x86: drop bogus IgnoreSize from a few further insns
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191
192 /* GNU_PROPERTY_X86_ISA_1_USED. */
193 static unsigned int x86_isa_1_used;
194 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
195 static unsigned int x86_feature_2_used;
196 /* Generate x86 used ISA and feature properties. */
197 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
198 #endif
199
200 static const char *default_arch = DEFAULT_ARCH;
201
202 /* This struct describes rounding control and SAE in the instruction. */
203 struct RC_Operation
204 {
205 enum rc_type
206 {
207 rne = 0,
208 rd,
209 ru,
210 rz,
211 saeonly
212 } type;
213 int operand;
214 };
215
216 static struct RC_Operation rc_op;
217
218 /* The struct describes masking, applied to OPERAND in the instruction.
219 MASK is a pointer to the corresponding mask register. ZEROING tells
220 whether merging or zeroing mask is used. */
221 struct Mask_Operation
222 {
223 const reg_entry *mask;
224 unsigned int zeroing;
225 /* The operand where this operation is associated. */
226 int operand;
227 };
228
229 static struct Mask_Operation mask_op;
230
231 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
232 broadcast factor. */
233 struct Broadcast_Operation
234 {
235 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
236 int type;
237
238 /* Index of broadcasted operand. */
239 int operand;
240
241 /* Number of bytes to broadcast. */
242 int bytes;
243 };
244
245 static struct Broadcast_Operation broadcast_op;
246
247 /* VEX prefix. */
248 typedef struct
249 {
250 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
251 unsigned char bytes[4];
252 unsigned int length;
253 /* Destination or source register specifier. */
254 const reg_entry *register_specifier;
255 } vex_prefix;
256
257 /* 'md_assemble ()' gathers together information and puts it into a
258 i386_insn. */
259
260 union i386_op
261 {
262 expressionS *disps;
263 expressionS *imms;
264 const reg_entry *regs;
265 };
266
267 enum i386_error
268 {
269 operand_size_mismatch,
270 operand_type_mismatch,
271 register_type_mismatch,
272 number_of_operands_mismatch,
273 invalid_instruction_suffix,
274 bad_imm4,
275 unsupported_with_intel_mnemonic,
276 unsupported_syntax,
277 unsupported,
278 invalid_vsib_address,
279 invalid_vector_register_set,
280 unsupported_vector_index_register,
281 unsupported_broadcast,
282 broadcast_needed,
283 unsupported_masking,
284 mask_not_on_destination,
285 no_default_mask,
286 unsupported_rc_sae,
287 rc_sae_operand_not_last_imm,
288 invalid_register_operand,
289 };
290
291 struct _i386_insn
292 {
293 /* TM holds the template for the insn were currently assembling. */
294 insn_template tm;
295
296 /* SUFFIX holds the instruction size suffix for byte, word, dword
297 or qword, if given. */
298 char suffix;
299
300 /* OPERANDS gives the number of given operands. */
301 unsigned int operands;
302
303 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
304 of given register, displacement, memory operands and immediate
305 operands. */
306 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
307
308 /* TYPES [i] is the type (see above #defines) which tells us how to
309 use OP[i] for the corresponding operand. */
310 i386_operand_type types[MAX_OPERANDS];
311
312 /* Displacement expression, immediate expression, or register for each
313 operand. */
314 union i386_op op[MAX_OPERANDS];
315
316 /* Flags for operands. */
317 unsigned int flags[MAX_OPERANDS];
318 #define Operand_PCrel 1
319 #define Operand_Mem 2
320
321 /* Relocation type for operand */
322 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
323
324 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
325 the base index byte below. */
326 const reg_entry *base_reg;
327 const reg_entry *index_reg;
328 unsigned int log2_scale_factor;
329
330 /* SEG gives the seg_entries of this insn. They are zero unless
331 explicit segment overrides are given. */
332 const seg_entry *seg[2];
333
334 /* Copied first memory operand string, for re-checking. */
335 char *memop1_string;
336
337 /* PREFIX holds all the given prefix opcodes (usually null).
338 PREFIXES is the number of prefix opcodes. */
339 unsigned int prefixes;
340 unsigned char prefix[MAX_PREFIXES];
341
342 /* Has MMX register operands. */
343 bfd_boolean has_regmmx;
344
345 /* Has XMM register operands. */
346 bfd_boolean has_regxmm;
347
348 /* Has YMM register operands. */
349 bfd_boolean has_regymm;
350
351 /* Has ZMM register operands. */
352 bfd_boolean has_regzmm;
353
354 /* RM and SIB are the modrm byte and the sib byte where the
355 addressing modes of this insn are encoded. */
356 modrm_byte rm;
357 rex_byte rex;
358 rex_byte vrex;
359 sib_byte sib;
360 vex_prefix vex;
361
362 /* Masking attributes. */
363 struct Mask_Operation *mask;
364
365 /* Rounding control and SAE attributes. */
366 struct RC_Operation *rounding;
367
368 /* Broadcasting attributes. */
369 struct Broadcast_Operation *broadcast;
370
371 /* Compressed disp8*N attribute. */
372 unsigned int memshift;
373
374 /* Prefer load or store in encoding. */
375 enum
376 {
377 dir_encoding_default = 0,
378 dir_encoding_load,
379 dir_encoding_store,
380 dir_encoding_swap
381 } dir_encoding;
382
383 /* Prefer 8bit or 32bit displacement in encoding. */
384 enum
385 {
386 disp_encoding_default = 0,
387 disp_encoding_8bit,
388 disp_encoding_32bit
389 } disp_encoding;
390
391 /* Prefer the REX byte in encoding. */
392 bfd_boolean rex_encoding;
393
394 /* Disable instruction size optimization. */
395 bfd_boolean no_optimize;
396
397 /* How to encode vector instructions. */
398 enum
399 {
400 vex_encoding_default = 0,
401 vex_encoding_vex2,
402 vex_encoding_vex3,
403 vex_encoding_evex
404 } vec_encoding;
405
406 /* REP prefix. */
407 const char *rep_prefix;
408
409 /* HLE prefix. */
410 const char *hle_prefix;
411
412 /* Have BND prefix. */
413 const char *bnd_prefix;
414
415 /* Have NOTRACK prefix. */
416 const char *notrack_prefix;
417
418 /* Error message. */
419 enum i386_error error;
420 };
421
422 typedef struct _i386_insn i386_insn;
423
424 /* Link RC type with corresponding string, that'll be looked for in
425 asm. */
426 struct RC_name
427 {
428 enum rc_type type;
429 const char *name;
430 unsigned int len;
431 };
432
433 static const struct RC_name RC_NamesTable[] =
434 {
435 { rne, STRING_COMMA_LEN ("rn-sae") },
436 { rd, STRING_COMMA_LEN ("rd-sae") },
437 { ru, STRING_COMMA_LEN ("ru-sae") },
438 { rz, STRING_COMMA_LEN ("rz-sae") },
439 { saeonly, STRING_COMMA_LEN ("sae") },
440 };
441
442 /* List of chars besides those in app.c:symbol_chars that can start an
443 operand. Used to prevent the scrubber eating vital white-space. */
444 const char extra_symbol_chars[] = "*%-([{}"
445 #ifdef LEX_AT
446 "@"
447 #endif
448 #ifdef LEX_QM
449 "?"
450 #endif
451 ;
452
453 #if (defined (TE_I386AIX) \
454 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
455 && !defined (TE_GNU) \
456 && !defined (TE_LINUX) \
457 && !defined (TE_NACL) \
458 && !defined (TE_FreeBSD) \
459 && !defined (TE_DragonFly) \
460 && !defined (TE_NetBSD)))
461 /* This array holds the chars that always start a comment. If the
462 pre-processor is disabled, these aren't very useful. The option
463 --divide will remove '/' from this list. */
464 const char *i386_comment_chars = "#/";
465 #define SVR4_COMMENT_CHARS 1
466 #define PREFIX_SEPARATOR '\\'
467
468 #else
469 const char *i386_comment_chars = "#";
470 #define PREFIX_SEPARATOR '/'
471 #endif
472
473 /* This array holds the chars that only start a comment at the beginning of
474 a line. If the line seems to have the form '# 123 filename'
475 .line and .file directives will appear in the pre-processed output.
476 Note that input_file.c hand checks for '#' at the beginning of the
477 first line of the input file. This is because the compiler outputs
478 #NO_APP at the beginning of its output.
479 Also note that comments started like this one will always work if
480 '/' isn't otherwise defined. */
481 const char line_comment_chars[] = "#/";
482
483 const char line_separator_chars[] = ";";
484
485 /* Chars that can be used to separate mant from exp in floating point
486 nums. */
487 const char EXP_CHARS[] = "eE";
488
489 /* Chars that mean this number is a floating point constant
490 As in 0f12.456
491 or 0d1.2345e12. */
492 const char FLT_CHARS[] = "fFdDxX";
493
494 /* Tables for lexical analysis. */
495 static char mnemonic_chars[256];
496 static char register_chars[256];
497 static char operand_chars[256];
498 static char identifier_chars[256];
499 static char digit_chars[256];
500
501 /* Lexical macros. */
502 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
503 #define is_operand_char(x) (operand_chars[(unsigned char) x])
504 #define is_register_char(x) (register_chars[(unsigned char) x])
505 #define is_space_char(x) ((x) == ' ')
506 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
507 #define is_digit_char(x) (digit_chars[(unsigned char) x])
508
509 /* All non-digit non-letter characters that may occur in an operand. */
510 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
511
512 /* md_assemble() always leaves the strings it's passed unaltered. To
513 effect this we maintain a stack of saved characters that we've smashed
514 with '\0's (indicating end of strings for various sub-fields of the
515 assembler instruction). */
516 static char save_stack[32];
517 static char *save_stack_p;
518 #define END_STRING_AND_SAVE(s) \
519 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
520 #define RESTORE_END_STRING(s) \
521 do { *(s) = *--save_stack_p; } while (0)
522
523 /* The instruction we're assembling. */
524 static i386_insn i;
525
526 /* Possible templates for current insn. */
527 static const templates *current_templates;
528
529 /* Per instruction expressionS buffers: max displacements & immediates. */
530 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
531 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
532
533 /* Current operand we are working on. */
534 static int this_operand = -1;
535
536 /* We support four different modes. FLAG_CODE variable is used to distinguish
537 these. */
538
539 enum flag_code {
540 CODE_32BIT,
541 CODE_16BIT,
542 CODE_64BIT };
543
544 static enum flag_code flag_code;
545 static unsigned int object_64bit;
546 static unsigned int disallow_64bit_reloc;
547 static int use_rela_relocations = 0;
548
549 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
550 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
551 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
552
553 /* The ELF ABI to use. */
554 enum x86_elf_abi
555 {
556 I386_ABI,
557 X86_64_ABI,
558 X86_64_X32_ABI
559 };
560
561 static enum x86_elf_abi x86_elf_abi = I386_ABI;
562 #endif
563
564 #if defined (TE_PE) || defined (TE_PEP)
565 /* Use big object file format. */
566 static int use_big_obj = 0;
567 #endif
568
569 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570 /* 1 if generating code for a shared library. */
571 static int shared = 0;
572 #endif
573
574 /* 1 for intel syntax,
575 0 if att syntax. */
576 static int intel_syntax = 0;
577
578 /* 1 for Intel64 ISA,
579 0 if AMD64 ISA. */
580 static int intel64;
581
582 /* 1 for intel mnemonic,
583 0 if att mnemonic. */
584 static int intel_mnemonic = !SYSV386_COMPAT;
585
586 /* 1 if pseudo registers are permitted. */
587 static int allow_pseudo_reg = 0;
588
589 /* 1 if register prefix % not required. */
590 static int allow_naked_reg = 0;
591
592 /* 1 if the assembler should add BND prefix for all control-transferring
593 instructions supporting it, even if this prefix wasn't specified
594 explicitly. */
595 static int add_bnd_prefix = 0;
596
597 /* 1 if pseudo index register, eiz/riz, is allowed . */
598 static int allow_index_reg = 0;
599
600 /* 1 if the assembler should ignore LOCK prefix, even if it was
601 specified explicitly. */
602 static int omit_lock_prefix = 0;
603
604 /* 1 if the assembler should encode lfence, mfence, and sfence as
605 "lock addl $0, (%{re}sp)". */
606 static int avoid_fence = 0;
607
608 /* 1 if the assembler should generate relax relocations. */
609
610 static int generate_relax_relocations
611 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
612
613 static enum check_kind
614 {
615 check_none = 0,
616 check_warning,
617 check_error
618 }
619 sse_check, operand_check = check_warning;
620
621 /* Optimization:
622 1. Clear the REX_W bit with register operand if possible.
623 2. Above plus use 128bit vector instruction to clear the full vector
624 register.
625 */
626 static int optimize = 0;
627
628 /* Optimization:
629 1. Clear the REX_W bit with register operand if possible.
630 2. Above plus use 128bit vector instruction to clear the full vector
631 register.
632 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
633 "testb $imm7,%r8".
634 */
635 static int optimize_for_space = 0;
636
637 /* Register prefix used for error message. */
638 static const char *register_prefix = "%";
639
640 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
641 leave, push, and pop instructions so that gcc has the same stack
642 frame as in 32 bit mode. */
643 static char stackop_size = '\0';
644
645 /* Non-zero to optimize code alignment. */
646 int optimize_align_code = 1;
647
648 /* Non-zero to quieten some warnings. */
649 static int quiet_warnings = 0;
650
651 /* CPU name. */
652 static const char *cpu_arch_name = NULL;
653 static char *cpu_sub_arch_name = NULL;
654
655 /* CPU feature flags. */
656 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
657
658 /* If we have selected a cpu we are generating instructions for. */
659 static int cpu_arch_tune_set = 0;
660
661 /* Cpu we are generating instructions for. */
662 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
663
664 /* CPU feature flags of cpu we are generating instructions for. */
665 static i386_cpu_flags cpu_arch_tune_flags;
666
667 /* CPU instruction set architecture used. */
668 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
669
670 /* CPU feature flags of instruction set architecture used. */
671 i386_cpu_flags cpu_arch_isa_flags;
672
673 /* If set, conditional jumps are not automatically promoted to handle
674 larger than a byte offset. */
675 static unsigned int no_cond_jump_promotion = 0;
676
677 /* Encode SSE instructions with VEX prefix. */
678 static unsigned int sse2avx;
679
680 /* Encode scalar AVX instructions with specific vector length. */
681 static enum
682 {
683 vex128 = 0,
684 vex256
685 } avxscalar;
686
687 /* Encode scalar EVEX LIG instructions with specific vector length. */
688 static enum
689 {
690 evexl128 = 0,
691 evexl256,
692 evexl512
693 } evexlig;
694
695 /* Encode EVEX WIG instructions with specific evex.w. */
696 static enum
697 {
698 evexw0 = 0,
699 evexw1
700 } evexwig;
701
702 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
703 static enum rc_type evexrcig = rne;
704
705 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
706 static symbolS *GOT_symbol;
707
708 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
709 unsigned int x86_dwarf2_return_column;
710
711 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
712 int x86_cie_data_alignment;
713
714 /* Interface to relax_segment.
715 There are 3 major relax states for 386 jump insns because the
716 different types of jumps add different sizes to frags when we're
717 figuring out what sort of jump to choose to reach a given label. */
718
719 /* Types. */
720 #define UNCOND_JUMP 0
721 #define COND_JUMP 1
722 #define COND_JUMP86 2
723
724 /* Sizes. */
725 #define CODE16 1
726 #define SMALL 0
727 #define SMALL16 (SMALL | CODE16)
728 #define BIG 2
729 #define BIG16 (BIG | CODE16)
730
731 #ifndef INLINE
732 #ifdef __GNUC__
733 #define INLINE __inline__
734 #else
735 #define INLINE
736 #endif
737 #endif
738
739 #define ENCODE_RELAX_STATE(type, size) \
740 ((relax_substateT) (((type) << 2) | (size)))
741 #define TYPE_FROM_RELAX_STATE(s) \
742 ((s) >> 2)
743 #define DISP_SIZE_FROM_RELAX_STATE(s) \
744 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
745
746 /* This table is used by relax_frag to promote short jumps to long
747 ones where necessary. SMALL (short) jumps may be promoted to BIG
748 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
749 don't allow a short jump in a 32 bit code segment to be promoted to
750 a 16 bit offset jump because it's slower (requires data size
751 prefix), and doesn't work, unless the destination is in the bottom
752 64k of the code segment (The top 16 bits of eip are zeroed). */
753
754 const relax_typeS md_relax_table[] =
755 {
756 /* The fields are:
757 1) most positive reach of this state,
758 2) most negative reach of this state,
759 3) how many bytes this mode will have in the variable part of the frag
760 4) which index into the table to try if we can't fit into this one. */
761
762 /* UNCOND_JUMP states. */
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
764 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
765 /* dword jmp adds 4 bytes to frag:
766 0 extra opcode bytes, 4 displacement bytes. */
767 {0, 0, 4, 0},
768 /* word jmp adds 2 byte2 to frag:
769 0 extra opcode bytes, 2 displacement bytes. */
770 {0, 0, 2, 0},
771
772 /* COND_JUMP states. */
773 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
774 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
775 /* dword conditionals adds 5 bytes to frag:
776 1 extra opcode byte, 4 displacement bytes. */
777 {0, 0, 5, 0},
778 /* word conditionals add 3 bytes to frag:
779 1 extra opcode byte, 2 displacement bytes. */
780 {0, 0, 3, 0},
781
782 /* COND_JUMP86 states. */
783 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
785 /* dword conditionals adds 5 bytes to frag:
786 1 extra opcode byte, 4 displacement bytes. */
787 {0, 0, 5, 0},
788 /* word conditionals add 4 bytes to frag:
789 1 displacement byte and a 3 byte long branch insn. */
790 {0, 0, 4, 0}
791 };
792
793 static const arch_entry cpu_arch[] =
794 {
795 /* Do not replace the first two entries - i386_target_format()
796 relies on them being there in this order. */
797 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
798 CPU_GENERIC32_FLAGS, 0 },
799 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
800 CPU_GENERIC64_FLAGS, 0 },
801 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
802 CPU_NONE_FLAGS, 0 },
803 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
804 CPU_I186_FLAGS, 0 },
805 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
806 CPU_I286_FLAGS, 0 },
807 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
808 CPU_I386_FLAGS, 0 },
809 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
810 CPU_I486_FLAGS, 0 },
811 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
812 CPU_I586_FLAGS, 0 },
813 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
814 CPU_I686_FLAGS, 0 },
815 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
816 CPU_I586_FLAGS, 0 },
817 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
818 CPU_PENTIUMPRO_FLAGS, 0 },
819 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
820 CPU_P2_FLAGS, 0 },
821 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
822 CPU_P3_FLAGS, 0 },
823 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
824 CPU_P4_FLAGS, 0 },
825 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
826 CPU_CORE_FLAGS, 0 },
827 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
828 CPU_NOCONA_FLAGS, 0 },
829 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
830 CPU_CORE_FLAGS, 1 },
831 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
832 CPU_CORE_FLAGS, 0 },
833 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
834 CPU_CORE2_FLAGS, 1 },
835 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
836 CPU_CORE2_FLAGS, 0 },
837 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
838 CPU_COREI7_FLAGS, 0 },
839 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
840 CPU_L1OM_FLAGS, 0 },
841 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
842 CPU_K1OM_FLAGS, 0 },
843 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
844 CPU_IAMCU_FLAGS, 0 },
845 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
846 CPU_K6_FLAGS, 0 },
847 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
848 CPU_K6_2_FLAGS, 0 },
849 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
850 CPU_ATHLON_FLAGS, 0 },
851 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
852 CPU_K8_FLAGS, 1 },
853 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
854 CPU_K8_FLAGS, 0 },
855 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
856 CPU_K8_FLAGS, 0 },
857 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
858 CPU_AMDFAM10_FLAGS, 0 },
859 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
860 CPU_BDVER1_FLAGS, 0 },
861 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
862 CPU_BDVER2_FLAGS, 0 },
863 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
864 CPU_BDVER3_FLAGS, 0 },
865 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
866 CPU_BDVER4_FLAGS, 0 },
867 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
868 CPU_ZNVER1_FLAGS, 0 },
869 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
870 CPU_ZNVER2_FLAGS, 0 },
871 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
872 CPU_BTVER1_FLAGS, 0 },
873 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
874 CPU_BTVER2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
876 CPU_8087_FLAGS, 0 },
877 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
878 CPU_287_FLAGS, 0 },
879 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
880 CPU_387_FLAGS, 0 },
881 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
882 CPU_687_FLAGS, 0 },
883 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
884 CPU_CMOV_FLAGS, 0 },
885 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
886 CPU_FXSR_FLAGS, 0 },
887 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
888 CPU_MMX_FLAGS, 0 },
889 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
890 CPU_SSE_FLAGS, 0 },
891 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
892 CPU_SSE2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
894 CPU_SSE3_FLAGS, 0 },
895 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
896 CPU_SSSE3_FLAGS, 0 },
897 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
898 CPU_SSE4_1_FLAGS, 0 },
899 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
900 CPU_SSE4_2_FLAGS, 0 },
901 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
902 CPU_SSE4_2_FLAGS, 0 },
903 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
904 CPU_AVX_FLAGS, 0 },
905 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
906 CPU_AVX2_FLAGS, 0 },
907 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
908 CPU_AVX512F_FLAGS, 0 },
909 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
910 CPU_AVX512CD_FLAGS, 0 },
911 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
912 CPU_AVX512ER_FLAGS, 0 },
913 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
914 CPU_AVX512PF_FLAGS, 0 },
915 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
916 CPU_AVX512DQ_FLAGS, 0 },
917 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
918 CPU_AVX512BW_FLAGS, 0 },
919 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
920 CPU_AVX512VL_FLAGS, 0 },
921 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
922 CPU_VMX_FLAGS, 0 },
923 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
924 CPU_VMFUNC_FLAGS, 0 },
925 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
926 CPU_SMX_FLAGS, 0 },
927 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
928 CPU_XSAVE_FLAGS, 0 },
929 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
930 CPU_XSAVEOPT_FLAGS, 0 },
931 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
932 CPU_XSAVEC_FLAGS, 0 },
933 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
934 CPU_XSAVES_FLAGS, 0 },
935 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
936 CPU_AES_FLAGS, 0 },
937 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
938 CPU_PCLMUL_FLAGS, 0 },
939 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
940 CPU_PCLMUL_FLAGS, 1 },
941 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
942 CPU_FSGSBASE_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
944 CPU_RDRND_FLAGS, 0 },
945 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
946 CPU_F16C_FLAGS, 0 },
947 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
948 CPU_BMI2_FLAGS, 0 },
949 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
950 CPU_FMA_FLAGS, 0 },
951 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
952 CPU_FMA4_FLAGS, 0 },
953 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
954 CPU_XOP_FLAGS, 0 },
955 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
956 CPU_LWP_FLAGS, 0 },
957 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
958 CPU_MOVBE_FLAGS, 0 },
959 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
960 CPU_CX16_FLAGS, 0 },
961 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
962 CPU_EPT_FLAGS, 0 },
963 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
964 CPU_LZCNT_FLAGS, 0 },
965 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
966 CPU_HLE_FLAGS, 0 },
967 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
968 CPU_RTM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
970 CPU_INVPCID_FLAGS, 0 },
971 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
972 CPU_CLFLUSH_FLAGS, 0 },
973 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
974 CPU_NOP_FLAGS, 0 },
975 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
976 CPU_SYSCALL_FLAGS, 0 },
977 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
978 CPU_RDTSCP_FLAGS, 0 },
979 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
980 CPU_3DNOW_FLAGS, 0 },
981 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
982 CPU_3DNOWA_FLAGS, 0 },
983 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
984 CPU_PADLOCK_FLAGS, 0 },
985 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
986 CPU_SVME_FLAGS, 1 },
987 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
988 CPU_SVME_FLAGS, 0 },
989 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
990 CPU_SSE4A_FLAGS, 0 },
991 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
992 CPU_ABM_FLAGS, 0 },
993 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
994 CPU_BMI_FLAGS, 0 },
995 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
996 CPU_TBM_FLAGS, 0 },
997 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
998 CPU_ADX_FLAGS, 0 },
999 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1000 CPU_RDSEED_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1002 CPU_PRFCHW_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1004 CPU_SMAP_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1006 CPU_MPX_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1008 CPU_SHA_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1010 CPU_CLFLUSHOPT_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1012 CPU_PREFETCHWT1_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1014 CPU_SE1_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1016 CPU_CLWB_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1018 CPU_AVX512IFMA_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1020 CPU_AVX512VBMI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512_4FMAPS_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512_4VNNIW_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512_VBMI2_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512_VNNI_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512_BITALG_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1034 CPU_CLZERO_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1036 CPU_MWAITX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1038 CPU_OSPKE_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1040 CPU_RDPID_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1042 CPU_PTWRITE_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1044 CPU_IBT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1046 CPU_SHSTK_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1048 CPU_GFNI_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1050 CPU_VAES_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1052 CPU_VPCLMULQDQ_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1054 CPU_WBNOINVD_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1056 CPU_PCONFIG_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1058 CPU_WAITPKG_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1060 CPU_CLDEMOTE_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1062 CPU_MOVDIRI_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1064 CPU_MOVDIR64B_FLAGS, 0 },
1065 };
1066
1067 static const noarch_entry cpu_noarch[] =
1068 {
1069 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1070 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1071 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1072 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1073 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1074 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1075 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1076 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1077 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1078 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1079 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1080 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1081 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1082 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1083 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1084 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1085 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1086 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1087 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1088 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1089 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1090 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1091 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1092 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1093 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1094 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1095 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1096 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1097 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1098 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1099 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1100 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1101 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1102 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1103 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1104 };
1105
1106 #ifdef I386COFF
1107 /* Like s_lcomm_internal in gas/read.c but the alignment string
1108 is allowed to be optional. */
1109
1110 static symbolS *
1111 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1112 {
1113 addressT align = 0;
1114
1115 SKIP_WHITESPACE ();
1116
1117 if (needs_align
1118 && *input_line_pointer == ',')
1119 {
1120 align = parse_align (needs_align - 1);
1121
1122 if (align == (addressT) -1)
1123 return NULL;
1124 }
1125 else
1126 {
1127 if (size >= 8)
1128 align = 3;
1129 else if (size >= 4)
1130 align = 2;
1131 else if (size >= 2)
1132 align = 1;
1133 else
1134 align = 0;
1135 }
1136
1137 bss_alloc (symbolP, size, align);
1138 return symbolP;
1139 }
1140
1141 static void
1142 pe_lcomm (int needs_align)
1143 {
1144 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1145 }
1146 #endif
1147
1148 const pseudo_typeS md_pseudo_table[] =
1149 {
1150 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1151 {"align", s_align_bytes, 0},
1152 #else
1153 {"align", s_align_ptwo, 0},
1154 #endif
1155 {"arch", set_cpu_arch, 0},
1156 #ifndef I386COFF
1157 {"bss", s_bss, 0},
1158 #else
1159 {"lcomm", pe_lcomm, 1},
1160 #endif
1161 {"ffloat", float_cons, 'f'},
1162 {"dfloat", float_cons, 'd'},
1163 {"tfloat", float_cons, 'x'},
1164 {"value", cons, 2},
1165 {"slong", signed_cons, 4},
1166 {"noopt", s_ignore, 0},
1167 {"optim", s_ignore, 0},
1168 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1169 {"code16", set_code_flag, CODE_16BIT},
1170 {"code32", set_code_flag, CODE_32BIT},
1171 #ifdef BFD64
1172 {"code64", set_code_flag, CODE_64BIT},
1173 #endif
1174 {"intel_syntax", set_intel_syntax, 1},
1175 {"att_syntax", set_intel_syntax, 0},
1176 {"intel_mnemonic", set_intel_mnemonic, 1},
1177 {"att_mnemonic", set_intel_mnemonic, 0},
1178 {"allow_index_reg", set_allow_index_reg, 1},
1179 {"disallow_index_reg", set_allow_index_reg, 0},
1180 {"sse_check", set_check, 0},
1181 {"operand_check", set_check, 1},
1182 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1183 {"largecomm", handle_large_common, 0},
1184 #else
1185 {"file", dwarf2_directive_file, 0},
1186 {"loc", dwarf2_directive_loc, 0},
1187 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1188 #endif
1189 #ifdef TE_PE
1190 {"secrel32", pe_directive_secrel, 0},
1191 #endif
1192 {0, 0, 0}
1193 };
1194
1195 /* For interface with expression (). */
1196 extern char *input_line_pointer;
1197
1198 /* Hash table for instruction mnemonic lookup. */
1199 static struct hash_control *op_hash;
1200
1201 /* Hash table for register lookup. */
1202 static struct hash_control *reg_hash;
1203 \f
1204 /* Various efficient no-op patterns for aligning code labels.
1205 Note: Don't try to assemble the instructions in the comments.
1206 0L and 0w are not legal. */
1207 static const unsigned char f32_1[] =
1208 {0x90}; /* nop */
1209 static const unsigned char f32_2[] =
1210 {0x66,0x90}; /* xchg %ax,%ax */
1211 static const unsigned char f32_3[] =
1212 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1213 static const unsigned char f32_4[] =
1214 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1215 static const unsigned char f32_6[] =
1216 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1217 static const unsigned char f32_7[] =
1218 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1219 static const unsigned char f16_3[] =
1220 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1221 static const unsigned char f16_4[] =
1222 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1223 static const unsigned char jump_disp8[] =
1224 {0xeb}; /* jmp disp8 */
1225 static const unsigned char jump32_disp32[] =
1226 {0xe9}; /* jmp disp32 */
1227 static const unsigned char jump16_disp32[] =
1228 {0x66,0xe9}; /* jmp disp32 */
1229 /* 32-bit NOPs patterns. */
1230 static const unsigned char *const f32_patt[] = {
1231 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1232 };
1233 /* 16-bit NOPs patterns. */
1234 static const unsigned char *const f16_patt[] = {
1235 f32_1, f32_2, f16_3, f16_4
1236 };
1237 /* nopl (%[re]ax) */
1238 static const unsigned char alt_3[] =
1239 {0x0f,0x1f,0x00};
1240 /* nopl 0(%[re]ax) */
1241 static const unsigned char alt_4[] =
1242 {0x0f,0x1f,0x40,0x00};
1243 /* nopl 0(%[re]ax,%[re]ax,1) */
1244 static const unsigned char alt_5[] =
1245 {0x0f,0x1f,0x44,0x00,0x00};
1246 /* nopw 0(%[re]ax,%[re]ax,1) */
1247 static const unsigned char alt_6[] =
1248 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1249 /* nopl 0L(%[re]ax) */
1250 static const unsigned char alt_7[] =
1251 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1252 /* nopl 0L(%[re]ax,%[re]ax,1) */
1253 static const unsigned char alt_8[] =
1254 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1255 /* nopw 0L(%[re]ax,%[re]ax,1) */
1256 static const unsigned char alt_9[] =
1257 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1258 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1259 static const unsigned char alt_10[] =
1260 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1261 /* data16 nopw %cs:0L(%eax,%eax,1) */
1262 static const unsigned char alt_11[] =
1263 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1264 /* 32-bit and 64-bit NOPs patterns. */
1265 static const unsigned char *const alt_patt[] = {
1266 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1267 alt_9, alt_10, alt_11
1268 };
1269
1270 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1271 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1272
1273 static void
1274 i386_output_nops (char *where, const unsigned char *const *patt,
1275 int count, int max_single_nop_size)
1276
1277 {
1278 /* Place the longer NOP first. */
1279 int last;
1280 int offset;
1281 const unsigned char *nops = patt[max_single_nop_size - 1];
1282
1283 /* Use the smaller one if the requsted one isn't available. */
1284 if (nops == NULL)
1285 {
1286 max_single_nop_size--;
1287 nops = patt[max_single_nop_size - 1];
1288 }
1289
1290 last = count % max_single_nop_size;
1291
1292 count -= last;
1293 for (offset = 0; offset < count; offset += max_single_nop_size)
1294 memcpy (where + offset, nops, max_single_nop_size);
1295
1296 if (last)
1297 {
1298 nops = patt[last - 1];
1299 if (nops == NULL)
1300 {
1301 /* Use the smaller one plus one-byte NOP if the needed one
1302 isn't available. */
1303 last--;
1304 nops = patt[last - 1];
1305 memcpy (where + offset, nops, last);
1306 where[offset + last] = *patt[0];
1307 }
1308 else
1309 memcpy (where + offset, nops, last);
1310 }
1311 }
1312
1313 static INLINE int
1314 fits_in_imm7 (offsetT num)
1315 {
1316 return (num & 0x7f) == num;
1317 }
1318
1319 static INLINE int
1320 fits_in_imm31 (offsetT num)
1321 {
1322 return (num & 0x7fffffff) == num;
1323 }
1324
1325 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1326 single NOP instruction LIMIT. */
1327
1328 void
1329 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1330 {
1331 const unsigned char *const *patt = NULL;
1332 int max_single_nop_size;
1333 /* Maximum number of NOPs before switching to jump over NOPs. */
1334 int max_number_of_nops;
1335
1336 switch (fragP->fr_type)
1337 {
1338 case rs_fill_nop:
1339 case rs_align_code:
1340 break;
1341 default:
1342 return;
1343 }
1344
1345 /* We need to decide which NOP sequence to use for 32bit and
1346 64bit. When -mtune= is used:
1347
1348 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1349 PROCESSOR_GENERIC32, f32_patt will be used.
1350 2. For the rest, alt_patt will be used.
1351
1352 When -mtune= isn't used, alt_patt will be used if
1353 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1354 be used.
1355
1356 When -march= or .arch is used, we can't use anything beyond
1357 cpu_arch_isa_flags. */
1358
1359 if (flag_code == CODE_16BIT)
1360 {
1361 patt = f16_patt;
1362 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1363 /* Limit number of NOPs to 2 in 16-bit mode. */
1364 max_number_of_nops = 2;
1365 }
1366 else
1367 {
1368 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1369 {
1370 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1371 switch (cpu_arch_tune)
1372 {
1373 case PROCESSOR_UNKNOWN:
1374 /* We use cpu_arch_isa_flags to check if we SHOULD
1375 optimize with nops. */
1376 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1377 patt = alt_patt;
1378 else
1379 patt = f32_patt;
1380 break;
1381 case PROCESSOR_PENTIUM4:
1382 case PROCESSOR_NOCONA:
1383 case PROCESSOR_CORE:
1384 case PROCESSOR_CORE2:
1385 case PROCESSOR_COREI7:
1386 case PROCESSOR_L1OM:
1387 case PROCESSOR_K1OM:
1388 case PROCESSOR_GENERIC64:
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
1392 case PROCESSOR_AMDFAM10:
1393 case PROCESSOR_BD:
1394 case PROCESSOR_ZNVER:
1395 case PROCESSOR_BT:
1396 patt = alt_patt;
1397 break;
1398 case PROCESSOR_I386:
1399 case PROCESSOR_I486:
1400 case PROCESSOR_PENTIUM:
1401 case PROCESSOR_PENTIUMPRO:
1402 case PROCESSOR_IAMCU:
1403 case PROCESSOR_GENERIC32:
1404 patt = f32_patt;
1405 break;
1406 }
1407 }
1408 else
1409 {
1410 switch (fragP->tc_frag_data.tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1414 PROCESSOR_UNKNOWN. */
1415 abort ();
1416 break;
1417
1418 case PROCESSOR_I386:
1419 case PROCESSOR_I486:
1420 case PROCESSOR_PENTIUM:
1421 case PROCESSOR_IAMCU:
1422 case PROCESSOR_K6:
1423 case PROCESSOR_ATHLON:
1424 case PROCESSOR_K8:
1425 case PROCESSOR_AMDFAM10:
1426 case PROCESSOR_BD:
1427 case PROCESSOR_ZNVER:
1428 case PROCESSOR_BT:
1429 case PROCESSOR_GENERIC32:
1430 /* We use cpu_arch_isa_flags to check if we CAN optimize
1431 with nops. */
1432 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1433 patt = alt_patt;
1434 else
1435 patt = f32_patt;
1436 break;
1437 case PROCESSOR_PENTIUMPRO:
1438 case PROCESSOR_PENTIUM4:
1439 case PROCESSOR_NOCONA:
1440 case PROCESSOR_CORE:
1441 case PROCESSOR_CORE2:
1442 case PROCESSOR_COREI7:
1443 case PROCESSOR_L1OM:
1444 case PROCESSOR_K1OM:
1445 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1446 patt = alt_patt;
1447 else
1448 patt = f32_patt;
1449 break;
1450 case PROCESSOR_GENERIC64:
1451 patt = alt_patt;
1452 break;
1453 }
1454 }
1455
1456 if (patt == f32_patt)
1457 {
1458 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1459 /* Limit number of NOPs to 2 for older processors. */
1460 max_number_of_nops = 2;
1461 }
1462 else
1463 {
1464 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1465 /* Limit number of NOPs to 7 for newer processors. */
1466 max_number_of_nops = 7;
1467 }
1468 }
1469
1470 if (limit == 0)
1471 limit = max_single_nop_size;
1472
1473 if (fragP->fr_type == rs_fill_nop)
1474 {
1475 /* Output NOPs for .nop directive. */
1476 if (limit > max_single_nop_size)
1477 {
1478 as_bad_where (fragP->fr_file, fragP->fr_line,
1479 _("invalid single nop size: %d "
1480 "(expect within [0, %d])"),
1481 limit, max_single_nop_size);
1482 return;
1483 }
1484 }
1485 else
1486 fragP->fr_var = count;
1487
1488 if ((count / max_single_nop_size) > max_number_of_nops)
1489 {
1490 /* Generate jump over NOPs. */
1491 offsetT disp = count - 2;
1492 if (fits_in_imm7 (disp))
1493 {
1494 /* Use "jmp disp8" if possible. */
1495 count = disp;
1496 where[0] = jump_disp8[0];
1497 where[1] = count;
1498 where += 2;
1499 }
1500 else
1501 {
1502 unsigned int size_of_jump;
1503
1504 if (flag_code == CODE_16BIT)
1505 {
1506 where[0] = jump16_disp32[0];
1507 where[1] = jump16_disp32[1];
1508 size_of_jump = 2;
1509 }
1510 else
1511 {
1512 where[0] = jump32_disp32[0];
1513 size_of_jump = 1;
1514 }
1515
1516 count -= size_of_jump + 4;
1517 if (!fits_in_imm31 (count))
1518 {
1519 as_bad_where (fragP->fr_file, fragP->fr_line,
1520 _("jump over nop padding out of range"));
1521 return;
1522 }
1523
1524 md_number_to_chars (where + size_of_jump, count, 4);
1525 where += size_of_jump + 4;
1526 }
1527 }
1528
1529 /* Generate multiple NOPs. */
1530 i386_output_nops (where, patt, count, limit);
1531 }
1532
1533 static INLINE int
1534 operand_type_all_zero (const union i386_operand_type *x)
1535 {
1536 switch (ARRAY_SIZE(x->array))
1537 {
1538 case 3:
1539 if (x->array[2])
1540 return 0;
1541 /* Fall through. */
1542 case 2:
1543 if (x->array[1])
1544 return 0;
1545 /* Fall through. */
1546 case 1:
1547 return !x->array[0];
1548 default:
1549 abort ();
1550 }
1551 }
1552
1553 static INLINE void
1554 operand_type_set (union i386_operand_type *x, unsigned int v)
1555 {
1556 switch (ARRAY_SIZE(x->array))
1557 {
1558 case 3:
1559 x->array[2] = v;
1560 /* Fall through. */
1561 case 2:
1562 x->array[1] = v;
1563 /* Fall through. */
1564 case 1:
1565 x->array[0] = v;
1566 /* Fall through. */
1567 break;
1568 default:
1569 abort ();
1570 }
1571 }
1572
1573 static INLINE int
1574 operand_type_equal (const union i386_operand_type *x,
1575 const union i386_operand_type *y)
1576 {
1577 switch (ARRAY_SIZE(x->array))
1578 {
1579 case 3:
1580 if (x->array[2] != y->array[2])
1581 return 0;
1582 /* Fall through. */
1583 case 2:
1584 if (x->array[1] != y->array[1])
1585 return 0;
1586 /* Fall through. */
1587 case 1:
1588 return x->array[0] == y->array[0];
1589 break;
1590 default:
1591 abort ();
1592 }
1593 }
1594
1595 static INLINE int
1596 cpu_flags_all_zero (const union i386_cpu_flags *x)
1597 {
1598 switch (ARRAY_SIZE(x->array))
1599 {
1600 case 4:
1601 if (x->array[3])
1602 return 0;
1603 /* Fall through. */
1604 case 3:
1605 if (x->array[2])
1606 return 0;
1607 /* Fall through. */
1608 case 2:
1609 if (x->array[1])
1610 return 0;
1611 /* Fall through. */
1612 case 1:
1613 return !x->array[0];
1614 default:
1615 abort ();
1616 }
1617 }
1618
1619 static INLINE int
1620 cpu_flags_equal (const union i386_cpu_flags *x,
1621 const union i386_cpu_flags *y)
1622 {
1623 switch (ARRAY_SIZE(x->array))
1624 {
1625 case 4:
1626 if (x->array[3] != y->array[3])
1627 return 0;
1628 /* Fall through. */
1629 case 3:
1630 if (x->array[2] != y->array[2])
1631 return 0;
1632 /* Fall through. */
1633 case 2:
1634 if (x->array[1] != y->array[1])
1635 return 0;
1636 /* Fall through. */
1637 case 1:
1638 return x->array[0] == y->array[0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643 }
1644
1645 static INLINE int
1646 cpu_flags_check_cpu64 (i386_cpu_flags f)
1647 {
1648 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1649 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1650 }
1651
1652 static INLINE i386_cpu_flags
1653 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1654 {
1655 switch (ARRAY_SIZE (x.array))
1656 {
1657 case 4:
1658 x.array [3] &= y.array [3];
1659 /* Fall through. */
1660 case 3:
1661 x.array [2] &= y.array [2];
1662 /* Fall through. */
1663 case 2:
1664 x.array [1] &= y.array [1];
1665 /* Fall through. */
1666 case 1:
1667 x.array [0] &= y.array [0];
1668 break;
1669 default:
1670 abort ();
1671 }
1672 return x;
1673 }
1674
1675 static INLINE i386_cpu_flags
1676 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1677 {
1678 switch (ARRAY_SIZE (x.array))
1679 {
1680 case 4:
1681 x.array [3] |= y.array [3];
1682 /* Fall through. */
1683 case 3:
1684 x.array [2] |= y.array [2];
1685 /* Fall through. */
1686 case 2:
1687 x.array [1] |= y.array [1];
1688 /* Fall through. */
1689 case 1:
1690 x.array [0] |= y.array [0];
1691 break;
1692 default:
1693 abort ();
1694 }
1695 return x;
1696 }
1697
1698 static INLINE i386_cpu_flags
1699 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1700 {
1701 switch (ARRAY_SIZE (x.array))
1702 {
1703 case 4:
1704 x.array [3] &= ~y.array [3];
1705 /* Fall through. */
1706 case 3:
1707 x.array [2] &= ~y.array [2];
1708 /* Fall through. */
1709 case 2:
1710 x.array [1] &= ~y.array [1];
1711 /* Fall through. */
1712 case 1:
1713 x.array [0] &= ~y.array [0];
1714 break;
1715 default:
1716 abort ();
1717 }
1718 return x;
1719 }
1720
1721 #define CPU_FLAGS_ARCH_MATCH 0x1
1722 #define CPU_FLAGS_64BIT_MATCH 0x2
1723
1724 #define CPU_FLAGS_PERFECT_MATCH \
1725 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1726
1727 /* Return CPU flags match bits. */
1728
1729 static int
1730 cpu_flags_match (const insn_template *t)
1731 {
1732 i386_cpu_flags x = t->cpu_flags;
1733 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1734
1735 x.bitfield.cpu64 = 0;
1736 x.bitfield.cpuno64 = 0;
1737
1738 if (cpu_flags_all_zero (&x))
1739 {
1740 /* This instruction is available on all archs. */
1741 match |= CPU_FLAGS_ARCH_MATCH;
1742 }
1743 else
1744 {
1745 /* This instruction is available only on some archs. */
1746 i386_cpu_flags cpu = cpu_arch_flags;
1747
1748 /* AVX512VL is no standalone feature - match it and then strip it. */
1749 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1750 return match;
1751 x.bitfield.cpuavx512vl = 0;
1752
1753 cpu = cpu_flags_and (x, cpu);
1754 if (!cpu_flags_all_zero (&cpu))
1755 {
1756 if (x.bitfield.cpuavx)
1757 {
1758 /* We need to check a few extra flags with AVX. */
1759 if (cpu.bitfield.cpuavx
1760 && (!t->opcode_modifier.sse2avx || sse2avx)
1761 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1762 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1763 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1764 match |= CPU_FLAGS_ARCH_MATCH;
1765 }
1766 else if (x.bitfield.cpuavx512f)
1767 {
1768 /* We need to check a few extra flags with AVX512F. */
1769 if (cpu.bitfield.cpuavx512f
1770 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1771 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1772 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1773 match |= CPU_FLAGS_ARCH_MATCH;
1774 }
1775 else
1776 match |= CPU_FLAGS_ARCH_MATCH;
1777 }
1778 }
1779 return match;
1780 }
1781
1782 static INLINE i386_operand_type
1783 operand_type_and (i386_operand_type x, i386_operand_type y)
1784 {
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] &= y.array [2];
1789 /* Fall through. */
1790 case 2:
1791 x.array [1] &= y.array [1];
1792 /* Fall through. */
1793 case 1:
1794 x.array [0] &= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
1800 }
1801
1802 static INLINE i386_operand_type
1803 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] &= ~y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] &= ~y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] &= ~y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820 }
1821
1822 static INLINE i386_operand_type
1823 operand_type_or (i386_operand_type x, i386_operand_type y)
1824 {
1825 switch (ARRAY_SIZE (x.array))
1826 {
1827 case 3:
1828 x.array [2] |= y.array [2];
1829 /* Fall through. */
1830 case 2:
1831 x.array [1] |= y.array [1];
1832 /* Fall through. */
1833 case 1:
1834 x.array [0] |= y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840 }
1841
1842 static INLINE i386_operand_type
1843 operand_type_xor (i386_operand_type x, i386_operand_type y)
1844 {
1845 switch (ARRAY_SIZE (x.array))
1846 {
1847 case 3:
1848 x.array [2] ^= y.array [2];
1849 /* Fall through. */
1850 case 2:
1851 x.array [1] ^= y.array [1];
1852 /* Fall through. */
1853 case 1:
1854 x.array [0] ^= y.array [0];
1855 break;
1856 default:
1857 abort ();
1858 }
1859 return x;
1860 }
1861
1862 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1863 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1864 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1865 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1866 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1867 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1868 static const i386_operand_type anydisp
1869 = OPERAND_TYPE_ANYDISP;
1870 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1871 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1872 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1873 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1874 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1875 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1876 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1877 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1878 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1879 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1880 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1881 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1882
1883 enum operand_type
1884 {
1885 reg,
1886 imm,
1887 disp,
1888 anymem
1889 };
1890
1891 static INLINE int
1892 operand_type_check (i386_operand_type t, enum operand_type c)
1893 {
1894 switch (c)
1895 {
1896 case reg:
1897 return t.bitfield.reg;
1898
1899 case imm:
1900 return (t.bitfield.imm8
1901 || t.bitfield.imm8s
1902 || t.bitfield.imm16
1903 || t.bitfield.imm32
1904 || t.bitfield.imm32s
1905 || t.bitfield.imm64);
1906
1907 case disp:
1908 return (t.bitfield.disp8
1909 || t.bitfield.disp16
1910 || t.bitfield.disp32
1911 || t.bitfield.disp32s
1912 || t.bitfield.disp64);
1913
1914 case anymem:
1915 return (t.bitfield.disp8
1916 || t.bitfield.disp16
1917 || t.bitfield.disp32
1918 || t.bitfield.disp32s
1919 || t.bitfield.disp64
1920 || t.bitfield.baseindex);
1921
1922 default:
1923 abort ();
1924 }
1925
1926 return 0;
1927 }
1928
1929 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1930 between operand GIVEN and opeand WANTED for instruction template T. */
1931
1932 static INLINE int
1933 match_operand_size (const insn_template *t, unsigned int wanted,
1934 unsigned int given)
1935 {
1936 return !((i.types[given].bitfield.byte
1937 && !t->operand_types[wanted].bitfield.byte)
1938 || (i.types[given].bitfield.word
1939 && !t->operand_types[wanted].bitfield.word)
1940 || (i.types[given].bitfield.dword
1941 && !t->operand_types[wanted].bitfield.dword)
1942 || (i.types[given].bitfield.qword
1943 && !t->operand_types[wanted].bitfield.qword)
1944 || (i.types[given].bitfield.tbyte
1945 && !t->operand_types[wanted].bitfield.tbyte));
1946 }
1947
1948 /* Return 1 if there is no conflict in SIMD register between operand
1949 GIVEN and opeand WANTED for instruction template T. */
1950
1951 static INLINE int
1952 match_simd_size (const insn_template *t, unsigned int wanted,
1953 unsigned int given)
1954 {
1955 return !((i.types[given].bitfield.xmmword
1956 && !t->operand_types[wanted].bitfield.xmmword)
1957 || (i.types[given].bitfield.ymmword
1958 && !t->operand_types[wanted].bitfield.ymmword)
1959 || (i.types[given].bitfield.zmmword
1960 && !t->operand_types[wanted].bitfield.zmmword));
1961 }
1962
1963 /* Return 1 if there is no conflict in any size between operand GIVEN
1964 and opeand WANTED for instruction template T. */
1965
1966 static INLINE int
1967 match_mem_size (const insn_template *t, unsigned int wanted,
1968 unsigned int given)
1969 {
1970 return (match_operand_size (t, wanted, given)
1971 && !((i.types[given].bitfield.unspecified
1972 && !i.broadcast
1973 && !t->operand_types[wanted].bitfield.unspecified)
1974 || (i.types[given].bitfield.fword
1975 && !t->operand_types[wanted].bitfield.fword)
1976 /* For scalar opcode templates to allow register and memory
1977 operands at the same time, some special casing is needed
1978 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1979 down-conversion vpmov*. */
1980 || ((t->operand_types[wanted].bitfield.regsimd
1981 && !t->opcode_modifier.broadcast
1982 && (t->operand_types[wanted].bitfield.byte
1983 || t->operand_types[wanted].bitfield.word
1984 || t->operand_types[wanted].bitfield.dword
1985 || t->operand_types[wanted].bitfield.qword))
1986 ? (i.types[given].bitfield.xmmword
1987 || i.types[given].bitfield.ymmword
1988 || i.types[given].bitfield.zmmword)
1989 : !match_simd_size(t, wanted, given))));
1990 }
1991
1992 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1993 operands for instruction template T, and it has MATCH_REVERSE set if there
1994 is no size conflict on any operands for the template with operands reversed
1995 (and the template allows for reversing in the first place). */
1996
1997 #define MATCH_STRAIGHT 1
1998 #define MATCH_REVERSE 2
1999
2000 static INLINE unsigned int
2001 operand_size_match (const insn_template *t)
2002 {
2003 unsigned int j, match = MATCH_STRAIGHT;
2004
2005 /* Don't check jump instructions. */
2006 if (t->opcode_modifier.jump
2007 || t->opcode_modifier.jumpbyte
2008 || t->opcode_modifier.jumpdword
2009 || t->opcode_modifier.jumpintersegment)
2010 return match;
2011
2012 /* Check memory and accumulator operand size. */
2013 for (j = 0; j < i.operands; j++)
2014 {
2015 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2016 && t->operand_types[j].bitfield.anysize)
2017 continue;
2018
2019 if (t->operand_types[j].bitfield.reg
2020 && !match_operand_size (t, j, j))
2021 {
2022 match = 0;
2023 break;
2024 }
2025
2026 if (t->operand_types[j].bitfield.regsimd
2027 && !match_simd_size (t, j, j))
2028 {
2029 match = 0;
2030 break;
2031 }
2032
2033 if (t->operand_types[j].bitfield.acc
2034 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2035 {
2036 match = 0;
2037 break;
2038 }
2039
2040 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2041 {
2042 match = 0;
2043 break;
2044 }
2045 }
2046
2047 if (!t->opcode_modifier.d)
2048 {
2049 mismatch:
2050 if (!match)
2051 i.error = operand_size_mismatch;
2052 return match;
2053 }
2054
2055 /* Check reverse. */
2056 gas_assert (i.operands >= 2 && i.operands <= 3);
2057
2058 for (j = 0; j < i.operands; j++)
2059 {
2060 unsigned int given = i.operands - j - 1;
2061
2062 if (t->operand_types[j].bitfield.reg
2063 && !match_operand_size (t, j, given))
2064 goto mismatch;
2065
2066 if (t->operand_types[j].bitfield.regsimd
2067 && !match_simd_size (t, j, given))
2068 goto mismatch;
2069
2070 if (t->operand_types[j].bitfield.acc
2071 && (!match_operand_size (t, j, given)
2072 || !match_simd_size (t, j, given)))
2073 goto mismatch;
2074
2075 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2076 goto mismatch;
2077 }
2078
2079 return match | MATCH_REVERSE;
2080 }
2081
2082 static INLINE int
2083 operand_type_match (i386_operand_type overlap,
2084 i386_operand_type given)
2085 {
2086 i386_operand_type temp = overlap;
2087
2088 temp.bitfield.jumpabsolute = 0;
2089 temp.bitfield.unspecified = 0;
2090 temp.bitfield.byte = 0;
2091 temp.bitfield.word = 0;
2092 temp.bitfield.dword = 0;
2093 temp.bitfield.fword = 0;
2094 temp.bitfield.qword = 0;
2095 temp.bitfield.tbyte = 0;
2096 temp.bitfield.xmmword = 0;
2097 temp.bitfield.ymmword = 0;
2098 temp.bitfield.zmmword = 0;
2099 if (operand_type_all_zero (&temp))
2100 goto mismatch;
2101
2102 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2103 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2104 return 1;
2105
2106 mismatch:
2107 i.error = operand_type_mismatch;
2108 return 0;
2109 }
2110
2111 /* If given types g0 and g1 are registers they must be of the same type
2112 unless the expected operand type register overlap is null.
