;
5063 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
5064 }
5065 else
5066 as_bad ("Missing function name for .PROC (corrupted label)");
5067 }
5068 else
5069 as_bad ("Missing function name for .PROC");
5070 }
5071
5072 demand_empty_rest_of_line ();
5073 return;
5074 }
5075
5076 /* Process the syntatical end of a procedure. Make sure all the
5077 appropriate pseudo-ops were found within the procedure. */
5078
5079 static void
5080 pa_procend (unused)
5081 int unused;
5082 {
5083
5084 if (!within_procedure)
5085 as_bad ("misplaced .procend");
5086
5087 if (!callinfo_found)
5088 as_bad ("Missing .callinfo for this procedure");
5089
5090 if (within_entry_exit)
5091 as_bad ("Missing .EXIT for a .ENTRY");
5092
5093 if (!exit_processing_complete)
5094 process_exit ();
5095
5096 within_procedure = FALSE;
5097 demand_empty_rest_of_line ();
5098 return;
5099 }
5100
5101 /* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
5102 then create a new space entry to hold the information specified
5103 by the parameters to the .SPACE directive. */
5104
5105 static sd_chain_struct *
5106 pa_parse_space_stmt (space_name, create_flag)
5107 char *space_name;
5108 int create_flag;
5109 {
5110 char *name, *ptemp, c;
5111 char loadable, defined, private, sort;
5112 int spnum;
5113 asection *seg = NULL;
5114 sd_chain_struct *space;
5115
5116 /* load default values */
5117 spnum = 0;
5118 sort = 0;
5119 loadable = TRUE;
5120 defined = TRUE;
5121 private = FALSE;
5122 if (strcasecmp (space_name, "$TEXT$") == 0)
5123 {
5124 seg = pa_def_spaces[0].segment;
5125 sort = pa_def_spaces[0].sort;
5126 }
5127 else if (strcasecmp (space_name, "$PRIVATE$") == 0)
5128 {
5129 seg = pa_def_spaces[1].segment;
5130 sort = pa_def_spaces[1].sort;
5131 }
5132
5133 if (!is_end_of_statement ())
5134 {
5135 print_errors = FALSE;
5136 ptemp = input_line_pointer + 1;
5137 /* First see if the space was specified as a number rather than
5138 as a name. According to the PA assembly manual the rest of
5139 the line should be ignored. */
5140 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5141 input_line_pointer = ptemp;
5142 else
5143 {
5144 while (!is_end_of_statement ())
5145 {
5146 input_line_pointer++;
5147 name = input_line_pointer;
5148 c = get_symbol_end ();
5149 if ((strncasecmp (name, "SPNUM", 5) == 0))
5150 {
5151 *input_line_pointer = c;
5152 input_line_pointer++;
5153 spnum = get_absolute_expression ();
5154 }
5155 else if ((strncasecmp (name, "SORT", 4) == 0))
5156 {
5157 *input_line_pointer = c;
5158 input_line_pointer++;
5159 sort = get_absolute_expression ();
5160 }
5161 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5162 {
5163 *input_line_pointer = c;
5164 loadable = FALSE;
5165 }
5166 else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
5167 {
5168 *input_line_pointer = c;
5169 defined = FALSE;
5170 }
5171 else if ((strncasecmp (name, "PRIVATE", 7) == 0))
5172 {
5173 *input_line_pointer = c;
5174 private = TRUE;
5175 }
5176 else
5177 {
5178 as_bad ("Invalid .SPACE argument");
5179 *input_line_pointer = c;
5180 if (! is_end_of_statement ())
5181 input_line_pointer++;
5182 }
5183 }
5184 }
5185 print_errors = TRUE;
5186 }
5187
5188 if (create_flag && seg == NULL)
5189 seg = subseg_new (space_name, 0);
5190
5191 /* If create_flag is nonzero, then create the new space with
5192 the attributes computed above. Else set the values in
5193 an already existing space -- this can only happen for
5194 the first occurence of a built-in space. */
5195 if (create_flag)
5196 space = create_new_space (space_name, spnum, loadable, defined,
5197 private, sort, seg, 1);
5198 else
5199 {
5200 space = is_defined_space (space_name);
5201 SPACE_SPNUM (space) = spnum;
5202 SPACE_LOADABLE (space) = loadable & 1;
5203 SPACE_DEFINED (space) = defined & 1;
5204 SPACE_USER_DEFINED (space) = 1;
5205 SPACE_PRIVATE (space) = private & 1;
5206 SPACE_SORT (space) = sort & 0xff;
5207 space->sd_seg = seg;
5208 }
5209
5210 #ifdef obj_set_section_attributes
5211 obj_set_section_attributes (seg, defined, private, sort, spnum);
5212 #endif
5213
5214 return space;
5215 }
5216
5217 /* Adjust the frag's alignment according to the alignment needs
5218 of the given subspace/subsegment. */
5219
5220 static void
5221 pa_align_subseg (seg, subseg)
5222 asection *seg;
5223 subsegT subseg;
5224 {
5225 ssd_chain_struct *now_subspace;
5226 int alignment;
5227 int shift = 0;
5228
5229 now_subspace = pa_subsegment_to_subspace (seg, subseg);
5230 if (now_subspace)
5231 {
5232 if (SUBSPACE_ALIGN (now_subspace) == 0)
5233 alignment = now_subspace->ssd_last_align;
5234 else if (now_subspace->ssd_last_align > SUBSPACE_ALIGN (now_subspace))
5235 alignment = now_subspace->ssd_last_align;
5236 else
5237 alignment = SUBSPACE_ALIGN (now_subspace);
5238
5239 while ((1 << shift) < alignment)
5240 shift++;
5241 }
5242 else
5243 shift = bfd_get_section_alignment (stdoutput, seg);
5244
5245 frag_align (shift, 0);
5246 }
5247
5248 /* Handle a .SPACE pseudo-op; this switches the current space to the
5249 given space, creating the new space if necessary. */
5250
5251 static void
5252 pa_space (unused)
5253 int unused;
5254 {
5255 char *name, c, *space_name, *save_s;
