gas/
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
36 #include "elf/x86-64.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
52 #endif
53
54 #ifndef DEFAULT_ARCH
55 #define DEFAULT_ARCH "i386"
56 #endif
57
58 #ifndef INLINE
59 #if __GNUC__ >= 2
60 #define INLINE __inline__
61 #else
62 #define INLINE
63 #endif
64 #endif
65
66 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70 static INLINE int fits_in_signed_word PARAMS ((offsetT));
71 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72 static INLINE int fits_in_signed_long PARAMS ((offsetT));
73 static int smallest_imm_type PARAMS ((offsetT));
74 static offsetT offset_in_range PARAMS ((offsetT, int));
75 static int add_prefix PARAMS ((unsigned int));
76 static void set_code_flag PARAMS ((int));
77 static void set_16bit_gcc_code_flag PARAMS ((int));
78 static void set_intel_syntax PARAMS ((int));
79 static void set_cpu_arch PARAMS ((int));
80 #ifdef TE_PE
81 static void pe_directive_secrel PARAMS ((int));
82 #endif
83 static void signed_cons PARAMS ((int));
84 static char *output_invalid PARAMS ((int c));
85 static int i386_operand PARAMS ((char *operand_string));
86 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87 static const reg_entry *parse_register PARAMS ((char *reg_string,
88 char **end_op));
89 static char *parse_insn PARAMS ((char *, char *));
90 static char *parse_operands PARAMS ((char *, const char *));
91 static void swap_operands PARAMS ((void));
92 static void optimize_imm PARAMS ((void));
93 static void optimize_disp PARAMS ((void));
94 static int match_template PARAMS ((void));
95 static int check_string PARAMS ((void));
96 static int process_suffix PARAMS ((void));
97 static int check_byte_reg PARAMS ((void));
98 static int check_long_reg PARAMS ((void));
99 static int check_qword_reg PARAMS ((void));
100 static int check_word_reg PARAMS ((void));
101 static int finalize_imm PARAMS ((void));
102 static int process_operands PARAMS ((void));
103 static const seg_entry *build_modrm_byte PARAMS ((void));
104 static void output_insn PARAMS ((void));
105 static void output_branch PARAMS ((void));
106 static void output_jump PARAMS ((void));
107 static void output_interseg_jump PARAMS ((void));
108 static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110 static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
112 #ifndef I386COFF
113 static void s_bss PARAMS ((int));
114 #endif
115 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
116 static void handle_large_common (int small ATTRIBUTE_UNUSED);
117 #endif
118
119 static const char *default_arch = DEFAULT_ARCH;
120
121 /* 'md_assemble ()' gathers together information and puts it into a
122 i386_insn. */
123
124 union i386_op
125 {
126 expressionS *disps;
127 expressionS *imms;
128 const reg_entry *regs;
129 };
130
131 struct _i386_insn
132 {
133 /* TM holds the template for the insn were currently assembling. */
134 template tm;
135
136 /* SUFFIX holds the instruction mnemonic suffix if given.
137 (e.g. 'l' for 'movl') */
138 char suffix;
139
140 /* OPERANDS gives the number of given operands. */
141 unsigned int operands;
142
143 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
144 of given register, displacement, memory operands and immediate
145 operands. */
146 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
147
148 /* TYPES [i] is the type (see above #defines) which tells us how to
149 use OP[i] for the corresponding operand. */
150 unsigned int types[MAX_OPERANDS];
151
152 /* Displacement expression, immediate expression, or register for each
153 operand. */
154 union i386_op op[MAX_OPERANDS];
155
156 /* Flags for operands. */
157 unsigned int flags[MAX_OPERANDS];
158 #define Operand_PCrel 1
159
160 /* Relocation type for operand */
161 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
162
163 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
164 the base index byte below. */
165 const reg_entry *base_reg;
166 const reg_entry *index_reg;
167 unsigned int log2_scale_factor;
168
169 /* SEG gives the seg_entries of this insn. They are zero unless
170 explicit segment overrides are given. */
171 const seg_entry *seg[2];
172
173 /* PREFIX holds all the given prefix opcodes (usually null).
174 PREFIXES is the number of prefix opcodes. */
175 unsigned int prefixes;
176 unsigned char prefix[MAX_PREFIXES];
177
178 /* RM and SIB are the modrm byte and the sib byte where the
179 addressing modes of this insn are encoded. */
180
181 modrm_byte rm;
182 rex_byte rex;
183 sib_byte sib;
184 };
185
186 typedef struct _i386_insn i386_insn;
187
188 /* List of chars besides those in app.c:symbol_chars that can start an
189 operand. Used to prevent the scrubber eating vital white-space. */
190 const char extra_symbol_chars[] = "*%-(["
191 #ifdef LEX_AT
192 "@"
193 #endif
194 #ifdef LEX_QM
195 "?"
196 #endif
197 ;
198
199 #if (defined (TE_I386AIX) \
200 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
201 && !defined (TE_GNU) \
202 && !defined (TE_LINUX) \
203 && !defined (TE_NETWARE) \
204 && !defined (TE_FreeBSD) \
205 && !defined (TE_NetBSD)))
206 /* This array holds the chars that always start a comment. If the
207 pre-processor is disabled, these aren't very useful. The option
208 --divide will remove '/' from this list. */
209 const char *i386_comment_chars = "#/";
210 #define SVR4_COMMENT_CHARS 1
211 #define PREFIX_SEPARATOR '\\'
212
213 #else
214 const char *i386_comment_chars = "#";
215 #define PREFIX_SEPARATOR '/'
216 #endif
217
218 /* This array holds the chars that only start a comment at the beginning of
219 a line. If the line seems to have the form '# 123 filename'
220 .line and .file directives will appear in the pre-processed output.
221 Note that input_file.c hand checks for '#' at the beginning of the
222 first line of the input file. This is because the compiler outputs
223 #NO_APP at the beginning of its output.
224 Also note that comments started like this one will always work if
225 '/' isn't otherwise defined. */
226 const char line_comment_chars[] = "#/";
227
228 const char line_separator_chars[] = ";";
229
230 /* Chars that can be used to separate mant from exp in floating point
231 nums. */
232 const char EXP_CHARS[] = "eE";
233
234 /* Chars that mean this number is a floating point constant
235 As in 0f12.456
236 or 0d1.2345e12. */
237 const char FLT_CHARS[] = "fFdDxX";
238
239 /* Tables for lexical analysis. */
240 static char mnemonic_chars[256];
241 static char register_chars[256];
242 static char operand_chars[256];
243 static char identifier_chars[256];
244 static char digit_chars[256];
245
246 /* Lexical macros. */
247 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
248 #define is_operand_char(x) (operand_chars[(unsigned char) x])
249 #define is_register_char(x) (register_chars[(unsigned char) x])
250 #define is_space_char(x) ((x) == ' ')
251 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
252 #define is_digit_char(x) (digit_chars[(unsigned char) x])
253
254 /* All non-digit non-letter characters that may occur in an operand. */
255 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
256
257 /* md_assemble() always leaves the strings it's passed unaltered. To
258 effect this we maintain a stack of saved characters that we've smashed
259 with '\0's (indicating end of strings for various sub-fields of the
260 assembler instruction). */
261 static char save_stack[32];
262 static char *save_stack_p;
263 #define END_STRING_AND_SAVE(s) \
264 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
265 #define RESTORE_END_STRING(s) \
266 do { *(s) = *--save_stack_p; } while (0)
267
268 /* The instruction we're assembling. */
269 static i386_insn i;
270
271 /* Possible templates for current insn. */
272 static const templates *current_templates;
273
274 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
275 static expressionS disp_expressions[2], im_expressions[2];
276
277 /* Current operand we are working on. */
278 static int this_operand;
279
280 /* We support four different modes. FLAG_CODE variable is used to distinguish
281 these. */
282
283 enum flag_code {
284 CODE_32BIT,
285 CODE_16BIT,
286 CODE_64BIT };
287 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
288
289 static enum flag_code flag_code;
290 static unsigned int object_64bit;
291 static int use_rela_relocations = 0;
292
293 /* The names used to print error messages. */
294 static const char *flag_code_names[] =
295 {
296 "32",
297 "16",
298 "64"
299 };
300
301 /* 1 for intel syntax,
302 0 if att syntax. */
303 static int intel_syntax = 0;
304
305 /* 1 if register prefix % not required. */
306 static int allow_naked_reg = 0;
307
308 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
309 leave, push, and pop instructions so that gcc has the same stack
310 frame as in 32 bit mode. */
311 static char stackop_size = '\0';
312
313 /* Non-zero to optimize code alignment. */
314 int optimize_align_code = 1;
315
316 /* Non-zero to quieten some warnings. */
317 static int quiet_warnings = 0;
318
319 /* CPU name. */
320 static const char *cpu_arch_name = NULL;
321 static const char *cpu_sub_arch_name = NULL;
322
323 /* CPU feature flags. */
324 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
325
326 /* If set, conditional jumps are not automatically promoted to handle
327 larger than a byte offset. */
328 static unsigned int no_cond_jump_promotion = 0;
329
330 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
331 static symbolS *GOT_symbol;
332
333 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
334 unsigned int x86_dwarf2_return_column;
335
336 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
337 int x86_cie_data_alignment;
338
339 /* Interface to relax_segment.
340 There are 3 major relax states for 386 jump insns because the
341 different types of jumps add different sizes to frags when we're
342 figuring out what sort of jump to choose to reach a given label. */
343
344 /* Types. */
345 #define UNCOND_JUMP 0
346 #define COND_JUMP 1
347 #define COND_JUMP86 2
348
349 /* Sizes. */
350 #define CODE16 1
351 #define SMALL 0
352 #define SMALL16 (SMALL | CODE16)
353 #define BIG 2
354 #define BIG16 (BIG | CODE16)
355
356 #ifndef INLINE
357 #ifdef __GNUC__
358 #define INLINE __inline__
359 #else
360 #define INLINE
361 #endif
362 #endif
363
364 #define ENCODE_RELAX_STATE(type, size) \
365 ((relax_substateT) (((type) << 2) | (size)))
366 #define TYPE_FROM_RELAX_STATE(s) \
367 ((s) >> 2)
368 #define DISP_SIZE_FROM_RELAX_STATE(s) \
369 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
370
371 /* This table is used by relax_frag to promote short jumps to long
372 ones where necessary. SMALL (short) jumps may be promoted to BIG
373 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
374 don't allow a short jump in a 32 bit code segment to be promoted to
375 a 16 bit offset jump because it's slower (requires data size
376 prefix), and doesn't work, unless the destination is in the bottom
377 64k of the code segment (The top 16 bits of eip are zeroed). */
378
379 const relax_typeS md_relax_table[] =
380 {
381 /* The fields are:
382 1) most positive reach of this state,
383 2) most negative reach of this state,
384 3) how many bytes this mode will have in the variable part of the frag
385 4) which index into the table to try if we can't fit into this one. */
386
387 /* UNCOND_JUMP states. */
388 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
389 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
390 /* dword jmp adds 4 bytes to frag:
391 0 extra opcode bytes, 4 displacement bytes. */
392 {0, 0, 4, 0},
393 /* word jmp adds 2 byte2 to frag:
394 0 extra opcode bytes, 2 displacement bytes. */
395 {0, 0, 2, 0},
396
397 /* COND_JUMP states. */
398 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
399 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
400 /* dword conditionals adds 5 bytes to frag:
401 1 extra opcode byte, 4 displacement bytes. */
402 {0, 0, 5, 0},
403 /* word conditionals add 3 bytes to frag:
404 1 extra opcode byte, 2 displacement bytes. */
405 {0, 0, 3, 0},
406
407 /* COND_JUMP86 states. */
408 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
409 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
410 /* dword conditionals adds 5 bytes to frag:
411 1 extra opcode byte, 4 displacement bytes. */
412 {0, 0, 5, 0},
413 /* word conditionals add 4 bytes to frag:
414 1 displacement byte and a 3 byte long branch insn. */
415 {0, 0, 4, 0}
416 };
417
418 static const arch_entry cpu_arch[] = {
419 {"i8086", Cpu086 },
420 {"i186", Cpu086|Cpu186 },
421 {"i286", Cpu086|Cpu186|Cpu286 },
422 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
423 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
424 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
425 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
426 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
427 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
428 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
429 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
430 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
431 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
432 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
433 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
434 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
435 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
436 {"opteron", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
437 {".mmx", CpuMMX },
438 {".sse", CpuMMX|CpuMMX2|CpuSSE },
439 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
440 {".sse3", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3 },
441 {".3dnow", CpuMMX|Cpu3dnow },
442 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
443 {".padlock", CpuPadLock },
444 {".pacifica", CpuSVME },
445 {".svme", CpuSVME },
446 {NULL, 0 }
447 };
448
449 const pseudo_typeS md_pseudo_table[] =
450 {
451 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
452 {"align", s_align_bytes, 0},
453 #else
454 {"align", s_align_ptwo, 0},
455 #endif
456 {"arch", set_cpu_arch, 0},
457 #ifndef I386COFF
458 {"bss", s_bss, 0},
459 #endif
460 {"ffloat", float_cons, 'f'},
461 {"dfloat", float_cons, 'd'},
462 {"tfloat", float_cons, 'x'},
463 {"value", cons, 2},
464 {"slong", signed_cons, 4},
465 {"noopt", s_ignore, 0},
466 {"optim", s_ignore, 0},
467 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
468 {"code16", set_code_flag, CODE_16BIT},
469 {"code32", set_code_flag, CODE_32BIT},
470 {"code64", set_code_flag, CODE_64BIT},
471 {"intel_syntax", set_intel_syntax, 1},
472 {"att_syntax", set_intel_syntax, 0},
473 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
474 {"largecomm", handle_large_common, 0},
475 #else
476 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
477 {"loc", dwarf2_directive_loc, 0},
478 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
479 #endif
480 #ifdef TE_PE
481 {"secrel32", pe_directive_secrel, 0},
482 #endif
483 {0, 0, 0}
484 };
485
486 /* For interface with expression (). */
487 extern char *input_line_pointer;
488
489 /* Hash table for instruction mnemonic lookup. */
490 static struct hash_control *op_hash;
491
492 /* Hash table for register lookup. */
493 static struct hash_control *reg_hash;
494 \f
495 void
496 i386_align_code (fragP, count)
497 fragS *fragP;
498 int count;
499 {
500 /* Various efficient no-op patterns for aligning code labels.
501 Note: Don't try to assemble the instructions in the comments.
502 0L and 0w are not legal. */
503 static const char f32_1[] =
504 {0x90}; /* nop */
505 static const char f32_2[] =
506 {0x89,0xf6}; /* movl %esi,%esi */
507 static const char f32_3[] =
508 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
509 static const char f32_4[] =
510 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
511 static const char f32_5[] =
512 {0x90, /* nop */
513 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
514 static const char f32_6[] =
515 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
516 static const char f32_7[] =
517 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
518 static const char f32_8[] =
519 {0x90, /* nop */
520 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
521 static const char f32_9[] =
522 {0x89,0xf6, /* movl %esi,%esi */
523 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
524 static const char f32_10[] =
525 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
526 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
527 static const char f32_11[] =
528 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
529 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
530 static const char f32_12[] =
531 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
532 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
533 static const char f32_13[] =
534 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
535 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
536 static const char f32_14[] =
537 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
538 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
539 static const char f32_15[] =
540 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
541 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
542 static const char f16_3[] =
543 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
544 static const char f16_4[] =
545 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
546 static const char f16_5[] =
547 {0x90, /* nop */
548 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
549 static const char f16_6[] =
550 {0x89,0xf6, /* mov %si,%si */
551 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
552 static const char f16_7[] =
553 {0x8d,0x74,0x00, /* lea 0(%si),%si */
554 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
555 static const char f16_8[] =
556 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
557 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
558 static const char *const f32_patt[] = {
559 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
560 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
561 };
562 static const char *const f16_patt[] = {
563 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
564 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
565 };
566
567 if (count <= 0 || count > 15)
568 return;
569
570 /* The recommended way to pad 64bit code is to use NOPs preceded by
571 maximally four 0x66 prefixes. Balance the size of nops. */
572 if (flag_code == CODE_64BIT)
573 {
574 int i;
575 int nnops = (count + 3) / 4;
576 int len = count / nnops;
577 int remains = count - nnops * len;
578 int pos = 0;
579
580 for (i = 0; i < remains; i++)
581 {
582 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
583 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
584 pos += len + 1;
585 }
586 for (; i < nnops; i++)
587 {
588 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
589 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
590 pos += len;
591 }
592 }
593 else
594 if (flag_code == CODE_16BIT)
595 {
596 memcpy (fragP->fr_literal + fragP->fr_fix,
597 f16_patt[count - 1], count);
598 if (count > 8)
599 /* Adjust jump offset. */
600 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
601 }
602 else
603 memcpy (fragP->fr_literal + fragP->fr_fix,
604 f32_patt[count - 1], count);
605 fragP->fr_var = count;
606 }
607
608 static INLINE unsigned int
609 mode_from_disp_size (t)
610 unsigned int t;
611 {
612 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
613 }
614
615 static INLINE int
616 fits_in_signed_byte (num)
617 offsetT num;
618 {
619 return (num >= -128) && (num <= 127);
620 }
621
622 static INLINE int
623 fits_in_unsigned_byte (num)
624 offsetT num;
625 {
626 return (num & 0xff) == num;
627 }
628
629 static INLINE int
630 fits_in_unsigned_word (num)
631 offsetT num;
632 {
633 return (num & 0xffff) == num;
634 }
635
636 static INLINE int
637 fits_in_signed_word (num)
638 offsetT num;
639 {
640 return (-32768 <= num) && (num <= 32767);
641 }
642 static INLINE int
643 fits_in_signed_long (num)
644 offsetT num ATTRIBUTE_UNUSED;
645 {
646 #ifndef BFD64
647 return 1;
648 #else
649 return (!(((offsetT) -1 << 31) & num)
650 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
651 #endif
652 } /* fits_in_signed_long() */
653 static INLINE int
654 fits_in_unsigned_long (num)
655 offsetT num ATTRIBUTE_UNUSED;
656 {
657 #ifndef BFD64
658 return 1;
659 #else
660 return (num & (((offsetT) 2 << 31) - 1)) == num;
661 #endif
662 } /* fits_in_unsigned_long() */
663
664 static int
665 smallest_imm_type (num)
666 offsetT num;
667 {
668 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
669 {
670 /* This code is disabled on the 486 because all the Imm1 forms
671 in the opcode table are slower on the i486. They're the
672 versions with the implicitly specified single-position
673 displacement, which has another syntax if you really want to
674 use that form. */
675 if (num == 1)
676 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
677 }
678 return (fits_in_signed_byte (num)
679 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
680 : fits_in_unsigned_byte (num)
681 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
682 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
683 ? (Imm16 | Imm32 | Imm32S | Imm64)
684 : fits_in_signed_long (num)
685 ? (Imm32 | Imm32S | Imm64)
686 : fits_in_unsigned_long (num)
687 ? (Imm32 | Imm64)
688 : Imm64);
689 }
690
691 static offsetT
692 offset_in_range (val, size)
693 offsetT val;
694 int size;
695 {
696 addressT mask;
697
698 switch (size)
699 {
700 case 1: mask = ((addressT) 1 << 8) - 1; break;
701 case 2: mask = ((addressT) 1 << 16) - 1; break;
702 case 4: mask = ((addressT) 2 << 31) - 1; break;
703 #ifdef BFD64
704 case 8: mask = ((addressT) 2 << 63) - 1; break;
705 #endif
706 default: abort ();
707 }
708
709 /* If BFD64, sign extend val. */
710 if (!use_rela_relocations)
711 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
712 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
713
714 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
715 {
716 char buf1[40], buf2[40];
717
718 sprint_value (buf1, val);
719 sprint_value (buf2, val & mask);
720 as_warn (_("%s shortened to %s"), buf1, buf2);
721 }
722 return val & mask;
723 }
724
725 /* Returns 0 if attempting to add a prefix where one from the same
726 class already exists, 1 if non rep/repne added, 2 if rep/repne
727 added. */
728 static int
729 add_prefix (prefix)
730 unsigned int prefix;
731 {
732 int ret = 1;
733 unsigned int q;
734
735 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
736 && flag_code == CODE_64BIT)
737 {
738 if ((i.prefix[REX_PREFIX] & prefix & REX_MODE64)
739 || ((i.prefix[REX_PREFIX] & (REX_EXTX | REX_EXTY | REX_EXTZ))
740 && (prefix & (REX_EXTX | REX_EXTY | REX_EXTZ))))
741 ret = 0;
742 q = REX_PREFIX;
743 }
744 else
745 {
746 switch (prefix)
747 {
748 default:
749 abort ();
750
751 case CS_PREFIX_OPCODE:
752 case DS_PREFIX_OPCODE:
753 case ES_PREFIX_OPCODE:
754 case FS_PREFIX_OPCODE:
755 case GS_PREFIX_OPCODE:
756 case SS_PREFIX_OPCODE:
757 q = SEG_PREFIX;
758 break;
759
760 case REPNE_PREFIX_OPCODE:
761 case REPE_PREFIX_OPCODE:
762 ret = 2;
763 /* fall thru */
764 case LOCK_PREFIX_OPCODE:
765 q = LOCKREP_PREFIX;
766 break;
767
768 case FWAIT_OPCODE:
769 q = WAIT_PREFIX;
770 break;
771
772 case ADDR_PREFIX_OPCODE:
773 q = ADDR_PREFIX;
774 break;
775
776 case DATA_PREFIX_OPCODE:
777 q = DATA_PREFIX;
778 break;
779 }
780 if (i.prefix[q] != 0)
781 ret = 0;
782 }
783
784 if (ret)
785 {
786 if (!i.prefix[q])
787 ++i.prefixes;
788 i.prefix[q] |= prefix;
789 }
790 else
791 as_bad (_("same type of prefix used twice"));
792
793 return ret;
794 }
795
796 static void
797 set_code_flag (value)
798 int value;
799 {
800 flag_code = value;
801 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
802 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
803 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
804 {
805 as_bad (_("64bit mode not supported on this CPU."));
806 }
807 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
808 {
809 as_bad (_("32bit mode not supported on this CPU."));
810 }
811 stackop_size = '\0';
812 }
813
814 static void
815 set_16bit_gcc_code_flag (new_code_flag)
816 int new_code_flag;
817 {
818 flag_code = new_code_flag;
819 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
820 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
821 stackop_size = LONG_MNEM_SUFFIX;
822 }
823
824 static void
825 set_intel_syntax (syntax_flag)
826 int syntax_flag;
827 {
828 /* Find out if register prefixing is specified. */
829 int ask_naked_reg = 0;
830
831 SKIP_WHITESPACE ();
832 if (!is_end_of_line[(unsigned char) *input_line_pointer])
833 {
834 char *string = input_line_pointer;
835 int e = get_symbol_end ();
836
837 if (strcmp (string, "prefix") == 0)
838 ask_naked_reg = 1;
839 else if (strcmp (string, "noprefix") == 0)
840 ask_naked_reg = -1;
841 else
842 as_bad (_("bad argument to syntax directive."));
843 *input_line_pointer = e;
844 }
845 demand_empty_rest_of_line ();
846
847 intel_syntax = syntax_flag;
848
849 if (ask_naked_reg == 0)
850 allow_naked_reg = (intel_syntax
851 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
852 else
853 allow_naked_reg = (ask_naked_reg < 0);
854
855 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
856 identifier_chars['$'] = intel_syntax ? '$' : 0;
857 }
858
859 static void
860 set_cpu_arch (dummy)
861 int dummy ATTRIBUTE_UNUSED;
862 {
863 SKIP_WHITESPACE ();
864
865 if (!is_end_of_line[(unsigned char) *input_line_pointer])
866 {
867 char *string = input_line_pointer;
868 int e = get_symbol_end ();
869 int i;
870
871 for (i = 0; cpu_arch[i].name; i++)
872 {
873 if (strcmp (string, cpu_arch[i].name) == 0)
874 {
875 if (*string != '.')
