56ccd12376aec938d12c7cd9fcd37a73363968fc
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template *match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry *build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS *, offsetT);
199 static void output_disp (fragS *, offsetT);
200 #ifndef I386COFF
201 static void s_bss (int);
202 #endif
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED);
205
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
212 #endif
213
214 static const char *default_arch = DEFAULT_ARCH;
215
216 /* This struct describes rounding control and SAE in the instruction. */
217 struct RC_Operation
218 {
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228 };
229
230 static struct RC_Operation rc_op;
231
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
236 {
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241 };
242
243 static struct Mask_Operation mask_op;
244
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247 struct Broadcast_Operation
248 {
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
254
255 /* Number of bytes to broadcast. */
256 int bytes;
257 };
258
259 static struct Broadcast_Operation broadcast_op;
260
261 /* VEX prefix. */
262 typedef struct
263 {
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269 } vex_prefix;
270
271 /* 'md_assemble ()' gathers together information and puts it into a
272 i386_insn. */
273
274 union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
281 enum i386_error
282 {
283 operand_size_mismatch,
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
291 unsupported,
292 invalid_vsib_address,
293 invalid_vector_register_set,
294 unsupported_vector_index_register,
295 unsupported_broadcast,
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
303 };
304
305 struct _i386_insn
306 {
307 /* TM holds the template for the insn were currently assembling. */
308 insn_template tm;
309
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
312 char suffix;
313
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
319 operands. */
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types[MAX_OPERANDS];
325
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
329
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
334
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
337
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry *seg[2];
347
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
368 /* RM and SIB are the modrm byte and the sib byte where the
369 addressing modes of this insn are encoded. */
370 modrm_byte rm;
371 rex_byte rex;
372 rex_byte vrex;
373 sib_byte sib;
374 vex_prefix vex;
375
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
393 dir_encoding_store,
394 dir_encoding_swap
395 } dir_encoding;
396
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
404
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
420 /* REP prefix. */
421 const char *rep_prefix;
422
423 /* HLE prefix. */
424 const char *hle_prefix;
425
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
432 /* Error message. */
433 enum i386_error error;
434 };
435
436 typedef struct _i386_insn i386_insn;
437
438 /* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440 struct RC_name
441 {
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445 };
446
447 static const struct RC_name RC_NamesTable[] =
448 {
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454 };
455
456 /* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
458 const char extra_symbol_chars[] = "*%-([{}"
459 #ifdef LEX_AT
460 "@"
461 #endif
462 #ifdef LEX_QM
463 "?"
464 #endif
465 ;
466
467 #if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
469 && !defined (TE_GNU) \
470 && !defined (TE_LINUX) \
471 && !defined (TE_NACL) \
472 && !defined (TE_FreeBSD) \
473 && !defined (TE_DragonFly) \
474 && !defined (TE_NetBSD)))
475 /* This array holds the chars that always start a comment. If the
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478 const char *i386_comment_chars = "#/";
479 #define SVR4_COMMENT_CHARS 1
480 #define PREFIX_SEPARATOR '\\'
481
482 #else
483 const char *i386_comment_chars = "#";
484 #define PREFIX_SEPARATOR '/'
485 #endif
486
487 /* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
491 first line of the input file. This is because the compiler outputs
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
494 '/' isn't otherwise defined. */
495 const char line_comment_chars[] = "#/";
496
497 const char line_separator_chars[] = ";";
498
499 /* Chars that can be used to separate mant from exp in floating point
500 nums. */
501 const char EXP_CHARS[] = "eE";
502
503 /* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
506 const char FLT_CHARS[] = "fFdDxX";
507
508 /* Tables for lexical analysis. */
509 static char mnemonic_chars[256];
510 static char register_chars[256];
511 static char operand_chars[256];
512 static char identifier_chars[256];
513 static char digit_chars[256];
514
515 /* Lexical macros. */
516 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517 #define is_operand_char(x) (operand_chars[(unsigned char) x])
518 #define is_register_char(x) (register_chars[(unsigned char) x])
519 #define is_space_char(x) ((x) == ' ')
520 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521 #define is_digit_char(x) (digit_chars[(unsigned char) x])
522
523 /* All non-digit non-letter characters that may occur in an operand. */
524 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526 /* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
529 assembler instruction). */
530 static char save_stack[32];
531 static char *save_stack_p;
532 #define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534 #define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
537 /* The instruction we're assembling. */
538 static i386_insn i;
539
540 /* Possible templates for current insn. */
541 static const templates *current_templates;
542
543 /* Per instruction expressionS buffers: max displacements & immediates. */
544 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
546
547 /* Current operand we are working on. */
548 static int this_operand = -1;
549
550 /* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553 enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558 static enum flag_code flag_code;
559 static unsigned int object_64bit;
560 static unsigned int disallow_64bit_reloc;
561 static int use_rela_relocations = 0;
562
563 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
567 /* The ELF ABI to use. */
568 enum x86_elf_abi
569 {
570 I386_ABI,
571 X86_64_ABI,
572 X86_64_X32_ABI
573 };
574
575 static enum x86_elf_abi x86_elf_abi = I386_ABI;
576 #endif
577
578 #if defined (TE_PE) || defined (TE_PEP)
579 /* Use big object file format. */
580 static int use_big_obj = 0;
581 #endif
582
583 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584 /* 1 if generating code for a shared library. */
585 static int shared = 0;
586 #endif
587
588 /* 1 for intel syntax,
589 0 if att syntax. */
590 static int intel_syntax = 0;
591
592 /* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594 static int intel64;
595
596 /* 1 for intel mnemonic,
597 0 if att mnemonic. */
598 static int intel_mnemonic = !SYSV386_COMPAT;
599
600 /* 1 if pseudo registers are permitted. */
601 static int allow_pseudo_reg = 0;
602
603 /* 1 if register prefix % not required. */
604 static int allow_naked_reg = 0;
605
606 /* 1 if the assembler should add BND prefix for all control-transferring
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609 static int add_bnd_prefix = 0;
610
611 /* 1 if pseudo index register, eiz/riz, is allowed . */
612 static int allow_index_reg = 0;
613
614 /* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616 static int omit_lock_prefix = 0;
617
618 /* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620 static int avoid_fence = 0;
621
622 /* 1 if the assembler should generate relax relocations. */
623
624 static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
627 static enum check_kind
628 {
629 check_none = 0,
630 check_warning,
631 check_error
632 }
633 sse_check, operand_check = check_warning;
634
635 /* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640 static int optimize = 0;
641
642 /* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649 static int optimize_for_space = 0;
650
651 /* Register prefix used for error message. */
652 static const char *register_prefix = "%";
653
654 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657 static char stackop_size = '\0';
658
659 /* Non-zero to optimize code alignment. */
660 int optimize_align_code = 1;
661
662 /* Non-zero to quieten some warnings. */
663 static int quiet_warnings = 0;
664
665 /* CPU name. */
666 static const char *cpu_arch_name = NULL;
667 static char *cpu_sub_arch_name = NULL;
668
669 /* CPU feature flags. */
670 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
672 /* If we have selected a cpu we are generating instructions for. */
673 static int cpu_arch_tune_set = 0;
674
675 /* Cpu we are generating instructions for. */
676 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
677
678 /* CPU feature flags of cpu we are generating instructions for. */
679 static i386_cpu_flags cpu_arch_tune_flags;
680
681 /* CPU instruction set architecture used. */
682 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
683
684 /* CPU feature flags of instruction set architecture used. */
685 i386_cpu_flags cpu_arch_isa_flags;
686
687 /* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689 static unsigned int no_cond_jump_promotion = 0;
690
691 /* Encode SSE instructions with VEX prefix. */
692 static unsigned int sse2avx;
693
694 /* Encode scalar AVX instructions with specific vector length. */
695 static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
701 /* Encode VEX WIG instructions with specific vex.w. */
702 static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
708 /* Encode scalar EVEX LIG instructions with specific vector length. */
709 static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716 /* Encode EVEX WIG instructions with specific evex.w. */
717 static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
723 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
724 static enum rc_type evexrcig = rne;
725
726 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
727 static symbolS *GOT_symbol;
728
729 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
730 unsigned int x86_dwarf2_return_column;
731
732 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733 int x86_cie_data_alignment;
734
735 /* Interface to relax_segment.
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
739
740 /* Types. */
741 #define UNCOND_JUMP 0
742 #define COND_JUMP 1
743 #define COND_JUMP86 2
744
745 /* Sizes. */
746 #define CODE16 1
747 #define SMALL 0
748 #define SMALL16 (SMALL | CODE16)
749 #define BIG 2
750 #define BIG16 (BIG | CODE16)
751
752 #ifndef INLINE
753 #ifdef __GNUC__
754 #define INLINE __inline__
755 #else
756 #define INLINE
757 #endif
758 #endif
759
760 #define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762 #define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764 #define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
766
767 /* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775 const relax_typeS md_relax_table[] =
776 {
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
780 3) how many bytes this mode will have in the variable part of the frag
781 4) which index into the table to try if we can't fit into this one. */
782
783 /* UNCOND_JUMP states. */
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
788 {0, 0, 4, 0},
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
791 {0, 0, 2, 0},
792
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
799 /* word conditionals add 3 bytes to frag:
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
812 };
813
814 static const arch_entry cpu_arch[] =
815 {
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
819 CPU_GENERIC32_FLAGS, 0 },
820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
821 CPU_GENERIC64_FLAGS, 0 },
822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
823 CPU_NONE_FLAGS, 0 },
824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
825 CPU_I186_FLAGS, 0 },
826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
827 CPU_I286_FLAGS, 0 },
828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
829 CPU_I386_FLAGS, 0 },
830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
831 CPU_I486_FLAGS, 0 },
832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
833 CPU_I586_FLAGS, 0 },
834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
835 CPU_I686_FLAGS, 0 },
836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
837 CPU_I586_FLAGS, 0 },
838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
839 CPU_PENTIUMPRO_FLAGS, 0 },
840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
841 CPU_P2_FLAGS, 0 },
842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
843 CPU_P3_FLAGS, 0 },
844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
845 CPU_P4_FLAGS, 0 },
846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
847 CPU_CORE_FLAGS, 0 },
848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
849 CPU_NOCONA_FLAGS, 0 },
850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
851 CPU_CORE_FLAGS, 1 },
852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
853 CPU_CORE_FLAGS, 0 },
854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
855 CPU_CORE2_FLAGS, 1 },
856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
857 CPU_CORE2_FLAGS, 0 },
858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
859 CPU_COREI7_FLAGS, 0 },
860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
861 CPU_L1OM_FLAGS, 0 },
862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
863 CPU_K1OM_FLAGS, 0 },
864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
865 CPU_IAMCU_FLAGS, 0 },
866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
867 CPU_K6_FLAGS, 0 },
868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
869 CPU_K6_2_FLAGS, 0 },
870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
871 CPU_ATHLON_FLAGS, 0 },
872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
873 CPU_K8_FLAGS, 1 },
874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
875 CPU_K8_FLAGS, 0 },
876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
877 CPU_K8_FLAGS, 0 },
878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
879 CPU_AMDFAM10_FLAGS, 0 },
880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
881 CPU_BDVER1_FLAGS, 0 },
882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
883 CPU_BDVER2_FLAGS, 0 },
884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
885 CPU_BDVER3_FLAGS, 0 },
886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
887 CPU_BDVER4_FLAGS, 0 },
888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
889 CPU_ZNVER1_FLAGS, 0 },
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
893 CPU_BTVER1_FLAGS, 0 },
894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
895 CPU_BTVER2_FLAGS, 0 },
896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
897 CPU_8087_FLAGS, 0 },
898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
899 CPU_287_FLAGS, 0 },
900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
901 CPU_387_FLAGS, 0 },
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
909 CPU_MMX_FLAGS, 0 },
910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
911 CPU_SSE_FLAGS, 0 },
912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
913 CPU_SSE2_FLAGS, 0 },
914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
915 CPU_SSE3_FLAGS, 0 },
916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
917 CPU_SSSE3_FLAGS, 0 },
918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
919 CPU_SSE4_1_FLAGS, 0 },
920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
921 CPU_SSE4_2_FLAGS, 0 },
922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
923 CPU_SSE4_2_FLAGS, 0 },
924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
925 CPU_AVX_FLAGS, 0 },
926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
927 CPU_AVX2_FLAGS, 0 },
928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
929 CPU_AVX512F_FLAGS, 0 },
930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
931 CPU_AVX512CD_FLAGS, 0 },
932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
933 CPU_AVX512ER_FLAGS, 0 },
934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
935 CPU_AVX512PF_FLAGS, 0 },
936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
937 CPU_AVX512DQ_FLAGS, 0 },
938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
939 CPU_AVX512BW_FLAGS, 0 },
940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
941 CPU_AVX512VL_FLAGS, 0 },
942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
943 CPU_VMX_FLAGS, 0 },
944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
945 CPU_VMFUNC_FLAGS, 0 },
946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
947 CPU_SMX_FLAGS, 0 },
948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
949 CPU_XSAVE_FLAGS, 0 },
950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
951 CPU_XSAVEOPT_FLAGS, 0 },
952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
953 CPU_XSAVEC_FLAGS, 0 },
954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
955 CPU_XSAVES_FLAGS, 0 },
956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
957 CPU_AES_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
959 CPU_PCLMUL_FLAGS, 0 },
960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
961 CPU_PCLMUL_FLAGS, 1 },
962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
963 CPU_FSGSBASE_FLAGS, 0 },
964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
965 CPU_RDRND_FLAGS, 0 },
966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
967 CPU_F16C_FLAGS, 0 },
968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
969 CPU_BMI2_FLAGS, 0 },
970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
971 CPU_FMA_FLAGS, 0 },
972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
973 CPU_FMA4_FLAGS, 0 },
974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
975 CPU_XOP_FLAGS, 0 },
976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
977 CPU_LWP_FLAGS, 0 },
978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
979 CPU_MOVBE_FLAGS, 0 },
980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
981 CPU_CX16_FLAGS, 0 },
982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
983 CPU_EPT_FLAGS, 0 },
984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
985 CPU_LZCNT_FLAGS, 0 },
986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
987 CPU_HLE_FLAGS, 0 },
988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
989 CPU_RTM_FLAGS, 0 },
990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
991 CPU_INVPCID_FLAGS, 0 },
992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
993 CPU_CLFLUSH_FLAGS, 0 },
994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
995 CPU_NOP_FLAGS, 0 },
996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
997 CPU_SYSCALL_FLAGS, 0 },
998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
999 CPU_RDTSCP_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1001 CPU_3DNOW_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1003 CPU_3DNOWA_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1005 CPU_PADLOCK_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1007 CPU_SVME_FLAGS, 1 },
1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1009 CPU_SVME_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1011 CPU_SSE4A_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1013 CPU_ABM_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1015 CPU_BMI_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1017 CPU_TBM_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1019 CPU_ADX_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1021 CPU_RDSEED_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1023 CPU_PRFCHW_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1025 CPU_SMAP_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1027 CPU_MPX_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1029 CPU_SHA_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1031 CPU_CLFLUSHOPT_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1033 CPU_PREFETCHWT1_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1035 CPU_SE1_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1037 CPU_CLWB_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1039 CPU_AVX512IFMA_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1041 CPU_AVX512VBMI_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1055 CPU_CLZERO_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1057 CPU_MWAITX_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1059 CPU_OSPKE_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1061 CPU_RDPID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
1092 };
1093
1094 static const noarch_entry cpu_noarch[] =
1095 {
1096 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1097 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1098 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1099 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1100 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1101 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1102 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1103 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1104 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1105 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1106 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1107 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1108 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1110 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1111 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1127 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1128 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1129 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1130 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1131 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1132 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1133 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1134 };
1135
1136 #ifdef I386COFF
1137 /* Like s_lcomm_internal in gas/read.c but the alignment string
1138 is allowed to be optional. */
1139
1140 static symbolS *
1141 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1142 {
1143 addressT align = 0;
1144
1145 SKIP_WHITESPACE ();
1146
1147 if (needs_align
1148 && *input_line_pointer == ',')
1149 {
1150 align = parse_align (needs_align - 1);
1151
1152 if (align == (addressT) -1)
1153 return NULL;
1154 }
1155 else
1156 {
1157 if (size >= 8)
1158 align = 3;
1159 else if (size >= 4)
1160 align = 2;
1161 else if (size >= 2)
1162 align = 1;
1163 else
1164 align = 0;
1165 }
1166
1167 bss_alloc (symbolP, size, align);
1168 return symbolP;
1169 }
1170
1171 static void
1172 pe_lcomm (int needs_align)
1173 {
1174 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1175 }
1176 #endif
1177
1178 const pseudo_typeS md_pseudo_table[] =
1179 {
1180 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1181 {"align", s_align_bytes, 0},
1182 #else
1183 {"align", s_align_ptwo, 0},
1184 #endif
1185 {"arch", set_cpu_arch, 0},
1186 #ifndef I386COFF
1187 {"bss", s_bss, 0},
1188 #else
1189 {"lcomm", pe_lcomm, 1},
1190 #endif
1191 {"ffloat", float_cons, 'f'},
1192 {"dfloat", float_cons, 'd'},
1193 {"tfloat", float_cons, 'x'},
1194 {"value", cons, 2},
1195 {"slong", signed_cons, 4},
1196 {"noopt", s_ignore, 0},
1197 {"optim", s_ignore, 0},
1198 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1199 {"code16", set_code_flag, CODE_16BIT},
1200 {"code32", set_code_flag, CODE_32BIT},
1201 #ifdef BFD64
1202 {"code64", set_code_flag, CODE_64BIT},
1203 #endif
1204 {"intel_syntax", set_intel_syntax, 1},
1205 {"att_syntax", set_intel_syntax, 0},
1206 {"intel_mnemonic", set_intel_mnemonic, 1},
1207 {"att_mnemonic", set_intel_mnemonic, 0},
1208 {"allow_index_reg", set_allow_index_reg, 1},
1209 {"disallow_index_reg", set_allow_index_reg, 0},
1210 {"sse_check", set_check, 0},
1211 {"operand_check", set_check, 1},
1212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 {"largecomm", handle_large_common, 0},
1214 #else
1215 {"file", dwarf2_directive_file, 0},
1216 {"loc", dwarf2_directive_loc, 0},
1217 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1218 #endif
1219 #ifdef TE_PE
1220 {"secrel32", pe_directive_secrel, 0},
1221 #endif
1222 {0, 0, 0}
1223 };
1224
1225 /* For interface with expression (). */
1226 extern char *input_line_pointer;
1227
1228 /* Hash table for instruction mnemonic lookup. */
1229 static struct hash_control *op_hash;
1230
1231 /* Hash table for register lookup. */
1232 static struct hash_control *reg_hash;
1233 \f
1234 /* Various efficient no-op patterns for aligning code labels.