5256 int temp;
5257 sd_chain_struct *sd_chain;
5258
5259 if (within_procedure)
5260 {
5261 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5262 ignore_rest_of_line ();
5263 }
5264 else
5265 {
5266 /* Check for some of the predefined spaces. FIXME: most of the code
5267 below is repeated several times, can we extract the common parts
5268 and place them into a subroutine or something similar? */
5269 if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
5270 {
5271 input_line_pointer += 6;
5272 sd_chain = is_defined_space ("$TEXT$");
5273 if (sd_chain == NULL)
5274 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
5275 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5276 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5277
5278 current_space = sd_chain;
5279
5280 /* No need to align if we are already there. */
5281 if (now_seg != text_section)
5282 pa_align_subseg (now_seg, now_subseg);
5283
5284 subseg_set (text_section, sd_chain->sd_last_subseg);
5285
5286 current_subspace
5287 = pa_subsegment_to_subspace (text_section,
5288 sd_chain->sd_last_subseg);
5289 demand_empty_rest_of_line ();
5290 return;
5291 }
5292 if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
5293 {
5294 input_line_pointer += 9;
5295 sd_chain = is_defined_space ("$PRIVATE$");
5296 if (sd_chain == NULL)
5297 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
5298 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5299 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5300
5301 current_space = sd_chain;
5302
5303 /* No need to align if we are already there. */
5304 if (now_seg != data_section)
5305 pa_align_subseg (now_seg, now_subseg);
5306
5307 subseg_set (data_section, sd_chain->sd_last_subseg);
5308 current_subspace
5309 = pa_subsegment_to_subspace (data_section,
5310 sd_chain->sd_last_subseg);
5311 demand_empty_rest_of_line ();
5312 return;
5313 }
5314 if (!strncasecmp (input_line_pointer,
5315 GDB_DEBUG_SPACE_NAME,
5316 strlen (GDB_DEBUG_SPACE_NAME)))
5317 {
5318 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5319 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5320 if (sd_chain == NULL)
5321 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
5322 else if (SPACE_USER_DEFINED (sd_chain) == 0)
5323 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5324
5325 current_space = sd_chain;
5326
5327 {
5328 asection *gdb_section
5329 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5330
5331 /* No need to align if we are already there. */
5332 if (strcmp (segment_name (now_seg), GDB_DEBUG_SPACE_NAME) != 0)
5333 pa_align_subseg (now_seg, now_subseg);
5334
5335 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5336 current_subspace
5337 = pa_subsegment_to_subspace (gdb_section,
5338 sd_chain->sd_last_subseg);
5339 }
5340 demand_empty_rest_of_line ();
5341 return;
5342 }
5343
5344 /* It could be a space specified by number. */
5345 print_errors = 0;
5346 save_s = input_line_pointer;
5347 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
5348 {
5349 if (sd_chain = pa_find_space_by_number (temp))
5350 {
5351 current_space = sd_chain;
5352
5353 if (now_seg != sd_chain->sd_seg)
5354 pa_align_subseg (now_seg, now_subseg);
5355 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5356 current_subspace
5357 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5358 sd_chain->sd_last_subseg);
5359 demand_empty_rest_of_line ();
5360 return;
5361 }
5362 }
5363
5364 /* Not a number, attempt to create a new space. */
5365 print_errors = 1;
5366 input_line_pointer = save_s;
5367 name = input_line_pointer;
5368 c = get_symbol_end ();
5369 space_name = xmalloc (strlen (name) + 1);
5370 strcpy (space_name, name);
5371 *input_line_pointer = c;
5372
5373 sd_chain = pa_parse_space_stmt (space_name, 1);
5374 current_space = sd_chain;
5375
5376 if (now_seg != sd_chain->sd_seg)
5377 pa_align_subseg (now_seg, now_subseg);
5378 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
5379 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5380 sd_chain->sd_last_subseg);
5381 demand_empty_rest_of_line ();
5382 }
5383 return;
5384 }
5385
5386 /* Switch to a new space. (I think). FIXME. */
5387
5388 static void
5389 pa_spnum (unused)
5390 int unused;
5391 {
5392 char *name;
5393 char c;
5394 char *p;
5395 sd_chain_struct *space;
5396
5397 name = input_line_pointer;
5398 c = get_symbol_end ();
5399 space = is_defined_space (name);
5400 if (space)
5401 {
5402 p = frag_more (4);
5403 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5404 }
5405 else
5406 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5407
5408 *input_line_pointer = c;
5409 demand_empty_rest_of_line ();
5410 return;
5411 }
5412
5413 /* If VALUE is an exact power of two between zero and 2^31, then
5414 return log2 (VALUE). Else return -1. */
5415
5416 static int
5417 log2 (value)
5418 int value;
5419 {
5420 int shift = 0;
5421
5422 while ((1 << shift) != value && shift < 32)
5423 shift++;
5424
5425 if (shift >= 32)
5426 return -1;
5427 else
5428 return shift;
5429 }
5430
5431 /* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
5432 given subspace, creating the new subspace if necessary.
