x86: don't show suffixes for to-scalar-int conversion insns
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_NETWARE) \
436 && !defined (TE_FreeBSD) \
437 && !defined (TE_DragonFly) \
438 && !defined (TE_NetBSD)))
439 /* This array holds the chars that always start a comment. If the
440 pre-processor is disabled, these aren't very useful. The option
441 --divide will remove '/' from this list. */
442 const char *i386_comment_chars = "#/";
443 #define SVR4_COMMENT_CHARS 1
444 #define PREFIX_SEPARATOR '\\'
445
446 #else
447 const char *i386_comment_chars = "#";
448 #define PREFIX_SEPARATOR '/'
449 #endif
450
451 /* This array holds the chars that only start a comment at the beginning of
452 a line. If the line seems to have the form '# 123 filename'
453 .line and .file directives will appear in the pre-processed output.
454 Note that input_file.c hand checks for '#' at the beginning of the
455 first line of the input file. This is because the compiler outputs
456 #NO_APP at the beginning of its output.
457 Also note that comments started like this one will always work if
458 '/' isn't otherwise defined. */
459 const char line_comment_chars[] = "#/";
460
461 const char line_separator_chars[] = ";";
462
463 /* Chars that can be used to separate mant from exp in floating point
464 nums. */
465 const char EXP_CHARS[] = "eE";
466
467 /* Chars that mean this number is a floating point constant
468 As in 0f12.456
469 or 0d1.2345e12. */
470 const char FLT_CHARS[] = "fFdDxX";
471
472 /* Tables for lexical analysis. */
473 static char mnemonic_chars[256];
474 static char register_chars[256];
475 static char operand_chars[256];
476 static char identifier_chars[256];
477 static char digit_chars[256];
478
479 /* Lexical macros. */
480 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
481 #define is_operand_char(x) (operand_chars[(unsigned char) x])
482 #define is_register_char(x) (register_chars[(unsigned char) x])
483 #define is_space_char(x) ((x) == ' ')
484 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
485 #define is_digit_char(x) (digit_chars[(unsigned char) x])
486
487 /* All non-digit non-letter characters that may occur in an operand. */
488 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
489
490 /* md_assemble() always leaves the strings it's passed unaltered. To
491 effect this we maintain a stack of saved characters that we've smashed
492 with '\0's (indicating end of strings for various sub-fields of the
493 assembler instruction). */
494 static char save_stack[32];
495 static char *save_stack_p;
496 #define END_STRING_AND_SAVE(s) \
497 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
498 #define RESTORE_END_STRING(s) \
499 do { *(s) = *--save_stack_p; } while (0)
500
501 /* The instruction we're assembling. */
502 static i386_insn i;
503
504 /* Possible templates for current insn. */
505 static const templates *current_templates;
506
507 /* Per instruction expressionS buffers: max displacements & immediates. */
508 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
509 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
510
511 /* Current operand we are working on. */
512 static int this_operand = -1;
513
514 /* We support four different modes. FLAG_CODE variable is used to distinguish
515 these. */
516
517 enum flag_code {
518 CODE_32BIT,
519 CODE_16BIT,
520 CODE_64BIT };
521
522 static enum flag_code flag_code;
523 static unsigned int object_64bit;
524 static unsigned int disallow_64bit_reloc;
525 static int use_rela_relocations = 0;
526
527 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
528 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
529 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
530
531 /* The ELF ABI to use. */
532 enum x86_elf_abi
533 {
534 I386_ABI,
535 X86_64_ABI,
536 X86_64_X32_ABI
537 };
538
539 static enum x86_elf_abi x86_elf_abi = I386_ABI;
540 #endif
541
542 #if defined (TE_PE) || defined (TE_PEP)
543 /* Use big object file format. */
544 static int use_big_obj = 0;
545 #endif
546
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 /* 1 if generating code for a shared library. */
549 static int shared = 0;
550 #endif
551
552 /* 1 for intel syntax,
553 0 if att syntax. */
554 static int intel_syntax = 0;
555
556 /* 1 for Intel64 ISA,
557 0 if AMD64 ISA. */
558 static int intel64;
559
560 /* 1 for intel mnemonic,
561 0 if att mnemonic. */
562 static int intel_mnemonic = !SYSV386_COMPAT;
563
564 /* 1 if pseudo registers are permitted. */
565 static int allow_pseudo_reg = 0;
566
567 /* 1 if register prefix % not required. */
568 static int allow_naked_reg = 0;
569
570 /* 1 if the assembler should add BND prefix for all control-transferring
571 instructions supporting it, even if this prefix wasn't specified
572 explicitly. */
573 static int add_bnd_prefix = 0;
574
575 /* 1 if pseudo index register, eiz/riz, is allowed . */
576 static int allow_index_reg = 0;
577
578 /* 1 if the assembler should ignore LOCK prefix, even if it was
579 specified explicitly. */
580 static int omit_lock_prefix = 0;
581
582 /* 1 if the assembler should encode lfence, mfence, and sfence as
583 "lock addl $0, (%{re}sp)". */
584 static int avoid_fence = 0;
585
586 /* 1 if the assembler should generate relax relocations. */
587
588 static int generate_relax_relocations
589 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
590
591 static enum check_kind
592 {
593 check_none = 0,
594 check_warning,
595 check_error
596 }
597 sse_check, operand_check = check_warning;
598
599 /* Optimization:
600 1. Clear the REX_W bit with register operand if possible.
601 2. Above plus use 128bit vector instruction to clear the full vector
602 register.
603 */
604 static int optimize = 0;
605
606 /* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
611 "testb $imm7,%r8".
612 */
613 static int optimize_for_space = 0;
614
615 /* Register prefix used for error message. */
616 static const char *register_prefix = "%";
617
618 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
619 leave, push, and pop instructions so that gcc has the same stack
620 frame as in 32 bit mode. */
621 static char stackop_size = '\0';
622
623 /* Non-zero to optimize code alignment. */
624 int optimize_align_code = 1;
625
626 /* Non-zero to quieten some warnings. */
627 static int quiet_warnings = 0;
628
629 /* CPU name. */
630 static const char *cpu_arch_name = NULL;
631 static char *cpu_sub_arch_name = NULL;
632
633 /* CPU feature flags. */
634 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
635
636 /* If we have selected a cpu we are generating instructions for. */
637 static int cpu_arch_tune_set = 0;
638
639 /* Cpu we are generating instructions for. */
640 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
641
642 /* CPU feature flags of cpu we are generating instructions for. */
643 static i386_cpu_flags cpu_arch_tune_flags;
644
645 /* CPU instruction set architecture used. */
646 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
647
648 /* CPU feature flags of instruction set architecture used. */
649 i386_cpu_flags cpu_arch_isa_flags;
650
651 /* If set, conditional jumps are not automatically promoted to handle
652 larger than a byte offset. */
653 static unsigned int no_cond_jump_promotion = 0;
654
655 /* Encode SSE instructions with VEX prefix. */
656 static unsigned int sse2avx;
657
658 /* Encode scalar AVX instructions with specific vector length. */
659 static enum
660 {
661 vex128 = 0,
662 vex256
663 } avxscalar;
664
665 /* Encode scalar EVEX LIG instructions with specific vector length. */
666 static enum
667 {
668 evexl128 = 0,
669 evexl256,
670 evexl512
671 } evexlig;
672
673 /* Encode EVEX WIG instructions with specific evex.w. */
674 static enum
675 {
676 evexw0 = 0,
677 evexw1
678 } evexwig;
679
680 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
681 static enum rc_type evexrcig = rne;
682
683 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
684 static symbolS *GOT_symbol;
685
686 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
687 unsigned int x86_dwarf2_return_column;
688
689 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
690 int x86_cie_data_alignment;
691
692 /* Interface to relax_segment.
693 There are 3 major relax states for 386 jump insns because the
694 different types of jumps add different sizes to frags when we're
695 figuring out what sort of jump to choose to reach a given label. */
696
697 /* Types. */
698 #define UNCOND_JUMP 0
699 #define COND_JUMP 1
700 #define COND_JUMP86 2
701
702 /* Sizes. */
703 #define CODE16 1
704 #define SMALL 0
705 #define SMALL16 (SMALL | CODE16)
706 #define BIG 2
707 #define BIG16 (BIG | CODE16)
708
709 #ifndef INLINE
710 #ifdef __GNUC__
711 #define INLINE __inline__
712 #else
713 #define INLINE
714 #endif
715 #endif
716
717 #define ENCODE_RELAX_STATE(type, size) \
718 ((relax_substateT) (((type) << 2) | (size)))
719 #define TYPE_FROM_RELAX_STATE(s) \
720 ((s) >> 2)
721 #define DISP_SIZE_FROM_RELAX_STATE(s) \
722 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
723
724 /* This table is used by relax_frag to promote short jumps to long
725 ones where necessary. SMALL (short) jumps may be promoted to BIG
726 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
727 don't allow a short jump in a 32 bit code segment to be promoted to
728 a 16 bit offset jump because it's slower (requires data size
729 prefix), and doesn't work, unless the destination is in the bottom
730 64k of the code segment (The top 16 bits of eip are zeroed). */
731
732 const relax_typeS md_relax_table[] =
733 {
734 /* The fields are:
735 1) most positive reach of this state,
736 2) most negative reach of this state,
737 3) how many bytes this mode will have in the variable part of the frag
738 4) which index into the table to try if we can't fit into this one. */
739
740 /* UNCOND_JUMP states. */
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
742 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
743 /* dword jmp adds 4 bytes to frag:
744 0 extra opcode bytes, 4 displacement bytes. */
745 {0, 0, 4, 0},
746 /* word jmp adds 2 byte2 to frag:
747 0 extra opcode bytes, 2 displacement bytes. */
748 {0, 0, 2, 0},
749
750 /* COND_JUMP states. */
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
752 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
753 /* dword conditionals adds 5 bytes to frag:
754 1 extra opcode byte, 4 displacement bytes. */
755 {0, 0, 5, 0},
756 /* word conditionals add 3 bytes to frag:
757 1 extra opcode byte, 2 displacement bytes. */
758 {0, 0, 3, 0},
759
760 /* COND_JUMP86 states. */
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
762 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
763 /* dword conditionals adds 5 bytes to frag:
764 1 extra opcode byte, 4 displacement bytes. */
765 {0, 0, 5, 0},
766 /* word conditionals add 4 bytes to frag:
767 1 displacement byte and a 3 byte long branch insn. */
768 {0, 0, 4, 0}
769 };
770
771 static const arch_entry cpu_arch[] =
772 {
773 /* Do not replace the first two entries - i386_target_format()
774 relies on them being there in this order. */
775 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
776 CPU_GENERIC32_FLAGS, 0 },
777 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
778 CPU_GENERIC64_FLAGS, 0 },
779 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
780 CPU_NONE_FLAGS, 0 },
781 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
782 CPU_I186_FLAGS, 0 },
783 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
784 CPU_I286_FLAGS, 0 },
785 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
786 CPU_I386_FLAGS, 0 },
787 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
788 CPU_I486_FLAGS, 0 },
789 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
790 CPU_I586_FLAGS, 0 },
791 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
792 CPU_I686_FLAGS, 0 },
793 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
794 CPU_I586_FLAGS, 0 },
795 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
796 CPU_PENTIUMPRO_FLAGS, 0 },
797 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
798 CPU_P2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
800 CPU_P3_FLAGS, 0 },
801 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
802 CPU_P4_FLAGS, 0 },
803 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
804 CPU_CORE_FLAGS, 0 },
805 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
806 CPU_NOCONA_FLAGS, 0 },
807 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
808 CPU_CORE_FLAGS, 1 },
809 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
810 CPU_CORE_FLAGS, 0 },
811 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
812 CPU_CORE2_FLAGS, 1 },
813 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
814 CPU_CORE2_FLAGS, 0 },
815 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
816 CPU_COREI7_FLAGS, 0 },
817 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
818 CPU_L1OM_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
820 CPU_K1OM_FLAGS, 0 },
821 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
822 CPU_IAMCU_FLAGS, 0 },
823 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
824 CPU_K6_FLAGS, 0 },
825 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
826 CPU_K6_2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
828 CPU_ATHLON_FLAGS, 0 },
829 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
830 CPU_K8_FLAGS, 1 },
831 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
832 CPU_K8_FLAGS, 0 },
833 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
834 CPU_K8_FLAGS, 0 },
835 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
836 CPU_AMDFAM10_FLAGS, 0 },
837 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
838 CPU_BDVER1_FLAGS, 0 },
839 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
840 CPU_BDVER2_FLAGS, 0 },
841 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
842 CPU_BDVER3_FLAGS, 0 },
843 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
844 CPU_BDVER4_FLAGS, 0 },
845 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
846 CPU_ZNVER1_FLAGS, 0 },
847 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
848 CPU_BTVER1_FLAGS, 0 },
849 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
850 CPU_BTVER2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
852 CPU_8087_FLAGS, 0 },
853 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
854 CPU_287_FLAGS, 0 },
855 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
856 CPU_387_FLAGS, 0 },
857 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
858 CPU_687_FLAGS, 0 },
859 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
860 CPU_MMX_FLAGS, 0 },
861 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
862 CPU_SSE_FLAGS, 0 },
863 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
864 CPU_SSE2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
866 CPU_SSE3_FLAGS, 0 },
867 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
868 CPU_SSSE3_FLAGS, 0 },
869 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
870 CPU_SSE4_1_FLAGS, 0 },
871 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
872 CPU_SSE4_2_FLAGS, 0 },
873 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
874 CPU_SSE4_2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
876 CPU_AVX_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
878 CPU_AVX2_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
880 CPU_AVX512F_FLAGS, 0 },
881 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
882 CPU_AVX512CD_FLAGS, 0 },
883 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
884 CPU_AVX512ER_FLAGS, 0 },
885 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
886 CPU_AVX512PF_FLAGS, 0 },
887 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
888 CPU_AVX512DQ_FLAGS, 0 },
889 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
890 CPU_AVX512BW_FLAGS, 0 },
891 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
892 CPU_AVX512VL_FLAGS, 0 },
893 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
894 CPU_VMX_FLAGS, 0 },
895 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
896 CPU_VMFUNC_FLAGS, 0 },
897 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
898 CPU_SMX_FLAGS, 0 },
899 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
900 CPU_XSAVE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
902 CPU_XSAVEOPT_FLAGS, 0 },
903 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
904 CPU_XSAVEC_FLAGS, 0 },
905 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
906 CPU_XSAVES_FLAGS, 0 },
907 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
908 CPU_AES_FLAGS, 0 },
909 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
910 CPU_PCLMUL_FLAGS, 0 },
911 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
912 CPU_PCLMUL_FLAGS, 1 },
913 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
914 CPU_FSGSBASE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
916 CPU_RDRND_FLAGS, 0 },
917 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
918 CPU_F16C_FLAGS, 0 },
919 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
920 CPU_BMI2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
922 CPU_FMA_FLAGS, 0 },
923 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
924 CPU_FMA4_FLAGS, 0 },
925 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
926 CPU_XOP_FLAGS, 0 },
927 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
928 CPU_LWP_FLAGS, 0 },
929 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
930 CPU_MOVBE_FLAGS, 0 },
931 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
932 CPU_CX16_FLAGS, 0 },
933 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
934 CPU_EPT_FLAGS, 0 },
935 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
936 CPU_LZCNT_FLAGS, 0 },
937 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
938 CPU_HLE_FLAGS, 0 },
939 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
940 CPU_RTM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
942 CPU_INVPCID_FLAGS, 0 },
943 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
944 CPU_CLFLUSH_FLAGS, 0 },
945 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
946 CPU_NOP_FLAGS, 0 },
947 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
948 CPU_SYSCALL_FLAGS, 0 },
949 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
950 CPU_RDTSCP_FLAGS, 0 },
951 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
952 CPU_3DNOW_FLAGS, 0 },
953 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
954 CPU_3DNOWA_FLAGS, 0 },
955 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
956 CPU_PADLOCK_FLAGS, 0 },
957 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
958 CPU_SVME_FLAGS, 1 },
959 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
960 CPU_SVME_FLAGS, 0 },
961 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
962 CPU_SSE4A_FLAGS, 0 },
963 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
964 CPU_ABM_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
966 CPU_BMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
968 CPU_TBM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
970 CPU_ADX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
972 CPU_RDSEED_FLAGS, 0 },
973 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
974 CPU_PRFCHW_FLAGS, 0 },
975 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
976 CPU_SMAP_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
978 CPU_MPX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
980 CPU_SHA_FLAGS, 0 },
981 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
982 CPU_CLFLUSHOPT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
984 CPU_PREFETCHWT1_FLAGS, 0 },
985 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
986 CPU_SE1_FLAGS, 0 },
987 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
988 CPU_CLWB_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
990 CPU_AVX512IFMA_FLAGS, 0 },
991 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
992 CPU_AVX512VBMI_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
994 CPU_AVX512_4FMAPS_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
996 CPU_AVX512_4VNNIW_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_VBMI2_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VNNI_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_BITALG_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1006 CPU_CLZERO_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1008 CPU_MWAITX_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1010 CPU_OSPKE_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1012 CPU_RDPID_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1014 CPU_PTWRITE_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1016 CPU_IBT_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1018 CPU_SHSTK_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1020 CPU_GFNI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1022 CPU_VAES_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1024 CPU_VPCLMULQDQ_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1026 CPU_WBNOINVD_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1028 CPU_PCONFIG_FLAGS, 0 },
1029 };
1030
1031 static const noarch_entry cpu_noarch[] =
1032 {
1033 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1034 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1035 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1036 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1037 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1038 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1039 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1040 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1041 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1042 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1043 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1044 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1045 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1046 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1047 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1048 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1049 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1050 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1062 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1063 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1064 };
1065
1066 #ifdef I386COFF
1067 /* Like s_lcomm_internal in gas/read.c but the alignment string
1068 is allowed to be optional. */
1069
1070 static symbolS *
1071 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1072 {
1073 addressT align = 0;
1074
1075 SKIP_WHITESPACE ();
1076
1077 if (needs_align
1078 && *input_line_pointer == ',')
1079 {
1080 align = parse_align (needs_align - 1);
1081
1082 if (align == (addressT) -1)
1083 return NULL;
1084 }
1085 else
1086 {
1087 if (size >= 8)
1088 align = 3;
1089 else if (size >= 4)
1090 align = 2;
1091 else if (size >= 2)
1092 align = 1;
1093 else
1094 align = 0;
1095 }
1096
1097 bss_alloc (symbolP, size, align);
1098 return symbolP;
1099 }
1100
1101 static void
1102 pe_lcomm (int needs_align)
1103 {
1104 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1105 }
1106 #endif
1107
1108 const pseudo_typeS md_pseudo_table[] =
1109 {
1110 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1111 {"align", s_align_bytes, 0},
1112 #else
1113 {"align", s_align_ptwo, 0},
1114 #endif
1115 {"arch", set_cpu_arch, 0},
1116 #ifndef I386COFF
1117 {"bss", s_bss, 0},
1118 #else
1119 {"lcomm", pe_lcomm, 1},
1120 #endif
1121 {"ffloat", float_cons, 'f'},
1122 {"dfloat", float_cons, 'd'},
1123 {"tfloat", float_cons, 'x'},
1124 {"value", cons, 2},
1125 {"slong", signed_cons, 4},
1126 {"noopt", s_ignore, 0},
1127 {"optim", s_ignore, 0},
1128 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1129 {"code16", set_code_flag, CODE_16BIT},
1130 {"code32", set_code_flag, CODE_32BIT},
1131 #ifdef BFD64
1132 {"code64", set_code_flag, CODE_64BIT},
1133 #endif
1134 {"intel_syntax", set_intel_syntax, 1},
1135 {"att_syntax", set_intel_syntax, 0},
1136 {"intel_mnemonic", set_intel_mnemonic, 1},
1137 {"att_mnemonic", set_intel_mnemonic, 0},
1138 {"allow_index_reg", set_allow_index_reg, 1},
1139 {"disallow_index_reg", set_allow_index_reg, 0},
1140 {"sse_check", set_check, 0},
1141 {"operand_check", set_check, 1},
1142 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1143 {"largecomm", handle_large_common, 0},
1144 #else
1145 {"file", dwarf2_directive_file, 0},
1146 {"loc", dwarf2_directive_loc, 0},
1147 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1148 #endif
1149 #ifdef TE_PE
1150 {"secrel32", pe_directive_secrel, 0},
1151 #endif
1152 {0, 0, 0}
1153 };
1154
1155 /* For interface with expression (). */
1156 extern char *input_line_pointer;
1157
1158 /* Hash table for instruction mnemonic lookup. */
1159 static struct hash_control *op_hash;
1160
1161 /* Hash table for register lookup. */
1162 static struct hash_control *reg_hash;
1163 \f
1164 /* Various efficient no-op patterns for aligning code labels.
1165 Note: Don't try to assemble the instructions in the comments.
1166 0L and 0w are not legal. */
1167 static const unsigned char f32_1[] =
1168 {0x90}; /* nop */
1169 static const unsigned char f32_2[] =
1170 {0x66,0x90}; /* xchg %ax,%ax */
1171 static const unsigned char f32_3[] =
1172 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1173 static const unsigned char f32_4[] =
1174 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1175 static const unsigned char f32_6[] =
1176 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1177 static const unsigned char f32_7[] =
1178 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1179 static const unsigned char f16_3[] =
1180 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1181 static const unsigned char f16_4[] =
1182 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1183 static const unsigned char jump_disp8[] =
1184 {0xeb}; /* jmp disp8 */
1185 static const unsigned char jump32_disp32[] =
1186 {0xe9}; /* jmp disp32 */
1187 static const unsigned char jump16_disp32[] =
1188 {0x66,0xe9}; /* jmp disp32 */
1189 /* 32-bit NOPs patterns. */
1190 static const unsigned char *const f32_patt[] = {
1191 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1192 };
1193 /* 16-bit NOPs patterns. */
1194 static const unsigned char *const f16_patt[] = {
1195 f32_1, f32_2, f16_3, f16_4
1196 };
1197 /* nopl (%[re]ax) */
1198 static const unsigned char alt_3[] =
1199 {0x0f,0x1f,0x00};
1200 /* nopl 0(%[re]ax) */
1201 static const unsigned char alt_4[] =
1202 {0x0f,0x1f,0x40,0x00};
1203 /* nopl 0(%[re]ax,%[re]ax,1) */
1204 static const unsigned char alt_5[] =
1205 {0x0f,0x1f,0x44,0x00,0x00};
1206 /* nopw 0(%[re]ax,%[re]ax,1) */
1207 static const unsigned char alt_6[] =
1208 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1209 /* nopl 0L(%[re]ax) */
1210 static const unsigned char alt_7[] =
1211 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1212 /* nopl 0L(%[re]ax,%[re]ax,1) */
1213 static const unsigned char alt_8[] =
1214 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1215 /* nopw 0L(%[re]ax,%[re]ax,1) */
1216 static const unsigned char alt_9[] =
1217 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1218 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1219 static const unsigned char alt_10[] =
1220 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1221 /* data16 nopw %cs:0L(%eax,%eax,1) */
1222 static const unsigned char alt_11[] =
1223 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1224 /* 32-bit and 64-bit NOPs patterns. */
1225 static const unsigned char *const alt_patt[] = {
1226 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1227 alt_9, alt_10, alt_11
1228 };
1229
1230 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1231 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1232
1233 static void
1234 i386_output_nops (char *where, const unsigned char *const *patt,
1235 int count, int max_single_nop_size)
1236
1237 {
1238 /* Place the longer NOP first. */
1239 int last;
1240 int offset;
1241 const unsigned char *nops = patt[max_single_nop_size - 1];
1242
1243 /* Use the smaller one if the requsted one isn't available. */
1244 if (nops == NULL)
1245 {
1246 max_single_nop_size--;
1247 nops = patt[max_single_nop_size - 1];
1248 }
1249
1250 last = count % max_single_nop_size;
1251
1252 count -= last;
1253 for (offset = 0; offset < count; offset += max_single_nop_size)
1254 memcpy (where + offset, nops, max_single_nop_size);
1255
1256 if (last)
1257 {
1258 nops = patt[last - 1];
1259 if (nops == NULL)
1260 {
1261 /* Use the smaller one plus one-byte NOP if the needed one
1262 isn't available. */
1263 last--;
1264 nops = patt[last - 1];
1265 memcpy (where + offset, nops, last);
1266 where[offset + last] = *patt[0];
1267 }
1268 else
1269 memcpy (where + offset, nops, last);
1270 }
1271 }
1272
1273 static INLINE int
1274 fits_in_imm7 (offsetT num)
1275 {
1276 return (num & 0x7f) == num;
1277 }
1278
1279 static INLINE int
1280 fits_in_imm31 (offsetT num)
1281 {
1282 return (num & 0x7fffffff) == num;
1283 }
1284
1285 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1286 single NOP instruction LIMIT. */
1287
1288 void
1289 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1290 {
1291 const unsigned char *const *patt = NULL;
1292 int max_single_nop_size;
1293 /* Maximum number of NOPs before switching to jump over NOPs. */
1294 int max_number_of_nops;
1295
1296 switch (fragP->fr_type)
1297 {
1298 case rs_fill_nop:
1299 case rs_align_code:
1300 break;
1301 default:
1302 return;
1303 }
1304
1305 /* We need to decide which NOP sequence to use for 32bit and
1306 64bit. When -mtune= is used:
1307
1308 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1309 PROCESSOR_GENERIC32, f32_patt will be used.
1310 2. For the rest, alt_patt will be used.
1311
1312 When -mtune= isn't used, alt_patt will be used if
1313 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1314 be used.
1315
1316 When -march= or .arch is used, we can't use anything beyond
1317 cpu_arch_isa_flags. */
1318
1319 if (flag_code == CODE_16BIT)
1320 {
1321 patt = f16_patt;
1322 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1323 /* Limit number of NOPs to 2 in 16-bit mode. */
1324 max_number_of_nops = 2;
1325 }
1326 else
1327 {
1328 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1329 {
1330 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1331 switch (cpu_arch_tune)
1332 {
1333 case PROCESSOR_UNKNOWN:
1334 /* We use cpu_arch_isa_flags to check if we SHOULD
1335 optimize with nops. */
1336 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1337 patt = alt_patt;
1338 else
1339 patt = f32_patt;
1340 break;
1341 case PROCESSOR_PENTIUM4:
1342 case PROCESSOR_NOCONA:
1343 case PROCESSOR_CORE:
1344 case PROCESSOR_CORE2:
1345 case PROCESSOR_COREI7:
1346 case PROCESSOR_L1OM:
1347 case PROCESSOR_K1OM:
1348 case PROCESSOR_GENERIC64:
1349 case PROCESSOR_K6:
1350 case PROCESSOR_ATHLON:
1351 case PROCESSOR_K8:
1352 case PROCESSOR_AMDFAM10:
1353 case PROCESSOR_BD:
1354 case PROCESSOR_ZNVER:
1355 case PROCESSOR_BT:
1356 patt = alt_patt;
1357 break;
1358 case PROCESSOR_I386:
1359 case PROCESSOR_I486:
1360 case PROCESSOR_PENTIUM:
1361 case PROCESSOR_PENTIUMPRO:
1362 case PROCESSOR_IAMCU:
1363 case PROCESSOR_GENERIC32:
1364 patt = f32_patt;
1365 break;
1366 }
1367 }
1368 else
1369 {
1370 switch (fragP->tc_frag_data.tune)
1371 {
1372 case PROCESSOR_UNKNOWN:
1373 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1374 PROCESSOR_UNKNOWN. */
1375 abort ();
1376 break;
1377
1378 case PROCESSOR_I386:
1379 case PROCESSOR_I486:
1380 case PROCESSOR_PENTIUM:
1381 case PROCESSOR_IAMCU:
1382 case PROCESSOR_K6:
1383 case PROCESSOR_ATHLON:
1384 case PROCESSOR_K8:
1385 case PROCESSOR_AMDFAM10:
1386 case PROCESSOR_BD:
1387 case PROCESSOR_ZNVER:
1388 case PROCESSOR_BT:
1389 case PROCESSOR_GENERIC32:
1390 /* We use cpu_arch_isa_flags to check if we CAN optimize
1391 with nops. */
1392 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1393 patt = alt_patt;
1394 else
1395 patt = f32_patt;
1396 break;
1397 case PROCESSOR_PENTIUMPRO:
1398 case PROCESSOR_PENTIUM4:
1399 case PROCESSOR_NOCONA:
1400 case PROCESSOR_CORE:
1401 case PROCESSOR_CORE2:
1402 case PROCESSOR_COREI7:
1403 case PROCESSOR_L1OM:
1404 case PROCESSOR_K1OM:
1405 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1406 patt = alt_patt;
1407 else
1408 patt = f32_patt;
1409 break;
1410 case PROCESSOR_GENERIC64:
1411 patt = alt_patt;
1412 break;
1413 }
1414 }
1415
1416 if (patt == f32_patt)
1417 {
1418 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1419 /* Limit number of NOPs to 2 for older processors. */
1420 max_number_of_nops = 2;
1421 }
1422 else
1423 {
1424 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1425 /* Limit number of NOPs to 7 for newer processors. */
1426 max_number_of_nops = 7;
1427 }
1428 }
1429
1430 if (limit == 0)
1431 limit = max_single_nop_size;
1432
1433 if (fragP->fr_type == rs_fill_nop)
1434 {
1435 /* Output NOPs for .nop directive. */
1436 if (limit > max_single_nop_size)
1437 {
1438 as_bad_where (fragP->fr_file, fragP->fr_line,
1439 _("invalid single nop size: %d "
1440 "(expect within [0, %d])"),
1441 limit, max_single_nop_size);
1442 return;
1443 }
1444 }
1445 else
1446 fragP->fr_var = count;
1447
1448 if ((count / max_single_nop_size) > max_number_of_nops)
1449 {
1450 /* Generate jump over NOPs. */
1451 offsetT disp = count - 2;
1452 if (fits_in_imm7 (disp))
1453 {
1454 /* Use "jmp disp8" if possible. */
1455 count = disp;
1456 where[0] = jump_disp8[0];
1457 where[1] = count;
1458 where += 2;
1459 }
1460 else
1461 {
1462 unsigned int size_of_jump;
1463
1464 if (flag_code == CODE_16BIT)
1465 {
1466 where[0] = jump16_disp32[0];
1467 where[1] = jump16_disp32[1];
1468 size_of_jump = 2;
1469 }
1470 else
1471 {
1472 where[0] = jump32_disp32[0];
1473 size_of_jump = 1;
1474 }
1475
1476 count -= size_of_jump + 4;
1477 if (!fits_in_imm31 (count))
1478 {
1479 as_bad_where (fragP->fr_file, fragP->fr_line,
1480 _("jump over nop padding out of range"));
1481 return;
1482 }
1483
1484 md_number_to_chars (where + size_of_jump, count, 4);
1485 where += size_of_jump + 4;
1486 }
1487 }
1488
1489 /* Generate multiple NOPs. */
1490 i386_output_nops (where, patt, count, limit);
1491 }
1492
1493 static INLINE int
1494 operand_type_all_zero (const union i386_operand_type *x)
1495 {
1496 switch (ARRAY_SIZE(x->array))
1497 {
1498 case 3:
1499 if (x->array[2])
1500 return 0;
1501 /* Fall through. */
1502 case 2:
1503 if (x->array[1])
1504 return 0;
1505 /* Fall through. */
1506 case 1:
1507 return !x->array[0];
1508 default:
1509 abort ();
1510 }
1511 }
1512
1513 static INLINE void
1514 operand_type_set (union i386_operand_type *x, unsigned int v)
1515 {
1516 switch (ARRAY_SIZE(x->array))
1517 {
1518 case 3:
1519 x->array[2] = v;
1520 /* Fall through. */
1521 case 2:
1522 x->array[1] = v;
1523 /* Fall through. */
1524 case 1:
1525 x->array[0] = v;
1526 /* Fall through. */
1527 break;
1528 default:
1529 abort ();
1530 }
1531 }
1532
1533 static INLINE int
1534 operand_type_equal (const union i386_operand_type *x,
1535 const union i386_operand_type *y)
1536 {
1537 switch (ARRAY_SIZE(x->array))
1538 {
1539 case 3:
1540 if (x->array[2] != y->array[2])
1541 return 0;
1542 /* Fall through. */
1543 case 2:
1544 if (x->array[1] != y->array[1])
1545 return 0;
1546 /* Fall through. */
1547 case 1:
1548 return x->array[0] == y->array[0];
1549 break;
1550 default:
1551 abort ();
1552 }
1553 }
1554
1555 static INLINE int
1556 cpu_flags_all_zero (const union i386_cpu_flags *x)
1557 {
1558 switch (ARRAY_SIZE(x->array))
1559 {
1560 case 4:
1561 if (x->array[3])
1562 return 0;
1563 /* Fall through. */
1564 case 3:
1565 if (x->array[2])
1566 return 0;
1567 /* Fall through. */
1568 case 2:
1569 if (x->array[1])
1570 return 0;
1571 /* Fall through. */
1572 case 1:
1573 return !x->array[0];
1574 default:
1575 abort ();
1576 }
1577 }
1578
1579 static INLINE int
1580 cpu_flags_equal (const union i386_cpu_flags *x,
1581 const union i386_cpu_flags *y)
1582 {
1583 switch (ARRAY_SIZE(x->array))
1584 {
1585 case 4:
1586 if (x->array[3] != y->array[3])
1587 return 0;
1588 /* Fall through. */
1589 case 3:
1590 if (x->array[2] != y->array[2])
1591 return 0;
1592 /* Fall through. */
1593 case 2:
1594 if (x->array[1] != y->array[1])
1595 return 0;
1596 /* Fall through. */
1597 case 1:
1598 return x->array[0] == y->array[0];
1599 break;
1600 default:
1601 abort ();
1602 }
1603 }
1604
1605 static INLINE int
1606 cpu_flags_check_cpu64 (i386_cpu_flags f)
1607 {
1608 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1609 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1610 }
1611
1612 static INLINE i386_cpu_flags
1613 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1614 {
1615 switch (ARRAY_SIZE (x.array))
1616 {
1617 case 4:
1618 x.array [3] &= y.array [3];
1619 /* Fall through. */
1620 case 3:
1621 x.array [2] &= y.array [2];
1622 /* Fall through. */
1623 case 2:
1624 x.array [1] &= y.array [1];
1625 /* Fall through. */
1626 case 1:
1627 x.array [0] &= y.array [0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 return x;
1633 }
1634
1635 static INLINE i386_cpu_flags
1636 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1637 {
1638 switch (ARRAY_SIZE (x.array))
1639 {
1640 case 4:
1641 x.array [3] |= y.array [3];
1642 /* Fall through. */
1643 case 3:
1644 x.array [2] |= y.array [2];
1645 /* Fall through. */
1646 case 2:
1647 x.array [1] |= y.array [1];
1648 /* Fall through. */
1649 case 1:
1650 x.array [0] |= y.array [0];
1651 break;
1652 default:
1653 abort ();
1654 }
1655 return x;
1656 }
1657
1658 static INLINE i386_cpu_flags
1659 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1660 {
1661 switch (ARRAY_SIZE (x.array))
1662 {
1663 case 4:
1664 x.array [3] &= ~y.array [3];
1665 /* Fall through. */
1666 case 3:
1667 x.array [2] &= ~y.array [2];
1668 /* Fall through. */
1669 case 2:
1670 x.array [1] &= ~y.array [1];
1671 /* Fall through. */
1672 case 1:
1673 x.array [0] &= ~y.array [0];
1674 break;
1675 default:
1676 abort ();
1677 }
1678 return x;
1679 }
1680
1681 #define CPU_FLAGS_ARCH_MATCH 0x1
1682 #define CPU_FLAGS_64BIT_MATCH 0x2
1683
1684 #define CPU_FLAGS_PERFECT_MATCH \
1685 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1686
1687 /* Return CPU flags match bits. */
1688
1689 static int
1690 cpu_flags_match (const insn_template *t)
1691 {
1692 i386_cpu_flags x = t->cpu_flags;
1693 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1694
1695 x.bitfield.cpu64 = 0;
1696 x.bitfield.cpuno64 = 0;
1697
1698 if (cpu_flags_all_zero (&x))
1699 {
1700 /* This instruction is available on all archs. */
1701 match |= CPU_FLAGS_ARCH_MATCH;
1702 }
1703 else
1704 {
1705 /* This instruction is available only on some archs. */
1706 i386_cpu_flags cpu = cpu_arch_flags;
1707
1708 /* AVX512VL is no standalone feature - match it and then strip it. */
1709 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1710 return match;
1711 x.bitfield.cpuavx512vl = 0;
1712
1713 cpu = cpu_flags_and (x, cpu);
1714 if (!cpu_flags_all_zero (&cpu))
1715 {
1716 if (x.bitfield.cpuavx)
1717 {
1718 /* We need to check a few extra flags with AVX. */
1719 if (cpu.bitfield.cpuavx
1720 && (!t->opcode_modifier.sse2avx || sse2avx)
1721 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1722 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1723 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1724 match |= CPU_FLAGS_ARCH_MATCH;
1725 }
1726 else if (x.bitfield.cpuavx512f)
1727 {
1728 /* We need to check a few extra flags with AVX512F. */
1729 if (cpu.bitfield.cpuavx512f
1730 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1731 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1732 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1733 match |= CPU_FLAGS_ARCH_MATCH;
1734 }
1735 else
1736 match |= CPU_FLAGS_ARCH_MATCH;
1737 }
1738 }
1739 return match;
1740 }
1741
1742 static INLINE i386_operand_type
1743 operand_type_and (i386_operand_type x, i386_operand_type y)
1744 {
1745 switch (ARRAY_SIZE (x.array))
1746 {
1747 case 3:
1748 x.array [2] &= y.array [2];
1749 /* Fall through. */
1750 case 2:
1751 x.array [1] &= y.array [1];
1752 /* Fall through. */
1753 case 1:
1754 x.array [0] &= y.array [0];
1755 break;
1756 default:
1757 abort ();
1758 }
1759 return x;
1760 }
1761
1762 static INLINE i386_operand_type
1763 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1764 {
1765 switch (ARRAY_SIZE (x.array))
1766 {
1767 case 3:
1768 x.array [2] &= ~y.array [2];
1769 /* Fall through. */
1770 case 2:
1771 x.array [1] &= ~y.array [1];
1772 /* Fall through. */
1773 case 1:
1774 x.array [0] &= ~y.array [0];
1775 break;
1776 default:
1777 abort ();
1778 }
1779 return x;
1780 }
1781
1782 static INLINE i386_operand_type
1783 operand_type_or (i386_operand_type x, i386_operand_type y)
1784 {
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] |= y.array [2];
1789 /* Fall through. */
1790 case 2:
1791 x.array [1] |= y.array [1];
1792 /* Fall through. */
1793 case 1:
1794 x.array [0] |= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
1800 }
1801
1802 static INLINE i386_operand_type
1803 operand_type_xor (i386_operand_type x, i386_operand_type y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] ^= y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] ^= y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] ^= y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820 }
1821
1822 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1823 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1824 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1825 static const i386_operand_type inoutportreg
1826 = OPERAND_TYPE_INOUTPORTREG;
1827 static const i386_operand_type reg16_inoutportreg
1828 = OPERAND_TYPE_REG16_INOUTPORTREG;
1829 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1830 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1831 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1832 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1833 static const i386_operand_type anydisp
1834 = OPERAND_TYPE_ANYDISP;
1835 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1836 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1837 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1838 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1839 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1840 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1841 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1842 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1843 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1844 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1845 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1846 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1847
1848 enum operand_type
1849 {
1850 reg,
1851 imm,
1852 disp,
1853 anymem
1854 };
1855
1856 static INLINE int
1857 operand_type_check (i386_operand_type t, enum operand_type c)
1858 {
1859 switch (c)
1860 {
1861 case reg:
1862 return t.bitfield.reg;
1863
1864 case imm:
1865 return (t.bitfield.imm8
1866 || t.bitfield.imm8s
1867 || t.bitfield.imm16
1868 || t.bitfield.imm32
1869 || t.bitfield.imm32s
1870 || t.bitfield.imm64);
1871
1872 case disp:
1873 return (t.bitfield.disp8
1874 || t.bitfield.disp16
1875 || t.bitfield.disp32
1876 || t.bitfield.disp32s
1877 || t.bitfield.disp64);
1878
1879 case anymem:
1880 return (t.bitfield.disp8
1881 || t.bitfield.disp16
1882 || t.bitfield.disp32
1883 || t.bitfield.disp32s
1884 || t.bitfield.disp64
1885 || t.bitfield.baseindex);
1886
1887 default:
1888 abort ();
1889 }
1890
1891 return 0;
1892 }
1893
1894 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1895 operand J for instruction template T. */
1896
1897 static INLINE int
1898 match_reg_size (const insn_template *t, unsigned int j)
1899 {
1900 return !((i.types[j].bitfield.byte
1901 && !t->operand_types[j].bitfield.byte)
1902 || (i.types[j].bitfield.word
1903 && !t->operand_types[j].bitfield.word)
1904 || (i.types[j].bitfield.dword
1905 && !t->operand_types[j].bitfield.dword)
1906 || (i.types[j].bitfield.qword
1907 && !t->operand_types[j].bitfield.qword)
1908 || (i.types[j].bitfield.tbyte
1909 && !t->operand_types[j].bitfield.tbyte));
1910 }
1911
1912 /* Return 1 if there is no conflict in SIMD register on
1913 operand J for instruction template T. */
1914
1915 static INLINE int
1916 match_simd_size (const insn_template *t, unsigned int j)
1917 {
1918 return !((i.types[j].bitfield.xmmword
1919 && !t->operand_types[j].bitfield.xmmword)
1920 || (i.types[j].bitfield.ymmword
1921 && !t->operand_types[j].bitfield.ymmword)
1922 || (i.types[j].bitfield.zmmword
1923 && !t->operand_types[j].bitfield.zmmword));
1924 }
1925
1926 /* Return 1 if there is no conflict in any size on operand J for
1927 instruction template T. */
1928
1929 static INLINE int
1930 match_mem_size (const insn_template *t, unsigned int j)
1931 {
1932 return (match_reg_size (t, j)
1933 && !((i.types[j].bitfield.unspecified
1934 && !i.broadcast
1935 && !t->operand_types[j].bitfield.unspecified)
1936 || (i.types[j].bitfield.fword
1937 && !t->operand_types[j].bitfield.fword)
1938 /* For scalar opcode templates to allow register and memory
1939 operands at the same time, some special casing is needed
1940 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1941 down-conversion vpmov*. */
1942 || ((t->operand_types[j].bitfield.regsimd
1943 && !t->opcode_modifier.broadcast
1944 && (t->operand_types[j].bitfield.byte
1945 || t->operand_types[j].bitfield.word
1946 || t->operand_types[j].bitfield.dword
1947 || t->operand_types[j].bitfield.qword))
1948 ? (i.types[j].bitfield.xmmword
1949 || i.types[j].bitfield.ymmword
1950 || i.types[j].bitfield.zmmword)
1951 : !match_simd_size(t, j))));
1952 }
1953
1954 /* Return 1 if there is no size conflict on any operands for
1955 instruction template T. */
1956
1957 static INLINE int
1958 operand_size_match (const insn_template *t)
1959 {
1960 unsigned int j;
1961 int match = 1;
1962
1963 /* Don't check jump instructions. */
1964 if (t->opcode_modifier.jump
1965 || t->opcode_modifier.jumpbyte
1966 || t->opcode_modifier.jumpdword
1967 || t->opcode_modifier.jumpintersegment)
1968 return match;
1969
1970 /* Check memory and accumulator operand size. */
1971 for (j = 0; j < i.operands; j++)
1972 {
1973 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1974 && t->operand_types[j].bitfield.anysize)
1975 continue;
1976
1977 if (t->operand_types[j].bitfield.reg
1978 && !match_reg_size (t, j))
1979 {
1980 match = 0;
1981 break;
1982 }
1983
1984 if (t->operand_types[j].bitfield.regsimd
1985 && !match_simd_size (t, j))
1986 {
1987 match = 0;
1988 break;
1989 }
1990
1991 if (t->operand_types[j].bitfield.acc
1992 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1993 {
1994 match = 0;
1995 break;
1996 }
1997
1998 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1999 {
2000 match = 0;
2001 break;
2002 }
2003 }
2004
2005 if (match)
2006 return match;
2007 else if (!t->opcode_modifier.d)
2008 {
2009 mismatch:
2010 i.error = operand_size_mismatch;
2011 return 0;
2012 }
2013
2014 /* Check reverse. */
2015 gas_assert (i.operands == 2);
2016
2017 match = 1;
2018 for (j = 0; j < 2; j++)
2019 {
2020 if ((t->operand_types[j].bitfield.reg
2021 || t->operand_types[j].bitfield.acc)
2022 && !match_reg_size (t, j ? 0 : 1))
2023 goto mismatch;
2024
2025 if (i.types[j].bitfield.mem
2026 && !match_mem_size (t, j ? 0 : 1))
2027 goto mismatch;
2028 }
2029
2030 return match;
2031 }
2032
2033 static INLINE int
2034 operand_type_match (i386_operand_type overlap,
2035 i386_operand_type given)
2036 {
2037 i386_operand_type temp = overlap;
2038
2039 temp.bitfield.jumpabsolute = 0;
2040 temp.bitfield.unspecified = 0;
2041 temp.bitfield.byte = 0;
2042 temp.bitfield.word = 0;
2043 temp.bitfield.dword = 0;
2044 temp.bitfield.fword = 0;
2045 temp.bitfield.qword = 0;
2046 temp.bitfield.tbyte = 0;
2047 temp.bitfield.xmmword = 0;
2048 temp.bitfield.ymmword = 0;
2049 temp.bitfield.zmmword = 0;
2050 if (operand_type_all_zero (&temp))
2051 goto mismatch;
2052
2053 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2054 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2055 return 1;
2056
2057 mismatch:
2058 i.error = operand_type_mismatch;
2059 return 0;
2060 }
2061
2062 /* If given types g0 and g1 are registers they must be of the same type
2063 unless the expected operand type register overlap is null.