876 {
877 cpu_arch_name = cpu_arch[i].name;
878 cpu_sub_arch_name = NULL;
879 cpu_arch_flags = (cpu_arch[i].flags
880 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
881 break;
882 }
883 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
884 {
885 cpu_sub_arch_name = cpu_arch[i].name;
886 cpu_arch_flags |= cpu_arch[i].flags;
887 }
888 *input_line_pointer = e;
889 demand_empty_rest_of_line ();
890 return;
891 }
892 }
893 if (!cpu_arch[i].name)
894 as_bad (_("no such architecture: `%s'"), string);
895
896 *input_line_pointer = e;
897 }
898 else
899 as_bad (_("missing cpu architecture"));
900
901 no_cond_jump_promotion = 0;
902 if (*input_line_pointer == ','
903 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
904 {
905 char *string = ++input_line_pointer;
906 int e = get_symbol_end ();
907
908 if (strcmp (string, "nojumps") == 0)
909 no_cond_jump_promotion = 1;
910 else if (strcmp (string, "jumps") == 0)
911 ;
912 else
913 as_bad (_("no such architecture modifier: `%s'"), string);
914
915 *input_line_pointer = e;
916 }
917
918 demand_empty_rest_of_line ();
919 }
920
921 unsigned long
922 i386_mach ()
923 {
924 if (!strcmp (default_arch, "x86_64"))
925 return bfd_mach_x86_64;
926 else if (!strcmp (default_arch, "i386"))
927 return bfd_mach_i386_i386;
928 else
929 as_fatal (_("Unknown architecture"));
930 }
931 \f
932 void
933 md_begin ()
934 {
935 const char *hash_err;
936
937 /* Initialize op_hash hash table. */
938 op_hash = hash_new ();
939
940 {
941 const template *optab;
942 templates *core_optab;
943
944 /* Setup for loop. */
945 optab = i386_optab;
946 core_optab = (templates *) xmalloc (sizeof (templates));
947 core_optab->start = optab;
948
949 while (1)
950 {
951 ++optab;
952 if (optab->name == NULL
953 || strcmp (optab->name, (optab - 1)->name) != 0)
954 {
955 /* different name --> ship out current template list;
956 add to hash table; & begin anew. */
957 core_optab->end = optab;
958 hash_err = hash_insert (op_hash,
959 (optab - 1)->name,
960 (PTR) core_optab);
961 if (hash_err)
962 {
963 as_fatal (_("Internal Error: Can't hash %s: %s"),
964 (optab - 1)->name,
965 hash_err);
966 }
967 if (optab->name == NULL)
968 break;
969 core_optab = (templates *) xmalloc (sizeof (templates));
970 core_optab->start = optab;
971 }
972 }
973 }
974
975 /* Initialize reg_hash hash table. */
976 reg_hash = hash_new ();
977 {
978 const reg_entry *regtab;
979
980 for (regtab = i386_regtab;
981 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
982 regtab++)
983 {
984 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
985 if (hash_err)
986 as_fatal (_("Internal Error: Can't hash %s: %s"),
987 regtab->reg_name,
988 hash_err);
989 }
990 }
991
992 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
993 {
994 int c;
995 char *p;
996
997 for (c = 0; c < 256; c++)
998 {
999 if (ISDIGIT (c))
1000 {
1001 digit_chars[c] = c;
1002 mnemonic_chars[c] = c;
1003 register_chars[c] = c;
1004 operand_chars[c] = c;
1005 }
1006 else if (ISLOWER (c))
1007 {
1008 mnemonic_chars[c] = c;
1009 register_chars[c] = c;
1010 operand_chars[c] = c;
1011 }
1012 else if (ISUPPER (c))
1013 {
1014 mnemonic_chars[c] = TOLOWER (c);
1015 register_chars[c] = mnemonic_chars[c];
1016 operand_chars[c] = c;
1017 }
1018
1019 if (ISALPHA (c) || ISDIGIT (c))
1020 identifier_chars[c] = c;
1021 else if (c >= 128)
1022 {
1023 identifier_chars[c] = c;
1024 operand_chars[c] = c;
1025 }
1026 }
1027
1028 #ifdef LEX_AT
1029 identifier_chars['@'] = '@';
1030 #endif
1031 #ifdef LEX_QM
1032 identifier_chars['?'] = '?';
1033 operand_chars['?'] = '?';
1034 #endif
1035 digit_chars['-'] = '-';
1036 mnemonic_chars['-'] = '-';
1037 identifier_chars['_'] = '_';
1038 identifier_chars['.'] = '.';
1039
1040 for (p = operand_special_chars; *p != '\0'; p++)
1041 operand_chars[(unsigned char) *p] = *p;
1042 }
1043
1044 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1045 if (IS_ELF)
1046 {
1047 record_alignment (text_section, 2);
1048 record_alignment (data_section, 2);
1049 record_alignment (bss_section, 2);
1050 }
1051 #endif
1052
1053 if (flag_code == CODE_64BIT)
1054 {
1055 x86_dwarf2_return_column = 16;
1056 x86_cie_data_alignment = -8;
1057 }
1058 else
1059 {
1060 x86_dwarf2_return_column = 8;
1061 x86_cie_data_alignment = -4;
1062 }
1063 }
1064
1065 void
1066 i386_print_statistics (file)
1067 FILE *file;
1068 {
1069 hash_print_statistics (file, "i386 opcode", op_hash);
1070 hash_print_statistics (file, "i386 register", reg_hash);
1071 }
1072 \f
1073 #ifdef DEBUG386
1074
1075 /* Debugging routines for md_assemble. */
1076 static void pi PARAMS ((char *, i386_insn *));
1077 static void pte PARAMS ((template *));
1078 static void pt PARAMS ((unsigned int));
1079 static void pe PARAMS ((expressionS *));
1080 static void ps PARAMS ((symbolS *));
1081
1082 static void
1083 pi (line, x)
1084 char *line;
1085 i386_insn *x;
1086 {
1087 unsigned int i;
1088
1089 fprintf (stdout, "%s: template ", line);
1090 pte (&x->tm);
1091 fprintf (stdout, " address: base %s index %s scale %x\n",
1092 x->base_reg ? x->base_reg->reg_name : "none",
1093 x->index_reg ? x->index_reg->reg_name : "none",
1094 x->log2_scale_factor);
1095 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1096 x->rm.mode, x->rm.reg, x->rm.regmem);
1097 fprintf (stdout, " sib: base %x index %x scale %x\n",
1098 x->sib.base, x->sib.index, x->sib.scale);
1099 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1100 (x->rex & REX_MODE64) != 0,
1101 (x->rex & REX_EXTX) != 0,
1102 (x->rex & REX_EXTY) != 0,
1103 (x->rex & REX_EXTZ) != 0);
1104 for (i = 0; i < x->operands; i++)
1105 {
1106 fprintf (stdout, " #%d: ", i + 1);
1107 pt (x->types[i]);
1108 fprintf (stdout, "\n");
1109 if (x->types[i]
1110 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1111 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1112 if (x->types[i] & Imm)
1113 pe (x->op[i].imms);
1114 if (x->types[i] & Disp)
1115 pe (x->op[i].disps);
1116 }
1117 }
1118
1119 static void
1120 pte (t)
1121 template *t;
1122 {
1123 unsigned int i;
1124 fprintf (stdout, " %d operands ", t->operands);
1125 fprintf (stdout, "opcode %x ", t->base_opcode);
1126 if (t->extension_opcode != None)
1127 fprintf (stdout, "ext %x ", t->extension_opcode);
1128 if (t->opcode_modifier & D)
1129 fprintf (stdout, "D");
1130 if (t->opcode_modifier & W)
1131 fprintf (stdout, "W");
1132 fprintf (stdout, "\n");
1133 for (i = 0; i < t->operands; i++)
1134 {
1135 fprintf (stdout, " #%d type ", i + 1);
1136 pt (t->operand_types[i]);
1137 fprintf (stdout, "\n");
1138 }
1139 }
1140
1141 static void
1142 pe (e)
1143 expressionS *e;
1144 {
1145 fprintf (stdout, " operation %d\n", e->X_op);
1146 fprintf (stdout, " add_number %ld (%lx)\n",
1147 (long) e->X_add_number, (long) e->X_add_number);
1148 if (e->X_add_symbol)
1149 {
1150 fprintf (stdout, " add_symbol ");
1151 ps (e->X_add_symbol);
1152 fprintf (stdout, "\n");
1153 }
1154 if (e->X_op_symbol)
1155 {
1156 fprintf (stdout, " op_symbol ");
1157 ps (e->X_op_symbol);
1158 fprintf (stdout, "\n");
1159 }
1160 }
1161
1162 static void
1163 ps (s)
1164 symbolS *s;
1165 {
1166 fprintf (stdout, "%s type %s%s",
1167 S_GET_NAME (s),
1168 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1169 segment_name (S_GET_SEGMENT (s)));
1170 }
1171
1172 static struct type_name
1173 {
1174 unsigned int mask;
1175 char *tname;
1176 }
1177 const type_names[] =
1178 {
1179 { Reg8, "r8" },
1180 { Reg16, "r16" },
1181 { Reg32, "r32" },
1182 { Reg64, "r64" },
1183 { Imm8, "i8" },
1184 { Imm8S, "i8s" },
1185 { Imm16, "i16" },
1186 { Imm32, "i32" },
1187 { Imm32S, "i32s" },
1188 { Imm64, "i64" },
1189 { Imm1, "i1" },
1190 { BaseIndex, "BaseIndex" },
1191 { Disp8, "d8" },
1192 { Disp16, "d16" },
1193 { Disp32, "d32" },
1194 { Disp32S, "d32s" },
1195 { Disp64, "d64" },
1196 { InOutPortReg, "InOutPortReg" },
1197 { ShiftCount, "ShiftCount" },
1198 { Control, "control reg" },
1199 { Test, "test reg" },
1200 { Debug, "debug reg" },
1201 { FloatReg, "FReg" },
1202 { FloatAcc, "FAcc" },
1203 { SReg2, "SReg2" },
1204 { SReg3, "SReg3" },
1205 { Acc, "Acc" },
1206 { JumpAbsolute, "Jump Absolute" },
1207 { RegMMX, "rMMX" },
1208 { RegXMM, "rXMM" },
1209 { EsSeg, "es" },
1210 { 0, "" }
1211 };
1212
1213 static void
1214 pt (t)
1215 unsigned int t;
1216 {
1217 const struct type_name *ty;
1218
1219 for (ty = type_names; ty->mask; ty++)
1220 if (t & ty->mask)
1221 fprintf (stdout, "%s, ", ty->tname);
1222 fflush (stdout);
1223 }
1224
1225 #endif /* DEBUG386 */
1226 \f
1227 static bfd_reloc_code_real_type
1228 reloc (unsigned int size,
1229 int pcrel,
1230 int sign,
1231 bfd_reloc_code_real_type other)
1232 {
1233 if (other != NO_RELOC)
1234 {
1235 reloc_howto_type *reloc;
1236
1237 if (size == 8)
1238 switch (other)
1239 {
1240 case BFD_RELOC_X86_64_GOT32:
1241 return BFD_RELOC_X86_64_GOT64;
1242 break;
1243 case BFD_RELOC_X86_64_PLTOFF64:
1244 return BFD_RELOC_X86_64_PLTOFF64;
1245 break;
1246 case BFD_RELOC_X86_64_GOTPC32:
1247 other = BFD_RELOC_X86_64_GOTPC64;
1248 break;
1249 case BFD_RELOC_X86_64_GOTPCREL:
1250 other = BFD_RELOC_X86_64_GOTPCREL64;
1251 break;
1252 case BFD_RELOC_X86_64_TPOFF32:
1253 other = BFD_RELOC_X86_64_TPOFF64;
1254 break;
1255 case BFD_RELOC_X86_64_DTPOFF32:
1256 other = BFD_RELOC_X86_64_DTPOFF64;
1257 break;
1258 default:
1259 break;
1260 }
1261
1262 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1263 if (size == 4 && flag_code != CODE_64BIT)
1264 sign = -1;
1265
1266 reloc = bfd_reloc_type_lookup (stdoutput, other);
1267 if (!reloc)
1268 as_bad (_("unknown relocation (%u)"), other);
1269 else if (size != bfd_get_reloc_size (reloc))
1270 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1271 bfd_get_reloc_size (reloc),
1272 size);
1273 else if (pcrel && !reloc->pc_relative)
1274 as_bad (_("non-pc-relative relocation for pc-relative field"));
1275 else if ((reloc->complain_on_overflow == complain_overflow_signed
1276 && !sign)
1277 || (reloc->complain_on_overflow == complain_overflow_unsigned
1278 && sign > 0))
1279 as_bad (_("relocated field and relocation type differ in signedness"));
1280 else
1281 return other;
1282 return NO_RELOC;
1283 }
1284
1285 if (pcrel)
1286 {
1287 if (!sign)
1288 as_bad (_("there are no unsigned pc-relative relocations"));
1289 switch (size)
1290 {
1291 case 1: return BFD_RELOC_8_PCREL;
1292 case 2: return BFD_RELOC_16_PCREL;
1293 case 4: return BFD_RELOC_32_PCREL;
1294 case 8: return BFD_RELOC_64_PCREL;
1295 }
1296 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1297 }
1298 else
1299 {
1300 if (sign > 0)
1301 switch (size)
1302 {
1303 case 4: return BFD_RELOC_X86_64_32S;
1304 }
1305 else
1306 switch (size)
1307 {
1308 case 1: return BFD_RELOC_8;
1309 case 2: return BFD_RELOC_16;
1310 case 4: return BFD_RELOC_32;
1311 case 8: return BFD_RELOC_64;
1312 }
1313 as_bad (_("cannot do %s %u byte relocation"),
1314 sign > 0 ? "signed" : "unsigned", size);
1315 }
1316
1317 abort ();
1318 return BFD_RELOC_NONE;
1319 }
1320
1321 /* Here we decide which fixups can be adjusted to make them relative to
1322 the beginning of the section instead of the symbol. Basically we need
1323 to make sure that the dynamic relocations are done correctly, so in
1324 some cases we force the original symbol to be used. */
1325
1326 int
1327 tc_i386_fix_adjustable (fixP)
1328 fixS *fixP ATTRIBUTE_UNUSED;
1329 {
1330 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1331 if (!IS_ELF)
1332 return 1;
1333
1334 /* Don't adjust pc-relative references to merge sections in 64-bit
1335 mode. */
1336 if (use_rela_relocations
1337 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1338 && fixP->fx_pcrel)
1339 return 0;
1340
1341 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1342 and changed later by validate_fix. */
1343 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1344 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1345 return 0;
1346
1347 /* adjust_reloc_syms doesn't know about the GOT. */
1348 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1349 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1350 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1351 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1352 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1353 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1354 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1355 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1356 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1357 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1358 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1359 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1360 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1361 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1362 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1363 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1364 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1365 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1366 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1367 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1368 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1369 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1370 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1371 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1372 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1373 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1374 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1375 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1376 return 0;
1377 #endif
1378 return 1;
1379 }
1380
1381 static int intel_float_operand PARAMS ((const char *mnemonic));
1382
1383 static int
1384 intel_float_operand (mnemonic)
1385 const char *mnemonic;
1386 {
1387 /* Note that the value returned is meaningful only for opcodes with (memory)
1388 operands, hence the code here is free to improperly handle opcodes that
1389 have no operands (for better performance and smaller code). */
1390
1391 if (mnemonic[0] != 'f')
1392 return 0; /* non-math */
1393
1394 switch (mnemonic[1])
1395 {
1396 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1397 the fs segment override prefix not currently handled because no
1398 call path can make opcodes without operands get here */
1399 case 'i':
1400 return 2 /* integer op */;
1401 case 'l':
1402 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1403 return 3; /* fldcw/fldenv */
1404 break;
1405 case 'n':
1406 if (mnemonic[2] != 'o' /* fnop */)
1407 return 3; /* non-waiting control op */
1408 break;
1409 case 'r':
1410 if (mnemonic[2] == 's')
1411 return 3; /* frstor/frstpm */
1412 break;
1413 case 's':
1414 if (mnemonic[2] == 'a')
1415 return 3; /* fsave */
1416 if (mnemonic[2] == 't')
1417 {
1418 switch (mnemonic[3])
1419 {
1420 case 'c': /* fstcw */
1421 case 'd': /* fstdw */
1422 case 'e': /* fstenv */
1423 case 's': /* fsts[gw] */
1424 return 3;
1425 }
1426 }
1427 break;
1428 case 'x':
1429 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1430 return 0; /* fxsave/fxrstor are not really math ops */
1431 break;
1432 }
1433
1434 return 1;
1435 }
1436
1437 /* This is the guts of the machine-dependent assembler. LINE points to a
1438 machine dependent instruction. This function is supposed to emit
1439 the frags/bytes it assembles to. */
1440
1441 void
1442 md_assemble (line)
1443 char *line;
1444 {
1445 int j;
1446 char mnemonic[MAX_MNEM_SIZE];
1447
1448 /* Initialize globals. */
1449 memset (&i, '\0', sizeof (i));
1450 for (j = 0; j < MAX_OPERANDS; j++)
1451 i.reloc[j] = NO_RELOC;
1452 memset (disp_expressions, '\0', sizeof (disp_expressions));
1453 memset (im_expressions, '\0', sizeof (im_expressions));
1454 save_stack_p = save_stack;
1455
1456 /* First parse an instruction mnemonic & call i386_operand for the operands.
1457 We assume that the scrubber has arranged it so that line[0] is the valid
1458 start of a (possibly prefixed) mnemonic. */
1459
1460 line = parse_insn (line, mnemonic);
1461 if (line == NULL)
1462 return;
1463
1464 line = parse_operands (line, mnemonic);
1465 if (line == NULL)
1466 return;
1467
1468 /* Now we've parsed the mnemonic into a set of templates, and have the
1469 operands at hand. */
1470
1471 /* All intel opcodes have reversed operands except for "bound" and
1472 "enter". We also don't reverse intersegment "jmp" and "call"
1473 instructions with 2 immediate operands so that the immediate segment
1474 precedes the offset, as it does when in AT&T mode. "enter" and the
1475 intersegment "jmp" and "call" instructions are the only ones that
1476 have two immediate operands. */
1477 if (intel_syntax && i.operands > 1
1478 && (strcmp (mnemonic, "bound") != 0)
1479 && (strcmp (mnemonic, "invlpga") != 0)
1480 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1481 swap_operands ();
1482
1483 if (i.imm_operands)
1484 optimize_imm ();
1485
1486 /* Don't optimize displacement for movabs since it only takes 64bit
1487 displacement. */
1488 if (i.disp_operands
1489 && (flag_code != CODE_64BIT
1490 || strcmp (mnemonic, "movabs") != 0))
1491 optimize_disp ();
1492
1493 /* Next, we find a template that matches the given insn,
1494 making sure the overlap of the given operands types is consistent
1495 with the template operand types. */
1496
1497 if (!match_template ())
1498 return;
1499
1500 if (intel_syntax)
1501 {
1502 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1503 if (SYSV386_COMPAT
1504 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1505 i.tm.base_opcode ^= FloatR;
1506
1507 /* Zap movzx and movsx suffix. The suffix may have been set from
1508 "word ptr" or "byte ptr" on the source operand, but we'll use
1509 the suffix later to choose the destination register. */
1510 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1511 {
1512 if (i.reg_operands < 2
1513 && !i.suffix
1514 && (~i.tm.opcode_modifier
1515 & (No_bSuf
1516 | No_wSuf
1517 | No_lSuf
1518 | No_sSuf
1519 | No_xSuf
1520 | No_qSuf)))
1521 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1522
1523 i.suffix = 0;
1524 }
1525 }
1526
1527 if (i.tm.opcode_modifier & FWait)
1528 if (!add_prefix (FWAIT_OPCODE))
1529 return;
1530
1531 /* Check string instruction segment overrides. */
1532 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1533 {
1534 if (!check_string ())
1535 return;
1536 }
1537
1538 if (!process_suffix ())
1539 return;
1540
1541 /* Make still unresolved immediate matches conform to size of immediate
1542 given in i.suffix. */
1543 if (!finalize_imm ())
1544 return;
1545
1546 if (i.types[0] & Imm1)
1547 i.imm_operands = 0; /* kludge for shift insns. */
1548 if (i.types[0] & ImplicitRegister)
1549 i.reg_operands--;
1550 if (i.types[1] & ImplicitRegister)
1551 i.reg_operands--;
1552 if (i.types[2] & ImplicitRegister)
1553 i.reg_operands--;
1554
1555 if (i.tm.opcode_modifier & ImmExt)
1556 {
1557 expressionS *exp;
1558
1559 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1560 {
1561 /* These Intel Prescott New Instructions have the fixed
1562 operands with an opcode suffix which is coded in the same
1563 place as an 8-bit immediate field would be. Here we check
1564 those operands and remove them afterwards. */
1565 unsigned int x;
1566
1567 for (x = 0; x < i.operands; x++)
1568 if (i.op[x].regs->reg_num != x)
1569 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1570 i.op[x].regs->reg_name, x + 1, i.tm.name);
1571 i.operands = 0;
1572 }
1573
1574 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1575 opcode suffix which is coded in the same place as an 8-bit
1576 immediate field would be. Here we fake an 8-bit immediate
1577 operand from the opcode suffix stored in tm.extension_opcode. */
1578
1579 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1580
1581 exp = &im_expressions[i.imm_operands++];
1582 i.op[i.operands].imms = exp;
1583 i.types[i.operands++] = Imm8;
1584 exp->X_op = O_constant;
1585 exp->X_add_number = i.tm.extension_opcode;
1586 i.tm.extension_opcode = None;
1587 }
1588
1589 /* For insns with operands there are more diddles to do to the opcode. */
1590 if (i.operands)
1591 {
1592 if (!process_operands ())
1593 return;
1594 }
1595 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1596 {
1597 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1598 as_warn (_("translating to `%sp'"), i.tm.name);
1599 }
1600
1601 /* Handle conversion of 'int $3' --> special int3 insn. */
1602 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1603 {
1604 i.tm.base_opcode = INT3_OPCODE;
1605 i.imm_operands = 0;
1606 }
1607
1608 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1609 && i.op[0].disps->X_op == O_constant)
1610 {
1611 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1612 the absolute address given by the constant. Since ix86 jumps and
1613 calls are pc relative, we need to generate a reloc. */
1614 i.op[0].disps->X_add_symbol = &abs_symbol;
1615 i.op[0].disps->X_op = O_symbol;
1616 }
1617
1618 if ((i.tm.opcode_modifier & Rex64) != 0)
1619 i.rex |= REX_MODE64;
1620
1621 /* For 8 bit registers we need an empty rex prefix. Also if the
1622 instruction already has a prefix, we need to convert old
1623 registers to new ones. */
1624
1625 if (((i.types[0] & Reg8) != 0
1626 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1627 || ((i.types[1] & Reg8) != 0
1628 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1629 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1630 && i.rex != 0))
1631 {
1632 int x;
1633
1634 i.rex |= REX_OPCODE;
1635 for (x = 0; x < 2; x++)
1636 {
1637 /* Look for 8 bit operand that uses old registers. */
1638 if ((i.types[x] & Reg8) != 0
1639 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1640 {
1641 /* In case it is "hi" register, give up. */
1642 if (i.op[x].regs->reg_num > 3)
1643 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1644 i.op[x].regs->reg_name);
1645
1646 /* Otherwise it is equivalent to the extended register.
1647 Since the encoding doesn't change this is merely
1648 cosmetic cleanup for debug output. */
1649
1650 i.op[x].regs = i.op[x].regs + 8;
1651 }
1652 }
1653 }
1654
1655 if (i.rex != 0)
1656 add_prefix (REX_OPCODE | i.rex);
1657
1658 /* We are ready to output the insn. */
1659 output_insn ();
1660 }
1661
1662 static char *
1663 parse_insn (line, mnemonic)
1664 char *line;
1665 char *mnemonic;
1666 {
1667 char *l = line;
1668 char *token_start = l;
1669 char *mnem_p;
1670 int supported;
1671 const template *t;
1672
1673 /* Non-zero if we found a prefix only acceptable with string insns. */
1674 const char *expecting_string_instruction = NULL;
1675
1676 while (1)
1677 {
1678 mnem_p = mnemonic;
1679 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1680 {
1681 mnem_p++;
1682 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1683 {
1684 as_bad (_("no such instruction: `%s'"), token_start);
1685 return NULL;
1686 }
1687 l++;
1688 }
1689 if (!is_space_char (*l)
1690 && *l != END_OF_INSN
1691 && (intel_syntax
1692 || (*l != PREFIX_SEPARATOR
1693 && *l != ',')))
1694 {
1695 as_bad (_("invalid character %s in mnemonic"),
1696 output_invalid (*l));
1697 return NULL;
1698 }
1699 if (token_start == l)
1700 {
1701 if (!intel_syntax && *l == PREFIX_SEPARATOR)
1702 as_bad (_("expecting prefix; got nothing"));
1703 else
1704 as_bad (_("expecting mnemonic; got nothing"));
1705 return NULL;
1706 }
1707
1708 /* Look up instruction (or prefix) via hash table. */
1709 current_templates = hash_find (op_hash, mnemonic);
1710
1711 if (*l != END_OF_INSN
1712 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1713 && current_templates
1714 && (current_templates->start->opcode_modifier & IsPrefix))
1715 {
1716 if (current_templates->start->cpu_flags
1717 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
1718 {
1719 as_bad ((flag_code != CODE_64BIT
1720 ? _("`%s' is only supported in 64-bit mode")
1721 : _("`%s' is not supported in 64-bit mode")),
1722 current_templates->start->name);
1723 return NULL;
1724 }
1725 /* If we are in 16-bit mode, do not allow addr16 or data16.
1726 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1727 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1728 && flag_code != CODE_64BIT
1729 && (((current_templates->start->opcode_modifier & Size32) != 0)
1730 ^ (flag_code == CODE_16BIT)))
1731 {
1732 as_bad (_("redundant %s prefix"),
1733 current_templates->start->name);
1734 return NULL;
1735 }
1736 /* Add prefix, checking for repeated prefixes. */
1737 switch (add_prefix (current_templates->start->base_opcode))
1738 {
1739 case 0:
1740 return NULL;
1741 case 2:
1742 expecting_string_instruction = current_templates->start->name;
1743 break;
1744 }
1745 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1746 token_start = ++l;
1747 }
1748 else
1749 break;
1750 }
1751
1752 if (!current_templates)
1753 {
1754 /* See if we can get a match by trimming off a suffix. */
1755 switch (mnem_p[-1])
1756 {
1757 case WORD_MNEM_SUFFIX:
1758 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1759 i.suffix = SHORT_MNEM_SUFFIX;
1760 else
1761 case BYTE_MNEM_SUFFIX:
1762 case QWORD_MNEM_SUFFIX:
1763 i.suffix = mnem_p[-1];
1764 mnem_p[-1] = '\0';
1765 current_templates = hash_find (op_hash, mnemonic);
1766 break;
1767 case SHORT_MNEM_SUFFIX:
1768 case LONG_MNEM_SUFFIX:
1769 if (!intel_syntax)
1770 {
1771 i.suffix = mnem_p[-1];
1772 mnem_p[-1] = '\0';
1773 current_templates = hash_find (op_hash, mnemonic);
1774 }
1775 break;
1776
1777 /* Intel Syntax. */
1778 case 'd':
1779 if (intel_syntax)
1780 {
1781 if (intel_float_operand (mnemonic) == 1)
1782 i.suffix = SHORT_MNEM_SUFFIX;
1783 else
1784 i.suffix = LONG_MNEM_SUFFIX;
1785 mnem_p[-1] = '\0';
1786 current_templates = hash_find (op_hash, mnemonic);
1787 }
1788 break;
1789 }
1790 if (!current_templates)
1791 {
1792 as_bad (_("no such instruction: `%s'"), token_start);
1793 return NULL;
1794 }
1795 }
1796
1797 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1798 {
1799 /* Check for a branch hint. We allow ",pt" and ",pn" for
1800 predict taken and predict not taken respectively.