5433
5434 FIXME. Should mirror pa_space more closely, in particular how
5435 they're broken up into subroutines. */
5436
5437 static void
5438 pa_subspace (unused)
5439 int unused;
5440 {
5441 char *name, *ss_name, *alias, c;
5442 char loadable, code_only, common, dup_common, zero, sort;
5443 int i, access, space_index, alignment, quadrant, applicable, flags;
5444 sd_chain_struct *space;
5445 ssd_chain_struct *ssd;
5446 asection *section;
5447
5448 if (within_procedure)
5449 {
5450 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5451 ignore_rest_of_line ();
5452 }
5453 else
5454 {
5455 name = input_line_pointer;
5456 c = get_symbol_end ();
5457 ss_name = xmalloc (strlen (name) + 1);
5458 strcpy (ss_name, name);
5459 *input_line_pointer = c;
5460
5461 /* Load default values. */
5462 sort = 0;
5463 access = 0x7f;
5464 loadable = 1;
5465 common = 0;
5466 dup_common = 0;
5467 code_only = 0;
5468 zero = 0;
5469 space_index = ~0;
5470 alignment = 0;
5471 quadrant = 0;
5472 alias = NULL;
5473
5474 space = current_space;
5475 ssd = is_defined_subspace (ss_name);
5476 /* Allow user to override the builtin attributes of subspaces. But
5477 only allow the attributes to be changed once! */
5478 if (ssd && SUBSPACE_DEFINED (ssd))
5479 {
5480 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5481 if (!is_end_of_statement ())
5482 as_warn ("Parameters of an existing subspace can\'t be modified");
5483 demand_empty_rest_of_line ();
5484 return;
5485 }
5486 else
5487 {
5488 /* A new subspace. Load default values if it matches one of
5489 the builtin subspaces. */
5490 i = 0;
5491 while (pa_def_subspaces[i].name)
5492 {
5493 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5494 {
5495 loadable = pa_def_subspaces[i].loadable;
5496 common = pa_def_subspaces[i].common;
5497 dup_common = pa_def_subspaces[i].dup_common;
5498 code_only = pa_def_subspaces[i].code_only;
5499 zero = pa_def_subspaces[i].zero;
5500 space_index = pa_def_subspaces[i].space_index;
5501 alignment = pa_def_subspaces[i].alignment;
5502 quadrant = pa_def_subspaces[i].quadrant;
5503 access = pa_def_subspaces[i].access;
5504 sort = pa_def_subspaces[i].sort;
5505 if (USE_ALIASES && pa_def_subspaces[i].alias)
5506 alias = pa_def_subspaces[i].alias;
5507 break;
5508 }
5509 i++;
5510 }
5511 }
5512
5513 /* We should be working with a new subspace now. Fill in
5514 any information as specified by the user. */
5515 if (!is_end_of_statement ())
5516 {
5517 input_line_pointer++;
5518 while (!is_end_of_statement ())
5519 {
5520 name = input_line_pointer;
5521 c = get_symbol_end ();
5522 if ((strncasecmp (name, "QUAD", 4) == 0))
5523 {
5524 *input_line_pointer = c;
5525 input_line_pointer++;
5526 quadrant = get_absolute_expression ();
5527 }
5528 else if ((strncasecmp (name, "ALIGN", 5) == 0))
5529 {
5530 *input_line_pointer = c;
5531 input_line_pointer++;
5532 alignment = get_absolute_expression ();
5533 if (log2 (alignment) == -1)
5534 {
5535 as_bad ("Alignment must be a power of 2");
5536 alignment = 1;
5537 }
5538 }
5539 else if ((strncasecmp (name, "ACCESS", 6) == 0))
5540 {
5541 *input_line_pointer = c;
5542 input_line_pointer++;
5543 access = get_absolute_expression ();
5544 }
5545 else if ((strncasecmp (name, "SORT", 4) == 0))
5546 {
5547 *input_line_pointer = c;
5548 input_line_pointer++;
5549 sort = get_absolute_expression ();
5550 }
5551 else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
5552 {
5553 *input_line_pointer = c;
5554 code_only = 1;
5555 }
5556 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5557 {
5558 *input_line_pointer = c;
5559 loadable = 0;
5560 }
5561 else if ((strncasecmp (name, "COMMON", 6) == 0))
5562 {
5563 *input_line_pointer = c;
5564 common = 1;
5565 }
5566 else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
5567 {
5568 *input_line_pointer = c;
5569 dup_common = 1;
5570 }
5571 else if ((strncasecmp (name, "ZERO", 4) == 0))
5572 {
5573 *input_line_pointer = c;
5574 zero = 1;
5575 }
5576 else if ((strncasecmp (name, "FIRST", 5) == 0))
5577 as_bad ("FIRST not supported as a .SUBSPACE argument");
5578 else
5579 as_bad ("Invalid .SUBSPACE argument");
5580 if (!is_end_of_statement ())
5581 input_line_pointer++;
5582 }
5583 }
5584
5585 /* Compute a reasonable set of BFD flags based on the information
5586 in the .subspace directive. */
5587 applicable = bfd_applicable_section_flags (stdoutput);
5588 flags = 0;
5589 if (loadable)
5590 flags |= (SEC_ALLOC | SEC_LOAD);
5591 if (code_only)
5592 flags |= SEC_CODE;
5593 if (common || dup_common)
5594 flags |= SEC_IS_COMMON;
5595
5596 /* This is a zero-filled subspace (eg BSS). */
5597 if (zero)
5598 flags &= ~SEC_LOAD;
5599
5600 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5601 applicable &= flags;
5602
5603 /* If this is an existing subspace, then we want to use the
5604 segment already associated with the subspace.