2064 Memory operand size of certain SIMD instructions is also being checked
2065 here. */
2066
2067 static INLINE int
2068 operand_type_register_match (i386_operand_type g0,
2069 i386_operand_type t0,
2070 i386_operand_type g1,
2071 i386_operand_type t1)
2072 {
2073 if (!g0.bitfield.reg
2074 && !g0.bitfield.regsimd
2075 && (!operand_type_check (g0, anymem)
2076 || g0.bitfield.unspecified
2077 || !t0.bitfield.regsimd))
2078 return 1;
2079
2080 if (!g1.bitfield.reg
2081 && !g1.bitfield.regsimd
2082 && (!operand_type_check (g1, anymem)
2083 || g1.bitfield.unspecified
2084 || !t1.bitfield.regsimd))
2085 return 1;
2086
2087 if (g0.bitfield.byte == g1.bitfield.byte
2088 && g0.bitfield.word == g1.bitfield.word
2089 && g0.bitfield.dword == g1.bitfield.dword
2090 && g0.bitfield.qword == g1.bitfield.qword
2091 && g0.bitfield.xmmword == g1.bitfield.xmmword
2092 && g0.bitfield.ymmword == g1.bitfield.ymmword
2093 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2094 return 1;
2095
2096 if (!(t0.bitfield.byte & t1.bitfield.byte)
2097 && !(t0.bitfield.word & t1.bitfield.word)
2098 && !(t0.bitfield.dword & t1.bitfield.dword)
2099 && !(t0.bitfield.qword & t1.bitfield.qword)
2100 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2101 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2102 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2103 return 1;
2104
2105 i.error = register_type_mismatch;
2106
2107 return 0;
2108 }
2109
2110 static INLINE unsigned int
2111 register_number (const reg_entry *r)
2112 {
2113 unsigned int nr = r->reg_num;
2114
2115 if (r->reg_flags & RegRex)
2116 nr += 8;
2117
2118 if (r->reg_flags & RegVRex)
2119 nr += 16;
2120
2121 return nr;
2122 }
2123
2124 static INLINE unsigned int
2125 mode_from_disp_size (i386_operand_type t)
2126 {
2127 if (t.bitfield.disp8)
2128 return 1;
2129 else if (t.bitfield.disp16
2130 || t.bitfield.disp32
2131 || t.bitfield.disp32s)
2132 return 2;
2133 else
2134 return 0;
2135 }
2136
2137 static INLINE int
2138 fits_in_signed_byte (addressT num)
2139 {
2140 return num + 0x80 <= 0xff;
2141 }
2142
2143 static INLINE int
2144 fits_in_unsigned_byte (addressT num)
2145 {
2146 return num <= 0xff;
2147 }
2148
2149 static INLINE int
2150 fits_in_unsigned_word (addressT num)
2151 {
2152 return num <= 0xffff;
2153 }
2154
2155 static INLINE int
2156 fits_in_signed_word (addressT num)
2157 {
2158 return num + 0x8000 <= 0xffff;
2159 }
2160
2161 static INLINE int
2162 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2163 {
2164 #ifndef BFD64
2165 return 1;
2166 #else
2167 return num + 0x80000000 <= 0xffffffff;
2168 #endif
2169 } /* fits_in_signed_long() */
2170
2171 static INLINE int
2172 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2173 {
2174 #ifndef BFD64
2175 return 1;
2176 #else
2177 return num <= 0xffffffff;
2178 #endif
2179 } /* fits_in_unsigned_long() */
2180
2181 static INLINE int
2182 fits_in_disp8 (offsetT num)
2183 {
2184 int shift = i.memshift;
2185 unsigned int mask;
2186
2187 if (shift == -1)
2188 abort ();
2189
2190 mask = (1 << shift) - 1;
2191
2192 /* Return 0 if NUM isn't properly aligned. */
2193 if ((num & mask))
2194 return 0;
2195
2196 /* Check if NUM will fit in 8bit after shift. */
2197 return fits_in_signed_byte (num >> shift);
2198 }
2199
2200 static INLINE int
2201 fits_in_imm4 (offsetT num)
2202 {
2203 return (num & 0xf) == num;
2204 }
2205
2206 static i386_operand_type
2207 smallest_imm_type (offsetT num)
2208 {
2209 i386_operand_type t;
2210
2211 operand_type_set (&t, 0);
2212 t.bitfield.imm64 = 1;
2213
2214 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2215 {
2216 /* This code is disabled on the 486 because all the Imm1 forms
2217 in the opcode table are slower on the i486. They're the
2218 versions with the implicitly specified single-position
2219 displacement, which has another syntax if you really want to
2220 use that form. */
2221 t.bitfield.imm1 = 1;
2222 t.bitfield.imm8 = 1;
2223 t.bitfield.imm8s = 1;
2224 t.bitfield.imm16 = 1;
2225 t.bitfield.imm32 = 1;
2226 t.bitfield.imm32s = 1;
2227 }
2228 else if (fits_in_signed_byte (num))
2229 {
2230 t.bitfield.imm8 = 1;
2231 t.bitfield.imm8s = 1;
2232 t.bitfield.imm16 = 1;
2233 t.bitfield.imm32 = 1;
2234 t.bitfield.imm32s = 1;
2235 }
2236 else if (fits_in_unsigned_byte (num))
2237 {
2238 t.bitfield.imm8 = 1;
2239 t.bitfield.imm16 = 1;
2240 t.bitfield.imm32 = 1;
2241 t.bitfield.imm32s = 1;
2242 }
2243 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2244 {
2245 t.bitfield.imm16 = 1;
2246 t.bitfield.imm32 = 1;
2247 t.bitfield.imm32s = 1;
2248 }
2249 else if (fits_in_signed_long (num))
2250 {
2251 t.bitfield.imm32 = 1;
2252 t.bitfield.imm32s = 1;
2253 }
2254 else if (fits_in_unsigned_long (num))
2255 t.bitfield.imm32 = 1;
2256
2257 return t;
2258 }
2259
2260 static offsetT
2261 offset_in_range (offsetT val, int size)
2262 {
2263 addressT mask;
2264
2265 switch (size)
2266 {
2267 case 1: mask = ((addressT) 1 << 8) - 1; break;
2268 case 2: mask = ((addressT) 1 << 16) - 1; break;
2269 case 4: mask = ((addressT) 2 << 31) - 1; break;
2270 #ifdef BFD64
2271 case 8: mask = ((addressT) 2 << 63) - 1; break;
2272 #endif
2273 default: abort ();
2274 }
2275
2276 #ifdef BFD64
2277 /* If BFD64, sign extend val for 32bit address mode. */
2278 if (flag_code != CODE_64BIT
2279 || i.prefix[ADDR_PREFIX])
2280 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2281 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2282 #endif
2283
2284 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2285 {
2286 char buf1[40], buf2[40];
2287
2288 sprint_value (buf1, val);
2289 sprint_value (buf2, val & mask);
2290 as_warn (_("%s shortened to %s"), buf1, buf2);
2291 }
2292 return val & mask;
2293 }
2294
2295 enum PREFIX_GROUP
2296 {
2297 PREFIX_EXIST = 0,
2298 PREFIX_LOCK,
2299 PREFIX_REP,
2300 PREFIX_DS,
2301 PREFIX_OTHER
2302 };
2303
2304 /* Returns
2305 a. PREFIX_EXIST if attempting to add a prefix where one from the
2306 same class already exists.
2307 b. PREFIX_LOCK if lock prefix is added.
2308 c. PREFIX_REP if rep/repne prefix is added.
2309 d. PREFIX_DS if ds prefix is added.
2310 e. PREFIX_OTHER if other prefix is added.
2311 */
2312
2313 static enum PREFIX_GROUP
2314 add_prefix (unsigned int prefix)
2315 {
2316 enum PREFIX_GROUP ret = PREFIX_OTHER;
2317 unsigned int q;
2318
2319 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2320 && flag_code == CODE_64BIT)
2321 {
2322 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2323 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2324 && (prefix & (REX_R | REX_X | REX_B))))
2325 ret = PREFIX_EXIST;
2326 q = REX_PREFIX;
2327 }
2328 else
2329 {
2330 switch (prefix)
2331 {
2332 default:
2333 abort ();
2334
2335 case DS_PREFIX_OPCODE:
2336 ret = PREFIX_DS;
2337 /* Fall through. */
2338 case CS_PREFIX_OPCODE:
2339 case ES_PREFIX_OPCODE:
2340 case FS_PREFIX_OPCODE:
2341 case GS_PREFIX_OPCODE:
2342 case SS_PREFIX_OPCODE:
2343 q = SEG_PREFIX;
2344 break;
2345
2346 case REPNE_PREFIX_OPCODE:
2347 case REPE_PREFIX_OPCODE:
2348 q = REP_PREFIX;
2349 ret = PREFIX_REP;
2350 break;
2351
2352 case LOCK_PREFIX_OPCODE:
2353 q = LOCK_PREFIX;
2354 ret = PREFIX_LOCK;
2355 break;
2356
2357 case FWAIT_OPCODE:
2358 q = WAIT_PREFIX;
2359 break;
2360
2361 case ADDR_PREFIX_OPCODE:
2362 q = ADDR_PREFIX;
2363 break;
2364
2365 case DATA_PREFIX_OPCODE:
2366 q = DATA_PREFIX;
2367 break;
2368 }
2369 if (i.prefix[q] != 0)
2370 ret = PREFIX_EXIST;
2371 }
2372
2373 if (ret)
2374 {
2375 if (!i.prefix[q])
2376 ++i.prefixes;
2377 i.prefix[q] |= prefix;
2378 }
2379 else
2380 as_bad (_("same type of prefix used twice"));
2381
2382 return ret;
2383 }
2384
2385 static void
2386 update_code_flag (int value, int check)
2387 {
2388 PRINTF_LIKE ((*as_error));
2389
2390 flag_code = (enum flag_code) value;
2391 if (flag_code == CODE_64BIT)
2392 {
2393 cpu_arch_flags.bitfield.cpu64 = 1;
2394 cpu_arch_flags.bitfield.cpuno64 = 0;
2395 }
2396 else
2397 {
2398 cpu_arch_flags.bitfield.cpu64 = 0;
2399 cpu_arch_flags.bitfield.cpuno64 = 1;
2400 }
2401 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2402 {
2403 if (check)
2404 as_error = as_fatal;
2405 else
2406 as_error = as_bad;
2407 (*as_error) (_("64bit mode not supported on `%s'."),
2408 cpu_arch_name ? cpu_arch_name : default_arch);
2409 }
2410 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2411 {
2412 if (check)
2413 as_error = as_fatal;
2414 else
2415 as_error = as_bad;
2416 (*as_error) (_("32bit mode not supported on `%s'."),
2417 cpu_arch_name ? cpu_arch_name : default_arch);
2418 }
2419 stackop_size = '\0';
2420 }
2421
2422 static void
2423 set_code_flag (int value)
2424 {
2425 update_code_flag (value, 0);
2426 }
2427
2428 static void
2429 set_16bit_gcc_code_flag (int new_code_flag)
2430 {
2431 flag_code = (enum flag_code) new_code_flag;
2432 if (flag_code != CODE_16BIT)
2433 abort ();
2434 cpu_arch_flags.bitfield.cpu64 = 0;
2435 cpu_arch_flags.bitfield.cpuno64 = 1;
2436 stackop_size = LONG_MNEM_SUFFIX;
2437 }
2438
2439 static void
2440 set_intel_syntax (int syntax_flag)
2441 {
2442 /* Find out if register prefixing is specified. */
2443 int ask_naked_reg = 0;
2444
2445 SKIP_WHITESPACE ();
2446 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2447 {
2448 char *string;
2449 int e = get_symbol_name (&string);
2450
2451 if (strcmp (string, "prefix") == 0)
2452 ask_naked_reg = 1;
2453 else if (strcmp (string, "noprefix") == 0)
2454 ask_naked_reg = -1;
2455 else
2456 as_bad (_("bad argument to syntax directive."));
2457 (void) restore_line_pointer (e);
2458 }
2459 demand_empty_rest_of_line ();
2460
2461 intel_syntax = syntax_flag;
2462
2463 if (ask_naked_reg == 0)
2464 allow_naked_reg = (intel_syntax
2465 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2466 else
2467 allow_naked_reg = (ask_naked_reg < 0);
2468
2469 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2470
2471 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2472 identifier_chars['$'] = intel_syntax ? '$' : 0;
2473 register_prefix = allow_naked_reg ? "" : "%";
2474 }
2475
2476 static void
2477 set_intel_mnemonic (int mnemonic_flag)
2478 {
2479 intel_mnemonic = mnemonic_flag;
2480 }
2481
2482 static void
2483 set_allow_index_reg (int flag)
2484 {
2485 allow_index_reg = flag;
2486 }
2487
2488 static void
2489 set_check (int what)
2490 {
2491 enum check_kind *kind;
2492 const char *str;
2493
2494 if (what)
2495 {
2496 kind = &operand_check;
2497 str = "operand";
2498 }
2499 else
2500 {
2501 kind = &sse_check;
2502 str = "sse";
2503 }
2504
2505 SKIP_WHITESPACE ();
2506
2507 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2508 {
2509 char *string;
2510 int e = get_symbol_name (&string);
2511
2512 if (strcmp (string, "none") == 0)
2513 *kind = check_none;
2514 else if (strcmp (string, "warning") == 0)
2515 *kind = check_warning;
2516 else if (strcmp (string, "error") == 0)
2517 *kind = check_error;
2518 else
2519 as_bad (_("bad argument to %s_check directive."), str);
2520 (void) restore_line_pointer (e);
2521 }
2522 else
2523 as_bad (_("missing argument for %s_check directive"), str);
2524
2525 demand_empty_rest_of_line ();
2526 }
2527
2528 static void
2529 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2530 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2531 {
2532 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2533 static const char *arch;
2534
2535 /* Intel LIOM is only supported on ELF. */
2536 if (!IS_ELF)
2537 return;
2538
2539 if (!arch)
2540 {
2541 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2542 use default_arch. */
2543 arch = cpu_arch_name;
2544 if (!arch)
2545 arch = default_arch;
2546 }
2547
2548 /* If we are targeting Intel MCU, we must enable it. */
2549 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2550 || new_flag.bitfield.cpuiamcu)
2551 return;
2552
2553 /* If we are targeting Intel L1OM, we must enable it. */
2554 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2555 || new_flag.bitfield.cpul1om)
2556 return;
2557
2558 /* If we are targeting Intel K1OM, we must enable it. */
2559 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2560 || new_flag.bitfield.cpuk1om)
2561 return;
2562
2563 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2564 #endif
2565 }
2566
2567 static void
2568 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2569 {
2570 SKIP_WHITESPACE ();
2571
2572 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2573 {
2574 char *string;
2575 int e = get_symbol_name (&string);
2576 unsigned int j;
2577 i386_cpu_flags flags;
2578
2579 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2580 {
2581 if (strcmp (string, cpu_arch[j].name) == 0)
2582 {
2583 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2584
2585 if (*string != '.')
2586 {
2587 cpu_arch_name = cpu_arch[j].name;
2588 cpu_sub_arch_name = NULL;
2589 cpu_arch_flags = cpu_arch[j].flags;
2590 if (flag_code == CODE_64BIT)
2591 {
2592 cpu_arch_flags.bitfield.cpu64 = 1;
2593 cpu_arch_flags.bitfield.cpuno64 = 0;
2594 }
2595 else
2596 {
2597 cpu_arch_flags.bitfield.cpu64 = 0;
2598 cpu_arch_flags.bitfield.cpuno64 = 1;
2599 }
2600 cpu_arch_isa = cpu_arch[j].type;
2601 cpu_arch_isa_flags = cpu_arch[j].flags;
2602 if (!cpu_arch_tune_set)
2603 {
2604 cpu_arch_tune = cpu_arch_isa;
2605 cpu_arch_tune_flags = cpu_arch_isa_flags;
2606 }
2607 break;
2608 }
2609
2610 flags = cpu_flags_or (cpu_arch_flags,
2611 cpu_arch[j].flags);
2612
2613 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2614 {
2615 if (cpu_sub_arch_name)
2616 {
2617 char *name = cpu_sub_arch_name;
2618 cpu_sub_arch_name = concat (name,
2619 cpu_arch[j].name,
2620 (const char *) NULL);
2621 free (name);
2622 }
2623 else
2624 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2625 cpu_arch_flags = flags;
2626 cpu_arch_isa_flags = flags;
2627 }
2628 else
2629 cpu_arch_isa_flags
2630 = cpu_flags_or (cpu_arch_isa_flags,
2631 cpu_arch[j].flags);
2632 (void) restore_line_pointer (e);
2633 demand_empty_rest_of_line ();
2634 return;
2635 }
2636 }
2637
2638 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2639 {
2640 /* Disable an ISA extension. */
2641 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2642 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2643 {
2644 flags = cpu_flags_and_not (cpu_arch_flags,
2645 cpu_noarch[j].flags);
2646 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2647 {
2648 if (cpu_sub_arch_name)
2649 {
2650 char *name = cpu_sub_arch_name;
2651 cpu_sub_arch_name = concat (name, string,
2652 (const char *) NULL);
2653 free (name);
2654 }
2655 else
2656 cpu_sub_arch_name = xstrdup (string);
2657 cpu_arch_flags = flags;
2658 cpu_arch_isa_flags = flags;
2659 }
2660 (void) restore_line_pointer (e);
2661 demand_empty_rest_of_line ();
2662 return;
2663 }
2664
2665 j = ARRAY_SIZE (cpu_arch);
2666 }
2667
2668 if (j >= ARRAY_SIZE (cpu_arch))
2669 as_bad (_("no such architecture: `%s'"), string);
2670
2671 *input_line_pointer = e;
2672 }
2673 else
2674 as_bad (_("missing cpu architecture"));
2675
2676 no_cond_jump_promotion = 0;
2677 if (*input_line_pointer == ','
2678 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2679 {
2680 char *string;
2681 char e;
2682
2683 ++input_line_pointer;
2684 e = get_symbol_name (&string);
2685
2686 if (strcmp (string, "nojumps") == 0)
2687 no_cond_jump_promotion = 1;
2688 else if (strcmp (string, "jumps") == 0)
2689 ;
2690 else
2691 as_bad (_("no such architecture modifier: `%s'"), string);
2692
2693 (void) restore_line_pointer (e);
2694 }
2695
2696 demand_empty_rest_of_line ();
2697 }
2698
2699 enum bfd_architecture
2700 i386_arch (void)
2701 {
2702 if (cpu_arch_isa == PROCESSOR_L1OM)
2703 {
2704 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2705 || flag_code != CODE_64BIT)
2706 as_fatal (_("Intel L1OM is 64bit ELF only"));
2707 return bfd_arch_l1om;
2708 }
2709 else if (cpu_arch_isa == PROCESSOR_K1OM)
2710 {
2711 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2712 || flag_code != CODE_64BIT)
2713 as_fatal (_("Intel K1OM is 64bit ELF only"));
2714 return bfd_arch_k1om;
2715 }
2716 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code == CODE_64BIT)
2720 as_fatal (_("Intel MCU is 32bit ELF only"));
2721 return bfd_arch_iamcu;
2722 }
2723 else
2724 return bfd_arch_i386;
2725 }
2726
2727 unsigned long
2728 i386_mach (void)
2729 {
2730 if (!strncmp (default_arch, "x86_64", 6))
2731 {
2732 if (cpu_arch_isa == PROCESSOR_L1OM)
2733 {
2734 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2735 || default_arch[6] != '\0')
2736 as_fatal (_("Intel L1OM is 64bit ELF only"));
2737 return bfd_mach_l1om;
2738 }
2739 else if (cpu_arch_isa == PROCESSOR_K1OM)
2740 {
2741 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2742 || default_arch[6] != '\0')
2743 as_fatal (_("Intel K1OM is 64bit ELF only"));
2744 return bfd_mach_k1om;
2745 }
2746 else if (default_arch[6] == '\0')
2747 return bfd_mach_x86_64;
2748 else
2749 return bfd_mach_x64_32;
2750 }
2751 else if (!strcmp (default_arch, "i386")
2752 || !strcmp (default_arch, "iamcu"))
2753 {
2754 if (cpu_arch_isa == PROCESSOR_IAMCU)
2755 {
2756 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2757 as_fatal (_("Intel MCU is 32bit ELF only"));
2758 return bfd_mach_i386_iamcu;
2759 }
2760 else
2761 return bfd_mach_i386_i386;
2762 }
2763 else
2764 as_fatal (_("unknown architecture"));
2765 }
2766 \f
2767 void
2768 md_begin (void)
2769 {
2770 const char *hash_err;
2771
2772 /* Support pseudo prefixes like {disp32}. */
2773 lex_type ['{'] = LEX_BEGIN_NAME;
2774
2775 /* Initialize op_hash hash table. */
2776 op_hash = hash_new ();
2777
2778 {
2779 const insn_template *optab;
2780 templates *core_optab;
2781
2782 /* Setup for loop. */
2783 optab = i386_optab;
2784 core_optab = XNEW (templates);
2785 core_optab->start = optab;
2786
2787 while (1)
2788 {
2789 ++optab;
2790 if (optab->name == NULL
2791 || strcmp (optab->name, (optab - 1)->name) != 0)
2792 {
2793 /* different name --> ship out current template list;
2794 add to hash table; & begin anew. */
2795 core_optab->end = optab;
2796 hash_err = hash_insert (op_hash,
2797 (optab - 1)->name,
2798 (void *) core_optab);
2799 if (hash_err)
2800 {
2801 as_fatal (_("can't hash %s: %s"),
2802 (optab - 1)->name,
2803 hash_err);
2804 }
2805 if (optab->name == NULL)
2806 break;
2807 core_optab = XNEW (templates);
2808 core_optab->start = optab;
2809 }
2810 }
2811 }
2812
2813 /* Initialize reg_hash hash table. */
2814 reg_hash = hash_new ();
2815 {
2816 const reg_entry *regtab;
2817 unsigned int regtab_size = i386_regtab_size;
2818
2819 for (regtab = i386_regtab; regtab_size--; regtab++)
2820 {
2821 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2822 if (hash_err)
2823 as_fatal (_("can't hash %s: %s"),
2824 regtab->reg_name,
2825 hash_err);
2826 }
2827 }
2828
2829 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2830 {
2831 int c;
2832 char *p;
2833
2834 for (c = 0; c < 256; c++)
2835 {
2836 if (ISDIGIT (c))
2837 {
2838 digit_chars[c] = c;
2839 mnemonic_chars[c] = c;
2840 register_chars[c] = c;
2841 operand_chars[c] = c;
2842 }
2843 else if (ISLOWER (c))
2844 {
2845 mnemonic_chars[c] = c;
2846 register_chars[c] = c;
2847 operand_chars[c] = c;
2848 }
2849 else if (ISUPPER (c))
2850 {
2851 mnemonic_chars[c] = TOLOWER (c);
2852 register_chars[c] = mnemonic_chars[c];
2853 operand_chars[c] = c;
2854 }
2855 else if (c == '{' || c == '}')
2856 {
2857 mnemonic_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
2860
2861 if (ISALPHA (c) || ISDIGIT (c))
2862 identifier_chars[c] = c;
2863 else if (c >= 128)
2864 {
2865 identifier_chars[c] = c;
2866 operand_chars[c] = c;
2867 }
2868 }
2869
2870 #ifdef LEX_AT
2871 identifier_chars['@'] = '@';
2872 #endif
2873 #ifdef LEX_QM
2874 identifier_chars['?'] = '?';
2875 operand_chars['?'] = '?';
2876 #endif
2877 digit_chars['-'] = '-';
2878 mnemonic_chars['_'] = '_';
2879 mnemonic_chars['-'] = '-';
2880 mnemonic_chars['.'] = '.';
2881 identifier_chars['_'] = '_';
2882 identifier_chars['.'] = '.';
2883
2884 for (p = operand_special_chars; *p != '\0'; p++)
2885 operand_chars[(unsigned char) *p] = *p;
2886 }
2887
2888 if (flag_code == CODE_64BIT)
2889 {
2890 #if defined (OBJ_COFF) && defined (TE_PE)
2891 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2892 ? 32 : 16);
2893 #else
2894 x86_dwarf2_return_column = 16;
2895 #endif
2896 x86_cie_data_alignment = -8;
2897 }
2898 else
2899 {
2900 x86_dwarf2_return_column = 8;
2901 x86_cie_data_alignment = -4;
2902 }
2903 }
2904
2905 void
2906 i386_print_statistics (FILE *file)
2907 {
2908 hash_print_statistics (file, "i386 opcode", op_hash);
2909 hash_print_statistics (file, "i386 register", reg_hash);
2910 }
2911 \f
2912 #ifdef DEBUG386
2913
2914 /* Debugging routines for md_assemble. */
2915 static void pte (insn_template *);
2916 static void pt (i386_operand_type);
2917 static void pe (expressionS *);
2918 static void ps (symbolS *);
2919
2920 static void
2921 pi (char *line, i386_insn *x)
2922 {
2923 unsigned int j;
2924
2925 fprintf (stdout, "%s: template ", line);
2926 pte (&x->tm);
2927 fprintf (stdout, " address: base %s index %s scale %x\n",
2928 x->base_reg ? x->base_reg->reg_name : "none",
2929 x->index_reg ? x->index_reg->reg_name : "none",
2930 x->log2_scale_factor);
2931 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2932 x->rm.mode, x->rm.reg, x->rm.regmem);
2933 fprintf (stdout, " sib: base %x index %x scale %x\n",
2934 x->sib.base, x->sib.index, x->sib.scale);
2935 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2936 (x->rex & REX_W) != 0,
2937 (x->rex & REX_R) != 0,
2938 (x->rex & REX_X) != 0,
2939 (x->rex & REX_B) != 0);
2940 for (j = 0; j < x->operands; j++)
2941 {
2942 fprintf (stdout, " #%d: ", j + 1);
2943 pt (x->types[j]);
2944 fprintf (stdout, "\n");
2945 if (x->types[j].bitfield.reg
2946 || x->types[j].bitfield.regmmx
2947 || x->types[j].bitfield.regsimd
2948 || x->types[j].bitfield.sreg2
2949 || x->types[j].bitfield.sreg3
2950 || x->types[j].bitfield.control
2951 || x->types[j].bitfield.debug
2952 || x->types[j].bitfield.test)
2953 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2954 if (operand_type_check (x->types[j], imm))
2955 pe (x->op[j].imms);
2956 if (operand_type_check (x->types[j], disp))
2957 pe (x->op[j].disps);
2958 }
2959 }
2960
2961 static void
2962 pte (insn_template *t)
2963 {
2964 unsigned int j;
2965 fprintf (stdout, " %d operands ", t->operands);
2966 fprintf (stdout, "opcode %x ", t->base_opcode);
2967 if (t->extension_opcode != None)
2968 fprintf (stdout, "ext %x ", t->extension_opcode);
2969 if (t->opcode_modifier.d)
2970 fprintf (stdout, "D");
2971 if (t->opcode_modifier.w)
2972 fprintf (stdout, "W");
2973 fprintf (stdout, "\n");
2974 for (j = 0; j < t->operands; j++)
2975 {
2976 fprintf (stdout, " #%d type ", j + 1);
2977 pt (t->operand_types[j]);
2978 fprintf (stdout, "\n");
2979 }
2980 }
2981
2982 static void
2983 pe (expressionS *e)
2984 {
2985 fprintf (stdout, " operation %d\n", e->X_op);
2986 fprintf (stdout, " add_number %ld (%lx)\n",
2987 (long) e->X_add_number, (long) e->X_add_number);
2988 if (e->X_add_symbol)
2989 {
2990 fprintf (stdout, " add_symbol ");
2991 ps (e->X_add_symbol);
2992 fprintf (stdout, "\n");
2993 }
2994 if (e->X_op_symbol)
2995 {
2996 fprintf (stdout, " op_symbol ");
2997 ps (e->X_op_symbol);
2998 fprintf (stdout, "\n");
2999 }
3000 }
3001
3002 static void
3003 ps (symbolS *s)
3004 {
3005 fprintf (stdout, "%s type %s%s",
3006 S_GET_NAME (s),
3007 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3008 segment_name (S_GET_SEGMENT (s)));
3009 }
3010
3011 static struct type_name
3012 {
3013 i386_operand_type mask;
3014 const char *name;
3015 }
3016 const type_names[] =
3017 {
3018 { OPERAND_TYPE_REG8, "r8" },
3019 { OPERAND_TYPE_REG16, "r16" },
3020 { OPERAND_TYPE_REG32, "r32" },
3021 { OPERAND_TYPE_REG64, "r64" },
3022 { OPERAND_TYPE_IMM8, "i8" },
3023 { OPERAND_TYPE_IMM8, "i8s" },
3024 { OPERAND_TYPE_IMM16, "i16" },
3025 { OPERAND_TYPE_IMM32, "i32" },
3026 { OPERAND_TYPE_IMM32S, "i32s" },
3027 { OPERAND_TYPE_IMM64, "i64" },
3028 { OPERAND_TYPE_IMM1, "i1" },
3029 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3030 { OPERAND_TYPE_DISP8, "d8" },
3031 { OPERAND_TYPE_DISP16, "d16" },
3032 { OPERAND_TYPE_DISP32, "d32" },
3033 { OPERAND_TYPE_DISP32S, "d32s" },
3034 { OPERAND_TYPE_DISP64, "d64" },
3035 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3036 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3037 { OPERAND_TYPE_CONTROL, "control reg" },
3038 { OPERAND_TYPE_TEST, "test reg" },
3039 { OPERAND_TYPE_DEBUG, "debug reg" },
3040 { OPERAND_TYPE_FLOATREG, "FReg" },
3041 { OPERAND_TYPE_FLOATACC, "FAcc" },
3042 { OPERAND_TYPE_SREG2, "SReg2" },
3043 { OPERAND_TYPE_SREG3, "SReg3" },
3044 { OPERAND_TYPE_ACC, "Acc" },
3045 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3046 { OPERAND_TYPE_REGMMX, "rMMX" },
3047 { OPERAND_TYPE_REGXMM, "rXMM" },
3048 { OPERAND_TYPE_REGYMM, "rYMM" },
3049 { OPERAND_TYPE_REGZMM, "rZMM" },
3050 { OPERAND_TYPE_REGMASK, "Mask reg" },
3051 { OPERAND_TYPE_ESSEG, "es" },
3052 };
3053
3054 static void
3055 pt (i386_operand_type t)
3056 {
3057 unsigned int j;
3058 i386_operand_type a;
3059
3060 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3061 {
3062 a = operand_type_and (t, type_names[j].mask);
3063 if (!operand_type_all_zero (&a))
3064 fprintf (stdout, "%s, ", type_names[j].name);
3065 }
3066 fflush (stdout);
3067 }
3068
3069 #endif /* DEBUG386 */
3070 \f
3071 static bfd_reloc_code_real_type
3072 reloc (unsigned int size,
3073 int pcrel,
3074 int sign,
3075 bfd_reloc_code_real_type other)
3076 {
3077 if (other != NO_RELOC)
3078 {
3079 reloc_howto_type *rel;
3080
3081 if (size == 8)
3082 switch (other)
3083 {
3084 case BFD_RELOC_X86_64_GOT32:
3085 return BFD_RELOC_X86_64_GOT64;
3086 break;
3087 case BFD_RELOC_X86_64_GOTPLT64:
3088 return BFD_RELOC_X86_64_GOTPLT64;
3089 break;
3090 case BFD_RELOC_X86_64_PLTOFF64:
3091 return BFD_RELOC_X86_64_PLTOFF64;
3092 break;
3093 case BFD_RELOC_X86_64_GOTPC32:
3094 other = BFD_RELOC_X86_64_GOTPC64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPCREL:
3097 other = BFD_RELOC_X86_64_GOTPCREL64;
3098 break;
3099 case BFD_RELOC_X86_64_TPOFF32:
3100 other = BFD_RELOC_X86_64_TPOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_DTPOFF32:
3103 other = BFD_RELOC_X86_64_DTPOFF64;
3104 break;
3105 default:
3106 break;
3107 }
3108
3109 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3110 if (other == BFD_RELOC_SIZE32)
3111 {
3112 if (size == 8)
3113 other = BFD_RELOC_SIZE64;
3114 if (pcrel)
3115 {
3116 as_bad (_("there are no pc-relative size relocations"));
3117 return NO_RELOC;
3118 }
3119 }
3120 #endif
3121
3122 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3123 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3124 sign = -1;
3125
3126 rel = bfd_reloc_type_lookup (stdoutput, other);
3127 if (!rel)
3128 as_bad (_("unknown relocation (%u)"), other);
3129 else if (size != bfd_get_reloc_size (rel))
3130 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3131 bfd_get_reloc_size (rel),
3132 size);
3133 else if (pcrel && !rel->pc_relative)
3134 as_bad (_("non-pc-relative relocation for pc-relative field"));
3135 else if ((rel->complain_on_overflow == complain_overflow_signed
3136 && !sign)
3137 || (rel->complain_on_overflow == complain_overflow_unsigned
3138 && sign > 0))
3139 as_bad (_("relocated field and relocation type differ in signedness"));
3140 else
3141 return other;
3142 return NO_RELOC;
3143 }
3144
3145 if (pcrel)
3146 {
3147 if (!sign)
3148 as_bad (_("there are no unsigned pc-relative relocations"));
3149 switch (size)
3150 {
3151 case 1: return BFD_RELOC_8_PCREL;
3152 case 2: return BFD_RELOC_16_PCREL;
3153 case 4: return BFD_RELOC_32_PCREL;
3154 case 8: return BFD_RELOC_64_PCREL;
3155 }
3156 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3157 }
3158 else
3159 {
3160 if (sign > 0)
3161 switch (size)
3162 {
3163 case 4: return BFD_RELOC_X86_64_32S;
3164 }
3165 else
3166 switch (size)
3167 {
3168 case 1: return BFD_RELOC_8;
3169 case 2: return BFD_RELOC_16;
3170 case 4: return BFD_RELOC_32;
3171 case 8: return BFD_RELOC_64;
3172 }
3173 as_bad (_("cannot do %s %u byte relocation"),
3174 sign > 0 ? "signed" : "unsigned", size);
3175 }
3176
3177 return NO_RELOC;
3178 }
3179
3180 /* Here we decide which fixups can be adjusted to make them relative to
3181 the beginning of the section instead of the symbol. Basically we need
3182 to make sure that the dynamic relocations are done correctly, so in
3183 some cases we force the original symbol to be used. */
3184
3185 int
3186 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3187 {
3188 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3189 if (!IS_ELF)
3190 return 1;
3191
3192 /* Don't adjust pc-relative references to merge sections in 64-bit
3193 mode. */
3194 if (use_rela_relocations
3195 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3196 && fixP->fx_pcrel)
3197 return 0;
3198
3199 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3200 and changed later by validate_fix. */
3201 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3202 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3203 return 0;
3204
3205 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3206 for size relocations. */
3207 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3208 || fixP->fx_r_type == BFD_RELOC_SIZE64
3209 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3210 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3211 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3212 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3213 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3214 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3223 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3224 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3225 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3238 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3239 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3240 return 0;
3241 #endif
3242 return 1;
3243 }
3244
3245 static int
3246 intel_float_operand (const char *mnemonic)
3247 {
3248 /* Note that the value returned is meaningful only for opcodes with (memory)
3249 operands, hence the code here is free to improperly handle opcodes that
3250 have no operands (for better performance and smaller code). */
3251
3252 if (mnemonic[0] != 'f')
3253 return 0; /* non-math */
3254
3255 switch (mnemonic[1])
3256 {
3257 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3258 the fs segment override prefix not currently handled because no
3259 call path can make opcodes without operands get here */
3260 case 'i':
3261 return 2 /* integer op */;
3262 case 'l':
3263 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3264 return 3; /* fldcw/fldenv */
3265 break;
3266 case 'n':
3267 if (mnemonic[2] != 'o' /* fnop */)
3268 return 3; /* non-waiting control op */
3269 break;
3270 case 'r':
3271 if (mnemonic[2] == 's')
3272 return 3; /* frstor/frstpm */
3273 break;
3274 case 's':
3275 if (mnemonic[2] == 'a')
3276 return 3; /* fsave */
3277 if (mnemonic[2] == 't')
3278 {
3279 switch (mnemonic[3])
3280 {
3281 case 'c': /* fstcw */
3282 case 'd': /* fstdw */
3283 case 'e': /* fstenv */
3284 case 's': /* fsts[gw] */
3285 return 3;
3286 }
3287 }
3288 break;
3289 case 'x':
3290 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3291 return 0; /* fxsave/fxrstor are not really math ops */
3292 break;
3293 }
3294
3295 return 1;
3296 }
3297
3298 /* Build the VEX prefix. */
3299
3300 static void
3301 build_vex_prefix (const insn_template *t)
3302 {
3303 unsigned int register_specifier;
3304 unsigned int implied_prefix;
3305 unsigned int vector_length;
3306
3307 /* Check register specifier. */
3308 if (i.vex.register_specifier)
3309 {
3310 register_specifier =
3311 ~register_number (i.vex.register_specifier) & 0xf;
3312 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3313 }
3314 else
3315 register_specifier = 0xf;
3316
3317 /* Use 2-byte VEX prefix by swapping destination and source
3318 operand. */
3319 if (i.vec_encoding != vex_encoding_vex3
3320 && i.dir_encoding == dir_encoding_default
3321 && i.operands == i.reg_operands
3322 && i.tm.opcode_modifier.vexopcode == VEX0F
3323 && i.tm.opcode_modifier.load
3324 && i.rex == REX_B)
3325 {
3326 unsigned int xchg = i.operands - 1;
3327 union i386_op temp_op;
3328 i386_operand_type temp_type;
3329
3330 temp_type = i.types[xchg];
3331 i.types[xchg] = i.types[0];
3332 i.types[0] = temp_type;
3333 temp_op = i.op[xchg];
3334 i.op[xchg] = i.op[0];
3335 i.op[0] = temp_op;
3336
3337 gas_assert (i.rm.mode == 3);
3338
3339 i.rex = REX_R;
3340 xchg = i.rm.regmem;
3341 i.rm.regmem = i.rm.reg;
3342 i.rm.reg = xchg;
3343
3344 /* Use the next insn. */
3345 i.tm = t[1];
3346 }
3347
3348 if (i.tm.opcode_modifier.vex == VEXScalar)
3349 vector_length = avxscalar;
3350 else if (i.tm.opcode_modifier.vex == VEX256)
3351 vector_length = 1;
3352 else
3353 {
3354 unsigned int op;
3355
3356 vector_length = 0;
3357 for (op = 0; op < t->operands; ++op)
3358 if (t->operand_types[op].bitfield.xmmword
3359 && t->operand_types[op].bitfield.ymmword
3360 && i.types[op].bitfield.ymmword)
3361 {
3362 vector_length = 1;
3363 break;
3364 }
3365 }
3366
3367 switch ((i.tm.base_opcode >> 8) & 0xff)
3368 {
3369 case 0:
3370 implied_prefix = 0;
3371 break;
3372 case DATA_PREFIX_OPCODE:
3373 implied_prefix = 1;
3374 break;
3375 case REPE_PREFIX_OPCODE:
3376 implied_prefix = 2;
3377 break;
3378 case REPNE_PREFIX_OPCODE:
3379 implied_prefix = 3;
3380 break;
3381 default:
3382 abort ();
3383 }
3384
3385 /* Use 2-byte VEX prefix if possible. */
3386 if (i.vec_encoding != vex_encoding_vex3
3387 && i.tm.opcode_modifier.vexopcode == VEX0F
3388 && i.tm.opcode_modifier.vexw != VEXW1
3389 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3390 {
3391 /* 2-byte VEX prefix. */
3392 unsigned int r;
3393
3394 i.vex.length = 2;
3395 i.vex.bytes[0] = 0xc5;
3396
3397 /* Check the REX.R bit. */
3398 r = (i.rex & REX_R) ? 0 : 1;
3399 i.vex.bytes[1] = (r << 7
3400 | register_specifier << 3
3401 | vector_length << 2
3402 | implied_prefix);
3403 }
3404 else
3405 {
3406 /* 3-byte VEX prefix. */
3407 unsigned int m, w;
3408
3409 i.vex.length = 3;
3410
3411 switch (i.tm.opcode_modifier.vexopcode)
3412 {
3413 case VEX0F:
3414 m = 0x1;
3415 i.vex.bytes[0] = 0xc4;
3416 break;
3417 case VEX0F38:
3418 m = 0x2;
3419 i.vex.bytes[0] = 0xc4;
3420 break;
3421 case VEX0F3A:
3422 m = 0x3;
3423 i.vex.bytes[0] = 0xc4;
3424 break;
3425 case XOP08:
3426 m = 0x8;
3427 i.vex.bytes[0] = 0x8f;
3428 break;
3429 case XOP09:
3430 m = 0x9;
3431 i.vex.bytes[0] = 0x8f;
3432 break;
3433 case XOP0A:
3434 m = 0xa;
3435 i.vex.bytes[0] = 0x8f;
3436 break;
3437 default:
3438 abort ();
3439 }
3440
3441 /* The high 3 bits of the second VEX byte are 1's compliment
3442 of RXB bits from REX. */
3443 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3444
3445 /* Check the REX.W bit. */
3446 w = (i.rex & REX_W) ? 1 : 0;
3447 if (i.tm.opcode_modifier.vexw == VEXW1)
3448 w = 1;
3449
3450 i.vex.bytes[2] = (w << 7
3451 | register_specifier << 3
3452 | vector_length << 2
3453 | implied_prefix);
3454 }
3455 }
3456
3457 static INLINE bfd_boolean
3458 is_evex_encoding (const insn_template *t)
3459 {
3460 return t->opcode_modifier.evex
3461 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3462 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3463 }
3464
3465 /* Build the EVEX prefix. */
3466
3467 static void
3468 build_evex_prefix (void)
3469 {
3470 unsigned int register_specifier;
3471 unsigned int implied_prefix;
3472 unsigned int m, w;
3473 rex_byte vrex_used = 0;
3474
3475 /* Check register specifier. */
3476 if (i.vex.register_specifier)
3477 {
3478 gas_assert ((i.vrex & REX_X) == 0);
3479
3480 register_specifier = i.vex.register_specifier->reg_num;
3481 if ((i.vex.register_specifier->reg_flags & RegRex))
3482 register_specifier += 8;
3483 /* The upper 16 registers are encoded in the fourth byte of the
3484 EVEX prefix. */
3485 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3486 i.vex.bytes[3] = 0x8;
3487 register_specifier = ~register_specifier & 0xf;
3488 }
3489 else
3490 {
3491 register_specifier = 0xf;
3492
3493 /* Encode upper 16 vector index register in the fourth byte of
3494 the EVEX prefix. */
3495 if (!(i.vrex & REX_X))
3496 i.vex.bytes[3] = 0x8;
3497 else
3498 vrex_used |= REX_X;
3499 }
3500
3501 switch ((i.tm.base_opcode >> 8) & 0xff)
3502 {
3503 case 0:
3504 implied_prefix = 0;
3505 break;
3506 case DATA_PREFIX_OPCODE:
3507 implied_prefix = 1;
3508 break;
3509 case REPE_PREFIX_OPCODE:
3510 implied_prefix = 2;
3511 break;
3512 case REPNE_PREFIX_OPCODE:
3513 implied_prefix = 3;
3514 break;
3515 default:
3516 abort ();
3517 }
3518
3519 /* 4 byte EVEX prefix. */
3520 i.vex.length = 4;
3521 i.vex.bytes[0] = 0x62;
3522
3523 /* mmmm bits. */
3524 switch (i.tm.opcode_modifier.vexopcode)
3525 {
3526 case VEX0F:
3527 m = 1;
3528 break;
3529 case VEX0F38:
3530 m = 2;
3531 break;
3532 case VEX0F3A:
3533 m = 3;
3534 break;
3535 default:
3536 abort ();
3537 break;
3538 }
3539
3540 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3541 bits from REX. */
3542 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3543
3544 /* The fifth bit of the second EVEX byte is 1's compliment of the
3545 REX_R bit in VREX. */
3546 if (!(i.vrex & REX_R))
3547 i.vex.bytes[1] |= 0x10;
3548 else
3549 vrex_used |= REX_R;
3550
3551 if ((i.reg_operands + i.imm_operands) == i.operands)
3552 {
3553 /* When all operands are registers, the REX_X bit in REX is not
3554 used. We reuse it to encode the upper 16 registers, which is
3555 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3556 as 1's compliment. */
3557 if ((i.vrex & REX_B))
3558 {
3559 vrex_used |= REX_B;
3560 i.vex.bytes[1] &= ~0x40;
3561 }
3562 }
3563
3564 /* EVEX instructions shouldn't need the REX prefix. */
3565 i.vrex &= ~vrex_used;
3566 gas_assert (i.vrex == 0);
3567
3568 /* Check the REX.W bit. */
3569 w = (i.rex & REX_W) ? 1 : 0;
3570 if (i.tm.opcode_modifier.vexw)
3571 {
3572 if (i.tm.opcode_modifier.vexw == VEXW1)
3573 w = 1;
3574 }
3575 /* If w is not set it means we are dealing with WIG instruction. */
3576 else if (!w)
3577 {
3578 if (evexwig == evexw1)
3579 w = 1;
3580 }
3581
3582 /* Encode the U bit. */
3583 implied_prefix |= 0x4;
3584
3585 /* The third byte of the EVEX prefix. */
3586 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3587
3588 /* The fourth byte of the EVEX prefix. */
3589 /* The zeroing-masking bit. */
3590 if (i.mask && i.mask->zeroing)
3591 i.vex.bytes[3] |= 0x80;
3592
3593 /* Don't always set the broadcast bit if there is no RC. */
3594 if (!i.rounding)
3595 {
3596 /* Encode the vector length. */
3597 unsigned int vec_length;
3598
3599 if (!i.tm.opcode_modifier.evex
3600 || i.tm.opcode_modifier.evex == EVEXDYN)
3601 {
3602 unsigned int op;
3603
3604 vec_length = 0;
3605 for (op = 0; op < i.tm.operands; ++op)
3606 if (i.tm.operand_types[op].bitfield.xmmword
3607 + i.tm.operand_types[op].bitfield.ymmword
3608 + i.tm.operand_types[op].bitfield.zmmword > 1)
3609 {
3610 if (i.types[op].bitfield.zmmword)
3611 i.tm.opcode_modifier.evex = EVEX512;
3612 else if (i.types[op].bitfield.ymmword)
3613 i.tm.opcode_modifier.evex = EVEX256;
3614 else if (i.types[op].bitfield.xmmword)
3615 i.tm.opcode_modifier.evex = EVEX128;
3616 else
3617 continue;
3618 break;
3619 }
3620 }
3621
3622 switch (i.tm.opcode_modifier.evex)
3623 {
3624 case EVEXLIG: /* LL' is ignored */
3625 vec_length = evexlig << 5;
3626 break;
3627 case EVEX128:
3628 vec_length = 0 << 5;
3629 break;
3630 case EVEX256:
3631 vec_length = 1 << 5;
3632 break;
3633 case EVEX512:
3634 vec_length = 2 << 5;
3635 break;
3636 default:
3637 abort ();
3638 break;
3639 }
3640 i.vex.bytes[3] |= vec_length;
3641 /* Encode the broadcast bit. */
3642 if (i.broadcast)
3643 i.vex.bytes[3] |= 0x10;
3644 }
3645 else
3646 {
3647 if (i.rounding->type != saeonly)
3648 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3649 else
3650 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3651 }
3652
3653 if (i.mask && i.mask->mask)
3654 i.vex.bytes[3] |= i.mask->mask->reg_num;
3655 }
3656
3657 static void
3658 process_immext (void)
3659 {
3660 expressionS *exp;
3661
3662 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3663 && i.operands > 0)
3664 {
3665 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3666 with an opcode suffix which is coded in the same place as an
3667 8-bit immediate field would be.
