x86: convert broadcast insn attribute to boolean
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_NETWARE) \
436 && !defined (TE_FreeBSD) \
437 && !defined (TE_DragonFly) \
438 && !defined (TE_NetBSD)))
439 /* This array holds the chars that always start a comment. If the
440 pre-processor is disabled, these aren't very useful. The option
441 --divide will remove '/' from this list. */
442 const char *i386_comment_chars = "#/";
443 #define SVR4_COMMENT_CHARS 1
444 #define PREFIX_SEPARATOR '\\'
445
446 #else
447 const char *i386_comment_chars = "#";
448 #define PREFIX_SEPARATOR '/'
449 #endif
450
451 /* This array holds the chars that only start a comment at the beginning of
452 a line. If the line seems to have the form '# 123 filename'
453 .line and .file directives will appear in the pre-processed output.
454 Note that input_file.c hand checks for '#' at the beginning of the
455 first line of the input file. This is because the compiler outputs
456 #NO_APP at the beginning of its output.
457 Also note that comments started like this one will always work if
458 '/' isn't otherwise defined. */
459 const char line_comment_chars[] = "#/";
460
461 const char line_separator_chars[] = ";";
462
463 /* Chars that can be used to separate mant from exp in floating point
464 nums. */
465 const char EXP_CHARS[] = "eE";
466
467 /* Chars that mean this number is a floating point constant
468 As in 0f12.456
469 or 0d1.2345e12. */
470 const char FLT_CHARS[] = "fFdDxX";
471
472 /* Tables for lexical analysis. */
473 static char mnemonic_chars[256];
474 static char register_chars[256];
475 static char operand_chars[256];
476 static char identifier_chars[256];
477 static char digit_chars[256];
478
479 /* Lexical macros. */
480 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
481 #define is_operand_char(x) (operand_chars[(unsigned char) x])
482 #define is_register_char(x) (register_chars[(unsigned char) x])
483 #define is_space_char(x) ((x) == ' ')
484 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
485 #define is_digit_char(x) (digit_chars[(unsigned char) x])
486
487 /* All non-digit non-letter characters that may occur in an operand. */
488 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
489
490 /* md_assemble() always leaves the strings it's passed unaltered. To
491 effect this we maintain a stack of saved characters that we've smashed
492 with '\0's (indicating end of strings for various sub-fields of the
493 assembler instruction). */
494 static char save_stack[32];
495 static char *save_stack_p;
496 #define END_STRING_AND_SAVE(s) \
497 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
498 #define RESTORE_END_STRING(s) \
499 do { *(s) = *--save_stack_p; } while (0)
500
501 /* The instruction we're assembling. */
502 static i386_insn i;
503
504 /* Possible templates for current insn. */
505 static const templates *current_templates;
506
507 /* Per instruction expressionS buffers: max displacements & immediates. */
508 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
509 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
510
511 /* Current operand we are working on. */
512 static int this_operand = -1;
513
514 /* We support four different modes. FLAG_CODE variable is used to distinguish
515 these. */
516
517 enum flag_code {
518 CODE_32BIT,
519 CODE_16BIT,
520 CODE_64BIT };
521
522 static enum flag_code flag_code;
523 static unsigned int object_64bit;
524 static unsigned int disallow_64bit_reloc;
525 static int use_rela_relocations = 0;
526
527 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
528 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
529 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
530
531 /* The ELF ABI to use. */
532 enum x86_elf_abi
533 {
534 I386_ABI,
535 X86_64_ABI,
536 X86_64_X32_ABI
537 };
538
539 static enum x86_elf_abi x86_elf_abi = I386_ABI;
540 #endif
541
542 #if defined (TE_PE) || defined (TE_PEP)
543 /* Use big object file format. */
544 static int use_big_obj = 0;
545 #endif
546
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 /* 1 if generating code for a shared library. */
549 static int shared = 0;
550 #endif
551
552 /* 1 for intel syntax,
553 0 if att syntax. */
554 static int intel_syntax = 0;
555
556 /* 1 for Intel64 ISA,
557 0 if AMD64 ISA. */
558 static int intel64;
559
560 /* 1 for intel mnemonic,
561 0 if att mnemonic. */
562 static int intel_mnemonic = !SYSV386_COMPAT;
563
564 /* 1 if pseudo registers are permitted. */
565 static int allow_pseudo_reg = 0;
566
567 /* 1 if register prefix % not required. */
568 static int allow_naked_reg = 0;
569
570 /* 1 if the assembler should add BND prefix for all control-transferring
571 instructions supporting it, even if this prefix wasn't specified
572 explicitly. */
573 static int add_bnd_prefix = 0;
574
575 /* 1 if pseudo index register, eiz/riz, is allowed . */
576 static int allow_index_reg = 0;
577
578 /* 1 if the assembler should ignore LOCK prefix, even if it was
579 specified explicitly. */
580 static int omit_lock_prefix = 0;
581
582 /* 1 if the assembler should encode lfence, mfence, and sfence as
583 "lock addl $0, (%{re}sp)". */
584 static int avoid_fence = 0;
585
586 /* 1 if the assembler should generate relax relocations. */
587
588 static int generate_relax_relocations
589 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
590
591 static enum check_kind
592 {
593 check_none = 0,
594 check_warning,
595 check_error
596 }
597 sse_check, operand_check = check_warning;
598
599 /* Optimization:
600 1. Clear the REX_W bit with register operand if possible.
601 2. Above plus use 128bit vector instruction to clear the full vector
602 register.
603 */
604 static int optimize = 0;
605
606 /* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
611 "testb $imm7,%r8".
612 */
613 static int optimize_for_space = 0;
614
615 /* Register prefix used for error message. */
616 static const char *register_prefix = "%";
617
618 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
619 leave, push, and pop instructions so that gcc has the same stack
620 frame as in 32 bit mode. */
621 static char stackop_size = '\0';
622
623 /* Non-zero to optimize code alignment. */
624 int optimize_align_code = 1;
625
626 /* Non-zero to quieten some warnings. */
627 static int quiet_warnings = 0;
628
629 /* CPU name. */
630 static const char *cpu_arch_name = NULL;
631 static char *cpu_sub_arch_name = NULL;
632
633 /* CPU feature flags. */
634 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
635
636 /* If we have selected a cpu we are generating instructions for. */
637 static int cpu_arch_tune_set = 0;
638
639 /* Cpu we are generating instructions for. */
640 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
641
642 /* CPU feature flags of cpu we are generating instructions for. */
643 static i386_cpu_flags cpu_arch_tune_flags;
644
645 /* CPU instruction set architecture used. */
646 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
647
648 /* CPU feature flags of instruction set architecture used. */
649 i386_cpu_flags cpu_arch_isa_flags;
650
651 /* If set, conditional jumps are not automatically promoted to handle
652 larger than a byte offset. */
653 static unsigned int no_cond_jump_promotion = 0;
654
655 /* Encode SSE instructions with VEX prefix. */
656 static unsigned int sse2avx;
657
658 /* Encode scalar AVX instructions with specific vector length. */
659 static enum
660 {
661 vex128 = 0,
662 vex256
663 } avxscalar;
664
665 /* Encode scalar EVEX LIG instructions with specific vector length. */
666 static enum
667 {
668 evexl128 = 0,
669 evexl256,
670 evexl512
671 } evexlig;
672
673 /* Encode EVEX WIG instructions with specific evex.w. */
674 static enum
675 {
676 evexw0 = 0,
677 evexw1
678 } evexwig;
679
680 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
681 static enum rc_type evexrcig = rne;
682
683 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
684 static symbolS *GOT_symbol;
685
686 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
687 unsigned int x86_dwarf2_return_column;
688
689 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
690 int x86_cie_data_alignment;
691
692 /* Interface to relax_segment.
693 There are 3 major relax states for 386 jump insns because the
694 different types of jumps add different sizes to frags when we're
695 figuring out what sort of jump to choose to reach a given label. */
696
697 /* Types. */
698 #define UNCOND_JUMP 0
699 #define COND_JUMP 1
700 #define COND_JUMP86 2
701
702 /* Sizes. */
703 #define CODE16 1
704 #define SMALL 0
705 #define SMALL16 (SMALL | CODE16)
706 #define BIG 2
707 #define BIG16 (BIG | CODE16)
708
709 #ifndef INLINE
710 #ifdef __GNUC__
711 #define INLINE __inline__
712 #else
713 #define INLINE
714 #endif
715 #endif
716
717 #define ENCODE_RELAX_STATE(type, size) \
718 ((relax_substateT) (((type) << 2) | (size)))
719 #define TYPE_FROM_RELAX_STATE(s) \
720 ((s) >> 2)
721 #define DISP_SIZE_FROM_RELAX_STATE(s) \
722 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
723
724 /* This table is used by relax_frag to promote short jumps to long
725 ones where necessary. SMALL (short) jumps may be promoted to BIG
726 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
727 don't allow a short jump in a 32 bit code segment to be promoted to
728 a 16 bit offset jump because it's slower (requires data size
729 prefix), and doesn't work, unless the destination is in the bottom
730 64k of the code segment (The top 16 bits of eip are zeroed). */
731
732 const relax_typeS md_relax_table[] =
733 {
734 /* The fields are:
735 1) most positive reach of this state,
736 2) most negative reach of this state,
737 3) how many bytes this mode will have in the variable part of the frag
738 4) which index into the table to try if we can't fit into this one. */
739
740 /* UNCOND_JUMP states. */
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
742 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
743 /* dword jmp adds 4 bytes to frag:
744 0 extra opcode bytes, 4 displacement bytes. */
745 {0, 0, 4, 0},
746 /* word jmp adds 2 byte2 to frag:
747 0 extra opcode bytes, 2 displacement bytes. */
748 {0, 0, 2, 0},
749
750 /* COND_JUMP states. */
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
752 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
753 /* dword conditionals adds 5 bytes to frag:
754 1 extra opcode byte, 4 displacement bytes. */
755 {0, 0, 5, 0},
756 /* word conditionals add 3 bytes to frag:
757 1 extra opcode byte, 2 displacement bytes. */
758 {0, 0, 3, 0},
759
760 /* COND_JUMP86 states. */
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
762 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
763 /* dword conditionals adds 5 bytes to frag:
764 1 extra opcode byte, 4 displacement bytes. */
765 {0, 0, 5, 0},
766 /* word conditionals add 4 bytes to frag:
767 1 displacement byte and a 3 byte long branch insn. */
768 {0, 0, 4, 0}
769 };
770
771 static const arch_entry cpu_arch[] =
772 {
773 /* Do not replace the first two entries - i386_target_format()
774 relies on them being there in this order. */
775 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
776 CPU_GENERIC32_FLAGS, 0 },
777 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
778 CPU_GENERIC64_FLAGS, 0 },
779 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
780 CPU_NONE_FLAGS, 0 },
781 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
782 CPU_I186_FLAGS, 0 },
783 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
784 CPU_I286_FLAGS, 0 },
785 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
786 CPU_I386_FLAGS, 0 },
787 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
788 CPU_I486_FLAGS, 0 },
789 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
790 CPU_I586_FLAGS, 0 },
791 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
792 CPU_I686_FLAGS, 0 },
793 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
794 CPU_I586_FLAGS, 0 },
795 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
796 CPU_PENTIUMPRO_FLAGS, 0 },
797 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
798 CPU_P2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
800 CPU_P3_FLAGS, 0 },
801 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
802 CPU_P4_FLAGS, 0 },
803 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
804 CPU_CORE_FLAGS, 0 },
805 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
806 CPU_NOCONA_FLAGS, 0 },
807 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
808 CPU_CORE_FLAGS, 1 },
809 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
810 CPU_CORE_FLAGS, 0 },
811 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
812 CPU_CORE2_FLAGS, 1 },
813 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
814 CPU_CORE2_FLAGS, 0 },
815 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
816 CPU_COREI7_FLAGS, 0 },
817 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
818 CPU_L1OM_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
820 CPU_K1OM_FLAGS, 0 },
821 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
822 CPU_IAMCU_FLAGS, 0 },
823 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
824 CPU_K6_FLAGS, 0 },
825 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
826 CPU_K6_2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
828 CPU_ATHLON_FLAGS, 0 },
829 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
830 CPU_K8_FLAGS, 1 },
831 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
832 CPU_K8_FLAGS, 0 },
833 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
834 CPU_K8_FLAGS, 0 },
835 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
836 CPU_AMDFAM10_FLAGS, 0 },
837 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
838 CPU_BDVER1_FLAGS, 0 },
839 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
840 CPU_BDVER2_FLAGS, 0 },
841 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
842 CPU_BDVER3_FLAGS, 0 },
843 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
844 CPU_BDVER4_FLAGS, 0 },
845 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
846 CPU_ZNVER1_FLAGS, 0 },
847 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
848 CPU_BTVER1_FLAGS, 0 },
849 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
850 CPU_BTVER2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
852 CPU_8087_FLAGS, 0 },
853 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
854 CPU_287_FLAGS, 0 },
855 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
856 CPU_387_FLAGS, 0 },
857 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
858 CPU_687_FLAGS, 0 },
859 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
860 CPU_MMX_FLAGS, 0 },
861 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
862 CPU_SSE_FLAGS, 0 },
863 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
864 CPU_SSE2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
866 CPU_SSE3_FLAGS, 0 },
867 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
868 CPU_SSSE3_FLAGS, 0 },
869 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
870 CPU_SSE4_1_FLAGS, 0 },
871 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
872 CPU_SSE4_2_FLAGS, 0 },
873 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
874 CPU_SSE4_2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
876 CPU_AVX_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
878 CPU_AVX2_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
880 CPU_AVX512F_FLAGS, 0 },
881 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
882 CPU_AVX512CD_FLAGS, 0 },
883 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
884 CPU_AVX512ER_FLAGS, 0 },
885 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
886 CPU_AVX512PF_FLAGS, 0 },
887 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
888 CPU_AVX512DQ_FLAGS, 0 },
889 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
890 CPU_AVX512BW_FLAGS, 0 },
891 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
892 CPU_AVX512VL_FLAGS, 0 },
893 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
894 CPU_VMX_FLAGS, 0 },
895 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
896 CPU_VMFUNC_FLAGS, 0 },
897 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
898 CPU_SMX_FLAGS, 0 },
899 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
900 CPU_XSAVE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
902 CPU_XSAVEOPT_FLAGS, 0 },
903 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
904 CPU_XSAVEC_FLAGS, 0 },
905 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
906 CPU_XSAVES_FLAGS, 0 },
907 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
908 CPU_AES_FLAGS, 0 },
909 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
910 CPU_PCLMUL_FLAGS, 0 },
911 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
912 CPU_PCLMUL_FLAGS, 1 },
913 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
914 CPU_FSGSBASE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
916 CPU_RDRND_FLAGS, 0 },
917 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
918 CPU_F16C_FLAGS, 0 },
919 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
920 CPU_BMI2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
922 CPU_FMA_FLAGS, 0 },
923 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
924 CPU_FMA4_FLAGS, 0 },
925 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
926 CPU_XOP_FLAGS, 0 },
927 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
928 CPU_LWP_FLAGS, 0 },
929 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
930 CPU_MOVBE_FLAGS, 0 },
931 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
932 CPU_CX16_FLAGS, 0 },
933 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
934 CPU_EPT_FLAGS, 0 },
935 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
936 CPU_LZCNT_FLAGS, 0 },
937 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
938 CPU_HLE_FLAGS, 0 },
939 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
940 CPU_RTM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
942 CPU_INVPCID_FLAGS, 0 },
943 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
944 CPU_CLFLUSH_FLAGS, 0 },
945 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
946 CPU_NOP_FLAGS, 0 },
947 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
948 CPU_SYSCALL_FLAGS, 0 },
949 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
950 CPU_RDTSCP_FLAGS, 0 },
951 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
952 CPU_3DNOW_FLAGS, 0 },
953 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
954 CPU_3DNOWA_FLAGS, 0 },
955 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
956 CPU_PADLOCK_FLAGS, 0 },
957 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
958 CPU_SVME_FLAGS, 1 },
959 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
960 CPU_SVME_FLAGS, 0 },
961 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
962 CPU_SSE4A_FLAGS, 0 },
963 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
964 CPU_ABM_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
966 CPU_BMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
968 CPU_TBM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
970 CPU_ADX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
972 CPU_RDSEED_FLAGS, 0 },
973 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
974 CPU_PRFCHW_FLAGS, 0 },
975 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
976 CPU_SMAP_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
978 CPU_MPX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
980 CPU_SHA_FLAGS, 0 },
981 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
982 CPU_CLFLUSHOPT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
984 CPU_PREFETCHWT1_FLAGS, 0 },
985 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
986 CPU_SE1_FLAGS, 0 },
987 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
988 CPU_CLWB_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
990 CPU_AVX512IFMA_FLAGS, 0 },
991 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
992 CPU_AVX512VBMI_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
994 CPU_AVX512_4FMAPS_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
996 CPU_AVX512_4VNNIW_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_VBMI2_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VNNI_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_BITALG_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1006 CPU_CLZERO_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1008 CPU_MWAITX_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1010 CPU_OSPKE_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1012 CPU_RDPID_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1014 CPU_PTWRITE_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1016 CPU_IBT_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1018 CPU_SHSTK_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1020 CPU_GFNI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1022 CPU_VAES_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1024 CPU_VPCLMULQDQ_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1026 CPU_WBNOINVD_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1028 CPU_PCONFIG_FLAGS, 0 },
1029 };
1030
1031 static const noarch_entry cpu_noarch[] =
1032 {
1033 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1034 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1035 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1036 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1037 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1038 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1039 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1040 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1041 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1042 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1043 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1044 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1045 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1046 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1047 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1048 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1049 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1050 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1062 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1063 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1064 };
1065
1066 #ifdef I386COFF
1067 /* Like s_lcomm_internal in gas/read.c but the alignment string
1068 is allowed to be optional. */
1069
1070 static symbolS *
1071 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1072 {
1073 addressT align = 0;
1074
1075 SKIP_WHITESPACE ();
1076
1077 if (needs_align
1078 && *input_line_pointer == ',')
1079 {
1080 align = parse_align (needs_align - 1);
1081
1082 if (align == (addressT) -1)
1083 return NULL;
1084 }
1085 else
1086 {
1087 if (size >= 8)
1088 align = 3;
1089 else if (size >= 4)
1090 align = 2;
1091 else if (size >= 2)
1092 align = 1;
1093 else
1094 align = 0;
1095 }
1096
1097 bss_alloc (symbolP, size, align);
1098 return symbolP;
1099 }
1100
1101 static void
1102 pe_lcomm (int needs_align)
1103 {
1104 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1105 }
1106 #endif
1107
1108 const pseudo_typeS md_pseudo_table[] =
1109 {
1110 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1111 {"align", s_align_bytes, 0},
1112 #else
1113 {"align", s_align_ptwo, 0},
1114 #endif
1115 {"arch", set_cpu_arch, 0},
1116 #ifndef I386COFF
1117 {"bss", s_bss, 0},
1118 #else
1119 {"lcomm", pe_lcomm, 1},
1120 #endif
1121 {"ffloat", float_cons, 'f'},
1122 {"dfloat", float_cons, 'd'},
1123 {"tfloat", float_cons, 'x'},
1124 {"value", cons, 2},
1125 {"slong", signed_cons, 4},
1126 {"noopt", s_ignore, 0},
1127 {"optim", s_ignore, 0},
1128 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1129 {"code16", set_code_flag, CODE_16BIT},
1130 {"code32", set_code_flag, CODE_32BIT},
1131 #ifdef BFD64
1132 {"code64", set_code_flag, CODE_64BIT},
1133 #endif
1134 {"intel_syntax", set_intel_syntax, 1},
1135 {"att_syntax", set_intel_syntax, 0},
1136 {"intel_mnemonic", set_intel_mnemonic, 1},
1137 {"att_mnemonic", set_intel_mnemonic, 0},
1138 {"allow_index_reg", set_allow_index_reg, 1},
1139 {"disallow_index_reg", set_allow_index_reg, 0},
1140 {"sse_check", set_check, 0},
1141 {"operand_check", set_check, 1},
1142 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1143 {"largecomm", handle_large_common, 0},
1144 #else
1145 {"file", dwarf2_directive_file, 0},
1146 {"loc", dwarf2_directive_loc, 0},
1147 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1148 #endif
1149 #ifdef TE_PE
1150 {"secrel32", pe_directive_secrel, 0},
1151 #endif
1152 {0, 0, 0}
1153 };
1154
1155 /* For interface with expression (). */
1156 extern char *input_line_pointer;
1157
1158 /* Hash table for instruction mnemonic lookup. */
1159 static struct hash_control *op_hash;
1160
1161 /* Hash table for register lookup. */
1162 static struct hash_control *reg_hash;
1163 \f
1164 /* Various efficient no-op patterns for aligning code labels.
1165 Note: Don't try to assemble the instructions in the comments.
1166 0L and 0w are not legal. */
1167 static const unsigned char f32_1[] =
1168 {0x90}; /* nop */
1169 static const unsigned char f32_2[] =
1170 {0x66,0x90}; /* xchg %ax,%ax */
1171 static const unsigned char f32_3[] =
1172 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1173 static const unsigned char f32_4[] =
1174 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1175 static const unsigned char f32_6[] =
1176 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1177 static const unsigned char f32_7[] =
1178 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1179 static const unsigned char f16_3[] =
1180 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1181 static const unsigned char f16_4[] =
1182 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1183 static const unsigned char jump_disp8[] =
1184 {0xeb}; /* jmp disp8 */
1185 static const unsigned char jump32_disp32[] =
1186 {0xe9}; /* jmp disp32 */
1187 static const unsigned char jump16_disp32[] =
1188 {0x66,0xe9}; /* jmp disp32 */
1189 /* 32-bit NOPs patterns. */
1190 static const unsigned char *const f32_patt[] = {
1191 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1192 };
1193 /* 16-bit NOPs patterns. */
1194 static const unsigned char *const f16_patt[] = {
1195 f32_1, f32_2, f16_3, f16_4
1196 };
1197 /* nopl (%[re]ax) */
1198 static const unsigned char alt_3[] =
1199 {0x0f,0x1f,0x00};
1200 /* nopl 0(%[re]ax) */
1201 static const unsigned char alt_4[] =
1202 {0x0f,0x1f,0x40,0x00};
1203 /* nopl 0(%[re]ax,%[re]ax,1) */
1204 static const unsigned char alt_5[] =
1205 {0x0f,0x1f,0x44,0x00,0x00};
1206 /* nopw 0(%[re]ax,%[re]ax,1) */
1207 static const unsigned char alt_6[] =
1208 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1209 /* nopl 0L(%[re]ax) */
1210 static const unsigned char alt_7[] =
1211 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1212 /* nopl 0L(%[re]ax,%[re]ax,1) */
1213 static const unsigned char alt_8[] =
1214 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1215 /* nopw 0L(%[re]ax,%[re]ax,1) */
1216 static const unsigned char alt_9[] =
1217 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1218 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1219 static const unsigned char alt_10[] =
1220 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1221 /* data16 nopw %cs:0L(%eax,%eax,1) */
1222 static const unsigned char alt_11[] =
1223 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1224 /* 32-bit and 64-bit NOPs patterns. */
1225 static const unsigned char *const alt_patt[] = {
1226 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1227 alt_9, alt_10, alt_11
1228 };
1229
1230 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1231 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1232
1233 static void
1234 i386_output_nops (char *where, const unsigned char *const *patt,
1235 int count, int max_single_nop_size)
1236
1237 {
1238 /* Place the longer NOP first. */
1239 int last;
1240 int offset;
1241 const unsigned char *nops = patt[max_single_nop_size - 1];
1242
1243 /* Use the smaller one if the requsted one isn't available. */
1244 if (nops == NULL)
1245 {
1246 max_single_nop_size--;
1247 nops = patt[max_single_nop_size - 1];
1248 }
1249
1250 last = count % max_single_nop_size;
1251
1252 count -= last;
1253 for (offset = 0; offset < count; offset += max_single_nop_size)
1254 memcpy (where + offset, nops, max_single_nop_size);
1255
1256 if (last)
1257 {
1258 nops = patt[last - 1];
1259 if (nops == NULL)
1260 {
1261 /* Use the smaller one plus one-byte NOP if the needed one
1262 isn't available. */
1263 last--;
1264 nops = patt[last - 1];
1265 memcpy (where + offset, nops, last);
1266 where[offset + last] = *patt[0];
1267 }
1268 else
1269 memcpy (where + offset, nops, last);
1270 }
1271 }
1272
1273 static INLINE int
1274 fits_in_imm7 (offsetT num)
1275 {
1276 return (num & 0x7f) == num;
1277 }
1278
1279 static INLINE int
1280 fits_in_imm31 (offsetT num)
1281 {
1282 return (num & 0x7fffffff) == num;
1283 }
1284
1285 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1286 single NOP instruction LIMIT. */
1287
1288 void
1289 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1290 {
1291 const unsigned char *const *patt = NULL;
1292 int max_single_nop_size;
1293 /* Maximum number of NOPs before switching to jump over NOPs. */
1294 int max_number_of_nops;
1295
1296 switch (fragP->fr_type)
1297 {
1298 case rs_fill_nop:
1299 case rs_align_code:
1300 break;
1301 default:
1302 return;
1303 }
1304
1305 /* We need to decide which NOP sequence to use for 32bit and
1306 64bit. When -mtune= is used:
1307
1308 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1309 PROCESSOR_GENERIC32, f32_patt will be used.
1310 2. For the rest, alt_patt will be used.
1311
1312 When -mtune= isn't used, alt_patt will be used if
1313 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1314 be used.
1315
1316 When -march= or .arch is used, we can't use anything beyond
1317 cpu_arch_isa_flags. */
1318
1319 if (flag_code == CODE_16BIT)
1320 {
1321 patt = f16_patt;
1322 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1323 /* Limit number of NOPs to 2 in 16-bit mode. */
1324 max_number_of_nops = 2;
1325 }
1326 else
1327 {
1328 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1329 {
1330 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1331 switch (cpu_arch_tune)
1332 {
1333 case PROCESSOR_UNKNOWN:
1334 /* We use cpu_arch_isa_flags to check if we SHOULD
1335 optimize with nops. */
1336 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1337 patt = alt_patt;
1338 else
1339 patt = f32_patt;
1340 break;
1341 case PROCESSOR_PENTIUM4:
1342 case PROCESSOR_NOCONA:
1343 case PROCESSOR_CORE:
1344 case PROCESSOR_CORE2:
1345 case PROCESSOR_COREI7:
1346 case PROCESSOR_L1OM:
1347 case PROCESSOR_K1OM:
1348 case PROCESSOR_GENERIC64:
1349 case PROCESSOR_K6:
1350 case PROCESSOR_ATHLON:
1351 case PROCESSOR_K8:
1352 case PROCESSOR_AMDFAM10:
1353 case PROCESSOR_BD:
1354 case PROCESSOR_ZNVER:
1355 case PROCESSOR_BT:
1356 patt = alt_patt;
1357 break;
1358 case PROCESSOR_I386:
1359 case PROCESSOR_I486:
1360 case PROCESSOR_PENTIUM:
1361 case PROCESSOR_PENTIUMPRO:
1362 case PROCESSOR_IAMCU:
1363 case PROCESSOR_GENERIC32:
1364 patt = f32_patt;
1365 break;
1366 }
1367 }
1368 else
1369 {
1370 switch (fragP->tc_frag_data.tune)
1371 {
1372 case PROCESSOR_UNKNOWN:
1373 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1374 PROCESSOR_UNKNOWN. */
1375 abort ();
1376 break;
1377
1378 case PROCESSOR_I386:
1379 case PROCESSOR_I486:
1380 case PROCESSOR_PENTIUM:
1381 case PROCESSOR_IAMCU:
1382 case PROCESSOR_K6:
1383 case PROCESSOR_ATHLON:
1384 case PROCESSOR_K8:
1385 case PROCESSOR_AMDFAM10:
1386 case PROCESSOR_BD:
1387 case PROCESSOR_ZNVER:
1388 case PROCESSOR_BT:
1389 case PROCESSOR_GENERIC32:
1390 /* We use cpu_arch_isa_flags to check if we CAN optimize
1391 with nops. */
1392 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1393 patt = alt_patt;
1394 else
1395 patt = f32_patt;
1396 break;
1397 case PROCESSOR_PENTIUMPRO:
1398 case PROCESSOR_PENTIUM4:
1399 case PROCESSOR_NOCONA:
1400 case PROCESSOR_CORE:
1401 case PROCESSOR_CORE2:
1402 case PROCESSOR_COREI7:
1403 case PROCESSOR_L1OM:
1404 case PROCESSOR_K1OM:
1405 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1406 patt = alt_patt;
1407 else
1408 patt = f32_patt;
1409 break;
1410 case PROCESSOR_GENERIC64:
1411 patt = alt_patt;
1412 break;
1413 }
1414 }
1415
1416 if (patt == f32_patt)
1417 {
1418 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1419 /* Limit number of NOPs to 2 for older processors. */
1420 max_number_of_nops = 2;
1421 }
1422 else
1423 {
1424 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1425 /* Limit number of NOPs to 7 for newer processors. */
1426 max_number_of_nops = 7;
1427 }
1428 }
1429
1430 if (limit == 0)
1431 limit = max_single_nop_size;
1432
1433 if (fragP->fr_type == rs_fill_nop)
1434 {
1435 /* Output NOPs for .nop directive. */
1436 if (limit > max_single_nop_size)
1437 {
1438 as_bad_where (fragP->fr_file, fragP->fr_line,
1439 _("invalid single nop size: %d "
1440 "(expect within [0, %d])"),
1441 limit, max_single_nop_size);
1442 return;
1443 }
1444 }
1445 else
1446 fragP->fr_var = count;
1447
1448 if ((count / max_single_nop_size) > max_number_of_nops)
1449 {
1450 /* Generate jump over NOPs. */
1451 offsetT disp = count - 2;
1452 if (fits_in_imm7 (disp))
1453 {
1454 /* Use "jmp disp8" if possible. */
1455 count = disp;
1456 where[0] = jump_disp8[0];
1457 where[1] = count;
1458 where += 2;
1459 }
1460 else
1461 {
1462 unsigned int size_of_jump;
1463
1464 if (flag_code == CODE_16BIT)
1465 {
1466 where[0] = jump16_disp32[0];
1467 where[1] = jump16_disp32[1];
1468 size_of_jump = 2;
1469 }
1470 else
1471 {
1472 where[0] = jump32_disp32[0];
1473 size_of_jump = 1;
1474 }
1475
1476 count -= size_of_jump + 4;
1477 if (!fits_in_imm31 (count))
1478 {
1479 as_bad_where (fragP->fr_file, fragP->fr_line,
1480 _("jump over nop padding out of range"));
1481 return;
1482 }
1483
1484 md_number_to_chars (where + size_of_jump, count, 4);
1485 where += size_of_jump + 4;
1486 }
1487 }
1488
1489 /* Generate multiple NOPs. */
1490 i386_output_nops (where, patt, count, limit);
1491 }
1492
1493 static INLINE int
1494 operand_type_all_zero (const union i386_operand_type *x)
1495 {
1496 switch (ARRAY_SIZE(x->array))
1497 {
1498 case 3:
1499 if (x->array[2])
1500 return 0;
1501 /* Fall through. */
1502 case 2:
1503 if (x->array[1])
1504 return 0;
1505 /* Fall through. */
1506 case 1:
1507 return !x->array[0];
1508 default:
1509 abort ();
1510 }
1511 }
1512
1513 static INLINE void
1514 operand_type_set (union i386_operand_type *x, unsigned int v)
1515 {
1516 switch (ARRAY_SIZE(x->array))
1517 {
1518 case 3:
1519 x->array[2] = v;
1520 /* Fall through. */
1521 case 2:
1522 x->array[1] = v;
1523 /* Fall through. */
1524 case 1:
1525 x->array[0] = v;
1526 /* Fall through. */
1527 break;
1528 default:
1529 abort ();
1530 }
1531 }
1532
1533 static INLINE int
1534 operand_type_equal (const union i386_operand_type *x,
1535 const union i386_operand_type *y)
1536 {
1537 switch (ARRAY_SIZE(x->array))
1538 {
1539 case 3:
1540 if (x->array[2] != y->array[2])
1541 return 0;
1542 /* Fall through. */
1543 case 2:
1544 if (x->array[1] != y->array[1])
1545 return 0;
1546 /* Fall through. */
1547 case 1:
1548 return x->array[0] == y->array[0];
1549 break;
1550 default:
1551 abort ();
1552 }
1553 }
1554
1555 static INLINE int
1556 cpu_flags_all_zero (const union i386_cpu_flags *x)
1557 {
1558 switch (ARRAY_SIZE(x->array))
1559 {
1560 case 4:
1561 if (x->array[3])
1562 return 0;
1563 /* Fall through. */
1564 case 3:
1565 if (x->array[2])
1566 return 0;
1567 /* Fall through. */
1568 case 2:
1569 if (x->array[1])
1570 return 0;
1571 /* Fall through. */
1572 case 1:
1573 return !x->array[0];
1574 default:
1575 abort ();
1576 }
1577 }
1578
1579 static INLINE int
1580 cpu_flags_equal (const union i386_cpu_flags *x,
1581 const union i386_cpu_flags *y)
1582 {
1583 switch (ARRAY_SIZE(x->array))
1584 {
1585 case 4:
1586 if (x->array[3] != y->array[3])
1587 return 0;
1588 /* Fall through. */
1589 case 3:
1590 if (x->array[2] != y->array[2])
1591 return 0;
1592 /* Fall through. */
1593 case 2:
1594 if (x->array[1] != y->array[1])
1595 return 0;
1596 /* Fall through. */
1597 case 1:
1598 return x->array[0] == y->array[0];
1599 break;
1600 default:
1601 abort ();
1602 }
1603 }
1604
1605 static INLINE int
1606 cpu_flags_check_cpu64 (i386_cpu_flags f)
1607 {
1608 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1609 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1610 }
1611
1612 static INLINE i386_cpu_flags
1613 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1614 {
1615 switch (ARRAY_SIZE (x.array))
1616 {
1617 case 4:
1618 x.array [3] &= y.array [3];
1619 /* Fall through. */
1620 case 3:
1621 x.array [2] &= y.array [2];
1622 /* Fall through. */
1623 case 2:
1624 x.array [1] &= y.array [1];
1625 /* Fall through. */
1626 case 1:
1627 x.array [0] &= y.array [0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 return x;
1633 }
1634
1635 static INLINE i386_cpu_flags
1636 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1637 {
1638 switch (ARRAY_SIZE (x.array))
1639 {
1640 case 4:
1641 x.array [3] |= y.array [3];
1642 /* Fall through. */
1643 case 3:
1644 x.array [2] |= y.array [2];
1645 /* Fall through. */
1646 case 2:
1647 x.array [1] |= y.array [1];
1648 /* Fall through. */
1649 case 1:
1650 x.array [0] |= y.array [0];
1651 break;
1652 default:
1653 abort ();
1654 }
1655 return x;
1656 }
1657
1658 static INLINE i386_cpu_flags
1659 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1660 {
1661 switch (ARRAY_SIZE (x.array))
1662 {
1663 case 4:
1664 x.array [3] &= ~y.array [3];
1665 /* Fall through. */
1666 case 3:
1667 x.array [2] &= ~y.array [2];
1668 /* Fall through. */
1669 case 2:
1670 x.array [1] &= ~y.array [1];
1671 /* Fall through. */
1672 case 1:
1673 x.array [0] &= ~y.array [0];
1674 break;
1675 default:
1676 abort ();
1677 }
1678 return x;
1679 }
1680
1681 #define CPU_FLAGS_ARCH_MATCH 0x1
1682 #define CPU_FLAGS_64BIT_MATCH 0x2
1683
1684 #define CPU_FLAGS_PERFECT_MATCH \
1685 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1686
1687 /* Return CPU flags match bits. */
1688
1689 static int
1690 cpu_flags_match (const insn_template *t)
1691 {
1692 i386_cpu_flags x = t->cpu_flags;
1693 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1694
1695 x.bitfield.cpu64 = 0;
1696 x.bitfield.cpuno64 = 0;
1697
1698 if (cpu_flags_all_zero (&x))
1699 {
1700 /* This instruction is available on all archs. */
1701 match |= CPU_FLAGS_ARCH_MATCH;
1702 }
1703 else
1704 {
1705 /* This instruction is available only on some archs. */
1706 i386_cpu_flags cpu = cpu_arch_flags;
1707
1708 /* AVX512VL is no standalone feature - match it and then strip it. */
1709 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1710 return match;
1711 x.bitfield.cpuavx512vl = 0;
1712
1713 cpu = cpu_flags_and (x, cpu);
1714 if (!cpu_flags_all_zero (&cpu))
1715 {
1716 if (x.bitfield.cpuavx)
1717 {
1718 /* We need to check a few extra flags with AVX. */
1719 if (cpu.bitfield.cpuavx
1720 && (!t->opcode_modifier.sse2avx || sse2avx)
1721 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1722 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1723 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1724 match |= CPU_FLAGS_ARCH_MATCH;
1725 }
1726 else if (x.bitfield.cpuavx512f)
1727 {
1728 /* We need to check a few extra flags with AVX512F. */
1729 if (cpu.bitfield.cpuavx512f
1730 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1731 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1732 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1733 match |= CPU_FLAGS_ARCH_MATCH;
1734 }
1735 else
1736 match |= CPU_FLAGS_ARCH_MATCH;
1737 }
1738 }
1739 return match;
1740 }
1741
1742 static INLINE i386_operand_type
1743 operand_type_and (i386_operand_type x, i386_operand_type y)
1744 {
1745 switch (ARRAY_SIZE (x.array))
1746 {
1747 case 3:
1748 x.array [2] &= y.array [2];
1749 /* Fall through. */
1750 case 2:
1751 x.array [1] &= y.array [1];
1752 /* Fall through. */
1753 case 1:
1754 x.array [0] &= y.array [0];
1755 break;
1756 default:
1757 abort ();
1758 }
1759 return x;
1760 }
1761
1762 static INLINE i386_operand_type
1763 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1764 {
1765 switch (ARRAY_SIZE (x.array))
1766 {
1767 case 3:
1768 x.array [2] &= ~y.array [2];
1769 /* Fall through. */
1770 case 2:
1771 x.array [1] &= ~y.array [1];
1772 /* Fall through. */
1773 case 1:
1774 x.array [0] &= ~y.array [0];
1775 break;
1776 default:
1777 abort ();
1778 }
1779 return x;
1780 }
1781
1782 static INLINE i386_operand_type
1783 operand_type_or (i386_operand_type x, i386_operand_type y)
1784 {
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] |= y.array [2];
1789 /* Fall through. */
1790 case 2:
1791 x.array [1] |= y.array [1];
1792 /* Fall through. */
1793 case 1:
1794 x.array [0] |= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
1800 }
1801
1802 static INLINE i386_operand_type
1803 operand_type_xor (i386_operand_type x, i386_operand_type y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] ^= y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] ^= y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] ^= y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820 }
1821
1822 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1823 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1824 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1825 static const i386_operand_type inoutportreg
1826 = OPERAND_TYPE_INOUTPORTREG;
1827 static const i386_operand_type reg16_inoutportreg
1828 = OPERAND_TYPE_REG16_INOUTPORTREG;
1829 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1830 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1831 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1832 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1833 static const i386_operand_type anydisp
1834 = OPERAND_TYPE_ANYDISP;
1835 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1836 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1837 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1838 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1839 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1840 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1841 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1842 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1843 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1844 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1845 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1846 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1847
1848 enum operand_type
1849 {
1850 reg,
1851 imm,
1852 disp,
1853 anymem
1854 };
1855
1856 static INLINE int
1857 operand_type_check (i386_operand_type t, enum operand_type c)
1858 {
1859 switch (c)
1860 {
1861 case reg:
1862 return t.bitfield.reg;
1863
1864 case imm:
1865 return (t.bitfield.imm8
1866 || t.bitfield.imm8s
1867 || t.bitfield.imm16
1868 || t.bitfield.imm32
1869 || t.bitfield.imm32s
1870 || t.bitfield.imm64);
1871
1872 case disp:
1873 return (t.bitfield.disp8
1874 || t.bitfield.disp16
1875 || t.bitfield.disp32
1876 || t.bitfield.disp32s
1877 || t.bitfield.disp64);
1878
1879 case anymem:
1880 return (t.bitfield.disp8
1881 || t.bitfield.disp16
1882 || t.bitfield.disp32
1883 || t.bitfield.disp32s
1884 || t.bitfield.disp64
1885 || t.bitfield.baseindex);
1886
1887 default:
1888 abort ();
1889 }
1890
1891 return 0;
1892 }
1893
1894 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1895 operand J for instruction template T. */
1896
1897 static INLINE int
1898 match_reg_size (const insn_template *t, unsigned int j)
1899 {
1900 return !((i.types[j].bitfield.byte
1901 && !t->operand_types[j].bitfield.byte)
1902 || (i.types[j].bitfield.word
1903 && !t->operand_types[j].bitfield.word)
1904 || (i.types[j].bitfield.dword
1905 && !t->operand_types[j].bitfield.dword)
1906 || (i.types[j].bitfield.qword
1907 && !t->operand_types[j].bitfield.qword)
1908 || (i.types[j].bitfield.tbyte
1909 && !t->operand_types[j].bitfield.tbyte));
1910 }
1911
1912 /* Return 1 if there is no conflict in SIMD register on
1913 operand J for instruction template T. */
1914
1915 static INLINE int
1916 match_simd_size (const insn_template *t, unsigned int j)
1917 {
1918 return !((i.types[j].bitfield.xmmword
1919 && !t->operand_types[j].bitfield.xmmword)
1920 || (i.types[j].bitfield.ymmword
1921 && !t->operand_types[j].bitfield.ymmword)
1922 || (i.types[j].bitfield.zmmword
1923 && !t->operand_types[j].bitfield.zmmword));
1924 }
1925
1926 /* Return 1 if there is no conflict in any size on operand J for
1927 instruction template T. */
1928
1929 static INLINE int
1930 match_mem_size (const insn_template *t, unsigned int j)
1931 {
1932 return (match_reg_size (t, j)
1933 && !((i.types[j].bitfield.unspecified
1934 && !i.broadcast
1935 && !t->operand_types[j].bitfield.unspecified)
1936 || (i.types[j].bitfield.fword
1937 && !t->operand_types[j].bitfield.fword)
1938 /* For scalar opcode templates to allow register and memory
1939 operands at the same time, some special casing is needed
1940 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1941 down-conversion vpmov*. */
1942 || ((t->operand_types[j].bitfield.regsimd
1943 && !t->opcode_modifier.broadcast
1944 && (t->operand_types[j].bitfield.byte
1945 || t->operand_types[j].bitfield.word
1946 || t->operand_types[j].bitfield.dword
1947 || t->operand_types[j].bitfield.qword))
1948 ? (i.types[j].bitfield.xmmword
1949 || i.types[j].bitfield.ymmword
1950 || i.types[j].bitfield.zmmword)
1951 : !match_simd_size(t, j))));
1952 }
1953
1954 /* Return 1 if there is no size conflict on any operands for
1955 instruction template T. */
1956
1957 static INLINE int
1958 operand_size_match (const insn_template *t)
1959 {
1960 unsigned int j;
1961 int match = 1;
1962
1963 /* Don't check jump instructions. */
1964 if (t->opcode_modifier.jump
1965 || t->opcode_modifier.jumpbyte
1966 || t->opcode_modifier.jumpdword
1967 || t->opcode_modifier.jumpintersegment)
1968 return match;
1969
1970 /* Check memory and accumulator operand size. */
1971 for (j = 0; j < i.operands; j++)
1972 {
1973 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1974 && t->operand_types[j].bitfield.anysize)
1975 continue;
1976
1977 if (t->operand_types[j].bitfield.reg
1978 && !match_reg_size (t, j))
1979 {
1980 match = 0;
1981 break;
1982 }
1983
1984 if (t->operand_types[j].bitfield.regsimd
1985 && !match_simd_size (t, j))
1986 {
1987 match = 0;
1988 break;
1989 }
1990
1991 if (t->operand_types[j].bitfield.acc
1992 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1993 {
1994 match = 0;
1995 break;
1996 }
1997
1998 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1999 {
2000 match = 0;
2001 break;
2002 }
2003 }
2004
2005 if (match)
2006 return match;
2007 else if (!t->opcode_modifier.d)
2008 {
2009 mismatch:
2010 i.error = operand_size_mismatch;
2011 return 0;
2012 }
2013
2014 /* Check reverse. */
2015 gas_assert (i.operands == 2);
2016
2017 match = 1;
2018 for (j = 0; j < 2; j++)
2019 {
2020 if ((t->operand_types[j].bitfield.reg
2021 || t->operand_types[j].bitfield.acc)
2022 && !match_reg_size (t, j ? 0 : 1))
2023 goto mismatch;
2024
2025 if (i.types[j].bitfield.mem
2026 && !match_mem_size (t, j ? 0 : 1))
2027 goto mismatch;
2028 }
2029
2030 return match;
2031 }
2032
2033 static INLINE int
2034 operand_type_match (i386_operand_type overlap,
2035 i386_operand_type given)
2036 {
2037 i386_operand_type temp = overlap;
2038
2039 temp.bitfield.jumpabsolute = 0;
2040 temp.bitfield.unspecified = 0;
2041 temp.bitfield.byte = 0;
2042 temp.bitfield.word = 0;
2043 temp.bitfield.dword = 0;
2044 temp.bitfield.fword = 0;
2045 temp.bitfield.qword = 0;
2046 temp.bitfield.tbyte = 0;
2047 temp.bitfield.xmmword = 0;
2048 temp.bitfield.ymmword = 0;
2049 temp.bitfield.zmmword = 0;
2050 if (operand_type_all_zero (&temp))
2051 goto mismatch;
2052
2053 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2054 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2055 return 1;
2056
2057 mismatch:
2058 i.error = operand_type_mismatch;
2059 return 0;
2060 }
2061
2062 /* If given types g0 and g1 are registers they must be of the same type
2063 unless the expected operand type register overlap is null.