2113 Memory operand size of certain SIMD instructions is also being checked
2114 here. */
2115
2116 static INLINE int
2117 operand_type_register_match (i386_operand_type g0,
2118 i386_operand_type t0,
2119 i386_operand_type g1,
2120 i386_operand_type t1)
2121 {
2122 if (!g0.bitfield.reg
2123 && !g0.bitfield.regsimd
2124 && (!operand_type_check (g0, anymem)
2125 || g0.bitfield.unspecified
2126 || !t0.bitfield.regsimd))
2127 return 1;
2128
2129 if (!g1.bitfield.reg
2130 && !g1.bitfield.regsimd
2131 && (!operand_type_check (g1, anymem)
2132 || g1.bitfield.unspecified
2133 || !t1.bitfield.regsimd))
2134 return 1;
2135
2136 if (g0.bitfield.byte == g1.bitfield.byte
2137 && g0.bitfield.word == g1.bitfield.word
2138 && g0.bitfield.dword == g1.bitfield.dword
2139 && g0.bitfield.qword == g1.bitfield.qword
2140 && g0.bitfield.xmmword == g1.bitfield.xmmword
2141 && g0.bitfield.ymmword == g1.bitfield.ymmword
2142 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2143 return 1;
2144
2145 if (!(t0.bitfield.byte & t1.bitfield.byte)
2146 && !(t0.bitfield.word & t1.bitfield.word)
2147 && !(t0.bitfield.dword & t1.bitfield.dword)
2148 && !(t0.bitfield.qword & t1.bitfield.qword)
2149 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2150 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2151 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2152 return 1;
2153
2154 i.error = register_type_mismatch;
2155
2156 return 0;
2157 }
2158
2159 static INLINE unsigned int
2160 register_number (const reg_entry *r)
2161 {
2162 unsigned int nr = r->reg_num;
2163
2164 if (r->reg_flags & RegRex)
2165 nr += 8;
2166
2167 if (r->reg_flags & RegVRex)
2168 nr += 16;
2169
2170 return nr;
2171 }
2172
2173 static INLINE unsigned int
2174 mode_from_disp_size (i386_operand_type t)
2175 {
2176 if (t.bitfield.disp8)
2177 return 1;
2178 else if (t.bitfield.disp16
2179 || t.bitfield.disp32
2180 || t.bitfield.disp32s)
2181 return 2;
2182 else
2183 return 0;
2184 }
2185
2186 static INLINE int
2187 fits_in_signed_byte (addressT num)
2188 {
2189 return num + 0x80 <= 0xff;
2190 }
2191
2192 static INLINE int
2193 fits_in_unsigned_byte (addressT num)
2194 {
2195 return num <= 0xff;
2196 }
2197
2198 static INLINE int
2199 fits_in_unsigned_word (addressT num)
2200 {
2201 return num <= 0xffff;
2202 }
2203
2204 static INLINE int
2205 fits_in_signed_word (addressT num)
2206 {
2207 return num + 0x8000 <= 0xffff;
2208 }
2209
2210 static INLINE int
2211 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2212 {
2213 #ifndef BFD64
2214 return 1;
2215 #else
2216 return num + 0x80000000 <= 0xffffffff;
2217 #endif
2218 } /* fits_in_signed_long() */
2219
2220 static INLINE int
2221 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2222 {
2223 #ifndef BFD64
2224 return 1;
2225 #else
2226 return num <= 0xffffffff;
2227 #endif
2228 } /* fits_in_unsigned_long() */
2229
2230 static INLINE int
2231 fits_in_disp8 (offsetT num)
2232 {
2233 int shift = i.memshift;
2234 unsigned int mask;
2235
2236 if (shift == -1)
2237 abort ();
2238
2239 mask = (1 << shift) - 1;
2240
2241 /* Return 0 if NUM isn't properly aligned. */
2242 if ((num & mask))
2243 return 0;
2244
2245 /* Check if NUM will fit in 8bit after shift. */
2246 return fits_in_signed_byte (num >> shift);
2247 }
2248
2249 static INLINE int
2250 fits_in_imm4 (offsetT num)
2251 {
2252 return (num & 0xf) == num;
2253 }
2254
2255 static i386_operand_type
2256 smallest_imm_type (offsetT num)
2257 {
2258 i386_operand_type t;
2259
2260 operand_type_set (&t, 0);
2261 t.bitfield.imm64 = 1;
2262
2263 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2264 {
2265 /* This code is disabled on the 486 because all the Imm1 forms
2266 in the opcode table are slower on the i486. They're the
2267 versions with the implicitly specified single-position
2268 displacement, which has another syntax if you really want to
2269 use that form. */
2270 t.bitfield.imm1 = 1;
2271 t.bitfield.imm8 = 1;
2272 t.bitfield.imm8s = 1;
2273 t.bitfield.imm16 = 1;
2274 t.bitfield.imm32 = 1;
2275 t.bitfield.imm32s = 1;
2276 }
2277 else if (fits_in_signed_byte (num))
2278 {
2279 t.bitfield.imm8 = 1;
2280 t.bitfield.imm8s = 1;
2281 t.bitfield.imm16 = 1;
2282 t.bitfield.imm32 = 1;
2283 t.bitfield.imm32s = 1;
2284 }
2285 else if (fits_in_unsigned_byte (num))
2286 {
2287 t.bitfield.imm8 = 1;
2288 t.bitfield.imm16 = 1;
2289 t.bitfield.imm32 = 1;
2290 t.bitfield.imm32s = 1;
2291 }
2292 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2293 {
2294 t.bitfield.imm16 = 1;
2295 t.bitfield.imm32 = 1;
2296 t.bitfield.imm32s = 1;
2297 }
2298 else if (fits_in_signed_long (num))
2299 {
2300 t.bitfield.imm32 = 1;
2301 t.bitfield.imm32s = 1;
2302 }
2303 else if (fits_in_unsigned_long (num))
2304 t.bitfield.imm32 = 1;
2305
2306 return t;
2307 }
2308
2309 static offsetT
2310 offset_in_range (offsetT val, int size)
2311 {
2312 addressT mask;
2313
2314 switch (size)
2315 {
2316 case 1: mask = ((addressT) 1 << 8) - 1; break;
2317 case 2: mask = ((addressT) 1 << 16) - 1; break;
2318 case 4: mask = ((addressT) 2 << 31) - 1; break;
2319 #ifdef BFD64
2320 case 8: mask = ((addressT) 2 << 63) - 1; break;
2321 #endif
2322 default: abort ();
2323 }
2324
2325 #ifdef BFD64
2326 /* If BFD64, sign extend val for 32bit address mode. */
2327 if (flag_code != CODE_64BIT
2328 || i.prefix[ADDR_PREFIX])
2329 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2330 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2331 #endif
2332
2333 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2334 {
2335 char buf1[40], buf2[40];
2336
2337 sprint_value (buf1, val);
2338 sprint_value (buf2, val & mask);
2339 as_warn (_("%s shortened to %s"), buf1, buf2);
2340 }
2341 return val & mask;
2342 }
2343
2344 enum PREFIX_GROUP
2345 {
2346 PREFIX_EXIST = 0,
2347 PREFIX_LOCK,
2348 PREFIX_REP,
2349 PREFIX_DS,
2350 PREFIX_OTHER
2351 };
2352
2353 /* Returns
2354 a. PREFIX_EXIST if attempting to add a prefix where one from the
2355 same class already exists.
2356 b. PREFIX_LOCK if lock prefix is added.
2357 c. PREFIX_REP if rep/repne prefix is added.
2358 d. PREFIX_DS if ds prefix is added.
2359 e. PREFIX_OTHER if other prefix is added.
2360 */
2361
2362 static enum PREFIX_GROUP
2363 add_prefix (unsigned int prefix)
2364 {
2365 enum PREFIX_GROUP ret = PREFIX_OTHER;
2366 unsigned int q;
2367
2368 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2369 && flag_code == CODE_64BIT)
2370 {
2371 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2372 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2373 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2374 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2375 ret = PREFIX_EXIST;
2376 q = REX_PREFIX;
2377 }
2378 else
2379 {
2380 switch (prefix)
2381 {
2382 default:
2383 abort ();
2384
2385 case DS_PREFIX_OPCODE:
2386 ret = PREFIX_DS;
2387 /* Fall through. */
2388 case CS_PREFIX_OPCODE:
2389 case ES_PREFIX_OPCODE:
2390 case FS_PREFIX_OPCODE:
2391 case GS_PREFIX_OPCODE:
2392 case SS_PREFIX_OPCODE:
2393 q = SEG_PREFIX;
2394 break;
2395
2396 case REPNE_PREFIX_OPCODE:
2397 case REPE_PREFIX_OPCODE:
2398 q = REP_PREFIX;
2399 ret = PREFIX_REP;
2400 break;
2401
2402 case LOCK_PREFIX_OPCODE:
2403 q = LOCK_PREFIX;
2404 ret = PREFIX_LOCK;
2405 break;
2406
2407 case FWAIT_OPCODE:
2408 q = WAIT_PREFIX;
2409 break;
2410
2411 case ADDR_PREFIX_OPCODE:
2412 q = ADDR_PREFIX;
2413 break;
2414
2415 case DATA_PREFIX_OPCODE:
2416 q = DATA_PREFIX;
2417 break;
2418 }
2419 if (i.prefix[q] != 0)
2420 ret = PREFIX_EXIST;
2421 }
2422
2423 if (ret)
2424 {
2425 if (!i.prefix[q])
2426 ++i.prefixes;
2427 i.prefix[q] |= prefix;
2428 }
2429 else
2430 as_bad (_("same type of prefix used twice"));
2431
2432 return ret;
2433 }
2434
2435 static void
2436 update_code_flag (int value, int check)
2437 {
2438 PRINTF_LIKE ((*as_error));
2439
2440 flag_code = (enum flag_code) value;
2441 if (flag_code == CODE_64BIT)
2442 {
2443 cpu_arch_flags.bitfield.cpu64 = 1;
2444 cpu_arch_flags.bitfield.cpuno64 = 0;
2445 }
2446 else
2447 {
2448 cpu_arch_flags.bitfield.cpu64 = 0;
2449 cpu_arch_flags.bitfield.cpuno64 = 1;
2450 }
2451 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2452 {
2453 if (check)
2454 as_error = as_fatal;
2455 else
2456 as_error = as_bad;
2457 (*as_error) (_("64bit mode not supported on `%s'."),
2458 cpu_arch_name ? cpu_arch_name : default_arch);
2459 }
2460 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2461 {
2462 if (check)
2463 as_error = as_fatal;
2464 else
2465 as_error = as_bad;
2466 (*as_error) (_("32bit mode not supported on `%s'."),
2467 cpu_arch_name ? cpu_arch_name : default_arch);
2468 }
2469 stackop_size = '\0';
2470 }
2471
2472 static void
2473 set_code_flag (int value)
2474 {
2475 update_code_flag (value, 0);
2476 }
2477
2478 static void
2479 set_16bit_gcc_code_flag (int new_code_flag)
2480 {
2481 flag_code = (enum flag_code) new_code_flag;
2482 if (flag_code != CODE_16BIT)
2483 abort ();
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
2486 stackop_size = LONG_MNEM_SUFFIX;
2487 }
2488
2489 static void
2490 set_intel_syntax (int syntax_flag)
2491 {
2492 /* Find out if register prefixing is specified. */
2493 int ask_naked_reg = 0;
2494
2495 SKIP_WHITESPACE ();
2496 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2497 {
2498 char *string;
2499 int e = get_symbol_name (&string);
2500
2501 if (strcmp (string, "prefix") == 0)
2502 ask_naked_reg = 1;
2503 else if (strcmp (string, "noprefix") == 0)
2504 ask_naked_reg = -1;
2505 else
2506 as_bad (_("bad argument to syntax directive."));
2507 (void) restore_line_pointer (e);
2508 }
2509 demand_empty_rest_of_line ();
2510
2511 intel_syntax = syntax_flag;
2512
2513 if (ask_naked_reg == 0)
2514 allow_naked_reg = (intel_syntax
2515 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2516 else
2517 allow_naked_reg = (ask_naked_reg < 0);
2518
2519 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2520
2521 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2522 identifier_chars['$'] = intel_syntax ? '$' : 0;
2523 register_prefix = allow_naked_reg ? "" : "%";
2524 }
2525
2526 static void
2527 set_intel_mnemonic (int mnemonic_flag)
2528 {
2529 intel_mnemonic = mnemonic_flag;
2530 }
2531
2532 static void
2533 set_allow_index_reg (int flag)
2534 {
2535 allow_index_reg = flag;
2536 }
2537
2538 static void
2539 set_check (int what)
2540 {
2541 enum check_kind *kind;
2542 const char *str;
2543
2544 if (what)
2545 {
2546 kind = &operand_check;
2547 str = "operand";
2548 }
2549 else
2550 {
2551 kind = &sse_check;
2552 str = "sse";
2553 }
2554
2555 SKIP_WHITESPACE ();
2556
2557 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2558 {
2559 char *string;
2560 int e = get_symbol_name (&string);
2561
2562 if (strcmp (string, "none") == 0)
2563 *kind = check_none;
2564 else if (strcmp (string, "warning") == 0)
2565 *kind = check_warning;
2566 else if (strcmp (string, "error") == 0)
2567 *kind = check_error;
2568 else
2569 as_bad (_("bad argument to %s_check directive."), str);
2570 (void) restore_line_pointer (e);
2571 }
2572 else
2573 as_bad (_("missing argument for %s_check directive"), str);
2574
2575 demand_empty_rest_of_line ();
2576 }
2577
2578 static void
2579 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2580 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2581 {
2582 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2583 static const char *arch;
2584
2585 /* Intel LIOM is only supported on ELF. */
2586 if (!IS_ELF)
2587 return;
2588
2589 if (!arch)
2590 {
2591 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2592 use default_arch. */
2593 arch = cpu_arch_name;
2594 if (!arch)
2595 arch = default_arch;
2596 }
2597
2598 /* If we are targeting Intel MCU, we must enable it. */
2599 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2600 || new_flag.bitfield.cpuiamcu)
2601 return;
2602
2603 /* If we are targeting Intel L1OM, we must enable it. */
2604 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2605 || new_flag.bitfield.cpul1om)
2606 return;
2607
2608 /* If we are targeting Intel K1OM, we must enable it. */
2609 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2610 || new_flag.bitfield.cpuk1om)
2611 return;
2612
2613 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2614 #endif
2615 }
2616
2617 static void
2618 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2619 {
2620 SKIP_WHITESPACE ();
2621
2622 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2623 {
2624 char *string;
2625 int e = get_symbol_name (&string);
2626 unsigned int j;
2627 i386_cpu_flags flags;
2628
2629 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2630 {
2631 if (strcmp (string, cpu_arch[j].name) == 0)
2632 {
2633 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2634
2635 if (*string != '.')
2636 {
2637 cpu_arch_name = cpu_arch[j].name;
2638 cpu_sub_arch_name = NULL;
2639 cpu_arch_flags = cpu_arch[j].flags;
2640 if (flag_code == CODE_64BIT)
2641 {
2642 cpu_arch_flags.bitfield.cpu64 = 1;
2643 cpu_arch_flags.bitfield.cpuno64 = 0;
2644 }
2645 else
2646 {
2647 cpu_arch_flags.bitfield.cpu64 = 0;
2648 cpu_arch_flags.bitfield.cpuno64 = 1;
2649 }
2650 cpu_arch_isa = cpu_arch[j].type;
2651 cpu_arch_isa_flags = cpu_arch[j].flags;
2652 if (!cpu_arch_tune_set)
2653 {
2654 cpu_arch_tune = cpu_arch_isa;
2655 cpu_arch_tune_flags = cpu_arch_isa_flags;
2656 }
2657 break;
2658 }
2659
2660 flags = cpu_flags_or (cpu_arch_flags,
2661 cpu_arch[j].flags);
2662
2663 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2664 {
2665 if (cpu_sub_arch_name)
2666 {
2667 char *name = cpu_sub_arch_name;
2668 cpu_sub_arch_name = concat (name,
2669 cpu_arch[j].name,
2670 (const char *) NULL);
2671 free (name);
2672 }
2673 else
2674 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2675 cpu_arch_flags = flags;
2676 cpu_arch_isa_flags = flags;
2677 }
2678 else
2679 cpu_arch_isa_flags
2680 = cpu_flags_or (cpu_arch_isa_flags,
2681 cpu_arch[j].flags);
2682 (void) restore_line_pointer (e);
2683 demand_empty_rest_of_line ();
2684 return;
2685 }
2686 }
2687
2688 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2689 {
2690 /* Disable an ISA extension. */
2691 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2692 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2693 {
2694 flags = cpu_flags_and_not (cpu_arch_flags,
2695 cpu_noarch[j].flags);
2696 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2697 {
2698 if (cpu_sub_arch_name)
2699 {
2700 char *name = cpu_sub_arch_name;
2701 cpu_sub_arch_name = concat (name, string,
2702 (const char *) NULL);
2703 free (name);
2704 }
2705 else
2706 cpu_sub_arch_name = xstrdup (string);
2707 cpu_arch_flags = flags;
2708 cpu_arch_isa_flags = flags;
2709 }
2710 (void) restore_line_pointer (e);
2711 demand_empty_rest_of_line ();
2712 return;
2713 }
2714
2715 j = ARRAY_SIZE (cpu_arch);
2716 }
2717
2718 if (j >= ARRAY_SIZE (cpu_arch))
2719 as_bad (_("no such architecture: `%s'"), string);
2720
2721 *input_line_pointer = e;
2722 }
2723 else
2724 as_bad (_("missing cpu architecture"));
2725
2726 no_cond_jump_promotion = 0;
2727 if (*input_line_pointer == ','
2728 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2729 {
2730 char *string;
2731 char e;
2732
2733 ++input_line_pointer;
2734 e = get_symbol_name (&string);
2735
2736 if (strcmp (string, "nojumps") == 0)
2737 no_cond_jump_promotion = 1;
2738 else if (strcmp (string, "jumps") == 0)
2739 ;
2740 else
2741 as_bad (_("no such architecture modifier: `%s'"), string);
2742
2743 (void) restore_line_pointer (e);
2744 }
2745
2746 demand_empty_rest_of_line ();
2747 }
2748
2749 enum bfd_architecture
2750 i386_arch (void)
2751 {
2752 if (cpu_arch_isa == PROCESSOR_L1OM)
2753 {
2754 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2755 || flag_code != CODE_64BIT)
2756 as_fatal (_("Intel L1OM is 64bit ELF only"));
2757 return bfd_arch_l1om;
2758 }
2759 else if (cpu_arch_isa == PROCESSOR_K1OM)
2760 {
2761 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2762 || flag_code != CODE_64BIT)
2763 as_fatal (_("Intel K1OM is 64bit ELF only"));
2764 return bfd_arch_k1om;
2765 }
2766 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2767 {
2768 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2769 || flag_code == CODE_64BIT)
2770 as_fatal (_("Intel MCU is 32bit ELF only"));
2771 return bfd_arch_iamcu;
2772 }
2773 else
2774 return bfd_arch_i386;
2775 }
2776
2777 unsigned long
2778 i386_mach (void)
2779 {
2780 if (!strncmp (default_arch, "x86_64", 6))
2781 {
2782 if (cpu_arch_isa == PROCESSOR_L1OM)
2783 {
2784 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2785 || default_arch[6] != '\0')
2786 as_fatal (_("Intel L1OM is 64bit ELF only"));
2787 return bfd_mach_l1om;
2788 }
2789 else if (cpu_arch_isa == PROCESSOR_K1OM)
2790 {
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || default_arch[6] != '\0')
2793 as_fatal (_("Intel K1OM is 64bit ELF only"));
2794 return bfd_mach_k1om;
2795 }
2796 else if (default_arch[6] == '\0')
2797 return bfd_mach_x86_64;
2798 else
2799 return bfd_mach_x64_32;
2800 }
2801 else if (!strcmp (default_arch, "i386")
2802 || !strcmp (default_arch, "iamcu"))
2803 {
2804 if (cpu_arch_isa == PROCESSOR_IAMCU)
2805 {
2806 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2807 as_fatal (_("Intel MCU is 32bit ELF only"));
2808 return bfd_mach_i386_iamcu;
2809 }
2810 else
2811 return bfd_mach_i386_i386;
2812 }
2813 else
2814 as_fatal (_("unknown architecture"));
2815 }
2816 \f
2817 void
2818 md_begin (void)
2819 {
2820 const char *hash_err;
2821
2822 /* Support pseudo prefixes like {disp32}. */
2823 lex_type ['{'] = LEX_BEGIN_NAME;
2824
2825 /* Initialize op_hash hash table. */
2826 op_hash = hash_new ();
2827
2828 {
2829 const insn_template *optab;
2830 templates *core_optab;
2831
2832 /* Setup for loop. */
2833 optab = i386_optab;
2834 core_optab = XNEW (templates);
2835 core_optab->start = optab;
2836
2837 while (1)
2838 {
2839 ++optab;
2840 if (optab->name == NULL
2841 || strcmp (optab->name, (optab - 1)->name) != 0)
2842 {
2843 /* different name --> ship out current template list;
2844 add to hash table; & begin anew. */
2845 core_optab->end = optab;
2846 hash_err = hash_insert (op_hash,
2847 (optab - 1)->name,
2848 (void *) core_optab);
2849 if (hash_err)
2850 {
2851 as_fatal (_("can't hash %s: %s"),
2852 (optab - 1)->name,
2853 hash_err);
2854 }
2855 if (optab->name == NULL)
2856 break;
2857 core_optab = XNEW (templates);
2858 core_optab->start = optab;
2859 }
2860 }
2861 }
2862
2863 /* Initialize reg_hash hash table. */
2864 reg_hash = hash_new ();
2865 {
2866 const reg_entry *regtab;
2867 unsigned int regtab_size = i386_regtab_size;
2868
2869 for (regtab = i386_regtab; regtab_size--; regtab++)
2870 {
2871 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2872 if (hash_err)
2873 as_fatal (_("can't hash %s: %s"),
2874 regtab->reg_name,
2875 hash_err);
2876 }
2877 }
2878
2879 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2880 {
2881 int c;
2882 char *p;
2883
2884 for (c = 0; c < 256; c++)
2885 {
2886 if (ISDIGIT (c))
2887 {
2888 digit_chars[c] = c;
2889 mnemonic_chars[c] = c;
2890 register_chars[c] = c;
2891 operand_chars[c] = c;
2892 }
2893 else if (ISLOWER (c))
2894 {
2895 mnemonic_chars[c] = c;
2896 register_chars[c] = c;
2897 operand_chars[c] = c;
2898 }
2899 else if (ISUPPER (c))
2900 {
2901 mnemonic_chars[c] = TOLOWER (c);
2902 register_chars[c] = mnemonic_chars[c];
2903 operand_chars[c] = c;
2904 }
2905 else if (c == '{' || c == '}')
2906 {
2907 mnemonic_chars[c] = c;
2908 operand_chars[c] = c;
2909 }
2910
2911 if (ISALPHA (c) || ISDIGIT (c))
2912 identifier_chars[c] = c;
2913 else if (c >= 128)
2914 {
2915 identifier_chars[c] = c;
2916 operand_chars[c] = c;
2917 }
2918 }
2919
2920 #ifdef LEX_AT
2921 identifier_chars['@'] = '@';
2922 #endif
2923 #ifdef LEX_QM
2924 identifier_chars['?'] = '?';
2925 operand_chars['?'] = '?';
2926 #endif
2927 digit_chars['-'] = '-';
2928 mnemonic_chars['_'] = '_';
2929 mnemonic_chars['-'] = '-';
2930 mnemonic_chars['.'] = '.';
2931 identifier_chars['_'] = '_';
2932 identifier_chars['.'] = '.';
2933
2934 for (p = operand_special_chars; *p != '\0'; p++)
2935 operand_chars[(unsigned char) *p] = *p;
2936 }
2937
2938 if (flag_code == CODE_64BIT)
2939 {
2940 #if defined (OBJ_COFF) && defined (TE_PE)
2941 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2942 ? 32 : 16);
2943 #else
2944 x86_dwarf2_return_column = 16;
2945 #endif
2946 x86_cie_data_alignment = -8;
2947 }
2948 else
2949 {
2950 x86_dwarf2_return_column = 8;
2951 x86_cie_data_alignment = -4;
2952 }
2953 }
2954
2955 void
2956 i386_print_statistics (FILE *file)
2957 {
2958 hash_print_statistics (file, "i386 opcode", op_hash);
2959 hash_print_statistics (file, "i386 register", reg_hash);
2960 }
2961 \f
2962 #ifdef DEBUG386
2963
2964 /* Debugging routines for md_assemble. */
2965 static void pte (insn_template *);
2966 static void pt (i386_operand_type);
2967 static void pe (expressionS *);
2968 static void ps (symbolS *);
2969
2970 static void
2971 pi (char *line, i386_insn *x)
2972 {
2973 unsigned int j;
2974
2975 fprintf (stdout, "%s: template ", line);
2976 pte (&x->tm);
2977 fprintf (stdout, " address: base %s index %s scale %x\n",
2978 x->base_reg ? x->base_reg->reg_name : "none",
2979 x->index_reg ? x->index_reg->reg_name : "none",
2980 x->log2_scale_factor);
2981 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2982 x->rm.mode, x->rm.reg, x->rm.regmem);
2983 fprintf (stdout, " sib: base %x index %x scale %x\n",
2984 x->sib.base, x->sib.index, x->sib.scale);
2985 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2986 (x->rex & REX_W) != 0,
2987 (x->rex & REX_R) != 0,
2988 (x->rex & REX_X) != 0,
2989 (x->rex & REX_B) != 0);
2990 for (j = 0; j < x->operands; j++)
2991 {
2992 fprintf (stdout, " #%d: ", j + 1);
2993 pt (x->types[j]);
2994 fprintf (stdout, "\n");
2995 if (x->types[j].bitfield.reg
2996 || x->types[j].bitfield.regmmx
2997 || x->types[j].bitfield.regsimd
2998 || x->types[j].bitfield.sreg2
2999 || x->types[j].bitfield.sreg3
3000 || x->types[j].bitfield.control
3001 || x->types[j].bitfield.debug
3002 || x->types[j].bitfield.test)
3003 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3004 if (operand_type_check (x->types[j], imm))
3005 pe (x->op[j].imms);
3006 if (operand_type_check (x->types[j], disp))
3007 pe (x->op[j].disps);
3008 }
3009 }
3010
3011 static void
3012 pte (insn_template *t)
3013 {
3014 unsigned int j;
3015 fprintf (stdout, " %d operands ", t->operands);
3016 fprintf (stdout, "opcode %x ", t->base_opcode);
3017 if (t->extension_opcode != None)
3018 fprintf (stdout, "ext %x ", t->extension_opcode);
3019 if (t->opcode_modifier.d)
3020 fprintf (stdout, "D");
3021 if (t->opcode_modifier.w)
3022 fprintf (stdout, "W");
3023 fprintf (stdout, "\n");
3024 for (j = 0; j < t->operands; j++)
3025 {
3026 fprintf (stdout, " #%d type ", j + 1);
3027 pt (t->operand_types[j]);
3028 fprintf (stdout, "\n");
3029 }
3030 }
3031
3032 static void
3033 pe (expressionS *e)
3034 {
3035 fprintf (stdout, " operation %d\n", e->X_op);
3036 fprintf (stdout, " add_number %ld (%lx)\n",
3037 (long) e->X_add_number, (long) e->X_add_number);
3038 if (e->X_add_symbol)
3039 {
3040 fprintf (stdout, " add_symbol ");
3041 ps (e->X_add_symbol);
3042 fprintf (stdout, "\n");
3043 }
3044 if (e->X_op_symbol)
3045 {
3046 fprintf (stdout, " op_symbol ");
3047 ps (e->X_op_symbol);
3048 fprintf (stdout, "\n");
3049 }
3050 }
3051
3052 static void
3053 ps (symbolS *s)
3054 {
3055 fprintf (stdout, "%s type %s%s",
3056 S_GET_NAME (s),
3057 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3058 segment_name (S_GET_SEGMENT (s)));
3059 }
3060
3061 static struct type_name
3062 {
3063 i386_operand_type mask;
3064 const char *name;
3065 }
3066 const type_names[] =
3067 {
3068 { OPERAND_TYPE_REG8, "r8" },
3069 { OPERAND_TYPE_REG16, "r16" },
3070 { OPERAND_TYPE_REG32, "r32" },
3071 { OPERAND_TYPE_REG64, "r64" },
3072 { OPERAND_TYPE_IMM8, "i8" },
3073 { OPERAND_TYPE_IMM8, "i8s" },
3074 { OPERAND_TYPE_IMM16, "i16" },
3075 { OPERAND_TYPE_IMM32, "i32" },
3076 { OPERAND_TYPE_IMM32S, "i32s" },
3077 { OPERAND_TYPE_IMM64, "i64" },
3078 { OPERAND_TYPE_IMM1, "i1" },
3079 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3080 { OPERAND_TYPE_DISP8, "d8" },
3081 { OPERAND_TYPE_DISP16, "d16" },
3082 { OPERAND_TYPE_DISP32, "d32" },
3083 { OPERAND_TYPE_DISP32S, "d32s" },
3084 { OPERAND_TYPE_DISP64, "d64" },
3085 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3086 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3087 { OPERAND_TYPE_CONTROL, "control reg" },
3088 { OPERAND_TYPE_TEST, "test reg" },
3089 { OPERAND_TYPE_DEBUG, "debug reg" },
3090 { OPERAND_TYPE_FLOATREG, "FReg" },
3091 { OPERAND_TYPE_FLOATACC, "FAcc" },
3092 { OPERAND_TYPE_SREG2, "SReg2" },
3093 { OPERAND_TYPE_SREG3, "SReg3" },
3094 { OPERAND_TYPE_ACC, "Acc" },
3095 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3096 { OPERAND_TYPE_REGMMX, "rMMX" },
3097 { OPERAND_TYPE_REGXMM, "rXMM" },
3098 { OPERAND_TYPE_REGYMM, "rYMM" },
3099 { OPERAND_TYPE_REGZMM, "rZMM" },
3100 { OPERAND_TYPE_REGMASK, "Mask reg" },
3101 { OPERAND_TYPE_ESSEG, "es" },
3102 };
3103
3104 static void
3105 pt (i386_operand_type t)
3106 {
3107 unsigned int j;
3108 i386_operand_type a;
3109
3110 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3111 {
3112 a = operand_type_and (t, type_names[j].mask);
3113 if (!operand_type_all_zero (&a))
3114 fprintf (stdout, "%s, ", type_names[j].name);
3115 }
3116 fflush (stdout);
3117 }
3118
3119 #endif /* DEBUG386 */
3120 \f
3121 static bfd_reloc_code_real_type
3122 reloc (unsigned int size,
3123 int pcrel,
3124 int sign,
3125 bfd_reloc_code_real_type other)
3126 {
3127 if (other != NO_RELOC)
3128 {
3129 reloc_howto_type *rel;
3130
3131 if (size == 8)
3132 switch (other)
3133 {
3134 case BFD_RELOC_X86_64_GOT32:
3135 return BFD_RELOC_X86_64_GOT64;
3136 break;
3137 case BFD_RELOC_X86_64_GOTPLT64:
3138 return BFD_RELOC_X86_64_GOTPLT64;
3139 break;
3140 case BFD_RELOC_X86_64_PLTOFF64:
3141 return BFD_RELOC_X86_64_PLTOFF64;
3142 break;
3143 case BFD_RELOC_X86_64_GOTPC32:
3144 other = BFD_RELOC_X86_64_GOTPC64;
3145 break;
3146 case BFD_RELOC_X86_64_GOTPCREL:
3147 other = BFD_RELOC_X86_64_GOTPCREL64;
3148 break;
3149 case BFD_RELOC_X86_64_TPOFF32:
3150 other = BFD_RELOC_X86_64_TPOFF64;
3151 break;
3152 case BFD_RELOC_X86_64_DTPOFF32:
3153 other = BFD_RELOC_X86_64_DTPOFF64;
3154 break;
3155 default:
3156 break;
3157 }
3158
3159 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3160 if (other == BFD_RELOC_SIZE32)
3161 {
3162 if (size == 8)
3163 other = BFD_RELOC_SIZE64;
3164 if (pcrel)
3165 {
3166 as_bad (_("there are no pc-relative size relocations"));
3167 return NO_RELOC;
3168 }
3169 }
3170 #endif
3171
3172 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3173 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3174 sign = -1;
3175
3176 rel = bfd_reloc_type_lookup (stdoutput, other);
3177 if (!rel)
3178 as_bad (_("unknown relocation (%u)"), other);
3179 else if (size != bfd_get_reloc_size (rel))
3180 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3181 bfd_get_reloc_size (rel),
3182 size);
3183 else if (pcrel && !rel->pc_relative)
3184 as_bad (_("non-pc-relative relocation for pc-relative field"));
3185 else if ((rel->complain_on_overflow == complain_overflow_signed
3186 && !sign)
3187 || (rel->complain_on_overflow == complain_overflow_unsigned
3188 && sign > 0))
3189 as_bad (_("relocated field and relocation type differ in signedness"));
3190 else
3191 return other;
3192 return NO_RELOC;
3193 }
3194
3195 if (pcrel)
3196 {
3197 if (!sign)
3198 as_bad (_("there are no unsigned pc-relative relocations"));
3199 switch (size)
3200 {
3201 case 1: return BFD_RELOC_8_PCREL;
3202 case 2: return BFD_RELOC_16_PCREL;
3203 case 4: return BFD_RELOC_32_PCREL;
3204 case 8: return BFD_RELOC_64_PCREL;
3205 }
3206 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3207 }
3208 else
3209 {
3210 if (sign > 0)
3211 switch (size)
3212 {
3213 case 4: return BFD_RELOC_X86_64_32S;
3214 }
3215 else
3216 switch (size)
3217 {
3218 case 1: return BFD_RELOC_8;
3219 case 2: return BFD_RELOC_16;
3220 case 4: return BFD_RELOC_32;
3221 case 8: return BFD_RELOC_64;
3222 }
3223 as_bad (_("cannot do %s %u byte relocation"),
3224 sign > 0 ? "signed" : "unsigned", size);
3225 }
3226
3227 return NO_RELOC;
3228 }
3229
3230 /* Here we decide which fixups can be adjusted to make them relative to
3231 the beginning of the section instead of the symbol. Basically we need
3232 to make sure that the dynamic relocations are done correctly, so in
3233 some cases we force the original symbol to be used. */
3234
3235 int
3236 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3237 {
3238 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3239 if (!IS_ELF)
3240 return 1;
3241
3242 /* Don't adjust pc-relative references to merge sections in 64-bit
3243 mode. */
3244 if (use_rela_relocations
3245 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3246 && fixP->fx_pcrel)
3247 return 0;
3248
3249 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3250 and changed later by validate_fix. */
3251 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3252 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3253 return 0;
3254
3255 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3256 for size relocations. */
3257 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3258 || fixP->fx_r_type == BFD_RELOC_SIZE64
3259 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3260 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3261 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3262 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3263 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3264 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3265 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3266 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3267 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3268 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3269 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3270 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3271 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3272 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3273 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3274 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3275 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3276 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3277 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3278 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3279 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3280 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3281 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3282 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3283 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3284 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3285 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3286 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3287 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3288 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3289 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3290 return 0;
3291 #endif
3292 return 1;
3293 }
3294
3295 static int
3296 intel_float_operand (const char *mnemonic)
3297 {
3298 /* Note that the value returned is meaningful only for opcodes with (memory)
3299 operands, hence the code here is free to improperly handle opcodes that
3300 have no operands (for better performance and smaller code). */
3301
3302 if (mnemonic[0] != 'f')
3303 return 0; /* non-math */
3304
3305 switch (mnemonic[1])
3306 {
3307 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3308 the fs segment override prefix not currently handled because no
3309 call path can make opcodes without operands get here */
3310 case 'i':
3311 return 2 /* integer op */;
3312 case 'l':
3313 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3314 return 3; /* fldcw/fldenv */
3315 break;
3316 case 'n':
3317 if (mnemonic[2] != 'o' /* fnop */)
3318 return 3; /* non-waiting control op */
3319 break;
3320 case 'r':
3321 if (mnemonic[2] == 's')
3322 return 3; /* frstor/frstpm */
3323 break;
3324 case 's':
3325 if (mnemonic[2] == 'a')
3326 return 3; /* fsave */
3327 if (mnemonic[2] == 't')
3328 {
3329 switch (mnemonic[3])
3330 {
3331 case 'c': /* fstcw */
3332 case 'd': /* fstdw */
3333 case 'e': /* fstenv */
3334 case 's': /* fsts[gw] */
3335 return 3;
3336 }
3337 }
3338 break;
3339 case 'x':
3340 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3341 return 0; /* fxsave/fxrstor are not really math ops */
3342 break;
3343 }
3344
3345 return 1;
3346 }
3347
3348 /* Build the VEX prefix. */
3349
3350 static void
3351 build_vex_prefix (const insn_template *t)
3352 {
3353 unsigned int register_specifier;
3354 unsigned int implied_prefix;
3355 unsigned int vector_length;
3356
3357 /* Check register specifier. */
3358 if (i.vex.register_specifier)
3359 {
3360 register_specifier =
3361 ~register_number (i.vex.register_specifier) & 0xf;
3362 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3363 }
3364 else
3365 register_specifier = 0xf;
3366
3367 /* Use 2-byte VEX prefix by swapping destination and source
3368 operand. */
3369 if (i.vec_encoding != vex_encoding_vex3
3370 && i.dir_encoding == dir_encoding_default
3371 && i.operands == i.reg_operands
3372 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3373 && i.tm.opcode_modifier.vexopcode == VEX0F
3374 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3375 && i.rex == REX_B)
3376 {
3377 unsigned int xchg = i.operands - 1;
3378 union i386_op temp_op;
3379 i386_operand_type temp_type;
3380
3381 temp_type = i.types[xchg];
3382 i.types[xchg] = i.types[0];
3383 i.types[0] = temp_type;
3384 temp_op = i.op[xchg];
3385 i.op[xchg] = i.op[0];
3386 i.op[0] = temp_op;
3387
3388 gas_assert (i.rm.mode == 3);
3389
3390 i.rex = REX_R;
3391 xchg = i.rm.regmem;
3392 i.rm.regmem = i.rm.reg;
3393 i.rm.reg = xchg;
3394
3395 if (i.tm.opcode_modifier.d)
3396 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3397 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3398 else /* Use the next insn. */
3399 i.tm = t[1];
3400 }
3401
3402 if (i.tm.opcode_modifier.vex == VEXScalar)
3403 vector_length = avxscalar;
3404 else if (i.tm.opcode_modifier.vex == VEX256)
3405 vector_length = 1;
3406 else
3407 {
3408 unsigned int op;
3409
3410 /* Determine vector length from the last multi-length vector
3411 operand. */
3412 vector_length = 0;
3413 for (op = t->operands; op--;)
3414 if (t->operand_types[op].bitfield.xmmword
3415 && t->operand_types[op].bitfield.ymmword
3416 && i.types[op].bitfield.ymmword)
3417 {
3418 vector_length = 1;
3419 break;
3420 }
3421 }
3422
3423 switch ((i.tm.base_opcode >> 8) & 0xff)
3424 {
3425 case 0:
3426 implied_prefix = 0;
3427 break;
3428 case DATA_PREFIX_OPCODE:
3429 implied_prefix = 1;
3430 break;
3431 case REPE_PREFIX_OPCODE:
3432 implied_prefix = 2;
3433 break;
3434 case REPNE_PREFIX_OPCODE:
3435 implied_prefix = 3;
3436 break;
3437 default:
3438 abort ();
3439 }
3440
3441 /* Use 2-byte VEX prefix if possible. */
3442 if (i.vec_encoding != vex_encoding_vex3
3443 && i.tm.opcode_modifier.vexopcode == VEX0F
3444 && i.tm.opcode_modifier.vexw != VEXW1
3445 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3446 {
3447 /* 2-byte VEX prefix. */
3448 unsigned int r;
3449
3450 i.vex.length = 2;
3451 i.vex.bytes[0] = 0xc5;
3452
3453 /* Check the REX.R bit. */
3454 r = (i.rex & REX_R) ? 0 : 1;
3455 i.vex.bytes[1] = (r << 7
3456 | register_specifier << 3
3457 | vector_length << 2
3458 | implied_prefix);
3459 }
3460 else
3461 {
3462 /* 3-byte VEX prefix. */
3463 unsigned int m, w;
3464
3465 i.vex.length = 3;
3466
3467 switch (i.tm.opcode_modifier.vexopcode)
3468 {
3469 case VEX0F:
3470 m = 0x1;
3471 i.vex.bytes[0] = 0xc4;
3472 break;
3473 case VEX0F38:
3474 m = 0x2;
3475 i.vex.bytes[0] = 0xc4;
3476 break;
3477 case VEX0F3A:
3478 m = 0x3;
3479 i.vex.bytes[0] = 0xc4;
3480 break;
3481 case XOP08:
3482 m = 0x8;
3483 i.vex.bytes[0] = 0x8f;
3484 break;
3485 case XOP09:
3486 m = 0x9;
3487 i.vex.bytes[0] = 0x8f;
3488 break;
3489 case XOP0A:
3490 m = 0xa;
3491 i.vex.bytes[0] = 0x8f;
3492 break;
3493 default:
3494 abort ();
3495 }
3496
3497 /* The high 3 bits of the second VEX byte are 1's compliment
3498 of RXB bits from REX. */
3499 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3500
3501 /* Check the REX.W bit. */
3502 w = (i.rex & REX_W) ? 1 : 0;
3503 if (i.tm.opcode_modifier.vexw == VEXW1)
3504 w = 1;
3505
3506 i.vex.bytes[2] = (w << 7
3507 | register_specifier << 3
3508 | vector_length << 2
3509 | implied_prefix);
3510 }
3511 }
3512
3513 static INLINE bfd_boolean
3514 is_evex_encoding (const insn_template *t)
3515 {
3516 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3517 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3518 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3519 }
3520
3521 static INLINE bfd_boolean
3522 is_any_vex_encoding (const insn_template *t)
3523 {
3524 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3525 || is_evex_encoding (t);
3526 }
3527
3528 /* Build the EVEX prefix. */
3529
3530 static void
3531 build_evex_prefix (void)
3532 {
3533 unsigned int register_specifier;
3534 unsigned int implied_prefix;
3535 unsigned int m, w;
3536 rex_byte vrex_used = 0;
3537
3538 /* Check register specifier. */
3539 if (i.vex.register_specifier)
3540 {
3541 gas_assert ((i.vrex & REX_X) == 0);
3542
3543 register_specifier = i.vex.register_specifier->reg_num;
3544 if ((i.vex.register_specifier->reg_flags & RegRex))
3545 register_specifier += 8;
3546 /* The upper 16 registers are encoded in the fourth byte of the
3547 EVEX prefix. */
3548 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3549 i.vex.bytes[3] = 0x8;
3550 register_specifier = ~register_specifier & 0xf;
3551 }
3552 else
3553 {
3554 register_specifier = 0xf;
3555
3556 /* Encode upper 16 vector index register in the fourth byte of
3557 the EVEX prefix. */
3558 if (!(i.vrex & REX_X))
3559 i.vex.bytes[3] = 0x8;
3560 else
3561 vrex_used |= REX_X;
3562 }
3563
3564 switch ((i.tm.base_opcode >> 8) & 0xff)
3565 {
3566 case 0:
3567 implied_prefix = 0;
3568 break;
3569 case DATA_PREFIX_OPCODE:
3570 implied_prefix = 1;
3571 break;
3572 case REPE_PREFIX_OPCODE:
3573 implied_prefix = 2;
3574 break;
3575 case REPNE_PREFIX_OPCODE:
3576 implied_prefix = 3;
3577 break;
3578 default:
3579 abort ();
3580 }
3581
3582 /* 4 byte EVEX prefix. */
3583 i.vex.length = 4;
3584 i.vex.bytes[0] = 0x62;
3585
3586 /* mmmm bits. */
3587 switch (i.tm.opcode_modifier.vexopcode)
3588 {
3589 case VEX0F:
3590 m = 1;
3591 break;
3592 case VEX0F38:
3593 m = 2;
3594 break;
3595 case VEX0F3A:
3596 m = 3;
3597 break;
3598 default:
3599 abort ();
3600 break;
3601 }
3602
3603 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3604 bits from REX. */
3605 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3606
3607 /* The fifth bit of the second EVEX byte is 1's compliment of the
3608 REX_R bit in VREX. */
3609 if (!(i.vrex & REX_R))
3610 i.vex.bytes[1] |= 0x10;
3611 else
3612 vrex_used |= REX_R;
3613
3614 if ((i.reg_operands + i.imm_operands) == i.operands)
3615 {
3616 /* When all operands are registers, the REX_X bit in REX is not
3617 used. We reuse it to encode the upper 16 registers, which is
3618 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3619 as 1's compliment. */
3620 if ((i.vrex & REX_B))
3621 {
3622 vrex_used |= REX_B;
3623 i.vex.bytes[1] &= ~0x40;
3624 }
3625 }
3626
3627 /* EVEX instructions shouldn't need the REX prefix. */
3628 i.vrex &= ~vrex_used;
3629 gas_assert (i.vrex == 0);
3630
3631 /* Check the REX.W bit. */
3632 w = (i.rex & REX_W) ? 1 : 0;
3633 if (i.tm.opcode_modifier.vexw)
3634 {
3635 if (i.tm.opcode_modifier.vexw == VEXW1)
3636 w = 1;
3637 }
3638 /* If w is not set it means we are dealing with WIG instruction. */
3639 else if (!w)
3640 {
3641 if (evexwig == evexw1)
3642 w = 1;
3643 }
3644
3645 /* Encode the U bit. */
3646 implied_prefix |= 0x4;
3647
3648 /* The third byte of the EVEX prefix. */
3649 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3650
3651 /* The fourth byte of the EVEX prefix. */
3652 /* The zeroing-masking bit. */
3653 if (i.mask && i.mask->zeroing)
3654 i.vex.bytes[3] |= 0x80;
3655
3656 /* Don't always set the broadcast bit if there is no RC. */
3657 if (!i.rounding)
3658 {
3659 /* Encode the vector length. */
3660 unsigned int vec_length;
3661
3662 if (!i.tm.opcode_modifier.evex
3663 || i.tm.opcode_modifier.evex == EVEXDYN)
3664 {
3665 unsigned int op;
3666
3667 /* Determine vector length from the last multi-length vector
3668 operand. */
3669 vec_length = 0;
3670 for (op = i.operands; op--;)
3671 if (i.tm.operand_types[op].bitfield.xmmword
3672 + i.tm.operand_types[op].bitfield.ymmword
3673 + i.tm.operand_types[op].bitfield.zmmword > 1)
3674 {
3675 if (i.types[op].bitfield.zmmword)
3676 {
3677 i.tm.opcode_modifier.evex = EVEX512;
3678 break;
3679 }
3680 else if (i.types[op].bitfield.ymmword)
3681 {
3682 i.tm.opcode_modifier.evex = EVEX256;
3683 break;
3684 }
3685 else if (i.types[op].bitfield.xmmword)
3686 {
3687 i.tm.opcode_modifier.evex = EVEX128;
3688 break;
3689 }
3690 else if (i.broadcast && (int) op == i.broadcast->operand)
3691 {
3692 switch (i.broadcast->bytes)
3693 {
3694 case 64:
3695 i.tm.opcode_modifier.evex = EVEX512;
3696 break;
3697 case 32:
3698 i.tm.opcode_modifier.evex = EVEX256;
3699 break;
3700 case 16:
3701 i.tm.opcode_modifier.evex = EVEX128;
3702 break;
3703 default:
3704 abort ();
3705 }
3706 break;
3707 }
3708 }
3709
3710 if (op >= MAX_OPERANDS)
3711 abort ();
3712 }
3713
3714 switch (i.tm.opcode_modifier.evex)
3715 {
3716 case EVEXLIG: /* LL' is ignored */
3717 vec_length = evexlig << 5;
3718 break;
3719 case EVEX128:
3720 vec_length = 0 << 5;
3721 break;
3722 case EVEX256:
3723 vec_length = 1 << 5;
3724 break;
3725 case EVEX512:
3726 vec_length = 2 << 5;
3727 break;
3728 default:
3729 abort ();
3730 break;
3731 }
3732 i.vex.bytes[3] |= vec_length;
3733 /* Encode the broadcast bit. */
3734 if (i.broadcast)
3735 i.vex.bytes[3] |= 0x10;
3736 }
3737 else
3738 {
3739 if (i.rounding->type != saeonly)
3740 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3741 else
3742 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3743 }
3744
3745 if (i.mask && i.mask->mask)
3746 i.vex.bytes[3] |= i.mask->mask->reg_num;
3747 }
3748
3749 static void
3750 process_immext (void)
3751 {
3752 expressionS *exp;
3753
3754 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3755 && i.operands > 0)
3756 {
3757 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3758 with an opcode suffix which is coded in the same place as an
3759 8-bit immediate field would be.