3668 Here we check those operands and remove them afterwards. */
3669 unsigned int x;
3670
3671 for (x = 0; x < i.operands; x++)
3672 if (register_number (i.op[x].regs) != x)
3673 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3674 register_prefix, i.op[x].regs->reg_name, x + 1,
3675 i.tm.name);
3676
3677 i.operands = 0;
3678 }
3679
3680 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3681 {
3682 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3683 suffix which is coded in the same place as an 8-bit immediate
3684 field would be.
3685 Here we check those operands and remove them afterwards. */
3686 unsigned int x;
3687
3688 if (i.operands != 3)
3689 abort();
3690
3691 for (x = 0; x < 2; x++)
3692 if (register_number (i.op[x].regs) != x)
3693 goto bad_register_operand;
3694
3695 /* Check for third operand for mwaitx/monitorx insn. */
3696 if (register_number (i.op[x].regs)
3697 != (x + (i.tm.extension_opcode == 0xfb)))
3698 {
3699 bad_register_operand:
3700 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3701 register_prefix, i.op[x].regs->reg_name, x+1,
3702 i.tm.name);
3703 }
3704
3705 i.operands = 0;
3706 }
3707
3708 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3709 which is coded in the same place as an 8-bit immediate field
3710 would be. Here we fake an 8-bit immediate operand from the
3711 opcode suffix stored in tm.extension_opcode.
3712
3713 AVX instructions also use this encoding, for some of
3714 3 argument instructions. */
3715
3716 gas_assert (i.imm_operands <= 1
3717 && (i.operands <= 2
3718 || ((i.tm.opcode_modifier.vex
3719 || i.tm.opcode_modifier.vexopcode
3720 || is_evex_encoding (&i.tm))
3721 && i.operands <= 4)));
3722
3723 exp = &im_expressions[i.imm_operands++];
3724 i.op[i.operands].imms = exp;
3725 i.types[i.operands] = imm8;
3726 i.operands++;
3727 exp->X_op = O_constant;
3728 exp->X_add_number = i.tm.extension_opcode;
3729 i.tm.extension_opcode = None;
3730 }
3731
3732
3733 static int
3734 check_hle (void)
3735 {
3736 switch (i.tm.opcode_modifier.hleprefixok)
3737 {
3738 default:
3739 abort ();
3740 case HLEPrefixNone:
3741 as_bad (_("invalid instruction `%s' after `%s'"),
3742 i.tm.name, i.hle_prefix);
3743 return 0;
3744 case HLEPrefixLock:
3745 if (i.prefix[LOCK_PREFIX])
3746 return 1;
3747 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3748 return 0;
3749 case HLEPrefixAny:
3750 return 1;
3751 case HLEPrefixRelease:
3752 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3753 {
3754 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3755 i.tm.name);
3756 return 0;
3757 }
3758 if (i.mem_operands == 0
3759 || !operand_type_check (i.types[i.operands - 1], anymem))
3760 {
3761 as_bad (_("memory destination needed for instruction `%s'"
3762 " after `xrelease'"), i.tm.name);
3763 return 0;
3764 }
3765 return 1;
3766 }
3767 }
3768
3769 /* Try the shortest encoding by shortening operand size. */
3770
3771 static void
3772 optimize_encoding (void)
3773 {
3774 int j;
3775
3776 if (optimize_for_space
3777 && i.reg_operands == 1
3778 && i.imm_operands == 1
3779 && !i.types[1].bitfield.byte
3780 && i.op[0].imms->X_op == O_constant
3781 && fits_in_imm7 (i.op[0].imms->X_add_number)
3782 && ((i.tm.base_opcode == 0xa8
3783 && i.tm.extension_opcode == None)
3784 || (i.tm.base_opcode == 0xf6
3785 && i.tm.extension_opcode == 0x0)))
3786 {
3787 /* Optimize: -Os:
3788 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3789 */
3790 unsigned int base_regnum = i.op[1].regs->reg_num;
3791 if (flag_code == CODE_64BIT || base_regnum < 4)
3792 {
3793 i.types[1].bitfield.byte = 1;
3794 /* Ignore the suffix. */
3795 i.suffix = 0;
3796 if (base_regnum >= 4
3797 && !(i.op[1].regs->reg_flags & RegRex))
3798 {
3799 /* Handle SP, BP, SI and DI registers. */
3800 if (i.types[1].bitfield.word)
3801 j = 16;
3802 else if (i.types[1].bitfield.dword)
3803 j = 32;
3804 else
3805 j = 48;
3806 i.op[1].regs -= j;
3807 }
3808 }
3809 }
3810 else if (flag_code == CODE_64BIT
3811 && ((i.types[1].bitfield.qword
3812 && i.reg_operands == 1
3813 && i.imm_operands == 1
3814 && i.op[0].imms->X_op == O_constant
3815 && ((i.tm.base_opcode == 0xb0
3816 && i.tm.extension_opcode == None
3817 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3818 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3819 && (((i.tm.base_opcode == 0x24
3820 || i.tm.base_opcode == 0xa8)
3821 && i.tm.extension_opcode == None)
3822 || (i.tm.base_opcode == 0x80
3823 && i.tm.extension_opcode == 0x4)
3824 || ((i.tm.base_opcode == 0xf6
3825 || i.tm.base_opcode == 0xc6)
3826 && i.tm.extension_opcode == 0x0)))))
3827 || (i.types[0].bitfield.qword
3828 && ((i.reg_operands == 2
3829 && i.op[0].regs == i.op[1].regs
3830 && ((i.tm.base_opcode == 0x30
3831 || i.tm.base_opcode == 0x28)
3832 && i.tm.extension_opcode == None))
3833 || (i.reg_operands == 1
3834 && i.operands == 1
3835 && i.tm.base_opcode == 0x30
3836 && i.tm.extension_opcode == None)))))
3837 {
3838 /* Optimize: -O:
3839 andq $imm31, %r64 -> andl $imm31, %r32
3840 testq $imm31, %r64 -> testl $imm31, %r32
3841 xorq %r64, %r64 -> xorl %r32, %r32
3842 subq %r64, %r64 -> subl %r32, %r32
3843 movq $imm31, %r64 -> movl $imm31, %r32
3844 movq $imm32, %r64 -> movl $imm32, %r32
3845 */
3846 i.tm.opcode_modifier.norex64 = 1;
3847 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3848 {
3849 /* Handle
3850 movq $imm31, %r64 -> movl $imm31, %r32
3851 movq $imm32, %r64 -> movl $imm32, %r32
3852 */
3853 i.tm.operand_types[0].bitfield.imm32 = 1;
3854 i.tm.operand_types[0].bitfield.imm32s = 0;
3855 i.tm.operand_types[0].bitfield.imm64 = 0;
3856 i.types[0].bitfield.imm32 = 1;
3857 i.types[0].bitfield.imm32s = 0;
3858 i.types[0].bitfield.imm64 = 0;
3859 i.types[1].bitfield.dword = 1;
3860 i.types[1].bitfield.qword = 0;
3861 if (i.tm.base_opcode == 0xc6)
3862 {
3863 /* Handle
3864 movq $imm31, %r64 -> movl $imm31, %r32
3865 */
3866 i.tm.base_opcode = 0xb0;
3867 i.tm.extension_opcode = None;
3868 i.tm.opcode_modifier.shortform = 1;
3869 i.tm.opcode_modifier.modrm = 0;
3870 }
3871 }
3872 }
3873 else if (optimize > 1
3874 && i.reg_operands == 3
3875 && i.op[0].regs == i.op[1].regs
3876 && !i.types[2].bitfield.xmmword
3877 && (i.tm.opcode_modifier.vex
3878 || (!i.mask
3879 && !i.rounding
3880 && is_evex_encoding (&i.tm)
3881 && (i.vec_encoding != vex_encoding_evex
3882 || i.tm.cpu_flags.bitfield.cpuavx512vl
3883 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3884 && ((i.tm.base_opcode == 0x55
3885 || i.tm.base_opcode == 0x6655
3886 || i.tm.base_opcode == 0x66df
3887 || i.tm.base_opcode == 0x57
3888 || i.tm.base_opcode == 0x6657
3889 || i.tm.base_opcode == 0x66ef
3890 || i.tm.base_opcode == 0x66f8
3891 || i.tm.base_opcode == 0x66f9
3892 || i.tm.base_opcode == 0x66fa
3893 || i.tm.base_opcode == 0x66fb)
3894 && i.tm.extension_opcode == None))
3895 {
3896 /* Optimize: -O2:
3897 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3898 vpsubq and vpsubw:
3899 EVEX VOP %zmmM, %zmmM, %zmmN
3900 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3901 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3902 EVEX VOP %ymmM, %ymmM, %ymmN
3903 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3904 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3905 VEX VOP %ymmM, %ymmM, %ymmN
3906 -> VEX VOP %xmmM, %xmmM, %xmmN
3907 VOP, one of vpandn and vpxor:
3908 VEX VOP %ymmM, %ymmM, %ymmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN
3910 VOP, one of vpandnd and vpandnq:
3911 EVEX VOP %zmmM, %zmmM, %zmmN
3912 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3913 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3914 EVEX VOP %ymmM, %ymmM, %ymmN
3915 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3916 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3917 VOP, one of vpxord and vpxorq:
3918 EVEX VOP %zmmM, %zmmM, %zmmN
3919 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3920 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3921 EVEX VOP %ymmM, %ymmM, %ymmN
3922 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3923 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3924 */
3925 if (is_evex_encoding (&i.tm))
3926 {
3927 if (i.vec_encoding == vex_encoding_evex)
3928 i.tm.opcode_modifier.evex = EVEX128;
3929 else
3930 {
3931 i.tm.opcode_modifier.vex = VEX128;
3932 i.tm.opcode_modifier.vexw = VEXW0;
3933 i.tm.opcode_modifier.evex = 0;
3934 }
3935 }
3936 else
3937 i.tm.opcode_modifier.vex = VEX128;
3938
3939 if (i.tm.opcode_modifier.vex)
3940 for (j = 0; j < 3; j++)
3941 {
3942 i.types[j].bitfield.xmmword = 1;
3943 i.types[j].bitfield.ymmword = 0;
3944 }
3945 }
3946 }
3947
3948 /* This is the guts of the machine-dependent assembler. LINE points to a
3949 machine dependent instruction. This function is supposed to emit
3950 the frags/bytes it assembles to. */
3951
3952 void
3953 md_assemble (char *line)
3954 {
3955 unsigned int j;
3956 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3957 const insn_template *t;
3958
3959 /* Initialize globals. */
3960 memset (&i, '\0', sizeof (i));
3961 for (j = 0; j < MAX_OPERANDS; j++)
3962 i.reloc[j] = NO_RELOC;
3963 memset (disp_expressions, '\0', sizeof (disp_expressions));
3964 memset (im_expressions, '\0', sizeof (im_expressions));
3965 save_stack_p = save_stack;
3966
3967 /* First parse an instruction mnemonic & call i386_operand for the operands.
3968 We assume that the scrubber has arranged it so that line[0] is the valid
3969 start of a (possibly prefixed) mnemonic. */
3970
3971 line = parse_insn (line, mnemonic);
3972 if (line == NULL)
3973 return;
3974 mnem_suffix = i.suffix;
3975
3976 line = parse_operands (line, mnemonic);
3977 this_operand = -1;
3978 xfree (i.memop1_string);
3979 i.memop1_string = NULL;
3980 if (line == NULL)
3981 return;
3982
3983 /* Now we've parsed the mnemonic into a set of templates, and have the
3984 operands at hand. */
3985
3986 /* All intel opcodes have reversed operands except for "bound" and
3987 "enter". We also don't reverse intersegment "jmp" and "call"
3988 instructions with 2 immediate operands so that the immediate segment
3989 precedes the offset, as it does when in AT&T mode. */
3990 if (intel_syntax
3991 && i.operands > 1
3992 && (strcmp (mnemonic, "bound") != 0)
3993 && (strcmp (mnemonic, "invlpga") != 0)
3994 && !(operand_type_check (i.types[0], imm)
3995 && operand_type_check (i.types[1], imm)))
3996 swap_operands ();
3997
3998 /* The order of the immediates should be reversed
3999 for 2 immediates extrq and insertq instructions */
4000 if (i.imm_operands == 2
4001 && (strcmp (mnemonic, "extrq") == 0
4002 || strcmp (mnemonic, "insertq") == 0))
4003 swap_2_operands (0, 1);
4004
4005 if (i.imm_operands)
4006 optimize_imm ();
4007
4008 /* Don't optimize displacement for movabs since it only takes 64bit
4009 displacement. */
4010 if (i.disp_operands
4011 && i.disp_encoding != disp_encoding_32bit
4012 && (flag_code != CODE_64BIT
4013 || strcmp (mnemonic, "movabs") != 0))
4014 optimize_disp ();
4015
4016 /* Next, we find a template that matches the given insn,
4017 making sure the overlap of the given operands types is consistent
4018 with the template operand types. */
4019
4020 if (!(t = match_template (mnem_suffix)))
4021 return;
4022
4023 if (sse_check != check_none
4024 && !i.tm.opcode_modifier.noavx
4025 && !i.tm.cpu_flags.bitfield.cpuavx
4026 && (i.tm.cpu_flags.bitfield.cpusse
4027 || i.tm.cpu_flags.bitfield.cpusse2
4028 || i.tm.cpu_flags.bitfield.cpusse3
4029 || i.tm.cpu_flags.bitfield.cpussse3
4030 || i.tm.cpu_flags.bitfield.cpusse4_1
4031 || i.tm.cpu_flags.bitfield.cpusse4_2
4032 || i.tm.cpu_flags.bitfield.cpupclmul
4033 || i.tm.cpu_flags.bitfield.cpuaes
4034 || i.tm.cpu_flags.bitfield.cpugfni))
4035 {
4036 (sse_check == check_warning
4037 ? as_warn
4038 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4039 }
4040
4041 /* Zap movzx and movsx suffix. The suffix has been set from
4042 "word ptr" or "byte ptr" on the source operand in Intel syntax
4043 or extracted from mnemonic in AT&T syntax. But we'll use
4044 the destination register to choose the suffix for encoding. */
4045 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4046 {
4047 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4048 there is no suffix, the default will be byte extension. */
4049 if (i.reg_operands != 2
4050 && !i.suffix
4051 && intel_syntax)
4052 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4053
4054 i.suffix = 0;
4055 }
4056
4057 if (i.tm.opcode_modifier.fwait)
4058 if (!add_prefix (FWAIT_OPCODE))
4059 return;
4060
4061 /* Check if REP prefix is OK. */
4062 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4063 {
4064 as_bad (_("invalid instruction `%s' after `%s'"),
4065 i.tm.name, i.rep_prefix);
4066 return;
4067 }
4068
4069 /* Check for lock without a lockable instruction. Destination operand
4070 must be memory unless it is xchg (0x86). */
4071 if (i.prefix[LOCK_PREFIX]
4072 && (!i.tm.opcode_modifier.islockable
4073 || i.mem_operands == 0
4074 || (i.tm.base_opcode != 0x86
4075 && !operand_type_check (i.types[i.operands - 1], anymem))))
4076 {
4077 as_bad (_("expecting lockable instruction after `lock'"));
4078 return;
4079 }
4080
4081 /* Check if HLE prefix is OK. */
4082 if (i.hle_prefix && !check_hle ())
4083 return;
4084
4085 /* Check BND prefix. */
4086 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4087 as_bad (_("expecting valid branch instruction after `bnd'"));
4088
4089 /* Check NOTRACK prefix. */
4090 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4091 as_bad (_("expecting indirect branch instruction after `notrack'"));
4092
4093 if (i.tm.cpu_flags.bitfield.cpumpx)
4094 {
4095 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4096 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4097 else if (flag_code != CODE_16BIT
4098 ? i.prefix[ADDR_PREFIX]
4099 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4100 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4101 }
4102
4103 /* Insert BND prefix. */
4104 if (add_bnd_prefix
4105 && i.tm.opcode_modifier.bndprefixok
4106 && !i.prefix[BND_PREFIX])
4107 add_prefix (BND_PREFIX_OPCODE);
4108
4109 /* Check string instruction segment overrides. */
4110 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4111 {
4112 if (!check_string ())
4113 return;
4114 i.disp_operands = 0;
4115 }
4116
4117 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4118 optimize_encoding ();
4119
4120 if (!process_suffix ())
4121 return;
4122
4123 /* Update operand types. */
4124 for (j = 0; j < i.operands; j++)
4125 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4126
4127 /* Make still unresolved immediate matches conform to size of immediate
4128 given in i.suffix. */
4129 if (!finalize_imm ())
4130 return;
4131
4132 if (i.types[0].bitfield.imm1)
4133 i.imm_operands = 0; /* kludge for shift insns. */
4134
4135 /* We only need to check those implicit registers for instructions
4136 with 3 operands or less. */
4137 if (i.operands <= 3)
4138 for (j = 0; j < i.operands; j++)
4139 if (i.types[j].bitfield.inoutportreg
4140 || i.types[j].bitfield.shiftcount
4141 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4142 i.reg_operands--;
4143
4144 /* ImmExt should be processed after SSE2AVX. */
4145 if (!i.tm.opcode_modifier.sse2avx
4146 && i.tm.opcode_modifier.immext)
4147 process_immext ();
4148
4149 /* For insns with operands there are more diddles to do to the opcode. */
4150 if (i.operands)
4151 {
4152 if (!process_operands ())
4153 return;
4154 }
4155 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4156 {
4157 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4158 as_warn (_("translating to `%sp'"), i.tm.name);
4159 }
4160
4161 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4162 || is_evex_encoding (&i.tm))
4163 {
4164 if (flag_code == CODE_16BIT)
4165 {
4166 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4167 i.tm.name);
4168 return;
4169 }
4170
4171 if (i.tm.opcode_modifier.vex)
4172 build_vex_prefix (t);
4173 else
4174 build_evex_prefix ();
4175 }
4176
4177 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4178 instructions may define INT_OPCODE as well, so avoid this corner
4179 case for those instructions that use MODRM. */
4180 if (i.tm.base_opcode == INT_OPCODE
4181 && !i.tm.opcode_modifier.modrm
4182 && i.op[0].imms->X_add_number == 3)
4183 {
4184 i.tm.base_opcode = INT3_OPCODE;
4185 i.imm_operands = 0;
4186 }
4187
4188 if ((i.tm.opcode_modifier.jump
4189 || i.tm.opcode_modifier.jumpbyte
4190 || i.tm.opcode_modifier.jumpdword)
4191 && i.op[0].disps->X_op == O_constant)
4192 {
4193 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4194 the absolute address given by the constant. Since ix86 jumps and
4195 calls are pc relative, we need to generate a reloc. */
4196 i.op[0].disps->X_add_symbol = &abs_symbol;
4197 i.op[0].disps->X_op = O_symbol;
4198 }
4199
4200 if (i.tm.opcode_modifier.rex64)
4201 i.rex |= REX_W;
4202
4203 /* For 8 bit registers we need an empty rex prefix. Also if the
4204 instruction already has a prefix, we need to convert old
4205 registers to new ones. */
4206
4207 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4208 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4209 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4210 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4211 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4212 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4213 && i.rex != 0))
4214 {
4215 int x;
4216
4217 i.rex |= REX_OPCODE;
4218 for (x = 0; x < 2; x++)
4219 {
4220 /* Look for 8 bit operand that uses old registers. */
4221 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4222 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4223 {
4224 /* In case it is "hi" register, give up. */
4225 if (i.op[x].regs->reg_num > 3)
4226 as_bad (_("can't encode register '%s%s' in an "
4227 "instruction requiring REX prefix."),
4228 register_prefix, i.op[x].regs->reg_name);
4229
4230 /* Otherwise it is equivalent to the extended register.
4231 Since the encoding doesn't change this is merely
4232 cosmetic cleanup for debug output. */
4233
4234 i.op[x].regs = i.op[x].regs + 8;
4235 }
4236 }
4237 }
4238
4239 if (i.rex == 0 && i.rex_encoding)
4240 {
4241 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4242 that uses legacy register. If it is "hi" register, don't add
4243 the REX_OPCODE byte. */
4244 int x;
4245 for (x = 0; x < 2; x++)
4246 if (i.types[x].bitfield.reg
4247 && i.types[x].bitfield.byte
4248 && (i.op[x].regs->reg_flags & RegRex64) == 0
4249 && i.op[x].regs->reg_num > 3)
4250 {
4251 i.rex_encoding = FALSE;
4252 break;
4253 }
4254
4255 if (i.rex_encoding)
4256 i.rex = REX_OPCODE;
4257 }
4258
4259 if (i.rex != 0)
4260 add_prefix (REX_OPCODE | i.rex);
4261
4262 /* We are ready to output the insn. */
4263 output_insn ();
4264 }
4265
4266 static char *
4267 parse_insn (char *line, char *mnemonic)
4268 {
4269 char *l = line;
4270 char *token_start = l;
4271 char *mnem_p;
4272 int supported;
4273 const insn_template *t;
4274 char *dot_p = NULL;
4275
4276 while (1)
4277 {
4278 mnem_p = mnemonic;
4279 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4280 {
4281 if (*mnem_p == '.')
4282 dot_p = mnem_p;
4283 mnem_p++;
4284 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4285 {
4286 as_bad (_("no such instruction: `%s'"), token_start);
4287 return NULL;
4288 }
4289 l++;
4290 }
4291 if (!is_space_char (*l)
4292 && *l != END_OF_INSN
4293 && (intel_syntax
4294 || (*l != PREFIX_SEPARATOR
4295 && *l != ',')))
4296 {
4297 as_bad (_("invalid character %s in mnemonic"),
4298 output_invalid (*l));
4299 return NULL;
4300 }
4301 if (token_start == l)
4302 {
4303 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4304 as_bad (_("expecting prefix; got nothing"));
4305 else
4306 as_bad (_("expecting mnemonic; got nothing"));
4307 return NULL;
4308 }
4309
4310 /* Look up instruction (or prefix) via hash table. */
4311 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4312
4313 if (*l != END_OF_INSN
4314 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4315 && current_templates
4316 && current_templates->start->opcode_modifier.isprefix)
4317 {
4318 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4319 {
4320 as_bad ((flag_code != CODE_64BIT
4321 ? _("`%s' is only supported in 64-bit mode")
4322 : _("`%s' is not supported in 64-bit mode")),
4323 current_templates->start->name);
4324 return NULL;
4325 }
4326 /* If we are in 16-bit mode, do not allow addr16 or data16.
4327 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4328 if ((current_templates->start->opcode_modifier.size16
4329 || current_templates->start->opcode_modifier.size32)
4330 && flag_code != CODE_64BIT
4331 && (current_templates->start->opcode_modifier.size32
4332 ^ (flag_code == CODE_16BIT)))
4333 {
4334 as_bad (_("redundant %s prefix"),
4335 current_templates->start->name);
4336 return NULL;
4337 }
4338 if (current_templates->start->opcode_length == 0)
4339 {
4340 /* Handle pseudo prefixes. */
4341 switch (current_templates->start->base_opcode)
4342 {
4343 case 0x0:
4344 /* {disp8} */
4345 i.disp_encoding = disp_encoding_8bit;
4346 break;
4347 case 0x1:
4348 /* {disp32} */
4349 i.disp_encoding = disp_encoding_32bit;
4350 break;
4351 case 0x2:
4352 /* {load} */
4353 i.dir_encoding = dir_encoding_load;
4354 break;
4355 case 0x3:
4356 /* {store} */
4357 i.dir_encoding = dir_encoding_store;
4358 break;
4359 case 0x4:
4360 /* {vex2} */
4361 i.vec_encoding = vex_encoding_vex2;
4362 break;
4363 case 0x5:
4364 /* {vex3} */
4365 i.vec_encoding = vex_encoding_vex3;
4366 break;
4367 case 0x6:
4368 /* {evex} */
4369 i.vec_encoding = vex_encoding_evex;
4370 break;
4371 case 0x7:
4372 /* {rex} */
4373 i.rex_encoding = TRUE;
4374 break;
4375 case 0x8:
4376 /* {nooptimize} */
4377 i.no_optimize = TRUE;
4378 break;
4379 default:
4380 abort ();
4381 }
4382 }
4383 else
4384 {
4385 /* Add prefix, checking for repeated prefixes. */
4386 switch (add_prefix (current_templates->start->base_opcode))
4387 {
4388 case PREFIX_EXIST:
4389 return NULL;
4390 case PREFIX_DS:
4391 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4392 i.notrack_prefix = current_templates->start->name;
4393 break;
4394 case PREFIX_REP:
4395 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4396 i.hle_prefix = current_templates->start->name;
4397 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4398 i.bnd_prefix = current_templates->start->name;
4399 else
4400 i.rep_prefix = current_templates->start->name;
4401 break;
4402 default:
4403 break;
4404 }
4405 }
4406 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4407 token_start = ++l;
4408 }
4409 else
4410 break;
4411 }
4412
4413 if (!current_templates)
4414 {
4415 /* Check if we should swap operand or force 32bit displacement in
4416 encoding. */
4417 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4418 i.dir_encoding = dir_encoding_store;
4419 else if (mnem_p - 3 == dot_p
4420 && dot_p[1] == 'd'
4421 && dot_p[2] == '8')
4422 i.disp_encoding = disp_encoding_8bit;
4423 else if (mnem_p - 4 == dot_p
4424 && dot_p[1] == 'd'
4425 && dot_p[2] == '3'
4426 && dot_p[3] == '2')
4427 i.disp_encoding = disp_encoding_32bit;
4428 else
4429 goto check_suffix;
4430 mnem_p = dot_p;
4431 *dot_p = '\0';
4432 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4433 }
4434
4435 if (!current_templates)
4436 {
4437 check_suffix:
4438 /* See if we can get a match by trimming off a suffix. */
4439 switch (mnem_p[-1])
4440 {
4441 case WORD_MNEM_SUFFIX:
4442 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4443 i.suffix = SHORT_MNEM_SUFFIX;
4444 else
4445 /* Fall through. */
4446 case BYTE_MNEM_SUFFIX:
4447 case QWORD_MNEM_SUFFIX:
4448 i.suffix = mnem_p[-1];
4449 mnem_p[-1] = '\0';
4450 current_templates = (const templates *) hash_find (op_hash,
4451 mnemonic);
4452 break;
4453 case SHORT_MNEM_SUFFIX:
4454 case LONG_MNEM_SUFFIX:
4455 if (!intel_syntax)
4456 {
4457 i.suffix = mnem_p[-1];
4458 mnem_p[-1] = '\0';
4459 current_templates = (const templates *) hash_find (op_hash,
4460 mnemonic);
4461 }
4462 break;
4463
4464 /* Intel Syntax. */
4465 case 'd':
4466 if (intel_syntax)
4467 {
4468 if (intel_float_operand (mnemonic) == 1)
4469 i.suffix = SHORT_MNEM_SUFFIX;
4470 else
4471 i.suffix = LONG_MNEM_SUFFIX;
4472 mnem_p[-1] = '\0';
4473 current_templates = (const templates *) hash_find (op_hash,
4474 mnemonic);
4475 }
4476 break;
4477 }
4478 if (!current_templates)
4479 {
4480 as_bad (_("no such instruction: `%s'"), token_start);
4481 return NULL;
4482 }
4483 }
4484
4485 if (current_templates->start->opcode_modifier.jump
4486 || current_templates->start->opcode_modifier.jumpbyte)
4487 {
4488 /* Check for a branch hint. We allow ",pt" and ",pn" for
4489 predict taken and predict not taken respectively.
4490 I'm not sure that branch hints actually do anything on loop
4491 and jcxz insns (JumpByte) for current Pentium4 chips. They
4492 may work in the future and it doesn't hurt to accept them
4493 now. */
4494 if (l[0] == ',' && l[1] == 'p')
4495 {
4496 if (l[2] == 't')
4497 {
4498 if (!add_prefix (DS_PREFIX_OPCODE))
4499 return NULL;
4500 l += 3;
4501 }
4502 else if (l[2] == 'n')
4503 {
4504 if (!add_prefix (CS_PREFIX_OPCODE))
4505 return NULL;
4506 l += 3;
4507 }
4508 }
4509 }
4510 /* Any other comma loses. */
4511 if (*l == ',')
4512 {
4513 as_bad (_("invalid character %s in mnemonic"),
4514 output_invalid (*l));
4515 return NULL;
4516 }
4517
4518 /* Check if instruction is supported on specified architecture. */
4519 supported = 0;
4520 for (t = current_templates->start; t < current_templates->end; ++t)
4521 {
4522 supported |= cpu_flags_match (t);
4523 if (supported == CPU_FLAGS_PERFECT_MATCH)
4524 {
4525 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4526 as_warn (_("use .code16 to ensure correct addressing mode"));
4527
4528 return l;
4529 }
4530 }
4531
4532 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4533 as_bad (flag_code == CODE_64BIT
4534 ? _("`%s' is not supported in 64-bit mode")
4535 : _("`%s' is only supported in 64-bit mode"),
4536 current_templates->start->name);
4537 else
4538 as_bad (_("`%s' is not supported on `%s%s'"),
4539 current_templates->start->name,
4540 cpu_arch_name ? cpu_arch_name : default_arch,
4541 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4542
4543 return NULL;
4544 }
4545
4546 static char *
4547 parse_operands (char *l, const char *mnemonic)
4548 {
4549 char *token_start;
4550
4551 /* 1 if operand is pending after ','. */
4552 unsigned int expecting_operand = 0;
4553
4554 /* Non-zero if operand parens not balanced. */
4555 unsigned int paren_not_balanced;
4556
4557 while (*l != END_OF_INSN)
4558 {
4559 /* Skip optional white space before operand. */
4560 if (is_space_char (*l))
4561 ++l;
4562 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4563 {
4564 as_bad (_("invalid character %s before operand %d"),
4565 output_invalid (*l),
4566 i.operands + 1);
4567 return NULL;
4568 }
4569 token_start = l; /* After white space. */
4570 paren_not_balanced = 0;
4571 while (paren_not_balanced || *l != ',')
4572 {
4573 if (*l == END_OF_INSN)
4574 {
4575 if (paren_not_balanced)
4576 {
4577 if (!intel_syntax)
4578 as_bad (_("unbalanced parenthesis in operand %d."),
4579 i.operands + 1);
4580 else
4581 as_bad (_("unbalanced brackets in operand %d."),
4582 i.operands + 1);
4583 return NULL;
4584 }
4585 else
4586 break; /* we are done */
4587 }
4588 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4589 {
4590 as_bad (_("invalid character %s in operand %d"),
4591 output_invalid (*l),
4592 i.operands + 1);
4593 return NULL;
4594 }
4595 if (!intel_syntax)
4596 {
4597 if (*l == '(')
4598 ++paren_not_balanced;
4599 if (*l == ')')
4600 --paren_not_balanced;
4601 }
4602 else
4603 {
4604 if (*l == '[')
4605 ++paren_not_balanced;
4606 if (*l == ']')
4607 --paren_not_balanced;
4608 }
4609 l++;
4610 }
4611 if (l != token_start)
4612 { /* Yes, we've read in another operand. */
4613 unsigned int operand_ok;
4614 this_operand = i.operands++;
4615 if (i.operands > MAX_OPERANDS)
4616 {
4617 as_bad (_("spurious operands; (%d operands/instruction max)"),
4618 MAX_OPERANDS);
4619 return NULL;
4620 }
4621 i.types[this_operand].bitfield.unspecified = 1;
4622 /* Now parse operand adding info to 'i' as we go along. */
4623 END_STRING_AND_SAVE (l);
4624
4625 if (intel_syntax)
4626 operand_ok =
4627 i386_intel_operand (token_start,
4628 intel_float_operand (mnemonic));
4629 else
4630 operand_ok = i386_att_operand (token_start);
4631
4632 RESTORE_END_STRING (l);
4633 if (!operand_ok)
4634 return NULL;
4635 }
4636 else
4637 {
4638 if (expecting_operand)
4639 {
4640 expecting_operand_after_comma:
4641 as_bad (_("expecting operand after ','; got nothing"));
4642 return NULL;
4643 }
4644 if (*l == ',')
4645 {
4646 as_bad (_("expecting operand before ','; got nothing"));
4647 return NULL;
4648 }
4649 }
4650
4651 /* Now *l must be either ',' or END_OF_INSN. */
4652 if (*l == ',')
4653 {
4654 if (*++l == END_OF_INSN)
4655 {
4656 /* Just skip it, if it's \n complain. */
4657 goto expecting_operand_after_comma;
4658 }
4659 expecting_operand = 1;
4660 }
4661 }
4662 return l;
4663 }
4664
4665 static void
4666 swap_2_operands (int xchg1, int xchg2)
4667 {
4668 union i386_op temp_op;
4669 i386_operand_type temp_type;
4670 enum bfd_reloc_code_real temp_reloc;
4671
4672 temp_type = i.types[xchg2];
4673 i.types[xchg2] = i.types[xchg1];
4674 i.types[xchg1] = temp_type;
4675 temp_op = i.op[xchg2];
4676 i.op[xchg2] = i.op[xchg1];
4677 i.op[xchg1] = temp_op;
4678 temp_reloc = i.reloc[xchg2];
4679 i.reloc[xchg2] = i.reloc[xchg1];
4680 i.reloc[xchg1] = temp_reloc;
4681
4682 if (i.mask)
4683 {
4684 if (i.mask->operand == xchg1)
4685 i.mask->operand = xchg2;
4686 else if (i.mask->operand == xchg2)
4687 i.mask->operand = xchg1;
4688 }
4689 if (i.broadcast)
4690 {
4691 if (i.broadcast->operand == xchg1)
4692 i.broadcast->operand = xchg2;
4693 else if (i.broadcast->operand == xchg2)
4694 i.broadcast->operand = xchg1;
4695 }
4696 if (i.rounding)
4697 {
4698 if (i.rounding->operand == xchg1)
4699 i.rounding->operand = xchg2;
4700 else if (i.rounding->operand == xchg2)
4701 i.rounding->operand = xchg1;
4702 }
4703 }
4704
4705 static void
4706 swap_operands (void)
4707 {
4708 switch (i.operands)
4709 {
4710 case 5:
4711 case 4:
4712 swap_2_operands (1, i.operands - 2);
4713 /* Fall through. */
4714 case 3:
4715 case 2:
4716 swap_2_operands (0, i.operands - 1);
4717 break;
4718 default:
4719 abort ();
4720 }
4721
4722 if (i.mem_operands == 2)
4723 {
4724 const seg_entry *temp_seg;
4725 temp_seg = i.seg[0];
4726 i.seg[0] = i.seg[1];
4727 i.seg[1] = temp_seg;
4728 }
4729 }
4730
4731 /* Try to ensure constant immediates are represented in the smallest
4732 opcode possible. */
4733 static void
4734 optimize_imm (void)
4735 {
4736 char guess_suffix = 0;
4737 int op;
4738
4739 if (i.suffix)
4740 guess_suffix = i.suffix;
4741 else if (i.reg_operands)
4742 {
4743 /* Figure out a suffix from the last register operand specified.
4744 We can't do this properly yet, ie. excluding InOutPortReg,
4745 but the following works for instructions with immediates.