2064 Memory operand size of certain SIMD instructions is also being checked
2065 here. */
2066
2067 static INLINE int
2068 operand_type_register_match (i386_operand_type g0,
2069 i386_operand_type t0,
2070 i386_operand_type g1,
2071 i386_operand_type t1)
2072 {
2073 if (!g0.bitfield.reg
2074 && !g0.bitfield.regsimd
2075 && (!operand_type_check (g0, anymem)
2076 || g0.bitfield.unspecified
2077 || !t0.bitfield.regsimd))
2078 return 1;
2079
2080 if (!g1.bitfield.reg
2081 && !g1.bitfield.regsimd
2082 && (!operand_type_check (g1, anymem)
2083 || g1.bitfield.unspecified
2084 || !t1.bitfield.regsimd))
2085 return 1;
2086
2087 if (g0.bitfield.byte == g1.bitfield.byte
2088 && g0.bitfield.word == g1.bitfield.word
2089 && g0.bitfield.dword == g1.bitfield.dword
2090 && g0.bitfield.qword == g1.bitfield.qword
2091 && g0.bitfield.xmmword == g1.bitfield.xmmword
2092 && g0.bitfield.ymmword == g1.bitfield.ymmword
2093 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2094 return 1;
2095
2096 if (!(t0.bitfield.byte & t1.bitfield.byte)
2097 && !(t0.bitfield.word & t1.bitfield.word)
2098 && !(t0.bitfield.dword & t1.bitfield.dword)
2099 && !(t0.bitfield.qword & t1.bitfield.qword)
2100 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2101 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2102 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2103 return 1;
2104
2105 i.error = register_type_mismatch;
2106
2107 return 0;
2108 }
2109
2110 static INLINE unsigned int
2111 register_number (const reg_entry *r)
2112 {
2113 unsigned int nr = r->reg_num;
2114
2115 if (r->reg_flags & RegRex)
2116 nr += 8;
2117
2118 if (r->reg_flags & RegVRex)
2119 nr += 16;
2120
2121 return nr;
2122 }
2123
2124 static INLINE unsigned int
2125 mode_from_disp_size (i386_operand_type t)
2126 {
2127 if (t.bitfield.disp8)
2128 return 1;
2129 else if (t.bitfield.disp16
2130 || t.bitfield.disp32
2131 || t.bitfield.disp32s)
2132 return 2;
2133 else
2134 return 0;
2135 }
2136
2137 static INLINE int
2138 fits_in_signed_byte (addressT num)
2139 {
2140 return num + 0x80 <= 0xff;
2141 }
2142
2143 static INLINE int
2144 fits_in_unsigned_byte (addressT num)
2145 {
2146 return num <= 0xff;
2147 }
2148
2149 static INLINE int
2150 fits_in_unsigned_word (addressT num)
2151 {
2152 return num <= 0xffff;
2153 }
2154
2155 static INLINE int
2156 fits_in_signed_word (addressT num)
2157 {
2158 return num + 0x8000 <= 0xffff;
2159 }
2160
2161 static INLINE int
2162 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2163 {
2164 #ifndef BFD64
2165 return 1;
2166 #else
2167 return num + 0x80000000 <= 0xffffffff;
2168 #endif
2169 } /* fits_in_signed_long() */
2170
2171 static INLINE int
2172 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2173 {
2174 #ifndef BFD64
2175 return 1;
2176 #else
2177 return num <= 0xffffffff;
2178 #endif
2179 } /* fits_in_unsigned_long() */
2180
2181 static INLINE int
2182 fits_in_disp8 (offsetT num)
2183 {
2184 int shift = i.memshift;
2185 unsigned int mask;
2186
2187 if (shift == -1)
2188 abort ();
2189
2190 mask = (1 << shift) - 1;
2191
2192 /* Return 0 if NUM isn't properly aligned. */
2193 if ((num & mask))
2194 return 0;
2195
2196 /* Check if NUM will fit in 8bit after shift. */
2197 return fits_in_signed_byte (num >> shift);
2198 }
2199
2200 static INLINE int
2201 fits_in_imm4 (offsetT num)
2202 {
2203 return (num & 0xf) == num;
2204 }
2205
2206 static i386_operand_type
2207 smallest_imm_type (offsetT num)
2208 {
2209 i386_operand_type t;
2210
2211 operand_type_set (&t, 0);
2212 t.bitfield.imm64 = 1;
2213
2214 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2215 {
2216 /* This code is disabled on the 486 because all the Imm1 forms
2217 in the opcode table are slower on the i486. They're the
2218 versions with the implicitly specified single-position
2219 displacement, which has another syntax if you really want to
2220 use that form. */
2221 t.bitfield.imm1 = 1;
2222 t.bitfield.imm8 = 1;
2223 t.bitfield.imm8s = 1;
2224 t.bitfield.imm16 = 1;
2225 t.bitfield.imm32 = 1;
2226 t.bitfield.imm32s = 1;
2227 }
2228 else if (fits_in_signed_byte (num))
2229 {
2230 t.bitfield.imm8 = 1;
2231 t.bitfield.imm8s = 1;
2232 t.bitfield.imm16 = 1;
2233 t.bitfield.imm32 = 1;
2234 t.bitfield.imm32s = 1;
2235 }
2236 else if (fits_in_unsigned_byte (num))
2237 {
2238 t.bitfield.imm8 = 1;
2239 t.bitfield.imm16 = 1;
2240 t.bitfield.imm32 = 1;
2241 t.bitfield.imm32s = 1;
2242 }
2243 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2244 {
2245 t.bitfield.imm16 = 1;
2246 t.bitfield.imm32 = 1;
2247 t.bitfield.imm32s = 1;
2248 }
2249 else if (fits_in_signed_long (num))
2250 {
2251 t.bitfield.imm32 = 1;
2252 t.bitfield.imm32s = 1;
2253 }
2254 else if (fits_in_unsigned_long (num))
2255 t.bitfield.imm32 = 1;
2256
2257 return t;
2258 }
2259
2260 static offsetT
2261 offset_in_range (offsetT val, int size)
2262 {
2263 addressT mask;
2264
2265 switch (size)
2266 {
2267 case 1: mask = ((addressT) 1 << 8) - 1; break;
2268 case 2: mask = ((addressT) 1 << 16) - 1; break;
2269 case 4: mask = ((addressT) 2 << 31) - 1; break;
2270 #ifdef BFD64
2271 case 8: mask = ((addressT) 2 << 63) - 1; break;
2272 #endif
2273 default: abort ();
2274 }
2275
2276 #ifdef BFD64
2277 /* If BFD64, sign extend val for 32bit address mode. */
2278 if (flag_code != CODE_64BIT
2279 || i.prefix[ADDR_PREFIX])
2280 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2281 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2282 #endif
2283
2284 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2285 {
2286 char buf1[40], buf2[40];
2287
2288 sprint_value (buf1, val);
2289 sprint_value (buf2, val & mask);
2290 as_warn (_("%s shortened to %s"), buf1, buf2);
2291 }
2292 return val & mask;
2293 }
2294
2295 enum PREFIX_GROUP
2296 {
2297 PREFIX_EXIST = 0,
2298 PREFIX_LOCK,
2299 PREFIX_REP,
2300 PREFIX_DS,
2301 PREFIX_OTHER
2302 };
2303
2304 /* Returns
2305 a. PREFIX_EXIST if attempting to add a prefix where one from the
2306 same class already exists.
2307 b. PREFIX_LOCK if lock prefix is added.
2308 c. PREFIX_REP if rep/repne prefix is added.
2309 d. PREFIX_DS if ds prefix is added.
2310 e. PREFIX_OTHER if other prefix is added.
2311 */
2312
2313 static enum PREFIX_GROUP
2314 add_prefix (unsigned int prefix)
2315 {
2316 enum PREFIX_GROUP ret = PREFIX_OTHER;
2317 unsigned int q;
2318
2319 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2320 && flag_code == CODE_64BIT)
2321 {
2322 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2323 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2324 && (prefix & (REX_R | REX_X | REX_B))))
2325 ret = PREFIX_EXIST;
2326 q = REX_PREFIX;
2327 }
2328 else
2329 {
2330 switch (prefix)
2331 {
2332 default:
2333 abort ();
2334
2335 case DS_PREFIX_OPCODE:
2336 ret = PREFIX_DS;
2337 /* Fall through. */
2338 case CS_PREFIX_OPCODE:
2339 case ES_PREFIX_OPCODE:
2340 case FS_PREFIX_OPCODE:
2341 case GS_PREFIX_OPCODE:
2342 case SS_PREFIX_OPCODE:
2343 q = SEG_PREFIX;
2344 break;
2345
2346 case REPNE_PREFIX_OPCODE:
2347 case REPE_PREFIX_OPCODE:
2348 q = REP_PREFIX;
2349 ret = PREFIX_REP;
2350 break;
2351
2352 case LOCK_PREFIX_OPCODE:
2353 q = LOCK_PREFIX;
2354 ret = PREFIX_LOCK;
2355 break;
2356
2357 case FWAIT_OPCODE:
2358 q = WAIT_PREFIX;
2359 break;
2360
2361 case ADDR_PREFIX_OPCODE:
2362 q = ADDR_PREFIX;
2363 break;
2364
2365 case DATA_PREFIX_OPCODE:
2366 q = DATA_PREFIX;
2367 break;
2368 }
2369 if (i.prefix[q] != 0)
2370 ret = PREFIX_EXIST;
2371 }
2372
2373 if (ret)
2374 {
2375 if (!i.prefix[q])
2376 ++i.prefixes;
2377 i.prefix[q] |= prefix;
2378 }
2379 else
2380 as_bad (_("same type of prefix used twice"));
2381
2382 return ret;
2383 }
2384
2385 static void
2386 update_code_flag (int value, int check)
2387 {
2388 PRINTF_LIKE ((*as_error));
2389
2390 flag_code = (enum flag_code) value;
2391 if (flag_code == CODE_64BIT)
2392 {
2393 cpu_arch_flags.bitfield.cpu64 = 1;
2394 cpu_arch_flags.bitfield.cpuno64 = 0;
2395 }
2396 else
2397 {
2398 cpu_arch_flags.bitfield.cpu64 = 0;
2399 cpu_arch_flags.bitfield.cpuno64 = 1;
2400 }
2401 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2402 {
2403 if (check)
2404 as_error = as_fatal;
2405 else
2406 as_error = as_bad;
2407 (*as_error) (_("64bit mode not supported on `%s'."),
2408 cpu_arch_name ? cpu_arch_name : default_arch);
2409 }
2410 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2411 {
2412 if (check)
2413 as_error = as_fatal;
2414 else
2415 as_error = as_bad;
2416 (*as_error) (_("32bit mode not supported on `%s'."),
2417 cpu_arch_name ? cpu_arch_name : default_arch);
2418 }
2419 stackop_size = '\0';
2420 }
2421
2422 static void
2423 set_code_flag (int value)
2424 {
2425 update_code_flag (value, 0);
2426 }
2427
2428 static void
2429 set_16bit_gcc_code_flag (int new_code_flag)
2430 {
2431 flag_code = (enum flag_code) new_code_flag;
2432 if (flag_code != CODE_16BIT)
2433 abort ();
2434 cpu_arch_flags.bitfield.cpu64 = 0;
2435 cpu_arch_flags.bitfield.cpuno64 = 1;
2436 stackop_size = LONG_MNEM_SUFFIX;
2437 }
2438
2439 static void
2440 set_intel_syntax (int syntax_flag)
2441 {
2442 /* Find out if register prefixing is specified. */
2443 int ask_naked_reg = 0;
2444
2445 SKIP_WHITESPACE ();
2446 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2447 {
2448 char *string;
2449 int e = get_symbol_name (&string);
2450
2451 if (strcmp (string, "prefix") == 0)
2452 ask_naked_reg = 1;
2453 else if (strcmp (string, "noprefix") == 0)
2454 ask_naked_reg = -1;
2455 else
2456 as_bad (_("bad argument to syntax directive."));
2457 (void) restore_line_pointer (e);
2458 }
2459 demand_empty_rest_of_line ();
2460
2461 intel_syntax = syntax_flag;
2462
2463 if (ask_naked_reg == 0)
2464 allow_naked_reg = (intel_syntax
2465 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2466 else
2467 allow_naked_reg = (ask_naked_reg < 0);
2468
2469 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2470
2471 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2472 identifier_chars['$'] = intel_syntax ? '$' : 0;
2473 register_prefix = allow_naked_reg ? "" : "%";
2474 }
2475
2476 static void
2477 set_intel_mnemonic (int mnemonic_flag)
2478 {
2479 intel_mnemonic = mnemonic_flag;
2480 }
2481
2482 static void
2483 set_allow_index_reg (int flag)
2484 {
2485 allow_index_reg = flag;
2486 }
2487
2488 static void
2489 set_check (int what)
2490 {
2491 enum check_kind *kind;
2492 const char *str;
2493
2494 if (what)
2495 {
2496 kind = &operand_check;
2497 str = "operand";
2498 }
2499 else
2500 {
2501 kind = &sse_check;
2502 str = "sse";
2503 }
2504
2505 SKIP_WHITESPACE ();
2506
2507 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2508 {
2509 char *string;
2510 int e = get_symbol_name (&string);
2511
2512 if (strcmp (string, "none") == 0)
2513 *kind = check_none;
2514 else if (strcmp (string, "warning") == 0)
2515 *kind = check_warning;
2516 else if (strcmp (string, "error") == 0)
2517 *kind = check_error;
2518 else
2519 as_bad (_("bad argument to %s_check directive."), str);
2520 (void) restore_line_pointer (e);
2521 }
2522 else
2523 as_bad (_("missing argument for %s_check directive"), str);
2524
2525 demand_empty_rest_of_line ();
2526 }
2527
2528 static void
2529 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2530 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2531 {
2532 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2533 static const char *arch;
2534
2535 /* Intel LIOM is only supported on ELF. */
2536 if (!IS_ELF)
2537 return;
2538
2539 if (!arch)
2540 {
2541 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2542 use default_arch. */
2543 arch = cpu_arch_name;
2544 if (!arch)
2545 arch = default_arch;
2546 }
2547
2548 /* If we are targeting Intel MCU, we must enable it. */
2549 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2550 || new_flag.bitfield.cpuiamcu)
2551 return;
2552
2553 /* If we are targeting Intel L1OM, we must enable it. */
2554 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2555 || new_flag.bitfield.cpul1om)
2556 return;
2557
2558 /* If we are targeting Intel K1OM, we must enable it. */
2559 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2560 || new_flag.bitfield.cpuk1om)
2561 return;
2562
2563 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2564 #endif
2565 }
2566
2567 static void
2568 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2569 {
2570 SKIP_WHITESPACE ();
2571
2572 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2573 {
2574 char *string;
2575 int e = get_symbol_name (&string);
2576 unsigned int j;
2577 i386_cpu_flags flags;
2578
2579 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2580 {
2581 if (strcmp (string, cpu_arch[j].name) == 0)
2582 {
2583 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2584
2585 if (*string != '.')
2586 {
2587 cpu_arch_name = cpu_arch[j].name;
2588 cpu_sub_arch_name = NULL;
2589 cpu_arch_flags = cpu_arch[j].flags;
2590 if (flag_code == CODE_64BIT)
2591 {
2592 cpu_arch_flags.bitfield.cpu64 = 1;
2593 cpu_arch_flags.bitfield.cpuno64 = 0;
2594 }
2595 else
2596 {
2597 cpu_arch_flags.bitfield.cpu64 = 0;
2598 cpu_arch_flags.bitfield.cpuno64 = 1;
2599 }
2600 cpu_arch_isa = cpu_arch[j].type;
2601 cpu_arch_isa_flags = cpu_arch[j].flags;
2602 if (!cpu_arch_tune_set)
2603 {
2604 cpu_arch_tune = cpu_arch_isa;
2605 cpu_arch_tune_flags = cpu_arch_isa_flags;
2606 }
2607 break;
2608 }
2609
2610 flags = cpu_flags_or (cpu_arch_flags,
2611 cpu_arch[j].flags);
2612
2613 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2614 {
2615 if (cpu_sub_arch_name)
2616 {
2617 char *name = cpu_sub_arch_name;
2618 cpu_sub_arch_name = concat (name,
2619 cpu_arch[j].name,
2620 (const char *) NULL);
2621 free (name);
2622 }
2623 else
2624 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2625 cpu_arch_flags = flags;
2626 cpu_arch_isa_flags = flags;
2627 }
2628 else
2629 cpu_arch_isa_flags
2630 = cpu_flags_or (cpu_arch_isa_flags,
2631 cpu_arch[j].flags);
2632 (void) restore_line_pointer (e);
2633 demand_empty_rest_of_line ();
2634 return;
2635 }
2636 }
2637
2638 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2639 {
2640 /* Disable an ISA extension. */
2641 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2642 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2643 {
2644 flags = cpu_flags_and_not (cpu_arch_flags,
2645 cpu_noarch[j].flags);
2646 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2647 {
2648 if (cpu_sub_arch_name)
2649 {
2650 char *name = cpu_sub_arch_name;
2651 cpu_sub_arch_name = concat (name, string,
2652 (const char *) NULL);
2653 free (name);
2654 }
2655 else
2656 cpu_sub_arch_name = xstrdup (string);
2657 cpu_arch_flags = flags;
2658 cpu_arch_isa_flags = flags;
2659 }
2660 (void) restore_line_pointer (e);
2661 demand_empty_rest_of_line ();
2662 return;
2663 }
2664
2665 j = ARRAY_SIZE (cpu_arch);
2666 }
2667
2668 if (j >= ARRAY_SIZE (cpu_arch))
2669 as_bad (_("no such architecture: `%s'"), string);
2670
2671 *input_line_pointer = e;
2672 }
2673 else
2674 as_bad (_("missing cpu architecture"));
2675
2676 no_cond_jump_promotion = 0;
2677 if (*input_line_pointer == ','
2678 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2679 {
2680 char *string;
2681 char e;
2682
2683 ++input_line_pointer;
2684 e = get_symbol_name (&string);
2685
2686 if (strcmp (string, "nojumps") == 0)
2687 no_cond_jump_promotion = 1;
2688 else if (strcmp (string, "jumps") == 0)
2689 ;
2690 else
2691 as_bad (_("no such architecture modifier: `%s'"), string);
2692
2693 (void) restore_line_pointer (e);
2694 }
2695
2696 demand_empty_rest_of_line ();
2697 }
2698
2699 enum bfd_architecture
2700 i386_arch (void)
2701 {
2702 if (cpu_arch_isa == PROCESSOR_L1OM)
2703 {
2704 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2705 || flag_code != CODE_64BIT)
2706 as_fatal (_("Intel L1OM is 64bit ELF only"));
2707 return bfd_arch_l1om;
2708 }
2709 else if (cpu_arch_isa == PROCESSOR_K1OM)
2710 {
2711 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2712 || flag_code != CODE_64BIT)
2713 as_fatal (_("Intel K1OM is 64bit ELF only"));
2714 return bfd_arch_k1om;
2715 }
2716 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code == CODE_64BIT)
2720 as_fatal (_("Intel MCU is 32bit ELF only"));
2721 return bfd_arch_iamcu;
2722 }
2723 else
2724 return bfd_arch_i386;
2725 }
2726
2727 unsigned long
2728 i386_mach (void)
2729 {
2730 if (!strncmp (default_arch, "x86_64", 6))
2731 {
2732 if (cpu_arch_isa == PROCESSOR_L1OM)
2733 {
2734 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2735 || default_arch[6] != '\0')
2736 as_fatal (_("Intel L1OM is 64bit ELF only"));
2737 return bfd_mach_l1om;
2738 }
2739 else if (cpu_arch_isa == PROCESSOR_K1OM)
2740 {
2741 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2742 || default_arch[6] != '\0')
2743 as_fatal (_("Intel K1OM is 64bit ELF only"));
2744 return bfd_mach_k1om;
2745 }
2746 else if (default_arch[6] == '\0')
2747 return bfd_mach_x86_64;
2748 else
2749 return bfd_mach_x64_32;
2750 }
2751 else if (!strcmp (default_arch, "i386")
2752 || !strcmp (default_arch, "iamcu"))
2753 {
2754 if (cpu_arch_isa == PROCESSOR_IAMCU)
2755 {
2756 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2757 as_fatal (_("Intel MCU is 32bit ELF only"));
2758 return bfd_mach_i386_iamcu;
2759 }
2760 else
2761 return bfd_mach_i386_i386;
2762 }
2763 else
2764 as_fatal (_("unknown architecture"));
2765 }
2766 \f
2767 void
2768 md_begin (void)
2769 {
2770 const char *hash_err;
2771
2772 /* Support pseudo prefixes like {disp32}. */
2773 lex_type ['{'] = LEX_BEGIN_NAME;
2774
2775 /* Initialize op_hash hash table. */
2776 op_hash = hash_new ();
2777
2778 {
2779 const insn_template *optab;
2780 templates *core_optab;
2781
2782 /* Setup for loop. */
2783 optab = i386_optab;
2784 core_optab = XNEW (templates);
2785 core_optab->start = optab;
2786
2787 while (1)
2788 {
2789 ++optab;
2790 if (optab->name == NULL
2791 || strcmp (optab->name, (optab - 1)->name) != 0)
2792 {
2793 /* different name --> ship out current template list;
2794 add to hash table; & begin anew. */
2795 core_optab->end = optab;
2796 hash_err = hash_insert (op_hash,
2797 (optab - 1)->name,
2798 (void *) core_optab);
2799 if (hash_err)
2800 {
2801 as_fatal (_("can't hash %s: %s"),
2802 (optab - 1)->name,
2803 hash_err);
2804 }
2805 if (optab->name == NULL)
2806 break;
2807 core_optab = XNEW (templates);
2808 core_optab->start = optab;
2809 }
2810 }
2811 }
2812
2813 /* Initialize reg_hash hash table. */
2814 reg_hash = hash_new ();
2815 {
2816 const reg_entry *regtab;
2817 unsigned int regtab_size = i386_regtab_size;
2818
2819 for (regtab = i386_regtab; regtab_size--; regtab++)
2820 {
2821 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2822 if (hash_err)
2823 as_fatal (_("can't hash %s: %s"),
2824 regtab->reg_name,
2825 hash_err);
2826 }
2827 }
2828
2829 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2830 {
2831 int c;
2832 char *p;
2833
2834 for (c = 0; c < 256; c++)
2835 {
2836 if (ISDIGIT (c))
2837 {
2838 digit_chars[c] = c;
2839 mnemonic_chars[c] = c;
2840 register_chars[c] = c;
2841 operand_chars[c] = c;
2842 }
2843 else if (ISLOWER (c))
2844 {
2845 mnemonic_chars[c] = c;
2846 register_chars[c] = c;
2847 operand_chars[c] = c;
2848 }
2849 else if (ISUPPER (c))
2850 {
2851 mnemonic_chars[c] = TOLOWER (c);
2852 register_chars[c] = mnemonic_chars[c];
2853 operand_chars[c] = c;
2854 }
2855 else if (c == '{' || c == '}')
2856 {
2857 mnemonic_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
2860
2861 if (ISALPHA (c) || ISDIGIT (c))
2862 identifier_chars[c] = c;
2863 else if (c >= 128)
2864 {
2865 identifier_chars[c] = c;
2866 operand_chars[c] = c;
2867 }
2868 }
2869
2870 #ifdef LEX_AT
2871 identifier_chars['@'] = '@';
2872 #endif
2873 #ifdef LEX_QM
2874 identifier_chars['?'] = '?';
2875 operand_chars['?'] = '?';
2876 #endif
2877 digit_chars['-'] = '-';
2878 mnemonic_chars['_'] = '_';
2879 mnemonic_chars['-'] = '-';
2880 mnemonic_chars['.'] = '.';
2881 identifier_chars['_'] = '_';
2882 identifier_chars['.'] = '.';
2883
2884 for (p = operand_special_chars; *p != '\0'; p++)
2885 operand_chars[(unsigned char) *p] = *p;
2886 }
2887
2888 if (flag_code == CODE_64BIT)
2889 {
2890 #if defined (OBJ_COFF) && defined (TE_PE)
2891 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2892 ? 32 : 16);
2893 #else
2894 x86_dwarf2_return_column = 16;
2895 #endif
2896 x86_cie_data_alignment = -8;
2897 }
2898 else
2899 {
2900 x86_dwarf2_return_column = 8;
2901 x86_cie_data_alignment = -4;
2902 }
2903 }
2904
2905 void
2906 i386_print_statistics (FILE *file)
2907 {
2908 hash_print_statistics (file, "i386 opcode", op_hash);
2909 hash_print_statistics (file, "i386 register", reg_hash);
2910 }
2911 \f
2912 #ifdef DEBUG386
2913
2914 /* Debugging routines for md_assemble. */
2915 static void pte (insn_template *);
2916 static void pt (i386_operand_type);
2917 static void pe (expressionS *);
2918 static void ps (symbolS *);
2919
2920 static void
2921 pi (char *line, i386_insn *x)
2922 {
2923 unsigned int j;
2924
2925 fprintf (stdout, "%s: template ", line);
2926 pte (&x->tm);
2927 fprintf (stdout, " address: base %s index %s scale %x\n",
2928 x->base_reg ? x->base_reg->reg_name : "none",
2929 x->index_reg ? x->index_reg->reg_name : "none",
2930 x->log2_scale_factor);
2931 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2932 x->rm.mode, x->rm.reg, x->rm.regmem);
2933 fprintf (stdout, " sib: base %x index %x scale %x\n",
2934 x->sib.base, x->sib.index, x->sib.scale);
2935 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2936 (x->rex & REX_W) != 0,
2937 (x->rex & REX_R) != 0,
2938 (x->rex & REX_X) != 0,
2939 (x->rex & REX_B) != 0);
2940 for (j = 0; j < x->operands; j++)
2941 {
2942 fprintf (stdout, " #%d: ", j + 1);
2943 pt (x->types[j]);
2944 fprintf (stdout, "\n");
2945 if (x->types[j].bitfield.reg
2946 || x->types[j].bitfield.regmmx
2947 || x->types[j].bitfield.regsimd
2948 || x->types[j].bitfield.sreg2
2949 || x->types[j].bitfield.sreg3
2950 || x->types[j].bitfield.control
2951 || x->types[j].bitfield.debug
2952 || x->types[j].bitfield.test)
2953 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2954 if (operand_type_check (x->types[j], imm))
2955 pe (x->op[j].imms);
2956 if (operand_type_check (x->types[j], disp))
2957 pe (x->op[j].disps);
2958 }
2959 }
2960
2961 static void
2962 pte (insn_template *t)
2963 {
2964 unsigned int j;
2965 fprintf (stdout, " %d operands ", t->operands);
2966 fprintf (stdout, "opcode %x ", t->base_opcode);
2967 if (t->extension_opcode != None)
2968 fprintf (stdout, "ext %x ", t->extension_opcode);
2969 if (t->opcode_modifier.d)
2970 fprintf (stdout, "D");
2971 if (t->opcode_modifier.w)
2972 fprintf (stdout, "W");
2973 fprintf (stdout, "\n");
2974 for (j = 0; j < t->operands; j++)
2975 {
2976 fprintf (stdout, " #%d type ", j + 1);
2977 pt (t->operand_types[j]);
2978 fprintf (stdout, "\n");
2979 }
2980 }
2981
2982 static void
2983 pe (expressionS *e)
2984 {
2985 fprintf (stdout, " operation %d\n", e->X_op);
2986 fprintf (stdout, " add_number %ld (%lx)\n",
2987 (long) e->X_add_number, (long) e->X_add_number);
2988 if (e->X_add_symbol)
2989 {
2990 fprintf (stdout, " add_symbol ");
2991 ps (e->X_add_symbol);
2992 fprintf (stdout, "\n");
2993 }
2994 if (e->X_op_symbol)
2995 {
2996 fprintf (stdout, " op_symbol ");
2997 ps (e->X_op_symbol);
2998 fprintf (stdout, "\n");
2999 }
3000 }
3001
3002 static void
3003 ps (symbolS *s)
3004 {
3005 fprintf (stdout, "%s type %s%s",
3006 S_GET_NAME (s),
3007 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3008 segment_name (S_GET_SEGMENT (s)));
3009 }
3010
3011 static struct type_name
3012 {
3013 i386_operand_type mask;
3014 const char *name;
3015 }
3016 const type_names[] =
3017 {
3018 { OPERAND_TYPE_REG8, "r8" },
3019 { OPERAND_TYPE_REG16, "r16" },
3020 { OPERAND_TYPE_REG32, "r32" },
3021 { OPERAND_TYPE_REG64, "r64" },
3022 { OPERAND_TYPE_IMM8, "i8" },
3023 { OPERAND_TYPE_IMM8, "i8s" },
3024 { OPERAND_TYPE_IMM16, "i16" },
3025 { OPERAND_TYPE_IMM32, "i32" },
3026 { OPERAND_TYPE_IMM32S, "i32s" },
3027 { OPERAND_TYPE_IMM64, "i64" },
3028 { OPERAND_TYPE_IMM1, "i1" },
3029 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3030 { OPERAND_TYPE_DISP8, "d8" },
3031 { OPERAND_TYPE_DISP16, "d16" },
3032 { OPERAND_TYPE_DISP32, "d32" },
3033 { OPERAND_TYPE_DISP32S, "d32s" },
3034 { OPERAND_TYPE_DISP64, "d64" },
3035 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3036 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3037 { OPERAND_TYPE_CONTROL, "control reg" },
3038 { OPERAND_TYPE_TEST, "test reg" },
3039 { OPERAND_TYPE_DEBUG, "debug reg" },
3040 { OPERAND_TYPE_FLOATREG, "FReg" },
3041 { OPERAND_TYPE_FLOATACC, "FAcc" },
3042 { OPERAND_TYPE_SREG2, "SReg2" },
3043 { OPERAND_TYPE_SREG3, "SReg3" },
3044 { OPERAND_TYPE_ACC, "Acc" },
3045 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3046 { OPERAND_TYPE_REGMMX, "rMMX" },
3047 { OPERAND_TYPE_REGXMM, "rXMM" },
3048 { OPERAND_TYPE_REGYMM, "rYMM" },
3049 { OPERAND_TYPE_REGZMM, "rZMM" },
3050 { OPERAND_TYPE_REGMASK, "Mask reg" },
3051 { OPERAND_TYPE_ESSEG, "es" },
3052 };
3053
3054 static void
3055 pt (i386_operand_type t)
3056 {
3057 unsigned int j;
3058 i386_operand_type a;
3059
3060 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3061 {
3062 a = operand_type_and (t, type_names[j].mask);
3063 if (!operand_type_all_zero (&a))
3064 fprintf (stdout, "%s, ", type_names[j].name);
3065 }
3066 fflush (stdout);
3067 }
3068
3069 #endif /* DEBUG386 */
3070 \f
3071 static bfd_reloc_code_real_type
3072 reloc (unsigned int size,
3073 int pcrel,
3074 int sign,
3075 bfd_reloc_code_real_type other)
3076 {
3077 if (other != NO_RELOC)
3078 {
3079 reloc_howto_type *rel;
3080
3081 if (size == 8)
3082 switch (other)
3083 {
3084 case BFD_RELOC_X86_64_GOT32:
3085 return BFD_RELOC_X86_64_GOT64;
3086 break;
3087 case BFD_RELOC_X86_64_GOTPLT64:
3088 return BFD_RELOC_X86_64_GOTPLT64;
3089 break;
3090 case BFD_RELOC_X86_64_PLTOFF64:
3091 return BFD_RELOC_X86_64_PLTOFF64;
3092 break;
3093 case BFD_RELOC_X86_64_GOTPC32:
3094 other = BFD_RELOC_X86_64_GOTPC64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPCREL:
3097 other = BFD_RELOC_X86_64_GOTPCREL64;
3098 break;
3099 case BFD_RELOC_X86_64_TPOFF32:
3100 other = BFD_RELOC_X86_64_TPOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_DTPOFF32:
3103 other = BFD_RELOC_X86_64_DTPOFF64;
3104 break;
3105 default:
3106 break;
3107 }
3108
3109 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3110 if (other == BFD_RELOC_SIZE32)
3111 {
3112 if (size == 8)
3113 other = BFD_RELOC_SIZE64;
3114 if (pcrel)
3115 {
3116 as_bad (_("there are no pc-relative size relocations"));
3117 return NO_RELOC;
3118 }
3119 }
3120 #endif
3121
3122 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3123 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3124 sign = -1;
3125
3126 rel = bfd_reloc_type_lookup (stdoutput, other);
3127 if (!rel)
3128 as_bad (_("unknown relocation (%u)"), other);
3129 else if (size != bfd_get_reloc_size (rel))
3130 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3131 bfd_get_reloc_size (rel),
3132 size);
3133 else if (pcrel && !rel->pc_relative)
3134 as_bad (_("non-pc-relative relocation for pc-relative field"));
3135 else if ((rel->complain_on_overflow == complain_overflow_signed
3136 && !sign)
3137 || (rel->complain_on_overflow == complain_overflow_unsigned
3138 && sign > 0))
3139 as_bad (_("relocated field and relocation type differ in signedness"));
3140 else
3141 return other;
3142 return NO_RELOC;
3143 }
3144
3145 if (pcrel)
3146 {
3147 if (!sign)
3148 as_bad (_("there are no unsigned pc-relative relocations"));
3149 switch (size)
3150 {
3151 case 1: return BFD_RELOC_8_PCREL;
3152 case 2: return BFD_RELOC_16_PCREL;
3153 case 4: return BFD_RELOC_32_PCREL;
3154 case 8: return BFD_RELOC_64_PCREL;
3155 }
3156 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3157 }
3158 else
3159 {
3160 if (sign > 0)
3161 switch (size)
3162 {
3163 case 4: return BFD_RELOC_X86_64_32S;
3164 }
3165 else
3166 switch (size)
3167 {
3168 case 1: return BFD_RELOC_8;
3169 case 2: return BFD_RELOC_16;
3170 case 4: return BFD_RELOC_32;
3171 case 8: return BFD_RELOC_64;
3172 }
3173 as_bad (_("cannot do %s %u byte relocation"),
3174 sign > 0 ? "signed" : "unsigned", size);
3175 }
3176
3177 return NO_RELOC;
3178 }
3179
3180 /* Here we decide which fixups can be adjusted to make them relative to
3181 the beginning of the section instead of the symbol. Basically we need
3182 to make sure that the dynamic relocations are done correctly, so in
3183 some cases we force the original symbol to be used. */
3184
3185 int
3186 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3187 {
3188 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3189 if (!IS_ELF)
3190 return 1;
3191
3192 /* Don't adjust pc-relative references to merge sections in 64-bit
3193 mode. */
3194 if (use_rela_relocations
3195 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3196 && fixP->fx_pcrel)
3197 return 0;
3198
3199 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3200 and changed later by validate_fix. */
3201 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3202 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3203 return 0;
3204
3205 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3206 for size relocations. */
3207 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3208 || fixP->fx_r_type == BFD_RELOC_SIZE64
3209 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3210 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3211 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3212 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3213 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3214 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3223 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3224 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3225 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3238 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3239 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3240 return 0;
3241 #endif
3242 return 1;
3243 }
3244
3245 static int
3246 intel_float_operand (const char *mnemonic)
3247 {
3248 /* Note that the value returned is meaningful only for opcodes with (memory)
3249 operands, hence the code here is free to improperly handle opcodes that
3250 have no operands (for better performance and smaller code). */
3251
3252 if (mnemonic[0] != 'f')
3253 return 0; /* non-math */
3254
3255 switch (mnemonic[1])
3256 {
3257 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3258 the fs segment override prefix not currently handled because no
3259 call path can make opcodes without operands get here */
3260 case 'i':
3261 return 2 /* integer op */;
3262 case 'l':
3263 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3264 return 3; /* fldcw/fldenv */
3265 break;
3266 case 'n':
3267 if (mnemonic[2] != 'o' /* fnop */)
3268 return 3; /* non-waiting control op */
3269 break;
3270 case 'r':
3271 if (mnemonic[2] == 's')
3272 return 3; /* frstor/frstpm */
3273 break;
3274 case 's':
3275 if (mnemonic[2] == 'a')
3276 return 3; /* fsave */
3277 if (mnemonic[2] == 't')
3278 {
3279 switch (mnemonic[3])
3280 {
3281 case 'c': /* fstcw */
3282 case 'd': /* fstdw */
3283 case 'e': /* fstenv */
3284 case 's': /* fsts[gw] */
3285 return 3;
3286 }
3287 }
3288 break;
3289 case 'x':
3290 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3291 return 0; /* fxsave/fxrstor are not really math ops */
3292 break;
3293 }
3294
3295 return 1;
3296 }
3297
3298 /* Build the VEX prefix. */
3299
3300 static void
3301 build_vex_prefix (const insn_template *t)
3302 {
3303 unsigned int register_specifier;
3304 unsigned int implied_prefix;
3305 unsigned int vector_length;
3306
3307 /* Check register specifier. */
3308 if (i.vex.register_specifier)
3309 {
3310 register_specifier =
3311 ~register_number (i.vex.register_specifier) & 0xf;
3312 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3313 }
3314 else
3315 register_specifier = 0xf;
3316
3317 /* Use 2-byte VEX prefix by swapping destination and source
3318 operand. */
3319 if (i.vec_encoding != vex_encoding_vex3
3320 && i.dir_encoding == dir_encoding_default
3321 && i.operands == i.reg_operands
3322 && i.tm.opcode_modifier.vexopcode == VEX0F
3323 && i.tm.opcode_modifier.load
3324 && i.rex == REX_B)
3325 {
3326 unsigned int xchg = i.operands - 1;
3327 union i386_op temp_op;
3328 i386_operand_type temp_type;
3329
3330 temp_type = i.types[xchg];
3331 i.types[xchg] = i.types[0];
3332 i.types[0] = temp_type;
3333 temp_op = i.op[xchg];
3334 i.op[xchg] = i.op[0];
3335 i.op[0] = temp_op;
3336
3337 gas_assert (i.rm.mode == 3);
3338
3339 i.rex = REX_R;
3340 xchg = i.rm.regmem;
3341 i.rm.regmem = i.rm.reg;
3342 i.rm.reg = xchg;
3343
3344 /* Use the next insn. */
3345 i.tm = t[1];
3346 }
3347
3348 if (i.tm.opcode_modifier.vex == VEXScalar)
3349 vector_length = avxscalar;
3350 else if (i.tm.opcode_modifier.vex == VEX256)
3351 vector_length = 1;
3352 else
3353 {
3354 unsigned int op;
3355
3356 vector_length = 0;
3357 for (op = 0; op < t->operands; ++op)
3358 if (t->operand_types[op].bitfield.xmmword
3359 && t->operand_types[op].bitfield.ymmword
3360 && i.types[op].bitfield.ymmword)
3361 {
3362 vector_length = 1;
3363 break;
3364 }
3365 }
3366
3367 switch ((i.tm.base_opcode >> 8) & 0xff)
3368 {
3369 case 0:
3370 implied_prefix = 0;
3371 break;
3372 case DATA_PREFIX_OPCODE:
3373 implied_prefix = 1;
3374 break;
3375 case REPE_PREFIX_OPCODE:
3376 implied_prefix = 2;
3377 break;
3378 case REPNE_PREFIX_OPCODE:
3379 implied_prefix = 3;
3380 break;
3381 default:
3382 abort ();
3383 }
3384
3385 /* Use 2-byte VEX prefix if possible. */
3386 if (i.vec_encoding != vex_encoding_vex3
3387 && i.tm.opcode_modifier.vexopcode == VEX0F
3388 && i.tm.opcode_modifier.vexw != VEXW1
3389 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3390 {
3391 /* 2-byte VEX prefix. */
3392 unsigned int r;
3393
3394 i.vex.length = 2;
3395 i.vex.bytes[0] = 0xc5;
3396
3397 /* Check the REX.R bit. */
3398 r = (i.rex & REX_R) ? 0 : 1;
3399 i.vex.bytes[1] = (r << 7
3400 | register_specifier << 3
3401 | vector_length << 2
3402 | implied_prefix);
3403 }
3404 else
3405 {
3406 /* 3-byte VEX prefix. */
3407 unsigned int m, w;
3408
3409 i.vex.length = 3;
3410
3411 switch (i.tm.opcode_modifier.vexopcode)
3412 {
3413 case VEX0F:
3414 m = 0x1;
3415 i.vex.bytes[0] = 0xc4;
3416 break;
3417 case VEX0F38:
3418 m = 0x2;
3419 i.vex.bytes[0] = 0xc4;
3420 break;
3421 case VEX0F3A:
3422 m = 0x3;
3423 i.vex.bytes[0] = 0xc4;
3424 break;
3425 case XOP08:
3426 m = 0x8;
3427 i.vex.bytes[0] = 0x8f;
3428 break;
3429 case XOP09:
3430 m = 0x9;
3431 i.vex.bytes[0] = 0x8f;
3432 break;
3433 case XOP0A:
3434 m = 0xa;
3435 i.vex.bytes[0] = 0x8f;
3436 break;
3437 default:
3438 abort ();
3439 }
3440
3441 /* The high 3 bits of the second VEX byte are 1's compliment
3442 of RXB bits from REX. */
3443 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3444
3445 /* Check the REX.W bit. */
3446 w = (i.rex & REX_W) ? 1 : 0;
3447 if (i.tm.opcode_modifier.vexw == VEXW1)
3448 w = 1;
3449
3450 i.vex.bytes[2] = (w << 7
3451 | register_specifier << 3
3452 | vector_length << 2
3453 | implied_prefix);
3454 }
3455 }
3456
3457 static INLINE bfd_boolean
3458 is_evex_encoding (const insn_template *t)
3459 {
3460 return t->opcode_modifier.evex
3461 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3462 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3463 }
3464
3465 /* Build the EVEX prefix. */
3466
3467 static void
3468 build_evex_prefix (void)
3469 {
3470 unsigned int register_specifier;
3471 unsigned int implied_prefix;
3472 unsigned int m, w;
3473 rex_byte vrex_used = 0;
3474
3475 /* Check register specifier. */
3476 if (i.vex.register_specifier)
3477 {
3478 gas_assert ((i.vrex & REX_X) == 0);
3479
3480 register_specifier = i.vex.register_specifier->reg_num;
3481 if ((i.vex.register_specifier->reg_flags & RegRex))
3482 register_specifier += 8;
3483 /* The upper 16 registers are encoded in the fourth byte of the
3484 EVEX prefix. */
3485 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3486 i.vex.bytes[3] = 0x8;
3487 register_specifier = ~register_specifier & 0xf;
3488 }
3489 else
3490 {
3491 register_specifier = 0xf;
3492
3493 /* Encode upper 16 vector index register in the fourth byte of
3494 the EVEX prefix. */
3495 if (!(i.vrex & REX_X))
3496 i.vex.bytes[3] = 0x8;
3497 else
3498 vrex_used |= REX_X;
3499 }
3500
3501 switch ((i.tm.base_opcode >> 8) & 0xff)
3502 {
3503 case 0:
3504 implied_prefix = 0;
3505 break;
3506 case DATA_PREFIX_OPCODE:
3507 implied_prefix = 1;
3508 break;
3509 case REPE_PREFIX_OPCODE:
3510 implied_prefix = 2;
3511 break;
3512 case REPNE_PREFIX_OPCODE:
3513 implied_prefix = 3;
3514 break;
3515 default:
3516 abort ();
3517 }
3518
3519 /* 4 byte EVEX prefix. */
3520 i.vex.length = 4;
3521 i.vex.bytes[0] = 0x62;
3522
3523 /* mmmm bits. */
3524 switch (i.tm.opcode_modifier.vexopcode)
3525 {
3526 case VEX0F:
3527 m = 1;
3528 break;
3529 case VEX0F38:
3530 m = 2;
3531 break;
3532 case VEX0F3A:
3533 m = 3;
3534 break;
3535 default:
3536 abort ();
3537 break;
3538 }
3539
3540 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3541 bits from REX. */
3542 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3543
3544 /* The fifth bit of the second EVEX byte is 1's compliment of the
3545 REX_R bit in VREX. */
3546 if (!(i.vrex & REX_R))
3547 i.vex.bytes[1] |= 0x10;
3548 else
3549 vrex_used |= REX_R;
3550
3551 if ((i.reg_operands + i.imm_operands) == i.operands)
3552 {
3553 /* When all operands are registers, the REX_X bit in REX is not
3554 used. We reuse it to encode the upper 16 registers, which is
3555 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3556 as 1's compliment. */
3557 if ((i.vrex & REX_B))
3558 {
3559 vrex_used |= REX_B;
3560 i.vex.bytes[1] &= ~0x40;
3561 }
3562 }
3563
3564 /* EVEX instructions shouldn't need the REX prefix. */
3565 i.vrex &= ~vrex_used;
3566 gas_assert (i.vrex == 0);
3567
3568 /* Check the REX.W bit. */
3569 w = (i.rex & REX_W) ? 1 : 0;
3570 if (i.tm.opcode_modifier.vexw)
3571 {
3572 if (i.tm.opcode_modifier.vexw == VEXW1)
3573 w = 1;
3574 }
3575 /* If w is not set it means we are dealing with WIG instruction. */
3576 else if (!w)
3577 {
3578 if (evexwig == evexw1)
3579 w = 1;
3580 }
3581
3582 /* Encode the U bit. */
3583 implied_prefix |= 0x4;
3584
3585 /* The third byte of the EVEX prefix. */
3586 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3587
3588 /* The fourth byte of the EVEX prefix. */
3589 /* The zeroing-masking bit. */
3590 if (i.mask && i.mask->zeroing)
3591 i.vex.bytes[3] |= 0x80;
3592
3593 /* Don't always set the broadcast bit if there is no RC. */
3594 if (!i.rounding)
3595 {
3596 /* Encode the vector length. */
3597 unsigned int vec_length;
3598
3599 if (!i.tm.opcode_modifier.evex
3600 || i.tm.opcode_modifier.evex == EVEXDYN)
3601 {
3602 unsigned int op;
3603
3604 vec_length = 0;
3605 for (op = 0; op < i.tm.operands; ++op)
3606 if (i.tm.operand_types[op].bitfield.xmmword
3607 + i.tm.operand_types[op].bitfield.ymmword
3608 + i.tm.operand_types[op].bitfield.zmmword > 1)
3609 {
3610 if (i.types[op].bitfield.zmmword)
3611 i.tm.opcode_modifier.evex = EVEX512;
3612 else if (i.types[op].bitfield.ymmword)
3613 i.tm.opcode_modifier.evex = EVEX256;
3614 else if (i.types[op].bitfield.xmmword)
3615 i.tm.opcode_modifier.evex = EVEX128;
3616 else
3617 continue;
3618 break;
3619 }
3620 }
3621
3622 switch (i.tm.opcode_modifier.evex)
3623 {
3624 case EVEXLIG: /* LL' is ignored */
3625 vec_length = evexlig << 5;
3626 break;
3627 case EVEX128:
3628 vec_length = 0 << 5;
3629 break;
3630 case EVEX256:
3631 vec_length = 1 << 5;
3632 break;
3633 case EVEX512:
3634 vec_length = 2 << 5;
3635 break;
3636 default:
3637 abort ();
3638 break;
3639 }
3640 i.vex.bytes[3] |= vec_length;
3641 /* Encode the broadcast bit. */
3642 if (i.broadcast)
3643 i.vex.bytes[3] |= 0x10;
3644 }
3645 else
3646 {
3647 if (i.rounding->type != saeonly)
3648 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3649 else
3650 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3651 }
3652
3653 if (i.mask && i.mask->mask)
3654 i.vex.bytes[3] |= i.mask->mask->reg_num;
3655 }
3656
3657 static void
3658 process_immext (void)
3659 {
3660 expressionS *exp;
3661
3662 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3663 && i.operands > 0)
3664 {
3665 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3666 with an opcode suffix which is coded in the same place as an
3667 8-bit immediate field would be.