1801 I'm not sure that branch hints actually do anything on loop
1802 and jcxz insns (JumpByte) for current Pentium4 chips. They
1803 may work in the future and it doesn't hurt to accept them
1804 now. */
1805 if (l[0] == ',' && l[1] == 'p')
1806 {
1807 if (l[2] == 't')
1808 {
1809 if (!add_prefix (DS_PREFIX_OPCODE))
1810 return NULL;
1811 l += 3;
1812 }
1813 else if (l[2] == 'n')
1814 {
1815 if (!add_prefix (CS_PREFIX_OPCODE))
1816 return NULL;
1817 l += 3;
1818 }
1819 }
1820 }
1821 /* Any other comma loses. */
1822 if (*l == ',')
1823 {
1824 as_bad (_("invalid character %s in mnemonic"),
1825 output_invalid (*l));
1826 return NULL;
1827 }
1828
1829 /* Check if instruction is supported on specified architecture. */
1830 supported = 0;
1831 for (t = current_templates->start; t < current_templates->end; ++t)
1832 {
1833 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1834 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1835 supported |= 1;
1836 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1837 supported |= 2;
1838 }
1839 if (!(supported & 2))
1840 {
1841 as_bad (flag_code == CODE_64BIT
1842 ? _("`%s' is not supported in 64-bit mode")
1843 : _("`%s' is only supported in 64-bit mode"),
1844 current_templates->start->name);
1845 return NULL;
1846 }
1847 if (!(supported & 1))
1848 {
1849 as_warn (_("`%s' is not supported on `%s%s'"),
1850 current_templates->start->name,
1851 cpu_arch_name,
1852 cpu_sub_arch_name ? cpu_sub_arch_name : "");
1853 }
1854 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1855 {
1856 as_warn (_("use .code16 to ensure correct addressing mode"));
1857 }
1858
1859 /* Check for rep/repne without a string instruction. */
1860 if (expecting_string_instruction)
1861 {
1862 static templates override;
1863
1864 for (t = current_templates->start; t < current_templates->end; ++t)
1865 if (t->opcode_modifier & IsString)
1866 break;
1867 if (t >= current_templates->end)
1868 {
1869 as_bad (_("expecting string instruction after `%s'"),
1870 expecting_string_instruction);
1871 return NULL;
1872 }
1873 for (override.start = t; t < current_templates->end; ++t)
1874 if (!(t->opcode_modifier & IsString))
1875 break;
1876 override.end = t;
1877 current_templates = &override;
1878 }
1879
1880 return l;
1881 }
1882
1883 static char *
1884 parse_operands (l, mnemonic)
1885 char *l;
1886 const char *mnemonic;
1887 {
1888 char *token_start;
1889
1890 /* 1 if operand is pending after ','. */
1891 unsigned int expecting_operand = 0;
1892
1893 /* Non-zero if operand parens not balanced. */
1894 unsigned int paren_not_balanced;
1895
1896 while (*l != END_OF_INSN)
1897 {
1898 /* Skip optional white space before operand. */
1899 if (is_space_char (*l))
1900 ++l;
1901 if (!is_operand_char (*l) && *l != END_OF_INSN)
1902 {
1903 as_bad (_("invalid character %s before operand %d"),
1904 output_invalid (*l),
1905 i.operands + 1);
1906 return NULL;
1907 }
1908 token_start = l; /* after white space */
1909 paren_not_balanced = 0;
1910 while (paren_not_balanced || *l != ',')
1911 {
1912 if (*l == END_OF_INSN)
1913 {
1914 if (paren_not_balanced)
1915 {
1916 if (!intel_syntax)
1917 as_bad (_("unbalanced parenthesis in operand %d."),
1918 i.operands + 1);
1919 else
1920 as_bad (_("unbalanced brackets in operand %d."),
1921 i.operands + 1);
1922 return NULL;
1923 }
1924 else
1925 break; /* we are done */
1926 }
1927 else if (!is_operand_char (*l) && !is_space_char (*l))
1928 {
1929 as_bad (_("invalid character %s in operand %d"),
1930 output_invalid (*l),
1931 i.operands + 1);
1932 return NULL;
1933 }
1934 if (!intel_syntax)
1935 {
1936 if (*l == '(')
1937 ++paren_not_balanced;
1938 if (*l == ')')
1939 --paren_not_balanced;
1940 }
1941 else
1942 {
1943 if (*l == '[')
1944 ++paren_not_balanced;
1945 if (*l == ']')
1946 --paren_not_balanced;
1947 }
1948 l++;
1949 }
1950 if (l != token_start)
1951 { /* Yes, we've read in another operand. */
1952 unsigned int operand_ok;
1953 this_operand = i.operands++;
1954 if (i.operands > MAX_OPERANDS)
1955 {
1956 as_bad (_("spurious operands; (%d operands/instruction max)"),
1957 MAX_OPERANDS);
1958 return NULL;
1959 }
1960 /* Now parse operand adding info to 'i' as we go along. */
1961 END_STRING_AND_SAVE (l);
1962
1963 if (intel_syntax)
1964 operand_ok =
1965 i386_intel_operand (token_start,
1966 intel_float_operand (mnemonic));
1967 else
1968 operand_ok = i386_operand (token_start);
1969
1970 RESTORE_END_STRING (l);
1971 if (!operand_ok)
1972 return NULL;
1973 }
1974 else
1975 {
1976 if (expecting_operand)
1977 {
1978 expecting_operand_after_comma:
1979 as_bad (_("expecting operand after ','; got nothing"));
1980 return NULL;
1981 }
1982 if (*l == ',')
1983 {
1984 as_bad (_("expecting operand before ','; got nothing"));
1985 return NULL;
1986 }
1987 }
1988
1989 /* Now *l must be either ',' or END_OF_INSN. */
1990 if (*l == ',')
1991 {
1992 if (*++l == END_OF_INSN)
1993 {
1994 /* Just skip it, if it's \n complain. */
1995 goto expecting_operand_after_comma;
1996 }
1997 expecting_operand = 1;
1998 }
1999 }
2000 return l;
2001 }
2002
2003 static void
2004 swap_operands ()
2005 {
2006 union i386_op temp_op;
2007 unsigned int temp_type;
2008 enum bfd_reloc_code_real temp_reloc;
2009 int xchg1 = 0;
2010 int xchg2 = 0;
2011
2012 if (i.operands == 2)
2013 {
2014 xchg1 = 0;
2015 xchg2 = 1;
2016 }
2017 else if (i.operands == 3)
2018 {
2019 xchg1 = 0;
2020 xchg2 = 2;
2021 }
2022 temp_type = i.types[xchg2];
2023 i.types[xchg2] = i.types[xchg1];
2024 i.types[xchg1] = temp_type;
2025 temp_op = i.op[xchg2];
2026 i.op[xchg2] = i.op[xchg1];
2027 i.op[xchg1] = temp_op;
2028 temp_reloc = i.reloc[xchg2];
2029 i.reloc[xchg2] = i.reloc[xchg1];
2030 i.reloc[xchg1] = temp_reloc;
2031
2032 if (i.mem_operands == 2)
2033 {
2034 const seg_entry *temp_seg;
2035 temp_seg = i.seg[0];
2036 i.seg[0] = i.seg[1];
2037 i.seg[1] = temp_seg;
2038 }
2039 }
2040
2041 /* Try to ensure constant immediates are represented in the smallest
2042 opcode possible. */
2043 static void
2044 optimize_imm ()
2045 {
2046 char guess_suffix = 0;
2047 int op;
2048
2049 if (i.suffix)
2050 guess_suffix = i.suffix;
2051 else if (i.reg_operands)
2052 {
2053 /* Figure out a suffix from the last register operand specified.
2054 We can't do this properly yet, ie. excluding InOutPortReg,
2055 but the following works for instructions with immediates.
2056 In any case, we can't set i.suffix yet. */
2057 for (op = i.operands; --op >= 0;)
2058 if (i.types[op] & Reg)
2059 {
2060 if (i.types[op] & Reg8)
2061 guess_suffix = BYTE_MNEM_SUFFIX;
2062 else if (i.types[op] & Reg16)
2063 guess_suffix = WORD_MNEM_SUFFIX;
2064 else if (i.types[op] & Reg32)
2065 guess_suffix = LONG_MNEM_SUFFIX;
2066 else if (i.types[op] & Reg64)
2067 guess_suffix = QWORD_MNEM_SUFFIX;
2068 break;
2069 }
2070 }
2071 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2072 guess_suffix = WORD_MNEM_SUFFIX;
2073
2074 for (op = i.operands; --op >= 0;)
2075 if (i.types[op] & Imm)
2076 {
2077 switch (i.op[op].imms->X_op)
2078 {
2079 case O_constant:
2080 /* If a suffix is given, this operand may be shortened. */
2081 switch (guess_suffix)
2082 {
2083 case LONG_MNEM_SUFFIX:
2084 i.types[op] |= Imm32 | Imm64;
2085 break;
2086 case WORD_MNEM_SUFFIX:
2087 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2088 break;
2089 case BYTE_MNEM_SUFFIX:
2090 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2091 break;
2092 }
2093
2094 /* If this operand is at most 16 bits, convert it
2095 to a signed 16 bit number before trying to see
2096 whether it will fit in an even smaller size.
2097 This allows a 16-bit operand such as $0xffe0 to
2098 be recognised as within Imm8S range. */
2099 if ((i.types[op] & Imm16)
2100 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2101 {
2102 i.op[op].imms->X_add_number =
2103 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2104 }
2105 if ((i.types[op] & Imm32)
2106 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2107 == 0))
2108 {
2109 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2110 ^ ((offsetT) 1 << 31))
2111 - ((offsetT) 1 << 31));
2112 }
2113 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2114
2115 /* We must avoid matching of Imm32 templates when 64bit
2116 only immediate is available. */
2117 if (guess_suffix == QWORD_MNEM_SUFFIX)
2118 i.types[op] &= ~Imm32;
2119 break;
2120
2121 case O_absent:
2122 case O_register:
2123 abort ();
2124
2125 /* Symbols and expressions. */
2126 default:
2127 /* Convert symbolic operand to proper sizes for matching, but don't
2128 prevent matching a set of insns that only supports sizes other
2129 than those matching the insn suffix. */
2130 {
2131 unsigned int mask, allowed = 0;
2132 const template *t;
2133
2134 for (t = current_templates->start; t < current_templates->end; ++t)
2135 allowed |= t->operand_types[op];
2136 switch (guess_suffix)
2137 {
2138 case QWORD_MNEM_SUFFIX:
2139 mask = Imm64 | Imm32S;
2140 break;
2141 case LONG_MNEM_SUFFIX:
2142 mask = Imm32;
2143 break;
2144 case WORD_MNEM_SUFFIX:
2145 mask = Imm16;
2146 break;
2147 case BYTE_MNEM_SUFFIX:
2148 mask = Imm8;
2149 break;
2150 default:
2151 mask = 0;
2152 break;
2153 }
2154 if (mask & allowed)
2155 i.types[op] &= mask;
2156 }
2157 break;
2158 }
2159 }
2160 }
2161
2162 /* Try to use the smallest displacement type too. */
2163 static void
2164 optimize_disp ()
2165 {
2166 int op;
2167
2168 for (op = i.operands; --op >= 0;)
2169 if (i.types[op] & Disp)
2170 {
2171 if (i.op[op].disps->X_op == O_constant)
2172 {
2173 offsetT disp = i.op[op].disps->X_add_number;
2174
2175 if ((i.types[op] & Disp16)
2176 && (disp & ~(offsetT) 0xffff) == 0)
2177 {
2178 /* If this operand is at most 16 bits, convert
2179 to a signed 16 bit number and don't use 64bit
2180 displacement. */
2181 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2182 i.types[op] &= ~Disp64;
2183 }
2184 if ((i.types[op] & Disp32)
2185 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2186 {
2187 /* If this operand is at most 32 bits, convert
2188 to a signed 32 bit number and don't use 64bit
2189 displacement. */
2190 disp &= (((offsetT) 2 << 31) - 1);
2191 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2192 i.types[op] &= ~Disp64;
2193 }
2194 if (!disp && (i.types[op] & BaseIndex))
2195 {
2196 i.types[op] &= ~Disp;
2197 i.op[op].disps = 0;
2198 i.disp_operands--;
2199 }
2200 else if (flag_code == CODE_64BIT)
2201 {
2202 if (fits_in_signed_long (disp))
2203 {
2204 i.types[op] &= ~Disp64;
2205 i.types[op] |= Disp32S;
2206 }
2207 if (fits_in_unsigned_long (disp))
2208 i.types[op] |= Disp32;
2209 }
2210 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2211 && fits_in_signed_byte (disp))
2212 i.types[op] |= Disp8;
2213 }
2214 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2215 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2216 {
2217 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2218 i.op[op].disps, 0, i.reloc[op]);
2219 i.types[op] &= ~Disp;
2220 }
2221 else
2222 /* We only support 64bit displacement on constants. */
2223 i.types[op] &= ~Disp64;
2224 }
2225 }
2226
2227 static int
2228 match_template ()
2229 {
2230 /* Points to template once we've found it. */
2231 const template *t;
2232 unsigned int overlap0, overlap1, overlap2;
2233 unsigned int found_reverse_match;
2234 int suffix_check;
2235
2236 #define MATCH(overlap, given, template) \
2237 ((overlap & ~JumpAbsolute) \
2238 && (((given) & (BaseIndex | JumpAbsolute)) \
2239 == ((overlap) & (BaseIndex | JumpAbsolute))))
2240
2241 /* If given types r0 and r1 are registers they must be of the same type
2242 unless the expected operand type register overlap is null.
2243 Note that Acc in a template matches every size of reg. */
2244 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2245 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2246 || ((g0) & Reg) == ((g1) & Reg) \
2247 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2248
2249 overlap0 = 0;
2250 overlap1 = 0;
2251 overlap2 = 0;
2252 found_reverse_match = 0;
2253 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2254 ? No_bSuf
2255 : (i.suffix == WORD_MNEM_SUFFIX
2256 ? No_wSuf
2257 : (i.suffix == SHORT_MNEM_SUFFIX
2258 ? No_sSuf
2259 : (i.suffix == LONG_MNEM_SUFFIX
2260 ? No_lSuf
2261 : (i.suffix == QWORD_MNEM_SUFFIX
2262 ? No_qSuf
2263 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2264 ? No_xSuf : 0))))));
2265
2266 for (t = current_templates->start; t < current_templates->end; t++)
2267 {
2268 /* Must have right number of operands. */
2269 if (i.operands != t->operands)
2270 continue;
2271
2272 /* Check the suffix, except for some instructions in intel mode. */
2273 if ((t->opcode_modifier & suffix_check)
2274 && !(intel_syntax
2275 && (t->opcode_modifier & IgnoreSize)))
2276 continue;
2277
2278 /* In general, don't allow 64-bit operands in 32-bit mode. */
2279 if (i.suffix == QWORD_MNEM_SUFFIX
2280 && flag_code != CODE_64BIT
2281 && (intel_syntax
2282 ? (!(t->opcode_modifier & IgnoreSize)
2283 && !intel_float_operand (t->name))
2284 : intel_float_operand (t->name) != 2)
2285 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2286 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2287 && (t->base_opcode != 0x0fc7
2288 || t->extension_opcode != 1 /* cmpxchg8b */))
2289 continue;
2290
2291 /* Do not verify operands when there are none. */
2292 else if (!t->operands)
2293 {
2294 if (t->cpu_flags & ~cpu_arch_flags)
2295 continue;
2296 /* We've found a match; break out of loop. */
2297 break;
2298 }
2299
2300 overlap0 = i.types[0] & t->operand_types[0];
2301 switch (t->operands)
2302 {
2303 case 1:
2304 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2305 continue;
2306 break;
2307 case 2:
2308 case 3:
2309 overlap1 = i.types[1] & t->operand_types[1];
2310 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2311 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2312 /* monitor in SSE3 is a very special case. The first
2313 register and the second register may have different
2314 sizes. */
2315 || !((t->base_opcode == 0x0f01
2316 && t->extension_opcode == 0xc8)
2317 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2318 t->operand_types[0],
2319 overlap1, i.types[1],
2320 t->operand_types[1])))
2321 {
2322 /* Check if other direction is valid ... */
2323 if ((t->opcode_modifier & (D | FloatD)) == 0)
2324 continue;
2325
2326 /* Try reversing direction of operands. */
2327 overlap0 = i.types[0] & t->operand_types[1];
2328 overlap1 = i.types[1] & t->operand_types[0];
2329 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2330 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2331 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2332 t->operand_types[1],
2333 overlap1, i.types[1],
2334 t->operand_types[0]))
2335 {
2336 /* Does not match either direction. */
2337 continue;
2338 }
2339 /* found_reverse_match holds which of D or FloatDR
2340 we've found. */
2341 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2342 }
2343 /* Found a forward 2 operand match here. */
2344 else if (t->operands == 3)
2345 {
2346 /* Here we make use of the fact that there are no
2347 reverse match 3 operand instructions, and all 3
2348 operand instructions only need to be checked for
2349 register consistency between operands 2 and 3. */
2350 overlap2 = i.types[2] & t->operand_types[2];
2351 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2352 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2353 t->operand_types[1],
2354 overlap2, i.types[2],
2355 t->operand_types[2]))
2356
2357 continue;
2358 }
2359 /* Found either forward/reverse 2 or 3 operand match here:
2360 slip through to break. */
2361 }
2362 if (t->cpu_flags & ~cpu_arch_flags)
2363 {
2364 found_reverse_match = 0;
2365 continue;
2366 }
2367 /* We've found a match; break out of loop. */
2368 break;
2369 }
2370
2371 if (t == current_templates->end)
2372 {
2373 /* We found no match. */
2374 as_bad (_("suffix or operands invalid for `%s'"),
2375 current_templates->start->name);
2376 return 0;
2377 }
2378
2379 if (!quiet_warnings)
2380 {
2381 if (!intel_syntax
2382 && ((i.types[0] & JumpAbsolute)
2383 != (t->operand_types[0] & JumpAbsolute)))
2384 {
2385 as_warn (_("indirect %s without `*'"), t->name);
2386 }
2387
2388 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2389 == (IsPrefix | IgnoreSize))
2390 {
2391 /* Warn them that a data or address size prefix doesn't
2392 affect assembly of the next line of code. */
2393 as_warn (_("stand-alone `%s' prefix"), t->name);
2394 }
2395 }
2396
2397 /* Copy the template we found. */
2398 i.tm = *t;
2399 if (found_reverse_match)
2400 {
2401 /* If we found a reverse match we must alter the opcode
2402 direction bit. found_reverse_match holds bits to change
2403 (different for int & float insns). */
2404
2405 i.tm.base_opcode ^= found_reverse_match;
2406
2407 i.tm.operand_types[0] = t->operand_types[1];
2408 i.tm.operand_types[1] = t->operand_types[0];
2409 }
2410
2411 return 1;
2412 }
2413
2414 static int
2415 check_string ()
2416 {
2417 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2418 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2419 {
2420 if (i.seg[0] != NULL && i.seg[0] != &es)
2421 {
2422 as_bad (_("`%s' operand %d must use `%%es' segment"),
2423 i.tm.name,
2424 mem_op + 1);
2425 return 0;
2426 }
2427 /* There's only ever one segment override allowed per instruction.
2428 This instruction possibly has a legal segment override on the
2429 second operand, so copy the segment to where non-string
2430 instructions store it, allowing common code. */
2431 i.seg[0] = i.seg[1];
2432 }
2433 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2434 {
2435 if (i.seg[1] != NULL && i.seg[1] != &es)
2436 {
2437 as_bad (_("`%s' operand %d must use `%%es' segment"),
2438 i.tm.name,
2439 mem_op + 2);
2440 return 0;
2441 }
2442 }
2443 return 1;
2444 }
2445
2446 static int
2447 process_suffix (void)
2448 {
2449 /* If matched instruction specifies an explicit instruction mnemonic
2450 suffix, use it. */
2451 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2452 {
2453 if (i.tm.opcode_modifier & Size16)
2454 i.suffix = WORD_MNEM_SUFFIX;
2455 else if (i.tm.opcode_modifier & Size64)
2456 i.suffix = QWORD_MNEM_SUFFIX;
2457 else
2458 i.suffix = LONG_MNEM_SUFFIX;
2459 }
2460 else if (i.reg_operands)
2461 {
2462 /* If there's no instruction mnemonic suffix we try to invent one
2463 based on register operands. */
2464 if (!i.suffix)
2465 {
2466 /* We take i.suffix from the last register operand specified,
2467 Destination register type is more significant than source
2468 register type. */
2469 int op;
2470
2471 for (op = i.operands; --op >= 0;)
2472 if ((i.types[op] & Reg)
2473 && !(i.tm.operand_types[op] & InOutPortReg))
2474 {
2475 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2476 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2477 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2478 LONG_MNEM_SUFFIX);
2479 break;
2480 }
2481 }
2482 else if (i.suffix == BYTE_MNEM_SUFFIX)
2483 {
2484 if (!check_byte_reg ())
2485 return 0;
2486 }
2487 else if (i.suffix == LONG_MNEM_SUFFIX)
2488 {
2489 if (!check_long_reg ())
2490 return 0;
2491 }
2492 else if (i.suffix == QWORD_MNEM_SUFFIX)
2493 {
2494 if (!check_qword_reg ())
2495 return 0;
2496 }
2497 else if (i.suffix == WORD_MNEM_SUFFIX)
2498 {
2499 if (!check_word_reg ())
2500 return 0;
2501 }
2502 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2503 /* Do nothing if the instruction is going to ignore the prefix. */
2504 ;
2505 else
2506 abort ();
2507 }
2508 else if ((i.tm.opcode_modifier & DefaultSize)
2509 && !i.suffix
2510 /* exclude fldenv/frstor/fsave/fstenv */
2511 && (i.tm.opcode_modifier & No_sSuf))
2512 {
2513 i.suffix = stackop_size;
2514 }
2515 else if (intel_syntax
2516 && !i.suffix
2517 && ((i.tm.operand_types[0] & JumpAbsolute)
2518 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2519 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2520 && i.tm.extension_opcode <= 3)))
2521 {
2522 switch (flag_code)
2523 {
2524 case CODE_64BIT:
2525 if (!(i.tm.opcode_modifier & No_qSuf))
2526 {
2527 i.suffix = QWORD_MNEM_SUFFIX;
2528 break;
2529 }
2530 case CODE_32BIT:
2531 if (!(i.tm.opcode_modifier & No_lSuf))
2532 i.suffix = LONG_MNEM_SUFFIX;
2533 break;
2534 case CODE_16BIT:
2535 if (!(i.tm.opcode_modifier & No_wSuf))
2536 i.suffix = WORD_MNEM_SUFFIX;
2537 break;
2538 }
2539 }
2540
2541 if (!i.suffix)
2542 {
2543 if (!intel_syntax)
2544 {
2545 if (i.tm.opcode_modifier & W)
2546 {
2547 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2548 return 0;
2549 }
2550 }
2551 else
2552 {
2553 unsigned int suffixes = (~i.tm.opcode_modifier
2554 & (No_bSuf
2555 | No_wSuf
2556 | No_lSuf
2557 | No_sSuf
2558 | No_xSuf
2559 | No_qSuf));
2560
2561 if ((i.tm.opcode_modifier & W)
2562 || ((suffixes & (suffixes - 1))
2563 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2564 {
2565 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2566 return 0;
2567 }
2568 }
2569 }
2570
2571 /* Change the opcode based on the operand size given by i.suffix;
2572 We don't need to change things for byte insns. */
2573
2574 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2575 {
2576 /* It's not a byte, select word/dword operation. */
2577 if (i.tm.opcode_modifier & W)
2578 {
2579 if (i.tm.opcode_modifier & ShortForm)
2580 i.tm.base_opcode |= 8;
2581 else
2582 i.tm.base_opcode |= 1;
2583 }
2584
2585 /* Now select between word & dword operations via the operand
2586 size prefix, except for instructions that will ignore this
2587 prefix anyway. */
2588 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
2589 {
2590 /* monitor in SSE3 is a very special case. The default size
2591 of AX is the size of mode. The address size override
2592 prefix will change the size of AX. */
2593 if (i.op->regs[0].reg_type &
2594 (flag_code == CODE_32BIT ? Reg16 : Reg32))
2595 if (!add_prefix (ADDR_PREFIX_OPCODE))
2596 return 0;
2597 }
2598 else if (i.suffix != QWORD_MNEM_SUFFIX
2599 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2600 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2601 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2602 || (flag_code == CODE_64BIT
2603 && (i.tm.opcode_modifier & JumpByte))))
2604 {
2605 unsigned int prefix = DATA_PREFIX_OPCODE;
2606
2607 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2608 prefix = ADDR_PREFIX_OPCODE;
2609
2610 if (!add_prefix (prefix))
2611 return 0;
2612 }
2613
2614 /* Set mode64 for an operand. */
2615 if (i.suffix == QWORD_MNEM_SUFFIX
2616 && flag_code == CODE_64BIT
2617 && (i.tm.opcode_modifier & NoRex64) == 0)
2618 {
2619 /* Special case for xchg %rax,%rax. It is NOP and doesn't
2620 need rex64. */
2621 if (i.operands != 2
2622 || i.types [0] != (Acc | Reg64)
2623 || i.types [1] != (Acc | Reg64)
2624 || strcmp (i.tm.name, "xchg") != 0)
2625 i.rex |= REX_MODE64;
2626 }
2627
2628 /* Size floating point instruction. */
2629 if (i.suffix == LONG_MNEM_SUFFIX)
2630 if (i.tm.opcode_modifier & FloatMF)
2631 i.tm.base_opcode ^= 4;
2632 }
2633
2634 return 1;
2635 }
2636
2637 static int
2638 check_byte_reg (void)
2639 {
2640 int op;
2641
2642 for (op = i.operands; --op >= 0;)
2643 {
2644 /* If this is an eight bit register, it's OK. If it's the 16 or
2645 32 bit version of an eight bit register, we will just use the
2646 low portion, and that's OK too. */
2647 if (i.types[op] & Reg8)
2648 continue;
2649
2650 /* movzx and movsx should not generate this warning. */
2651 if (intel_syntax
2652 && (i.tm.base_opcode == 0xfb7
2653 || i.tm.base_opcode == 0xfb6
2654 || i.tm.base_opcode == 0x63
2655 || i.tm.base_opcode == 0xfbe
2656 || i.tm.base_opcode == 0xfbf))
2657 continue;
2658
2659 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
2660 {
2661 /* Prohibit these changes in the 64bit mode, since the
2662 lowering is more complicated. */
2663 if (flag_code == CODE_64BIT
2664 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2665 {
2666 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2667 i.op[op].regs->reg_name,
2668 i.suffix);
2669 return 0;
2670 }
2671 #if REGISTER_WARNINGS
2672 if (!quiet_warnings
2673 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2674 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2675 (i.op[op].regs + (i.types[op] & Reg16
2676 ? REGNAM_AL - REGNAM_AX
2677 : REGNAM_AL - REGNAM_EAX))->reg_name,
2678 i.op[op].regs->reg_name,
2679 i.suffix);
2680 #endif
2681 continue;
2682 }
2683 /* Any other register is bad. */
2684 if (i.types[op] & (Reg | RegMMX | RegXMM
2685 | SReg2 | SReg3
2686 | Control | Debug | Test
2687 | FloatReg | FloatAcc))
2688 {
2689 as_bad (_("`%%%s' not allowed with `%s%c'"),
2690 i.op[op].regs->reg_name,
2691 i.tm.name,
2692 i.suffix);
2693 return 0;
2694 }
2695 }
2696 return 1;
2697 }
2698
2699 static int
2700 check_long_reg ()
2701 {
2702 int op;
2703
2704 for (op = i.operands; --op >= 0;)
2705 /* Reject eight bit registers, except where the template requires
2706 them. (eg. movzb) */
2707 if ((i.types[op] & Reg8) != 0
2708 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2709 {
2710 as_bad (_("`%%%s' not allowed with `%s%c'"),
2711 i.op[op].regs->reg_name,
2712 i.tm.name,
2713 i.suffix);
2714 return 0;
2715 }
2716 /* Warn if the e prefix on a general reg is missing. */
2717 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2718 && (i.types[op] & Reg16) != 0
2719 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2720 {
2721 /* Prohibit these changes in the 64bit mode, since the
2722 lowering is more complicated. */
2723 if (flag_code == CODE_64BIT)
2724 {
2725 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2726 i.op[op].regs->reg_name,
2727 i.suffix);
2728 return 0;
2729 }
2730 #if REGISTER_WARNINGS
2731 else
2732 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2733 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2734 i.op[op].regs->reg_name,
2735 i.suffix);
2736 #endif
2737 }
2738 /* Warn if the r prefix on a general reg is missing. */
2739 else if ((i.types[op] & Reg64) != 0
2740 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2741 {
2742 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2743 i.op[op].regs->reg_name,
2744 i.suffix);
2745 return 0;
2746 }
2747 return 1;
2748 }
2749
2750 static int
2751 check_qword_reg ()
2752 {
2753 int op;
2754
2755 for (op = i.operands; --op >= 0; )
2756 /* Reject eight bit registers, except where the template requires
2757 them. (eg. movzb) */
2758 if ((i.types[op] & Reg8) != 0
2759 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2760 {
2761 as_bad (_("`%%%s' not allowed with `%s%c'"),
2762 i.op[op].regs->reg_name,
2763 i.tm.name,
2764 i.suffix);
2765 return 0;
2766 }
2767 /* Warn if the e prefix on a general reg is missing. */
2768 else if (((i.types[op] & Reg16) != 0
2769 || (i.types[op] & Reg32) != 0)
2770 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2771 {
2772 /* Prohibit these changes in the 64bit mode, since the
2773 lowering is more complicated. */
2774 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2775 i.op[op].regs->reg_name,
2776 i.suffix);
2777 return 0;
2778 }
2779 return 1;
2780 }
2781
2782 static int
2783 check_word_reg ()
2784 {
2785 int op;
2786 for (op = i.operands; --op >= 0;)
2787 /* Reject eight bit registers, except where the template requires
2788 them. (eg. movzb) */
2789 if ((i.types[op] & Reg8) != 0
2790 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2791 {
2792 as_bad (_("`%%%s' not allowed with `%s%c'"),
2793 i.op[op].regs->reg_name,
2794 i.tm.name,
2795 i.suffix);
2796 return 0;
2797 }
2798 /* Warn if the e prefix on a general reg is present. */
2799 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2800 && (i.types[op] & Reg32) != 0
2801 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2802 {
2803 /* Prohibit these changes in the 64bit mode, since the
2804 lowering is more complicated. */
2805 if (flag_code == CODE_64BIT)
2806 {
2807 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2808 i.op[op].regs->reg_name,
2809 i.suffix);
2810 return 0;
2811 }
2812 else
2813 #if REGISTER_WARNINGS
2814 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2815 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2816 i.op[op].regs->reg_name,
2817 i.suffix);
2818 #endif
2819 }
2820 return 1;
2821 }
2822
2823 static int
2824 finalize_imm ()
2825 {
2826 unsigned int overlap0, overlap1, overlap2;
2827
2828 overlap0 = i.types[0] & i.tm.operand_types[0];
2829 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
2830 && overlap0 != Imm8 && overlap0 != Imm8S
2831 && overlap0 != Imm16 && overlap0 != Imm32S
2832 && overlap0 != Imm32 && overlap0 != Imm64)
2833 {
2834 if (i.suffix)
2835 {
2836 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2837 ? Imm8 | Imm8S
2838 : (i.suffix == WORD_MNEM_SUFFIX
2839 ? Imm16
2840 : (i.suffix == QWORD_MNEM_SUFFIX
2841 ? Imm64 | Imm32S
2842 : Imm32)));
2843 }
2844 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2845 || overlap0 == (Imm16 | Imm32)
2846 || overlap0 == (Imm16 | Imm32S))
2847 {
2848 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2849 ? Imm16 : Imm32S);
2850 }
2851 if (overlap0 != Imm8 && overlap0 != Imm8S
2852 && overlap0 != Imm16 && overlap0 != Imm32S
2853 && overlap0 != Imm32 && overlap0 != Imm64)
2854 {
2855 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2856 return 0;
2857 }
2858 }
2859 i.types[0] = overlap0;
2860
2861 overlap1 = i.types[1] & i.tm.operand_types[1];
2862 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
2863 && overlap1 != Imm8 && overlap1 != Imm8S
2864 && overlap1 != Imm16 && overlap1 != Imm32S
2865 && overlap1 != Imm32 && overlap1 != Imm64)
2866 {
2867 if (i.suffix)
2868 {
2869 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2870 ? Imm8 | Imm8S
2871 : (i.suffix == WORD_MNEM_SUFFIX
2872 ? Imm16
2873 : (i.suffix == QWORD_MNEM_SUFFIX
2874 ? Imm64 | Imm32S
2875 : Imm32)));
2876 }
2877 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2878 || overlap1 == (Imm16 | Imm32)
2879 || overlap1 == (Imm16 | Imm32S))
2880 {
2881 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2882 ? Imm16 : Imm32S);
2883 }
2884 if (overlap1 != Imm8 && overlap1 != Imm8S
2885 && overlap1 != Imm16 && overlap1 != Imm32S
2886 && overlap1 != Imm32 && overlap1 != Imm64)
2887 {
2888 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2889 return 0;
2890 }
2891 }
2892 i.types[1] = overlap1;
2893
2894 overlap2 = i.types[2] & i.tm.operand_types[2];
2895 assert ((overlap2 & Imm) == 0);
2896 i.types[2] = overlap2;
2897
2898 return 1;
2899 }
2900
2901 static int
2902 process_operands ()
2903 {
2904 /* Default segment register this instruction will use for memory
2905 accesses. 0 means unknown. This is only for optimizing out
2906 unnecessary segment overrides. */
2907 const seg_entry *default_seg = 0;
2908
2909 /* The imul $imm, %reg instruction is converted into
2910 imul $imm, %reg, %reg, and the clr %reg instruction
2911 is converted into xor %reg, %reg. */
2912 if (i.tm.opcode_modifier & regKludge)
2913 {
2914 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2915 /* Pretend we saw the extra register operand. */
2916 assert (i.op[first_reg_op + 1].regs == 0);
2917 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2918 i.types[first_reg_op + 1] = i.types[first_reg_op];
2919 i.reg_operands = 2;
2920 }
2921
2922 if (i.tm.opcode_modifier & ShortForm)
2923 {
2924 /* The register or float register operand is in operand 0 or 1. */
2925 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2926 /* Register goes in low 3 bits of opcode. */
2927 i.tm.base_opcode |= i.op[op].regs->reg_num;
2928 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2929 i.rex |= REX_EXTZ;
2930 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2931 {
2932 /* Warn about some common errors, but press on regardless.