4746 In any case, we can't set i.suffix yet. */
4747 for (op = i.operands; --op >= 0;)
4748 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4749 {
4750 guess_suffix = BYTE_MNEM_SUFFIX;
4751 break;
4752 }
4753 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4754 {
4755 guess_suffix = WORD_MNEM_SUFFIX;
4756 break;
4757 }
4758 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4759 {
4760 guess_suffix = LONG_MNEM_SUFFIX;
4761 break;
4762 }
4763 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4764 {
4765 guess_suffix = QWORD_MNEM_SUFFIX;
4766 break;
4767 }
4768 }
4769 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4770 guess_suffix = WORD_MNEM_SUFFIX;
4771
4772 for (op = i.operands; --op >= 0;)
4773 if (operand_type_check (i.types[op], imm))
4774 {
4775 switch (i.op[op].imms->X_op)
4776 {
4777 case O_constant:
4778 /* If a suffix is given, this operand may be shortened. */
4779 switch (guess_suffix)
4780 {
4781 case LONG_MNEM_SUFFIX:
4782 i.types[op].bitfield.imm32 = 1;
4783 i.types[op].bitfield.imm64 = 1;
4784 break;
4785 case WORD_MNEM_SUFFIX:
4786 i.types[op].bitfield.imm16 = 1;
4787 i.types[op].bitfield.imm32 = 1;
4788 i.types[op].bitfield.imm32s = 1;
4789 i.types[op].bitfield.imm64 = 1;
4790 break;
4791 case BYTE_MNEM_SUFFIX:
4792 i.types[op].bitfield.imm8 = 1;
4793 i.types[op].bitfield.imm8s = 1;
4794 i.types[op].bitfield.imm16 = 1;
4795 i.types[op].bitfield.imm32 = 1;
4796 i.types[op].bitfield.imm32s = 1;
4797 i.types[op].bitfield.imm64 = 1;
4798 break;
4799 }
4800
4801 /* If this operand is at most 16 bits, convert it
4802 to a signed 16 bit number before trying to see
4803 whether it will fit in an even smaller size.
4804 This allows a 16-bit operand such as $0xffe0 to
4805 be recognised as within Imm8S range. */
4806 if ((i.types[op].bitfield.imm16)
4807 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4808 {
4809 i.op[op].imms->X_add_number =
4810 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4811 }
4812 #ifdef BFD64
4813 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4814 if ((i.types[op].bitfield.imm32)
4815 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4816 == 0))
4817 {
4818 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4819 ^ ((offsetT) 1 << 31))
4820 - ((offsetT) 1 << 31));
4821 }
4822 #endif
4823 i.types[op]
4824 = operand_type_or (i.types[op],
4825 smallest_imm_type (i.op[op].imms->X_add_number));
4826
4827 /* We must avoid matching of Imm32 templates when 64bit
4828 only immediate is available. */
4829 if (guess_suffix == QWORD_MNEM_SUFFIX)
4830 i.types[op].bitfield.imm32 = 0;
4831 break;
4832
4833 case O_absent:
4834 case O_register:
4835 abort ();
4836
4837 /* Symbols and expressions. */
4838 default:
4839 /* Convert symbolic operand to proper sizes for matching, but don't
4840 prevent matching a set of insns that only supports sizes other
4841 than those matching the insn suffix. */
4842 {
4843 i386_operand_type mask, allowed;
4844 const insn_template *t;
4845
4846 operand_type_set (&mask, 0);
4847 operand_type_set (&allowed, 0);
4848
4849 for (t = current_templates->start;
4850 t < current_templates->end;
4851 ++t)
4852 allowed = operand_type_or (allowed,
4853 t->operand_types[op]);
4854 switch (guess_suffix)
4855 {
4856 case QWORD_MNEM_SUFFIX:
4857 mask.bitfield.imm64 = 1;
4858 mask.bitfield.imm32s = 1;
4859 break;
4860 case LONG_MNEM_SUFFIX:
4861 mask.bitfield.imm32 = 1;
4862 break;
4863 case WORD_MNEM_SUFFIX:
4864 mask.bitfield.imm16 = 1;
4865 break;
4866 case BYTE_MNEM_SUFFIX:
4867 mask.bitfield.imm8 = 1;
4868 break;
4869 default:
4870 break;
4871 }
4872 allowed = operand_type_and (mask, allowed);
4873 if (!operand_type_all_zero (&allowed))
4874 i.types[op] = operand_type_and (i.types[op], mask);
4875 }
4876 break;
4877 }
4878 }
4879 }
4880
4881 /* Try to use the smallest displacement type too. */
4882 static void
4883 optimize_disp (void)
4884 {
4885 int op;
4886
4887 for (op = i.operands; --op >= 0;)
4888 if (operand_type_check (i.types[op], disp))
4889 {
4890 if (i.op[op].disps->X_op == O_constant)
4891 {
4892 offsetT op_disp = i.op[op].disps->X_add_number;
4893
4894 if (i.types[op].bitfield.disp16
4895 && (op_disp & ~(offsetT) 0xffff) == 0)
4896 {
4897 /* If this operand is at most 16 bits, convert
4898 to a signed 16 bit number and don't use 64bit
4899 displacement. */
4900 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4901 i.types[op].bitfield.disp64 = 0;
4902 }
4903 #ifdef BFD64
4904 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4905 if (i.types[op].bitfield.disp32
4906 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4907 {
4908 /* If this operand is at most 32 bits, convert
4909 to a signed 32 bit number and don't use 64bit
4910 displacement. */
4911 op_disp &= (((offsetT) 2 << 31) - 1);
4912 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4913 i.types[op].bitfield.disp64 = 0;
4914 }
4915 #endif
4916 if (!op_disp && i.types[op].bitfield.baseindex)
4917 {
4918 i.types[op].bitfield.disp8 = 0;
4919 i.types[op].bitfield.disp16 = 0;
4920 i.types[op].bitfield.disp32 = 0;
4921 i.types[op].bitfield.disp32s = 0;
4922 i.types[op].bitfield.disp64 = 0;
4923 i.op[op].disps = 0;
4924 i.disp_operands--;
4925 }
4926 else if (flag_code == CODE_64BIT)
4927 {
4928 if (fits_in_signed_long (op_disp))
4929 {
4930 i.types[op].bitfield.disp64 = 0;
4931 i.types[op].bitfield.disp32s = 1;
4932 }
4933 if (i.prefix[ADDR_PREFIX]
4934 && fits_in_unsigned_long (op_disp))
4935 i.types[op].bitfield.disp32 = 1;
4936 }
4937 if ((i.types[op].bitfield.disp32
4938 || i.types[op].bitfield.disp32s
4939 || i.types[op].bitfield.disp16)
4940 && fits_in_disp8 (op_disp))
4941 i.types[op].bitfield.disp8 = 1;
4942 }
4943 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4944 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4945 {
4946 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4947 i.op[op].disps, 0, i.reloc[op]);
4948 i.types[op].bitfield.disp8 = 0;
4949 i.types[op].bitfield.disp16 = 0;
4950 i.types[op].bitfield.disp32 = 0;
4951 i.types[op].bitfield.disp32s = 0;
4952 i.types[op].bitfield.disp64 = 0;
4953 }
4954 else
4955 /* We only support 64bit displacement on constants. */
4956 i.types[op].bitfield.disp64 = 0;
4957 }
4958 }
4959
4960 /* Check if operands are valid for the instruction. */
4961
4962 static int
4963 check_VecOperands (const insn_template *t)
4964 {
4965 unsigned int op;
4966
4967 /* Without VSIB byte, we can't have a vector register for index. */
4968 if (!t->opcode_modifier.vecsib
4969 && i.index_reg
4970 && (i.index_reg->reg_type.bitfield.xmmword
4971 || i.index_reg->reg_type.bitfield.ymmword
4972 || i.index_reg->reg_type.bitfield.zmmword))
4973 {
4974 i.error = unsupported_vector_index_register;
4975 return 1;
4976 }
4977
4978 /* Check if default mask is allowed. */
4979 if (t->opcode_modifier.nodefmask
4980 && (!i.mask || i.mask->mask->reg_num == 0))
4981 {
4982 i.error = no_default_mask;
4983 return 1;
4984 }
4985
4986 /* For VSIB byte, we need a vector register for index, and all vector
4987 registers must be distinct. */
4988 if (t->opcode_modifier.vecsib)
4989 {
4990 if (!i.index_reg
4991 || !((t->opcode_modifier.vecsib == VecSIB128
4992 && i.index_reg->reg_type.bitfield.xmmword)
4993 || (t->opcode_modifier.vecsib == VecSIB256
4994 && i.index_reg->reg_type.bitfield.ymmword)
4995 || (t->opcode_modifier.vecsib == VecSIB512
4996 && i.index_reg->reg_type.bitfield.zmmword)))
4997 {
4998 i.error = invalid_vsib_address;
4999 return 1;
5000 }
5001
5002 gas_assert (i.reg_operands == 2 || i.mask);
5003 if (i.reg_operands == 2 && !i.mask)
5004 {
5005 gas_assert (i.types[0].bitfield.regsimd);
5006 gas_assert (i.types[0].bitfield.xmmword
5007 || i.types[0].bitfield.ymmword);
5008 gas_assert (i.types[2].bitfield.regsimd);
5009 gas_assert (i.types[2].bitfield.xmmword
5010 || i.types[2].bitfield.ymmword);
5011 if (operand_check == check_none)
5012 return 0;
5013 if (register_number (i.op[0].regs)
5014 != register_number (i.index_reg)
5015 && register_number (i.op[2].regs)
5016 != register_number (i.index_reg)
5017 && register_number (i.op[0].regs)
5018 != register_number (i.op[2].regs))
5019 return 0;
5020 if (operand_check == check_error)
5021 {
5022 i.error = invalid_vector_register_set;
5023 return 1;
5024 }
5025 as_warn (_("mask, index, and destination registers should be distinct"));
5026 }
5027 else if (i.reg_operands == 1 && i.mask)
5028 {
5029 if (i.types[1].bitfield.regsimd
5030 && (i.types[1].bitfield.xmmword
5031 || i.types[1].bitfield.ymmword
5032 || i.types[1].bitfield.zmmword)
5033 && (register_number (i.op[1].regs)
5034 == register_number (i.index_reg)))
5035 {
5036 if (operand_check == check_error)
5037 {
5038 i.error = invalid_vector_register_set;
5039 return 1;
5040 }
5041 if (operand_check != check_none)
5042 as_warn (_("index and destination registers should be distinct"));
5043 }
5044 }
5045 }
5046
5047 /* Check if broadcast is supported by the instruction and is applied
5048 to the memory operand. */
5049 if (i.broadcast)
5050 {
5051 int broadcasted_opnd_size;
5052
5053 /* Check if specified broadcast is supported in this instruction,
5054 and it's applied to memory operand of DWORD or QWORD type,
5055 depending on VecESize. */
5056 op = i.broadcast->operand;
5057 if (i.broadcast->type != t->opcode_modifier.broadcast
5058 || !i.types[op].bitfield.mem
5059 || (t->opcode_modifier.vecesize == 0
5060 && !i.types[op].bitfield.dword
5061 && !i.types[op].bitfield.unspecified)
5062 || (t->opcode_modifier.vecesize == 1
5063 && !i.types[op].bitfield.qword
5064 && !i.types[op].bitfield.unspecified))
5065 goto bad_broadcast;
5066
5067 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
5068 if (i.broadcast->type == BROADCAST_1TO16)
5069 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
5070 else if (i.broadcast->type == BROADCAST_1TO8)
5071 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
5072 else if (i.broadcast->type == BROADCAST_1TO4)
5073 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
5074 else if (i.broadcast->type == BROADCAST_1TO2)
5075 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
5076 else
5077 goto bad_broadcast;
5078
5079 if ((broadcasted_opnd_size == 256
5080 && !t->operand_types[op].bitfield.ymmword)
5081 || (broadcasted_opnd_size == 512
5082 && !t->operand_types[op].bitfield.zmmword))
5083 {
5084 bad_broadcast:
5085 i.error = unsupported_broadcast;
5086 return 1;
5087 }
5088 }
5089 /* If broadcast is supported in this instruction, we need to check if
5090 operand of one-element size isn't specified without broadcast. */
5091 else if (t->opcode_modifier.broadcast && i.mem_operands)
5092 {
5093 /* Find memory operand. */
5094 for (op = 0; op < i.operands; op++)
5095 if (operand_type_check (i.types[op], anymem))
5096 break;
5097 gas_assert (op < i.operands);
5098 /* Check size of the memory operand. */
5099 if ((t->opcode_modifier.vecesize == 0
5100 && i.types[op].bitfield.dword)
5101 || (t->opcode_modifier.vecesize == 1
5102 && i.types[op].bitfield.qword))
5103 {
5104 i.error = broadcast_needed;
5105 return 1;
5106 }
5107 }
5108
5109 /* Check if requested masking is supported. */
5110 if (i.mask
5111 && (!t->opcode_modifier.masking
5112 || (i.mask->zeroing
5113 && t->opcode_modifier.masking == MERGING_MASKING)))
5114 {
5115 i.error = unsupported_masking;
5116 return 1;
5117 }
5118
5119 /* Check if masking is applied to dest operand. */
5120 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5121 {
5122 i.error = mask_not_on_destination;
5123 return 1;
5124 }
5125
5126 /* Check RC/SAE. */
5127 if (i.rounding)
5128 {
5129 if ((i.rounding->type != saeonly
5130 && !t->opcode_modifier.staticrounding)
5131 || (i.rounding->type == saeonly
5132 && (t->opcode_modifier.staticrounding
5133 || !t->opcode_modifier.sae)))
5134 {
5135 i.error = unsupported_rc_sae;
5136 return 1;
5137 }
5138 /* If the instruction has several immediate operands and one of
5139 them is rounding, the rounding operand should be the last
5140 immediate operand. */
5141 if (i.imm_operands > 1
5142 && i.rounding->operand != (int) (i.imm_operands - 1))
5143 {
5144 i.error = rc_sae_operand_not_last_imm;
5145 return 1;
5146 }
5147 }
5148
5149 /* Check vector Disp8 operand. */
5150 if (t->opcode_modifier.disp8memshift
5151 && i.disp_encoding != disp_encoding_32bit)
5152 {
5153 if (i.broadcast)
5154 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5155 else
5156 i.memshift = t->opcode_modifier.disp8memshift;
5157
5158 for (op = 0; op < i.operands; op++)
5159 if (operand_type_check (i.types[op], disp)
5160 && i.op[op].disps->X_op == O_constant)
5161 {
5162 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5163 {
5164 i.types[op].bitfield.disp8 = 1;
5165 return 0;
5166 }
5167 i.types[op].bitfield.disp8 = 0;
5168 }
5169 }
5170
5171 i.memshift = 0;
5172
5173 return 0;
5174 }
5175
5176 /* Check if operands are valid for the instruction. Update VEX
5177 operand types. */
5178
5179 static int
5180 VEX_check_operands (const insn_template *t)
5181 {
5182 if (i.vec_encoding == vex_encoding_evex)
5183 {
5184 /* This instruction must be encoded with EVEX prefix. */
5185 if (!is_evex_encoding (t))
5186 {
5187 i.error = unsupported;
5188 return 1;
5189 }
5190 return 0;
5191 }
5192
5193 if (!t->opcode_modifier.vex)
5194 {
5195 /* This instruction template doesn't have VEX prefix. */
5196 if (i.vec_encoding != vex_encoding_default)
5197 {
5198 i.error = unsupported;
5199 return 1;
5200 }
5201 return 0;
5202 }
5203
5204 /* Only check VEX_Imm4, which must be the first operand. */
5205 if (t->operand_types[0].bitfield.vec_imm4)
5206 {
5207 if (i.op[0].imms->X_op != O_constant
5208 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5209 {
5210 i.error = bad_imm4;
5211 return 1;
5212 }
5213
5214 /* Turn off Imm8 so that update_imm won't complain. */
5215 i.types[0] = vec_imm4;
5216 }
5217
5218 return 0;
5219 }
5220
5221 static const insn_template *
5222 match_template (char mnem_suffix)
5223 {
5224 /* Points to template once we've found it. */
5225 const insn_template *t;
5226 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5227 i386_operand_type overlap4;
5228 unsigned int found_reverse_match;
5229 i386_opcode_modifier suffix_check, mnemsuf_check;
5230 i386_operand_type operand_types [MAX_OPERANDS];
5231 int addr_prefix_disp;
5232 unsigned int j;
5233 unsigned int found_cpu_match;
5234 unsigned int check_register;
5235 enum i386_error specific_error = 0;
5236
5237 #if MAX_OPERANDS != 5
5238 # error "MAX_OPERANDS must be 5."
5239 #endif
5240
5241 found_reverse_match = 0;
5242 addr_prefix_disp = -1;
5243
5244 memset (&suffix_check, 0, sizeof (suffix_check));
5245 if (i.suffix == BYTE_MNEM_SUFFIX)
5246 suffix_check.no_bsuf = 1;
5247 else if (i.suffix == WORD_MNEM_SUFFIX)
5248 suffix_check.no_wsuf = 1;
5249 else if (i.suffix == SHORT_MNEM_SUFFIX)
5250 suffix_check.no_ssuf = 1;
5251 else if (i.suffix == LONG_MNEM_SUFFIX)
5252 suffix_check.no_lsuf = 1;
5253 else if (i.suffix == QWORD_MNEM_SUFFIX)
5254 suffix_check.no_qsuf = 1;
5255 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5256 suffix_check.no_ldsuf = 1;
5257
5258 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5259 if (intel_syntax)
5260 {
5261 switch (mnem_suffix)
5262 {
5263 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5264 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5265 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5266 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5267 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5268 }
5269 }
5270
5271 /* Must have right number of operands. */
5272 i.error = number_of_operands_mismatch;
5273
5274 for (t = current_templates->start; t < current_templates->end; t++)
5275 {
5276 addr_prefix_disp = -1;
5277
5278 if (i.operands != t->operands)
5279 continue;
5280
5281 /* Check processor support. */
5282 i.error = unsupported;
5283 found_cpu_match = (cpu_flags_match (t)
5284 == CPU_FLAGS_PERFECT_MATCH);
5285 if (!found_cpu_match)
5286 continue;
5287
5288 /* Check AT&T mnemonic. */
5289 i.error = unsupported_with_intel_mnemonic;
5290 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5291 continue;
5292
5293 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5294 i.error = unsupported_syntax;
5295 if ((intel_syntax && t->opcode_modifier.attsyntax)
5296 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5297 || (intel64 && t->opcode_modifier.amd64)
5298 || (!intel64 && t->opcode_modifier.intel64))
5299 continue;
5300
5301 /* Check the suffix, except for some instructions in intel mode. */
5302 i.error = invalid_instruction_suffix;
5303 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5304 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5305 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5306 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5307 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5308 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5309 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5310 continue;
5311 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5312 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5313 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5314 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5315 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5316 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5317 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5318 continue;
5319
5320 if (!operand_size_match (t))
5321 continue;
5322
5323 for (j = 0; j < MAX_OPERANDS; j++)
5324 operand_types[j] = t->operand_types[j];
5325
5326 /* In general, don't allow 64-bit operands in 32-bit mode. */
5327 if (i.suffix == QWORD_MNEM_SUFFIX
5328 && flag_code != CODE_64BIT
5329 && (intel_syntax
5330 ? (!t->opcode_modifier.ignoresize
5331 && !intel_float_operand (t->name))
5332 : intel_float_operand (t->name) != 2)
5333 && ((!operand_types[0].bitfield.regmmx
5334 && !operand_types[0].bitfield.regsimd)
5335 || (!operand_types[t->operands > 1].bitfield.regmmx
5336 && !operand_types[t->operands > 1].bitfield.regsimd))
5337 && (t->base_opcode != 0x0fc7
5338 || t->extension_opcode != 1 /* cmpxchg8b */))
5339 continue;
5340
5341 /* In general, don't allow 32-bit operands on pre-386. */
5342 else if (i.suffix == LONG_MNEM_SUFFIX
5343 && !cpu_arch_flags.bitfield.cpui386
5344 && (intel_syntax
5345 ? (!t->opcode_modifier.ignoresize
5346 && !intel_float_operand (t->name))
5347 : intel_float_operand (t->name) != 2)
5348 && ((!operand_types[0].bitfield.regmmx
5349 && !operand_types[0].bitfield.regsimd)
5350 || (!operand_types[t->operands > 1].bitfield.regmmx
5351 && !operand_types[t->operands > 1].bitfield.regsimd)))
5352 continue;
5353
5354 /* Do not verify operands when there are none. */
5355 else
5356 {
5357 if (!t->operands)
5358 /* We've found a match; break out of loop. */
5359 break;
5360 }
5361
5362 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5363 into Disp32/Disp16/Disp32 operand. */
5364 if (i.prefix[ADDR_PREFIX] != 0)
5365 {
5366 /* There should be only one Disp operand. */
5367 switch (flag_code)
5368 {
5369 case CODE_16BIT:
5370 for (j = 0; j < MAX_OPERANDS; j++)
5371 {
5372 if (operand_types[j].bitfield.disp16)
5373 {
5374 addr_prefix_disp = j;
5375 operand_types[j].bitfield.disp32 = 1;
5376 operand_types[j].bitfield.disp16 = 0;
5377 break;
5378 }
5379 }
5380 break;
5381 case CODE_32BIT:
5382 for (j = 0; j < MAX_OPERANDS; j++)
5383 {
5384 if (operand_types[j].bitfield.disp32)
5385 {
5386 addr_prefix_disp = j;
5387 operand_types[j].bitfield.disp32 = 0;
5388 operand_types[j].bitfield.disp16 = 1;
5389 break;
5390 }
5391 }
5392 break;
5393 case CODE_64BIT:
5394 for (j = 0; j < MAX_OPERANDS; j++)
5395 {
5396 if (operand_types[j].bitfield.disp64)
5397 {
5398 addr_prefix_disp = j;
5399 operand_types[j].bitfield.disp64 = 0;
5400 operand_types[j].bitfield.disp32 = 1;
5401 break;
5402 }
5403 }
5404 break;
5405 }
5406 }
5407
5408 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5409 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5410 continue;
5411
5412 /* We check register size if needed. */
5413 check_register = t->opcode_modifier.checkregsize;
5414 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5415 switch (t->operands)
5416 {
5417 case 1:
5418 if (!operand_type_match (overlap0, i.types[0]))
5419 continue;
5420 break;
5421 case 2:
5422 /* xchg %eax, %eax is a special case. It is an alias for nop
5423 only in 32bit mode and we can use opcode 0x90. In 64bit
5424 mode, we can't use 0x90 for xchg %eax, %eax since it should
5425 zero-extend %eax to %rax. */
5426 if (flag_code == CODE_64BIT
5427 && t->base_opcode == 0x90
5428 && operand_type_equal (&i.types [0], &acc32)
5429 && operand_type_equal (&i.types [1], &acc32))
5430 continue;
5431 /* xrelease mov %eax, <disp> is another special case. It must not
5432 match the accumulator-only encoding of mov. */
5433 if (flag_code != CODE_64BIT
5434 && i.hle_prefix
5435 && t->base_opcode == 0xa0
5436 && i.types[0].bitfield.acc
5437 && operand_type_check (i.types[1], anymem))
5438 continue;
5439 /* If we want store form, we reverse direction of operands. */
5440 if (i.dir_encoding == dir_encoding_store
5441 && t->opcode_modifier.d)
5442 goto check_reverse;
5443 /* Fall through. */
5444
5445 case 3:
5446 /* If we want store form, we skip the current load. */
5447 if (i.dir_encoding == dir_encoding_store
5448 && i.mem_operands == 0
5449 && t->opcode_modifier.load)
5450 continue;
5451 /* Fall through. */
5452 case 4:
5453 case 5:
5454 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5455 if (!operand_type_match (overlap0, i.types[0])
5456 || !operand_type_match (overlap1, i.types[1])
5457 || (check_register
5458 && !operand_type_register_match (i.types[0],
5459 operand_types[0],
5460 i.types[1],
5461 operand_types[1])))
5462 {
5463 /* Check if other direction is valid ... */
5464 if (!t->opcode_modifier.d)
5465 continue;
5466
5467 check_reverse:
5468 /* Try reversing direction of operands. */
5469 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5470 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5471 if (!operand_type_match (overlap0, i.types[0])
5472 || !operand_type_match (overlap1, i.types[1])
5473 || (check_register
5474 && !operand_type_register_match (i.types[0],
5475 operand_types[1],
5476 i.types[1],
5477 operand_types[0])))
5478 {
5479 /* Does not match either direction. */
5480 continue;
5481 }
5482 /* found_reverse_match holds which of D or FloatR
5483 we've found. */
5484 if (!t->opcode_modifier.d)
5485 found_reverse_match = 0;
5486 else if (operand_types[0].bitfield.tbyte)
5487 found_reverse_match = Opcode_FloatD;
5488 else
5489 found_reverse_match = Opcode_D;
5490 if (t->opcode_modifier.floatr)
5491 found_reverse_match |= Opcode_FloatR;
5492 }
5493 else
5494 {
5495 /* Found a forward 2 operand match here. */
5496 switch (t->operands)
5497 {
5498 case 5:
5499 overlap4 = operand_type_and (i.types[4],
5500 operand_types[4]);
5501 /* Fall through. */
5502 case 4:
5503 overlap3 = operand_type_and (i.types[3],
5504 operand_types[3]);
5505 /* Fall through. */
5506 case 3:
5507 overlap2 = operand_type_and (i.types[2],
5508 operand_types[2]);
5509 break;
5510 }
5511
5512 switch (t->operands)
5513 {
5514 case 5:
5515 if (!operand_type_match (overlap4, i.types[4])
5516 || !operand_type_register_match (i.types[3],
5517 operand_types[3],
5518 i.types[4],
5519 operand_types[4]))
5520 continue;
5521 /* Fall through. */
5522 case 4:
5523 if (!operand_type_match (overlap3, i.types[3])
5524 || (check_register
5525 && (!operand_type_register_match (i.types[1],
5526 operand_types[1],
5527 i.types[3],
5528 operand_types[3])
5529 || !operand_type_register_match (i.types[2],
5530 operand_types[2],
5531 i.types[3],
5532 operand_types[3]))))
5533 continue;
5534 /* Fall through. */
5535 case 3:
5536 /* Here we make use of the fact that there are no
5537 reverse match 3 operand instructions. */
5538 if (!operand_type_match (overlap2, i.types[2])
5539 || (check_register
5540 && (!operand_type_register_match (i.types[0],
5541 operand_types[0],
5542 i.types[2],
5543 operand_types[2])
5544 || !operand_type_register_match (i.types[1],
5545 operand_types[1],
5546 i.types[2],
5547 operand_types[2]))))
5548 continue;
5549 break;
5550 }
5551 }
5552 /* Found either forward/reverse 2, 3 or 4 operand match here:
5553 slip through to break. */
5554 }
5555 if (!found_cpu_match)
5556 {
5557 found_reverse_match = 0;
5558 continue;
5559 }
5560
5561 /* Check if vector and VEX operands are valid. */
5562 if (check_VecOperands (t) || VEX_check_operands (t))
5563 {
5564 specific_error = i.error;
5565 continue;
5566 }
5567
5568 /* We've found a match; break out of loop. */
5569 break;
5570 }
5571
5572 if (t == current_templates->end)
5573 {
5574 /* We found no match. */
5575 const char *err_msg;
5576 switch (specific_error ? specific_error : i.error)
5577 {
5578 default:
5579 abort ();
5580 case operand_size_mismatch:
5581 err_msg = _("operand size mismatch");
5582 break;
5583 case operand_type_mismatch:
5584 err_msg = _("operand type mismatch");
5585 break;
5586 case register_type_mismatch:
5587 err_msg = _("register type mismatch");
5588 break;
5589 case number_of_operands_mismatch:
5590 err_msg = _("number of operands mismatch");
5591 break;
5592 case invalid_instruction_suffix:
5593 err_msg = _("invalid instruction suffix");
5594 break;
5595 case bad_imm4:
5596 err_msg = _("constant doesn't fit in 4 bits");
5597 break;
5598 case unsupported_with_intel_mnemonic:
5599 err_msg = _("unsupported with Intel mnemonic");
5600 break;
5601 case unsupported_syntax:
5602 err_msg = _("unsupported syntax");
5603 break;
5604 case unsupported:
5605 as_bad (_("unsupported instruction `%s'"),
5606 current_templates->start->name);
5607 return NULL;
5608 case invalid_vsib_address:
5609 err_msg = _("invalid VSIB address");
5610 break;
5611 case invalid_vector_register_set:
5612 err_msg = _("mask, index, and destination registers must be distinct");
5613 break;
5614 case unsupported_vector_index_register:
5615 err_msg = _("unsupported vector index register");
5616 break;
5617 case unsupported_broadcast:
5618 err_msg = _("unsupported broadcast");
5619 break;
5620 case broadcast_not_on_src_operand:
5621 err_msg = _("broadcast not on source memory operand");
5622 break;
5623 case broadcast_needed:
5624 err_msg = _("broadcast is needed for operand of such type");
5625 break;
5626 case unsupported_masking:
5627 err_msg = _("unsupported masking");
5628 break;
5629 case mask_not_on_destination:
5630 err_msg = _("mask not on destination operand");
5631 break;
5632 case no_default_mask:
5633 err_msg = _("default mask isn't allowed");
5634 break;
5635 case unsupported_rc_sae:
5636 err_msg = _("unsupported static rounding/sae");
5637 break;
5638 case rc_sae_operand_not_last_imm:
5639 if (intel_syntax)
5640 err_msg = _("RC/SAE operand must precede immediate operands");
5641 else
5642 err_msg = _("RC/SAE operand must follow immediate operands");
5643 break;
5644 case invalid_register_operand:
5645 err_msg = _("invalid register operand");
5646 break;
5647 }
5648 as_bad (_("%s for `%s'"), err_msg,
5649 current_templates->start->name);
5650 return NULL;
5651 }
5652
5653 if (!quiet_warnings)
5654 {
5655 if (!intel_syntax
5656 && (i.types[0].bitfield.jumpabsolute
5657 != operand_types[0].bitfield.jumpabsolute))
5658 {
5659 as_warn (_("indirect %s without `*'"), t->name);
5660 }
5661
5662 if (t->opcode_modifier.isprefix
5663 && t->opcode_modifier.ignoresize)
5664 {
5665 /* Warn them that a data or address size prefix doesn't
5666 affect assembly of the next line of code. */
5667 as_warn (_("stand-alone `%s' prefix"), t->name);
5668 }
5669 }
5670
5671 /* Copy the template we found. */
5672 i.tm = *t;
5673
5674 if (addr_prefix_disp != -1)
5675 i.tm.operand_types[addr_prefix_disp]
5676 = operand_types[addr_prefix_disp];
5677
5678 if (found_reverse_match)
5679 {
5680 /* If we found a reverse match we must alter the opcode
5681 direction bit. found_reverse_match holds bits to change
5682 (different for int & float insns). */
5683
5684 i.tm.base_opcode ^= found_reverse_match;
5685
5686 i.tm.operand_types[0] = operand_types[1];
5687 i.tm.operand_types[1] = operand_types[0];
5688 }
5689
5690 return t;
5691 }
5692
5693 static int
5694 check_string (void)
5695 {
5696 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5697 if (i.tm.operand_types[mem_op].bitfield.esseg)
5698 {
5699 if (i.seg[0] != NULL && i.seg[0] != &es)
5700 {
5701 as_bad (_("`%s' operand %d must use `%ses' segment"),
5702 i.tm.name,
5703 mem_op + 1,
5704 register_prefix);
5705 return 0;
5706 }
5707 /* There's only ever one segment override allowed per instruction.