1235 Note: Don't try to assemble the instructions in the comments.
1236 0L and 0w are not legal. */
1237 static const unsigned char f32_1[] =
1238 {0x90}; /* nop */
1239 static const unsigned char f32_2[] =
1240 {0x66,0x90}; /* xchg %ax,%ax */
1241 static const unsigned char f32_3[] =
1242 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1243 static const unsigned char f32_4[] =
1244 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1245 static const unsigned char f32_6[] =
1246 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1247 static const unsigned char f32_7[] =
1248 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1249 static const unsigned char f16_3[] =
1250 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1251 static const unsigned char f16_4[] =
1252 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1253 static const unsigned char jump_disp8[] =
1254 {0xeb}; /* jmp disp8 */
1255 static const unsigned char jump32_disp32[] =
1256 {0xe9}; /* jmp disp32 */
1257 static const unsigned char jump16_disp32[] =
1258 {0x66,0xe9}; /* jmp disp32 */
1259 /* 32-bit NOPs patterns. */
1260 static const unsigned char *const f32_patt[] = {
1261 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1262 };
1263 /* 16-bit NOPs patterns. */
1264 static const unsigned char *const f16_patt[] = {
1265 f32_1, f32_2, f16_3, f16_4
1266 };
1267 /* nopl (%[re]ax) */
1268 static const unsigned char alt_3[] =
1269 {0x0f,0x1f,0x00};
1270 /* nopl 0(%[re]ax) */
1271 static const unsigned char alt_4[] =
1272 {0x0f,0x1f,0x40,0x00};
1273 /* nopl 0(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_5[] =
1275 {0x0f,0x1f,0x44,0x00,0x00};
1276 /* nopw 0(%[re]ax,%[re]ax,1) */
1277 static const unsigned char alt_6[] =
1278 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1279 /* nopl 0L(%[re]ax) */
1280 static const unsigned char alt_7[] =
1281 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1282 /* nopl 0L(%[re]ax,%[re]ax,1) */
1283 static const unsigned char alt_8[] =
1284 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* nopw 0L(%[re]ax,%[re]ax,1) */
1286 static const unsigned char alt_9[] =
1287 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1289 static const unsigned char alt_10[] =
1290 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1291 /* data16 nopw %cs:0L(%eax,%eax,1) */
1292 static const unsigned char alt_11[] =
1293 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1294 /* 32-bit and 64-bit NOPs patterns. */
1295 static const unsigned char *const alt_patt[] = {
1296 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1297 alt_9, alt_10, alt_11
1298 };
1299
1300 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1301 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1302
1303 static void
1304 i386_output_nops (char *where, const unsigned char *const *patt,
1305 int count, int max_single_nop_size)
1306
1307 {
1308 /* Place the longer NOP first. */
1309 int last;
1310 int offset;
1311 const unsigned char *nops;
1312
1313 if (max_single_nop_size < 1)
1314 {
1315 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1316 max_single_nop_size);
1317 return;
1318 }
1319
1320 nops = patt[max_single_nop_size - 1];
1321
1322 /* Use the smaller one if the requsted one isn't available. */
1323 if (nops == NULL)
1324 {
1325 max_single_nop_size--;
1326 nops = patt[max_single_nop_size - 1];
1327 }
1328
1329 last = count % max_single_nop_size;
1330
1331 count -= last;
1332 for (offset = 0; offset < count; offset += max_single_nop_size)
1333 memcpy (where + offset, nops, max_single_nop_size);
1334
1335 if (last)
1336 {
1337 nops = patt[last - 1];
1338 if (nops == NULL)
1339 {
1340 /* Use the smaller one plus one-byte NOP if the needed one
1341 isn't available. */
1342 last--;
1343 nops = patt[last - 1];
1344 memcpy (where + offset, nops, last);
1345 where[offset + last] = *patt[0];
1346 }
1347 else
1348 memcpy (where + offset, nops, last);
1349 }
1350 }
1351
1352 static INLINE int
1353 fits_in_imm7 (offsetT num)
1354 {
1355 return (num & 0x7f) == num;
1356 }
1357
1358 static INLINE int
1359 fits_in_imm31 (offsetT num)
1360 {
1361 return (num & 0x7fffffff) == num;
1362 }
1363
1364 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1365 single NOP instruction LIMIT. */
1366
1367 void
1368 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1369 {
1370 const unsigned char *const *patt = NULL;
1371 int max_single_nop_size;
1372 /* Maximum number of NOPs before switching to jump over NOPs. */
1373 int max_number_of_nops;
1374
1375 switch (fragP->fr_type)
1376 {
1377 case rs_fill_nop:
1378 case rs_align_code:
1379 break;
1380 default:
1381 return;
1382 }
1383
1384 /* We need to decide which NOP sequence to use for 32bit and
1385 64bit. When -mtune= is used:
1386
1387 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1388 PROCESSOR_GENERIC32, f32_patt will be used.
1389 2. For the rest, alt_patt will be used.
1390
1391 When -mtune= isn't used, alt_patt will be used if
1392 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1393 be used.
1394
1395 When -march= or .arch is used, we can't use anything beyond
1396 cpu_arch_isa_flags. */
1397
1398 if (flag_code == CODE_16BIT)
1399 {
1400 patt = f16_patt;
1401 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1402 /* Limit number of NOPs to 2 in 16-bit mode. */
1403 max_number_of_nops = 2;
1404 }
1405 else
1406 {
1407 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1408 {
1409 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1410 switch (cpu_arch_tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* We use cpu_arch_isa_flags to check if we SHOULD
1414 optimize with nops. */
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1416 patt = alt_patt;
1417 else
1418 patt = f32_patt;
1419 break;
1420 case PROCESSOR_PENTIUM4:
1421 case PROCESSOR_NOCONA:
1422 case PROCESSOR_CORE:
1423 case PROCESSOR_CORE2:
1424 case PROCESSOR_COREI7:
1425 case PROCESSOR_L1OM:
1426 case PROCESSOR_K1OM:
1427 case PROCESSOR_GENERIC64:
1428 case PROCESSOR_K6:
1429 case PROCESSOR_ATHLON:
1430 case PROCESSOR_K8:
1431 case PROCESSOR_AMDFAM10:
1432 case PROCESSOR_BD:
1433 case PROCESSOR_ZNVER:
1434 case PROCESSOR_BT:
1435 patt = alt_patt;
1436 break;
1437 case PROCESSOR_I386:
1438 case PROCESSOR_I486:
1439 case PROCESSOR_PENTIUM:
1440 case PROCESSOR_PENTIUMPRO:
1441 case PROCESSOR_IAMCU:
1442 case PROCESSOR_GENERIC32:
1443 patt = f32_patt;
1444 break;
1445 }
1446 }
1447 else
1448 {
1449 switch (fragP->tc_frag_data.tune)
1450 {
1451 case PROCESSOR_UNKNOWN:
1452 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1453 PROCESSOR_UNKNOWN. */
1454 abort ();
1455 break;
1456
1457 case PROCESSOR_I386:
1458 case PROCESSOR_I486:
1459 case PROCESSOR_PENTIUM:
1460 case PROCESSOR_IAMCU:
1461 case PROCESSOR_K6:
1462 case PROCESSOR_ATHLON:
1463 case PROCESSOR_K8:
1464 case PROCESSOR_AMDFAM10:
1465 case PROCESSOR_BD:
1466 case PROCESSOR_ZNVER:
1467 case PROCESSOR_BT:
1468 case PROCESSOR_GENERIC32:
1469 /* We use cpu_arch_isa_flags to check if we CAN optimize
1470 with nops. */
1471 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1472 patt = alt_patt;
1473 else
1474 patt = f32_patt;
1475 break;
1476 case PROCESSOR_PENTIUMPRO:
1477 case PROCESSOR_PENTIUM4:
1478 case PROCESSOR_NOCONA:
1479 case PROCESSOR_CORE:
1480 case PROCESSOR_CORE2:
1481 case PROCESSOR_COREI7:
1482 case PROCESSOR_L1OM:
1483 case PROCESSOR_K1OM:
1484 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1485 patt = alt_patt;
1486 else
1487 patt = f32_patt;
1488 break;
1489 case PROCESSOR_GENERIC64:
1490 patt = alt_patt;
1491 break;
1492 }
1493 }
1494
1495 if (patt == f32_patt)
1496 {
1497 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1498 /* Limit number of NOPs to 2 for older processors. */
1499 max_number_of_nops = 2;
1500 }
1501 else
1502 {
1503 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1504 /* Limit number of NOPs to 7 for newer processors. */
1505 max_number_of_nops = 7;
1506 }
1507 }
1508
1509 if (limit == 0)
1510 limit = max_single_nop_size;
1511
1512 if (fragP->fr_type == rs_fill_nop)
1513 {
1514 /* Output NOPs for .nop directive. */
1515 if (limit > max_single_nop_size)
1516 {
1517 as_bad_where (fragP->fr_file, fragP->fr_line,
1518 _("invalid single nop size: %d "
1519 "(expect within [0, %d])"),
1520 limit, max_single_nop_size);
1521 return;
1522 }
1523 }
1524 else
1525 fragP->fr_var = count;
1526
1527 if ((count / max_single_nop_size) > max_number_of_nops)
1528 {
1529 /* Generate jump over NOPs. */
1530 offsetT disp = count - 2;
1531 if (fits_in_imm7 (disp))
1532 {
1533 /* Use "jmp disp8" if possible. */
1534 count = disp;
1535 where[0] = jump_disp8[0];
1536 where[1] = count;
1537 where += 2;
1538 }
1539 else
1540 {
1541 unsigned int size_of_jump;
1542
1543 if (flag_code == CODE_16BIT)
1544 {
1545 where[0] = jump16_disp32[0];
1546 where[1] = jump16_disp32[1];
1547 size_of_jump = 2;
1548 }
1549 else
1550 {
1551 where[0] = jump32_disp32[0];
1552 size_of_jump = 1;
1553 }
1554
1555 count -= size_of_jump + 4;
1556 if (!fits_in_imm31 (count))
1557 {
1558 as_bad_where (fragP->fr_file, fragP->fr_line,
1559 _("jump over nop padding out of range"));
1560 return;
1561 }
1562
1563 md_number_to_chars (where + size_of_jump, count, 4);
1564 where += size_of_jump + 4;
1565 }
1566 }
1567
1568 /* Generate multiple NOPs. */
1569 i386_output_nops (where, patt, count, limit);
1570 }
1571
1572 static INLINE int
1573 operand_type_all_zero (const union i386_operand_type *x)
1574 {
1575 switch (ARRAY_SIZE(x->array))
1576 {
1577 case 3:
1578 if (x->array[2])
1579 return 0;
1580 /* Fall through. */
1581 case 2:
1582 if (x->array[1])
1583 return 0;
1584 /* Fall through. */
1585 case 1:
1586 return !x->array[0];
1587 default:
1588 abort ();
1589 }
1590 }
1591
1592 static INLINE void
1593 operand_type_set (union i386_operand_type *x, unsigned int v)
1594 {
1595 switch (ARRAY_SIZE(x->array))
1596 {
1597 case 3:
1598 x->array[2] = v;
1599 /* Fall through. */
1600 case 2:
1601 x->array[1] = v;
1602 /* Fall through. */
1603 case 1:
1604 x->array[0] = v;
1605 /* Fall through. */
1606 break;
1607 default:
1608 abort ();
1609 }
1610 }
1611
1612 static INLINE int
1613 operand_type_equal (const union i386_operand_type *x,
1614 const union i386_operand_type *y)
1615 {
1616 switch (ARRAY_SIZE(x->array))
1617 {
1618 case 3:
1619 if (x->array[2] != y->array[2])
1620 return 0;
1621 /* Fall through. */
1622 case 2:
1623 if (x->array[1] != y->array[1])
1624 return 0;
1625 /* Fall through. */
1626 case 1:
1627 return x->array[0] == y->array[0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 }
1633
1634 static INLINE int
1635 cpu_flags_all_zero (const union i386_cpu_flags *x)
1636 {
1637 switch (ARRAY_SIZE(x->array))
1638 {
1639 case 4:
1640 if (x->array[3])
1641 return 0;
1642 /* Fall through. */
1643 case 3:
1644 if (x->array[2])
1645 return 0;
1646 /* Fall through. */
1647 case 2:
1648 if (x->array[1])
1649 return 0;
1650 /* Fall through. */
1651 case 1:
1652 return !x->array[0];
1653 default:
1654 abort ();
1655 }
1656 }
1657
1658 static INLINE int
1659 cpu_flags_equal (const union i386_cpu_flags *x,
1660 const union i386_cpu_flags *y)
1661 {
1662 switch (ARRAY_SIZE(x->array))
1663 {
1664 case 4:
1665 if (x->array[3] != y->array[3])
1666 return 0;
1667 /* Fall through. */
1668 case 3:
1669 if (x->array[2] != y->array[2])
1670 return 0;
1671 /* Fall through. */
1672 case 2:
1673 if (x->array[1] != y->array[1])
1674 return 0;
1675 /* Fall through. */
1676 case 1:
1677 return x->array[0] == y->array[0];
1678 break;
1679 default:
1680 abort ();
1681 }
1682 }
1683
1684 static INLINE int
1685 cpu_flags_check_cpu64 (i386_cpu_flags f)
1686 {
1687 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1688 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1689 }
1690
1691 static INLINE i386_cpu_flags
1692 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1693 {
1694 switch (ARRAY_SIZE (x.array))
1695 {
1696 case 4:
1697 x.array [3] &= y.array [3];
1698 /* Fall through. */
1699 case 3:
1700 x.array [2] &= y.array [2];
1701 /* Fall through. */
1702 case 2:
1703 x.array [1] &= y.array [1];
1704 /* Fall through. */
1705 case 1:
1706 x.array [0] &= y.array [0];
1707 break;
1708 default:
1709 abort ();
1710 }
1711 return x;
1712 }
1713
1714 static INLINE i386_cpu_flags
1715 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1716 {
1717 switch (ARRAY_SIZE (x.array))
1718 {
1719 case 4:
1720 x.array [3] |= y.array [3];
1721 /* Fall through. */
1722 case 3:
1723 x.array [2] |= y.array [2];
1724 /* Fall through. */
1725 case 2:
1726 x.array [1] |= y.array [1];
1727 /* Fall through. */
1728 case 1:
1729 x.array [0] |= y.array [0];
1730 break;
1731 default:
1732 abort ();
1733 }
1734 return x;
1735 }
1736
1737 static INLINE i386_cpu_flags
1738 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1739 {
1740 switch (ARRAY_SIZE (x.array))
1741 {
1742 case 4:
1743 x.array [3] &= ~y.array [3];
1744 /* Fall through. */
1745 case 3:
1746 x.array [2] &= ~y.array [2];
1747 /* Fall through. */
1748 case 2:
1749 x.array [1] &= ~y.array [1];
1750 /* Fall through. */
1751 case 1:
1752 x.array [0] &= ~y.array [0];
1753 break;
1754 default:
1755 abort ();
1756 }
1757 return x;
1758 }
1759
1760 #define CPU_FLAGS_ARCH_MATCH 0x1
1761 #define CPU_FLAGS_64BIT_MATCH 0x2
1762
1763 #define CPU_FLAGS_PERFECT_MATCH \
1764 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1765
1766 /* Return CPU flags match bits. */
1767
1768 static int
1769 cpu_flags_match (const insn_template *t)
1770 {
1771 i386_cpu_flags x = t->cpu_flags;
1772 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1773
1774 x.bitfield.cpu64 = 0;
1775 x.bitfield.cpuno64 = 0;
1776
1777 if (cpu_flags_all_zero (&x))
1778 {
1779 /* This instruction is available on all archs. */
1780 match |= CPU_FLAGS_ARCH_MATCH;
1781 }
1782 else
1783 {
1784 /* This instruction is available only on some archs. */
1785 i386_cpu_flags cpu = cpu_arch_flags;
1786
1787 /* AVX512VL is no standalone feature - match it and then strip it. */
1788 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1789 return match;
1790 x.bitfield.cpuavx512vl = 0;
1791
1792 cpu = cpu_flags_and (x, cpu);
1793 if (!cpu_flags_all_zero (&cpu))
1794 {
1795 if (x.bitfield.cpuavx)
1796 {
1797 /* We need to check a few extra flags with AVX. */
1798 if (cpu.bitfield.cpuavx
1799 && (!t->opcode_modifier.sse2avx || sse2avx)
1800 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1801 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1802 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1803 match |= CPU_FLAGS_ARCH_MATCH;
1804 }
1805 else if (x.bitfield.cpuavx512f)
1806 {
1807 /* We need to check a few extra flags with AVX512F. */
1808 if (cpu.bitfield.cpuavx512f
1809 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1810 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1811 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
1814 else
1815 match |= CPU_FLAGS_ARCH_MATCH;
1816 }
1817 }
1818 return match;
1819 }
1820
1821 static INLINE i386_operand_type
1822 operand_type_and (i386_operand_type x, i386_operand_type y)
1823 {
1824 switch (ARRAY_SIZE (x.array))
1825 {
1826 case 3:
1827 x.array [2] &= y.array [2];
1828 /* Fall through. */
1829 case 2:
1830 x.array [1] &= y.array [1];
1831 /* Fall through. */
1832 case 1:
1833 x.array [0] &= y.array [0];
1834 break;
1835 default:
1836 abort ();
1837 }
1838 return x;
1839 }
1840
1841 static INLINE i386_operand_type
1842 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1843 {
1844 switch (ARRAY_SIZE (x.array))
1845 {
1846 case 3:
1847 x.array [2] &= ~y.array [2];
1848 /* Fall through. */
1849 case 2:
1850 x.array [1] &= ~y.array [1];
1851 /* Fall through. */
1852 case 1:
1853 x.array [0] &= ~y.array [0];
1854 break;
1855 default:
1856 abort ();
1857 }
1858 return x;
1859 }
1860
1861 static INLINE i386_operand_type
1862 operand_type_or (i386_operand_type x, i386_operand_type y)
1863 {
1864 switch (ARRAY_SIZE (x.array))
1865 {
1866 case 3:
1867 x.array [2] |= y.array [2];
1868 /* Fall through. */
1869 case 2:
1870 x.array [1] |= y.array [1];
1871 /* Fall through. */
1872 case 1:
1873 x.array [0] |= y.array [0];
1874 break;
1875 default:
1876 abort ();
1877 }
1878 return x;
1879 }
1880
1881 static INLINE i386_operand_type
1882 operand_type_xor (i386_operand_type x, i386_operand_type y)
1883 {
1884 switch (ARRAY_SIZE (x.array))
1885 {
1886 case 3:
1887 x.array [2] ^= y.array [2];
1888 /* Fall through. */
1889 case 2:
1890 x.array [1] ^= y.array [1];
1891 /* Fall through. */
1892 case 1:
1893 x.array [0] ^= y.array [0];
1894 break;
1895 default:
1896 abort ();
1897 }
1898 return x;
1899 }
1900
1901 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1902 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1903 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1904 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1905 static const i386_operand_type anydisp
1906 = OPERAND_TYPE_ANYDISP;
1907 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1908 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1909 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1910 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1911 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1912 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1913 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1914 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1915 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1916 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1917 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1918 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1919
1920 enum operand_type
1921 {
1922 reg,
1923 imm,
1924 disp,
1925 anymem
1926 };
1927
1928 static INLINE int
1929 operand_type_check (i386_operand_type t, enum operand_type c)
1930 {
1931 switch (c)
1932 {
1933 case reg:
1934 return t.bitfield.reg;
1935
1936 case imm:
1937 return (t.bitfield.imm8
1938 || t.bitfield.imm8s
1939 || t.bitfield.imm16
1940 || t.bitfield.imm32
1941 || t.bitfield.imm32s
1942 || t.bitfield.imm64);
1943
1944 case disp:
1945 return (t.bitfield.disp8
1946 || t.bitfield.disp16
1947 || t.bitfield.disp32
1948 || t.bitfield.disp32s
1949 || t.bitfield.disp64);
1950
1951 case anymem:
1952 return (t.bitfield.disp8
1953 || t.bitfield.disp16
1954 || t.bitfield.disp32
1955 || t.bitfield.disp32s
1956 || t.bitfield.disp64
1957 || t.bitfield.baseindex);
1958
1959 default:
1960 abort ();
1961 }
1962
1963 return 0;
1964 }
1965
1966 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1967 between operand GIVEN and opeand WANTED for instruction template T. */
1968
1969 static INLINE int
1970 match_operand_size (const insn_template *t, unsigned int wanted,
1971 unsigned int given)
1972 {
1973 return !((i.types[given].bitfield.byte
1974 && !t->operand_types[wanted].bitfield.byte)
1975 || (i.types[given].bitfield.word
1976 && !t->operand_types[wanted].bitfield.word)
1977 || (i.types[given].bitfield.dword
1978 && !t->operand_types[wanted].bitfield.dword)
1979 || (i.types[given].bitfield.qword
1980 && !t->operand_types[wanted].bitfield.qword)
1981 || (i.types[given].bitfield.tbyte
1982 && !t->operand_types[wanted].bitfield.tbyte));
1983 }
1984
1985 /* Return 1 if there is no conflict in SIMD register between operand
1986 GIVEN and opeand WANTED for instruction template T. */
1987
1988 static INLINE int
1989 match_simd_size (const insn_template *t, unsigned int wanted,
1990 unsigned int given)
1991 {
1992 return !((i.types[given].bitfield.xmmword
1993 && !t->operand_types[wanted].bitfield.xmmword)
1994 || (i.types[given].bitfield.ymmword
1995 && !t->operand_types[wanted].bitfield.ymmword)
1996 || (i.types[given].bitfield.zmmword
1997 && !t->operand_types[wanted].bitfield.zmmword));
1998 }
1999
2000 /* Return 1 if there is no conflict in any size between operand GIVEN
2001 and opeand WANTED for instruction template T. */
2002
2003 static INLINE int
2004 match_mem_size (const insn_template *t, unsigned int wanted,
2005 unsigned int given)
2006 {
2007 return (match_operand_size (t, wanted, given)
2008 && !((i.types[given].bitfield.unspecified
2009 && !i.broadcast
2010 && !t->operand_types[wanted].bitfield.unspecified)
2011 || (i.types[given].bitfield.fword
2012 && !t->operand_types[wanted].bitfield.fword)
2013 /* For scalar opcode templates to allow register and memory
2014 operands at the same time, some special casing is needed
2015 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2016 down-conversion vpmov*. */
2017 || ((t->operand_types[wanted].bitfield.regsimd
2018 && !t->opcode_modifier.broadcast
2019 && (t->operand_types[wanted].bitfield.byte
2020 || t->operand_types[wanted].bitfield.word
2021 || t->operand_types[wanted].bitfield.dword
2022 || t->operand_types[wanted].bitfield.qword))
2023 ? (i.types[given].bitfield.xmmword
2024 || i.types[given].bitfield.ymmword
2025 || i.types[given].bitfield.zmmword)
2026 : !match_simd_size(t, wanted, given))));
2027 }
2028
2029 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2030 operands for instruction template T, and it has MATCH_REVERSE set if there
2031 is no size conflict on any operands for the template with operands reversed
2032 (and the template allows for reversing in the first place). */
2033
2034 #define MATCH_STRAIGHT 1
2035 #define MATCH_REVERSE 2
2036
2037 static INLINE unsigned int
2038 operand_size_match (const insn_template *t)
2039 {
2040 unsigned int j, match = MATCH_STRAIGHT;
2041
2042 /* Don't check jump instructions. */
2043 if (t->opcode_modifier.jump
2044 || t->opcode_modifier.jumpbyte
2045 || t->opcode_modifier.jumpdword
2046 || t->opcode_modifier.jumpintersegment)
2047 return match;
2048
2049 /* Check memory and accumulator operand size. */
2050 for (j = 0; j < i.operands; j++)
2051 {
2052 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2053 && t->operand_types[j].bitfield.anysize)
2054 continue;
2055
2056 if (t->operand_types[j].bitfield.reg
2057 && !match_operand_size (t, j, j))
2058 {
2059 match = 0;
2060 break;
2061 }
2062
2063 if (t->operand_types[j].bitfield.regsimd
2064 && !match_simd_size (t, j, j))
2065 {
2066 match = 0;
2067 break;
2068 }
2069
2070 if (t->operand_types[j].bitfield.acc
2071 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2072 {
2073 match = 0;
2074 break;
2075 }
2076
2077 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2078 {
2079 match = 0;
2080 break;
2081 }
2082 }
2083
2084 if (!t->opcode_modifier.d)
2085 {
2086 mismatch:
2087 if (!match)
2088 i.error = operand_size_mismatch;
2089 return match;
2090 }
2091
2092 /* Check reverse. */
2093 gas_assert (i.operands >= 2 && i.operands <= 3);
2094
2095 for (j = 0; j < i.operands; j++)
2096 {
2097 unsigned int given = i.operands - j - 1;
2098
2099 if (t->operand_types[j].bitfield.reg
2100 && !match_operand_size (t, j, given))
2101 goto mismatch;
2102
2103 if (t->operand_types[j].bitfield.regsimd
2104 && !match_simd_size (t, j, given))
2105 goto mismatch;
2106
2107 if (t->operand_types[j].bitfield.acc
2108 && (!match_operand_size (t, j, given)
2109 || !match_simd_size (t, j, given)))
2110 goto mismatch;
2111
2112 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2113 goto mismatch;
2114 }
2115
2116 return match | MATCH_REVERSE;
2117 }
2118
2119 static INLINE int
2120 operand_type_match (i386_operand_type overlap,
2121 i386_operand_type given)
2122 {
2123 i386_operand_type temp = overlap;
2124
2125 temp.bitfield.jumpabsolute = 0;
2126 temp.bitfield.unspecified = 0;
2127 temp.bitfield.byte = 0;
2128 temp.bitfield.word = 0;
2129 temp.bitfield.dword = 0;
2130 temp.bitfield.fword = 0;
2131 temp.bitfield.qword = 0;
2132 temp.bitfield.tbyte = 0;
2133 temp.bitfield.xmmword = 0;
2134 temp.bitfield.ymmword = 0;
2135 temp.bitfield.zmmword = 0;
2136 if (operand_type_all_zero (&temp))
2137 goto mismatch;
2138
2139 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2140 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2141 return 1;
2142
2143 mismatch:
2144 i.error = operand_type_mismatch;
2145 return 0;
2146 }
2147
2148 /* If given types g0 and g1 are registers they must be of the same type
2149 unless the expected operand type register overlap is null.