3760 Here we check those operands and remove them afterwards. */
3761 unsigned int x;
3762
3763 for (x = 0; x < i.operands; x++)
3764 if (register_number (i.op[x].regs) != x)
3765 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3766 register_prefix, i.op[x].regs->reg_name, x + 1,
3767 i.tm.name);
3768
3769 i.operands = 0;
3770 }
3771
3772 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3773 {
3774 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3775 suffix which is coded in the same place as an 8-bit immediate
3776 field would be.
3777 Here we check those operands and remove them afterwards. */
3778 unsigned int x;
3779
3780 if (i.operands != 3)
3781 abort();
3782
3783 for (x = 0; x < 2; x++)
3784 if (register_number (i.op[x].regs) != x)
3785 goto bad_register_operand;
3786
3787 /* Check for third operand for mwaitx/monitorx insn. */
3788 if (register_number (i.op[x].regs)
3789 != (x + (i.tm.extension_opcode == 0xfb)))
3790 {
3791 bad_register_operand:
3792 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3793 register_prefix, i.op[x].regs->reg_name, x+1,
3794 i.tm.name);
3795 }
3796
3797 i.operands = 0;
3798 }
3799
3800 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3801 which is coded in the same place as an 8-bit immediate field
3802 would be. Here we fake an 8-bit immediate operand from the
3803 opcode suffix stored in tm.extension_opcode.
3804
3805 AVX instructions also use this encoding, for some of
3806 3 argument instructions. */
3807
3808 gas_assert (i.imm_operands <= 1
3809 && (i.operands <= 2
3810 || (is_any_vex_encoding (&i.tm)
3811 && i.operands <= 4)));
3812
3813 exp = &im_expressions[i.imm_operands++];
3814 i.op[i.operands].imms = exp;
3815 i.types[i.operands] = imm8;
3816 i.operands++;
3817 exp->X_op = O_constant;
3818 exp->X_add_number = i.tm.extension_opcode;
3819 i.tm.extension_opcode = None;
3820 }
3821
3822
3823 static int
3824 check_hle (void)
3825 {
3826 switch (i.tm.opcode_modifier.hleprefixok)
3827 {
3828 default:
3829 abort ();
3830 case HLEPrefixNone:
3831 as_bad (_("invalid instruction `%s' after `%s'"),
3832 i.tm.name, i.hle_prefix);
3833 return 0;
3834 case HLEPrefixLock:
3835 if (i.prefix[LOCK_PREFIX])
3836 return 1;
3837 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3838 return 0;
3839 case HLEPrefixAny:
3840 return 1;
3841 case HLEPrefixRelease:
3842 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3843 {
3844 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3845 i.tm.name);
3846 return 0;
3847 }
3848 if (i.mem_operands == 0
3849 || !operand_type_check (i.types[i.operands - 1], anymem))
3850 {
3851 as_bad (_("memory destination needed for instruction `%s'"
3852 " after `xrelease'"), i.tm.name);
3853 return 0;
3854 }
3855 return 1;
3856 }
3857 }
3858
3859 /* Try the shortest encoding by shortening operand size. */
3860
3861 static void
3862 optimize_encoding (void)
3863 {
3864 int j;
3865
3866 if (optimize_for_space
3867 && i.reg_operands == 1
3868 && i.imm_operands == 1
3869 && !i.types[1].bitfield.byte
3870 && i.op[0].imms->X_op == O_constant
3871 && fits_in_imm7 (i.op[0].imms->X_add_number)
3872 && ((i.tm.base_opcode == 0xa8
3873 && i.tm.extension_opcode == None)
3874 || (i.tm.base_opcode == 0xf6
3875 && i.tm.extension_opcode == 0x0)))
3876 {
3877 /* Optimize: -Os:
3878 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3879 */
3880 unsigned int base_regnum = i.op[1].regs->reg_num;
3881 if (flag_code == CODE_64BIT || base_regnum < 4)
3882 {
3883 i.types[1].bitfield.byte = 1;
3884 /* Ignore the suffix. */
3885 i.suffix = 0;
3886 if (base_regnum >= 4
3887 && !(i.op[1].regs->reg_flags & RegRex))
3888 {
3889 /* Handle SP, BP, SI and DI registers. */
3890 if (i.types[1].bitfield.word)
3891 j = 16;
3892 else if (i.types[1].bitfield.dword)
3893 j = 32;
3894 else
3895 j = 48;
3896 i.op[1].regs -= j;
3897 }
3898 }
3899 }
3900 else if (flag_code == CODE_64BIT
3901 && ((i.types[1].bitfield.qword
3902 && i.reg_operands == 1
3903 && i.imm_operands == 1
3904 && i.op[0].imms->X_op == O_constant
3905 && ((i.tm.base_opcode == 0xb0
3906 && i.tm.extension_opcode == None
3907 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3908 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3909 && (((i.tm.base_opcode == 0x24
3910 || i.tm.base_opcode == 0xa8)
3911 && i.tm.extension_opcode == None)
3912 || (i.tm.base_opcode == 0x80
3913 && i.tm.extension_opcode == 0x4)
3914 || ((i.tm.base_opcode == 0xf6
3915 || i.tm.base_opcode == 0xc6)
3916 && i.tm.extension_opcode == 0x0)))))
3917 || (i.types[0].bitfield.qword
3918 && ((i.reg_operands == 2
3919 && i.op[0].regs == i.op[1].regs
3920 && ((i.tm.base_opcode == 0x30
3921 || i.tm.base_opcode == 0x28)
3922 && i.tm.extension_opcode == None))
3923 || (i.reg_operands == 1
3924 && i.operands == 1
3925 && i.tm.base_opcode == 0x30
3926 && i.tm.extension_opcode == None)))))
3927 {
3928 /* Optimize: -O:
3929 andq $imm31, %r64 -> andl $imm31, %r32
3930 testq $imm31, %r64 -> testl $imm31, %r32
3931 xorq %r64, %r64 -> xorl %r32, %r32
3932 subq %r64, %r64 -> subl %r32, %r32
3933 movq $imm31, %r64 -> movl $imm31, %r32
3934 movq $imm32, %r64 -> movl $imm32, %r32
3935 */
3936 i.tm.opcode_modifier.norex64 = 1;
3937 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3938 {
3939 /* Handle
3940 movq $imm31, %r64 -> movl $imm31, %r32
3941 movq $imm32, %r64 -> movl $imm32, %r32
3942 */
3943 i.tm.operand_types[0].bitfield.imm32 = 1;
3944 i.tm.operand_types[0].bitfield.imm32s = 0;
3945 i.tm.operand_types[0].bitfield.imm64 = 0;
3946 i.types[0].bitfield.imm32 = 1;
3947 i.types[0].bitfield.imm32s = 0;
3948 i.types[0].bitfield.imm64 = 0;
3949 i.types[1].bitfield.dword = 1;
3950 i.types[1].bitfield.qword = 0;
3951 if (i.tm.base_opcode == 0xc6)
3952 {
3953 /* Handle
3954 movq $imm31, %r64 -> movl $imm31, %r32
3955 */
3956 i.tm.base_opcode = 0xb0;
3957 i.tm.extension_opcode = None;
3958 i.tm.opcode_modifier.shortform = 1;
3959 i.tm.opcode_modifier.modrm = 0;
3960 }
3961 }
3962 }
3963 else if (optimize > 1
3964 && i.reg_operands == 3
3965 && i.op[0].regs == i.op[1].regs
3966 && !i.types[2].bitfield.xmmword
3967 && (i.tm.opcode_modifier.vex
3968 || ((!i.mask || i.mask->zeroing)
3969 && !i.rounding
3970 && is_evex_encoding (&i.tm)
3971 && (i.vec_encoding != vex_encoding_evex
3972 || i.tm.cpu_flags.bitfield.cpuavx512vl
3973 || (i.tm.operand_types[2].bitfield.zmmword
3974 && i.types[2].bitfield.ymmword)
3975 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3976 && ((i.tm.base_opcode == 0x55
3977 || i.tm.base_opcode == 0x6655
3978 || i.tm.base_opcode == 0x66df
3979 || i.tm.base_opcode == 0x57
3980 || i.tm.base_opcode == 0x6657
3981 || i.tm.base_opcode == 0x66ef
3982 || i.tm.base_opcode == 0x66f8
3983 || i.tm.base_opcode == 0x66f9
3984 || i.tm.base_opcode == 0x66fa
3985 || i.tm.base_opcode == 0x66fb
3986 || i.tm.base_opcode == 0x42
3987 || i.tm.base_opcode == 0x6642
3988 || i.tm.base_opcode == 0x47
3989 || i.tm.base_opcode == 0x6647)
3990 && i.tm.extension_opcode == None))
3991 {
3992 /* Optimize: -O2:
3993 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3994 vpsubq and vpsubw:
3995 EVEX VOP %zmmM, %zmmM, %zmmN
3996 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3997 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3998 EVEX VOP %ymmM, %ymmM, %ymmN
3999 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4000 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4001 VEX VOP %ymmM, %ymmM, %ymmN
4002 -> VEX VOP %xmmM, %xmmM, %xmmN
4003 VOP, one of vpandn and vpxor:
4004 VEX VOP %ymmM, %ymmM, %ymmN
4005 -> VEX VOP %xmmM, %xmmM, %xmmN
4006 VOP, one of vpandnd and vpandnq:
4007 EVEX VOP %zmmM, %zmmM, %zmmN
4008 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4009 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4010 EVEX VOP %ymmM, %ymmM, %ymmN
4011 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4012 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4013 VOP, one of vpxord and vpxorq:
4014 EVEX VOP %zmmM, %zmmM, %zmmN
4015 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4016 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4017 EVEX VOP %ymmM, %ymmM, %ymmN
4018 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4019 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4020 VOP, one of kxord and kxorq:
4021 VEX VOP %kM, %kM, %kN
4022 -> VEX kxorw %kM, %kM, %kN
4023 VOP, one of kandnd and kandnq:
4024 VEX VOP %kM, %kM, %kN
4025 -> VEX kandnw %kM, %kM, %kN
4026 */
4027 if (is_evex_encoding (&i.tm))
4028 {
4029 if (i.vec_encoding == vex_encoding_evex)
4030 i.tm.opcode_modifier.evex = EVEX128;
4031 else
4032 {
4033 i.tm.opcode_modifier.vex = VEX128;
4034 i.tm.opcode_modifier.vexw = VEXW0;
4035 i.tm.opcode_modifier.evex = 0;
4036 }
4037 }
4038 else if (i.tm.operand_types[0].bitfield.regmask)
4039 {
4040 i.tm.base_opcode &= 0xff;
4041 i.tm.opcode_modifier.vexw = VEXW0;
4042 }
4043 else
4044 i.tm.opcode_modifier.vex = VEX128;
4045
4046 if (i.tm.opcode_modifier.vex)
4047 for (j = 0; j < 3; j++)
4048 {
4049 i.types[j].bitfield.xmmword = 1;
4050 i.types[j].bitfield.ymmword = 0;
4051 }
4052 }
4053 }
4054
4055 /* This is the guts of the machine-dependent assembler. LINE points to a
4056 machine dependent instruction. This function is supposed to emit
4057 the frags/bytes it assembles to. */
4058
4059 void
4060 md_assemble (char *line)
4061 {
4062 unsigned int j;
4063 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4064 const insn_template *t;
4065
4066 /* Initialize globals. */
4067 memset (&i, '\0', sizeof (i));
4068 for (j = 0; j < MAX_OPERANDS; j++)
4069 i.reloc[j] = NO_RELOC;
4070 memset (disp_expressions, '\0', sizeof (disp_expressions));
4071 memset (im_expressions, '\0', sizeof (im_expressions));
4072 save_stack_p = save_stack;
4073
4074 /* First parse an instruction mnemonic & call i386_operand for the operands.
4075 We assume that the scrubber has arranged it so that line[0] is the valid
4076 start of a (possibly prefixed) mnemonic. */
4077
4078 line = parse_insn (line, mnemonic);
4079 if (line == NULL)
4080 return;
4081 mnem_suffix = i.suffix;
4082
4083 line = parse_operands (line, mnemonic);
4084 this_operand = -1;
4085 xfree (i.memop1_string);
4086 i.memop1_string = NULL;
4087 if (line == NULL)
4088 return;
4089
4090 /* Now we've parsed the mnemonic into a set of templates, and have the
4091 operands at hand. */
4092
4093 /* All intel opcodes have reversed operands except for "bound" and
4094 "enter". We also don't reverse intersegment "jmp" and "call"
4095 instructions with 2 immediate operands so that the immediate segment
4096 precedes the offset, as it does when in AT&T mode. */
4097 if (intel_syntax
4098 && i.operands > 1
4099 && (strcmp (mnemonic, "bound") != 0)
4100 && (strcmp (mnemonic, "invlpga") != 0)
4101 && !(operand_type_check (i.types[0], imm)
4102 && operand_type_check (i.types[1], imm)))
4103 swap_operands ();
4104
4105 /* The order of the immediates should be reversed
4106 for 2 immediates extrq and insertq instructions */
4107 if (i.imm_operands == 2
4108 && (strcmp (mnemonic, "extrq") == 0
4109 || strcmp (mnemonic, "insertq") == 0))
4110 swap_2_operands (0, 1);
4111
4112 if (i.imm_operands)
4113 optimize_imm ();
4114
4115 /* Don't optimize displacement for movabs since it only takes 64bit
4116 displacement. */
4117 if (i.disp_operands
4118 && i.disp_encoding != disp_encoding_32bit
4119 && (flag_code != CODE_64BIT
4120 || strcmp (mnemonic, "movabs") != 0))
4121 optimize_disp ();
4122
4123 /* Next, we find a template that matches the given insn,
4124 making sure the overlap of the given operands types is consistent
4125 with the template operand types. */
4126
4127 if (!(t = match_template (mnem_suffix)))
4128 return;
4129
4130 if (sse_check != check_none
4131 && !i.tm.opcode_modifier.noavx
4132 && !i.tm.cpu_flags.bitfield.cpuavx
4133 && (i.tm.cpu_flags.bitfield.cpusse
4134 || i.tm.cpu_flags.bitfield.cpusse2
4135 || i.tm.cpu_flags.bitfield.cpusse3
4136 || i.tm.cpu_flags.bitfield.cpussse3
4137 || i.tm.cpu_flags.bitfield.cpusse4_1
4138 || i.tm.cpu_flags.bitfield.cpusse4_2
4139 || i.tm.cpu_flags.bitfield.cpupclmul
4140 || i.tm.cpu_flags.bitfield.cpuaes
4141 || i.tm.cpu_flags.bitfield.cpugfni))
4142 {
4143 (sse_check == check_warning
4144 ? as_warn
4145 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4146 }
4147
4148 /* Zap movzx and movsx suffix. The suffix has been set from
4149 "word ptr" or "byte ptr" on the source operand in Intel syntax
4150 or extracted from mnemonic in AT&T syntax. But we'll use
4151 the destination register to choose the suffix for encoding. */
4152 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4153 {
4154 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4155 there is no suffix, the default will be byte extension. */
4156 if (i.reg_operands != 2
4157 && !i.suffix
4158 && intel_syntax)
4159 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4160
4161 i.suffix = 0;
4162 }
4163
4164 if (i.tm.opcode_modifier.fwait)
4165 if (!add_prefix (FWAIT_OPCODE))
4166 return;
4167
4168 /* Check if REP prefix is OK. */
4169 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4170 {
4171 as_bad (_("invalid instruction `%s' after `%s'"),
4172 i.tm.name, i.rep_prefix);
4173 return;
4174 }
4175
4176 /* Check for lock without a lockable instruction. Destination operand
4177 must be memory unless it is xchg (0x86). */
4178 if (i.prefix[LOCK_PREFIX]
4179 && (!i.tm.opcode_modifier.islockable
4180 || i.mem_operands == 0
4181 || (i.tm.base_opcode != 0x86
4182 && !operand_type_check (i.types[i.operands - 1], anymem))))
4183 {
4184 as_bad (_("expecting lockable instruction after `lock'"));
4185 return;
4186 }
4187
4188 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4189 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4190 {
4191 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4192 return;
4193 }
4194
4195 /* Check if HLE prefix is OK. */
4196 if (i.hle_prefix && !check_hle ())
4197 return;
4198
4199 /* Check BND prefix. */
4200 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4201 as_bad (_("expecting valid branch instruction after `bnd'"));
4202
4203 /* Check NOTRACK prefix. */
4204 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4205 as_bad (_("expecting indirect branch instruction after `notrack'"));
4206
4207 if (i.tm.cpu_flags.bitfield.cpumpx)
4208 {
4209 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4210 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4211 else if (flag_code != CODE_16BIT
4212 ? i.prefix[ADDR_PREFIX]
4213 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4214 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4215 }
4216
4217 /* Insert BND prefix. */
4218 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4219 {
4220 if (!i.prefix[BND_PREFIX])
4221 add_prefix (BND_PREFIX_OPCODE);
4222 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4223 {
4224 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4225 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4226 }
4227 }
4228
4229 /* Check string instruction segment overrides. */
4230 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4231 {
4232 if (!check_string ())
4233 return;
4234 i.disp_operands = 0;
4235 }
4236
4237 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4238 optimize_encoding ();
4239
4240 if (!process_suffix ())
4241 return;
4242
4243 /* Update operand types. */
4244 for (j = 0; j < i.operands; j++)
4245 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4246
4247 /* Make still unresolved immediate matches conform to size of immediate
4248 given in i.suffix. */
4249 if (!finalize_imm ())
4250 return;
4251
4252 if (i.types[0].bitfield.imm1)
4253 i.imm_operands = 0; /* kludge for shift insns. */
4254
4255 /* We only need to check those implicit registers for instructions
4256 with 3 operands or less. */
4257 if (i.operands <= 3)
4258 for (j = 0; j < i.operands; j++)
4259 if (i.types[j].bitfield.inoutportreg
4260 || i.types[j].bitfield.shiftcount
4261 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4262 i.reg_operands--;
4263
4264 /* ImmExt should be processed after SSE2AVX. */
4265 if (!i.tm.opcode_modifier.sse2avx
4266 && i.tm.opcode_modifier.immext)
4267 process_immext ();
4268
4269 /* For insns with operands there are more diddles to do to the opcode. */
4270 if (i.operands)
4271 {
4272 if (!process_operands ())
4273 return;
4274 }
4275 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4276 {
4277 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4278 as_warn (_("translating to `%sp'"), i.tm.name);
4279 }
4280
4281 if (is_any_vex_encoding (&i.tm))
4282 {
4283 if (flag_code == CODE_16BIT)
4284 {
4285 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4286 i.tm.name);
4287 return;
4288 }
4289
4290 if (i.tm.opcode_modifier.vex)
4291 build_vex_prefix (t);
4292 else
4293 build_evex_prefix ();
4294 }
4295
4296 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4297 instructions may define INT_OPCODE as well, so avoid this corner
4298 case for those instructions that use MODRM. */
4299 if (i.tm.base_opcode == INT_OPCODE
4300 && !i.tm.opcode_modifier.modrm
4301 && i.op[0].imms->X_add_number == 3)
4302 {
4303 i.tm.base_opcode = INT3_OPCODE;
4304 i.imm_operands = 0;
4305 }
4306
4307 if ((i.tm.opcode_modifier.jump
4308 || i.tm.opcode_modifier.jumpbyte
4309 || i.tm.opcode_modifier.jumpdword)
4310 && i.op[0].disps->X_op == O_constant)
4311 {
4312 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4313 the absolute address given by the constant. Since ix86 jumps and
4314 calls are pc relative, we need to generate a reloc. */
4315 i.op[0].disps->X_add_symbol = &abs_symbol;
4316 i.op[0].disps->X_op = O_symbol;
4317 }
4318
4319 if (i.tm.opcode_modifier.rex64)
4320 i.rex |= REX_W;
4321
4322 /* For 8 bit registers we need an empty rex prefix. Also if the
4323 instruction already has a prefix, we need to convert old
4324 registers to new ones. */
4325
4326 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4327 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4328 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4329 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4330 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4331 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4332 && i.rex != 0))
4333 {
4334 int x;
4335
4336 i.rex |= REX_OPCODE;
4337 for (x = 0; x < 2; x++)
4338 {
4339 /* Look for 8 bit operand that uses old registers. */
4340 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4341 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4342 {
4343 /* In case it is "hi" register, give up. */
4344 if (i.op[x].regs->reg_num > 3)
4345 as_bad (_("can't encode register '%s%s' in an "
4346 "instruction requiring REX prefix."),
4347 register_prefix, i.op[x].regs->reg_name);
4348
4349 /* Otherwise it is equivalent to the extended register.
4350 Since the encoding doesn't change this is merely
4351 cosmetic cleanup for debug output. */
4352
4353 i.op[x].regs = i.op[x].regs + 8;
4354 }
4355 }
4356 }
4357
4358 if (i.rex == 0 && i.rex_encoding)
4359 {
4360 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4361 that uses legacy register. If it is "hi" register, don't add
4362 the REX_OPCODE byte. */
4363 int x;
4364 for (x = 0; x < 2; x++)
4365 if (i.types[x].bitfield.reg
4366 && i.types[x].bitfield.byte
4367 && (i.op[x].regs->reg_flags & RegRex64) == 0
4368 && i.op[x].regs->reg_num > 3)
4369 {
4370 i.rex_encoding = FALSE;
4371 break;
4372 }
4373
4374 if (i.rex_encoding)
4375 i.rex = REX_OPCODE;
4376 }
4377
4378 if (i.rex != 0)
4379 add_prefix (REX_OPCODE | i.rex);
4380
4381 /* We are ready to output the insn. */
4382 output_insn ();
4383 }
4384
4385 static char *
4386 parse_insn (char *line, char *mnemonic)
4387 {
4388 char *l = line;
4389 char *token_start = l;
4390 char *mnem_p;
4391 int supported;
4392 const insn_template *t;
4393 char *dot_p = NULL;
4394
4395 while (1)
4396 {
4397 mnem_p = mnemonic;
4398 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4399 {
4400 if (*mnem_p == '.')
4401 dot_p = mnem_p;
4402 mnem_p++;
4403 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4404 {
4405 as_bad (_("no such instruction: `%s'"), token_start);
4406 return NULL;
4407 }
4408 l++;
4409 }
4410 if (!is_space_char (*l)
4411 && *l != END_OF_INSN
4412 && (intel_syntax
4413 || (*l != PREFIX_SEPARATOR
4414 && *l != ',')))
4415 {
4416 as_bad (_("invalid character %s in mnemonic"),
4417 output_invalid (*l));
4418 return NULL;
4419 }
4420 if (token_start == l)
4421 {
4422 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4423 as_bad (_("expecting prefix; got nothing"));
4424 else
4425 as_bad (_("expecting mnemonic; got nothing"));
4426 return NULL;
4427 }
4428
4429 /* Look up instruction (or prefix) via hash table. */
4430 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4431
4432 if (*l != END_OF_INSN
4433 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4434 && current_templates
4435 && current_templates->start->opcode_modifier.isprefix)
4436 {
4437 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4438 {
4439 as_bad ((flag_code != CODE_64BIT
4440 ? _("`%s' is only supported in 64-bit mode")
4441 : _("`%s' is not supported in 64-bit mode")),
4442 current_templates->start->name);
4443 return NULL;
4444 }
4445 /* If we are in 16-bit mode, do not allow addr16 or data16.
4446 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4447 if ((current_templates->start->opcode_modifier.size16
4448 || current_templates->start->opcode_modifier.size32)
4449 && flag_code != CODE_64BIT
4450 && (current_templates->start->opcode_modifier.size32
4451 ^ (flag_code == CODE_16BIT)))
4452 {
4453 as_bad (_("redundant %s prefix"),
4454 current_templates->start->name);
4455 return NULL;
4456 }
4457 if (current_templates->start->opcode_length == 0)
4458 {
4459 /* Handle pseudo prefixes. */
4460 switch (current_templates->start->base_opcode)
4461 {
4462 case 0x0:
4463 /* {disp8} */
4464 i.disp_encoding = disp_encoding_8bit;
4465 break;
4466 case 0x1:
4467 /* {disp32} */
4468 i.disp_encoding = disp_encoding_32bit;
4469 break;
4470 case 0x2:
4471 /* {load} */
4472 i.dir_encoding = dir_encoding_load;
4473 break;
4474 case 0x3:
4475 /* {store} */
4476 i.dir_encoding = dir_encoding_store;
4477 break;
4478 case 0x4:
4479 /* {vex2} */
4480 i.vec_encoding = vex_encoding_vex2;
4481 break;
4482 case 0x5:
4483 /* {vex3} */
4484 i.vec_encoding = vex_encoding_vex3;
4485 break;
4486 case 0x6:
4487 /* {evex} */
4488 i.vec_encoding = vex_encoding_evex;
4489 break;
4490 case 0x7:
4491 /* {rex} */
4492 i.rex_encoding = TRUE;
4493 break;
4494 case 0x8:
4495 /* {nooptimize} */
4496 i.no_optimize = TRUE;
4497 break;
4498 default:
4499 abort ();
4500 }
4501 }
4502 else
4503 {
4504 /* Add prefix, checking for repeated prefixes. */
4505 switch (add_prefix (current_templates->start->base_opcode))
4506 {
4507 case PREFIX_EXIST:
4508 return NULL;
4509 case PREFIX_DS:
4510 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4511 i.notrack_prefix = current_templates->start->name;
4512 break;
4513 case PREFIX_REP:
4514 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4515 i.hle_prefix = current_templates->start->name;
4516 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4517 i.bnd_prefix = current_templates->start->name;
4518 else
4519 i.rep_prefix = current_templates->start->name;
4520 break;
4521 default:
4522 break;
4523 }
4524 }
4525 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4526 token_start = ++l;
4527 }
4528 else
4529 break;
4530 }
4531
4532 if (!current_templates)
4533 {
4534 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4535 Check if we should swap operand or force 32bit displacement in
4536 encoding. */
4537 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4538 i.dir_encoding = dir_encoding_swap;
4539 else if (mnem_p - 3 == dot_p
4540 && dot_p[1] == 'd'
4541 && dot_p[2] == '8')
4542 i.disp_encoding = disp_encoding_8bit;
4543 else if (mnem_p - 4 == dot_p
4544 && dot_p[1] == 'd'
4545 && dot_p[2] == '3'
4546 && dot_p[3] == '2')
4547 i.disp_encoding = disp_encoding_32bit;
4548 else
4549 goto check_suffix;
4550 mnem_p = dot_p;
4551 *dot_p = '\0';
4552 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4553 }
4554
4555 if (!current_templates)
4556 {
4557 check_suffix:
4558 /* See if we can get a match by trimming off a suffix. */
4559 switch (mnem_p[-1])
4560 {
4561 case WORD_MNEM_SUFFIX:
4562 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4563 i.suffix = SHORT_MNEM_SUFFIX;
4564 else
4565 /* Fall through. */
4566 case BYTE_MNEM_SUFFIX:
4567 case QWORD_MNEM_SUFFIX:
4568 i.suffix = mnem_p[-1];
4569 mnem_p[-1] = '\0';
4570 current_templates = (const templates *) hash_find (op_hash,
4571 mnemonic);
4572 break;
4573 case SHORT_MNEM_SUFFIX:
4574 case LONG_MNEM_SUFFIX:
4575 if (!intel_syntax)
4576 {
4577 i.suffix = mnem_p[-1];
4578 mnem_p[-1] = '\0';
4579 current_templates = (const templates *) hash_find (op_hash,
4580 mnemonic);
4581 }
4582 break;
4583
4584 /* Intel Syntax. */
4585 case 'd':
4586 if (intel_syntax)
4587 {
4588 if (intel_float_operand (mnemonic) == 1)
4589 i.suffix = SHORT_MNEM_SUFFIX;
4590 else
4591 i.suffix = LONG_MNEM_SUFFIX;
4592 mnem_p[-1] = '\0';
4593 current_templates = (const templates *) hash_find (op_hash,
4594 mnemonic);
4595 }
4596 break;
4597 }
4598 if (!current_templates)
4599 {
4600 as_bad (_("no such instruction: `%s'"), token_start);
4601 return NULL;
4602 }
4603 }
4604
4605 if (current_templates->start->opcode_modifier.jump
4606 || current_templates->start->opcode_modifier.jumpbyte)
4607 {
4608 /* Check for a branch hint. We allow ",pt" and ",pn" for
4609 predict taken and predict not taken respectively.
4610 I'm not sure that branch hints actually do anything on loop
4611 and jcxz insns (JumpByte) for current Pentium4 chips. They
4612 may work in the future and it doesn't hurt to accept them
4613 now. */
4614 if (l[0] == ',' && l[1] == 'p')
4615 {
4616 if (l[2] == 't')
4617 {
4618 if (!add_prefix (DS_PREFIX_OPCODE))
4619 return NULL;
4620 l += 3;
4621 }
4622 else if (l[2] == 'n')
4623 {
4624 if (!add_prefix (CS_PREFIX_OPCODE))
4625 return NULL;
4626 l += 3;
4627 }
4628 }
4629 }
4630 /* Any other comma loses. */
4631 if (*l == ',')
4632 {
4633 as_bad (_("invalid character %s in mnemonic"),
4634 output_invalid (*l));
4635 return NULL;
4636 }
4637
4638 /* Check if instruction is supported on specified architecture. */
4639 supported = 0;
4640 for (t = current_templates->start; t < current_templates->end; ++t)
4641 {
4642 supported |= cpu_flags_match (t);
4643 if (supported == CPU_FLAGS_PERFECT_MATCH)
4644 {
4645 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4646 as_warn (_("use .code16 to ensure correct addressing mode"));
4647
4648 return l;
4649 }
4650 }
4651
4652 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4653 as_bad (flag_code == CODE_64BIT
4654 ? _("`%s' is not supported in 64-bit mode")
4655 : _("`%s' is only supported in 64-bit mode"),
4656 current_templates->start->name);
4657 else
4658 as_bad (_("`%s' is not supported on `%s%s'"),
4659 current_templates->start->name,
4660 cpu_arch_name ? cpu_arch_name : default_arch,
4661 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4662
4663 return NULL;
4664 }
4665
4666 static char *
4667 parse_operands (char *l, const char *mnemonic)
4668 {
4669 char *token_start;
4670
4671 /* 1 if operand is pending after ','. */
4672 unsigned int expecting_operand = 0;
4673
4674 /* Non-zero if operand parens not balanced. */
4675 unsigned int paren_not_balanced;
4676
4677 while (*l != END_OF_INSN)
4678 {
4679 /* Skip optional white space before operand. */
4680 if (is_space_char (*l))
4681 ++l;
4682 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4683 {
4684 as_bad (_("invalid character %s before operand %d"),
4685 output_invalid (*l),
4686 i.operands + 1);
4687 return NULL;
4688 }
4689 token_start = l; /* After white space. */
4690 paren_not_balanced = 0;
4691 while (paren_not_balanced || *l != ',')
4692 {
4693 if (*l == END_OF_INSN)
4694 {
4695 if (paren_not_balanced)
4696 {
4697 if (!intel_syntax)
4698 as_bad (_("unbalanced parenthesis in operand %d."),
4699 i.operands + 1);
4700 else
4701 as_bad (_("unbalanced brackets in operand %d."),
4702 i.operands + 1);
4703 return NULL;
4704 }
4705 else
4706 break; /* we are done */
4707 }
4708 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4709 {
4710 as_bad (_("invalid character %s in operand %d"),
4711 output_invalid (*l),
4712 i.operands + 1);
4713 return NULL;
4714 }
4715 if (!intel_syntax)
4716 {
4717 if (*l == '(')
4718 ++paren_not_balanced;
4719 if (*l == ')')
4720 --paren_not_balanced;
4721 }
4722 else
4723 {
4724 if (*l == '[')
4725 ++paren_not_balanced;
4726 if (*l == ']')
4727 --paren_not_balanced;
4728 }
4729 l++;
4730 }
4731 if (l != token_start)
4732 { /* Yes, we've read in another operand. */
4733 unsigned int operand_ok;
4734 this_operand = i.operands++;
4735 if (i.operands > MAX_OPERANDS)
4736 {
4737 as_bad (_("spurious operands; (%d operands/instruction max)"),
4738 MAX_OPERANDS);
4739 return NULL;
4740 }
4741 i.types[this_operand].bitfield.unspecified = 1;
4742 /* Now parse operand adding info to 'i' as we go along. */
4743 END_STRING_AND_SAVE (l);
4744
4745 if (i.mem_operands > 1)
4746 {
4747 as_bad (_("too many memory references for `%s'"),
4748 mnemonic);
4749 return 0;
4750 }
4751
4752 if (intel_syntax)
4753 operand_ok =
4754 i386_intel_operand (token_start,
4755 intel_float_operand (mnemonic));
4756 else
4757 operand_ok = i386_att_operand (token_start);
4758
4759 RESTORE_END_STRING (l);
4760 if (!operand_ok)
4761 return NULL;
4762 }
4763 else
4764 {
4765 if (expecting_operand)
4766 {
4767 expecting_operand_after_comma:
4768 as_bad (_("expecting operand after ','; got nothing"));
4769 return NULL;
4770 }
4771 if (*l == ',')
4772 {
4773 as_bad (_("expecting operand before ','; got nothing"));
4774 return NULL;
4775 }
4776 }
4777
4778 /* Now *l must be either ',' or END_OF_INSN. */
4779 if (*l == ',')
4780 {
4781 if (*++l == END_OF_INSN)
4782 {
4783 /* Just skip it, if it's \n complain. */
4784 goto expecting_operand_after_comma;
4785 }
4786 expecting_operand = 1;
4787 }
4788 }
4789 return l;
4790 }
4791
4792 static void
4793 swap_2_operands (int xchg1, int xchg2)
4794 {
4795 union i386_op temp_op;
4796 i386_operand_type temp_type;
4797 unsigned int temp_flags;
4798 enum bfd_reloc_code_real temp_reloc;
4799
4800 temp_type = i.types[xchg2];
4801 i.types[xchg2] = i.types[xchg1];
4802 i.types[xchg1] = temp_type;
4803
4804 temp_flags = i.flags[xchg2];
4805 i.flags[xchg2] = i.flags[xchg1];
4806 i.flags[xchg1] = temp_flags;
4807
4808 temp_op = i.op[xchg2];
4809 i.op[xchg2] = i.op[xchg1];
4810 i.op[xchg1] = temp_op;
4811
4812 temp_reloc = i.reloc[xchg2];
4813 i.reloc[xchg2] = i.reloc[xchg1];
4814 i.reloc[xchg1] = temp_reloc;
4815
4816 if (i.mask)
4817 {
4818 if (i.mask->operand == xchg1)
4819 i.mask->operand = xchg2;
4820 else if (i.mask->operand == xchg2)
4821 i.mask->operand = xchg1;
4822 }
4823 if (i.broadcast)
4824 {
4825 if (i.broadcast->operand == xchg1)
4826 i.broadcast->operand = xchg2;
4827 else if (i.broadcast->operand == xchg2)
4828 i.broadcast->operand = xchg1;
4829 }
4830 if (i.rounding)
4831 {
4832 if (i.rounding->operand == xchg1)
4833 i.rounding->operand = xchg2;
4834 else if (i.rounding->operand == xchg2)
4835 i.rounding->operand = xchg1;
4836 }
4837 }
4838
4839 static void
4840 swap_operands (void)
4841 {
4842 switch (i.operands)
4843 {
4844 case 5:
4845 case 4:
4846 swap_2_operands (1, i.operands - 2);
4847 /* Fall through. */
4848 case 3:
4849 case 2:
4850 swap_2_operands (0, i.operands - 1);
4851 break;
4852 default:
4853 abort ();
4854 }
4855
4856 if (i.mem_operands == 2)
4857 {
4858 const seg_entry *temp_seg;
4859 temp_seg = i.seg[0];
4860 i.seg[0] = i.seg[1];
4861 i.seg[1] = temp_seg;
4862 }
4863 }
4864
4865 /* Try to ensure constant immediates are represented in the smallest
4866 opcode possible. */
4867 static void
4868 optimize_imm (void)
4869 {
4870 char guess_suffix = 0;
4871 int op;
4872
4873 if (i.suffix)
4874 guess_suffix = i.suffix;
4875 else if (i.reg_operands)
4876 {
4877 /* Figure out a suffix from the last register operand specified.