5708 This instruction possibly has a legal segment override on the
5709 second operand, so copy the segment to where non-string
5710 instructions store it, allowing common code. */
5711 i.seg[0] = i.seg[1];
5712 }
5713 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5714 {
5715 if (i.seg[1] != NULL && i.seg[1] != &es)
5716 {
5717 as_bad (_("`%s' operand %d must use `%ses' segment"),
5718 i.tm.name,
5719 mem_op + 2,
5720 register_prefix);
5721 return 0;
5722 }
5723 }
5724 return 1;
5725 }
5726
5727 static int
5728 process_suffix (void)
5729 {
5730 /* If matched instruction specifies an explicit instruction mnemonic
5731 suffix, use it. */
5732 if (i.tm.opcode_modifier.size16)
5733 i.suffix = WORD_MNEM_SUFFIX;
5734 else if (i.tm.opcode_modifier.size32)
5735 i.suffix = LONG_MNEM_SUFFIX;
5736 else if (i.tm.opcode_modifier.size64)
5737 i.suffix = QWORD_MNEM_SUFFIX;
5738 else if (i.reg_operands)
5739 {
5740 /* If there's no instruction mnemonic suffix we try to invent one
5741 based on register operands. */
5742 if (!i.suffix)
5743 {
5744 /* We take i.suffix from the last register operand specified,
5745 Destination register type is more significant than source
5746 register type. crc32 in SSE4.2 prefers source register
5747 type. */
5748 if (i.tm.base_opcode == 0xf20f38f1)
5749 {
5750 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5751 i.suffix = WORD_MNEM_SUFFIX;
5752 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5753 i.suffix = LONG_MNEM_SUFFIX;
5754 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5755 i.suffix = QWORD_MNEM_SUFFIX;
5756 }
5757 else if (i.tm.base_opcode == 0xf20f38f0)
5758 {
5759 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5760 i.suffix = BYTE_MNEM_SUFFIX;
5761 }
5762
5763 if (!i.suffix)
5764 {
5765 int op;
5766
5767 if (i.tm.base_opcode == 0xf20f38f1
5768 || i.tm.base_opcode == 0xf20f38f0)
5769 {
5770 /* We have to know the operand size for crc32. */
5771 as_bad (_("ambiguous memory operand size for `%s`"),
5772 i.tm.name);
5773 return 0;
5774 }
5775
5776 for (op = i.operands; --op >= 0;)
5777 if (!i.tm.operand_types[op].bitfield.inoutportreg
5778 && !i.tm.operand_types[op].bitfield.shiftcount)
5779 {
5780 if (!i.types[op].bitfield.reg)
5781 continue;
5782 if (i.types[op].bitfield.byte)
5783 i.suffix = BYTE_MNEM_SUFFIX;
5784 else if (i.types[op].bitfield.word)
5785 i.suffix = WORD_MNEM_SUFFIX;
5786 else if (i.types[op].bitfield.dword)
5787 i.suffix = LONG_MNEM_SUFFIX;
5788 else if (i.types[op].bitfield.qword)
5789 i.suffix = QWORD_MNEM_SUFFIX;
5790 else
5791 continue;
5792 break;
5793 }
5794 }
5795 }
5796 else if (i.suffix == BYTE_MNEM_SUFFIX)
5797 {
5798 if (intel_syntax
5799 && i.tm.opcode_modifier.ignoresize
5800 && i.tm.opcode_modifier.no_bsuf)
5801 i.suffix = 0;
5802 else if (!check_byte_reg ())
5803 return 0;
5804 }
5805 else if (i.suffix == LONG_MNEM_SUFFIX)
5806 {
5807 if (intel_syntax
5808 && i.tm.opcode_modifier.ignoresize
5809 && i.tm.opcode_modifier.no_lsuf)
5810 i.suffix = 0;
5811 else if (!check_long_reg ())
5812 return 0;
5813 }
5814 else if (i.suffix == QWORD_MNEM_SUFFIX)
5815 {
5816 if (intel_syntax
5817 && i.tm.opcode_modifier.ignoresize
5818 && i.tm.opcode_modifier.no_qsuf)
5819 i.suffix = 0;
5820 else if (!check_qword_reg ())
5821 return 0;
5822 }
5823 else if (i.suffix == WORD_MNEM_SUFFIX)
5824 {
5825 if (intel_syntax
5826 && i.tm.opcode_modifier.ignoresize
5827 && i.tm.opcode_modifier.no_wsuf)
5828 i.suffix = 0;
5829 else if (!check_word_reg ())
5830 return 0;
5831 }
5832 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5833 /* Do nothing if the instruction is going to ignore the prefix. */
5834 ;
5835 else
5836 abort ();
5837 }
5838 else if (i.tm.opcode_modifier.defaultsize
5839 && !i.suffix
5840 /* exclude fldenv/frstor/fsave/fstenv */
5841 && i.tm.opcode_modifier.no_ssuf)
5842 {
5843 i.suffix = stackop_size;
5844 }
5845 else if (intel_syntax
5846 && !i.suffix
5847 && (i.tm.operand_types[0].bitfield.jumpabsolute
5848 || i.tm.opcode_modifier.jumpbyte
5849 || i.tm.opcode_modifier.jumpintersegment
5850 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5851 && i.tm.extension_opcode <= 3)))
5852 {
5853 switch (flag_code)
5854 {
5855 case CODE_64BIT:
5856 if (!i.tm.opcode_modifier.no_qsuf)
5857 {
5858 i.suffix = QWORD_MNEM_SUFFIX;
5859 break;
5860 }
5861 /* Fall through. */
5862 case CODE_32BIT:
5863 if (!i.tm.opcode_modifier.no_lsuf)
5864 i.suffix = LONG_MNEM_SUFFIX;
5865 break;
5866 case CODE_16BIT:
5867 if (!i.tm.opcode_modifier.no_wsuf)
5868 i.suffix = WORD_MNEM_SUFFIX;
5869 break;
5870 }
5871 }
5872
5873 if (!i.suffix)
5874 {
5875 if (!intel_syntax)
5876 {
5877 if (i.tm.opcode_modifier.w)
5878 {
5879 as_bad (_("no instruction mnemonic suffix given and "
5880 "no register operands; can't size instruction"));
5881 return 0;
5882 }
5883 }
5884 else
5885 {
5886 unsigned int suffixes;
5887
5888 suffixes = !i.tm.opcode_modifier.no_bsuf;
5889 if (!i.tm.opcode_modifier.no_wsuf)
5890 suffixes |= 1 << 1;
5891 if (!i.tm.opcode_modifier.no_lsuf)
5892 suffixes |= 1 << 2;
5893 if (!i.tm.opcode_modifier.no_ldsuf)
5894 suffixes |= 1 << 3;
5895 if (!i.tm.opcode_modifier.no_ssuf)
5896 suffixes |= 1 << 4;
5897 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5898 suffixes |= 1 << 5;
5899
5900 /* There are more than suffix matches. */
5901 if (i.tm.opcode_modifier.w
5902 || ((suffixes & (suffixes - 1))
5903 && !i.tm.opcode_modifier.defaultsize
5904 && !i.tm.opcode_modifier.ignoresize))
5905 {
5906 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5907 return 0;
5908 }
5909 }
5910 }
5911
5912 /* Change the opcode based on the operand size given by i.suffix. */
5913 switch (i.suffix)
5914 {
5915 /* Size floating point instruction. */
5916 case LONG_MNEM_SUFFIX:
5917 if (i.tm.opcode_modifier.floatmf)
5918 {
5919 i.tm.base_opcode ^= 4;
5920 break;
5921 }
5922 /* fall through */
5923 case WORD_MNEM_SUFFIX:
5924 case QWORD_MNEM_SUFFIX:
5925 /* It's not a byte, select word/dword operation. */
5926 if (i.tm.opcode_modifier.w)
5927 {
5928 if (i.tm.opcode_modifier.shortform)
5929 i.tm.base_opcode |= 8;
5930 else
5931 i.tm.base_opcode |= 1;
5932 }
5933 /* fall through */
5934 case SHORT_MNEM_SUFFIX:
5935 /* Now select between word & dword operations via the operand
5936 size prefix, except for instructions that will ignore this
5937 prefix anyway. */
5938 if (i.tm.opcode_modifier.addrprefixop0)
5939 {
5940 /* The address size override prefix changes the size of the
5941 first operand. */
5942 if ((flag_code == CODE_32BIT
5943 && i.op->regs[0].reg_type.bitfield.word)
5944 || (flag_code != CODE_32BIT
5945 && i.op->regs[0].reg_type.bitfield.dword))
5946 if (!add_prefix (ADDR_PREFIX_OPCODE))
5947 return 0;
5948 }
5949 else if (i.suffix != QWORD_MNEM_SUFFIX
5950 && !i.tm.opcode_modifier.ignoresize
5951 && !i.tm.opcode_modifier.floatmf
5952 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5953 || (flag_code == CODE_64BIT
5954 && i.tm.opcode_modifier.jumpbyte)))
5955 {
5956 unsigned int prefix = DATA_PREFIX_OPCODE;
5957
5958 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5959 prefix = ADDR_PREFIX_OPCODE;
5960
5961 if (!add_prefix (prefix))
5962 return 0;
5963 }
5964
5965 /* Set mode64 for an operand. */
5966 if (i.suffix == QWORD_MNEM_SUFFIX
5967 && flag_code == CODE_64BIT
5968 && !i.tm.opcode_modifier.norex64
5969 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5970 need rex64. */
5971 && ! (i.operands == 2
5972 && i.tm.base_opcode == 0x90
5973 && i.tm.extension_opcode == None
5974 && operand_type_equal (&i.types [0], &acc64)
5975 && operand_type_equal (&i.types [1], &acc64)))
5976 i.rex |= REX_W;
5977
5978 break;
5979 }
5980
5981 return 1;
5982 }
5983
5984 static int
5985 check_byte_reg (void)
5986 {
5987 int op;
5988
5989 for (op = i.operands; --op >= 0;)
5990 {
5991 /* Skip non-register operands. */
5992 if (!i.types[op].bitfield.reg)
5993 continue;
5994
5995 /* If this is an eight bit register, it's OK. If it's the 16 or
5996 32 bit version of an eight bit register, we will just use the
5997 low portion, and that's OK too. */
5998 if (i.types[op].bitfield.byte)
5999 continue;
6000
6001 /* I/O port address operands are OK too. */
6002 if (i.tm.operand_types[op].bitfield.inoutportreg)
6003 continue;
6004
6005 /* crc32 doesn't generate this warning. */
6006 if (i.tm.base_opcode == 0xf20f38f0)
6007 continue;
6008
6009 if ((i.types[op].bitfield.word
6010 || i.types[op].bitfield.dword
6011 || i.types[op].bitfield.qword)
6012 && i.op[op].regs->reg_num < 4
6013 /* Prohibit these changes in 64bit mode, since the lowering
6014 would be more complicated. */
6015 && flag_code != CODE_64BIT)
6016 {
6017 #if REGISTER_WARNINGS
6018 if (!quiet_warnings)
6019 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6020 register_prefix,
6021 (i.op[op].regs + (i.types[op].bitfield.word
6022 ? REGNAM_AL - REGNAM_AX
6023 : REGNAM_AL - REGNAM_EAX))->reg_name,
6024 register_prefix,
6025 i.op[op].regs->reg_name,
6026 i.suffix);
6027 #endif
6028 continue;
6029 }
6030 /* Any other register is bad. */
6031 if (i.types[op].bitfield.reg
6032 || i.types[op].bitfield.regmmx
6033 || i.types[op].bitfield.regsimd
6034 || i.types[op].bitfield.sreg2
6035 || i.types[op].bitfield.sreg3
6036 || i.types[op].bitfield.control
6037 || i.types[op].bitfield.debug
6038 || i.types[op].bitfield.test)
6039 {
6040 as_bad (_("`%s%s' not allowed with `%s%c'"),
6041 register_prefix,
6042 i.op[op].regs->reg_name,
6043 i.tm.name,
6044 i.suffix);
6045 return 0;
6046 }
6047 }
6048 return 1;
6049 }
6050
6051 static int
6052 check_long_reg (void)
6053 {
6054 int op;
6055
6056 for (op = i.operands; --op >= 0;)
6057 /* Skip non-register operands. */
6058 if (!i.types[op].bitfield.reg)
6059 continue;
6060 /* Reject eight bit registers, except where the template requires
6061 them. (eg. movzb) */
6062 else if (i.types[op].bitfield.byte
6063 && (i.tm.operand_types[op].bitfield.reg
6064 || i.tm.operand_types[op].bitfield.acc)
6065 && (i.tm.operand_types[op].bitfield.word
6066 || i.tm.operand_types[op].bitfield.dword))
6067 {
6068 as_bad (_("`%s%s' not allowed with `%s%c'"),
6069 register_prefix,
6070 i.op[op].regs->reg_name,
6071 i.tm.name,
6072 i.suffix);
6073 return 0;
6074 }
6075 /* Warn if the e prefix on a general reg is missing. */
6076 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6077 && i.types[op].bitfield.word
6078 && (i.tm.operand_types[op].bitfield.reg
6079 || i.tm.operand_types[op].bitfield.acc)
6080 && i.tm.operand_types[op].bitfield.dword)
6081 {
6082 /* Prohibit these changes in the 64bit mode, since the
6083 lowering is more complicated. */
6084 if (flag_code == CODE_64BIT)
6085 {
6086 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6087 register_prefix, i.op[op].regs->reg_name,
6088 i.suffix);
6089 return 0;
6090 }
6091 #if REGISTER_WARNINGS
6092 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6093 register_prefix,
6094 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6095 register_prefix, i.op[op].regs->reg_name, i.suffix);
6096 #endif
6097 }
6098 /* Warn if the r prefix on a general reg is present. */
6099 else if (i.types[op].bitfield.qword
6100 && (i.tm.operand_types[op].bitfield.reg
6101 || i.tm.operand_types[op].bitfield.acc)
6102 && i.tm.operand_types[op].bitfield.dword)
6103 {
6104 if (intel_syntax
6105 && i.tm.opcode_modifier.toqword
6106 && !i.types[0].bitfield.regsimd)
6107 {
6108 /* Convert to QWORD. We want REX byte. */
6109 i.suffix = QWORD_MNEM_SUFFIX;
6110 }
6111 else
6112 {
6113 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6114 register_prefix, i.op[op].regs->reg_name,
6115 i.suffix);
6116 return 0;
6117 }
6118 }
6119 return 1;
6120 }
6121
6122 static int
6123 check_qword_reg (void)
6124 {
6125 int op;
6126
6127 for (op = i.operands; --op >= 0; )
6128 /* Skip non-register operands. */
6129 if (!i.types[op].bitfield.reg)
6130 continue;
6131 /* Reject eight bit registers, except where the template requires
6132 them. (eg. movzb) */
6133 else if (i.types[op].bitfield.byte
6134 && (i.tm.operand_types[op].bitfield.reg
6135 || i.tm.operand_types[op].bitfield.acc)
6136 && (i.tm.operand_types[op].bitfield.word
6137 || i.tm.operand_types[op].bitfield.dword))
6138 {
6139 as_bad (_("`%s%s' not allowed with `%s%c'"),
6140 register_prefix,
6141 i.op[op].regs->reg_name,
6142 i.tm.name,
6143 i.suffix);
6144 return 0;
6145 }
6146 /* Warn if the r prefix on a general reg is missing. */
6147 else if ((i.types[op].bitfield.word
6148 || i.types[op].bitfield.dword)
6149 && (i.tm.operand_types[op].bitfield.reg
6150 || i.tm.operand_types[op].bitfield.acc)
6151 && i.tm.operand_types[op].bitfield.qword)
6152 {
6153 /* Prohibit these changes in the 64bit mode, since the
6154 lowering is more complicated. */
6155 if (intel_syntax
6156 && i.tm.opcode_modifier.todword
6157 && !i.types[0].bitfield.regsimd)
6158 {
6159 /* Convert to DWORD. We don't want REX byte. */
6160 i.suffix = LONG_MNEM_SUFFIX;
6161 }
6162 else
6163 {
6164 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6165 register_prefix, i.op[op].regs->reg_name,
6166 i.suffix);
6167 return 0;
6168 }
6169 }
6170 return 1;
6171 }
6172
6173 static int
6174 check_word_reg (void)
6175 {
6176 int op;
6177 for (op = i.operands; --op >= 0;)
6178 /* Skip non-register operands. */
6179 if (!i.types[op].bitfield.reg)
6180 continue;
6181 /* Reject eight bit registers, except where the template requires
6182 them. (eg. movzb) */
6183 else if (i.types[op].bitfield.byte
6184 && (i.tm.operand_types[op].bitfield.reg
6185 || i.tm.operand_types[op].bitfield.acc)
6186 && (i.tm.operand_types[op].bitfield.word
6187 || i.tm.operand_types[op].bitfield.dword))
6188 {
6189 as_bad (_("`%s%s' not allowed with `%s%c'"),
6190 register_prefix,
6191 i.op[op].regs->reg_name,
6192 i.tm.name,
6193 i.suffix);
6194 return 0;
6195 }
6196 /* Warn if the e or r prefix on a general reg is present. */
6197 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6198 && (i.types[op].bitfield.dword
6199 || i.types[op].bitfield.qword)
6200 && (i.tm.operand_types[op].bitfield.reg
6201 || i.tm.operand_types[op].bitfield.acc)
6202 && i.tm.operand_types[op].bitfield.word)
6203 {
6204 /* Prohibit these changes in the 64bit mode, since the
6205 lowering is more complicated. */
6206 if (flag_code == CODE_64BIT)
6207 {
6208 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6209 register_prefix, i.op[op].regs->reg_name,
6210 i.suffix);
6211 return 0;
6212 }
6213 #if REGISTER_WARNINGS
6214 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6215 register_prefix,
6216 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6217 register_prefix, i.op[op].regs->reg_name, i.suffix);
6218 #endif
6219 }
6220 return 1;
6221 }
6222
6223 static int
6224 update_imm (unsigned int j)
6225 {
6226 i386_operand_type overlap = i.types[j];
6227 if ((overlap.bitfield.imm8
6228 || overlap.bitfield.imm8s
6229 || overlap.bitfield.imm16
6230 || overlap.bitfield.imm32
6231 || overlap.bitfield.imm32s
6232 || overlap.bitfield.imm64)
6233 && !operand_type_equal (&overlap, &imm8)
6234 && !operand_type_equal (&overlap, &imm8s)
6235 && !operand_type_equal (&overlap, &imm16)
6236 && !operand_type_equal (&overlap, &imm32)
6237 && !operand_type_equal (&overlap, &imm32s)
6238 && !operand_type_equal (&overlap, &imm64))
6239 {
6240 if (i.suffix)
6241 {
6242 i386_operand_type temp;
6243
6244 operand_type_set (&temp, 0);
6245 if (i.suffix == BYTE_MNEM_SUFFIX)
6246 {
6247 temp.bitfield.imm8 = overlap.bitfield.imm8;
6248 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6249 }
6250 else if (i.suffix == WORD_MNEM_SUFFIX)
6251 temp.bitfield.imm16 = overlap.bitfield.imm16;
6252 else if (i.suffix == QWORD_MNEM_SUFFIX)
6253 {
6254 temp.bitfield.imm64 = overlap.bitfield.imm64;
6255 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6256 }
6257 else
6258 temp.bitfield.imm32 = overlap.bitfield.imm32;
6259 overlap = temp;
6260 }
6261 else if (operand_type_equal (&overlap, &imm16_32_32s)
6262 || operand_type_equal (&overlap, &imm16_32)
6263 || operand_type_equal (&overlap, &imm16_32s))
6264 {
6265 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6266 overlap = imm16;
6267 else
6268 overlap = imm32s;
6269 }
6270 if (!operand_type_equal (&overlap, &imm8)
6271 && !operand_type_equal (&overlap, &imm8s)
6272 && !operand_type_equal (&overlap, &imm16)
6273 && !operand_type_equal (&overlap, &imm32)
6274 && !operand_type_equal (&overlap, &imm32s)
6275 && !operand_type_equal (&overlap, &imm64))
6276 {
6277 as_bad (_("no instruction mnemonic suffix given; "
6278 "can't determine immediate size"));
6279 return 0;
6280 }
6281 }
6282 i.types[j] = overlap;
6283
6284 return 1;
6285 }
6286
6287 static int
6288 finalize_imm (void)
6289 {
6290 unsigned int j, n;
6291
6292 /* Update the first 2 immediate operands. */
6293 n = i.operands > 2 ? 2 : i.operands;
6294 if (n)
6295 {
6296 for (j = 0; j < n; j++)
6297 if (update_imm (j) == 0)
6298 return 0;
6299
6300 /* The 3rd operand can't be immediate operand. */
6301 gas_assert (operand_type_check (i.types[2], imm) == 0);
6302 }
6303
6304 return 1;
6305 }
6306
6307 static int
6308 process_operands (void)
6309 {
6310 /* Default segment register this instruction will use for memory
6311 accesses. 0 means unknown. This is only for optimizing out
6312 unnecessary segment overrides. */
6313 const seg_entry *default_seg = 0;
6314
6315 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6316 {
6317 unsigned int dupl = i.operands;
6318 unsigned int dest = dupl - 1;
6319 unsigned int j;
6320
6321 /* The destination must be an xmm register. */
6322 gas_assert (i.reg_operands
6323 && MAX_OPERANDS > dupl
6324 && operand_type_equal (&i.types[dest], &regxmm));
6325
6326 if (i.tm.operand_types[0].bitfield.acc
6327 && i.tm.operand_types[0].bitfield.xmmword)
6328 {
6329 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6330 {
6331 /* Keep xmm0 for instructions with VEX prefix and 3
6332 sources. */
6333 i.tm.operand_types[0].bitfield.acc = 0;
6334 i.tm.operand_types[0].bitfield.regsimd = 1;
6335 goto duplicate;
6336 }
6337 else
6338 {
6339 /* We remove the first xmm0 and keep the number of
6340 operands unchanged, which in fact duplicates the
6341 destination. */
6342 for (j = 1; j < i.operands; j++)
6343 {
6344 i.op[j - 1] = i.op[j];
6345 i.types[j - 1] = i.types[j];
6346 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6347 }
6348 }
6349 }
6350 else if (i.tm.opcode_modifier.implicit1stxmm0)
6351 {
6352 gas_assert ((MAX_OPERANDS - 1) > dupl
6353 && (i.tm.opcode_modifier.vexsources
6354 == VEX3SOURCES));
6355
6356 /* Add the implicit xmm0 for instructions with VEX prefix
6357 and 3 sources. */
6358 for (j = i.operands; j > 0; j--)
6359 {
6360 i.op[j] = i.op[j - 1];
6361 i.types[j] = i.types[j - 1];
6362 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6363 }
6364 i.op[0].regs
6365 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6366 i.types[0] = regxmm;
6367 i.tm.operand_types[0] = regxmm;
6368
6369 i.operands += 2;
6370 i.reg_operands += 2;
6371 i.tm.operands += 2;
6372
6373 dupl++;
6374 dest++;
6375 i.op[dupl] = i.op[dest];
6376 i.types[dupl] = i.types[dest];
6377 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6378 }
6379 else
6380 {
6381 duplicate:
6382 i.operands++;
6383 i.reg_operands++;
6384 i.tm.operands++;
6385
6386 i.op[dupl] = i.op[dest];
6387 i.types[dupl] = i.types[dest];
6388 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6389 }
6390
6391 if (i.tm.opcode_modifier.immext)
6392 process_immext ();
6393 }
6394 else if (i.tm.operand_types[0].bitfield.acc
6395 && i.tm.operand_types[0].bitfield.xmmword)
6396 {
6397 unsigned int j;
6398
6399 for (j = 1; j < i.operands; j++)
6400 {
6401 i.op[j - 1] = i.op[j];
6402 i.types[j - 1] = i.types[j];
6403
6404 /* We need to adjust fields in i.tm since they are used by
6405 build_modrm_byte. */
6406 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6407 }
6408
6409 i.operands--;
6410 i.reg_operands--;
6411 i.tm.operands--;
6412 }
6413 else if (i.tm.opcode_modifier.implicitquadgroup)
6414 {
6415 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6416
6417 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6418 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6419 regnum = register_number (i.op[1].regs);
6420 first_reg_in_group = regnum & ~3;
6421 last_reg_in_group = first_reg_in_group + 3;
6422 if (regnum != first_reg_in_group)
6423 as_warn (_("source register `%s%s' implicitly denotes"
6424 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6425 register_prefix, i.op[1].regs->reg_name,
6426 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6427 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6428 i.tm.name);
6429 }
6430 else if (i.tm.opcode_modifier.regkludge)
6431 {
6432 /* The imul $imm, %reg instruction is converted into
6433 imul $imm, %reg, %reg, and the clr %reg instruction
6434 is converted into xor %reg, %reg. */
6435
6436 unsigned int first_reg_op;
6437
6438 if (operand_type_check (i.types[0], reg))
6439 first_reg_op = 0;
6440 else
6441 first_reg_op = 1;
6442 /* Pretend we saw the extra register operand. */
6443 gas_assert (i.reg_operands == 1
6444 && i.op[first_reg_op + 1].regs == 0);
6445 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6446 i.types[first_reg_op + 1] = i.types[first_reg_op];
6447 i.operands++;
6448 i.reg_operands++;
6449 }
6450
6451 if (i.tm.opcode_modifier.shortform)
6452 {
6453 if (i.types[0].bitfield.sreg2
6454 || i.types[0].bitfield.sreg3)
6455 {
6456 if (i.tm.base_opcode == POP_SEG_SHORT
6457 && i.op[0].regs->reg_num == 1)
6458 {
6459 as_bad (_("you can't `pop %scs'"), register_prefix);
6460 return 0;
6461 }
6462 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6463 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6464 i.rex |= REX_B;
6465 }
6466 else
6467 {
6468 /* The register or float register operand is in operand
6469 0 or 1. */
6470 unsigned int op;
6471
6472 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6473 || operand_type_check (i.types[0], reg))
6474 op = 0;
6475 else
6476 op = 1;
6477 /* Register goes in low 3 bits of opcode. */
6478 i.tm.base_opcode |= i.op[op].regs->reg_num;
6479 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6480 i.rex |= REX_B;
6481 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6482 {
6483 /* Warn about some common errors, but press on regardless.
6484 The first case can be generated by gcc (<= 2.8.1). */
6485 if (i.operands == 2)
6486 {
6487 /* Reversed arguments on faddp, fsubp, etc. */
6488 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6489 register_prefix, i.op[!intel_syntax].regs->reg_name,
6490 register_prefix, i.op[intel_syntax].regs->reg_name);
6491 }
6492 else
6493 {
6494 /* Extraneous `l' suffix on fp insn. */
6495 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6496 register_prefix, i.op[0].regs->reg_name);
6497 }
6498 }
6499 }
6500 }
6501 else if (i.tm.opcode_modifier.modrm)
6502 {
6503 /* The opcode is completed (modulo i.tm.extension_opcode which
6504 must be put into the modrm byte). Now, we make the modrm and
6505 index base bytes based on all the info we've collected. */
6506
6507 default_seg = build_modrm_byte ();
6508 }
6509 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6510 {
6511 default_seg = &ds;
6512 }
6513 else if (i.tm.opcode_modifier.isstring)
6514 {
6515 /* For the string instructions that allow a segment override
6516 on one of their operands, the default segment is ds. */
6517 default_seg = &ds;
6518 }
6519
6520 if (i.tm.base_opcode == 0x8d /* lea */
6521 && i.seg[0]
6522 && !quiet_warnings)
6523 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6524
6525 /* If a segment was explicitly specified, and the specified segment
6526 is not the default, use an opcode prefix to select it. If we
6527 never figured out what the default segment is, then default_seg
6528 will be zero at this point, and the specified segment prefix will
6529 always be used. */
6530 if ((i.seg[0]) && (i.seg[0] != default_seg))
6531 {
6532 if (!add_prefix (i.seg[0]->seg_prefix))
6533 return 0;
6534 }
6535 return 1;
6536 }
6537
6538 static const seg_entry *
6539 build_modrm_byte (void)
6540 {
6541 const seg_entry *default_seg = 0;
6542 unsigned int source, dest;
6543 int vex_3_sources;
6544
6545 /* The first operand of instructions with VEX prefix and 3 sources
6546 must be VEX_Imm4. */
6547 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6548 if (vex_3_sources)
6549 {
6550 unsigned int nds, reg_slot;
6551 expressionS *exp;
6552
6553 if (i.tm.opcode_modifier.veximmext
6554 && i.tm.opcode_modifier.immext)
6555 {
6556 dest = i.operands - 2;
6557 gas_assert (dest == 3);
6558 }
6559 else
6560 dest = i.operands - 1;
6561 nds = dest - 1;
6562
6563 /* There are 2 kinds of instructions:
6564 1. 5 operands: 4 register operands or 3 register operands
6565 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6566 VexW0 or VexW1. The destination must be either XMM, YMM or
6567 ZMM register.
6568 2. 4 operands: 4 register operands or 3 register operands
6569 plus 1 memory operand, VexXDS, and VexImmExt */
6570 gas_assert ((i.reg_operands == 4
6571 || (i.reg_operands == 3 && i.mem_operands == 1))
6572 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6573 && (i.tm.opcode_modifier.veximmext
6574 || (i.imm_operands == 1
6575 && i.types[0].bitfield.vec_imm4
6576 && (i.tm.opcode_modifier.vexw == VEXW0
6577 || i.tm.opcode_modifier.vexw == VEXW1)
6578 && i.tm.operand_types[dest].bitfield.regsimd)));
6579
6580 if (i.imm_operands == 0)
6581 {
6582 /* When there is no immediate operand, generate an 8bit
6583 immediate operand to encode the first operand. */
6584 exp = &im_expressions[i.imm_operands++];
6585 i.op[i.operands].imms = exp;
6586 i.types[i.operands] = imm8;
6587 i.operands++;
6588 /* If VexW1 is set, the first operand is the source and
6589 the second operand is encoded in the immediate operand. */
6590 if (i.tm.opcode_modifier.vexw == VEXW1)
6591 {
6592 source = 0;
6593 reg_slot = 1;
6594 }
6595 else
6596 {
6597 source = 1;
6598 reg_slot = 0;
6599 }
6600
6601 /* FMA swaps REG and NDS. */
6602 if (i.tm.cpu_flags.bitfield.cpufma)
6603 {
6604 unsigned int tmp;
6605 tmp = reg_slot;
6606 reg_slot = nds;
6607 nds = tmp;
6608 }
6609
6610 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6611 exp->X_op = O_constant;
6612 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6613 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6614 }
6615 else
6616 {
6617 unsigned int imm_slot;
6618
6619 if (i.tm.opcode_modifier.vexw == VEXW0)
6620 {
6621 /* If VexW0 is set, the third operand is the source and
6622 the second operand is encoded in the immediate
6623 operand. */
6624 source = 2;
6625 reg_slot = 1;
6626 }
6627 else
6628 {
6629 /* VexW1 is set, the second operand is the source and
6630 the third operand is encoded in the immediate
6631 operand. */
6632 source = 1;
6633 reg_slot = 2;
6634 }
6635
6636 if (i.tm.opcode_modifier.immext)
6637 {
6638 /* When ImmExt is set, the immediate byte is the last
6639 operand. */
6640 imm_slot = i.operands - 1;
6641 source--;
6642 reg_slot--;
6643 }
6644 else
6645 {
6646 imm_slot = 0;
6647
6648 /* Turn on Imm8 so that output_imm will generate it. */
6649 i.types[imm_slot].bitfield.imm8 = 1;
6650 }
6651
6652 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6653 i.op[imm_slot].imms->X_add_number
6654 |= register_number (i.op[reg_slot].regs) << 4;
6655 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6656 }
6657
6658 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6659 i.vex.register_specifier = i.op[nds].regs;
6660 }
6661 else
6662 source = dest = 0;
6663
6664 /* i.reg_operands MUST be the number of real register operands;
6665 implicit registers do not count. If there are 3 register
6666 operands, it must be a instruction with VexNDS. For a
6667 instruction with VexNDD, the destination register is encoded
6668 in VEX prefix. If there are 4 register operands, it must be
6669 a instruction with VEX prefix and 3 sources. */
6670 if (i.mem_operands == 0
6671 && ((i.reg_operands == 2
6672 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6673 || (i.reg_operands == 3
6674 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6675 || (i.reg_operands == 4 && vex_3_sources)))
6676 {
6677 switch (i.operands)
6678 {
6679 case 2:
6680 source = 0;
6681 break;
6682 case 3:
6683 /* When there are 3 operands, one of them may be immediate,
6684 which may be the first or the last operand. Otherwise,
6685 the first operand must be shift count register (cl) or it
6686 is an instruction with VexNDS. */
6687 gas_assert (i.imm_operands == 1
6688 || (i.imm_operands == 0
6689 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6690 || i.types[0].bitfield.shiftcount)));
6691 if (operand_type_check (i.types[0], imm)
6692 || i.types[0].bitfield.shiftcount)
6693 source = 1;
6694 else
6695 source = 0;
6696 break;
6697 case 4:
6698 /* When there are 4 operands, the first two must be 8bit
6699 immediate operands. The source operand will be the 3rd
6700 one.
6701
6702 For instructions with VexNDS, if the first operand
6703 an imm8, the source operand is the 2nd one. If the last
6704 operand is imm8, the source operand is the first one. */
6705 gas_assert ((i.imm_operands == 2
6706 && i.types[0].bitfield.imm8
6707 && i.types[1].bitfield.imm8)
6708 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6709 && i.imm_operands == 1
6710 && (i.types[0].bitfield.imm8
6711 || i.types[i.operands - 1].bitfield.imm8
6712 || i.rounding)));
6713 if (i.imm_operands == 2)
6714 source = 2;
6715 else
6716 {
6717 if (i.types[0].bitfield.imm8)
6718 source = 1;
6719 else
6720 source = 0;
6721 }
6722 break;
6723 case 5:
6724 if (is_evex_encoding (&i.tm))
6725 {
6726 /* For EVEX instructions, when there are 5 operands, the
6727 first one must be immediate operand. If the second one
6728 is immediate operand, the source operand is the 3th
6729 one. If the last one is immediate operand, the source
6730 operand is the 2nd one. */
6731 gas_assert (i.imm_operands == 2
6732 && i.tm.opcode_modifier.sae
6733 && operand_type_check (i.types[0], imm));
6734 if (operand_type_check (i.types[1], imm))
6735 source = 2;
6736 else if (operand_type_check (i.types[4], imm))
6737 source = 1;
6738 else
6739 abort ();
6740 }
6741 break;
6742 default:
6743 abort ();
6744 }
6745
6746 if (!vex_3_sources)
6747 {
6748 dest = source + 1;
6749
6750 /* RC/SAE operand could be between DEST and SRC. That happens
6751 when one operand is GPR and the other one is XMM/YMM/ZMM
6752 register. */
6753 if (i.rounding && i.rounding->operand == (int) dest)
6754 dest++;
6755
6756 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6757 {
6758 /* For instructions with VexNDS, the register-only source
6759 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6760 register. It is encoded in VEX prefix. We need to
6761 clear RegMem bit before calling operand_type_equal. */
6762
6763 i386_operand_type op;
6764 unsigned int vvvv;
6765
6766 /* Check register-only source operand when two source
6767 operands are swapped. */
6768 if (!i.tm.operand_types[source].bitfield.baseindex
6769 && i.tm.operand_types[dest].bitfield.baseindex)
6770 {
6771 vvvv = source;
6772 source = dest;
6773 }
6774 else
6775 vvvv = dest;
6776
6777 op = i.tm.operand_types[vvvv];
6778 op.bitfield.regmem = 0;
6779 if ((dest + 1) >= i.operands
6780 || ((!op.bitfield.reg
6781 || (!op.bitfield.dword && !op.bitfield.qword))
6782 && !op.bitfield.regsimd
6783 && !operand_type_equal (&op, &regmask)))
6784 abort ();
6785 i.vex.register_specifier = i.op[vvvv].regs;
6786 dest++;
6787 }
6788 }
6789
6790 i.rm.mode = 3;
6791 /* One of the register operands will be encoded in the i.tm.reg
6792 field, the other in the combined i.tm.mode and i.tm.regmem
6793 fields. If no form of this instruction supports a memory
6794 destination operand, then we assume the source operand may
6795 sometimes be a memory operand and so we need to store the
6796 destination in the i.rm.reg field. */
6797 if (!i.tm.operand_types[dest].bitfield.regmem
6798 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6799 {
6800 i.rm.reg = i.op[dest].regs->reg_num;
6801 i.rm.regmem = i.op[source].regs->reg_num;
6802 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6803 i.rex |= REX_R;
6804 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6805 i.vrex |= REX_R;
6806 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6807 i.rex |= REX_B;
6808 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6809 i.vrex |= REX_B;
6810 }
6811 else
6812 {
6813 i.rm.reg = i.op[source].regs->reg_num;
6814 i.rm.regmem = i.op[dest].regs->reg_num;
6815 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6816 i.rex |= REX_B;
6817 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6818 i.vrex |= REX_B;
6819 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6820 i.rex |= REX_R;
6821 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6822 i.vrex |= REX_R;
6823 }
6824 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6825 {
6826 if (!i.types[0].bitfield.control
6827 && !i.types[1].bitfield.control)
6828 abort ();
6829 i.rex &= ~(REX_R | REX_B);
6830 add_prefix (LOCK_PREFIX_OPCODE);
6831 }
6832 }
6833 else
6834 { /* If it's not 2 reg operands... */
6835 unsigned int mem;
6836
6837 if (i.mem_operands)
6838 {
6839 unsigned int fake_zero_displacement = 0;
6840 unsigned int op;
6841
6842 for (op = 0; op < i.operands; op++)
6843 if (operand_type_check (i.types[op], anymem))
6844 break;
6845 gas_assert (op < i.operands);
6846
6847 if (i.tm.opcode_modifier.vecsib)
6848 {
6849 if (i.index_reg->reg_num == RegEiz
6850 || i.index_reg->reg_num == RegRiz)
6851 abort ();
6852
6853 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6854 if (!i.base_reg)
6855 {
6856 i.sib.base = NO_BASE_REGISTER;
6857 i.sib.scale = i.log2_scale_factor;
6858 i.types[op].bitfield.disp8 = 0;
6859 i.types[op].bitfield.disp16 = 0;
6860 i.types[op].bitfield.disp64 = 0;
6861 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6862 {
6863 /* Must be 32 bit */
6864 i.types[op].bitfield.disp32 = 1;
6865 i.types[op].bitfield.disp32s = 0;
6866 }
6867 else
6868 {
6869 i.types[op].bitfield.disp32 = 0;
6870 i.types[op].bitfield.disp32s = 1;
6871 }
6872 }
6873 i.sib.index = i.index_reg->reg_num;
6874 if ((i.index_reg->reg_flags & RegRex) != 0)
6875 i.rex |= REX_X;
6876 if ((i.index_reg->reg_flags & RegVRex) != 0)
6877 i.vrex |= REX_X;
6878 }
6879
6880 default_seg = &ds;
6881
6882 if (i.base_reg == 0)
6883 {
6884 i.rm.mode = 0;
6885 if (!i.disp_operands)
6886 fake_zero_displacement = 1;
6887 if (i.index_reg == 0)
6888 {
6889 i386_operand_type newdisp;
6890
6891 gas_assert (!i.tm.opcode_modifier.vecsib);
6892 /* Operand is just <disp> */
6893 if (flag_code == CODE_64BIT)
6894 {
6895 /* 64bit mode overwrites the 32bit absolute
6896 addressing by RIP relative addressing and
6897 absolute addressing is encoded by one of the
6898 redundant SIB forms. */
6899 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6900 i.sib.base = NO_BASE_REGISTER;
6901 i.sib.index = NO_INDEX_REGISTER;
6902 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6903 }
6904 else if ((flag_code == CODE_16BIT)
6905 ^ (i.prefix[ADDR_PREFIX] != 0))
6906 {
6907 i.rm.regmem = NO_BASE_REGISTER_16;
6908 newdisp = disp16;
6909 }
6910 else
6911 {
6912 i.rm.regmem = NO_BASE_REGISTER;
6913 newdisp = disp32;
6914 }
6915 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6916 i.types[op] = operand_type_or (i.types[op], newdisp);
6917 }
6918 else if (!i.tm.opcode_modifier.vecsib)
6919 {
6920 /* !i.base_reg && i.index_reg */
6921 if (i.index_reg->reg_num == RegEiz
6922 || i.index_reg->reg_num == RegRiz)
6923 i.sib.index = NO_INDEX_REGISTER;
6924 else
6925 i.sib.index = i.index_reg->reg_num;
6926 i.sib.base = NO_BASE_REGISTER;
6927 i.sib.scale = i.log2_scale_factor;
6928 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6929 i.types[op].bitfield.disp8 = 0;
6930 i.types[op].bitfield.disp16 = 0;
6931 i.types[op].bitfield.disp64 = 0;
6932 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6933 {
6934 /* Must be 32 bit */
6935 i.types[op].bitfield.disp32 = 1;
6936 i.types[op].bitfield.disp32s = 0;
6937 }
6938 else
6939 {
6940 i.types[op].bitfield.disp32 = 0;
6941 i.types[op].bitfield.disp32s = 1;
6942 }
6943 if ((i.index_reg->reg_flags & RegRex) != 0)
6944 i.rex |= REX_X;
6945 }
6946 }
6947 /* RIP addressing for 64bit mode. */
6948 else if (i.base_reg->reg_num == RegRip ||
6949 i.base_reg->reg_num == RegEip)
6950 {
6951 gas_assert (!i.tm.opcode_modifier.vecsib);
6952 i.rm.regmem = NO_BASE_REGISTER;
6953 i.types[op].bitfield.disp8 = 0;
6954 i.types[op].bitfield.disp16 = 0;
6955 i.types[op].bitfield.disp32 = 0;
6956 i.types[op].bitfield.disp32s = 1;
6957 i.types[op].bitfield.disp64 = 0;
6958 i.flags[op] |= Operand_PCrel;
6959 if (! i.disp_operands)
6960 fake_zero_displacement = 1;
6961 }
6962 else if (i.base_reg->reg_type.bitfield.word)
6963 {
6964 gas_assert (!i.tm.opcode_modifier.vecsib);
6965 switch (i.base_reg->reg_num)
6966 {
6967 case 3: /* (%bx) */
6968 if (i.index_reg == 0)
6969 i.rm.regmem = 7;
6970 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6971 i.rm.regmem = i.index_reg->reg_num - 6;
6972 break;
6973 case 5: /* (%bp) */
6974 default_seg = &ss;
6975 if (i.index_reg == 0)
6976 {
6977 i.rm.regmem = 6;
6978 if (operand_type_check (i.types[op], disp) == 0)
6979 {
6980 /* fake (%bp) into 0(%bp) */
6981 i.types[op].bitfield.disp8 = 1;
6982 fake_zero_displacement = 1;
6983 }
6984 }
6985 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6986 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6987 break;
6988 default: /* (%si) -> 4 or (%di) -> 5 */
6989 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6990 }
6991 i.rm.mode = mode_from_disp_size (i.types[op]);
6992 }
6993 else /* i.base_reg and 32/64 bit mode */
6994 {
6995 if (flag_code == CODE_64BIT
6996 && operand_type_check (i.types[op], disp))
6997 {
6998 i.types[op].bitfield.disp16 = 0;
6999 i.types[op].bitfield.disp64 = 0;
7000 if (i.prefix[ADDR_PREFIX] == 0)
7001 {
7002 i.types[op].bitfield.disp32 = 0;
7003 i.types[op].bitfield.disp32s = 1;
7004 }
7005 else
7006 {
7007 i.types[op].bitfield.disp32 = 1;
7008 i.types[op].bitfield.disp32s = 0;
7009 }
7010 }
7011
7012 if (!i.tm.opcode_modifier.vecsib)
7013 i.rm.regmem = i.base_reg->reg_num;
7014 if ((i.base_reg->reg_flags & RegRex) != 0)
7015 i.rex |= REX_B;
7016 i.sib.base = i.base_reg->reg_num;
7017 /* x86-64 ignores REX prefix bit here to avoid decoder
7018 complications. */
7019 if (!(i.base_reg->reg_flags & RegRex)
7020 && (i.base_reg->reg_num == EBP_REG_NUM
7021 || i.base_reg->reg_num == ESP_REG_NUM))
7022 default_seg = &ss;
7023 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7024 {
7025 fake_zero_displacement = 1;
7026 i.types[op].bitfield.disp8 = 1;
7027 }
7028 i.sib.scale = i.log2_scale_factor;
7029 if (i.index_reg == 0)
7030 {
7031 gas_assert (!i.tm.opcode_modifier.vecsib);
7032 /* <disp>(%esp) becomes two byte modrm with no index
7033 register. We've already stored the code for esp
7034 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7035 Any base register besides %esp will not use the
7036 extra modrm byte. */
7037 i.sib.index = NO_INDEX_REGISTER;
7038 }
7039 else if (!i.tm.opcode_modifier.vecsib)
7040 {
7041 if (i.index_reg->reg_num == RegEiz
7042 || i.index_reg->reg_num == RegRiz)
7043 i.sib.index = NO_INDEX_REGISTER;
7044 else
7045 i.sib.index = i.index_reg->reg_num;
7046 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7047 if ((i.index_reg->reg_flags & RegRex) != 0)
7048 i.rex |= REX_X;
7049 }
7050
7051 if (i.disp_operands
7052 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7053 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7054 i.rm.mode = 0;
7055 else
7056 {
7057 if (!fake_zero_displacement
7058 && !i.disp_operands
7059 && i.disp_encoding)
7060 {
7061 fake_zero_displacement = 1;
7062 if (i.disp_encoding == disp_encoding_8bit)
7063 i.types[op].bitfield.disp8 = 1;
7064 else
7065 i.types[op].bitfield.disp32 = 1;
7066 }
7067 i.rm.mode = mode_from_disp_size (i.types[op]);
7068 }
7069 }
7070
7071 if (fake_zero_displacement)
7072 {
7073 /* Fakes a zero displacement assuming that i.types[op]
7074 holds the correct displacement size. */
7075 expressionS *exp;
7076
7077 gas_assert (i.op[op].disps == 0);
7078 exp = &disp_expressions[i.disp_operands++];
7079 i.op[op].disps = exp;
7080 exp->X_op = O_constant;
7081 exp->X_add_number = 0;
7082 exp->X_add_symbol = (symbolS *) 0;
7083 exp->X_op_symbol = (symbolS *) 0;
7084 }
7085
7086 mem = op;
7087 }
7088 else
7089 mem = ~0;
7090
7091 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7092 {
7093 if (operand_type_check (i.types[0], imm))
7094 i.vex.register_specifier = NULL;
7095 else
7096 {
7097 /* VEX.vvvv encodes one of the sources when the first
7098 operand is not an immediate. */
7099 if (i.tm.opcode_modifier.vexw == VEXW0)
7100 i.vex.register_specifier = i.op[0].regs;
7101 else
7102 i.vex.register_specifier = i.op[1].regs;
7103 }
7104
7105 /* Destination is a XMM register encoded in the ModRM.reg
7106 and VEX.R bit. */
7107 i.rm.reg = i.op[2].regs->reg_num;
7108 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7109 i.rex |= REX_R;
7110
7111 /* ModRM.rm and VEX.B encodes the other source. */
7112 if (!i.mem_operands)
7113 {
7114 i.rm.mode = 3;
7115
7116 if (i.tm.opcode_modifier.vexw == VEXW0)
7117 i.rm.regmem = i.op[1].regs->reg_num;
7118 else
7119 i.rm.regmem = i.op[0].regs->reg_num;
7120
7121 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7122 i.rex |= REX_B;
7123 }
7124 }
7125 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7126 {
7127 i.vex.register_specifier = i.op[2].regs;
7128 if (!i.mem_operands)
7129 {
7130 i.rm.mode = 3;
7131 i.rm.regmem = i.op[1].regs->reg_num;
7132 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7133 i.rex |= REX_B;
7134 }
7135 }
7136 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7137 (if any) based on i.tm.extension_opcode. Again, we must be
7138 careful to make sure that segment/control/debug/test/MMX
7139 registers are coded into the i.rm.reg field. */
7140 else if (i.reg_operands)
7141 {
7142 unsigned int op;
7143 unsigned int vex_reg = ~0;
7144
7145 for (op = 0; op < i.operands; op++)
7146 if (i.types[op].bitfield.reg
7147 || i.types[op].bitfield.regmmx
7148 || i.types[op].bitfield.regsimd
7149 || i.types[op].bitfield.regbnd
7150 || i.types[op].bitfield.regmask
7151 || i.types[op].bitfield.sreg2
7152 || i.types[op].bitfield.sreg3
7153 || i.types[op].bitfield.control
7154 || i.types[op].bitfield.debug
7155 || i.types[op].bitfield.test)
7156 break;
7157
7158 if (vex_3_sources)
7159 op = dest;
7160 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7161 {
7162 /* For instructions with VexNDS, the register-only
7163 source operand is encoded in VEX prefix. */
7164 gas_assert (mem != (unsigned int) ~0);
7165
7166 if (op > mem)
7167 {
7168 vex_reg = op++;
7169 gas_assert (op < i.operands);
7170 }
7171 else
7172 {
7173 /* Check register-only source operand when two source
7174 operands are swapped. */
7175 if (!i.tm.operand_types[op].bitfield.baseindex
7176 && i.tm.operand_types[op + 1].bitfield.baseindex)
7177 {
7178 vex_reg = op;
7179 op += 2;
7180 gas_assert (mem == (vex_reg + 1)
7181 && op < i.operands);
7182 }
7183 else
7184 {
7185 vex_reg = op + 1;
7186 gas_assert (vex_reg < i.operands);
7187 }
7188 }
7189 }
7190 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7191 {
7192 /* For instructions with VexNDD, the register destination
7193 is encoded in VEX prefix. */
7194 if (i.mem_operands == 0)
7195 {
7196 /* There is no memory operand. */
7197 gas_assert ((op + 2) == i.operands);
7198 vex_reg = op + 1;
7199 }
7200 else
7201 {
7202 /* There are only 2 non-immediate operands. */
7203 gas_assert (op < i.imm_operands + 2
7204 && i.operands == i.imm_operands + 2);
7205 vex_reg = i.imm_operands + 1;
7206 }
7207 }
7208 else
7209 gas_assert (op < i.operands);
7210
7211 if (vex_reg != (unsigned int) ~0)
7212 {
7213 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7214
7215 if ((!type->bitfield.reg
7216 || (!type->bitfield.dword && !type->bitfield.qword))
7217 && !type->bitfield.regsimd
7218 && !operand_type_equal (type, &regmask))
7219 abort ();
7220
7221 i.vex.register_specifier = i.op[vex_reg].regs;
7222 }
7223
7224 /* Don't set OP operand twice. */
7225 if (vex_reg != op)
7226 {
7227 /* If there is an extension opcode to put here, the
7228 register number must be put into the regmem field. */
7229 if (i.tm.extension_opcode != None)
7230 {
7231 i.rm.regmem = i.op[op].regs->reg_num;
7232 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7233 i.rex |= REX_B;
7234 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7235 i.vrex |= REX_B;
7236 }
7237 else
7238 {
7239 i.rm.reg = i.op[op].regs->reg_num;
7240 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7241 i.rex |= REX_R;
7242 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7243 i.vrex |= REX_R;
7244 }
7245 }
7246
7247 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7248 must set it to 3 to indicate this is a register operand
7249 in the regmem field. */
7250 if (!i.mem_operands)
7251 i.rm.mode = 3;
7252 }
7253
7254 /* Fill in i.rm.reg field with extension opcode (if any). */
7255 if (i.tm.extension_opcode != None)
7256 i.rm.reg = i.tm.extension_opcode;
7257 }
7258 return default_seg;
7259 }
7260
7261 static void
7262 output_branch (void)
7263 {
7264 char *p;
7265 int size;
7266 int code16;
7267 int prefix;
7268 relax_substateT subtype;
7269 symbolS *sym;
7270 offsetT off;
7271
7272 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7273 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7274
7275 prefix = 0;
7276 if (i.prefix[DATA_PREFIX] != 0)
7277 {
7278 prefix = 1;
7279 i.prefixes -= 1;
7280 code16 ^= CODE16;
7281 }
7282 /* Pentium4 branch hints. */
7283 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7284 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7285 {
7286 prefix++;
7287 i.prefixes--;
7288 }
7289 if (i.prefix[REX_PREFIX] != 0)
7290 {
7291 prefix++;
7292 i.prefixes--;
7293 }
7294
7295 /* BND prefixed jump. */
7296 if (i.prefix[BND_PREFIX] != 0)
7297 {
7298 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7299 i.prefixes -= 1;
7300 }
7301
7302 if (i.prefixes != 0 && !intel_syntax)
7303 as_warn (_("skipping prefixes on this instruction"));
7304
7305 /* It's always a symbol; End frag & setup for relax.
7306 Make sure there is enough room in this frag for the largest
7307 instruction we may generate in md_convert_frag. This is 2
7308 bytes for the opcode and room for the prefix and largest
7309 displacement. */
7310 frag_grow (prefix + 2 + 4);
7311 /* Prefix and 1 opcode byte go in fr_fix. */
7312 p = frag_more (prefix + 1);
7313 if (i.prefix[DATA_PREFIX] != 0)
7314 *p++ = DATA_PREFIX_OPCODE;
7315 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7316 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7317 *p++ = i.prefix[SEG_PREFIX];
7318 if (i.prefix[REX_PREFIX] != 0)
7319 *p++ = i.prefix[REX_PREFIX];
7320 *p = i.tm.base_opcode;
7321
7322 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7323 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7324 else if (cpu_arch_flags.bitfield.cpui386)
7325 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7326 else
7327 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7328 subtype |= code16;
7329
7330 sym = i.op[0].disps->X_add_symbol;
7331 off = i.op[0].disps->X_add_number;
7332
7333 if (i.op[0].disps->X_op != O_constant
7334 && i.op[0].disps->X_op != O_symbol)
7335 {
7336 /* Handle complex expressions. */
7337 sym = make_expr_symbol (i.op[0].disps);
7338 off = 0;
7339 }
7340
7341 /* 1 possible extra opcode + 4 byte displacement go in var part.