2150 Memory operand size of certain SIMD instructions is also being checked
2151 here. */
2152
2153 static INLINE int
2154 operand_type_register_match (i386_operand_type g0,
2155 i386_operand_type t0,
2156 i386_operand_type g1,
2157 i386_operand_type t1)
2158 {
2159 if (!g0.bitfield.reg
2160 && !g0.bitfield.regsimd
2161 && (!operand_type_check (g0, anymem)
2162 || g0.bitfield.unspecified
2163 || !t0.bitfield.regsimd))
2164 return 1;
2165
2166 if (!g1.bitfield.reg
2167 && !g1.bitfield.regsimd
2168 && (!operand_type_check (g1, anymem)
2169 || g1.bitfield.unspecified
2170 || !t1.bitfield.regsimd))
2171 return 1;
2172
2173 if (g0.bitfield.byte == g1.bitfield.byte
2174 && g0.bitfield.word == g1.bitfield.word
2175 && g0.bitfield.dword == g1.bitfield.dword
2176 && g0.bitfield.qword == g1.bitfield.qword
2177 && g0.bitfield.xmmword == g1.bitfield.xmmword
2178 && g0.bitfield.ymmword == g1.bitfield.ymmword
2179 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2180 return 1;
2181
2182 if (!(t0.bitfield.byte & t1.bitfield.byte)
2183 && !(t0.bitfield.word & t1.bitfield.word)
2184 && !(t0.bitfield.dword & t1.bitfield.dword)
2185 && !(t0.bitfield.qword & t1.bitfield.qword)
2186 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2187 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2188 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2189 return 1;
2190
2191 i.error = register_type_mismatch;
2192
2193 return 0;
2194 }
2195
2196 static INLINE unsigned int
2197 register_number (const reg_entry *r)
2198 {
2199 unsigned int nr = r->reg_num;
2200
2201 if (r->reg_flags & RegRex)
2202 nr += 8;
2203
2204 if (r->reg_flags & RegVRex)
2205 nr += 16;
2206
2207 return nr;
2208 }
2209
2210 static INLINE unsigned int
2211 mode_from_disp_size (i386_operand_type t)
2212 {
2213 if (t.bitfield.disp8)
2214 return 1;
2215 else if (t.bitfield.disp16
2216 || t.bitfield.disp32
2217 || t.bitfield.disp32s)
2218 return 2;
2219 else
2220 return 0;
2221 }
2222
2223 static INLINE int
2224 fits_in_signed_byte (addressT num)
2225 {
2226 return num + 0x80 <= 0xff;
2227 }
2228
2229 static INLINE int
2230 fits_in_unsigned_byte (addressT num)
2231 {
2232 return num <= 0xff;
2233 }
2234
2235 static INLINE int
2236 fits_in_unsigned_word (addressT num)
2237 {
2238 return num <= 0xffff;
2239 }
2240
2241 static INLINE int
2242 fits_in_signed_word (addressT num)
2243 {
2244 return num + 0x8000 <= 0xffff;
2245 }
2246
2247 static INLINE int
2248 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2249 {
2250 #ifndef BFD64
2251 return 1;
2252 #else
2253 return num + 0x80000000 <= 0xffffffff;
2254 #endif
2255 } /* fits_in_signed_long() */
2256
2257 static INLINE int
2258 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2259 {
2260 #ifndef BFD64
2261 return 1;
2262 #else
2263 return num <= 0xffffffff;
2264 #endif
2265 } /* fits_in_unsigned_long() */
2266
2267 static INLINE int
2268 fits_in_disp8 (offsetT num)
2269 {
2270 int shift = i.memshift;
2271 unsigned int mask;
2272
2273 if (shift == -1)
2274 abort ();
2275
2276 mask = (1 << shift) - 1;
2277
2278 /* Return 0 if NUM isn't properly aligned. */
2279 if ((num & mask))
2280 return 0;
2281
2282 /* Check if NUM will fit in 8bit after shift. */
2283 return fits_in_signed_byte (num >> shift);
2284 }
2285
2286 static INLINE int
2287 fits_in_imm4 (offsetT num)
2288 {
2289 return (num & 0xf) == num;
2290 }
2291
2292 static i386_operand_type
2293 smallest_imm_type (offsetT num)
2294 {
2295 i386_operand_type t;
2296
2297 operand_type_set (&t, 0);
2298 t.bitfield.imm64 = 1;
2299
2300 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2301 {
2302 /* This code is disabled on the 486 because all the Imm1 forms
2303 in the opcode table are slower on the i486. They're the
2304 versions with the implicitly specified single-position
2305 displacement, which has another syntax if you really want to
2306 use that form. */
2307 t.bitfield.imm1 = 1;
2308 t.bitfield.imm8 = 1;
2309 t.bitfield.imm8s = 1;
2310 t.bitfield.imm16 = 1;
2311 t.bitfield.imm32 = 1;
2312 t.bitfield.imm32s = 1;
2313 }
2314 else if (fits_in_signed_byte (num))
2315 {
2316 t.bitfield.imm8 = 1;
2317 t.bitfield.imm8s = 1;
2318 t.bitfield.imm16 = 1;
2319 t.bitfield.imm32 = 1;
2320 t.bitfield.imm32s = 1;
2321 }
2322 else if (fits_in_unsigned_byte (num))
2323 {
2324 t.bitfield.imm8 = 1;
2325 t.bitfield.imm16 = 1;
2326 t.bitfield.imm32 = 1;
2327 t.bitfield.imm32s = 1;
2328 }
2329 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2330 {
2331 t.bitfield.imm16 = 1;
2332 t.bitfield.imm32 = 1;
2333 t.bitfield.imm32s = 1;
2334 }
2335 else if (fits_in_signed_long (num))
2336 {
2337 t.bitfield.imm32 = 1;
2338 t.bitfield.imm32s = 1;
2339 }
2340 else if (fits_in_unsigned_long (num))
2341 t.bitfield.imm32 = 1;
2342
2343 return t;
2344 }
2345
2346 static offsetT
2347 offset_in_range (offsetT val, int size)
2348 {
2349 addressT mask;
2350
2351 switch (size)
2352 {
2353 case 1: mask = ((addressT) 1 << 8) - 1; break;
2354 case 2: mask = ((addressT) 1 << 16) - 1; break;
2355 case 4: mask = ((addressT) 2 << 31) - 1; break;
2356 #ifdef BFD64
2357 case 8: mask = ((addressT) 2 << 63) - 1; break;
2358 #endif
2359 default: abort ();
2360 }
2361
2362 #ifdef BFD64
2363 /* If BFD64, sign extend val for 32bit address mode. */
2364 if (flag_code != CODE_64BIT
2365 || i.prefix[ADDR_PREFIX])
2366 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2367 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2368 #endif
2369
2370 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2371 {
2372 char buf1[40], buf2[40];
2373
2374 sprint_value (buf1, val);
2375 sprint_value (buf2, val & mask);
2376 as_warn (_("%s shortened to %s"), buf1, buf2);
2377 }
2378 return val & mask;
2379 }
2380
2381 enum PREFIX_GROUP
2382 {
2383 PREFIX_EXIST = 0,
2384 PREFIX_LOCK,
2385 PREFIX_REP,
2386 PREFIX_DS,
2387 PREFIX_OTHER
2388 };
2389
2390 /* Returns
2391 a. PREFIX_EXIST if attempting to add a prefix where one from the
2392 same class already exists.
2393 b. PREFIX_LOCK if lock prefix is added.
2394 c. PREFIX_REP if rep/repne prefix is added.
2395 d. PREFIX_DS if ds prefix is added.
2396 e. PREFIX_OTHER if other prefix is added.
2397 */
2398
2399 static enum PREFIX_GROUP
2400 add_prefix (unsigned int prefix)
2401 {
2402 enum PREFIX_GROUP ret = PREFIX_OTHER;
2403 unsigned int q;
2404
2405 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2406 && flag_code == CODE_64BIT)
2407 {
2408 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2411 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2412 ret = PREFIX_EXIST;
2413 q = REX_PREFIX;
2414 }
2415 else
2416 {
2417 switch (prefix)
2418 {
2419 default:
2420 abort ();
2421
2422 case DS_PREFIX_OPCODE:
2423 ret = PREFIX_DS;
2424 /* Fall through. */
2425 case CS_PREFIX_OPCODE:
2426 case ES_PREFIX_OPCODE:
2427 case FS_PREFIX_OPCODE:
2428 case GS_PREFIX_OPCODE:
2429 case SS_PREFIX_OPCODE:
2430 q = SEG_PREFIX;
2431 break;
2432
2433 case REPNE_PREFIX_OPCODE:
2434 case REPE_PREFIX_OPCODE:
2435 q = REP_PREFIX;
2436 ret = PREFIX_REP;
2437 break;
2438
2439 case LOCK_PREFIX_OPCODE:
2440 q = LOCK_PREFIX;
2441 ret = PREFIX_LOCK;
2442 break;
2443
2444 case FWAIT_OPCODE:
2445 q = WAIT_PREFIX;
2446 break;
2447
2448 case ADDR_PREFIX_OPCODE:
2449 q = ADDR_PREFIX;
2450 break;
2451
2452 case DATA_PREFIX_OPCODE:
2453 q = DATA_PREFIX;
2454 break;
2455 }
2456 if (i.prefix[q] != 0)
2457 ret = PREFIX_EXIST;
2458 }
2459
2460 if (ret)
2461 {
2462 if (!i.prefix[q])
2463 ++i.prefixes;
2464 i.prefix[q] |= prefix;
2465 }
2466 else
2467 as_bad (_("same type of prefix used twice"));
2468
2469 return ret;
2470 }
2471
2472 static void
2473 update_code_flag (int value, int check)
2474 {
2475 PRINTF_LIKE ((*as_error));
2476
2477 flag_code = (enum flag_code) value;
2478 if (flag_code == CODE_64BIT)
2479 {
2480 cpu_arch_flags.bitfield.cpu64 = 1;
2481 cpu_arch_flags.bitfield.cpuno64 = 0;
2482 }
2483 else
2484 {
2485 cpu_arch_flags.bitfield.cpu64 = 0;
2486 cpu_arch_flags.bitfield.cpuno64 = 1;
2487 }
2488 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2489 {
2490 if (check)
2491 as_error = as_fatal;
2492 else
2493 as_error = as_bad;
2494 (*as_error) (_("64bit mode not supported on `%s'."),
2495 cpu_arch_name ? cpu_arch_name : default_arch);
2496 }
2497 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2498 {
2499 if (check)
2500 as_error = as_fatal;
2501 else
2502 as_error = as_bad;
2503 (*as_error) (_("32bit mode not supported on `%s'."),
2504 cpu_arch_name ? cpu_arch_name : default_arch);
2505 }
2506 stackop_size = '\0';
2507 }
2508
2509 static void
2510 set_code_flag (int value)
2511 {
2512 update_code_flag (value, 0);
2513 }
2514
2515 static void
2516 set_16bit_gcc_code_flag (int new_code_flag)
2517 {
2518 flag_code = (enum flag_code) new_code_flag;
2519 if (flag_code != CODE_16BIT)
2520 abort ();
2521 cpu_arch_flags.bitfield.cpu64 = 0;
2522 cpu_arch_flags.bitfield.cpuno64 = 1;
2523 stackop_size = LONG_MNEM_SUFFIX;
2524 }
2525
2526 static void
2527 set_intel_syntax (int syntax_flag)
2528 {
2529 /* Find out if register prefixing is specified. */
2530 int ask_naked_reg = 0;
2531
2532 SKIP_WHITESPACE ();
2533 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2534 {
2535 char *string;
2536 int e = get_symbol_name (&string);
2537
2538 if (strcmp (string, "prefix") == 0)
2539 ask_naked_reg = 1;
2540 else if (strcmp (string, "noprefix") == 0)
2541 ask_naked_reg = -1;
2542 else
2543 as_bad (_("bad argument to syntax directive."));
2544 (void) restore_line_pointer (e);
2545 }
2546 demand_empty_rest_of_line ();
2547
2548 intel_syntax = syntax_flag;
2549
2550 if (ask_naked_reg == 0)
2551 allow_naked_reg = (intel_syntax
2552 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2553 else
2554 allow_naked_reg = (ask_naked_reg < 0);
2555
2556 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2557
2558 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2559 identifier_chars['$'] = intel_syntax ? '$' : 0;
2560 register_prefix = allow_naked_reg ? "" : "%";
2561 }
2562
2563 static void
2564 set_intel_mnemonic (int mnemonic_flag)
2565 {
2566 intel_mnemonic = mnemonic_flag;
2567 }
2568
2569 static void
2570 set_allow_index_reg (int flag)
2571 {
2572 allow_index_reg = flag;
2573 }
2574
2575 static void
2576 set_check (int what)
2577 {
2578 enum check_kind *kind;
2579 const char *str;
2580
2581 if (what)
2582 {
2583 kind = &operand_check;
2584 str = "operand";
2585 }
2586 else
2587 {
2588 kind = &sse_check;
2589 str = "sse";
2590 }
2591
2592 SKIP_WHITESPACE ();
2593
2594 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2595 {
2596 char *string;
2597 int e = get_symbol_name (&string);
2598
2599 if (strcmp (string, "none") == 0)
2600 *kind = check_none;
2601 else if (strcmp (string, "warning") == 0)
2602 *kind = check_warning;
2603 else if (strcmp (string, "error") == 0)
2604 *kind = check_error;
2605 else
2606 as_bad (_("bad argument to %s_check directive."), str);
2607 (void) restore_line_pointer (e);
2608 }
2609 else
2610 as_bad (_("missing argument for %s_check directive"), str);
2611
2612 demand_empty_rest_of_line ();
2613 }
2614
2615 static void
2616 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2617 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2618 {
2619 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2620 static const char *arch;
2621
2622 /* Intel LIOM is only supported on ELF. */
2623 if (!IS_ELF)
2624 return;
2625
2626 if (!arch)
2627 {
2628 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2629 use default_arch. */
2630 arch = cpu_arch_name;
2631 if (!arch)
2632 arch = default_arch;
2633 }
2634
2635 /* If we are targeting Intel MCU, we must enable it. */
2636 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2637 || new_flag.bitfield.cpuiamcu)
2638 return;
2639
2640 /* If we are targeting Intel L1OM, we must enable it. */
2641 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2642 || new_flag.bitfield.cpul1om)
2643 return;
2644
2645 /* If we are targeting Intel K1OM, we must enable it. */
2646 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2647 || new_flag.bitfield.cpuk1om)
2648 return;
2649
2650 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2651 #endif
2652 }
2653
2654 static void
2655 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2656 {
2657 SKIP_WHITESPACE ();
2658
2659 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2660 {
2661 char *string;
2662 int e = get_symbol_name (&string);
2663 unsigned int j;
2664 i386_cpu_flags flags;
2665
2666 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2667 {
2668 if (strcmp (string, cpu_arch[j].name) == 0)
2669 {
2670 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2671
2672 if (*string != '.')