4878 We can't do this properly yet, ie. excluding InOutPortReg,
4879 but the following works for instructions with immediates.
4880 In any case, we can't set i.suffix yet. */
4881 for (op = i.operands; --op >= 0;)
4882 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4883 {
4884 guess_suffix = BYTE_MNEM_SUFFIX;
4885 break;
4886 }
4887 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4888 {
4889 guess_suffix = WORD_MNEM_SUFFIX;
4890 break;
4891 }
4892 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4893 {
4894 guess_suffix = LONG_MNEM_SUFFIX;
4895 break;
4896 }
4897 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4898 {
4899 guess_suffix = QWORD_MNEM_SUFFIX;
4900 break;
4901 }
4902 }
4903 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4904 guess_suffix = WORD_MNEM_SUFFIX;
4905
4906 for (op = i.operands; --op >= 0;)
4907 if (operand_type_check (i.types[op], imm))
4908 {
4909 switch (i.op[op].imms->X_op)
4910 {
4911 case O_constant:
4912 /* If a suffix is given, this operand may be shortened. */
4913 switch (guess_suffix)
4914 {
4915 case LONG_MNEM_SUFFIX:
4916 i.types[op].bitfield.imm32 = 1;
4917 i.types[op].bitfield.imm64 = 1;
4918 break;
4919 case WORD_MNEM_SUFFIX:
4920 i.types[op].bitfield.imm16 = 1;
4921 i.types[op].bitfield.imm32 = 1;
4922 i.types[op].bitfield.imm32s = 1;
4923 i.types[op].bitfield.imm64 = 1;
4924 break;
4925 case BYTE_MNEM_SUFFIX:
4926 i.types[op].bitfield.imm8 = 1;
4927 i.types[op].bitfield.imm8s = 1;
4928 i.types[op].bitfield.imm16 = 1;
4929 i.types[op].bitfield.imm32 = 1;
4930 i.types[op].bitfield.imm32s = 1;
4931 i.types[op].bitfield.imm64 = 1;
4932 break;
4933 }
4934
4935 /* If this operand is at most 16 bits, convert it
4936 to a signed 16 bit number before trying to see
4937 whether it will fit in an even smaller size.
4938 This allows a 16-bit operand such as $0xffe0 to
4939 be recognised as within Imm8S range. */
4940 if ((i.types[op].bitfield.imm16)
4941 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4942 {
4943 i.op[op].imms->X_add_number =
4944 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4945 }
4946 #ifdef BFD64
4947 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4948 if ((i.types[op].bitfield.imm32)
4949 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4950 == 0))
4951 {
4952 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4953 ^ ((offsetT) 1 << 31))
4954 - ((offsetT) 1 << 31));
4955 }
4956 #endif
4957 i.types[op]
4958 = operand_type_or (i.types[op],
4959 smallest_imm_type (i.op[op].imms->X_add_number));
4960
4961 /* We must avoid matching of Imm32 templates when 64bit
4962 only immediate is available. */
4963 if (guess_suffix == QWORD_MNEM_SUFFIX)
4964 i.types[op].bitfield.imm32 = 0;
4965 break;
4966
4967 case O_absent:
4968 case O_register:
4969 abort ();
4970
4971 /* Symbols and expressions. */
4972 default:
4973 /* Convert symbolic operand to proper sizes for matching, but don't
4974 prevent matching a set of insns that only supports sizes other
4975 than those matching the insn suffix. */
4976 {
4977 i386_operand_type mask, allowed;
4978 const insn_template *t;
4979
4980 operand_type_set (&mask, 0);
4981 operand_type_set (&allowed, 0);
4982
4983 for (t = current_templates->start;
4984 t < current_templates->end;
4985 ++t)
4986 allowed = operand_type_or (allowed,
4987 t->operand_types[op]);
4988 switch (guess_suffix)
4989 {
4990 case QWORD_MNEM_SUFFIX:
4991 mask.bitfield.imm64 = 1;
4992 mask.bitfield.imm32s = 1;
4993 break;
4994 case LONG_MNEM_SUFFIX:
4995 mask.bitfield.imm32 = 1;
4996 break;
4997 case WORD_MNEM_SUFFIX:
4998 mask.bitfield.imm16 = 1;
4999 break;
5000 case BYTE_MNEM_SUFFIX:
5001 mask.bitfield.imm8 = 1;
5002 break;
5003 default:
5004 break;
5005 }
5006 allowed = operand_type_and (mask, allowed);
5007 if (!operand_type_all_zero (&allowed))
5008 i.types[op] = operand_type_and (i.types[op], mask);
5009 }
5010 break;
5011 }
5012 }
5013 }
5014
5015 /* Try to use the smallest displacement type too. */
5016 static void
5017 optimize_disp (void)
5018 {
5019 int op;
5020
5021 for (op = i.operands; --op >= 0;)
5022 if (operand_type_check (i.types[op], disp))
5023 {
5024 if (i.op[op].disps->X_op == O_constant)
5025 {
5026 offsetT op_disp = i.op[op].disps->X_add_number;
5027
5028 if (i.types[op].bitfield.disp16
5029 && (op_disp & ~(offsetT) 0xffff) == 0)
5030 {
5031 /* If this operand is at most 16 bits, convert
5032 to a signed 16 bit number and don't use 64bit
5033 displacement. */
5034 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5035 i.types[op].bitfield.disp64 = 0;
5036 }
5037 #ifdef BFD64
5038 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5039 if (i.types[op].bitfield.disp32
5040 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5041 {
5042 /* If this operand is at most 32 bits, convert
5043 to a signed 32 bit number and don't use 64bit
5044 displacement. */
5045 op_disp &= (((offsetT) 2 << 31) - 1);
5046 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5047 i.types[op].bitfield.disp64 = 0;
5048 }
5049 #endif
5050 if (!op_disp && i.types[op].bitfield.baseindex)
5051 {
5052 i.types[op].bitfield.disp8 = 0;
5053 i.types[op].bitfield.disp16 = 0;
5054 i.types[op].bitfield.disp32 = 0;
5055 i.types[op].bitfield.disp32s = 0;
5056 i.types[op].bitfield.disp64 = 0;
5057 i.op[op].disps = 0;
5058 i.disp_operands--;
5059 }
5060 else if (flag_code == CODE_64BIT)
5061 {
5062 if (fits_in_signed_long (op_disp))
5063 {
5064 i.types[op].bitfield.disp64 = 0;
5065 i.types[op].bitfield.disp32s = 1;
5066 }
5067 if (i.prefix[ADDR_PREFIX]
5068 && fits_in_unsigned_long (op_disp))
5069 i.types[op].bitfield.disp32 = 1;
5070 }
5071 if ((i.types[op].bitfield.disp32
5072 || i.types[op].bitfield.disp32s
5073 || i.types[op].bitfield.disp16)
5074 && fits_in_disp8 (op_disp))
5075 i.types[op].bitfield.disp8 = 1;
5076 }
5077 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5078 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5079 {
5080 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5081 i.op[op].disps, 0, i.reloc[op]);
5082 i.types[op].bitfield.disp8 = 0;
5083 i.types[op].bitfield.disp16 = 0;
5084 i.types[op].bitfield.disp32 = 0;
5085 i.types[op].bitfield.disp32s = 0;
5086 i.types[op].bitfield.disp64 = 0;
5087 }
5088 else
5089 /* We only support 64bit displacement on constants. */
5090 i.types[op].bitfield.disp64 = 0;
5091 }
5092 }
5093
5094 /* Return 1 if there is a match in broadcast bytes between operand
5095 GIVEN and instruction template T. */
5096
5097 static INLINE int
5098 match_broadcast_size (const insn_template *t, unsigned int given)
5099 {
5100 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5101 && i.types[given].bitfield.byte)
5102 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5103 && i.types[given].bitfield.word)
5104 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5105 && i.types[given].bitfield.dword)
5106 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5107 && i.types[given].bitfield.qword));
5108 }
5109
5110 /* Check if operands are valid for the instruction. */
5111
5112 static int
5113 check_VecOperands (const insn_template *t)
5114 {
5115 unsigned int op;
5116 i386_cpu_flags cpu;
5117 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5118
5119 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5120 any one operand are implicity requiring AVX512VL support if the actual
5121 operand size is YMMword or XMMword. Since this function runs after
5122 template matching, there's no need to check for YMMword/XMMword in
5123 the template. */
5124 cpu = cpu_flags_and (t->cpu_flags, avx512);
5125 if (!cpu_flags_all_zero (&cpu)
5126 && !t->cpu_flags.bitfield.cpuavx512vl
5127 && !cpu_arch_flags.bitfield.cpuavx512vl)
5128 {
5129 for (op = 0; op < t->operands; ++op)
5130 {
5131 if (t->operand_types[op].bitfield.zmmword
5132 && (i.types[op].bitfield.ymmword
5133 || i.types[op].bitfield.xmmword))
5134 {
5135 i.error = unsupported;
5136 return 1;
5137 }
5138 }
5139 }
5140
5141 /* Without VSIB byte, we can't have a vector register for index. */
5142 if (!t->opcode_modifier.vecsib
5143 && i.index_reg
5144 && (i.index_reg->reg_type.bitfield.xmmword
5145 || i.index_reg->reg_type.bitfield.ymmword
5146 || i.index_reg->reg_type.bitfield.zmmword))
5147 {
5148 i.error = unsupported_vector_index_register;
5149 return 1;
5150 }
5151
5152 /* Check if default mask is allowed. */
5153 if (t->opcode_modifier.nodefmask
5154 && (!i.mask || i.mask->mask->reg_num == 0))
5155 {
5156 i.error = no_default_mask;
5157 return 1;
5158 }
5159
5160 /* For VSIB byte, we need a vector register for index, and all vector
5161 registers must be distinct. */
5162 if (t->opcode_modifier.vecsib)
5163 {
5164 if (!i.index_reg
5165 || !((t->opcode_modifier.vecsib == VecSIB128
5166 && i.index_reg->reg_type.bitfield.xmmword)
5167 || (t->opcode_modifier.vecsib == VecSIB256
5168 && i.index_reg->reg_type.bitfield.ymmword)
5169 || (t->opcode_modifier.vecsib == VecSIB512
5170 && i.index_reg->reg_type.bitfield.zmmword)))
5171 {
5172 i.error = invalid_vsib_address;
5173 return 1;
5174 }
5175
5176 gas_assert (i.reg_operands == 2 || i.mask);
5177 if (i.reg_operands == 2 && !i.mask)
5178 {
5179 gas_assert (i.types[0].bitfield.regsimd);
5180 gas_assert (i.types[0].bitfield.xmmword
5181 || i.types[0].bitfield.ymmword);
5182 gas_assert (i.types[2].bitfield.regsimd);
5183 gas_assert (i.types[2].bitfield.xmmword
5184 || i.types[2].bitfield.ymmword);
5185 if (operand_check == check_none)
5186 return 0;
5187 if (register_number (i.op[0].regs)
5188 != register_number (i.index_reg)
5189 && register_number (i.op[2].regs)
5190 != register_number (i.index_reg)
5191 && register_number (i.op[0].regs)
5192 != register_number (i.op[2].regs))
5193 return 0;
5194 if (operand_check == check_error)
5195 {
5196 i.error = invalid_vector_register_set;
5197 return 1;
5198 }
5199 as_warn (_("mask, index, and destination registers should be distinct"));
5200 }
5201 else if (i.reg_operands == 1 && i.mask)
5202 {
5203 if (i.types[1].bitfield.regsimd
5204 && (i.types[1].bitfield.xmmword
5205 || i.types[1].bitfield.ymmword
5206 || i.types[1].bitfield.zmmword)
5207 && (register_number (i.op[1].regs)
5208 == register_number (i.index_reg)))
5209 {
5210 if (operand_check == check_error)
5211 {
5212 i.error = invalid_vector_register_set;
5213 return 1;
5214 }
5215 if (operand_check != check_none)
5216 as_warn (_("index and destination registers should be distinct"));
5217 }
5218 }
5219 }
5220
5221 /* Check if broadcast is supported by the instruction and is applied
5222 to the memory operand. */
5223 if (i.broadcast)
5224 {
5225 i386_operand_type type, overlap;
5226
5227 /* Check if specified broadcast is supported in this instruction,
5228 and its broadcast bytes match the memory operand. */
5229 op = i.broadcast->operand;
5230 if (!t->opcode_modifier.broadcast
5231 || !(i.flags[op] & Operand_Mem)
5232 || (!i.types[op].bitfield.unspecified
5233 && !match_broadcast_size (t, op)))
5234 {
5235 bad_broadcast:
5236 i.error = unsupported_broadcast;
5237 return 1;
5238 }
5239
5240 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5241 * i.broadcast->type);
5242 operand_type_set (&type, 0);
5243 switch (i.broadcast->bytes)
5244 {
5245 case 2:
5246 type.bitfield.word = 1;
5247 break;
5248 case 4:
5249 type.bitfield.dword = 1;
5250 break;
5251 case 8:
5252 type.bitfield.qword = 1;
5253 break;
5254 case 16:
5255 type.bitfield.xmmword = 1;
5256 break;
5257 case 32:
5258 type.bitfield.ymmword = 1;
5259 break;
5260 case 64:
5261 type.bitfield.zmmword = 1;
5262 break;
5263 default:
5264 goto bad_broadcast;
5265 }
5266
5267 overlap = operand_type_and (type, t->operand_types[op]);
5268 if (operand_type_all_zero (&overlap))
5269 goto bad_broadcast;
5270
5271 if (t->opcode_modifier.checkregsize)
5272 {
5273 unsigned int j;
5274
5275 type.bitfield.baseindex = 1;
5276 for (j = 0; j < i.operands; ++j)
5277 {
5278 if (j != op
5279 && !operand_type_register_match(i.types[j],
5280 t->operand_types[j],
5281 type,
5282 t->operand_types[op]))
5283 goto bad_broadcast;
5284 }
5285 }
5286 }
5287 /* If broadcast is supported in this instruction, we need to check if
5288 operand of one-element size isn't specified without broadcast. */
5289 else if (t->opcode_modifier.broadcast && i.mem_operands)
5290 {
5291 /* Find memory operand. */
5292 for (op = 0; op < i.operands; op++)
5293 if (operand_type_check (i.types[op], anymem))
5294 break;
5295 gas_assert (op < i.operands);
5296 /* Check size of the memory operand. */
5297 if (match_broadcast_size (t, op))
5298 {
5299 i.error = broadcast_needed;
5300 return 1;
5301 }
5302 }
5303 else
5304 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5305
5306 /* Check if requested masking is supported. */
5307 if (i.mask)
5308 {
5309 switch (t->opcode_modifier.masking)
5310 {
5311 case BOTH_MASKING:
5312 break;
5313 case MERGING_MASKING:
5314 if (i.mask->zeroing)
5315 {
5316 case 0:
5317 i.error = unsupported_masking;
5318 return 1;
5319 }
5320 break;
5321 case DYNAMIC_MASKING:
5322 /* Memory destinations allow only merging masking. */
5323 if (i.mask->zeroing && i.mem_operands)
5324 {
5325 /* Find memory operand. */
5326 for (op = 0; op < i.operands; op++)
5327 if (i.flags[op] & Operand_Mem)
5328 break;
5329 gas_assert (op < i.operands);
5330 if (op == i.operands - 1)
5331 {
5332 i.error = unsupported_masking;
5333 return 1;
5334 }
5335 }
5336 break;
5337 default:
5338 abort ();
5339 }
5340 }
5341
5342 /* Check if masking is applied to dest operand. */
5343 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5344 {
5345 i.error = mask_not_on_destination;
5346 return 1;
5347 }
5348
5349 /* Check RC/SAE. */
5350 if (i.rounding)
5351 {
5352 if ((i.rounding->type != saeonly
5353 && !t->opcode_modifier.staticrounding)
5354 || (i.rounding->type == saeonly
5355 && (t->opcode_modifier.staticrounding
5356 || !t->opcode_modifier.sae)))
5357 {
5358 i.error = unsupported_rc_sae;
5359 return 1;
5360 }
5361 /* If the instruction has several immediate operands and one of
5362 them is rounding, the rounding operand should be the last
5363 immediate operand. */
5364 if (i.imm_operands > 1
5365 && i.rounding->operand != (int) (i.imm_operands - 1))
5366 {
5367 i.error = rc_sae_operand_not_last_imm;
5368 return 1;
5369 }
5370 }
5371
5372 /* Check vector Disp8 operand. */
5373 if (t->opcode_modifier.disp8memshift
5374 && i.disp_encoding != disp_encoding_32bit)
5375 {
5376 if (i.broadcast)
5377 i.memshift = t->opcode_modifier.broadcast - 1;
5378 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5379 i.memshift = t->opcode_modifier.disp8memshift;
5380 else
5381 {
5382 const i386_operand_type *type = NULL;
5383
5384 i.memshift = 0;
5385 for (op = 0; op < i.operands; op++)
5386 if (operand_type_check (i.types[op], anymem))
5387 {
5388 if (t->opcode_modifier.evex == EVEXLIG)
5389 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5390 else if (t->operand_types[op].bitfield.xmmword
5391 + t->operand_types[op].bitfield.ymmword
5392 + t->operand_types[op].bitfield.zmmword <= 1)
5393 type = &t->operand_types[op];
5394 else if (!i.types[op].bitfield.unspecified)
5395 type = &i.types[op];
5396 }
5397 else if (i.types[op].bitfield.regsimd
5398 && t->opcode_modifier.evex != EVEXLIG)
5399 {
5400 if (i.types[op].bitfield.zmmword)
5401 i.memshift = 6;
5402 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5403 i.memshift = 5;
5404 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5405 i.memshift = 4;
5406 }
5407
5408 if (type)
5409 {
5410 if (type->bitfield.zmmword)
5411 i.memshift = 6;
5412 else if (type->bitfield.ymmword)
5413 i.memshift = 5;
5414 else if (type->bitfield.xmmword)
5415 i.memshift = 4;
5416 }
5417
5418 /* For the check in fits_in_disp8(). */
5419 if (i.memshift == 0)
5420 i.memshift = -1;
5421 }
5422
5423 for (op = 0; op < i.operands; op++)
5424 if (operand_type_check (i.types[op], disp)
5425 && i.op[op].disps->X_op == O_constant)
5426 {
5427 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5428 {
5429 i.types[op].bitfield.disp8 = 1;
5430 return 0;
5431 }
5432 i.types[op].bitfield.disp8 = 0;
5433 }
5434 }
5435
5436 i.memshift = 0;
5437
5438 return 0;
5439 }
5440
5441 /* Check if operands are valid for the instruction. Update VEX
5442 operand types. */
5443
5444 static int
5445 VEX_check_operands (const insn_template *t)
5446 {
5447 if (i.vec_encoding == vex_encoding_evex)
5448 {
5449 /* This instruction must be encoded with EVEX prefix. */
5450 if (!is_evex_encoding (t))
5451 {
5452 i.error = unsupported;
5453 return 1;
5454 }
5455 return 0;
5456 }
5457
5458 if (!t->opcode_modifier.vex)
5459 {
5460 /* This instruction template doesn't have VEX prefix. */
5461 if (i.vec_encoding != vex_encoding_default)
5462 {
5463 i.error = unsupported;
5464 return 1;
5465 }
5466 return 0;
5467 }
5468
5469 /* Only check VEX_Imm4, which must be the first operand. */
5470 if (t->operand_types[0].bitfield.vec_imm4)
5471 {
5472 if (i.op[0].imms->X_op != O_constant
5473 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5474 {
5475 i.error = bad_imm4;
5476 return 1;
5477 }
5478
5479 /* Turn off Imm8 so that update_imm won't complain. */
5480 i.types[0] = vec_imm4;
5481 }
5482
5483 return 0;
5484 }
5485
5486 static const insn_template *
5487 match_template (char mnem_suffix)
5488 {
5489 /* Points to template once we've found it. */
5490 const insn_template *t;
5491 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5492 i386_operand_type overlap4;
5493 unsigned int found_reverse_match;
5494 i386_opcode_modifier suffix_check, mnemsuf_check;
5495 i386_operand_type operand_types [MAX_OPERANDS];
5496 int addr_prefix_disp;
5497 unsigned int j;
5498 unsigned int found_cpu_match, size_match;
5499 unsigned int check_register;
5500 enum i386_error specific_error = 0;
5501
5502 #if MAX_OPERANDS != 5
5503 # error "MAX_OPERANDS must be 5."
5504 #endif
5505
5506 found_reverse_match = 0;
5507 addr_prefix_disp = -1;
5508
5509 memset (&suffix_check, 0, sizeof (suffix_check));
5510 if (intel_syntax && i.broadcast)
5511 /* nothing */;
5512 else if (i.suffix == BYTE_MNEM_SUFFIX)
5513 suffix_check.no_bsuf = 1;
5514 else if (i.suffix == WORD_MNEM_SUFFIX)
5515 suffix_check.no_wsuf = 1;
5516 else if (i.suffix == SHORT_MNEM_SUFFIX)
5517 suffix_check.no_ssuf = 1;
5518 else if (i.suffix == LONG_MNEM_SUFFIX)
5519 suffix_check.no_lsuf = 1;
5520 else if (i.suffix == QWORD_MNEM_SUFFIX)
5521 suffix_check.no_qsuf = 1;
5522 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5523 suffix_check.no_ldsuf = 1;
5524
5525 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5526 if (intel_syntax)
5527 {
5528 switch (mnem_suffix)
5529 {
5530 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5531 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5532 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5533 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5534 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5535 }
5536 }
5537
5538 /* Must have right number of operands. */
5539 i.error = number_of_operands_mismatch;
5540
5541 for (t = current_templates->start; t < current_templates->end; t++)
5542 {
5543 addr_prefix_disp = -1;
5544 found_reverse_match = 0;
5545
5546 if (i.operands != t->operands)
5547 continue;
5548
5549 /* Check processor support. */
5550 i.error = unsupported;
5551 found_cpu_match = (cpu_flags_match (t)
5552 == CPU_FLAGS_PERFECT_MATCH);
5553 if (!found_cpu_match)
5554 continue;
5555
5556 /* Check AT&T mnemonic. */
5557 i.error = unsupported_with_intel_mnemonic;
5558 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5559 continue;
5560
5561 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5562 i.error = unsupported_syntax;
5563 if ((intel_syntax && t->opcode_modifier.attsyntax)
5564 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5565 || (intel64 && t->opcode_modifier.amd64)
5566 || (!intel64 && t->opcode_modifier.intel64))
5567 continue;
5568
5569 /* Check the suffix, except for some instructions in intel mode. */
5570 i.error = invalid_instruction_suffix;
5571 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5572 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5573 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5574 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5575 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5576 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5577 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5578 continue;
5579 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5580 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5581 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5582 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5583 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5584 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5585 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5586 continue;
5587
5588 size_match = operand_size_match (t);
5589 if (!size_match)
5590 continue;
5591
5592 for (j = 0; j < MAX_OPERANDS; j++)
5593 operand_types[j] = t->operand_types[j];
5594
5595 /* In general, don't allow 64-bit operands in 32-bit mode. */
5596 if (i.suffix == QWORD_MNEM_SUFFIX
5597 && flag_code != CODE_64BIT
5598 && (intel_syntax
5599 ? (!t->opcode_modifier.ignoresize
5600 && !t->opcode_modifier.broadcast
5601 && !intel_float_operand (t->name))
5602 : intel_float_operand (t->name) != 2)
5603 && ((!operand_types[0].bitfield.regmmx
5604 && !operand_types[0].bitfield.regsimd)
5605 || (!operand_types[t->operands > 1].bitfield.regmmx
5606 && !operand_types[t->operands > 1].bitfield.regsimd))
5607 && (t->base_opcode != 0x0fc7
5608 || t->extension_opcode != 1 /* cmpxchg8b */))
5609 continue;
5610
5611 /* In general, don't allow 32-bit operands on pre-386. */
5612 else if (i.suffix == LONG_MNEM_SUFFIX
5613 && !cpu_arch_flags.bitfield.cpui386
5614 && (intel_syntax
5615 ? (!t->opcode_modifier.ignoresize
5616 && !intel_float_operand (t->name))
5617 : intel_float_operand (t->name) != 2)
5618 && ((!operand_types[0].bitfield.regmmx
5619 && !operand_types[0].bitfield.regsimd)
5620 || (!operand_types[t->operands > 1].bitfield.regmmx
5621 && !operand_types[t->operands > 1].bitfield.regsimd)))
5622 continue;
5623
5624 /* Do not verify operands when there are none. */
5625 else
5626 {
5627 if (!t->operands)
5628 /* We've found a match; break out of loop. */
5629 break;
5630 }
5631
5632 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5633 into Disp32/Disp16/Disp32 operand. */
5634 if (i.prefix[ADDR_PREFIX] != 0)
5635 {
5636 /* There should be only one Disp operand. */
5637 switch (flag_code)
5638 {
5639 case CODE_16BIT:
5640 for (j = 0; j < MAX_OPERANDS; j++)
5641 {
5642 if (operand_types[j].bitfield.disp16)
5643 {
5644 addr_prefix_disp = j;
5645 operand_types[j].bitfield.disp32 = 1;
5646 operand_types[j].bitfield.disp16 = 0;
5647 break;
5648 }
5649 }
5650 break;
5651 case CODE_32BIT:
5652 for (j = 0; j < MAX_OPERANDS; j++)
5653 {
5654 if (operand_types[j].bitfield.disp32)
5655 {
5656 addr_prefix_disp = j;
5657 operand_types[j].bitfield.disp32 = 0;
5658 operand_types[j].bitfield.disp16 = 1;
5659 break;
5660 }
5661 }
5662 break;
5663 case CODE_64BIT:
5664 for (j = 0; j < MAX_OPERANDS; j++)
5665 {
5666 if (operand_types[j].bitfield.disp64)
5667 {
5668 addr_prefix_disp = j;
5669 operand_types[j].bitfield.disp64 = 0;
5670 operand_types[j].bitfield.disp32 = 1;
5671 break;
5672 }
5673 }
5674 break;
5675 }
5676 }
5677
5678 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5679 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5680 continue;
5681
5682 /* We check register size if needed. */
5683 if (t->opcode_modifier.checkregsize)
5684 {
5685 check_register = (1 << t->operands) - 1;
5686 if (i.broadcast)
5687 check_register &= ~(1 << i.broadcast->operand);
5688 }
5689 else
5690 check_register = 0;
5691
5692 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5693 switch (t->operands)
5694 {
5695 case 1:
5696 if (!operand_type_match (overlap0, i.types[0]))
5697 continue;
5698 break;
5699 case 2:
5700 /* xchg %eax, %eax is a special case. It is an alias for nop
5701 only in 32bit mode and we can use opcode 0x90. In 64bit
5702 mode, we can't use 0x90 for xchg %eax, %eax since it should
5703 zero-extend %eax to %rax. */
5704 if (flag_code == CODE_64BIT
5705 && t->base_opcode == 0x90
5706 && operand_type_equal (&i.types [0], &acc32)
5707 && operand_type_equal (&i.types [1], &acc32))
5708 continue;
5709 /* xrelease mov %eax, <disp> is another special case. It must not
5710 match the accumulator-only encoding of mov. */
5711 if (flag_code != CODE_64BIT
5712 && i.hle_prefix
5713 && t->base_opcode == 0xa0
5714 && i.types[0].bitfield.acc
5715 && operand_type_check (i.types[1], anymem))
5716 continue;
5717 /* Fall through. */
5718
5719 case 3:
5720 if (!(size_match & MATCH_STRAIGHT))
5721 goto check_reverse;
5722 /* Reverse direction of operands if swapping is possible in the first
5723 place (operands need to be symmetric) and
5724 - the load form is requested, and the template is a store form,
5725 - the store form is requested, and the template is a load form,
5726 - the non-default (swapped) form is requested. */
5727 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5728 if (t->opcode_modifier.d && i.reg_operands == i.operands
5729 && !operand_type_all_zero (&overlap1))
5730 switch (i.dir_encoding)
5731 {
5732 case dir_encoding_load:
5733 if (operand_type_check (operand_types[i.operands - 1], anymem)
5734 || operand_types[i.operands - 1].bitfield.regmem)
5735 goto check_reverse;
5736 break;
5737
5738 case dir_encoding_store:
5739 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5740 && !operand_types[i.operands - 1].bitfield.regmem)
5741 goto check_reverse;
5742 break;
5743
5744 case dir_encoding_swap:
5745 goto check_reverse;
5746
5747 case dir_encoding_default:
5748 break;
5749 }
5750 /* If we want store form, we skip the current load. */
5751 if ((i.dir_encoding == dir_encoding_store
5752 || i.dir_encoding == dir_encoding_swap)
5753 && i.mem_operands == 0
5754 && t->opcode_modifier.load)
5755 continue;
5756 /* Fall through. */
5757 case 4:
5758 case 5:
5759 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5760 if (!operand_type_match (overlap0, i.types[0])
5761 || !operand_type_match (overlap1, i.types[1])
5762 || ((check_register & 3) == 3
5763 && !operand_type_register_match (i.types[0],
5764 operand_types[0],
5765 i.types[1],
5766 operand_types[1])))
5767 {
5768 /* Check if other direction is valid ... */
5769 if (!t->opcode_modifier.d)
5770 continue;
5771
5772 check_reverse:
5773 if (!(size_match & MATCH_REVERSE))
5774 continue;
5775 /* Try reversing direction of operands. */
5776 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5777 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5778 if (!operand_type_match (overlap0, i.types[0])
5779 || !operand_type_match (overlap1, i.types[i.operands - 1])
5780 || (check_register
5781 && !operand_type_register_match (i.types[0],
5782 operand_types[i.operands - 1],
5783 i.types[i.operands - 1],
5784 operand_types[0])))
5785 {
5786 /* Does not match either direction. */
5787 continue;
5788 }
5789 /* found_reverse_match holds which of D or FloatR
5790 we've found. */
5791 if (!t->opcode_modifier.d)
5792 found_reverse_match = 0;
5793 else if (operand_types[0].bitfield.tbyte)
5794 found_reverse_match = Opcode_FloatD;
5795 else if (operand_types[0].bitfield.xmmword
5796 || operand_types[i.operands - 1].bitfield.xmmword
5797 || operand_types[0].bitfield.regmmx
5798 || operand_types[i.operands - 1].bitfield.regmmx
5799 || is_any_vex_encoding(t))
5800 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5801 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5802 else
5803 found_reverse_match = Opcode_D;
5804 if (t->opcode_modifier.floatr)
5805 found_reverse_match |= Opcode_FloatR;
5806 }
5807 else
5808 {
5809 /* Found a forward 2 operand match here. */
5810 switch (t->operands)
5811 {
5812 case 5:
5813 overlap4 = operand_type_and (i.types[4],
5814 operand_types[4]);
5815 /* Fall through. */
5816 case 4:
5817 overlap3 = operand_type_and (i.types[3],
5818 operand_types[3]);
5819 /* Fall through. */
5820 case 3:
5821 overlap2 = operand_type_and (i.types[2],
5822 operand_types[2]);
5823 break;
5824 }
5825
5826 switch (t->operands)
5827 {
5828 case 5:
5829 if (!operand_type_match (overlap4, i.types[4])
5830 || !operand_type_register_match (i.types[3],
5831 operand_types[3],
5832 i.types[4],
5833 operand_types[4]))
5834 continue;
5835 /* Fall through. */
5836 case 4:
5837 if (!operand_type_match (overlap3, i.types[3])
5838 || ((check_register & 0xa) == 0xa
5839 && !operand_type_register_match (i.types[1],
5840 operand_types[1],
5841 i.types[3],
5842 operand_types[3]))
5843 || ((check_register & 0xc) == 0xc
5844 && !operand_type_register_match (i.types[2],
5845 operand_types[2],
5846 i.types[3],
5847 operand_types[3])))
5848 continue;
5849 /* Fall through. */
5850 case 3:
5851 /* Here we make use of the fact that there are no
5852 reverse match 3 operand instructions. */
5853 if (!operand_type_match (overlap2, i.types[2])
5854 || ((check_register & 5) == 5
5855 && !operand_type_register_match (i.types[0],
5856 operand_types[0],
5857 i.types[2],
5858 operand_types[2]))
5859 || ((check_register & 6) == 6
5860 && !operand_type_register_match (i.types[1],
5861 operand_types[1],
5862 i.types[2],
5863 operand_types[2])))
5864 continue;
5865 break;
5866 }
5867 }
5868 /* Found either forward/reverse 2, 3 or 4 operand match here:
5869 slip through to break. */
5870 }
5871 if (!found_cpu_match)
5872 continue;
5873
5874 /* Check if vector and VEX operands are valid. */
5875 if (check_VecOperands (t) || VEX_check_operands (t))
5876 {
5877 specific_error = i.error;
5878 continue;
5879 }
5880
5881 /* We've found a match; break out of loop. */
5882 break;
5883 }
5884
5885 if (t == current_templates->end)
5886 {
5887 /* We found no match. */
5888 const char *err_msg;
5889 switch (specific_error ? specific_error : i.error)
5890 {
5891 default:
5892 abort ();
5893 case operand_size_mismatch:
5894 err_msg = _("operand size mismatch");
5895 break;
5896 case operand_type_mismatch:
5897 err_msg = _("operand type mismatch");
5898 break;
5899 case register_type_mismatch:
5900 err_msg = _("register type mismatch");
5901 break;
5902 case number_of_operands_mismatch:
5903 err_msg = _("number of operands mismatch");
5904 break;
5905 case invalid_instruction_suffix:
5906 err_msg = _("invalid instruction suffix");
5907 break;
5908 case bad_imm4:
5909 err_msg = _("constant doesn't fit in 4 bits");
5910 break;
5911 case unsupported_with_intel_mnemonic:
5912 err_msg = _("unsupported with Intel mnemonic");
5913 break;
5914 case unsupported_syntax:
5915 err_msg = _("unsupported syntax");
5916 break;
5917 case unsupported:
5918 as_bad (_("unsupported instruction `%s'"),
5919 current_templates->start->name);
5920 return NULL;
5921 case invalid_vsib_address:
5922 err_msg = _("invalid VSIB address");
5923 break;
5924 case invalid_vector_register_set:
5925 err_msg = _("mask, index, and destination registers must be distinct");
5926 break;
5927 case unsupported_vector_index_register:
5928 err_msg = _("unsupported vector index register");
5929 break;
5930 case unsupported_broadcast:
5931 err_msg = _("unsupported broadcast");
5932 break;
5933 case broadcast_needed:
5934 err_msg = _("broadcast is needed for operand of such type");
5935 break;
5936 case unsupported_masking:
5937 err_msg = _("unsupported masking");
5938 break;
5939 case mask_not_on_destination:
5940 err_msg = _("mask not on destination operand");
5941 break;
5942 case no_default_mask:
5943 err_msg = _("default mask isn't allowed");
5944 break;
5945 case unsupported_rc_sae:
5946 err_msg = _("unsupported static rounding/sae");
5947 break;
5948 case rc_sae_operand_not_last_imm:
5949 if (intel_syntax)
5950 err_msg = _("RC/SAE operand must precede immediate operands");
5951 else
5952 err_msg = _("RC/SAE operand must follow immediate operands");
5953 break;
5954 case invalid_register_operand:
5955 err_msg = _("invalid register operand");
5956 break;
5957 }
5958 as_bad (_("%s for `%s'"), err_msg,
5959 current_templates->start->name);
5960 return NULL;
5961 }
5962
5963 if (!quiet_warnings)
5964 {
5965 if (!intel_syntax
5966 && (i.types[0].bitfield.jumpabsolute
5967 != operand_types[0].bitfield.jumpabsolute))
5968 {
5969 as_warn (_("indirect %s without `*'"), t->name);
5970 }
5971
5972 if (t->opcode_modifier.isprefix
5973 && t->opcode_modifier.ignoresize)
5974 {
5975 /* Warn them that a data or address size prefix doesn't
5976 affect assembly of the next line of code. */
5977 as_warn (_("stand-alone `%s' prefix"), t->name);
5978 }
5979 }
5980
5981 /* Copy the template we found. */
5982 i.tm = *t;
5983
5984 if (addr_prefix_disp != -1)
5985 i.tm.operand_types[addr_prefix_disp]
5986 = operand_types[addr_prefix_disp];
5987
5988 if (found_reverse_match)
5989 {
5990 /* If we found a reverse match we must alter the opcode
5991 direction bit. found_reverse_match holds bits to change
5992 (different for int & float insns). */
5993
5994 i.tm.base_opcode ^= found_reverse_match;
5995
5996 i.tm.operand_types[0] = operand_types[i.operands - 1];
5997 i.tm.operand_types[i.operands - 1] = operand_types[0];
5998 }
5999
6000 return t;
6001 }
6002
6003 static int
6004 check_string (void)
6005 {
6006 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6007 if (i.tm.operand_types[mem_op].bitfield.esseg)
6008 {
6009 if (i.seg[0] != NULL && i.seg[0] != &es)
6010 {
6011 as_bad (_("`%s' operand %d must use `%ses' segment"),
6012 i.tm.name,
6013 mem_op + 1,
6014 register_prefix);
6015 return 0;
6016 }
6017 /* There's only ever one segment override allowed per instruction.