7342 Pass reloc in fr_var. */
7343 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7344 }
7345
7346 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7347 /* Return TRUE iff PLT32 relocation should be used for branching to
7348 symbol S. */
7349
7350 static bfd_boolean
7351 need_plt32_p (symbolS *s)
7352 {
7353 /* PLT32 relocation is ELF only. */
7354 if (!IS_ELF)
7355 return FALSE;
7356
7357 /* Since there is no need to prepare for PLT branch on x86-64, we
7358 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7359 be used as a marker for 32-bit PC-relative branches. */
7360 if (!object_64bit)
7361 return FALSE;
7362
7363 /* Weak or undefined symbol need PLT32 relocation. */
7364 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7365 return TRUE;
7366
7367 /* Non-global symbol doesn't need PLT32 relocation. */
7368 if (! S_IS_EXTERNAL (s))
7369 return FALSE;
7370
7371 /* Other global symbols need PLT32 relocation. NB: Symbol with
7372 non-default visibilities are treated as normal global symbol
7373 so that PLT32 relocation can be used as a marker for 32-bit
7374 PC-relative branches. It is useful for linker relaxation. */
7375 return TRUE;
7376 }
7377 #endif
7378
7379 static void
7380 output_jump (void)
7381 {
7382 char *p;
7383 int size;
7384 fixS *fixP;
7385 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7386
7387 if (i.tm.opcode_modifier.jumpbyte)
7388 {
7389 /* This is a loop or jecxz type instruction. */
7390 size = 1;
7391 if (i.prefix[ADDR_PREFIX] != 0)
7392 {
7393 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7394 i.prefixes -= 1;
7395 }
7396 /* Pentium4 branch hints. */
7397 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7398 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7399 {
7400 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7401 i.prefixes--;
7402 }
7403 }
7404 else
7405 {
7406 int code16;
7407
7408 code16 = 0;
7409 if (flag_code == CODE_16BIT)
7410 code16 = CODE16;
7411
7412 if (i.prefix[DATA_PREFIX] != 0)
7413 {
7414 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7415 i.prefixes -= 1;
7416 code16 ^= CODE16;
7417 }
7418
7419 size = 4;
7420 if (code16)
7421 size = 2;
7422 }
7423
7424 if (i.prefix[REX_PREFIX] != 0)
7425 {
7426 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7427 i.prefixes -= 1;
7428 }
7429
7430 /* BND prefixed jump. */
7431 if (i.prefix[BND_PREFIX] != 0)
7432 {
7433 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7434 i.prefixes -= 1;
7435 }
7436
7437 if (i.prefixes != 0 && !intel_syntax)
7438 as_warn (_("skipping prefixes on this instruction"));
7439
7440 p = frag_more (i.tm.opcode_length + size);
7441 switch (i.tm.opcode_length)
7442 {
7443 case 2:
7444 *p++ = i.tm.base_opcode >> 8;
7445 /* Fall through. */
7446 case 1:
7447 *p++ = i.tm.base_opcode;
7448 break;
7449 default:
7450 abort ();
7451 }
7452
7453 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7454 if (size == 4
7455 && jump_reloc == NO_RELOC
7456 && need_plt32_p (i.op[0].disps->X_add_symbol))
7457 jump_reloc = BFD_RELOC_X86_64_PLT32;
7458 #endif
7459
7460 jump_reloc = reloc (size, 1, 1, jump_reloc);
7461
7462 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7463 i.op[0].disps, 1, jump_reloc);
7464
7465 /* All jumps handled here are signed, but don't use a signed limit
7466 check for 32 and 16 bit jumps as we want to allow wrap around at
7467 4G and 64k respectively. */
7468 if (size == 1)
7469 fixP->fx_signed = 1;
7470 }
7471
7472 static void
7473 output_interseg_jump (void)
7474 {
7475 char *p;
7476 int size;
7477 int prefix;
7478 int code16;
7479
7480 code16 = 0;
7481 if (flag_code == CODE_16BIT)
7482 code16 = CODE16;
7483
7484 prefix = 0;
7485 if (i.prefix[DATA_PREFIX] != 0)
7486 {
7487 prefix = 1;
7488 i.prefixes -= 1;
7489 code16 ^= CODE16;
7490 }
7491 if (i.prefix[REX_PREFIX] != 0)
7492 {
7493 prefix++;
7494 i.prefixes -= 1;
7495 }
7496
7497 size = 4;
7498 if (code16)
7499 size = 2;
7500
7501 if (i.prefixes != 0 && !intel_syntax)
7502 as_warn (_("skipping prefixes on this instruction"));
7503
7504 /* 1 opcode; 2 segment; offset */
7505 p = frag_more (prefix + 1 + 2 + size);
7506
7507 if (i.prefix[DATA_PREFIX] != 0)
7508 *p++ = DATA_PREFIX_OPCODE;
7509
7510 if (i.prefix[REX_PREFIX] != 0)
7511 *p++ = i.prefix[REX_PREFIX];
7512
7513 *p++ = i.tm.base_opcode;
7514 if (i.op[1].imms->X_op == O_constant)
7515 {
7516 offsetT n = i.op[1].imms->X_add_number;
7517
7518 if (size == 2
7519 && !fits_in_unsigned_word (n)
7520 && !fits_in_signed_word (n))
7521 {
7522 as_bad (_("16-bit jump out of range"));
7523 return;
7524 }
7525 md_number_to_chars (p, n, size);
7526 }
7527 else
7528 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7529 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7530 if (i.op[0].imms->X_op != O_constant)
7531 as_bad (_("can't handle non absolute segment in `%s'"),
7532 i.tm.name);
7533 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7534 }
7535
7536 static void
7537 output_insn (void)
7538 {
7539 fragS *insn_start_frag;
7540 offsetT insn_start_off;
7541
7542 /* Tie dwarf2 debug info to the address at the start of the insn.
7543 We can't do this after the insn has been output as the current
7544 frag may have been closed off. eg. by frag_var. */
7545 dwarf2_emit_insn (0);
7546
7547 insn_start_frag = frag_now;
7548 insn_start_off = frag_now_fix ();
7549
7550 /* Output jumps. */
7551 if (i.tm.opcode_modifier.jump)
7552 output_branch ();
7553 else if (i.tm.opcode_modifier.jumpbyte
7554 || i.tm.opcode_modifier.jumpdword)
7555 output_jump ();
7556 else if (i.tm.opcode_modifier.jumpintersegment)
7557 output_interseg_jump ();
7558 else
7559 {
7560 /* Output normal instructions here. */
7561 char *p;
7562 unsigned char *q;
7563 unsigned int j;
7564 unsigned int prefix;
7565
7566 if (avoid_fence
7567 && i.tm.base_opcode == 0xfae
7568 && i.operands == 1
7569 && i.imm_operands == 1
7570 && (i.op[0].imms->X_add_number == 0xe8
7571 || i.op[0].imms->X_add_number == 0xf0
7572 || i.op[0].imms->X_add_number == 0xf8))
7573 {
7574 /* Encode lfence, mfence, and sfence as
7575 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7576 offsetT val = 0x240483f0ULL;
7577 p = frag_more (5);
7578 md_number_to_chars (p, val, 5);
7579 return;
7580 }
7581
7582 /* Some processors fail on LOCK prefix. This options makes
7583 assembler ignore LOCK prefix and serves as a workaround. */
7584 if (omit_lock_prefix)
7585 {
7586 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7587 return;
7588 i.prefix[LOCK_PREFIX] = 0;
7589 }
7590
7591 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7592 don't need the explicit prefix. */
7593 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7594 {
7595 switch (i.tm.opcode_length)
7596 {
7597 case 3:
7598 if (i.tm.base_opcode & 0xff000000)
7599 {
7600 prefix = (i.tm.base_opcode >> 24) & 0xff;
7601 goto check_prefix;
7602 }
7603 break;
7604 case 2:
7605 if ((i.tm.base_opcode & 0xff0000) != 0)
7606 {
7607 prefix = (i.tm.base_opcode >> 16) & 0xff;
7608 if (i.tm.cpu_flags.bitfield.cpupadlock)
7609 {
7610 check_prefix:
7611 if (prefix != REPE_PREFIX_OPCODE
7612 || (i.prefix[REP_PREFIX]
7613 != REPE_PREFIX_OPCODE))
7614 add_prefix (prefix);
7615 }
7616 else
7617 add_prefix (prefix);
7618 }
7619 break;
7620 case 1:
7621 break;
7622 case 0:
7623 /* Check for pseudo prefixes. */
7624 as_bad_where (insn_start_frag->fr_file,
7625 insn_start_frag->fr_line,
7626 _("pseudo prefix without instruction"));
7627 return;
7628 default:
7629 abort ();
7630 }
7631
7632 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7633 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7634 R_X86_64_GOTTPOFF relocation so that linker can safely
7635 perform IE->LE optimization. */
7636 if (x86_elf_abi == X86_64_X32_ABI
7637 && i.operands == 2
7638 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7639 && i.prefix[REX_PREFIX] == 0)
7640 add_prefix (REX_OPCODE);
7641 #endif
7642
7643 /* The prefix bytes. */
7644 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7645 if (*q)
7646 FRAG_APPEND_1_CHAR (*q);
7647 }
7648 else
7649 {
7650 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7651 if (*q)
7652 switch (j)
7653 {
7654 case REX_PREFIX:
7655 /* REX byte is encoded in VEX prefix. */
7656 break;
7657 case SEG_PREFIX:
7658 case ADDR_PREFIX:
7659 FRAG_APPEND_1_CHAR (*q);
7660 break;
7661 default:
7662 /* There should be no other prefixes for instructions
7663 with VEX prefix. */
7664 abort ();
7665 }
7666
7667 /* For EVEX instructions i.vrex should become 0 after
7668 build_evex_prefix. For VEX instructions upper 16 registers
7669 aren't available, so VREX should be 0. */
7670 if (i.vrex)
7671 abort ();
7672 /* Now the VEX prefix. */
7673 p = frag_more (i.vex.length);
7674 for (j = 0; j < i.vex.length; j++)
7675 p[j] = i.vex.bytes[j];
7676 }
7677
7678 /* Now the opcode; be careful about word order here! */
7679 if (i.tm.opcode_length == 1)
7680 {
7681 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7682 }
7683 else
7684 {
7685 switch (i.tm.opcode_length)
7686 {
7687 case 4:
7688 p = frag_more (4);
7689 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7690 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7691 break;
7692 case 3:
7693 p = frag_more (3);
7694 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7695 break;
7696 case 2:
7697 p = frag_more (2);
7698 break;
7699 default:
7700 abort ();
7701 break;
7702 }
7703
7704 /* Put out high byte first: can't use md_number_to_chars! */
7705 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7706 *p = i.tm.base_opcode & 0xff;
7707 }
7708
7709 /* Now the modrm byte and sib byte (if present). */
7710 if (i.tm.opcode_modifier.modrm)
7711 {
7712 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7713 | i.rm.reg << 3
7714 | i.rm.mode << 6));
7715 /* If i.rm.regmem == ESP (4)
7716 && i.rm.mode != (Register mode)
7717 && not 16 bit
7718 ==> need second modrm byte. */
7719 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7720 && i.rm.mode != 3
7721 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7722 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7723 | i.sib.index << 3
7724 | i.sib.scale << 6));
7725 }
7726
7727 if (i.disp_operands)
7728 output_disp (insn_start_frag, insn_start_off);
7729
7730 if (i.imm_operands)
7731 output_imm (insn_start_frag, insn_start_off);
7732 }
7733
7734 #ifdef DEBUG386
7735 if (flag_debug)
7736 {
7737 pi ("" /*line*/, &i);
7738 }
7739 #endif /* DEBUG386 */
7740 }
7741
7742 /* Return the size of the displacement operand N. */
7743
7744 static int
7745 disp_size (unsigned int n)
7746 {
7747 int size = 4;
7748
7749 if (i.types[n].bitfield.disp64)
7750 size = 8;
7751 else if (i.types[n].bitfield.disp8)
7752 size = 1;
7753 else if (i.types[n].bitfield.disp16)
7754 size = 2;
7755 return size;
7756 }
7757
7758 /* Return the size of the immediate operand N. */
7759
7760 static int
7761 imm_size (unsigned int n)
7762 {
7763 int size = 4;
7764 if (i.types[n].bitfield.imm64)
7765 size = 8;
7766 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7767 size = 1;
7768 else if (i.types[n].bitfield.imm16)
7769 size = 2;
7770 return size;
7771 }
7772
7773 static void
7774 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7775 {
7776 char *p;
7777 unsigned int n;
7778
7779 for (n = 0; n < i.operands; n++)
7780 {
7781 if (operand_type_check (i.types[n], disp))
7782 {
7783 if (i.op[n].disps->X_op == O_constant)
7784 {
7785 int size = disp_size (n);
7786 offsetT val = i.op[n].disps->X_add_number;
7787
7788 val = offset_in_range (val >> i.memshift, size);
7789 p = frag_more (size);
7790 md_number_to_chars (p, val, size);
7791 }
7792 else
7793 {
7794 enum bfd_reloc_code_real reloc_type;
7795 int size = disp_size (n);
7796 int sign = i.types[n].bitfield.disp32s;
7797 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7798 fixS *fixP;
7799
7800 /* We can't have 8 bit displacement here. */
7801 gas_assert (!i.types[n].bitfield.disp8);
7802
7803 /* The PC relative address is computed relative
7804 to the instruction boundary, so in case immediate
7805 fields follows, we need to adjust the value. */
7806 if (pcrel && i.imm_operands)
7807 {
7808 unsigned int n1;
7809 int sz = 0;
7810
7811 for (n1 = 0; n1 < i.operands; n1++)
7812 if (operand_type_check (i.types[n1], imm))
7813 {
7814 /* Only one immediate is allowed for PC
7815 relative address. */
7816 gas_assert (sz == 0);
7817 sz = imm_size (n1);
7818 i.op[n].disps->X_add_number -= sz;
7819 }
7820 /* We should find the immediate. */
7821 gas_assert (sz != 0);
7822 }
7823
7824 p = frag_more (size);
7825 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7826 if (GOT_symbol
7827 && GOT_symbol == i.op[n].disps->X_add_symbol
7828 && (((reloc_type == BFD_RELOC_32
7829 || reloc_type == BFD_RELOC_X86_64_32S
7830 || (reloc_type == BFD_RELOC_64
7831 && object_64bit))
7832 && (i.op[n].disps->X_op == O_symbol
7833 || (i.op[n].disps->X_op == O_add
7834 && ((symbol_get_value_expression
7835 (i.op[n].disps->X_op_symbol)->X_op)
7836 == O_subtract))))
7837 || reloc_type == BFD_RELOC_32_PCREL))
7838 {
7839 offsetT add;
7840
7841 if (insn_start_frag == frag_now)
7842 add = (p - frag_now->fr_literal) - insn_start_off;
7843 else
7844 {
7845 fragS *fr;
7846
7847 add = insn_start_frag->fr_fix - insn_start_off;
7848 for (fr = insn_start_frag->fr_next;
7849 fr && fr != frag_now; fr = fr->fr_next)
7850 add += fr->fr_fix;
7851 add += p - frag_now->fr_literal;
7852 }
7853
7854 if (!object_64bit)
7855 {
7856 reloc_type = BFD_RELOC_386_GOTPC;
7857 i.op[n].imms->X_add_number += add;
7858 }
7859 else if (reloc_type == BFD_RELOC_64)
7860 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7861 else
7862 /* Don't do the adjustment for x86-64, as there
7863 the pcrel addressing is relative to the _next_
7864 insn, and that is taken care of in other code. */
7865 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7866 }
7867 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7868 size, i.op[n].disps, pcrel,
7869 reloc_type);
7870 /* Check for "call/jmp *mem", "mov mem, %reg",
7871 "test %reg, mem" and "binop mem, %reg" where binop
7872 is one of adc, add, and, cmp, or, sbb, sub, xor
7873 instructions. Always generate R_386_GOT32X for
7874 "sym*GOT" operand in 32-bit mode. */
7875 if ((generate_relax_relocations
7876 || (!object_64bit
7877 && i.rm.mode == 0
7878 && i.rm.regmem == 5))
7879 && (i.rm.mode == 2
7880 || (i.rm.mode == 0 && i.rm.regmem == 5))
7881 && ((i.operands == 1
7882 && i.tm.base_opcode == 0xff
7883 && (i.rm.reg == 2 || i.rm.reg == 4))
7884 || (i.operands == 2
7885 && (i.tm.base_opcode == 0x8b
7886 || i.tm.base_opcode == 0x85
7887 || (i.tm.base_opcode & 0xc7) == 0x03))))
7888 {
7889 if (object_64bit)
7890 {
7891 fixP->fx_tcbit = i.rex != 0;
7892 if (i.base_reg
7893 && (i.base_reg->reg_num == RegRip
7894 || i.base_reg->reg_num == RegEip))
7895 fixP->fx_tcbit2 = 1;
7896 }
7897 else
7898 fixP->fx_tcbit2 = 1;
7899 }
7900 }
7901 }
7902 }
7903 }
7904
7905 static void
7906 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7907 {
7908 char *p;
7909 unsigned int n;
7910
7911 for (n = 0; n < i.operands; n++)
7912 {
7913 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7914 if (i.rounding && (int) n == i.rounding->operand)
7915 continue;
7916
7917 if (operand_type_check (i.types[n], imm))
7918 {
7919 if (i.op[n].imms->X_op == O_constant)
7920 {
7921 int size = imm_size (n);
7922 offsetT val;
7923
7924 val = offset_in_range (i.op[n].imms->X_add_number,
7925 size);
7926 p = frag_more (size);
7927 md_number_to_chars (p, val, size);
7928 }
7929 else
7930 {
7931 /* Not absolute_section.
7932 Need a 32-bit fixup (don't support 8bit
7933 non-absolute imms). Try to support other
7934 sizes ... */
7935 enum bfd_reloc_code_real reloc_type;
7936 int size = imm_size (n);
7937 int sign;
7938
7939 if (i.types[n].bitfield.imm32s
7940 && (i.suffix == QWORD_MNEM_SUFFIX
7941 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7942 sign = 1;
7943 else
7944 sign = 0;
7945
7946 p = frag_more (size);
7947 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7948
7949 /* This is tough to explain. We end up with this one if we
7950 * have operands that look like
7951 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7952 * obtain the absolute address of the GOT, and it is strongly
7953 * preferable from a performance point of view to avoid using
7954 * a runtime relocation for this. The actual sequence of
7955 * instructions often look something like:
7956 *
7957 * call .L66
7958 * .L66:
7959 * popl %ebx
7960 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7961 *
7962 * The call and pop essentially return the absolute address
7963 * of the label .L66 and store it in %ebx. The linker itself
7964 * will ultimately change the first operand of the addl so
7965 * that %ebx points to the GOT, but to keep things simple, the
7966 * .o file must have this operand set so that it generates not
7967 * the absolute address of .L66, but the absolute address of
7968 * itself. This allows the linker itself simply treat a GOTPC
7969 * relocation as asking for a pcrel offset to the GOT to be
7970 * added in, and the addend of the relocation is stored in the
7971 * operand field for the instruction itself.
7972 *
7973 * Our job here is to fix the operand so that it would add
7974 * the correct offset so that %ebx would point to itself. The
7975 * thing that is tricky is that .-.L66 will point to the
7976 * beginning of the instruction, so we need to further modify
7977 * the operand so that it will point to itself. There are
7978 * other cases where you have something like:
7979 *
7980 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7981 *
7982 * and here no correction would be required. Internally in
7983 * the assembler we treat operands of this form as not being
7984 * pcrel since the '.' is explicitly mentioned, and I wonder
7985 * whether it would simplify matters to do it this way. Who
7986 * knows. In earlier versions of the PIC patches, the
7987 * pcrel_adjust field was used to store the correction, but
7988 * since the expression is not pcrel, I felt it would be
7989 * confusing to do it this way. */
7990
7991 if ((reloc_type == BFD_RELOC_32
7992 || reloc_type == BFD_RELOC_X86_64_32S
7993 || reloc_type == BFD_RELOC_64)
7994 && GOT_symbol
7995 && GOT_symbol == i.op[n].imms->X_add_symbol
7996 && (i.op[n].imms->X_op == O_symbol
7997 || (i.op[n].imms->X_op == O_add
7998 && ((symbol_get_value_expression
7999 (i.op[n].imms->X_op_symbol)->X_op)
8000 == O_subtract))))
8001 {
8002 offsetT add;
8003
8004 if (insn_start_frag == frag_now)
8005 add = (p - frag_now->fr_literal) - insn_start_off;
8006 else
8007 {
8008 fragS *fr;
8009
8010 add = insn_start_frag->fr_fix - insn_start_off;
8011 for (fr = insn_start_frag->fr_next;
8012 fr && fr != frag_now; fr = fr->fr_next)
8013 add += fr->fr_fix;
8014 add += p - frag_now->fr_literal;
8015 }
8016
8017 if (!object_64bit)
8018 reloc_type = BFD_RELOC_386_GOTPC;
8019 else if (size == 4)
8020 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8021 else if (size == 8)
8022 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8023 i.op[n].imms->X_add_number += add;
8024 }
8025 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8026 i.op[n].imms, 0, reloc_type);
8027 }
8028 }
8029 }
8030 }
8031 \f
8032 /* x86_cons_fix_new is called via the expression parsing code when a
8033 reloc is needed. We use this hook to get the correct .got reloc. */
8034 static int cons_sign = -1;
8035
8036 void
8037 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8038 expressionS *exp, bfd_reloc_code_real_type r)
8039 {
8040 r = reloc (len, 0, cons_sign, r);
8041
8042 #ifdef TE_PE
8043 if (exp->X_op == O_secrel)
8044 {
8045 exp->X_op = O_symbol;
8046 r = BFD_RELOC_32_SECREL;
8047 }
8048 #endif
8049
8050 fix_new_exp (frag, off, len, exp, 0, r);
8051 }
8052
8053 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8054 purpose of the `.dc.a' internal pseudo-op. */
8055
8056 int
8057 x86_address_bytes (void)
8058 {
8059 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8060 return 4;
8061 return stdoutput->arch_info->bits_per_address / 8;
8062 }
8063
8064 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8065 || defined (LEX_AT)
8066 # define lex_got(reloc, adjust, types) NULL
8067 #else
8068 /* Parse operands of the form
8069 <symbol>@GOTOFF+<nnn>
8070 and similar .plt or .got references.
8071
8072 If we find one, set up the correct relocation in RELOC and copy the
8073 input string, minus the `@GOTOFF' into a malloc'd buffer for
8074 parsing by the calling routine. Return this buffer, and if ADJUST
8075 is non-null set it to the length of the string we removed from the
8076 input line. Otherwise return NULL. */
8077 static char *
8078 lex_got (enum bfd_reloc_code_real *rel,
8079 int *adjust,
8080 i386_operand_type *types)
8081 {
8082 /* Some of the relocations depend on the size of what field is to
8083 be relocated. But in our callers i386_immediate and i386_displacement
8084 we don't yet know the operand size (this will be set by insn
8085 matching). Hence we record the word32 relocation here,
8086 and adjust the reloc according to the real size in reloc(). */
8087 static const struct {
8088 const char *str;
8089 int len;
8090 const enum bfd_reloc_code_real rel[2];
8091 const i386_operand_type types64;
8092 } gotrel[] = {
8093 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8094 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8095 BFD_RELOC_SIZE32 },
8096 OPERAND_TYPE_IMM32_64 },
8097 #endif
8098 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8099 BFD_RELOC_X86_64_PLTOFF64 },
8100 OPERAND_TYPE_IMM64 },
8101 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8102 BFD_RELOC_X86_64_PLT32 },
8103 OPERAND_TYPE_IMM32_32S_DISP32 },
8104 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8105 BFD_RELOC_X86_64_GOTPLT64 },
8106 OPERAND_TYPE_IMM64_DISP64 },
8107 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8108 BFD_RELOC_X86_64_GOTOFF64 },
8109 OPERAND_TYPE_IMM64_DISP64 },
8110 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8111 BFD_RELOC_X86_64_GOTPCREL },
8112 OPERAND_TYPE_IMM32_32S_DISP32 },
8113 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8114 BFD_RELOC_X86_64_TLSGD },
8115 OPERAND_TYPE_IMM32_32S_DISP32 },
8116 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8117 _dummy_first_bfd_reloc_code_real },
8118 OPERAND_TYPE_NONE },
8119 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8120 BFD_RELOC_X86_64_TLSLD },
8121 OPERAND_TYPE_IMM32_32S_DISP32 },
8122 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8123 BFD_RELOC_X86_64_GOTTPOFF },
8124 OPERAND_TYPE_IMM32_32S_DISP32 },
8125 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8126 BFD_RELOC_X86_64_TPOFF32 },
8127 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8128 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8129 _dummy_first_bfd_reloc_code_real },
8130 OPERAND_TYPE_NONE },
8131 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8132 BFD_RELOC_X86_64_DTPOFF32 },
8133 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8134 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8135 _dummy_first_bfd_reloc_code_real },
8136 OPERAND_TYPE_NONE },
8137 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8138 _dummy_first_bfd_reloc_code_real },
8139 OPERAND_TYPE_NONE },
8140 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8141 BFD_RELOC_X86_64_GOT32 },
8142 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8143 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8144 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8145 OPERAND_TYPE_IMM32_32S_DISP32 },
8146 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8147 BFD_RELOC_X86_64_TLSDESC_CALL },
8148 OPERAND_TYPE_IMM32_32S_DISP32 },
8149 };
8150 char *cp;
8151 unsigned int j;
8152
8153 #if defined (OBJ_MAYBE_ELF)
8154 if (!IS_ELF)
8155 return NULL;
8156 #endif
8157
8158 for (cp = input_line_pointer; *cp != '@'; cp++)
8159 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8160 return NULL;
8161
8162 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8163 {
8164 int len = gotrel[j].len;
8165 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8166 {
8167 if (gotrel[j].rel[object_64bit] != 0)
8168 {
8169 int first, second;
8170 char *tmpbuf, *past_reloc;
8171
8172 *rel = gotrel[j].rel[object_64bit];
8173
8174 if (types)
8175 {
8176 if (flag_code != CODE_64BIT)
8177 {
8178 types->bitfield.imm32 = 1;
8179 types->bitfield.disp32 = 1;
8180 }
8181 else
8182 *types = gotrel[j].types64;
8183 }
8184
8185 if (j != 0 && GOT_symbol == NULL)
8186 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8187
8188 /* The length of the first part of our input line. */
8189 first = cp - input_line_pointer;
8190
8191 /* The second part goes from after the reloc token until
8192 (and including) an end_of_line char or comma. */
8193 past_reloc = cp + 1 + len;
8194 cp = past_reloc;
8195 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8196 ++cp;
8197 second = cp + 1 - past_reloc;
8198
8199 /* Allocate and copy string. The trailing NUL shouldn't
8200 be necessary, but be safe. */
8201 tmpbuf = XNEWVEC (char, first + second + 2);
8202 memcpy (tmpbuf, input_line_pointer, first);
8203 if (second != 0 && *past_reloc != ' ')
8204 /* Replace the relocation token with ' ', so that
8205 errors like foo@GOTOFF1 will be detected. */
8206 tmpbuf[first++] = ' ';
8207 else
8208 /* Increment length by 1 if the relocation token is
8209 removed. */
8210 len++;
8211 if (adjust)
8212 *adjust = len;
8213 memcpy (tmpbuf + first, past_reloc, second);
8214 tmpbuf[first + second] = '\0';
8215 return tmpbuf;
8216 }
8217
8218 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8219 gotrel[j].str, 1 << (5 + object_64bit));
8220 return NULL;
8221 }
8222 }
8223
8224 /* Might be a symbol version string. Don't as_bad here. */
8225 return NULL;
8226 }
8227 #endif
8228
8229 #ifdef TE_PE
8230 #ifdef lex_got
8231 #undef lex_got
8232 #endif
8233 /* Parse operands of the form
8234 <symbol>@SECREL32+<nnn>
8235
8236 If we find one, set up the correct relocation in RELOC and copy the
8237 input string, minus the `@SECREL32' into a malloc'd buffer for
8238 parsing by the calling routine. Return this buffer, and if ADJUST
8239 is non-null set it to the length of the string we removed from the
8240 input line. Otherwise return NULL.
8241
8242 This function is copied from the ELF version above adjusted for PE targets. */
8243
8244 static char *
8245 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8246 int *adjust ATTRIBUTE_UNUSED,
8247 i386_operand_type *types)
8248 {
8249 static const struct
8250 {
8251 const char *str;
8252 int len;
8253 const enum bfd_reloc_code_real rel[2];
8254 const i386_operand_type types64;
8255 }
8256 gotrel[] =
8257 {
8258 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8259 BFD_RELOC_32_SECREL },
8260 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8261 };
8262
8263 char *cp;
8264 unsigned j;
8265
8266 for (cp = input_line_pointer; *cp != '@'; cp++)
8267 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8268 return NULL;
8269
8270 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8271 {
8272 int len = gotrel[j].len;
8273
8274 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8275 {
8276 if (gotrel[j].rel[object_64bit] != 0)
8277 {
8278 int first, second;
8279 char *tmpbuf, *past_reloc;
8280
8281 *rel = gotrel[j].rel[object_64bit];
8282 if (adjust)
8283 *adjust = len;
8284
8285 if (types)
8286 {
8287 if (flag_code != CODE_64BIT)
8288 {
8289 types->bitfield.imm32 = 1;
8290 types->bitfield.disp32 = 1;
8291 }
8292 else
8293 *types = gotrel[j].types64;
8294 }
8295
8296 /* The length of the first part of our input line. */
8297 first = cp - input_line_pointer;
8298
8299 /* The second part goes from after the reloc token until
8300 (and including) an end_of_line char or comma. */
8301 past_reloc = cp + 1 + len;
8302 cp = past_reloc;
8303 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8304 ++cp;
8305 second = cp + 1 - past_reloc;
8306
8307 /* Allocate and copy string. The trailing NUL shouldn't
8308 be necessary, but be safe. */
8309 tmpbuf = XNEWVEC (char, first + second + 2);
8310 memcpy (tmpbuf, input_line_pointer, first);
8311 if (second != 0 && *past_reloc != ' ')
8312 /* Replace the relocation token with ' ', so that
8313 errors like foo@SECLREL321 will be detected. */
8314 tmpbuf[first++] = ' ';
8315 memcpy (tmpbuf + first, past_reloc, second);
8316 tmpbuf[first + second] = '\0';
8317 return tmpbuf;
8318 }
8319
8320 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8321 gotrel[j].str, 1 << (5 + object_64bit));
8322 return NULL;
8323 }
8324 }
8325
8326 /* Might be a symbol version string. Don't as_bad here. */
8327 return NULL;
8328 }
8329
8330 #endif /* TE_PE */
8331
8332 bfd_reloc_code_real_type
8333 x86_cons (expressionS *exp, int size)
8334 {
8335 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8336
8337 intel_syntax = -intel_syntax;
8338
8339 exp->X_md = 0;
8340 if (size == 4 || (object_64bit && size == 8))
8341 {
8342 /* Handle @GOTOFF and the like in an expression. */
8343 char *save;
8344 char *gotfree_input_line;
8345 int adjust = 0;
8346
8347 save = input_line_pointer;
8348 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8349 if (gotfree_input_line)
8350 input_line_pointer = gotfree_input_line;
8351
8352 expression (exp);
8353
8354 if (gotfree_input_line)
8355 {
8356 /* expression () has merrily parsed up to the end of line,
8357 or a comma - in the wrong buffer. Transfer how far
8358 input_line_pointer has moved to the right buffer. */
8359 input_line_pointer = (save
8360 + (input_line_pointer - gotfree_input_line)
8361 + adjust);
8362 free (gotfree_input_line);
8363 if (exp->X_op == O_constant
8364 || exp->X_op == O_absent
8365 || exp->X_op == O_illegal
8366 || exp->X_op == O_register
8367 || exp->X_op == O_big)
8368 {
8369 char c = *input_line_pointer;
8370 *input_line_pointer = 0;
8371 as_bad (_("missing or invalid expression `%s'"), save);
8372 *input_line_pointer = c;
8373 }
8374 }
8375 }
8376 else
8377 expression (exp);
8378
8379 intel_syntax = -intel_syntax;
8380
8381 if (intel_syntax)
8382 i386_intel_simplify (exp);
8383
8384 return got_reloc;
8385 }
8386
8387 static void
8388 signed_cons (int size)
8389 {
8390 if (flag_code == CODE_64BIT)
8391 cons_sign = 1;
8392 cons (size);
8393 cons_sign = -1;
8394 }
8395
8396 #ifdef TE_PE
8397 static void
8398 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8399 {
8400 expressionS exp;
8401
8402 do
8403 {
8404 expression (&exp);
8405 if (exp.X_op == O_symbol)
8406 exp.X_op = O_secrel;
8407
8408 emit_expr (&exp, 4);
8409 }
8410 while (*input_line_pointer++ == ',');
8411
8412 input_line_pointer--;
8413 demand_empty_rest_of_line ();
8414 }
8415 #endif
8416
8417 /* Handle Vector operations. */
8418
8419 static char *
8420 check_VecOperations (char *op_string, char *op_end)
8421 {
8422 const reg_entry *mask;
8423 const char *saved;
8424 char *end_op;
8425
8426 while (*op_string
8427 && (op_end == NULL || op_string < op_end))
8428 {
8429 saved = op_string;
8430 if (*op_string == '{')
8431 {
8432 op_string++;
8433
8434 /* Check broadcasts. */
8435 if (strncmp (op_string, "1to", 3) == 0)
8436 {
8437 int bcst_type;
8438
8439 if (i.broadcast)
8440 goto duplicated_vec_op;
8441
8442 op_string += 3;
8443 if (*op_string == '8')
8444 bcst_type = BROADCAST_1TO8;
8445 else if (*op_string == '4')
8446 bcst_type = BROADCAST_1TO4;
8447 else if (*op_string == '2')
8448 bcst_type = BROADCAST_1TO2;
8449 else if (*op_string == '1'
8450 && *(op_string+1) == '6')
8451 {
8452 bcst_type = BROADCAST_1TO16;
8453 op_string++;
8454 }
8455 else
8456 {
8457 as_bad (_("Unsupported broadcast: `%s'"), saved);
8458 return NULL;
8459 }
8460 op_string++;
8461
8462 broadcast_op.type = bcst_type;
8463 broadcast_op.operand = this_operand;
8464 i.broadcast = &broadcast_op;
8465 }
8466 /* Check masking operation. */
8467 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8468 {
8469 /* k0 can't be used for write mask. */
8470 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8471 {
8472 as_bad (_("`%s%s' can't be used for write mask"),
8473 register_prefix, mask->reg_name);
8474 return NULL;
8475 }
8476
8477 if (!i.mask)
8478 {
8479 mask_op.mask = mask;
8480 mask_op.zeroing = 0;
8481 mask_op.operand = this_operand;
8482 i.mask = &mask_op;
8483 }
8484 else
8485 {
8486 if (i.mask->mask)
8487 goto duplicated_vec_op;
8488
8489 i.mask->mask = mask;
8490
8491 /* Only "{z}" is allowed here. No need to check
8492 zeroing mask explicitly. */
8493 if (i.mask->operand != this_operand)
8494 {
8495 as_bad (_("invalid write mask `%s'"), saved);
8496 return NULL;
8497 }
8498 }
8499
8500 op_string = end_op;
8501 }
8502 /* Check zeroing-flag for masking operation. */
8503 else if (*op_string == 'z')
8504 {
8505 if (!i.mask)
8506 {
8507 mask_op.mask = NULL;
8508 mask_op.zeroing = 1;
8509 mask_op.operand = this_operand;
8510 i.mask = &mask_op;
8511 }
8512 else
8513 {
8514 if (i.mask->zeroing)
8515 {
8516 duplicated_vec_op:
8517 as_bad (_("duplicated `%s'"), saved);
8518 return NULL;
8519 }
8520
8521 i.mask->zeroing = 1;
8522
8523 /* Only "{%k}" is allowed here. No need to check mask
8524 register explicitly. */
8525 if (i.mask->operand != this_operand)
8526 {
8527 as_bad (_("invalid zeroing-masking `%s'"),
8528 saved);
8529 return NULL;
8530 }
8531 }
8532
8533 op_string++;
8534 }
8535 else
8536 goto unknown_vec_op;
8537
8538 if (*op_string != '}')
8539 {
8540 as_bad (_("missing `}' in `%s'"), saved);
8541 return NULL;
8542 }
8543 op_string++;
8544
8545 /* Strip whitespace since the addition of pseudo prefixes
8546 changed how the scrubber treats '{'. */
8547 if (is_space_char (*op_string))
8548 ++op_string;
8549
8550 continue;
8551 }
8552 unknown_vec_op:
8553 /* We don't know this one. */
8554 as_bad (_("unknown vector operation: `%s'"), saved);
8555 return NULL;
8556 }
8557
8558 if (i.mask && i.mask->zeroing && !i.mask->mask)
8559 {
8560 as_bad (_("zeroing-masking only allowed with write mask"));
8561 return NULL;
8562 }
8563
8564 return op_string;
8565 }
8566
8567 static int
8568 i386_immediate (char *imm_start)
8569 {
8570 char *save_input_line_pointer;
8571 char *gotfree_input_line;
8572 segT exp_seg = 0;
8573 expressionS *exp;
8574 i386_operand_type types;
8575
8576 operand_type_set (&types, ~0);
8577
8578 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8579 {
8580 as_bad (_("at most %d immediate operands are allowed"),
8581 MAX_IMMEDIATE_OPERANDS);
8582 return 0;
8583 }
8584
8585 exp = &im_expressions[i.imm_operands++];
8586 i.op[this_operand].imms = exp;
8587
8588 if (is_space_char (*imm_start))
8589 ++imm_start;
8590
8591 save_input_line_pointer = input_line_pointer;
8592 input_line_pointer = imm_start;
8593
8594 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8595 if (gotfree_input_line)
8596 input_line_pointer = gotfree_input_line;
8597
8598 exp_seg = expression (exp);
8599
8600 SKIP_WHITESPACE ();
8601
8602 /* Handle vector operations. */
8603 if (*input_line_pointer == '{')
8604 {
8605 input_line_pointer = check_VecOperations (input_line_pointer,
8606 NULL);
8607 if (input_line_pointer == NULL)
8608 return 0;
8609 }
8610
8611 if (*input_line_pointer)
8612 as_bad (_("junk `%s' after expression"), input_line_pointer);
8613
8614 input_line_pointer = save_input_line_pointer;
8615 if (gotfree_input_line)
8616 {
8617 free (gotfree_input_line);
8618
8619 if (exp->X_op == O_constant || exp->X_op == O_register)
8620 exp->X_op = O_illegal;
8621 }
8622
8623 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8624 }
8625
8626 static int
8627 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8628 i386_operand_type types, const char *imm_start)
8629 {
8630 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8631 {
8632 if (imm_start)
8633 as_bad (_("missing or invalid immediate expression `%s'"),
8634 imm_start);
8635 return 0;
8636 }
8637 else if (exp->X_op == O_constant)
8638 {
8639 /* Size it properly later. */
8640 i.types[this_operand].bitfield.imm64 = 1;
8641 /* If not 64bit, sign extend val. */
8642 if (flag_code != CODE_64BIT
8643 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8644 exp->X_add_number
8645 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8646 }
8647 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8648 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8649 && exp_seg != absolute_section
8650 && exp_seg != text_section
8651 && exp_seg != data_section
8652 && exp_seg != bss_section
8653 && exp_seg != undefined_section
8654 && !bfd_is_com_section (exp_seg))
8655 {
8656 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8657 return 0;
8658 }
8659 #endif
8660 else if (!intel_syntax && exp_seg == reg_section)
8661 {
8662 if (imm_start)
8663 as_bad (_("illegal immediate register operand %s"), imm_start);
8664 return 0;
8665 }
8666 else
8667 {
8668 /* This is an address. The size of the address will be
8669 determined later, depending on destination register,
8670 suffix, or the default for the section. */
8671 i.types[this_operand].bitfield.imm8 = 1;
8672 i.types[this_operand].bitfield.imm16 = 1;
8673 i.types[this_operand].bitfield.imm32 = 1;
8674 i.types[this_operand].bitfield.imm32s = 1;
8675 i.types[this_operand].bitfield.imm64 = 1;
8676 i.types[this_operand] = operand_type_and (i.types[this_operand],
8677 types);
8678 }
8679
8680 return 1;
8681 }
8682
8683 static char *
8684 i386_scale (char *scale)
8685 {
8686 offsetT val;
8687 char *save = input_line_pointer;
8688
8689 input_line_pointer = scale;
8690 val = get_absolute_expression ();
8691
8692 switch (val)
8693 {
8694 case 1:
8695 i.log2_scale_factor = 0;
8696 break;
8697 case 2:
8698 i.log2_scale_factor = 1;
8699 break;
8700 case 4:
8701 i.log2_scale_factor = 2;
8702 break;
8703 case 8:
8704 i.log2_scale_factor = 3;
8705 break;
8706 default:
8707 {
8708 char sep = *input_line_pointer;
8709
8710 *input_line_pointer = '\0';
8711 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8712 scale);
8713 *input_line_pointer = sep;
8714 input_line_pointer = save;
8715 return NULL;
8716 }
8717 }
8718 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8719 {
8720 as_warn (_("scale factor of %d without an index register"),
8721 1 << i.log2_scale_factor);
8722 i.log2_scale_factor = 0;
8723 }
8724 scale = input_line_pointer;
8725 input_line_pointer = save;
8726 return scale;
8727 }
8728
8729 static int
8730 i386_displacement (char *disp_start, char *disp_end)
8731 {
8732 expressionS *exp;
8733 segT exp_seg = 0;
8734 char *save_input_line_pointer;
8735 char *gotfree_input_line;
8736 int override;
8737 i386_operand_type bigdisp, types = anydisp;
8738 int ret;
8739
8740 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8741 {
8742 as_bad (_("at most %d displacement operands are allowed"),
8743 MAX_MEMORY_OPERANDS);
8744 return 0;
8745 }
8746
8747 operand_type_set (&bigdisp, 0);
8748 if ((i.types[this_operand].bitfield.jumpabsolute)
8749 || (!current_templates->start->opcode_modifier.jump
8750 && !current_templates->start->opcode_modifier.jumpdword))
8751 {
8752 bigdisp.bitfield.disp32 = 1;
8753 override = (i.prefix[ADDR_PREFIX] != 0);
8754 if (flag_code == CODE_64BIT)
8755 {
8756 if (!override)
8757 {
8758 bigdisp.bitfield.disp32s = 1;
8759 bigdisp.bitfield.disp64 = 1;
8760 }
8761 }
8762 else if ((flag_code == CODE_16BIT) ^ override)
8763 {
8764 bigdisp.bitfield.disp32 = 0;
8765 bigdisp.bitfield.disp16 = 1;
8766 }
8767 }
8768 else
8769 {
8770 /* For PC-relative branches, the width of the displacement
8771 is dependent upon data size, not address size. */
8772 override = (i.prefix[DATA_PREFIX] != 0);
8773 if (flag_code == CODE_64BIT)
8774 {
8775 if (override || i.suffix == WORD_MNEM_SUFFIX)
8776 bigdisp.bitfield.disp16 = 1;
8777 else
8778 {
8779 bigdisp.bitfield.disp32 = 1;
8780 bigdisp.bitfield.disp32s = 1;
8781 }
8782 }
8783 else
8784 {
8785 if (!override)
8786 override = (i.suffix == (flag_code != CODE_16BIT
8787 ? WORD_MNEM_SUFFIX
8788 : LONG_MNEM_SUFFIX));
8789 bigdisp.bitfield.disp32 = 1;
8790 if ((flag_code == CODE_16BIT) ^ override)
8791 {
8792 bigdisp.bitfield.disp32 = 0;
8793 bigdisp.bitfield.disp16 = 1;
8794 }
8795 }
8796 }
8797 i.types[this_operand] = operand_type_or (i.types[this_operand],
8798 bigdisp);
8799
8800 exp = &disp_expressions[i.disp_operands];
8801 i.op[this_operand].disps = exp;
8802 i.disp_operands++;
8803 save_input_line_pointer = input_line_pointer;
8804 input_line_pointer = disp_start;
8805 END_STRING_AND_SAVE (disp_end);
8806
8807 #ifndef GCC_ASM_O_HACK
8808 #define GCC_ASM_O_HACK 0
8809 #endif
8810 #if GCC_ASM_O_HACK
8811 END_STRING_AND_SAVE (disp_end + 1);
8812 if (i.types[this_operand].bitfield.baseIndex
8813 && displacement_string_end[-1] == '+')
8814 {
8815 /* This hack is to avoid a warning when using the "o"
8816 constraint within gcc asm statements.