5605
5606 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5607 lots of sections. It might be a problem in the PA ELF
5608 code, I do not know yet. For now avoid creating anything
5609 but the "standard" sections for ELF. */
5610 if (ssd)
5611 section = ssd->ssd_seg;
5612 else if (alias)
5613 section = subseg_new (alias, 0);
5614 else if (! alias && USE_ALIASES)
5615 {
5616 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5617 demand_empty_rest_of_line ();
5618 return;
5619 }
5620 else
5621 section = subseg_new (ss_name, 0);
5622
5623 /* Now set the flags. */
5624 bfd_set_section_flags (stdoutput, section, applicable);
5625
5626 /* Record any alignment request for this section. */
5627 record_alignment (section, log2 (alignment));
5628
5629 /* Set the starting offset for this section. */
5630 bfd_set_section_vma (stdoutput, section,
5631 pa_subspace_start (space, quadrant));
5632
5633 /* Now that all the flags are set, update an existing subspace,
5634 or create a new one. */
5635 if (ssd)
5636
5637 current_subspace = update_subspace (space, ss_name, loadable,
5638 code_only, common, dup_common,
5639 sort, zero, access, space_index,
5640 alignment, quadrant,
5641 section);
5642 else
5643 current_subspace = create_new_subspace (space, ss_name, loadable,
5644 code_only, common,
5645 dup_common, zero, sort,
5646 access, space_index,
5647 alignment, quadrant, section);
5648
5649 demand_empty_rest_of_line ();
5650 current_subspace->ssd_seg = section;
5651 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
5652 }
5653 SUBSPACE_DEFINED (current_subspace) = 1;
5654 return;
5655 }
5656
5657
5658 /* Create default space and subspace dictionaries. */
5659
5660 static void
5661 pa_spaces_begin ()
5662 {
5663 int i;
5664
5665 space_dict_root = NULL;
5666 space_dict_last = NULL;
5667
5668 i = 0;
5669 while (pa_def_spaces[i].name)
5670 {
5671 char *name;
5672
5673 /* Pick the right name to use for the new section. */
5674 if (pa_def_spaces[i].alias && USE_ALIASES)
5675 name = pa_def_spaces[i].alias;
5676 else
5677 name = pa_def_spaces[i].name;
5678
5679 pa_def_spaces[i].segment = subseg_new (name, 0);
5680 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5681 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
5682 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5683 pa_def_spaces[i].segment, 0);
5684 i++;
5685 }
5686
5687 i = 0;
5688 while (pa_def_subspaces[i].name)
5689 {
5690 char *name;
5691 int applicable, subsegment;
5692 asection *segment = NULL;
5693 sd_chain_struct *space;
5694
5695 /* Pick the right name for the new section and pick the right
5696 subsegment number. */
5697 if (pa_def_subspaces[i].alias && USE_ALIASES)
5698 {
5699 name = pa_def_subspaces[i].alias;
5700 subsegment = pa_def_subspaces[i].subsegment;
5701 }
5702 else
5703 {
5704 name = pa_def_subspaces[i].name;
5705 subsegment = 0;
5706 }
5707
5708 /* Create the new section. */
5709 segment = subseg_new (name, subsegment);
5710
5711
5712 /* For SOM we want to replace the standard .text, .data, and .bss
5713 sections with our own. */
5714 if (! strcmp (pa_def_subspaces[i].name, "$CODE$") && ! USE_ALIASES)
5715 {
5716 text_section = segment;
5717 applicable = bfd_applicable_section_flags (stdoutput);
5718 bfd_set_section_flags (stdoutput, text_section,
5719 applicable & (SEC_ALLOC | SEC_LOAD
5720 | SEC_RELOC | SEC_CODE
5721 | SEC_READONLY
5722 | SEC_HAS_CONTENTS));
5723 }
5724 else if (! strcmp (pa_def_subspaces[i].name, "$DATA$") && ! USE_ALIASES)
5725 {
5726 data_section = segment;
5727 applicable = bfd_applicable_section_flags (stdoutput);
5728 bfd_set_section_flags (stdoutput, data_section,
5729 applicable & (SEC_ALLOC | SEC_LOAD
5730 | SEC_RELOC
5731 | SEC_HAS_CONTENTS));
5732
5733
5734 }
5735 else if (! strcmp (pa_def_subspaces[i].name, "$BSS$") && ! USE_ALIASES)
5736 {
5737 bss_section = segment;
5738 applicable = bfd_applicable_section_flags (stdoutput);
5739 bfd_set_section_flags (stdoutput, bss_section,
5740 applicable & SEC_ALLOC);
5741 }
5742
5743 /* Find the space associated with this subspace. */
5744 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5745 def_space_index].segment);
5746 if (space == NULL)
5747 {
5748 as_fatal ("Internal error: Unable to find containing space for %s.",
5749 pa_def_subspaces[i].name);
5750 }
5751
5752 create_new_subspace (space, name,
5753 pa_def_subspaces[i].loadable,
5754 pa_def_subspaces[i].code_only,
5755 pa_def_subspaces[i].common,
5756 pa_def_subspaces[i].dup_common,
5757 pa_def_subspaces[i].zero,
5758 pa_def_subspaces[i].sort,
5759 pa_def_subspaces[i].access,
5760 pa_def_subspaces[i].space_index,
5761 pa_def_subspaces[i].alignment,
5762 pa_def_subspaces[i].quadrant,
5763 segment);
5764 i++;
5765 }
5766 }
5767
5768
5769
5770 /* Create a new space NAME, with the appropriate flags as defined
5771 by the given parameters.