6018 This instruction possibly has a legal segment override on the
6019 second operand, so copy the segment to where non-string
6020 instructions store it, allowing common code. */
6021 i.seg[0] = i.seg[1];
6022 }
6023 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6024 {
6025 if (i.seg[1] != NULL && i.seg[1] != &es)
6026 {
6027 as_bad (_("`%s' operand %d must use `%ses' segment"),
6028 i.tm.name,
6029 mem_op + 2,
6030 register_prefix);
6031 return 0;
6032 }
6033 }
6034 return 1;
6035 }
6036
6037 static int
6038 process_suffix (void)
6039 {
6040 /* If matched instruction specifies an explicit instruction mnemonic
6041 suffix, use it. */
6042 if (i.tm.opcode_modifier.size16)
6043 i.suffix = WORD_MNEM_SUFFIX;
6044 else if (i.tm.opcode_modifier.size32)
6045 i.suffix = LONG_MNEM_SUFFIX;
6046 else if (i.tm.opcode_modifier.size64)
6047 i.suffix = QWORD_MNEM_SUFFIX;
6048 else if (i.reg_operands)
6049 {
6050 /* If there's no instruction mnemonic suffix we try to invent one
6051 based on register operands. */
6052 if (!i.suffix)
6053 {
6054 /* We take i.suffix from the last register operand specified,
6055 Destination register type is more significant than source
6056 register type. crc32 in SSE4.2 prefers source register
6057 type. */
6058 if (i.tm.base_opcode == 0xf20f38f1)
6059 {
6060 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
6061 i.suffix = WORD_MNEM_SUFFIX;
6062 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
6063 i.suffix = LONG_MNEM_SUFFIX;
6064 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
6065 i.suffix = QWORD_MNEM_SUFFIX;
6066 }
6067 else if (i.tm.base_opcode == 0xf20f38f0)
6068 {
6069 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
6070 i.suffix = BYTE_MNEM_SUFFIX;
6071 }
6072
6073 if (!i.suffix)
6074 {
6075 int op;
6076
6077 if (i.tm.base_opcode == 0xf20f38f1
6078 || i.tm.base_opcode == 0xf20f38f0)
6079 {
6080 /* We have to know the operand size for crc32. */
6081 as_bad (_("ambiguous memory operand size for `%s`"),
6082 i.tm.name);
6083 return 0;
6084 }
6085
6086 for (op = i.operands; --op >= 0;)
6087 if (!i.tm.operand_types[op].bitfield.inoutportreg
6088 && !i.tm.operand_types[op].bitfield.shiftcount)
6089 {
6090 if (!i.types[op].bitfield.reg)
6091 continue;
6092 if (i.types[op].bitfield.byte)
6093 i.suffix = BYTE_MNEM_SUFFIX;
6094 else if (i.types[op].bitfield.word)
6095 i.suffix = WORD_MNEM_SUFFIX;
6096 else if (i.types[op].bitfield.dword)
6097 i.suffix = LONG_MNEM_SUFFIX;
6098 else if (i.types[op].bitfield.qword)
6099 i.suffix = QWORD_MNEM_SUFFIX;
6100 else
6101 continue;
6102 break;
6103 }
6104 }
6105 }
6106 else if (i.suffix == BYTE_MNEM_SUFFIX)
6107 {
6108 if (intel_syntax
6109 && i.tm.opcode_modifier.ignoresize
6110 && i.tm.opcode_modifier.no_bsuf)
6111 i.suffix = 0;
6112 else if (!check_byte_reg ())
6113 return 0;
6114 }
6115 else if (i.suffix == LONG_MNEM_SUFFIX)
6116 {
6117 if (intel_syntax
6118 && i.tm.opcode_modifier.ignoresize
6119 && i.tm.opcode_modifier.no_lsuf
6120 && !i.tm.opcode_modifier.todword
6121 && !i.tm.opcode_modifier.toqword)
6122 i.suffix = 0;
6123 else if (!check_long_reg ())
6124 return 0;
6125 }
6126 else if (i.suffix == QWORD_MNEM_SUFFIX)
6127 {
6128 if (intel_syntax
6129 && i.tm.opcode_modifier.ignoresize
6130 && i.tm.opcode_modifier.no_qsuf
6131 && !i.tm.opcode_modifier.todword
6132 && !i.tm.opcode_modifier.toqword)
6133 i.suffix = 0;
6134 else if (!check_qword_reg ())
6135 return 0;
6136 }
6137 else if (i.suffix == WORD_MNEM_SUFFIX)
6138 {
6139 if (intel_syntax
6140 && i.tm.opcode_modifier.ignoresize
6141 && i.tm.opcode_modifier.no_wsuf)
6142 i.suffix = 0;
6143 else if (!check_word_reg ())
6144 return 0;
6145 }
6146 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6147 /* Do nothing if the instruction is going to ignore the prefix. */
6148 ;
6149 else
6150 abort ();
6151 }
6152 else if (i.tm.opcode_modifier.defaultsize
6153 && !i.suffix
6154 /* exclude fldenv/frstor/fsave/fstenv */
6155 && i.tm.opcode_modifier.no_ssuf)
6156 {
6157 i.suffix = stackop_size;
6158 }
6159 else if (intel_syntax
6160 && !i.suffix
6161 && (i.tm.operand_types[0].bitfield.jumpabsolute
6162 || i.tm.opcode_modifier.jumpbyte
6163 || i.tm.opcode_modifier.jumpintersegment
6164 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6165 && i.tm.extension_opcode <= 3)))
6166 {
6167 switch (flag_code)
6168 {
6169 case CODE_64BIT:
6170 if (!i.tm.opcode_modifier.no_qsuf)
6171 {
6172 i.suffix = QWORD_MNEM_SUFFIX;
6173 break;
6174 }
6175 /* Fall through. */
6176 case CODE_32BIT:
6177 if (!i.tm.opcode_modifier.no_lsuf)
6178 i.suffix = LONG_MNEM_SUFFIX;
6179 break;
6180 case CODE_16BIT:
6181 if (!i.tm.opcode_modifier.no_wsuf)
6182 i.suffix = WORD_MNEM_SUFFIX;
6183 break;
6184 }
6185 }
6186
6187 if (!i.suffix)
6188 {
6189 if (!intel_syntax)
6190 {
6191 if (i.tm.opcode_modifier.w)
6192 {
6193 as_bad (_("no instruction mnemonic suffix given and "
6194 "no register operands; can't size instruction"));
6195 return 0;
6196 }
6197 }
6198 else
6199 {
6200 unsigned int suffixes;
6201
6202 suffixes = !i.tm.opcode_modifier.no_bsuf;
6203 if (!i.tm.opcode_modifier.no_wsuf)
6204 suffixes |= 1 << 1;
6205 if (!i.tm.opcode_modifier.no_lsuf)
6206 suffixes |= 1 << 2;
6207 if (!i.tm.opcode_modifier.no_ldsuf)
6208 suffixes |= 1 << 3;
6209 if (!i.tm.opcode_modifier.no_ssuf)
6210 suffixes |= 1 << 4;
6211 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6212 suffixes |= 1 << 5;
6213
6214 /* There are more than suffix matches. */
6215 if (i.tm.opcode_modifier.w
6216 || ((suffixes & (suffixes - 1))
6217 && !i.tm.opcode_modifier.defaultsize
6218 && !i.tm.opcode_modifier.ignoresize))
6219 {
6220 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6221 return 0;
6222 }
6223 }
6224 }
6225
6226 /* Change the opcode based on the operand size given by i.suffix. */
6227 switch (i.suffix)
6228 {
6229 /* Size floating point instruction. */
6230 case LONG_MNEM_SUFFIX:
6231 if (i.tm.opcode_modifier.floatmf)
6232 {
6233 i.tm.base_opcode ^= 4;
6234 break;
6235 }
6236 /* fall through */
6237 case WORD_MNEM_SUFFIX:
6238 case QWORD_MNEM_SUFFIX:
6239 /* It's not a byte, select word/dword operation. */
6240 if (i.tm.opcode_modifier.w)
6241 {
6242 if (i.tm.opcode_modifier.shortform)
6243 i.tm.base_opcode |= 8;
6244 else
6245 i.tm.base_opcode |= 1;
6246 }
6247 /* fall through */
6248 case SHORT_MNEM_SUFFIX:
6249 /* Now select between word & dword operations via the operand
6250 size prefix, except for instructions that will ignore this
6251 prefix anyway. */
6252 if (i.reg_operands > 0
6253 && i.types[0].bitfield.reg
6254 && i.tm.opcode_modifier.addrprefixopreg
6255 && (i.tm.opcode_modifier.immext
6256 || i.operands == 1))
6257 {
6258 /* The address size override prefix changes the size of the
6259 first operand. */
6260 if ((flag_code == CODE_32BIT
6261 && i.op[0].regs->reg_type.bitfield.word)
6262 || (flag_code != CODE_32BIT
6263 && i.op[0].regs->reg_type.bitfield.dword))
6264 if (!add_prefix (ADDR_PREFIX_OPCODE))
6265 return 0;
6266 }
6267 else if (i.suffix != QWORD_MNEM_SUFFIX
6268 && !i.tm.opcode_modifier.ignoresize
6269 && !i.tm.opcode_modifier.floatmf
6270 && !i.tm.opcode_modifier.vex
6271 && !i.tm.opcode_modifier.vexopcode
6272 && !is_evex_encoding (&i.tm)
6273 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6274 || (flag_code == CODE_64BIT
6275 && i.tm.opcode_modifier.jumpbyte)))
6276 {
6277 unsigned int prefix = DATA_PREFIX_OPCODE;
6278
6279 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6280 prefix = ADDR_PREFIX_OPCODE;
6281
6282 if (!add_prefix (prefix))
6283 return 0;
6284 }
6285
6286 /* Set mode64 for an operand. */
6287 if (i.suffix == QWORD_MNEM_SUFFIX
6288 && flag_code == CODE_64BIT
6289 && !i.tm.opcode_modifier.norex64
6290 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6291 need rex64. */
6292 && ! (i.operands == 2
6293 && i.tm.base_opcode == 0x90
6294 && i.tm.extension_opcode == None
6295 && operand_type_equal (&i.types [0], &acc64)
6296 && operand_type_equal (&i.types [1], &acc64)))
6297 i.rex |= REX_W;
6298
6299 break;
6300 }
6301
6302 if (i.reg_operands != 0
6303 && i.operands > 1
6304 && i.tm.opcode_modifier.addrprefixopreg
6305 && !i.tm.opcode_modifier.immext)
6306 {
6307 /* Check invalid register operand when the address size override
6308 prefix changes the size of register operands. */
6309 unsigned int op;
6310 enum { need_word, need_dword, need_qword } need;
6311
6312 if (flag_code == CODE_32BIT)
6313 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6314 else
6315 {
6316 if (i.prefix[ADDR_PREFIX])
6317 need = need_dword;
6318 else
6319 need = flag_code == CODE_64BIT ? need_qword : need_word;
6320 }
6321
6322 for (op = 0; op < i.operands; op++)
6323 if (i.types[op].bitfield.reg
6324 && ((need == need_word
6325 && !i.op[op].regs->reg_type.bitfield.word)
6326 || (need == need_dword
6327 && !i.op[op].regs->reg_type.bitfield.dword)
6328 || (need == need_qword
6329 && !i.op[op].regs->reg_type.bitfield.qword)))
6330 {
6331 as_bad (_("invalid register operand size for `%s'"),
6332 i.tm.name);
6333 return 0;
6334 }
6335 }
6336
6337 return 1;
6338 }
6339
6340 static int
6341 check_byte_reg (void)
6342 {
6343 int op;
6344
6345 for (op = i.operands; --op >= 0;)
6346 {
6347 /* Skip non-register operands. */
6348 if (!i.types[op].bitfield.reg)
6349 continue;
6350
6351 /* If this is an eight bit register, it's OK. If it's the 16 or
6352 32 bit version of an eight bit register, we will just use the
6353 low portion, and that's OK too. */
6354 if (i.types[op].bitfield.byte)
6355 continue;
6356
6357 /* I/O port address operands are OK too. */
6358 if (i.tm.operand_types[op].bitfield.inoutportreg)
6359 continue;
6360
6361 /* crc32 doesn't generate this warning. */
6362 if (i.tm.base_opcode == 0xf20f38f0)
6363 continue;
6364
6365 if ((i.types[op].bitfield.word
6366 || i.types[op].bitfield.dword
6367 || i.types[op].bitfield.qword)
6368 && i.op[op].regs->reg_num < 4
6369 /* Prohibit these changes in 64bit mode, since the lowering
6370 would be more complicated. */
6371 && flag_code != CODE_64BIT)
6372 {
6373 #if REGISTER_WARNINGS
6374 if (!quiet_warnings)
6375 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6376 register_prefix,
6377 (i.op[op].regs + (i.types[op].bitfield.word
6378 ? REGNAM_AL - REGNAM_AX
6379 : REGNAM_AL - REGNAM_EAX))->reg_name,
6380 register_prefix,
6381 i.op[op].regs->reg_name,
6382 i.suffix);
6383 #endif
6384 continue;
6385 }
6386 /* Any other register is bad. */
6387 if (i.types[op].bitfield.reg
6388 || i.types[op].bitfield.regmmx
6389 || i.types[op].bitfield.regsimd
6390 || i.types[op].bitfield.sreg2
6391 || i.types[op].bitfield.sreg3
6392 || i.types[op].bitfield.control
6393 || i.types[op].bitfield.debug
6394 || i.types[op].bitfield.test)
6395 {
6396 as_bad (_("`%s%s' not allowed with `%s%c'"),
6397 register_prefix,
6398 i.op[op].regs->reg_name,
6399 i.tm.name,
6400 i.suffix);
6401 return 0;
6402 }
6403 }
6404 return 1;
6405 }
6406
6407 static int
6408 check_long_reg (void)
6409 {
6410 int op;
6411
6412 for (op = i.operands; --op >= 0;)
6413 /* Skip non-register operands. */
6414 if (!i.types[op].bitfield.reg)
6415 continue;
6416 /* Reject eight bit registers, except where the template requires
6417 them. (eg. movzb) */
6418 else if (i.types[op].bitfield.byte
6419 && (i.tm.operand_types[op].bitfield.reg
6420 || i.tm.operand_types[op].bitfield.acc)
6421 && (i.tm.operand_types[op].bitfield.word
6422 || i.tm.operand_types[op].bitfield.dword))
6423 {
6424 as_bad (_("`%s%s' not allowed with `%s%c'"),
6425 register_prefix,
6426 i.op[op].regs->reg_name,
6427 i.tm.name,
6428 i.suffix);
6429 return 0;
6430 }
6431 /* Warn if the e prefix on a general reg is missing. */
6432 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6433 && i.types[op].bitfield.word
6434 && (i.tm.operand_types[op].bitfield.reg
6435 || i.tm.operand_types[op].bitfield.acc)
6436 && i.tm.operand_types[op].bitfield.dword)
6437 {
6438 /* Prohibit these changes in the 64bit mode, since the
6439 lowering is more complicated. */
6440 if (flag_code == CODE_64BIT)
6441 {
6442 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6443 register_prefix, i.op[op].regs->reg_name,
6444 i.suffix);
6445 return 0;
6446 }
6447 #if REGISTER_WARNINGS
6448 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6449 register_prefix,
6450 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6451 register_prefix, i.op[op].regs->reg_name, i.suffix);
6452 #endif
6453 }
6454 /* Warn if the r prefix on a general reg is present. */
6455 else if (i.types[op].bitfield.qword
6456 && (i.tm.operand_types[op].bitfield.reg
6457 || i.tm.operand_types[op].bitfield.acc)
6458 && i.tm.operand_types[op].bitfield.dword)
6459 {
6460 if (intel_syntax
6461 && i.tm.opcode_modifier.toqword
6462 && !i.types[0].bitfield.regsimd)
6463 {
6464 /* Convert to QWORD. We want REX byte. */
6465 i.suffix = QWORD_MNEM_SUFFIX;
6466 }
6467 else
6468 {
6469 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6470 register_prefix, i.op[op].regs->reg_name,
6471 i.suffix);
6472 return 0;
6473 }
6474 }
6475 return 1;
6476 }
6477
6478 static int
6479 check_qword_reg (void)
6480 {
6481 int op;
6482
6483 for (op = i.operands; --op >= 0; )
6484 /* Skip non-register operands. */
6485 if (!i.types[op].bitfield.reg)
6486 continue;
6487 /* Reject eight bit registers, except where the template requires
6488 them. (eg. movzb) */
6489 else if (i.types[op].bitfield.byte
6490 && (i.tm.operand_types[op].bitfield.reg
6491 || i.tm.operand_types[op].bitfield.acc)
6492 && (i.tm.operand_types[op].bitfield.word
6493 || i.tm.operand_types[op].bitfield.dword))
6494 {
6495 as_bad (_("`%s%s' not allowed with `%s%c'"),
6496 register_prefix,
6497 i.op[op].regs->reg_name,
6498 i.tm.name,
6499 i.suffix);
6500 return 0;
6501 }
6502 /* Warn if the r prefix on a general reg is missing. */
6503 else if ((i.types[op].bitfield.word
6504 || i.types[op].bitfield.dword)
6505 && (i.tm.operand_types[op].bitfield.reg
6506 || i.tm.operand_types[op].bitfield.acc)
6507 && i.tm.operand_types[op].bitfield.qword)
6508 {
6509 /* Prohibit these changes in the 64bit mode, since the
6510 lowering is more complicated. */
6511 if (intel_syntax
6512 && i.tm.opcode_modifier.todword
6513 && !i.types[0].bitfield.regsimd)
6514 {
6515 /* Convert to DWORD. We don't want REX byte. */
6516 i.suffix = LONG_MNEM_SUFFIX;
6517 }
6518 else
6519 {
6520 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6521 register_prefix, i.op[op].regs->reg_name,
6522 i.suffix);
6523 return 0;
6524 }
6525 }
6526 return 1;
6527 }
6528
6529 static int
6530 check_word_reg (void)
6531 {
6532 int op;
6533 for (op = i.operands; --op >= 0;)
6534 /* Skip non-register operands. */
6535 if (!i.types[op].bitfield.reg)
6536 continue;
6537 /* Reject eight bit registers, except where the template requires
6538 them. (eg. movzb) */
6539 else if (i.types[op].bitfield.byte
6540 && (i.tm.operand_types[op].bitfield.reg
6541 || i.tm.operand_types[op].bitfield.acc)
6542 && (i.tm.operand_types[op].bitfield.word
6543 || i.tm.operand_types[op].bitfield.dword))
6544 {
6545 as_bad (_("`%s%s' not allowed with `%s%c'"),
6546 register_prefix,
6547 i.op[op].regs->reg_name,
6548 i.tm.name,
6549 i.suffix);
6550 return 0;
6551 }
6552 /* Warn if the e or r prefix on a general reg is present. */
6553 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6554 && (i.types[op].bitfield.dword
6555 || i.types[op].bitfield.qword)
6556 && (i.tm.operand_types[op].bitfield.reg
6557 || i.tm.operand_types[op].bitfield.acc)
6558 && i.tm.operand_types[op].bitfield.word)
6559 {
6560 /* Prohibit these changes in the 64bit mode, since the
6561 lowering is more complicated. */
6562 if (flag_code == CODE_64BIT)
6563 {
6564 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6565 register_prefix, i.op[op].regs->reg_name,
6566 i.suffix);
6567 return 0;
6568 }
6569 #if REGISTER_WARNINGS
6570 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6571 register_prefix,
6572 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6573 register_prefix, i.op[op].regs->reg_name, i.suffix);
6574 #endif
6575 }
6576 return 1;
6577 }
6578
6579 static int
6580 update_imm (unsigned int j)
6581 {
6582 i386_operand_type overlap = i.types[j];
6583 if ((overlap.bitfield.imm8
6584 || overlap.bitfield.imm8s
6585 || overlap.bitfield.imm16
6586 || overlap.bitfield.imm32
6587 || overlap.bitfield.imm32s
6588 || overlap.bitfield.imm64)
6589 && !operand_type_equal (&overlap, &imm8)
6590 && !operand_type_equal (&overlap, &imm8s)
6591 && !operand_type_equal (&overlap, &imm16)
6592 && !operand_type_equal (&overlap, &imm32)
6593 && !operand_type_equal (&overlap, &imm32s)
6594 && !operand_type_equal (&overlap, &imm64))
6595 {
6596 if (i.suffix)
6597 {
6598 i386_operand_type temp;
6599
6600 operand_type_set (&temp, 0);
6601 if (i.suffix == BYTE_MNEM_SUFFIX)
6602 {
6603 temp.bitfield.imm8 = overlap.bitfield.imm8;
6604 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6605 }
6606 else if (i.suffix == WORD_MNEM_SUFFIX)
6607 temp.bitfield.imm16 = overlap.bitfield.imm16;
6608 else if (i.suffix == QWORD_MNEM_SUFFIX)
6609 {
6610 temp.bitfield.imm64 = overlap.bitfield.imm64;
6611 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6612 }
6613 else
6614 temp.bitfield.imm32 = overlap.bitfield.imm32;
6615 overlap = temp;
6616 }
6617 else if (operand_type_equal (&overlap, &imm16_32_32s)
6618 || operand_type_equal (&overlap, &imm16_32)
6619 || operand_type_equal (&overlap, &imm16_32s))
6620 {
6621 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6622 overlap = imm16;
6623 else
6624 overlap = imm32s;
6625 }
6626 if (!operand_type_equal (&overlap, &imm8)
6627 && !operand_type_equal (&overlap, &imm8s)
6628 && !operand_type_equal (&overlap, &imm16)
6629 && !operand_type_equal (&overlap, &imm32)
6630 && !operand_type_equal (&overlap, &imm32s)
6631 && !operand_type_equal (&overlap, &imm64))
6632 {
6633 as_bad (_("no instruction mnemonic suffix given; "
6634 "can't determine immediate size"));
6635 return 0;
6636 }
6637 }
6638 i.types[j] = overlap;
6639
6640 return 1;
6641 }
6642
6643 static int
6644 finalize_imm (void)
6645 {
6646 unsigned int j, n;
6647
6648 /* Update the first 2 immediate operands. */
6649 n = i.operands > 2 ? 2 : i.operands;
6650 if (n)
6651 {
6652 for (j = 0; j < n; j++)
6653 if (update_imm (j) == 0)
6654 return 0;
6655
6656 /* The 3rd operand can't be immediate operand. */
6657 gas_assert (operand_type_check (i.types[2], imm) == 0);
6658 }
6659
6660 return 1;
6661 }
6662
6663 static int
6664 process_operands (void)
6665 {
6666 /* Default segment register this instruction will use for memory
6667 accesses. 0 means unknown. This is only for optimizing out
6668 unnecessary segment overrides. */
6669 const seg_entry *default_seg = 0;
6670
6671 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6672 {
6673 unsigned int dupl = i.operands;
6674 unsigned int dest = dupl - 1;
6675 unsigned int j;
6676
6677 /* The destination must be an xmm register. */
6678 gas_assert (i.reg_operands
6679 && MAX_OPERANDS > dupl
6680 && operand_type_equal (&i.types[dest], &regxmm));
6681
6682 if (i.tm.operand_types[0].bitfield.acc
6683 && i.tm.operand_types[0].bitfield.xmmword)
6684 {
6685 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6686 {
6687 /* Keep xmm0 for instructions with VEX prefix and 3
6688 sources. */
6689 i.tm.operand_types[0].bitfield.acc = 0;
6690 i.tm.operand_types[0].bitfield.regsimd = 1;
6691 goto duplicate;
6692 }
6693 else
6694 {
6695 /* We remove the first xmm0 and keep the number of
6696 operands unchanged, which in fact duplicates the
6697 destination. */
6698 for (j = 1; j < i.operands; j++)
6699 {
6700 i.op[j - 1] = i.op[j];
6701 i.types[j - 1] = i.types[j];
6702 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6703 }
6704 }
6705 }
6706 else if (i.tm.opcode_modifier.implicit1stxmm0)
6707 {
6708 gas_assert ((MAX_OPERANDS - 1) > dupl
6709 && (i.tm.opcode_modifier.vexsources
6710 == VEX3SOURCES));
6711
6712 /* Add the implicit xmm0 for instructions with VEX prefix
6713 and 3 sources. */
6714 for (j = i.operands; j > 0; j--)
6715 {
6716 i.op[j] = i.op[j - 1];
6717 i.types[j] = i.types[j - 1];
6718 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6719 }
6720 i.op[0].regs
6721 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6722 i.types[0] = regxmm;
6723 i.tm.operand_types[0] = regxmm;
6724
6725 i.operands += 2;
6726 i.reg_operands += 2;
6727 i.tm.operands += 2;
6728
6729 dupl++;
6730 dest++;
6731 i.op[dupl] = i.op[dest];
6732 i.types[dupl] = i.types[dest];
6733 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6734 }
6735 else
6736 {
6737 duplicate:
6738 i.operands++;
6739 i.reg_operands++;
6740 i.tm.operands++;
6741
6742 i.op[dupl] = i.op[dest];
6743 i.types[dupl] = i.types[dest];
6744 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6745 }
6746
6747 if (i.tm.opcode_modifier.immext)
6748 process_immext ();
6749 }
6750 else if (i.tm.operand_types[0].bitfield.acc
6751 && i.tm.operand_types[0].bitfield.xmmword)
6752 {
6753 unsigned int j;
6754
6755 for (j = 1; j < i.operands; j++)
6756 {
6757 i.op[j - 1] = i.op[j];
6758 i.types[j - 1] = i.types[j];
6759
6760 /* We need to adjust fields in i.tm since they are used by
6761 build_modrm_byte. */
6762 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6763 }
6764
6765 i.operands--;
6766 i.reg_operands--;
6767 i.tm.operands--;
6768 }
6769 else if (i.tm.opcode_modifier.implicitquadgroup)
6770 {
6771 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6772
6773 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6774 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6775 regnum = register_number (i.op[1].regs);
6776 first_reg_in_group = regnum & ~3;
6777 last_reg_in_group = first_reg_in_group + 3;
6778 if (regnum != first_reg_in_group)
6779 as_warn (_("source register `%s%s' implicitly denotes"
6780 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6781 register_prefix, i.op[1].regs->reg_name,
6782 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6783 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6784 i.tm.name);
6785 }
6786 else if (i.tm.opcode_modifier.regkludge)
6787 {
6788 /* The imul $imm, %reg instruction is converted into
6789 imul $imm, %reg, %reg, and the clr %reg instruction
6790 is converted into xor %reg, %reg. */
6791
6792 unsigned int first_reg_op;
6793
6794 if (operand_type_check (i.types[0], reg))
6795 first_reg_op = 0;
6796 else
6797 first_reg_op = 1;
6798 /* Pretend we saw the extra register operand. */
6799 gas_assert (i.reg_operands == 1
6800 && i.op[first_reg_op + 1].regs == 0);
6801 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6802 i.types[first_reg_op + 1] = i.types[first_reg_op];
6803 i.operands++;
6804 i.reg_operands++;
6805 }
6806
6807 if (i.tm.opcode_modifier.shortform)
6808 {
6809 if (i.types[0].bitfield.sreg2
6810 || i.types[0].bitfield.sreg3)
6811 {
6812 if (i.tm.base_opcode == POP_SEG_SHORT
6813 && i.op[0].regs->reg_num == 1)
6814 {
6815 as_bad (_("you can't `pop %scs'"), register_prefix);
6816 return 0;
6817 }
6818 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6819 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6820 i.rex |= REX_B;
6821 }
6822 else
6823 {
6824 /* The register or float register operand is in operand
6825 0 or 1. */
6826 unsigned int op;
6827
6828 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6829 || operand_type_check (i.types[0], reg))
6830 op = 0;
6831 else
6832 op = 1;
6833 /* Register goes in low 3 bits of opcode. */
6834 i.tm.base_opcode |= i.op[op].regs->reg_num;
6835 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6836 i.rex |= REX_B;
6837 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6838 {
6839 /* Warn about some common errors, but press on regardless.
6840 The first case can be generated by gcc (<= 2.8.1). */
6841 if (i.operands == 2)
6842 {
6843 /* Reversed arguments on faddp, fsubp, etc. */
6844 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6845 register_prefix, i.op[!intel_syntax].regs->reg_name,
6846 register_prefix, i.op[intel_syntax].regs->reg_name);
6847 }
6848 else
6849 {
6850 /* Extraneous `l' suffix on fp insn. */
6851 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6852 register_prefix, i.op[0].regs->reg_name);
6853 }
6854 }
6855 }
6856 }
6857 else if (i.tm.opcode_modifier.modrm)
6858 {
6859 /* The opcode is completed (modulo i.tm.extension_opcode which
6860 must be put into the modrm byte). Now, we make the modrm and
6861 index base bytes based on all the info we've collected. */
6862
6863 default_seg = build_modrm_byte ();
6864 }
6865 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6866 {
6867 default_seg = &ds;
6868 }
6869 else if (i.tm.opcode_modifier.isstring)
6870 {
6871 /* For the string instructions that allow a segment override
6872 on one of their operands, the default segment is ds. */
6873 default_seg = &ds;
6874 }
6875
6876 if (i.tm.base_opcode == 0x8d /* lea */
6877 && i.seg[0]
6878 && !quiet_warnings)
6879 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6880
6881 /* If a segment was explicitly specified, and the specified segment
6882 is not the default, use an opcode prefix to select it. If we
6883 never figured out what the default segment is, then default_seg
6884 will be zero at this point, and the specified segment prefix will
6885 always be used. */
6886 if ((i.seg[0]) && (i.seg[0] != default_seg))
6887 {
6888 if (!add_prefix (i.seg[0]->seg_prefix))
6889 return 0;
6890 }
6891 return 1;
6892 }
6893
6894 static const seg_entry *
6895 build_modrm_byte (void)
6896 {
6897 const seg_entry *default_seg = 0;
6898 unsigned int source, dest;
6899 int vex_3_sources;
6900
6901 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6902 if (vex_3_sources)
6903 {
6904 unsigned int nds, reg_slot;
6905 expressionS *exp;
6906
6907 dest = i.operands - 1;
6908 nds = dest - 1;
6909
6910 /* There are 2 kinds of instructions:
6911 1. 5 operands: 4 register operands or 3 register operands
6912 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6913 VexW0 or VexW1. The destination must be either XMM, YMM or
6914 ZMM register.
6915 2. 4 operands: 4 register operands or 3 register operands
6916 plus 1 memory operand, with VexXDS. */
6917 gas_assert ((i.reg_operands == 4
6918 || (i.reg_operands == 3 && i.mem_operands == 1))
6919 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6920 && i.tm.opcode_modifier.vexw
6921 && i.tm.operand_types[dest].bitfield.regsimd);
6922
6923 /* If VexW1 is set, the first non-immediate operand is the source and
6924 the second non-immediate one is encoded in the immediate operand. */
6925 if (i.tm.opcode_modifier.vexw == VEXW1)
6926 {
6927 source = i.imm_operands;
6928 reg_slot = i.imm_operands + 1;
6929 }
6930 else
6931 {
6932 source = i.imm_operands + 1;
6933 reg_slot = i.imm_operands;
6934 }
6935
6936 if (i.imm_operands == 0)
6937 {
6938 /* When there is no immediate operand, generate an 8bit
6939 immediate operand to encode the first operand. */
6940 exp = &im_expressions[i.imm_operands++];
6941 i.op[i.operands].imms = exp;
6942 i.types[i.operands] = imm8;
6943 i.operands++;
6944
6945 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6946 exp->X_op = O_constant;
6947 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6948 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6949 }
6950 else
6951 {
6952 unsigned int imm_slot;
6953
6954 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6955
6956 if (i.tm.opcode_modifier.immext)
6957 {
6958 /* When ImmExt is set, the immediate byte is the last
6959 operand. */
6960 imm_slot = i.operands - 1;
6961 source--;
6962 reg_slot--;
6963 }
6964 else
6965 {
6966 imm_slot = 0;
6967
6968 /* Turn on Imm8 so that output_imm will generate it. */
6969 i.types[imm_slot].bitfield.imm8 = 1;
6970 }
6971
6972 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6973 i.op[imm_slot].imms->X_add_number
6974 |= register_number (i.op[reg_slot].regs) << 4;
6975 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6976 }
6977
6978 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6979 i.vex.register_specifier = i.op[nds].regs;
6980 }
6981 else
6982 source = dest = 0;
6983
6984 /* i.reg_operands MUST be the number of real register operands;
6985 implicit registers do not count. If there are 3 register
6986 operands, it must be a instruction with VexNDS. For a
6987 instruction with VexNDD, the destination register is encoded
6988 in VEX prefix. If there are 4 register operands, it must be
6989 a instruction with VEX prefix and 3 sources. */
6990 if (i.mem_operands == 0
6991 && ((i.reg_operands == 2
6992 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6993 || (i.reg_operands == 3
6994 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6995 || (i.reg_operands == 4 && vex_3_sources)))
6996 {
6997 switch (i.operands)
6998 {
6999 case 2:
7000 source = 0;
7001 break;
7002 case 3:
7003 /* When there are 3 operands, one of them may be immediate,
7004 which may be the first or the last operand. Otherwise,
7005 the first operand must be shift count register (cl) or it
7006 is an instruction with VexNDS. */
7007 gas_assert (i.imm_operands == 1
7008 || (i.imm_operands == 0
7009 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7010 || i.types[0].bitfield.shiftcount)));
7011 if (operand_type_check (i.types[0], imm)
7012 || i.types[0].bitfield.shiftcount)
7013 source = 1;
7014 else
7015 source = 0;
7016 break;
7017 case 4:
7018 /* When there are 4 operands, the first two must be 8bit
7019 immediate operands. The source operand will be the 3rd
7020 one.
7021
7022 For instructions with VexNDS, if the first operand
7023 an imm8, the source operand is the 2nd one. If the last
7024 operand is imm8, the source operand is the first one. */
7025 gas_assert ((i.imm_operands == 2
7026 && i.types[0].bitfield.imm8
7027 && i.types[1].bitfield.imm8)
7028 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7029 && i.imm_operands == 1
7030 && (i.types[0].bitfield.imm8
7031 || i.types[i.operands - 1].bitfield.imm8
7032 || i.rounding)));
7033 if (i.imm_operands == 2)
7034 source = 2;
7035 else
7036 {
7037 if (i.types[0].bitfield.imm8)
7038 source = 1;
7039 else
7040 source = 0;
7041 }
7042 break;
7043 case 5:
7044 if (is_evex_encoding (&i.tm))
7045 {
7046 /* For EVEX instructions, when there are 5 operands, the
7047 first one must be immediate operand. If the second one
7048 is immediate operand, the source operand is the 3th
7049 one. If the last one is immediate operand, the source
7050 operand is the 2nd one. */
7051 gas_assert (i.imm_operands == 2
7052 && i.tm.opcode_modifier.sae
7053 && operand_type_check (i.types[0], imm));
7054 if (operand_type_check (i.types[1], imm))
7055 source = 2;
7056 else if (operand_type_check (i.types[4], imm))
7057 source = 1;
7058 else
7059 abort ();
7060 }
7061 break;
7062 default:
7063 abort ();
7064 }
7065
7066 if (!vex_3_sources)
7067 {
7068 dest = source + 1;
7069
7070 /* RC/SAE operand could be between DEST and SRC. That happens
7071 when one operand is GPR and the other one is XMM/YMM/ZMM
7072 register. */
7073 if (i.rounding && i.rounding->operand == (int) dest)
7074 dest++;
7075
7076 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7077 {
7078 /* For instructions with VexNDS, the register-only source
7079 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7080 register. It is encoded in VEX prefix. We need to
7081 clear RegMem bit before calling operand_type_equal. */
7082
7083 i386_operand_type op;
7084 unsigned int vvvv;
7085
7086 /* Check register-only source operand when two source
7087 operands are swapped. */
7088 if (!i.tm.operand_types[source].bitfield.baseindex
7089 && i.tm.operand_types[dest].bitfield.baseindex)
7090 {
7091 vvvv = source;
7092 source = dest;
7093 }
7094 else
7095 vvvv = dest;
7096
7097 op = i.tm.operand_types[vvvv];
7098 op.bitfield.regmem = 0;
7099 if ((dest + 1) >= i.operands
7100 || ((!op.bitfield.reg
7101 || (!op.bitfield.dword && !op.bitfield.qword))
7102 && !op.bitfield.regsimd
7103 && !operand_type_equal (&op, &regmask)))
7104 abort ();
7105 i.vex.register_specifier = i.op[vvvv].regs;
7106 dest++;
7107 }
7108 }
7109
7110 i.rm.mode = 3;
7111 /* One of the register operands will be encoded in the i.tm.reg
7112 field, the other in the combined i.tm.mode and i.tm.regmem
7113 fields. If no form of this instruction supports a memory
7114 destination operand, then we assume the source operand may
7115 sometimes be a memory operand and so we need to store the
7116 destination in the i.rm.reg field. */
7117 if (!i.tm.operand_types[dest].bitfield.regmem
7118 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7119 {
7120 i.rm.reg = i.op[dest].regs->reg_num;
7121 i.rm.regmem = i.op[source].regs->reg_num;
7122 if (i.op[dest].regs->reg_type.bitfield.regmmx
7123 || i.op[source].regs->reg_type.bitfield.regmmx)
7124 i.has_regmmx = TRUE;
7125 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7126 || i.op[source].regs->reg_type.bitfield.regsimd)
7127 {
7128 if (i.types[dest].bitfield.zmmword
7129 || i.types[source].bitfield.zmmword)
7130 i.has_regzmm = TRUE;
7131 else if (i.types[dest].bitfield.ymmword
7132 || i.types[source].bitfield.ymmword)
7133 i.has_regymm = TRUE;
7134 else
7135 i.has_regxmm = TRUE;
7136 }
7137 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7138 i.rex |= REX_R;
7139 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7140 i.vrex |= REX_R;
7141 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7142 i.rex |= REX_B;
7143 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7144 i.vrex |= REX_B;
7145 }
7146 else
7147 {
7148 i.rm.reg = i.op[source].regs->reg_num;
7149 i.rm.regmem = i.op[dest].regs->reg_num;
7150 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7151 i.rex |= REX_B;
7152 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7153 i.vrex |= REX_B;
7154 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7155 i.rex |= REX_R;
7156 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7157 i.vrex |= REX_R;
7158 }
7159 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7160 {
7161 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7162 abort ();
7163 i.rex &= ~REX_R;
7164 add_prefix (LOCK_PREFIX_OPCODE);
7165 }
7166 }
7167 else
7168 { /* If it's not 2 reg operands... */
7169 unsigned int mem;
7170
7171 if (i.mem_operands)
7172 {
7173 unsigned int fake_zero_displacement = 0;
7174 unsigned int op;
7175
7176 for (op = 0; op < i.operands; op++)
7177 if (operand_type_check (i.types[op], anymem))
7178 break;
7179 gas_assert (op < i.operands);
7180
7181 if (i.tm.opcode_modifier.vecsib)
7182 {
7183 if (i.index_reg->reg_num == RegIZ)
7184 abort ();
7185
7186 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7187 if (!i.base_reg)
7188 {
7189 i.sib.base = NO_BASE_REGISTER;
7190 i.sib.scale = i.log2_scale_factor;
7191 i.types[op].bitfield.disp8 = 0;
7192 i.types[op].bitfield.disp16 = 0;
7193 i.types[op].bitfield.disp64 = 0;
7194 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7195 {
7196 /* Must be 32 bit */
7197 i.types[op].bitfield.disp32 = 1;
7198 i.types[op].bitfield.disp32s = 0;
7199 }
7200 else
7201 {
7202 i.types[op].bitfield.disp32 = 0;
7203 i.types[op].bitfield.disp32s = 1;
7204 }
7205 }
7206 i.sib.index = i.index_reg->reg_num;
7207 if ((i.index_reg->reg_flags & RegRex) != 0)
7208 i.rex |= REX_X;
7209 if ((i.index_reg->reg_flags & RegVRex) != 0)
7210 i.vrex |= REX_X;
7211 }
7212
7213 default_seg = &ds;
7214
7215 if (i.base_reg == 0)
7216 {
7217 i.rm.mode = 0;
7218 if (!i.disp_operands)
7219 fake_zero_displacement = 1;
7220 if (i.index_reg == 0)
7221 {
7222 i386_operand_type newdisp;
7223
7224 gas_assert (!i.tm.opcode_modifier.vecsib);
7225 /* Operand is just <disp> */
7226 if (flag_code == CODE_64BIT)
7227 {
7228 /* 64bit mode overwrites the 32bit absolute
7229 addressing by RIP relative addressing and
7230 absolute addressing is encoded by one of the
7231 redundant SIB forms. */
7232 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7233 i.sib.base = NO_BASE_REGISTER;
7234 i.sib.index = NO_INDEX_REGISTER;
7235 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7236 }
7237 else if ((flag_code == CODE_16BIT)
7238 ^ (i.prefix[ADDR_PREFIX] != 0))
7239 {
7240 i.rm.regmem = NO_BASE_REGISTER_16;
7241 newdisp = disp16;
7242 }
7243 else
7244 {
7245 i.rm.regmem = NO_BASE_REGISTER;
7246 newdisp = disp32;
7247 }
7248 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7249 i.types[op] = operand_type_or (i.types[op], newdisp);
7250 }
7251 else if (!i.tm.opcode_modifier.vecsib)
7252 {
7253 /* !i.base_reg && i.index_reg */
7254 if (i.index_reg->reg_num == RegIZ)
7255 i.sib.index = NO_INDEX_REGISTER;
7256 else
7257 i.sib.index = i.index_reg->reg_num;
7258 i.sib.base = NO_BASE_REGISTER;
7259 i.sib.scale = i.log2_scale_factor;
7260 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7261 i.types[op].bitfield.disp8 = 0;
7262 i.types[op].bitfield.disp16 = 0;
7263 i.types[op].bitfield.disp64 = 0;
7264 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7265 {
7266 /* Must be 32 bit */
7267 i.types[op].bitfield.disp32 = 1;
7268 i.types[op].bitfield.disp32s = 0;
7269 }
7270 else
7271 {
7272 i.types[op].bitfield.disp32 = 0;
7273 i.types[op].bitfield.disp32s = 1;
7274 }
7275 if ((i.index_reg->reg_flags & RegRex) != 0)
7276 i.rex |= REX_X;
7277 }
7278 }
7279 /* RIP addressing for 64bit mode. */
7280 else if (i.base_reg->reg_num == RegIP)
7281 {
7282 gas_assert (!i.tm.opcode_modifier.vecsib);
7283 i.rm.regmem = NO_BASE_REGISTER;
7284 i.types[op].bitfield.disp8 = 0;
7285 i.types[op].bitfield.disp16 = 0;
7286 i.types[op].bitfield.disp32 = 0;
7287 i.types[op].bitfield.disp32s = 1;
7288 i.types[op].bitfield.disp64 = 0;
7289 i.flags[op] |= Operand_PCrel;
7290 if (! i.disp_operands)
7291 fake_zero_displacement = 1;
7292 }
7293 else if (i.base_reg->reg_type.bitfield.word)
7294 {
7295 gas_assert (!i.tm.opcode_modifier.vecsib);
7296 switch (i.base_reg->reg_num)
7297 {
7298 case 3: /* (%bx) */
7299 if (i.index_reg == 0)
7300 i.rm.regmem = 7;
7301 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7302 i.rm.regmem = i.index_reg->reg_num - 6;
7303 break;
7304 case 5: /* (%bp) */
7305 default_seg = &ss;
7306 if (i.index_reg == 0)
7307 {
7308 i.rm.regmem = 6;
7309 if (operand_type_check (i.types[op], disp) == 0)
7310 {
7311 /* fake (%bp) into 0(%bp) */
7312 i.types[op].bitfield.disp8 = 1;
7313 fake_zero_displacement = 1;
7314 }
7315 }
7316 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7317 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7318 break;
7319 default: /* (%si) -> 4 or (%di) -> 5 */
7320 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7321 }
7322 i.rm.mode = mode_from_disp_size (i.types[op]);
7323 }
7324 else /* i.base_reg and 32/64 bit mode */
7325 {
7326 if (flag_code == CODE_64BIT
7327 && operand_type_check (i.types[op], disp))
7328 {
7329 i.types[op].bitfield.disp16 = 0;
7330 i.types[op].bitfield.disp64 = 0;
7331 if (i.prefix[ADDR_PREFIX] == 0)
7332 {
7333 i.types[op].bitfield.disp32 = 0;
7334 i.types[op].bitfield.disp32s = 1;
7335 }
7336 else
7337 {
7338 i.types[op].bitfield.disp32 = 1;
7339 i.types[op].bitfield.disp32s = 0;
7340 }
7341 }
7342
7343 if (!i.tm.opcode_modifier.vecsib)
7344 i.rm.regmem = i.base_reg->reg_num;
7345 if ((i.base_reg->reg_flags & RegRex) != 0)
7346 i.rex |= REX_B;
7347 i.sib.base = i.base_reg->reg_num;
7348 /* x86-64 ignores REX prefix bit here to avoid decoder
7349 complications. */
7350 if (!(i.base_reg->reg_flags & RegRex)
7351 && (i.base_reg->reg_num == EBP_REG_NUM
7352 || i.base_reg->reg_num == ESP_REG_NUM))
7353 default_seg = &ss;
7354 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7355 {
7356 fake_zero_displacement = 1;
7357 i.types[op].bitfield.disp8 = 1;
7358 }
7359 i.sib.scale = i.log2_scale_factor;
7360 if (i.index_reg == 0)
7361 {
7362 gas_assert (!i.tm.opcode_modifier.vecsib);
7363 /* <disp>(%esp) becomes two byte modrm with no index
7364 register. We've already stored the code for esp
7365 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7366 Any base register besides %esp will not use the
7367 extra modrm byte. */
7368 i.sib.index = NO_INDEX_REGISTER;
7369 }
7370 else if (!i.tm.opcode_modifier.vecsib)
7371 {
7372 if (i.index_reg->reg_num == RegIZ)
7373 i.sib.index = NO_INDEX_REGISTER;
7374 else
7375 i.sib.index = i.index_reg->reg_num;
7376 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7377 if ((i.index_reg->reg_flags & RegRex) != 0)
7378 i.rex |= REX_X;
7379 }
7380
7381 if (i.disp_operands
7382 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7383 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7384 i.rm.mode = 0;
7385 else
7386 {
7387 if (!fake_zero_displacement
7388 && !i.disp_operands
7389 && i.disp_encoding)
7390 {
7391 fake_zero_displacement = 1;
7392 if (i.disp_encoding == disp_encoding_8bit)
7393 i.types[op].bitfield.disp8 = 1;
7394 else
7395 i.types[op].bitfield.disp32 = 1;
7396 }
7397 i.rm.mode = mode_from_disp_size (i.types[op]);
7398 }
7399 }
7400
7401 if (fake_zero_displacement)
7402 {
7403 /* Fakes a zero displacement assuming that i.types[op]
7404 holds the correct displacement size. */
7405 expressionS *exp;
7406
7407 gas_assert (i.op[op].disps == 0);
7408 exp = &disp_expressions[i.disp_operands++];
7409 i.op[op].disps = exp;
7410 exp->X_op = O_constant;
7411 exp->X_add_number = 0;
7412 exp->X_add_symbol = (symbolS *) 0;
7413 exp->X_op_symbol = (symbolS *) 0;
7414 }
7415
7416 mem = op;
7417 }
7418 else
7419 mem = ~0;
7420
7421 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7422 {
7423 if (operand_type_check (i.types[0], imm))
7424 i.vex.register_specifier = NULL;
7425 else
7426 {
7427 /* VEX.vvvv encodes one of the sources when the first
7428 operand is not an immediate. */
7429 if (i.tm.opcode_modifier.vexw == VEXW0)
7430 i.vex.register_specifier = i.op[0].regs;
7431 else
7432 i.vex.register_specifier = i.op[1].regs;
7433 }
7434
7435 /* Destination is a XMM register encoded in the ModRM.reg
7436 and VEX.R bit. */
7437 i.rm.reg = i.op[2].regs->reg_num;
7438 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7439 i.rex |= REX_R;
7440
7441 /* ModRM.rm and VEX.B encodes the other source. */
7442 if (!i.mem_operands)
7443 {
7444 i.rm.mode = 3;
7445
7446 if (i.tm.opcode_modifier.vexw == VEXW0)
7447 i.rm.regmem = i.op[1].regs->reg_num;
7448 else
7449 i.rm.regmem = i.op[0].regs->reg_num;
7450
7451 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7452 i.rex |= REX_B;
7453 }
7454 }
7455 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7456 {
7457 i.vex.register_specifier = i.op[2].regs;
7458 if (!i.mem_operands)
7459 {
7460 i.rm.mode = 3;
7461 i.rm.regmem = i.op[1].regs->reg_num;
7462 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7463 i.rex |= REX_B;
7464 }
7465 }
7466 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7467 (if any) based on i.tm.extension_opcode. Again, we must be
7468 careful to make sure that segment/control/debug/test/MMX
7469 registers are coded into the i.rm.reg field. */
7470 else if (i.reg_operands)
7471 {
7472 unsigned int op;
7473 unsigned int vex_reg = ~0;
7474
7475 for (op = 0; op < i.operands; op++)
7476 {
7477 if (i.types[op].bitfield.reg
7478 || i.types[op].bitfield.regbnd
7479 || i.types[op].bitfield.regmask
7480 || i.types[op].bitfield.sreg2
7481 || i.types[op].bitfield.sreg3
7482 || i.types[op].bitfield.control
7483 || i.types[op].bitfield.debug
7484 || i.types[op].bitfield.test)
7485 break;
7486 if (i.types[op].bitfield.regsimd)
7487 {
7488 if (i.types[op].bitfield.zmmword)
7489 i.has_regzmm = TRUE;
7490 else if (i.types[op].bitfield.ymmword)
7491 i.has_regymm = TRUE;
7492 else
7493 i.has_regxmm = TRUE;
7494 break;
7495 }
7496 if (i.types[op].bitfield.regmmx)
7497 {
7498 i.has_regmmx = TRUE;
7499 break;
7500 }
7501 }
7502
7503 if (vex_3_sources)
7504 op = dest;
7505 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7506 {
7507 /* For instructions with VexNDS, the register-only
7508 source operand is encoded in VEX prefix. */
7509 gas_assert (mem != (unsigned int) ~0);
7510
7511 if (op > mem)
7512 {
7513 vex_reg = op++;
7514 gas_assert (op < i.operands);
7515 }
7516 else
7517 {
7518 /* Check register-only source operand when two source
7519 operands are swapped. */
7520 if (!i.tm.operand_types[op].bitfield.baseindex
7521 && i.tm.operand_types[op + 1].bitfield.baseindex)
7522 {
7523 vex_reg = op;
7524 op += 2;
7525 gas_assert (mem == (vex_reg + 1)
7526 && op < i.operands);
7527 }
7528 else
7529 {
7530 vex_reg = op + 1;
7531 gas_assert (vex_reg < i.operands);
7532 }
7533 }
7534 }
7535 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7536 {
7537 /* For instructions with VexNDD, the register destination
7538 is encoded in VEX prefix. */
7539 if (i.mem_operands == 0)
7540 {
7541 /* There is no memory operand. */
7542 gas_assert ((op + 2) == i.operands);
7543 vex_reg = op + 1;
7544 }
7545 else
7546 {
7547 /* There are only 2 non-immediate operands. */
7548 gas_assert (op < i.imm_operands + 2
7549 && i.operands == i.imm_operands + 2);
7550 vex_reg = i.imm_operands + 1;
7551 }
7552 }
7553 else
7554 gas_assert (op < i.operands);
7555
7556 if (vex_reg != (unsigned int) ~0)
7557 {
7558 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7559
7560 if ((!type->bitfield.reg
7561 || (!type->bitfield.dword && !type->bitfield.qword))
7562 && !type->bitfield.regsimd
7563 && !operand_type_equal (type, &regmask))
7564 abort ();
7565
7566 i.vex.register_specifier = i.op[vex_reg].regs;
7567 }
7568
7569 /* Don't set OP operand twice. */
7570 if (vex_reg != op)
7571 {
7572 /* If there is an extension opcode to put here, the
7573 register number must be put into the regmem field. */
7574 if (i.tm.extension_opcode != None)
7575 {
7576 i.rm.regmem = i.op[op].regs->reg_num;
7577 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7578 i.rex |= REX_B;
7579 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7580 i.vrex |= REX_B;
7581 }
7582 else
7583 {
7584 i.rm.reg = i.op[op].regs->reg_num;
7585 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7586 i.rex |= REX_R;
7587 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7588 i.vrex |= REX_R;
7589 }
7590 }
7591
7592 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7593 must set it to 3 to indicate this is a register operand
7594 in the regmem field. */
7595 if (!i.mem_operands)
7596 i.rm.mode = 3;
7597 }
7598
7599 /* Fill in i.rm.reg field with extension opcode (if any). */
7600 if (i.tm.extension_opcode != None)
7601 i.rm.reg = i.tm.extension_opcode;
7602 }
7603 return default_seg;
7604 }
7605
7606 static void
7607 output_branch (void)
7608 {
7609 char *p;
7610 int size;
7611 int code16;
7612 int prefix;
7613 relax_substateT subtype;
7614 symbolS *sym;
7615 offsetT off;
7616
7617 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7618 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7619
7620 prefix = 0;
7621 if (i.prefix[DATA_PREFIX] != 0)
7622 {
7623 prefix = 1;
7624 i.prefixes -= 1;
7625 code16 ^= CODE16;
7626 }
7627 /* Pentium4 branch hints. */
7628 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7629 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7630 {
7631 prefix++;
7632 i.prefixes--;
7633 }
7634 if (i.prefix[REX_PREFIX] != 0)
7635 {
7636 prefix++;
7637 i.prefixes--;
7638 }
7639
7640 /* BND prefixed jump. */
7641 if (i.prefix[BND_PREFIX] != 0)
7642 {
7643 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7644 i.prefixes -= 1;
7645 }
7646
7647 if (i.prefixes != 0 && !intel_syntax)
7648 as_warn (_("skipping prefixes on this instruction"));
7649
7650 /* It's always a symbol; End frag & setup for relax.