8817 For instance:
8818
8819 #define _set_tssldt_desc(n,addr,limit,type) \
8820 __asm__ __volatile__ ( \
8821 "movw %w2,%0\n\t" \
8822 "movw %w1,2+%0\n\t" \
8823 "rorl $16,%1\n\t" \
8824 "movb %b1,4+%0\n\t" \
8825 "movb %4,5+%0\n\t" \
8826 "movb $0,6+%0\n\t" \
8827 "movb %h1,7+%0\n\t" \
8828 "rorl $16,%1" \
8829 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8830
8831 This works great except that the output assembler ends
8832 up looking a bit weird if it turns out that there is
8833 no offset. You end up producing code that looks like:
8834
8835 #APP
8836 movw $235,(%eax)
8837 movw %dx,2+(%eax)
8838 rorl $16,%edx
8839 movb %dl,4+(%eax)
8840 movb $137,5+(%eax)
8841 movb $0,6+(%eax)
8842 movb %dh,7+(%eax)
8843 rorl $16,%edx
8844 #NO_APP
8845
8846 So here we provide the missing zero. */
8847
8848 *displacement_string_end = '0';
8849 }
8850 #endif
8851 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8852 if (gotfree_input_line)
8853 input_line_pointer = gotfree_input_line;
8854
8855 exp_seg = expression (exp);
8856
8857 SKIP_WHITESPACE ();
8858 if (*input_line_pointer)
8859 as_bad (_("junk `%s' after expression"), input_line_pointer);
8860 #if GCC_ASM_O_HACK
8861 RESTORE_END_STRING (disp_end + 1);
8862 #endif
8863 input_line_pointer = save_input_line_pointer;
8864 if (gotfree_input_line)
8865 {
8866 free (gotfree_input_line);
8867
8868 if (exp->X_op == O_constant || exp->X_op == O_register)
8869 exp->X_op = O_illegal;
8870 }
8871
8872 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8873
8874 RESTORE_END_STRING (disp_end);
8875
8876 return ret;
8877 }
8878
8879 static int
8880 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8881 i386_operand_type types, const char *disp_start)
8882 {
8883 i386_operand_type bigdisp;
8884 int ret = 1;
8885
8886 /* We do this to make sure that the section symbol is in
8887 the symbol table. We will ultimately change the relocation
8888 to be relative to the beginning of the section. */
8889 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8890 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8891 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8892 {
8893 if (exp->X_op != O_symbol)
8894 goto inv_disp;
8895
8896 if (S_IS_LOCAL (exp->X_add_symbol)
8897 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8898 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8899 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8900 exp->X_op = O_subtract;
8901 exp->X_op_symbol = GOT_symbol;
8902 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8903 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8904 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8905 i.reloc[this_operand] = BFD_RELOC_64;
8906 else
8907 i.reloc[this_operand] = BFD_RELOC_32;
8908 }
8909
8910 else if (exp->X_op == O_absent
8911 || exp->X_op == O_illegal
8912 || exp->X_op == O_big)
8913 {
8914 inv_disp:
8915 as_bad (_("missing or invalid displacement expression `%s'"),
8916 disp_start);
8917 ret = 0;
8918 }
8919
8920 else if (flag_code == CODE_64BIT
8921 && !i.prefix[ADDR_PREFIX]
8922 && exp->X_op == O_constant)
8923 {
8924 /* Since displacement is signed extended to 64bit, don't allow
8925 disp32 and turn off disp32s if they are out of range. */
8926 i.types[this_operand].bitfield.disp32 = 0;
8927 if (!fits_in_signed_long (exp->X_add_number))
8928 {
8929 i.types[this_operand].bitfield.disp32s = 0;
8930 if (i.types[this_operand].bitfield.baseindex)
8931 {
8932 as_bad (_("0x%lx out range of signed 32bit displacement"),
8933 (long) exp->X_add_number);
8934 ret = 0;
8935 }
8936 }
8937 }
8938
8939 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8940 else if (exp->X_op != O_constant
8941 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8942 && exp_seg != absolute_section
8943 && exp_seg != text_section
8944 && exp_seg != data_section
8945 && exp_seg != bss_section
8946 && exp_seg != undefined_section
8947 && !bfd_is_com_section (exp_seg))
8948 {
8949 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8950 ret = 0;
8951 }
8952 #endif
8953
8954 /* Check if this is a displacement only operand. */
8955 bigdisp = i.types[this_operand];
8956 bigdisp.bitfield.disp8 = 0;
8957 bigdisp.bitfield.disp16 = 0;
8958 bigdisp.bitfield.disp32 = 0;
8959 bigdisp.bitfield.disp32s = 0;
8960 bigdisp.bitfield.disp64 = 0;
8961 if (operand_type_all_zero (&bigdisp))
8962 i.types[this_operand] = operand_type_and (i.types[this_operand],
8963 types);
8964
8965 return ret;
8966 }
8967
8968 /* Return the active addressing mode, taking address override and
8969 registers forming the address into consideration. Update the
8970 address override prefix if necessary. */
8971
8972 static enum flag_code
8973 i386_addressing_mode (void)
8974 {
8975 enum flag_code addr_mode;
8976
8977 if (i.prefix[ADDR_PREFIX])
8978 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8979 else
8980 {
8981 addr_mode = flag_code;
8982
8983 #if INFER_ADDR_PREFIX
8984 if (i.mem_operands == 0)
8985 {
8986 /* Infer address prefix from the first memory operand. */
8987 const reg_entry *addr_reg = i.base_reg;
8988
8989 if (addr_reg == NULL)
8990 addr_reg = i.index_reg;
8991
8992 if (addr_reg)
8993 {
8994 if (addr_reg->reg_num == RegEip
8995 || addr_reg->reg_num == RegEiz
8996 || addr_reg->reg_type.bitfield.dword)
8997 addr_mode = CODE_32BIT;
8998 else if (flag_code != CODE_64BIT
8999 && addr_reg->reg_type.bitfield.word)
9000 addr_mode = CODE_16BIT;
9001
9002 if (addr_mode != flag_code)
9003 {
9004 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9005 i.prefixes += 1;
9006 /* Change the size of any displacement too. At most one
9007 of Disp16 or Disp32 is set.
9008 FIXME. There doesn't seem to be any real need for
9009 separate Disp16 and Disp32 flags. The same goes for
9010 Imm16 and Imm32. Removing them would probably clean
9011 up the code quite a lot. */
9012 if (flag_code != CODE_64BIT
9013 && (i.types[this_operand].bitfield.disp16
9014 || i.types[this_operand].bitfield.disp32))
9015 i.types[this_operand]
9016 = operand_type_xor (i.types[this_operand], disp16_32);
9017 }
9018 }
9019 }
9020 #endif
9021 }
9022
9023 return addr_mode;
9024 }
9025
9026 /* Make sure the memory operand we've been dealt is valid.
9027 Return 1 on success, 0 on a failure. */
9028
9029 static int
9030 i386_index_check (const char *operand_string)
9031 {
9032 const char *kind = "base/index";
9033 enum flag_code addr_mode = i386_addressing_mode ();
9034
9035 if (current_templates->start->opcode_modifier.isstring
9036 && !current_templates->start->opcode_modifier.immext
9037 && (current_templates->end[-1].opcode_modifier.isstring
9038 || i.mem_operands))
9039 {
9040 /* Memory operands of string insns are special in that they only allow
9041 a single register (rDI, rSI, or rBX) as their memory address. */
9042 const reg_entry *expected_reg;
9043 static const char *di_si[][2] =
9044 {
9045 { "esi", "edi" },
9046 { "si", "di" },
9047 { "rsi", "rdi" }
9048 };
9049 static const char *bx[] = { "ebx", "bx", "rbx" };
9050
9051 kind = "string address";
9052
9053 if (current_templates->start->opcode_modifier.repprefixok)
9054 {
9055 i386_operand_type type = current_templates->end[-1].operand_types[0];
9056
9057 if (!type.bitfield.baseindex
9058 || ((!i.mem_operands != !intel_syntax)
9059 && current_templates->end[-1].operand_types[1]
9060 .bitfield.baseindex))
9061 type = current_templates->end[-1].operand_types[1];
9062 expected_reg = hash_find (reg_hash,
9063 di_si[addr_mode][type.bitfield.esseg]);
9064
9065 }
9066 else
9067 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9068
9069 if (i.base_reg != expected_reg
9070 || i.index_reg
9071 || operand_type_check (i.types[this_operand], disp))
9072 {
9073 /* The second memory operand must have the same size as
9074 the first one. */
9075 if (i.mem_operands
9076 && i.base_reg
9077 && !((addr_mode == CODE_64BIT
9078 && i.base_reg->reg_type.bitfield.qword)
9079 || (addr_mode == CODE_32BIT
9080 ? i.base_reg->reg_type.bitfield.dword
9081 : i.base_reg->reg_type.bitfield.word)))
9082 goto bad_address;
9083
9084 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9085 operand_string,
9086 intel_syntax ? '[' : '(',
9087 register_prefix,
9088 expected_reg->reg_name,
9089 intel_syntax ? ']' : ')');
9090 return 1;
9091 }
9092 else
9093 return 1;
9094
9095 bad_address:
9096 as_bad (_("`%s' is not a valid %s expression"),
9097 operand_string, kind);
9098 return 0;
9099 }
9100 else
9101 {
9102 if (addr_mode != CODE_16BIT)
9103 {
9104 /* 32-bit/64-bit checks. */
9105 if ((i.base_reg
9106 && (addr_mode == CODE_64BIT
9107 ? !i.base_reg->reg_type.bitfield.qword
9108 : !i.base_reg->reg_type.bitfield.dword)
9109 && (i.index_reg
9110 || (i.base_reg->reg_num
9111 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9112 || (i.index_reg
9113 && !i.index_reg->reg_type.bitfield.xmmword
9114 && !i.index_reg->reg_type.bitfield.ymmword
9115 && !i.index_reg->reg_type.bitfield.zmmword
9116 && ((addr_mode == CODE_64BIT
9117 ? !(i.index_reg->reg_type.bitfield.qword
9118 || i.index_reg->reg_num == RegRiz)
9119 : !(i.index_reg->reg_type.bitfield.dword
9120 || i.index_reg->reg_num == RegEiz))
9121 || !i.index_reg->reg_type.bitfield.baseindex)))
9122 goto bad_address;
9123
9124 /* bndmk, bndldx, and bndstx have special restrictions. */
9125 if (current_templates->start->base_opcode == 0xf30f1b
9126 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9127 {
9128 /* They cannot use RIP-relative addressing. */
9129 if (i.base_reg && i.base_reg->reg_num == RegRip)
9130 {
9131 as_bad (_("`%s' cannot be used here"), operand_string);
9132 return 0;
9133 }
9134
9135 /* bndldx and bndstx ignore their scale factor. */
9136 if (current_templates->start->base_opcode != 0xf30f1b
9137 && i.log2_scale_factor)
9138 as_warn (_("register scaling is being ignored here"));
9139 }
9140 }
9141 else
9142 {
9143 /* 16-bit checks. */
9144 if ((i.base_reg
9145 && (!i.base_reg->reg_type.bitfield.word
9146 || !i.base_reg->reg_type.bitfield.baseindex))
9147 || (i.index_reg
9148 && (!i.index_reg->reg_type.bitfield.word
9149 || !i.index_reg->reg_type.bitfield.baseindex
9150 || !(i.base_reg
9151 && i.base_reg->reg_num < 6
9152 && i.index_reg->reg_num >= 6
9153 && i.log2_scale_factor == 0))))
9154 goto bad_address;
9155 }
9156 }
9157 return 1;
9158 }
9159
9160 /* Handle vector immediates. */
9161
9162 static int
9163 RC_SAE_immediate (const char *imm_start)
9164 {
9165 unsigned int match_found, j;
9166 const char *pstr = imm_start;
9167 expressionS *exp;
9168
9169 if (*pstr != '{')
9170 return 0;
9171
9172 pstr++;
9173 match_found = 0;
9174 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9175 {
9176 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9177 {
9178 if (!i.rounding)
9179 {
9180 rc_op.type = RC_NamesTable[j].type;
9181 rc_op.operand = this_operand;
9182 i.rounding = &rc_op;
9183 }
9184 else
9185 {
9186 as_bad (_("duplicated `%s'"), imm_start);
9187 return 0;
9188 }
9189 pstr += RC_NamesTable[j].len;
9190 match_found = 1;
9191 break;
9192 }
9193 }
9194 if (!match_found)
9195 return 0;
9196
9197 if (*pstr++ != '}')
9198 {
9199 as_bad (_("Missing '}': '%s'"), imm_start);
9200 return 0;
9201 }
9202 /* RC/SAE immediate string should contain nothing more. */;
9203 if (*pstr != 0)
9204 {
9205 as_bad (_("Junk after '}': '%s'"), imm_start);
9206 return 0;
9207 }
9208
9209 exp = &im_expressions[i.imm_operands++];
9210 i.op[this_operand].imms = exp;
9211
9212 exp->X_op = O_constant;
9213 exp->X_add_number = 0;
9214 exp->X_add_symbol = (symbolS *) 0;
9215 exp->X_op_symbol = (symbolS *) 0;
9216
9217 i.types[this_operand].bitfield.imm8 = 1;
9218 return 1;
9219 }
9220
9221 /* Only string instructions can have a second memory operand, so
9222 reduce current_templates to just those if it contains any. */
9223 static int
9224 maybe_adjust_templates (void)
9225 {
9226 const insn_template *t;
9227
9228 gas_assert (i.mem_operands == 1);
9229
9230 for (t = current_templates->start; t < current_templates->end; ++t)
9231 if (t->opcode_modifier.isstring)
9232 break;
9233
9234 if (t < current_templates->end)
9235 {
9236 static templates aux_templates;
9237 bfd_boolean recheck;
9238
9239 aux_templates.start = t;
9240 for (; t < current_templates->end; ++t)
9241 if (!t->opcode_modifier.isstring)
9242 break;
9243 aux_templates.end = t;
9244
9245 /* Determine whether to re-check the first memory operand. */
9246 recheck = (aux_templates.start != current_templates->start
9247 || t != current_templates->end);
9248
9249 current_templates = &aux_templates;
9250
9251 if (recheck)
9252 {
9253 i.mem_operands = 0;
9254 if (i.memop1_string != NULL
9255 && i386_index_check (i.memop1_string) == 0)
9256 return 0;
9257 i.mem_operands = 1;
9258 }
9259 }
9260
9261 return 1;
9262 }
9263
9264 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9265 on error. */
9266
9267 static int
9268 i386_att_operand (char *operand_string)
9269 {
9270 const reg_entry *r;
9271 char *end_op;
9272 char *op_string = operand_string;
9273
9274 if (is_space_char (*op_string))
9275 ++op_string;
9276
9277 /* We check for an absolute prefix (differentiating,
9278 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9279 if (*op_string == ABSOLUTE_PREFIX)
9280 {
9281 ++op_string;
9282 if (is_space_char (*op_string))
9283 ++op_string;
9284 i.types[this_operand].bitfield.jumpabsolute = 1;
9285 }
9286
9287 /* Check if operand is a register. */
9288 if ((r = parse_register (op_string, &end_op)) != NULL)
9289 {
9290 i386_operand_type temp;
9291
9292 /* Check for a segment override by searching for ':' after a
9293 segment register. */
9294 op_string = end_op;
9295 if (is_space_char (*op_string))
9296 ++op_string;
9297 if (*op_string == ':'
9298 && (r->reg_type.bitfield.sreg2
9299 || r->reg_type.bitfield.sreg3))
9300 {
9301 switch (r->reg_num)
9302 {
9303 case 0:
9304 i.seg[i.mem_operands] = &es;
9305 break;
9306 case 1:
9307 i.seg[i.mem_operands] = &cs;
9308 break;
9309 case 2:
9310 i.seg[i.mem_operands] = &ss;
9311 break;
9312 case 3:
9313 i.seg[i.mem_operands] = &ds;
9314 break;
9315 case 4:
9316 i.seg[i.mem_operands] = &fs;
9317 break;
9318 case 5:
9319 i.seg[i.mem_operands] = &gs;
9320 break;
9321 }
9322
9323 /* Skip the ':' and whitespace. */
9324 ++op_string;
9325 if (is_space_char (*op_string))
9326 ++op_string;
9327
9328 if (!is_digit_char (*op_string)
9329 && !is_identifier_char (*op_string)
9330 && *op_string != '('
9331 && *op_string != ABSOLUTE_PREFIX)
9332 {
9333 as_bad (_("bad memory operand `%s'"), op_string);
9334 return 0;
9335 }
9336 /* Handle case of %es:*foo. */
9337 if (*op_string == ABSOLUTE_PREFIX)
9338 {
9339 ++op_string;
9340 if (is_space_char (*op_string))
9341 ++op_string;
9342 i.types[this_operand].bitfield.jumpabsolute = 1;
9343 }
9344 goto do_memory_reference;
9345 }
9346
9347 /* Handle vector operations. */
9348 if (*op_string == '{')
9349 {
9350 op_string = check_VecOperations (op_string, NULL);
9351 if (op_string == NULL)
9352 return 0;
9353 }
9354
9355 if (*op_string)
9356 {
9357 as_bad (_("junk `%s' after register"), op_string);
9358 return 0;
9359 }
9360 temp = r->reg_type;
9361 temp.bitfield.baseindex = 0;
9362 i.types[this_operand] = operand_type_or (i.types[this_operand],
9363 temp);
9364 i.types[this_operand].bitfield.unspecified = 0;
9365 i.op[this_operand].regs = r;
9366 i.reg_operands++;
9367 }
9368 else if (*op_string == REGISTER_PREFIX)
9369 {
9370 as_bad (_("bad register name `%s'"), op_string);
9371 return 0;
9372 }
9373 else if (*op_string == IMMEDIATE_PREFIX)
9374 {
9375 ++op_string;
9376 if (i.types[this_operand].bitfield.jumpabsolute)
9377 {
9378 as_bad (_("immediate operand illegal with absolute jump"));
9379 return 0;
9380 }
9381 if (!i386_immediate (op_string))
9382 return 0;
9383 }
9384 else if (RC_SAE_immediate (operand_string))
9385 {
9386 /* If it is a RC or SAE immediate, do nothing. */
9387 ;
9388 }
9389 else if (is_digit_char (*op_string)
9390 || is_identifier_char (*op_string)
9391 || *op_string == '"'
9392 || *op_string == '(')
9393 {
9394 /* This is a memory reference of some sort. */
9395 char *base_string;
9396
9397 /* Start and end of displacement string expression (if found). */
9398 char *displacement_string_start;
9399 char *displacement_string_end;
9400 char *vop_start;
9401
9402 do_memory_reference:
9403 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9404 return 0;
9405 if ((i.mem_operands == 1
9406 && !current_templates->start->opcode_modifier.isstring)
9407 || i.mem_operands == 2)
9408 {
9409 as_bad (_("too many memory references for `%s'"),
9410 current_templates->start->name);
9411 return 0;
9412 }
9413
9414 /* Check for base index form. We detect the base index form by
9415 looking for an ')' at the end of the operand, searching
9416 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9417 after the '('. */
9418 base_string = op_string + strlen (op_string);
9419
9420 /* Handle vector operations. */
9421 vop_start = strchr (op_string, '{');
9422 if (vop_start && vop_start < base_string)
9423 {
9424 if (check_VecOperations (vop_start, base_string) == NULL)
9425 return 0;
9426 base_string = vop_start;
9427 }
9428
9429 --base_string;
9430 if (is_space_char (*base_string))
9431 --base_string;
9432
9433 /* If we only have a displacement, set-up for it to be parsed later. */
9434 displacement_string_start = op_string;
9435 displacement_string_end = base_string + 1;
9436
9437 if (*base_string == ')')
9438 {
9439 char *temp_string;
9440 unsigned int parens_balanced = 1;
9441 /* We've already checked that the number of left & right ()'s are
9442 equal, so this loop will not be infinite. */
9443 do
9444 {
9445 base_string--;
9446 if (*base_string == ')')
9447 parens_balanced++;
9448 if (*base_string == '(')
9449 parens_balanced--;
9450 }
9451 while (parens_balanced);
9452
9453 temp_string = base_string;
9454
9455 /* Skip past '(' and whitespace. */
9456 ++base_string;
9457 if (is_space_char (*base_string))
9458 ++base_string;
9459
9460 if (*base_string == ','
9461 || ((i.base_reg = parse_register (base_string, &end_op))
9462 != NULL))
9463 {
9464 displacement_string_end = temp_string;
9465
9466 i.types[this_operand].bitfield.baseindex = 1;
9467
9468 if (i.base_reg)
9469 {
9470 base_string = end_op;
9471 if (is_space_char (*base_string))
9472 ++base_string;
9473 }
9474
9475 /* There may be an index reg or scale factor here. */
9476 if (*base_string == ',')
9477 {
9478 ++base_string;
9479 if (is_space_char (*base_string))
9480 ++base_string;
9481
9482 if ((i.index_reg = parse_register (base_string, &end_op))
9483 != NULL)
9484 {
9485 base_string = end_op;
9486 if (is_space_char (*base_string))
9487 ++base_string;
9488 if (*base_string == ',')
9489 {
9490 ++base_string;
9491 if (is_space_char (*base_string))
9492 ++base_string;
9493 }
9494 else if (*base_string != ')')
9495 {
9496 as_bad (_("expecting `,' or `)' "
9497 "after index register in `%s'"),
9498 operand_string);
9499 return 0;
9500 }
9501 }
9502 else if (*base_string == REGISTER_PREFIX)
9503 {
9504 end_op = strchr (base_string, ',');
9505 if (end_op)
9506 *end_op = '\0';
9507 as_bad (_("bad register name `%s'"), base_string);
9508 return 0;
9509 }
9510
9511 /* Check for scale factor. */
9512 if (*base_string != ')')
9513 {
9514 char *end_scale = i386_scale (base_string);
9515
9516 if (!end_scale)
9517 return 0;
9518
9519 base_string = end_scale;
9520 if (is_space_char (*base_string))
9521 ++base_string;
9522 if (*base_string != ')')
9523 {
9524 as_bad (_("expecting `)' "
9525 "after scale factor in `%s'"),
9526 operand_string);
9527 return 0;
9528 }
9529 }
9530 else if (!i.index_reg)
9531 {
9532 as_bad (_("expecting index register or scale factor "
9533 "after `,'; got '%c'"),
9534 *base_string);
9535 return 0;
9536 }
9537 }
9538 else if (*base_string != ')')
9539 {
9540 as_bad (_("expecting `,' or `)' "
9541 "after base register in `%s'"),
9542 operand_string);
9543 return 0;
9544 }
9545 }
9546 else if (*base_string == REGISTER_PREFIX)
9547 {
9548 end_op = strchr (base_string, ',');
9549 if (end_op)
9550 *end_op = '\0';
9551 as_bad (_("bad register name `%s'"), base_string);
9552 return 0;
9553 }
9554 }
9555
9556 /* If there's an expression beginning the operand, parse it,
9557 assuming displacement_string_start and
9558 displacement_string_end are meaningful. */
9559 if (displacement_string_start != displacement_string_end)
9560 {
9561 if (!i386_displacement (displacement_string_start,
9562 displacement_string_end))
9563 return 0;
9564 }
9565
9566 /* Special case for (%dx) while doing input/output op. */
9567 if (i.base_reg
9568 && operand_type_equal (&i.base_reg->reg_type,
9569 &reg16_inoutportreg)
9570 && i.index_reg == 0
9571 && i.log2_scale_factor == 0
9572 && i.seg[i.mem_operands] == 0
9573 && !operand_type_check (i.types[this_operand], disp))
9574 {
9575 i.types[this_operand] = inoutportreg;
9576 return 1;
9577 }
9578
9579 if (i386_index_check (operand_string) == 0)
9580 return 0;
9581 i.types[this_operand].bitfield.mem = 1;
9582 if (i.mem_operands == 0)
9583 i.memop1_string = xstrdup (operand_string);
9584 i.mem_operands++;
9585 }
9586 else
9587 {
9588 /* It's not a memory operand; argh! */
9589 as_bad (_("invalid char %s beginning operand %d `%s'"),
9590 output_invalid (*op_string),
9591 this_operand + 1,
9592 op_string);
9593 return 0;
9594 }
9595 return 1; /* Normal return. */
9596 }
9597 \f
9598 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9599 that an rs_machine_dependent frag may reach. */
9600
9601 unsigned int
9602 i386_frag_max_var (fragS *frag)
9603 {
9604 /* The only relaxable frags are for jumps.
9605 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9606 gas_assert (frag->fr_type == rs_machine_dependent);
9607 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9608 }
9609
9610 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9611 static int
9612 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9613 {
9614 /* STT_GNU_IFUNC symbol must go through PLT. */
9615 if ((symbol_get_bfdsym (fr_symbol)->flags
9616 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9617 return 0;
9618
9619 if (!S_IS_EXTERNAL (fr_symbol))
9620 /* Symbol may be weak or local. */
9621 return !S_IS_WEAK (fr_symbol);
9622
9623 /* Global symbols with non-default visibility can't be preempted. */
9624 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9625 return 1;
9626
9627 if (fr_var != NO_RELOC)
9628 switch ((enum bfd_reloc_code_real) fr_var)
9629 {
9630 case BFD_RELOC_386_PLT32:
9631 case BFD_RELOC_X86_64_PLT32:
9632 /* Symbol with PLT relocation may be preempted. */
9633 return 0;
9634 default:
9635 abort ();
9636 }
9637
9638 /* Global symbols with default visibility in a shared library may be
9639 preempted by another definition. */
9640 return !shared;
9641 }
9642 #endif
9643
9644 /* md_estimate_size_before_relax()
9645
9646 Called just before relax() for rs_machine_dependent frags. The x86
9647 assembler uses these frags to handle variable size jump
9648 instructions.
9649
9650 Any symbol that is now undefined will not become defined.
9651 Return the correct fr_subtype in the frag.
9652 Return the initial "guess for variable size of frag" to caller.
9653 The guess is actually the growth beyond the fixed part. Whatever
9654 we do to grow the fixed or variable part contributes to our
9655 returned value. */
9656
9657 int
9658 md_estimate_size_before_relax (fragS *fragP, segT segment)
9659 {
9660 /* We've already got fragP->fr_subtype right; all we have to do is
9661 check for un-relaxable symbols. On an ELF system, we can't relax
9662 an externally visible symbol, because it may be overridden by a
9663 shared library. */
9664 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9665 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9666 || (IS_ELF
9667 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9668 fragP->fr_var))
9669 #endif
9670 #if defined (OBJ_COFF) && defined (TE_PE)
9671 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9672 && S_IS_WEAK (fragP->fr_symbol))
9673 #endif
9674 )
9675 {
9676 /* Symbol is undefined in this segment, or we need to keep a
9677 reloc so that weak symbols can be overridden. */
9678 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9679 enum bfd_reloc_code_real reloc_type;
9680 unsigned char *opcode;
9681 int old_fr_fix;
9682
9683 if (fragP->fr_var != NO_RELOC)
9684 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9685 else if (size == 2)
9686 reloc_type = BFD_RELOC_16_PCREL;
9687 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9688 else if (need_plt32_p (fragP->fr_symbol))
9689 reloc_type = BFD_RELOC_X86_64_PLT32;
9690 #endif
9691 else
9692 reloc_type = BFD_RELOC_32_PCREL;
9693
9694 old_fr_fix = fragP->fr_fix;
9695 opcode = (unsigned char *) fragP->fr_opcode;
9696
9697 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9698 {
9699 case UNCOND_JUMP:
9700 /* Make jmp (0xeb) a (d)word displacement jump. */
9701 opcode[0] = 0xe9;
9702 fragP->fr_fix += size;
9703 fix_new (fragP, old_fr_fix, size,
9704 fragP->fr_symbol,
9705 fragP->fr_offset, 1,
9706 reloc_type);
9707 break;
9708
9709 case COND_JUMP86:
9710 if (size == 2
9711 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9712 {
9713 /* Negate the condition, and branch past an
9714 unconditional jump. */
9715 opcode[0] ^= 1;
9716 opcode[1] = 3;
9717 /* Insert an unconditional jump. */
9718 opcode[2] = 0xe9;
9719 /* We added two extra opcode bytes, and have a two byte
9720 offset. */
9721 fragP->fr_fix += 2 + 2;
9722 fix_new (fragP, old_fr_fix + 2, 2,
9723 fragP->fr_symbol,
9724 fragP->fr_offset, 1,
9725 reloc_type);
9726 break;
9727 }
9728 /* Fall through. */
9729
9730 case COND_JUMP:
9731 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9732 {
9733 fixS *fixP;
9734
9735 fragP->fr_fix += 1;
9736 fixP = fix_new (fragP, old_fr_fix, 1,
9737 fragP->fr_symbol,
9738 fragP->fr_offset, 1,
9739 BFD_RELOC_8_PCREL);
9740 fixP->fx_signed = 1;
9741 break;
9742 }
9743
9744 /* This changes the byte-displacement jump 0x7N
9745 to the (d)word-displacement jump 0x0f,0x8N. */
9746 opcode[1] = opcode[0] + 0x10;
9747 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9748 /* We've added an opcode byte. */
9749 fragP->fr_fix += 1 + size;
9750 fix_new (fragP, old_fr_fix + 1, size,
9751 fragP->fr_symbol,
9752 fragP->fr_offset, 1,
9753 reloc_type);
9754 break;
9755
9756 default:
9757 BAD_CASE (fragP->fr_subtype);
9758 break;
9759 }
9760 frag_wane (fragP);
9761 return fragP->fr_fix - old_fr_fix;
9762 }
9763
9764 /* Guess size depending on current relax state. Initially the relax
9765 state will correspond to a short jump and we return 1, because
9766 the variable part of the frag (the branch offset) is one byte
9767 long. However, we can relax a section more than once and in that
9768 case we must either set fr_subtype back to the unrelaxed state,
9769 or return the value for the appropriate branch. */
9770 return md_relax_table[fragP->fr_subtype].rlx_length;
9771 }
9772
9773 /* Called after relax() is finished.
9774
9775 In: Address of frag.
9776 fr_type == rs_machine_dependent.
9777 fr_subtype is what the address relaxed to.
9778
9779 Out: Any fixSs and constants are set up.
9780 Caller will turn frag into a ".space 0". */
9781
9782 void
9783 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9784 fragS *fragP)
9785 {
9786 unsigned char *opcode;
9787 unsigned char *where_to_put_displacement = NULL;
9788 offsetT target_address;
9789 offsetT opcode_address;
9790 unsigned int extension = 0;
9791 offsetT displacement_from_opcode_start;
9792
9793 opcode = (unsigned char *) fragP->fr_opcode;
9794
9795 /* Address we want to reach in file space. */
9796 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9797
9798 /* Address opcode resides at in file space. */
9799 opcode_address = fragP->fr_address + fragP->fr_fix;
9800
9801 /* Displacement from opcode start to fill into instruction. */
9802 displacement_from_opcode_start = target_address - opcode_address;
9803
9804 if ((fragP->fr_subtype & BIG) == 0)
9805 {
9806 /* Don't have to change opcode. */
9807 extension = 1; /* 1 opcode + 1 displacement */
9808 where_to_put_displacement = &opcode[1];
9809 }
9810 else
9811 {
9812 if (no_cond_jump_promotion
9813 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9814 as_warn_where (fragP->fr_file, fragP->fr_line,
9815 _("long jump required"));
9816
9817 switch (fragP->fr_subtype)
9818 {
9819 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9820 extension = 4; /* 1 opcode + 4 displacement */
9821 opcode[0] = 0xe9;
9822 where_to_put_displacement = &opcode[1];
9823 break;
9824
9825 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9826 extension = 2; /* 1 opcode + 2 displacement */
9827 opcode[0] = 0xe9;
9828 where_to_put_displacement = &opcode[1];
9829 break;
9830
9831 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9832 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9833 extension = 5; /* 2 opcode + 4 displacement */
9834 opcode[1] = opcode[0] + 0x10;
9835 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9836 where_to_put_displacement = &opcode[2];
9837 break;
9838
9839 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9840 extension = 3; /* 2 opcode + 2 displacement */
9841 opcode[1] = opcode[0] + 0x10;
9842 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9843 where_to_put_displacement = &opcode[2];
9844 break;
9845
9846 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9847 extension = 4;
9848 opcode[0] ^= 1;
9849 opcode[1] = 3;
9850 opcode[2] = 0xe9;
9851 where_to_put_displacement = &opcode[3];
9852 break;
9853
9854 default:
9855 BAD_CASE (fragP->fr_subtype);
9856 break;
9857 }
9858 }
9859
9860 /* If size if less then four we are sure that the operand fits,
9861 but if it's 4, then it could be that the displacement is larger
9862 then -/+ 2GB. */
9863 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9864 && object_64bit
9865 && ((addressT) (displacement_from_opcode_start - extension
9866 + ((addressT) 1 << 31))
9867 > (((addressT) 2 << 31) - 1)))
9868 {
9869 as_bad_where (fragP->fr_file, fragP->fr_line,
9870 _("jump target out of range"));
9871 /* Make us emit 0. */
9872 displacement_from_opcode_start = extension;
9873 }
9874 /* Now put displacement after opcode. */
9875 md_number_to_chars ((char *) where_to_put_displacement,
9876 (valueT) (displacement_from_opcode_start - extension),
9877 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9878 fragP->fr_fix += extension;
9879 }
9880 \f
9881 /* Apply a fixup (fixP) to segment data, once it has been determined
9882 by our caller that we have all the info we need to fix it up.
9883
9884 Parameter valP is the pointer to the value of the bits.
9885
9886 On the 386, immediates, displacements, and data pointers are all in
9887 the same (little-endian) format, so we don't need to care about which
9888 we are handling. */
9889
9890 void
9891 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9892 {
9893 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9894 valueT value = *valP;
9895
9896 #if !defined (TE_Mach)
9897 if (fixP->fx_pcrel)
9898 {
9899 switch (fixP->fx_r_type)
9900 {
9901 default:
9902 break;
9903
9904 case BFD_RELOC_64:
9905 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9906 break;
9907 case BFD_RELOC_32:
9908 case BFD_RELOC_X86_64_32S:
9909 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9910 break;
9911 case BFD_RELOC_16:
9912 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9913 break;
9914 case BFD_RELOC_8:
9915 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9916 break;
9917 }
9918 }
9919
9920 if (fixP->fx_addsy != NULL
9921 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9922 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9923 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9924 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9925 && !use_rela_relocations)
9926 {
9927 /* This is a hack. There should be a better way to handle this.
9928 This covers for the fact that bfd_install_relocation will
9929 subtract the current location (for partial_inplace, PC relative
9930 relocations); see more below. */
9931 #ifndef OBJ_AOUT
9932 if (IS_ELF
9933 #ifdef TE_PE
9934 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9935 #endif
9936 )
9937 value += fixP->fx_where + fixP->fx_frag->fr_address;
9938 #endif
9939 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9940 if (IS_ELF)
9941 {
9942 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9943
9944 if ((sym_seg == seg
9945 || (symbol_section_p (fixP->fx_addsy)
9946 && sym_seg != absolute_section))
9947 && !generic_force_reloc (fixP))
9948 {
9949 /* Yes, we add the values in twice. This is because
9950 bfd_install_relocation subtracts them out again. I think
9951 bfd_install_relocation is broken, but I don't dare change
9952 it. FIXME. */
9953 value += fixP->fx_where + fixP->fx_frag->fr_address;
9954 }
9955 }
9956 #endif
9957 #if defined (OBJ_COFF) && defined (TE_PE)
9958 /* For some reason, the PE format does not store a
9959 section address offset for a PC relative symbol. */
9960 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9961 || S_IS_WEAK (fixP->fx_addsy))
9962 value += md_pcrel_from (fixP);
9963 #endif
9964 }
9965 #if defined (OBJ_COFF) && defined (TE_PE)
9966 if (fixP->fx_addsy != NULL
9967 && S_IS_WEAK (fixP->fx_addsy)
9968 /* PR 16858: Do not modify weak function references. */
9969 && ! fixP->fx_pcrel)
9970 {
9971 #if !defined (TE_PEP)
9972 /* For x86 PE weak function symbols are neither PC-relative
9973 nor do they set S_IS_FUNCTION. So the only reliable way
9974 to detect them is to check the flags of their containing
9975 section. */
9976 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9977 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9978 ;
9979 else
9980 #endif
9981 value -= S_GET_VALUE (fixP->fx_addsy);
9982 }
9983 #endif
9984
9985 /* Fix a few things - the dynamic linker expects certain values here,
9986 and we must not disappoint it. */
9987 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9988 if (IS_ELF && fixP->fx_addsy)
9989 switch (fixP->fx_r_type)
9990 {
9991 case BFD_RELOC_386_PLT32:
9992 case BFD_RELOC_X86_64_PLT32:
9993 /* Make the jump instruction point to the address of the operand. At
9994 runtime we merely add the offset to the actual PLT entry. */
9995 value = -4;
9996 break;
9997
9998 case BFD_RELOC_386_TLS_GD:
9999 case BFD_RELOC_386_TLS_LDM:
10000 case BFD_RELOC_386_TLS_IE_32:
10001 case BFD_RELOC_386_TLS_IE:
10002 case BFD_RELOC_386_TLS_GOTIE:
10003 case BFD_RELOC_386_TLS_GOTDESC:
10004 case BFD_RELOC_X86_64_TLSGD:
10005 case BFD_RELOC_X86_64_TLSLD:
10006 case BFD_RELOC_X86_64_GOTTPOFF:
10007 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10008 value = 0; /* Fully resolved at runtime. No addend. */
10009 /* Fallthrough */
10010 case BFD_RELOC_386_TLS_LE:
10011 case BFD_RELOC_386_TLS_LDO_32:
10012 case BFD_RELOC_386_TLS_LE_32:
10013 case BFD_RELOC_X86_64_DTPOFF32:
10014 case BFD_RELOC_X86_64_DTPOFF64:
10015 case BFD_RELOC_X86_64_TPOFF32:
10016 case BFD_RELOC_X86_64_TPOFF64:
10017 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10018 break;
10019
10020 case BFD_RELOC_386_TLS_DESC_CALL:
10021 case BFD_RELOC_X86_64_TLSDESC_CALL:
10022 value = 0; /* Fully resolved at runtime. No addend. */
10023 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10024 fixP->fx_done = 0;
10025 return;
10026
10027 case BFD_RELOC_VTABLE_INHERIT:
10028 case BFD_RELOC_VTABLE_ENTRY:
10029 fixP->fx_done = 0;
10030 return;
10031
10032 default:
10033 break;
10034 }
10035 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10036 *valP = value;
10037 #endif /* !defined (TE_Mach) */
10038
10039 /* Are we finished with this relocation now? */
10040 if (fixP->fx_addsy == NULL)
10041 fixP->fx_done = 1;
10042 #if defined (OBJ_COFF) && defined (TE_PE)
10043 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10044 {
10045 fixP->fx_done = 0;
10046 /* Remember value for tc_gen_reloc. */
10047 fixP->fx_addnumber = value;
10048 /* Clear out the frag for now. */
10049 value = 0;
10050 }
10051 #endif
10052 else if (use_rela_relocations)
10053 {
10054 fixP->fx_no_overflow = 1;
10055 /* Remember value for tc_gen_reloc. */
10056 fixP->fx_addnumber = value;
10057 value = 0;
10058 }
10059
10060 md_number_to_chars (p, value, fixP->fx_size);
10061 }
10062 \f
10063 const char *
10064 md_atof (int type, char *litP, int *sizeP)
10065 {
10066 /* This outputs the LITTLENUMs in REVERSE order;
10067 in accord with the bigendian 386. */
10068 return ieee_md_atof (type, litP, sizeP, FALSE);
10069 }
10070 \f
10071 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10072
10073 static char *
10074 output_invalid (int c)
10075 {
10076 if (ISPRINT (c))
10077 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10078 "'%c'", c);
10079 else
10080 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10081 "(0x%x)", (unsigned char) c);
10082 return output_invalid_buf;
10083 }
10084
10085 /* REG_STRING starts *before* REGISTER_PREFIX. */
10086
10087 static const reg_entry *
10088 parse_real_register (char *reg_string, char **end_op)
10089 {
10090 char *s = reg_string;
10091 char *p;
10092 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10093 const reg_entry *r;
10094
10095 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10096 if (*s == REGISTER_PREFIX)
10097 ++s;
10098
10099 if (is_space_char (*s))
10100 ++s;
10101
10102 p = reg_name_given;
10103 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10104 {
10105 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10106 return (const reg_entry *) NULL;
10107 s++;
10108 }
10109
10110 /* For naked regs, make sure that we are not dealing with an identifier.