3668 Here we check those operands and remove them afterwards. */
3669 unsigned int x;
3670
3671 for (x = 0; x < i.operands; x++)
3672 if (register_number (i.op[x].regs) != x)
3673 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3674 register_prefix, i.op[x].regs->reg_name, x + 1,
3675 i.tm.name);
3676
3677 i.operands = 0;
3678 }
3679
3680 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3681 {
3682 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3683 suffix which is coded in the same place as an 8-bit immediate
3684 field would be.
3685 Here we check those operands and remove them afterwards. */
3686 unsigned int x;
3687
3688 if (i.operands != 3)
3689 abort();
3690
3691 for (x = 0; x < 2; x++)
3692 if (register_number (i.op[x].regs) != x)
3693 goto bad_register_operand;
3694
3695 /* Check for third operand for mwaitx/monitorx insn. */
3696 if (register_number (i.op[x].regs)
3697 != (x + (i.tm.extension_opcode == 0xfb)))
3698 {
3699 bad_register_operand:
3700 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3701 register_prefix, i.op[x].regs->reg_name, x+1,
3702 i.tm.name);
3703 }
3704
3705 i.operands = 0;
3706 }
3707
3708 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3709 which is coded in the same place as an 8-bit immediate field
3710 would be. Here we fake an 8-bit immediate operand from the
3711 opcode suffix stored in tm.extension_opcode.
3712
3713 AVX instructions also use this encoding, for some of
3714 3 argument instructions. */
3715
3716 gas_assert (i.imm_operands <= 1
3717 && (i.operands <= 2
3718 || ((i.tm.opcode_modifier.vex
3719 || i.tm.opcode_modifier.vexopcode
3720 || is_evex_encoding (&i.tm))
3721 && i.operands <= 4)));
3722
3723 exp = &im_expressions[i.imm_operands++];
3724 i.op[i.operands].imms = exp;
3725 i.types[i.operands] = imm8;
3726 i.operands++;
3727 exp->X_op = O_constant;
3728 exp->X_add_number = i.tm.extension_opcode;
3729 i.tm.extension_opcode = None;
3730 }
3731
3732
3733 static int
3734 check_hle (void)
3735 {
3736 switch (i.tm.opcode_modifier.hleprefixok)
3737 {
3738 default:
3739 abort ();
3740 case HLEPrefixNone:
3741 as_bad (_("invalid instruction `%s' after `%s'"),
3742 i.tm.name, i.hle_prefix);
3743 return 0;
3744 case HLEPrefixLock:
3745 if (i.prefix[LOCK_PREFIX])
3746 return 1;
3747 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3748 return 0;
3749 case HLEPrefixAny:
3750 return 1;
3751 case HLEPrefixRelease:
3752 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3753 {
3754 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3755 i.tm.name);
3756 return 0;
3757 }
3758 if (i.mem_operands == 0
3759 || !operand_type_check (i.types[i.operands - 1], anymem))
3760 {
3761 as_bad (_("memory destination needed for instruction `%s'"
3762 " after `xrelease'"), i.tm.name);
3763 return 0;
3764 }
3765 return 1;
3766 }
3767 }
3768
3769 /* Try the shortest encoding by shortening operand size. */
3770
3771 static void
3772 optimize_encoding (void)
3773 {
3774 int j;
3775
3776 if (optimize_for_space
3777 && i.reg_operands == 1
3778 && i.imm_operands == 1
3779 && !i.types[1].bitfield.byte
3780 && i.op[0].imms->X_op == O_constant
3781 && fits_in_imm7 (i.op[0].imms->X_add_number)
3782 && ((i.tm.base_opcode == 0xa8
3783 && i.tm.extension_opcode == None)
3784 || (i.tm.base_opcode == 0xf6
3785 && i.tm.extension_opcode == 0x0)))
3786 {
3787 /* Optimize: -Os:
3788 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3789 */
3790 unsigned int base_regnum = i.op[1].regs->reg_num;
3791 if (flag_code == CODE_64BIT || base_regnum < 4)
3792 {
3793 i.types[1].bitfield.byte = 1;
3794 /* Ignore the suffix. */
3795 i.suffix = 0;
3796 if (base_regnum >= 4
3797 && !(i.op[1].regs->reg_flags & RegRex))
3798 {
3799 /* Handle SP, BP, SI and DI registers. */
3800 if (i.types[1].bitfield.word)
3801 j = 16;
3802 else if (i.types[1].bitfield.dword)
3803 j = 32;
3804 else
3805 j = 48;
3806 i.op[1].regs -= j;
3807 }
3808 }
3809 }
3810 else if (flag_code == CODE_64BIT
3811 && ((i.types[1].bitfield.qword
3812 && i.reg_operands == 1
3813 && i.imm_operands == 1
3814 && i.op[0].imms->X_op == O_constant
3815 && ((i.tm.base_opcode == 0xb0
3816 && i.tm.extension_opcode == None
3817 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3818 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3819 && (((i.tm.base_opcode == 0x24
3820 || i.tm.base_opcode == 0xa8)
3821 && i.tm.extension_opcode == None)
3822 || (i.tm.base_opcode == 0x80
3823 && i.tm.extension_opcode == 0x4)
3824 || ((i.tm.base_opcode == 0xf6
3825 || i.tm.base_opcode == 0xc6)
3826 && i.tm.extension_opcode == 0x0)))))
3827 || (i.types[0].bitfield.qword
3828 && ((i.reg_operands == 2
3829 && i.op[0].regs == i.op[1].regs
3830 && ((i.tm.base_opcode == 0x30
3831 || i.tm.base_opcode == 0x28)
3832 && i.tm.extension_opcode == None))
3833 || (i.reg_operands == 1
3834 && i.operands == 1
3835 && i.tm.base_opcode == 0x30
3836 && i.tm.extension_opcode == None)))))
3837 {
3838 /* Optimize: -O:
3839 andq $imm31, %r64 -> andl $imm31, %r32
3840 testq $imm31, %r64 -> testl $imm31, %r32
3841 xorq %r64, %r64 -> xorl %r32, %r32
3842 subq %r64, %r64 -> subl %r32, %r32
3843 movq $imm31, %r64 -> movl $imm31, %r32
3844 movq $imm32, %r64 -> movl $imm32, %r32
3845 */
3846 i.tm.opcode_modifier.norex64 = 1;
3847 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3848 {
3849 /* Handle
3850 movq $imm31, %r64 -> movl $imm31, %r32
3851 movq $imm32, %r64 -> movl $imm32, %r32
3852 */
3853 i.tm.operand_types[0].bitfield.imm32 = 1;
3854 i.tm.operand_types[0].bitfield.imm32s = 0;
3855 i.tm.operand_types[0].bitfield.imm64 = 0;
3856 i.types[0].bitfield.imm32 = 1;
3857 i.types[0].bitfield.imm32s = 0;
3858 i.types[0].bitfield.imm64 = 0;
3859 i.types[1].bitfield.dword = 1;
3860 i.types[1].bitfield.qword = 0;
3861 if (i.tm.base_opcode == 0xc6)
3862 {
3863 /* Handle
3864 movq $imm31, %r64 -> movl $imm31, %r32
3865 */
3866 i.tm.base_opcode = 0xb0;
3867 i.tm.extension_opcode = None;
3868 i.tm.opcode_modifier.shortform = 1;
3869 i.tm.opcode_modifier.modrm = 0;
3870 }
3871 }
3872 }
3873 else if (optimize > 1
3874 && i.reg_operands == 3
3875 && i.op[0].regs == i.op[1].regs
3876 && !i.types[2].bitfield.xmmword
3877 && (i.tm.opcode_modifier.vex
3878 || (!i.mask
3879 && !i.rounding
3880 && is_evex_encoding (&i.tm)
3881 && (i.vec_encoding != vex_encoding_evex
3882 || i.tm.cpu_flags.bitfield.cpuavx512vl
3883 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3884 && ((i.tm.base_opcode == 0x55
3885 || i.tm.base_opcode == 0x6655
3886 || i.tm.base_opcode == 0x66df
3887 || i.tm.base_opcode == 0x57
3888 || i.tm.base_opcode == 0x6657
3889 || i.tm.base_opcode == 0x66ef
3890 || i.tm.base_opcode == 0x66f8
3891 || i.tm.base_opcode == 0x66f9
3892 || i.tm.base_opcode == 0x66fa
3893 || i.tm.base_opcode == 0x66fb)
3894 && i.tm.extension_opcode == None))
3895 {
3896 /* Optimize: -O2:
3897 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3898 vpsubq and vpsubw:
3899 EVEX VOP %zmmM, %zmmM, %zmmN
3900 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3901 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3902 EVEX VOP %ymmM, %ymmM, %ymmN
3903 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3904 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3905 VEX VOP %ymmM, %ymmM, %ymmN
3906 -> VEX VOP %xmmM, %xmmM, %xmmN
3907 VOP, one of vpandn and vpxor:
3908 VEX VOP %ymmM, %ymmM, %ymmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN
3910 VOP, one of vpandnd and vpandnq:
3911 EVEX VOP %zmmM, %zmmM, %zmmN
3912 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3913 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3914 EVEX VOP %ymmM, %ymmM, %ymmN
3915 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3916 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3917 VOP, one of vpxord and vpxorq:
3918 EVEX VOP %zmmM, %zmmM, %zmmN
3919 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3920 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3921 EVEX VOP %ymmM, %ymmM, %ymmN
3922 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3923 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3924 */
3925 if (is_evex_encoding (&i.tm))
3926 {
3927 if (i.vec_encoding == vex_encoding_evex)
3928 i.tm.opcode_modifier.evex = EVEX128;
3929 else
3930 {
3931 i.tm.opcode_modifier.vex = VEX128;
3932 i.tm.opcode_modifier.vexw = VEXW0;
3933 i.tm.opcode_modifier.evex = 0;
3934 }
3935 }
3936 else
3937 i.tm.opcode_modifier.vex = VEX128;
3938
3939 if (i.tm.opcode_modifier.vex)
3940 for (j = 0; j < 3; j++)
3941 {
3942 i.types[j].bitfield.xmmword = 1;
3943 i.types[j].bitfield.ymmword = 0;
3944 }
3945 }
3946 }
3947
3948 /* This is the guts of the machine-dependent assembler. LINE points to a
3949 machine dependent instruction. This function is supposed to emit
3950 the frags/bytes it assembles to. */
3951
3952 void
3953 md_assemble (char *line)
3954 {
3955 unsigned int j;
3956 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3957 const insn_template *t;
3958
3959 /* Initialize globals. */
3960 memset (&i, '\0', sizeof (i));
3961 for (j = 0; j < MAX_OPERANDS; j++)
3962 i.reloc[j] = NO_RELOC;
3963 memset (disp_expressions, '\0', sizeof (disp_expressions));
3964 memset (im_expressions, '\0', sizeof (im_expressions));
3965 save_stack_p = save_stack;
3966
3967 /* First parse an instruction mnemonic & call i386_operand for the operands.
3968 We assume that the scrubber has arranged it so that line[0] is the valid
3969 start of a (possibly prefixed) mnemonic. */
3970
3971 line = parse_insn (line, mnemonic);
3972 if (line == NULL)
3973 return;
3974 mnem_suffix = i.suffix;
3975
3976 line = parse_operands (line, mnemonic);
3977 this_operand = -1;
3978 xfree (i.memop1_string);
3979 i.memop1_string = NULL;
3980 if (line == NULL)
3981 return;
3982
3983 /* Now we've parsed the mnemonic into a set of templates, and have the
3984 operands at hand. */
3985
3986 /* All intel opcodes have reversed operands except for "bound" and
3987 "enter". We also don't reverse intersegment "jmp" and "call"
3988 instructions with 2 immediate operands so that the immediate segment
3989 precedes the offset, as it does when in AT&T mode. */
3990 if (intel_syntax
3991 && i.operands > 1
3992 && (strcmp (mnemonic, "bound") != 0)
3993 && (strcmp (mnemonic, "invlpga") != 0)
3994 && !(operand_type_check (i.types[0], imm)
3995 && operand_type_check (i.types[1], imm)))
3996 swap_operands ();
3997
3998 /* The order of the immediates should be reversed
3999 for 2 immediates extrq and insertq instructions */
4000 if (i.imm_operands == 2
4001 && (strcmp (mnemonic, "extrq") == 0
4002 || strcmp (mnemonic, "insertq") == 0))
4003 swap_2_operands (0, 1);
4004
4005 if (i.imm_operands)
4006 optimize_imm ();
4007
4008 /* Don't optimize displacement for movabs since it only takes 64bit
4009 displacement. */
4010 if (i.disp_operands
4011 && i.disp_encoding != disp_encoding_32bit
4012 && (flag_code != CODE_64BIT
4013 || strcmp (mnemonic, "movabs") != 0))
4014 optimize_disp ();
4015
4016 /* Next, we find a template that matches the given insn,
4017 making sure the overlap of the given operands types is consistent
4018 with the template operand types. */
4019
4020 if (!(t = match_template (mnem_suffix)))
4021 return;
4022
4023 if (sse_check != check_none
4024 && !i.tm.opcode_modifier.noavx
4025 && !i.tm.cpu_flags.bitfield.cpuavx
4026 && (i.tm.cpu_flags.bitfield.cpusse
4027 || i.tm.cpu_flags.bitfield.cpusse2
4028 || i.tm.cpu_flags.bitfield.cpusse3
4029 || i.tm.cpu_flags.bitfield.cpussse3
4030 || i.tm.cpu_flags.bitfield.cpusse4_1
4031 || i.tm.cpu_flags.bitfield.cpusse4_2
4032 || i.tm.cpu_flags.bitfield.cpupclmul
4033 || i.tm.cpu_flags.bitfield.cpuaes
4034 || i.tm.cpu_flags.bitfield.cpugfni))
4035 {
4036 (sse_check == check_warning
4037 ? as_warn
4038 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4039 }
4040
4041 /* Zap movzx and movsx suffix. The suffix has been set from
4042 "word ptr" or "byte ptr" on the source operand in Intel syntax
4043 or extracted from mnemonic in AT&T syntax. But we'll use
4044 the destination register to choose the suffix for encoding. */
4045 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4046 {
4047 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4048 there is no suffix, the default will be byte extension. */
4049 if (i.reg_operands != 2
4050 && !i.suffix
4051 && intel_syntax)
4052 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4053
4054 i.suffix = 0;
4055 }
4056
4057 if (i.tm.opcode_modifier.fwait)
4058 if (!add_prefix (FWAIT_OPCODE))
4059 return;
4060
4061 /* Check if REP prefix is OK. */
4062 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4063 {
4064 as_bad (_("invalid instruction `%s' after `%s'"),
4065 i.tm.name, i.rep_prefix);
4066 return;
4067 }
4068
4069 /* Check for lock without a lockable instruction. Destination operand
4070 must be memory unless it is xchg (0x86). */
4071 if (i.prefix[LOCK_PREFIX]
4072 && (!i.tm.opcode_modifier.islockable
4073 || i.mem_operands == 0
4074 || (i.tm.base_opcode != 0x86
4075 && !operand_type_check (i.types[i.operands - 1], anymem))))
4076 {
4077 as_bad (_("expecting lockable instruction after `lock'"));
4078 return;
4079 }
4080
4081 /* Check if HLE prefix is OK. */
4082 if (i.hle_prefix && !check_hle ())
4083 return;
4084
4085 /* Check BND prefix. */
4086 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4087 as_bad (_("expecting valid branch instruction after `bnd'"));
4088
4089 /* Check NOTRACK prefix. */
4090 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4091 as_bad (_("expecting indirect branch instruction after `notrack'"));
4092
4093 if (i.tm.cpu_flags.bitfield.cpumpx)
4094 {
4095 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4096 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4097 else if (flag_code != CODE_16BIT
4098 ? i.prefix[ADDR_PREFIX]
4099 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4100 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4101 }
4102
4103 /* Insert BND prefix. */
4104 if (add_bnd_prefix
4105 && i.tm.opcode_modifier.bndprefixok
4106 && !i.prefix[BND_PREFIX])
4107 add_prefix (BND_PREFIX_OPCODE);
4108
4109 /* Check string instruction segment overrides. */
4110 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4111 {
4112 if (!check_string ())
4113 return;
4114 i.disp_operands = 0;
4115 }
4116
4117 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4118 optimize_encoding ();
4119
4120 if (!process_suffix ())
4121 return;
4122
4123 /* Update operand types. */
4124 for (j = 0; j < i.operands; j++)
4125 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4126
4127 /* Make still unresolved immediate matches conform to size of immediate
4128 given in i.suffix. */
4129 if (!finalize_imm ())
4130 return;
4131
4132 if (i.types[0].bitfield.imm1)
4133 i.imm_operands = 0; /* kludge for shift insns. */
4134
4135 /* We only need to check those implicit registers for instructions
4136 with 3 operands or less. */
4137 if (i.operands <= 3)
4138 for (j = 0; j < i.operands; j++)
4139 if (i.types[j].bitfield.inoutportreg
4140 || i.types[j].bitfield.shiftcount
4141 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4142 i.reg_operands--;
4143
4144 /* ImmExt should be processed after SSE2AVX. */
4145 if (!i.tm.opcode_modifier.sse2avx
4146 && i.tm.opcode_modifier.immext)
4147 process_immext ();
4148
4149 /* For insns with operands there are more diddles to do to the opcode. */
4150 if (i.operands)
4151 {
4152 if (!process_operands ())
4153 return;
4154 }
4155 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4156 {
4157 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4158 as_warn (_("translating to `%sp'"), i.tm.name);
4159 }
4160
4161 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4162 || is_evex_encoding (&i.tm))
4163 {
4164 if (flag_code == CODE_16BIT)
4165 {
4166 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4167 i.tm.name);
4168 return;
4169 }
4170
4171 if (i.tm.opcode_modifier.vex)
4172 build_vex_prefix (t);
4173 else
4174 build_evex_prefix ();
4175 }
4176
4177 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4178 instructions may define INT_OPCODE as well, so avoid this corner
4179 case for those instructions that use MODRM. */
4180 if (i.tm.base_opcode == INT_OPCODE
4181 && !i.tm.opcode_modifier.modrm
4182 && i.op[0].imms->X_add_number == 3)
4183 {
4184 i.tm.base_opcode = INT3_OPCODE;
4185 i.imm_operands = 0;
4186 }
4187
4188 if ((i.tm.opcode_modifier.jump
4189 || i.tm.opcode_modifier.jumpbyte
4190 || i.tm.opcode_modifier.jumpdword)
4191 && i.op[0].disps->X_op == O_constant)
4192 {
4193 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4194 the absolute address given by the constant. Since ix86 jumps and
4195 calls are pc relative, we need to generate a reloc. */
4196 i.op[0].disps->X_add_symbol = &abs_symbol;
4197 i.op[0].disps->X_op = O_symbol;
4198 }
4199
4200 if (i.tm.opcode_modifier.rex64)
4201 i.rex |= REX_W;
4202
4203 /* For 8 bit registers we need an empty rex prefix. Also if the
4204 instruction already has a prefix, we need to convert old
4205 registers to new ones. */
4206
4207 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4208 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4209 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4210 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4211 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4212 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4213 && i.rex != 0))
4214 {
4215 int x;
4216
4217 i.rex |= REX_OPCODE;
4218 for (x = 0; x < 2; x++)
4219 {
4220 /* Look for 8 bit operand that uses old registers. */
4221 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4222 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4223 {
4224 /* In case it is "hi" register, give up. */
4225 if (i.op[x].regs->reg_num > 3)
4226 as_bad (_("can't encode register '%s%s' in an "
4227 "instruction requiring REX prefix."),
4228 register_prefix, i.op[x].regs->reg_name);
4229
4230 /* Otherwise it is equivalent to the extended register.
4231 Since the encoding doesn't change this is merely
4232 cosmetic cleanup for debug output. */
4233
4234 i.op[x].regs = i.op[x].regs + 8;
4235 }
4236 }
4237 }
4238
4239 if (i.rex == 0 && i.rex_encoding)
4240 {
4241 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4242 that uses legacy register. If it is "hi" register, don't add
4243 the REX_OPCODE byte. */
4244 int x;
4245 for (x = 0; x < 2; x++)
4246 if (i.types[x].bitfield.reg
4247 && i.types[x].bitfield.byte
4248 && (i.op[x].regs->reg_flags & RegRex64) == 0
4249 && i.op[x].regs->reg_num > 3)
4250 {
4251 i.rex_encoding = FALSE;
4252 break;
4253 }
4254
4255 if (i.rex_encoding)
4256 i.rex = REX_OPCODE;
4257 }
4258
4259 if (i.rex != 0)
4260 add_prefix (REX_OPCODE | i.rex);
4261
4262 /* We are ready to output the insn. */
4263 output_insn ();
4264 }
4265
4266 static char *
4267 parse_insn (char *line, char *mnemonic)
4268 {
4269 char *l = line;
4270 char *token_start = l;
4271 char *mnem_p;
4272 int supported;
4273 const insn_template *t;
4274 char *dot_p = NULL;
4275
4276 while (1)
4277 {
4278 mnem_p = mnemonic;
4279 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4280 {
4281 if (*mnem_p == '.')
4282 dot_p = mnem_p;
4283 mnem_p++;
4284 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4285 {
4286 as_bad (_("no such instruction: `%s'"), token_start);
4287 return NULL;
4288 }
4289 l++;
4290 }
4291 if (!is_space_char (*l)
4292 && *l != END_OF_INSN
4293 && (intel_syntax
4294 || (*l != PREFIX_SEPARATOR
4295 && *l != ',')))
4296 {
4297 as_bad (_("invalid character %s in mnemonic"),
4298 output_invalid (*l));
4299 return NULL;
4300 }
4301 if (token_start == l)
4302 {
4303 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4304 as_bad (_("expecting prefix; got nothing"));
4305 else
4306 as_bad (_("expecting mnemonic; got nothing"));
4307 return NULL;
4308 }
4309
4310 /* Look up instruction (or prefix) via hash table. */
4311 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4312
4313 if (*l != END_OF_INSN
4314 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4315 && current_templates
4316 && current_templates->start->opcode_modifier.isprefix)
4317 {
4318 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4319 {
4320 as_bad ((flag_code != CODE_64BIT
4321 ? _("`%s' is only supported in 64-bit mode")
4322 : _("`%s' is not supported in 64-bit mode")),
4323 current_templates->start->name);
4324 return NULL;
4325 }
4326 /* If we are in 16-bit mode, do not allow addr16 or data16.
4327 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4328 if ((current_templates->start->opcode_modifier.size16
4329 || current_templates->start->opcode_modifier.size32)
4330 && flag_code != CODE_64BIT
4331 && (current_templates->start->opcode_modifier.size32
4332 ^ (flag_code == CODE_16BIT)))
4333 {
4334 as_bad (_("redundant %s prefix"),
4335 current_templates->start->name);
4336 return NULL;
4337 }
4338 if (current_templates->start->opcode_length == 0)
4339 {
4340 /* Handle pseudo prefixes. */
4341 switch (current_templates->start->base_opcode)
4342 {
4343 case 0x0:
4344 /* {disp8} */
4345 i.disp_encoding = disp_encoding_8bit;
4346 break;
4347 case 0x1:
4348 /* {disp32} */
4349 i.disp_encoding = disp_encoding_32bit;
4350 break;
4351 case 0x2:
4352 /* {load} */
4353 i.dir_encoding = dir_encoding_load;
4354 break;
4355 case 0x3:
4356 /* {store} */
4357 i.dir_encoding = dir_encoding_store;
4358 break;
4359 case 0x4:
4360 /* {vex2} */
4361 i.vec_encoding = vex_encoding_vex2;
4362 break;
4363 case 0x5:
4364 /* {vex3} */
4365 i.vec_encoding = vex_encoding_vex3;
4366 break;
4367 case 0x6:
4368 /* {evex} */
4369 i.vec_encoding = vex_encoding_evex;
4370 break;
4371 case 0x7:
4372 /* {rex} */
4373 i.rex_encoding = TRUE;
4374 break;
4375 case 0x8:
4376 /* {nooptimize} */
4377 i.no_optimize = TRUE;
4378 break;
4379 default:
4380 abort ();
4381 }
4382 }
4383 else
4384 {
4385 /* Add prefix, checking for repeated prefixes. */
4386 switch (add_prefix (current_templates->start->base_opcode))
4387 {
4388 case PREFIX_EXIST:
4389 return NULL;
4390 case PREFIX_DS:
4391 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4392 i.notrack_prefix = current_templates->start->name;
4393 break;
4394 case PREFIX_REP:
4395 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4396 i.hle_prefix = current_templates->start->name;
4397 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4398 i.bnd_prefix = current_templates->start->name;
4399 else
4400 i.rep_prefix = current_templates->start->name;
4401 break;
4402 default:
4403 break;
4404 }
4405 }
4406 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4407 token_start = ++l;
4408 }
4409 else
4410 break;
4411 }
4412
4413 if (!current_templates)
4414 {
4415 /* Check if we should swap operand or force 32bit displacement in
4416 encoding. */
4417 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4418 i.dir_encoding = dir_encoding_store;
4419 else if (mnem_p - 3 == dot_p
4420 && dot_p[1] == 'd'
4421 && dot_p[2] == '8')
4422 i.disp_encoding = disp_encoding_8bit;
4423 else if (mnem_p - 4 == dot_p
4424 && dot_p[1] == 'd'
4425 && dot_p[2] == '3'
4426 && dot_p[3] == '2')
4427 i.disp_encoding = disp_encoding_32bit;
4428 else
4429 goto check_suffix;
4430 mnem_p = dot_p;
4431 *dot_p = '\0';
4432 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4433 }
4434
4435 if (!current_templates)
4436 {
4437 check_suffix:
4438 /* See if we can get a match by trimming off a suffix. */
4439 switch (mnem_p[-1])
4440 {
4441 case WORD_MNEM_SUFFIX:
4442 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4443 i.suffix = SHORT_MNEM_SUFFIX;
4444 else
4445 /* Fall through. */
4446 case BYTE_MNEM_SUFFIX:
4447 case QWORD_MNEM_SUFFIX:
4448 i.suffix = mnem_p[-1];
4449 mnem_p[-1] = '\0';
4450 current_templates = (const templates *) hash_find (op_hash,
4451 mnemonic);
4452 break;
4453 case SHORT_MNEM_SUFFIX:
4454 case LONG_MNEM_SUFFIX:
4455 if (!intel_syntax)
4456 {
4457 i.suffix = mnem_p[-1];
4458 mnem_p[-1] = '\0';
4459 current_templates = (const templates *) hash_find (op_hash,
4460 mnemonic);
4461 }
4462 break;
4463
4464 /* Intel Syntax. */
4465 case 'd':
4466 if (intel_syntax)
4467 {
4468 if (intel_float_operand (mnemonic) == 1)
4469 i.suffix = SHORT_MNEM_SUFFIX;
4470 else
4471 i.suffix = LONG_MNEM_SUFFIX;
4472 mnem_p[-1] = '\0';
4473 current_templates = (const templates *) hash_find (op_hash,
4474 mnemonic);
4475 }
4476 break;
4477 }
4478 if (!current_templates)
4479 {
4480 as_bad (_("no such instruction: `%s'"), token_start);
4481 return NULL;
4482 }
4483 }
4484
4485 if (current_templates->start->opcode_modifier.jump
4486 || current_templates->start->opcode_modifier.jumpbyte)
4487 {
4488 /* Check for a branch hint. We allow ",pt" and ",pn" for
4489 predict taken and predict not taken respectively.
4490 I'm not sure that branch hints actually do anything on loop
4491 and jcxz insns (JumpByte) for current Pentium4 chips. They
4492 may work in the future and it doesn't hurt to accept them
4493 now. */
4494 if (l[0] == ',' && l[1] == 'p')
4495 {
4496 if (l[2] == 't')
4497 {
4498 if (!add_prefix (DS_PREFIX_OPCODE))
4499 return NULL;
4500 l += 3;
4501 }
4502 else if (l[2] == 'n')
4503 {
4504 if (!add_prefix (CS_PREFIX_OPCODE))
4505 return NULL;
4506 l += 3;
4507 }
4508 }
4509 }
4510 /* Any other comma loses. */
4511 if (*l == ',')
4512 {
4513 as_bad (_("invalid character %s in mnemonic"),
4514 output_invalid (*l));
4515 return NULL;
4516 }
4517
4518 /* Check if instruction is supported on specified architecture. */
4519 supported = 0;
4520 for (t = current_templates->start; t < current_templates->end; ++t)
4521 {
4522 supported |= cpu_flags_match (t);
4523 if (supported == CPU_FLAGS_PERFECT_MATCH)
4524 {
4525 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4526 as_warn (_("use .code16 to ensure correct addressing mode"));
4527
4528 return l;
4529 }
4530 }
4531
4532 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4533 as_bad (flag_code == CODE_64BIT
4534 ? _("`%s' is not supported in 64-bit mode")
4535 : _("`%s' is only supported in 64-bit mode"),
4536 current_templates->start->name);
4537 else
4538 as_bad (_("`%s' is not supported on `%s%s'"),
4539 current_templates->start->name,
4540 cpu_arch_name ? cpu_arch_name : default_arch,
4541 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4542
4543 return NULL;
4544 }
4545
4546 static char *
4547 parse_operands (char *l, const char *mnemonic)
4548 {
4549 char *token_start;
4550
4551 /* 1 if operand is pending after ','. */
4552 unsigned int expecting_operand = 0;
4553
4554 /* Non-zero if operand parens not balanced. */
4555 unsigned int paren_not_balanced;
4556
4557 while (*l != END_OF_INSN)
4558 {
4559 /* Skip optional white space before operand. */
4560 if (is_space_char (*l))
4561 ++l;
4562 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4563 {
4564 as_bad (_("invalid character %s before operand %d"),
4565 output_invalid (*l),
4566 i.operands + 1);
4567 return NULL;
4568 }
4569 token_start = l; /* After white space. */
4570 paren_not_balanced = 0;
4571 while (paren_not_balanced || *l != ',')
4572 {
4573 if (*l == END_OF_INSN)
4574 {
4575 if (paren_not_balanced)
4576 {
4577 if (!intel_syntax)
4578 as_bad (_("unbalanced parenthesis in operand %d."),
4579 i.operands + 1);
4580 else
4581 as_bad (_("unbalanced brackets in operand %d."),
4582 i.operands + 1);
4583 return NULL;
4584 }
4585 else
4586 break; /* we are done */
4587 }
4588 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4589 {
4590 as_bad (_("invalid character %s in operand %d"),
4591 output_invalid (*l),
4592 i.operands + 1);
4593 return NULL;
4594 }
4595 if (!intel_syntax)
4596 {
4597 if (*l == '(')
4598 ++paren_not_balanced;
4599 if (*l == ')')
4600 --paren_not_balanced;
4601 }
4602 else
4603 {
4604 if (*l == '[')
4605 ++paren_not_balanced;
4606 if (*l == ']')
4607 --paren_not_balanced;
4608 }
4609 l++;
4610 }
4611 if (l != token_start)
4612 { /* Yes, we've read in another operand. */
4613 unsigned int operand_ok;
4614 this_operand = i.operands++;
4615 if (i.operands > MAX_OPERANDS)
4616 {
4617 as_bad (_("spurious operands; (%d operands/instruction max)"),
4618 MAX_OPERANDS);
4619 return NULL;
4620 }
4621 i.types[this_operand].bitfield.unspecified = 1;
4622 /* Now parse operand adding info to 'i' as we go along. */
4623 END_STRING_AND_SAVE (l);
4624
4625 if (intel_syntax)
4626 operand_ok =
4627 i386_intel_operand (token_start,
4628 intel_float_operand (mnemonic));
4629 else
4630 operand_ok = i386_att_operand (token_start);
4631
4632 RESTORE_END_STRING (l);
4633 if (!operand_ok)
4634 return NULL;
4635 }
4636 else
4637 {
4638 if (expecting_operand)
4639 {
4640 expecting_operand_after_comma:
4641 as_bad (_("expecting operand after ','; got nothing"));
4642 return NULL;
4643 }
4644 if (*l == ',')
4645 {
4646 as_bad (_("expecting operand before ','; got nothing"));
4647 return NULL;
4648 }
4649 }
4650
4651 /* Now *l must be either ',' or END_OF_INSN. */
4652 if (*l == ',')
4653 {
4654 if (*++l == END_OF_INSN)
4655 {
4656 /* Just skip it, if it's \n complain. */
4657 goto expecting_operand_after_comma;
4658 }
4659 expecting_operand = 1;
4660 }
4661 }
4662 return l;
4663 }
4664
4665 static void
4666 swap_2_operands (int xchg1, int xchg2)
4667 {
4668 union i386_op temp_op;
4669 i386_operand_type temp_type;
4670 enum bfd_reloc_code_real temp_reloc;
4671
4672 temp_type = i.types[xchg2];
4673 i.types[xchg2] = i.types[xchg1];
4674 i.types[xchg1] = temp_type;
4675 temp_op = i.op[xchg2];
4676 i.op[xchg2] = i.op[xchg1];
4677 i.op[xchg1] = temp_op;
4678 temp_reloc = i.reloc[xchg2];
4679 i.reloc[xchg2] = i.reloc[xchg1];
4680 i.reloc[xchg1] = temp_reloc;
4681
4682 if (i.mask)
4683 {
4684 if (i.mask->operand == xchg1)
4685 i.mask->operand = xchg2;
4686 else if (i.mask->operand == xchg2)
4687 i.mask->operand = xchg1;
4688 }
4689 if (i.broadcast)
4690 {
4691 if (i.broadcast->operand == xchg1)
4692 i.broadcast->operand = xchg2;
4693 else if (i.broadcast->operand == xchg2)
4694 i.broadcast->operand = xchg1;
4695 }
4696 if (i.rounding)
4697 {
4698 if (i.rounding->operand == xchg1)
4699 i.rounding->operand = xchg2;
4700 else if (i.rounding->operand == xchg2)
4701 i.rounding->operand = xchg1;
4702 }
4703 }
4704
4705 static void
4706 swap_operands (void)
4707 {
4708 switch (i.operands)
4709 {
4710 case 5:
4711 case 4:
4712 swap_2_operands (1, i.operands - 2);
4713 /* Fall through. */
4714 case 3:
4715 case 2:
4716 swap_2_operands (0, i.operands - 1);
4717 break;
4718 default:
4719 abort ();
4720 }
4721
4722 if (i.mem_operands == 2)
4723 {
4724 const seg_entry *temp_seg;
4725 temp_seg = i.seg[0];
4726 i.seg[0] = i.seg[1];
4727 i.seg[1] = temp_seg;
4728 }
4729 }
4730
4731 /* Try to ensure constant immediates are represented in the smallest
4732 opcode possible. */
4733 static void
4734 optimize_imm (void)
4735 {
4736 char guess_suffix = 0;
4737 int op;
4738
4739 if (i.suffix)
4740 guess_suffix = i.suffix;
4741 else if (i.reg_operands)
4742 {
4743 /* Figure out a suffix from the last register operand specified.
4744 We can't do this properly yet, ie. excluding InOutPortReg,
4745 but the following works for instructions with immediates.