2673 {
2674 cpu_arch_name = cpu_arch[j].name;
2675 cpu_sub_arch_name = NULL;
2676 cpu_arch_flags = cpu_arch[j].flags;
2677 if (flag_code == CODE_64BIT)
2678 {
2679 cpu_arch_flags.bitfield.cpu64 = 1;
2680 cpu_arch_flags.bitfield.cpuno64 = 0;
2681 }
2682 else
2683 {
2684 cpu_arch_flags.bitfield.cpu64 = 0;
2685 cpu_arch_flags.bitfield.cpuno64 = 1;
2686 }
2687 cpu_arch_isa = cpu_arch[j].type;
2688 cpu_arch_isa_flags = cpu_arch[j].flags;
2689 if (!cpu_arch_tune_set)
2690 {
2691 cpu_arch_tune = cpu_arch_isa;
2692 cpu_arch_tune_flags = cpu_arch_isa_flags;
2693 }
2694 break;
2695 }
2696
2697 flags = cpu_flags_or (cpu_arch_flags,
2698 cpu_arch[j].flags);
2699
2700 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2701 {
2702 if (cpu_sub_arch_name)
2703 {
2704 char *name = cpu_sub_arch_name;
2705 cpu_sub_arch_name = concat (name,
2706 cpu_arch[j].name,
2707 (const char *) NULL);
2708 free (name);
2709 }
2710 else
2711 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2712 cpu_arch_flags = flags;
2713 cpu_arch_isa_flags = flags;
2714 }
2715 else
2716 cpu_arch_isa_flags
2717 = cpu_flags_or (cpu_arch_isa_flags,
2718 cpu_arch[j].flags);
2719 (void) restore_line_pointer (e);
2720 demand_empty_rest_of_line ();
2721 return;
2722 }
2723 }
2724
2725 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2726 {
2727 /* Disable an ISA extension. */
2728 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2729 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2730 {
2731 flags = cpu_flags_and_not (cpu_arch_flags,
2732 cpu_noarch[j].flags);
2733 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2734 {
2735 if (cpu_sub_arch_name)
2736 {
2737 char *name = cpu_sub_arch_name;
2738 cpu_sub_arch_name = concat (name, string,
2739 (const char *) NULL);
2740 free (name);
2741 }
2742 else
2743 cpu_sub_arch_name = xstrdup (string);
2744 cpu_arch_flags = flags;
2745 cpu_arch_isa_flags = flags;
2746 }
2747 (void) restore_line_pointer (e);
2748 demand_empty_rest_of_line ();
2749 return;
2750 }
2751
2752 j = ARRAY_SIZE (cpu_arch);
2753 }
2754
2755 if (j >= ARRAY_SIZE (cpu_arch))
2756 as_bad (_("no such architecture: `%s'"), string);
2757
2758 *input_line_pointer = e;
2759 }
2760 else
2761 as_bad (_("missing cpu architecture"));
2762
2763 no_cond_jump_promotion = 0;
2764 if (*input_line_pointer == ','
2765 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2766 {
2767 char *string;
2768 char e;
2769
2770 ++input_line_pointer;
2771 e = get_symbol_name (&string);
2772
2773 if (strcmp (string, "nojumps") == 0)
2774 no_cond_jump_promotion = 1;
2775 else if (strcmp (string, "jumps") == 0)
2776 ;
2777 else
2778 as_bad (_("no such architecture modifier: `%s'"), string);
2779
2780 (void) restore_line_pointer (e);
2781 }
2782
2783 demand_empty_rest_of_line ();
2784 }
2785
2786 enum bfd_architecture
2787 i386_arch (void)
2788 {
2789 if (cpu_arch_isa == PROCESSOR_L1OM)
2790 {
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || flag_code != CODE_64BIT)
2793 as_fatal (_("Intel L1OM is 64bit ELF only"));
2794 return bfd_arch_l1om;
2795 }
2796 else if (cpu_arch_isa == PROCESSOR_K1OM)
2797 {
2798 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2799 || flag_code != CODE_64BIT)
2800 as_fatal (_("Intel K1OM is 64bit ELF only"));
2801 return bfd_arch_k1om;
2802 }
2803 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2804 {
2805 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2806 || flag_code == CODE_64BIT)
2807 as_fatal (_("Intel MCU is 32bit ELF only"));
2808 return bfd_arch_iamcu;
2809 }
2810 else
2811 return bfd_arch_i386;
2812 }
2813
2814 unsigned long
2815 i386_mach (void)
2816 {
2817 if (!strncmp (default_arch, "x86_64", 6))
2818 {
2819 if (cpu_arch_isa == PROCESSOR_L1OM)
2820 {
2821 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2822 || default_arch[6] != '\0')
2823 as_fatal (_("Intel L1OM is 64bit ELF only"));
2824 return bfd_mach_l1om;
2825 }
2826 else if (cpu_arch_isa == PROCESSOR_K1OM)
2827 {
2828 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2829 || default_arch[6] != '\0')
2830 as_fatal (_("Intel K1OM is 64bit ELF only"));
2831 return bfd_mach_k1om;
2832 }
2833 else if (default_arch[6] == '\0')
2834 return bfd_mach_x86_64;
2835 else
2836 return bfd_mach_x64_32;
2837 }
2838 else if (!strcmp (default_arch, "i386")
2839 || !strcmp (default_arch, "iamcu"))
2840 {
2841 if (cpu_arch_isa == PROCESSOR_IAMCU)
2842 {
2843 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2844 as_fatal (_("Intel MCU is 32bit ELF only"));
2845 return bfd_mach_i386_iamcu;
2846 }
2847 else
2848 return bfd_mach_i386_i386;
2849 }
2850 else
2851 as_fatal (_("unknown architecture"));
2852 }
2853 \f
2854 void
2855 md_begin (void)
2856 {
2857 const char *hash_err;
2858
2859 /* Support pseudo prefixes like {disp32}. */
2860 lex_type ['{'] = LEX_BEGIN_NAME;
2861
2862 /* Initialize op_hash hash table. */
2863 op_hash = hash_new ();
2864
2865 {
2866 const insn_template *optab;
2867 templates *core_optab;
2868
2869 /* Setup for loop. */
2870 optab = i386_optab;
2871 core_optab = XNEW (templates);
2872 core_optab->start = optab;
2873
2874 while (1)
2875 {
2876 ++optab;
2877 if (optab->name == NULL
2878 || strcmp (optab->name, (optab - 1)->name) != 0)
2879 {
2880 /* different name --> ship out current template list;
2881 add to hash table; & begin anew. */
2882 core_optab->end = optab;
2883 hash_err = hash_insert (op_hash,
2884 (optab - 1)->name,
2885 (void *) core_optab);
2886 if (hash_err)
2887 {
2888 as_fatal (_("can't hash %s: %s"),
2889 (optab - 1)->name,
2890 hash_err);
2891 }
2892 if (optab->name == NULL)
2893 break;
2894 core_optab = XNEW (templates);
2895 core_optab->start = optab;
2896 }
2897 }
2898 }
2899
2900 /* Initialize reg_hash hash table. */
2901 reg_hash = hash_new ();
2902 {
2903 const reg_entry *regtab;
2904 unsigned int regtab_size = i386_regtab_size;
2905
2906 for (regtab = i386_regtab; regtab_size--; regtab++)
2907 {
2908 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2909 if (hash_err)
2910 as_fatal (_("can't hash %s: %s"),
2911 regtab->reg_name,
2912 hash_err);
2913 }
2914 }
2915
2916 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2917 {
2918 int c;
2919 char *p;
2920
2921 for (c = 0; c < 256; c++)
2922 {
2923 if (ISDIGIT (c))
2924 {
2925 digit_chars[c] = c;
2926 mnemonic_chars[c] = c;
2927 register_chars[c] = c;
2928 operand_chars[c] = c;
2929 }
2930 else if (ISLOWER (c))
2931 {
2932 mnemonic_chars[c] = c;
2933 register_chars[c] = c;
2934 operand_chars[c] = c;
2935 }
2936 else if (ISUPPER (c))
2937 {
2938 mnemonic_chars[c] = TOLOWER (c);
2939 register_chars[c] = mnemonic_chars[c];
2940 operand_chars[c] = c;
2941 }
2942 else if (c == '{' || c == '}')
2943 {
2944 mnemonic_chars[c] = c;
2945 operand_chars[c] = c;
2946 }
2947
2948 if (ISALPHA (c) || ISDIGIT (c))
2949 identifier_chars[c] = c;
2950 else if (c >= 128)
2951 {
2952 identifier_chars[c] = c;
2953 operand_chars[c] = c;
2954 }
2955 }
2956
2957 #ifdef LEX_AT
2958 identifier_chars['@'] = '@';
2959 #endif
2960 #ifdef LEX_QM
2961 identifier_chars['?'] = '?';
2962 operand_chars['?'] = '?';
2963 #endif
2964 digit_chars['-'] = '-';
2965 mnemonic_chars['_'] = '_';
2966 mnemonic_chars['-'] = '-';
2967 mnemonic_chars['.'] = '.';
2968 identifier_chars['_'] = '_';
2969 identifier_chars['.'] = '.';
2970
2971 for (p = operand_special_chars; *p != '\0'; p++)
2972 operand_chars[(unsigned char) *p] = *p;
2973 }
2974
2975 if (flag_code == CODE_64BIT)
2976 {
2977 #if defined (OBJ_COFF) && defined (TE_PE)
2978 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2979 ? 32 : 16);
2980 #else
2981 x86_dwarf2_return_column = 16;
2982 #endif
2983 x86_cie_data_alignment = -8;
2984 }
2985 else
2986 {
2987 x86_dwarf2_return_column = 8;
2988 x86_cie_data_alignment = -4;
2989 }
2990 }
2991
2992 void
2993 i386_print_statistics (FILE *file)
2994 {
2995 hash_print_statistics (file, "i386 opcode", op_hash);
2996 hash_print_statistics (file, "i386 register", reg_hash);
2997 }
2998 \f
2999 #ifdef DEBUG386
3000
3001 /* Debugging routines for md_assemble. */
3002 static void pte (insn_template *);
3003 static void pt (i386_operand_type);
3004 static void pe (expressionS *);
3005 static void ps (symbolS *);
3006
3007 static void
3008 pi (const char *line, i386_insn *x)
3009 {
3010 unsigned int j;
3011
3012 fprintf (stdout, "%s: template ", line);
3013 pte (&x->tm);
3014 fprintf (stdout, " address: base %s index %s scale %x\n",
3015 x->base_reg ? x->base_reg->reg_name : "none",
3016 x->index_reg ? x->index_reg->reg_name : "none",
3017 x->log2_scale_factor);
3018 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3019 x->rm.mode, x->rm.reg, x->rm.regmem);
3020 fprintf (stdout, " sib: base %x index %x scale %x\n",
3021 x->sib.base, x->sib.index, x->sib.scale);
3022 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3023 (x->rex & REX_W) != 0,
3024 (x->rex & REX_R) != 0,
3025 (x->rex & REX_X) != 0,
3026 (x->rex & REX_B) != 0);
3027 for (j = 0; j < x->operands; j++)
3028 {
3029 fprintf (stdout, " #%d: ", j + 1);
3030 pt (x->types[j]);
3031 fprintf (stdout, "\n");
3032 if (x->types[j].bitfield.reg
3033 || x->types[j].bitfield.regmmx
3034 || x->types[j].bitfield.regsimd
3035 || x->types[j].bitfield.sreg2
3036 || x->types[j].bitfield.sreg3
3037 || x->types[j].bitfield.control
3038 || x->types[j].bitfield.debug
3039 || x->types[j].bitfield.test)
3040 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3041 if (operand_type_check (x->types[j], imm))
3042 pe (x->op[j].imms);
3043 if (operand_type_check (x->types[j], disp))
3044 pe (x->op[j].disps);
3045 }
3046 }
3047
3048 static void
3049 pte (insn_template *t)
3050 {
3051 unsigned int j;
3052 fprintf (stdout, " %d operands ", t->operands);
3053 fprintf (stdout, "opcode %x ", t->base_opcode);
3054 if (t->extension_opcode != None)
3055 fprintf (stdout, "ext %x ", t->extension_opcode);
3056 if (t->opcode_modifier.d)
3057 fprintf (stdout, "D");
3058 if (t->opcode_modifier.w)
3059 fprintf (stdout, "W");
3060 fprintf (stdout, "\n");
3061 for (j = 0; j < t->operands; j++)
3062 {
3063 fprintf (stdout, " #%d type ", j + 1);
3064 pt (t->operand_types[j]);
3065 fprintf (stdout, "\n");
3066 }
3067 }
3068
3069 static void
3070 pe (expressionS *e)
3071 {
3072 fprintf (stdout, " operation %d\n", e->X_op);
3073 fprintf (stdout, " add_number %ld (%lx)\n",
3074 (long) e->X_add_number, (long) e->X_add_number);
3075 if (e->X_add_symbol)
3076 {
3077 fprintf (stdout, " add_symbol ");
3078 ps (e->X_add_symbol);
3079 fprintf (stdout, "\n");
3080 }
3081 if (e->X_op_symbol)
3082 {
3083 fprintf (stdout, " op_symbol ");
3084 ps (e->X_op_symbol);
3085 fprintf (stdout, "\n");
3086 }
3087 }
3088
3089 static void
3090 ps (symbolS *s)
3091 {
3092 fprintf (stdout, "%s type %s%s",
3093 S_GET_NAME (s),
3094 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3095 segment_name (S_GET_SEGMENT (s)));
3096 }
3097
3098 static struct type_name
3099 {
3100 i386_operand_type mask;
3101 const char *name;
3102 }
3103 const type_names[] =
3104 {
3105 { OPERAND_TYPE_REG8, "r8" },
3106 { OPERAND_TYPE_REG16, "r16" },
3107 { OPERAND_TYPE_REG32, "r32" },
3108 { OPERAND_TYPE_REG64, "r64" },
3109 { OPERAND_TYPE_ACC8, "acc8" },
3110 { OPERAND_TYPE_ACC16, "acc16" },
3111 { OPERAND_TYPE_ACC32, "acc32" },
3112 { OPERAND_TYPE_ACC64, "acc64" },
3113 { OPERAND_TYPE_IMM8, "i8" },
3114 { OPERAND_TYPE_IMM8, "i8s" },
3115 { OPERAND_TYPE_IMM16, "i16" },
3116 { OPERAND_TYPE_IMM32, "i32" },
3117 { OPERAND_TYPE_IMM32S, "i32s" },
3118 { OPERAND_TYPE_IMM64, "i64" },
3119 { OPERAND_TYPE_IMM1, "i1" },
3120 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3121 { OPERAND_TYPE_DISP8, "d8" },
3122 { OPERAND_TYPE_DISP16, "d16" },
3123 { OPERAND_TYPE_DISP32, "d32" },
3124 { OPERAND_TYPE_DISP32S, "d32s" },
3125 { OPERAND_TYPE_DISP64, "d64" },
3126 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3127 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3128 { OPERAND_TYPE_CONTROL, "control reg" },
3129 { OPERAND_TYPE_TEST, "test reg" },
3130 { OPERAND_TYPE_DEBUG, "debug reg" },
3131 { OPERAND_TYPE_FLOATREG, "FReg" },
3132 { OPERAND_TYPE_FLOATACC, "FAcc" },
3133 { OPERAND_TYPE_SREG2, "SReg2" },
3134 { OPERAND_TYPE_SREG3, "SReg3" },
3135 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3136 { OPERAND_TYPE_REGMMX, "rMMX" },
3137 { OPERAND_TYPE_REGXMM, "rXMM" },
3138 { OPERAND_TYPE_REGYMM, "rYMM" },
3139 { OPERAND_TYPE_REGZMM, "rZMM" },
3140 { OPERAND_TYPE_REGMASK, "Mask reg" },
3141 { OPERAND_TYPE_ESSEG, "es" },
3142 };
3143
3144 static void
3145 pt (i386_operand_type t)
3146 {
3147 unsigned int j;
3148 i386_operand_type a;
3149
3150 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3151 {
3152 a = operand_type_and (t, type_names[j].mask);
3153 if (operand_type_equal (&a, &type_names[j].mask))
3154 fprintf (stdout, "%s, ", type_names[j].name);
3155 }
3156 fflush (stdout);
3157 }
3158
3159 #endif /* DEBUG386 */
3160 \f
3161 static bfd_reloc_code_real_type
3162 reloc (unsigned int size,
3163 int pcrel,
3164 int sign,
3165 bfd_reloc_code_real_type other)
3166 {
3167 if (other != NO_RELOC)
3168 {
3169 reloc_howto_type *rel;
3170
3171 if (size == 8)
3172 switch (other)
3173 {
3174 case BFD_RELOC_X86_64_GOT32:
3175 return BFD_RELOC_X86_64_GOT64;
3176 break;
3177 case BFD_RELOC_X86_64_GOTPLT64:
3178 return BFD_RELOC_X86_64_GOTPLT64;
3179 break;
3180 case BFD_RELOC_X86_64_PLTOFF64:
3181 return BFD_RELOC_X86_64_PLTOFF64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPC32:
3184 other = BFD_RELOC_X86_64_GOTPC64;
3185 break;
3186 case BFD_RELOC_X86_64_GOTPCREL:
3187 other = BFD_RELOC_X86_64_GOTPCREL64;
3188 break;
3189 case BFD_RELOC_X86_64_TPOFF32:
3190 other = BFD_RELOC_X86_64_TPOFF64;
3191 break;
3192 case BFD_RELOC_X86_64_DTPOFF32:
3193 other = BFD_RELOC_X86_64_DTPOFF64;
3194 break;
3195 default:
3196 break;
3197 }
3198
3199 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3200 if (other == BFD_RELOC_SIZE32)
3201 {
3202 if (size == 8)
3203 other = BFD_RELOC_SIZE64;
3204 if (pcrel)
3205 {
3206 as_bad (_("there are no pc-relative size relocations"));
3207 return NO_RELOC;
3208 }
3209 }
3210 #endif
3211
3212 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3213 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3214 sign = -1;
3215
3216 rel = bfd_reloc_type_lookup (stdoutput, other);
3217 if (!rel)
3218 as_bad (_("unknown relocation (%u)"), other);
3219 else if (size != bfd_get_reloc_size (rel))
3220 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3221 bfd_get_reloc_size (rel),
3222 size);
3223 else if (pcrel && !rel->pc_relative)
3224 as_bad (_("non-pc-relative relocation for pc-relative field"));
3225 else if ((rel->complain_on_overflow == complain_overflow_signed
3226 && !sign)
3227 || (rel->complain_on_overflow == complain_overflow_unsigned
3228 && sign > 0))
3229 as_bad (_("relocated field and relocation type differ in signedness"));
3230 else
3231 return other;
3232 return NO_RELOC;
3233 }
3234
3235 if (pcrel)
3236 {
3237 if (!sign)
3238 as_bad (_("there are no unsigned pc-relative relocations"));
3239 switch (size)
3240 {
3241 case 1: return BFD_RELOC_8_PCREL;
3242 case 2: return BFD_RELOC_16_PCREL;
3243 case 4: return BFD_RELOC_32_PCREL;
3244 case 8: return BFD_RELOC_64_PCREL;
3245 }
3246 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3247 }
3248 else
3249 {
3250 if (sign > 0)
3251 switch (size)
3252 {
3253 case 4: return BFD_RELOC_X86_64_32S;
3254 }
3255 else
3256 switch (size)
3257 {
3258 case 1: return BFD_RELOC_8;
3259 case 2: return BFD_RELOC_16;
3260 case 4: return BFD_RELOC_32;
3261 case 8: return BFD_RELOC_64;
3262 }
3263 as_bad (_("cannot do %s %u byte relocation"),
3264 sign > 0 ? "signed" : "unsigned", size);
3265 }
3266
3267 return NO_RELOC;
3268 }
3269
3270 /* Here we decide which fixups can be adjusted to make them relative to
3271 the beginning of the section instead of the symbol. Basically we need
3272 to make sure that the dynamic relocations are done correctly, so in
3273 some cases we force the original symbol to be used. */
3274
3275 int
3276 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3277 {
3278 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3279 if (!IS_ELF)
3280 return 1;
3281
3282 /* Don't adjust pc-relative references to merge sections in 64-bit
3283 mode. */
3284 if (use_rela_relocations
3285 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3286 && fixP->fx_pcrel)
3287 return 0;
3288
3289 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3290 and changed later by validate_fix. */
3291 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3292 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3293 return 0;
3294
3295 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3296 for size relocations. */
3297 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3298 || fixP->fx_r_type == BFD_RELOC_SIZE64
3299 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3300 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3301 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3302 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3310 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3311 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3312 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3325 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3326 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3327 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3328 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3329 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3330 return 0;
3331 #endif
3332 return 1;
3333 }
3334
3335 static int
3336 intel_float_operand (const char *mnemonic)
3337 {
3338 /* Note that the value returned is meaningful only for opcodes with (memory)
3339 operands, hence the code here is free to improperly handle opcodes that
3340 have no operands (for better performance and smaller code). */
3341
3342 if (mnemonic[0] != 'f')
3343 return 0; /* non-math */
3344
3345 switch (mnemonic[1])
3346 {
3347 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3348 the fs segment override prefix not currently handled because no
3349 call path can make opcodes without operands get here */
3350 case 'i':
3351 return 2 /* integer op */;
3352 case 'l':
3353 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3354 return 3; /* fldcw/fldenv */
3355 break;
3356 case 'n':
3357 if (mnemonic[2] != 'o' /* fnop */)
3358 return 3; /* non-waiting control op */
3359 break;
3360 case 'r':
3361 if (mnemonic[2] == 's')
3362 return 3; /* frstor/frstpm */
3363 break;
3364 case 's':
3365 if (mnemonic[2] == 'a')
3366 return 3; /* fsave */