7651 Make sure there is enough room in this frag for the largest
7652 instruction we may generate in md_convert_frag. This is 2
7653 bytes for the opcode and room for the prefix and largest
7654 displacement. */
7655 frag_grow (prefix + 2 + 4);
7656 /* Prefix and 1 opcode byte go in fr_fix. */
7657 p = frag_more (prefix + 1);
7658 if (i.prefix[DATA_PREFIX] != 0)
7659 *p++ = DATA_PREFIX_OPCODE;
7660 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7661 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7662 *p++ = i.prefix[SEG_PREFIX];
7663 if (i.prefix[REX_PREFIX] != 0)
7664 *p++ = i.prefix[REX_PREFIX];
7665 *p = i.tm.base_opcode;
7666
7667 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7668 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7669 else if (cpu_arch_flags.bitfield.cpui386)
7670 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7671 else
7672 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7673 subtype |= code16;
7674
7675 sym = i.op[0].disps->X_add_symbol;
7676 off = i.op[0].disps->X_add_number;
7677
7678 if (i.op[0].disps->X_op != O_constant
7679 && i.op[0].disps->X_op != O_symbol)
7680 {
7681 /* Handle complex expressions. */
7682 sym = make_expr_symbol (i.op[0].disps);
7683 off = 0;
7684 }
7685
7686 /* 1 possible extra opcode + 4 byte displacement go in var part.
7687 Pass reloc in fr_var. */
7688 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7689 }
7690
7691 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7692 /* Return TRUE iff PLT32 relocation should be used for branching to
7693 symbol S. */
7694
7695 static bfd_boolean
7696 need_plt32_p (symbolS *s)
7697 {
7698 /* PLT32 relocation is ELF only. */
7699 if (!IS_ELF)
7700 return FALSE;
7701
7702 /* Since there is no need to prepare for PLT branch on x86-64, we
7703 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7704 be used as a marker for 32-bit PC-relative branches. */
7705 if (!object_64bit)
7706 return FALSE;
7707
7708 /* Weak or undefined symbol need PLT32 relocation. */
7709 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7710 return TRUE;
7711
7712 /* Non-global symbol doesn't need PLT32 relocation. */
7713 if (! S_IS_EXTERNAL (s))
7714 return FALSE;
7715
7716 /* Other global symbols need PLT32 relocation. NB: Symbol with
7717 non-default visibilities are treated as normal global symbol
7718 so that PLT32 relocation can be used as a marker for 32-bit
7719 PC-relative branches. It is useful for linker relaxation. */
7720 return TRUE;
7721 }
7722 #endif
7723
7724 static void
7725 output_jump (void)
7726 {
7727 char *p;
7728 int size;
7729 fixS *fixP;
7730 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7731
7732 if (i.tm.opcode_modifier.jumpbyte)
7733 {
7734 /* This is a loop or jecxz type instruction. */
7735 size = 1;
7736 if (i.prefix[ADDR_PREFIX] != 0)
7737 {
7738 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7739 i.prefixes -= 1;
7740 }
7741 /* Pentium4 branch hints. */
7742 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7743 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7744 {
7745 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7746 i.prefixes--;
7747 }
7748 }
7749 else
7750 {
7751 int code16;
7752
7753 code16 = 0;
7754 if (flag_code == CODE_16BIT)
7755 code16 = CODE16;
7756
7757 if (i.prefix[DATA_PREFIX] != 0)
7758 {
7759 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7760 i.prefixes -= 1;
7761 code16 ^= CODE16;
7762 }
7763
7764 size = 4;
7765 if (code16)
7766 size = 2;
7767 }
7768
7769 if (i.prefix[REX_PREFIX] != 0)
7770 {
7771 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7772 i.prefixes -= 1;
7773 }
7774
7775 /* BND prefixed jump. */
7776 if (i.prefix[BND_PREFIX] != 0)
7777 {
7778 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7779 i.prefixes -= 1;
7780 }
7781
7782 if (i.prefixes != 0 && !intel_syntax)
7783 as_warn (_("skipping prefixes on this instruction"));
7784
7785 p = frag_more (i.tm.opcode_length + size);
7786 switch (i.tm.opcode_length)
7787 {
7788 case 2:
7789 *p++ = i.tm.base_opcode >> 8;
7790 /* Fall through. */
7791 case 1:
7792 *p++ = i.tm.base_opcode;
7793 break;
7794 default:
7795 abort ();
7796 }
7797
7798 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7799 if (size == 4
7800 && jump_reloc == NO_RELOC
7801 && need_plt32_p (i.op[0].disps->X_add_symbol))
7802 jump_reloc = BFD_RELOC_X86_64_PLT32;
7803 #endif
7804
7805 jump_reloc = reloc (size, 1, 1, jump_reloc);
7806
7807 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7808 i.op[0].disps, 1, jump_reloc);
7809
7810 /* All jumps handled here are signed, but don't use a signed limit
7811 check for 32 and 16 bit jumps as we want to allow wrap around at
7812 4G and 64k respectively. */
7813 if (size == 1)
7814 fixP->fx_signed = 1;
7815 }
7816
7817 static void
7818 output_interseg_jump (void)
7819 {
7820 char *p;
7821 int size;
7822 int prefix;
7823 int code16;
7824
7825 code16 = 0;
7826 if (flag_code == CODE_16BIT)
7827 code16 = CODE16;
7828
7829 prefix = 0;
7830 if (i.prefix[DATA_PREFIX] != 0)
7831 {
7832 prefix = 1;
7833 i.prefixes -= 1;
7834 code16 ^= CODE16;
7835 }
7836 if (i.prefix[REX_PREFIX] != 0)
7837 {
7838 prefix++;
7839 i.prefixes -= 1;
7840 }
7841
7842 size = 4;
7843 if (code16)
7844 size = 2;
7845
7846 if (i.prefixes != 0 && !intel_syntax)
7847 as_warn (_("skipping prefixes on this instruction"));
7848
7849 /* 1 opcode; 2 segment; offset */
7850 p = frag_more (prefix + 1 + 2 + size);
7851
7852 if (i.prefix[DATA_PREFIX] != 0)
7853 *p++ = DATA_PREFIX_OPCODE;
7854
7855 if (i.prefix[REX_PREFIX] != 0)
7856 *p++ = i.prefix[REX_PREFIX];
7857
7858 *p++ = i.tm.base_opcode;
7859 if (i.op[1].imms->X_op == O_constant)
7860 {
7861 offsetT n = i.op[1].imms->X_add_number;
7862
7863 if (size == 2
7864 && !fits_in_unsigned_word (n)
7865 && !fits_in_signed_word (n))
7866 {
7867 as_bad (_("16-bit jump out of range"));
7868 return;
7869 }
7870 md_number_to_chars (p, n, size);
7871 }
7872 else
7873 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7874 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7875 if (i.op[0].imms->X_op != O_constant)
7876 as_bad (_("can't handle non absolute segment in `%s'"),
7877 i.tm.name);
7878 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7879 }
7880
7881 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7882 void
7883 x86_cleanup (void)
7884 {
7885 char *p;
7886 asection *seg = now_seg;
7887 subsegT subseg = now_subseg;
7888 asection *sec;
7889 unsigned int alignment, align_size_1;
7890 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7891 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7892 unsigned int padding;
7893
7894 if (!IS_ELF || !x86_used_note)
7895 return;
7896
7897 x86_isa_1_used |= GNU_PROPERTY_X86_UINT32_VALID;
7898 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7899
7900 /* The .note.gnu.property section layout:
7901
7902 Field Length Contents
7903 ---- ---- ----
7904 n_namsz 4 4
7905 n_descsz 4 The note descriptor size
7906 n_type 4 NT_GNU_PROPERTY_TYPE_0
7907 n_name 4 "GNU"
7908 n_desc n_descsz The program property array
7909 .... .... ....
7910 */
7911
7912 /* Create the .note.gnu.property section. */
7913 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
7914 bfd_set_section_flags (stdoutput, sec,
7915 (SEC_ALLOC
7916 | SEC_LOAD
7917 | SEC_DATA
7918 | SEC_HAS_CONTENTS
7919 | SEC_READONLY));
7920
7921 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
7922 {
7923 align_size_1 = 7;
7924 alignment = 3;
7925 }
7926 else
7927 {
7928 align_size_1 = 3;
7929 alignment = 2;
7930 }
7931
7932 bfd_set_section_alignment (stdoutput, sec, alignment);
7933 elf_section_type (sec) = SHT_NOTE;
7934
7935 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
7936 + 4-byte data */
7937 isa_1_descsz_raw = 4 + 4 + 4;
7938 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
7939 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
7940
7941 feature_2_descsz_raw = isa_1_descsz;
7942 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
7943 + 4-byte data */
7944 feature_2_descsz_raw += 4 + 4 + 4;
7945 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
7946 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
7947 & ~align_size_1);
7948
7949 descsz = feature_2_descsz;
7950 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
7951 p = frag_more (4 + 4 + 4 + 4 + descsz);
7952
7953 /* Write n_namsz. */
7954 md_number_to_chars (p, (valueT) 4, 4);
7955
7956 /* Write n_descsz. */
7957 md_number_to_chars (p + 4, (valueT) descsz, 4);
7958
7959 /* Write n_type. */
7960 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
7961
7962 /* Write n_name. */
7963 memcpy (p + 4 * 3, "GNU", 4);
7964
7965 /* Write 4-byte type. */
7966 md_number_to_chars (p + 4 * 4,
7967 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
7968
7969 /* Write 4-byte data size. */
7970 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
7971
7972 /* Write 4-byte data. */
7973 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
7974
7975 /* Zero out paddings. */
7976 padding = isa_1_descsz - isa_1_descsz_raw;
7977 if (padding)
7978 memset (p + 4 * 7, 0, padding);
7979
7980 /* Write 4-byte type. */
7981 md_number_to_chars (p + isa_1_descsz + 4 * 4,
7982 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
7983
7984 /* Write 4-byte data size. */
7985 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
7986
7987 /* Write 4-byte data. */
7988 md_number_to_chars (p + isa_1_descsz + 4 * 6,
7989 (valueT) x86_feature_2_used, 4);
7990
7991 /* Zero out paddings. */
7992 padding = feature_2_descsz - feature_2_descsz_raw;
7993 if (padding)
7994 memset (p + isa_1_descsz + 4 * 7, 0, padding);
7995
7996 /* We probably can't restore the current segment, for there likely
7997 isn't one yet... */
7998 if (seg && subseg)
7999 subseg_set (seg, subseg);
8000 }
8001 #endif
8002
8003 static void
8004 output_insn (void)
8005 {
8006 fragS *insn_start_frag;
8007 offsetT insn_start_off;
8008
8009 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8010 if (IS_ELF && x86_used_note)
8011 {
8012 if (i.tm.cpu_flags.bitfield.cpucmov)
8013 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8014 if (i.tm.cpu_flags.bitfield.cpusse)
8015 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8016 if (i.tm.cpu_flags.bitfield.cpusse2)
8017 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8018 if (i.tm.cpu_flags.bitfield.cpusse3)
8019 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8020 if (i.tm.cpu_flags.bitfield.cpussse3)
8021 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8022 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8023 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8024 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8025 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8026 if (i.tm.cpu_flags.bitfield.cpuavx)
8027 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8028 if (i.tm.cpu_flags.bitfield.cpuavx2)
8029 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8030 if (i.tm.cpu_flags.bitfield.cpufma)
8031 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8032 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8033 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8034 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8035 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8036 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8037 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8038 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8039 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8040 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8041 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8042 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8043 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8044 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8045 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8046 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8047 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8048 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8049 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8050 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8051 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8052 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8053 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8054 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8055 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8056 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8057 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8058 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8059 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8060
8061 if (i.tm.cpu_flags.bitfield.cpu8087
8062 || i.tm.cpu_flags.bitfield.cpu287
8063 || i.tm.cpu_flags.bitfield.cpu387
8064 || i.tm.cpu_flags.bitfield.cpu687
8065 || i.tm.cpu_flags.bitfield.cpufisttp)
8066 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8067 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8068 Xfence instructions. */
8069 if (i.tm.base_opcode != 0xf18
8070 && i.tm.base_opcode != 0xf0d
8071 && i.tm.base_opcode != 0xfae
8072 && (i.has_regmmx
8073 || i.tm.cpu_flags.bitfield.cpummx
8074 || i.tm.cpu_flags.bitfield.cpua3dnow
8075 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8076 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8077 if (i.has_regxmm)
8078 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8079 if (i.has_regymm)
8080 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8081 if (i.has_regzmm)
8082 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8083 if (i.tm.cpu_flags.bitfield.cpufxsr)
8084 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8085 if (i.tm.cpu_flags.bitfield.cpuxsave)
8086 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8087 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8088 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8089 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8090 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8091 }
8092 #endif
8093
8094 /* Tie dwarf2 debug info to the address at the start of the insn.
8095 We can't do this after the insn has been output as the current
8096 frag may have been closed off. eg. by frag_var. */
8097 dwarf2_emit_insn (0);
8098
8099 insn_start_frag = frag_now;
8100 insn_start_off = frag_now_fix ();
8101
8102 /* Output jumps. */
8103 if (i.tm.opcode_modifier.jump)
8104 output_branch ();
8105 else if (i.tm.opcode_modifier.jumpbyte
8106 || i.tm.opcode_modifier.jumpdword)
8107 output_jump ();
8108 else if (i.tm.opcode_modifier.jumpintersegment)
8109 output_interseg_jump ();
8110 else
8111 {
8112 /* Output normal instructions here. */
8113 char *p;
8114 unsigned char *q;
8115 unsigned int j;
8116 unsigned int prefix;
8117
8118 if (avoid_fence
8119 && i.tm.base_opcode == 0xfae
8120 && i.operands == 1
8121 && i.imm_operands == 1
8122 && (i.op[0].imms->X_add_number == 0xe8
8123 || i.op[0].imms->X_add_number == 0xf0
8124 || i.op[0].imms->X_add_number == 0xf8))
8125 {
8126 /* Encode lfence, mfence, and sfence as
8127 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8128 offsetT val = 0x240483f0ULL;
8129 p = frag_more (5);
8130 md_number_to_chars (p, val, 5);
8131 return;
8132 }
8133
8134 /* Some processors fail on LOCK prefix. This options makes
8135 assembler ignore LOCK prefix and serves as a workaround. */
8136 if (omit_lock_prefix)
8137 {
8138 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8139 return;
8140 i.prefix[LOCK_PREFIX] = 0;
8141 }
8142
8143 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8144 don't need the explicit prefix. */
8145 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8146 {
8147 switch (i.tm.opcode_length)
8148 {
8149 case 3:
8150 if (i.tm.base_opcode & 0xff000000)
8151 {
8152 prefix = (i.tm.base_opcode >> 24) & 0xff;
8153 add_prefix (prefix);
8154 }
8155 break;
8156 case 2:
8157 if ((i.tm.base_opcode & 0xff0000) != 0)
8158 {
8159 prefix = (i.tm.base_opcode >> 16) & 0xff;
8160 if (!i.tm.cpu_flags.bitfield.cpupadlock
8161 || prefix != REPE_PREFIX_OPCODE
8162 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8163 add_prefix (prefix);
8164 }
8165 break;
8166 case 1:
8167 break;
8168 case 0:
8169 /* Check for pseudo prefixes. */
8170 as_bad_where (insn_start_frag->fr_file,
8171 insn_start_frag->fr_line,
8172 _("pseudo prefix without instruction"));
8173 return;
8174 default:
8175 abort ();
8176 }
8177
8178 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8179 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8180 R_X86_64_GOTTPOFF relocation so that linker can safely
8181 perform IE->LE optimization. */
8182 if (x86_elf_abi == X86_64_X32_ABI
8183 && i.operands == 2
8184 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8185 && i.prefix[REX_PREFIX] == 0)
8186 add_prefix (REX_OPCODE);
8187 #endif
8188
8189 /* The prefix bytes. */
8190 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8191 if (*q)
8192 FRAG_APPEND_1_CHAR (*q);
8193 }
8194 else
8195 {
8196 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8197 if (*q)
8198 switch (j)
8199 {
8200 case REX_PREFIX:
8201 /* REX byte is encoded in VEX prefix. */
8202 break;
8203 case SEG_PREFIX:
8204 case ADDR_PREFIX:
8205 FRAG_APPEND_1_CHAR (*q);
8206 break;
8207 default:
8208 /* There should be no other prefixes for instructions
8209 with VEX prefix. */
8210 abort ();
8211 }
8212
8213 /* For EVEX instructions i.vrex should become 0 after
8214 build_evex_prefix. For VEX instructions upper 16 registers
8215 aren't available, so VREX should be 0. */
8216 if (i.vrex)
8217 abort ();
8218 /* Now the VEX prefix. */
8219 p = frag_more (i.vex.length);
8220 for (j = 0; j < i.vex.length; j++)
8221 p[j] = i.vex.bytes[j];
8222 }
8223
8224 /* Now the opcode; be careful about word order here! */
8225 if (i.tm.opcode_length == 1)
8226 {
8227 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8228 }
8229 else
8230 {
8231 switch (i.tm.opcode_length)
8232 {
8233 case 4:
8234 p = frag_more (4);
8235 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8236 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8237 break;
8238 case 3:
8239 p = frag_more (3);
8240 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8241 break;
8242 case 2:
8243 p = frag_more (2);
8244 break;
8245 default:
8246 abort ();
8247 break;
8248 }
8249
8250 /* Put out high byte first: can't use md_number_to_chars! */
8251 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8252 *p = i.tm.base_opcode & 0xff;
8253 }
8254
8255 /* Now the modrm byte and sib byte (if present). */
8256 if (i.tm.opcode_modifier.modrm)
8257 {
8258 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8259 | i.rm.reg << 3
8260 | i.rm.mode << 6));
8261 /* If i.rm.regmem == ESP (4)
8262 && i.rm.mode != (Register mode)
8263 && not 16 bit
8264 ==> need second modrm byte. */
8265 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8266 && i.rm.mode != 3
8267 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8268 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8269 | i.sib.index << 3
8270 | i.sib.scale << 6));
8271 }
8272
8273 if (i.disp_operands)
8274 output_disp (insn_start_frag, insn_start_off);
8275
8276 if (i.imm_operands)
8277 output_imm (insn_start_frag, insn_start_off);
8278 }
8279
8280 #ifdef DEBUG386
8281 if (flag_debug)
8282 {
8283 pi ("" /*line*/, &i);
8284 }
8285 #endif /* DEBUG386 */
8286 }
8287
8288 /* Return the size of the displacement operand N. */
8289
8290 static int
8291 disp_size (unsigned int n)
8292 {
8293 int size = 4;
8294
8295 if (i.types[n].bitfield.disp64)
8296 size = 8;
8297 else if (i.types[n].bitfield.disp8)
8298 size = 1;
8299 else if (i.types[n].bitfield.disp16)
8300 size = 2;
8301 return size;
8302 }
8303
8304 /* Return the size of the immediate operand N. */
8305
8306 static int
8307 imm_size (unsigned int n)
8308 {
8309 int size = 4;
8310 if (i.types[n].bitfield.imm64)
8311 size = 8;
8312 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8313 size = 1;
8314 else if (i.types[n].bitfield.imm16)
8315 size = 2;
8316 return size;
8317 }
8318
8319 static void
8320 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8321 {
8322 char *p;
8323 unsigned int n;
8324
8325 for (n = 0; n < i.operands; n++)
8326 {
8327 if (operand_type_check (i.types[n], disp))
8328 {
8329 if (i.op[n].disps->X_op == O_constant)
8330 {
8331 int size = disp_size (n);
8332 offsetT val = i.op[n].disps->X_add_number;
8333
8334 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8335 size);
8336 p = frag_more (size);
8337 md_number_to_chars (p, val, size);
8338 }
8339 else
8340 {
8341 enum bfd_reloc_code_real reloc_type;
8342 int size = disp_size (n);
8343 int sign = i.types[n].bitfield.disp32s;
8344 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8345 fixS *fixP;
8346
8347 /* We can't have 8 bit displacement here. */
8348 gas_assert (!i.types[n].bitfield.disp8);
8349
8350 /* The PC relative address is computed relative
8351 to the instruction boundary, so in case immediate
8352 fields follows, we need to adjust the value. */
8353 if (pcrel && i.imm_operands)
8354 {
8355 unsigned int n1;
8356 int sz = 0;
8357
8358 for (n1 = 0; n1 < i.operands; n1++)
8359 if (operand_type_check (i.types[n1], imm))
8360 {
8361 /* Only one immediate is allowed for PC
8362 relative address. */
8363 gas_assert (sz == 0);
8364 sz = imm_size (n1);
8365 i.op[n].disps->X_add_number -= sz;
8366 }
8367 /* We should find the immediate. */
8368 gas_assert (sz != 0);
8369 }
8370
8371 p = frag_more (size);
8372 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8373 if (GOT_symbol
8374 && GOT_symbol == i.op[n].disps->X_add_symbol
8375 && (((reloc_type == BFD_RELOC_32
8376 || reloc_type == BFD_RELOC_X86_64_32S
8377 || (reloc_type == BFD_RELOC_64
8378 && object_64bit))
8379 && (i.op[n].disps->X_op == O_symbol
8380 || (i.op[n].disps->X_op == O_add
8381 && ((symbol_get_value_expression
8382 (i.op[n].disps->X_op_symbol)->X_op)
8383 == O_subtract))))
8384 || reloc_type == BFD_RELOC_32_PCREL))
8385 {
8386 offsetT add;
8387
8388 if (insn_start_frag == frag_now)
8389 add = (p - frag_now->fr_literal) - insn_start_off;
8390 else
8391 {
8392 fragS *fr;
8393
8394 add = insn_start_frag->fr_fix - insn_start_off;
8395 for (fr = insn_start_frag->fr_next;
8396 fr && fr != frag_now; fr = fr->fr_next)
8397 add += fr->fr_fix;
8398 add += p - frag_now->fr_literal;
8399 }
8400
8401 if (!object_64bit)
8402 {
8403 reloc_type = BFD_RELOC_386_GOTPC;
8404 i.op[n].imms->X_add_number += add;
8405 }
8406 else if (reloc_type == BFD_RELOC_64)
8407 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8408 else
8409 /* Don't do the adjustment for x86-64, as there
8410 the pcrel addressing is relative to the _next_
8411 insn, and that is taken care of in other code. */
8412 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8413 }
8414 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8415 size, i.op[n].disps, pcrel,
8416 reloc_type);
8417 /* Check for "call/jmp *mem", "mov mem, %reg",
8418 "test %reg, mem" and "binop mem, %reg" where binop
8419 is one of adc, add, and, cmp, or, sbb, sub, xor
8420 instructions. Always generate R_386_GOT32X for
8421 "sym*GOT" operand in 32-bit mode. */
8422 if ((generate_relax_relocations
8423 || (!object_64bit
8424 && i.rm.mode == 0
8425 && i.rm.regmem == 5))
8426 && (i.rm.mode == 2
8427 || (i.rm.mode == 0 && i.rm.regmem == 5))
8428 && ((i.operands == 1
8429 && i.tm.base_opcode == 0xff
8430 && (i.rm.reg == 2 || i.rm.reg == 4))
8431 || (i.operands == 2
8432 && (i.tm.base_opcode == 0x8b
8433 || i.tm.base_opcode == 0x85
8434 || (i.tm.base_opcode & 0xc7) == 0x03))))
8435 {
8436 if (object_64bit)
8437 {
8438 fixP->fx_tcbit = i.rex != 0;
8439 if (i.base_reg
8440 && (i.base_reg->reg_num == RegIP))
8441 fixP->fx_tcbit2 = 1;
8442 }
8443 else
8444 fixP->fx_tcbit2 = 1;
8445 }
8446 }
8447 }
8448 }
8449 }
8450
8451 static void
8452 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8453 {
8454 char *p;
8455 unsigned int n;
8456
8457 for (n = 0; n < i.operands; n++)
8458 {
8459 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8460 if (i.rounding && (int) n == i.rounding->operand)
8461 continue;
8462
8463 if (operand_type_check (i.types[n], imm))
8464 {
8465 if (i.op[n].imms->X_op == O_constant)
8466 {
8467 int size = imm_size (n);
8468 offsetT val;
8469
8470 val = offset_in_range (i.op[n].imms->X_add_number,
8471 size);
8472 p = frag_more (size);
8473 md_number_to_chars (p, val, size);
8474 }
8475 else
8476 {
8477 /* Not absolute_section.
8478 Need a 32-bit fixup (don't support 8bit
8479 non-absolute imms). Try to support other
8480 sizes ... */
8481 enum bfd_reloc_code_real reloc_type;
8482 int size = imm_size (n);
8483 int sign;
8484
8485 if (i.types[n].bitfield.imm32s
8486 && (i.suffix == QWORD_MNEM_SUFFIX
8487 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8488 sign = 1;
8489 else
8490 sign = 0;
8491
8492 p = frag_more (size);
8493 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8494
8495 /* This is tough to explain. We end up with this one if we
8496 * have operands that look like
8497 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8498 * obtain the absolute address of the GOT, and it is strongly
8499 * preferable from a performance point of view to avoid using
8500 * a runtime relocation for this. The actual sequence of
8501 * instructions often look something like:
8502 *
8503 * call .L66
8504 * .L66:
8505 * popl %ebx
8506 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8507 *
8508 * The call and pop essentially return the absolute address
8509 * of the label .L66 and store it in %ebx. The linker itself
8510 * will ultimately change the first operand of the addl so
8511 * that %ebx points to the GOT, but to keep things simple, the
8512 * .o file must have this operand set so that it generates not
8513 * the absolute address of .L66, but the absolute address of
8514 * itself. This allows the linker itself simply treat a GOTPC
8515 * relocation as asking for a pcrel offset to the GOT to be
8516 * added in, and the addend of the relocation is stored in the
8517 * operand field for the instruction itself.
8518 *
8519 * Our job here is to fix the operand so that it would add
8520 * the correct offset so that %ebx would point to itself. The
8521 * thing that is tricky is that .-.L66 will point to the
8522 * beginning of the instruction, so we need to further modify
8523 * the operand so that it will point to itself. There are
8524 * other cases where you have something like:
8525 *
8526 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8527 *
8528 * and here no correction would be required. Internally in
8529 * the assembler we treat operands of this form as not being
8530 * pcrel since the '.' is explicitly mentioned, and I wonder
8531 * whether it would simplify matters to do it this way. Who
8532 * knows. In earlier versions of the PIC patches, the
8533 * pcrel_adjust field was used to store the correction, but
8534 * since the expression is not pcrel, I felt it would be
8535 * confusing to do it this way. */
8536
8537 if ((reloc_type == BFD_RELOC_32
8538 || reloc_type == BFD_RELOC_X86_64_32S
8539 || reloc_type == BFD_RELOC_64)
8540 && GOT_symbol
8541 && GOT_symbol == i.op[n].imms->X_add_symbol
8542 && (i.op[n].imms->X_op == O_symbol
8543 || (i.op[n].imms->X_op == O_add
8544 && ((symbol_get_value_expression
8545 (i.op[n].imms->X_op_symbol)->X_op)
8546 == O_subtract))))
8547 {
8548 offsetT add;
8549
8550 if (insn_start_frag == frag_now)
8551 add = (p - frag_now->fr_literal) - insn_start_off;
8552 else
8553 {
8554 fragS *fr;
8555
8556 add = insn_start_frag->fr_fix - insn_start_off;
8557 for (fr = insn_start_frag->fr_next;
8558 fr && fr != frag_now; fr = fr->fr_next)
8559 add += fr->fr_fix;
8560 add += p - frag_now->fr_literal;
8561 }
8562
8563 if (!object_64bit)
8564 reloc_type = BFD_RELOC_386_GOTPC;
8565 else if (size == 4)
8566 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8567 else if (size == 8)
8568 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8569 i.op[n].imms->X_add_number += add;
8570 }
8571 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8572 i.op[n].imms, 0, reloc_type);
8573 }
8574 }
8575 }
8576 }
8577 \f
8578 /* x86_cons_fix_new is called via the expression parsing code when a
8579 reloc is needed. We use this hook to get the correct .got reloc. */
8580 static int cons_sign = -1;
8581
8582 void
8583 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8584 expressionS *exp, bfd_reloc_code_real_type r)
8585 {
8586 r = reloc (len, 0, cons_sign, r);
8587
8588 #ifdef TE_PE
8589 if (exp->X_op == O_secrel)
8590 {
8591 exp->X_op = O_symbol;
8592 r = BFD_RELOC_32_SECREL;
8593 }
8594 #endif
8595
8596 fix_new_exp (frag, off, len, exp, 0, r);
8597 }
8598
8599 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8600 purpose of the `.dc.a' internal pseudo-op. */
8601
8602 int
8603 x86_address_bytes (void)
8604 {
8605 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8606 return 4;
8607 return stdoutput->arch_info->bits_per_address / 8;
8608 }
8609
8610 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8611 || defined (LEX_AT)
8612 # define lex_got(reloc, adjust, types) NULL
8613 #else
8614 /* Parse operands of the form
8615 <symbol>@GOTOFF+<nnn>
8616 and similar .plt or .got references.
8617
8618 If we find one, set up the correct relocation in RELOC and copy the
8619 input string, minus the `@GOTOFF' into a malloc'd buffer for
8620 parsing by the calling routine. Return this buffer, and if ADJUST
8621 is non-null set it to the length of the string we removed from the
8622 input line. Otherwise return NULL. */
8623 static char *
8624 lex_got (enum bfd_reloc_code_real *rel,
8625 int *adjust,
8626 i386_operand_type *types)
8627 {
8628 /* Some of the relocations depend on the size of what field is to
8629 be relocated. But in our callers i386_immediate and i386_displacement
8630 we don't yet know the operand size (this will be set by insn
8631 matching). Hence we record the word32 relocation here,
8632 and adjust the reloc according to the real size in reloc(). */
8633 static const struct {
8634 const char *str;
8635 int len;
8636 const enum bfd_reloc_code_real rel[2];
8637 const i386_operand_type types64;
8638 } gotrel[] = {
8639 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8640 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8641 BFD_RELOC_SIZE32 },
8642 OPERAND_TYPE_IMM32_64 },
8643 #endif
8644 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8645 BFD_RELOC_X86_64_PLTOFF64 },
8646 OPERAND_TYPE_IMM64 },
8647 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8648 BFD_RELOC_X86_64_PLT32 },
8649 OPERAND_TYPE_IMM32_32S_DISP32 },
8650 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8651 BFD_RELOC_X86_64_GOTPLT64 },
8652 OPERAND_TYPE_IMM64_DISP64 },
8653 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8654 BFD_RELOC_X86_64_GOTOFF64 },
8655 OPERAND_TYPE_IMM64_DISP64 },
8656 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8657 BFD_RELOC_X86_64_GOTPCREL },
8658 OPERAND_TYPE_IMM32_32S_DISP32 },
8659 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8660 BFD_RELOC_X86_64_TLSGD },
8661 OPERAND_TYPE_IMM32_32S_DISP32 },
8662 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8663 _dummy_first_bfd_reloc_code_real },
8664 OPERAND_TYPE_NONE },
8665 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8666 BFD_RELOC_X86_64_TLSLD },
8667 OPERAND_TYPE_IMM32_32S_DISP32 },
8668 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8669 BFD_RELOC_X86_64_GOTTPOFF },
8670 OPERAND_TYPE_IMM32_32S_DISP32 },
8671 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8672 BFD_RELOC_X86_64_TPOFF32 },
8673 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8674 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8675 _dummy_first_bfd_reloc_code_real },
8676 OPERAND_TYPE_NONE },
8677 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8678 BFD_RELOC_X86_64_DTPOFF32 },
8679 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8680 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8681 _dummy_first_bfd_reloc_code_real },
8682 OPERAND_TYPE_NONE },
8683 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8684 _dummy_first_bfd_reloc_code_real },
8685 OPERAND_TYPE_NONE },
8686 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8687 BFD_RELOC_X86_64_GOT32 },
8688 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8689 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8690 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8691 OPERAND_TYPE_IMM32_32S_DISP32 },
8692 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8693 BFD_RELOC_X86_64_TLSDESC_CALL },
8694 OPERAND_TYPE_IMM32_32S_DISP32 },
8695 };
8696 char *cp;
8697 unsigned int j;
8698
8699 #if defined (OBJ_MAYBE_ELF)
8700 if (!IS_ELF)
8701 return NULL;
8702 #endif
8703
8704 for (cp = input_line_pointer; *cp != '@'; cp++)
8705 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8706 return NULL;
8707
8708 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8709 {
8710 int len = gotrel[j].len;
8711 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8712 {
8713 if (gotrel[j].rel[object_64bit] != 0)
8714 {
8715 int first, second;
8716 char *tmpbuf, *past_reloc;
8717
8718 *rel = gotrel[j].rel[object_64bit];
8719
8720 if (types)
8721 {
8722 if (flag_code != CODE_64BIT)
8723 {
8724 types->bitfield.imm32 = 1;
8725 types->bitfield.disp32 = 1;
8726 }
8727 else
8728 *types = gotrel[j].types64;
8729 }
8730
8731 if (j != 0 && GOT_symbol == NULL)
8732 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8733
8734 /* The length of the first part of our input line. */
8735 first = cp - input_line_pointer;
8736
8737 /* The second part goes from after the reloc token until
8738 (and including) an end_of_line char or comma. */
8739 past_reloc = cp + 1 + len;
8740 cp = past_reloc;
8741 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8742 ++cp;
8743 second = cp + 1 - past_reloc;
8744
8745 /* Allocate and copy string. The trailing NUL shouldn't
8746 be necessary, but be safe. */
8747 tmpbuf = XNEWVEC (char, first + second + 2);
8748 memcpy (tmpbuf, input_line_pointer, first);
8749 if (second != 0 && *past_reloc != ' ')
8750 /* Replace the relocation token with ' ', so that
8751 errors like foo@GOTOFF1 will be detected. */
8752 tmpbuf[first++] = ' ';
8753 else
8754 /* Increment length by 1 if the relocation token is
8755 removed. */
8756 len++;
8757 if (adjust)
8758 *adjust = len;
8759 memcpy (tmpbuf + first, past_reloc, second);
8760 tmpbuf[first + second] = '\0';
8761 return tmpbuf;
8762 }
8763
8764 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8765 gotrel[j].str, 1 << (5 + object_64bit));
8766 return NULL;
8767 }
8768 }
8769
8770 /* Might be a symbol version string. Don't as_bad here. */
8771 return NULL;
8772 }
8773 #endif
8774
8775 #ifdef TE_PE
8776 #ifdef lex_got
8777 #undef lex_got
8778 #endif
8779 /* Parse operands of the form
8780 <symbol>@SECREL32+<nnn>
8781
8782 If we find one, set up the correct relocation in RELOC and copy the
8783 input string, minus the `@SECREL32' into a malloc'd buffer for
8784 parsing by the calling routine. Return this buffer, and if ADJUST
8785 is non-null set it to the length of the string we removed from the
8786 input line. Otherwise return NULL.
8787
8788 This function is copied from the ELF version above adjusted for PE targets. */
8789
8790 static char *
8791 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8792 int *adjust ATTRIBUTE_UNUSED,
8793 i386_operand_type *types)
8794 {
8795 static const struct
8796 {
8797 const char *str;
8798 int len;
8799 const enum bfd_reloc_code_real rel[2];
8800 const i386_operand_type types64;
8801 }
8802 gotrel[] =
8803 {
8804 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8805 BFD_RELOC_32_SECREL },
8806 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8807 };
8808
8809 char *cp;
8810 unsigned j;
8811
8812 for (cp = input_line_pointer; *cp != '@'; cp++)
8813 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8814 return NULL;
8815
8816 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8817 {
8818 int len = gotrel[j].len;
8819
8820 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8821 {
8822 if (gotrel[j].rel[object_64bit] != 0)
8823 {
8824 int first, second;
8825 char *tmpbuf, *past_reloc;
8826
8827 *rel = gotrel[j].rel[object_64bit];
8828 if (adjust)
8829 *adjust = len;
8830
8831 if (types)
8832 {
8833 if (flag_code != CODE_64BIT)
8834 {
8835 types->bitfield.imm32 = 1;
8836 types->bitfield.disp32 = 1;
8837 }
8838 else
8839 *types = gotrel[j].types64;
8840 }
8841
8842 /* The length of the first part of our input line. */
8843 first = cp - input_line_pointer;
8844
8845 /* The second part goes from after the reloc token until
8846 (and including) an end_of_line char or comma. */
8847 past_reloc = cp + 1 + len;
8848 cp = past_reloc;
8849 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8850 ++cp;
8851 second = cp + 1 - past_reloc;
8852
8853 /* Allocate and copy string. The trailing NUL shouldn't
8854 be necessary, but be safe. */
8855 tmpbuf = XNEWVEC (char, first + second + 2);
8856 memcpy (tmpbuf, input_line_pointer, first);
8857 if (second != 0 && *past_reloc != ' ')
8858 /* Replace the relocation token with ' ', so that
8859 errors like foo@SECLREL321 will be detected. */
8860 tmpbuf[first++] = ' ';
8861 memcpy (tmpbuf + first, past_reloc, second);
8862 tmpbuf[first + second] = '\0';
8863 return tmpbuf;
8864 }
8865
8866 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8867 gotrel[j].str, 1 << (5 + object_64bit));
8868 return NULL;
8869 }
8870 }
8871
8872 /* Might be a symbol version string. Don't as_bad here. */
8873 return NULL;
8874 }
8875
8876 #endif /* TE_PE */
8877
8878 bfd_reloc_code_real_type
8879 x86_cons (expressionS *exp, int size)
8880 {
8881 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8882
8883 intel_syntax = -intel_syntax;
8884
8885 exp->X_md = 0;
8886 if (size == 4 || (object_64bit && size == 8))
8887 {
8888 /* Handle @GOTOFF and the like in an expression. */
8889 char *save;
8890 char *gotfree_input_line;
8891 int adjust = 0;
8892
8893 save = input_line_pointer;
8894 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8895 if (gotfree_input_line)
8896 input_line_pointer = gotfree_input_line;
8897
8898 expression (exp);
8899
8900 if (gotfree_input_line)
8901 {
8902 /* expression () has merrily parsed up to the end of line,
8903 or a comma - in the wrong buffer. Transfer how far
8904 input_line_pointer has moved to the right buffer. */
8905 input_line_pointer = (save
8906 + (input_line_pointer - gotfree_input_line)
8907 + adjust);
8908 free (gotfree_input_line);
8909 if (exp->X_op == O_constant
8910 || exp->X_op == O_absent
8911 || exp->X_op == O_illegal
8912 || exp->X_op == O_register
8913 || exp->X_op == O_big)
8914 {
8915 char c = *input_line_pointer;
8916 *input_line_pointer = 0;
8917 as_bad (_("missing or invalid expression `%s'"), save);
8918 *input_line_pointer = c;
8919 }
8920 }
8921 }
8922 else
8923 expression (exp);
8924
8925 intel_syntax = -intel_syntax;
8926
8927 if (intel_syntax)
8928 i386_intel_simplify (exp);
8929
8930 return got_reloc;
8931 }
8932
8933 static void
8934 signed_cons (int size)
8935 {
8936 if (flag_code == CODE_64BIT)
8937 cons_sign = 1;
8938 cons (size);
8939 cons_sign = -1;
8940 }
8941
8942 #ifdef TE_PE
8943 static void
8944 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8945 {
8946 expressionS exp;
8947
8948 do
8949 {
8950 expression (&exp);
8951 if (exp.X_op == O_symbol)
8952 exp.X_op = O_secrel;
8953
8954 emit_expr (&exp, 4);
8955 }
8956 while (*input_line_pointer++ == ',');
8957
8958 input_line_pointer--;
8959 demand_empty_rest_of_line ();
8960 }
8961 #endif
8962
8963 /* Handle Vector operations. */
8964
8965 static char *
8966 check_VecOperations (char *op_string, char *op_end)
8967 {
8968 const reg_entry *mask;
8969 const char *saved;
8970 char *end_op;
8971
8972 while (*op_string
8973 && (op_end == NULL || op_string < op_end))
8974 {
8975 saved = op_string;
8976 if (*op_string == '{')
8977 {
8978 op_string++;
8979
8980 /* Check broadcasts. */
8981 if (strncmp (op_string, "1to", 3) == 0)
8982 {
8983 int bcst_type;
8984
8985 if (i.broadcast)
8986 goto duplicated_vec_op;
8987
8988 op_string += 3;
8989 if (*op_string == '8')
8990 bcst_type = 8;
8991 else if (*op_string == '4')
8992 bcst_type = 4;
8993 else if (*op_string == '2')
8994 bcst_type = 2;
8995 else if (*op_string == '1'
8996 && *(op_string+1) == '6')
8997 {
8998 bcst_type = 16;
8999 op_string++;
9000 }
9001 else
9002 {
9003 as_bad (_("Unsupported broadcast: `%s'"), saved);
9004 return NULL;
9005 }
9006 op_string++;
9007
9008 broadcast_op.type = bcst_type;
9009 broadcast_op.operand = this_operand;
9010 broadcast_op.bytes = 0;
9011 i.broadcast = &broadcast_op;
9012 }
9013 /* Check masking operation. */
9014 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9015 {
9016 /* k0 can't be used for write mask. */
9017 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9018 {
9019 as_bad (_("`%s%s' can't be used for write mask"),
9020 register_prefix, mask->reg_name);
9021 return NULL;
9022 }
9023
9024 if (!i.mask)
9025 {
9026 mask_op.mask = mask;
9027 mask_op.zeroing = 0;
9028 mask_op.operand = this_operand;
9029 i.mask = &mask_op;
9030 }
9031 else
9032 {
9033 if (i.mask->mask)
9034 goto duplicated_vec_op;
9035
9036 i.mask->mask = mask;
9037
9038 /* Only "{z}" is allowed here. No need to check
9039 zeroing mask explicitly. */
9040 if (i.mask->operand != this_operand)
9041 {
9042 as_bad (_("invalid write mask `%s'"), saved);
9043 return NULL;
9044 }
9045 }
9046
9047 op_string = end_op;
9048 }
9049 /* Check zeroing-flag for masking operation. */
9050 else if (*op_string == 'z')
9051 {
9052 if (!i.mask)
9053 {
9054 mask_op.mask = NULL;
9055 mask_op.zeroing = 1;
9056 mask_op.operand = this_operand;
9057 i.mask = &mask_op;
9058 }
9059 else
9060 {
9061 if (i.mask->zeroing)
9062 {
9063 duplicated_vec_op:
9064 as_bad (_("duplicated `%s'"), saved);
9065 return NULL;
9066 }
9067
9068 i.mask->zeroing = 1;
9069
9070 /* Only "{%k}" is allowed here. No need to check mask
9071 register explicitly. */
9072 if (i.mask->operand != this_operand)
9073 {
9074 as_bad (_("invalid zeroing-masking `%s'"),
9075 saved);
9076 return NULL;
9077 }
9078 }
9079
9080 op_string++;
9081 }
9082 else
9083 goto unknown_vec_op;
9084
9085 if (*op_string != '}')
9086 {
9087 as_bad (_("missing `}' in `%s'"), saved);
9088 return NULL;
9089 }
9090 op_string++;
9091
9092 /* Strip whitespace since the addition of pseudo prefixes
9093 changed how the scrubber treats '{'. */
9094 if (is_space_char (*op_string))
9095 ++op_string;
9096
9097 continue;
9098 }
9099 unknown_vec_op:
9100 /* We don't know this one. */
9101 as_bad (_("unknown vector operation: `%s'"), saved);
9102 return NULL;
9103 }
9104
9105 if (i.mask && i.mask->zeroing && !i.mask->mask)
9106 {
9107 as_bad (_("zeroing-masking only allowed with write mask"));
9108 return NULL;
9109 }
9110
9111 return op_string;
9112 }
9113
9114 static int
9115 i386_immediate (char *imm_start)
9116 {
9117 char *save_input_line_pointer;
9118 char *gotfree_input_line;
9119 segT exp_seg = 0;
9120 expressionS *exp;
9121 i386_operand_type types;
9122
9123 operand_type_set (&types, ~0);
9124
9125 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9126 {
9127 as_bad (_("at most %d immediate operands are allowed"),
9128 MAX_IMMEDIATE_OPERANDS);
9129 return 0;
9130 }
9131
9132 exp = &im_expressions[i.imm_operands++];
9133 i.op[this_operand].imms = exp;
9134
9135 if (is_space_char (*imm_start))
9136 ++imm_start;
9137
9138 save_input_line_pointer = input_line_pointer;
9139 input_line_pointer = imm_start;
9140
9141 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9142 if (gotfree_input_line)
9143 input_line_pointer = gotfree_input_line;
9144
9145 exp_seg = expression (exp);
9146
9147 SKIP_WHITESPACE ();
9148
9149 /* Handle vector operations. */
9150 if (*input_line_pointer == '{')
9151 {
9152 input_line_pointer = check_VecOperations (input_line_pointer,
9153 NULL);
9154 if (input_line_pointer == NULL)
9155 return 0;
9156 }
9157
9158 if (*input_line_pointer)
9159 as_bad (_("junk `%s' after expression"), input_line_pointer);
9160
9161 input_line_pointer = save_input_line_pointer;
9162 if (gotfree_input_line)
9163 {
9164 free (gotfree_input_line);
9165
9166 if (exp->X_op == O_constant || exp->X_op == O_register)
9167 exp->X_op = O_illegal;
9168 }
9169
9170 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9171 }
9172
9173 static int
9174 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9175 i386_operand_type types, const char *imm_start)
9176 {
9177 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9178 {
9179 if (imm_start)
9180 as_bad (_("missing or invalid immediate expression `%s'"),
9181 imm_start);
9182 return 0;
9183 }
9184 else if (exp->X_op == O_constant)
9185 {
9186 /* Size it properly later. */
9187 i.types[this_operand].bitfield.imm64 = 1;
9188 /* If not 64bit, sign extend val. */
9189 if (flag_code != CODE_64BIT
9190 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9191 exp->X_add_number
9192 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9193 }
9194 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9195 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9196 && exp_seg != absolute_section
9197 && exp_seg != text_section
9198 && exp_seg != data_section
9199 && exp_seg != bss_section
9200 && exp_seg != undefined_section
9201 && !bfd_is_com_section (exp_seg))
9202 {
9203 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9204 return 0;
9205 }
9206 #endif
9207 else if (!intel_syntax && exp_seg == reg_section)
9208 {
9209 if (imm_start)
9210 as_bad (_("illegal immediate register operand %s"), imm_start);
9211 return 0;
9212 }
9213 else
9214 {
9215 /* This is an address. The size of the address will be
9216 determined later, depending on destination register,
9217 suffix, or the default for the section. */
9218 i.types[this_operand].bitfield.imm8 = 1;
9219 i.types[this_operand].bitfield.imm16 = 1;
9220 i.types[this_operand].bitfield.imm32 = 1;
9221 i.types[this_operand].bitfield.imm32s = 1;
9222 i.types[this_operand].bitfield.imm64 = 1;
9223 i.types[this_operand] = operand_type_and (i.types[this_operand],
9224 types);
9225 }
9226
9227 return 1;
9228 }
9229
9230 static char *
9231 i386_scale (char *scale)
9232 {
9233 offsetT val;
9234 char *save = input_line_pointer;
9235
9236 input_line_pointer = scale;
9237 val = get_absolute_expression ();
9238
9239 switch (val)
9240 {
9241 case 1:
9242 i.log2_scale_factor = 0;
9243 break;
9244 case 2:
9245 i.log2_scale_factor = 1;
9246 break;
9247 case 4:
9248 i.log2_scale_factor = 2;
9249 break;
9250 case 8:
9251 i.log2_scale_factor = 3;
9252 break;
9253 default:
9254 {
9255 char sep = *input_line_pointer;
9256
9257 *input_line_pointer = '\0';
9258 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9259 scale);
9260 *input_line_pointer = sep;
9261 input_line_pointer = save;
9262 return NULL;
9263 }
9264 }
9265 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9266 {
9267 as_warn (_("scale factor of %d without an index register"),
9268 1 << i.log2_scale_factor);
9269 i.log2_scale_factor = 0;
9270 }
9271 scale = input_line_pointer;
9272 input_line_pointer = save;
9273 return scale;
9274 }
9275
9276 static int
9277 i386_displacement (char *disp_start, char *disp_end)
9278 {
9279 expressionS *exp;
9280 segT exp_seg = 0;
9281 char *save_input_line_pointer;
9282 char *gotfree_input_line;
9283 int override;
9284 i386_operand_type bigdisp, types = anydisp;
9285 int ret;
9286
9287 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9288 {
9289 as_bad (_("at most %d displacement operands are allowed"),
9290 MAX_MEMORY_OPERANDS);
9291 return 0;
9292 }
9293
9294 operand_type_set (&bigdisp, 0);
9295 if ((i.types[this_operand].bitfield.jumpabsolute)
9296 || (!current_templates->start->opcode_modifier.jump
9297 && !current_templates->start->opcode_modifier.jumpdword))
9298 {
9299 bigdisp.bitfield.disp32 = 1;
9300 override = (i.prefix[ADDR_PREFIX] != 0);
9301 if (flag_code == CODE_64BIT)
9302 {
9303 if (!override)
9304 {
9305 bigdisp.bitfield.disp32s = 1;
9306 bigdisp.bitfield.disp64 = 1;
9307 }
9308 }
9309 else if ((flag_code == CODE_16BIT) ^ override)
9310 {
9311 bigdisp.bitfield.disp32 = 0;
9312 bigdisp.bitfield.disp16 = 1;
9313 }
9314 }
9315 else
9316 {
9317 /* For PC-relative branches, the width of the displacement
9318 is dependent upon data size, not address size. */
9319 override = (i.prefix[DATA_PREFIX] != 0);
9320 if (flag_code == CODE_64BIT)
9321 {
9322 if (override || i.suffix == WORD_MNEM_SUFFIX)
9323 bigdisp.bitfield.disp16 = 1;
9324 else
9325 {
9326 bigdisp.bitfield.disp32 = 1;
9327 bigdisp.bitfield.disp32s = 1;
9328 }
9329 }
9330 else
9331 {
9332 if (!override)
9333 override = (i.suffix == (flag_code != CODE_16BIT
9334 ? WORD_MNEM_SUFFIX
9335 : LONG_MNEM_SUFFIX));
9336 bigdisp.bitfield.disp32 = 1;
9337 if ((flag_code == CODE_16BIT) ^ override)
9338 {
9339 bigdisp.bitfield.disp32 = 0;
9340 bigdisp.bitfield.disp16 = 1;
9341 }
9342 }
9343 }
9344 i.types[this_operand] = operand_type_or (i.types[this_operand],
9345 bigdisp);
9346
9347 exp = &disp_expressions[i.disp_operands];
9348 i.op[this_operand].disps = exp;
9349 i.disp_operands++;
9350 save_input_line_pointer = input_line_pointer;
9351 input_line_pointer = disp_start;
9352 END_STRING_AND_SAVE (disp_end);
9353
9354 #ifndef GCC_ASM_O_HACK
9355 #define GCC_ASM_O_HACK 0
9356 #endif
9357 #if GCC_ASM_O_HACK
9358 END_STRING_AND_SAVE (disp_end + 1);
9359 if (i.types[this_operand].bitfield.baseIndex
9360 && displacement_string_end[-1] == '+')
9361 {
9362 /* This hack is to avoid a warning when using the "o"
9363 constraint within gcc asm statements.