10111 This prevents confusing an identifier like `eax_var' with register
10112 `eax'. */
10113 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10114 return (const reg_entry *) NULL;
10115
10116 *end_op = s;
10117
10118 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10119
10120 /* Handle floating point regs, allowing spaces in the (i) part. */
10121 if (r == i386_regtab /* %st is first entry of table */)
10122 {
10123 if (is_space_char (*s))
10124 ++s;
10125 if (*s == '(')
10126 {
10127 ++s;
10128 if (is_space_char (*s))
10129 ++s;
10130 if (*s >= '0' && *s <= '7')
10131 {
10132 int fpr = *s - '0';
10133 ++s;
10134 if (is_space_char (*s))
10135 ++s;
10136 if (*s == ')')
10137 {
10138 *end_op = s + 1;
10139 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10140 know (r);
10141 return r + fpr;
10142 }
10143 }
10144 /* We have "%st(" then garbage. */
10145 return (const reg_entry *) NULL;
10146 }
10147 }
10148
10149 if (r == NULL || allow_pseudo_reg)
10150 return r;
10151
10152 if (operand_type_all_zero (&r->reg_type))
10153 return (const reg_entry *) NULL;
10154
10155 if ((r->reg_type.bitfield.dword
10156 || r->reg_type.bitfield.sreg3
10157 || r->reg_type.bitfield.control
10158 || r->reg_type.bitfield.debug
10159 || r->reg_type.bitfield.test)
10160 && !cpu_arch_flags.bitfield.cpui386)
10161 return (const reg_entry *) NULL;
10162
10163 if (r->reg_type.bitfield.tbyte
10164 && !cpu_arch_flags.bitfield.cpu8087
10165 && !cpu_arch_flags.bitfield.cpu287
10166 && !cpu_arch_flags.bitfield.cpu387)
10167 return (const reg_entry *) NULL;
10168
10169 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
10170 return (const reg_entry *) NULL;
10171
10172 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
10173 return (const reg_entry *) NULL;
10174
10175 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
10176 return (const reg_entry *) NULL;
10177
10178 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
10179 return (const reg_entry *) NULL;
10180
10181 if (r->reg_type.bitfield.regmask
10182 && !cpu_arch_flags.bitfield.cpuregmask)
10183 return (const reg_entry *) NULL;
10184
10185 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10186 if (!allow_index_reg
10187 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10188 return (const reg_entry *) NULL;
10189
10190 /* Upper 16 vector register is only available with VREX in 64bit
10191 mode. */
10192 if ((r->reg_flags & RegVRex))
10193 {
10194 if (i.vec_encoding == vex_encoding_default)
10195 i.vec_encoding = vex_encoding_evex;
10196
10197 if (!cpu_arch_flags.bitfield.cpuvrex
10198 || i.vec_encoding != vex_encoding_evex
10199 || flag_code != CODE_64BIT)
10200 return (const reg_entry *) NULL;
10201 }
10202
10203 if (((r->reg_flags & (RegRex64 | RegRex))
10204 || r->reg_type.bitfield.qword)
10205 && (!cpu_arch_flags.bitfield.cpulm
10206 || !operand_type_equal (&r->reg_type, &control))
10207 && flag_code != CODE_64BIT)
10208 return (const reg_entry *) NULL;
10209
10210 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10211 return (const reg_entry *) NULL;
10212
10213 return r;
10214 }
10215
10216 /* REG_STRING starts *before* REGISTER_PREFIX. */
10217
10218 static const reg_entry *
10219 parse_register (char *reg_string, char **end_op)
10220 {
10221 const reg_entry *r;
10222
10223 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10224 r = parse_real_register (reg_string, end_op);
10225 else
10226 r = NULL;
10227 if (!r)
10228 {
10229 char *save = input_line_pointer;
10230 char c;
10231 symbolS *symbolP;
10232
10233 input_line_pointer = reg_string;
10234 c = get_symbol_name (&reg_string);
10235 symbolP = symbol_find (reg_string);
10236 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10237 {
10238 const expressionS *e = symbol_get_value_expression (symbolP);
10239
10240 know (e->X_op == O_register);
10241 know (e->X_add_number >= 0
10242 && (valueT) e->X_add_number < i386_regtab_size);
10243 r = i386_regtab + e->X_add_number;
10244 if ((r->reg_flags & RegVRex))
10245 i.vec_encoding = vex_encoding_evex;
10246 *end_op = input_line_pointer;
10247 }
10248 *input_line_pointer = c;
10249 input_line_pointer = save;
10250 }
10251 return r;
10252 }
10253
10254 int
10255 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10256 {
10257 const reg_entry *r;
10258 char *end = input_line_pointer;
10259
10260 *end = *nextcharP;
10261 r = parse_register (name, &input_line_pointer);
10262 if (r && end <= input_line_pointer)
10263 {
10264 *nextcharP = *input_line_pointer;
10265 *input_line_pointer = 0;
10266 e->X_op = O_register;
10267 e->X_add_number = r - i386_regtab;
10268 return 1;
10269 }
10270 input_line_pointer = end;
10271 *end = 0;
10272 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10273 }
10274
10275 void
10276 md_operand (expressionS *e)
10277 {
10278 char *end;
10279 const reg_entry *r;
10280
10281 switch (*input_line_pointer)
10282 {
10283 case REGISTER_PREFIX:
10284 r = parse_real_register (input_line_pointer, &end);
10285 if (r)
10286 {
10287 e->X_op = O_register;
10288 e->X_add_number = r - i386_regtab;
10289 input_line_pointer = end;
10290 }
10291 break;
10292
10293 case '[':
10294 gas_assert (intel_syntax);
10295 end = input_line_pointer++;
10296 expression (e);
10297 if (*input_line_pointer == ']')
10298 {
10299 ++input_line_pointer;
10300 e->X_op_symbol = make_expr_symbol (e);
10301 e->X_add_symbol = NULL;
10302 e->X_add_number = 0;
10303 e->X_op = O_index;
10304 }
10305 else
10306 {
10307 e->X_op = O_absent;
10308 input_line_pointer = end;
10309 }
10310 break;
10311 }
10312 }
10313
10314 \f
10315 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10316 const char *md_shortopts = "kVQ:sqnO::";
10317 #else
10318 const char *md_shortopts = "qnO::";
10319 #endif
10320
10321 #define OPTION_32 (OPTION_MD_BASE + 0)
10322 #define OPTION_64 (OPTION_MD_BASE + 1)
10323 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10324 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10325 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10326 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10327 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10328 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10329 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10330 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10331 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10332 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10333 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10334 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10335 #define OPTION_X32 (OPTION_MD_BASE + 14)
10336 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10337 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10338 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10339 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10340 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10341 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10342 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10343 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10344 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10345 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10346
10347 struct option md_longopts[] =
10348 {
10349 {"32", no_argument, NULL, OPTION_32},
10350 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10351 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10352 {"64", no_argument, NULL, OPTION_64},
10353 #endif
10354 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10355 {"x32", no_argument, NULL, OPTION_X32},
10356 {"mshared", no_argument, NULL, OPTION_MSHARED},
10357 #endif
10358 {"divide", no_argument, NULL, OPTION_DIVIDE},
10359 {"march", required_argument, NULL, OPTION_MARCH},
10360 {"mtune", required_argument, NULL, OPTION_MTUNE},
10361 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10362 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10363 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10364 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10365 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10366 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10367 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10368 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10369 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10370 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10371 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10372 # if defined (TE_PE) || defined (TE_PEP)
10373 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10374 #endif
10375 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10376 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10377 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10378 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10379 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10380 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10381 {NULL, no_argument, NULL, 0}
10382 };
10383 size_t md_longopts_size = sizeof (md_longopts);
10384
10385 int
10386 md_parse_option (int c, const char *arg)
10387 {
10388 unsigned int j;
10389 char *arch, *next, *saved;
10390
10391 switch (c)
10392 {
10393 case 'n':
10394 optimize_align_code = 0;
10395 break;
10396
10397 case 'q':
10398 quiet_warnings = 1;
10399 break;
10400
10401 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10402 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10403 should be emitted or not. FIXME: Not implemented. */
10404 case 'Q':
10405 break;
10406
10407 /* -V: SVR4 argument to print version ID. */
10408 case 'V':
10409 print_version_id ();
10410 break;
10411
10412 /* -k: Ignore for FreeBSD compatibility. */
10413 case 'k':
10414 break;
10415
10416 case 's':
10417 /* -s: On i386 Solaris, this tells the native assembler to use
10418 .stab instead of .stab.excl. We always use .stab anyhow. */
10419 break;
10420
10421 case OPTION_MSHARED:
10422 shared = 1;
10423 break;
10424 #endif
10425 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10426 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10427 case OPTION_64:
10428 {
10429 const char **list, **l;
10430
10431 list = bfd_target_list ();
10432 for (l = list; *l != NULL; l++)
10433 if (CONST_STRNEQ (*l, "elf64-x86-64")
10434 || strcmp (*l, "coff-x86-64") == 0
10435 || strcmp (*l, "pe-x86-64") == 0
10436 || strcmp (*l, "pei-x86-64") == 0
10437 || strcmp (*l, "mach-o-x86-64") == 0)
10438 {
10439 default_arch = "x86_64";
10440 break;
10441 }
10442 if (*l == NULL)
10443 as_fatal (_("no compiled in support for x86_64"));
10444 free (list);
10445 }
10446 break;
10447 #endif
10448
10449 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10450 case OPTION_X32:
10451 if (IS_ELF)
10452 {
10453 const char **list, **l;
10454
10455 list = bfd_target_list ();
10456 for (l = list; *l != NULL; l++)
10457 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10458 {
10459 default_arch = "x86_64:32";
10460 break;
10461 }
10462 if (*l == NULL)
10463 as_fatal (_("no compiled in support for 32bit x86_64"));
10464 free (list);
10465 }
10466 else
10467 as_fatal (_("32bit x86_64 is only supported for ELF"));
10468 break;
10469 #endif
10470
10471 case OPTION_32:
10472 default_arch = "i386";
10473 break;
10474
10475 case OPTION_DIVIDE:
10476 #ifdef SVR4_COMMENT_CHARS
10477 {
10478 char *n, *t;
10479 const char *s;
10480
10481 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10482 t = n;
10483 for (s = i386_comment_chars; *s != '\0'; s++)
10484 if (*s != '/')
10485 *t++ = *s;
10486 *t = '\0';
10487 i386_comment_chars = n;
10488 }
10489 #endif
10490 break;
10491
10492 case OPTION_MARCH:
10493 saved = xstrdup (arg);
10494 arch = saved;
10495 /* Allow -march=+nosse. */
10496 if (*arch == '+')
10497 arch++;
10498 do
10499 {
10500 if (*arch == '.')
10501 as_fatal (_("invalid -march= option: `%s'"), arg);
10502 next = strchr (arch, '+');
10503 if (next)
10504 *next++ = '\0';
10505 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10506 {
10507 if (strcmp (arch, cpu_arch [j].name) == 0)
10508 {
10509 /* Processor. */
10510 if (! cpu_arch[j].flags.bitfield.cpui386)
10511 continue;
10512
10513 cpu_arch_name = cpu_arch[j].name;
10514 cpu_sub_arch_name = NULL;
10515 cpu_arch_flags = cpu_arch[j].flags;
10516 cpu_arch_isa = cpu_arch[j].type;
10517 cpu_arch_isa_flags = cpu_arch[j].flags;
10518 if (!cpu_arch_tune_set)
10519 {
10520 cpu_arch_tune = cpu_arch_isa;
10521 cpu_arch_tune_flags = cpu_arch_isa_flags;
10522 }
10523 break;
10524 }
10525 else if (*cpu_arch [j].name == '.'
10526 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10527 {
10528 /* ISA extension. */
10529 i386_cpu_flags flags;
10530
10531 flags = cpu_flags_or (cpu_arch_flags,
10532 cpu_arch[j].flags);
10533
10534 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10535 {
10536 if (cpu_sub_arch_name)
10537 {
10538 char *name = cpu_sub_arch_name;
10539 cpu_sub_arch_name = concat (name,
10540 cpu_arch[j].name,
10541 (const char *) NULL);
10542 free (name);
10543 }
10544 else
10545 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10546 cpu_arch_flags = flags;
10547 cpu_arch_isa_flags = flags;
10548 }
10549 else
10550 cpu_arch_isa_flags
10551 = cpu_flags_or (cpu_arch_isa_flags,
10552 cpu_arch[j].flags);
10553 break;
10554 }
10555 }
10556
10557 if (j >= ARRAY_SIZE (cpu_arch))
10558 {
10559 /* Disable an ISA extension. */
10560 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10561 if (strcmp (arch, cpu_noarch [j].name) == 0)
10562 {
10563 i386_cpu_flags flags;
10564
10565 flags = cpu_flags_and_not (cpu_arch_flags,
10566 cpu_noarch[j].flags);
10567 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10568 {
10569 if (cpu_sub_arch_name)
10570 {
10571 char *name = cpu_sub_arch_name;
10572 cpu_sub_arch_name = concat (arch,
10573 (const char *) NULL);
10574 free (name);
10575 }
10576 else
10577 cpu_sub_arch_name = xstrdup (arch);
10578 cpu_arch_flags = flags;
10579 cpu_arch_isa_flags = flags;
10580 }
10581 break;
10582 }
10583
10584 if (j >= ARRAY_SIZE (cpu_noarch))
10585 j = ARRAY_SIZE (cpu_arch);
10586 }
10587
10588 if (j >= ARRAY_SIZE (cpu_arch))
10589 as_fatal (_("invalid -march= option: `%s'"), arg);
10590
10591 arch = next;
10592 }
10593 while (next != NULL);
10594 free (saved);
10595 break;
10596
10597 case OPTION_MTUNE:
10598 if (*arg == '.')
10599 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10600 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10601 {
10602 if (strcmp (arg, cpu_arch [j].name) == 0)
10603 {
10604 cpu_arch_tune_set = 1;
10605 cpu_arch_tune = cpu_arch [j].type;
10606 cpu_arch_tune_flags = cpu_arch[j].flags;
10607 break;
10608 }
10609 }
10610 if (j >= ARRAY_SIZE (cpu_arch))
10611 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10612 break;
10613
10614 case OPTION_MMNEMONIC:
10615 if (strcasecmp (arg, "att") == 0)
10616 intel_mnemonic = 0;
10617 else if (strcasecmp (arg, "intel") == 0)
10618 intel_mnemonic = 1;
10619 else
10620 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10621 break;
10622
10623 case OPTION_MSYNTAX:
10624 if (strcasecmp (arg, "att") == 0)
10625 intel_syntax = 0;
10626 else if (strcasecmp (arg, "intel") == 0)
10627 intel_syntax = 1;
10628 else
10629 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10630 break;
10631
10632 case OPTION_MINDEX_REG:
10633 allow_index_reg = 1;
10634 break;
10635
10636 case OPTION_MNAKED_REG:
10637 allow_naked_reg = 1;
10638 break;
10639
10640 case OPTION_MSSE2AVX:
10641 sse2avx = 1;
10642 break;
10643
10644 case OPTION_MSSE_CHECK:
10645 if (strcasecmp (arg, "error") == 0)
10646 sse_check = check_error;
10647 else if (strcasecmp (arg, "warning") == 0)
10648 sse_check = check_warning;
10649 else if (strcasecmp (arg, "none") == 0)
10650 sse_check = check_none;
10651 else
10652 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10653 break;
10654
10655 case OPTION_MOPERAND_CHECK:
10656 if (strcasecmp (arg, "error") == 0)
10657 operand_check = check_error;
10658 else if (strcasecmp (arg, "warning") == 0)
10659 operand_check = check_warning;
10660 else if (strcasecmp (arg, "none") == 0)
10661 operand_check = check_none;
10662 else
10663 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10664 break;
10665
10666 case OPTION_MAVXSCALAR:
10667 if (strcasecmp (arg, "128") == 0)
10668 avxscalar = vex128;
10669 else if (strcasecmp (arg, "256") == 0)
10670 avxscalar = vex256;
10671 else
10672 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10673 break;
10674
10675 case OPTION_MADD_BND_PREFIX:
10676 add_bnd_prefix = 1;
10677 break;
10678
10679 case OPTION_MEVEXLIG:
10680 if (strcmp (arg, "128") == 0)
10681 evexlig = evexl128;
10682 else if (strcmp (arg, "256") == 0)
10683 evexlig = evexl256;
10684 else if (strcmp (arg, "512") == 0)
10685 evexlig = evexl512;
10686 else
10687 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10688 break;
10689
10690 case OPTION_MEVEXRCIG:
10691 if (strcmp (arg, "rne") == 0)
10692 evexrcig = rne;
10693 else if (strcmp (arg, "rd") == 0)
10694 evexrcig = rd;
10695 else if (strcmp (arg, "ru") == 0)
10696 evexrcig = ru;
10697 else if (strcmp (arg, "rz") == 0)
10698 evexrcig = rz;
10699 else
10700 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10701 break;
10702
10703 case OPTION_MEVEXWIG:
10704 if (strcmp (arg, "0") == 0)
10705 evexwig = evexw0;
10706 else if (strcmp (arg, "1") == 0)
10707 evexwig = evexw1;
10708 else
10709 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10710 break;
10711
10712 # if defined (TE_PE) || defined (TE_PEP)
10713 case OPTION_MBIG_OBJ:
10714 use_big_obj = 1;
10715 break;
10716 #endif
10717
10718 case OPTION_MOMIT_LOCK_PREFIX:
10719 if (strcasecmp (arg, "yes") == 0)
10720 omit_lock_prefix = 1;
10721 else if (strcasecmp (arg, "no") == 0)
10722 omit_lock_prefix = 0;
10723 else
10724 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10725 break;
10726
10727 case OPTION_MFENCE_AS_LOCK_ADD:
10728 if (strcasecmp (arg, "yes") == 0)
10729 avoid_fence = 1;
10730 else if (strcasecmp (arg, "no") == 0)
10731 avoid_fence = 0;
10732 else
10733 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10734 break;
10735
10736 case OPTION_MRELAX_RELOCATIONS:
10737 if (strcasecmp (arg, "yes") == 0)
10738 generate_relax_relocations = 1;
10739 else if (strcasecmp (arg, "no") == 0)
10740 generate_relax_relocations = 0;
10741 else
10742 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10743 break;
10744
10745 case OPTION_MAMD64:
10746 intel64 = 0;
10747 break;
10748
10749 case OPTION_MINTEL64:
10750 intel64 = 1;
10751 break;
10752
10753 case 'O':
10754 if (arg == NULL)
10755 {
10756 optimize = 1;
10757 /* Turn off -Os. */
10758 optimize_for_space = 0;
10759 }
10760 else if (*arg == 's')
10761 {
10762 optimize_for_space = 1;
10763 /* Turn on all encoding optimizations. */
10764 optimize = -1;
10765 }
10766 else
10767 {
10768 optimize = atoi (arg);
10769 /* Turn off -Os. */
10770 optimize_for_space = 0;
10771 }
10772 break;
10773
10774 default:
10775 return 0;
10776 }
10777 return 1;
10778 }
10779
10780 #define MESSAGE_TEMPLATE \
10781 " "
10782
10783 static char *
10784 output_message (FILE *stream, char *p, char *message, char *start,
10785 int *left_p, const char *name, int len)
10786 {
10787 int size = sizeof (MESSAGE_TEMPLATE);
10788 int left = *left_p;
10789
10790 /* Reserve 2 spaces for ", " or ",\0" */
10791 left -= len + 2;
10792
10793 /* Check if there is any room. */
10794 if (left >= 0)
10795 {
10796 if (p != start)
10797 {
10798 *p++ = ',';
10799 *p++ = ' ';
10800 }
10801 p = mempcpy (p, name, len);
10802 }
10803 else
10804 {
10805 /* Output the current message now and start a new one. */
10806 *p++ = ',';
10807 *p = '\0';
10808 fprintf (stream, "%s\n", message);
10809 p = start;
10810 left = size - (start - message) - len - 2;
10811
10812 gas_assert (left >= 0);
10813
10814 p = mempcpy (p, name, len);
10815 }
10816
10817 *left_p = left;
10818 return p;
10819 }
10820
10821 static void
10822 show_arch (FILE *stream, int ext, int check)
10823 {
10824 static char message[] = MESSAGE_TEMPLATE;
10825 char *start = message + 27;
10826 char *p;
10827 int size = sizeof (MESSAGE_TEMPLATE);
10828 int left;
10829 const char *name;
10830 int len;
10831 unsigned int j;
10832
10833 p = start;
10834 left = size - (start - message);
10835 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10836 {
10837 /* Should it be skipped? */
10838 if (cpu_arch [j].skip)
10839 continue;
10840
10841 name = cpu_arch [j].name;
10842 len = cpu_arch [j].len;
10843 if (*name == '.')
10844 {
10845 /* It is an extension. Skip if we aren't asked to show it. */
10846 if (ext)
10847 {
10848 name++;
10849 len--;
10850 }
10851 else
10852 continue;
10853 }
10854 else if (ext)
10855 {
10856 /* It is an processor. Skip if we show only extension. */
10857 continue;
10858 }
10859 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10860 {
10861 /* It is an impossible processor - skip. */
10862 continue;
10863 }
10864
10865 p = output_message (stream, p, message, start, &left, name, len);
10866 }
10867
10868 /* Display disabled extensions. */
10869 if (ext)
10870 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10871 {
10872 name = cpu_noarch [j].name;
10873 len = cpu_noarch [j].len;
10874 p = output_message (stream, p, message, start, &left, name,
10875 len);
10876 }
10877
10878 *p = '\0';
10879 fprintf (stream, "%s\n", message);
10880 }
10881
10882 void
10883 md_show_usage (FILE *stream)
10884 {
10885 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10886 fprintf (stream, _("\
10887 -Q ignored\n\
10888 -V print assembler version number\n\
10889 -k ignored\n"));
10890 #endif
10891 fprintf (stream, _("\
10892 -n Do not optimize code alignment\n\
10893 -q quieten some warnings\n"));
10894 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10895 fprintf (stream, _("\
10896 -s ignored\n"));
10897 #endif
10898 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10899 || defined (TE_PE) || defined (TE_PEP))
10900 fprintf (stream, _("\
10901 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10902 #endif
10903 #ifdef SVR4_COMMENT_CHARS
10904 fprintf (stream, _("\
10905 --divide do not treat `/' as a comment character\n"));
10906 #else
10907 fprintf (stream, _("\
10908 --divide ignored\n"));
10909 #endif
10910 fprintf (stream, _("\
10911 -march=CPU[,+EXTENSION...]\n\
10912 generate code for CPU and EXTENSION, CPU is one of:\n"));
10913 show_arch (stream, 0, 1);
10914 fprintf (stream, _("\
10915 EXTENSION is combination of:\n"));
10916 show_arch (stream, 1, 0);
10917 fprintf (stream, _("\
10918 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10919 show_arch (stream, 0, 0);
10920 fprintf (stream, _("\
10921 -msse2avx encode SSE instructions with VEX prefix\n"));
10922 fprintf (stream, _("\
10923 -msse-check=[none|error|warning]\n\
10924 check SSE instructions\n"));
10925 fprintf (stream, _("\
10926 -moperand-check=[none|error|warning]\n\
10927 check operand combinations for validity\n"));
10928 fprintf (stream, _("\
10929 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10930 length\n"));
10931 fprintf (stream, _("\
10932 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10933 length\n"));
10934 fprintf (stream, _("\
10935 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10936 for EVEX.W bit ignored instructions\n"));
10937 fprintf (stream, _("\
10938 -mevexrcig=[rne|rd|ru|rz]\n\
10939 encode EVEX instructions with specific EVEX.RC value\n\
10940 for SAE-only ignored instructions\n"));
10941 fprintf (stream, _("\
10942 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10943 fprintf (stream, _("\
10944 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10945 fprintf (stream, _("\
10946 -mindex-reg support pseudo index registers\n"));
10947 fprintf (stream, _("\
10948 -mnaked-reg don't require `%%' prefix for registers\n"));
10949 fprintf (stream, _("\
10950 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10951 fprintf (stream, _("\
10952 -mshared disable branch optimization for shared code\n"));
10953 # if defined (TE_PE) || defined (TE_PEP)
10954 fprintf (stream, _("\
10955 -mbig-obj generate big object files\n"));
10956 #endif
10957 fprintf (stream, _("\
10958 -momit-lock-prefix=[no|yes]\n\
10959 strip all lock prefixes\n"));
10960 fprintf (stream, _("\
10961 -mfence-as-lock-add=[no|yes]\n\
10962 encode lfence, mfence and sfence as\n\
10963 lock addl $0x0, (%%{re}sp)\n"));
10964 fprintf (stream, _("\
10965 -mrelax-relocations=[no|yes]\n\
10966 generate relax relocations\n"));
10967 fprintf (stream, _("\
10968 -mamd64 accept only AMD64 ISA\n"));
10969 fprintf (stream, _("\
10970 -mintel64 accept only Intel64 ISA\n"));
10971 }
10972
10973 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10974 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10975 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10976
10977 /* Pick the target format to use. */
10978
10979 const char *
10980 i386_target_format (void)
10981 {
10982 if (!strncmp (default_arch, "x86_64", 6))
10983 {
10984 update_code_flag (CODE_64BIT, 1);
10985 if (default_arch[6] == '\0')
10986 x86_elf_abi = X86_64_ABI;
10987 else
10988 x86_elf_abi = X86_64_X32_ABI;
10989 }
10990 else if (!strcmp (default_arch, "i386"))
10991 update_code_flag (CODE_32BIT, 1);
10992 else if (!strcmp (default_arch, "iamcu"))
10993 {
10994 update_code_flag (CODE_32BIT, 1);
10995 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10996 {
10997 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10998 cpu_arch_name = "iamcu";
10999 cpu_sub_arch_name = NULL;
11000 cpu_arch_flags = iamcu_flags;
11001 cpu_arch_isa = PROCESSOR_IAMCU;
11002 cpu_arch_isa_flags = iamcu_flags;
11003 if (!cpu_arch_tune_set)
11004 {
11005 cpu_arch_tune = cpu_arch_isa;
11006 cpu_arch_tune_flags = cpu_arch_isa_flags;
11007 }
11008 }
11009 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11010 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11011 cpu_arch_name);
11012 }
11013 else
11014 as_fatal (_("unknown architecture"));
11015
11016 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11017 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11018 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11019 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11020
11021 switch (OUTPUT_FLAVOR)
11022 {
11023 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11024 case bfd_target_aout_flavour:
11025 return AOUT_TARGET_FORMAT;
11026 #endif
11027 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11028 # if defined (TE_PE) || defined (TE_PEP)
11029 case bfd_target_coff_flavour:
11030 if (flag_code == CODE_64BIT)
11031 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11032 else
11033 return "pe-i386";
11034 # elif defined (TE_GO32)
11035 case bfd_target_coff_flavour:
11036 return "coff-go32";
11037 # else
11038 case bfd_target_coff_flavour:
11039 return "coff-i386";
11040 # endif
11041 #endif
11042 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11043 case bfd_target_elf_flavour:
11044 {
11045 const char *format;
11046
11047 switch (x86_elf_abi)
11048 {
11049 default:
11050 format = ELF_TARGET_FORMAT;
11051 break;
11052 case X86_64_ABI:
11053 use_rela_relocations = 1;
11054 object_64bit = 1;
11055 format = ELF_TARGET_FORMAT64;
11056 break;
11057 case X86_64_X32_ABI:
11058 use_rela_relocations = 1;
11059 object_64bit = 1;
11060 disallow_64bit_reloc = 1;
11061 format = ELF_TARGET_FORMAT32;
11062 break;
11063 }
11064 if (cpu_arch_isa == PROCESSOR_L1OM)
11065 {
11066 if (x86_elf_abi != X86_64_ABI)
11067 as_fatal (_("Intel L1OM is 64bit only"));
11068 return ELF_TARGET_L1OM_FORMAT;
11069 }
11070 else if (cpu_arch_isa == PROCESSOR_K1OM)
11071 {
11072 if (x86_elf_abi != X86_64_ABI)
11073 as_fatal (_("Intel K1OM is 64bit only"));
11074 return ELF_TARGET_K1OM_FORMAT;
11075 }
11076 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11077 {
11078 if (x86_elf_abi != I386_ABI)
11079 as_fatal (_("Intel MCU is 32bit only"));
11080 return ELF_TARGET_IAMCU_FORMAT;
11081 }
11082 else
11083 return format;
11084 }
11085 #endif
11086 #if defined (OBJ_MACH_O)
11087 case bfd_target_mach_o_flavour:
11088 if (flag_code == CODE_64BIT)
11089 {
11090 use_rela_relocations = 1;
11091 object_64bit = 1;
11092 return "mach-o-x86-64";
11093 }
11094 else
11095 return "mach-o-i386";
11096 #endif
11097 default:
11098 abort ();
11099 return NULL;
11100 }
11101 }
11102
11103 #endif /* OBJ_MAYBE_ more than one */
11104 \f
11105 symbolS *
11106 md_undefined_symbol (char *name)
11107 {
11108 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11109 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11110 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11111 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11112 {
11113 if (!GOT_symbol)
11114 {
11115 if (symbol_find (name))
11116 as_bad (_("GOT already in symbol table"));
11117 GOT_symbol = symbol_new (name, undefined_section,
11118 (valueT) 0, &zero_address_frag);
11119 };
11120 return GOT_symbol;
11121 }
11122 return 0;
11123 }
11124
11125 /* Round up a section size to the appropriate boundary. */
11126
11127 valueT
11128 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11129 {
11130 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11131 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11132 {
11133 /* For a.out, force the section size to be aligned. If we don't do
11134 this, BFD will align it for us, but it will not write out the
11135 final bytes of the section. This may be a bug in BFD, but it is
11136 easier to fix it here since that is how the other a.out targets
11137 work. */
11138 int align;
11139
11140 align = bfd_get_section_alignment (stdoutput, segment);
11141 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11142 }
11143 #endif
11144
11145 return size;
11146 }
11147
11148 /* On the i386, PC-relative offsets are relative to the start of the
11149 next instruction. That is, the address of the offset, plus its
11150 size, since the offset is always the last part of the insn. */
11151
11152 long
11153 md_pcrel_from (fixS *fixP)
11154 {
11155 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11156 }
11157
11158 #ifndef I386COFF
11159
11160 static void
11161 s_bss (int ignore ATTRIBUTE_UNUSED)
11162 {
11163 int temp;
11164
11165 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11166 if (IS_ELF)
11167 obj_elf_section_change_hook ();
11168 #endif
11169 temp = get_absolute_expression ();
11170 subseg_set (bss_section, (subsegT) temp);
11171 demand_empty_rest_of_line ();
11172 }
11173
11174 #endif
11175
11176 void
11177 i386_validate_fix (fixS *fixp)
11178 {
11179 if (fixp->fx_subsy)
11180 {
11181 if (fixp->fx_subsy == GOT_symbol)
11182 {
11183 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11184 {
11185 if (!object_64bit)
11186 abort ();
11187 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11188 if (fixp->fx_tcbit2)
11189 fixp->fx_r_type = (fixp->fx_tcbit
11190 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11191 : BFD_RELOC_X86_64_GOTPCRELX);
11192 else
11193 #endif
11194 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11195 }
11196 else
11197 {
11198 if (!object_64bit)
11199 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11200 else
11201 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11202 }
11203 fixp->fx_subsy = 0;
11204 }
11205 }
11206 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11207 else if (!object_64bit)
11208 {
11209 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11210 && fixp->fx_tcbit2)
11211 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11212 }
11213 #endif
11214 }
11215
11216 arelent *
11217 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11218 {
11219 arelent *rel;
11220 bfd_reloc_code_real_type code;
11221
11222 switch (fixp->fx_r_type)
11223 {
11224 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11225 case BFD_RELOC_SIZE32:
11226 case BFD_RELOC_SIZE64:
11227 if (S_IS_DEFINED (fixp->fx_addsy)
11228 && !S_IS_EXTERNAL (fixp->fx_addsy))
11229 {
11230 /* Resolve size relocation against local symbol to size of
11231 the symbol plus addend. */
11232 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11233 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11234 && !fits_in_unsigned_long (value))
11235 as_bad_where (fixp->fx_file, fixp->fx_line,
11236 _("symbol size computation overflow"));
11237 fixp->fx_addsy = NULL;
11238 fixp->fx_subsy = NULL;
11239 md_apply_fix (fixp, (valueT *) &value, NULL);
11240 return NULL;
11241 }
11242 #endif
11243 /* Fall through. */
11244
11245 case BFD_RELOC_X86_64_PLT32:
11246 case BFD_RELOC_X86_64_GOT32:
11247 case BFD_RELOC_X86_64_GOTPCREL:
11248 case BFD_RELOC_X86_64_GOTPCRELX:
11249 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11250 case BFD_RELOC_386_PLT32:
11251 case BFD_RELOC_386_GOT32:
11252 case BFD_RELOC_386_GOT32X:
11253 case BFD_RELOC_386_GOTOFF:
11254 case BFD_RELOC_386_GOTPC:
11255 case BFD_RELOC_386_TLS_GD:
11256 case BFD_RELOC_386_TLS_LDM:
11257 case BFD_RELOC_386_TLS_LDO_32:
11258 case BFD_RELOC_386_TLS_IE_32:
11259 case BFD_RELOC_386_TLS_IE:
11260 case BFD_RELOC_386_TLS_GOTIE:
11261 case BFD_RELOC_386_TLS_LE_32:
11262 case BFD_RELOC_386_TLS_LE:
11263 case BFD_RELOC_386_TLS_GOTDESC:
11264 case BFD_RELOC_386_TLS_DESC_CALL:
11265 case BFD_RELOC_X86_64_TLSGD:
11266 case BFD_RELOC_X86_64_TLSLD:
11267 case BFD_RELOC_X86_64_DTPOFF32:
11268 case BFD_RELOC_X86_64_DTPOFF64:
11269 case BFD_RELOC_X86_64_GOTTPOFF:
11270 case BFD_RELOC_X86_64_TPOFF32:
11271 case BFD_RELOC_X86_64_TPOFF64:
11272 case BFD_RELOC_X86_64_GOTOFF64:
11273 case BFD_RELOC_X86_64_GOTPC32:
11274 case BFD_RELOC_X86_64_GOT64:
11275 case BFD_RELOC_X86_64_GOTPCREL64:
11276 case BFD_RELOC_X86_64_GOTPC64:
11277 case BFD_RELOC_X86_64_GOTPLT64:
11278 case BFD_RELOC_X86_64_PLTOFF64:
11279 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11280 case BFD_RELOC_X86_64_TLSDESC_CALL:
11281 case BFD_RELOC_RVA:
11282 case BFD_RELOC_VTABLE_ENTRY:
11283 case BFD_RELOC_VTABLE_INHERIT:
11284 #ifdef TE_PE
11285 case BFD_RELOC_32_SECREL:
11286 #endif
11287 code = fixp->fx_r_type;
11288 break;
11289 case BFD_RELOC_X86_64_32S:
11290 if (!fixp->fx_pcrel)
11291 {
11292 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11293 code = fixp->fx_r_type;
11294 break;
11295 }
11296 /* Fall through. */
11297 default:
11298 if (fixp->fx_pcrel)
11299 {
11300 switch (fixp->fx_size)
11301 {
11302 default:
11303 as_bad_where (fixp->fx_file, fixp->fx_line,
11304 _("can not do %d byte pc-relative relocation"),
11305 fixp->fx_size);
11306 code = BFD_RELOC_32_PCREL;
11307 break;
11308 case 1: code = BFD_RELOC_8_PCREL; break;
11309 case 2: code = BFD_RELOC_16_PCREL; break;
11310 case 4: code = BFD_RELOC_32_PCREL; break;
11311 #ifdef BFD64
11312 case 8: code = BFD_RELOC_64_PCREL; break;
11313 #endif
11314 }
11315 }
11316 else
11317 {
11318 switch (fixp->fx_size)
11319 {
11320 default:
11321 as_bad_where (fixp->fx_file, fixp->fx_line,
11322 _("can not do %d byte relocation"),
11323 fixp->fx_size);
11324 code = BFD_RELOC_32;
11325 break;
11326 case 1: code = BFD_RELOC_8; break;
11327 case 2: code = BFD_RELOC_16; break;
11328 case 4: code = BFD_RELOC_32; break;
11329 #ifdef BFD64
11330 case 8: code = BFD_RELOC_64; break;
11331 #endif
11332 }
11333 }
11334 break;
11335 }
11336
11337 if ((code == BFD_RELOC_32
11338 || code == BFD_RELOC_32_PCREL
11339 || code == BFD_RELOC_X86_64_32S)
11340 && GOT_symbol
11341 && fixp->fx_addsy == GOT_symbol)
11342 {
11343 if (!object_64bit)
11344 code = BFD_RELOC_386_GOTPC;
11345 else
11346 code = BFD_RELOC_X86_64_GOTPC32;
11347 }
11348 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11349 && GOT_symbol
11350 && fixp->fx_addsy == GOT_symbol)
11351 {
11352 code = BFD_RELOC_X86_64_GOTPC64;
11353 }
11354
11355 rel = XNEW (arelent);
11356 rel->sym_ptr_ptr = XNEW (asymbol *);
11357 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11358
11359 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11360
11361 if (!use_rela_relocations)
11362 {
11363 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11364 vtable entry to be used in the relocation's section offset. */
11365 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11366 rel->address = fixp->fx_offset;
11367 #if defined (OBJ_COFF) && defined (TE_PE)
11368 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11369 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11370 else
11371 #endif
11372 rel->addend = 0;
11373 }
11374 /* Use the rela in 64bit mode. */
11375 else
11376 {
11377 if (disallow_64bit_reloc)
11378 switch (code)
11379 {
11380 case BFD_RELOC_X86_64_DTPOFF64:
11381 case BFD_RELOC_X86_64_TPOFF64:
11382 case BFD_RELOC_64_PCREL:
11383 case BFD_RELOC_X86_64_GOTOFF64:
11384 case BFD_RELOC_X86_64_GOT64:
11385 case BFD_RELOC_X86_64_GOTPCREL64:
11386 case BFD_RELOC_X86_64_GOTPC64:
11387 case BFD_RELOC_X86_64_GOTPLT64:
11388 case BFD_RELOC_X86_64_PLTOFF64:
11389 as_bad_where (fixp->fx_file, fixp->fx_line,
11390 _("cannot represent relocation type %s in x32 mode"),
11391 bfd_get_reloc_code_name (code));
11392 break;
11393 default:
11394 break;
11395 }
11396
11397 if (!fixp->fx_pcrel)
11398 rel->addend = fixp->fx_offset;
11399 else
11400 switch (code)
11401 {
11402 case BFD_RELOC_X86_64_PLT32:
11403 case BFD_RELOC_X86_64_GOT32:
11404 case BFD_RELOC_X86_64_GOTPCREL:
11405 case BFD_RELOC_X86_64_GOTPCRELX:
11406 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11407 case BFD_RELOC_X86_64_TLSGD:
11408 case BFD_RELOC_X86_64_TLSLD:
11409 case BFD_RELOC_X86_64_GOTTPOFF:
11410 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11411 case BFD_RELOC_X86_64_TLSDESC_CALL:
11412 rel->addend = fixp->fx_offset - fixp->fx_size;
11413 break;
11414 default:
11415 rel->addend = (section->vma
11416 - fixp->fx_size
11417 + fixp->fx_addnumber
11418 + md_pcrel_from (fixp));
11419 break;
11420 }
11421 }
11422
11423 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11424 if (rel->howto == NULL)
11425 {
11426 as_bad_where (fixp->fx_file, fixp->fx_line,
11427 _("cannot represent relocation type %s"),
11428 bfd_get_reloc_code_name (code));
11429 /* Set howto to a garbage value so that we can keep going. */
11430 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11431 gas_assert (rel->howto != NULL);
11432 }
11433
11434 return rel;
11435 }
11436
11437 #include "tc-i386-intel.c"
11438
11439 void
11440 tc_x86_parse_to_dw2regnum (expressionS *exp)
11441 {
11442 int saved_naked_reg;
11443 char saved_register_dot;
11444
11445 saved_naked_reg = allow_naked_reg;
11446 allow_naked_reg = 1;
11447 saved_register_dot = register_chars['.'];
11448 register_chars['.'] = '.';
11449 allow_pseudo_reg = 1;
11450 expression_and_evaluate (exp);
11451 allow_pseudo_reg = 0;
11452 register_chars['.'] = saved_register_dot;
11453 allow_naked_reg = saved_naked_reg;
11454
11455 if (exp->X_op == O_register && exp->X_add_number >= 0)
11456 {
11457 if ((addressT) exp->X_add_number < i386_regtab_size)
11458 {
11459 exp->X_op = O_constant;
11460 exp->X_add_number = i386_regtab[exp->X_add_number]
11461 .dw2_regnum[flag_code >> 1];
11462 }
11463 else
11464 exp->X_op = O_illegal;
11465 }
11466 }
11467
11468 void
11469 tc_x86_frame_initial_instructions (void)
11470 {
11471 static unsigned int sp_regno[2];
11472
11473 if (!sp_regno[flag_code >> 1])
11474 {
11475 char *saved_input = input_line_pointer;
11476 char sp[][4] = {"esp", "rsp"};
11477 expressionS exp;
11478
11479 input_line_pointer = sp[flag_code >> 1];
11480 tc_x86_parse_to_dw2regnum (&exp);
11481 gas_assert (exp.X_op == O_constant);
11482 sp_regno[flag_code >> 1] = exp.X_add_number;
11483 input_line_pointer = saved_input;
11484 }
11485
11486 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11487 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11488 }
11489
11490 int
11491 x86_dwarf2_addr_size (void)
11492 {
11493 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11494 if (x86_elf_abi == X86_64_X32_ABI)
11495 return 4;
11496 #endif
11497 return bfd_arch_bits_per_address (stdoutput) / 8;
11498 }
11499
11500 int
11501 i386_elf_section_type (const char *str, size_t len)
11502 {
11503 if (flag_code == CODE_64BIT
11504 && len == sizeof ("unwind") - 1
11505 && strncmp (str, "unwind", 6) == 0)
11506 return SHT_X86_64_UNWIND;
11507
11508 return -1;
11509 }
11510
11511 #ifdef TE_SOLARIS
11512 void
11513 i386_solaris_fix_up_eh_frame (segT sec)
11514 {
11515 if (flag_code == CODE_64BIT)
11516 elf_section_type (sec) = SHT_X86_64_UNWIND;
11517 }
11518 #endif
11519
11520 #ifdef TE_PE
11521 void
11522 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11523 {
11524 expressionS exp;
11525
11526 exp.X_op = O_secrel;
11527 exp.X_add_symbol = symbol;
11528 exp.X_add_number = 0;
11529 emit_expr (&exp, size);
11530 }
11531 #endif
11532
11533 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11534 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11535
11536 bfd_vma
11537 x86_64_section_letter (int letter, const char **ptr_msg)
11538 {
11539 if (flag_code == CODE_64BIT)
11540 {
11541 if (letter == 'l')
11542 return SHF_X86_64_LARGE;
11543
11544 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11545 }
11546 else
11547 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11548 return -1;
11549 }
11550
11551 bfd_vma
11552 x86_64_section_word (char *str, size_t len)
11553 {
11554 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11555 return SHF_X86_64_LARGE;
11556
11557 return -1;
11558 }
11559
11560 static void
11561 handle_large_common (int small ATTRIBUTE_UNUSED)
11562 {
11563 if (flag_code != CODE_64BIT)
11564 {
11565 s_comm_internal (0, elf_common_parse);
11566 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11567 }
11568 else
11569 {
11570 static segT lbss_section;
11571 asection *saved_com_section_ptr = elf_com_section_ptr;
11572 asection *saved_bss_section = bss_section;
11573
11574 if (lbss_section == NULL)
11575 {
11576 flagword applicable;
11577 segT seg = now_seg;
11578 subsegT subseg = now_subseg;
11579
11580 /* The .lbss section is for local .largecomm symbols. */
11581 lbss_section = subseg_new (".lbss", 0);
11582 applicable = bfd_applicable_section_flags (stdoutput);
11583 bfd_set_section_flags (stdoutput, lbss_section,
11584 applicable & SEC_ALLOC);
11585 seg_info (lbss_section)->bss = 1;
11586
11587 subseg_set (seg, subseg);
11588 }
11589
11590 elf_com_section_ptr = &_bfd_elf_large_com_section;
11591 bss_section = lbss_section;
11592
11593 s_comm_internal (0, elf_common_parse);
11594
11595 elf_com_section_ptr = saved_com_section_ptr;
11596 bss_section = saved_bss_section;
11597 }
11598 }
11599 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.268926 seconds and 4 git commands to generate.