2933 The first case can be generated by gcc (<= 2.8.1). */
2934 if (i.operands == 2)
2935 {
2936 /* Reversed arguments on faddp, fsubp, etc. */
2937 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2938 i.op[1].regs->reg_name,
2939 i.op[0].regs->reg_name);
2940 }
2941 else
2942 {
2943 /* Extraneous `l' suffix on fp insn. */
2944 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2945 i.op[0].regs->reg_name);
2946 }
2947 }
2948 }
2949 else if (i.tm.opcode_modifier & Modrm)
2950 {
2951 /* The opcode is completed (modulo i.tm.extension_opcode which
2952 must be put into the modrm byte). Now, we make the modrm and
2953 index base bytes based on all the info we've collected. */
2954
2955 default_seg = build_modrm_byte ();
2956 }
2957 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2958 {
2959 if (i.tm.base_opcode == POP_SEG_SHORT
2960 && i.op[0].regs->reg_num == 1)
2961 {
2962 as_bad (_("you can't `pop %%cs'"));
2963 return 0;
2964 }
2965 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2966 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2967 i.rex |= REX_EXTZ;
2968 }
2969 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2970 {
2971 default_seg = &ds;
2972 }
2973 else if ((i.tm.opcode_modifier & IsString) != 0)
2974 {
2975 /* For the string instructions that allow a segment override
2976 on one of their operands, the default segment is ds. */
2977 default_seg = &ds;
2978 }
2979
2980 if ((i.tm.base_opcode == 0x8d /* lea */
2981 || (i.tm.cpu_flags & CpuSVME))
2982 && i.seg[0] && !quiet_warnings)
2983 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
2984
2985 /* If a segment was explicitly specified, and the specified segment
2986 is not the default, use an opcode prefix to select it. If we
2987 never figured out what the default segment is, then default_seg
2988 will be zero at this point, and the specified segment prefix will
2989 always be used. */
2990 if ((i.seg[0]) && (i.seg[0] != default_seg))
2991 {
2992 if (!add_prefix (i.seg[0]->seg_prefix))
2993 return 0;
2994 }
2995 return 1;
2996 }
2997
2998 static const seg_entry *
2999 build_modrm_byte ()
3000 {
3001 const seg_entry *default_seg = 0;
3002
3003 /* i.reg_operands MUST be the number of real register operands;
3004 implicit registers do not count. */
3005 if (i.reg_operands == 2)
3006 {
3007 unsigned int source, dest;
3008 source = ((i.types[0]
3009 & (Reg | RegMMX | RegXMM
3010 | SReg2 | SReg3
3011 | Control | Debug | Test))
3012 ? 0 : 1);
3013 dest = source + 1;
3014
3015 i.rm.mode = 3;
3016 /* One of the register operands will be encoded in the i.tm.reg
3017 field, the other in the combined i.tm.mode and i.tm.regmem
3018 fields. If no form of this instruction supports a memory
3019 destination operand, then we assume the source operand may
3020 sometimes be a memory operand and so we need to store the
3021 destination in the i.rm.reg field. */
3022 if ((i.tm.operand_types[dest] & AnyMem) == 0)
3023 {
3024 i.rm.reg = i.op[dest].regs->reg_num;
3025 i.rm.regmem = i.op[source].regs->reg_num;
3026 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3027 i.rex |= REX_EXTX;
3028 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3029 i.rex |= REX_EXTZ;
3030 }
3031 else
3032 {
3033 i.rm.reg = i.op[source].regs->reg_num;
3034 i.rm.regmem = i.op[dest].regs->reg_num;
3035 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3036 i.rex |= REX_EXTZ;
3037 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3038 i.rex |= REX_EXTX;
3039 }
3040 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
3041 {
3042 if (!((i.types[0] | i.types[1]) & Control))
3043 abort ();
3044 i.rex &= ~(REX_EXTX | REX_EXTZ);
3045 add_prefix (LOCK_PREFIX_OPCODE);
3046 }
3047 }
3048 else
3049 { /* If it's not 2 reg operands... */
3050 if (i.mem_operands)
3051 {
3052 unsigned int fake_zero_displacement = 0;
3053 unsigned int op = ((i.types[0] & AnyMem)
3054 ? 0
3055 : (i.types[1] & AnyMem) ? 1 : 2);
3056
3057 default_seg = &ds;
3058
3059 if (i.base_reg == 0)
3060 {
3061 i.rm.mode = 0;
3062 if (!i.disp_operands)
3063 fake_zero_displacement = 1;
3064 if (i.index_reg == 0)
3065 {
3066 /* Operand is just <disp> */
3067 if (flag_code == CODE_64BIT)
3068 {
3069 /* 64bit mode overwrites the 32bit absolute
3070 addressing by RIP relative addressing and
3071 absolute addressing is encoded by one of the
3072 redundant SIB forms. */
3073 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3074 i.sib.base = NO_BASE_REGISTER;
3075 i.sib.index = NO_INDEX_REGISTER;
3076 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
3077 }
3078 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3079 {
3080 i.rm.regmem = NO_BASE_REGISTER_16;
3081 i.types[op] = Disp16;
3082 }
3083 else
3084 {
3085 i.rm.regmem = NO_BASE_REGISTER;
3086 i.types[op] = Disp32;
3087 }
3088 }
3089 else /* !i.base_reg && i.index_reg */
3090 {
3091 i.sib.index = i.index_reg->reg_num;
3092 i.sib.base = NO_BASE_REGISTER;
3093 i.sib.scale = i.log2_scale_factor;
3094 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3095 i.types[op] &= ~Disp;
3096 if (flag_code != CODE_64BIT)
3097 i.types[op] |= Disp32; /* Must be 32 bit */
3098 else
3099 i.types[op] |= Disp32S;
3100 if ((i.index_reg->reg_flags & RegRex) != 0)
3101 i.rex |= REX_EXTY;
3102 }
3103 }
3104 /* RIP addressing for 64bit mode. */
3105 else if (i.base_reg->reg_type == BaseIndex)
3106 {
3107 i.rm.regmem = NO_BASE_REGISTER;
3108 i.types[op] &= ~ Disp;
3109 i.types[op] |= Disp32S;
3110 i.flags[op] = Operand_PCrel;
3111 if (! i.disp_operands)
3112 fake_zero_displacement = 1;
3113 }
3114 else if (i.base_reg->reg_type & Reg16)
3115 {
3116 switch (i.base_reg->reg_num)
3117 {
3118 case 3: /* (%bx) */
3119 if (i.index_reg == 0)
3120 i.rm.regmem = 7;
3121 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3122 i.rm.regmem = i.index_reg->reg_num - 6;
3123 break;
3124 case 5: /* (%bp) */
3125 default_seg = &ss;
3126 if (i.index_reg == 0)
3127 {
3128 i.rm.regmem = 6;
3129 if ((i.types[op] & Disp) == 0)
3130 {
3131 /* fake (%bp) into 0(%bp) */
3132 i.types[op] |= Disp8;
3133 fake_zero_displacement = 1;
3134 }
3135 }
3136 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3137 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3138 break;
3139 default: /* (%si) -> 4 or (%di) -> 5 */
3140 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3141 }
3142 i.rm.mode = mode_from_disp_size (i.types[op]);
3143 }
3144 else /* i.base_reg and 32/64 bit mode */
3145 {
3146 if (flag_code == CODE_64BIT
3147 && (i.types[op] & Disp))
3148 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
3149
3150 i.rm.regmem = i.base_reg->reg_num;
3151 if ((i.base_reg->reg_flags & RegRex) != 0)
3152 i.rex |= REX_EXTZ;
3153 i.sib.base = i.base_reg->reg_num;
3154 /* x86-64 ignores REX prefix bit here to avoid decoder
3155 complications. */
3156 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3157 {
3158 default_seg = &ss;
3159 if (i.disp_operands == 0)
3160 {
3161 fake_zero_displacement = 1;
3162 i.types[op] |= Disp8;
3163 }
3164 }
3165 else if (i.base_reg->reg_num == ESP_REG_NUM)
3166 {
3167 default_seg = &ss;
3168 }
3169 i.sib.scale = i.log2_scale_factor;
3170 if (i.index_reg == 0)
3171 {
3172 /* <disp>(%esp) becomes two byte modrm with no index
3173 register. We've already stored the code for esp
3174 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3175 Any base register besides %esp will not use the
3176 extra modrm byte. */
3177 i.sib.index = NO_INDEX_REGISTER;
3178 #if !SCALE1_WHEN_NO_INDEX
3179 /* Another case where we force the second modrm byte. */
3180 if (i.log2_scale_factor)
3181 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3182 #endif
3183 }
3184 else
3185 {
3186 i.sib.index = i.index_reg->reg_num;
3187 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3188 if ((i.index_reg->reg_flags & RegRex) != 0)
3189 i.rex |= REX_EXTY;
3190 }
3191
3192 if (i.disp_operands
3193 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3194 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3195 i.rm.mode = 0;
3196 else
3197 i.rm.mode = mode_from_disp_size (i.types[op]);
3198 }
3199
3200 if (fake_zero_displacement)
3201 {
3202 /* Fakes a zero displacement assuming that i.types[op]
3203 holds the correct displacement size. */
3204 expressionS *exp;
3205
3206 assert (i.op[op].disps == 0);
3207 exp = &disp_expressions[i.disp_operands++];
3208 i.op[op].disps = exp;
3209 exp->X_op = O_constant;
3210 exp->X_add_number = 0;
3211 exp->X_add_symbol = (symbolS *) 0;
3212 exp->X_op_symbol = (symbolS *) 0;
3213 }
3214 }
3215
3216 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3217 (if any) based on i.tm.extension_opcode. Again, we must be
3218 careful to make sure that segment/control/debug/test/MMX
3219 registers are coded into the i.rm.reg field. */
3220 if (i.reg_operands)
3221 {
3222 unsigned int op =
3223 ((i.types[0]
3224 & (Reg | RegMMX | RegXMM
3225 | SReg2 | SReg3
3226 | Control | Debug | Test))
3227 ? 0
3228 : ((i.types[1]
3229 & (Reg | RegMMX | RegXMM
3230 | SReg2 | SReg3
3231 | Control | Debug | Test))
3232 ? 1
3233 : 2));
3234 /* If there is an extension opcode to put here, the register
3235 number must be put into the regmem field. */
3236 if (i.tm.extension_opcode != None)
3237 {
3238 i.rm.regmem = i.op[op].regs->reg_num;
3239 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3240 i.rex |= REX_EXTZ;
3241 }
3242 else
3243 {
3244 i.rm.reg = i.op[op].regs->reg_num;
3245 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3246 i.rex |= REX_EXTX;
3247 }
3248
3249 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3250 must set it to 3 to indicate this is a register operand
3251 in the regmem field. */
3252 if (!i.mem_operands)
3253 i.rm.mode = 3;
3254 }
3255
3256 /* Fill in i.rm.reg field with extension opcode (if any). */
3257 if (i.tm.extension_opcode != None)
3258 i.rm.reg = i.tm.extension_opcode;
3259 }
3260 return default_seg;
3261 }
3262
3263 static void
3264 output_branch ()
3265 {
3266 char *p;
3267 int code16;
3268 int prefix;
3269 relax_substateT subtype;
3270 symbolS *sym;
3271 offsetT off;
3272
3273 code16 = 0;
3274 if (flag_code == CODE_16BIT)
3275 code16 = CODE16;
3276
3277 prefix = 0;
3278 if (i.prefix[DATA_PREFIX] != 0)
3279 {
3280 prefix = 1;
3281 i.prefixes -= 1;
3282 code16 ^= CODE16;
3283 }
3284 /* Pentium4 branch hints. */
3285 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3286 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3287 {
3288 prefix++;
3289 i.prefixes--;
3290 }
3291 if (i.prefix[REX_PREFIX] != 0)
3292 {
3293 prefix++;
3294 i.prefixes--;
3295 }
3296
3297 if (i.prefixes != 0 && !intel_syntax)
3298 as_warn (_("skipping prefixes on this instruction"));
3299
3300 /* It's always a symbol; End frag & setup for relax.
3301 Make sure there is enough room in this frag for the largest
3302 instruction we may generate in md_convert_frag. This is 2
3303 bytes for the opcode and room for the prefix and largest
3304 displacement. */
3305 frag_grow (prefix + 2 + 4);
3306 /* Prefix and 1 opcode byte go in fr_fix. */
3307 p = frag_more (prefix + 1);
3308 if (i.prefix[DATA_PREFIX] != 0)
3309 *p++ = DATA_PREFIX_OPCODE;
3310 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3311 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3312 *p++ = i.prefix[SEG_PREFIX];
3313 if (i.prefix[REX_PREFIX] != 0)
3314 *p++ = i.prefix[REX_PREFIX];
3315 *p = i.tm.base_opcode;
3316
3317 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3318 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3319 else if ((cpu_arch_flags & Cpu386) != 0)
3320 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3321 else
3322 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3323 subtype |= code16;
3324
3325 sym = i.op[0].disps->X_add_symbol;
3326 off = i.op[0].disps->X_add_number;
3327
3328 if (i.op[0].disps->X_op != O_constant
3329 && i.op[0].disps->X_op != O_symbol)
3330 {
3331 /* Handle complex expressions. */
3332 sym = make_expr_symbol (i.op[0].disps);
3333 off = 0;
3334 }
3335
3336 /* 1 possible extra opcode + 4 byte displacement go in var part.
3337 Pass reloc in fr_var. */
3338 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3339 }
3340
3341 static void
3342 output_jump ()
3343 {
3344 char *p;
3345 int size;
3346 fixS *fixP;
3347
3348 if (i.tm.opcode_modifier & JumpByte)
3349 {
3350 /* This is a loop or jecxz type instruction. */
3351 size = 1;
3352 if (i.prefix[ADDR_PREFIX] != 0)
3353 {
3354 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3355 i.prefixes -= 1;
3356 }
3357 /* Pentium4 branch hints. */
3358 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3359 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3360 {
3361 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3362 i.prefixes--;
3363 }
3364 }
3365 else
3366 {
3367 int code16;
3368
3369 code16 = 0;
3370 if (flag_code == CODE_16BIT)
3371 code16 = CODE16;
3372
3373 if (i.prefix[DATA_PREFIX] != 0)
3374 {
3375 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3376 i.prefixes -= 1;
3377 code16 ^= CODE16;
3378 }
3379
3380 size = 4;
3381 if (code16)
3382 size = 2;
3383 }
3384
3385 if (i.prefix[REX_PREFIX] != 0)
3386 {
3387 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3388 i.prefixes -= 1;
3389 }
3390
3391 if (i.prefixes != 0 && !intel_syntax)
3392 as_warn (_("skipping prefixes on this instruction"));
3393
3394 p = frag_more (1 + size);
3395 *p++ = i.tm.base_opcode;
3396
3397 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3398 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3399
3400 /* All jumps handled here are signed, but don't use a signed limit
3401 check for 32 and 16 bit jumps as we want to allow wrap around at
3402 4G and 64k respectively. */
3403 if (size == 1)
3404 fixP->fx_signed = 1;
3405 }
3406
3407 static void
3408 output_interseg_jump ()
3409 {
3410 char *p;
3411 int size;
3412 int prefix;
3413 int code16;
3414
3415 code16 = 0;
3416 if (flag_code == CODE_16BIT)
3417 code16 = CODE16;
3418
3419 prefix = 0;
3420 if (i.prefix[DATA_PREFIX] != 0)
3421 {
3422 prefix = 1;
3423 i.prefixes -= 1;
3424 code16 ^= CODE16;
3425 }
3426 if (i.prefix[REX_PREFIX] != 0)
3427 {
3428 prefix++;
3429 i.prefixes -= 1;
3430 }
3431
3432 size = 4;
3433 if (code16)
3434 size = 2;
3435
3436 if (i.prefixes != 0 && !intel_syntax)
3437 as_warn (_("skipping prefixes on this instruction"));
3438
3439 /* 1 opcode; 2 segment; offset */
3440 p = frag_more (prefix + 1 + 2 + size);
3441
3442 if (i.prefix[DATA_PREFIX] != 0)
3443 *p++ = DATA_PREFIX_OPCODE;
3444
3445 if (i.prefix[REX_PREFIX] != 0)
3446 *p++ = i.prefix[REX_PREFIX];
3447
3448 *p++ = i.tm.base_opcode;
3449 if (i.op[1].imms->X_op == O_constant)
3450 {
3451 offsetT n = i.op[1].imms->X_add_number;
3452
3453 if (size == 2
3454 && !fits_in_unsigned_word (n)
3455 && !fits_in_signed_word (n))
3456 {
3457 as_bad (_("16-bit jump out of range"));
3458 return;
3459 }
3460 md_number_to_chars (p, n, size);
3461 }
3462 else
3463 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3464 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3465 if (i.op[0].imms->X_op != O_constant)
3466 as_bad (_("can't handle non absolute segment in `%s'"),
3467 i.tm.name);
3468 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3469 }
3470
3471 static void
3472 output_insn ()
3473 {
3474 fragS *insn_start_frag;
3475 offsetT insn_start_off;
3476
3477 /* Tie dwarf2 debug info to the address at the start of the insn.
3478 We can't do this after the insn has been output as the current
3479 frag may have been closed off. eg. by frag_var. */
3480 dwarf2_emit_insn (0);
3481
3482 insn_start_frag = frag_now;
3483 insn_start_off = frag_now_fix ();
3484
3485 /* Output jumps. */
3486 if (i.tm.opcode_modifier & Jump)
3487 output_branch ();
3488 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3489 output_jump ();
3490 else if (i.tm.opcode_modifier & JumpInterSegment)
3491 output_interseg_jump ();
3492 else
3493 {
3494 /* Output normal instructions here. */
3495 char *p;
3496 unsigned char *q;
3497 unsigned int prefix;
3498
3499 /* All opcodes on i386 have either 1 or 2 bytes. Merom New
3500 Instructions have 3 bytes. We may use one more higher byte
3501 to specify a prefix the instruction requires. */
3502 if ((i.tm.cpu_flags & CpuMNI) != 0)
3503 {
3504 if (i.tm.base_opcode & 0xff000000)
3505 {
3506 prefix = (i.tm.base_opcode >> 24) & 0xff;
3507 goto check_prefix;
3508 }
3509 }
3510 else if ((i.tm.base_opcode & 0xff0000) != 0)
3511 {
3512 prefix = (i.tm.base_opcode >> 16) & 0xff;
3513 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3514 {
3515 check_prefix:
3516 if (prefix != REPE_PREFIX_OPCODE
3517 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3518 add_prefix (prefix);
3519 }
3520 else
3521 add_prefix (prefix);
3522 }
3523
3524 /* The prefix bytes. */
3525 for (q = i.prefix;
3526 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3527 q++)
3528 {
3529 if (*q)
3530 {
3531 p = frag_more (1);
3532 md_number_to_chars (p, (valueT) *q, 1);
3533 }
3534 }
3535
3536 /* Now the opcode; be careful about word order here! */
3537 if (fits_in_unsigned_byte (i.tm.base_opcode))
3538 {
3539 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3540 }
3541 else
3542 {
3543 if ((i.tm.cpu_flags & CpuMNI) != 0)
3544 {
3545 p = frag_more (3);
3546 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3547 }
3548 else
3549 p = frag_more (2);
3550
3551 /* Put out high byte first: can't use md_number_to_chars! */
3552 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3553 *p = i.tm.base_opcode & 0xff;
3554 }
3555
3556 /* Now the modrm byte and sib byte (if present). */
3557 if (i.tm.opcode_modifier & Modrm)
3558 {
3559 p = frag_more (1);
3560 md_number_to_chars (p,
3561 (valueT) (i.rm.regmem << 0
3562 | i.rm.reg << 3
3563 | i.rm.mode << 6),
3564 1);
3565 /* If i.rm.regmem == ESP (4)
3566 && i.rm.mode != (Register mode)
3567 && not 16 bit
3568 ==> need second modrm byte. */
3569 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3570 && i.rm.mode != 3
3571 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3572 {
3573 p = frag_more (1);
3574 md_number_to_chars (p,
3575 (valueT) (i.sib.base << 0
3576 | i.sib.index << 3
3577 | i.sib.scale << 6),
3578 1);
3579 }
3580 }
3581
3582 if (i.disp_operands)
3583 output_disp (insn_start_frag, insn_start_off);
3584
3585 if (i.imm_operands)
3586 output_imm (insn_start_frag, insn_start_off);
3587 }
3588
3589 #ifdef DEBUG386
3590 if (flag_debug)
3591 {
3592 pi ("" /*line*/, &i);
3593 }
3594 #endif /* DEBUG386 */
3595 }
3596
3597 static void
3598 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
3599 {
3600 char *p;
3601 unsigned int n;
3602
3603 for (n = 0; n < i.operands; n++)
3604 {
3605 if (i.types[n] & Disp)
3606 {
3607 if (i.op[n].disps->X_op == O_constant)
3608 {
3609 int size;
3610 offsetT val;
3611
3612 size = 4;
3613 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3614 {
3615 size = 2;
3616 if (i.types[n] & Disp8)
3617 size = 1;
3618 if (i.types[n] & Disp64)
3619 size = 8;
3620 }
3621 val = offset_in_range (i.op[n].disps->X_add_number,
3622 size);
3623 p = frag_more (size);
3624 md_number_to_chars (p, val, size);
3625 }
3626 else
3627 {
3628 enum bfd_reloc_code_real reloc_type;
3629 int size = 4;
3630 int sign = 0;
3631 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3632
3633 /* The PC relative address is computed relative
3634 to the instruction boundary, so in case immediate
3635 fields follows, we need to adjust the value. */
3636 if (pcrel && i.imm_operands)
3637 {
3638 int imm_size = 4;
3639 unsigned int n1;
3640
3641 for (n1 = 0; n1 < i.operands; n1++)
3642 if (i.types[n1] & Imm)
3643 {
3644 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3645 {
3646 imm_size = 2;
3647 if (i.types[n1] & (Imm8 | Imm8S))
3648 imm_size = 1;
3649 if (i.types[n1] & Imm64)
3650 imm_size = 8;
3651 }
3652 break;
3653 }
3654 /* We should find the immediate. */
3655 if (n1 == i.operands)
3656 abort ();
3657 i.op[n].disps->X_add_number -= imm_size;
3658 }
3659
3660 if (i.types[n] & Disp32S)
3661 sign = 1;
3662
3663 if (i.types[n] & (Disp16 | Disp64))
3664 {
3665 size = 2;
3666 if (i.types[n] & Disp64)
3667 size = 8;
3668 }
3669
3670 p = frag_more (size);
3671 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3672 if (GOT_symbol
3673 && GOT_symbol == i.op[n].disps->X_add_symbol
3674 && (((reloc_type == BFD_RELOC_32
3675 || reloc_type == BFD_RELOC_X86_64_32S
3676 || (reloc_type == BFD_RELOC_64
3677 && object_64bit))
3678 && (i.op[n].disps->X_op == O_symbol
3679 || (i.op[n].disps->X_op == O_add
3680 && ((symbol_get_value_expression
3681 (i.op[n].disps->X_op_symbol)->X_op)
3682 == O_subtract))))
3683 || reloc_type == BFD_RELOC_32_PCREL))
3684 {
3685 offsetT add;
3686
3687 if (insn_start_frag == frag_now)
3688 add = (p - frag_now->fr_literal) - insn_start_off;
3689 else
3690 {
3691 fragS *fr;
3692
3693 add = insn_start_frag->fr_fix - insn_start_off;
3694 for (fr = insn_start_frag->fr_next;
3695 fr && fr != frag_now; fr = fr->fr_next)
3696 add += fr->fr_fix;
3697 add += p - frag_now->fr_literal;
3698 }
3699
3700 if (!object_64bit)
3701 {
3702 reloc_type = BFD_RELOC_386_GOTPC;
3703 i.op[n].imms->X_add_number += add;
3704 }
3705 else if (reloc_type == BFD_RELOC_64)
3706 reloc_type = BFD_RELOC_X86_64_GOTPC64;
3707 else
3708 /* Don't do the adjustment for x86-64, as there
3709 the pcrel addressing is relative to the _next_
3710 insn, and that is taken care of in other code. */
3711 reloc_type = BFD_RELOC_X86_64_GOTPC32;
3712 }
3713 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3714 i.op[n].disps, pcrel, reloc_type);
3715 }
3716 }
3717 }
3718 }
3719
3720 static void
3721 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
3722 {
3723 char *p;
3724 unsigned int n;
3725
3726 for (n = 0; n < i.operands; n++)
3727 {
3728 if (i.types[n] & Imm)
3729 {
3730 if (i.op[n].imms->X_op == O_constant)
3731 {
3732 int size;
3733 offsetT val;
3734
3735 size = 4;
3736 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3737 {
3738 size = 2;
3739 if (i.types[n] & (Imm8 | Imm8S))
3740 size = 1;
3741 else if (i.types[n] & Imm64)
3742 size = 8;
3743 }
3744 val = offset_in_range (i.op[n].imms->X_add_number,
3745 size);
3746 p = frag_more (size);
3747 md_number_to_chars (p, val, size);
3748 }
3749 else
3750 {
3751 /* Not absolute_section.