4746 In any case, we can't set i.suffix yet. */
4747 for (op = i.operands; --op >= 0;)
4748 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4749 {
4750 guess_suffix = BYTE_MNEM_SUFFIX;
4751 break;
4752 }
4753 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4754 {
4755 guess_suffix = WORD_MNEM_SUFFIX;
4756 break;
4757 }
4758 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4759 {
4760 guess_suffix = LONG_MNEM_SUFFIX;
4761 break;
4762 }
4763 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4764 {
4765 guess_suffix = QWORD_MNEM_SUFFIX;
4766 break;
4767 }
4768 }
4769 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4770 guess_suffix = WORD_MNEM_SUFFIX;
4771
4772 for (op = i.operands; --op >= 0;)
4773 if (operand_type_check (i.types[op], imm))
4774 {
4775 switch (i.op[op].imms->X_op)
4776 {
4777 case O_constant:
4778 /* If a suffix is given, this operand may be shortened. */
4779 switch (guess_suffix)
4780 {
4781 case LONG_MNEM_SUFFIX:
4782 i.types[op].bitfield.imm32 = 1;
4783 i.types[op].bitfield.imm64 = 1;
4784 break;
4785 case WORD_MNEM_SUFFIX:
4786 i.types[op].bitfield.imm16 = 1;
4787 i.types[op].bitfield.imm32 = 1;
4788 i.types[op].bitfield.imm32s = 1;
4789 i.types[op].bitfield.imm64 = 1;
4790 break;
4791 case BYTE_MNEM_SUFFIX:
4792 i.types[op].bitfield.imm8 = 1;
4793 i.types[op].bitfield.imm8s = 1;
4794 i.types[op].bitfield.imm16 = 1;
4795 i.types[op].bitfield.imm32 = 1;
4796 i.types[op].bitfield.imm32s = 1;
4797 i.types[op].bitfield.imm64 = 1;
4798 break;
4799 }
4800
4801 /* If this operand is at most 16 bits, convert it
4802 to a signed 16 bit number before trying to see
4803 whether it will fit in an even smaller size.
4804 This allows a 16-bit operand such as $0xffe0 to
4805 be recognised as within Imm8S range. */
4806 if ((i.types[op].bitfield.imm16)
4807 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4808 {
4809 i.op[op].imms->X_add_number =
4810 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4811 }
4812 #ifdef BFD64
4813 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4814 if ((i.types[op].bitfield.imm32)
4815 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4816 == 0))
4817 {
4818 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4819 ^ ((offsetT) 1 << 31))
4820 - ((offsetT) 1 << 31));
4821 }
4822 #endif
4823 i.types[op]
4824 = operand_type_or (i.types[op],
4825 smallest_imm_type (i.op[op].imms->X_add_number));
4826
4827 /* We must avoid matching of Imm32 templates when 64bit
4828 only immediate is available. */
4829 if (guess_suffix == QWORD_MNEM_SUFFIX)
4830 i.types[op].bitfield.imm32 = 0;
4831 break;
4832
4833 case O_absent:
4834 case O_register:
4835 abort ();
4836
4837 /* Symbols and expressions. */
4838 default:
4839 /* Convert symbolic operand to proper sizes for matching, but don't
4840 prevent matching a set of insns that only supports sizes other
4841 than those matching the insn suffix. */
4842 {
4843 i386_operand_type mask, allowed;
4844 const insn_template *t;
4845
4846 operand_type_set (&mask, 0);
4847 operand_type_set (&allowed, 0);
4848
4849 for (t = current_templates->start;
4850 t < current_templates->end;
4851 ++t)
4852 allowed = operand_type_or (allowed,
4853 t->operand_types[op]);
4854 switch (guess_suffix)
4855 {
4856 case QWORD_MNEM_SUFFIX:
4857 mask.bitfield.imm64 = 1;
4858 mask.bitfield.imm32s = 1;
4859 break;
4860 case LONG_MNEM_SUFFIX:
4861 mask.bitfield.imm32 = 1;
4862 break;
4863 case WORD_MNEM_SUFFIX:
4864 mask.bitfield.imm16 = 1;
4865 break;
4866 case BYTE_MNEM_SUFFIX:
4867 mask.bitfield.imm8 = 1;
4868 break;
4869 default:
4870 break;
4871 }
4872 allowed = operand_type_and (mask, allowed);
4873 if (!operand_type_all_zero (&allowed))
4874 i.types[op] = operand_type_and (i.types[op], mask);
4875 }
4876 break;
4877 }
4878 }
4879 }
4880
4881 /* Try to use the smallest displacement type too. */
4882 static void
4883 optimize_disp (void)
4884 {
4885 int op;
4886
4887 for (op = i.operands; --op >= 0;)
4888 if (operand_type_check (i.types[op], disp))
4889 {
4890 if (i.op[op].disps->X_op == O_constant)
4891 {
4892 offsetT op_disp = i.op[op].disps->X_add_number;
4893
4894 if (i.types[op].bitfield.disp16
4895 && (op_disp & ~(offsetT) 0xffff) == 0)
4896 {
4897 /* If this operand is at most 16 bits, convert
4898 to a signed 16 bit number and don't use 64bit
4899 displacement. */
4900 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4901 i.types[op].bitfield.disp64 = 0;
4902 }
4903 #ifdef BFD64
4904 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4905 if (i.types[op].bitfield.disp32
4906 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4907 {
4908 /* If this operand is at most 32 bits, convert
4909 to a signed 32 bit number and don't use 64bit
4910 displacement. */
4911 op_disp &= (((offsetT) 2 << 31) - 1);
4912 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4913 i.types[op].bitfield.disp64 = 0;
4914 }
4915 #endif
4916 if (!op_disp && i.types[op].bitfield.baseindex)
4917 {
4918 i.types[op].bitfield.disp8 = 0;
4919 i.types[op].bitfield.disp16 = 0;
4920 i.types[op].bitfield.disp32 = 0;
4921 i.types[op].bitfield.disp32s = 0;
4922 i.types[op].bitfield.disp64 = 0;
4923 i.op[op].disps = 0;
4924 i.disp_operands--;
4925 }
4926 else if (flag_code == CODE_64BIT)
4927 {
4928 if (fits_in_signed_long (op_disp))
4929 {
4930 i.types[op].bitfield.disp64 = 0;
4931 i.types[op].bitfield.disp32s = 1;
4932 }
4933 if (i.prefix[ADDR_PREFIX]
4934 && fits_in_unsigned_long (op_disp))
4935 i.types[op].bitfield.disp32 = 1;
4936 }
4937 if ((i.types[op].bitfield.disp32
4938 || i.types[op].bitfield.disp32s
4939 || i.types[op].bitfield.disp16)
4940 && fits_in_disp8 (op_disp))
4941 i.types[op].bitfield.disp8 = 1;
4942 }
4943 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4944 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4945 {
4946 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4947 i.op[op].disps, 0, i.reloc[op]);
4948 i.types[op].bitfield.disp8 = 0;
4949 i.types[op].bitfield.disp16 = 0;
4950 i.types[op].bitfield.disp32 = 0;
4951 i.types[op].bitfield.disp32s = 0;
4952 i.types[op].bitfield.disp64 = 0;
4953 }
4954 else
4955 /* We only support 64bit displacement on constants. */
4956 i.types[op].bitfield.disp64 = 0;
4957 }
4958 }
4959
4960 /* Check if operands are valid for the instruction. */
4961
4962 static int
4963 check_VecOperands (const insn_template *t)
4964 {
4965 unsigned int op;
4966
4967 /* Without VSIB byte, we can't have a vector register for index. */
4968 if (!t->opcode_modifier.vecsib
4969 && i.index_reg
4970 && (i.index_reg->reg_type.bitfield.xmmword
4971 || i.index_reg->reg_type.bitfield.ymmword
4972 || i.index_reg->reg_type.bitfield.zmmword))
4973 {
4974 i.error = unsupported_vector_index_register;
4975 return 1;
4976 }
4977
4978 /* Check if default mask is allowed. */
4979 if (t->opcode_modifier.nodefmask
4980 && (!i.mask || i.mask->mask->reg_num == 0))
4981 {
4982 i.error = no_default_mask;
4983 return 1;
4984 }
4985
4986 /* For VSIB byte, we need a vector register for index, and all vector
4987 registers must be distinct. */
4988 if (t->opcode_modifier.vecsib)
4989 {
4990 if (!i.index_reg
4991 || !((t->opcode_modifier.vecsib == VecSIB128
4992 && i.index_reg->reg_type.bitfield.xmmword)
4993 || (t->opcode_modifier.vecsib == VecSIB256
4994 && i.index_reg->reg_type.bitfield.ymmword)
4995 || (t->opcode_modifier.vecsib == VecSIB512
4996 && i.index_reg->reg_type.bitfield.zmmword)))
4997 {
4998 i.error = invalid_vsib_address;
4999 return 1;
5000 }
5001
5002 gas_assert (i.reg_operands == 2 || i.mask);
5003 if (i.reg_operands == 2 && !i.mask)
5004 {
5005 gas_assert (i.types[0].bitfield.regsimd);
5006 gas_assert (i.types[0].bitfield.xmmword
5007 || i.types[0].bitfield.ymmword);
5008 gas_assert (i.types[2].bitfield.regsimd);
5009 gas_assert (i.types[2].bitfield.xmmword
5010 || i.types[2].bitfield.ymmword);
5011 if (operand_check == check_none)
5012 return 0;
5013 if (register_number (i.op[0].regs)
5014 != register_number (i.index_reg)
5015 && register_number (i.op[2].regs)
5016 != register_number (i.index_reg)
5017 && register_number (i.op[0].regs)
5018 != register_number (i.op[2].regs))
5019 return 0;
5020 if (operand_check == check_error)
5021 {
5022 i.error = invalid_vector_register_set;
5023 return 1;
5024 }
5025 as_warn (_("mask, index, and destination registers should be distinct"));
5026 }
5027 else if (i.reg_operands == 1 && i.mask)
5028 {
5029 if (i.types[1].bitfield.regsimd
5030 && (i.types[1].bitfield.xmmword
5031 || i.types[1].bitfield.ymmword
5032 || i.types[1].bitfield.zmmword)
5033 && (register_number (i.op[1].regs)
5034 == register_number (i.index_reg)))
5035 {
5036 if (operand_check == check_error)
5037 {
5038 i.error = invalid_vector_register_set;
5039 return 1;
5040 }
5041 if (operand_check != check_none)
5042 as_warn (_("index and destination registers should be distinct"));
5043 }
5044 }
5045 }
5046
5047 /* Check if broadcast is supported by the instruction and is applied
5048 to the memory operand. */
5049 if (i.broadcast)
5050 {
5051 i386_operand_type type, overlap;
5052
5053 /* Check if specified broadcast is supported in this instruction,
5054 and it's applied to memory operand of DWORD or QWORD type,
5055 depending on VecESize. */
5056 op = i.broadcast->operand;
5057 if (!t->opcode_modifier.broadcast
5058 || !i.types[op].bitfield.mem
5059 || (t->opcode_modifier.vecesize == 0
5060 && !i.types[op].bitfield.dword
5061 && !i.types[op].bitfield.unspecified)
5062 || (t->opcode_modifier.vecesize == 1
5063 && !i.types[op].bitfield.qword
5064 && !i.types[op].bitfield.unspecified))
5065 {
5066 bad_broadcast:
5067 i.error = unsupported_broadcast;
5068 return 1;
5069 }
5070
5071 operand_type_set (&type, 0);
5072 switch ((t->opcode_modifier.vecesize ? 8 : 4) * i.broadcast->type)
5073 {
5074 case 8:
5075 type.bitfield.qword = 1;
5076 break;
5077 case 16:
5078 type.bitfield.xmmword = 1;
5079 break;
5080 case 32:
5081 type.bitfield.ymmword = 1;
5082 break;
5083 case 64:
5084 type.bitfield.zmmword = 1;
5085 break;
5086 default:
5087 goto bad_broadcast;
5088 }
5089
5090 overlap = operand_type_and (type, t->operand_types[op]);
5091 if (operand_type_all_zero (&overlap))
5092 goto bad_broadcast;
5093
5094 if (t->opcode_modifier.checkregsize)
5095 {
5096 unsigned int j;
5097
5098 for (j = 0; j < i.operands; ++j)
5099 {
5100 if (j != op
5101 && !operand_type_register_match(i.types[j],
5102 t->operand_types[j],
5103 type,
5104 t->operand_types[op]))
5105 goto bad_broadcast;
5106 }
5107 }
5108 }
5109 /* If broadcast is supported in this instruction, we need to check if
5110 operand of one-element size isn't specified without broadcast. */
5111 else if (t->opcode_modifier.broadcast && i.mem_operands)
5112 {
5113 /* Find memory operand. */
5114 for (op = 0; op < i.operands; op++)
5115 if (operand_type_check (i.types[op], anymem))
5116 break;
5117 gas_assert (op < i.operands);
5118 /* Check size of the memory operand. */
5119 if ((t->opcode_modifier.vecesize == 0
5120 && i.types[op].bitfield.dword)
5121 || (t->opcode_modifier.vecesize == 1
5122 && i.types[op].bitfield.qword))
5123 {
5124 i.error = broadcast_needed;
5125 return 1;
5126 }
5127 }
5128
5129 /* Check if requested masking is supported. */
5130 if (i.mask
5131 && (!t->opcode_modifier.masking
5132 || (i.mask->zeroing
5133 && t->opcode_modifier.masking == MERGING_MASKING)))
5134 {
5135 i.error = unsupported_masking;
5136 return 1;
5137 }
5138
5139 /* Check if masking is applied to dest operand. */
5140 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5141 {
5142 i.error = mask_not_on_destination;
5143 return 1;
5144 }
5145
5146 /* Check RC/SAE. */
5147 if (i.rounding)
5148 {
5149 if ((i.rounding->type != saeonly
5150 && !t->opcode_modifier.staticrounding)
5151 || (i.rounding->type == saeonly
5152 && (t->opcode_modifier.staticrounding
5153 || !t->opcode_modifier.sae)))
5154 {
5155 i.error = unsupported_rc_sae;
5156 return 1;
5157 }
5158 /* If the instruction has several immediate operands and one of
5159 them is rounding, the rounding operand should be the last
5160 immediate operand. */
5161 if (i.imm_operands > 1
5162 && i.rounding->operand != (int) (i.imm_operands - 1))
5163 {
5164 i.error = rc_sae_operand_not_last_imm;
5165 return 1;
5166 }
5167 }
5168
5169 /* Check vector Disp8 operand. */
5170 if (t->opcode_modifier.disp8memshift
5171 && i.disp_encoding != disp_encoding_32bit)
5172 {
5173 if (i.broadcast)
5174 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5175 else
5176 i.memshift = t->opcode_modifier.disp8memshift;
5177
5178 for (op = 0; op < i.operands; op++)
5179 if (operand_type_check (i.types[op], disp)
5180 && i.op[op].disps->X_op == O_constant)
5181 {
5182 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5183 {
5184 i.types[op].bitfield.disp8 = 1;
5185 return 0;
5186 }
5187 i.types[op].bitfield.disp8 = 0;
5188 }
5189 }
5190
5191 i.memshift = 0;
5192
5193 return 0;
5194 }
5195
5196 /* Check if operands are valid for the instruction. Update VEX
5197 operand types. */
5198
5199 static int
5200 VEX_check_operands (const insn_template *t)
5201 {
5202 if (i.vec_encoding == vex_encoding_evex)
5203 {
5204 /* This instruction must be encoded with EVEX prefix. */
5205 if (!is_evex_encoding (t))
5206 {
5207 i.error = unsupported;
5208 return 1;
5209 }
5210 return 0;
5211 }
5212
5213 if (!t->opcode_modifier.vex)
5214 {
5215 /* This instruction template doesn't have VEX prefix. */
5216 if (i.vec_encoding != vex_encoding_default)
5217 {
5218 i.error = unsupported;
5219 return 1;
5220 }
5221 return 0;
5222 }
5223
5224 /* Only check VEX_Imm4, which must be the first operand. */
5225 if (t->operand_types[0].bitfield.vec_imm4)
5226 {
5227 if (i.op[0].imms->X_op != O_constant
5228 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5229 {
5230 i.error = bad_imm4;
5231 return 1;
5232 }
5233
5234 /* Turn off Imm8 so that update_imm won't complain. */
5235 i.types[0] = vec_imm4;
5236 }
5237
5238 return 0;
5239 }
5240
5241 static const insn_template *
5242 match_template (char mnem_suffix)
5243 {
5244 /* Points to template once we've found it. */
5245 const insn_template *t;
5246 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5247 i386_operand_type overlap4;
5248 unsigned int found_reverse_match;
5249 i386_opcode_modifier suffix_check, mnemsuf_check;
5250 i386_operand_type operand_types [MAX_OPERANDS];
5251 int addr_prefix_disp;
5252 unsigned int j;
5253 unsigned int found_cpu_match;
5254 unsigned int check_register;
5255 enum i386_error specific_error = 0;
5256
5257 #if MAX_OPERANDS != 5
5258 # error "MAX_OPERANDS must be 5."
5259 #endif
5260
5261 found_reverse_match = 0;
5262 addr_prefix_disp = -1;
5263
5264 memset (&suffix_check, 0, sizeof (suffix_check));
5265 if (i.suffix == BYTE_MNEM_SUFFIX)
5266 suffix_check.no_bsuf = 1;
5267 else if (i.suffix == WORD_MNEM_SUFFIX)
5268 suffix_check.no_wsuf = 1;
5269 else if (i.suffix == SHORT_MNEM_SUFFIX)
5270 suffix_check.no_ssuf = 1;
5271 else if (i.suffix == LONG_MNEM_SUFFIX)
5272 suffix_check.no_lsuf = 1;
5273 else if (i.suffix == QWORD_MNEM_SUFFIX)
5274 suffix_check.no_qsuf = 1;
5275 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5276 suffix_check.no_ldsuf = 1;
5277
5278 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5279 if (intel_syntax)
5280 {
5281 switch (mnem_suffix)
5282 {
5283 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5284 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5285 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5286 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5287 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5288 }
5289 }
5290
5291 /* Must have right number of operands. */
5292 i.error = number_of_operands_mismatch;
5293
5294 for (t = current_templates->start; t < current_templates->end; t++)
5295 {
5296 addr_prefix_disp = -1;
5297
5298 if (i.operands != t->operands)
5299 continue;
5300
5301 /* Check processor support. */
5302 i.error = unsupported;
5303 found_cpu_match = (cpu_flags_match (t)
5304 == CPU_FLAGS_PERFECT_MATCH);
5305 if (!found_cpu_match)
5306 continue;
5307
5308 /* Check AT&T mnemonic. */
5309 i.error = unsupported_with_intel_mnemonic;
5310 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5311 continue;
5312
5313 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5314 i.error = unsupported_syntax;
5315 if ((intel_syntax && t->opcode_modifier.attsyntax)
5316 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5317 || (intel64 && t->opcode_modifier.amd64)
5318 || (!intel64 && t->opcode_modifier.intel64))
5319 continue;
5320
5321 /* Check the suffix, except for some instructions in intel mode. */
5322 i.error = invalid_instruction_suffix;
5323 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5324 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5325 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5326 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5327 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5328 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5329 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5330 continue;
5331 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5332 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5333 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5334 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5335 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5336 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5337 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5338 continue;
5339
5340 if (!operand_size_match (t))
5341 continue;
5342
5343 for (j = 0; j < MAX_OPERANDS; j++)
5344 operand_types[j] = t->operand_types[j];
5345
5346 /* In general, don't allow 64-bit operands in 32-bit mode. */
5347 if (i.suffix == QWORD_MNEM_SUFFIX
5348 && flag_code != CODE_64BIT
5349 && (intel_syntax
5350 ? (!t->opcode_modifier.ignoresize
5351 && !intel_float_operand (t->name))
5352 : intel_float_operand (t->name) != 2)
5353 && ((!operand_types[0].bitfield.regmmx
5354 && !operand_types[0].bitfield.regsimd)
5355 || (!operand_types[t->operands > 1].bitfield.regmmx
5356 && !operand_types[t->operands > 1].bitfield.regsimd))
5357 && (t->base_opcode != 0x0fc7
5358 || t->extension_opcode != 1 /* cmpxchg8b */))
5359 continue;
5360
5361 /* In general, don't allow 32-bit operands on pre-386. */
5362 else if (i.suffix == LONG_MNEM_SUFFIX
5363 && !cpu_arch_flags.bitfield.cpui386
5364 && (intel_syntax
5365 ? (!t->opcode_modifier.ignoresize
5366 && !intel_float_operand (t->name))
5367 : intel_float_operand (t->name) != 2)
5368 && ((!operand_types[0].bitfield.regmmx
5369 && !operand_types[0].bitfield.regsimd)
5370 || (!operand_types[t->operands > 1].bitfield.regmmx
5371 && !operand_types[t->operands > 1].bitfield.regsimd)))
5372 continue;
5373
5374 /* Do not verify operands when there are none. */
5375 else
5376 {
5377 if (!t->operands)
5378 /* We've found a match; break out of loop. */
5379 break;
5380 }
5381
5382 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5383 into Disp32/Disp16/Disp32 operand. */
5384 if (i.prefix[ADDR_PREFIX] != 0)
5385 {
5386 /* There should be only one Disp operand. */
5387 switch (flag_code)
5388 {
5389 case CODE_16BIT:
5390 for (j = 0; j < MAX_OPERANDS; j++)
5391 {
5392 if (operand_types[j].bitfield.disp16)
5393 {
5394 addr_prefix_disp = j;
5395 operand_types[j].bitfield.disp32 = 1;
5396 operand_types[j].bitfield.disp16 = 0;
5397 break;
5398 }
5399 }
5400 break;
5401 case CODE_32BIT:
5402 for (j = 0; j < MAX_OPERANDS; j++)
5403 {
5404 if (operand_types[j].bitfield.disp32)
5405 {
5406 addr_prefix_disp = j;
5407 operand_types[j].bitfield.disp32 = 0;
5408 operand_types[j].bitfield.disp16 = 1;
5409 break;
5410 }
5411 }
5412 break;
5413 case CODE_64BIT:
5414 for (j = 0; j < MAX_OPERANDS; j++)
5415 {
5416 if (operand_types[j].bitfield.disp64)
5417 {
5418 addr_prefix_disp = j;
5419 operand_types[j].bitfield.disp64 = 0;
5420 operand_types[j].bitfield.disp32 = 1;
5421 break;
5422 }
5423 }
5424 break;
5425 }
5426 }
5427
5428 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5429 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5430 continue;
5431
5432 /* We check register size if needed. */
5433 check_register = t->opcode_modifier.checkregsize;
5434 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5435 switch (t->operands)
5436 {
5437 case 1:
5438 if (!operand_type_match (overlap0, i.types[0]))
5439 continue;
5440 break;
5441 case 2:
5442 /* xchg %eax, %eax is a special case. It is an alias for nop
5443 only in 32bit mode and we can use opcode 0x90. In 64bit
5444 mode, we can't use 0x90 for xchg %eax, %eax since it should
5445 zero-extend %eax to %rax. */
5446 if (flag_code == CODE_64BIT
5447 && t->base_opcode == 0x90
5448 && operand_type_equal (&i.types [0], &acc32)
5449 && operand_type_equal (&i.types [1], &acc32))
5450 continue;
5451 /* xrelease mov %eax, <disp> is another special case. It must not
5452 match the accumulator-only encoding of mov. */
5453 if (flag_code != CODE_64BIT
5454 && i.hle_prefix
5455 && t->base_opcode == 0xa0
5456 && i.types[0].bitfield.acc
5457 && operand_type_check (i.types[1], anymem))
5458 continue;
5459 /* If we want store form, we reverse direction of operands. */
5460 if (i.dir_encoding == dir_encoding_store
5461 && t->opcode_modifier.d)
5462 goto check_reverse;
5463 /* Fall through. */
5464
5465 case 3:
5466 /* If we want store form, we skip the current load. */
5467 if (i.dir_encoding == dir_encoding_store
5468 && i.mem_operands == 0
5469 && t->opcode_modifier.load)
5470 continue;
5471 /* Fall through. */
5472 case 4:
5473 case 5:
5474 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5475 if (!operand_type_match (overlap0, i.types[0])
5476 || !operand_type_match (overlap1, i.types[1])
5477 || (check_register
5478 && !operand_type_register_match (i.types[0],
5479 operand_types[0],
5480 i.types[1],
5481 operand_types[1])))
5482 {
5483 /* Check if other direction is valid ... */
5484 if (!t->opcode_modifier.d)
5485 continue;
5486
5487 check_reverse:
5488 /* Try reversing direction of operands. */
5489 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5490 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5491 if (!operand_type_match (overlap0, i.types[0])
5492 || !operand_type_match (overlap1, i.types[1])
5493 || (check_register
5494 && !operand_type_register_match (i.types[0],
5495 operand_types[1],
5496 i.types[1],
5497 operand_types[0])))
5498 {
5499 /* Does not match either direction. */
5500 continue;
5501 }
5502 /* found_reverse_match holds which of D or FloatR
5503 we've found. */
5504 if (!t->opcode_modifier.d)
5505 found_reverse_match = 0;
5506 else if (operand_types[0].bitfield.tbyte)
5507 found_reverse_match = Opcode_FloatD;
5508 else
5509 found_reverse_match = Opcode_D;
5510 if (t->opcode_modifier.floatr)
5511 found_reverse_match |= Opcode_FloatR;
5512 }
5513 else
5514 {
5515 /* Found a forward 2 operand match here. */
5516 switch (t->operands)
5517 {
5518 case 5:
5519 overlap4 = operand_type_and (i.types[4],
5520 operand_types[4]);
5521 /* Fall through. */
5522 case 4:
5523 overlap3 = operand_type_and (i.types[3],
5524 operand_types[3]);
5525 /* Fall through. */
5526 case 3:
5527 overlap2 = operand_type_and (i.types[2],
5528 operand_types[2]);
5529 break;
5530 }
5531
5532 switch (t->operands)
5533 {
5534 case 5:
5535 if (!operand_type_match (overlap4, i.types[4])
5536 || !operand_type_register_match (i.types[3],
5537 operand_types[3],
5538 i.types[4],
5539 operand_types[4]))
5540 continue;
5541 /* Fall through. */
5542 case 4:
5543 if (!operand_type_match (overlap3, i.types[3])
5544 || (check_register
5545 && (!operand_type_register_match (i.types[1],
5546 operand_types[1],
5547 i.types[3],
5548 operand_types[3])
5549 || !operand_type_register_match (i.types[2],
5550 operand_types[2],
5551 i.types[3],
5552 operand_types[3]))))
5553 continue;
5554 /* Fall through. */
5555 case 3:
5556 /* Here we make use of the fact that there are no
5557 reverse match 3 operand instructions. */
5558 if (!operand_type_match (overlap2, i.types[2])
5559 || (check_register
5560 && (!operand_type_register_match (i.types[0],
5561 operand_types[0],
5562 i.types[2],
5563 operand_types[2])
5564 || !operand_type_register_match (i.types[1],
5565 operand_types[1],
5566 i.types[2],
5567 operand_types[2]))))
5568 continue;
5569 break;
5570 }
5571 }
5572 /* Found either forward/reverse 2, 3 or 4 operand match here:
5573 slip through to break. */
5574 }
5575 if (!found_cpu_match)
5576 {
5577 found_reverse_match = 0;
5578 continue;
5579 }
5580
5581 /* Check if vector and VEX operands are valid. */
5582 if (check_VecOperands (t) || VEX_check_operands (t))
5583 {
5584 specific_error = i.error;
5585 continue;
5586 }
5587
5588 /* We've found a match; break out of loop. */
5589 break;
5590 }
5591
5592 if (t == current_templates->end)
5593 {
5594 /* We found no match. */
5595 const char *err_msg;
5596 switch (specific_error ? specific_error : i.error)
5597 {
5598 default:
5599 abort ();
5600 case operand_size_mismatch:
5601 err_msg = _("operand size mismatch");
5602 break;
5603 case operand_type_mismatch:
5604 err_msg = _("operand type mismatch");
5605 break;
5606 case register_type_mismatch:
5607 err_msg = _("register type mismatch");
5608 break;
5609 case number_of_operands_mismatch:
5610 err_msg = _("number of operands mismatch");
5611 break;
5612 case invalid_instruction_suffix:
5613 err_msg = _("invalid instruction suffix");
5614 break;
5615 case bad_imm4:
5616 err_msg = _("constant doesn't fit in 4 bits");
5617 break;
5618 case unsupported_with_intel_mnemonic:
5619 err_msg = _("unsupported with Intel mnemonic");
5620 break;
5621 case unsupported_syntax:
5622 err_msg = _("unsupported syntax");
5623 break;
5624 case unsupported:
5625 as_bad (_("unsupported instruction `%s'"),
5626 current_templates->start->name);
5627 return NULL;
5628 case invalid_vsib_address:
5629 err_msg = _("invalid VSIB address");
5630 break;
5631 case invalid_vector_register_set:
5632 err_msg = _("mask, index, and destination registers must be distinct");
5633 break;
5634 case unsupported_vector_index_register:
5635 err_msg = _("unsupported vector index register");
5636 break;
5637 case unsupported_broadcast:
5638 err_msg = _("unsupported broadcast");
5639 break;
5640 case broadcast_not_on_src_operand:
5641 err_msg = _("broadcast not on source memory operand");
5642 break;
5643 case broadcast_needed:
5644 err_msg = _("broadcast is needed for operand of such type");
5645 break;
5646 case unsupported_masking:
5647 err_msg = _("unsupported masking");
5648 break;
5649 case mask_not_on_destination:
5650 err_msg = _("mask not on destination operand");
5651 break;
5652 case no_default_mask:
5653 err_msg = _("default mask isn't allowed");
5654 break;
5655 case unsupported_rc_sae:
5656 err_msg = _("unsupported static rounding/sae");
5657 break;
5658 case rc_sae_operand_not_last_imm:
5659 if (intel_syntax)
5660 err_msg = _("RC/SAE operand must precede immediate operands");
5661 else
5662 err_msg = _("RC/SAE operand must follow immediate operands");
5663 break;
5664 case invalid_register_operand:
5665 err_msg = _("invalid register operand");
5666 break;
5667 }
5668 as_bad (_("%s for `%s'"), err_msg,
5669 current_templates->start->name);
5670 return NULL;
5671 }
5672
5673 if (!quiet_warnings)
5674 {
5675 if (!intel_syntax
5676 && (i.types[0].bitfield.jumpabsolute
5677 != operand_types[0].bitfield.jumpabsolute))
5678 {
5679 as_warn (_("indirect %s without `*'"), t->name);
5680 }
5681
5682 if (t->opcode_modifier.isprefix
5683 && t->opcode_modifier.ignoresize)
5684 {
5685 /* Warn them that a data or address size prefix doesn't
5686 affect assembly of the next line of code. */
5687 as_warn (_("stand-alone `%s' prefix"), t->name);
5688 }
5689 }
5690
5691 /* Copy the template we found. */
5692 i.tm = *t;
5693
5694 if (addr_prefix_disp != -1)
5695 i.tm.operand_types[addr_prefix_disp]
5696 = operand_types[addr_prefix_disp];
5697
5698 if (found_reverse_match)
5699 {
5700 /* If we found a reverse match we must alter the opcode
5701 direction bit. found_reverse_match holds bits to change
5702 (different for int & float insns). */
5703
5704 i.tm.base_opcode ^= found_reverse_match;
5705
5706 i.tm.operand_types[0] = operand_types[1];
5707 i.tm.operand_types[1] = operand_types[0];
5708 }
5709
5710 return t;
5711 }
5712
5713 static int
5714 check_string (void)
5715 {
5716 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5717 if (i.tm.operand_types[mem_op].bitfield.esseg)
5718 {
5719 if (i.seg[0] != NULL && i.seg[0] != &es)
5720 {
5721 as_bad (_("`%s' operand %d must use `%ses' segment"),
5722 i.tm.name,
5723 mem_op + 1,
5724 register_prefix);
5725 return 0;
5726 }
5727 /* There's only ever one segment override allowed per instruction.