3367 if (mnemonic[2] == 't')
3368 {
3369 switch (mnemonic[3])
3370 {
3371 case 'c': /* fstcw */
3372 case 'd': /* fstdw */
3373 case 'e': /* fstenv */
3374 case 's': /* fsts[gw] */
3375 return 3;
3376 }
3377 }
3378 break;
3379 case 'x':
3380 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3381 return 0; /* fxsave/fxrstor are not really math ops */
3382 break;
3383 }
3384
3385 return 1;
3386 }
3387
3388 /* Build the VEX prefix. */
3389
3390 static void
3391 build_vex_prefix (const insn_template *t)
3392 {
3393 unsigned int register_specifier;
3394 unsigned int implied_prefix;
3395 unsigned int vector_length;
3396 unsigned int w;
3397
3398 /* Check register specifier. */
3399 if (i.vex.register_specifier)
3400 {
3401 register_specifier =
3402 ~register_number (i.vex.register_specifier) & 0xf;
3403 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3404 }
3405 else
3406 register_specifier = 0xf;
3407
3408 /* Use 2-byte VEX prefix by swapping destination and source operand
3409 if there are more than 1 register operand. */
3410 if (i.reg_operands > 1
3411 && i.vec_encoding != vex_encoding_vex3
3412 && i.dir_encoding == dir_encoding_default
3413 && i.operands == i.reg_operands
3414 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3415 && i.tm.opcode_modifier.vexopcode == VEX0F
3416 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3417 && i.rex == REX_B)
3418 {
3419 unsigned int xchg = i.operands - 1;
3420 union i386_op temp_op;
3421 i386_operand_type temp_type;
3422
3423 temp_type = i.types[xchg];
3424 i.types[xchg] = i.types[0];
3425 i.types[0] = temp_type;
3426 temp_op = i.op[xchg];
3427 i.op[xchg] = i.op[0];
3428 i.op[0] = temp_op;
3429
3430 gas_assert (i.rm.mode == 3);
3431
3432 i.rex = REX_R;
3433 xchg = i.rm.regmem;
3434 i.rm.regmem = i.rm.reg;
3435 i.rm.reg = xchg;
3436
3437 if (i.tm.opcode_modifier.d)
3438 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3439 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3440 else /* Use the next insn. */
3441 i.tm = t[1];
3442 }
3443
3444 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3445 are no memory operands and at least 3 register ones. */
3446 if (i.reg_operands >= 3
3447 && i.vec_encoding != vex_encoding_vex3
3448 && i.reg_operands == i.operands - i.imm_operands
3449 && i.tm.opcode_modifier.vex
3450 && i.tm.opcode_modifier.commutative
3451 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3452 && i.rex == REX_B
3453 && i.vex.register_specifier
3454 && !(i.vex.register_specifier->reg_flags & RegRex))
3455 {
3456 unsigned int xchg = i.operands - i.reg_operands;
3457 union i386_op temp_op;
3458 i386_operand_type temp_type;
3459
3460 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3461 gas_assert (!i.tm.opcode_modifier.sae);
3462 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3463 &i.types[i.operands - 3]));
3464 gas_assert (i.rm.mode == 3);
3465
3466 temp_type = i.types[xchg];
3467 i.types[xchg] = i.types[xchg + 1];
3468 i.types[xchg + 1] = temp_type;
3469 temp_op = i.op[xchg];
3470 i.op[xchg] = i.op[xchg + 1];
3471 i.op[xchg + 1] = temp_op;
3472
3473 i.rex = 0;
3474 xchg = i.rm.regmem | 8;
3475 i.rm.regmem = ~register_specifier & 0xf;
3476 gas_assert (!(i.rm.regmem & 8));
3477 i.vex.register_specifier += xchg - i.rm.regmem;
3478 register_specifier = ~xchg & 0xf;
3479 }
3480
3481 if (i.tm.opcode_modifier.vex == VEXScalar)
3482 vector_length = avxscalar;
3483 else if (i.tm.opcode_modifier.vex == VEX256)
3484 vector_length = 1;
3485 else
3486 {
3487 unsigned int op;
3488
3489 /* Determine vector length from the last multi-length vector
3490 operand. */
3491 vector_length = 0;
3492 for (op = t->operands; op--;)
3493 if (t->operand_types[op].bitfield.xmmword
3494 && t->operand_types[op].bitfield.ymmword
3495 && i.types[op].bitfield.ymmword)
3496 {
3497 vector_length = 1;
3498 break;
3499 }
3500 }
3501
3502 switch ((i.tm.base_opcode >> 8) & 0xff)
3503 {
3504 case 0:
3505 implied_prefix = 0;
3506 break;
3507 case DATA_PREFIX_OPCODE:
3508 implied_prefix = 1;
3509 break;
3510 case REPE_PREFIX_OPCODE:
3511 implied_prefix = 2;
3512 break;
3513 case REPNE_PREFIX_OPCODE:
3514 implied_prefix = 3;
3515 break;
3516 default:
3517 abort ();
3518 }
3519
3520 /* Check the REX.W bit and VEXW. */
3521 if (i.tm.opcode_modifier.vexw == VEXWIG)
3522 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3523 else if (i.tm.opcode_modifier.vexw)
3524 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3525 else
3526 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3527
3528 /* Use 2-byte VEX prefix if possible. */
3529 if (w == 0
3530 && i.vec_encoding != vex_encoding_vex3
3531 && i.tm.opcode_modifier.vexopcode == VEX0F
3532 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3533 {
3534 /* 2-byte VEX prefix. */
3535 unsigned int r;
3536
3537 i.vex.length = 2;
3538 i.vex.bytes[0] = 0xc5;
3539
3540 /* Check the REX.R bit. */
3541 r = (i.rex & REX_R) ? 0 : 1;
3542 i.vex.bytes[1] = (r << 7
3543 | register_specifier << 3
3544 | vector_length << 2
3545 | implied_prefix);
3546 }
3547 else
3548 {
3549 /* 3-byte VEX prefix. */
3550 unsigned int m;
3551
3552 i.vex.length = 3;
3553
3554 switch (i.tm.opcode_modifier.vexopcode)
3555 {
3556 case VEX0F:
3557 m = 0x1;
3558 i.vex.bytes[0] = 0xc4;
3559 break;
3560 case VEX0F38:
3561 m = 0x2;
3562 i.vex.bytes[0] = 0xc4;
3563 break;
3564 case VEX0F3A:
3565 m = 0x3;
3566 i.vex.bytes[0] = 0xc4;
3567 break;
3568 case XOP08:
3569 m = 0x8;
3570 i.vex.bytes[0] = 0x8f;
3571 break;
3572 case XOP09:
3573 m = 0x9;
3574 i.vex.bytes[0] = 0x8f;
3575 break;
3576 case XOP0A:
3577 m = 0xa;
3578 i.vex.bytes[0] = 0x8f;
3579 break;
3580 default:
3581 abort ();
3582 }
3583
3584 /* The high 3 bits of the second VEX byte are 1's compliment
3585 of RXB bits from REX. */
3586 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3587
3588 i.vex.bytes[2] = (w << 7
3589 | register_specifier << 3
3590 | vector_length << 2
3591 | implied_prefix);
3592 }
3593 }
3594
3595 static INLINE bfd_boolean
3596 is_evex_encoding (const insn_template *t)
3597 {
3598 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3599 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3600 || t->opcode_modifier.sae;
3601 }
3602
3603 static INLINE bfd_boolean
3604 is_any_vex_encoding (const insn_template *t)
3605 {
3606 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3607 || is_evex_encoding (t);
3608 }
3609
3610 /* Build the EVEX prefix. */
3611
3612 static void
3613 build_evex_prefix (void)
3614 {
3615 unsigned int register_specifier;
3616 unsigned int implied_prefix;
3617 unsigned int m, w;
3618 rex_byte vrex_used = 0;
3619
3620 /* Check register specifier. */
3621 if (i.vex.register_specifier)
3622 {
3623 gas_assert ((i.vrex & REX_X) == 0);
3624
3625 register_specifier = i.vex.register_specifier->reg_num;
3626 if ((i.vex.register_specifier->reg_flags & RegRex))
3627 register_specifier += 8;
3628 /* The upper 16 registers are encoded in the fourth byte of the
3629 EVEX prefix. */
3630 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3631 i.vex.bytes[3] = 0x8;
3632 register_specifier = ~register_specifier & 0xf;
3633 }
3634 else
3635 {
3636 register_specifier = 0xf;
3637
3638 /* Encode upper 16 vector index register in the fourth byte of
3639 the EVEX prefix. */
3640 if (!(i.vrex & REX_X))
3641 i.vex.bytes[3] = 0x8;
3642 else
3643 vrex_used |= REX_X;
3644 }
3645
3646 switch ((i.tm.base_opcode >> 8) & 0xff)
3647 {
3648 case 0:
3649 implied_prefix = 0;
3650 break;
3651 case DATA_PREFIX_OPCODE:
3652 implied_prefix = 1;
3653 break;
3654 case REPE_PREFIX_OPCODE:
3655 implied_prefix = 2;
3656 break;
3657 case REPNE_PREFIX_OPCODE:
3658 implied_prefix = 3;
3659 break;
3660 default:
3661 abort ();
3662 }
3663
3664 /* 4 byte EVEX prefix. */
3665 i.vex.length = 4;
3666 i.vex.bytes[0] = 0x62;
3667
3668 /* mmmm bits. */
3669 switch (i.tm.opcode_modifier.vexopcode)
3670 {
3671 case VEX0F:
3672 m = 1;
3673 break;
3674 case VEX0F38:
3675 m = 2;
3676 break;
3677 case VEX0F3A:
3678 m = 3;
3679 break;
3680 default:
3681 abort ();
3682 break;
3683 }
3684
3685 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3686 bits from REX. */
3687 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3688
3689 /* The fifth bit of the second EVEX byte is 1's compliment of the
3690 REX_R bit in VREX. */
3691 if (!(i.vrex & REX_R))
3692 i.vex.bytes[1] |= 0x10;
3693 else
3694 vrex_used |= REX_R;
3695
3696 if ((i.reg_operands + i.imm_operands) == i.operands)
3697 {
3698 /* When all operands are registers, the REX_X bit in REX is not
3699 used. We reuse it to encode the upper 16 registers, which is
3700 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3701 as 1's compliment. */
3702 if ((i.vrex & REX_B))
3703 {
3704 vrex_used |= REX_B;
3705 i.vex.bytes[1] &= ~0x40;
3706 }
3707 }
3708
3709 /* EVEX instructions shouldn't need the REX prefix. */
3710 i.vrex &= ~vrex_used;
3711 gas_assert (i.vrex == 0);
3712
3713 /* Check the REX.W bit and VEXW. */
3714 if (i.tm.opcode_modifier.vexw == VEXWIG)
3715 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3716 else if (i.tm.opcode_modifier.vexw)
3717 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3718 else
3719 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3720
3721 /* Encode the U bit. */
3722 implied_prefix |= 0x4;
3723
3724 /* The third byte of the EVEX prefix. */
3725 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3726
3727 /* The fourth byte of the EVEX prefix. */
3728 /* The zeroing-masking bit. */
3729 if (i.mask && i.mask->zeroing)
3730 i.vex.bytes[3] |= 0x80;
3731
3732 /* Don't always set the broadcast bit if there is no RC. */
3733 if (!i.rounding)
3734 {
3735 /* Encode the vector length. */
3736 unsigned int vec_length;
3737
3738 if (!i.tm.opcode_modifier.evex
3739 || i.tm.opcode_modifier.evex == EVEXDYN)
3740 {
3741 unsigned int op;
3742
3743 /* Determine vector length from the last multi-length vector
3744 operand. */
3745 vec_length = 0;
3746 for (op = i.operands; op--;)
3747 if (i.tm.operand_types[op].bitfield.xmmword
3748 + i.tm.operand_types[op].bitfield.ymmword
3749 + i.tm.operand_types[op].bitfield.zmmword > 1)
3750 {
3751 if (i.types[op].bitfield.zmmword)
3752 {
3753 i.tm.opcode_modifier.evex = EVEX512;
3754 break;
3755 }
3756 else if (i.types[op].bitfield.ymmword)
3757 {
3758 i.tm.opcode_modifier.evex = EVEX256;
3759 break;
3760 }
3761 else if (i.types[op].bitfield.xmmword)
3762 {
3763 i.tm.opcode_modifier.evex = EVEX128;
3764 break;
3765 }
3766 else if (i.broadcast && (int) op == i.broadcast->operand)
3767 {
3768 switch (i.broadcast->bytes)
3769 {
3770 case 64:
3771 i.tm.opcode_modifier.evex = EVEX512;
3772 break;
3773 case 32:
3774 i.tm.opcode_modifier.evex = EVEX256;
3775 break;
3776 case 16:
3777 i.tm.opcode_modifier.evex = EVEX128;
3778 break;
3779 default:
3780 abort ();
3781 }
3782 break;
3783 }
3784 }
3785
3786 if (op >= MAX_OPERANDS)
3787 abort ();
3788 }
3789
3790 switch (i.tm.opcode_modifier.evex)
3791 {
3792 case EVEXLIG: /* LL' is ignored */
3793 vec_length = evexlig << 5;
3794 break;
3795 case EVEX128:
3796 vec_length = 0 << 5;
3797 break;
3798 case EVEX256:
3799 vec_length = 1 << 5;
3800 break;
3801 case EVEX512:
3802 vec_length = 2 << 5;
3803 break;
3804 default:
3805 abort ();
3806 break;
3807 }
3808 i.vex.bytes[3] |= vec_length;
3809 /* Encode the broadcast bit. */
3810 if (i.broadcast)
3811 i.vex.bytes[3] |= 0x10;
3812 }
3813 else
3814 {
3815 if (i.rounding->type != saeonly)
3816 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3817 else
3818 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3819 }
3820
3821 if (i.mask && i.mask->mask)
3822 i.vex.bytes[3] |= i.mask->mask->reg_num;
3823 }
3824
3825 static void
3826 process_immext (void)
3827 {
3828 expressionS *exp;
3829
3830 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3831 && i.operands > 0)
3832 {
3833 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3834 with an opcode suffix which is coded in the same place as an
3835 8-bit immediate field would be.
3836 Here we check those operands and remove them afterwards. */
3837 unsigned int x;
3838
3839 for (x = 0; x < i.operands; x++)
3840 if (register_number (i.op[x].regs) != x)
3841 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3842 register_prefix, i.op[x].regs->reg_name, x + 1,
3843 i.tm.name);
3844
3845 i.operands = 0;
3846 }
3847
3848 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3849 {
3850 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3851 suffix which is coded in the same place as an 8-bit immediate
3852 field would be.
3853 Here we check those operands and remove them afterwards. */
3854 unsigned int x;
3855
3856 if (i.operands != 3)
3857 abort();
3858
3859 for (x = 0; x < 2; x++)
3860 if (register_number (i.op[x].regs) != x)
3861 goto bad_register_operand;
3862
3863 /* Check for third operand for mwaitx/monitorx insn. */
3864 if (register_number (i.op[x].regs)
3865 != (x + (i.tm.extension_opcode == 0xfb)))
3866 {
3867 bad_register_operand:
3868 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3869 register_prefix, i.op[x].regs->reg_name, x+1,
3870 i.tm.name);
3871 }
3872
3873 i.operands = 0;
3874 }
3875
3876 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3877 which is coded in the same place as an 8-bit immediate field
3878 would be. Here we fake an 8-bit immediate operand from the
3879 opcode suffix stored in tm.extension_opcode.
3880
3881 AVX instructions also use this encoding, for some of
3882 3 argument instructions. */
3883
3884 gas_assert (i.imm_operands <= 1
3885 && (i.operands <= 2
3886 || (is_any_vex_encoding (&i.tm)
3887 && i.operands <= 4)));
3888
3889 exp = &im_expressions[i.imm_operands++];
3890 i.op[i.operands].imms = exp;
3891 i.types[i.operands] = imm8;
3892 i.operands++;
3893 exp->X_op = O_constant;
3894 exp->X_add_number = i.tm.extension_opcode;
3895 i.tm.extension_opcode = None;
3896 }
3897
3898
3899 static int
3900 check_hle (void)
3901 {
3902 switch (i.tm.opcode_modifier.hleprefixok)
3903 {
3904 default:
3905 abort ();
3906 case HLEPrefixNone:
3907 as_bad (_("invalid instruction `%s' after `%s'"),
3908 i.tm.name, i.hle_prefix);
3909 return 0;
3910 case HLEPrefixLock:
3911 if (i.prefix[LOCK_PREFIX])
3912 return 1;
3913 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3914 return 0;
3915 case HLEPrefixAny:
3916 return 1;
3917 case HLEPrefixRelease:
3918 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3919 {
3920 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3921 i.tm.name);
3922 return 0;
3923 }
3924 if (i.mem_operands == 0
3925 || !operand_type_check (i.types[i.operands - 1], anymem))
3926 {
3927 as_bad (_("memory destination needed for instruction `%s'"
3928 " after `xrelease'"), i.tm.name);
3929 return 0;
3930 }
3931 return 1;
3932 }
3933 }
3934
3935 /* Try the shortest encoding by shortening operand size. */
3936
3937 static void
3938 optimize_encoding (void)
3939 {
3940 unsigned int j;
3941
3942 if (optimize_for_space
3943 && i.reg_operands == 1
3944 && i.imm_operands == 1
3945 && !i.types[1].bitfield.byte
3946 && i.op[0].imms->X_op == O_constant
3947 && fits_in_imm7 (i.op[0].imms->X_add_number)
3948 && ((i.tm.base_opcode == 0xa8
3949 && i.tm.extension_opcode == None)
3950 || (i.tm.base_opcode == 0xf6
3951 && i.tm.extension_opcode == 0x0)))
3952 {
3953 /* Optimize: -Os:
3954 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3955 */
3956 unsigned int base_regnum = i.op[1].regs->reg_num;
3957 if (flag_code == CODE_64BIT || base_regnum < 4)
3958 {
3959 i.types[1].bitfield.byte = 1;
3960 /* Ignore the suffix. */
3961 i.suffix = 0;
3962 if (base_regnum >= 4
3963 && !(i.op[1].regs->reg_flags & RegRex))
3964 {
3965 /* Handle SP, BP, SI and DI registers. */
3966 if (i.types[1].bitfield.word)
3967 j = 16;
3968 else if (i.types[1].bitfield.dword)
3969 j = 32;
3970 else
3971 j = 48;
3972 i.op[1].regs -= j;
3973 }
3974 }
3975 }
3976 else if (flag_code == CODE_64BIT
3977 && ((i.types[1].bitfield.qword
3978 && i.reg_operands == 1
3979 && i.imm_operands == 1
3980 && i.op[0].imms->X_op == O_constant
3981 && ((i.tm.base_opcode == 0xb0
3982 && i.tm.extension_opcode == None
3983 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3984 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3985 && (((i.tm.base_opcode == 0x24
3986 || i.tm.base_opcode == 0xa8)
3987 && i.tm.extension_opcode == None)
3988 || (i.tm.base_opcode == 0x80
3989 && i.tm.extension_opcode == 0x4)
3990 || ((i.tm.base_opcode == 0xf6
3991 || i.tm.base_opcode == 0xc6)
3992 && i.tm.extension_opcode == 0x0)))
3993 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3994 && i.tm.base_opcode == 0x83
3995 && i.tm.extension_opcode == 0x4)))
3996 || (i.types[0].bitfield.qword
3997 && ((i.reg_operands == 2
3998 && i.op[0].regs == i.op[1].regs
3999 && ((i.tm.base_opcode == 0x30
4000 || i.tm.base_opcode == 0x28)
4001 && i.tm.extension_opcode == None))
4002 || (i.reg_operands == 1
4003 && i.operands == 1
4004 && i.tm.base_opcode == 0x30
4005 && i.tm.extension_opcode == None)))))
4006 {
4007 /* Optimize: -O:
4008 andq $imm31, %r64 -> andl $imm31, %r32
4009 andq $imm7, %r64 -> andl $imm7, %r32
4010 testq $imm31, %r64 -> testl $imm31, %r32
4011 xorq %r64, %r64 -> xorl %r32, %r32
4012 subq %r64, %r64 -> subl %r32, %r32
4013 movq $imm31, %r64 -> movl $imm31, %r32
4014 movq $imm32, %r64 -> movl $imm32, %r32
4015 */
4016 i.tm.opcode_modifier.norex64 = 1;
4017 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
4018 {
4019 /* Handle
4020 movq $imm31, %r64 -> movl $imm31, %r32
4021 movq $imm32, %r64 -> movl $imm32, %r32
4022 */
4023 i.tm.operand_types[0].bitfield.imm32 = 1;
4024 i.tm.operand_types[0].bitfield.imm32s = 0;
4025 i.tm.operand_types[0].bitfield.imm64 = 0;
4026 i.types[0].bitfield.imm32 = 1;
4027 i.types[0].bitfield.imm32s = 0;
4028 i.types[0].bitfield.imm64 = 0;
4029 i.types[1].bitfield.dword = 1;
4030 i.types[1].bitfield.qword = 0;
4031 if (i.tm.base_opcode == 0xc6)
4032 {
4033 /* Handle
4034 movq $imm31, %r64 -> movl $imm31, %r32
4035 */
4036 i.tm.base_opcode = 0xb0;
4037 i.tm.extension_opcode = None;
4038 i.tm.opcode_modifier.shortform = 1;
4039 i.tm.opcode_modifier.modrm = 0;
4040 }
4041 }
4042 }
4043 else if (optimize > 1
4044 && !optimize_for_space
4045 && i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
4047 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4048 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4049 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4050 {
4051 /* Optimize: -O2:
4052 andb %rN, %rN -> testb %rN, %rN
4053 andw %rN, %rN -> testw %rN, %rN
4054 andq %rN, %rN -> testq %rN, %rN
4055 orb %rN, %rN -> testb %rN, %rN