3752 Need a 32-bit fixup (don't support 8bit
3753 non-absolute imms). Try to support other
3754 sizes ... */
3755 enum bfd_reloc_code_real reloc_type;
3756 int size = 4;
3757 int sign = 0;
3758
3759 if ((i.types[n] & (Imm32S))
3760 && (i.suffix == QWORD_MNEM_SUFFIX
3761 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
3762 sign = 1;
3763 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3764 {
3765 size = 2;
3766 if (i.types[n] & (Imm8 | Imm8S))
3767 size = 1;
3768 if (i.types[n] & Imm64)
3769 size = 8;
3770 }
3771
3772 p = frag_more (size);
3773 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3774
3775 /* This is tough to explain. We end up with this one if we
3776 * have operands that look like
3777 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3778 * obtain the absolute address of the GOT, and it is strongly
3779 * preferable from a performance point of view to avoid using
3780 * a runtime relocation for this. The actual sequence of
3781 * instructions often look something like:
3782 *
3783 * call .L66
3784 * .L66:
3785 * popl %ebx
3786 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3787 *
3788 * The call and pop essentially return the absolute address
3789 * of the label .L66 and store it in %ebx. The linker itself
3790 * will ultimately change the first operand of the addl so
3791 * that %ebx points to the GOT, but to keep things simple, the
3792 * .o file must have this operand set so that it generates not
3793 * the absolute address of .L66, but the absolute address of
3794 * itself. This allows the linker itself simply treat a GOTPC
3795 * relocation as asking for a pcrel offset to the GOT to be
3796 * added in, and the addend of the relocation is stored in the
3797 * operand field for the instruction itself.
3798 *
3799 * Our job here is to fix the operand so that it would add
3800 * the correct offset so that %ebx would point to itself. The
3801 * thing that is tricky is that .-.L66 will point to the
3802 * beginning of the instruction, so we need to further modify
3803 * the operand so that it will point to itself. There are
3804 * other cases where you have something like:
3805 *
3806 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3807 *
3808 * and here no correction would be required. Internally in
3809 * the assembler we treat operands of this form as not being
3810 * pcrel since the '.' is explicitly mentioned, and I wonder
3811 * whether it would simplify matters to do it this way. Who
3812 * knows. In earlier versions of the PIC patches, the
3813 * pcrel_adjust field was used to store the correction, but
3814 * since the expression is not pcrel, I felt it would be
3815 * confusing to do it this way. */
3816
3817 if ((reloc_type == BFD_RELOC_32
3818 || reloc_type == BFD_RELOC_X86_64_32S
3819 || reloc_type == BFD_RELOC_64)
3820 && GOT_symbol
3821 && GOT_symbol == i.op[n].imms->X_add_symbol
3822 && (i.op[n].imms->X_op == O_symbol
3823 || (i.op[n].imms->X_op == O_add
3824 && ((symbol_get_value_expression
3825 (i.op[n].imms->X_op_symbol)->X_op)
3826 == O_subtract))))
3827 {
3828 offsetT add;
3829
3830 if (insn_start_frag == frag_now)
3831 add = (p - frag_now->fr_literal) - insn_start_off;
3832 else
3833 {
3834 fragS *fr;
3835
3836 add = insn_start_frag->fr_fix - insn_start_off;
3837 for (fr = insn_start_frag->fr_next;
3838 fr && fr != frag_now; fr = fr->fr_next)
3839 add += fr->fr_fix;
3840 add += p - frag_now->fr_literal;
3841 }
3842
3843 if (!object_64bit)
3844 reloc_type = BFD_RELOC_386_GOTPC;
3845 else if (size == 4)
3846 reloc_type = BFD_RELOC_X86_64_GOTPC32;
3847 else if (size == 8)
3848 reloc_type = BFD_RELOC_X86_64_GOTPC64;
3849 i.op[n].imms->X_add_number += add;
3850 }
3851 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3852 i.op[n].imms, 0, reloc_type);
3853 }
3854 }
3855 }
3856 }
3857 \f
3858 /* x86_cons_fix_new is called via the expression parsing code when a
3859 reloc is needed. We use this hook to get the correct .got reloc. */
3860 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
3861 static int cons_sign = -1;
3862
3863 void
3864 x86_cons_fix_new (fragS *frag,
3865 unsigned int off,
3866 unsigned int len,
3867 expressionS *exp)
3868 {
3869 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
3870
3871 got_reloc = NO_RELOC;
3872
3873 #ifdef TE_PE
3874 if (exp->X_op == O_secrel)
3875 {
3876 exp->X_op = O_symbol;
3877 r = BFD_RELOC_32_SECREL;
3878 }
3879 #endif
3880
3881 fix_new_exp (frag, off, len, exp, 0, r);
3882 }
3883
3884 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
3885 # define lex_got(reloc, adjust, types) NULL
3886 #else
3887 /* Parse operands of the form
3888 <symbol>@GOTOFF+<nnn>
3889 and similar .plt or .got references.
3890
3891 If we find one, set up the correct relocation in RELOC and copy the
3892 input string, minus the `@GOTOFF' into a malloc'd buffer for
3893 parsing by the calling routine. Return this buffer, and if ADJUST
3894 is non-null set it to the length of the string we removed from the
3895 input line. Otherwise return NULL. */
3896 static char *
3897 lex_got (enum bfd_reloc_code_real *reloc,
3898 int *adjust,
3899 unsigned int *types)
3900 {
3901 /* Some of the relocations depend on the size of what field is to
3902 be relocated. But in our callers i386_immediate and i386_displacement
3903 we don't yet know the operand size (this will be set by insn
3904 matching). Hence we record the word32 relocation here,
3905 and adjust the reloc according to the real size in reloc(). */
3906 static const struct {
3907 const char *str;
3908 const enum bfd_reloc_code_real rel[2];
3909 const unsigned int types64;
3910 } gotrel[] = {
3911 { "PLTOFF", { 0, BFD_RELOC_X86_64_PLTOFF64 }, Imm64 },
3912 { "PLT", { BFD_RELOC_386_PLT32, BFD_RELOC_X86_64_PLT32 }, Imm32|Imm32S|Disp32 },
3913 { "GOTPLT", { 0, BFD_RELOC_X86_64_GOTPLT64 }, Imm64|Disp64 },
3914 { "GOTOFF", { BFD_RELOC_386_GOTOFF, BFD_RELOC_X86_64_GOTOFF64 }, Imm64|Disp64 },
3915 { "GOTPCREL", { 0, BFD_RELOC_X86_64_GOTPCREL }, Imm32|Imm32S|Disp32 },
3916 { "TLSGD", { BFD_RELOC_386_TLS_GD, BFD_RELOC_X86_64_TLSGD }, Imm32|Imm32S|Disp32 },
3917 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0 }, 0 },
3918 { "TLSLD", { 0, BFD_RELOC_X86_64_TLSLD }, Imm32|Imm32S|Disp32 },
3919 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, BFD_RELOC_X86_64_GOTTPOFF }, Imm32|Imm32S|Disp32 },
3920 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, BFD_RELOC_X86_64_TPOFF32 }, Imm32|Imm32S|Imm64|Disp32|Disp64 },
3921 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0 }, 0 },
3922 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, BFD_RELOC_X86_64_DTPOFF32 }, Imm32|Imm32S|Imm64|Disp32|Disp64 },
3923 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0 }, 0 },
3924 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0 }, 0 },
3925 { "GOT", { BFD_RELOC_386_GOT32, BFD_RELOC_X86_64_GOT32 }, Imm32|Imm32S|Disp32|Imm64 },
3926 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC, BFD_RELOC_X86_64_GOTPC32_TLSDESC }, Imm32|Imm32S|Disp32 },
3927 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL, BFD_RELOC_X86_64_TLSDESC_CALL }, Imm32|Imm32S|Disp32 }
3928 };
3929 char *cp;
3930 unsigned int j;
3931
3932 if (!IS_ELF)
3933 return NULL;
3934
3935 for (cp = input_line_pointer; *cp != '@'; cp++)
3936 if (is_end_of_line[(unsigned char) *cp])
3937 return NULL;
3938
3939 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3940 {
3941 int len;
3942
3943 len = strlen (gotrel[j].str);
3944 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3945 {
3946 if (gotrel[j].rel[object_64bit] != 0)
3947 {
3948 int first, second;
3949 char *tmpbuf, *past_reloc;
3950
3951 *reloc = gotrel[j].rel[object_64bit];
3952 if (adjust)
3953 *adjust = len;
3954
3955 if (types)
3956 {
3957 if (flag_code != CODE_64BIT)
3958 *types = Imm32|Disp32;
3959 else
3960 *types = gotrel[j].types64;
3961 }
3962
3963 if (GOT_symbol == NULL)
3964 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3965
3966 /* Replace the relocation token with ' ', so that
3967 errors like foo@GOTOFF1 will be detected. */
3968
3969 /* The length of the first part of our input line. */
3970 first = cp - input_line_pointer;
3971
3972 /* The second part goes from after the reloc token until
3973 (and including) an end_of_line char. Don't use strlen
3974 here as the end_of_line char may not be a NUL. */
3975 past_reloc = cp + 1 + len;
3976 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3977 ;
3978 second = cp - past_reloc;
3979
3980 /* Allocate and copy string. The trailing NUL shouldn't
3981 be necessary, but be safe. */
3982 tmpbuf = xmalloc (first + second + 2);
3983 memcpy (tmpbuf, input_line_pointer, first);
3984 tmpbuf[first] = ' ';
3985 memcpy (tmpbuf + first + 1, past_reloc, second);
3986 tmpbuf[first + second + 1] = '\0';
3987 return tmpbuf;
3988 }
3989
3990 as_bad (_("@%s reloc is not supported with %d-bit output format"),
3991 gotrel[j].str, 1 << (5 + object_64bit));
3992 return NULL;
3993 }
3994 }
3995
3996 /* Might be a symbol version string. Don't as_bad here. */
3997 return NULL;
3998 }
3999
4000 void
4001 x86_cons (exp, size)
4002 expressionS *exp;
4003 int size;
4004 {
4005 if (size == 4 || (object_64bit && size == 8))
4006 {
4007 /* Handle @GOTOFF and the like in an expression. */
4008 char *save;
4009 char *gotfree_input_line;
4010 int adjust;
4011
4012 save = input_line_pointer;
4013 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4014 if (gotfree_input_line)
4015 input_line_pointer = gotfree_input_line;
4016
4017 expression (exp);
4018
4019 if (gotfree_input_line)
4020 {
4021 /* expression () has merrily parsed up to the end of line,
4022 or a comma - in the wrong buffer. Transfer how far
4023 input_line_pointer has moved to the right buffer. */
4024 input_line_pointer = (save
4025 + (input_line_pointer - gotfree_input_line)
4026 + adjust);
4027 free (gotfree_input_line);
4028 }
4029 }
4030 else
4031 expression (exp);
4032 }
4033 #endif
4034
4035 static void signed_cons (int size)
4036 {
4037 if (flag_code == CODE_64BIT)
4038 cons_sign = 1;
4039 cons (size);
4040 cons_sign = -1;
4041 }
4042
4043 #ifdef TE_PE
4044 static void
4045 pe_directive_secrel (dummy)
4046 int dummy ATTRIBUTE_UNUSED;
4047 {
4048 expressionS exp;
4049
4050 do
4051 {
4052 expression (&exp);
4053 if (exp.X_op == O_symbol)
4054 exp.X_op = O_secrel;
4055
4056 emit_expr (&exp, 4);
4057 }
4058 while (*input_line_pointer++ == ',');
4059
4060 input_line_pointer--;
4061 demand_empty_rest_of_line ();
4062 }
4063 #endif
4064
4065 static int i386_immediate PARAMS ((char *));
4066
4067 static int
4068 i386_immediate (imm_start)
4069 char *imm_start;
4070 {
4071 char *save_input_line_pointer;
4072 char *gotfree_input_line;
4073 segT exp_seg = 0;
4074 expressionS *exp;
4075 unsigned int types = ~0U;
4076
4077 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4078 {
4079 as_bad (_("only 1 or 2 immediate operands are allowed"));
4080 return 0;
4081 }
4082
4083 exp = &im_expressions[i.imm_operands++];
4084 i.op[this_operand].imms = exp;
4085
4086 if (is_space_char (*imm_start))
4087 ++imm_start;
4088
4089 save_input_line_pointer = input_line_pointer;
4090 input_line_pointer = imm_start;
4091
4092 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4093 if (gotfree_input_line)
4094 input_line_pointer = gotfree_input_line;
4095
4096 exp_seg = expression (exp);
4097
4098 SKIP_WHITESPACE ();
4099 if (*input_line_pointer)
4100 as_bad (_("junk `%s' after expression"), input_line_pointer);
4101
4102 input_line_pointer = save_input_line_pointer;
4103 if (gotfree_input_line)
4104 free (gotfree_input_line);
4105
4106 if (exp->X_op == O_absent || exp->X_op == O_big)
4107 {
4108 /* Missing or bad expr becomes absolute 0. */
4109 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4110 imm_start);
4111 exp->X_op = O_constant;
4112 exp->X_add_number = 0;
4113 exp->X_add_symbol = (symbolS *) 0;
4114 exp->X_op_symbol = (symbolS *) 0;
4115 }
4116 else if (exp->X_op == O_constant)
4117 {
4118 /* Size it properly later. */
4119 i.types[this_operand] |= Imm64;
4120 /* If BFD64, sign extend val. */
4121 if (!use_rela_relocations)
4122 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4123 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4124 }
4125 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4126 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4127 && exp_seg != absolute_section
4128 && exp_seg != text_section
4129 && exp_seg != data_section
4130 && exp_seg != bss_section
4131 && exp_seg != undefined_section
4132 && !bfd_is_com_section (exp_seg))
4133 {
4134 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4135 return 0;
4136 }
4137 #endif
4138 else if (!intel_syntax && exp->X_op == O_register)
4139 {
4140 as_bad (_("illegal immediate register operand %s"), imm_start);
4141 return 0;
4142 }
4143 else
4144 {
4145 /* This is an address. The size of the address will be
4146 determined later, depending on destination register,
4147 suffix, or the default for the section. */
4148 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4149 i.types[this_operand] &= types;
4150 }
4151
4152 return 1;
4153 }
4154
4155 static char *i386_scale PARAMS ((char *));
4156
4157 static char *
4158 i386_scale (scale)
4159 char *scale;
4160 {
4161 offsetT val;
4162 char *save = input_line_pointer;
4163
4164 input_line_pointer = scale;
4165 val = get_absolute_expression ();
4166
4167 switch (val)
4168 {
4169 case 1:
4170 i.log2_scale_factor = 0;
4171 break;
4172 case 2:
4173 i.log2_scale_factor = 1;
4174 break;
4175 case 4:
4176 i.log2_scale_factor = 2;
4177 break;
4178 case 8:
4179 i.log2_scale_factor = 3;
4180 break;
4181 default:
4182 {
4183 char sep = *input_line_pointer;
4184
4185 *input_line_pointer = '\0';
4186 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4187 scale);
4188 *input_line_pointer = sep;
4189 input_line_pointer = save;
4190 return NULL;
4191 }
4192 }
4193 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4194 {
4195 as_warn (_("scale factor of %d without an index register"),
4196 1 << i.log2_scale_factor);
4197 #if SCALE1_WHEN_NO_INDEX
4198 i.log2_scale_factor = 0;
4199 #endif
4200 }
4201 scale = input_line_pointer;
4202 input_line_pointer = save;
4203 return scale;
4204 }
4205
4206 static int i386_displacement PARAMS ((char *, char *));
4207
4208 static int
4209 i386_displacement (disp_start, disp_end)
4210 char *disp_start;
4211 char *disp_end;
4212 {
4213 expressionS *exp;
4214 segT exp_seg = 0;
4215 char *save_input_line_pointer;
4216 char *gotfree_input_line;
4217 int bigdisp, override;
4218 unsigned int types = Disp;
4219
4220 if ((i.types[this_operand] & JumpAbsolute)
4221 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4222 {
4223 bigdisp = Disp32;
4224 override = (i.prefix[ADDR_PREFIX] != 0);
4225 }
4226 else
4227 {
4228 /* For PC-relative branches, the width of the displacement
4229 is dependent upon data size, not address size. */
4230 bigdisp = 0;
4231 override = (i.prefix[DATA_PREFIX] != 0);
4232 }
4233 if (flag_code == CODE_64BIT)
4234 {
4235 if (!bigdisp)
4236 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4237 ? Disp16
4238 : Disp32S | Disp32);
4239 else if (!override)
4240 bigdisp = Disp64 | Disp32S | Disp32;
4241 }
4242 else
4243 {
4244 if (!bigdisp)
4245 {
4246 if (!override)
4247 override = (i.suffix == (flag_code != CODE_16BIT
4248 ? WORD_MNEM_SUFFIX
4249 : LONG_MNEM_SUFFIX));
4250 bigdisp = Disp32;
4251 }
4252 if ((flag_code == CODE_16BIT) ^ override)
4253 bigdisp = Disp16;
4254 }
4255 i.types[this_operand] |= bigdisp;
4256
4257 exp = &disp_expressions[i.disp_operands];
4258 i.op[this_operand].disps = exp;
4259 i.disp_operands++;
4260 save_input_line_pointer = input_line_pointer;
4261 input_line_pointer = disp_start;
4262 END_STRING_AND_SAVE (disp_end);
4263
4264 #ifndef GCC_ASM_O_HACK
4265 #define GCC_ASM_O_HACK 0
4266 #endif
4267 #if GCC_ASM_O_HACK
4268 END_STRING_AND_SAVE (disp_end + 1);
4269 if ((i.types[this_operand] & BaseIndex) != 0
4270 && displacement_string_end[-1] == '+')
4271 {
4272 /* This hack is to avoid a warning when using the "o"
4273 constraint within gcc asm statements.
4274 For instance:
4275
4276 #define _set_tssldt_desc(n,addr,limit,type) \
4277 __asm__ __volatile__ ( \
4278 "movw %w2,%0\n\t" \
4279 "movw %w1,2+%0\n\t" \
4280 "rorl $16,%1\n\t" \
4281 "movb %b1,4+%0\n\t" \
4282 "movb %4,5+%0\n\t" \
4283 "movb $0,6+%0\n\t" \
4284 "movb %h1,7+%0\n\t" \
4285 "rorl $16,%1" \
4286 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4287
4288 This works great except that the output assembler ends
4289 up looking a bit weird if it turns out that there is
4290 no offset. You end up producing code that looks like:
4291
4292 #APP
4293 movw $235,(%eax)
4294 movw %dx,2+(%eax)
4295 rorl $16,%edx
4296 movb %dl,4+(%eax)
4297 movb $137,5+(%eax)
4298 movb $0,6+(%eax)
4299 movb %dh,7+(%eax)
4300 rorl $16,%edx
4301 #NO_APP
4302
4303 So here we provide the missing zero. */
4304
4305 *displacement_string_end = '0';
4306 }
4307 #endif
4308 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4309 if (gotfree_input_line)
4310 input_line_pointer = gotfree_input_line;
4311
4312 exp_seg = expression (exp);
4313
4314 SKIP_WHITESPACE ();
4315 if (*input_line_pointer)
4316 as_bad (_("junk `%s' after expression"), input_line_pointer);
4317 #if GCC_ASM_O_HACK
4318 RESTORE_END_STRING (disp_end + 1);
4319 #endif
4320 RESTORE_END_STRING (disp_end);
4321 input_line_pointer = save_input_line_pointer;
4322 if (gotfree_input_line)
4323 free (gotfree_input_line);
4324
4325 /* We do this to make sure that the section symbol is in
4326 the symbol table. We will ultimately change the relocation
4327 to be relative to the beginning of the section. */
4328 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4329 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4330 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4331 {
4332 if (exp->X_op != O_symbol)
4333 {
4334 as_bad (_("bad expression used with @%s"),
4335 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4336 ? "GOTPCREL"
4337 : "GOTOFF"));
4338 return 0;
4339 }
4340
4341 if (S_IS_LOCAL (exp->X_add_symbol)
4342 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4343 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4344 exp->X_op = O_subtract;
4345 exp->X_op_symbol = GOT_symbol;
4346 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4347 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4348 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4349 i.reloc[this_operand] = BFD_RELOC_64;
4350 else
4351 i.reloc[this_operand] = BFD_RELOC_32;
4352 }
4353
4354 if (exp->X_op == O_absent || exp->X_op == O_big)
4355 {
4356 /* Missing or bad expr becomes absolute 0. */
4357 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4358 disp_start);
4359 exp->X_op = O_constant;
4360 exp->X_add_number = 0;
4361 exp->X_add_symbol = (symbolS *) 0;
4362 exp->X_op_symbol = (symbolS *) 0;
4363 }
4364
4365 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4366 if (exp->X_op != O_constant
4367 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4368 && exp_seg != absolute_section
4369 && exp_seg != text_section
4370 && exp_seg != data_section
4371 && exp_seg != bss_section
4372 && exp_seg != undefined_section
4373 && !bfd_is_com_section (exp_seg))
4374 {
4375 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4376 return 0;
4377 }
4378 #endif
4379
4380 if (!(i.types[this_operand] & ~Disp))
4381 i.types[this_operand] &= types;
4382
4383 return 1;
4384 }
4385
4386 static int i386_index_check PARAMS ((const char *));
4387
4388 /* Make sure the memory operand we've been dealt is valid.
4389 Return 1 on success, 0 on a failure. */
4390
4391 static int
4392 i386_index_check (operand_string)
4393 const char *operand_string;
4394 {
4395 int ok;
4396 #if INFER_ADDR_PREFIX
4397 int fudged = 0;
4398
4399 tryprefix:
4400 #endif
4401 ok = 1;
4402 if ((current_templates->start->cpu_flags & CpuSVME)
4403 && current_templates->end[-1].operand_types[0] == AnyMem)
4404 {
4405 /* Memory operands of SVME insns are special in that they only allow
4406 rAX as their memory address and ignore any segment override. */
4407 unsigned RegXX;
4408
4409 /* SKINIT is even more restrictive: it always requires EAX. */
4410 if (strcmp (current_templates->start->name, "skinit") == 0)
4411 RegXX = Reg32;
4412 else if (flag_code == CODE_64BIT)
4413 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4414 else
4415 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4416 ? Reg16
4417 : Reg32);
4418 if (!i.base_reg
4419 || !(i.base_reg->reg_type & Acc)
4420 || !(i.base_reg->reg_type & RegXX)
4421 || i.index_reg
4422 || (i.types[0] & Disp))
4423 ok = 0;
4424 }
4425 else if (flag_code == CODE_64BIT)
4426 {
4427 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4428
4429 if ((i.base_reg
4430 && ((i.base_reg->reg_type & RegXX) == 0)
4431 && (i.base_reg->reg_type != BaseIndex
4432 || i.index_reg))
4433 || (i.index_reg
4434 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4435 != (RegXX | BaseIndex))))
4436 ok = 0;
4437 }
4438 else
4439 {
4440 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4441 {
4442 /* 16bit checks. */
4443 if ((i.base_reg
4444 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4445 != (Reg16 | BaseIndex)))
4446 || (i.index_reg
4447 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4448 != (Reg16 | BaseIndex))
4449 || !(i.base_reg
4450 && i.base_reg->reg_num < 6
4451 && i.index_reg->reg_num >= 6
4452 && i.log2_scale_factor == 0))))
4453 ok = 0;
4454 }
4455 else
4456 {
4457 /* 32bit checks. */
4458 if ((i.base_reg
4459 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4460 || (i.index_reg
4461 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4462 != (Reg32 | BaseIndex))))
4463 ok = 0;
4464 }
4465 }
4466 if (!ok)
4467 {
4468 #if INFER_ADDR_PREFIX
4469 if (i.prefix[ADDR_PREFIX] == 0)
4470 {
4471 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4472 i.prefixes += 1;