5728 This instruction possibly has a legal segment override on the
5729 second operand, so copy the segment to where non-string
5730 instructions store it, allowing common code. */
5731 i.seg[0] = i.seg[1];
5732 }
5733 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5734 {
5735 if (i.seg[1] != NULL && i.seg[1] != &es)
5736 {
5737 as_bad (_("`%s' operand %d must use `%ses' segment"),
5738 i.tm.name,
5739 mem_op + 2,
5740 register_prefix);
5741 return 0;
5742 }
5743 }
5744 return 1;
5745 }
5746
5747 static int
5748 process_suffix (void)
5749 {
5750 /* If matched instruction specifies an explicit instruction mnemonic
5751 suffix, use it. */
5752 if (i.tm.opcode_modifier.size16)
5753 i.suffix = WORD_MNEM_SUFFIX;
5754 else if (i.tm.opcode_modifier.size32)
5755 i.suffix = LONG_MNEM_SUFFIX;
5756 else if (i.tm.opcode_modifier.size64)
5757 i.suffix = QWORD_MNEM_SUFFIX;
5758 else if (i.reg_operands)
5759 {
5760 /* If there's no instruction mnemonic suffix we try to invent one
5761 based on register operands. */
5762 if (!i.suffix)
5763 {
5764 /* We take i.suffix from the last register operand specified,
5765 Destination register type is more significant than source
5766 register type. crc32 in SSE4.2 prefers source register
5767 type. */
5768 if (i.tm.base_opcode == 0xf20f38f1)
5769 {
5770 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5771 i.suffix = WORD_MNEM_SUFFIX;
5772 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5773 i.suffix = LONG_MNEM_SUFFIX;
5774 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5775 i.suffix = QWORD_MNEM_SUFFIX;
5776 }
5777 else if (i.tm.base_opcode == 0xf20f38f0)
5778 {
5779 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5780 i.suffix = BYTE_MNEM_SUFFIX;
5781 }
5782
5783 if (!i.suffix)
5784 {
5785 int op;
5786
5787 if (i.tm.base_opcode == 0xf20f38f1
5788 || i.tm.base_opcode == 0xf20f38f0)
5789 {
5790 /* We have to know the operand size for crc32. */
5791 as_bad (_("ambiguous memory operand size for `%s`"),
5792 i.tm.name);
5793 return 0;
5794 }
5795
5796 for (op = i.operands; --op >= 0;)
5797 if (!i.tm.operand_types[op].bitfield.inoutportreg
5798 && !i.tm.operand_types[op].bitfield.shiftcount)
5799 {
5800 if (!i.types[op].bitfield.reg)
5801 continue;
5802 if (i.types[op].bitfield.byte)
5803 i.suffix = BYTE_MNEM_SUFFIX;
5804 else if (i.types[op].bitfield.word)
5805 i.suffix = WORD_MNEM_SUFFIX;
5806 else if (i.types[op].bitfield.dword)
5807 i.suffix = LONG_MNEM_SUFFIX;
5808 else if (i.types[op].bitfield.qword)
5809 i.suffix = QWORD_MNEM_SUFFIX;
5810 else
5811 continue;
5812 break;
5813 }
5814 }
5815 }
5816 else if (i.suffix == BYTE_MNEM_SUFFIX)
5817 {
5818 if (intel_syntax
5819 && i.tm.opcode_modifier.ignoresize
5820 && i.tm.opcode_modifier.no_bsuf)
5821 i.suffix = 0;
5822 else if (!check_byte_reg ())
5823 return 0;
5824 }
5825 else if (i.suffix == LONG_MNEM_SUFFIX)
5826 {
5827 if (intel_syntax
5828 && i.tm.opcode_modifier.ignoresize
5829 && i.tm.opcode_modifier.no_lsuf
5830 && !i.tm.opcode_modifier.todword
5831 && !i.tm.opcode_modifier.toqword)
5832 i.suffix = 0;
5833 else if (!check_long_reg ())
5834 return 0;
5835 }
5836 else if (i.suffix == QWORD_MNEM_SUFFIX)
5837 {
5838 if (intel_syntax
5839 && i.tm.opcode_modifier.ignoresize
5840 && i.tm.opcode_modifier.no_qsuf
5841 && !i.tm.opcode_modifier.todword
5842 && !i.tm.opcode_modifier.toqword)
5843 i.suffix = 0;
5844 else if (!check_qword_reg ())
5845 return 0;
5846 }
5847 else if (i.suffix == WORD_MNEM_SUFFIX)
5848 {
5849 if (intel_syntax
5850 && i.tm.opcode_modifier.ignoresize
5851 && i.tm.opcode_modifier.no_wsuf)
5852 i.suffix = 0;
5853 else if (!check_word_reg ())
5854 return 0;
5855 }
5856 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5857 /* Do nothing if the instruction is going to ignore the prefix. */
5858 ;
5859 else
5860 abort ();
5861 }
5862 else if (i.tm.opcode_modifier.defaultsize
5863 && !i.suffix
5864 /* exclude fldenv/frstor/fsave/fstenv */
5865 && i.tm.opcode_modifier.no_ssuf)
5866 {
5867 i.suffix = stackop_size;
5868 }
5869 else if (intel_syntax
5870 && !i.suffix
5871 && (i.tm.operand_types[0].bitfield.jumpabsolute
5872 || i.tm.opcode_modifier.jumpbyte
5873 || i.tm.opcode_modifier.jumpintersegment
5874 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5875 && i.tm.extension_opcode <= 3)))
5876 {
5877 switch (flag_code)
5878 {
5879 case CODE_64BIT:
5880 if (!i.tm.opcode_modifier.no_qsuf)
5881 {
5882 i.suffix = QWORD_MNEM_SUFFIX;
5883 break;
5884 }
5885 /* Fall through. */
5886 case CODE_32BIT:
5887 if (!i.tm.opcode_modifier.no_lsuf)
5888 i.suffix = LONG_MNEM_SUFFIX;
5889 break;
5890 case CODE_16BIT:
5891 if (!i.tm.opcode_modifier.no_wsuf)
5892 i.suffix = WORD_MNEM_SUFFIX;
5893 break;
5894 }
5895 }
5896
5897 if (!i.suffix)
5898 {
5899 if (!intel_syntax)
5900 {
5901 if (i.tm.opcode_modifier.w)
5902 {
5903 as_bad (_("no instruction mnemonic suffix given and "
5904 "no register operands; can't size instruction"));
5905 return 0;
5906 }
5907 }
5908 else
5909 {
5910 unsigned int suffixes;
5911
5912 suffixes = !i.tm.opcode_modifier.no_bsuf;
5913 if (!i.tm.opcode_modifier.no_wsuf)
5914 suffixes |= 1 << 1;
5915 if (!i.tm.opcode_modifier.no_lsuf)
5916 suffixes |= 1 << 2;
5917 if (!i.tm.opcode_modifier.no_ldsuf)
5918 suffixes |= 1 << 3;
5919 if (!i.tm.opcode_modifier.no_ssuf)
5920 suffixes |= 1 << 4;
5921 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5922 suffixes |= 1 << 5;
5923
5924 /* There are more than suffix matches. */
5925 if (i.tm.opcode_modifier.w
5926 || ((suffixes & (suffixes - 1))
5927 && !i.tm.opcode_modifier.defaultsize
5928 && !i.tm.opcode_modifier.ignoresize))
5929 {
5930 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5931 return 0;
5932 }
5933 }
5934 }
5935
5936 /* Change the opcode based on the operand size given by i.suffix. */
5937 switch (i.suffix)
5938 {
5939 /* Size floating point instruction. */
5940 case LONG_MNEM_SUFFIX:
5941 if (i.tm.opcode_modifier.floatmf)
5942 {
5943 i.tm.base_opcode ^= 4;
5944 break;
5945 }
5946 /* fall through */
5947 case WORD_MNEM_SUFFIX:
5948 case QWORD_MNEM_SUFFIX:
5949 /* It's not a byte, select word/dword operation. */
5950 if (i.tm.opcode_modifier.w)
5951 {
5952 if (i.tm.opcode_modifier.shortform)
5953 i.tm.base_opcode |= 8;
5954 else
5955 i.tm.base_opcode |= 1;
5956 }
5957 /* fall through */
5958 case SHORT_MNEM_SUFFIX:
5959 /* Now select between word & dword operations via the operand
5960 size prefix, except for instructions that will ignore this
5961 prefix anyway. */
5962 if (i.tm.opcode_modifier.addrprefixop0)
5963 {
5964 /* The address size override prefix changes the size of the
5965 first operand. */
5966 if ((flag_code == CODE_32BIT
5967 && i.op->regs[0].reg_type.bitfield.word)
5968 || (flag_code != CODE_32BIT
5969 && i.op->regs[0].reg_type.bitfield.dword))
5970 if (!add_prefix (ADDR_PREFIX_OPCODE))
5971 return 0;
5972 }
5973 else if (i.suffix != QWORD_MNEM_SUFFIX
5974 && !i.tm.opcode_modifier.ignoresize
5975 && !i.tm.opcode_modifier.floatmf
5976 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5977 || (flag_code == CODE_64BIT
5978 && i.tm.opcode_modifier.jumpbyte)))
5979 {
5980 unsigned int prefix = DATA_PREFIX_OPCODE;
5981
5982 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5983 prefix = ADDR_PREFIX_OPCODE;
5984
5985 if (!add_prefix (prefix))
5986 return 0;
5987 }
5988
5989 /* Set mode64 for an operand. */
5990 if (i.suffix == QWORD_MNEM_SUFFIX
5991 && flag_code == CODE_64BIT
5992 && !i.tm.opcode_modifier.norex64
5993 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5994 need rex64. */
5995 && ! (i.operands == 2
5996 && i.tm.base_opcode == 0x90
5997 && i.tm.extension_opcode == None
5998 && operand_type_equal (&i.types [0], &acc64)
5999 && operand_type_equal (&i.types [1], &acc64)))
6000 i.rex |= REX_W;
6001
6002 break;
6003 }
6004
6005 return 1;
6006 }
6007
6008 static int
6009 check_byte_reg (void)
6010 {
6011 int op;
6012
6013 for (op = i.operands; --op >= 0;)
6014 {
6015 /* Skip non-register operands. */
6016 if (!i.types[op].bitfield.reg)
6017 continue;
6018
6019 /* If this is an eight bit register, it's OK. If it's the 16 or
6020 32 bit version of an eight bit register, we will just use the
6021 low portion, and that's OK too. */
6022 if (i.types[op].bitfield.byte)
6023 continue;
6024
6025 /* I/O port address operands are OK too. */
6026 if (i.tm.operand_types[op].bitfield.inoutportreg)
6027 continue;
6028
6029 /* crc32 doesn't generate this warning. */
6030 if (i.tm.base_opcode == 0xf20f38f0)
6031 continue;
6032
6033 if ((i.types[op].bitfield.word
6034 || i.types[op].bitfield.dword
6035 || i.types[op].bitfield.qword)
6036 && i.op[op].regs->reg_num < 4
6037 /* Prohibit these changes in 64bit mode, since the lowering
6038 would be more complicated. */
6039 && flag_code != CODE_64BIT)
6040 {
6041 #if REGISTER_WARNINGS
6042 if (!quiet_warnings)
6043 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6044 register_prefix,
6045 (i.op[op].regs + (i.types[op].bitfield.word
6046 ? REGNAM_AL - REGNAM_AX
6047 : REGNAM_AL - REGNAM_EAX))->reg_name,
6048 register_prefix,
6049 i.op[op].regs->reg_name,
6050 i.suffix);
6051 #endif
6052 continue;
6053 }
6054 /* Any other register is bad. */
6055 if (i.types[op].bitfield.reg
6056 || i.types[op].bitfield.regmmx
6057 || i.types[op].bitfield.regsimd
6058 || i.types[op].bitfield.sreg2
6059 || i.types[op].bitfield.sreg3
6060 || i.types[op].bitfield.control
6061 || i.types[op].bitfield.debug
6062 || i.types[op].bitfield.test)
6063 {
6064 as_bad (_("`%s%s' not allowed with `%s%c'"),
6065 register_prefix,
6066 i.op[op].regs->reg_name,
6067 i.tm.name,
6068 i.suffix);
6069 return 0;
6070 }
6071 }
6072 return 1;
6073 }
6074
6075 static int
6076 check_long_reg (void)
6077 {
6078 int op;
6079
6080 for (op = i.operands; --op >= 0;)
6081 /* Skip non-register operands. */
6082 if (!i.types[op].bitfield.reg)
6083 continue;
6084 /* Reject eight bit registers, except where the template requires
6085 them. (eg. movzb) */
6086 else if (i.types[op].bitfield.byte
6087 && (i.tm.operand_types[op].bitfield.reg
6088 || i.tm.operand_types[op].bitfield.acc)
6089 && (i.tm.operand_types[op].bitfield.word
6090 || i.tm.operand_types[op].bitfield.dword))
6091 {
6092 as_bad (_("`%s%s' not allowed with `%s%c'"),
6093 register_prefix,
6094 i.op[op].regs->reg_name,
6095 i.tm.name,
6096 i.suffix);
6097 return 0;
6098 }
6099 /* Warn if the e prefix on a general reg is missing. */
6100 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6101 && i.types[op].bitfield.word
6102 && (i.tm.operand_types[op].bitfield.reg
6103 || i.tm.operand_types[op].bitfield.acc)
6104 && i.tm.operand_types[op].bitfield.dword)
6105 {
6106 /* Prohibit these changes in the 64bit mode, since the
6107 lowering is more complicated. */
6108 if (flag_code == CODE_64BIT)
6109 {
6110 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6111 register_prefix, i.op[op].regs->reg_name,
6112 i.suffix);
6113 return 0;
6114 }
6115 #if REGISTER_WARNINGS
6116 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6117 register_prefix,
6118 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6119 register_prefix, i.op[op].regs->reg_name, i.suffix);
6120 #endif
6121 }
6122 /* Warn if the r prefix on a general reg is present. */
6123 else if (i.types[op].bitfield.qword
6124 && (i.tm.operand_types[op].bitfield.reg
6125 || i.tm.operand_types[op].bitfield.acc)
6126 && i.tm.operand_types[op].bitfield.dword)
6127 {
6128 if (intel_syntax
6129 && i.tm.opcode_modifier.toqword
6130 && !i.types[0].bitfield.regsimd)
6131 {
6132 /* Convert to QWORD. We want REX byte. */
6133 i.suffix = QWORD_MNEM_SUFFIX;
6134 }
6135 else
6136 {
6137 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6138 register_prefix, i.op[op].regs->reg_name,
6139 i.suffix);
6140 return 0;
6141 }
6142 }
6143 return 1;
6144 }
6145
6146 static int
6147 check_qword_reg (void)
6148 {
6149 int op;
6150
6151 for (op = i.operands; --op >= 0; )
6152 /* Skip non-register operands. */
6153 if (!i.types[op].bitfield.reg)
6154 continue;
6155 /* Reject eight bit registers, except where the template requires
6156 them. (eg. movzb) */
6157 else if (i.types[op].bitfield.byte
6158 && (i.tm.operand_types[op].bitfield.reg
6159 || i.tm.operand_types[op].bitfield.acc)
6160 && (i.tm.operand_types[op].bitfield.word
6161 || i.tm.operand_types[op].bitfield.dword))
6162 {
6163 as_bad (_("`%s%s' not allowed with `%s%c'"),
6164 register_prefix,
6165 i.op[op].regs->reg_name,
6166 i.tm.name,
6167 i.suffix);
6168 return 0;
6169 }
6170 /* Warn if the r prefix on a general reg is missing. */
6171 else if ((i.types[op].bitfield.word
6172 || i.types[op].bitfield.dword)
6173 && (i.tm.operand_types[op].bitfield.reg
6174 || i.tm.operand_types[op].bitfield.acc)
6175 && i.tm.operand_types[op].bitfield.qword)
6176 {
6177 /* Prohibit these changes in the 64bit mode, since the
6178 lowering is more complicated. */
6179 if (intel_syntax
6180 && i.tm.opcode_modifier.todword
6181 && !i.types[0].bitfield.regsimd)
6182 {
6183 /* Convert to DWORD. We don't want REX byte. */
6184 i.suffix = LONG_MNEM_SUFFIX;
6185 }
6186 else
6187 {
6188 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6189 register_prefix, i.op[op].regs->reg_name,
6190 i.suffix);
6191 return 0;
6192 }
6193 }
6194 return 1;
6195 }
6196
6197 static int
6198 check_word_reg (void)
6199 {
6200 int op;
6201 for (op = i.operands; --op >= 0;)
6202 /* Skip non-register operands. */
6203 if (!i.types[op].bitfield.reg)
6204 continue;
6205 /* Reject eight bit registers, except where the template requires
6206 them. (eg. movzb) */
6207 else if (i.types[op].bitfield.byte
6208 && (i.tm.operand_types[op].bitfield.reg
6209 || i.tm.operand_types[op].bitfield.acc)
6210 && (i.tm.operand_types[op].bitfield.word
6211 || i.tm.operand_types[op].bitfield.dword))
6212 {
6213 as_bad (_("`%s%s' not allowed with `%s%c'"),
6214 register_prefix,
6215 i.op[op].regs->reg_name,
6216 i.tm.name,
6217 i.suffix);
6218 return 0;
6219 }
6220 /* Warn if the e or r prefix on a general reg is present. */
6221 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6222 && (i.types[op].bitfield.dword
6223 || i.types[op].bitfield.qword)
6224 && (i.tm.operand_types[op].bitfield.reg
6225 || i.tm.operand_types[op].bitfield.acc)
6226 && i.tm.operand_types[op].bitfield.word)
6227 {
6228 /* Prohibit these changes in the 64bit mode, since the
6229 lowering is more complicated. */
6230 if (flag_code == CODE_64BIT)
6231 {
6232 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6233 register_prefix, i.op[op].regs->reg_name,
6234 i.suffix);
6235 return 0;
6236 }
6237 #if REGISTER_WARNINGS
6238 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6239 register_prefix,
6240 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6241 register_prefix, i.op[op].regs->reg_name, i.suffix);
6242 #endif
6243 }
6244 return 1;
6245 }
6246
6247 static int
6248 update_imm (unsigned int j)
6249 {
6250 i386_operand_type overlap = i.types[j];
6251 if ((overlap.bitfield.imm8
6252 || overlap.bitfield.imm8s
6253 || overlap.bitfield.imm16
6254 || overlap.bitfield.imm32
6255 || overlap.bitfield.imm32s
6256 || overlap.bitfield.imm64)
6257 && !operand_type_equal (&overlap, &imm8)
6258 && !operand_type_equal (&overlap, &imm8s)
6259 && !operand_type_equal (&overlap, &imm16)
6260 && !operand_type_equal (&overlap, &imm32)
6261 && !operand_type_equal (&overlap, &imm32s)
6262 && !operand_type_equal (&overlap, &imm64))
6263 {
6264 if (i.suffix)
6265 {
6266 i386_operand_type temp;
6267
6268 operand_type_set (&temp, 0);
6269 if (i.suffix == BYTE_MNEM_SUFFIX)
6270 {
6271 temp.bitfield.imm8 = overlap.bitfield.imm8;
6272 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6273 }
6274 else if (i.suffix == WORD_MNEM_SUFFIX)
6275 temp.bitfield.imm16 = overlap.bitfield.imm16;
6276 else if (i.suffix == QWORD_MNEM_SUFFIX)
6277 {
6278 temp.bitfield.imm64 = overlap.bitfield.imm64;
6279 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6280 }
6281 else
6282 temp.bitfield.imm32 = overlap.bitfield.imm32;
6283 overlap = temp;
6284 }
6285 else if (operand_type_equal (&overlap, &imm16_32_32s)
6286 || operand_type_equal (&overlap, &imm16_32)
6287 || operand_type_equal (&overlap, &imm16_32s))
6288 {
6289 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6290 overlap = imm16;
6291 else
6292 overlap = imm32s;
6293 }
6294 if (!operand_type_equal (&overlap, &imm8)
6295 && !operand_type_equal (&overlap, &imm8s)
6296 && !operand_type_equal (&overlap, &imm16)
6297 && !operand_type_equal (&overlap, &imm32)
6298 && !operand_type_equal (&overlap, &imm32s)
6299 && !operand_type_equal (&overlap, &imm64))
6300 {
6301 as_bad (_("no instruction mnemonic suffix given; "
6302 "can't determine immediate size"));
6303 return 0;
6304 }
6305 }
6306 i.types[j] = overlap;
6307
6308 return 1;
6309 }
6310
6311 static int
6312 finalize_imm (void)
6313 {
6314 unsigned int j, n;
6315
6316 /* Update the first 2 immediate operands. */
6317 n = i.operands > 2 ? 2 : i.operands;
6318 if (n)
6319 {
6320 for (j = 0; j < n; j++)
6321 if (update_imm (j) == 0)
6322 return 0;
6323
6324 /* The 3rd operand can't be immediate operand. */
6325 gas_assert (operand_type_check (i.types[2], imm) == 0);
6326 }
6327
6328 return 1;
6329 }
6330
6331 static int
6332 process_operands (void)
6333 {
6334 /* Default segment register this instruction will use for memory
6335 accesses. 0 means unknown. This is only for optimizing out
6336 unnecessary segment overrides. */
6337 const seg_entry *default_seg = 0;
6338
6339 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6340 {
6341 unsigned int dupl = i.operands;
6342 unsigned int dest = dupl - 1;
6343 unsigned int j;
6344
6345 /* The destination must be an xmm register. */
6346 gas_assert (i.reg_operands
6347 && MAX_OPERANDS > dupl
6348 && operand_type_equal (&i.types[dest], &regxmm));
6349
6350 if (i.tm.operand_types[0].bitfield.acc
6351 && i.tm.operand_types[0].bitfield.xmmword)
6352 {
6353 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6354 {
6355 /* Keep xmm0 for instructions with VEX prefix and 3
6356 sources. */
6357 i.tm.operand_types[0].bitfield.acc = 0;
6358 i.tm.operand_types[0].bitfield.regsimd = 1;
6359 goto duplicate;
6360 }
6361 else
6362 {
6363 /* We remove the first xmm0 and keep the number of
6364 operands unchanged, which in fact duplicates the
6365 destination. */
6366 for (j = 1; j < i.operands; j++)
6367 {
6368 i.op[j - 1] = i.op[j];
6369 i.types[j - 1] = i.types[j];
6370 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6371 }
6372 }
6373 }
6374 else if (i.tm.opcode_modifier.implicit1stxmm0)
6375 {
6376 gas_assert ((MAX_OPERANDS - 1) > dupl
6377 && (i.tm.opcode_modifier.vexsources
6378 == VEX3SOURCES));
6379
6380 /* Add the implicit xmm0 for instructions with VEX prefix
6381 and 3 sources. */
6382 for (j = i.operands; j > 0; j--)
6383 {
6384 i.op[j] = i.op[j - 1];
6385 i.types[j] = i.types[j - 1];
6386 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6387 }
6388 i.op[0].regs
6389 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6390 i.types[0] = regxmm;
6391 i.tm.operand_types[0] = regxmm;
6392
6393 i.operands += 2;
6394 i.reg_operands += 2;
6395 i.tm.operands += 2;
6396
6397 dupl++;
6398 dest++;
6399 i.op[dupl] = i.op[dest];
6400 i.types[dupl] = i.types[dest];
6401 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6402 }
6403 else
6404 {
6405 duplicate:
6406 i.operands++;
6407 i.reg_operands++;
6408 i.tm.operands++;
6409
6410 i.op[dupl] = i.op[dest];
6411 i.types[dupl] = i.types[dest];
6412 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6413 }
6414
6415 if (i.tm.opcode_modifier.immext)
6416 process_immext ();
6417 }
6418 else if (i.tm.operand_types[0].bitfield.acc
6419 && i.tm.operand_types[0].bitfield.xmmword)
6420 {
6421 unsigned int j;
6422
6423 for (j = 1; j < i.operands; j++)
6424 {
6425 i.op[j - 1] = i.op[j];
6426 i.types[j - 1] = i.types[j];
6427
6428 /* We need to adjust fields in i.tm since they are used by
6429 build_modrm_byte. */
6430 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6431 }
6432
6433 i.operands--;
6434 i.reg_operands--;
6435 i.tm.operands--;
6436 }
6437 else if (i.tm.opcode_modifier.implicitquadgroup)
6438 {
6439 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6440
6441 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6442 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6443 regnum = register_number (i.op[1].regs);
6444 first_reg_in_group = regnum & ~3;
6445 last_reg_in_group = first_reg_in_group + 3;
6446 if (regnum != first_reg_in_group)
6447 as_warn (_("source register `%s%s' implicitly denotes"
6448 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6449 register_prefix, i.op[1].regs->reg_name,
6450 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6451 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6452 i.tm.name);
6453 }
6454 else if (i.tm.opcode_modifier.regkludge)
6455 {
6456 /* The imul $imm, %reg instruction is converted into
6457 imul $imm, %reg, %reg, and the clr %reg instruction
6458 is converted into xor %reg, %reg. */
6459
6460 unsigned int first_reg_op;
6461
6462 if (operand_type_check (i.types[0], reg))
6463 first_reg_op = 0;
6464 else
6465 first_reg_op = 1;
6466 /* Pretend we saw the extra register operand. */
6467 gas_assert (i.reg_operands == 1
6468 && i.op[first_reg_op + 1].regs == 0);
6469 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6470 i.types[first_reg_op + 1] = i.types[first_reg_op];
6471 i.operands++;
6472 i.reg_operands++;
6473 }
6474
6475 if (i.tm.opcode_modifier.shortform)
6476 {
6477 if (i.types[0].bitfield.sreg2
6478 || i.types[0].bitfield.sreg3)
6479 {
6480 if (i.tm.base_opcode == POP_SEG_SHORT
6481 && i.op[0].regs->reg_num == 1)
6482 {
6483 as_bad (_("you can't `pop %scs'"), register_prefix);
6484 return 0;
6485 }
6486 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6487 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6488 i.rex |= REX_B;
6489 }
6490 else
6491 {
6492 /* The register or float register operand is in operand
6493 0 or 1. */
6494 unsigned int op;
6495
6496 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6497 || operand_type_check (i.types[0], reg))
6498 op = 0;
6499 else
6500 op = 1;
6501 /* Register goes in low 3 bits of opcode. */
6502 i.tm.base_opcode |= i.op[op].regs->reg_num;
6503 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6504 i.rex |= REX_B;
6505 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6506 {
6507 /* Warn about some common errors, but press on regardless.
6508 The first case can be generated by gcc (<= 2.8.1). */
6509 if (i.operands == 2)
6510 {
6511 /* Reversed arguments on faddp, fsubp, etc. */
6512 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6513 register_prefix, i.op[!intel_syntax].regs->reg_name,
6514 register_prefix, i.op[intel_syntax].regs->reg_name);
6515 }
6516 else
6517 {
6518 /* Extraneous `l' suffix on fp insn. */
6519 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6520 register_prefix, i.op[0].regs->reg_name);
6521 }
6522 }
6523 }
6524 }
6525 else if (i.tm.opcode_modifier.modrm)
6526 {
6527 /* The opcode is completed (modulo i.tm.extension_opcode which
6528 must be put into the modrm byte). Now, we make the modrm and
6529 index base bytes based on all the info we've collected. */
6530
6531 default_seg = build_modrm_byte ();
6532 }
6533 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6534 {
6535 default_seg = &ds;
6536 }
6537 else if (i.tm.opcode_modifier.isstring)
6538 {
6539 /* For the string instructions that allow a segment override
6540 on one of their operands, the default segment is ds. */
6541 default_seg = &ds;
6542 }
6543
6544 if (i.tm.base_opcode == 0x8d /* lea */
6545 && i.seg[0]
6546 && !quiet_warnings)
6547 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6548
6549 /* If a segment was explicitly specified, and the specified segment
6550 is not the default, use an opcode prefix to select it. If we
6551 never figured out what the default segment is, then default_seg
6552 will be zero at this point, and the specified segment prefix will
6553 always be used. */
6554 if ((i.seg[0]) && (i.seg[0] != default_seg))
6555 {
6556 if (!add_prefix (i.seg[0]->seg_prefix))
6557 return 0;
6558 }
6559 return 1;
6560 }
6561
6562 static const seg_entry *
6563 build_modrm_byte (void)
6564 {
6565 const seg_entry *default_seg = 0;
6566 unsigned int source, dest;
6567 int vex_3_sources;
6568
6569 /* The first operand of instructions with VEX prefix and 3 sources
6570 must be VEX_Imm4. */
6571 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6572 if (vex_3_sources)
6573 {
6574 unsigned int nds, reg_slot;
6575 expressionS *exp;
6576
6577 if (i.tm.opcode_modifier.veximmext
6578 && i.tm.opcode_modifier.immext)
6579 {
6580 dest = i.operands - 2;
6581 gas_assert (dest == 3);
6582 }
6583 else
6584 dest = i.operands - 1;
6585 nds = dest - 1;
6586
6587 /* There are 2 kinds of instructions:
6588 1. 5 operands: 4 register operands or 3 register operands
6589 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6590 VexW0 or VexW1. The destination must be either XMM, YMM or
6591 ZMM register.
6592 2. 4 operands: 4 register operands or 3 register operands
6593 plus 1 memory operand, VexXDS, and VexImmExt */
6594 gas_assert ((i.reg_operands == 4
6595 || (i.reg_operands == 3 && i.mem_operands == 1))
6596 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6597 && (i.tm.opcode_modifier.veximmext
6598 || (i.imm_operands == 1
6599 && i.types[0].bitfield.vec_imm4
6600 && (i.tm.opcode_modifier.vexw == VEXW0
6601 || i.tm.opcode_modifier.vexw == VEXW1)
6602 && i.tm.operand_types[dest].bitfield.regsimd)));
6603
6604 if (i.imm_operands == 0)
6605 {
6606 /* When there is no immediate operand, generate an 8bit
6607 immediate operand to encode the first operand. */
6608 exp = &im_expressions[i.imm_operands++];
6609 i.op[i.operands].imms = exp;
6610 i.types[i.operands] = imm8;
6611 i.operands++;
6612 /* If VexW1 is set, the first operand is the source and
6613 the second operand is encoded in the immediate operand. */
6614 if (i.tm.opcode_modifier.vexw == VEXW1)
6615 {
6616 source = 0;
6617 reg_slot = 1;
6618 }
6619 else
6620 {
6621 source = 1;
6622 reg_slot = 0;
6623 }
6624
6625 /* FMA swaps REG and NDS. */
6626 if (i.tm.cpu_flags.bitfield.cpufma)
6627 {
6628 unsigned int tmp;
6629 tmp = reg_slot;
6630 reg_slot = nds;
6631 nds = tmp;
6632 }
6633
6634 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6635 exp->X_op = O_constant;
6636 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6637 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6638 }
6639 else
6640 {
6641 unsigned int imm_slot;
6642
6643 if (i.tm.opcode_modifier.vexw == VEXW0)
6644 {
6645 /* If VexW0 is set, the third operand is the source and
6646 the second operand is encoded in the immediate
6647 operand. */
6648 source = 2;
6649 reg_slot = 1;
6650 }
6651 else
6652 {
6653 /* VexW1 is set, the second operand is the source and
6654 the third operand is encoded in the immediate
6655 operand. */
6656 source = 1;
6657 reg_slot = 2;
6658 }
6659
6660 if (i.tm.opcode_modifier.immext)
6661 {
6662 /* When ImmExt is set, the immediate byte is the last
6663 operand. */
6664 imm_slot = i.operands - 1;
6665 source--;
6666 reg_slot--;
6667 }
6668 else
6669 {
6670 imm_slot = 0;
6671
6672 /* Turn on Imm8 so that output_imm will generate it. */
6673 i.types[imm_slot].bitfield.imm8 = 1;
6674 }
6675
6676 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6677 i.op[imm_slot].imms->X_add_number
6678 |= register_number (i.op[reg_slot].regs) << 4;
6679 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6680 }
6681
6682 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6683 i.vex.register_specifier = i.op[nds].regs;
6684 }
6685 else
6686 source = dest = 0;
6687
6688 /* i.reg_operands MUST be the number of real register operands;
6689 implicit registers do not count. If there are 3 register
6690 operands, it must be a instruction with VexNDS. For a
6691 instruction with VexNDD, the destination register is encoded
6692 in VEX prefix. If there are 4 register operands, it must be
6693 a instruction with VEX prefix and 3 sources. */
6694 if (i.mem_operands == 0
6695 && ((i.reg_operands == 2
6696 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6697 || (i.reg_operands == 3
6698 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6699 || (i.reg_operands == 4 && vex_3_sources)))
6700 {
6701 switch (i.operands)
6702 {
6703 case 2:
6704 source = 0;
6705 break;
6706 case 3:
6707 /* When there are 3 operands, one of them may be immediate,
6708 which may be the first or the last operand. Otherwise,
6709 the first operand must be shift count register (cl) or it
6710 is an instruction with VexNDS. */
6711 gas_assert (i.imm_operands == 1
6712 || (i.imm_operands == 0
6713 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6714 || i.types[0].bitfield.shiftcount)));
6715 if (operand_type_check (i.types[0], imm)
6716 || i.types[0].bitfield.shiftcount)
6717 source = 1;
6718 else
6719 source = 0;
6720 break;
6721 case 4:
6722 /* When there are 4 operands, the first two must be 8bit
6723 immediate operands. The source operand will be the 3rd
6724 one.
6725
6726 For instructions with VexNDS, if the first operand
6727 an imm8, the source operand is the 2nd one. If the last
6728 operand is imm8, the source operand is the first one. */
6729 gas_assert ((i.imm_operands == 2
6730 && i.types[0].bitfield.imm8
6731 && i.types[1].bitfield.imm8)
6732 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6733 && i.imm_operands == 1
6734 && (i.types[0].bitfield.imm8
6735 || i.types[i.operands - 1].bitfield.imm8
6736 || i.rounding)));
6737 if (i.imm_operands == 2)
6738 source = 2;
6739 else
6740 {
6741 if (i.types[0].bitfield.imm8)
6742 source = 1;
6743 else
6744 source = 0;
6745 }
6746 break;
6747 case 5:
6748 if (is_evex_encoding (&i.tm))
6749 {
6750 /* For EVEX instructions, when there are 5 operands, the
6751 first one must be immediate operand. If the second one
6752 is immediate operand, the source operand is the 3th
6753 one. If the last one is immediate operand, the source
6754 operand is the 2nd one. */
6755 gas_assert (i.imm_operands == 2
6756 && i.tm.opcode_modifier.sae
6757 && operand_type_check (i.types[0], imm));
6758 if (operand_type_check (i.types[1], imm))
6759 source = 2;
6760 else if (operand_type_check (i.types[4], imm))
6761 source = 1;
6762 else
6763 abort ();
6764 }
6765 break;
6766 default:
6767 abort ();
6768 }
6769
6770 if (!vex_3_sources)
6771 {
6772 dest = source + 1;
6773
6774 /* RC/SAE operand could be between DEST and SRC. That happens
6775 when one operand is GPR and the other one is XMM/YMM/ZMM
6776 register. */
6777 if (i.rounding && i.rounding->operand == (int) dest)
6778 dest++;
6779
6780 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6781 {
6782 /* For instructions with VexNDS, the register-only source
6783 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6784 register. It is encoded in VEX prefix. We need to
6785 clear RegMem bit before calling operand_type_equal. */
6786
6787 i386_operand_type op;
6788 unsigned int vvvv;
6789
6790 /* Check register-only source operand when two source
6791 operands are swapped. */
6792 if (!i.tm.operand_types[source].bitfield.baseindex
6793 && i.tm.operand_types[dest].bitfield.baseindex)
6794 {
6795 vvvv = source;
6796 source = dest;
6797 }
6798 else
6799 vvvv = dest;
6800
6801 op = i.tm.operand_types[vvvv];
6802 op.bitfield.regmem = 0;
6803 if ((dest + 1) >= i.operands
6804 || ((!op.bitfield.reg
6805 || (!op.bitfield.dword && !op.bitfield.qword))
6806 && !op.bitfield.regsimd
6807 && !operand_type_equal (&op, &regmask)))
6808 abort ();
6809 i.vex.register_specifier = i.op[vvvv].regs;
6810 dest++;
6811 }
6812 }
6813
6814 i.rm.mode = 3;
6815 /* One of the register operands will be encoded in the i.tm.reg
6816 field, the other in the combined i.tm.mode and i.tm.regmem
6817 fields. If no form of this instruction supports a memory
6818 destination operand, then we assume the source operand may
6819 sometimes be a memory operand and so we need to store the
6820 destination in the i.rm.reg field. */
6821 if (!i.tm.operand_types[dest].bitfield.regmem
6822 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6823 {
6824 i.rm.reg = i.op[dest].regs->reg_num;
6825 i.rm.regmem = i.op[source].regs->reg_num;
6826 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6827 i.rex |= REX_R;
6828 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6829 i.vrex |= REX_R;
6830 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6831 i.rex |= REX_B;
6832 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6833 i.vrex |= REX_B;
6834 }
6835 else
6836 {
6837 i.rm.reg = i.op[source].regs->reg_num;
6838 i.rm.regmem = i.op[dest].regs->reg_num;
6839 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6840 i.rex |= REX_B;
6841 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6842 i.vrex |= REX_B;
6843 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6844 i.rex |= REX_R;
6845 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6846 i.vrex |= REX_R;
6847 }
6848 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6849 {
6850 if (!i.types[0].bitfield.control
6851 && !i.types[1].bitfield.control)
6852 abort ();
6853 i.rex &= ~(REX_R | REX_B);
6854 add_prefix (LOCK_PREFIX_OPCODE);
6855 }
6856 }
6857 else
6858 { /* If it's not 2 reg operands... */
6859 unsigned int mem;
6860
6861 if (i.mem_operands)
6862 {
6863 unsigned int fake_zero_displacement = 0;
6864 unsigned int op;
6865
6866 for (op = 0; op < i.operands; op++)
6867 if (operand_type_check (i.types[op], anymem))
6868 break;
6869 gas_assert (op < i.operands);
6870
6871 if (i.tm.opcode_modifier.vecsib)
6872 {
6873 if (i.index_reg->reg_num == RegEiz
6874 || i.index_reg->reg_num == RegRiz)
6875 abort ();
6876
6877 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6878 if (!i.base_reg)
6879 {
6880 i.sib.base = NO_BASE_REGISTER;
6881 i.sib.scale = i.log2_scale_factor;
6882 i.types[op].bitfield.disp8 = 0;
6883 i.types[op].bitfield.disp16 = 0;
6884 i.types[op].bitfield.disp64 = 0;
6885 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6886 {
6887 /* Must be 32 bit */
6888 i.types[op].bitfield.disp32 = 1;
6889 i.types[op].bitfield.disp32s = 0;
6890 }
6891 else
6892 {
6893 i.types[op].bitfield.disp32 = 0;
6894 i.types[op].bitfield.disp32s = 1;
6895 }
6896 }
6897 i.sib.index = i.index_reg->reg_num;
6898 if ((i.index_reg->reg_flags & RegRex) != 0)
6899 i.rex |= REX_X;
6900 if ((i.index_reg->reg_flags & RegVRex) != 0)
6901 i.vrex |= REX_X;
6902 }
6903
6904 default_seg = &ds;
6905
6906 if (i.base_reg == 0)
6907 {
6908 i.rm.mode = 0;
6909 if (!i.disp_operands)
6910 fake_zero_displacement = 1;
6911 if (i.index_reg == 0)
6912 {
6913 i386_operand_type newdisp;
6914
6915 gas_assert (!i.tm.opcode_modifier.vecsib);
6916 /* Operand is just <disp> */
6917 if (flag_code == CODE_64BIT)
6918 {
6919 /* 64bit mode overwrites the 32bit absolute
6920 addressing by RIP relative addressing and
6921 absolute addressing is encoded by one of the
6922 redundant SIB forms. */
6923 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6924 i.sib.base = NO_BASE_REGISTER;
6925 i.sib.index = NO_INDEX_REGISTER;
6926 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6927 }
6928 else if ((flag_code == CODE_16BIT)
6929 ^ (i.prefix[ADDR_PREFIX] != 0))
6930 {
6931 i.rm.regmem = NO_BASE_REGISTER_16;
6932 newdisp = disp16;
6933 }
6934 else
6935 {
6936 i.rm.regmem = NO_BASE_REGISTER;
6937 newdisp = disp32;
6938 }
6939 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6940 i.types[op] = operand_type_or (i.types[op], newdisp);
6941 }
6942 else if (!i.tm.opcode_modifier.vecsib)
6943 {
6944 /* !i.base_reg && i.index_reg */
6945 if (i.index_reg->reg_num == RegEiz
6946 || i.index_reg->reg_num == RegRiz)
6947 i.sib.index = NO_INDEX_REGISTER;
6948 else
6949 i.sib.index = i.index_reg->reg_num;
6950 i.sib.base = NO_BASE_REGISTER;
6951 i.sib.scale = i.log2_scale_factor;
6952 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6953 i.types[op].bitfield.disp8 = 0;
6954 i.types[op].bitfield.disp16 = 0;
6955 i.types[op].bitfield.disp64 = 0;
6956 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6957 {
6958 /* Must be 32 bit */
6959 i.types[op].bitfield.disp32 = 1;
6960 i.types[op].bitfield.disp32s = 0;
6961 }
6962 else
6963 {
6964 i.types[op].bitfield.disp32 = 0;
6965 i.types[op].bitfield.disp32s = 1;
6966 }
6967 if ((i.index_reg->reg_flags & RegRex) != 0)
6968 i.rex |= REX_X;
6969 }
6970 }
6971 /* RIP addressing for 64bit mode. */
6972 else if (i.base_reg->reg_num == RegRip ||
6973 i.base_reg->reg_num == RegEip)
6974 {
6975 gas_assert (!i.tm.opcode_modifier.vecsib);
6976 i.rm.regmem = NO_BASE_REGISTER;
6977 i.types[op].bitfield.disp8 = 0;
6978 i.types[op].bitfield.disp16 = 0;
6979 i.types[op].bitfield.disp32 = 0;
6980 i.types[op].bitfield.disp32s = 1;
6981 i.types[op].bitfield.disp64 = 0;
6982 i.flags[op] |= Operand_PCrel;
6983 if (! i.disp_operands)
6984 fake_zero_displacement = 1;
6985 }
6986 else if (i.base_reg->reg_type.bitfield.word)
6987 {
6988 gas_assert (!i.tm.opcode_modifier.vecsib);
6989 switch (i.base_reg->reg_num)
6990 {
6991 case 3: /* (%bx) */
6992 if (i.index_reg == 0)
6993 i.rm.regmem = 7;
6994 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6995 i.rm.regmem = i.index_reg->reg_num - 6;
6996 break;
6997 case 5: /* (%bp) */
6998 default_seg = &ss;
6999 if (i.index_reg == 0)
7000 {
7001 i.rm.regmem = 6;
7002 if (operand_type_check (i.types[op], disp) == 0)
7003 {
7004 /* fake (%bp) into 0(%bp) */
7005 i.types[op].bitfield.disp8 = 1;
7006 fake_zero_displacement = 1;
7007 }
7008 }
7009 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7010 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7011 break;
7012 default: /* (%si) -> 4 or (%di) -> 5 */
7013 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7014 }
7015 i.rm.mode = mode_from_disp_size (i.types[op]);
7016 }
7017 else /* i.base_reg and 32/64 bit mode */
7018 {
7019 if (flag_code == CODE_64BIT
7020 && operand_type_check (i.types[op], disp))
7021 {
7022 i.types[op].bitfield.disp16 = 0;
7023 i.types[op].bitfield.disp64 = 0;
7024 if (i.prefix[ADDR_PREFIX] == 0)
7025 {
7026 i.types[op].bitfield.disp32 = 0;
7027 i.types[op].bitfield.disp32s = 1;
7028 }
7029 else
7030 {
7031 i.types[op].bitfield.disp32 = 1;
7032 i.types[op].bitfield.disp32s = 0;
7033 }
7034 }
7035
7036 if (!i.tm.opcode_modifier.vecsib)
7037 i.rm.regmem = i.base_reg->reg_num;
7038 if ((i.base_reg->reg_flags & RegRex) != 0)
7039 i.rex |= REX_B;
7040 i.sib.base = i.base_reg->reg_num;
7041 /* x86-64 ignores REX prefix bit here to avoid decoder
7042 complications. */
7043 if (!(i.base_reg->reg_flags & RegRex)
7044 && (i.base_reg->reg_num == EBP_REG_NUM
7045 || i.base_reg->reg_num == ESP_REG_NUM))
7046 default_seg = &ss;
7047 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7048 {
7049 fake_zero_displacement = 1;
7050 i.types[op].bitfield.disp8 = 1;
7051 }
7052 i.sib.scale = i.log2_scale_factor;
7053 if (i.index_reg == 0)
7054 {
7055 gas_assert (!i.tm.opcode_modifier.vecsib);
7056 /* <disp>(%esp) becomes two byte modrm with no index
7057 register. We've already stored the code for esp
7058 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7059 Any base register besides %esp will not use the
7060 extra modrm byte. */
7061 i.sib.index = NO_INDEX_REGISTER;
7062 }
7063 else if (!i.tm.opcode_modifier.vecsib)
7064 {
7065 if (i.index_reg->reg_num == RegEiz
7066 || i.index_reg->reg_num == RegRiz)
7067 i.sib.index = NO_INDEX_REGISTER;
7068 else
7069 i.sib.index = i.index_reg->reg_num;
7070 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7071 if ((i.index_reg->reg_flags & RegRex) != 0)
7072 i.rex |= REX_X;
7073 }
7074
7075 if (i.disp_operands
7076 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7077 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7078 i.rm.mode = 0;
7079 else
7080 {
7081 if (!fake_zero_displacement
7082 && !i.disp_operands
7083 && i.disp_encoding)
7084 {
7085 fake_zero_displacement = 1;
7086 if (i.disp_encoding == disp_encoding_8bit)
7087 i.types[op].bitfield.disp8 = 1;
7088 else
7089 i.types[op].bitfield.disp32 = 1;
7090 }
7091 i.rm.mode = mode_from_disp_size (i.types[op]);
7092 }
7093 }
7094
7095 if (fake_zero_displacement)
7096 {
7097 /* Fakes a zero displacement assuming that i.types[op]
7098 holds the correct displacement size. */
7099 expressionS *exp;
7100
7101 gas_assert (i.op[op].disps == 0);
7102 exp = &disp_expressions[i.disp_operands++];
7103 i.op[op].disps = exp;
7104 exp->X_op = O_constant;
7105 exp->X_add_number = 0;
7106 exp->X_add_symbol = (symbolS *) 0;
7107 exp->X_op_symbol = (symbolS *) 0;
7108 }
7109
7110 mem = op;
7111 }
7112 else
7113 mem = ~0;
7114
7115 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7116 {
7117 if (operand_type_check (i.types[0], imm))
7118 i.vex.register_specifier = NULL;
7119 else
7120 {
7121 /* VEX.vvvv encodes one of the sources when the first
7122 operand is not an immediate. */
7123 if (i.tm.opcode_modifier.vexw == VEXW0)
7124 i.vex.register_specifier = i.op[0].regs;
7125 else
7126 i.vex.register_specifier = i.op[1].regs;
7127 }
7128
7129 /* Destination is a XMM register encoded in the ModRM.reg
7130 and VEX.R bit. */
7131 i.rm.reg = i.op[2].regs->reg_num;
7132 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7133 i.rex |= REX_R;
7134
7135 /* ModRM.rm and VEX.B encodes the other source. */
7136 if (!i.mem_operands)
7137 {
7138 i.rm.mode = 3;
7139
7140 if (i.tm.opcode_modifier.vexw == VEXW0)
7141 i.rm.regmem = i.op[1].regs->reg_num;
7142 else
7143 i.rm.regmem = i.op[0].regs->reg_num;
7144
7145 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7146 i.rex |= REX_B;
7147 }
7148 }
7149 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7150 {
7151 i.vex.register_specifier = i.op[2].regs;
7152 if (!i.mem_operands)
7153 {
7154 i.rm.mode = 3;
7155 i.rm.regmem = i.op[1].regs->reg_num;
7156 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7157 i.rex |= REX_B;
7158 }
7159 }
7160 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7161 (if any) based on i.tm.extension_opcode. Again, we must be
7162 careful to make sure that segment/control/debug/test/MMX
7163 registers are coded into the i.rm.reg field. */
7164 else if (i.reg_operands)
7165 {
7166 unsigned int op;
7167 unsigned int vex_reg = ~0;
7168
7169 for (op = 0; op < i.operands; op++)
7170 if (i.types[op].bitfield.reg
7171 || i.types[op].bitfield.regmmx
7172 || i.types[op].bitfield.regsimd
7173 || i.types[op].bitfield.regbnd
7174 || i.types[op].bitfield.regmask
7175 || i.types[op].bitfield.sreg2
7176 || i.types[op].bitfield.sreg3
7177 || i.types[op].bitfield.control
7178 || i.types[op].bitfield.debug
7179 || i.types[op].bitfield.test)
7180 break;
7181
7182 if (vex_3_sources)
7183 op = dest;
7184 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7185 {
7186 /* For instructions with VexNDS, the register-only
7187 source operand is encoded in VEX prefix. */
7188 gas_assert (mem != (unsigned int) ~0);
7189
7190 if (op > mem)
7191 {
7192 vex_reg = op++;
7193 gas_assert (op < i.operands);
7194 }
7195 else
7196 {
7197 /* Check register-only source operand when two source
7198 operands are swapped. */
7199 if (!i.tm.operand_types[op].bitfield.baseindex
7200 && i.tm.operand_types[op + 1].bitfield.baseindex)
7201 {
7202 vex_reg = op;
7203 op += 2;
7204 gas_assert (mem == (vex_reg + 1)
7205 && op < i.operands);
7206 }
7207 else
7208 {
7209 vex_reg = op + 1;
7210 gas_assert (vex_reg < i.operands);
7211 }
7212 }
7213 }
7214 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7215 {
7216 /* For instructions with VexNDD, the register destination
7217 is encoded in VEX prefix. */
7218 if (i.mem_operands == 0)
7219 {
7220 /* There is no memory operand. */
7221 gas_assert ((op + 2) == i.operands);
7222 vex_reg = op + 1;
7223 }
7224 else
7225 {
7226 /* There are only 2 non-immediate operands. */
7227 gas_assert (op < i.imm_operands + 2
7228 && i.operands == i.imm_operands + 2);
7229 vex_reg = i.imm_operands + 1;
7230 }
7231 }
7232 else
7233 gas_assert (op < i.operands);
7234
7235 if (vex_reg != (unsigned int) ~0)
7236 {
7237 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7238
7239 if ((!type->bitfield.reg
7240 || (!type->bitfield.dword && !type->bitfield.qword))
7241 && !type->bitfield.regsimd
7242 && !operand_type_equal (type, &regmask))
7243 abort ();
7244
7245 i.vex.register_specifier = i.op[vex_reg].regs;
7246 }
7247
7248 /* Don't set OP operand twice. */
7249 if (vex_reg != op)
7250 {
7251 /* If there is an extension opcode to put here, the
7252 register number must be put into the regmem field. */
7253 if (i.tm.extension_opcode != None)
7254 {
7255 i.rm.regmem = i.op[op].regs->reg_num;
7256 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7257 i.rex |= REX_B;
7258 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7259 i.vrex |= REX_B;
7260 }
7261 else
7262 {
7263 i.rm.reg = i.op[op].regs->reg_num;
7264 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7265 i.rex |= REX_R;
7266 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7267 i.vrex |= REX_R;
7268 }
7269 }
7270
7271 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7272 must set it to 3 to indicate this is a register operand
7273 in the regmem field. */
7274 if (!i.mem_operands)
7275 i.rm.mode = 3;
7276 }
7277
7278 /* Fill in i.rm.reg field with extension opcode (if any). */
7279 if (i.tm.extension_opcode != None)
7280 i.rm.reg = i.tm.extension_opcode;
7281 }
7282 return default_seg;
7283 }
7284
7285 static void
7286 output_branch (void)
7287 {
7288 char *p;
7289 int size;
7290 int code16;
7291 int prefix;
7292 relax_substateT subtype;
7293 symbolS *sym;
7294 offsetT off;
7295
7296 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7297 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7298
7299 prefix = 0;
7300 if (i.prefix[DATA_PREFIX] != 0)
7301 {
7302 prefix = 1;
7303 i.prefixes -= 1;
7304 code16 ^= CODE16;
7305 }
7306 /* Pentium4 branch hints. */
7307 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7308 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7309 {
7310 prefix++;
7311 i.prefixes--;
7312 }
7313 if (i.prefix[REX_PREFIX] != 0)
7314 {
7315 prefix++;
7316 i.prefixes--;
7317 }
7318
7319 /* BND prefixed jump. */
7320 if (i.prefix[BND_PREFIX] != 0)
7321 {
7322 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7323 i.prefixes -= 1;
7324 }
7325
7326 if (i.prefixes != 0 && !intel_syntax)
7327 as_warn (_("skipping prefixes on this instruction"));
7328
7329 /* It's always a symbol; End frag & setup for relax.
7330 Make sure there is enough room in this frag for the largest
7331 instruction we may generate in md_convert_frag. This is 2
7332 bytes for the opcode and room for the prefix and largest
7333 displacement. */
7334 frag_grow (prefix + 2 + 4);
7335 /* Prefix and 1 opcode byte go in fr_fix. */
7336 p = frag_more (prefix + 1);
7337 if (i.prefix[DATA_PREFIX] != 0)
7338 *p++ = DATA_PREFIX_OPCODE;
7339 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7340 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7341 *p++ = i.prefix[SEG_PREFIX];
7342 if (i.prefix[REX_PREFIX] != 0)
7343 *p++ = i.prefix[REX_PREFIX];
7344 *p = i.tm.base_opcode;
7345
7346 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7347 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7348 else if (cpu_arch_flags.bitfield.cpui386)
7349 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7350 else
7351 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7352 subtype |= code16;
7353
7354 sym = i.op[0].disps->X_add_symbol;
7355 off = i.op[0].disps->X_add_number;
7356
7357 if (i.op[0].disps->X_op != O_constant
7358 && i.op[0].disps->X_op != O_symbol)
7359 {
7360 /* Handle complex expressions. */
7361 sym = make_expr_symbol (i.op[0].disps);
7362 off = 0;
7363 }
7364
7365 /* 1 possible extra opcode + 4 byte displacement go in var part.