4056 orw %rN, %rN -> testw %rN, %rN
4057 orq %rN, %rN -> testq %rN, %rN
4058
4059 and outside of 64-bit mode
4060
4061 andl %rN, %rN -> testl %rN, %rN
4062 orl %rN, %rN -> testl %rN, %rN
4063 */
4064 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4065 }
4066 else if (i.reg_operands == 3
4067 && i.op[0].regs == i.op[1].regs
4068 && !i.types[2].bitfield.xmmword
4069 && (i.tm.opcode_modifier.vex
4070 || ((!i.mask || i.mask->zeroing)
4071 && !i.rounding
4072 && is_evex_encoding (&i.tm)
4073 && (i.vec_encoding != vex_encoding_evex
4074 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4075 || i.tm.cpu_flags.bitfield.cpuavx512vl
4076 || (i.tm.operand_types[2].bitfield.zmmword
4077 && i.types[2].bitfield.ymmword))))
4078 && ((i.tm.base_opcode == 0x55
4079 || i.tm.base_opcode == 0x6655
4080 || i.tm.base_opcode == 0x66df
4081 || i.tm.base_opcode == 0x57
4082 || i.tm.base_opcode == 0x6657
4083 || i.tm.base_opcode == 0x66ef
4084 || i.tm.base_opcode == 0x66f8
4085 || i.tm.base_opcode == 0x66f9
4086 || i.tm.base_opcode == 0x66fa
4087 || i.tm.base_opcode == 0x66fb
4088 || i.tm.base_opcode == 0x42
4089 || i.tm.base_opcode == 0x6642
4090 || i.tm.base_opcode == 0x47
4091 || i.tm.base_opcode == 0x6647)
4092 && i.tm.extension_opcode == None))
4093 {
4094 /* Optimize: -O1:
4095 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4096 vpsubq and vpsubw:
4097 EVEX VOP %zmmM, %zmmM, %zmmN
4098 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4099 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4100 EVEX VOP %ymmM, %ymmM, %ymmN
4101 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4102 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4103 VEX VOP %ymmM, %ymmM, %ymmN
4104 -> VEX VOP %xmmM, %xmmM, %xmmN
4105 VOP, one of vpandn and vpxor:
4106 VEX VOP %ymmM, %ymmM, %ymmN
4107 -> VEX VOP %xmmM, %xmmM, %xmmN
4108 VOP, one of vpandnd and vpandnq:
4109 EVEX VOP %zmmM, %zmmM, %zmmN
4110 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4111 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4112 EVEX VOP %ymmM, %ymmM, %ymmN
4113 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4114 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4115 VOP, one of vpxord and vpxorq:
4116 EVEX VOP %zmmM, %zmmM, %zmmN
4117 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4118 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4119 EVEX VOP %ymmM, %ymmM, %ymmN
4120 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4121 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4122 VOP, one of kxord and kxorq:
4123 VEX VOP %kM, %kM, %kN
4124 -> VEX kxorw %kM, %kM, %kN
4125 VOP, one of kandnd and kandnq:
4126 VEX VOP %kM, %kM, %kN
4127 -> VEX kandnw %kM, %kM, %kN
4128 */
4129 if (is_evex_encoding (&i.tm))
4130 {
4131 if (i.vec_encoding != vex_encoding_evex)
4132 {
4133 i.tm.opcode_modifier.vex = VEX128;
4134 i.tm.opcode_modifier.vexw = VEXW0;
4135 i.tm.opcode_modifier.evex = 0;
4136 }
4137 else if (optimize > 1)
4138 i.tm.opcode_modifier.evex = EVEX128;
4139 else
4140 return;
4141 }
4142 else if (i.tm.operand_types[0].bitfield.regmask)
4143 {
4144 i.tm.base_opcode &= 0xff;
4145 i.tm.opcode_modifier.vexw = VEXW0;
4146 }
4147 else
4148 i.tm.opcode_modifier.vex = VEX128;
4149
4150 if (i.tm.opcode_modifier.vex)
4151 for (j = 0; j < 3; j++)
4152 {
4153 i.types[j].bitfield.xmmword = 1;
4154 i.types[j].bitfield.ymmword = 0;
4155 }
4156 }
4157 else if (i.vec_encoding != vex_encoding_evex
4158 && !i.types[0].bitfield.zmmword
4159 && !i.types[1].bitfield.zmmword
4160 && !i.mask
4161 && !i.broadcast
4162 && is_evex_encoding (&i.tm)
4163 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4164 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4165 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4166 || (i.tm.base_opcode & ~4) == 0x66db
4167 || (i.tm.base_opcode & ~4) == 0x66eb)
4168 && i.tm.extension_opcode == None)
4169 {
4170 /* Optimize: -O1:
4171 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4172 vmovdqu32 and vmovdqu64:
4173 EVEX VOP %xmmM, %xmmN
4174 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4175 EVEX VOP %ymmM, %ymmN
4176 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4177 EVEX VOP %xmmM, mem
4178 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4179 EVEX VOP %ymmM, mem
4180 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4181 EVEX VOP mem, %xmmN
4182 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4183 EVEX VOP mem, %ymmN
4184 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4185 VOP, one of vpand, vpandn, vpor, vpxor:
4186 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4187 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4188 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4189 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4190 EVEX VOP{d,q} mem, %xmmM, %xmmN
4191 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4192 EVEX VOP{d,q} mem, %ymmM, %ymmN
4193 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4194 */
4195 for (j = 0; j < i.operands; j++)
4196 if (operand_type_check (i.types[j], disp)
4197 && i.op[j].disps->X_op == O_constant)
4198 {
4199 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4200 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4201 bytes, we choose EVEX Disp8 over VEX Disp32. */
4202 int evex_disp8, vex_disp8;
4203 unsigned int memshift = i.memshift;
4204 offsetT n = i.op[j].disps->X_add_number;
4205
4206 evex_disp8 = fits_in_disp8 (n);
4207 i.memshift = 0;
4208 vex_disp8 = fits_in_disp8 (n);
4209 if (evex_disp8 != vex_disp8)
4210 {
4211 i.memshift = memshift;
4212 return;
4213 }
4214
4215 i.types[j].bitfield.disp8 = vex_disp8;
4216 break;
4217 }
4218 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4219 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4220 i.tm.opcode_modifier.vex
4221 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4222 i.tm.opcode_modifier.vexw = VEXW0;
4223 /* VPAND, VPOR, and VPXOR are commutative. */
4224 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4225 i.tm.opcode_modifier.commutative = 1;
4226 i.tm.opcode_modifier.evex = 0;
4227 i.tm.opcode_modifier.masking = 0;
4228 i.tm.opcode_modifier.broadcast = 0;
4229 i.tm.opcode_modifier.disp8memshift = 0;
4230 i.memshift = 0;
4231 if (j < i.operands)
4232 i.types[j].bitfield.disp8
4233 = fits_in_disp8 (i.op[j].disps->X_add_number);
4234 }
4235 }
4236
4237 /* This is the guts of the machine-dependent assembler. LINE points to a
4238 machine dependent instruction. This function is supposed to emit
4239 the frags/bytes it assembles to. */
4240
4241 void
4242 md_assemble (char *line)
4243 {
4244 unsigned int j;
4245 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4246 const insn_template *t;
4247
4248 /* Initialize globals. */
4249 memset (&i, '\0', sizeof (i));
4250 for (j = 0; j < MAX_OPERANDS; j++)
4251 i.reloc[j] = NO_RELOC;
4252 memset (disp_expressions, '\0', sizeof (disp_expressions));
4253 memset (im_expressions, '\0', sizeof (im_expressions));
4254 save_stack_p = save_stack;
4255
4256 /* First parse an instruction mnemonic & call i386_operand for the operands.
4257 We assume that the scrubber has arranged it so that line[0] is the valid
4258 start of a (possibly prefixed) mnemonic. */
4259
4260 line = parse_insn (line, mnemonic);
4261 if (line == NULL)
4262 return;
4263 mnem_suffix = i.suffix;
4264
4265 line = parse_operands (line, mnemonic);
4266 this_operand = -1;
4267 xfree (i.memop1_string);
4268 i.memop1_string = NULL;
4269 if (line == NULL)
4270 return;
4271
4272 /* Now we've parsed the mnemonic into a set of templates, and have the
4273 operands at hand. */
4274
4275 /* All intel opcodes have reversed operands except for "bound" and
4276 "enter". We also don't reverse intersegment "jmp" and "call"
4277 instructions with 2 immediate operands so that the immediate segment
4278 precedes the offset, as it does when in AT&T mode. */
4279 if (intel_syntax
4280 && i.operands > 1
4281 && (strcmp (mnemonic, "bound") != 0)
4282 && (strcmp (mnemonic, "invlpga") != 0)
4283 && !(operand_type_check (i.types[0], imm)
4284 && operand_type_check (i.types[1], imm)))
4285 swap_operands ();
4286
4287 /* The order of the immediates should be reversed
4288 for 2 immediates extrq and insertq instructions */
4289 if (i.imm_operands == 2
4290 && (strcmp (mnemonic, "extrq") == 0
4291 || strcmp (mnemonic, "insertq") == 0))
4292 swap_2_operands (0, 1);
4293
4294 if (i.imm_operands)
4295 optimize_imm ();
4296
4297 /* Don't optimize displacement for movabs since it only takes 64bit
4298 displacement. */
4299 if (i.disp_operands
4300 && i.disp_encoding != disp_encoding_32bit
4301 && (flag_code != CODE_64BIT
4302 || strcmp (mnemonic, "movabs") != 0))
4303 optimize_disp ();
4304
4305 /* Next, we find a template that matches the given insn,
4306 making sure the overlap of the given operands types is consistent
4307 with the template operand types. */
4308
4309 if (!(t = match_template (mnem_suffix)))
4310 return;
4311
4312 if (sse_check != check_none
4313 && !i.tm.opcode_modifier.noavx
4314 && !i.tm.cpu_flags.bitfield.cpuavx
4315 && (i.tm.cpu_flags.bitfield.cpusse
4316 || i.tm.cpu_flags.bitfield.cpusse2
4317 || i.tm.cpu_flags.bitfield.cpusse3
4318 || i.tm.cpu_flags.bitfield.cpussse3
4319 || i.tm.cpu_flags.bitfield.cpusse4_1
4320 || i.tm.cpu_flags.bitfield.cpusse4_2
4321 || i.tm.cpu_flags.bitfield.cpupclmul
4322 || i.tm.cpu_flags.bitfield.cpuaes
4323 || i.tm.cpu_flags.bitfield.cpugfni))
4324 {
4325 (sse_check == check_warning
4326 ? as_warn
4327 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4328 }
4329
4330 /* Zap movzx and movsx suffix. The suffix has been set from
4331 "word ptr" or "byte ptr" on the source operand in Intel syntax
4332 or extracted from mnemonic in AT&T syntax. But we'll use
4333 the destination register to choose the suffix for encoding. */
4334 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4335 {
4336 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4337 there is no suffix, the default will be byte extension. */
4338 if (i.reg_operands != 2
4339 && !i.suffix
4340 && intel_syntax)
4341 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4342
4343 i.suffix = 0;
4344 }
4345
4346 if (i.tm.opcode_modifier.fwait)
4347 if (!add_prefix (FWAIT_OPCODE))
4348 return;
4349
4350 /* Check if REP prefix is OK. */
4351 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4352 {
4353 as_bad (_("invalid instruction `%s' after `%s'"),
4354 i.tm.name, i.rep_prefix);
4355 return;
4356 }
4357
4358 /* Check for lock without a lockable instruction. Destination operand
4359 must be memory unless it is xchg (0x86). */
4360 if (i.prefix[LOCK_PREFIX]
4361 && (!i.tm.opcode_modifier.islockable
4362 || i.mem_operands == 0
4363 || (i.tm.base_opcode != 0x86
4364 && !operand_type_check (i.types[i.operands - 1], anymem))))
4365 {
4366 as_bad (_("expecting lockable instruction after `lock'"));
4367 return;
4368 }
4369
4370 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4371 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4372 {
4373 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4374 return;
4375 }
4376
4377 /* Check if HLE prefix is OK. */
4378 if (i.hle_prefix && !check_hle ())
4379 return;
4380
4381 /* Check BND prefix. */
4382 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4383 as_bad (_("expecting valid branch instruction after `bnd'"));
4384
4385 /* Check NOTRACK prefix. */
4386 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4387 as_bad (_("expecting indirect branch instruction after `notrack'"));
4388
4389 if (i.tm.cpu_flags.bitfield.cpumpx)
4390 {
4391 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4392 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4393 else if (flag_code != CODE_16BIT
4394 ? i.prefix[ADDR_PREFIX]
4395 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4396 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4397 }
4398
4399 /* Insert BND prefix. */
4400 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4401 {
4402 if (!i.prefix[BND_PREFIX])
4403 add_prefix (BND_PREFIX_OPCODE);
4404 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4405 {
4406 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4407 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4408 }
4409 }
4410
4411 /* Check string instruction segment overrides. */
4412 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4413 {
4414 if (!check_string ())
4415 return;
4416 i.disp_operands = 0;
4417 }
4418
4419 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4420 optimize_encoding ();
4421
4422 if (!process_suffix ())
4423 return;
4424
4425 /* Update operand types. */
4426 for (j = 0; j < i.operands; j++)
4427 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4428
4429 /* Make still unresolved immediate matches conform to size of immediate
4430 given in i.suffix. */
4431 if (!finalize_imm ())
4432 return;
4433
4434 if (i.types[0].bitfield.imm1)
4435 i.imm_operands = 0; /* kludge for shift insns. */
4436
4437 /* We only need to check those implicit registers for instructions
4438 with 3 operands or less. */
4439 if (i.operands <= 3)
4440 for (j = 0; j < i.operands; j++)
4441 if (i.types[j].bitfield.inoutportreg
4442 || i.types[j].bitfield.shiftcount
4443 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4444 i.reg_operands--;
4445
4446 /* ImmExt should be processed after SSE2AVX. */
4447 if (!i.tm.opcode_modifier.sse2avx
4448 && i.tm.opcode_modifier.immext)
4449 process_immext ();
4450
4451 /* For insns with operands there are more diddles to do to the opcode. */
4452 if (i.operands)
4453 {
4454 if (!process_operands ())
4455 return;
4456 }
4457 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4458 {
4459 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4460 as_warn (_("translating to `%sp'"), i.tm.name);
4461 }
4462
4463 if (is_any_vex_encoding (&i.tm))
4464 {
4465 if (!cpu_arch_flags.bitfield.cpui286)
4466 {
4467 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4468 i.tm.name);
4469 return;
4470 }
4471
4472 if (i.tm.opcode_modifier.vex)
4473 build_vex_prefix (t);
4474 else
4475 build_evex_prefix ();
4476 }
4477
4478 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4479 instructions may define INT_OPCODE as well, so avoid this corner
4480 case for those instructions that use MODRM. */
4481 if (i.tm.base_opcode == INT_OPCODE
4482 && !i.tm.opcode_modifier.modrm
4483 && i.op[0].imms->X_add_number == 3)
4484 {
4485 i.tm.base_opcode = INT3_OPCODE;
4486 i.imm_operands = 0;
4487 }
4488
4489 if ((i.tm.opcode_modifier.jump
4490 || i.tm.opcode_modifier.jumpbyte
4491 || i.tm.opcode_modifier.jumpdword)
4492 && i.op[0].disps->X_op == O_constant)
4493 {
4494 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4495 the absolute address given by the constant. Since ix86 jumps and
4496 calls are pc relative, we need to generate a reloc. */
4497 i.op[0].disps->X_add_symbol = &abs_symbol;
4498 i.op[0].disps->X_op = O_symbol;
4499 }
4500
4501 if (i.tm.opcode_modifier.rex64)
4502 i.rex |= REX_W;
4503
4504 /* For 8 bit registers we need an empty rex prefix. Also if the
4505 instruction already has a prefix, we need to convert old
4506 registers to new ones. */
4507
4508 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4509 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4510 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4511 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4512 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4513 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4514 && i.rex != 0))
4515 {
4516 int x;
4517
4518 i.rex |= REX_OPCODE;
4519 for (x = 0; x < 2; x++)
4520 {
4521 /* Look for 8 bit operand that uses old registers. */
4522 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4523 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4524 {
4525 /* In case it is "hi" register, give up. */
4526 if (i.op[x].regs->reg_num > 3)
4527 as_bad (_("can't encode register '%s%s' in an "
4528 "instruction requiring REX prefix."),
4529 register_prefix, i.op[x].regs->reg_name);
4530
4531 /* Otherwise it is equivalent to the extended register.
4532 Since the encoding doesn't change this is merely
4533 cosmetic cleanup for debug output. */
4534
4535 i.op[x].regs = i.op[x].regs + 8;
4536 }
4537 }
4538 }
4539
4540 if (i.rex == 0 && i.rex_encoding)
4541 {
4542 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4543 that uses legacy register. If it is "hi" register, don't add
4544 the REX_OPCODE byte. */
4545 int x;
4546 for (x = 0; x < 2; x++)
4547 if (i.types[x].bitfield.reg
4548 && i.types[x].bitfield.byte
4549 && (i.op[x].regs->reg_flags & RegRex64) == 0
4550 && i.op[x].regs->reg_num > 3)
4551 {
4552 i.rex_encoding = FALSE;
4553 break;
4554 }
4555
4556 if (i.rex_encoding)
4557 i.rex = REX_OPCODE;
4558 }
4559
4560 if (i.rex != 0)
4561 add_prefix (REX_OPCODE | i.rex);
4562
4563 /* We are ready to output the insn. */
4564 output_insn ();
4565 }
4566
4567 static char *
4568 parse_insn (char *line, char *mnemonic)
4569 {
4570 char *l = line;
4571 char *token_start = l;
4572 char *mnem_p;
4573 int supported;
4574 const insn_template *t;
4575 char *dot_p = NULL;
4576
4577 while (1)
4578 {
4579 mnem_p = mnemonic;
4580 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4581 {
4582 if (*mnem_p == '.')
4583 dot_p = mnem_p;
4584 mnem_p++;
4585 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4586 {
4587 as_bad (_("no such instruction: `%s'"), token_start);
4588 return NULL;
4589 }
4590 l++;
4591 }
4592 if (!is_space_char (*l)
4593 && *l != END_OF_INSN
4594 && (intel_syntax
4595 || (*l != PREFIX_SEPARATOR
4596 && *l != ',')))
4597 {
4598 as_bad (_("invalid character %s in mnemonic"),
4599 output_invalid (*l));
4600 return NULL;
4601 }
4602 if (token_start == l)
4603 {
4604 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4605 as_bad (_("expecting prefix; got nothing"));
4606 else
4607 as_bad (_("expecting mnemonic; got nothing"));
4608 return NULL;
4609 }
4610
4611 /* Look up instruction (or prefix) via hash table. */
4612 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4613
4614 if (*l != END_OF_INSN
4615 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4616 && current_templates
4617 && current_templates->start->opcode_modifier.isprefix)
4618 {
4619 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4620 {
4621 as_bad ((flag_code != CODE_64BIT
4622 ? _("`%s' is only supported in 64-bit mode")
4623 : _("`%s' is not supported in 64-bit mode")),
4624 current_templates->start->name);
4625 return NULL;
4626 }
4627 /* If we are in 16-bit mode, do not allow addr16 or data16.