5772
5773 Add the new space to the space dictionary chain in numerical
5774 order as defined by the SORT entries. */
5775
5776 static sd_chain_struct *
5777 create_new_space (name, spnum, loadable, defined, private,
5778 sort, seg, user_defined)
5779 char *name;
5780 int spnum;
5781 char loadable;
5782 char defined;
5783 char private;
5784 char sort;
5785 asection *seg;
5786 int user_defined;
5787 {
5788 sd_chain_struct *chain_entry;
5789
5790 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
5791 if (!chain_entry)
5792 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5793 name);
5794
5795 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5796 strcpy (SPACE_NAME (chain_entry), name);
5797 SPACE_NAME_INDEX (chain_entry) = 0;
5798 SPACE_LOADABLE (chain_entry) = loadable;
5799 SPACE_DEFINED (chain_entry) = defined;
5800 SPACE_USER_DEFINED (chain_entry) = user_defined;
5801 SPACE_PRIVATE (chain_entry) = private;
5802 SPACE_SPNUM (chain_entry) = spnum;
5803 SPACE_SORT (chain_entry) = sort;
5804
5805 chain_entry->sd_seg = seg;
5806 chain_entry->sd_last_subseg = -1;
5807 chain_entry->sd_next = NULL;
5808
5809 /* Find spot for the new space based on its sort key. */
5810 if (!space_dict_last)
5811 space_dict_last = chain_entry;
5812
5813 if (space_dict_root == NULL)
5814 space_dict_root = chain_entry;
5815 else
5816 {
5817 sd_chain_struct *chain_pointer;
5818 sd_chain_struct *prev_chain_pointer;
5819
5820 chain_pointer = space_dict_root;
5821 prev_chain_pointer = NULL;
5822
5823 while (chain_pointer)
5824 {
5825 if (SPACE_SORT (chain_pointer) <= SPACE_SORT (chain_entry))
5826 {
5827 prev_chain_pointer = chain_pointer;
5828 chain_pointer = chain_pointer->sd_next;
5829 }
5830 else
5831 break;
5832 }
5833
5834 /* At this point we've found the correct place to add the new
5835 entry. So add it and update the linked lists as appropriate. */
5836 if (prev_chain_pointer)
5837 {
5838 chain_entry->sd_next = chain_pointer;
5839 prev_chain_pointer->sd_next = chain_entry;
5840 }
5841 else
5842 {
5843 space_dict_root = chain_entry;
5844 chain_entry->sd_next = chain_pointer;
5845 }
5846
5847 if (chain_entry->sd_next == NULL)
5848 space_dict_last = chain_entry;
5849 }
5850
5851 /* This is here to catch predefined spaces which do not get
5852 modified by the user's input. Another call is found at
5853 the bottom of pa_parse_space_stmt to handle cases where
5854 the user modifies a predefined space. */
5855 #ifdef obj_set_section_attributes
5856 obj_set_section_attributes (seg, defined, private, sort, spnum);
5857 #endif
5858
5859 return chain_entry;
5860 }
5861
5862 /* Create a new subspace NAME, with the appropriate flags as defined
5863 by the given parameters.
5864
5865 Add the new subspace to the subspace dictionary chain in numerical
5866 order as defined by the SORT entries. */
5867
5868 static ssd_chain_struct *
5869 create_new_subspace (space, name, loadable, code_only, common,
5870 dup_common, is_zero, sort, access, space_index,
5871 alignment, quadrant, seg)
5872 sd_chain_struct *space;
5873 char *name;
5874 char loadable, code_only, common, dup_common, is_zero;
5875 char sort;
5876 int access;
5877 int space_index;
5878 int alignment;
5879 int quadrant;
5880 asection *seg;
5881 {
5882 ssd_chain_struct *chain_entry;
5883
5884 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
5885 if (!chain_entry)
5886 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5887
5888 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5889 strcpy (SUBSPACE_NAME (chain_entry), name);
5890
5891 SUBSPACE_ACCESS (chain_entry) = access;
5892 SUBSPACE_LOADABLE (chain_entry) = loadable;
5893 SUBSPACE_COMMON (chain_entry) = common;
5894 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5895 SUBSPACE_SORT (chain_entry) = sort;
5896 SUBSPACE_CODE_ONLY (chain_entry) = code_only;
5897 SUBSPACE_ALIGN (chain_entry) = alignment;
5898 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5899 SUBSPACE_SUBSPACE_START (chain_entry) = pa_subspace_start (space, quadrant);
5900 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5901 SUBSPACE_ZERO (chain_entry) = is_zero;
5902
5903 /* Initialize subspace_defined. When we hit a .subspace directive
5904 we'll set it to 1 which "locks-in" the subspace attributes. */
5905 SUBSPACE_DEFINED (chain_entry) = 0;
5906
5907 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
5908 chain_entry->ssd_seg = seg;
5909 chain_entry->ssd_last_align = 1;
5910 chain_entry->ssd_next = NULL;
5911
5912 /* Find spot for the new subspace based on its sort key. */
5913 if (space->sd_subspaces == NULL)
5914 space->sd_subspaces = chain_entry;
5915 else
5916 {
5917 ssd_chain_struct *chain_pointer;
5918 ssd_chain_struct *prev_chain_pointer;
5919
5920 chain_pointer = space->sd_subspaces;
5921 prev_chain_pointer = NULL;
5922
5923 while (chain_pointer)
5924 {
5925 if (SUBSPACE_SORT (chain_pointer) <= SUBSPACE_SORT (chain_entry))
5926 {
5927 prev_chain_pointer = chain_pointer;
5928 chain_pointer = chain_pointer->ssd_next;
5929 }
5930 else
5931 break;
5932
5933 }
5934
5935 /* Now we have somewhere to put the new entry. Insert it and update
5936 the links. */
5937 if (prev_chain_pointer)
5938 {
5939 chain_entry->ssd_next = chain_pointer;