4473 /* Change the size of any displacement too. At most one of
4474 Disp16 or Disp32 is set.
4475 FIXME. There doesn't seem to be any real need for separate
4476 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4477 Removing them would probably clean up the code quite a lot. */
4478 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
4479 i.types[this_operand] ^= (Disp16 | Disp32);
4480 fudged = 1;
4481 goto tryprefix;
4482 }
4483 if (fudged)
4484 as_bad (_("`%s' is not a valid base/index expression"),
4485 operand_string);
4486 else
4487 #endif
4488 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4489 operand_string,
4490 flag_code_names[flag_code]);
4491 }
4492 return ok;
4493 }
4494
4495 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4496 on error. */
4497
4498 static int
4499 i386_operand (operand_string)
4500 char *operand_string;
4501 {
4502 const reg_entry *r;
4503 char *end_op;
4504 char *op_string = operand_string;
4505
4506 if (is_space_char (*op_string))
4507 ++op_string;
4508
4509 /* We check for an absolute prefix (differentiating,
4510 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4511 if (*op_string == ABSOLUTE_PREFIX)
4512 {
4513 ++op_string;
4514 if (is_space_char (*op_string))
4515 ++op_string;
4516 i.types[this_operand] |= JumpAbsolute;
4517 }
4518
4519 /* Check if operand is a register. */
4520 if ((r = parse_register (op_string, &end_op)) != NULL)
4521 {
4522 /* Check for a segment override by searching for ':' after a
4523 segment register. */
4524 op_string = end_op;
4525 if (is_space_char (*op_string))
4526 ++op_string;
4527 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4528 {
4529 switch (r->reg_num)
4530 {
4531 case 0:
4532 i.seg[i.mem_operands] = &es;
4533 break;
4534 case 1:
4535 i.seg[i.mem_operands] = &cs;
4536 break;
4537 case 2:
4538 i.seg[i.mem_operands] = &ss;
4539 break;
4540 case 3:
4541 i.seg[i.mem_operands] = &ds;
4542 break;
4543 case 4:
4544 i.seg[i.mem_operands] = &fs;
4545 break;
4546 case 5:
4547 i.seg[i.mem_operands] = &gs;
4548 break;
4549 }
4550
4551 /* Skip the ':' and whitespace. */
4552 ++op_string;
4553 if (is_space_char (*op_string))
4554 ++op_string;
4555
4556 if (!is_digit_char (*op_string)
4557 && !is_identifier_char (*op_string)
4558 && *op_string != '('
4559 && *op_string != ABSOLUTE_PREFIX)
4560 {
4561 as_bad (_("bad memory operand `%s'"), op_string);
4562 return 0;
4563 }
4564 /* Handle case of %es:*foo. */
4565 if (*op_string == ABSOLUTE_PREFIX)
4566 {
4567 ++op_string;
4568 if (is_space_char (*op_string))
4569 ++op_string;
4570 i.types[this_operand] |= JumpAbsolute;
4571 }
4572 goto do_memory_reference;
4573 }
4574 if (*op_string)
4575 {
4576 as_bad (_("junk `%s' after register"), op_string);
4577 return 0;
4578 }
4579 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4580 i.op[this_operand].regs = r;
4581 i.reg_operands++;
4582 }
4583 else if (*op_string == REGISTER_PREFIX)
4584 {
4585 as_bad (_("bad register name `%s'"), op_string);
4586 return 0;
4587 }
4588 else if (*op_string == IMMEDIATE_PREFIX)
4589 {
4590 ++op_string;
4591 if (i.types[this_operand] & JumpAbsolute)
4592 {
4593 as_bad (_("immediate operand illegal with absolute jump"));
4594 return 0;
4595 }
4596 if (!i386_immediate (op_string))
4597 return 0;
4598 }
4599 else if (is_digit_char (*op_string)
4600 || is_identifier_char (*op_string)
4601 || *op_string == '(')
4602 {
4603 /* This is a memory reference of some sort. */
4604 char *base_string;
4605
4606 /* Start and end of displacement string expression (if found). */
4607 char *displacement_string_start;
4608 char *displacement_string_end;
4609
4610 do_memory_reference:
4611 if ((i.mem_operands == 1
4612 && (current_templates->start->opcode_modifier & IsString) == 0)
4613 || i.mem_operands == 2)
4614 {
4615 as_bad (_("too many memory references for `%s'"),
4616 current_templates->start->name);
4617 return 0;
4618 }
4619
4620 /* Check for base index form. We detect the base index form by
4621 looking for an ')' at the end of the operand, searching
4622 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4623 after the '('. */
4624 base_string = op_string + strlen (op_string);
4625
4626 --base_string;
4627 if (is_space_char (*base_string))
4628 --base_string;
4629
4630 /* If we only have a displacement, set-up for it to be parsed later. */
4631 displacement_string_start = op_string;
4632 displacement_string_end = base_string + 1;
4633
4634 if (*base_string == ')')
4635 {
4636 char *temp_string;
4637 unsigned int parens_balanced = 1;
4638 /* We've already checked that the number of left & right ()'s are
4639 equal, so this loop will not be infinite. */
4640 do
4641 {
4642 base_string--;
4643 if (*base_string == ')')
4644 parens_balanced++;
4645 if (*base_string == '(')
4646 parens_balanced--;
4647 }
4648 while (parens_balanced);
4649
4650 temp_string = base_string;
4651
4652 /* Skip past '(' and whitespace. */
4653 ++base_string;
4654 if (is_space_char (*base_string))
4655 ++base_string;
4656
4657 if (*base_string == ','
4658 || ((i.base_reg = parse_register (base_string, &end_op)) != NULL))
4659 {
4660 displacement_string_end = temp_string;
4661
4662 i.types[this_operand] |= BaseIndex;
4663
4664 if (i.base_reg)
4665 {
4666 base_string = end_op;
4667 if (is_space_char (*base_string))
4668 ++base_string;
4669 }
4670
4671 /* There may be an index reg or scale factor here. */
4672 if (*base_string == ',')
4673 {
4674 ++base_string;
4675 if (is_space_char (*base_string))
4676 ++base_string;
4677
4678 if ((i.index_reg = parse_register (base_string, &end_op)) != NULL)
4679 {
4680 base_string = end_op;
4681 if (is_space_char (*base_string))
4682 ++base_string;
4683 if (*base_string == ',')
4684 {
4685 ++base_string;
4686 if (is_space_char (*base_string))
4687 ++base_string;
4688 }
4689 else if (*base_string != ')')
4690 {
4691 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4692 operand_string);
4693 return 0;
4694 }
4695 }
4696 else if (*base_string == REGISTER_PREFIX)
4697 {
4698 as_bad (_("bad register name `%s'"), base_string);
4699 return 0;
4700 }
4701
4702 /* Check for scale factor. */
4703 if (*base_string != ')')
4704 {
4705 char *end_scale = i386_scale (base_string);
4706
4707 if (!end_scale)
4708 return 0;
4709
4710 base_string = end_scale;
4711 if (is_space_char (*base_string))
4712 ++base_string;
4713 if (*base_string != ')')
4714 {
4715 as_bad (_("expecting `)' after scale factor in `%s'"),
4716 operand_string);
4717 return 0;
4718 }
4719 }
4720 else if (!i.index_reg)
4721 {
4722 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4723 *base_string);
4724 return 0;
4725 }
4726 }
4727 else if (*base_string != ')')
4728 {
4729 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4730 operand_string);
4731 return 0;
4732 }
4733 }
4734 else if (*base_string == REGISTER_PREFIX)
4735 {
4736 as_bad (_("bad register name `%s'"), base_string);
4737 return 0;
4738 }
4739 }
4740
4741 /* If there's an expression beginning the operand, parse it,
4742 assuming displacement_string_start and
4743 displacement_string_end are meaningful. */
4744 if (displacement_string_start != displacement_string_end)
4745 {
4746 if (!i386_displacement (displacement_string_start,
4747 displacement_string_end))
4748 return 0;
4749 }
4750
4751 /* Special case for (%dx) while doing input/output op. */
4752 if (i.base_reg
4753 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4754 && i.index_reg == 0
4755 && i.log2_scale_factor == 0
4756 && i.seg[i.mem_operands] == 0
4757 && (i.types[this_operand] & Disp) == 0)
4758 {
4759 i.types[this_operand] = InOutPortReg;
4760 return 1;
4761 }
4762
4763 if (i386_index_check (operand_string) == 0)
4764 return 0;
4765 i.mem_operands++;
4766 }
4767 else
4768 {
4769 /* It's not a memory operand; argh! */
4770 as_bad (_("invalid char %s beginning operand %d `%s'"),
4771 output_invalid (*op_string),
4772 this_operand + 1,
4773 op_string);
4774 return 0;
4775 }
4776 return 1; /* Normal return. */
4777 }
4778 \f
4779 /* md_estimate_size_before_relax()
4780
4781 Called just before relax() for rs_machine_dependent frags. The x86
4782 assembler uses these frags to handle variable size jump
4783 instructions.
4784
4785 Any symbol that is now undefined will not become defined.
4786 Return the correct fr_subtype in the frag.
4787 Return the initial "guess for variable size of frag" to caller.
4788 The guess is actually the growth beyond the fixed part. Whatever
4789 we do to grow the fixed or variable part contributes to our
4790 returned value. */
4791
4792 int
4793 md_estimate_size_before_relax (fragP, segment)
4794 fragS *fragP;
4795 segT segment;
4796 {
4797 /* We've already got fragP->fr_subtype right; all we have to do is
4798 check for un-relaxable symbols. On an ELF system, we can't relax
4799 an externally visible symbol, because it may be overridden by a
4800 shared library. */
4801 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4802 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4803 || (IS_ELF
4804 && (S_IS_EXTERNAL (fragP->fr_symbol)
4805 || S_IS_WEAK (fragP->fr_symbol)))
4806 #endif
4807 )
4808 {
4809 /* Symbol is undefined in this segment, or we need to keep a
4810 reloc so that weak symbols can be overridden. */
4811 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4812 enum bfd_reloc_code_real reloc_type;
4813 unsigned char *opcode;
4814 int old_fr_fix;
4815
4816 if (fragP->fr_var != NO_RELOC)
4817 reloc_type = fragP->fr_var;
4818 else if (size == 2)
4819 reloc_type = BFD_RELOC_16_PCREL;
4820 else
4821 reloc_type = BFD_RELOC_32_PCREL;
4822
4823 old_fr_fix = fragP->fr_fix;
4824 opcode = (unsigned char *) fragP->fr_opcode;
4825
4826 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4827 {
4828 case UNCOND_JUMP:
4829 /* Make jmp (0xeb) a (d)word displacement jump. */
4830 opcode[0] = 0xe9;
4831 fragP->fr_fix += size;
4832 fix_new (fragP, old_fr_fix, size,
4833 fragP->fr_symbol,
4834 fragP->fr_offset, 1,
4835 reloc_type);
4836 break;
4837
4838 case COND_JUMP86:
4839 if (size == 2
4840 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4841 {
4842 /* Negate the condition, and branch past an
4843 unconditional jump. */
4844 opcode[0] ^= 1;
4845 opcode[1] = 3;
4846 /* Insert an unconditional jump. */
4847 opcode[2] = 0xe9;
4848 /* We added two extra opcode bytes, and have a two byte
4849 offset. */
4850 fragP->fr_fix += 2 + 2;
4851 fix_new (fragP, old_fr_fix + 2, 2,
4852 fragP->fr_symbol,
4853 fragP->fr_offset, 1,
4854 reloc_type);
4855 break;
4856 }
4857 /* Fall through. */
4858
4859 case COND_JUMP:
4860 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4861 {
4862 fixS *fixP;
4863
4864 fragP->fr_fix += 1;
4865 fixP = fix_new (fragP, old_fr_fix, 1,
4866 fragP->fr_symbol,
4867 fragP->fr_offset, 1,
4868 BFD_RELOC_8_PCREL);
4869 fixP->fx_signed = 1;
4870 break;
4871 }
4872
4873 /* This changes the byte-displacement jump 0x7N
4874 to the (d)word-displacement jump 0x0f,0x8N. */
4875 opcode[1] = opcode[0] + 0x10;
4876 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4877 /* We've added an opcode byte. */
4878 fragP->fr_fix += 1 + size;
4879 fix_new (fragP, old_fr_fix + 1, size,
4880 fragP->fr_symbol,
4881 fragP->fr_offset, 1,
4882 reloc_type);
4883 break;
4884
4885 default:
4886 BAD_CASE (fragP->fr_subtype);
4887 break;
4888 }
4889 frag_wane (fragP);
4890 return fragP->fr_fix - old_fr_fix;
4891 }
4892
4893 /* Guess size depending on current relax state. Initially the relax
4894 state will correspond to a short jump and we return 1, because
4895 the variable part of the frag (the branch offset) is one byte
4896 long. However, we can relax a section more than once and in that
4897 case we must either set fr_subtype back to the unrelaxed state,
4898 or return the value for the appropriate branch. */
4899 return md_relax_table[fragP->fr_subtype].rlx_length;
4900 }
4901
4902 /* Called after relax() is finished.
4903
4904 In: Address of frag.
4905 fr_type == rs_machine_dependent.
4906 fr_subtype is what the address relaxed to.
4907
4908 Out: Any fixSs and constants are set up.
4909 Caller will turn frag into a ".space 0". */
4910
4911 void
4912 md_convert_frag (abfd, sec, fragP)
4913 bfd *abfd ATTRIBUTE_UNUSED;
4914 segT sec ATTRIBUTE_UNUSED;
4915 fragS *fragP;
4916 {
4917 unsigned char *opcode;
4918 unsigned char *where_to_put_displacement = NULL;
4919 offsetT target_address;
4920 offsetT opcode_address;
4921 unsigned int extension = 0;
4922 offsetT displacement_from_opcode_start;
4923
4924 opcode = (unsigned char *) fragP->fr_opcode;
4925
4926 /* Address we want to reach in file space. */
4927 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4928
4929 /* Address opcode resides at in file space. */
4930 opcode_address = fragP->fr_address + fragP->fr_fix;
4931
4932 /* Displacement from opcode start to fill into instruction. */
4933 displacement_from_opcode_start = target_address - opcode_address;
4934
4935 if ((fragP->fr_subtype & BIG) == 0)
4936 {
4937 /* Don't have to change opcode. */
4938 extension = 1; /* 1 opcode + 1 displacement */
4939 where_to_put_displacement = &opcode[1];
4940 }
4941 else
4942 {
4943 if (no_cond_jump_promotion
4944 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4945 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4946
4947 switch (fragP->fr_subtype)
4948 {
4949 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4950 extension = 4; /* 1 opcode + 4 displacement */
4951 opcode[0] = 0xe9;
4952 where_to_put_displacement = &opcode[1];
4953 break;
4954
4955 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4956 extension = 2; /* 1 opcode + 2 displacement */
4957 opcode[0] = 0xe9;
4958 where_to_put_displacement = &opcode[1];
4959 break;
4960
4961 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4962 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4963 extension = 5; /* 2 opcode + 4 displacement */
4964 opcode[1] = opcode[0] + 0x10;
4965 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4966 where_to_put_displacement = &opcode[2];
4967 break;
4968
4969 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4970 extension = 3; /* 2 opcode + 2 displacement */
4971 opcode[1] = opcode[0] + 0x10;
4972 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4973 where_to_put_displacement = &opcode[2];
4974 break;
4975
4976 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4977 extension = 4;
4978 opcode[0] ^= 1;
4979 opcode[1] = 3;
4980 opcode[2] = 0xe9;
4981 where_to_put_displacement = &opcode[3];
4982 break;
4983
4984 default:
4985 BAD_CASE (fragP->fr_subtype);
4986 break;
4987 }
4988 }
4989
4990 /* If size if less then four we are sure that the operand fits,
4991 but if it's 4, then it could be that the displacement is larger
4992 then -/+ 2GB. */
4993 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
4994 && object_64bit
4995 && ((addressT) (displacement_from_opcode_start - extension
4996 + ((addressT) 1 << 31))
4997 > (((addressT) 2 << 31) - 1)))
4998 {
4999 as_bad_where (fragP->fr_file, fragP->fr_line,
5000 _("jump target out of range"));
5001 /* Make us emit 0. */
5002 displacement_from_opcode_start = extension;
5003 }
5004 /* Now put displacement after opcode. */
5005 md_number_to_chars ((char *) where_to_put_displacement,
5006 (valueT) (displacement_from_opcode_start - extension),
5007 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5008 fragP->fr_fix += extension;
5009 }
5010 \f
5011 /* Size of byte displacement jmp. */
5012 int md_short_jump_size = 2;
5013
5014 /* Size of dword displacement jmp. */
5015 int md_long_jump_size = 5;
5016
5017 void
5018 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5019 char *ptr;
5020 addressT from_addr, to_addr;
5021 fragS *frag ATTRIBUTE_UNUSED;
5022 symbolS *to_symbol ATTRIBUTE_UNUSED;
5023 {
5024 offsetT offset;
5025
5026 offset = to_addr - (from_addr + 2);
5027 /* Opcode for byte-disp jump. */
5028 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5029 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5030 }
5031
5032 void
5033 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5034 char *ptr;
5035 addressT from_addr, to_addr;
5036 fragS *frag ATTRIBUTE_UNUSED;
5037 symbolS *to_symbol ATTRIBUTE_UNUSED;
5038 {
5039 offsetT offset;
5040
5041 offset = to_addr - (from_addr + 5);
5042 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5043 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5044 }
5045 \f
5046 /* Apply a fixup (fixS) to segment data, once it has been determined
5047 by our caller that we have all the info we need to fix it up.
5048
5049 On the 386, immediates, displacements, and data pointers are all in
5050 the same (little-endian) format, so we don't need to care about which
5051 we are handling. */
5052
5053 void
5054 md_apply_fix (fixP, valP, seg)
5055 /* The fix we're to put in. */
5056 fixS *fixP;
5057 /* Pointer to the value of the bits. */
5058 valueT *valP;
5059 /* Segment fix is from. */
5060 segT seg ATTRIBUTE_UNUSED;
5061 {
5062 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5063 valueT value = *valP;
5064
5065 #if !defined (TE_Mach)
5066 if (fixP->fx_pcrel)
5067 {
5068 switch (fixP->fx_r_type)
5069 {
5070 default:
5071 break;
5072
5073 case BFD_RELOC_64:
5074 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5075 break;
5076 case BFD_RELOC_32:
5077 case BFD_RELOC_X86_64_32S:
5078 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5079 break;
5080 case BFD_RELOC_16:
5081 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5082 break;
5083 case BFD_RELOC_8:
5084 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5085 break;
5086 }
5087 }
5088
5089 if (fixP->fx_addsy != NULL
5090 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5091 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5092 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5093 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5094 && !use_rela_relocations)
5095 {
5096 /* This is a hack. There should be a better way to handle this.
5097 This covers for the fact that bfd_install_relocation will
5098 subtract the current location (for partial_inplace, PC relative
5099 relocations); see more below. */
5100 #ifndef OBJ_AOUT
5101 if (IS_ELF
5102 #ifdef TE_PE
5103 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5104 #endif
5105 )
5106 value += fixP->fx_where + fixP->fx_frag->fr_address;
5107 #endif
5108 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5109 if (IS_ELF)
5110 {
5111 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5112
5113 if ((sym_seg == seg
5114 || (symbol_section_p (fixP->fx_addsy)
5115 && sym_seg != absolute_section))
5116 && !generic_force_reloc (fixP))
5117 {
5118 /* Yes, we add the values in twice. This is because
5119 bfd_install_relocation subtracts them out again. I think
5120 bfd_install_relocation is broken, but I don't dare change
5121 it. FIXME. */
5122 value += fixP->fx_where + fixP->fx_frag->fr_address;
5123 }
5124 }
5125 #endif
5126 #if defined (OBJ_COFF) && defined (TE_PE)
5127 /* For some reason, the PE format does not store a
5128 section address offset for a PC relative symbol. */
5129 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5130 || S_IS_WEAK (fixP->fx_addsy))
5131 value += md_pcrel_from (fixP);
5132 #endif
5133 }
5134
5135 /* Fix a few things - the dynamic linker expects certain values here,
5136 and we must not disappoint it. */
5137 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5138 if (IS_ELF && fixP->fx_addsy)
5139 switch (fixP->fx_r_type)
5140 {
5141 case BFD_RELOC_386_PLT32:
5142 case BFD_RELOC_X86_64_PLT32:
5143 /* Make the jump instruction point to the address of the operand. At
5144 runtime we merely add the offset to the actual PLT entry. */
5145 value = -4;
5146 break;
5147
5148 case BFD_RELOC_386_TLS_GD:
5149 case BFD_RELOC_386_TLS_LDM:
5150 case BFD_RELOC_386_TLS_IE_32:
5151 case BFD_RELOC_386_TLS_IE:
5152 case BFD_RELOC_386_TLS_GOTIE:
5153 case BFD_RELOC_386_TLS_GOTDESC:
5154 case BFD_RELOC_X86_64_TLSGD:
5155 case BFD_RELOC_X86_64_TLSLD:
5156 case BFD_RELOC_X86_64_GOTTPOFF:
5157 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5158 value = 0; /* Fully resolved at runtime. No addend. */
5159 /* Fallthrough */
5160 case BFD_RELOC_386_TLS_LE:
5161 case BFD_RELOC_386_TLS_LDO_32:
5162 case BFD_RELOC_386_TLS_LE_32:
5163 case BFD_RELOC_X86_64_DTPOFF32:
5164 case BFD_RELOC_X86_64_DTPOFF64:
5165 case BFD_RELOC_X86_64_TPOFF32:
5166 case BFD_RELOC_X86_64_TPOFF64:
5167 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5168 break;
5169
5170 case BFD_RELOC_386_TLS_DESC_CALL:
5171 case BFD_RELOC_X86_64_TLSDESC_CALL:
5172 value = 0; /* Fully resolved at runtime. No addend. */
5173 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5174 fixP->fx_done = 0;
5175 return;
5176
5177 case BFD_RELOC_386_GOT32:
5178 case BFD_RELOC_X86_64_GOT32:
5179 value = 0; /* Fully resolved at runtime. No addend. */
5180 break;
5181
5182 case BFD_RELOC_VTABLE_INHERIT:
5183 case BFD_RELOC_VTABLE_ENTRY:
5184 fixP->fx_done = 0;
5185 return;
5186
5187 default:
5188 break;
5189 }
5190 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5191 *valP = value;
5192 #endif /* !defined (TE_Mach) */
5193
5194 /* Are we finished with this relocation now? */
5195 if (fixP->fx_addsy == NULL)
5196 fixP->fx_done = 1;
5197 else if (use_rela_relocations)
5198 {
5199 fixP->fx_no_overflow = 1;
5200 /* Remember value for tc_gen_reloc. */
5201 fixP->fx_addnumber = value;
5202 value = 0;
5203 }
5204
5205 md_number_to_chars (p, value, fixP->fx_size);
5206 }
5207 \f
5208 #define MAX_LITTLENUMS 6
5209
5210 /* Turn the string pointed to by litP into a floating point constant
5211 of type TYPE, and emit the appropriate bytes. The number of
5212 LITTLENUMS emitted is stored in *SIZEP. An error message is
5213 returned, or NULL on OK. */
5214
5215 char *
5216 md_atof (type, litP, sizeP)
5217 int type;
5218 char *litP;
5219 int *sizeP;
5220 {
5221 int prec;
5222 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5223 LITTLENUM_TYPE *wordP;
5224 char *t;
5225
5226 switch (type)
5227 {
5228 case 'f':
5229 case 'F':
5230 prec = 2;
5231 break;
5232
5233 case 'd':
5234 case 'D':
5235 prec = 4;
5236 break;
5237
5238 case 'x':
5239 case 'X':
5240 prec = 5;
5241 break;
5242
5243 default:
5244 *sizeP = 0;
5245 return _("Bad call to md_atof ()");
5246 }
5247 t = atof_ieee (input_line_pointer, type, words);
5248 if (t)
5249 input_line_pointer = t;
5250
5251 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5252 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5253 the bigendian 386. */
5254 for (wordP = words + prec - 1; prec--;)
5255 {
5256 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5257 litP += sizeof (LITTLENUM_TYPE);
5258 }
5259 return 0;
5260 }
5261 \f
5262 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5263
5264 static char *
5265 output_invalid (c)
5266 int c;
5267 {
5268 if (ISPRINT (c))
5269 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5270 "'%c'", c);
5271 else
5272 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5273 "(0x%x)", (unsigned char) c);
5274 return output_invalid_buf;
5275 }
5276
5277 /* REG_STRING starts *before* REGISTER_PREFIX. */
5278
5279 static const reg_entry *
5280 parse_real_register (char *reg_string, char **end_op)
5281 {
5282 char *s = reg_string;
5283 char *p;
5284 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5285 const reg_entry *r;
5286
5287 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5288 if (*s == REGISTER_PREFIX)
5289 ++s;
5290
5291 if (is_space_char (*s))
5292 ++s;
5293
5294 p = reg_name_given;
5295 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5296 {
5297 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5298 return (const reg_entry *) NULL;
5299 s++;
5300 }
5301
5302 /* For naked regs, make sure that we are not dealing with an identifier.