4628 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4629 if ((current_templates->start->opcode_modifier.size == SIZE16
4630 || current_templates->start->opcode_modifier.size == SIZE32)
4631 && flag_code != CODE_64BIT
4632 && ((current_templates->start->opcode_modifier.size == SIZE32)
4633 ^ (flag_code == CODE_16BIT)))
4634 {
4635 as_bad (_("redundant %s prefix"),
4636 current_templates->start->name);
4637 return NULL;
4638 }
4639 if (current_templates->start->opcode_length == 0)
4640 {
4641 /* Handle pseudo prefixes. */
4642 switch (current_templates->start->base_opcode)
4643 {
4644 case 0x0:
4645 /* {disp8} */
4646 i.disp_encoding = disp_encoding_8bit;
4647 break;
4648 case 0x1:
4649 /* {disp32} */
4650 i.disp_encoding = disp_encoding_32bit;
4651 break;
4652 case 0x2:
4653 /* {load} */
4654 i.dir_encoding = dir_encoding_load;
4655 break;
4656 case 0x3:
4657 /* {store} */
4658 i.dir_encoding = dir_encoding_store;
4659 break;
4660 case 0x4:
4661 /* {vex2} */
4662 i.vec_encoding = vex_encoding_vex2;
4663 break;
4664 case 0x5:
4665 /* {vex3} */
4666 i.vec_encoding = vex_encoding_vex3;
4667 break;
4668 case 0x6:
4669 /* {evex} */
4670 i.vec_encoding = vex_encoding_evex;
4671 break;
4672 case 0x7:
4673 /* {rex} */
4674 i.rex_encoding = TRUE;
4675 break;
4676 case 0x8:
4677 /* {nooptimize} */
4678 i.no_optimize = TRUE;
4679 break;
4680 default:
4681 abort ();
4682 }
4683 }
4684 else
4685 {
4686 /* Add prefix, checking for repeated prefixes. */
4687 switch (add_prefix (current_templates->start->base_opcode))
4688 {
4689 case PREFIX_EXIST:
4690 return NULL;
4691 case PREFIX_DS:
4692 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4693 i.notrack_prefix = current_templates->start->name;
4694 break;
4695 case PREFIX_REP:
4696 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4697 i.hle_prefix = current_templates->start->name;
4698 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4699 i.bnd_prefix = current_templates->start->name;
4700 else
4701 i.rep_prefix = current_templates->start->name;
4702 break;
4703 default:
4704 break;
4705 }
4706 }
4707 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4708 token_start = ++l;
4709 }
4710 else
4711 break;
4712 }
4713
4714 if (!current_templates)
4715 {
4716 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4717 Check if we should swap operand or force 32bit displacement in
4718 encoding. */
4719 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4720 i.dir_encoding = dir_encoding_swap;
4721 else if (mnem_p - 3 == dot_p
4722 && dot_p[1] == 'd'
4723 && dot_p[2] == '8')
4724 i.disp_encoding = disp_encoding_8bit;
4725 else if (mnem_p - 4 == dot_p
4726 && dot_p[1] == 'd'
4727 && dot_p[2] == '3'
4728 && dot_p[3] == '2')
4729 i.disp_encoding = disp_encoding_32bit;
4730 else
4731 goto check_suffix;
4732 mnem_p = dot_p;
4733 *dot_p = '\0';
4734 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4735 }
4736
4737 if (!current_templates)
4738 {
4739 check_suffix:
4740 if (mnem_p > mnemonic)
4741 {
4742 /* See if we can get a match by trimming off a suffix. */
4743 switch (mnem_p[-1])
4744 {
4745 case WORD_MNEM_SUFFIX:
4746 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4747 i.suffix = SHORT_MNEM_SUFFIX;
4748 else
4749 /* Fall through. */
4750 case BYTE_MNEM_SUFFIX:
4751 case QWORD_MNEM_SUFFIX:
4752 i.suffix = mnem_p[-1];
4753 mnem_p[-1] = '\0';
4754 current_templates = (const templates *) hash_find (op_hash,
4755 mnemonic);
4756 break;
4757 case SHORT_MNEM_SUFFIX:
4758 case LONG_MNEM_SUFFIX:
4759 if (!intel_syntax)
4760 {
4761 i.suffix = mnem_p[-1];
4762 mnem_p[-1] = '\0';
4763 current_templates = (const templates *) hash_find (op_hash,
4764 mnemonic);
4765 }
4766 break;
4767
4768 /* Intel Syntax. */
4769 case 'd':
4770 if (intel_syntax)
4771 {
4772 if (intel_float_operand (mnemonic) == 1)
4773 i.suffix = SHORT_MNEM_SUFFIX;
4774 else
4775 i.suffix = LONG_MNEM_SUFFIX;
4776 mnem_p[-1] = '\0';
4777 current_templates = (const templates *) hash_find (op_hash,
4778 mnemonic);
4779 }
4780 break;
4781 }
4782 }
4783
4784 if (!current_templates)
4785 {
4786 as_bad (_("no such instruction: `%s'"), token_start);
4787 return NULL;
4788 }
4789 }
4790
4791 if (current_templates->start->opcode_modifier.jump
4792 || current_templates->start->opcode_modifier.jumpbyte)
4793 {
4794 /* Check for a branch hint. We allow ",pt" and ",pn" for
4795 predict taken and predict not taken respectively.
4796 I'm not sure that branch hints actually do anything on loop
4797 and jcxz insns (JumpByte) for current Pentium4 chips. They
4798 may work in the future and it doesn't hurt to accept them
4799 now. */
4800 if (l[0] == ',' && l[1] == 'p')
4801 {
4802 if (l[2] == 't')
4803 {
4804 if (!add_prefix (DS_PREFIX_OPCODE))
4805 return NULL;
4806 l += 3;
4807 }
4808 else if (l[2] == 'n')
4809 {
4810 if (!add_prefix (CS_PREFIX_OPCODE))
4811 return NULL;
4812 l += 3;
4813 }
4814 }
4815 }
4816 /* Any other comma loses. */
4817 if (*l == ',')
4818 {
4819 as_bad (_("invalid character %s in mnemonic"),
4820 output_invalid (*l));
4821 return NULL;
4822 }
4823
4824 /* Check if instruction is supported on specified architecture. */
4825 supported = 0;
4826 for (t = current_templates->start; t < current_templates->end; ++t)
4827 {
4828 supported |= cpu_flags_match (t);
4829 if (supported == CPU_FLAGS_PERFECT_MATCH)
4830 {
4831 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4832 as_warn (_("use .code16 to ensure correct addressing mode"));
4833
4834 return l;
4835 }
4836 }
4837
4838 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4839 as_bad (flag_code == CODE_64BIT
4840 ? _("`%s' is not supported in 64-bit mode")
4841 : _("`%s' is only supported in 64-bit mode"),
4842 current_templates->start->name);
4843 else
4844 as_bad (_("`%s' is not supported on `%s%s'"),
4845 current_templates->start->name,
4846 cpu_arch_name ? cpu_arch_name : default_arch,
4847 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4848
4849 return NULL;
4850 }
4851
4852 static char *
4853 parse_operands (char *l, const char *mnemonic)
4854 {
4855 char *token_start;
4856
4857 /* 1 if operand is pending after ','. */
4858 unsigned int expecting_operand = 0;
4859
4860 /* Non-zero if operand parens not balanced. */
4861 unsigned int paren_not_balanced;
4862
4863 while (*l != END_OF_INSN)
4864 {
4865 /* Skip optional white space before operand. */
4866 if (is_space_char (*l))
4867 ++l;
4868 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4869 {
4870 as_bad (_("invalid character %s before operand %d"),
4871 output_invalid (*l),
4872 i.operands + 1);
4873 return NULL;
4874 }
4875 token_start = l; /* After white space. */
4876 paren_not_balanced = 0;
4877 while (paren_not_balanced || *l != ',')
4878 {
4879 if (*l == END_OF_INSN)
4880 {
4881 if (paren_not_balanced)
4882 {
4883 if (!intel_syntax)
4884 as_bad (_("unbalanced parenthesis in operand %d."),
4885 i.operands + 1);
4886 else
4887 as_bad (_("unbalanced brackets in operand %d."),
4888 i.operands + 1);
4889 return NULL;
4890 }
4891 else
4892 break; /* we are done */
4893 }
4894 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4895 {
4896 as_bad (_("invalid character %s in operand %d"),
4897 output_invalid (*l),
4898 i.operands + 1);
4899 return NULL;
4900 }
4901 if (!intel_syntax)
4902 {
4903 if (*l == '(')
4904 ++paren_not_balanced;
4905 if (*l == ')')
4906 --paren_not_balanced;
4907 }
4908 else
4909 {
4910 if (*l == '[')
4911 ++paren_not_balanced;
4912 if (*l == ']')
4913 --paren_not_balanced;
4914 }
4915 l++;
4916 }
4917 if (l != token_start)
4918 { /* Yes, we've read in another operand. */
4919 unsigned int operand_ok;
4920 this_operand = i.operands++;
4921 if (i.operands > MAX_OPERANDS)
4922 {
4923 as_bad (_("spurious operands; (%d operands/instruction max)"),
4924 MAX_OPERANDS);
4925 return NULL;
4926 }
4927 i.types[this_operand].bitfield.unspecified = 1;
4928 /* Now parse operand adding info to 'i' as we go along. */
4929 END_STRING_AND_SAVE (l);
4930
4931 if (i.mem_operands > 1)
4932 {
4933 as_bad (_("too many memory references for `%s'"),
4934 mnemonic);
4935 return 0;
4936 }
4937
4938 if (intel_syntax)
4939 operand_ok =
4940 i386_intel_operand (token_start,
4941 intel_float_operand (mnemonic));
4942 else
4943 operand_ok = i386_att_operand (token_start);
4944
4945 RESTORE_END_STRING (l);
4946 if (!operand_ok)
4947 return NULL;
4948 }
4949 else
4950 {
4951 if (expecting_operand)
4952 {
4953 expecting_operand_after_comma:
4954 as_bad (_("expecting operand after ','; got nothing"));
4955 return NULL;
4956 }
4957 if (*l == ',')
4958 {
4959 as_bad (_("expecting operand before ','; got nothing"));
4960 return NULL;
4961 }
4962 }
4963
4964 /* Now *l must be either ',' or END_OF_INSN. */
4965 if (*l == ',')
4966 {
4967 if (*++l == END_OF_INSN)
4968 {
4969 /* Just skip it, if it's \n complain. */
4970 goto expecting_operand_after_comma;
4971 }
4972 expecting_operand = 1;
4973 }
4974 }
4975 return l;
4976 }
4977
4978 static void
4979 swap_2_operands (int xchg1, int xchg2)
4980 {
4981 union i386_op temp_op;
4982 i386_operand_type temp_type;
4983 unsigned int temp_flags;
4984 enum bfd_reloc_code_real temp_reloc;
4985
4986 temp_type = i.types[xchg2];
4987 i.types[xchg2] = i.types[xchg1];
4988 i.types[xchg1] = temp_type;
4989
4990 temp_flags = i.flags[xchg2];
4991 i.flags[xchg2] = i.flags[xchg1];
4992 i.flags[xchg1] = temp_flags;
4993
4994 temp_op = i.op[xchg2];
4995 i.op[xchg2] = i.op[xchg1];
4996 i.op[xchg1] = temp_op;
4997
4998 temp_reloc = i.reloc[xchg2];
4999 i.reloc[xchg2] = i.reloc[xchg1];
5000 i.reloc[xchg1] = temp_reloc;
5001
5002 if (i.mask)
5003 {
5004 if (i.mask->operand == xchg1)
5005 i.mask->operand = xchg2;
5006 else if (i.mask->operand == xchg2)
5007 i.mask->operand = xchg1;
5008 }
5009 if (i.broadcast)
5010 {
5011 if (i.broadcast->operand == xchg1)
5012 i.broadcast->operand = xchg2;
5013 else if (i.broadcast->operand == xchg2)
5014 i.broadcast->operand = xchg1;
5015 }
5016 if (i.rounding)
5017 {
5018 if (i.rounding->operand == xchg1)
5019 i.rounding->operand = xchg2;
5020 else if (i.rounding->operand == xchg2)
5021 i.rounding->operand = xchg1;
5022 }
5023 }
5024
5025 static void
5026 swap_operands (void)
5027 {
5028 switch (i.operands)
5029 {
5030 case 5:
5031 case 4:
5032 swap_2_operands (1, i.operands - 2);
5033 /* Fall through. */
5034 case 3:
5035 case 2:
5036 swap_2_operands (0, i.operands - 1);
5037 break;
5038 default:
5039 abort ();
5040 }
5041
5042 if (i.mem_operands == 2)
5043 {
5044 const seg_entry *temp_seg;
5045 temp_seg = i.seg[0];
5046 i.seg[0] = i.seg[1];
5047 i.seg[1] = temp_seg;
5048 }
5049 }
5050
5051 /* Try to ensure constant immediates are represented in the smallest
5052 opcode possible. */
5053 static void
5054 optimize_imm (void)
5055 {
5056 char guess_suffix = 0;
5057 int op;
5058
5059 if (i.suffix)
5060 guess_suffix = i.suffix;
5061 else if (i.reg_operands)
5062 {
5063 /* Figure out a suffix from the last register operand specified.
5064 We can't do this properly yet, ie. excluding InOutPortReg,
5065 but the following works for instructions with immediates.
5066 In any case, we can't set i.suffix yet. */
5067 for (op = i.operands; --op >= 0;)
5068 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
5069 {
5070 guess_suffix = BYTE_MNEM_SUFFIX;
5071 break;
5072 }
5073 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
5074 {
5075 guess_suffix = WORD_MNEM_SUFFIX;
5076 break;
5077 }
5078 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5079 {
5080 guess_suffix = LONG_MNEM_SUFFIX;
5081 break;
5082 }
5083 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5084 {
5085 guess_suffix = QWORD_MNEM_SUFFIX;
5086 break;
5087 }
5088 }
5089 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5090 guess_suffix = WORD_MNEM_SUFFIX;
5091
5092 for (op = i.operands; --op >= 0;)
5093 if (operand_type_check (i.types[op], imm))
5094 {
5095 switch (i.op[op].imms->X_op)
5096 {
5097 case O_constant:
5098 /* If a suffix is given, this operand may be shortened. */
5099 switch (guess_suffix)
5100 {
5101 case LONG_MNEM_SUFFIX:
5102 i.types[op].bitfield.imm32 = 1;
5103 i.types[op].bitfield.imm64 = 1;
5104 break;
5105 case WORD_MNEM_SUFFIX:
5106 i.types[op].bitfield.imm16 = 1;
5107 i.types[op].bitfield.imm32 = 1;
5108 i.types[op].bitfield.imm32s = 1;
5109 i.types[op].bitfield.imm64 = 1;
5110 break;
5111 case BYTE_MNEM_SUFFIX:
5112 i.types[op].bitfield.imm8 = 1;
5113 i.types[op].bitfield.imm8s = 1;
5114 i.types[op].bitfield.imm16 = 1;
5115 i.types[op].bitfield.imm32 = 1;
5116 i.types[op].bitfield.imm32s = 1;
5117 i.types[op].bitfield.imm64 = 1;
5118 break;
5119 }
5120
5121 /* If this operand is at most 16 bits, convert it
5122 to a signed 16 bit number before trying to see
5123 whether it will fit in an even smaller size.
5124 This allows a 16-bit operand such as $0xffe0 to
5125 be recognised as within Imm8S range. */
5126 if ((i.types[op].bitfield.imm16)
5127 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5128 {
5129 i.op[op].imms->X_add_number =
5130 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5131 }
5132 #ifdef BFD64
5133 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5134 if ((i.types[op].bitfield.imm32)
5135 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5136 == 0))
5137 {
5138 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5139 ^ ((offsetT) 1 << 31))
5140 - ((offsetT) 1 << 31));
5141 }
5142 #endif
5143 i.types[op]
5144 = operand_type_or (i.types[op],
5145 smallest_imm_type (i.op[op].imms->X_add_number));
5146
5147 /* We must avoid matching of Imm32 templates when 64bit
5148 only immediate is available. */
5149 if (guess_suffix == QWORD_MNEM_SUFFIX)
5150 i.types[op].bitfield.imm32 = 0;
5151 break;
5152
5153 case O_absent:
5154 case O_register:
5155 abort ();
5156
5157 /* Symbols and expressions. */
5158 default:
5159 /* Convert symbolic operand to proper sizes for matching, but don't
5160 prevent matching a set of insns that only supports sizes other
5161 than those matching the insn suffix. */
5162 {
5163 i386_operand_type mask, allowed;
5164 const insn_template *t;
5165
5166 operand_type_set (&mask, 0);
5167 operand_type_set (&allowed, 0);
5168
5169 for (t = current_templates->start;
5170 t < current_templates->end;
5171 ++t)
5172 allowed = operand_type_or (allowed,
5173 t->operand_types[op]);
5174 switch (guess_suffix)
5175 {
5176 case QWORD_MNEM_SUFFIX:
5177 mask.bitfield.imm64 = 1;
5178 mask.bitfield.imm32s = 1;
5179 break;
5180 case LONG_MNEM_SUFFIX:
5181 mask.bitfield.imm32 = 1;
5182 break;
5183 case WORD_MNEM_SUFFIX:
5184 mask.bitfield.imm16 = 1;
5185 break;
5186 case BYTE_MNEM_SUFFIX:
5187 mask.bitfield.imm8 = 1;
5188 break;
5189 default:
5190 break;
5191 }
5192 allowed = operand_type_and (mask, allowed);
5193 if (!operand_type_all_zero (&allowed))
5194 i.types[op] = operand_type_and (i.types[op], mask);
5195 }
5196 break;
5197 }
5198 }
5199 }
5200
5201 /* Try to use the smallest displacement type too. */
5202 static void
5203 optimize_disp (void)
5204 {
5205 int op;
5206
5207 for (op = i.operands; --op >= 0;)
5208 if (operand_type_check (i.types[op], disp))
5209 {
5210 if (i.op[op].disps->X_op == O_constant)
5211 {
5212 offsetT op_disp = i.op[op].disps->X_add_number;
5213
5214 if (i.types[op].bitfield.disp16
5215 && (op_disp & ~(offsetT) 0xffff) == 0)
5216 {
5217 /* If this operand is at most 16 bits, convert
5218 to a signed 16 bit number and don't use 64bit
5219 displacement. */
5220 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5221 i.types[op].bitfield.disp64 = 0;
5222 }
5223 #ifdef BFD64
5224 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5225 if (i.types[op].bitfield.disp32
5226 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5227 {
5228 /* If this operand is at most 32 bits, convert
5229 to a signed 32 bit number and don't use 64bit
5230 displacement. */
5231 op_disp &= (((offsetT) 2 << 31) - 1);
5232 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5233 i.types[op].bitfield.disp64 = 0;
5234 }
5235 #endif
5236 if (!op_disp && i.types[op].bitfield.baseindex)
5237 {
5238 i.types[op].bitfield.disp8 = 0;
5239 i.types[op].bitfield.disp16 = 0;
5240 i.types[op].bitfield.disp32 = 0;
5241 i.types[op].bitfield.disp32s = 0;
5242 i.types[op].bitfield.disp64 = 0;
5243 i.op[op].disps = 0;
5244 i.disp_operands--;
5245 }
5246 else if (flag_code == CODE_64BIT)
5247 {
5248 if (fits_in_signed_long (op_disp))
5249 {
5250 i.types[op].bitfield.disp64 = 0;
5251 i.types[op].bitfield.disp32s = 1;
5252 }
5253 if (i.prefix[ADDR_PREFIX]
5254 && fits_in_unsigned_long (op_disp))
5255 i.types[op].bitfield.disp32 = 1;
5256 }
5257 if ((i.types[op].bitfield.disp32
5258 || i.types[op].bitfield.disp32s
5259 || i.types[op].bitfield.disp16)
5260 && fits_in_disp8 (op_disp))
5261 i.types[op].bitfield.disp8 = 1;
5262 }
5263 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5264 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5265 {
5266 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5267 i.op[op].disps, 0, i.reloc[op]);
5268 i.types[op].bitfield.disp8 = 0;
5269 i.types[op].bitfield.disp16 = 0;
5270 i.types[op].bitfield.disp32 = 0;
5271 i.types[op].bitfield.disp32s = 0;
5272 i.types[op].bitfield.disp64 = 0;
5273 }
5274 else
5275 /* We only support 64bit displacement on constants. */
5276 i.types[op].bitfield.disp64 = 0;
5277 }
5278 }
5279
5280 /* Return 1 if there is a match in broadcast bytes between operand
5281 GIVEN and instruction template T. */
5282
5283 static INLINE int
5284 match_broadcast_size (const insn_template *t, unsigned int given)
5285 {
5286 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5287 && i.types[given].bitfield.byte)
5288 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5289 && i.types[given].bitfield.word)
5290 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5291 && i.types[given].bitfield.dword)
5292 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5293 && i.types[given].bitfield.qword));
5294 }
5295
5296 /* Check if operands are valid for the instruction. */
5297
5298 static int
5299 check_VecOperands (const insn_template *t)
5300 {
5301 unsigned int op;
5302 i386_cpu_flags cpu;
5303 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5304
5305 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5306 any one operand are implicity requiring AVX512VL support if the actual
5307 operand size is YMMword or XMMword. Since this function runs after
5308 template matching, there's no need to check for YMMword/XMMword in
5309 the template. */
5310 cpu = cpu_flags_and (t->cpu_flags, avx512);
5311 if (!cpu_flags_all_zero (&cpu)
5312 && !t->cpu_flags.bitfield.cpuavx512vl
5313 && !cpu_arch_flags.bitfield.cpuavx512vl)
5314 {
5315 for (op = 0; op < t->operands; ++op)
5316 {
5317 if (t->operand_types[op].bitfield.zmmword
5318 && (i.types[op].bitfield.ymmword
5319 || i.types[op].bitfield.xmmword))
5320 {
5321 i.error = unsupported;
5322 return 1;
5323 }
5324 }
5325 }
5326
5327 /* Without VSIB byte, we can't have a vector register for index. */
5328 if (!t->opcode_modifier.vecsib
5329 && i.index_reg
5330 && (i.index_reg->reg_type.bitfield.xmmword
5331 || i.index_reg->reg_type.bitfield.ymmword
5332 || i.index_reg->reg_type.bitfield.zmmword))