5940 prev_chain_pointer->ssd_next = chain_entry;
5941 }
5942 else
5943 {
5944 space->sd_subspaces = chain_entry;
5945 chain_entry->ssd_next = chain_pointer;
5946 }
5947 }
5948
5949 #ifdef obj_set_subsection_attributes
5950 obj_set_subsection_attributes (seg, space->sd_seg, access,
5951 sort, quadrant);
5952 #endif
5953
5954 return chain_entry;
5955
5956 }
5957
5958 /* Update the information for the given subspace based upon the
5959 various arguments. Return the modified subspace chain entry. */
5960
5961 static ssd_chain_struct *
5962 update_subspace (space, name, loadable, code_only, common, dup_common, sort,
5963 zero, access, space_index, alignment, quadrant, section)
5964 sd_chain_struct *space;
5965 char *name;
5966 char loadable;
5967 char code_only;
5968 char common;
5969 char dup_common;
5970 char zero;
5971 char sort;
5972 int access;
5973 int space_index;
5974 int alignment;
5975 int quadrant;
5976 asection *section;
5977 {
5978 ssd_chain_struct *chain_entry;
5979
5980 if ((chain_entry = is_defined_subspace (name)))
5981 {
5982 SUBSPACE_ACCESS (chain_entry) = access;
5983 SUBSPACE_LOADABLE (chain_entry) = loadable;
5984 SUBSPACE_COMMON (chain_entry) = common;
5985 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5986 SUBSPACE_CODE_ONLY (chain_entry) = 1;
5987 SUBSPACE_SORT (chain_entry) = sort;
5988 SUBSPACE_ALIGN (chain_entry) = alignment;
5989 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5990 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5991 SUBSPACE_ZERO (chain_entry) = zero;
5992 }
5993 else
5994 chain_entry = NULL;
5995
5996 #ifdef obj_set_subsection_attributes
5997 obj_set_subsection_attributes (section, space->sd_seg, access,
5998 sort, quadrant);
5999 #endif
6000
6001 return chain_entry;
6002
6003 }
6004
6005 /* Return the space chain entry for the space with the name NAME or
6006 NULL if no such space exists. */
6007
6008 static sd_chain_struct *
6009 is_defined_space (name)
6010 char *name;
6011 {
6012 sd_chain_struct *chain_pointer;
6013
6014 for (chain_pointer = space_dict_root;
6015 chain_pointer;
6016 chain_pointer = chain_pointer->sd_next)
6017 {
6018 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
6019 return chain_pointer;
6020 }
6021
6022 /* No mapping from segment to space was found. Return NULL. */
6023 return NULL;
6024 }
6025
6026 /* Find and return the space associated with the given seg. If no mapping
6027 from the given seg to a space is found, then return NULL.
6028
6029 Unlike subspaces, the number of spaces is not expected to grow much,
6030 so a linear exhaustive search is OK here. */
6031
6032 static sd_chain_struct *
6033 pa_segment_to_space (seg)
6034 asection *seg;
6035 {
6036 sd_chain_struct *space_chain;
6037
6038 /* Walk through each space looking for the correct mapping. */
6039 for (space_chain = space_dict_root;
6040 space_chain;
6041 space_chain = space_chain->sd_next)
6042 {
6043 if (space_chain->sd_seg == seg)
6044 return space_chain;
6045 }
6046
6047 /* Mapping was not found. Return NULL. */
6048 return NULL;
6049 }
6050
6051 /* Return the space chain entry for the subspace with the name NAME or
6052 NULL if no such subspace exists.
6053
6054 Uses a linear search through all the spaces and subspaces, this may
6055 not be appropriate if we ever being placing each function in its
6056 own subspace. */
6057
6058 static ssd_chain_struct *
6059 is_defined_subspace (name)
6060 char *name;
6061 {
6062 sd_chain_struct*space_chain;
6063 ssd_chain_struct *subspace_chain;
6064
6065 /* Walk through each space. */
6066 for (space_chain = space_dict_root;
6067 space_chain;
6068 space_chain = space_chain->sd_next)
6069 {
6070 /* Walk through each subspace looking for a name which matches. */
6071 for (subspace_chain = space_chain->sd_subspaces;
6072 subspace_chain;
6073 subspace_chain = subspace_chain->ssd_next)
6074 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
6075 return subspace_chain;
6076 }
6077
6078 /* Subspace wasn't found. Return NULL. */
6079 return NULL;
6080 }
6081
6082 /* Find and return the subspace associated with the given seg. If no
6083 mapping from the given seg to a subspace is found, then return NULL.
6084
6085 If we ever put each procedure/function within its own subspace
6086 (to make life easier on the compiler and linker), then this will have
6087 to become more efficient. */
6088
6089 static ssd_chain_struct *
6090 pa_subsegment_to_subspace (seg, subseg)
6091 asection *seg;
6092 subsegT subseg;
6093 {
6094 sd_chain_struct *space_chain;
6095 ssd_chain_struct *subspace_chain;
6096
6097 /* Walk through each space. */
6098 for (space_chain = space_dict_root;
6099 space_chain;
6100 space_chain = space_chain->sd_next)
6101 {
6102 if (space_chain->sd_seg == seg)
6103 {
6104 /* Walk through each subspace within each space looking for
6105 the correct mapping. */
6106 for (subspace_chain = space_chain->sd_subspaces;
6107 subspace_chain;
6108 subspace_chain = subspace_chain->ssd_next)
6109 if (subspace_chain->ssd_subseg == (int) subseg)
6110 return subspace_chain;
6111 }
6112 }
6113
6114 /* No mapping from subsegment to subspace found. Return NULL. */
6115 return NULL;
6116 }
6117
6118 /* Given a number, try and find a space with the name number.