9364 For instance:
9365
9366 #define _set_tssldt_desc(n,addr,limit,type) \
9367 __asm__ __volatile__ ( \
9368 "movw %w2,%0\n\t" \
9369 "movw %w1,2+%0\n\t" \
9370 "rorl $16,%1\n\t" \
9371 "movb %b1,4+%0\n\t" \
9372 "movb %4,5+%0\n\t" \
9373 "movb $0,6+%0\n\t" \
9374 "movb %h1,7+%0\n\t" \
9375 "rorl $16,%1" \
9376 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9377
9378 This works great except that the output assembler ends
9379 up looking a bit weird if it turns out that there is
9380 no offset. You end up producing code that looks like:
9381
9382 #APP
9383 movw $235,(%eax)
9384 movw %dx,2+(%eax)
9385 rorl $16,%edx
9386 movb %dl,4+(%eax)
9387 movb $137,5+(%eax)
9388 movb $0,6+(%eax)
9389 movb %dh,7+(%eax)
9390 rorl $16,%edx
9391 #NO_APP
9392
9393 So here we provide the missing zero. */
9394
9395 *displacement_string_end = '0';
9396 }
9397 #endif
9398 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9399 if (gotfree_input_line)
9400 input_line_pointer = gotfree_input_line;
9401
9402 exp_seg = expression (exp);
9403
9404 SKIP_WHITESPACE ();
9405 if (*input_line_pointer)
9406 as_bad (_("junk `%s' after expression"), input_line_pointer);
9407 #if GCC_ASM_O_HACK
9408 RESTORE_END_STRING (disp_end + 1);
9409 #endif
9410 input_line_pointer = save_input_line_pointer;
9411 if (gotfree_input_line)
9412 {
9413 free (gotfree_input_line);
9414
9415 if (exp->X_op == O_constant || exp->X_op == O_register)
9416 exp->X_op = O_illegal;
9417 }
9418
9419 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9420
9421 RESTORE_END_STRING (disp_end);
9422
9423 return ret;
9424 }
9425
9426 static int
9427 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9428 i386_operand_type types, const char *disp_start)
9429 {
9430 i386_operand_type bigdisp;
9431 int ret = 1;
9432
9433 /* We do this to make sure that the section symbol is in
9434 the symbol table. We will ultimately change the relocation
9435 to be relative to the beginning of the section. */
9436 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9437 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9438 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9439 {
9440 if (exp->X_op != O_symbol)
9441 goto inv_disp;
9442
9443 if (S_IS_LOCAL (exp->X_add_symbol)
9444 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9445 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9446 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9447 exp->X_op = O_subtract;
9448 exp->X_op_symbol = GOT_symbol;
9449 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9450 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9451 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9452 i.reloc[this_operand] = BFD_RELOC_64;
9453 else
9454 i.reloc[this_operand] = BFD_RELOC_32;
9455 }
9456
9457 else if (exp->X_op == O_absent
9458 || exp->X_op == O_illegal
9459 || exp->X_op == O_big)
9460 {
9461 inv_disp:
9462 as_bad (_("missing or invalid displacement expression `%s'"),
9463 disp_start);
9464 ret = 0;
9465 }
9466
9467 else if (flag_code == CODE_64BIT
9468 && !i.prefix[ADDR_PREFIX]
9469 && exp->X_op == O_constant)
9470 {
9471 /* Since displacement is signed extended to 64bit, don't allow
9472 disp32 and turn off disp32s if they are out of range. */
9473 i.types[this_operand].bitfield.disp32 = 0;
9474 if (!fits_in_signed_long (exp->X_add_number))
9475 {
9476 i.types[this_operand].bitfield.disp32s = 0;
9477 if (i.types[this_operand].bitfield.baseindex)
9478 {
9479 as_bad (_("0x%lx out range of signed 32bit displacement"),
9480 (long) exp->X_add_number);
9481 ret = 0;
9482 }
9483 }
9484 }
9485
9486 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9487 else if (exp->X_op != O_constant
9488 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9489 && exp_seg != absolute_section
9490 && exp_seg != text_section
9491 && exp_seg != data_section
9492 && exp_seg != bss_section
9493 && exp_seg != undefined_section
9494 && !bfd_is_com_section (exp_seg))
9495 {
9496 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9497 ret = 0;
9498 }
9499 #endif
9500
9501 /* Check if this is a displacement only operand. */
9502 bigdisp = i.types[this_operand];
9503 bigdisp.bitfield.disp8 = 0;
9504 bigdisp.bitfield.disp16 = 0;
9505 bigdisp.bitfield.disp32 = 0;
9506 bigdisp.bitfield.disp32s = 0;
9507 bigdisp.bitfield.disp64 = 0;
9508 if (operand_type_all_zero (&bigdisp))
9509 i.types[this_operand] = operand_type_and (i.types[this_operand],
9510 types);
9511
9512 return ret;
9513 }
9514
9515 /* Return the active addressing mode, taking address override and
9516 registers forming the address into consideration. Update the
9517 address override prefix if necessary. */
9518
9519 static enum flag_code
9520 i386_addressing_mode (void)
9521 {
9522 enum flag_code addr_mode;
9523
9524 if (i.prefix[ADDR_PREFIX])
9525 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9526 else
9527 {
9528 addr_mode = flag_code;
9529
9530 #if INFER_ADDR_PREFIX
9531 if (i.mem_operands == 0)
9532 {
9533 /* Infer address prefix from the first memory operand. */
9534 const reg_entry *addr_reg = i.base_reg;
9535
9536 if (addr_reg == NULL)
9537 addr_reg = i.index_reg;
9538
9539 if (addr_reg)
9540 {
9541 if (addr_reg->reg_type.bitfield.dword)
9542 addr_mode = CODE_32BIT;
9543 else if (flag_code != CODE_64BIT
9544 && addr_reg->reg_type.bitfield.word)
9545 addr_mode = CODE_16BIT;
9546
9547 if (addr_mode != flag_code)
9548 {
9549 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9550 i.prefixes += 1;
9551 /* Change the size of any displacement too. At most one
9552 of Disp16 or Disp32 is set.
9553 FIXME. There doesn't seem to be any real need for
9554 separate Disp16 and Disp32 flags. The same goes for
9555 Imm16 and Imm32. Removing them would probably clean
9556 up the code quite a lot. */
9557 if (flag_code != CODE_64BIT
9558 && (i.types[this_operand].bitfield.disp16
9559 || i.types[this_operand].bitfield.disp32))
9560 i.types[this_operand]
9561 = operand_type_xor (i.types[this_operand], disp16_32);
9562 }
9563 }
9564 }
9565 #endif
9566 }
9567
9568 return addr_mode;
9569 }
9570
9571 /* Make sure the memory operand we've been dealt is valid.
9572 Return 1 on success, 0 on a failure. */
9573
9574 static int
9575 i386_index_check (const char *operand_string)
9576 {
9577 const char *kind = "base/index";
9578 enum flag_code addr_mode = i386_addressing_mode ();
9579
9580 if (current_templates->start->opcode_modifier.isstring
9581 && !current_templates->start->opcode_modifier.immext
9582 && (current_templates->end[-1].opcode_modifier.isstring
9583 || i.mem_operands))
9584 {
9585 /* Memory operands of string insns are special in that they only allow
9586 a single register (rDI, rSI, or rBX) as their memory address. */
9587 const reg_entry *expected_reg;
9588 static const char *di_si[][2] =
9589 {
9590 { "esi", "edi" },
9591 { "si", "di" },
9592 { "rsi", "rdi" }
9593 };
9594 static const char *bx[] = { "ebx", "bx", "rbx" };
9595
9596 kind = "string address";
9597
9598 if (current_templates->start->opcode_modifier.repprefixok)
9599 {
9600 i386_operand_type type = current_templates->end[-1].operand_types[0];
9601
9602 if (!type.bitfield.baseindex
9603 || ((!i.mem_operands != !intel_syntax)
9604 && current_templates->end[-1].operand_types[1]
9605 .bitfield.baseindex))
9606 type = current_templates->end[-1].operand_types[1];
9607 expected_reg = hash_find (reg_hash,
9608 di_si[addr_mode][type.bitfield.esseg]);
9609
9610 }
9611 else
9612 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9613
9614 if (i.base_reg != expected_reg
9615 || i.index_reg
9616 || operand_type_check (i.types[this_operand], disp))
9617 {
9618 /* The second memory operand must have the same size as
9619 the first one. */
9620 if (i.mem_operands
9621 && i.base_reg
9622 && !((addr_mode == CODE_64BIT
9623 && i.base_reg->reg_type.bitfield.qword)
9624 || (addr_mode == CODE_32BIT
9625 ? i.base_reg->reg_type.bitfield.dword
9626 : i.base_reg->reg_type.bitfield.word)))
9627 goto bad_address;
9628
9629 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9630 operand_string,
9631 intel_syntax ? '[' : '(',
9632 register_prefix,
9633 expected_reg->reg_name,
9634 intel_syntax ? ']' : ')');
9635 return 1;
9636 }
9637 else
9638 return 1;
9639
9640 bad_address:
9641 as_bad (_("`%s' is not a valid %s expression"),
9642 operand_string, kind);
9643 return 0;
9644 }
9645 else
9646 {
9647 if (addr_mode != CODE_16BIT)
9648 {
9649 /* 32-bit/64-bit checks. */
9650 if ((i.base_reg
9651 && ((addr_mode == CODE_64BIT
9652 ? !i.base_reg->reg_type.bitfield.qword
9653 : !i.base_reg->reg_type.bitfield.dword)
9654 || (i.index_reg && i.base_reg->reg_num == RegIP)
9655 || i.base_reg->reg_num == RegIZ))
9656 || (i.index_reg
9657 && !i.index_reg->reg_type.bitfield.xmmword
9658 && !i.index_reg->reg_type.bitfield.ymmword
9659 && !i.index_reg->reg_type.bitfield.zmmword
9660 && ((addr_mode == CODE_64BIT
9661 ? !i.index_reg->reg_type.bitfield.qword
9662 : !i.index_reg->reg_type.bitfield.dword)
9663 || !i.index_reg->reg_type.bitfield.baseindex)))
9664 goto bad_address;
9665
9666 /* bndmk, bndldx, and bndstx have special restrictions. */
9667 if (current_templates->start->base_opcode == 0xf30f1b
9668 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9669 {
9670 /* They cannot use RIP-relative addressing. */
9671 if (i.base_reg && i.base_reg->reg_num == RegIP)
9672 {
9673 as_bad (_("`%s' cannot be used here"), operand_string);
9674 return 0;
9675 }
9676
9677 /* bndldx and bndstx ignore their scale factor. */
9678 if (current_templates->start->base_opcode != 0xf30f1b
9679 && i.log2_scale_factor)
9680 as_warn (_("register scaling is being ignored here"));
9681 }
9682 }
9683 else
9684 {
9685 /* 16-bit checks. */
9686 if ((i.base_reg
9687 && (!i.base_reg->reg_type.bitfield.word
9688 || !i.base_reg->reg_type.bitfield.baseindex))
9689 || (i.index_reg
9690 && (!i.index_reg->reg_type.bitfield.word
9691 || !i.index_reg->reg_type.bitfield.baseindex
9692 || !(i.base_reg
9693 && i.base_reg->reg_num < 6
9694 && i.index_reg->reg_num >= 6
9695 && i.log2_scale_factor == 0))))
9696 goto bad_address;
9697 }
9698 }
9699 return 1;
9700 }
9701
9702 /* Handle vector immediates. */
9703
9704 static int
9705 RC_SAE_immediate (const char *imm_start)
9706 {
9707 unsigned int match_found, j;
9708 const char *pstr = imm_start;
9709 expressionS *exp;
9710
9711 if (*pstr != '{')
9712 return 0;
9713
9714 pstr++;
9715 match_found = 0;
9716 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9717 {
9718 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9719 {
9720 if (!i.rounding)
9721 {
9722 rc_op.type = RC_NamesTable[j].type;
9723 rc_op.operand = this_operand;
9724 i.rounding = &rc_op;
9725 }
9726 else
9727 {
9728 as_bad (_("duplicated `%s'"), imm_start);
9729 return 0;
9730 }
9731 pstr += RC_NamesTable[j].len;
9732 match_found = 1;
9733 break;
9734 }
9735 }
9736 if (!match_found)
9737 return 0;
9738
9739 if (*pstr++ != '}')
9740 {
9741 as_bad (_("Missing '}': '%s'"), imm_start);
9742 return 0;
9743 }
9744 /* RC/SAE immediate string should contain nothing more. */;
9745 if (*pstr != 0)
9746 {
9747 as_bad (_("Junk after '}': '%s'"), imm_start);
9748 return 0;
9749 }
9750
9751 exp = &im_expressions[i.imm_operands++];
9752 i.op[this_operand].imms = exp;
9753
9754 exp->X_op = O_constant;
9755 exp->X_add_number = 0;
9756 exp->X_add_symbol = (symbolS *) 0;
9757 exp->X_op_symbol = (symbolS *) 0;
9758
9759 i.types[this_operand].bitfield.imm8 = 1;
9760 return 1;
9761 }
9762
9763 /* Only string instructions can have a second memory operand, so
9764 reduce current_templates to just those if it contains any. */
9765 static int
9766 maybe_adjust_templates (void)
9767 {
9768 const insn_template *t;
9769
9770 gas_assert (i.mem_operands == 1);
9771
9772 for (t = current_templates->start; t < current_templates->end; ++t)
9773 if (t->opcode_modifier.isstring)
9774 break;
9775
9776 if (t < current_templates->end)
9777 {
9778 static templates aux_templates;
9779 bfd_boolean recheck;
9780
9781 aux_templates.start = t;
9782 for (; t < current_templates->end; ++t)
9783 if (!t->opcode_modifier.isstring)
9784 break;
9785 aux_templates.end = t;
9786
9787 /* Determine whether to re-check the first memory operand. */
9788 recheck = (aux_templates.start != current_templates->start
9789 || t != current_templates->end);
9790
9791 current_templates = &aux_templates;
9792
9793 if (recheck)
9794 {
9795 i.mem_operands = 0;
9796 if (i.memop1_string != NULL
9797 && i386_index_check (i.memop1_string) == 0)
9798 return 0;
9799 i.mem_operands = 1;
9800 }
9801 }
9802
9803 return 1;
9804 }
9805
9806 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9807 on error. */
9808
9809 static int
9810 i386_att_operand (char *operand_string)
9811 {
9812 const reg_entry *r;
9813 char *end_op;
9814 char *op_string = operand_string;
9815
9816 if (is_space_char (*op_string))
9817 ++op_string;
9818
9819 /* We check for an absolute prefix (differentiating,
9820 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9821 if (*op_string == ABSOLUTE_PREFIX)
9822 {
9823 ++op_string;
9824 if (is_space_char (*op_string))
9825 ++op_string;
9826 i.types[this_operand].bitfield.jumpabsolute = 1;
9827 }
9828
9829 /* Check if operand is a register. */
9830 if ((r = parse_register (op_string, &end_op)) != NULL)
9831 {
9832 i386_operand_type temp;
9833
9834 /* Check for a segment override by searching for ':' after a
9835 segment register. */
9836 op_string = end_op;
9837 if (is_space_char (*op_string))
9838 ++op_string;
9839 if (*op_string == ':'
9840 && (r->reg_type.bitfield.sreg2
9841 || r->reg_type.bitfield.sreg3))
9842 {
9843 switch (r->reg_num)
9844 {
9845 case 0:
9846 i.seg[i.mem_operands] = &es;
9847 break;
9848 case 1:
9849 i.seg[i.mem_operands] = &cs;
9850 break;
9851 case 2:
9852 i.seg[i.mem_operands] = &ss;
9853 break;
9854 case 3:
9855 i.seg[i.mem_operands] = &ds;
9856 break;
9857 case 4:
9858 i.seg[i.mem_operands] = &fs;
9859 break;
9860 case 5:
9861 i.seg[i.mem_operands] = &gs;
9862 break;
9863 }
9864
9865 /* Skip the ':' and whitespace. */
9866 ++op_string;
9867 if (is_space_char (*op_string))
9868 ++op_string;
9869
9870 if (!is_digit_char (*op_string)
9871 && !is_identifier_char (*op_string)
9872 && *op_string != '('
9873 && *op_string != ABSOLUTE_PREFIX)
9874 {
9875 as_bad (_("bad memory operand `%s'"), op_string);
9876 return 0;
9877 }
9878 /* Handle case of %es:*foo. */
9879 if (*op_string == ABSOLUTE_PREFIX)
9880 {
9881 ++op_string;
9882 if (is_space_char (*op_string))
9883 ++op_string;
9884 i.types[this_operand].bitfield.jumpabsolute = 1;
9885 }
9886 goto do_memory_reference;
9887 }
9888
9889 /* Handle vector operations. */
9890 if (*op_string == '{')
9891 {
9892 op_string = check_VecOperations (op_string, NULL);
9893 if (op_string == NULL)
9894 return 0;
9895 }
9896
9897 if (*op_string)
9898 {
9899 as_bad (_("junk `%s' after register"), op_string);
9900 return 0;
9901 }
9902 temp = r->reg_type;
9903 temp.bitfield.baseindex = 0;
9904 i.types[this_operand] = operand_type_or (i.types[this_operand],
9905 temp);
9906 i.types[this_operand].bitfield.unspecified = 0;
9907 i.op[this_operand].regs = r;
9908 i.reg_operands++;
9909 }
9910 else if (*op_string == REGISTER_PREFIX)
9911 {
9912 as_bad (_("bad register name `%s'"), op_string);
9913 return 0;
9914 }
9915 else if (*op_string == IMMEDIATE_PREFIX)
9916 {
9917 ++op_string;
9918 if (i.types[this_operand].bitfield.jumpabsolute)
9919 {
9920 as_bad (_("immediate operand illegal with absolute jump"));
9921 return 0;
9922 }
9923 if (!i386_immediate (op_string))
9924 return 0;
9925 }
9926 else if (RC_SAE_immediate (operand_string))
9927 {
9928 /* If it is a RC or SAE immediate, do nothing. */
9929 ;
9930 }
9931 else if (is_digit_char (*op_string)
9932 || is_identifier_char (*op_string)
9933 || *op_string == '"'
9934 || *op_string == '(')
9935 {
9936 /* This is a memory reference of some sort. */
9937 char *base_string;
9938
9939 /* Start and end of displacement string expression (if found). */
9940 char *displacement_string_start;
9941 char *displacement_string_end;
9942 char *vop_start;
9943
9944 do_memory_reference:
9945 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9946 return 0;
9947 if ((i.mem_operands == 1
9948 && !current_templates->start->opcode_modifier.isstring)
9949 || i.mem_operands == 2)
9950 {
9951 as_bad (_("too many memory references for `%s'"),
9952 current_templates->start->name);
9953 return 0;
9954 }
9955
9956 /* Check for base index form. We detect the base index form by
9957 looking for an ')' at the end of the operand, searching
9958 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9959 after the '('. */
9960 base_string = op_string + strlen (op_string);
9961
9962 /* Handle vector operations. */
9963 vop_start = strchr (op_string, '{');
9964 if (vop_start && vop_start < base_string)
9965 {
9966 if (check_VecOperations (vop_start, base_string) == NULL)
9967 return 0;
9968 base_string = vop_start;
9969 }
9970
9971 --base_string;
9972 if (is_space_char (*base_string))
9973 --base_string;
9974
9975 /* If we only have a displacement, set-up for it to be parsed later. */
9976 displacement_string_start = op_string;
9977 displacement_string_end = base_string + 1;
9978
9979 if (*base_string == ')')
9980 {
9981 char *temp_string;
9982 unsigned int parens_balanced = 1;
9983 /* We've already checked that the number of left & right ()'s are
9984 equal, so this loop will not be infinite. */
9985 do
9986 {
9987 base_string--;
9988 if (*base_string == ')')
9989 parens_balanced++;
9990 if (*base_string == '(')
9991 parens_balanced--;
9992 }
9993 while (parens_balanced);
9994
9995 temp_string = base_string;
9996
9997 /* Skip past '(' and whitespace. */
9998 ++base_string;
9999 if (is_space_char (*base_string))
10000 ++base_string;
10001
10002 if (*base_string == ','
10003 || ((i.base_reg = parse_register (base_string, &end_op))
10004 != NULL))
10005 {
10006 displacement_string_end = temp_string;
10007
10008 i.types[this_operand].bitfield.baseindex = 1;
10009
10010 if (i.base_reg)
10011 {
10012 base_string = end_op;
10013 if (is_space_char (*base_string))
10014 ++base_string;
10015 }
10016
10017 /* There may be an index reg or scale factor here. */
10018 if (*base_string == ',')
10019 {
10020 ++base_string;
10021 if (is_space_char (*base_string))
10022 ++base_string;
10023
10024 if ((i.index_reg = parse_register (base_string, &end_op))
10025 != NULL)
10026 {
10027 base_string = end_op;
10028 if (is_space_char (*base_string))
10029 ++base_string;
10030 if (*base_string == ',')
10031 {
10032 ++base_string;
10033 if (is_space_char (*base_string))
10034 ++base_string;
10035 }
10036 else if (*base_string != ')')
10037 {
10038 as_bad (_("expecting `,' or `)' "
10039 "after index register in `%s'"),
10040 operand_string);
10041 return 0;
10042 }
10043 }
10044 else if (*base_string == REGISTER_PREFIX)
10045 {
10046 end_op = strchr (base_string, ',');
10047 if (end_op)
10048 *end_op = '\0';
10049 as_bad (_("bad register name `%s'"), base_string);
10050 return 0;
10051 }
10052
10053 /* Check for scale factor. */
10054 if (*base_string != ')')
10055 {
10056 char *end_scale = i386_scale (base_string);
10057
10058 if (!end_scale)
10059 return 0;
10060
10061 base_string = end_scale;
10062 if (is_space_char (*base_string))
10063 ++base_string;
10064 if (*base_string != ')')
10065 {
10066 as_bad (_("expecting `)' "
10067 "after scale factor in `%s'"),
10068 operand_string);
10069 return 0;
10070 }
10071 }
10072 else if (!i.index_reg)
10073 {
10074 as_bad (_("expecting index register or scale factor "
10075 "after `,'; got '%c'"),
10076 *base_string);
10077 return 0;
10078 }
10079 }
10080 else if (*base_string != ')')
10081 {
10082 as_bad (_("expecting `,' or `)' "
10083 "after base register in `%s'"),
10084 operand_string);
10085 return 0;
10086 }
10087 }
10088 else if (*base_string == REGISTER_PREFIX)
10089 {
10090 end_op = strchr (base_string, ',');
10091 if (end_op)
10092 *end_op = '\0';
10093 as_bad (_("bad register name `%s'"), base_string);
10094 return 0;
10095 }
10096 }
10097
10098 /* If there's an expression beginning the operand, parse it,
10099 assuming displacement_string_start and
10100 displacement_string_end are meaningful. */
10101 if (displacement_string_start != displacement_string_end)
10102 {
10103 if (!i386_displacement (displacement_string_start,
10104 displacement_string_end))
10105 return 0;
10106 }
10107
10108 /* Special case for (%dx) while doing input/output op. */
10109 if (i.base_reg
10110 && i.base_reg->reg_type.bitfield.inoutportreg
10111 && i.index_reg == 0
10112 && i.log2_scale_factor == 0
10113 && i.seg[i.mem_operands] == 0
10114 && !operand_type_check (i.types[this_operand], disp))
10115 {
10116 i.types[this_operand] = i.base_reg->reg_type;
10117 return 1;
10118 }
10119
10120 if (i386_index_check (operand_string) == 0)
10121 return 0;
10122 i.flags[this_operand] |= Operand_Mem;
10123 if (i.mem_operands == 0)
10124 i.memop1_string = xstrdup (operand_string);
10125 i.mem_operands++;
10126 }
10127 else
10128 {
10129 /* It's not a memory operand; argh! */
10130 as_bad (_("invalid char %s beginning operand %d `%s'"),
10131 output_invalid (*op_string),
10132 this_operand + 1,
10133 op_string);
10134 return 0;
10135 }
10136 return 1; /* Normal return. */
10137 }
10138 \f
10139 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10140 that an rs_machine_dependent frag may reach. */
10141
10142 unsigned int
10143 i386_frag_max_var (fragS *frag)
10144 {
10145 /* The only relaxable frags are for jumps.
10146 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10147 gas_assert (frag->fr_type == rs_machine_dependent);
10148 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10149 }
10150
10151 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10152 static int
10153 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10154 {
10155 /* STT_GNU_IFUNC symbol must go through PLT. */
10156 if ((symbol_get_bfdsym (fr_symbol)->flags
10157 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10158 return 0;
10159
10160 if (!S_IS_EXTERNAL (fr_symbol))
10161 /* Symbol may be weak or local. */
10162 return !S_IS_WEAK (fr_symbol);
10163
10164 /* Global symbols with non-default visibility can't be preempted. */
10165 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10166 return 1;
10167
10168 if (fr_var != NO_RELOC)
10169 switch ((enum bfd_reloc_code_real) fr_var)
10170 {
10171 case BFD_RELOC_386_PLT32:
10172 case BFD_RELOC_X86_64_PLT32:
10173 /* Symbol with PLT relocation may be preempted. */
10174 return 0;
10175 default:
10176 abort ();
10177 }
10178
10179 /* Global symbols with default visibility in a shared library may be
10180 preempted by another definition. */
10181 return !shared;
10182 }
10183 #endif
10184
10185 /* md_estimate_size_before_relax()
10186
10187 Called just before relax() for rs_machine_dependent frags. The x86
10188 assembler uses these frags to handle variable size jump
10189 instructions.
10190
10191 Any symbol that is now undefined will not become defined.
10192 Return the correct fr_subtype in the frag.
10193 Return the initial "guess for variable size of frag" to caller.
10194 The guess is actually the growth beyond the fixed part. Whatever
10195 we do to grow the fixed or variable part contributes to our
10196 returned value. */
10197
10198 int
10199 md_estimate_size_before_relax (fragS *fragP, segT segment)
10200 {
10201 /* We've already got fragP->fr_subtype right; all we have to do is
10202 check for un-relaxable symbols. On an ELF system, we can't relax
10203 an externally visible symbol, because it may be overridden by a
10204 shared library. */
10205 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10206 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10207 || (IS_ELF
10208 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10209 fragP->fr_var))
10210 #endif
10211 #if defined (OBJ_COFF) && defined (TE_PE)
10212 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10213 && S_IS_WEAK (fragP->fr_symbol))
10214 #endif
10215 )
10216 {
10217 /* Symbol is undefined in this segment, or we need to keep a
10218 reloc so that weak symbols can be overridden. */
10219 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10220 enum bfd_reloc_code_real reloc_type;
10221 unsigned char *opcode;
10222 int old_fr_fix;
10223
10224 if (fragP->fr_var != NO_RELOC)
10225 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10226 else if (size == 2)
10227 reloc_type = BFD_RELOC_16_PCREL;
10228 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10229 else if (need_plt32_p (fragP->fr_symbol))
10230 reloc_type = BFD_RELOC_X86_64_PLT32;
10231 #endif
10232 else
10233 reloc_type = BFD_RELOC_32_PCREL;
10234
10235 old_fr_fix = fragP->fr_fix;
10236 opcode = (unsigned char *) fragP->fr_opcode;
10237
10238 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10239 {
10240 case UNCOND_JUMP:
10241 /* Make jmp (0xeb) a (d)word displacement jump. */
10242 opcode[0] = 0xe9;
10243 fragP->fr_fix += size;
10244 fix_new (fragP, old_fr_fix, size,
10245 fragP->fr_symbol,
10246 fragP->fr_offset, 1,
10247 reloc_type);
10248 break;
10249
10250 case COND_JUMP86:
10251 if (size == 2
10252 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10253 {
10254 /* Negate the condition, and branch past an
10255 unconditional jump. */
10256 opcode[0] ^= 1;
10257 opcode[1] = 3;
10258 /* Insert an unconditional jump. */
10259 opcode[2] = 0xe9;
10260 /* We added two extra opcode bytes, and have a two byte
10261 offset. */
10262 fragP->fr_fix += 2 + 2;
10263 fix_new (fragP, old_fr_fix + 2, 2,
10264 fragP->fr_symbol,
10265 fragP->fr_offset, 1,
10266 reloc_type);
10267 break;
10268 }
10269 /* Fall through. */
10270
10271 case COND_JUMP:
10272 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10273 {
10274 fixS *fixP;
10275
10276 fragP->fr_fix += 1;
10277 fixP = fix_new (fragP, old_fr_fix, 1,
10278 fragP->fr_symbol,
10279 fragP->fr_offset, 1,
10280 BFD_RELOC_8_PCREL);
10281 fixP->fx_signed = 1;
10282 break;
10283 }
10284
10285 /* This changes the byte-displacement jump 0x7N
10286 to the (d)word-displacement jump 0x0f,0x8N. */
10287 opcode[1] = opcode[0] + 0x10;
10288 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10289 /* We've added an opcode byte. */
10290 fragP->fr_fix += 1 + size;
10291 fix_new (fragP, old_fr_fix + 1, size,
10292 fragP->fr_symbol,
10293 fragP->fr_offset, 1,
10294 reloc_type);
10295 break;
10296
10297 default:
10298 BAD_CASE (fragP->fr_subtype);
10299 break;
10300 }
10301 frag_wane (fragP);
10302 return fragP->fr_fix - old_fr_fix;
10303 }
10304
10305 /* Guess size depending on current relax state. Initially the relax
10306 state will correspond to a short jump and we return 1, because
10307 the variable part of the frag (the branch offset) is one byte
10308 long. However, we can relax a section more than once and in that
10309 case we must either set fr_subtype back to the unrelaxed state,
10310 or return the value for the appropriate branch. */
10311 return md_relax_table[fragP->fr_subtype].rlx_length;
10312 }
10313
10314 /* Called after relax() is finished.
10315
10316 In: Address of frag.
10317 fr_type == rs_machine_dependent.
10318 fr_subtype is what the address relaxed to.
10319
10320 Out: Any fixSs and constants are set up.
10321 Caller will turn frag into a ".space 0". */
10322
10323 void
10324 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10325 fragS *fragP)
10326 {
10327 unsigned char *opcode;
10328 unsigned char *where_to_put_displacement = NULL;
10329 offsetT target_address;
10330 offsetT opcode_address;
10331 unsigned int extension = 0;
10332 offsetT displacement_from_opcode_start;
10333
10334 opcode = (unsigned char *) fragP->fr_opcode;
10335
10336 /* Address we want to reach in file space. */
10337 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10338
10339 /* Address opcode resides at in file space. */
10340 opcode_address = fragP->fr_address + fragP->fr_fix;
10341
10342 /* Displacement from opcode start to fill into instruction. */
10343 displacement_from_opcode_start = target_address - opcode_address;
10344
10345 if ((fragP->fr_subtype & BIG) == 0)
10346 {
10347 /* Don't have to change opcode. */
10348 extension = 1; /* 1 opcode + 1 displacement */
10349 where_to_put_displacement = &opcode[1];
10350 }
10351 else
10352 {
10353 if (no_cond_jump_promotion
10354 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10355 as_warn_where (fragP->fr_file, fragP->fr_line,
10356 _("long jump required"));
10357
10358 switch (fragP->fr_subtype)
10359 {
10360 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10361 extension = 4; /* 1 opcode + 4 displacement */
10362 opcode[0] = 0xe9;
10363 where_to_put_displacement = &opcode[1];
10364 break;
10365
10366 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10367 extension = 2; /* 1 opcode + 2 displacement */
10368 opcode[0] = 0xe9;
10369 where_to_put_displacement = &opcode[1];
10370 break;
10371
10372 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10373 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10374 extension = 5; /* 2 opcode + 4 displacement */
10375 opcode[1] = opcode[0] + 0x10;
10376 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10377 where_to_put_displacement = &opcode[2];
10378 break;
10379
10380 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10381 extension = 3; /* 2 opcode + 2 displacement */
10382 opcode[1] = opcode[0] + 0x10;
10383 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10384 where_to_put_displacement = &opcode[2];
10385 break;
10386
10387 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10388 extension = 4;
10389 opcode[0] ^= 1;
10390 opcode[1] = 3;
10391 opcode[2] = 0xe9;
10392 where_to_put_displacement = &opcode[3];
10393 break;
10394
10395 default:
10396 BAD_CASE (fragP->fr_subtype);
10397 break;
10398 }
10399 }
10400
10401 /* If size if less then four we are sure that the operand fits,
10402 but if it's 4, then it could be that the displacement is larger
10403 then -/+ 2GB. */
10404 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10405 && object_64bit
10406 && ((addressT) (displacement_from_opcode_start - extension
10407 + ((addressT) 1 << 31))
10408 > (((addressT) 2 << 31) - 1)))
10409 {
10410 as_bad_where (fragP->fr_file, fragP->fr_line,
10411 _("jump target out of range"));
10412 /* Make us emit 0. */
10413 displacement_from_opcode_start = extension;
10414 }
10415 /* Now put displacement after opcode. */
10416 md_number_to_chars ((char *) where_to_put_displacement,
10417 (valueT) (displacement_from_opcode_start - extension),
10418 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10419 fragP->fr_fix += extension;
10420 }
10421 \f
10422 /* Apply a fixup (fixP) to segment data, once it has been determined
10423 by our caller that we have all the info we need to fix it up.
10424
10425 Parameter valP is the pointer to the value of the bits.
10426
10427 On the 386, immediates, displacements, and data pointers are all in
10428 the same (little-endian) format, so we don't need to care about which
10429 we are handling. */
10430
10431 void
10432 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10433 {
10434 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10435 valueT value = *valP;
10436
10437 #if !defined (TE_Mach)
10438 if (fixP->fx_pcrel)
10439 {
10440 switch (fixP->fx_r_type)
10441 {
10442 default:
10443 break;
10444
10445 case BFD_RELOC_64:
10446 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10447 break;
10448 case BFD_RELOC_32:
10449 case BFD_RELOC_X86_64_32S:
10450 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10451 break;
10452 case BFD_RELOC_16:
10453 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10454 break;
10455 case BFD_RELOC_8:
10456 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10457 break;
10458 }
10459 }
10460
10461 if (fixP->fx_addsy != NULL
10462 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10463 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10464 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10465 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10466 && !use_rela_relocations)
10467 {
10468 /* This is a hack. There should be a better way to handle this.
10469 This covers for the fact that bfd_install_relocation will
10470 subtract the current location (for partial_inplace, PC relative
10471 relocations); see more below. */
10472 #ifndef OBJ_AOUT
10473 if (IS_ELF
10474 #ifdef TE_PE
10475 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10476 #endif
10477 )
10478 value += fixP->fx_where + fixP->fx_frag->fr_address;
10479 #endif
10480 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10481 if (IS_ELF)
10482 {
10483 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10484
10485 if ((sym_seg == seg
10486 || (symbol_section_p (fixP->fx_addsy)
10487 && sym_seg != absolute_section))
10488 && !generic_force_reloc (fixP))
10489 {
10490 /* Yes, we add the values in twice. This is because
10491 bfd_install_relocation subtracts them out again. I think
10492 bfd_install_relocation is broken, but I don't dare change
10493 it. FIXME. */
10494 value += fixP->fx_where + fixP->fx_frag->fr_address;
10495 }
10496 }
10497 #endif
10498 #if defined (OBJ_COFF) && defined (TE_PE)
10499 /* For some reason, the PE format does not store a
10500 section address offset for a PC relative symbol. */
10501 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10502 || S_IS_WEAK (fixP->fx_addsy))
10503 value += md_pcrel_from (fixP);
10504 #endif
10505 }
10506 #if defined (OBJ_COFF) && defined (TE_PE)
10507 if (fixP->fx_addsy != NULL
10508 && S_IS_WEAK (fixP->fx_addsy)
10509 /* PR 16858: Do not modify weak function references. */
10510 && ! fixP->fx_pcrel)
10511 {
10512 #if !defined (TE_PEP)
10513 /* For x86 PE weak function symbols are neither PC-relative
10514 nor do they set S_IS_FUNCTION. So the only reliable way
10515 to detect them is to check the flags of their containing
10516 section. */
10517 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10518 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10519 ;
10520 else
10521 #endif
10522 value -= S_GET_VALUE (fixP->fx_addsy);
10523 }
10524 #endif
10525
10526 /* Fix a few things - the dynamic linker expects certain values here,
10527 and we must not disappoint it. */
10528 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10529 if (IS_ELF && fixP->fx_addsy)
10530 switch (fixP->fx_r_type)
10531 {
10532 case BFD_RELOC_386_PLT32:
10533 case BFD_RELOC_X86_64_PLT32:
10534 /* Make the jump instruction point to the address of the operand. At
10535 runtime we merely add the offset to the actual PLT entry. */
10536 value = -4;
10537 break;
10538
10539 case BFD_RELOC_386_TLS_GD:
10540 case BFD_RELOC_386_TLS_LDM:
10541 case BFD_RELOC_386_TLS_IE_32:
10542 case BFD_RELOC_386_TLS_IE:
10543 case BFD_RELOC_386_TLS_GOTIE:
10544 case BFD_RELOC_386_TLS_GOTDESC:
10545 case BFD_RELOC_X86_64_TLSGD:
10546 case BFD_RELOC_X86_64_TLSLD:
10547 case BFD_RELOC_X86_64_GOTTPOFF:
10548 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10549 value = 0; /* Fully resolved at runtime. No addend. */
10550 /* Fallthrough */
10551 case BFD_RELOC_386_TLS_LE:
10552 case BFD_RELOC_386_TLS_LDO_32:
10553 case BFD_RELOC_386_TLS_LE_32:
10554 case BFD_RELOC_X86_64_DTPOFF32:
10555 case BFD_RELOC_X86_64_DTPOFF64:
10556 case BFD_RELOC_X86_64_TPOFF32:
10557 case BFD_RELOC_X86_64_TPOFF64:
10558 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10559 break;
10560
10561 case BFD_RELOC_386_TLS_DESC_CALL:
10562 case BFD_RELOC_X86_64_TLSDESC_CALL:
10563 value = 0; /* Fully resolved at runtime. No addend. */
10564 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10565 fixP->fx_done = 0;
10566 return;
10567
10568 case BFD_RELOC_VTABLE_INHERIT:
10569 case BFD_RELOC_VTABLE_ENTRY:
10570 fixP->fx_done = 0;
10571 return;
10572
10573 default:
10574 break;
10575 }
10576 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10577 *valP = value;
10578 #endif /* !defined (TE_Mach) */
10579
10580 /* Are we finished with this relocation now? */
10581 if (fixP->fx_addsy == NULL)
10582 fixP->fx_done = 1;
10583 #if defined (OBJ_COFF) && defined (TE_PE)
10584 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10585 {
10586 fixP->fx_done = 0;
10587 /* Remember value for tc_gen_reloc. */
10588 fixP->fx_addnumber = value;
10589 /* Clear out the frag for now. */
10590 value = 0;
10591 }
10592 #endif
10593 else if (use_rela_relocations)
10594 {
10595 fixP->fx_no_overflow = 1;
10596 /* Remember value for tc_gen_reloc. */
10597 fixP->fx_addnumber = value;
10598 value = 0;
10599 }
10600
10601 md_number_to_chars (p, value, fixP->fx_size);
10602 }
10603 \f
10604 const char *
10605 md_atof (int type, char *litP, int *sizeP)
10606 {
10607 /* This outputs the LITTLENUMs in REVERSE order;
10608 in accord with the bigendian 386. */
10609 return ieee_md_atof (type, litP, sizeP, FALSE);
10610 }
10611 \f
10612 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10613
10614 static char *
10615 output_invalid (int c)
10616 {
10617 if (ISPRINT (c))
10618 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10619 "'%c'", c);
10620 else
10621 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10622 "(0x%x)", (unsigned char) c);
10623 return output_invalid_buf;
10624 }
10625
10626 /* REG_STRING starts *before* REGISTER_PREFIX. */
10627
10628 static const reg_entry *
10629 parse_real_register (char *reg_string, char **end_op)
10630 {
10631 char *s = reg_string;
10632 char *p;
10633 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10634 const reg_entry *r;
10635
10636 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10637 if (*s == REGISTER_PREFIX)
10638 ++s;
10639
10640 if (is_space_char (*s))
10641 ++s;
10642
10643 p = reg_name_given;
10644 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10645 {
10646 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10647 return (const reg_entry *) NULL;
10648 s++;
10649 }
10650
10651 /* For naked regs, make sure that we are not dealing with an identifier.