7366 Pass reloc in fr_var. */
7367 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7368 }
7369
7370 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7371 /* Return TRUE iff PLT32 relocation should be used for branching to
7372 symbol S. */
7373
7374 static bfd_boolean
7375 need_plt32_p (symbolS *s)
7376 {
7377 /* PLT32 relocation is ELF only. */
7378 if (!IS_ELF)
7379 return FALSE;
7380
7381 /* Since there is no need to prepare for PLT branch on x86-64, we
7382 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7383 be used as a marker for 32-bit PC-relative branches. */
7384 if (!object_64bit)
7385 return FALSE;
7386
7387 /* Weak or undefined symbol need PLT32 relocation. */
7388 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7389 return TRUE;
7390
7391 /* Non-global symbol doesn't need PLT32 relocation. */
7392 if (! S_IS_EXTERNAL (s))
7393 return FALSE;
7394
7395 /* Other global symbols need PLT32 relocation. NB: Symbol with
7396 non-default visibilities are treated as normal global symbol
7397 so that PLT32 relocation can be used as a marker for 32-bit
7398 PC-relative branches. It is useful for linker relaxation. */
7399 return TRUE;
7400 }
7401 #endif
7402
7403 static void
7404 output_jump (void)
7405 {
7406 char *p;
7407 int size;
7408 fixS *fixP;
7409 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7410
7411 if (i.tm.opcode_modifier.jumpbyte)
7412 {
7413 /* This is a loop or jecxz type instruction. */
7414 size = 1;
7415 if (i.prefix[ADDR_PREFIX] != 0)
7416 {
7417 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7418 i.prefixes -= 1;
7419 }
7420 /* Pentium4 branch hints. */
7421 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7422 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7423 {
7424 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7425 i.prefixes--;
7426 }
7427 }
7428 else
7429 {
7430 int code16;
7431
7432 code16 = 0;
7433 if (flag_code == CODE_16BIT)
7434 code16 = CODE16;
7435
7436 if (i.prefix[DATA_PREFIX] != 0)
7437 {
7438 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7439 i.prefixes -= 1;
7440 code16 ^= CODE16;
7441 }
7442
7443 size = 4;
7444 if (code16)
7445 size = 2;
7446 }
7447
7448 if (i.prefix[REX_PREFIX] != 0)
7449 {
7450 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7451 i.prefixes -= 1;
7452 }
7453
7454 /* BND prefixed jump. */
7455 if (i.prefix[BND_PREFIX] != 0)
7456 {
7457 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7458 i.prefixes -= 1;
7459 }
7460
7461 if (i.prefixes != 0 && !intel_syntax)
7462 as_warn (_("skipping prefixes on this instruction"));
7463
7464 p = frag_more (i.tm.opcode_length + size);
7465 switch (i.tm.opcode_length)
7466 {
7467 case 2:
7468 *p++ = i.tm.base_opcode >> 8;
7469 /* Fall through. */
7470 case 1:
7471 *p++ = i.tm.base_opcode;
7472 break;
7473 default:
7474 abort ();
7475 }
7476
7477 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7478 if (size == 4
7479 && jump_reloc == NO_RELOC
7480 && need_plt32_p (i.op[0].disps->X_add_symbol))
7481 jump_reloc = BFD_RELOC_X86_64_PLT32;
7482 #endif
7483
7484 jump_reloc = reloc (size, 1, 1, jump_reloc);
7485
7486 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7487 i.op[0].disps, 1, jump_reloc);
7488
7489 /* All jumps handled here are signed, but don't use a signed limit
7490 check for 32 and 16 bit jumps as we want to allow wrap around at
7491 4G and 64k respectively. */
7492 if (size == 1)
7493 fixP->fx_signed = 1;
7494 }
7495
7496 static void
7497 output_interseg_jump (void)
7498 {
7499 char *p;
7500 int size;
7501 int prefix;
7502 int code16;
7503
7504 code16 = 0;
7505 if (flag_code == CODE_16BIT)
7506 code16 = CODE16;
7507
7508 prefix = 0;
7509 if (i.prefix[DATA_PREFIX] != 0)
7510 {
7511 prefix = 1;
7512 i.prefixes -= 1;
7513 code16 ^= CODE16;
7514 }
7515 if (i.prefix[REX_PREFIX] != 0)
7516 {
7517 prefix++;
7518 i.prefixes -= 1;
7519 }
7520
7521 size = 4;
7522 if (code16)
7523 size = 2;
7524
7525 if (i.prefixes != 0 && !intel_syntax)
7526 as_warn (_("skipping prefixes on this instruction"));
7527
7528 /* 1 opcode; 2 segment; offset */
7529 p = frag_more (prefix + 1 + 2 + size);
7530
7531 if (i.prefix[DATA_PREFIX] != 0)
7532 *p++ = DATA_PREFIX_OPCODE;
7533
7534 if (i.prefix[REX_PREFIX] != 0)
7535 *p++ = i.prefix[REX_PREFIX];
7536
7537 *p++ = i.tm.base_opcode;
7538 if (i.op[1].imms->X_op == O_constant)
7539 {
7540 offsetT n = i.op[1].imms->X_add_number;
7541
7542 if (size == 2
7543 && !fits_in_unsigned_word (n)
7544 && !fits_in_signed_word (n))
7545 {
7546 as_bad (_("16-bit jump out of range"));
7547 return;
7548 }
7549 md_number_to_chars (p, n, size);
7550 }
7551 else
7552 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7553 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7554 if (i.op[0].imms->X_op != O_constant)
7555 as_bad (_("can't handle non absolute segment in `%s'"),
7556 i.tm.name);
7557 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7558 }
7559
7560 static void
7561 output_insn (void)
7562 {
7563 fragS *insn_start_frag;
7564 offsetT insn_start_off;
7565
7566 /* Tie dwarf2 debug info to the address at the start of the insn.
7567 We can't do this after the insn has been output as the current
7568 frag may have been closed off. eg. by frag_var. */
7569 dwarf2_emit_insn (0);
7570
7571 insn_start_frag = frag_now;
7572 insn_start_off = frag_now_fix ();
7573
7574 /* Output jumps. */
7575 if (i.tm.opcode_modifier.jump)
7576 output_branch ();
7577 else if (i.tm.opcode_modifier.jumpbyte
7578 || i.tm.opcode_modifier.jumpdword)
7579 output_jump ();
7580 else if (i.tm.opcode_modifier.jumpintersegment)
7581 output_interseg_jump ();
7582 else
7583 {
7584 /* Output normal instructions here. */
7585 char *p;
7586 unsigned char *q;
7587 unsigned int j;
7588 unsigned int prefix;
7589
7590 if (avoid_fence
7591 && i.tm.base_opcode == 0xfae
7592 && i.operands == 1
7593 && i.imm_operands == 1
7594 && (i.op[0].imms->X_add_number == 0xe8
7595 || i.op[0].imms->X_add_number == 0xf0
7596 || i.op[0].imms->X_add_number == 0xf8))
7597 {
7598 /* Encode lfence, mfence, and sfence as
7599 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7600 offsetT val = 0x240483f0ULL;
7601 p = frag_more (5);
7602 md_number_to_chars (p, val, 5);
7603 return;
7604 }
7605
7606 /* Some processors fail on LOCK prefix. This options makes
7607 assembler ignore LOCK prefix and serves as a workaround. */
7608 if (omit_lock_prefix)
7609 {
7610 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7611 return;
7612 i.prefix[LOCK_PREFIX] = 0;
7613 }
7614
7615 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7616 don't need the explicit prefix. */
7617 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7618 {
7619 switch (i.tm.opcode_length)
7620 {
7621 case 3:
7622 if (i.tm.base_opcode & 0xff000000)
7623 {
7624 prefix = (i.tm.base_opcode >> 24) & 0xff;
7625 goto check_prefix;
7626 }
7627 break;
7628 case 2:
7629 if ((i.tm.base_opcode & 0xff0000) != 0)
7630 {
7631 prefix = (i.tm.base_opcode >> 16) & 0xff;
7632 if (i.tm.cpu_flags.bitfield.cpupadlock)
7633 {
7634 check_prefix:
7635 if (prefix != REPE_PREFIX_OPCODE
7636 || (i.prefix[REP_PREFIX]
7637 != REPE_PREFIX_OPCODE))
7638 add_prefix (prefix);
7639 }
7640 else
7641 add_prefix (prefix);
7642 }
7643 break;
7644 case 1:
7645 break;
7646 case 0:
7647 /* Check for pseudo prefixes. */
7648 as_bad_where (insn_start_frag->fr_file,
7649 insn_start_frag->fr_line,
7650 _("pseudo prefix without instruction"));
7651 return;
7652 default:
7653 abort ();
7654 }
7655
7656 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7657 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7658 R_X86_64_GOTTPOFF relocation so that linker can safely
7659 perform IE->LE optimization. */
7660 if (x86_elf_abi == X86_64_X32_ABI
7661 && i.operands == 2
7662 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7663 && i.prefix[REX_PREFIX] == 0)
7664 add_prefix (REX_OPCODE);
7665 #endif
7666
7667 /* The prefix bytes. */
7668 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7669 if (*q)
7670 FRAG_APPEND_1_CHAR (*q);
7671 }
7672 else
7673 {
7674 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7675 if (*q)
7676 switch (j)
7677 {
7678 case REX_PREFIX:
7679 /* REX byte is encoded in VEX prefix. */
7680 break;
7681 case SEG_PREFIX:
7682 case ADDR_PREFIX:
7683 FRAG_APPEND_1_CHAR (*q);
7684 break;
7685 default:
7686 /* There should be no other prefixes for instructions
7687 with VEX prefix. */
7688 abort ();
7689 }
7690
7691 /* For EVEX instructions i.vrex should become 0 after
7692 build_evex_prefix. For VEX instructions upper 16 registers
7693 aren't available, so VREX should be 0. */
7694 if (i.vrex)
7695 abort ();
7696 /* Now the VEX prefix. */
7697 p = frag_more (i.vex.length);
7698 for (j = 0; j < i.vex.length; j++)
7699 p[j] = i.vex.bytes[j];
7700 }
7701
7702 /* Now the opcode; be careful about word order here! */
7703 if (i.tm.opcode_length == 1)
7704 {
7705 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7706 }
7707 else
7708 {
7709 switch (i.tm.opcode_length)
7710 {
7711 case 4:
7712 p = frag_more (4);
7713 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7714 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7715 break;
7716 case 3:
7717 p = frag_more (3);
7718 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7719 break;
7720 case 2:
7721 p = frag_more (2);
7722 break;
7723 default:
7724 abort ();
7725 break;
7726 }
7727
7728 /* Put out high byte first: can't use md_number_to_chars! */
7729 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7730 *p = i.tm.base_opcode & 0xff;
7731 }
7732
7733 /* Now the modrm byte and sib byte (if present). */
7734 if (i.tm.opcode_modifier.modrm)
7735 {
7736 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7737 | i.rm.reg << 3
7738 | i.rm.mode << 6));
7739 /* If i.rm.regmem == ESP (4)
7740 && i.rm.mode != (Register mode)
7741 && not 16 bit
7742 ==> need second modrm byte. */
7743 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7744 && i.rm.mode != 3
7745 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7746 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7747 | i.sib.index << 3
7748 | i.sib.scale << 6));
7749 }
7750
7751 if (i.disp_operands)
7752 output_disp (insn_start_frag, insn_start_off);
7753
7754 if (i.imm_operands)
7755 output_imm (insn_start_frag, insn_start_off);
7756 }
7757
7758 #ifdef DEBUG386
7759 if (flag_debug)
7760 {
7761 pi ("" /*line*/, &i);
7762 }
7763 #endif /* DEBUG386 */
7764 }
7765
7766 /* Return the size of the displacement operand N. */
7767
7768 static int
7769 disp_size (unsigned int n)
7770 {
7771 int size = 4;
7772
7773 if (i.types[n].bitfield.disp64)
7774 size = 8;
7775 else if (i.types[n].bitfield.disp8)
7776 size = 1;
7777 else if (i.types[n].bitfield.disp16)
7778 size = 2;
7779 return size;
7780 }
7781
7782 /* Return the size of the immediate operand N. */
7783
7784 static int
7785 imm_size (unsigned int n)
7786 {
7787 int size = 4;
7788 if (i.types[n].bitfield.imm64)
7789 size = 8;
7790 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7791 size = 1;
7792 else if (i.types[n].bitfield.imm16)
7793 size = 2;
7794 return size;
7795 }
7796
7797 static void
7798 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7799 {
7800 char *p;
7801 unsigned int n;
7802
7803 for (n = 0; n < i.operands; n++)
7804 {
7805 if (operand_type_check (i.types[n], disp))
7806 {
7807 if (i.op[n].disps->X_op == O_constant)
7808 {
7809 int size = disp_size (n);
7810 offsetT val = i.op[n].disps->X_add_number;
7811
7812 val = offset_in_range (val >> i.memshift, size);
7813 p = frag_more (size);
7814 md_number_to_chars (p, val, size);
7815 }
7816 else
7817 {
7818 enum bfd_reloc_code_real reloc_type;
7819 int size = disp_size (n);
7820 int sign = i.types[n].bitfield.disp32s;
7821 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7822 fixS *fixP;
7823
7824 /* We can't have 8 bit displacement here. */
7825 gas_assert (!i.types[n].bitfield.disp8);
7826
7827 /* The PC relative address is computed relative
7828 to the instruction boundary, so in case immediate
7829 fields follows, we need to adjust the value. */
7830 if (pcrel && i.imm_operands)
7831 {
7832 unsigned int n1;
7833 int sz = 0;
7834
7835 for (n1 = 0; n1 < i.operands; n1++)
7836 if (operand_type_check (i.types[n1], imm))
7837 {
7838 /* Only one immediate is allowed for PC
7839 relative address. */
7840 gas_assert (sz == 0);
7841 sz = imm_size (n1);
7842 i.op[n].disps->X_add_number -= sz;
7843 }
7844 /* We should find the immediate. */
7845 gas_assert (sz != 0);
7846 }
7847
7848 p = frag_more (size);
7849 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7850 if (GOT_symbol
7851 && GOT_symbol == i.op[n].disps->X_add_symbol
7852 && (((reloc_type == BFD_RELOC_32
7853 || reloc_type == BFD_RELOC_X86_64_32S
7854 || (reloc_type == BFD_RELOC_64
7855 && object_64bit))
7856 && (i.op[n].disps->X_op == O_symbol
7857 || (i.op[n].disps->X_op == O_add
7858 && ((symbol_get_value_expression
7859 (i.op[n].disps->X_op_symbol)->X_op)
7860 == O_subtract))))
7861 || reloc_type == BFD_RELOC_32_PCREL))
7862 {
7863 offsetT add;
7864
7865 if (insn_start_frag == frag_now)
7866 add = (p - frag_now->fr_literal) - insn_start_off;
7867 else
7868 {
7869 fragS *fr;
7870
7871 add = insn_start_frag->fr_fix - insn_start_off;
7872 for (fr = insn_start_frag->fr_next;
7873 fr && fr != frag_now; fr = fr->fr_next)
7874 add += fr->fr_fix;
7875 add += p - frag_now->fr_literal;
7876 }
7877
7878 if (!object_64bit)
7879 {
7880 reloc_type = BFD_RELOC_386_GOTPC;
7881 i.op[n].imms->X_add_number += add;
7882 }
7883 else if (reloc_type == BFD_RELOC_64)
7884 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7885 else
7886 /* Don't do the adjustment for x86-64, as there
7887 the pcrel addressing is relative to the _next_
7888 insn, and that is taken care of in other code. */
7889 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7890 }
7891 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7892 size, i.op[n].disps, pcrel,
7893 reloc_type);
7894 /* Check for "call/jmp *mem", "mov mem, %reg",
7895 "test %reg, mem" and "binop mem, %reg" where binop
7896 is one of adc, add, and, cmp, or, sbb, sub, xor
7897 instructions. Always generate R_386_GOT32X for
7898 "sym*GOT" operand in 32-bit mode. */
7899 if ((generate_relax_relocations
7900 || (!object_64bit
7901 && i.rm.mode == 0
7902 && i.rm.regmem == 5))
7903 && (i.rm.mode == 2
7904 || (i.rm.mode == 0 && i.rm.regmem == 5))
7905 && ((i.operands == 1
7906 && i.tm.base_opcode == 0xff
7907 && (i.rm.reg == 2 || i.rm.reg == 4))
7908 || (i.operands == 2
7909 && (i.tm.base_opcode == 0x8b
7910 || i.tm.base_opcode == 0x85
7911 || (i.tm.base_opcode & 0xc7) == 0x03))))
7912 {
7913 if (object_64bit)
7914 {
7915 fixP->fx_tcbit = i.rex != 0;
7916 if (i.base_reg
7917 && (i.base_reg->reg_num == RegRip
7918 || i.base_reg->reg_num == RegEip))
7919 fixP->fx_tcbit2 = 1;
7920 }
7921 else
7922 fixP->fx_tcbit2 = 1;
7923 }
7924 }
7925 }
7926 }
7927 }
7928
7929 static void
7930 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7931 {
7932 char *p;
7933 unsigned int n;
7934
7935 for (n = 0; n < i.operands; n++)
7936 {
7937 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7938 if (i.rounding && (int) n == i.rounding->operand)
7939 continue;
7940
7941 if (operand_type_check (i.types[n], imm))
7942 {
7943 if (i.op[n].imms->X_op == O_constant)
7944 {
7945 int size = imm_size (n);
7946 offsetT val;
7947
7948 val = offset_in_range (i.op[n].imms->X_add_number,
7949 size);
7950 p = frag_more (size);
7951 md_number_to_chars (p, val, size);
7952 }
7953 else
7954 {
7955 /* Not absolute_section.
7956 Need a 32-bit fixup (don't support 8bit
7957 non-absolute imms). Try to support other
7958 sizes ... */
7959 enum bfd_reloc_code_real reloc_type;
7960 int size = imm_size (n);
7961 int sign;
7962
7963 if (i.types[n].bitfield.imm32s
7964 && (i.suffix == QWORD_MNEM_SUFFIX
7965 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7966 sign = 1;
7967 else
7968 sign = 0;
7969
7970 p = frag_more (size);
7971 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7972
7973 /* This is tough to explain. We end up with this one if we
7974 * have operands that look like
7975 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7976 * obtain the absolute address of the GOT, and it is strongly
7977 * preferable from a performance point of view to avoid using
7978 * a runtime relocation for this. The actual sequence of
7979 * instructions often look something like:
7980 *
7981 * call .L66
7982 * .L66:
7983 * popl %ebx
7984 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7985 *
7986 * The call and pop essentially return the absolute address
7987 * of the label .L66 and store it in %ebx. The linker itself
7988 * will ultimately change the first operand of the addl so
7989 * that %ebx points to the GOT, but to keep things simple, the
7990 * .o file must have this operand set so that it generates not
7991 * the absolute address of .L66, but the absolute address of
7992 * itself. This allows the linker itself simply treat a GOTPC
7993 * relocation as asking for a pcrel offset to the GOT to be
7994 * added in, and the addend of the relocation is stored in the
7995 * operand field for the instruction itself.
7996 *
7997 * Our job here is to fix the operand so that it would add
7998 * the correct offset so that %ebx would point to itself. The
7999 * thing that is tricky is that .-.L66 will point to the
8000 * beginning of the instruction, so we need to further modify
8001 * the operand so that it will point to itself. There are
8002 * other cases where you have something like:
8003 *
8004 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8005 *
8006 * and here no correction would be required. Internally in
8007 * the assembler we treat operands of this form as not being
8008 * pcrel since the '.' is explicitly mentioned, and I wonder
8009 * whether it would simplify matters to do it this way. Who
8010 * knows. In earlier versions of the PIC patches, the
8011 * pcrel_adjust field was used to store the correction, but
8012 * since the expression is not pcrel, I felt it would be
8013 * confusing to do it this way. */
8014
8015 if ((reloc_type == BFD_RELOC_32
8016 || reloc_type == BFD_RELOC_X86_64_32S
8017 || reloc_type == BFD_RELOC_64)
8018 && GOT_symbol
8019 && GOT_symbol == i.op[n].imms->X_add_symbol
8020 && (i.op[n].imms->X_op == O_symbol
8021 || (i.op[n].imms->X_op == O_add
8022 && ((symbol_get_value_expression
8023 (i.op[n].imms->X_op_symbol)->X_op)
8024 == O_subtract))))
8025 {
8026 offsetT add;
8027
8028 if (insn_start_frag == frag_now)
8029 add = (p - frag_now->fr_literal) - insn_start_off;
8030 else
8031 {
8032 fragS *fr;
8033
8034 add = insn_start_frag->fr_fix - insn_start_off;
8035 for (fr = insn_start_frag->fr_next;
8036 fr && fr != frag_now; fr = fr->fr_next)
8037 add += fr->fr_fix;
8038 add += p - frag_now->fr_literal;
8039 }
8040
8041 if (!object_64bit)
8042 reloc_type = BFD_RELOC_386_GOTPC;
8043 else if (size == 4)
8044 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8045 else if (size == 8)
8046 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8047 i.op[n].imms->X_add_number += add;
8048 }
8049 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8050 i.op[n].imms, 0, reloc_type);
8051 }
8052 }
8053 }
8054 }
8055 \f
8056 /* x86_cons_fix_new is called via the expression parsing code when a
8057 reloc is needed. We use this hook to get the correct .got reloc. */
8058 static int cons_sign = -1;
8059
8060 void
8061 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8062 expressionS *exp, bfd_reloc_code_real_type r)
8063 {
8064 r = reloc (len, 0, cons_sign, r);
8065
8066 #ifdef TE_PE
8067 if (exp->X_op == O_secrel)
8068 {
8069 exp->X_op = O_symbol;
8070 r = BFD_RELOC_32_SECREL;
8071 }
8072 #endif
8073
8074 fix_new_exp (frag, off, len, exp, 0, r);
8075 }
8076
8077 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8078 purpose of the `.dc.a' internal pseudo-op. */
8079
8080 int
8081 x86_address_bytes (void)
8082 {
8083 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8084 return 4;
8085 return stdoutput->arch_info->bits_per_address / 8;
8086 }
8087
8088 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8089 || defined (LEX_AT)
8090 # define lex_got(reloc, adjust, types) NULL
8091 #else
8092 /* Parse operands of the form
8093 <symbol>@GOTOFF+<nnn>
8094 and similar .plt or .got references.
8095
8096 If we find one, set up the correct relocation in RELOC and copy the
8097 input string, minus the `@GOTOFF' into a malloc'd buffer for
8098 parsing by the calling routine. Return this buffer, and if ADJUST
8099 is non-null set it to the length of the string we removed from the
8100 input line. Otherwise return NULL. */
8101 static char *
8102 lex_got (enum bfd_reloc_code_real *rel,
8103 int *adjust,
8104 i386_operand_type *types)
8105 {
8106 /* Some of the relocations depend on the size of what field is to
8107 be relocated. But in our callers i386_immediate and i386_displacement
8108 we don't yet know the operand size (this will be set by insn
8109 matching). Hence we record the word32 relocation here,
8110 and adjust the reloc according to the real size in reloc(). */
8111 static const struct {
8112 const char *str;
8113 int len;
8114 const enum bfd_reloc_code_real rel[2];
8115 const i386_operand_type types64;
8116 } gotrel[] = {
8117 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8118 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8119 BFD_RELOC_SIZE32 },
8120 OPERAND_TYPE_IMM32_64 },
8121 #endif
8122 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8123 BFD_RELOC_X86_64_PLTOFF64 },
8124 OPERAND_TYPE_IMM64 },
8125 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8126 BFD_RELOC_X86_64_PLT32 },
8127 OPERAND_TYPE_IMM32_32S_DISP32 },
8128 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8129 BFD_RELOC_X86_64_GOTPLT64 },
8130 OPERAND_TYPE_IMM64_DISP64 },
8131 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8132 BFD_RELOC_X86_64_GOTOFF64 },
8133 OPERAND_TYPE_IMM64_DISP64 },
8134 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8135 BFD_RELOC_X86_64_GOTPCREL },
8136 OPERAND_TYPE_IMM32_32S_DISP32 },
8137 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8138 BFD_RELOC_X86_64_TLSGD },
8139 OPERAND_TYPE_IMM32_32S_DISP32 },
8140 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8141 _dummy_first_bfd_reloc_code_real },
8142 OPERAND_TYPE_NONE },
8143 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8144 BFD_RELOC_X86_64_TLSLD },
8145 OPERAND_TYPE_IMM32_32S_DISP32 },
8146 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8147 BFD_RELOC_X86_64_GOTTPOFF },
8148 OPERAND_TYPE_IMM32_32S_DISP32 },
8149 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8150 BFD_RELOC_X86_64_TPOFF32 },
8151 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8152 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8153 _dummy_first_bfd_reloc_code_real },
8154 OPERAND_TYPE_NONE },
8155 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8156 BFD_RELOC_X86_64_DTPOFF32 },
8157 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8158 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8159 _dummy_first_bfd_reloc_code_real },
8160 OPERAND_TYPE_NONE },
8161 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8162 _dummy_first_bfd_reloc_code_real },
8163 OPERAND_TYPE_NONE },
8164 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8165 BFD_RELOC_X86_64_GOT32 },
8166 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8167 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8168 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8169 OPERAND_TYPE_IMM32_32S_DISP32 },
8170 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8171 BFD_RELOC_X86_64_TLSDESC_CALL },
8172 OPERAND_TYPE_IMM32_32S_DISP32 },
8173 };
8174 char *cp;
8175 unsigned int j;
8176
8177 #if defined (OBJ_MAYBE_ELF)
8178 if (!IS_ELF)
8179 return NULL;
8180 #endif
8181
8182 for (cp = input_line_pointer; *cp != '@'; cp++)
8183 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8184 return NULL;
8185
8186 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8187 {
8188 int len = gotrel[j].len;
8189 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8190 {
8191 if (gotrel[j].rel[object_64bit] != 0)
8192 {
8193 int first, second;
8194 char *tmpbuf, *past_reloc;
8195
8196 *rel = gotrel[j].rel[object_64bit];
8197
8198 if (types)
8199 {
8200 if (flag_code != CODE_64BIT)
8201 {
8202 types->bitfield.imm32 = 1;
8203 types->bitfield.disp32 = 1;
8204 }
8205 else
8206 *types = gotrel[j].types64;
8207 }
8208
8209 if (j != 0 && GOT_symbol == NULL)
8210 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8211
8212 /* The length of the first part of our input line. */
8213 first = cp - input_line_pointer;
8214
8215 /* The second part goes from after the reloc token until
8216 (and including) an end_of_line char or comma. */
8217 past_reloc = cp + 1 + len;
8218 cp = past_reloc;
8219 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8220 ++cp;
8221 second = cp + 1 - past_reloc;
8222
8223 /* Allocate and copy string. The trailing NUL shouldn't
8224 be necessary, but be safe. */
8225 tmpbuf = XNEWVEC (char, first + second + 2);
8226 memcpy (tmpbuf, input_line_pointer, first);
8227 if (second != 0 && *past_reloc != ' ')
8228 /* Replace the relocation token with ' ', so that
8229 errors like foo@GOTOFF1 will be detected. */
8230 tmpbuf[first++] = ' ';
8231 else
8232 /* Increment length by 1 if the relocation token is
8233 removed. */
8234 len++;
8235 if (adjust)
8236 *adjust = len;
8237 memcpy (tmpbuf + first, past_reloc, second);
8238 tmpbuf[first + second] = '\0';
8239 return tmpbuf;
8240 }
8241
8242 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8243 gotrel[j].str, 1 << (5 + object_64bit));
8244 return NULL;
8245 }
8246 }
8247
8248 /* Might be a symbol version string. Don't as_bad here. */
8249 return NULL;
8250 }
8251 #endif
8252
8253 #ifdef TE_PE
8254 #ifdef lex_got
8255 #undef lex_got
8256 #endif
8257 /* Parse operands of the form
8258 <symbol>@SECREL32+<nnn>
8259
8260 If we find one, set up the correct relocation in RELOC and copy the
8261 input string, minus the `@SECREL32' into a malloc'd buffer for
8262 parsing by the calling routine. Return this buffer, and if ADJUST
8263 is non-null set it to the length of the string we removed from the
8264 input line. Otherwise return NULL.
8265
8266 This function is copied from the ELF version above adjusted for PE targets. */
8267
8268 static char *
8269 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8270 int *adjust ATTRIBUTE_UNUSED,
8271 i386_operand_type *types)
8272 {
8273 static const struct
8274 {
8275 const char *str;
8276 int len;
8277 const enum bfd_reloc_code_real rel[2];
8278 const i386_operand_type types64;
8279 }
8280 gotrel[] =
8281 {
8282 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8283 BFD_RELOC_32_SECREL },
8284 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8285 };
8286
8287 char *cp;
8288 unsigned j;
8289
8290 for (cp = input_line_pointer; *cp != '@'; cp++)
8291 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8292 return NULL;
8293
8294 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8295 {
8296 int len = gotrel[j].len;
8297
8298 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8299 {
8300 if (gotrel[j].rel[object_64bit] != 0)
8301 {
8302 int first, second;
8303 char *tmpbuf, *past_reloc;
8304
8305 *rel = gotrel[j].rel[object_64bit];
8306 if (adjust)
8307 *adjust = len;
8308
8309 if (types)
8310 {
8311 if (flag_code != CODE_64BIT)
8312 {
8313 types->bitfield.imm32 = 1;
8314 types->bitfield.disp32 = 1;
8315 }
8316 else
8317 *types = gotrel[j].types64;
8318 }
8319
8320 /* The length of the first part of our input line. */
8321 first = cp - input_line_pointer;
8322
8323 /* The second part goes from after the reloc token until
8324 (and including) an end_of_line char or comma. */
8325 past_reloc = cp + 1 + len;
8326 cp = past_reloc;
8327 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8328 ++cp;
8329 second = cp + 1 - past_reloc;
8330
8331 /* Allocate and copy string. The trailing NUL shouldn't
8332 be necessary, but be safe. */
8333 tmpbuf = XNEWVEC (char, first + second + 2);
8334 memcpy (tmpbuf, input_line_pointer, first);
8335 if (second != 0 && *past_reloc != ' ')
8336 /* Replace the relocation token with ' ', so that
8337 errors like foo@SECLREL321 will be detected. */
8338 tmpbuf[first++] = ' ';
8339 memcpy (tmpbuf + first, past_reloc, second);
8340 tmpbuf[first + second] = '\0';
8341 return tmpbuf;
8342 }
8343
8344 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8345 gotrel[j].str, 1 << (5 + object_64bit));
8346 return NULL;
8347 }
8348 }
8349
8350 /* Might be a symbol version string. Don't as_bad here. */
8351 return NULL;
8352 }
8353
8354 #endif /* TE_PE */
8355
8356 bfd_reloc_code_real_type
8357 x86_cons (expressionS *exp, int size)
8358 {
8359 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8360
8361 intel_syntax = -intel_syntax;
8362
8363 exp->X_md = 0;
8364 if (size == 4 || (object_64bit && size == 8))
8365 {
8366 /* Handle @GOTOFF and the like in an expression. */
8367 char *save;
8368 char *gotfree_input_line;
8369 int adjust = 0;
8370
8371 save = input_line_pointer;
8372 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8373 if (gotfree_input_line)
8374 input_line_pointer = gotfree_input_line;
8375
8376 expression (exp);
8377
8378 if (gotfree_input_line)
8379 {
8380 /* expression () has merrily parsed up to the end of line,
8381 or a comma - in the wrong buffer. Transfer how far
8382 input_line_pointer has moved to the right buffer. */
8383 input_line_pointer = (save
8384 + (input_line_pointer - gotfree_input_line)
8385 + adjust);
8386 free (gotfree_input_line);
8387 if (exp->X_op == O_constant
8388 || exp->X_op == O_absent
8389 || exp->X_op == O_illegal
8390 || exp->X_op == O_register
8391 || exp->X_op == O_big)
8392 {
8393 char c = *input_line_pointer;
8394 *input_line_pointer = 0;
8395 as_bad (_("missing or invalid expression `%s'"), save);
8396 *input_line_pointer = c;
8397 }
8398 }
8399 }
8400 else
8401 expression (exp);
8402
8403 intel_syntax = -intel_syntax;
8404
8405 if (intel_syntax)
8406 i386_intel_simplify (exp);
8407
8408 return got_reloc;
8409 }
8410
8411 static void
8412 signed_cons (int size)
8413 {
8414 if (flag_code == CODE_64BIT)
8415 cons_sign = 1;
8416 cons (size);
8417 cons_sign = -1;
8418 }
8419
8420 #ifdef TE_PE
8421 static void
8422 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8423 {
8424 expressionS exp;
8425
8426 do
8427 {
8428 expression (&exp);
8429 if (exp.X_op == O_symbol)
8430 exp.X_op = O_secrel;
8431
8432 emit_expr (&exp, 4);
8433 }
8434 while (*input_line_pointer++ == ',');
8435
8436 input_line_pointer--;
8437 demand_empty_rest_of_line ();
8438 }
8439 #endif
8440
8441 /* Handle Vector operations. */
8442
8443 static char *
8444 check_VecOperations (char *op_string, char *op_end)
8445 {
8446 const reg_entry *mask;
8447 const char *saved;
8448 char *end_op;
8449
8450 while (*op_string
8451 && (op_end == NULL || op_string < op_end))
8452 {
8453 saved = op_string;
8454 if (*op_string == '{')
8455 {
8456 op_string++;
8457
8458 /* Check broadcasts. */
8459 if (strncmp (op_string, "1to", 3) == 0)
8460 {
8461 int bcst_type;
8462
8463 if (i.broadcast)
8464 goto duplicated_vec_op;
8465
8466 op_string += 3;
8467 if (*op_string == '8')
8468 bcst_type = 8;
8469 else if (*op_string == '4')
8470 bcst_type = 4;
8471 else if (*op_string == '2')
8472 bcst_type = 2;
8473 else if (*op_string == '1'
8474 && *(op_string+1) == '6')
8475 {
8476 bcst_type = 16;
8477 op_string++;
8478 }
8479 else
8480 {
8481 as_bad (_("Unsupported broadcast: `%s'"), saved);
8482 return NULL;
8483 }
8484 op_string++;
8485
8486 broadcast_op.type = bcst_type;
8487 broadcast_op.operand = this_operand;
8488 i.broadcast = &broadcast_op;
8489 }
8490 /* Check masking operation. */
8491 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8492 {
8493 /* k0 can't be used for write mask. */
8494 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8495 {
8496 as_bad (_("`%s%s' can't be used for write mask"),
8497 register_prefix, mask->reg_name);
8498 return NULL;
8499 }
8500
8501 if (!i.mask)
8502 {
8503 mask_op.mask = mask;
8504 mask_op.zeroing = 0;
8505 mask_op.operand = this_operand;
8506 i.mask = &mask_op;
8507 }
8508 else
8509 {
8510 if (i.mask->mask)
8511 goto duplicated_vec_op;
8512
8513 i.mask->mask = mask;
8514
8515 /* Only "{z}" is allowed here. No need to check
8516 zeroing mask explicitly. */
8517 if (i.mask->operand != this_operand)
8518 {
8519 as_bad (_("invalid write mask `%s'"), saved);
8520 return NULL;
8521 }
8522 }
8523
8524 op_string = end_op;
8525 }
8526 /* Check zeroing-flag for masking operation. */
8527 else if (*op_string == 'z')
8528 {
8529 if (!i.mask)
8530 {
8531 mask_op.mask = NULL;
8532 mask_op.zeroing = 1;
8533 mask_op.operand = this_operand;
8534 i.mask = &mask_op;
8535 }
8536 else
8537 {
8538 if (i.mask->zeroing)
8539 {
8540 duplicated_vec_op:
8541 as_bad (_("duplicated `%s'"), saved);
8542 return NULL;
8543 }
8544
8545 i.mask->zeroing = 1;
8546
8547 /* Only "{%k}" is allowed here. No need to check mask
8548 register explicitly. */
8549 if (i.mask->operand != this_operand)
8550 {
8551 as_bad (_("invalid zeroing-masking `%s'"),
8552 saved);
8553 return NULL;
8554 }
8555 }
8556
8557 op_string++;
8558 }
8559 else
8560 goto unknown_vec_op;
8561
8562 if (*op_string != '}')
8563 {
8564 as_bad (_("missing `}' in `%s'"), saved);
8565 return NULL;
8566 }
8567 op_string++;
8568
8569 /* Strip whitespace since the addition of pseudo prefixes
8570 changed how the scrubber treats '{'. */
8571 if (is_space_char (*op_string))
8572 ++op_string;
8573
8574 continue;
8575 }
8576 unknown_vec_op:
8577 /* We don't know this one. */
8578 as_bad (_("unknown vector operation: `%s'"), saved);
8579 return NULL;
8580 }
8581
8582 if (i.mask && i.mask->zeroing && !i.mask->mask)
8583 {
8584 as_bad (_("zeroing-masking only allowed with write mask"));
8585 return NULL;
8586 }
8587
8588 return op_string;
8589 }
8590
8591 static int
8592 i386_immediate (char *imm_start)
8593 {
8594 char *save_input_line_pointer;
8595 char *gotfree_input_line;
8596 segT exp_seg = 0;
8597 expressionS *exp;
8598 i386_operand_type types;
8599
8600 operand_type_set (&types, ~0);
8601
8602 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8603 {
8604 as_bad (_("at most %d immediate operands are allowed"),
8605 MAX_IMMEDIATE_OPERANDS);
8606 return 0;
8607 }
8608
8609 exp = &im_expressions[i.imm_operands++];
8610 i.op[this_operand].imms = exp;
8611
8612 if (is_space_char (*imm_start))
8613 ++imm_start;
8614
8615 save_input_line_pointer = input_line_pointer;
8616 input_line_pointer = imm_start;
8617
8618 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8619 if (gotfree_input_line)
8620 input_line_pointer = gotfree_input_line;
8621
8622 exp_seg = expression (exp);
8623
8624 SKIP_WHITESPACE ();
8625
8626 /* Handle vector operations. */
8627 if (*input_line_pointer == '{')
8628 {
8629 input_line_pointer = check_VecOperations (input_line_pointer,
8630 NULL);
8631 if (input_line_pointer == NULL)
8632 return 0;
8633 }
8634
8635 if (*input_line_pointer)
8636 as_bad (_("junk `%s' after expression"), input_line_pointer);
8637
8638 input_line_pointer = save_input_line_pointer;
8639 if (gotfree_input_line)
8640 {
8641 free (gotfree_input_line);
8642
8643 if (exp->X_op == O_constant || exp->X_op == O_register)
8644 exp->X_op = O_illegal;
8645 }
8646
8647 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8648 }
8649
8650 static int
8651 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8652 i386_operand_type types, const char *imm_start)
8653 {
8654 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8655 {
8656 if (imm_start)
8657 as_bad (_("missing or invalid immediate expression `%s'"),
8658 imm_start);
8659 return 0;
8660 }
8661 else if (exp->X_op == O_constant)
8662 {
8663 /* Size it properly later. */
8664 i.types[this_operand].bitfield.imm64 = 1;
8665 /* If not 64bit, sign extend val. */
8666 if (flag_code != CODE_64BIT
8667 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8668 exp->X_add_number
8669 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8670 }
8671 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8672 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8673 && exp_seg != absolute_section
8674 && exp_seg != text_section
8675 && exp_seg != data_section
8676 && exp_seg != bss_section
8677 && exp_seg != undefined_section
8678 && !bfd_is_com_section (exp_seg))
8679 {
8680 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8681 return 0;
8682 }
8683 #endif
8684 else if (!intel_syntax && exp_seg == reg_section)
8685 {
8686 if (imm_start)
8687 as_bad (_("illegal immediate register operand %s"), imm_start);
8688 return 0;
8689 }
8690 else
8691 {
8692 /* This is an address. The size of the address will be
8693 determined later, depending on destination register,
8694 suffix, or the default for the section. */
8695 i.types[this_operand].bitfield.imm8 = 1;
8696 i.types[this_operand].bitfield.imm16 = 1;
8697 i.types[this_operand].bitfield.imm32 = 1;
8698 i.types[this_operand].bitfield.imm32s = 1;
8699 i.types[this_operand].bitfield.imm64 = 1;
8700 i.types[this_operand] = operand_type_and (i.types[this_operand],
8701 types);
8702 }
8703
8704 return 1;
8705 }
8706
8707 static char *
8708 i386_scale (char *scale)
8709 {
8710 offsetT val;
8711 char *save = input_line_pointer;
8712
8713 input_line_pointer = scale;
8714 val = get_absolute_expression ();
8715
8716 switch (val)
8717 {
8718 case 1:
8719 i.log2_scale_factor = 0;
8720 break;
8721 case 2:
8722 i.log2_scale_factor = 1;
8723 break;
8724 case 4:
8725 i.log2_scale_factor = 2;
8726 break;
8727 case 8:
8728 i.log2_scale_factor = 3;
8729 break;
8730 default:
8731 {
8732 char sep = *input_line_pointer;
8733
8734 *input_line_pointer = '\0';
8735 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8736 scale);
8737 *input_line_pointer = sep;
8738 input_line_pointer = save;
8739 return NULL;
8740 }
8741 }
8742 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8743 {
8744 as_warn (_("scale factor of %d without an index register"),
8745 1 << i.log2_scale_factor);
8746 i.log2_scale_factor = 0;
8747 }
8748 scale = input_line_pointer;
8749 input_line_pointer = save;
8750 return scale;
8751 }
8752
8753 static int
8754 i386_displacement (char *disp_start, char *disp_end)
8755 {
8756 expressionS *exp;
8757 segT exp_seg = 0;
8758 char *save_input_line_pointer;
8759 char *gotfree_input_line;
8760 int override;
8761 i386_operand_type bigdisp, types = anydisp;
8762 int ret;
8763
8764 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8765 {
8766 as_bad (_("at most %d displacement operands are allowed"),
8767 MAX_MEMORY_OPERANDS);
8768 return 0;
8769 }
8770
8771 operand_type_set (&bigdisp, 0);
8772 if ((i.types[this_operand].bitfield.jumpabsolute)
8773 || (!current_templates->start->opcode_modifier.jump
8774 && !current_templates->start->opcode_modifier.jumpdword))
8775 {
8776 bigdisp.bitfield.disp32 = 1;
8777 override = (i.prefix[ADDR_PREFIX] != 0);
8778 if (flag_code == CODE_64BIT)
8779 {
8780 if (!override)
8781 {
8782 bigdisp.bitfield.disp32s = 1;
8783 bigdisp.bitfield.disp64 = 1;
8784 }
8785 }
8786 else if ((flag_code == CODE_16BIT) ^ override)
8787 {
8788 bigdisp.bitfield.disp32 = 0;
8789 bigdisp.bitfield.disp16 = 1;
8790 }
8791 }
8792 else
8793 {
8794 /* For PC-relative branches, the width of the displacement
8795 is dependent upon data size, not address size. */
8796 override = (i.prefix[DATA_PREFIX] != 0);
8797 if (flag_code == CODE_64BIT)
8798 {
8799 if (override || i.suffix == WORD_MNEM_SUFFIX)
8800 bigdisp.bitfield.disp16 = 1;
8801 else
8802 {
8803 bigdisp.bitfield.disp32 = 1;
8804 bigdisp.bitfield.disp32s = 1;
8805 }
8806 }
8807 else
8808 {
8809 if (!override)
8810 override = (i.suffix == (flag_code != CODE_16BIT
8811 ? WORD_MNEM_SUFFIX
8812 : LONG_MNEM_SUFFIX));
8813 bigdisp.bitfield.disp32 = 1;
8814 if ((flag_code == CODE_16BIT) ^ override)
8815 {
8816 bigdisp.bitfield.disp32 = 0;
8817 bigdisp.bitfield.disp16 = 1;
8818 }
8819 }
8820 }
8821 i.types[this_operand] = operand_type_or (i.types[this_operand],
8822 bigdisp);
8823
8824 exp = &disp_expressions[i.disp_operands];
8825 i.op[this_operand].disps = exp;
8826 i.disp_operands++;
8827 save_input_line_pointer = input_line_pointer;
8828 input_line_pointer = disp_start;
8829 END_STRING_AND_SAVE (disp_end);
8830
8831 #ifndef GCC_ASM_O_HACK
8832 #define GCC_ASM_O_HACK 0
8833 #endif
8834 #if GCC_ASM_O_HACK
8835 END_STRING_AND_SAVE (disp_end + 1);
8836 if (i.types[this_operand].bitfield.baseIndex
8837 && displacement_string_end[-1] == '+')
8838 {
8839 /* This hack is to avoid a warning when using the "o"
8840 constraint within gcc asm statements.