6119
6120 Return a pointer to a space dictionary chain entry for the space
6121 that was found or NULL on failure. */
6122
6123 static sd_chain_struct *
6124 pa_find_space_by_number (number)
6125 int number;
6126 {
6127 sd_chain_struct *space_chain;
6128
6129 for (space_chain = space_dict_root;
6130 space_chain;
6131 space_chain = space_chain->sd_next)
6132 {
6133 if (SPACE_SPNUM (space_chain) == number)
6134 return space_chain;
6135 }
6136
6137 /* No appropriate space found. Return NULL. */
6138 return NULL;
6139 }
6140
6141 /* Return the starting address for the given subspace. If the starting
6142 address is unknown then return zero. */
6143
6144 static unsigned int
6145 pa_subspace_start (space, quadrant)
6146 sd_chain_struct *space;
6147 int quadrant;
6148 {
6149 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
6150 is not correct for the PA OSF1 port. */
6151 if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
6152 return 0x40000000;
6153 else if (space->sd_seg == data_section && quadrant == 1)
6154 return 0x40000000;
6155 else
6156 return 0;
6157 }
6158
6159 /* FIXME. Needs documentation. */
6160 static int
6161 pa_next_subseg (space)
6162 sd_chain_struct *space;
6163 {
6164
6165 space->sd_last_subseg++;
6166 return space->sd_last_subseg;
6167 }
6168
6169 /* Helper function for pa_stringer. Used to find the end of
6170 a string. */
6171
6172 static unsigned int
6173 pa_stringer_aux (s)
6174 char *s;
6175 {
6176 unsigned int c = *s & CHAR_MASK;
6177 switch (c)
6178 {
6179 case '\"':
6180 c = NOT_A_CHAR;
6181 break;
6182 default:
6183 break;
6184 }
6185 return c;
6186 }
6187
6188 /* Handle a .STRING type pseudo-op. */
6189
6190 static void
6191 pa_stringer (append_zero)
6192 int append_zero;
6193 {
6194 char *s, num_buf[4];
6195 unsigned int c;
6196 int i;
6197
6198 /* Preprocess the string to handle PA-specific escape sequences.
6199 For example, \xDD where DD is a hexidecimal number should be
6200 changed to \OOO where OOO is an octal number. */
6201
6202 /* Skip the opening quote. */
6203 s = input_line_pointer + 1;
6204
6205 while (is_a_char (c = pa_stringer_aux (s++)))
6206 {
6207 if (c == '\\')
6208 {
6209 c = *s;
6210 switch (c)
6211 {
6212 /* Handle \x<num>. */
6213 case 'x':
6214 {
6215 unsigned int number;
6216 int num_digit;
6217 char dg;
6218 char *s_start = s;
6219
6220 /* Get pas the 'x'. */
6221 s++;
6222 for (num_digit = 0, number = 0, dg = *s;
6223 num_digit < 2
6224 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6225 || (dg >= 'A' && dg <= 'F'));
6226 num_digit++)
6227 {
6228 if (isdigit (dg))
6229 number = number * 16 + dg - '0';
6230 else if (dg >= 'a' && dg <= 'f')
6231 number = number * 16 + dg - 'a' + 10;
6232 else
6233 number = number * 16 + dg - 'A' + 10;
6234
6235 s++;
6236 dg = *s;
6237 }
6238 if (num_digit > 0)
6239 {
6240 switch (num_digit)
6241 {
6242 case 1:
6243 sprintf (num_buf, "%02o", number);
6244 break;
6245 case 2:
6246 sprintf (num_buf, "%03o", number);
6247 break;
6248 }
6249 for (i = 0; i <= num_digit; i++)
6250 s_start[i] = num_buf[i];
6251 }
6252 break;
6253 }
6254 /* This might be a "\"", skip over the escaped char. */
6255 default:
6256 s++;
6257 break;
6258 }
6259 }
6260 }
6261 stringer (append_zero);
6262 pa_undefine_label ();
6263 }
6264
6265 /* Handle a .VERSION pseudo-op. */
6266
6267 static void
6268 pa_version (unused)
6269 int unused;
6270 {
6271 obj_version (0);
6272 pa_undefine_label ();
6273 }
6274
6275 /* Just like a normal cons, but when finished we have to undefine
6276 the latest space label. */
6277
6278 static void
6279 pa_cons (nbytes)
6280 int nbytes;
6281 {
6282 cons (nbytes);
6283 pa_undefine_label ();
6284 }
6285
6286 /* Switch to the data space. As usual delete our label. */
6287
6288 static void
6289 pa_data (unused)
6290 int unused;
6291 {
6292 s_data (0);
6293 pa_undefine_label ();
6294 }
6295
6296 /* FIXME. What's the purpose of this pseudo-op? */
6297
6298 static void
6299 pa_desc (unused)
6300 int unused;
6301 {
6302 pa_undefine_label ();
6303 }
6304
6305 /* Like float_cons, but we need to undefine our label. */
6306
6307 static void
6308 pa_float_cons (float_type)
6309 int float_type;
6310 {
6311 float_cons (float_type);
6312 pa_undefine_label ();
6313 }
6314
6315 /* Like s_fill, but delete our label when finished. */
6316
6317 static void
6318 pa_fill (unused)
6319 int unused;
6320 {
6321 s_fill (0);
6322 pa_undefine_label ();
6323 }
6324
6325 /* Like lcomm, but delete our label when finished. */
6326
6327 static void
6328 pa_lcomm (needs_align)
6329 int needs_align;
6330 {
6331 s_lcomm (needs_align);
6332 pa_undefine_label ();
6333 }
6334
6335 /* Like lsym, but delete our label when finished. */
6336
6337 static void
6338 pa_lsym (unused)
6339 int unused;
6340 {
6341 s_lsym (0);
6342 pa_undefine_label ();
6343 }
6344
6345 /* Switch to the text space. Like s_text, but delete our
6346 label when finished. */
6347 static void
6348 pa_text (unused)
6349 int unused;
6350 {
6351 s_text (0);
6352 pa_undefine_label ();
6353 }
6354
6355 /* On the PA relocations which involve function symbols must not be
6356 adjusted. This so that the linker can know when/how to create argument
6357 relocation stubs for indirect calls and calls to static functions.