5303 This prevents confusing an identifier like `eax_var' with register
5304 `eax'. */
5305 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5306 return (const reg_entry *) NULL;
5307
5308 *end_op = s;
5309
5310 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5311
5312 /* Handle floating point regs, allowing spaces in the (i) part. */
5313 if (r == i386_regtab /* %st is first entry of table */)
5314 {
5315 if (is_space_char (*s))
5316 ++s;
5317 if (*s == '(')
5318 {
5319 ++s;
5320 if (is_space_char (*s))
5321 ++s;
5322 if (*s >= '0' && *s <= '7')
5323 {
5324 r = &i386_float_regtab[*s - '0'];
5325 ++s;
5326 if (is_space_char (*s))
5327 ++s;
5328 if (*s == ')')
5329 {
5330 *end_op = s + 1;
5331 return r;
5332 }
5333 }
5334 /* We have "%st(" then garbage. */
5335 return (const reg_entry *) NULL;
5336 }
5337 }
5338
5339 if (r != NULL
5340 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5341 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5342 && flag_code != CODE_64BIT)
5343 return (const reg_entry *) NULL;
5344
5345 return r;
5346 }
5347
5348 /* REG_STRING starts *before* REGISTER_PREFIX. */
5349
5350 static const reg_entry *
5351 parse_register (char *reg_string, char **end_op)
5352 {
5353 const reg_entry *r;
5354
5355 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5356 r = parse_real_register (reg_string, end_op);
5357 else
5358 r = NULL;
5359 if (!r)
5360 {
5361 char *save = input_line_pointer;
5362 char c;
5363 symbolS *symbolP;
5364
5365 input_line_pointer = reg_string;
5366 c = get_symbol_end ();
5367 symbolP = symbol_find (reg_string);
5368 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5369 {
5370 const expressionS *e = symbol_get_value_expression (symbolP);
5371
5372 know (e->X_op == O_register);
5373 know (e->X_add_number >= 0 && (valueT) e->X_add_number < ARRAY_SIZE (i386_regtab));
5374 r = i386_regtab + e->X_add_number;
5375 *end_op = input_line_pointer;
5376 }
5377 *input_line_pointer = c;
5378 input_line_pointer = save;
5379 }
5380 return r;
5381 }
5382
5383 int
5384 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5385 {
5386 const reg_entry *r;
5387 char *end = input_line_pointer;
5388
5389 *end = *nextcharP;
5390 r = parse_register (name, &input_line_pointer);
5391 if (r && end <= input_line_pointer)
5392 {
5393 *nextcharP = *input_line_pointer;
5394 *input_line_pointer = 0;
5395 e->X_op = O_register;
5396 e->X_add_number = r - i386_regtab;
5397 return 1;
5398 }
5399 input_line_pointer = end;
5400 *end = 0;
5401 return 0;
5402 }
5403
5404 void
5405 md_operand (expressionS *e)
5406 {
5407 if (*input_line_pointer == REGISTER_PREFIX)
5408 {
5409 char *end;
5410 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5411
5412 if (r)
5413 {
5414 e->X_op = O_register;
5415 e->X_add_number = r - i386_regtab;
5416 input_line_pointer = end;
5417 }
5418 }
5419 }
5420
5421 \f
5422 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5423 const char *md_shortopts = "kVQ:sqn";
5424 #else
5425 const char *md_shortopts = "qn";
5426 #endif
5427
5428 #define OPTION_32 (OPTION_MD_BASE + 0)
5429 #define OPTION_64 (OPTION_MD_BASE + 1)
5430 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5431
5432 struct option md_longopts[] = {
5433 {"32", no_argument, NULL, OPTION_32},
5434 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5435 {"64", no_argument, NULL, OPTION_64},
5436 #endif
5437 {"divide", no_argument, NULL, OPTION_DIVIDE},
5438 {NULL, no_argument, NULL, 0}
5439 };
5440 size_t md_longopts_size = sizeof (md_longopts);
5441
5442 int
5443 md_parse_option (c, arg)
5444 int c;
5445 char *arg ATTRIBUTE_UNUSED;
5446 {
5447 switch (c)
5448 {
5449 case 'n':
5450 optimize_align_code = 0;
5451 break;
5452
5453 case 'q':
5454 quiet_warnings = 1;
5455 break;
5456
5457 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5458 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5459 should be emitted or not. FIXME: Not implemented. */
5460 case 'Q':
5461 break;
5462
5463 /* -V: SVR4 argument to print version ID. */
5464 case 'V':
5465 print_version_id ();
5466 break;
5467
5468 /* -k: Ignore for FreeBSD compatibility. */
5469 case 'k':
5470 break;
5471
5472 case 's':
5473 /* -s: On i386 Solaris, this tells the native assembler to use
5474 .stab instead of .stab.excl. We always use .stab anyhow. */
5475 break;
5476
5477 case OPTION_64:
5478 {
5479 const char **list, **l;
5480
5481 list = bfd_target_list ();
5482 for (l = list; *l != NULL; l++)
5483 if (strcmp (*l, "elf64-x86-64") == 0)
5484 {
5485 default_arch = "x86_64";
5486 break;
5487 }
5488 if (*l == NULL)
5489 as_fatal (_("No compiled in support for x86_64"));
5490 free (list);
5491 }
5492 break;
5493 #endif
5494
5495 case OPTION_32:
5496 default_arch = "i386";
5497 break;
5498
5499 case OPTION_DIVIDE:
5500 #ifdef SVR4_COMMENT_CHARS
5501 {
5502 char *n, *t;
5503 const char *s;
5504
5505 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
5506 t = n;
5507 for (s = i386_comment_chars; *s != '\0'; s++)
5508 if (*s != '/')
5509 *t++ = *s;
5510 *t = '\0';
5511 i386_comment_chars = n;
5512 }
5513 #endif
5514 break;
5515
5516 default:
5517 return 0;
5518 }
5519 return 1;
5520 }
5521
5522 void
5523 md_show_usage (stream)
5524 FILE *stream;
5525 {
5526 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5527 fprintf (stream, _("\
5528 -Q ignored\n\
5529 -V print assembler version number\n\
5530 -k ignored\n"));
5531 #endif
5532 fprintf (stream, _("\
5533 -n Do not optimize code alignment\n\
5534 -q quieten some warnings\n"));
5535 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5536 fprintf (stream, _("\
5537 -s ignored\n"));
5538 #endif
5539 #ifdef SVR4_COMMENT_CHARS
5540 fprintf (stream, _("\
5541 --divide do not treat `/' as a comment character\n"));
5542 #else
5543 fprintf (stream, _("\
5544 --divide ignored\n"));
5545 #endif
5546 }
5547
5548 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5549 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5550
5551 /* Pick the target format to use. */
5552
5553 const char *
5554 i386_target_format ()
5555 {
5556 if (!strcmp (default_arch, "x86_64"))
5557 set_code_flag (CODE_64BIT);
5558 else if (!strcmp (default_arch, "i386"))
5559 set_code_flag (CODE_32BIT);
5560 else
5561 as_fatal (_("Unknown architecture"));
5562 switch (OUTPUT_FLAVOR)
5563 {
5564 #ifdef OBJ_MAYBE_AOUT
5565 case bfd_target_aout_flavour:
5566 return AOUT_TARGET_FORMAT;
5567 #endif
5568 #ifdef OBJ_MAYBE_COFF
5569 case bfd_target_coff_flavour:
5570 return "coff-i386";
5571 #endif
5572 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5573 case bfd_target_elf_flavour:
5574 {
5575 if (flag_code == CODE_64BIT)
5576 {
5577 object_64bit = 1;
5578 use_rela_relocations = 1;
5579 }
5580 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5581 }
5582 #endif
5583 default:
5584 abort ();
5585 return NULL;
5586 }
5587 }
5588
5589 #endif /* OBJ_MAYBE_ more than one */
5590
5591 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5592 void i386_elf_emit_arch_note ()
5593 {
5594 if (IS_ELF && cpu_arch_name != NULL)
5595 {
5596 char *p;
5597 asection *seg = now_seg;
5598 subsegT subseg = now_subseg;
5599 Elf_Internal_Note i_note;
5600 Elf_External_Note e_note;
5601 asection *note_secp;
5602 int len;
5603
5604 /* Create the .note section. */
5605 note_secp = subseg_new (".note", 0);
5606 bfd_set_section_flags (stdoutput,
5607 note_secp,
5608 SEC_HAS_CONTENTS | SEC_READONLY);
5609
5610 /* Process the arch string. */
5611 len = strlen (cpu_arch_name);
5612
5613 i_note.namesz = len + 1;
5614 i_note.descsz = 0;
5615 i_note.type = NT_ARCH;
5616 p = frag_more (sizeof (e_note.namesz));
5617 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5618 p = frag_more (sizeof (e_note.descsz));
5619 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5620 p = frag_more (sizeof (e_note.type));
5621 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5622 p = frag_more (len + 1);
5623 strcpy (p, cpu_arch_name);
5624
5625 frag_align (2, 0, 0);
5626
5627 subseg_set (seg, subseg);
5628 }
5629 }
5630 #endif
5631 \f
5632 symbolS *
5633 md_undefined_symbol (name)
5634 char *name;
5635 {
5636 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5637 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5638 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5639 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5640 {
5641 if (!GOT_symbol)
5642 {
5643 if (symbol_find (name))
5644 as_bad (_("GOT already in symbol table"));
5645 GOT_symbol = symbol_new (name, undefined_section,
5646 (valueT) 0, &zero_address_frag);
5647 };
5648 return GOT_symbol;
5649 }
5650 return 0;
5651 }
5652
5653 /* Round up a section size to the appropriate boundary. */
5654
5655 valueT
5656 md_section_align (segment, size)
5657 segT segment ATTRIBUTE_UNUSED;
5658 valueT size;
5659 {
5660 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5661 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5662 {
5663 /* For a.out, force the section size to be aligned. If we don't do
5664 this, BFD will align it for us, but it will not write out the
5665 final bytes of the section. This may be a bug in BFD, but it is
5666 easier to fix it here since that is how the other a.out targets
5667 work. */
5668 int align;
5669
5670 align = bfd_get_section_alignment (stdoutput, segment);
5671 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5672 }
5673 #endif
5674
5675 return size;
5676 }
5677
5678 /* On the i386, PC-relative offsets are relative to the start of the
5679 next instruction. That is, the address of the offset, plus its
5680 size, since the offset is always the last part of the insn. */
5681
5682 long
5683 md_pcrel_from (fixP)
5684 fixS *fixP;
5685 {
5686 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5687 }
5688
5689 #ifndef I386COFF
5690
5691 static void
5692 s_bss (ignore)
5693 int ignore ATTRIBUTE_UNUSED;
5694 {
5695 int temp;
5696
5697 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5698 if (IS_ELF)
5699 obj_elf_section_change_hook ();
5700 #endif
5701 temp = get_absolute_expression ();
5702 subseg_set (bss_section, (subsegT) temp);
5703 demand_empty_rest_of_line ();
5704 }
5705
5706 #endif
5707
5708 void
5709 i386_validate_fix (fixp)
5710 fixS *fixp;
5711 {
5712 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5713 {
5714 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5715 {
5716 if (!object_64bit)
5717 abort ();
5718 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5719 }
5720 else
5721 {
5722 if (!object_64bit)
5723 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5724 else
5725 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
5726 }
5727 fixp->fx_subsy = 0;
5728 }
5729 }
5730
5731 arelent *
5732 tc_gen_reloc (section, fixp)
5733 asection *section ATTRIBUTE_UNUSED;
5734 fixS *fixp;
5735 {
5736 arelent *rel;
5737 bfd_reloc_code_real_type code;
5738
5739 switch (fixp->fx_r_type)
5740 {
5741 case BFD_RELOC_X86_64_PLT32:
5742 case BFD_RELOC_X86_64_GOT32:
5743 case BFD_RELOC_X86_64_GOTPCREL:
5744 case BFD_RELOC_386_PLT32:
5745 case BFD_RELOC_386_GOT32:
5746 case BFD_RELOC_386_GOTOFF:
5747 case BFD_RELOC_386_GOTPC:
5748 case BFD_RELOC_386_TLS_GD:
5749 case BFD_RELOC_386_TLS_LDM:
5750 case BFD_RELOC_386_TLS_LDO_32:
5751 case BFD_RELOC_386_TLS_IE_32:
5752 case BFD_RELOC_386_TLS_IE:
5753 case BFD_RELOC_386_TLS_GOTIE:
5754 case BFD_RELOC_386_TLS_LE_32:
5755 case BFD_RELOC_386_TLS_LE:
5756 case BFD_RELOC_386_TLS_GOTDESC:
5757 case BFD_RELOC_386_TLS_DESC_CALL:
5758 case BFD_RELOC_X86_64_TLSGD:
5759 case BFD_RELOC_X86_64_TLSLD:
5760 case BFD_RELOC_X86_64_DTPOFF32:
5761 case BFD_RELOC_X86_64_DTPOFF64:
5762 case BFD_RELOC_X86_64_GOTTPOFF:
5763 case BFD_RELOC_X86_64_TPOFF32:
5764 case BFD_RELOC_X86_64_TPOFF64:
5765 case BFD_RELOC_X86_64_GOTOFF64:
5766 case BFD_RELOC_X86_64_GOTPC32:
5767 case BFD_RELOC_X86_64_GOT64:
5768 case BFD_RELOC_X86_64_GOTPCREL64:
5769 case BFD_RELOC_X86_64_GOTPC64:
5770 case BFD_RELOC_X86_64_GOTPLT64:
5771 case BFD_RELOC_X86_64_PLTOFF64:
5772 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5773 case BFD_RELOC_X86_64_TLSDESC_CALL:
5774 case BFD_RELOC_RVA:
5775 case BFD_RELOC_VTABLE_ENTRY:
5776 case BFD_RELOC_VTABLE_INHERIT:
5777 #ifdef TE_PE
5778 case BFD_RELOC_32_SECREL:
5779 #endif
5780 code = fixp->fx_r_type;
5781 break;
5782 case BFD_RELOC_X86_64_32S:
5783 if (!fixp->fx_pcrel)
5784 {
5785 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
5786 code = fixp->fx_r_type;
5787 break;
5788 }
5789 default:
5790 if (fixp->fx_pcrel)
5791 {
5792 switch (fixp->fx_size)
5793 {
5794 default:
5795 as_bad_where (fixp->fx_file, fixp->fx_line,
5796 _("can not do %d byte pc-relative relocation"),
5797 fixp->fx_size);
5798 code = BFD_RELOC_32_PCREL;
5799 break;
5800 case 1: code = BFD_RELOC_8_PCREL; break;
5801 case 2: code = BFD_RELOC_16_PCREL; break;
5802 case 4: code = BFD_RELOC_32_PCREL; break;
5803 #ifdef BFD64
5804 case 8: code = BFD_RELOC_64_PCREL; break;
5805 #endif
5806 }
5807 }
5808 else
5809 {
5810 switch (fixp->fx_size)
5811 {
5812 default:
5813 as_bad_where (fixp->fx_file, fixp->fx_line,
5814 _("can not do %d byte relocation"),
5815 fixp->fx_size);
5816 code = BFD_RELOC_32;
5817 break;
5818 case 1: code = BFD_RELOC_8; break;
5819 case 2: code = BFD_RELOC_16; break;
5820 case 4: code = BFD_RELOC_32; break;
5821 #ifdef BFD64
5822 case 8: code = BFD_RELOC_64; break;
5823 #endif
5824 }
5825 }
5826 break;
5827 }
5828
5829 if ((code == BFD_RELOC_32
5830 || code == BFD_RELOC_32_PCREL
5831 || code == BFD_RELOC_X86_64_32S)
5832 && GOT_symbol
5833 && fixp->fx_addsy == GOT_symbol)
5834 {
5835 if (!object_64bit)
5836 code = BFD_RELOC_386_GOTPC;
5837 else
5838 code = BFD_RELOC_X86_64_GOTPC32;
5839 }
5840 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
5841 && GOT_symbol
5842 && fixp->fx_addsy == GOT_symbol)
5843 {
5844 code = BFD_RELOC_X86_64_GOTPC64;
5845 }
5846
5847 rel = (arelent *) xmalloc (sizeof (arelent));
5848 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5849 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5850
5851 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5852
5853 if (!use_rela_relocations)
5854 {
5855 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5856 vtable entry to be used in the relocation's section offset. */
5857 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5858 rel->address = fixp->fx_offset;
5859
5860 rel->addend = 0;
5861 }
5862 /* Use the rela in 64bit mode. */
5863 else
5864 {
5865 if (!fixp->fx_pcrel)
5866 rel->addend = fixp->fx_offset;
5867 else
5868 switch (code)
5869 {
5870 case BFD_RELOC_X86_64_PLT32:
5871 case BFD_RELOC_X86_64_GOT32:
5872 case BFD_RELOC_X86_64_GOTPCREL:
5873 case BFD_RELOC_X86_64_TLSGD:
5874 case BFD_RELOC_X86_64_TLSLD:
5875 case BFD_RELOC_X86_64_GOTTPOFF:
5876 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5877 case BFD_RELOC_X86_64_TLSDESC_CALL:
5878 rel->addend = fixp->fx_offset - fixp->fx_size;
5879 break;
5880 default:
5881 rel->addend = (section->vma
5882 - fixp->fx_size
5883 + fixp->fx_addnumber
5884 + md_pcrel_from (fixp));
5885 break;
5886 }
5887 }
5888
5889 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5890 if (rel->howto == NULL)
5891 {
5892 as_bad_where (fixp->fx_file, fixp->fx_line,
5893 _("cannot represent relocation type %s"),
5894 bfd_get_reloc_code_name (code));
5895 /* Set howto to a garbage value so that we can keep going. */
5896 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5897 assert (rel->howto != NULL);
5898 }
5899
5900 return rel;
5901 }
5902
5903 \f
5904 /* Parse operands using Intel syntax. This implements a recursive descent
5905 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5906 Programmer's Guide.
5907
5908 FIXME: We do not recognize the full operand grammar defined in the MASM
5909 documentation. In particular, all the structure/union and
5910 high-level macro operands are missing.
5911
5912 Uppercase words are terminals, lower case words are non-terminals.
5913 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5914 bars '|' denote choices. Most grammar productions are implemented in
5915 functions called 'intel_<production>'.
5916
5917 Initial production is 'expr'.
5918
5919 addOp + | -
5920
5921 alpha [a-zA-Z]
5922
5923 binOp & | AND | \| | OR | ^ | XOR
5924
5925 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5926
5927 constant digits [[ radixOverride ]]
5928
5929 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
5930
5931 digits decdigit
5932 | digits decdigit
5933 | digits hexdigit
5934
5935 decdigit [0-9]
5936
5937 e04 e04 addOp e05
5938 | e05
5939
5940 e05 e05 binOp e06
5941 | e06
5942
5943 e06 e06 mulOp e09
5944 | e09
5945
5946 e09 OFFSET e10
5947 | SHORT e10
5948 | + e10
5949 | - e10
5950 | ~ e10
5951 | NOT e10
5952 | e09 PTR e10
5953 | e09 : e10
5954 | e10
5955
5956 e10 e10 [ expr ]
5957 | e11
5958
5959 e11 ( expr )
5960 | [ expr ]
5961 | constant
5962 | dataType
5963 | id
5964 | $
5965 | register
5966
5967 => expr expr cmpOp e04
5968 | e04
5969
5970 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5971 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5972
5973 hexdigit a | b | c | d | e | f
5974 | A | B | C | D | E | F
5975
5976 id alpha
5977 | id alpha
5978 | id decdigit
5979
5980 mulOp * | / | % | MOD | << | SHL | >> | SHR
5981
5982 quote " | '
5983
5984 register specialRegister
5985 | gpRegister
5986 | byteRegister
5987
5988 segmentRegister CS | DS | ES | FS | GS | SS
5989
5990 specialRegister CR0 | CR2 | CR3 | CR4
5991 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5992 | TR3 | TR4 | TR5 | TR6 | TR7
5993
5994 We simplify the grammar in obvious places (e.g., register parsing is
5995 done by calling parse_register) and eliminate immediate left recursion
5996 to implement a recursive-descent parser.
5997
5998 expr e04 expr'
5999
6000 expr' cmpOp e04 expr'
6001 | Empty
6002
6003 e04 e05 e04'
6004
6005 e04' addOp e05 e04'
6006 | Empty
6007
6008 e05 e06 e05'
6009
6010 e05' binOp e06 e05'
6011 | Empty
6012
6013 e06 e09 e06'
6014
6015 e06' mulOp e09 e06'
6016 | Empty
6017
6018 e09 OFFSET e10 e09'
6019 | SHORT e10'
6020 | + e10'
6021 | - e10'
6022 | ~ e10'
6023 | NOT e10'
6024 | e10 e09'
6025
6026 e09' PTR e10 e09'
6027 | : e10 e09'
6028 | Empty
6029
6030 e10 e11 e10'
6031
6032 e10' [ expr ] e10'
6033 | Empty
6034
6035 e11 ( expr )
6036 | [ expr ]
6037 | BYTE
6038 | WORD
6039 | DWORD
6040 | FWORD
6041 | QWORD
6042 | TBYTE
6043 | OWORD
6044 | XMMWORD
6045 | .
6046 | $
6047 | register
6048 | id
6049 | constant */
6050
6051 /* Parsing structure for the intel syntax parser. Used to implement the
6052 semantic actions for the operand grammar. */
6053 struct intel_parser_s
6054 {
6055 char *op_string; /* The string being parsed. */
6056 int got_a_float; /* Whether the operand is a float. */
6057 int op_modifier; /* Operand modifier. */
6058 int is_mem; /* 1 if operand is memory reference. */
6059 int in_offset; /* >=1 if parsing operand of offset. */
6060 int in_bracket; /* >=1 if parsing operand in brackets. */
6061 const reg_entry *reg; /* Last register reference found. */
6062 char *disp; /* Displacement string being built. */
6063 char *next_operand; /* Resume point when splitting operands. */
6064 };
6065
6066 static struct intel_parser_s intel_parser;
6067
6068 /* Token structure for parsing intel syntax. */
6069 struct intel_token
6070 {
6071 int code; /* Token code. */
6072 const reg_entry *reg; /* Register entry for register tokens. */
6073 char *str; /* String representation. */
6074 };
6075
6076 static struct intel_token cur_token, prev_token;
6077
6078 /* Token codes for the intel parser. Since T_SHORT is already used
6079 by COFF, undefine it first to prevent a warning. */
6080 #define T_NIL -1
6081 #define T_CONST 1
6082 #define T_REG 2
6083 #define T_BYTE 3
6084 #define T_WORD 4
6085 #define T_DWORD 5
6086 #define T_FWORD 6
6087 #define T_QWORD 7
6088 #define T_TBYTE 8
6089 #define T_XMMWORD 9
6090 #undef T_SHORT
6091 #define T_SHORT 10
6092 #define T_OFFSET 11
6093 #define T_PTR 12
6094 #define T_ID 13
6095 #define T_SHL 14
6096 #define T_SHR 15
6097
6098 /* Prototypes for intel parser functions. */
6099 static int intel_match_token PARAMS ((int code));
6100 static void intel_get_token PARAMS ((void));
6101 static void intel_putback_token PARAMS ((void));
6102 static int intel_expr PARAMS ((void));
6103 static int intel_e04 PARAMS ((void));
6104 static int intel_e05 PARAMS ((void));
6105 static int intel_e06 PARAMS ((void));
6106 static int intel_e09 PARAMS ((void));
6107 static int intel_bracket_expr PARAMS ((void));
6108 static int intel_e10 PARAMS ((void));
6109 static int intel_e11 PARAMS ((void));
6110
6111 static int
6112 i386_intel_operand (operand_string, got_a_float)
6113 char *operand_string;
6114 int got_a_float;
6115 {
6116 int ret;
6117 char *p;
6118
6119 p = intel_parser.op_string = xstrdup (operand_string);
6120 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6121
6122 for (;;)
6123 {
6124 /* Initialize token holders. */
6125 cur_token.code = prev_token.code = T_NIL;
6126 cur_token.reg = prev_token.reg = NULL;
6127 cur_token.str = prev_token.str = NULL;
6128
6129 /* Initialize parser structure. */
6130 intel_parser.got_a_float = got_a_float;
6131 intel_parser.op_modifier = 0;
6132 intel_parser.is_mem = 0;
6133 intel_parser.in_offset = 0;
6134 intel_parser.in_bracket = 0;
6135 intel_parser.reg = NULL;
6136 intel_parser.disp[0] = '\0';
6137 intel_parser.next_operand = NULL;
6138
6139 /* Read the first token and start the parser. */
6140 intel_get_token ();
6141 ret = intel_expr ();
6142
6143 if (!ret)
6144 break;
6145
6146 if (cur_token.code != T_NIL)
6147 {
6148 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6149 current_templates->start->name, cur_token.str);
6150 ret = 0;
6151 }
6152 /* If we found a memory reference, hand it over to i386_displacement
6153 to fill in the rest of the operand fields. */
6154 else if (intel_parser.is_mem)
6155 {
6156 if ((i.mem_operands == 1
6157 && (current_templates->start->opcode_modifier & IsString) == 0)
6158 || i.mem_operands == 2)
6159 {
6160 as_bad (_("too many memory references for '%s'"),
6161 current_templates->start->name);
6162 ret = 0;
6163 }
6164 else
6165 {
6166 char *s = intel_parser.disp;
6167 i.mem_operands++;
6168
6169 if (!quiet_warnings && intel_parser.is_mem < 0)
6170 /* See the comments in intel_bracket_expr. */
6171 as_warn (_("Treating `%s' as memory reference"), operand_string);
6172
6173 /* Add the displacement expression. */
6174 if (*s != '\0')
6175 ret = i386_displacement (s, s + strlen (s));
6176 if (ret)
6177 {
6178 /* Swap base and index in 16-bit memory operands like
6179 [si+bx]. Since i386_index_check is also used in AT&T
6180 mode we have to do that here. */
6181 if (i.base_reg
6182 && i.index_reg
6183 && (i.base_reg->reg_type & Reg16)
6184 && (i.index_reg->reg_type & Reg16)
6185 && i.base_reg->reg_num >= 6
6186 && i.index_reg->reg_num < 6)
6187 {
6188 const reg_entry *base = i.index_reg;
6189
6190 i.index_reg = i.base_reg;
6191 i.base_reg = base;
6192 }
6193 ret = i386_index_check (operand_string);
6194 }
6195 }
6196 }
6197
6198 /* Constant and OFFSET expressions are handled by i386_immediate. */
6199 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6200 || intel_parser.reg == NULL)
6201 ret = i386_immediate (intel_parser.disp);
6202
6203 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6204 ret = 0;
6205 if (!ret || !intel_parser.next_operand)
6206 break;
6207 intel_parser.op_string = intel_parser.next_operand;
6208 this_operand = i.operands++;
6209 }
6210
6211 free (p);
6212 free (intel_parser.disp);
6213
6214 return ret;
6215 }
6216
6217 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6218
6219 /* expr e04 expr'
6220
6221 expr' cmpOp e04 expr'
6222 | Empty */
6223 static int
6224 intel_expr ()
6225 {
6226 /* XXX Implement the comparison operators. */
6227 return intel_e04 ();
6228 }
6229
6230 /* e04 e05 e04'
6231
6232 e04' addOp e05 e04'
6233 | Empty */
6234 static int
6235 intel_e04 ()
6236 {
6237 int nregs = -1;
6238
6239 for (;;)
6240 {
6241 if (!intel_e05())
6242 return 0;
6243
6244 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6245 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6246
6247 if (cur_token.code == '+')
6248 nregs = -1;
6249 else if (cur_token.code == '-')
6250 nregs = NUM_ADDRESS_REGS;
6251 else
6252 return 1;
6253
6254 strcat (intel_parser.disp, cur_token.str);
6255 intel_match_token (cur_token.code);
6256 }
6257 }
6258
6259 /* e05 e06 e05'
6260
6261 e05' binOp e06 e05'
6262 | Empty */
6263 static int
6264 intel_e05 ()
6265 {
6266 int nregs = ~NUM_ADDRESS_REGS;
6267
6268 for (;;)
6269 {
6270 if (!intel_e06())
6271 return 0;
6272
6273 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
6274 {
6275 char str[2];
6276
6277 str[0] = cur_token.code;
6278 str[1] = 0;
6279 strcat (intel_parser.disp, str);
6280 }
6281 else
6282 break;
6283
6284 intel_match_token (cur_token.code);
6285
6286 if (nregs < 0)
6287 nregs = ~nregs;
6288 }
6289 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6290 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6291 return 1;
6292 }
6293
6294 /* e06 e09 e06'
6295
6296 e06' mulOp e09 e06'
6297 | Empty */
6298 static int
6299 intel_e06 ()
6300 {
6301 int nregs = ~NUM_ADDRESS_REGS;
6302
6303 for (;;)
6304 {
6305 if (!intel_e09())
6306 return 0;
6307
6308 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
6309 {
6310 char str[2];
6311
6312 str[0] = cur_token.code;
6313 str[1] = 0;
6314 strcat (intel_parser.disp, str);
6315 }
6316 else if (cur_token.code == T_SHL)
6317 strcat (intel_parser.disp, "<<");
6318 else if (cur_token.code == T_SHR)
6319 strcat (intel_parser.disp, ">>");
6320 else
6321 break;
6322
6323 intel_match_token (cur_token.code);
6324
6325 if (nregs < 0)
6326 nregs = ~nregs;
6327 }
6328 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6329 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6330 return 1;
6331 }
6332
6333 /* e09 OFFSET e09
6334 | SHORT e09
6335 | + e09
6336 | - e09
6337 | ~ e09
6338 | NOT e09
6339 | e10 e09'
6340
6341 e09' PTR e10 e09'
6342 | : e10 e09'
6343 | Empty */
6344 static int
6345 intel_e09 ()
6346 {
6347 int nregs = ~NUM_ADDRESS_REGS;
6348 int in_offset = 0;
6349
6350 for (;;)
6351 {
6352 /* Don't consume constants here. */
6353 if (cur_token.code == '+' || cur_token.code == '-')
6354 {
6355 /* Need to look one token ahead - if the next token
6356 is a constant, the current token is its sign. */
6357 int next_code;
6358
6359 intel_match_token (cur_token.code);
6360 next_code = cur_token.code;
6361 intel_putback_token ();
6362 if (next_code == T_CONST)
6363 break;
6364 }
6365
6366 /* e09 OFFSET e09 */
6367 if (cur_token.code == T_OFFSET)
6368 {
6369 if (!in_offset++)
6370 ++intel_parser.in_offset;
6371 }
6372
6373 /* e09 SHORT e09 */
6374 else if (cur_token.code == T_SHORT)
6375 intel_parser.op_modifier |= 1 << T_SHORT;
6376
6377 /* e09 + e09 */
6378 else if (cur_token.code == '+')
6379 strcat (intel_parser.disp, "+");
6380
6381 /* e09 - e09
6382 | ~ e09
6383 | NOT e09 */
6384 else if (cur_token.code == '-' || cur_token.code == '~')
6385 {
6386 char str[2];
6387
6388 if (nregs < 0)
6389 nregs = ~nregs;
6390 str[0] = cur_token.code;
6391 str[1] = 0;
6392 strcat (intel_parser.disp, str);
6393 }
6394
6395 /* e09 e10 e09' */
6396 else
6397 break;
6398
6399 intel_match_token (cur_token.code);
6400 }
6401
6402 for (;;)
6403 {
6404 if (!intel_e10 ())
6405 return 0;
6406
6407 /* e09' PTR e10 e09' */
6408 if (cur_token.code == T_PTR)
6409 {
6410 char suffix;
6411
6412 if (prev_token.code == T_BYTE)
6413 suffix = BYTE_MNEM_SUFFIX;
6414
6415 else if (prev_token.code == T_WORD)
6416 {
6417 if (current_templates->start->name[0] == 'l'
6418 && current_templates->start->name[2] == 's'
6419 && current_templates->start->name[3] == 0)
6420 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6421 else if (intel_parser.got_a_float == 2) /* "fi..." */
6422 suffix = SHORT_MNEM_SUFFIX;
6423 else
6424 suffix = WORD_MNEM_SUFFIX;
6425 }
6426
6427 else if (prev_token.code == T_DWORD)
6428 {
6429 if (current_templates->start->name[0] == 'l'
6430 && current_templates->start->name[2] == 's'
6431 && current_templates->start->name[3] == 0)
6432 suffix = WORD_MNEM_SUFFIX;
6433 else if (flag_code == CODE_16BIT
6434 && (current_templates->start->opcode_modifier
6435 & (Jump | JumpDword)))
6436 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6437 else if (intel_parser.got_a_float == 1) /* "f..." */
6438 suffix = SHORT_MNEM_SUFFIX;
6439 else
6440 suffix = LONG_MNEM_SUFFIX;
6441 }
6442
6443 else if (prev_token.code == T_FWORD)
6444 {
6445 if (current_templates->start->name[0] == 'l'
6446 && current_templates->start->name[2] == 's'
6447 && current_templates->start->name[3] == 0)
6448 suffix = LONG_MNEM_SUFFIX;
6449 else if (!intel_parser.got_a_float)
6450 {
6451 if (flag_code == CODE_16BIT)
6452 add_prefix (DATA_PREFIX_OPCODE);
6453 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6454 }
6455 else
6456 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6457 }
6458
6459 else if (prev_token.code == T_QWORD)
6460 {
6461 if (intel_parser.got_a_float == 1) /* "f..." */
6462 suffix = LONG_MNEM_SUFFIX;
6463 else
6464 suffix = QWORD_MNEM_SUFFIX;
6465 }
6466
6467 else if (prev_token.code == T_TBYTE)
6468 {
6469 if (intel_parser.got_a_float == 1)
6470 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6471 else
6472 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6473 }
6474
6475 else if (prev_token.code == T_XMMWORD)
6476 {
6477 /* XXX ignored for now, but accepted since gcc uses it */
6478 suffix = 0;
6479 }
6480
6481 else
6482 {
6483 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6484 return 0;
6485 }
6486
6487 /* Operands for jump/call using 'ptr' notation denote absolute
6488 addresses. */
6489 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
6490 i.types[this_operand] |= JumpAbsolute;
6491
6492 if (current_templates->start->base_opcode == 0x8d /* lea */)
6493 ;
6494 else if (!i.suffix)
6495 i.suffix = suffix;
6496 else if (i.suffix != suffix)
6497 {
6498 as_bad (_("Conflicting operand modifiers"));
6499 return 0;
6500 }
6501
6502 }
6503
6504 /* e09' : e10 e09' */
6505 else if (cur_token.code == ':')
6506 {
6507 if (prev_token.code != T_REG)
6508 {
6509 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6510 segment/group identifier (which we don't have), using comma
6511 as the operand separator there is even less consistent, since
6512 there all branches only have a single operand. */
6513 if (this_operand != 0
6514 || intel_parser.in_offset
6515 || intel_parser.in_bracket
6516 || (!(current_templates->start->opcode_modifier
6517 & (Jump|JumpDword|JumpInterSegment))
6518 && !(current_templates->start->operand_types[0]
6519 & JumpAbsolute)))
6520 return intel_match_token (T_NIL);
6521 /* Remember the start of the 2nd operand and terminate 1st
6522 operand here.