8841 For instance:
8842
8843 #define _set_tssldt_desc(n,addr,limit,type) \
8844 __asm__ __volatile__ ( \
8845 "movw %w2,%0\n\t" \
8846 "movw %w1,2+%0\n\t" \
8847 "rorl $16,%1\n\t" \
8848 "movb %b1,4+%0\n\t" \
8849 "movb %4,5+%0\n\t" \
8850 "movb $0,6+%0\n\t" \
8851 "movb %h1,7+%0\n\t" \
8852 "rorl $16,%1" \
8853 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8854
8855 This works great except that the output assembler ends
8856 up looking a bit weird if it turns out that there is
8857 no offset. You end up producing code that looks like:
8858
8859 #APP
8860 movw $235,(%eax)
8861 movw %dx,2+(%eax)
8862 rorl $16,%edx
8863 movb %dl,4+(%eax)
8864 movb $137,5+(%eax)
8865 movb $0,6+(%eax)
8866 movb %dh,7+(%eax)
8867 rorl $16,%edx
8868 #NO_APP
8869
8870 So here we provide the missing zero. */
8871
8872 *displacement_string_end = '0';
8873 }
8874 #endif
8875 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8876 if (gotfree_input_line)
8877 input_line_pointer = gotfree_input_line;
8878
8879 exp_seg = expression (exp);
8880
8881 SKIP_WHITESPACE ();
8882 if (*input_line_pointer)
8883 as_bad (_("junk `%s' after expression"), input_line_pointer);
8884 #if GCC_ASM_O_HACK
8885 RESTORE_END_STRING (disp_end + 1);
8886 #endif
8887 input_line_pointer = save_input_line_pointer;
8888 if (gotfree_input_line)
8889 {
8890 free (gotfree_input_line);
8891
8892 if (exp->X_op == O_constant || exp->X_op == O_register)
8893 exp->X_op = O_illegal;
8894 }
8895
8896 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8897
8898 RESTORE_END_STRING (disp_end);
8899
8900 return ret;
8901 }
8902
8903 static int
8904 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8905 i386_operand_type types, const char *disp_start)
8906 {
8907 i386_operand_type bigdisp;
8908 int ret = 1;
8909
8910 /* We do this to make sure that the section symbol is in
8911 the symbol table. We will ultimately change the relocation
8912 to be relative to the beginning of the section. */
8913 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8914 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8915 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8916 {
8917 if (exp->X_op != O_symbol)
8918 goto inv_disp;
8919
8920 if (S_IS_LOCAL (exp->X_add_symbol)
8921 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8922 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8923 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8924 exp->X_op = O_subtract;
8925 exp->X_op_symbol = GOT_symbol;
8926 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8927 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8928 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8929 i.reloc[this_operand] = BFD_RELOC_64;
8930 else
8931 i.reloc[this_operand] = BFD_RELOC_32;
8932 }
8933
8934 else if (exp->X_op == O_absent
8935 || exp->X_op == O_illegal
8936 || exp->X_op == O_big)
8937 {
8938 inv_disp:
8939 as_bad (_("missing or invalid displacement expression `%s'"),
8940 disp_start);
8941 ret = 0;
8942 }
8943
8944 else if (flag_code == CODE_64BIT
8945 && !i.prefix[ADDR_PREFIX]
8946 && exp->X_op == O_constant)
8947 {
8948 /* Since displacement is signed extended to 64bit, don't allow
8949 disp32 and turn off disp32s if they are out of range. */
8950 i.types[this_operand].bitfield.disp32 = 0;
8951 if (!fits_in_signed_long (exp->X_add_number))
8952 {
8953 i.types[this_operand].bitfield.disp32s = 0;
8954 if (i.types[this_operand].bitfield.baseindex)
8955 {
8956 as_bad (_("0x%lx out range of signed 32bit displacement"),
8957 (long) exp->X_add_number);
8958 ret = 0;
8959 }
8960 }
8961 }
8962
8963 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8964 else if (exp->X_op != O_constant
8965 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8966 && exp_seg != absolute_section
8967 && exp_seg != text_section
8968 && exp_seg != data_section
8969 && exp_seg != bss_section
8970 && exp_seg != undefined_section
8971 && !bfd_is_com_section (exp_seg))
8972 {
8973 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8974 ret = 0;
8975 }
8976 #endif
8977
8978 /* Check if this is a displacement only operand. */
8979 bigdisp = i.types[this_operand];
8980 bigdisp.bitfield.disp8 = 0;
8981 bigdisp.bitfield.disp16 = 0;
8982 bigdisp.bitfield.disp32 = 0;
8983 bigdisp.bitfield.disp32s = 0;
8984 bigdisp.bitfield.disp64 = 0;
8985 if (operand_type_all_zero (&bigdisp))
8986 i.types[this_operand] = operand_type_and (i.types[this_operand],
8987 types);
8988
8989 return ret;
8990 }
8991
8992 /* Return the active addressing mode, taking address override and
8993 registers forming the address into consideration. Update the
8994 address override prefix if necessary. */
8995
8996 static enum flag_code
8997 i386_addressing_mode (void)
8998 {
8999 enum flag_code addr_mode;
9000
9001 if (i.prefix[ADDR_PREFIX])
9002 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9003 else
9004 {
9005 addr_mode = flag_code;
9006
9007 #if INFER_ADDR_PREFIX
9008 if (i.mem_operands == 0)
9009 {
9010 /* Infer address prefix from the first memory operand. */
9011 const reg_entry *addr_reg = i.base_reg;
9012
9013 if (addr_reg == NULL)
9014 addr_reg = i.index_reg;
9015
9016 if (addr_reg)
9017 {
9018 if (addr_reg->reg_num == RegEip
9019 || addr_reg->reg_num == RegEiz
9020 || addr_reg->reg_type.bitfield.dword)
9021 addr_mode = CODE_32BIT;
9022 else if (flag_code != CODE_64BIT
9023 && addr_reg->reg_type.bitfield.word)
9024 addr_mode = CODE_16BIT;
9025
9026 if (addr_mode != flag_code)
9027 {
9028 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9029 i.prefixes += 1;
9030 /* Change the size of any displacement too. At most one
9031 of Disp16 or Disp32 is set.
9032 FIXME. There doesn't seem to be any real need for
9033 separate Disp16 and Disp32 flags. The same goes for
9034 Imm16 and Imm32. Removing them would probably clean
9035 up the code quite a lot. */
9036 if (flag_code != CODE_64BIT
9037 && (i.types[this_operand].bitfield.disp16
9038 || i.types[this_operand].bitfield.disp32))
9039 i.types[this_operand]
9040 = operand_type_xor (i.types[this_operand], disp16_32);
9041 }
9042 }
9043 }
9044 #endif
9045 }
9046
9047 return addr_mode;
9048 }
9049
9050 /* Make sure the memory operand we've been dealt is valid.
9051 Return 1 on success, 0 on a failure. */
9052
9053 static int
9054 i386_index_check (const char *operand_string)
9055 {
9056 const char *kind = "base/index";
9057 enum flag_code addr_mode = i386_addressing_mode ();
9058
9059 if (current_templates->start->opcode_modifier.isstring
9060 && !current_templates->start->opcode_modifier.immext
9061 && (current_templates->end[-1].opcode_modifier.isstring
9062 || i.mem_operands))
9063 {
9064 /* Memory operands of string insns are special in that they only allow
9065 a single register (rDI, rSI, or rBX) as their memory address. */
9066 const reg_entry *expected_reg;
9067 static const char *di_si[][2] =
9068 {
9069 { "esi", "edi" },
9070 { "si", "di" },
9071 { "rsi", "rdi" }
9072 };
9073 static const char *bx[] = { "ebx", "bx", "rbx" };
9074
9075 kind = "string address";
9076
9077 if (current_templates->start->opcode_modifier.repprefixok)
9078 {
9079 i386_operand_type type = current_templates->end[-1].operand_types[0];
9080
9081 if (!type.bitfield.baseindex
9082 || ((!i.mem_operands != !intel_syntax)
9083 && current_templates->end[-1].operand_types[1]
9084 .bitfield.baseindex))
9085 type = current_templates->end[-1].operand_types[1];
9086 expected_reg = hash_find (reg_hash,
9087 di_si[addr_mode][type.bitfield.esseg]);
9088
9089 }
9090 else
9091 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9092
9093 if (i.base_reg != expected_reg
9094 || i.index_reg
9095 || operand_type_check (i.types[this_operand], disp))
9096 {
9097 /* The second memory operand must have the same size as
9098 the first one. */
9099 if (i.mem_operands
9100 && i.base_reg
9101 && !((addr_mode == CODE_64BIT
9102 && i.base_reg->reg_type.bitfield.qword)
9103 || (addr_mode == CODE_32BIT
9104 ? i.base_reg->reg_type.bitfield.dword
9105 : i.base_reg->reg_type.bitfield.word)))
9106 goto bad_address;
9107
9108 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9109 operand_string,
9110 intel_syntax ? '[' : '(',
9111 register_prefix,
9112 expected_reg->reg_name,
9113 intel_syntax ? ']' : ')');
9114 return 1;
9115 }
9116 else
9117 return 1;
9118
9119 bad_address:
9120 as_bad (_("`%s' is not a valid %s expression"),
9121 operand_string, kind);
9122 return 0;
9123 }
9124 else
9125 {
9126 if (addr_mode != CODE_16BIT)
9127 {
9128 /* 32-bit/64-bit checks. */
9129 if ((i.base_reg
9130 && (addr_mode == CODE_64BIT
9131 ? !i.base_reg->reg_type.bitfield.qword
9132 : !i.base_reg->reg_type.bitfield.dword)
9133 && (i.index_reg
9134 || (i.base_reg->reg_num
9135 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9136 || (i.index_reg
9137 && !i.index_reg->reg_type.bitfield.xmmword
9138 && !i.index_reg->reg_type.bitfield.ymmword
9139 && !i.index_reg->reg_type.bitfield.zmmword
9140 && ((addr_mode == CODE_64BIT
9141 ? !(i.index_reg->reg_type.bitfield.qword
9142 || i.index_reg->reg_num == RegRiz)
9143 : !(i.index_reg->reg_type.bitfield.dword
9144 || i.index_reg->reg_num == RegEiz))
9145 || !i.index_reg->reg_type.bitfield.baseindex)))
9146 goto bad_address;
9147
9148 /* bndmk, bndldx, and bndstx have special restrictions. */
9149 if (current_templates->start->base_opcode == 0xf30f1b
9150 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9151 {
9152 /* They cannot use RIP-relative addressing. */
9153 if (i.base_reg && i.base_reg->reg_num == RegRip)
9154 {
9155 as_bad (_("`%s' cannot be used here"), operand_string);
9156 return 0;
9157 }
9158
9159 /* bndldx and bndstx ignore their scale factor. */
9160 if (current_templates->start->base_opcode != 0xf30f1b
9161 && i.log2_scale_factor)
9162 as_warn (_("register scaling is being ignored here"));
9163 }
9164 }
9165 else
9166 {
9167 /* 16-bit checks. */
9168 if ((i.base_reg
9169 && (!i.base_reg->reg_type.bitfield.word
9170 || !i.base_reg->reg_type.bitfield.baseindex))
9171 || (i.index_reg
9172 && (!i.index_reg->reg_type.bitfield.word
9173 || !i.index_reg->reg_type.bitfield.baseindex
9174 || !(i.base_reg
9175 && i.base_reg->reg_num < 6
9176 && i.index_reg->reg_num >= 6
9177 && i.log2_scale_factor == 0))))
9178 goto bad_address;
9179 }
9180 }
9181 return 1;
9182 }
9183
9184 /* Handle vector immediates. */
9185
9186 static int
9187 RC_SAE_immediate (const char *imm_start)
9188 {
9189 unsigned int match_found, j;
9190 const char *pstr = imm_start;
9191 expressionS *exp;
9192
9193 if (*pstr != '{')
9194 return 0;
9195
9196 pstr++;
9197 match_found = 0;
9198 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9199 {
9200 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9201 {
9202 if (!i.rounding)
9203 {
9204 rc_op.type = RC_NamesTable[j].type;
9205 rc_op.operand = this_operand;
9206 i.rounding = &rc_op;
9207 }
9208 else
9209 {
9210 as_bad (_("duplicated `%s'"), imm_start);
9211 return 0;
9212 }
9213 pstr += RC_NamesTable[j].len;
9214 match_found = 1;
9215 break;
9216 }
9217 }
9218 if (!match_found)
9219 return 0;
9220
9221 if (*pstr++ != '}')
9222 {
9223 as_bad (_("Missing '}': '%s'"), imm_start);
9224 return 0;
9225 }
9226 /* RC/SAE immediate string should contain nothing more. */;
9227 if (*pstr != 0)
9228 {
9229 as_bad (_("Junk after '}': '%s'"), imm_start);
9230 return 0;
9231 }
9232
9233 exp = &im_expressions[i.imm_operands++];
9234 i.op[this_operand].imms = exp;
9235
9236 exp->X_op = O_constant;
9237 exp->X_add_number = 0;
9238 exp->X_add_symbol = (symbolS *) 0;
9239 exp->X_op_symbol = (symbolS *) 0;
9240
9241 i.types[this_operand].bitfield.imm8 = 1;
9242 return 1;
9243 }
9244
9245 /* Only string instructions can have a second memory operand, so
9246 reduce current_templates to just those if it contains any. */
9247 static int
9248 maybe_adjust_templates (void)
9249 {
9250 const insn_template *t;
9251
9252 gas_assert (i.mem_operands == 1);
9253
9254 for (t = current_templates->start; t < current_templates->end; ++t)
9255 if (t->opcode_modifier.isstring)
9256 break;
9257
9258 if (t < current_templates->end)
9259 {
9260 static templates aux_templates;
9261 bfd_boolean recheck;
9262
9263 aux_templates.start = t;
9264 for (; t < current_templates->end; ++t)
9265 if (!t->opcode_modifier.isstring)
9266 break;
9267 aux_templates.end = t;
9268
9269 /* Determine whether to re-check the first memory operand. */
9270 recheck = (aux_templates.start != current_templates->start
9271 || t != current_templates->end);
9272
9273 current_templates = &aux_templates;
9274
9275 if (recheck)
9276 {
9277 i.mem_operands = 0;
9278 if (i.memop1_string != NULL
9279 && i386_index_check (i.memop1_string) == 0)
9280 return 0;
9281 i.mem_operands = 1;
9282 }
9283 }
9284
9285 return 1;
9286 }
9287
9288 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9289 on error. */
9290
9291 static int
9292 i386_att_operand (char *operand_string)
9293 {
9294 const reg_entry *r;
9295 char *end_op;
9296 char *op_string = operand_string;
9297
9298 if (is_space_char (*op_string))
9299 ++op_string;
9300
9301 /* We check for an absolute prefix (differentiating,
9302 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9303 if (*op_string == ABSOLUTE_PREFIX)
9304 {
9305 ++op_string;
9306 if (is_space_char (*op_string))
9307 ++op_string;
9308 i.types[this_operand].bitfield.jumpabsolute = 1;
9309 }
9310
9311 /* Check if operand is a register. */
9312 if ((r = parse_register (op_string, &end_op)) != NULL)
9313 {
9314 i386_operand_type temp;
9315
9316 /* Check for a segment override by searching for ':' after a
9317 segment register. */
9318 op_string = end_op;
9319 if (is_space_char (*op_string))
9320 ++op_string;
9321 if (*op_string == ':'
9322 && (r->reg_type.bitfield.sreg2
9323 || r->reg_type.bitfield.sreg3))
9324 {
9325 switch (r->reg_num)
9326 {
9327 case 0:
9328 i.seg[i.mem_operands] = &es;
9329 break;
9330 case 1:
9331 i.seg[i.mem_operands] = &cs;
9332 break;
9333 case 2:
9334 i.seg[i.mem_operands] = &ss;
9335 break;
9336 case 3:
9337 i.seg[i.mem_operands] = &ds;
9338 break;
9339 case 4:
9340 i.seg[i.mem_operands] = &fs;
9341 break;
9342 case 5:
9343 i.seg[i.mem_operands] = &gs;
9344 break;
9345 }
9346
9347 /* Skip the ':' and whitespace. */
9348 ++op_string;
9349 if (is_space_char (*op_string))
9350 ++op_string;
9351
9352 if (!is_digit_char (*op_string)
9353 && !is_identifier_char (*op_string)
9354 && *op_string != '('
9355 && *op_string != ABSOLUTE_PREFIX)
9356 {
9357 as_bad (_("bad memory operand `%s'"), op_string);
9358 return 0;
9359 }
9360 /* Handle case of %es:*foo. */
9361 if (*op_string == ABSOLUTE_PREFIX)
9362 {
9363 ++op_string;
9364 if (is_space_char (*op_string))
9365 ++op_string;
9366 i.types[this_operand].bitfield.jumpabsolute = 1;
9367 }
9368 goto do_memory_reference;
9369 }
9370
9371 /* Handle vector operations. */
9372 if (*op_string == '{')
9373 {
9374 op_string = check_VecOperations (op_string, NULL);
9375 if (op_string == NULL)
9376 return 0;
9377 }
9378
9379 if (*op_string)
9380 {
9381 as_bad (_("junk `%s' after register"), op_string);
9382 return 0;
9383 }
9384 temp = r->reg_type;
9385 temp.bitfield.baseindex = 0;
9386 i.types[this_operand] = operand_type_or (i.types[this_operand],
9387 temp);
9388 i.types[this_operand].bitfield.unspecified = 0;
9389 i.op[this_operand].regs = r;
9390 i.reg_operands++;
9391 }
9392 else if (*op_string == REGISTER_PREFIX)
9393 {
9394 as_bad (_("bad register name `%s'"), op_string);
9395 return 0;
9396 }
9397 else if (*op_string == IMMEDIATE_PREFIX)
9398 {
9399 ++op_string;
9400 if (i.types[this_operand].bitfield.jumpabsolute)
9401 {
9402 as_bad (_("immediate operand illegal with absolute jump"));
9403 return 0;
9404 }
9405 if (!i386_immediate (op_string))
9406 return 0;
9407 }
9408 else if (RC_SAE_immediate (operand_string))
9409 {
9410 /* If it is a RC or SAE immediate, do nothing. */
9411 ;
9412 }
9413 else if (is_digit_char (*op_string)
9414 || is_identifier_char (*op_string)
9415 || *op_string == '"'
9416 || *op_string == '(')
9417 {
9418 /* This is a memory reference of some sort. */
9419 char *base_string;
9420
9421 /* Start and end of displacement string expression (if found). */
9422 char *displacement_string_start;
9423 char *displacement_string_end;
9424 char *vop_start;
9425
9426 do_memory_reference:
9427 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9428 return 0;
9429 if ((i.mem_operands == 1
9430 && !current_templates->start->opcode_modifier.isstring)
9431 || i.mem_operands == 2)
9432 {
9433 as_bad (_("too many memory references for `%s'"),
9434 current_templates->start->name);
9435 return 0;
9436 }
9437
9438 /* Check for base index form. We detect the base index form by
9439 looking for an ')' at the end of the operand, searching
9440 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9441 after the '('. */
9442 base_string = op_string + strlen (op_string);
9443
9444 /* Handle vector operations. */
9445 vop_start = strchr (op_string, '{');
9446 if (vop_start && vop_start < base_string)
9447 {
9448 if (check_VecOperations (vop_start, base_string) == NULL)
9449 return 0;
9450 base_string = vop_start;
9451 }
9452
9453 --base_string;
9454 if (is_space_char (*base_string))
9455 --base_string;
9456
9457 /* If we only have a displacement, set-up for it to be parsed later. */
9458 displacement_string_start = op_string;
9459 displacement_string_end = base_string + 1;
9460
9461 if (*base_string == ')')
9462 {
9463 char *temp_string;
9464 unsigned int parens_balanced = 1;
9465 /* We've already checked that the number of left & right ()'s are
9466 equal, so this loop will not be infinite. */
9467 do
9468 {
9469 base_string--;
9470 if (*base_string == ')')
9471 parens_balanced++;
9472 if (*base_string == '(')
9473 parens_balanced--;
9474 }
9475 while (parens_balanced);
9476
9477 temp_string = base_string;
9478
9479 /* Skip past '(' and whitespace. */
9480 ++base_string;
9481 if (is_space_char (*base_string))
9482 ++base_string;
9483
9484 if (*base_string == ','
9485 || ((i.base_reg = parse_register (base_string, &end_op))
9486 != NULL))
9487 {
9488 displacement_string_end = temp_string;
9489
9490 i.types[this_operand].bitfield.baseindex = 1;
9491
9492 if (i.base_reg)
9493 {
9494 base_string = end_op;
9495 if (is_space_char (*base_string))
9496 ++base_string;
9497 }
9498
9499 /* There may be an index reg or scale factor here. */
9500 if (*base_string == ',')
9501 {
9502 ++base_string;
9503 if (is_space_char (*base_string))
9504 ++base_string;
9505
9506 if ((i.index_reg = parse_register (base_string, &end_op))
9507 != NULL)
9508 {
9509 base_string = end_op;
9510 if (is_space_char (*base_string))
9511 ++base_string;
9512 if (*base_string == ',')
9513 {
9514 ++base_string;
9515 if (is_space_char (*base_string))
9516 ++base_string;
9517 }
9518 else if (*base_string != ')')
9519 {
9520 as_bad (_("expecting `,' or `)' "
9521 "after index register in `%s'"),
9522 operand_string);
9523 return 0;
9524 }
9525 }
9526 else if (*base_string == REGISTER_PREFIX)
9527 {
9528 end_op = strchr (base_string, ',');
9529 if (end_op)
9530 *end_op = '\0';
9531 as_bad (_("bad register name `%s'"), base_string);
9532 return 0;
9533 }
9534
9535 /* Check for scale factor. */
9536 if (*base_string != ')')
9537 {
9538 char *end_scale = i386_scale (base_string);
9539
9540 if (!end_scale)
9541 return 0;
9542
9543 base_string = end_scale;
9544 if (is_space_char (*base_string))
9545 ++base_string;
9546 if (*base_string != ')')
9547 {
9548 as_bad (_("expecting `)' "
9549 "after scale factor in `%s'"),
9550 operand_string);
9551 return 0;
9552 }
9553 }
9554 else if (!i.index_reg)
9555 {
9556 as_bad (_("expecting index register or scale factor "
9557 "after `,'; got '%c'"),
9558 *base_string);
9559 return 0;
9560 }
9561 }
9562 else if (*base_string != ')')
9563 {
9564 as_bad (_("expecting `,' or `)' "
9565 "after base register in `%s'"),
9566 operand_string);
9567 return 0;
9568 }
9569 }
9570 else if (*base_string == REGISTER_PREFIX)
9571 {
9572 end_op = strchr (base_string, ',');
9573 if (end_op)
9574 *end_op = '\0';
9575 as_bad (_("bad register name `%s'"), base_string);
9576 return 0;
9577 }
9578 }
9579
9580 /* If there's an expression beginning the operand, parse it,
9581 assuming displacement_string_start and
9582 displacement_string_end are meaningful. */
9583 if (displacement_string_start != displacement_string_end)
9584 {
9585 if (!i386_displacement (displacement_string_start,
9586 displacement_string_end))
9587 return 0;
9588 }
9589
9590 /* Special case for (%dx) while doing input/output op. */
9591 if (i.base_reg
9592 && operand_type_equal (&i.base_reg->reg_type,
9593 &reg16_inoutportreg)
9594 && i.index_reg == 0
9595 && i.log2_scale_factor == 0
9596 && i.seg[i.mem_operands] == 0
9597 && !operand_type_check (i.types[this_operand], disp))
9598 {
9599 i.types[this_operand] = inoutportreg;
9600 return 1;
9601 }
9602
9603 if (i386_index_check (operand_string) == 0)
9604 return 0;
9605 i.types[this_operand].bitfield.mem = 1;
9606 if (i.mem_operands == 0)
9607 i.memop1_string = xstrdup (operand_string);
9608 i.mem_operands++;
9609 }
9610 else
9611 {
9612 /* It's not a memory operand; argh! */
9613 as_bad (_("invalid char %s beginning operand %d `%s'"),
9614 output_invalid (*op_string),
9615 this_operand + 1,
9616 op_string);
9617 return 0;
9618 }
9619 return 1; /* Normal return. */
9620 }
9621 \f
9622 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9623 that an rs_machine_dependent frag may reach. */
9624
9625 unsigned int
9626 i386_frag_max_var (fragS *frag)
9627 {
9628 /* The only relaxable frags are for jumps.
9629 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9630 gas_assert (frag->fr_type == rs_machine_dependent);
9631 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9632 }
9633
9634 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9635 static int
9636 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9637 {
9638 /* STT_GNU_IFUNC symbol must go through PLT. */
9639 if ((symbol_get_bfdsym (fr_symbol)->flags
9640 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9641 return 0;
9642
9643 if (!S_IS_EXTERNAL (fr_symbol))
9644 /* Symbol may be weak or local. */
9645 return !S_IS_WEAK (fr_symbol);
9646
9647 /* Global symbols with non-default visibility can't be preempted. */
9648 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9649 return 1;
9650
9651 if (fr_var != NO_RELOC)
9652 switch ((enum bfd_reloc_code_real) fr_var)
9653 {
9654 case BFD_RELOC_386_PLT32:
9655 case BFD_RELOC_X86_64_PLT32:
9656 /* Symbol with PLT relocation may be preempted. */
9657 return 0;
9658 default:
9659 abort ();
9660 }
9661
9662 /* Global symbols with default visibility in a shared library may be
9663 preempted by another definition. */
9664 return !shared;
9665 }
9666 #endif
9667
9668 /* md_estimate_size_before_relax()
9669
9670 Called just before relax() for rs_machine_dependent frags. The x86
9671 assembler uses these frags to handle variable size jump
9672 instructions.
9673
9674 Any symbol that is now undefined will not become defined.
9675 Return the correct fr_subtype in the frag.
9676 Return the initial "guess for variable size of frag" to caller.
9677 The guess is actually the growth beyond the fixed part. Whatever
9678 we do to grow the fixed or variable part contributes to our
9679 returned value. */
9680
9681 int
9682 md_estimate_size_before_relax (fragS *fragP, segT segment)
9683 {
9684 /* We've already got fragP->fr_subtype right; all we have to do is
9685 check for un-relaxable symbols. On an ELF system, we can't relax
9686 an externally visible symbol, because it may be overridden by a
9687 shared library. */
9688 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9689 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9690 || (IS_ELF
9691 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9692 fragP->fr_var))
9693 #endif
9694 #if defined (OBJ_COFF) && defined (TE_PE)
9695 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9696 && S_IS_WEAK (fragP->fr_symbol))
9697 #endif
9698 )
9699 {
9700 /* Symbol is undefined in this segment, or we need to keep a
9701 reloc so that weak symbols can be overridden. */
9702 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9703 enum bfd_reloc_code_real reloc_type;
9704 unsigned char *opcode;
9705 int old_fr_fix;
9706
9707 if (fragP->fr_var != NO_RELOC)
9708 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9709 else if (size == 2)
9710 reloc_type = BFD_RELOC_16_PCREL;
9711 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9712 else if (need_plt32_p (fragP->fr_symbol))
9713 reloc_type = BFD_RELOC_X86_64_PLT32;
9714 #endif
9715 else
9716 reloc_type = BFD_RELOC_32_PCREL;
9717
9718 old_fr_fix = fragP->fr_fix;
9719 opcode = (unsigned char *) fragP->fr_opcode;
9720
9721 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9722 {
9723 case UNCOND_JUMP:
9724 /* Make jmp (0xeb) a (d)word displacement jump. */
9725 opcode[0] = 0xe9;
9726 fragP->fr_fix += size;
9727 fix_new (fragP, old_fr_fix, size,
9728 fragP->fr_symbol,
9729 fragP->fr_offset, 1,
9730 reloc_type);
9731 break;
9732
9733 case COND_JUMP86:
9734 if (size == 2
9735 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9736 {
9737 /* Negate the condition, and branch past an
9738 unconditional jump. */
9739 opcode[0] ^= 1;
9740 opcode[1] = 3;
9741 /* Insert an unconditional jump. */
9742 opcode[2] = 0xe9;
9743 /* We added two extra opcode bytes, and have a two byte
9744 offset. */
9745 fragP->fr_fix += 2 + 2;
9746 fix_new (fragP, old_fr_fix + 2, 2,
9747 fragP->fr_symbol,
9748 fragP->fr_offset, 1,
9749 reloc_type);
9750 break;
9751 }
9752 /* Fall through. */
9753
9754 case COND_JUMP:
9755 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9756 {
9757 fixS *fixP;
9758
9759 fragP->fr_fix += 1;
9760 fixP = fix_new (fragP, old_fr_fix, 1,
9761 fragP->fr_symbol,
9762 fragP->fr_offset, 1,
9763 BFD_RELOC_8_PCREL);
9764 fixP->fx_signed = 1;
9765 break;
9766 }
9767
9768 /* This changes the byte-displacement jump 0x7N
9769 to the (d)word-displacement jump 0x0f,0x8N. */
9770 opcode[1] = opcode[0] + 0x10;
9771 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9772 /* We've added an opcode byte. */
9773 fragP->fr_fix += 1 + size;
9774 fix_new (fragP, old_fr_fix + 1, size,
9775 fragP->fr_symbol,
9776 fragP->fr_offset, 1,
9777 reloc_type);
9778 break;
9779
9780 default:
9781 BAD_CASE (fragP->fr_subtype);
9782 break;
9783 }
9784 frag_wane (fragP);
9785 return fragP->fr_fix - old_fr_fix;
9786 }
9787
9788 /* Guess size depending on current relax state. Initially the relax
9789 state will correspond to a short jump and we return 1, because
9790 the variable part of the frag (the branch offset) is one byte
9791 long. However, we can relax a section more than once and in that
9792 case we must either set fr_subtype back to the unrelaxed state,
9793 or return the value for the appropriate branch. */
9794 return md_relax_table[fragP->fr_subtype].rlx_length;
9795 }
9796
9797 /* Called after relax() is finished.
9798
9799 In: Address of frag.
9800 fr_type == rs_machine_dependent.
9801 fr_subtype is what the address relaxed to.
9802
9803 Out: Any fixSs and constants are set up.
9804 Caller will turn frag into a ".space 0". */
9805
9806 void
9807 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9808 fragS *fragP)
9809 {
9810 unsigned char *opcode;
9811 unsigned char *where_to_put_displacement = NULL;
9812 offsetT target_address;
9813 offsetT opcode_address;
9814 unsigned int extension = 0;
9815 offsetT displacement_from_opcode_start;
9816
9817 opcode = (unsigned char *) fragP->fr_opcode;
9818
9819 /* Address we want to reach in file space. */
9820 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9821
9822 /* Address opcode resides at in file space. */
9823 opcode_address = fragP->fr_address + fragP->fr_fix;
9824
9825 /* Displacement from opcode start to fill into instruction. */
9826 displacement_from_opcode_start = target_address - opcode_address;
9827
9828 if ((fragP->fr_subtype & BIG) == 0)
9829 {
9830 /* Don't have to change opcode. */
9831 extension = 1; /* 1 opcode + 1 displacement */
9832 where_to_put_displacement = &opcode[1];
9833 }
9834 else
9835 {
9836 if (no_cond_jump_promotion
9837 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9838 as_warn_where (fragP->fr_file, fragP->fr_line,
9839 _("long jump required"));
9840
9841 switch (fragP->fr_subtype)
9842 {
9843 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9844 extension = 4; /* 1 opcode + 4 displacement */
9845 opcode[0] = 0xe9;
9846 where_to_put_displacement = &opcode[1];
9847 break;
9848
9849 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9850 extension = 2; /* 1 opcode + 2 displacement */
9851 opcode[0] = 0xe9;
9852 where_to_put_displacement = &opcode[1];
9853 break;
9854
9855 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9856 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9857 extension = 5; /* 2 opcode + 4 displacement */
9858 opcode[1] = opcode[0] + 0x10;
9859 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9860 where_to_put_displacement = &opcode[2];
9861 break;
9862
9863 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9864 extension = 3; /* 2 opcode + 2 displacement */
9865 opcode[1] = opcode[0] + 0x10;
9866 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9867 where_to_put_displacement = &opcode[2];
9868 break;
9869
9870 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9871 extension = 4;
9872 opcode[0] ^= 1;
9873 opcode[1] = 3;
9874 opcode[2] = 0xe9;
9875 where_to_put_displacement = &opcode[3];
9876 break;
9877
9878 default:
9879 BAD_CASE (fragP->fr_subtype);
9880 break;
9881 }
9882 }
9883
9884 /* If size if less then four we are sure that the operand fits,
9885 but if it's 4, then it could be that the displacement is larger
9886 then -/+ 2GB. */
9887 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9888 && object_64bit
9889 && ((addressT) (displacement_from_opcode_start - extension
9890 + ((addressT) 1 << 31))
9891 > (((addressT) 2 << 31) - 1)))
9892 {
9893 as_bad_where (fragP->fr_file, fragP->fr_line,
9894 _("jump target out of range"));
9895 /* Make us emit 0. */
9896 displacement_from_opcode_start = extension;
9897 }
9898 /* Now put displacement after opcode. */
9899 md_number_to_chars ((char *) where_to_put_displacement,
9900 (valueT) (displacement_from_opcode_start - extension),
9901 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9902 fragP->fr_fix += extension;
9903 }
9904 \f
9905 /* Apply a fixup (fixP) to segment data, once it has been determined
9906 by our caller that we have all the info we need to fix it up.
9907
9908 Parameter valP is the pointer to the value of the bits.
9909
9910 On the 386, immediates, displacements, and data pointers are all in
9911 the same (little-endian) format, so we don't need to care about which
9912 we are handling. */
9913
9914 void
9915 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9916 {
9917 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9918 valueT value = *valP;
9919
9920 #if !defined (TE_Mach)
9921 if (fixP->fx_pcrel)
9922 {
9923 switch (fixP->fx_r_type)
9924 {
9925 default:
9926 break;
9927
9928 case BFD_RELOC_64:
9929 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9930 break;
9931 case BFD_RELOC_32:
9932 case BFD_RELOC_X86_64_32S:
9933 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9934 break;
9935 case BFD_RELOC_16:
9936 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9937 break;
9938 case BFD_RELOC_8:
9939 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9940 break;
9941 }
9942 }
9943
9944 if (fixP->fx_addsy != NULL
9945 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9946 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9947 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9948 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9949 && !use_rela_relocations)
9950 {
9951 /* This is a hack. There should be a better way to handle this.
9952 This covers for the fact that bfd_install_relocation will
9953 subtract the current location (for partial_inplace, PC relative
9954 relocations); see more below. */
9955 #ifndef OBJ_AOUT
9956 if (IS_ELF
9957 #ifdef TE_PE
9958 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9959 #endif
9960 )
9961 value += fixP->fx_where + fixP->fx_frag->fr_address;
9962 #endif
9963 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9964 if (IS_ELF)
9965 {
9966 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9967
9968 if ((sym_seg == seg
9969 || (symbol_section_p (fixP->fx_addsy)
9970 && sym_seg != absolute_section))
9971 && !generic_force_reloc (fixP))
9972 {
9973 /* Yes, we add the values in twice. This is because
9974 bfd_install_relocation subtracts them out again. I think
9975 bfd_install_relocation is broken, but I don't dare change
9976 it. FIXME. */
9977 value += fixP->fx_where + fixP->fx_frag->fr_address;
9978 }
9979 }
9980 #endif
9981 #if defined (OBJ_COFF) && defined (TE_PE)
9982 /* For some reason, the PE format does not store a
9983 section address offset for a PC relative symbol. */
9984 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9985 || S_IS_WEAK (fixP->fx_addsy))
9986 value += md_pcrel_from (fixP);
9987 #endif
9988 }
9989 #if defined (OBJ_COFF) && defined (TE_PE)
9990 if (fixP->fx_addsy != NULL
9991 && S_IS_WEAK (fixP->fx_addsy)
9992 /* PR 16858: Do not modify weak function references. */
9993 && ! fixP->fx_pcrel)
9994 {
9995 #if !defined (TE_PEP)
9996 /* For x86 PE weak function symbols are neither PC-relative
9997 nor do they set S_IS_FUNCTION. So the only reliable way
9998 to detect them is to check the flags of their containing
9999 section. */
10000 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10001 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10002 ;
10003 else
10004 #endif
10005 value -= S_GET_VALUE (fixP->fx_addsy);
10006 }
10007 #endif
10008
10009 /* Fix a few things - the dynamic linker expects certain values here,
10010 and we must not disappoint it. */
10011 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10012 if (IS_ELF && fixP->fx_addsy)
10013 switch (fixP->fx_r_type)
10014 {
10015 case BFD_RELOC_386_PLT32:
10016 case BFD_RELOC_X86_64_PLT32:
10017 /* Make the jump instruction point to the address of the operand. At
10018 runtime we merely add the offset to the actual PLT entry. */
10019 value = -4;
10020 break;
10021
10022 case BFD_RELOC_386_TLS_GD:
10023 case BFD_RELOC_386_TLS_LDM:
10024 case BFD_RELOC_386_TLS_IE_32:
10025 case BFD_RELOC_386_TLS_IE:
10026 case BFD_RELOC_386_TLS_GOTIE:
10027 case BFD_RELOC_386_TLS_GOTDESC:
10028 case BFD_RELOC_X86_64_TLSGD:
10029 case BFD_RELOC_X86_64_TLSLD:
10030 case BFD_RELOC_X86_64_GOTTPOFF:
10031 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10032 value = 0; /* Fully resolved at runtime. No addend. */
10033 /* Fallthrough */
10034 case BFD_RELOC_386_TLS_LE:
10035 case BFD_RELOC_386_TLS_LDO_32:
10036 case BFD_RELOC_386_TLS_LE_32:
10037 case BFD_RELOC_X86_64_DTPOFF32:
10038 case BFD_RELOC_X86_64_DTPOFF64:
10039 case BFD_RELOC_X86_64_TPOFF32:
10040 case BFD_RELOC_X86_64_TPOFF64:
10041 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10042 break;
10043
10044 case BFD_RELOC_386_TLS_DESC_CALL:
10045 case BFD_RELOC_X86_64_TLSDESC_CALL:
10046 value = 0; /* Fully resolved at runtime. No addend. */
10047 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10048 fixP->fx_done = 0;
10049 return;
10050
10051 case BFD_RELOC_VTABLE_INHERIT:
10052 case BFD_RELOC_VTABLE_ENTRY:
10053 fixP->fx_done = 0;
10054 return;
10055
10056 default:
10057 break;
10058 }
10059 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10060 *valP = value;
10061 #endif /* !defined (TE_Mach) */
10062
10063 /* Are we finished with this relocation now? */
10064 if (fixP->fx_addsy == NULL)
10065 fixP->fx_done = 1;
10066 #if defined (OBJ_COFF) && defined (TE_PE)
10067 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10068 {
10069 fixP->fx_done = 0;
10070 /* Remember value for tc_gen_reloc. */
10071 fixP->fx_addnumber = value;
10072 /* Clear out the frag for now. */
10073 value = 0;
10074 }
10075 #endif
10076 else if (use_rela_relocations)
10077 {
10078 fixP->fx_no_overflow = 1;
10079 /* Remember value for tc_gen_reloc. */
10080 fixP->fx_addnumber = value;
10081 value = 0;
10082 }
10083
10084 md_number_to_chars (p, value, fixP->fx_size);
10085 }
10086 \f
10087 const char *
10088 md_atof (int type, char *litP, int *sizeP)
10089 {
10090 /* This outputs the LITTLENUMs in REVERSE order;
10091 in accord with the bigendian 386. */
10092 return ieee_md_atof (type, litP, sizeP, FALSE);
10093 }
10094 \f
10095 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10096
10097 static char *
10098 output_invalid (int c)
10099 {
10100 if (ISPRINT (c))
10101 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10102 "'%c'", c);
10103 else
10104 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10105 "(0x%x)", (unsigned char) c);
10106 return output_invalid_buf;
10107 }
10108
10109 /* REG_STRING starts *before* REGISTER_PREFIX. */
10110
10111 static const reg_entry *
10112 parse_real_register (char *reg_string, char **end_op)
10113 {
10114 char *s = reg_string;
10115 char *p;
10116 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10117 const reg_entry *r;
10118
10119 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10120 if (*s == REGISTER_PREFIX)
10121 ++s;
10122
10123 if (is_space_char (*s))
10124 ++s;
10125
10126 p = reg_name_given;
10127 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10128 {
10129 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10130 return (const reg_entry *) NULL;
10131 s++;
10132 }
10133
10134 /* For naked regs, make sure that we are not dealing with an identifier.