6358
6359 FIXME. Also reject R_HPPA relocations which are 32 bits
6360 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6361 needs to generate relocations to push the addend and symbol value
6362 onto the stack, add them, then pop the value off the stack and
6363 use it in a relocation -- yuk. */
6364
6365 int
6366 hppa_fix_adjustable (fixp)
6367 fixS *fixp;
6368 {
6369 struct hppa_fix_struct *hppa_fix;
6370
6371 hppa_fix = fixp->tc_fix_data;
6372
6373 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6374 return 0;
6375
6376 if (fixp->fx_addsy == 0
6377 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6378 return 1;
6379
6380 return 0;
6381 }
6382
6383 /* Now for some ELF specific code. FIXME. */
6384 #ifdef OBJ_ELF
6385 static symext_chainS *symext_rootP;
6386 static symext_chainS *symext_lastP;
6387
6388 /* Do any symbol processing requested by the target-cpu or target-format. */
6389
6390 void
6391 hppa_tc_symbol (abfd, symbolP, sym_idx)
6392 bfd *abfd;
6393 elf_symbol_type *symbolP;
6394 int sym_idx;
6395 {
6396 symext_chainS *symextP;
6397 unsigned int arg_reloc;
6398
6399 /* Only functions can have argument relocations. */
6400 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6401 return;
6402
6403 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6404
6405 /* If there are no argument relocation bits, then no relocation is
6406 necessary. Do not add this to the symextn section. */
6407 if (arg_reloc == 0)
6408 return;
6409
6410 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6411
6412 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6413 symextP[0].next = &symextP[1];
6414
6415 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6416 symextP[1].next = NULL;
6417
6418 if (symext_rootP == NULL)
6419 {
6420 symext_rootP = &symextP[0];
6421 symext_lastP = &symextP[1];
6422 }
6423 else
6424 {
6425 symext_lastP->next = &symextP[0];
6426 symext_lastP = &symextP[1];
6427 }
6428 }
6429
6430 /* Make sections needed by the target cpu and/or target format. */
6431 void
6432 hppa_tc_make_sections (abfd)
6433 bfd *abfd;
6434 {
6435 symext_chainS *symextP;
6436 int size, n;
6437 asection *symextn_sec;
6438 segT save_seg = now_seg;
6439 subsegT save_subseg = now_subseg;
6440
6441 /* Build the symbol extension section. */
6442 hppa_tc_make_symextn_section ();
6443
6444 /* Force some calculation to occur. */
6445 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
6446
6447 hppa_elf_stub_finish (abfd);
6448
6449 /* If no symbols for the symbol extension section, then stop now. */
6450 if (symext_rootP == NULL)
6451 return;
6452
6453 /* Count the number of symbols for the symbol extension section. */
6454 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6455 ;
6456
6457 size = sizeof (symext_entryS) * n;
6458
6459 /* Switch to the symbol extension section. */
6460 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6461
6462 frag_wane (frag_now);
6463 frag_new (0);
6464
6465 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6466 {
6467 char *ptr;
6468 int *symtab_map = elf_sym_extra (abfd);
6469 int idx;
6470
6471 /* First, patch the symbol extension record to reflect the true
6472 symbol table index. */
6473
6474 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
6475 {
6476 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
6477 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
6478 symtab_map[idx]);
6479 }
6480
6481 ptr = frag_more (sizeof (symextP->entry));
6482 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
6483 }
6484
6485 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6486 frag_wane (frag_now);
6487
6488 /* Switch back to the original segment. */
6489 subseg_set (save_seg, save_subseg);
6490
6491 return;
6492 }
6493
6494 /* Make the symbol extension section. */
6495
6496 static void
6497 hppa_tc_make_symextn_section ()
6498 {
6499 if (symext_rootP)
6500 {
6501 symext_chainS *symextP;
6502 int n;
6503 unsigned int size;
6504 segT symextn_sec;
6505 segT save_seg = now_seg;
6506 subsegT save_subseg = now_subseg;
6507
6508 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6509 ;
6510
6511 size = sizeof (symext_entryS) * n;
6512
6513 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
6514
6515 bfd_set_section_flags (stdoutput, symextn_sec,
6516 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
6517 bfd_set_section_size (stdoutput, symextn_sec, size);
6518
6519 /* Now, switch back to the original segment. */
6520 subseg_set (save_seg, save_subseg);
6521 }
6522 }
6523
6524 /* Build the symbol extension section. */
6525
6526 static void
6527 pa_build_symextn_section ()
6528 {
6529 segT seg;
6530 asection *save_seg = now_seg;
6531 subsegT subseg = (subsegT) 0;
6532 subsegT save_subseg = now_subseg;
6533
6534 seg = subseg_new (".hppa_symextn", subseg);
6535 bfd_set_section_flags (stdoutput,
6536 seg,
6537 SEC_HAS_CONTENTS | SEC_READONLY
6538 | SEC_ALLOC | SEC_LOAD);
6539
6540 subseg_set (save_seg, save_subseg);
6541
6542 }
6543
6544 /* For ELF, this function serves one purpose: to setup the st_size
6545 field of STT_FUNC symbols. To do this, we need to scan the
6546 call_info structure list, determining st_size in one of two possible
6547 ways:
6548
6549 1. call_info->start_frag->fr_fix has the size of the fragment.
6550 This approach assumes that the function was built into a
6551 single fragment. This works for most cases, but might fail.
6552 For example, if there was a segment change in the middle of
6553 the function.
6554
6555 2. The st_size field is the difference in the addresses of the
6556 call_info->start_frag->fr_address field and the fr_address
6557 field of the next fragment with fr_type == rs_fill and
6558 fr_fix != 0. */
6559
6560 void
6561 elf_hppa_final_processing ()
6562 {
6563 struct call_info *call_info_pointer;
6564
6565 for (call_info_pointer = call_info_root;
6566 call_info_pointer;
6567 call_info_pointer = call_info_pointer->ci_next)
6568 {
6569 elf_symbol_type *esym
6570 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
6571 esym->internal_elf_sym.st_size =
6572 S_GET_VALUE (call_info_pointer->end_symbol)
6573 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
6574 }
6575 }
6576 #endif
This page took 0.156292 seconds and 5 git commands to generate.