10652 This prevents confusing an identifier like `eax_var' with register
10653 `eax'. */
10654 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10655 return (const reg_entry *) NULL;
10656
10657 *end_op = s;
10658
10659 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10660
10661 /* Handle floating point regs, allowing spaces in the (i) part. */
10662 if (r == i386_regtab /* %st is first entry of table */)
10663 {
10664 if (!cpu_arch_flags.bitfield.cpu8087
10665 && !cpu_arch_flags.bitfield.cpu287
10666 && !cpu_arch_flags.bitfield.cpu387)
10667 return (const reg_entry *) NULL;
10668
10669 if (is_space_char (*s))
10670 ++s;
10671 if (*s == '(')
10672 {
10673 ++s;
10674 if (is_space_char (*s))
10675 ++s;
10676 if (*s >= '0' && *s <= '7')
10677 {
10678 int fpr = *s - '0';
10679 ++s;
10680 if (is_space_char (*s))
10681 ++s;
10682 if (*s == ')')
10683 {
10684 *end_op = s + 1;
10685 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10686 know (r);
10687 return r + fpr;
10688 }
10689 }
10690 /* We have "%st(" then garbage. */
10691 return (const reg_entry *) NULL;
10692 }
10693 }
10694
10695 if (r == NULL || allow_pseudo_reg)
10696 return r;
10697
10698 if (operand_type_all_zero (&r->reg_type))
10699 return (const reg_entry *) NULL;
10700
10701 if ((r->reg_type.bitfield.dword
10702 || r->reg_type.bitfield.sreg3
10703 || r->reg_type.bitfield.control
10704 || r->reg_type.bitfield.debug
10705 || r->reg_type.bitfield.test)
10706 && !cpu_arch_flags.bitfield.cpui386)
10707 return (const reg_entry *) NULL;
10708
10709 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10710 return (const reg_entry *) NULL;
10711
10712 if (!cpu_arch_flags.bitfield.cpuavx512f)
10713 {
10714 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10715 return (const reg_entry *) NULL;
10716
10717 if (!cpu_arch_flags.bitfield.cpuavx)
10718 {
10719 if (r->reg_type.bitfield.ymmword)
10720 return (const reg_entry *) NULL;
10721
10722 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10723 return (const reg_entry *) NULL;
10724 }
10725 }
10726
10727 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10728 return (const reg_entry *) NULL;
10729
10730 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10731 if (!allow_index_reg && r->reg_num == RegIZ)
10732 return (const reg_entry *) NULL;
10733
10734 /* Upper 16 vector registers are only available with VREX in 64bit
10735 mode, and require EVEX encoding. */
10736 if (r->reg_flags & RegVRex)
10737 {
10738 if (!cpu_arch_flags.bitfield.cpuavx512f
10739 || flag_code != CODE_64BIT)
10740 return (const reg_entry *) NULL;
10741
10742 i.vec_encoding = vex_encoding_evex;
10743 }
10744
10745 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10746 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10747 && flag_code != CODE_64BIT)
10748 return (const reg_entry *) NULL;
10749
10750 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10751 return (const reg_entry *) NULL;
10752
10753 return r;
10754 }
10755
10756 /* REG_STRING starts *before* REGISTER_PREFIX. */
10757
10758 static const reg_entry *
10759 parse_register (char *reg_string, char **end_op)
10760 {
10761 const reg_entry *r;
10762
10763 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10764 r = parse_real_register (reg_string, end_op);
10765 else
10766 r = NULL;
10767 if (!r)
10768 {
10769 char *save = input_line_pointer;
10770 char c;
10771 symbolS *symbolP;
10772
10773 input_line_pointer = reg_string;
10774 c = get_symbol_name (&reg_string);
10775 symbolP = symbol_find (reg_string);
10776 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10777 {
10778 const expressionS *e = symbol_get_value_expression (symbolP);
10779
10780 know (e->X_op == O_register);
10781 know (e->X_add_number >= 0
10782 && (valueT) e->X_add_number < i386_regtab_size);
10783 r = i386_regtab + e->X_add_number;
10784 if ((r->reg_flags & RegVRex))
10785 i.vec_encoding = vex_encoding_evex;
10786 *end_op = input_line_pointer;
10787 }
10788 *input_line_pointer = c;
10789 input_line_pointer = save;
10790 }
10791 return r;
10792 }
10793
10794 int
10795 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10796 {
10797 const reg_entry *r;
10798 char *end = input_line_pointer;
10799
10800 *end = *nextcharP;
10801 r = parse_register (name, &input_line_pointer);
10802 if (r && end <= input_line_pointer)
10803 {
10804 *nextcharP = *input_line_pointer;
10805 *input_line_pointer = 0;
10806 e->X_op = O_register;
10807 e->X_add_number = r - i386_regtab;
10808 return 1;
10809 }
10810 input_line_pointer = end;
10811 *end = 0;
10812 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10813 }
10814
10815 void
10816 md_operand (expressionS *e)
10817 {
10818 char *end;
10819 const reg_entry *r;
10820
10821 switch (*input_line_pointer)
10822 {
10823 case REGISTER_PREFIX:
10824 r = parse_real_register (input_line_pointer, &end);
10825 if (r)
10826 {
10827 e->X_op = O_register;
10828 e->X_add_number = r - i386_regtab;
10829 input_line_pointer = end;
10830 }
10831 break;
10832
10833 case '[':
10834 gas_assert (intel_syntax);
10835 end = input_line_pointer++;
10836 expression (e);
10837 if (*input_line_pointer == ']')
10838 {
10839 ++input_line_pointer;
10840 e->X_op_symbol = make_expr_symbol (e);
10841 e->X_add_symbol = NULL;
10842 e->X_add_number = 0;
10843 e->X_op = O_index;
10844 }
10845 else
10846 {
10847 e->X_op = O_absent;
10848 input_line_pointer = end;
10849 }
10850 break;
10851 }
10852 }
10853
10854 \f
10855 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10856 const char *md_shortopts = "kVQ:sqnO::";
10857 #else
10858 const char *md_shortopts = "qnO::";
10859 #endif
10860
10861 #define OPTION_32 (OPTION_MD_BASE + 0)
10862 #define OPTION_64 (OPTION_MD_BASE + 1)
10863 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10864 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10865 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10866 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10867 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10868 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10869 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10870 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10871 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10872 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10873 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10874 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10875 #define OPTION_X32 (OPTION_MD_BASE + 14)
10876 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10877 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10878 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10879 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10880 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10881 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10882 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10883 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10884 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10885 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10886 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
10887
10888 struct option md_longopts[] =
10889 {
10890 {"32", no_argument, NULL, OPTION_32},
10891 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10892 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10893 {"64", no_argument, NULL, OPTION_64},
10894 #endif
10895 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10896 {"x32", no_argument, NULL, OPTION_X32},
10897 {"mshared", no_argument, NULL, OPTION_MSHARED},
10898 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
10899 #endif
10900 {"divide", no_argument, NULL, OPTION_DIVIDE},
10901 {"march", required_argument, NULL, OPTION_MARCH},
10902 {"mtune", required_argument, NULL, OPTION_MTUNE},
10903 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10904 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10905 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10906 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10907 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10908 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10909 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10910 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10911 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10912 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10913 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10914 # if defined (TE_PE) || defined (TE_PEP)
10915 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10916 #endif
10917 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10918 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10919 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10920 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10921 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10922 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10923 {NULL, no_argument, NULL, 0}
10924 };
10925 size_t md_longopts_size = sizeof (md_longopts);
10926
10927 int
10928 md_parse_option (int c, const char *arg)
10929 {
10930 unsigned int j;
10931 char *arch, *next, *saved;
10932
10933 switch (c)
10934 {
10935 case 'n':
10936 optimize_align_code = 0;
10937 break;
10938
10939 case 'q':
10940 quiet_warnings = 1;
10941 break;
10942
10943 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10944 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10945 should be emitted or not. FIXME: Not implemented. */
10946 case 'Q':
10947 break;
10948
10949 /* -V: SVR4 argument to print version ID. */
10950 case 'V':
10951 print_version_id ();
10952 break;
10953
10954 /* -k: Ignore for FreeBSD compatibility. */
10955 case 'k':
10956 break;
10957
10958 case 's':
10959 /* -s: On i386 Solaris, this tells the native assembler to use
10960 .stab instead of .stab.excl. We always use .stab anyhow. */
10961 break;
10962
10963 case OPTION_MSHARED:
10964 shared = 1;
10965 break;
10966
10967 case OPTION_X86_USED_NOTE:
10968 if (strcasecmp (arg, "yes") == 0)
10969 x86_used_note = 1;
10970 else if (strcasecmp (arg, "no") == 0)
10971 x86_used_note = 0;
10972 else
10973 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
10974 break;
10975
10976
10977 #endif
10978 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10979 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10980 case OPTION_64:
10981 {
10982 const char **list, **l;
10983
10984 list = bfd_target_list ();
10985 for (l = list; *l != NULL; l++)
10986 if (CONST_STRNEQ (*l, "elf64-x86-64")
10987 || strcmp (*l, "coff-x86-64") == 0
10988 || strcmp (*l, "pe-x86-64") == 0
10989 || strcmp (*l, "pei-x86-64") == 0
10990 || strcmp (*l, "mach-o-x86-64") == 0)
10991 {
10992 default_arch = "x86_64";
10993 break;
10994 }
10995 if (*l == NULL)
10996 as_fatal (_("no compiled in support for x86_64"));
10997 free (list);
10998 }
10999 break;
11000 #endif
11001
11002 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11003 case OPTION_X32:
11004 if (IS_ELF)
11005 {
11006 const char **list, **l;
11007
11008 list = bfd_target_list ();
11009 for (l = list; *l != NULL; l++)
11010 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11011 {
11012 default_arch = "x86_64:32";
11013 break;
11014 }
11015 if (*l == NULL)
11016 as_fatal (_("no compiled in support for 32bit x86_64"));
11017 free (list);
11018 }
11019 else
11020 as_fatal (_("32bit x86_64 is only supported for ELF"));
11021 break;
11022 #endif
11023
11024 case OPTION_32:
11025 default_arch = "i386";
11026 break;
11027
11028 case OPTION_DIVIDE:
11029 #ifdef SVR4_COMMENT_CHARS
11030 {
11031 char *n, *t;
11032 const char *s;
11033
11034 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11035 t = n;
11036 for (s = i386_comment_chars; *s != '\0'; s++)
11037 if (*s != '/')
11038 *t++ = *s;
11039 *t = '\0';
11040 i386_comment_chars = n;
11041 }
11042 #endif
11043 break;
11044
11045 case OPTION_MARCH:
11046 saved = xstrdup (arg);
11047 arch = saved;
11048 /* Allow -march=+nosse. */
11049 if (*arch == '+')
11050 arch++;
11051 do
11052 {
11053 if (*arch == '.')
11054 as_fatal (_("invalid -march= option: `%s'"), arg);
11055 next = strchr (arch, '+');
11056 if (next)
11057 *next++ = '\0';
11058 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11059 {
11060 if (strcmp (arch, cpu_arch [j].name) == 0)
11061 {
11062 /* Processor. */
11063 if (! cpu_arch[j].flags.bitfield.cpui386)
11064 continue;
11065
11066 cpu_arch_name = cpu_arch[j].name;
11067 cpu_sub_arch_name = NULL;
11068 cpu_arch_flags = cpu_arch[j].flags;
11069 cpu_arch_isa = cpu_arch[j].type;
11070 cpu_arch_isa_flags = cpu_arch[j].flags;
11071 if (!cpu_arch_tune_set)
11072 {
11073 cpu_arch_tune = cpu_arch_isa;
11074 cpu_arch_tune_flags = cpu_arch_isa_flags;
11075 }
11076 break;
11077 }
11078 else if (*cpu_arch [j].name == '.'
11079 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11080 {
11081 /* ISA extension. */
11082 i386_cpu_flags flags;
11083
11084 flags = cpu_flags_or (cpu_arch_flags,
11085 cpu_arch[j].flags);
11086
11087 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11088 {
11089 if (cpu_sub_arch_name)
11090 {
11091 char *name = cpu_sub_arch_name;
11092 cpu_sub_arch_name = concat (name,
11093 cpu_arch[j].name,
11094 (const char *) NULL);
11095 free (name);
11096 }
11097 else
11098 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11099 cpu_arch_flags = flags;
11100 cpu_arch_isa_flags = flags;
11101 }
11102 else
11103 cpu_arch_isa_flags
11104 = cpu_flags_or (cpu_arch_isa_flags,
11105 cpu_arch[j].flags);
11106 break;
11107 }
11108 }
11109
11110 if (j >= ARRAY_SIZE (cpu_arch))
11111 {
11112 /* Disable an ISA extension. */
11113 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11114 if (strcmp (arch, cpu_noarch [j].name) == 0)
11115 {
11116 i386_cpu_flags flags;
11117
11118 flags = cpu_flags_and_not (cpu_arch_flags,
11119 cpu_noarch[j].flags);
11120 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11121 {
11122 if (cpu_sub_arch_name)
11123 {
11124 char *name = cpu_sub_arch_name;
11125 cpu_sub_arch_name = concat (arch,
11126 (const char *) NULL);
11127 free (name);
11128 }
11129 else
11130 cpu_sub_arch_name = xstrdup (arch);
11131 cpu_arch_flags = flags;
11132 cpu_arch_isa_flags = flags;
11133 }
11134 break;
11135 }
11136
11137 if (j >= ARRAY_SIZE (cpu_noarch))
11138 j = ARRAY_SIZE (cpu_arch);
11139 }
11140
11141 if (j >= ARRAY_SIZE (cpu_arch))
11142 as_fatal (_("invalid -march= option: `%s'"), arg);
11143
11144 arch = next;
11145 }
11146 while (next != NULL);
11147 free (saved);
11148 break;
11149
11150 case OPTION_MTUNE:
11151 if (*arg == '.')
11152 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11153 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11154 {
11155 if (strcmp (arg, cpu_arch [j].name) == 0)
11156 {
11157 cpu_arch_tune_set = 1;
11158 cpu_arch_tune = cpu_arch [j].type;
11159 cpu_arch_tune_flags = cpu_arch[j].flags;
11160 break;
11161 }
11162 }
11163 if (j >= ARRAY_SIZE (cpu_arch))
11164 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11165 break;
11166
11167 case OPTION_MMNEMONIC:
11168 if (strcasecmp (arg, "att") == 0)
11169 intel_mnemonic = 0;
11170 else if (strcasecmp (arg, "intel") == 0)
11171 intel_mnemonic = 1;
11172 else
11173 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11174 break;
11175
11176 case OPTION_MSYNTAX:
11177 if (strcasecmp (arg, "att") == 0)
11178 intel_syntax = 0;
11179 else if (strcasecmp (arg, "intel") == 0)
11180 intel_syntax = 1;
11181 else
11182 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11183 break;
11184
11185 case OPTION_MINDEX_REG:
11186 allow_index_reg = 1;
11187 break;
11188
11189 case OPTION_MNAKED_REG:
11190 allow_naked_reg = 1;
11191 break;
11192
11193 case OPTION_MSSE2AVX:
11194 sse2avx = 1;
11195 break;
11196
11197 case OPTION_MSSE_CHECK:
11198 if (strcasecmp (arg, "error") == 0)
11199 sse_check = check_error;
11200 else if (strcasecmp (arg, "warning") == 0)
11201 sse_check = check_warning;
11202 else if (strcasecmp (arg, "none") == 0)
11203 sse_check = check_none;
11204 else
11205 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11206 break;
11207
11208 case OPTION_MOPERAND_CHECK:
11209 if (strcasecmp (arg, "error") == 0)
11210 operand_check = check_error;
11211 else if (strcasecmp (arg, "warning") == 0)
11212 operand_check = check_warning;
11213 else if (strcasecmp (arg, "none") == 0)
11214 operand_check = check_none;
11215 else
11216 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11217 break;
11218
11219 case OPTION_MAVXSCALAR:
11220 if (strcasecmp (arg, "128") == 0)
11221 avxscalar = vex128;
11222 else if (strcasecmp (arg, "256") == 0)
11223 avxscalar = vex256;
11224 else
11225 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11226 break;
11227
11228 case OPTION_MADD_BND_PREFIX:
11229 add_bnd_prefix = 1;
11230 break;
11231
11232 case OPTION_MEVEXLIG:
11233 if (strcmp (arg, "128") == 0)
11234 evexlig = evexl128;
11235 else if (strcmp (arg, "256") == 0)
11236 evexlig = evexl256;
11237 else if (strcmp (arg, "512") == 0)
11238 evexlig = evexl512;
11239 else
11240 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11241 break;
11242
11243 case OPTION_MEVEXRCIG:
11244 if (strcmp (arg, "rne") == 0)
11245 evexrcig = rne;
11246 else if (strcmp (arg, "rd") == 0)
11247 evexrcig = rd;
11248 else if (strcmp (arg, "ru") == 0)
11249 evexrcig = ru;
11250 else if (strcmp (arg, "rz") == 0)
11251 evexrcig = rz;
11252 else
11253 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11254 break;
11255
11256 case OPTION_MEVEXWIG:
11257 if (strcmp (arg, "0") == 0)
11258 evexwig = evexw0;
11259 else if (strcmp (arg, "1") == 0)
11260 evexwig = evexw1;
11261 else
11262 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11263 break;
11264
11265 # if defined (TE_PE) || defined (TE_PEP)
11266 case OPTION_MBIG_OBJ:
11267 use_big_obj = 1;
11268 break;
11269 #endif
11270
11271 case OPTION_MOMIT_LOCK_PREFIX:
11272 if (strcasecmp (arg, "yes") == 0)
11273 omit_lock_prefix = 1;
11274 else if (strcasecmp (arg, "no") == 0)
11275 omit_lock_prefix = 0;
11276 else
11277 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11278 break;
11279
11280 case OPTION_MFENCE_AS_LOCK_ADD:
11281 if (strcasecmp (arg, "yes") == 0)
11282 avoid_fence = 1;
11283 else if (strcasecmp (arg, "no") == 0)
11284 avoid_fence = 0;
11285 else
11286 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11287 break;
11288
11289 case OPTION_MRELAX_RELOCATIONS:
11290 if (strcasecmp (arg, "yes") == 0)
11291 generate_relax_relocations = 1;
11292 else if (strcasecmp (arg, "no") == 0)
11293 generate_relax_relocations = 0;
11294 else
11295 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11296 break;
11297
11298 case OPTION_MAMD64:
11299 intel64 = 0;
11300 break;
11301
11302 case OPTION_MINTEL64:
11303 intel64 = 1;
11304 break;
11305
11306 case 'O':
11307 if (arg == NULL)
11308 {
11309 optimize = 1;
11310 /* Turn off -Os. */
11311 optimize_for_space = 0;
11312 }
11313 else if (*arg == 's')
11314 {
11315 optimize_for_space = 1;
11316 /* Turn on all encoding optimizations. */
11317 optimize = -1;
11318 }
11319 else
11320 {
11321 optimize = atoi (arg);
11322 /* Turn off -Os. */
11323 optimize_for_space = 0;
11324 }
11325 break;
11326
11327 default:
11328 return 0;
11329 }
11330 return 1;
11331 }
11332
11333 #define MESSAGE_TEMPLATE \
11334 " "
11335
11336 static char *
11337 output_message (FILE *stream, char *p, char *message, char *start,
11338 int *left_p, const char *name, int len)
11339 {
11340 int size = sizeof (MESSAGE_TEMPLATE);
11341 int left = *left_p;
11342
11343 /* Reserve 2 spaces for ", " or ",\0" */
11344 left -= len + 2;
11345
11346 /* Check if there is any room. */
11347 if (left >= 0)
11348 {
11349 if (p != start)
11350 {
11351 *p++ = ',';
11352 *p++ = ' ';
11353 }
11354 p = mempcpy (p, name, len);
11355 }
11356 else
11357 {
11358 /* Output the current message now and start a new one. */
11359 *p++ = ',';
11360 *p = '\0';
11361 fprintf (stream, "%s\n", message);
11362 p = start;
11363 left = size - (start - message) - len - 2;
11364
11365 gas_assert (left >= 0);
11366
11367 p = mempcpy (p, name, len);
11368 }
11369
11370 *left_p = left;
11371 return p;
11372 }
11373
11374 static void
11375 show_arch (FILE *stream, int ext, int check)
11376 {
11377 static char message[] = MESSAGE_TEMPLATE;
11378 char *start = message + 27;
11379 char *p;
11380 int size = sizeof (MESSAGE_TEMPLATE);
11381 int left;
11382 const char *name;
11383 int len;
11384 unsigned int j;
11385
11386 p = start;
11387 left = size - (start - message);
11388 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11389 {
11390 /* Should it be skipped? */
11391 if (cpu_arch [j].skip)
11392 continue;
11393
11394 name = cpu_arch [j].name;
11395 len = cpu_arch [j].len;
11396 if (*name == '.')
11397 {
11398 /* It is an extension. Skip if we aren't asked to show it. */
11399 if (ext)
11400 {
11401 name++;
11402 len--;
11403 }
11404 else
11405 continue;
11406 }
11407 else if (ext)
11408 {
11409 /* It is an processor. Skip if we show only extension. */
11410 continue;
11411 }
11412 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11413 {
11414 /* It is an impossible processor - skip. */
11415 continue;
11416 }
11417
11418 p = output_message (stream, p, message, start, &left, name, len);
11419 }
11420
11421 /* Display disabled extensions. */
11422 if (ext)
11423 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11424 {
11425 name = cpu_noarch [j].name;
11426 len = cpu_noarch [j].len;
11427 p = output_message (stream, p, message, start, &left, name,
11428 len);
11429 }
11430
11431 *p = '\0';
11432 fprintf (stream, "%s\n", message);
11433 }
11434
11435 void
11436 md_show_usage (FILE *stream)
11437 {
11438 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11439 fprintf (stream, _("\
11440 -Q ignored\n\
11441 -V print assembler version number\n\
11442 -k ignored\n"));
11443 #endif
11444 fprintf (stream, _("\
11445 -n Do not optimize code alignment\n\
11446 -q quieten some warnings\n"));
11447 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11448 fprintf (stream, _("\
11449 -s ignored\n"));
11450 #endif
11451 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11452 || defined (TE_PE) || defined (TE_PEP))
11453 fprintf (stream, _("\
11454 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11455 #endif
11456 #ifdef SVR4_COMMENT_CHARS
11457 fprintf (stream, _("\
11458 --divide do not treat `/' as a comment character\n"));
11459 #else
11460 fprintf (stream, _("\
11461 --divide ignored\n"));
11462 #endif
11463 fprintf (stream, _("\
11464 -march=CPU[,+EXTENSION...]\n\
11465 generate code for CPU and EXTENSION, CPU is one of:\n"));
11466 show_arch (stream, 0, 1);
11467 fprintf (stream, _("\
11468 EXTENSION is combination of:\n"));
11469 show_arch (stream, 1, 0);
11470 fprintf (stream, _("\
11471 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11472 show_arch (stream, 0, 0);
11473 fprintf (stream, _("\
11474 -msse2avx encode SSE instructions with VEX prefix\n"));
11475 fprintf (stream, _("\
11476 -msse-check=[none|error|warning] (default: warning)\n\
11477 check SSE instructions\n"));
11478 fprintf (stream, _("\
11479 -moperand-check=[none|error|warning] (default: warning)\n\
11480 check operand combinations for validity\n"));
11481 fprintf (stream, _("\
11482 -mavxscalar=[128|256] (default: 128)\n\
11483 encode scalar AVX instructions with specific vector\n\
11484 length\n"));
11485 fprintf (stream, _("\
11486 -mevexlig=[128|256|512] (default: 128)\n\
11487 encode scalar EVEX instructions with specific vector\n\
11488 length\n"));
11489 fprintf (stream, _("\
11490 -mevexwig=[0|1] (default: 0)\n\
11491 encode EVEX instructions with specific EVEX.W value\n\
11492 for EVEX.W bit ignored instructions\n"));
11493 fprintf (stream, _("\
11494 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11495 encode EVEX instructions with specific EVEX.RC value\n\
11496 for SAE-only ignored instructions\n"));
11497 fprintf (stream, _("\
11498 -mmnemonic=[att|intel] "));
11499 if (SYSV386_COMPAT)
11500 fprintf (stream, _("(default: att)\n"));
11501 else
11502 fprintf (stream, _("(default: intel)\n"));
11503 fprintf (stream, _("\
11504 use AT&T/Intel mnemonic\n"));
11505 fprintf (stream, _("\
11506 -msyntax=[att|intel] (default: att)\n\
11507 use AT&T/Intel syntax\n"));
11508 fprintf (stream, _("\
11509 -mindex-reg support pseudo index registers\n"));
11510 fprintf (stream, _("\
11511 -mnaked-reg don't require `%%' prefix for registers\n"));
11512 fprintf (stream, _("\
11513 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11514 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11515 fprintf (stream, _("\
11516 -mshared disable branch optimization for shared code\n"));
11517 fprintf (stream, _("\
11518 -mx86-used-note=[no|yes] "));
11519 if (DEFAULT_X86_USED_NOTE)
11520 fprintf (stream, _("(default: yes)\n"));
11521 else
11522 fprintf (stream, _("(default: no)\n"));
11523 fprintf (stream, _("\
11524 generate x86 used ISA and feature properties\n"));
11525 #endif
11526 #if defined (TE_PE) || defined (TE_PEP)
11527 fprintf (stream, _("\
11528 -mbig-obj generate big object files\n"));
11529 #endif
11530 fprintf (stream, _("\
11531 -momit-lock-prefix=[no|yes] (default: no)\n\
11532 strip all lock prefixes\n"));
11533 fprintf (stream, _("\
11534 -mfence-as-lock-add=[no|yes] (default: no)\n\
11535 encode lfence, mfence and sfence as\n\
11536 lock addl $0x0, (%%{re}sp)\n"));
11537 fprintf (stream, _("\
11538 -mrelax-relocations=[no|yes] "));
11539 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11540 fprintf (stream, _("(default: yes)\n"));
11541 else
11542 fprintf (stream, _("(default: no)\n"));
11543 fprintf (stream, _("\
11544 generate relax relocations\n"));
11545 fprintf (stream, _("\
11546 -mamd64 accept only AMD64 ISA [default]\n"));
11547 fprintf (stream, _("\
11548 -mintel64 accept only Intel64 ISA\n"));
11549 }
11550
11551 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11552 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11553 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11554
11555 /* Pick the target format to use. */
11556
11557 const char *
11558 i386_target_format (void)
11559 {
11560 if (!strncmp (default_arch, "x86_64", 6))
11561 {
11562 update_code_flag (CODE_64BIT, 1);
11563 if (default_arch[6] == '\0')
11564 x86_elf_abi = X86_64_ABI;
11565 else
11566 x86_elf_abi = X86_64_X32_ABI;
11567 }
11568 else if (!strcmp (default_arch, "i386"))
11569 update_code_flag (CODE_32BIT, 1);
11570 else if (!strcmp (default_arch, "iamcu"))
11571 {
11572 update_code_flag (CODE_32BIT, 1);
11573 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11574 {
11575 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11576 cpu_arch_name = "iamcu";
11577 cpu_sub_arch_name = NULL;
11578 cpu_arch_flags = iamcu_flags;
11579 cpu_arch_isa = PROCESSOR_IAMCU;
11580 cpu_arch_isa_flags = iamcu_flags;
11581 if (!cpu_arch_tune_set)
11582 {
11583 cpu_arch_tune = cpu_arch_isa;
11584 cpu_arch_tune_flags = cpu_arch_isa_flags;
11585 }
11586 }
11587 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11588 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11589 cpu_arch_name);
11590 }
11591 else
11592 as_fatal (_("unknown architecture"));
11593
11594 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11595 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11596 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11597 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11598
11599 switch (OUTPUT_FLAVOR)
11600 {
11601 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11602 case bfd_target_aout_flavour:
11603 return AOUT_TARGET_FORMAT;
11604 #endif
11605 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11606 # if defined (TE_PE) || defined (TE_PEP)
11607 case bfd_target_coff_flavour:
11608 if (flag_code == CODE_64BIT)
11609 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11610 else
11611 return "pe-i386";
11612 # elif defined (TE_GO32)
11613 case bfd_target_coff_flavour:
11614 return "coff-go32";
11615 # else
11616 case bfd_target_coff_flavour:
11617 return "coff-i386";
11618 # endif
11619 #endif
11620 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11621 case bfd_target_elf_flavour:
11622 {
11623 const char *format;
11624
11625 switch (x86_elf_abi)
11626 {
11627 default:
11628 format = ELF_TARGET_FORMAT;
11629 break;
11630 case X86_64_ABI:
11631 use_rela_relocations = 1;
11632 object_64bit = 1;
11633 format = ELF_TARGET_FORMAT64;
11634 break;
11635 case X86_64_X32_ABI:
11636 use_rela_relocations = 1;
11637 object_64bit = 1;
11638 disallow_64bit_reloc = 1;
11639 format = ELF_TARGET_FORMAT32;
11640 break;
11641 }
11642 if (cpu_arch_isa == PROCESSOR_L1OM)
11643 {
11644 if (x86_elf_abi != X86_64_ABI)
11645 as_fatal (_("Intel L1OM is 64bit only"));
11646 return ELF_TARGET_L1OM_FORMAT;
11647 }
11648 else if (cpu_arch_isa == PROCESSOR_K1OM)
11649 {
11650 if (x86_elf_abi != X86_64_ABI)
11651 as_fatal (_("Intel K1OM is 64bit only"));
11652 return ELF_TARGET_K1OM_FORMAT;
11653 }
11654 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11655 {
11656 if (x86_elf_abi != I386_ABI)
11657 as_fatal (_("Intel MCU is 32bit only"));
11658 return ELF_TARGET_IAMCU_FORMAT;
11659 }
11660 else
11661 return format;
11662 }
11663 #endif
11664 #if defined (OBJ_MACH_O)
11665 case bfd_target_mach_o_flavour:
11666 if (flag_code == CODE_64BIT)
11667 {
11668 use_rela_relocations = 1;
11669 object_64bit = 1;
11670 return "mach-o-x86-64";
11671 }
11672 else
11673 return "mach-o-i386";
11674 #endif
11675 default:
11676 abort ();
11677 return NULL;
11678 }
11679 }
11680
11681 #endif /* OBJ_MAYBE_ more than one */
11682 \f
11683 symbolS *
11684 md_undefined_symbol (char *name)
11685 {
11686 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11687 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11688 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11689 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11690 {
11691 if (!GOT_symbol)
11692 {
11693 if (symbol_find (name))
11694 as_bad (_("GOT already in symbol table"));
11695 GOT_symbol = symbol_new (name, undefined_section,
11696 (valueT) 0, &zero_address_frag);
11697 };
11698 return GOT_symbol;
11699 }
11700 return 0;
11701 }
11702
11703 /* Round up a section size to the appropriate boundary. */
11704
11705 valueT
11706 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11707 {
11708 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11709 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11710 {
11711 /* For a.out, force the section size to be aligned. If we don't do
11712 this, BFD will align it for us, but it will not write out the
11713 final bytes of the section. This may be a bug in BFD, but it is
11714 easier to fix it here since that is how the other a.out targets
11715 work. */
11716 int align;
11717
11718 align = bfd_get_section_alignment (stdoutput, segment);
11719 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11720 }
11721 #endif
11722
11723 return size;
11724 }
11725
11726 /* On the i386, PC-relative offsets are relative to the start of the
11727 next instruction. That is, the address of the offset, plus its
11728 size, since the offset is always the last part of the insn. */
11729
11730 long
11731 md_pcrel_from (fixS *fixP)
11732 {
11733 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11734 }
11735
11736 #ifndef I386COFF
11737
11738 static void
11739 s_bss (int ignore ATTRIBUTE_UNUSED)
11740 {
11741 int temp;
11742
11743 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11744 if (IS_ELF)
11745 obj_elf_section_change_hook ();
11746 #endif
11747 temp = get_absolute_expression ();
11748 subseg_set (bss_section, (subsegT) temp);
11749 demand_empty_rest_of_line ();
11750 }
11751
11752 #endif
11753
11754 void
11755 i386_validate_fix (fixS *fixp)
11756 {
11757 if (fixp->fx_subsy)
11758 {
11759 if (fixp->fx_subsy == GOT_symbol)
11760 {
11761 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11762 {
11763 if (!object_64bit)
11764 abort ();
11765 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11766 if (fixp->fx_tcbit2)
11767 fixp->fx_r_type = (fixp->fx_tcbit
11768 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11769 : BFD_RELOC_X86_64_GOTPCRELX);
11770 else
11771 #endif
11772 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11773 }
11774 else
11775 {
11776 if (!object_64bit)
11777 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11778 else
11779 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11780 }
11781 fixp->fx_subsy = 0;
11782 }
11783 }
11784 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11785 else if (!object_64bit)
11786 {
11787 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11788 && fixp->fx_tcbit2)
11789 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11790 }
11791 #endif
11792 }
11793
11794 arelent *
11795 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11796 {
11797 arelent *rel;
11798 bfd_reloc_code_real_type code;
11799
11800 switch (fixp->fx_r_type)
11801 {
11802 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11803 case BFD_RELOC_SIZE32:
11804 case BFD_RELOC_SIZE64:
11805 if (S_IS_DEFINED (fixp->fx_addsy)
11806 && !S_IS_EXTERNAL (fixp->fx_addsy))
11807 {
11808 /* Resolve size relocation against local symbol to size of
11809 the symbol plus addend. */
11810 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11811 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11812 && !fits_in_unsigned_long (value))
11813 as_bad_where (fixp->fx_file, fixp->fx_line,
11814 _("symbol size computation overflow"));
11815 fixp->fx_addsy = NULL;
11816 fixp->fx_subsy = NULL;
11817 md_apply_fix (fixp, (valueT *) &value, NULL);
11818 return NULL;
11819 }
11820 #endif
11821 /* Fall through. */
11822
11823 case BFD_RELOC_X86_64_PLT32:
11824 case BFD_RELOC_X86_64_GOT32:
11825 case BFD_RELOC_X86_64_GOTPCREL:
11826 case BFD_RELOC_X86_64_GOTPCRELX:
11827 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11828 case BFD_RELOC_386_PLT32:
11829 case BFD_RELOC_386_GOT32:
11830 case BFD_RELOC_386_GOT32X:
11831 case BFD_RELOC_386_GOTOFF:
11832 case BFD_RELOC_386_GOTPC:
11833 case BFD_RELOC_386_TLS_GD:
11834 case BFD_RELOC_386_TLS_LDM:
11835 case BFD_RELOC_386_TLS_LDO_32:
11836 case BFD_RELOC_386_TLS_IE_32:
11837 case BFD_RELOC_386_TLS_IE:
11838 case BFD_RELOC_386_TLS_GOTIE:
11839 case BFD_RELOC_386_TLS_LE_32:
11840 case BFD_RELOC_386_TLS_LE:
11841 case BFD_RELOC_386_TLS_GOTDESC:
11842 case BFD_RELOC_386_TLS_DESC_CALL:
11843 case BFD_RELOC_X86_64_TLSGD:
11844 case BFD_RELOC_X86_64_TLSLD:
11845 case BFD_RELOC_X86_64_DTPOFF32:
11846 case BFD_RELOC_X86_64_DTPOFF64:
11847 case BFD_RELOC_X86_64_GOTTPOFF:
11848 case BFD_RELOC_X86_64_TPOFF32:
11849 case BFD_RELOC_X86_64_TPOFF64:
11850 case BFD_RELOC_X86_64_GOTOFF64:
11851 case BFD_RELOC_X86_64_GOTPC32:
11852 case BFD_RELOC_X86_64_GOT64:
11853 case BFD_RELOC_X86_64_GOTPCREL64:
11854 case BFD_RELOC_X86_64_GOTPC64:
11855 case BFD_RELOC_X86_64_GOTPLT64:
11856 case BFD_RELOC_X86_64_PLTOFF64:
11857 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11858 case BFD_RELOC_X86_64_TLSDESC_CALL:
11859 case BFD_RELOC_RVA:
11860 case BFD_RELOC_VTABLE_ENTRY:
11861 case BFD_RELOC_VTABLE_INHERIT:
11862 #ifdef TE_PE
11863 case BFD_RELOC_32_SECREL:
11864 #endif
11865 code = fixp->fx_r_type;
11866 break;
11867 case BFD_RELOC_X86_64_32S:
11868 if (!fixp->fx_pcrel)
11869 {
11870 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11871 code = fixp->fx_r_type;
11872 break;
11873 }
11874 /* Fall through. */
11875 default:
11876 if (fixp->fx_pcrel)
11877 {
11878 switch (fixp->fx_size)
11879 {
11880 default:
11881 as_bad_where (fixp->fx_file, fixp->fx_line,
11882 _("can not do %d byte pc-relative relocation"),
11883 fixp->fx_size);
11884 code = BFD_RELOC_32_PCREL;
11885 break;
11886 case 1: code = BFD_RELOC_8_PCREL; break;
11887 case 2: code = BFD_RELOC_16_PCREL; break;
11888 case 4: code = BFD_RELOC_32_PCREL; break;
11889 #ifdef BFD64
11890 case 8: code = BFD_RELOC_64_PCREL; break;
11891 #endif
11892 }
11893 }
11894 else
11895 {
11896 switch (fixp->fx_size)
11897 {
11898 default:
11899 as_bad_where (fixp->fx_file, fixp->fx_line,
11900 _("can not do %d byte relocation"),
11901 fixp->fx_size);
11902 code = BFD_RELOC_32;
11903 break;
11904 case 1: code = BFD_RELOC_8; break;
11905 case 2: code = BFD_RELOC_16; break;
11906 case 4: code = BFD_RELOC_32; break;
11907 #ifdef BFD64
11908 case 8: code = BFD_RELOC_64; break;
11909 #endif
11910 }
11911 }
11912 break;
11913 }
11914
11915 if ((code == BFD_RELOC_32
11916 || code == BFD_RELOC_32_PCREL
11917 || code == BFD_RELOC_X86_64_32S)
11918 && GOT_symbol
11919 && fixp->fx_addsy == GOT_symbol)
11920 {
11921 if (!object_64bit)
11922 code = BFD_RELOC_386_GOTPC;
11923 else
11924 code = BFD_RELOC_X86_64_GOTPC32;
11925 }
11926 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11927 && GOT_symbol
11928 && fixp->fx_addsy == GOT_symbol)
11929 {
11930 code = BFD_RELOC_X86_64_GOTPC64;
11931 }
11932
11933 rel = XNEW (arelent);
11934 rel->sym_ptr_ptr = XNEW (asymbol *);
11935 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11936
11937 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11938
11939 if (!use_rela_relocations)
11940 {
11941 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11942 vtable entry to be used in the relocation's section offset. */
11943 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11944 rel->address = fixp->fx_offset;
11945 #if defined (OBJ_COFF) && defined (TE_PE)
11946 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11947 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11948 else
11949 #endif
11950 rel->addend = 0;
11951 }
11952 /* Use the rela in 64bit mode. */
11953 else
11954 {
11955 if (disallow_64bit_reloc)
11956 switch (code)
11957 {
11958 case BFD_RELOC_X86_64_DTPOFF64:
11959 case BFD_RELOC_X86_64_TPOFF64:
11960 case BFD_RELOC_64_PCREL:
11961 case BFD_RELOC_X86_64_GOTOFF64:
11962 case BFD_RELOC_X86_64_GOT64:
11963 case BFD_RELOC_X86_64_GOTPCREL64:
11964 case BFD_RELOC_X86_64_GOTPC64:
11965 case BFD_RELOC_X86_64_GOTPLT64:
11966 case BFD_RELOC_X86_64_PLTOFF64:
11967 as_bad_where (fixp->fx_file, fixp->fx_line,
11968 _("cannot represent relocation type %s in x32 mode"),
11969 bfd_get_reloc_code_name (code));
11970 break;
11971 default:
11972 break;
11973 }
11974
11975 if (!fixp->fx_pcrel)
11976 rel->addend = fixp->fx_offset;
11977 else
11978 switch (code)
11979 {
11980 case BFD_RELOC_X86_64_PLT32:
11981 case BFD_RELOC_X86_64_GOT32:
11982 case BFD_RELOC_X86_64_GOTPCREL:
11983 case BFD_RELOC_X86_64_GOTPCRELX:
11984 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11985 case BFD_RELOC_X86_64_TLSGD:
11986 case BFD_RELOC_X86_64_TLSLD:
11987 case BFD_RELOC_X86_64_GOTTPOFF:
11988 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11989 case BFD_RELOC_X86_64_TLSDESC_CALL:
11990 rel->addend = fixp->fx_offset - fixp->fx_size;
11991 break;
11992 default:
11993 rel->addend = (section->vma
11994 - fixp->fx_size
11995 + fixp->fx_addnumber
11996 + md_pcrel_from (fixp));
11997 break;
11998 }
11999 }
12000
12001 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12002 if (rel->howto == NULL)
12003 {
12004 as_bad_where (fixp->fx_file, fixp->fx_line,
12005 _("cannot represent relocation type %s"),
12006 bfd_get_reloc_code_name (code));
12007 /* Set howto to a garbage value so that we can keep going. */
12008 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12009 gas_assert (rel->howto != NULL);
12010 }
12011
12012 return rel;
12013 }
12014
12015 #include "tc-i386-intel.c"
12016
12017 void
12018 tc_x86_parse_to_dw2regnum (expressionS *exp)
12019 {
12020 int saved_naked_reg;
12021 char saved_register_dot;
12022
12023 saved_naked_reg = allow_naked_reg;
12024 allow_naked_reg = 1;
12025 saved_register_dot = register_chars['.'];
12026 register_chars['.'] = '.';
12027 allow_pseudo_reg = 1;
12028 expression_and_evaluate (exp);
12029 allow_pseudo_reg = 0;
12030 register_chars['.'] = saved_register_dot;
12031 allow_naked_reg = saved_naked_reg;
12032
12033 if (exp->X_op == O_register && exp->X_add_number >= 0)
12034 {
12035 if ((addressT) exp->X_add_number < i386_regtab_size)
12036 {
12037 exp->X_op = O_constant;
12038 exp->X_add_number = i386_regtab[exp->X_add_number]
12039 .dw2_regnum[flag_code >> 1];
12040 }
12041 else
12042 exp->X_op = O_illegal;
12043 }
12044 }
12045
12046 void
12047 tc_x86_frame_initial_instructions (void)
12048 {
12049 static unsigned int sp_regno[2];
12050
12051 if (!sp_regno[flag_code >> 1])
12052 {
12053 char *saved_input = input_line_pointer;
12054 char sp[][4] = {"esp", "rsp"};
12055 expressionS exp;
12056
12057 input_line_pointer = sp[flag_code >> 1];
12058 tc_x86_parse_to_dw2regnum (&exp);
12059 gas_assert (exp.X_op == O_constant);
12060 sp_regno[flag_code >> 1] = exp.X_add_number;
12061 input_line_pointer = saved_input;
12062 }
12063
12064 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12065 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12066 }
12067
12068 int
12069 x86_dwarf2_addr_size (void)
12070 {
12071 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12072 if (x86_elf_abi == X86_64_X32_ABI)
12073 return 4;
12074 #endif
12075 return bfd_arch_bits_per_address (stdoutput) / 8;
12076 }
12077
12078 int
12079 i386_elf_section_type (const char *str, size_t len)
12080 {
12081 if (flag_code == CODE_64BIT
12082 && len == sizeof ("unwind") - 1
12083 && strncmp (str, "unwind", 6) == 0)
12084 return SHT_X86_64_UNWIND;
12085
12086 return -1;
12087 }
12088
12089 #ifdef TE_SOLARIS
12090 void
12091 i386_solaris_fix_up_eh_frame (segT sec)
12092 {
12093 if (flag_code == CODE_64BIT)
12094 elf_section_type (sec) = SHT_X86_64_UNWIND;
12095 }
12096 #endif
12097
12098 #ifdef TE_PE
12099 void
12100 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12101 {
12102 expressionS exp;
12103
12104 exp.X_op = O_secrel;
12105 exp.X_add_symbol = symbol;
12106 exp.X_add_number = 0;
12107 emit_expr (&exp, size);
12108 }
12109 #endif
12110
12111 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12112 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12113
12114 bfd_vma
12115 x86_64_section_letter (int letter, const char **ptr_msg)
12116 {
12117 if (flag_code == CODE_64BIT)
12118 {
12119 if (letter == 'l')
12120 return SHF_X86_64_LARGE;
12121
12122 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12123 }
12124 else
12125 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12126 return -1;
12127 }
12128
12129 bfd_vma
12130 x86_64_section_word (char *str, size_t len)
12131 {
12132 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12133 return SHF_X86_64_LARGE;
12134
12135 return -1;
12136 }
12137
12138 static void
12139 handle_large_common (int small ATTRIBUTE_UNUSED)
12140 {
12141 if (flag_code != CODE_64BIT)
12142 {
12143 s_comm_internal (0, elf_common_parse);
12144 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12145 }
12146 else
12147 {
12148 static segT lbss_section;
12149 asection *saved_com_section_ptr = elf_com_section_ptr;
12150 asection *saved_bss_section = bss_section;
12151
12152 if (lbss_section == NULL)
12153 {
12154 flagword applicable;
12155 segT seg = now_seg;
12156 subsegT subseg = now_subseg;
12157
12158 /* The .lbss section is for local .largecomm symbols. */
12159 lbss_section = subseg_new (".lbss", 0);
12160 applicable = bfd_applicable_section_flags (stdoutput);
12161 bfd_set_section_flags (stdoutput, lbss_section,
12162 applicable & SEC_ALLOC);
12163 seg_info (lbss_section)->bss = 1;
12164
12165 subseg_set (seg, subseg);
12166 }
12167
12168 elf_com_section_ptr = &_bfd_elf_large_com_section;
12169 bss_section = lbss_section;
12170
12171 s_comm_internal (0, elf_common_parse);
12172
12173 elf_com_section_ptr = saved_com_section_ptr;
12174 bss_section = saved_bss_section;
12175 }
12176 }
12177 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.283429 seconds and 4 git commands to generate.