6523 XXX This isn't right, yet (when SSSS:OOOO is right operand of
6524 another expression), but it gets at least the simplest case
6525 (a plain number or symbol on the left side) right. */
6526 intel_parser.next_operand = intel_parser.op_string;
6527 *--intel_parser.op_string = '\0';
6528 return intel_match_token (':');
6529 }
6530 }
6531
6532 /* e09' Empty */
6533 else
6534 break;
6535
6536 intel_match_token (cur_token.code);
6537
6538 }
6539
6540 if (in_offset)
6541 {
6542 --intel_parser.in_offset;
6543 if (nregs < 0)
6544 nregs = ~nregs;
6545 if (NUM_ADDRESS_REGS > nregs)
6546 {
6547 as_bad (_("Invalid operand to `OFFSET'"));
6548 return 0;
6549 }
6550 intel_parser.op_modifier |= 1 << T_OFFSET;
6551 }
6552
6553 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6554 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
6555 return 1;
6556 }
6557
6558 static int
6559 intel_bracket_expr ()
6560 {
6561 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
6562 const char *start = intel_parser.op_string;
6563 int len;
6564
6565 if (i.op[this_operand].regs)
6566 return intel_match_token (T_NIL);
6567
6568 intel_match_token ('[');
6569
6570 /* Mark as a memory operand only if it's not already known to be an
6571 offset expression. If it's an offset expression, we need to keep
6572 the brace in. */
6573 if (!intel_parser.in_offset)
6574 {
6575 ++intel_parser.in_bracket;
6576
6577 /* Operands for jump/call inside brackets denote absolute addresses. */
6578 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
6579 i.types[this_operand] |= JumpAbsolute;
6580
6581 /* Unfortunately gas always diverged from MASM in a respect that can't
6582 be easily fixed without risking to break code sequences likely to be
6583 encountered (the testsuite even check for this): MASM doesn't consider
6584 an expression inside brackets unconditionally as a memory reference.
6585 When that is e.g. a constant, an offset expression, or the sum of the
6586 two, this is still taken as a constant load. gas, however, always
6587 treated these as memory references. As a compromise, we'll try to make
6588 offset expressions inside brackets work the MASM way (since that's
6589 less likely to be found in real world code), but make constants alone
6590 continue to work the traditional gas way. In either case, issue a
6591 warning. */
6592 intel_parser.op_modifier &= ~was_offset;
6593 }
6594 else
6595 strcat (intel_parser.disp, "[");
6596
6597 /* Add a '+' to the displacement string if necessary. */
6598 if (*intel_parser.disp != '\0'
6599 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6600 strcat (intel_parser.disp, "+");
6601
6602 if (intel_expr ()
6603 && (len = intel_parser.op_string - start - 1,
6604 intel_match_token (']')))
6605 {
6606 /* Preserve brackets when the operand is an offset expression. */
6607 if (intel_parser.in_offset)
6608 strcat (intel_parser.disp, "]");
6609 else
6610 {
6611 --intel_parser.in_bracket;
6612 if (i.base_reg || i.index_reg)
6613 intel_parser.is_mem = 1;
6614 if (!intel_parser.is_mem)
6615 {
6616 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
6617 /* Defer the warning until all of the operand was parsed. */
6618 intel_parser.is_mem = -1;
6619 else if (!quiet_warnings)
6620 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
6621 }
6622 }
6623 intel_parser.op_modifier |= was_offset;
6624
6625 return 1;
6626 }
6627 return 0;
6628 }
6629
6630 /* e10 e11 e10'
6631
6632 e10' [ expr ] e10'
6633 | Empty */
6634 static int
6635 intel_e10 ()
6636 {
6637 if (!intel_e11 ())
6638 return 0;
6639
6640 while (cur_token.code == '[')
6641 {
6642 if (!intel_bracket_expr ())
6643 return 0;
6644 }
6645
6646 return 1;
6647 }
6648
6649 /* e11 ( expr )
6650 | [ expr ]
6651 | BYTE
6652 | WORD
6653 | DWORD
6654 | FWORD
6655 | QWORD
6656 | TBYTE
6657 | OWORD
6658 | XMMWORD
6659 | $
6660 | .
6661 | register
6662 | id
6663 | constant */
6664 static int
6665 intel_e11 ()
6666 {
6667 switch (cur_token.code)
6668 {
6669 /* e11 ( expr ) */
6670 case '(':
6671 intel_match_token ('(');
6672 strcat (intel_parser.disp, "(");
6673
6674 if (intel_expr () && intel_match_token (')'))
6675 {
6676 strcat (intel_parser.disp, ")");
6677 return 1;
6678 }
6679 return 0;
6680
6681 /* e11 [ expr ] */
6682 case '[':
6683 return intel_bracket_expr ();
6684
6685 /* e11 $
6686 | . */
6687 case '.':
6688 strcat (intel_parser.disp, cur_token.str);
6689 intel_match_token (cur_token.code);
6690
6691 /* Mark as a memory operand only if it's not already known to be an
6692 offset expression. */
6693 if (!intel_parser.in_offset)
6694 intel_parser.is_mem = 1;
6695
6696 return 1;
6697
6698 /* e11 register */
6699 case T_REG:
6700 {
6701 const reg_entry *reg = intel_parser.reg = cur_token.reg;
6702
6703 intel_match_token (T_REG);
6704
6705 /* Check for segment change. */
6706 if (cur_token.code == ':')
6707 {
6708 if (!(reg->reg_type & (SReg2 | SReg3)))
6709 {
6710 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6711 return 0;
6712 }
6713 else if (i.seg[i.mem_operands])
6714 as_warn (_("Extra segment override ignored"));
6715 else
6716 {
6717 if (!intel_parser.in_offset)
6718 intel_parser.is_mem = 1;
6719 switch (reg->reg_num)
6720 {
6721 case 0:
6722 i.seg[i.mem_operands] = &es;
6723 break;
6724 case 1:
6725 i.seg[i.mem_operands] = &cs;
6726 break;
6727 case 2:
6728 i.seg[i.mem_operands] = &ss;
6729 break;
6730 case 3:
6731 i.seg[i.mem_operands] = &ds;
6732 break;
6733 case 4:
6734 i.seg[i.mem_operands] = &fs;
6735 break;
6736 case 5:
6737 i.seg[i.mem_operands] = &gs;
6738 break;
6739 }
6740 }
6741 }
6742
6743 /* Not a segment register. Check for register scaling. */
6744 else if (cur_token.code == '*')
6745 {
6746 if (!intel_parser.in_bracket)
6747 {
6748 as_bad (_("Register scaling only allowed in memory operands"));
6749 return 0;
6750 }
6751
6752 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
6753 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6754 else if (i.index_reg)
6755 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6756
6757 /* What follows must be a valid scale. */
6758 intel_match_token ('*');
6759 i.index_reg = reg;
6760 i.types[this_operand] |= BaseIndex;
6761
6762 /* Set the scale after setting the register (otherwise,
6763 i386_scale will complain) */
6764 if (cur_token.code == '+' || cur_token.code == '-')
6765 {
6766 char *str, sign = cur_token.code;
6767 intel_match_token (cur_token.code);
6768 if (cur_token.code != T_CONST)
6769 {
6770 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6771 cur_token.str);
6772 return 0;
6773 }
6774 str = (char *) xmalloc (strlen (cur_token.str) + 2);
6775 strcpy (str + 1, cur_token.str);
6776 *str = sign;
6777 if (!i386_scale (str))
6778 return 0;
6779 free (str);
6780 }
6781 else if (!i386_scale (cur_token.str))
6782 return 0;
6783 intel_match_token (cur_token.code);
6784 }
6785
6786 /* No scaling. If this is a memory operand, the register is either a
6787 base register (first occurrence) or an index register (second
6788 occurrence). */
6789 else if (intel_parser.in_bracket)
6790 {
6791
6792 if (!i.base_reg)
6793 i.base_reg = reg;
6794 else if (!i.index_reg)
6795 i.index_reg = reg;
6796 else
6797 {
6798 as_bad (_("Too many register references in memory operand"));
6799 return 0;
6800 }
6801
6802 i.types[this_operand] |= BaseIndex;
6803 }
6804
6805 /* It's neither base nor index. */
6806 else if (!intel_parser.in_offset && !intel_parser.is_mem)
6807 {
6808 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6809 i.op[this_operand].regs = reg;
6810 i.reg_operands++;
6811 }
6812 else
6813 {
6814 as_bad (_("Invalid use of register"));
6815 return 0;
6816 }
6817
6818 /* Since registers are not part of the displacement string (except
6819 when we're parsing offset operands), we may need to remove any
6820 preceding '+' from the displacement string. */
6821 if (*intel_parser.disp != '\0'
6822 && !intel_parser.in_offset)
6823 {
6824 char *s = intel_parser.disp;
6825 s += strlen (s) - 1;
6826 if (*s == '+')
6827 *s = '\0';
6828 }
6829
6830 return 1;
6831 }
6832
6833 /* e11 BYTE
6834 | WORD
6835 | DWORD
6836 | FWORD
6837 | QWORD
6838 | TBYTE
6839 | OWORD
6840 | XMMWORD */
6841 case T_BYTE:
6842 case T_WORD:
6843 case T_DWORD:
6844 case T_FWORD:
6845 case T_QWORD:
6846 case T_TBYTE:
6847 case T_XMMWORD:
6848 intel_match_token (cur_token.code);
6849
6850 if (cur_token.code == T_PTR)
6851 return 1;
6852
6853 /* It must have been an identifier. */
6854 intel_putback_token ();
6855 cur_token.code = T_ID;
6856 /* FALLTHRU */
6857
6858 /* e11 id
6859 | constant */
6860 case T_ID:
6861 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
6862 {
6863 symbolS *symbolP;
6864
6865 /* The identifier represents a memory reference only if it's not
6866 preceded by an offset modifier and if it's not an equate. */
6867 symbolP = symbol_find(cur_token.str);
6868 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6869 intel_parser.is_mem = 1;
6870 }
6871 /* FALLTHRU */
6872
6873 case T_CONST:
6874 case '-':
6875 case '+':
6876 {
6877 char *save_str, sign = 0;
6878
6879 /* Allow constants that start with `+' or `-'. */
6880 if (cur_token.code == '-' || cur_token.code == '+')
6881 {
6882 sign = cur_token.code;
6883 intel_match_token (cur_token.code);
6884 if (cur_token.code != T_CONST)
6885 {
6886 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6887 cur_token.str);
6888 return 0;
6889 }
6890 }
6891
6892 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
6893 strcpy (save_str + !!sign, cur_token.str);
6894 if (sign)
6895 *save_str = sign;
6896
6897 /* Get the next token to check for register scaling. */
6898 intel_match_token (cur_token.code);
6899
6900 /* Check if this constant is a scaling factor for an index register. */
6901 if (cur_token.code == '*')
6902 {
6903 if (intel_match_token ('*') && cur_token.code == T_REG)
6904 {
6905 const reg_entry *reg = cur_token.reg;
6906
6907 if (!intel_parser.in_bracket)
6908 {
6909 as_bad (_("Register scaling only allowed in memory operands"));
6910 return 0;
6911 }
6912
6913 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
6914 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6915 else if (i.index_reg)
6916 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6917
6918 /* The constant is followed by `* reg', so it must be
6919 a valid scale. */
6920 i.index_reg = reg;
6921 i.types[this_operand] |= BaseIndex;
6922
6923 /* Set the scale after setting the register (otherwise,
6924 i386_scale will complain) */
6925 if (!i386_scale (save_str))
6926 return 0;
6927 intel_match_token (T_REG);
6928
6929 /* Since registers are not part of the displacement
6930 string, we may need to remove any preceding '+' from
6931 the displacement string. */
6932 if (*intel_parser.disp != '\0')
6933 {
6934 char *s = intel_parser.disp;
6935 s += strlen (s) - 1;
6936 if (*s == '+')
6937 *s = '\0';
6938 }
6939
6940 free (save_str);
6941
6942 return 1;
6943 }
6944
6945 /* The constant was not used for register scaling. Since we have
6946 already consumed the token following `*' we now need to put it
6947 back in the stream. */
6948 intel_putback_token ();
6949 }
6950
6951 /* Add the constant to the displacement string. */
6952 strcat (intel_parser.disp, save_str);
6953 free (save_str);
6954
6955 return 1;
6956 }
6957 }
6958
6959 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6960 return 0;
6961 }
6962
6963 /* Match the given token against cur_token. If they match, read the next
6964 token from the operand string. */
6965 static int
6966 intel_match_token (code)
6967 int code;
6968 {
6969 if (cur_token.code == code)
6970 {
6971 intel_get_token ();
6972 return 1;
6973 }
6974 else
6975 {
6976 as_bad (_("Unexpected token `%s'"), cur_token.str);
6977 return 0;
6978 }
6979 }
6980
6981 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6982 static void
6983 intel_get_token ()
6984 {
6985 char *end_op;
6986 const reg_entry *reg;
6987 struct intel_token new_token;
6988
6989 new_token.code = T_NIL;
6990 new_token.reg = NULL;
6991 new_token.str = NULL;
6992
6993 /* Free the memory allocated to the previous token and move
6994 cur_token to prev_token. */
6995 if (prev_token.str)
6996 free (prev_token.str);
6997
6998 prev_token = cur_token;
6999
7000 /* Skip whitespace. */
7001 while (is_space_char (*intel_parser.op_string))
7002 intel_parser.op_string++;
7003
7004 /* Return an empty token if we find nothing else on the line. */
7005 if (*intel_parser.op_string == '\0')
7006 {
7007 cur_token = new_token;
7008 return;
7009 }
7010
7011 /* The new token cannot be larger than the remainder of the operand
7012 string. */
7013 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7014 new_token.str[0] = '\0';
7015
7016 if (strchr ("0123456789", *intel_parser.op_string))
7017 {
7018 char *p = new_token.str;
7019 char *q = intel_parser.op_string;
7020 new_token.code = T_CONST;
7021
7022 /* Allow any kind of identifier char to encompass floating point and
7023 hexadecimal numbers. */
7024 while (is_identifier_char (*q))
7025 *p++ = *q++;
7026 *p = '\0';
7027
7028 /* Recognize special symbol names [0-9][bf]. */
7029 if (strlen (intel_parser.op_string) == 2
7030 && (intel_parser.op_string[1] == 'b'
7031 || intel_parser.op_string[1] == 'f'))
7032 new_token.code = T_ID;
7033 }
7034
7035 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7036 {
7037 size_t len = end_op - intel_parser.op_string;
7038
7039 new_token.code = T_REG;
7040 new_token.reg = reg;
7041
7042 memcpy (new_token.str, intel_parser.op_string, len);
7043 new_token.str[len] = '\0';
7044 }
7045
7046 else if (is_identifier_char (*intel_parser.op_string))
7047 {
7048 char *p = new_token.str;
7049 char *q = intel_parser.op_string;
7050
7051 /* A '.' or '$' followed by an identifier char is an identifier.
7052 Otherwise, it's operator '.' followed by an expression. */
7053 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7054 {
7055 new_token.code = '.';
7056 new_token.str[0] = '.';
7057 new_token.str[1] = '\0';
7058 }
7059 else
7060 {
7061 while (is_identifier_char (*q) || *q == '@')
7062 *p++ = *q++;
7063 *p = '\0';
7064
7065 if (strcasecmp (new_token.str, "NOT") == 0)
7066 new_token.code = '~';
7067
7068 else if (strcasecmp (new_token.str, "MOD") == 0)
7069 new_token.code = '%';
7070
7071 else if (strcasecmp (new_token.str, "AND") == 0)
7072 new_token.code = '&';
7073
7074 else if (strcasecmp (new_token.str, "OR") == 0)
7075 new_token.code = '|';
7076
7077 else if (strcasecmp (new_token.str, "XOR") == 0)
7078 new_token.code = '^';
7079
7080 else if (strcasecmp (new_token.str, "SHL") == 0)
7081 new_token.code = T_SHL;
7082
7083 else if (strcasecmp (new_token.str, "SHR") == 0)
7084 new_token.code = T_SHR;
7085
7086 else if (strcasecmp (new_token.str, "BYTE") == 0)
7087 new_token.code = T_BYTE;
7088
7089 else if (strcasecmp (new_token.str, "WORD") == 0)
7090 new_token.code = T_WORD;
7091
7092 else if (strcasecmp (new_token.str, "DWORD") == 0)
7093 new_token.code = T_DWORD;
7094
7095 else if (strcasecmp (new_token.str, "FWORD") == 0)
7096 new_token.code = T_FWORD;
7097
7098 else if (strcasecmp (new_token.str, "QWORD") == 0)
7099 new_token.code = T_QWORD;
7100
7101 else if (strcasecmp (new_token.str, "TBYTE") == 0
7102 /* XXX remove (gcc still uses it) */
7103 || strcasecmp (new_token.str, "XWORD") == 0)
7104 new_token.code = T_TBYTE;
7105
7106 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7107 || strcasecmp (new_token.str, "OWORD") == 0)
7108 new_token.code = T_XMMWORD;
7109
7110 else if (strcasecmp (new_token.str, "PTR") == 0)
7111 new_token.code = T_PTR;
7112
7113 else if (strcasecmp (new_token.str, "SHORT") == 0)
7114 new_token.code = T_SHORT;
7115
7116 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7117 {
7118 new_token.code = T_OFFSET;
7119
7120 /* ??? This is not mentioned in the MASM grammar but gcc
7121 makes use of it with -mintel-syntax. OFFSET may be
7122 followed by FLAT: */
7123 if (strncasecmp (q, " FLAT:", 6) == 0)
7124 strcat (new_token.str, " FLAT:");
7125 }
7126
7127 /* ??? This is not mentioned in the MASM grammar. */
7128 else if (strcasecmp (new_token.str, "FLAT") == 0)
7129 {
7130 new_token.code = T_OFFSET;
7131 if (*q == ':')
7132 strcat (new_token.str, ":");
7133 else
7134 as_bad (_("`:' expected"));
7135 }
7136
7137 else
7138 new_token.code = T_ID;
7139 }
7140 }
7141
7142 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7143 {
7144 new_token.code = *intel_parser.op_string;
7145 new_token.str[0] = *intel_parser.op_string;
7146 new_token.str[1] = '\0';
7147 }
7148
7149 else if (strchr ("<>", *intel_parser.op_string)
7150 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7151 {
7152 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7153 new_token.str[0] = *intel_parser.op_string;
7154 new_token.str[1] = *intel_parser.op_string;
7155 new_token.str[2] = '\0';
7156 }
7157
7158 else
7159 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7160
7161 intel_parser.op_string += strlen (new_token.str);
7162 cur_token = new_token;
7163 }
7164
7165 /* Put cur_token back into the token stream and make cur_token point to
7166 prev_token. */
7167 static void
7168 intel_putback_token ()
7169 {
7170 if (cur_token.code != T_NIL)
7171 {
7172 intel_parser.op_string -= strlen (cur_token.str);
7173 free (cur_token.str);
7174 }
7175 cur_token = prev_token;
7176
7177 /* Forget prev_token. */
7178 prev_token.code = T_NIL;
7179 prev_token.reg = NULL;
7180 prev_token.str = NULL;
7181 }
7182
7183 int
7184 tc_x86_regname_to_dw2regnum (char *regname)
7185 {
7186 unsigned int regnum;
7187 unsigned int regnames_count;
7188 static const char *const regnames_32[] =
7189 {
7190 "eax", "ecx", "edx", "ebx",
7191 "esp", "ebp", "esi", "edi",
7192 "eip", "eflags", NULL,
7193 "st0", "st1", "st2", "st3",
7194 "st4", "st5", "st6", "st7",
7195 NULL, NULL,
7196 "xmm0", "xmm1", "xmm2", "xmm3",
7197 "xmm4", "xmm5", "xmm6", "xmm7",
7198 "mm0", "mm1", "mm2", "mm3",
7199 "mm4", "mm5", "mm6", "mm7",
7200 "fcw", "fsw", "mxcsr",
7201 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7202 "tr", "ldtr"
7203 };
7204 static const char *const regnames_64[] =
7205 {
7206 "rax", "rdx", "rcx", "rbx",
7207 "rsi", "rdi", "rbp", "rsp",
7208 "r8", "r9", "r10", "r11",
7209 "r12", "r13", "r14", "r15",
7210 "rip",
7211 "xmm0", "xmm1", "xmm2", "xmm3",
7212 "xmm4", "xmm5", "xmm6", "xmm7",
7213 "xmm8", "xmm9", "xmm10", "xmm11",
7214 "xmm12", "xmm13", "xmm14", "xmm15",
7215 "st0", "st1", "st2", "st3",
7216 "st4", "st5", "st6", "st7",
7217 "mm0", "mm1", "mm2", "mm3",
7218 "mm4", "mm5", "mm6", "mm7",
7219 "rflags",
7220 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7221 "fs.base", "gs.base", NULL, NULL,
7222 "tr", "ldtr",
7223 "mxcsr", "fcw", "fsw"
7224 };
7225 const char *const *regnames;
7226
7227 if (flag_code == CODE_64BIT)
7228 {
7229 regnames = regnames_64;
7230 regnames_count = ARRAY_SIZE (regnames_64);
7231 }
7232 else
7233 {
7234 regnames = regnames_32;
7235 regnames_count = ARRAY_SIZE (regnames_32);
7236 }
7237
7238 for (regnum = 0; regnum < regnames_count; regnum++)
7239 if (regnames[regnum] != NULL
7240 && strcmp (regname, regnames[regnum]) == 0)
7241 return regnum;
7242
7243 return -1;
7244 }
7245
7246 void
7247 tc_x86_frame_initial_instructions (void)
7248 {
7249 static unsigned int sp_regno;
7250
7251 if (!sp_regno)
7252 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7253 ? "rsp" : "esp");
7254
7255 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7256 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7257 }
7258
7259 int
7260 i386_elf_section_type (const char *str, size_t len)
7261 {
7262 if (flag_code == CODE_64BIT
7263 && len == sizeof ("unwind") - 1
7264 && strncmp (str, "unwind", 6) == 0)
7265 return SHT_X86_64_UNWIND;
7266
7267 return -1;
7268 }
7269
7270 #ifdef TE_PE
7271 void
7272 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7273 {
7274 expressionS expr;
7275
7276 expr.X_op = O_secrel;
7277 expr.X_add_symbol = symbol;
7278 expr.X_add_number = 0;
7279 emit_expr (&expr, size);
7280 }
7281 #endif
7282
7283 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7284 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7285
7286 int
7287 x86_64_section_letter (int letter, char **ptr_msg)
7288 {
7289 if (flag_code == CODE_64BIT)
7290 {
7291 if (letter == 'l')
7292 return SHF_X86_64_LARGE;
7293
7294 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7295 }
7296 else
7297 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7298 return -1;
7299 }
7300
7301 int
7302 x86_64_section_word (char *str, size_t len)
7303 {
7304 if (len == 5 && flag_code == CODE_64BIT && strncmp (str, "large", 5) == 0)
7305 return SHF_X86_64_LARGE;
7306
7307 return -1;
7308 }
7309
7310 static void
7311 handle_large_common (int small ATTRIBUTE_UNUSED)
7312 {
7313 if (flag_code != CODE_64BIT)
7314 {
7315 s_comm_internal (0, elf_common_parse);
7316 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7317 }
7318 else
7319 {
7320 static segT lbss_section;
7321 asection *saved_com_section_ptr = elf_com_section_ptr;
7322 asection *saved_bss_section = bss_section;
7323
7324 if (lbss_section == NULL)
7325 {
7326 flagword applicable;
7327 segT seg = now_seg;
7328 subsegT subseg = now_subseg;
7329
7330 /* The .lbss section is for local .largecomm symbols. */
7331 lbss_section = subseg_new (".lbss", 0);
7332 applicable = bfd_applicable_section_flags (stdoutput);
7333 bfd_set_section_flags (stdoutput, lbss_section,
7334 applicable & SEC_ALLOC);
7335 seg_info (lbss_section)->bss = 1;
7336
7337 subseg_set (seg, subseg);
7338 }
7339
7340 elf_com_section_ptr = &_bfd_elf_large_com_section;
7341 bss_section = lbss_section;
7342
7343 s_comm_internal (0, elf_common_parse);
7344
7345 elf_com_section_ptr = saved_com_section_ptr;
7346 bss_section = saved_bss_section;
7347 }
7348 }
7349 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.183583 seconds and 4 git commands to generate.