10135 This prevents confusing an identifier like `eax_var' with register
10136 `eax'. */
10137 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10138 return (const reg_entry *) NULL;
10139
10140 *end_op = s;
10141
10142 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10143
10144 /* Handle floating point regs, allowing spaces in the (i) part. */
10145 if (r == i386_regtab /* %st is first entry of table */)
10146 {
10147 if (is_space_char (*s))
10148 ++s;
10149 if (*s == '(')
10150 {
10151 ++s;
10152 if (is_space_char (*s))
10153 ++s;
10154 if (*s >= '0' && *s <= '7')
10155 {
10156 int fpr = *s - '0';
10157 ++s;
10158 if (is_space_char (*s))
10159 ++s;
10160 if (*s == ')')
10161 {
10162 *end_op = s + 1;
10163 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10164 know (r);
10165 return r + fpr;
10166 }
10167 }
10168 /* We have "%st(" then garbage. */
10169 return (const reg_entry *) NULL;
10170 }
10171 }
10172
10173 if (r == NULL || allow_pseudo_reg)
10174 return r;
10175
10176 if (operand_type_all_zero (&r->reg_type))
10177 return (const reg_entry *) NULL;
10178
10179 if ((r->reg_type.bitfield.dword
10180 || r->reg_type.bitfield.sreg3
10181 || r->reg_type.bitfield.control
10182 || r->reg_type.bitfield.debug
10183 || r->reg_type.bitfield.test)
10184 && !cpu_arch_flags.bitfield.cpui386)
10185 return (const reg_entry *) NULL;
10186
10187 if (r->reg_type.bitfield.tbyte
10188 && !cpu_arch_flags.bitfield.cpu8087
10189 && !cpu_arch_flags.bitfield.cpu287
10190 && !cpu_arch_flags.bitfield.cpu387)
10191 return (const reg_entry *) NULL;
10192
10193 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
10194 return (const reg_entry *) NULL;
10195
10196 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
10197 return (const reg_entry *) NULL;
10198
10199 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
10200 return (const reg_entry *) NULL;
10201
10202 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
10203 return (const reg_entry *) NULL;
10204
10205 if (r->reg_type.bitfield.regmask
10206 && !cpu_arch_flags.bitfield.cpuregmask)
10207 return (const reg_entry *) NULL;
10208
10209 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10210 if (!allow_index_reg
10211 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10212 return (const reg_entry *) NULL;
10213
10214 /* Upper 16 vector register is only available with VREX in 64bit
10215 mode. */
10216 if ((r->reg_flags & RegVRex))
10217 {
10218 if (i.vec_encoding == vex_encoding_default)
10219 i.vec_encoding = vex_encoding_evex;
10220
10221 if (!cpu_arch_flags.bitfield.cpuvrex
10222 || i.vec_encoding != vex_encoding_evex
10223 || flag_code != CODE_64BIT)
10224 return (const reg_entry *) NULL;
10225 }
10226
10227 if (((r->reg_flags & (RegRex64 | RegRex))
10228 || r->reg_type.bitfield.qword)
10229 && (!cpu_arch_flags.bitfield.cpulm
10230 || !operand_type_equal (&r->reg_type, &control))
10231 && flag_code != CODE_64BIT)
10232 return (const reg_entry *) NULL;
10233
10234 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10235 return (const reg_entry *) NULL;
10236
10237 return r;
10238 }
10239
10240 /* REG_STRING starts *before* REGISTER_PREFIX. */
10241
10242 static const reg_entry *
10243 parse_register (char *reg_string, char **end_op)
10244 {
10245 const reg_entry *r;
10246
10247 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10248 r = parse_real_register (reg_string, end_op);
10249 else
10250 r = NULL;
10251 if (!r)
10252 {
10253 char *save = input_line_pointer;
10254 char c;
10255 symbolS *symbolP;
10256
10257 input_line_pointer = reg_string;
10258 c = get_symbol_name (&reg_string);
10259 symbolP = symbol_find (reg_string);
10260 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10261 {
10262 const expressionS *e = symbol_get_value_expression (symbolP);
10263
10264 know (e->X_op == O_register);
10265 know (e->X_add_number >= 0
10266 && (valueT) e->X_add_number < i386_regtab_size);
10267 r = i386_regtab + e->X_add_number;
10268 if ((r->reg_flags & RegVRex))
10269 i.vec_encoding = vex_encoding_evex;
10270 *end_op = input_line_pointer;
10271 }
10272 *input_line_pointer = c;
10273 input_line_pointer = save;
10274 }
10275 return r;
10276 }
10277
10278 int
10279 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10280 {
10281 const reg_entry *r;
10282 char *end = input_line_pointer;
10283
10284 *end = *nextcharP;
10285 r = parse_register (name, &input_line_pointer);
10286 if (r && end <= input_line_pointer)
10287 {
10288 *nextcharP = *input_line_pointer;
10289 *input_line_pointer = 0;
10290 e->X_op = O_register;
10291 e->X_add_number = r - i386_regtab;
10292 return 1;
10293 }
10294 input_line_pointer = end;
10295 *end = 0;
10296 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10297 }
10298
10299 void
10300 md_operand (expressionS *e)
10301 {
10302 char *end;
10303 const reg_entry *r;
10304
10305 switch (*input_line_pointer)
10306 {
10307 case REGISTER_PREFIX:
10308 r = parse_real_register (input_line_pointer, &end);
10309 if (r)
10310 {
10311 e->X_op = O_register;
10312 e->X_add_number = r - i386_regtab;
10313 input_line_pointer = end;
10314 }
10315 break;
10316
10317 case '[':
10318 gas_assert (intel_syntax);
10319 end = input_line_pointer++;
10320 expression (e);
10321 if (*input_line_pointer == ']')
10322 {
10323 ++input_line_pointer;
10324 e->X_op_symbol = make_expr_symbol (e);
10325 e->X_add_symbol = NULL;
10326 e->X_add_number = 0;
10327 e->X_op = O_index;
10328 }
10329 else
10330 {
10331 e->X_op = O_absent;
10332 input_line_pointer = end;
10333 }
10334 break;
10335 }
10336 }
10337
10338 \f
10339 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10340 const char *md_shortopts = "kVQ:sqnO::";
10341 #else
10342 const char *md_shortopts = "qnO::";
10343 #endif
10344
10345 #define OPTION_32 (OPTION_MD_BASE + 0)
10346 #define OPTION_64 (OPTION_MD_BASE + 1)
10347 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10348 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10349 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10350 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10351 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10352 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10353 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10354 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10355 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10356 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10357 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10358 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10359 #define OPTION_X32 (OPTION_MD_BASE + 14)
10360 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10361 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10362 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10363 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10364 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10365 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10366 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10367 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10368 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10369 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10370
10371 struct option md_longopts[] =
10372 {
10373 {"32", no_argument, NULL, OPTION_32},
10374 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10375 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10376 {"64", no_argument, NULL, OPTION_64},
10377 #endif
10378 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10379 {"x32", no_argument, NULL, OPTION_X32},
10380 {"mshared", no_argument, NULL, OPTION_MSHARED},
10381 #endif
10382 {"divide", no_argument, NULL, OPTION_DIVIDE},
10383 {"march", required_argument, NULL, OPTION_MARCH},
10384 {"mtune", required_argument, NULL, OPTION_MTUNE},
10385 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10386 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10387 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10388 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10389 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10390 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10391 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10392 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10393 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10394 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10395 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10396 # if defined (TE_PE) || defined (TE_PEP)
10397 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10398 #endif
10399 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10400 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10401 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10402 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10403 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10404 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10405 {NULL, no_argument, NULL, 0}
10406 };
10407 size_t md_longopts_size = sizeof (md_longopts);
10408
10409 int
10410 md_parse_option (int c, const char *arg)
10411 {
10412 unsigned int j;
10413 char *arch, *next, *saved;
10414
10415 switch (c)
10416 {
10417 case 'n':
10418 optimize_align_code = 0;
10419 break;
10420
10421 case 'q':
10422 quiet_warnings = 1;
10423 break;
10424
10425 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10426 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10427 should be emitted or not. FIXME: Not implemented. */
10428 case 'Q':
10429 break;
10430
10431 /* -V: SVR4 argument to print version ID. */
10432 case 'V':
10433 print_version_id ();
10434 break;
10435
10436 /* -k: Ignore for FreeBSD compatibility. */
10437 case 'k':
10438 break;
10439
10440 case 's':
10441 /* -s: On i386 Solaris, this tells the native assembler to use
10442 .stab instead of .stab.excl. We always use .stab anyhow. */
10443 break;
10444
10445 case OPTION_MSHARED:
10446 shared = 1;
10447 break;
10448 #endif
10449 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10450 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10451 case OPTION_64:
10452 {
10453 const char **list, **l;
10454
10455 list = bfd_target_list ();
10456 for (l = list; *l != NULL; l++)
10457 if (CONST_STRNEQ (*l, "elf64-x86-64")
10458 || strcmp (*l, "coff-x86-64") == 0
10459 || strcmp (*l, "pe-x86-64") == 0
10460 || strcmp (*l, "pei-x86-64") == 0
10461 || strcmp (*l, "mach-o-x86-64") == 0)
10462 {
10463 default_arch = "x86_64";
10464 break;
10465 }
10466 if (*l == NULL)
10467 as_fatal (_("no compiled in support for x86_64"));
10468 free (list);
10469 }
10470 break;
10471 #endif
10472
10473 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10474 case OPTION_X32:
10475 if (IS_ELF)
10476 {
10477 const char **list, **l;
10478
10479 list = bfd_target_list ();
10480 for (l = list; *l != NULL; l++)
10481 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10482 {
10483 default_arch = "x86_64:32";
10484 break;
10485 }
10486 if (*l == NULL)
10487 as_fatal (_("no compiled in support for 32bit x86_64"));
10488 free (list);
10489 }
10490 else
10491 as_fatal (_("32bit x86_64 is only supported for ELF"));
10492 break;
10493 #endif
10494
10495 case OPTION_32:
10496 default_arch = "i386";
10497 break;
10498
10499 case OPTION_DIVIDE:
10500 #ifdef SVR4_COMMENT_CHARS
10501 {
10502 char *n, *t;
10503 const char *s;
10504
10505 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10506 t = n;
10507 for (s = i386_comment_chars; *s != '\0'; s++)
10508 if (*s != '/')
10509 *t++ = *s;
10510 *t = '\0';
10511 i386_comment_chars = n;
10512 }
10513 #endif
10514 break;
10515
10516 case OPTION_MARCH:
10517 saved = xstrdup (arg);
10518 arch = saved;
10519 /* Allow -march=+nosse. */
10520 if (*arch == '+')
10521 arch++;
10522 do
10523 {
10524 if (*arch == '.')
10525 as_fatal (_("invalid -march= option: `%s'"), arg);
10526 next = strchr (arch, '+');
10527 if (next)
10528 *next++ = '\0';
10529 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10530 {
10531 if (strcmp (arch, cpu_arch [j].name) == 0)
10532 {
10533 /* Processor. */
10534 if (! cpu_arch[j].flags.bitfield.cpui386)
10535 continue;
10536
10537 cpu_arch_name = cpu_arch[j].name;
10538 cpu_sub_arch_name = NULL;
10539 cpu_arch_flags = cpu_arch[j].flags;
10540 cpu_arch_isa = cpu_arch[j].type;
10541 cpu_arch_isa_flags = cpu_arch[j].flags;
10542 if (!cpu_arch_tune_set)
10543 {
10544 cpu_arch_tune = cpu_arch_isa;
10545 cpu_arch_tune_flags = cpu_arch_isa_flags;
10546 }
10547 break;
10548 }
10549 else if (*cpu_arch [j].name == '.'
10550 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10551 {
10552 /* ISA extension. */
10553 i386_cpu_flags flags;
10554
10555 flags = cpu_flags_or (cpu_arch_flags,
10556 cpu_arch[j].flags);
10557
10558 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10559 {
10560 if (cpu_sub_arch_name)
10561 {
10562 char *name = cpu_sub_arch_name;
10563 cpu_sub_arch_name = concat (name,
10564 cpu_arch[j].name,
10565 (const char *) NULL);
10566 free (name);
10567 }
10568 else
10569 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10570 cpu_arch_flags = flags;
10571 cpu_arch_isa_flags = flags;
10572 }
10573 else
10574 cpu_arch_isa_flags
10575 = cpu_flags_or (cpu_arch_isa_flags,
10576 cpu_arch[j].flags);
10577 break;
10578 }
10579 }
10580
10581 if (j >= ARRAY_SIZE (cpu_arch))
10582 {
10583 /* Disable an ISA extension. */
10584 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10585 if (strcmp (arch, cpu_noarch [j].name) == 0)
10586 {
10587 i386_cpu_flags flags;
10588
10589 flags = cpu_flags_and_not (cpu_arch_flags,
10590 cpu_noarch[j].flags);
10591 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10592 {
10593 if (cpu_sub_arch_name)
10594 {
10595 char *name = cpu_sub_arch_name;
10596 cpu_sub_arch_name = concat (arch,
10597 (const char *) NULL);
10598 free (name);
10599 }
10600 else
10601 cpu_sub_arch_name = xstrdup (arch);
10602 cpu_arch_flags = flags;
10603 cpu_arch_isa_flags = flags;
10604 }
10605 break;
10606 }
10607
10608 if (j >= ARRAY_SIZE (cpu_noarch))
10609 j = ARRAY_SIZE (cpu_arch);
10610 }
10611
10612 if (j >= ARRAY_SIZE (cpu_arch))
10613 as_fatal (_("invalid -march= option: `%s'"), arg);
10614
10615 arch = next;
10616 }
10617 while (next != NULL);
10618 free (saved);
10619 break;
10620
10621 case OPTION_MTUNE:
10622 if (*arg == '.')
10623 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10624 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10625 {
10626 if (strcmp (arg, cpu_arch [j].name) == 0)
10627 {
10628 cpu_arch_tune_set = 1;
10629 cpu_arch_tune = cpu_arch [j].type;
10630 cpu_arch_tune_flags = cpu_arch[j].flags;
10631 break;
10632 }
10633 }
10634 if (j >= ARRAY_SIZE (cpu_arch))
10635 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10636 break;
10637
10638 case OPTION_MMNEMONIC:
10639 if (strcasecmp (arg, "att") == 0)
10640 intel_mnemonic = 0;
10641 else if (strcasecmp (arg, "intel") == 0)
10642 intel_mnemonic = 1;
10643 else
10644 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10645 break;
10646
10647 case OPTION_MSYNTAX:
10648 if (strcasecmp (arg, "att") == 0)
10649 intel_syntax = 0;
10650 else if (strcasecmp (arg, "intel") == 0)
10651 intel_syntax = 1;
10652 else
10653 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10654 break;
10655
10656 case OPTION_MINDEX_REG:
10657 allow_index_reg = 1;
10658 break;
10659
10660 case OPTION_MNAKED_REG:
10661 allow_naked_reg = 1;
10662 break;
10663
10664 case OPTION_MSSE2AVX:
10665 sse2avx = 1;
10666 break;
10667
10668 case OPTION_MSSE_CHECK:
10669 if (strcasecmp (arg, "error") == 0)
10670 sse_check = check_error;
10671 else if (strcasecmp (arg, "warning") == 0)
10672 sse_check = check_warning;
10673 else if (strcasecmp (arg, "none") == 0)
10674 sse_check = check_none;
10675 else
10676 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10677 break;
10678
10679 case OPTION_MOPERAND_CHECK:
10680 if (strcasecmp (arg, "error") == 0)
10681 operand_check = check_error;
10682 else if (strcasecmp (arg, "warning") == 0)
10683 operand_check = check_warning;
10684 else if (strcasecmp (arg, "none") == 0)
10685 operand_check = check_none;
10686 else
10687 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10688 break;
10689
10690 case OPTION_MAVXSCALAR:
10691 if (strcasecmp (arg, "128") == 0)
10692 avxscalar = vex128;
10693 else if (strcasecmp (arg, "256") == 0)
10694 avxscalar = vex256;
10695 else
10696 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10697 break;
10698
10699 case OPTION_MADD_BND_PREFIX:
10700 add_bnd_prefix = 1;
10701 break;
10702
10703 case OPTION_MEVEXLIG:
10704 if (strcmp (arg, "128") == 0)
10705 evexlig = evexl128;
10706 else if (strcmp (arg, "256") == 0)
10707 evexlig = evexl256;
10708 else if (strcmp (arg, "512") == 0)
10709 evexlig = evexl512;
10710 else
10711 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10712 break;
10713
10714 case OPTION_MEVEXRCIG:
10715 if (strcmp (arg, "rne") == 0)
10716 evexrcig = rne;
10717 else if (strcmp (arg, "rd") == 0)
10718 evexrcig = rd;
10719 else if (strcmp (arg, "ru") == 0)
10720 evexrcig = ru;
10721 else if (strcmp (arg, "rz") == 0)
10722 evexrcig = rz;
10723 else
10724 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10725 break;
10726
10727 case OPTION_MEVEXWIG:
10728 if (strcmp (arg, "0") == 0)
10729 evexwig = evexw0;
10730 else if (strcmp (arg, "1") == 0)
10731 evexwig = evexw1;
10732 else
10733 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10734 break;
10735
10736 # if defined (TE_PE) || defined (TE_PEP)
10737 case OPTION_MBIG_OBJ:
10738 use_big_obj = 1;
10739 break;
10740 #endif
10741
10742 case OPTION_MOMIT_LOCK_PREFIX:
10743 if (strcasecmp (arg, "yes") == 0)
10744 omit_lock_prefix = 1;
10745 else if (strcasecmp (arg, "no") == 0)
10746 omit_lock_prefix = 0;
10747 else
10748 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10749 break;
10750
10751 case OPTION_MFENCE_AS_LOCK_ADD:
10752 if (strcasecmp (arg, "yes") == 0)
10753 avoid_fence = 1;
10754 else if (strcasecmp (arg, "no") == 0)
10755 avoid_fence = 0;
10756 else
10757 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10758 break;
10759
10760 case OPTION_MRELAX_RELOCATIONS:
10761 if (strcasecmp (arg, "yes") == 0)
10762 generate_relax_relocations = 1;
10763 else if (strcasecmp (arg, "no") == 0)
10764 generate_relax_relocations = 0;
10765 else
10766 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10767 break;
10768
10769 case OPTION_MAMD64:
10770 intel64 = 0;
10771 break;
10772
10773 case OPTION_MINTEL64:
10774 intel64 = 1;
10775 break;
10776
10777 case 'O':
10778 if (arg == NULL)
10779 {
10780 optimize = 1;
10781 /* Turn off -Os. */
10782 optimize_for_space = 0;
10783 }
10784 else if (*arg == 's')
10785 {
10786 optimize_for_space = 1;
10787 /* Turn on all encoding optimizations. */
10788 optimize = -1;
10789 }
10790 else
10791 {
10792 optimize = atoi (arg);
10793 /* Turn off -Os. */
10794 optimize_for_space = 0;
10795 }
10796 break;
10797
10798 default:
10799 return 0;
10800 }
10801 return 1;
10802 }
10803
10804 #define MESSAGE_TEMPLATE \
10805 " "
10806
10807 static char *
10808 output_message (FILE *stream, char *p, char *message, char *start,
10809 int *left_p, const char *name, int len)
10810 {
10811 int size = sizeof (MESSAGE_TEMPLATE);
10812 int left = *left_p;
10813
10814 /* Reserve 2 spaces for ", " or ",\0" */
10815 left -= len + 2;
10816
10817 /* Check if there is any room. */
10818 if (left >= 0)
10819 {
10820 if (p != start)
10821 {
10822 *p++ = ',';
10823 *p++ = ' ';
10824 }
10825 p = mempcpy (p, name, len);
10826 }
10827 else
10828 {
10829 /* Output the current message now and start a new one. */
10830 *p++ = ',';
10831 *p = '\0';
10832 fprintf (stream, "%s\n", message);
10833 p = start;
10834 left = size - (start - message) - len - 2;
10835
10836 gas_assert (left >= 0);
10837
10838 p = mempcpy (p, name, len);
10839 }
10840
10841 *left_p = left;
10842 return p;
10843 }
10844
10845 static void
10846 show_arch (FILE *stream, int ext, int check)
10847 {
10848 static char message[] = MESSAGE_TEMPLATE;
10849 char *start = message + 27;
10850 char *p;
10851 int size = sizeof (MESSAGE_TEMPLATE);
10852 int left;
10853 const char *name;
10854 int len;
10855 unsigned int j;
10856
10857 p = start;
10858 left = size - (start - message);
10859 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10860 {
10861 /* Should it be skipped? */
10862 if (cpu_arch [j].skip)
10863 continue;
10864
10865 name = cpu_arch [j].name;
10866 len = cpu_arch [j].len;
10867 if (*name == '.')
10868 {
10869 /* It is an extension. Skip if we aren't asked to show it. */
10870 if (ext)
10871 {
10872 name++;
10873 len--;
10874 }
10875 else
10876 continue;
10877 }
10878 else if (ext)
10879 {
10880 /* It is an processor. Skip if we show only extension. */
10881 continue;
10882 }
10883 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10884 {
10885 /* It is an impossible processor - skip. */
10886 continue;
10887 }
10888
10889 p = output_message (stream, p, message, start, &left, name, len);
10890 }
10891
10892 /* Display disabled extensions. */
10893 if (ext)
10894 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10895 {
10896 name = cpu_noarch [j].name;
10897 len = cpu_noarch [j].len;
10898 p = output_message (stream, p, message, start, &left, name,
10899 len);
10900 }
10901
10902 *p = '\0';
10903 fprintf (stream, "%s\n", message);
10904 }
10905
10906 void
10907 md_show_usage (FILE *stream)
10908 {
10909 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10910 fprintf (stream, _("\
10911 -Q ignored\n\
10912 -V print assembler version number\n\
10913 -k ignored\n"));
10914 #endif
10915 fprintf (stream, _("\
10916 -n Do not optimize code alignment\n\
10917 -q quieten some warnings\n"));
10918 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10919 fprintf (stream, _("\
10920 -s ignored\n"));
10921 #endif
10922 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10923 || defined (TE_PE) || defined (TE_PEP))
10924 fprintf (stream, _("\
10925 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10926 #endif
10927 #ifdef SVR4_COMMENT_CHARS
10928 fprintf (stream, _("\
10929 --divide do not treat `/' as a comment character\n"));
10930 #else
10931 fprintf (stream, _("\
10932 --divide ignored\n"));
10933 #endif
10934 fprintf (stream, _("\
10935 -march=CPU[,+EXTENSION...]\n\
10936 generate code for CPU and EXTENSION, CPU is one of:\n"));
10937 show_arch (stream, 0, 1);
10938 fprintf (stream, _("\
10939 EXTENSION is combination of:\n"));
10940 show_arch (stream, 1, 0);
10941 fprintf (stream, _("\
10942 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10943 show_arch (stream, 0, 0);
10944 fprintf (stream, _("\
10945 -msse2avx encode SSE instructions with VEX prefix\n"));
10946 fprintf (stream, _("\
10947 -msse-check=[none|error|warning]\n\
10948 check SSE instructions\n"));
10949 fprintf (stream, _("\
10950 -moperand-check=[none|error|warning]\n\
10951 check operand combinations for validity\n"));
10952 fprintf (stream, _("\
10953 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10954 length\n"));
10955 fprintf (stream, _("\
10956 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10957 length\n"));
10958 fprintf (stream, _("\
10959 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10960 for EVEX.W bit ignored instructions\n"));
10961 fprintf (stream, _("\
10962 -mevexrcig=[rne|rd|ru|rz]\n\
10963 encode EVEX instructions with specific EVEX.RC value\n\
10964 for SAE-only ignored instructions\n"));
10965 fprintf (stream, _("\
10966 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10967 fprintf (stream, _("\
10968 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10969 fprintf (stream, _("\
10970 -mindex-reg support pseudo index registers\n"));
10971 fprintf (stream, _("\
10972 -mnaked-reg don't require `%%' prefix for registers\n"));
10973 fprintf (stream, _("\
10974 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10975 fprintf (stream, _("\
10976 -mshared disable branch optimization for shared code\n"));
10977 # if defined (TE_PE) || defined (TE_PEP)
10978 fprintf (stream, _("\
10979 -mbig-obj generate big object files\n"));
10980 #endif
10981 fprintf (stream, _("\
10982 -momit-lock-prefix=[no|yes]\n\
10983 strip all lock prefixes\n"));
10984 fprintf (stream, _("\
10985 -mfence-as-lock-add=[no|yes]\n\
10986 encode lfence, mfence and sfence as\n\
10987 lock addl $0x0, (%%{re}sp)\n"));
10988 fprintf (stream, _("\
10989 -mrelax-relocations=[no|yes]\n\
10990 generate relax relocations\n"));
10991 fprintf (stream, _("\
10992 -mamd64 accept only AMD64 ISA\n"));
10993 fprintf (stream, _("\
10994 -mintel64 accept only Intel64 ISA\n"));
10995 }
10996
10997 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10998 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10999 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11000
11001 /* Pick the target format to use. */
11002
11003 const char *
11004 i386_target_format (void)
11005 {
11006 if (!strncmp (default_arch, "x86_64", 6))
11007 {
11008 update_code_flag (CODE_64BIT, 1);
11009 if (default_arch[6] == '\0')
11010 x86_elf_abi = X86_64_ABI;
11011 else
11012 x86_elf_abi = X86_64_X32_ABI;
11013 }
11014 else if (!strcmp (default_arch, "i386"))
11015 update_code_flag (CODE_32BIT, 1);
11016 else if (!strcmp (default_arch, "iamcu"))
11017 {
11018 update_code_flag (CODE_32BIT, 1);
11019 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11020 {
11021 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11022 cpu_arch_name = "iamcu";
11023 cpu_sub_arch_name = NULL;
11024 cpu_arch_flags = iamcu_flags;
11025 cpu_arch_isa = PROCESSOR_IAMCU;
11026 cpu_arch_isa_flags = iamcu_flags;
11027 if (!cpu_arch_tune_set)
11028 {
11029 cpu_arch_tune = cpu_arch_isa;
11030 cpu_arch_tune_flags = cpu_arch_isa_flags;
11031 }
11032 }
11033 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11034 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11035 cpu_arch_name);
11036 }
11037 else
11038 as_fatal (_("unknown architecture"));
11039
11040 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11041 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11042 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11043 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11044
11045 switch (OUTPUT_FLAVOR)
11046 {
11047 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11048 case bfd_target_aout_flavour:
11049 return AOUT_TARGET_FORMAT;
11050 #endif
11051 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11052 # if defined (TE_PE) || defined (TE_PEP)
11053 case bfd_target_coff_flavour:
11054 if (flag_code == CODE_64BIT)
11055 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11056 else
11057 return "pe-i386";
11058 # elif defined (TE_GO32)
11059 case bfd_target_coff_flavour:
11060 return "coff-go32";
11061 # else
11062 case bfd_target_coff_flavour:
11063 return "coff-i386";
11064 # endif
11065 #endif
11066 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11067 case bfd_target_elf_flavour:
11068 {
11069 const char *format;
11070
11071 switch (x86_elf_abi)
11072 {
11073 default:
11074 format = ELF_TARGET_FORMAT;
11075 break;
11076 case X86_64_ABI:
11077 use_rela_relocations = 1;
11078 object_64bit = 1;
11079 format = ELF_TARGET_FORMAT64;
11080 break;
11081 case X86_64_X32_ABI:
11082 use_rela_relocations = 1;
11083 object_64bit = 1;
11084 disallow_64bit_reloc = 1;
11085 format = ELF_TARGET_FORMAT32;
11086 break;
11087 }
11088 if (cpu_arch_isa == PROCESSOR_L1OM)
11089 {
11090 if (x86_elf_abi != X86_64_ABI)
11091 as_fatal (_("Intel L1OM is 64bit only"));
11092 return ELF_TARGET_L1OM_FORMAT;
11093 }
11094 else if (cpu_arch_isa == PROCESSOR_K1OM)
11095 {
11096 if (x86_elf_abi != X86_64_ABI)
11097 as_fatal (_("Intel K1OM is 64bit only"));
11098 return ELF_TARGET_K1OM_FORMAT;
11099 }
11100 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11101 {
11102 if (x86_elf_abi != I386_ABI)
11103 as_fatal (_("Intel MCU is 32bit only"));
11104 return ELF_TARGET_IAMCU_FORMAT;
11105 }
11106 else
11107 return format;
11108 }
11109 #endif
11110 #if defined (OBJ_MACH_O)
11111 case bfd_target_mach_o_flavour:
11112 if (flag_code == CODE_64BIT)
11113 {
11114 use_rela_relocations = 1;
11115 object_64bit = 1;
11116 return "mach-o-x86-64";
11117 }
11118 else
11119 return "mach-o-i386";
11120 #endif
11121 default:
11122 abort ();
11123 return NULL;
11124 }
11125 }
11126
11127 #endif /* OBJ_MAYBE_ more than one */
11128 \f
11129 symbolS *
11130 md_undefined_symbol (char *name)
11131 {
11132 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11133 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11134 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11135 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11136 {
11137 if (!GOT_symbol)
11138 {
11139 if (symbol_find (name))
11140 as_bad (_("GOT already in symbol table"));
11141 GOT_symbol = symbol_new (name, undefined_section,
11142 (valueT) 0, &zero_address_frag);
11143 };
11144 return GOT_symbol;
11145 }
11146 return 0;
11147 }
11148
11149 /* Round up a section size to the appropriate boundary. */
11150
11151 valueT
11152 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11153 {
11154 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11155 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11156 {
11157 /* For a.out, force the section size to be aligned. If we don't do
11158 this, BFD will align it for us, but it will not write out the
11159 final bytes of the section. This may be a bug in BFD, but it is
11160 easier to fix it here since that is how the other a.out targets
11161 work. */
11162 int align;
11163
11164 align = bfd_get_section_alignment (stdoutput, segment);
11165 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11166 }
11167 #endif
11168
11169 return size;
11170 }
11171
11172 /* On the i386, PC-relative offsets are relative to the start of the
11173 next instruction. That is, the address of the offset, plus its
11174 size, since the offset is always the last part of the insn. */
11175
11176 long
11177 md_pcrel_from (fixS *fixP)
11178 {
11179 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11180 }
11181
11182 #ifndef I386COFF
11183
11184 static void
11185 s_bss (int ignore ATTRIBUTE_UNUSED)
11186 {
11187 int temp;
11188
11189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11190 if (IS_ELF)
11191 obj_elf_section_change_hook ();
11192 #endif
11193 temp = get_absolute_expression ();
11194 subseg_set (bss_section, (subsegT) temp);
11195 demand_empty_rest_of_line ();
11196 }
11197
11198 #endif
11199
11200 void
11201 i386_validate_fix (fixS *fixp)
11202 {
11203 if (fixp->fx_subsy)
11204 {
11205 if (fixp->fx_subsy == GOT_symbol)
11206 {
11207 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11208 {
11209 if (!object_64bit)
11210 abort ();
11211 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11212 if (fixp->fx_tcbit2)
11213 fixp->fx_r_type = (fixp->fx_tcbit
11214 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11215 : BFD_RELOC_X86_64_GOTPCRELX);
11216 else
11217 #endif
11218 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11219 }
11220 else
11221 {
11222 if (!object_64bit)
11223 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11224 else
11225 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11226 }
11227 fixp->fx_subsy = 0;
11228 }
11229 }
11230 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11231 else if (!object_64bit)
11232 {
11233 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11234 && fixp->fx_tcbit2)
11235 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11236 }
11237 #endif
11238 }
11239
11240 arelent *
11241 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11242 {
11243 arelent *rel;
11244 bfd_reloc_code_real_type code;
11245
11246 switch (fixp->fx_r_type)
11247 {
11248 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11249 case BFD_RELOC_SIZE32:
11250 case BFD_RELOC_SIZE64:
11251 if (S_IS_DEFINED (fixp->fx_addsy)
11252 && !S_IS_EXTERNAL (fixp->fx_addsy))
11253 {
11254 /* Resolve size relocation against local symbol to size of
11255 the symbol plus addend. */
11256 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11257 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11258 && !fits_in_unsigned_long (value))
11259 as_bad_where (fixp->fx_file, fixp->fx_line,
11260 _("symbol size computation overflow"));
11261 fixp->fx_addsy = NULL;
11262 fixp->fx_subsy = NULL;
11263 md_apply_fix (fixp, (valueT *) &value, NULL);
11264 return NULL;
11265 }
11266 #endif
11267 /* Fall through. */
11268
11269 case BFD_RELOC_X86_64_PLT32:
11270 case BFD_RELOC_X86_64_GOT32:
11271 case BFD_RELOC_X86_64_GOTPCREL:
11272 case BFD_RELOC_X86_64_GOTPCRELX:
11273 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11274 case BFD_RELOC_386_PLT32:
11275 case BFD_RELOC_386_GOT32:
11276 case BFD_RELOC_386_GOT32X:
11277 case BFD_RELOC_386_GOTOFF:
11278 case BFD_RELOC_386_GOTPC:
11279 case BFD_RELOC_386_TLS_GD:
11280 case BFD_RELOC_386_TLS_LDM:
11281 case BFD_RELOC_386_TLS_LDO_32:
11282 case BFD_RELOC_386_TLS_IE_32:
11283 case BFD_RELOC_386_TLS_IE:
11284 case BFD_RELOC_386_TLS_GOTIE:
11285 case BFD_RELOC_386_TLS_LE_32:
11286 case BFD_RELOC_386_TLS_LE:
11287 case BFD_RELOC_386_TLS_GOTDESC:
11288 case BFD_RELOC_386_TLS_DESC_CALL:
11289 case BFD_RELOC_X86_64_TLSGD:
11290 case BFD_RELOC_X86_64_TLSLD:
11291 case BFD_RELOC_X86_64_DTPOFF32:
11292 case BFD_RELOC_X86_64_DTPOFF64:
11293 case BFD_RELOC_X86_64_GOTTPOFF:
11294 case BFD_RELOC_X86_64_TPOFF32:
11295 case BFD_RELOC_X86_64_TPOFF64:
11296 case BFD_RELOC_X86_64_GOTOFF64:
11297 case BFD_RELOC_X86_64_GOTPC32:
11298 case BFD_RELOC_X86_64_GOT64:
11299 case BFD_RELOC_X86_64_GOTPCREL64:
11300 case BFD_RELOC_X86_64_GOTPC64:
11301 case BFD_RELOC_X86_64_GOTPLT64:
11302 case BFD_RELOC_X86_64_PLTOFF64:
11303 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11304 case BFD_RELOC_X86_64_TLSDESC_CALL:
11305 case BFD_RELOC_RVA:
11306 case BFD_RELOC_VTABLE_ENTRY:
11307 case BFD_RELOC_VTABLE_INHERIT:
11308 #ifdef TE_PE
11309 case BFD_RELOC_32_SECREL:
11310 #endif
11311 code = fixp->fx_r_type;
11312 break;
11313 case BFD_RELOC_X86_64_32S:
11314 if (!fixp->fx_pcrel)
11315 {
11316 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11317 code = fixp->fx_r_type;
11318 break;
11319 }
11320 /* Fall through. */
11321 default:
11322 if (fixp->fx_pcrel)
11323 {
11324 switch (fixp->fx_size)
11325 {
11326 default:
11327 as_bad_where (fixp->fx_file, fixp->fx_line,
11328 _("can not do %d byte pc-relative relocation"),
11329 fixp->fx_size);
11330 code = BFD_RELOC_32_PCREL;
11331 break;
11332 case 1: code = BFD_RELOC_8_PCREL; break;
11333 case 2: code = BFD_RELOC_16_PCREL; break;
11334 case 4: code = BFD_RELOC_32_PCREL; break;
11335 #ifdef BFD64
11336 case 8: code = BFD_RELOC_64_PCREL; break;
11337 #endif
11338 }
11339 }
11340 else
11341 {
11342 switch (fixp->fx_size)
11343 {
11344 default:
11345 as_bad_where (fixp->fx_file, fixp->fx_line,
11346 _("can not do %d byte relocation"),
11347 fixp->fx_size);
11348 code = BFD_RELOC_32;
11349 break;
11350 case 1: code = BFD_RELOC_8; break;
11351 case 2: code = BFD_RELOC_16; break;
11352 case 4: code = BFD_RELOC_32; break;
11353 #ifdef BFD64
11354 case 8: code = BFD_RELOC_64; break;
11355 #endif
11356 }
11357 }
11358 break;
11359 }
11360
11361 if ((code == BFD_RELOC_32
11362 || code == BFD_RELOC_32_PCREL
11363 || code == BFD_RELOC_X86_64_32S)
11364 && GOT_symbol
11365 && fixp->fx_addsy == GOT_symbol)
11366 {
11367 if (!object_64bit)
11368 code = BFD_RELOC_386_GOTPC;
11369 else
11370 code = BFD_RELOC_X86_64_GOTPC32;
11371 }
11372 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11373 && GOT_symbol
11374 && fixp->fx_addsy == GOT_symbol)
11375 {
11376 code = BFD_RELOC_X86_64_GOTPC64;
11377 }
11378
11379 rel = XNEW (arelent);
11380 rel->sym_ptr_ptr = XNEW (asymbol *);
11381 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11382
11383 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11384
11385 if (!use_rela_relocations)
11386 {
11387 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11388 vtable entry to be used in the relocation's section offset. */
11389 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11390 rel->address = fixp->fx_offset;
11391 #if defined (OBJ_COFF) && defined (TE_PE)
11392 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11393 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11394 else
11395 #endif
11396 rel->addend = 0;
11397 }
11398 /* Use the rela in 64bit mode. */
11399 else
11400 {
11401 if (disallow_64bit_reloc)
11402 switch (code)
11403 {
11404 case BFD_RELOC_X86_64_DTPOFF64:
11405 case BFD_RELOC_X86_64_TPOFF64:
11406 case BFD_RELOC_64_PCREL:
11407 case BFD_RELOC_X86_64_GOTOFF64:
11408 case BFD_RELOC_X86_64_GOT64:
11409 case BFD_RELOC_X86_64_GOTPCREL64:
11410 case BFD_RELOC_X86_64_GOTPC64:
11411 case BFD_RELOC_X86_64_GOTPLT64:
11412 case BFD_RELOC_X86_64_PLTOFF64:
11413 as_bad_where (fixp->fx_file, fixp->fx_line,
11414 _("cannot represent relocation type %s in x32 mode"),
11415 bfd_get_reloc_code_name (code));
11416 break;
11417 default:
11418 break;
11419 }
11420
11421 if (!fixp->fx_pcrel)
11422 rel->addend = fixp->fx_offset;
11423 else
11424 switch (code)
11425 {
11426 case BFD_RELOC_X86_64_PLT32:
11427 case BFD_RELOC_X86_64_GOT32:
11428 case BFD_RELOC_X86_64_GOTPCREL:
11429 case BFD_RELOC_X86_64_GOTPCRELX:
11430 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11431 case BFD_RELOC_X86_64_TLSGD:
11432 case BFD_RELOC_X86_64_TLSLD:
11433 case BFD_RELOC_X86_64_GOTTPOFF:
11434 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11435 case BFD_RELOC_X86_64_TLSDESC_CALL:
11436 rel->addend = fixp->fx_offset - fixp->fx_size;
11437 break;
11438 default:
11439 rel->addend = (section->vma
11440 - fixp->fx_size
11441 + fixp->fx_addnumber
11442 + md_pcrel_from (fixp));
11443 break;
11444 }
11445 }
11446
11447 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11448 if (rel->howto == NULL)
11449 {
11450 as_bad_where (fixp->fx_file, fixp->fx_line,
11451 _("cannot represent relocation type %s"),
11452 bfd_get_reloc_code_name (code));
11453 /* Set howto to a garbage value so that we can keep going. */
11454 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11455 gas_assert (rel->howto != NULL);
11456 }
11457
11458 return rel;
11459 }
11460
11461 #include "tc-i386-intel.c"
11462
11463 void
11464 tc_x86_parse_to_dw2regnum (expressionS *exp)
11465 {
11466 int saved_naked_reg;
11467 char saved_register_dot;
11468
11469 saved_naked_reg = allow_naked_reg;
11470 allow_naked_reg = 1;
11471 saved_register_dot = register_chars['.'];
11472 register_chars['.'] = '.';
11473 allow_pseudo_reg = 1;
11474 expression_and_evaluate (exp);
11475 allow_pseudo_reg = 0;
11476 register_chars['.'] = saved_register_dot;
11477 allow_naked_reg = saved_naked_reg;
11478
11479 if (exp->X_op == O_register && exp->X_add_number >= 0)
11480 {
11481 if ((addressT) exp->X_add_number < i386_regtab_size)
11482 {
11483 exp->X_op = O_constant;
11484 exp->X_add_number = i386_regtab[exp->X_add_number]
11485 .dw2_regnum[flag_code >> 1];
11486 }
11487 else
11488 exp->X_op = O_illegal;
11489 }
11490 }
11491
11492 void
11493 tc_x86_frame_initial_instructions (void)
11494 {
11495 static unsigned int sp_regno[2];
11496
11497 if (!sp_regno[flag_code >> 1])
11498 {
11499 char *saved_input = input_line_pointer;
11500 char sp[][4] = {"esp", "rsp"};
11501 expressionS exp;
11502
11503 input_line_pointer = sp[flag_code >> 1];
11504 tc_x86_parse_to_dw2regnum (&exp);
11505 gas_assert (exp.X_op == O_constant);
11506 sp_regno[flag_code >> 1] = exp.X_add_number;
11507 input_line_pointer = saved_input;
11508 }
11509
11510 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11511 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11512 }
11513
11514 int
11515 x86_dwarf2_addr_size (void)
11516 {
11517 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11518 if (x86_elf_abi == X86_64_X32_ABI)
11519 return 4;
11520 #endif
11521 return bfd_arch_bits_per_address (stdoutput) / 8;
11522 }
11523
11524 int
11525 i386_elf_section_type (const char *str, size_t len)
11526 {
11527 if (flag_code == CODE_64BIT
11528 && len == sizeof ("unwind") - 1
11529 && strncmp (str, "unwind", 6) == 0)
11530 return SHT_X86_64_UNWIND;
11531
11532 return -1;
11533 }
11534
11535 #ifdef TE_SOLARIS
11536 void
11537 i386_solaris_fix_up_eh_frame (segT sec)
11538 {
11539 if (flag_code == CODE_64BIT)
11540 elf_section_type (sec) = SHT_X86_64_UNWIND;
11541 }
11542 #endif
11543
11544 #ifdef TE_PE
11545 void
11546 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11547 {
11548 expressionS exp;
11549
11550 exp.X_op = O_secrel;
11551 exp.X_add_symbol = symbol;
11552 exp.X_add_number = 0;
11553 emit_expr (&exp, size);
11554 }
11555 #endif
11556
11557 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11558 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11559
11560 bfd_vma
11561 x86_64_section_letter (int letter, const char **ptr_msg)
11562 {
11563 if (flag_code == CODE_64BIT)
11564 {
11565 if (letter == 'l')
11566 return SHF_X86_64_LARGE;
11567
11568 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11569 }
11570 else
11571 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11572 return -1;
11573 }
11574
11575 bfd_vma
11576 x86_64_section_word (char *str, size_t len)
11577 {
11578 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11579 return SHF_X86_64_LARGE;
11580
11581 return -1;
11582 }
11583
11584 static void
11585 handle_large_common (int small ATTRIBUTE_UNUSED)
11586 {
11587 if (flag_code != CODE_64BIT)
11588 {
11589 s_comm_internal (0, elf_common_parse);
11590 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11591 }
11592 else
11593 {
11594 static segT lbss_section;
11595 asection *saved_com_section_ptr = elf_com_section_ptr;
11596 asection *saved_bss_section = bss_section;
11597
11598 if (lbss_section == NULL)
11599 {
11600 flagword applicable;
11601 segT seg = now_seg;
11602 subsegT subseg = now_subseg;
11603
11604 /* The .lbss section is for local .largecomm symbols. */
11605 lbss_section = subseg_new (".lbss", 0);
11606 applicable = bfd_applicable_section_flags (stdoutput);
11607 bfd_set_section_flags (stdoutput, lbss_section,
11608 applicable & SEC_ALLOC);
11609 seg_info (lbss_section)->bss = 1;
11610
11611 subseg_set (seg, subseg);
11612 }
11613
11614 elf_com_section_ptr = &_bfd_elf_large_com_section;
11615 bss_section = lbss_section;
11616
11617 s_comm_internal (0, elf_common_parse);
11618
11619 elf_com_section_ptr = saved_com_section_ptr;
11620 bss_section = saved_bss_section;
11621 }
11622 }
11623 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.286554 seconds and 4 git commands to generate.