5333 {
5334 i.error = unsupported_vector_index_register;
5335 return 1;
5336 }
5337
5338 /* Check if default mask is allowed. */
5339 if (t->opcode_modifier.nodefmask
5340 && (!i.mask || i.mask->mask->reg_num == 0))
5341 {
5342 i.error = no_default_mask;
5343 return 1;
5344 }
5345
5346 /* For VSIB byte, we need a vector register for index, and all vector
5347 registers must be distinct. */
5348 if (t->opcode_modifier.vecsib)
5349 {
5350 if (!i.index_reg
5351 || !((t->opcode_modifier.vecsib == VecSIB128
5352 && i.index_reg->reg_type.bitfield.xmmword)
5353 || (t->opcode_modifier.vecsib == VecSIB256
5354 && i.index_reg->reg_type.bitfield.ymmword)
5355 || (t->opcode_modifier.vecsib == VecSIB512
5356 && i.index_reg->reg_type.bitfield.zmmword)))
5357 {
5358 i.error = invalid_vsib_address;
5359 return 1;
5360 }
5361
5362 gas_assert (i.reg_operands == 2 || i.mask);
5363 if (i.reg_operands == 2 && !i.mask)
5364 {
5365 gas_assert (i.types[0].bitfield.regsimd);
5366 gas_assert (i.types[0].bitfield.xmmword
5367 || i.types[0].bitfield.ymmword);
5368 gas_assert (i.types[2].bitfield.regsimd);
5369 gas_assert (i.types[2].bitfield.xmmword
5370 || i.types[2].bitfield.ymmword);
5371 if (operand_check == check_none)
5372 return 0;
5373 if (register_number (i.op[0].regs)
5374 != register_number (i.index_reg)
5375 && register_number (i.op[2].regs)
5376 != register_number (i.index_reg)
5377 && register_number (i.op[0].regs)
5378 != register_number (i.op[2].regs))
5379 return 0;
5380 if (operand_check == check_error)
5381 {
5382 i.error = invalid_vector_register_set;
5383 return 1;
5384 }
5385 as_warn (_("mask, index, and destination registers should be distinct"));
5386 }
5387 else if (i.reg_operands == 1 && i.mask)
5388 {
5389 if (i.types[1].bitfield.regsimd
5390 && (i.types[1].bitfield.xmmword
5391 || i.types[1].bitfield.ymmword
5392 || i.types[1].bitfield.zmmword)
5393 && (register_number (i.op[1].regs)
5394 == register_number (i.index_reg)))
5395 {
5396 if (operand_check == check_error)
5397 {
5398 i.error = invalid_vector_register_set;
5399 return 1;
5400 }
5401 if (operand_check != check_none)
5402 as_warn (_("index and destination registers should be distinct"));
5403 }
5404 }
5405 }
5406
5407 /* Check if broadcast is supported by the instruction and is applied
5408 to the memory operand. */
5409 if (i.broadcast)
5410 {
5411 i386_operand_type type, overlap;
5412
5413 /* Check if specified broadcast is supported in this instruction,
5414 and its broadcast bytes match the memory operand. */
5415 op = i.broadcast->operand;
5416 if (!t->opcode_modifier.broadcast
5417 || !(i.flags[op] & Operand_Mem)
5418 || (!i.types[op].bitfield.unspecified
5419 && !match_broadcast_size (t, op)))
5420 {
5421 bad_broadcast:
5422 i.error = unsupported_broadcast;
5423 return 1;
5424 }
5425
5426 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5427 * i.broadcast->type);
5428 operand_type_set (&type, 0);
5429 switch (i.broadcast->bytes)
5430 {
5431 case 2:
5432 type.bitfield.word = 1;
5433 break;
5434 case 4:
5435 type.bitfield.dword = 1;
5436 break;
5437 case 8:
5438 type.bitfield.qword = 1;
5439 break;
5440 case 16:
5441 type.bitfield.xmmword = 1;
5442 break;
5443 case 32:
5444 type.bitfield.ymmword = 1;
5445 break;
5446 case 64:
5447 type.bitfield.zmmword = 1;
5448 break;
5449 default:
5450 goto bad_broadcast;
5451 }
5452
5453 overlap = operand_type_and (type, t->operand_types[op]);
5454 if (operand_type_all_zero (&overlap))
5455 goto bad_broadcast;
5456
5457 if (t->opcode_modifier.checkregsize)
5458 {
5459 unsigned int j;
5460
5461 type.bitfield.baseindex = 1;
5462 for (j = 0; j < i.operands; ++j)
5463 {
5464 if (j != op
5465 && !operand_type_register_match(i.types[j],
5466 t->operand_types[j],
5467 type,
5468 t->operand_types[op]))
5469 goto bad_broadcast;
5470 }
5471 }
5472 }
5473 /* If broadcast is supported in this instruction, we need to check if
5474 operand of one-element size isn't specified without broadcast. */
5475 else if (t->opcode_modifier.broadcast && i.mem_operands)
5476 {
5477 /* Find memory operand. */
5478 for (op = 0; op < i.operands; op++)
5479 if (operand_type_check (i.types[op], anymem))
5480 break;
5481 gas_assert (op < i.operands);
5482 /* Check size of the memory operand. */
5483 if (match_broadcast_size (t, op))
5484 {
5485 i.error = broadcast_needed;
5486 return 1;
5487 }
5488 }
5489 else
5490 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5491
5492 /* Check if requested masking is supported. */
5493 if (i.mask)
5494 {
5495 switch (t->opcode_modifier.masking)
5496 {
5497 case BOTH_MASKING:
5498 break;
5499 case MERGING_MASKING:
5500 if (i.mask->zeroing)
5501 {
5502 case 0:
5503 i.error = unsupported_masking;
5504 return 1;
5505 }
5506 break;
5507 case DYNAMIC_MASKING:
5508 /* Memory destinations allow only merging masking. */
5509 if (i.mask->zeroing && i.mem_operands)
5510 {
5511 /* Find memory operand. */
5512 for (op = 0; op < i.operands; op++)
5513 if (i.flags[op] & Operand_Mem)
5514 break;
5515 gas_assert (op < i.operands);
5516 if (op == i.operands - 1)
5517 {
5518 i.error = unsupported_masking;
5519 return 1;
5520 }
5521 }
5522 break;
5523 default:
5524 abort ();
5525 }
5526 }
5527
5528 /* Check if masking is applied to dest operand. */
5529 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5530 {
5531 i.error = mask_not_on_destination;
5532 return 1;
5533 }
5534
5535 /* Check RC/SAE. */
5536 if (i.rounding)
5537 {
5538 if (!t->opcode_modifier.sae
5539 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5540 {
5541 i.error = unsupported_rc_sae;
5542 return 1;
5543 }
5544 /* If the instruction has several immediate operands and one of
5545 them is rounding, the rounding operand should be the last
5546 immediate operand. */
5547 if (i.imm_operands > 1
5548 && i.rounding->operand != (int) (i.imm_operands - 1))
5549 {
5550 i.error = rc_sae_operand_not_last_imm;
5551 return 1;
5552 }
5553 }
5554
5555 /* Check vector Disp8 operand. */
5556 if (t->opcode_modifier.disp8memshift
5557 && i.disp_encoding != disp_encoding_32bit)
5558 {
5559 if (i.broadcast)
5560 i.memshift = t->opcode_modifier.broadcast - 1;
5561 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5562 i.memshift = t->opcode_modifier.disp8memshift;
5563 else
5564 {
5565 const i386_operand_type *type = NULL;
5566
5567 i.memshift = 0;
5568 for (op = 0; op < i.operands; op++)
5569 if (operand_type_check (i.types[op], anymem))
5570 {
5571 if (t->opcode_modifier.evex == EVEXLIG)
5572 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5573 else if (t->operand_types[op].bitfield.xmmword
5574 + t->operand_types[op].bitfield.ymmword
5575 + t->operand_types[op].bitfield.zmmword <= 1)
5576 type = &t->operand_types[op];
5577 else if (!i.types[op].bitfield.unspecified)
5578 type = &i.types[op];
5579 }
5580 else if (i.types[op].bitfield.regsimd
5581 && t->opcode_modifier.evex != EVEXLIG)
5582 {
5583 if (i.types[op].bitfield.zmmword)
5584 i.memshift = 6;
5585 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5586 i.memshift = 5;
5587 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5588 i.memshift = 4;
5589 }
5590
5591 if (type)
5592 {
5593 if (type->bitfield.zmmword)
5594 i.memshift = 6;
5595 else if (type->bitfield.ymmword)
5596 i.memshift = 5;
5597 else if (type->bitfield.xmmword)
5598 i.memshift = 4;
5599 }
5600
5601 /* For the check in fits_in_disp8(). */
5602 if (i.memshift == 0)
5603 i.memshift = -1;
5604 }
5605
5606 for (op = 0; op < i.operands; op++)
5607 if (operand_type_check (i.types[op], disp)
5608 && i.op[op].disps->X_op == O_constant)
5609 {
5610 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5611 {
5612 i.types[op].bitfield.disp8 = 1;
5613 return 0;
5614 }
5615 i.types[op].bitfield.disp8 = 0;
5616 }
5617 }
5618
5619 i.memshift = 0;
5620
5621 return 0;
5622 }
5623
5624 /* Check if operands are valid for the instruction. Update VEX
5625 operand types. */
5626
5627 static int
5628 VEX_check_operands (const insn_template *t)
5629 {
5630 if (i.vec_encoding == vex_encoding_evex)
5631 {
5632 /* This instruction must be encoded with EVEX prefix. */
5633 if (!is_evex_encoding (t))
5634 {
5635 i.error = unsupported;
5636 return 1;
5637 }
5638 return 0;
5639 }
5640
5641 if (!t->opcode_modifier.vex)
5642 {
5643 /* This instruction template doesn't have VEX prefix. */
5644 if (i.vec_encoding != vex_encoding_default)
5645 {
5646 i.error = unsupported;
5647 return 1;
5648 }
5649 return 0;
5650 }
5651
5652 /* Only check VEX_Imm4, which must be the first operand. */
5653 if (t->operand_types[0].bitfield.vec_imm4)
5654 {
5655 if (i.op[0].imms->X_op != O_constant
5656 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5657 {
5658 i.error = bad_imm4;
5659 return 1;
5660 }
5661
5662 /* Turn off Imm8 so that update_imm won't complain. */
5663 i.types[0] = vec_imm4;
5664 }
5665
5666 return 0;
5667 }
5668
5669 static const insn_template *
5670 match_template (char mnem_suffix)
5671 {
5672 /* Points to template once we've found it. */
5673 const insn_template *t;
5674 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5675 i386_operand_type overlap4;
5676 unsigned int found_reverse_match;
5677 i386_opcode_modifier suffix_check, mnemsuf_check;
5678 i386_operand_type operand_types [MAX_OPERANDS];
5679 int addr_prefix_disp;
5680 unsigned int j;
5681 unsigned int found_cpu_match, size_match;
5682 unsigned int check_register;
5683 enum i386_error specific_error = 0;
5684
5685 #if MAX_OPERANDS != 5
5686 # error "MAX_OPERANDS must be 5."
5687 #endif
5688
5689 found_reverse_match = 0;
5690 addr_prefix_disp = -1;
5691
5692 memset (&suffix_check, 0, sizeof (suffix_check));
5693 if (intel_syntax && i.broadcast)
5694 /* nothing */;
5695 else if (i.suffix == BYTE_MNEM_SUFFIX)
5696 suffix_check.no_bsuf = 1;
5697 else if (i.suffix == WORD_MNEM_SUFFIX)
5698 suffix_check.no_wsuf = 1;
5699 else if (i.suffix == SHORT_MNEM_SUFFIX)
5700 suffix_check.no_ssuf = 1;
5701 else if (i.suffix == LONG_MNEM_SUFFIX)
5702 suffix_check.no_lsuf = 1;
5703 else if (i.suffix == QWORD_MNEM_SUFFIX)
5704 suffix_check.no_qsuf = 1;
5705 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5706 suffix_check.no_ldsuf = 1;
5707
5708 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5709 if (intel_syntax)
5710 {
5711 switch (mnem_suffix)
5712 {
5713 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5714 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5715 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5716 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5717 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5718 }
5719 }
5720
5721 /* Must have right number of operands. */
5722 i.error = number_of_operands_mismatch;
5723
5724 for (t = current_templates->start; t < current_templates->end; t++)
5725 {
5726 addr_prefix_disp = -1;
5727 found_reverse_match = 0;
5728
5729 if (i.operands != t->operands)
5730 continue;
5731
5732 /* Check processor support. */
5733 i.error = unsupported;
5734 found_cpu_match = (cpu_flags_match (t)
5735 == CPU_FLAGS_PERFECT_MATCH);
5736 if (!found_cpu_match)
5737 continue;
5738
5739 /* Check AT&T mnemonic. */
5740 i.error = unsupported_with_intel_mnemonic;
5741 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5742 continue;
5743
5744 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5745 i.error = unsupported_syntax;
5746 if ((intel_syntax && t->opcode_modifier.attsyntax)
5747 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5748 || (intel64 && t->opcode_modifier.amd64)
5749 || (!intel64 && t->opcode_modifier.intel64))
5750 continue;
5751
5752 /* Check the suffix, except for some instructions in intel mode. */
5753 i.error = invalid_instruction_suffix;
5754 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5755 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5756 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5757 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5758 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5759 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5760 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5761 continue;
5762 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5763 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5764 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5765 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5766 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5767 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5768 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5769 continue;
5770
5771 size_match = operand_size_match (t);
5772 if (!size_match)
5773 continue;
5774
5775 for (j = 0; j < MAX_OPERANDS; j++)
5776 operand_types[j] = t->operand_types[j];
5777
5778 /* In general, don't allow 64-bit operands in 32-bit mode. */
5779 if (i.suffix == QWORD_MNEM_SUFFIX
5780 && flag_code != CODE_64BIT
5781 && (intel_syntax
5782 ? (!t->opcode_modifier.ignoresize
5783 && !t->opcode_modifier.broadcast
5784 && !intel_float_operand (t->name))
5785 : intel_float_operand (t->name) != 2)
5786 && ((!operand_types[0].bitfield.regmmx
5787 && !operand_types[0].bitfield.regsimd)
5788 || (!operand_types[t->operands > 1].bitfield.regmmx
5789 && !operand_types[t->operands > 1].bitfield.regsimd))
5790 && (t->base_opcode != 0x0fc7
5791 || t->extension_opcode != 1 /* cmpxchg8b */))
5792 continue;
5793
5794 /* In general, don't allow 32-bit operands on pre-386. */
5795 else if (i.suffix == LONG_MNEM_SUFFIX
5796 && !cpu_arch_flags.bitfield.cpui386
5797 && (intel_syntax
5798 ? (!t->opcode_modifier.ignoresize
5799 && !intel_float_operand (t->name))
5800 : intel_float_operand (t->name) != 2)
5801 && ((!operand_types[0].bitfield.regmmx
5802 && !operand_types[0].bitfield.regsimd)
5803 || (!operand_types[t->operands > 1].bitfield.regmmx
5804 && !operand_types[t->operands > 1].bitfield.regsimd)))
5805 continue;
5806
5807 /* Do not verify operands when there are none. */
5808 else
5809 {
5810 if (!t->operands)
5811 /* We've found a match; break out of loop. */
5812 break;
5813 }
5814
5815 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5816 into Disp32/Disp16/Disp32 operand. */
5817 if (i.prefix[ADDR_PREFIX] != 0)
5818 {
5819 /* There should be only one Disp operand. */
5820 switch (flag_code)
5821 {
5822 case CODE_16BIT:
5823 for (j = 0; j < MAX_OPERANDS; j++)
5824 {
5825 if (operand_types[j].bitfield.disp16)
5826 {
5827 addr_prefix_disp = j;
5828 operand_types[j].bitfield.disp32 = 1;
5829 operand_types[j].bitfield.disp16 = 0;
5830 break;
5831 }
5832 }
5833 break;
5834 case CODE_32BIT:
5835 for (j = 0; j < MAX_OPERANDS; j++)
5836 {
5837 if (operand_types[j].bitfield.disp32)
5838 {
5839 addr_prefix_disp = j;
5840 operand_types[j].bitfield.disp32 = 0;
5841 operand_types[j].bitfield.disp16 = 1;
5842 break;
5843 }
5844 }
5845 break;
5846 case CODE_64BIT:
5847 for (j = 0; j < MAX_OPERANDS; j++)
5848 {
5849 if (operand_types[j].bitfield.disp64)
5850 {
5851 addr_prefix_disp = j;
5852 operand_types[j].bitfield.disp64 = 0;
5853 operand_types[j].bitfield.disp32 = 1;
5854 break;
5855 }
5856 }
5857 break;
5858 }
5859 }
5860
5861 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5862 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5863 continue;
5864
5865 /* We check register size if needed. */
5866 if (t->opcode_modifier.checkregsize)
5867 {
5868 check_register = (1 << t->operands) - 1;
5869 if (i.broadcast)
5870 check_register &= ~(1 << i.broadcast->operand);
5871 }
5872 else
5873 check_register = 0;
5874
5875 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5876 switch (t->operands)
5877 {
5878 case 1:
5879 if (!operand_type_match (overlap0, i.types[0]))
5880 continue;
5881 break;
5882 case 2:
5883 /* xchg %eax, %eax is a special case. It is an alias for nop
5884 only in 32bit mode and we can use opcode 0x90. In 64bit
5885 mode, we can't use 0x90 for xchg %eax, %eax since it should
5886 zero-extend %eax to %rax. */
5887 if (flag_code == CODE_64BIT
5888 && t->base_opcode == 0x90
5889 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5890 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
5891 continue;
5892 /* xrelease mov %eax, <disp> is another special case. It must not
5893 match the accumulator-only encoding of mov. */
5894 if (flag_code != CODE_64BIT
5895 && i.hle_prefix
5896 && t->base_opcode == 0xa0
5897 && i.types[0].bitfield.acc
5898 && operand_type_check (i.types[1], anymem))
5899 continue;
5900 /* Fall through. */
5901
5902 case 3:
5903 if (!(size_match & MATCH_STRAIGHT))
5904 goto check_reverse;
5905 /* Reverse direction of operands if swapping is possible in the first
5906 place (operands need to be symmetric) and
5907 - the load form is requested, and the template is a store form,
5908 - the store form is requested, and the template is a load form,
5909 - the non-default (swapped) form is requested. */
5910 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5911 if (t->opcode_modifier.d && i.reg_operands == i.operands
5912 && !operand_type_all_zero (&overlap1))
5913 switch (i.dir_encoding)
5914 {
5915 case dir_encoding_load:
5916 if (operand_type_check (operand_types[i.operands - 1], anymem)
5917 || operand_types[i.operands - 1].bitfield.regmem)
5918 goto check_reverse;
5919 break;
5920
5921 case dir_encoding_store:
5922 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5923 && !operand_types[i.operands - 1].bitfield.regmem)
5924 goto check_reverse;
5925 break;
5926
5927 case dir_encoding_swap:
5928 goto check_reverse;
5929
5930 case dir_encoding_default:
5931 break;
5932 }
5933 /* If we want store form, we skip the current load. */
5934 if ((i.dir_encoding == dir_encoding_store
5935 || i.dir_encoding == dir_encoding_swap)
5936 && i.mem_operands == 0
5937 && t->opcode_modifier.load)
5938 continue;
5939 /* Fall through. */
5940 case 4:
5941 case 5:
5942 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5943 if (!operand_type_match (overlap0, i.types[0])
5944 || !operand_type_match (overlap1, i.types[1])
5945 || ((check_register & 3) == 3
5946 && !operand_type_register_match (i.types[0],
5947 operand_types[0],
5948 i.types[1],
5949 operand_types[1])))
5950 {
5951 /* Check if other direction is valid ... */
5952 if (!t->opcode_modifier.d)
5953 continue;
5954
5955 check_reverse:
5956 if (!(size_match & MATCH_REVERSE))
5957 continue;
5958 /* Try reversing direction of operands. */
5959 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5960 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5961 if (!operand_type_match (overlap0, i.types[0])
5962 || !operand_type_match (overlap1, i.types[i.operands - 1])
5963 || (check_register
5964 && !operand_type_register_match (i.types[0],
5965 operand_types[i.operands - 1],
5966 i.types[i.operands - 1],
5967 operand_types[0])))
5968 {
5969 /* Does not match either direction. */
5970 continue;
5971 }
5972 /* found_reverse_match holds which of D or FloatR
5973 we've found. */
5974 if (!t->opcode_modifier.d)
5975 found_reverse_match = 0;
5976 else if (operand_types[0].bitfield.tbyte)
5977 found_reverse_match = Opcode_FloatD;
5978 else if (operand_types[0].bitfield.xmmword
5979 || operand_types[i.operands - 1].bitfield.xmmword
5980 || operand_types[0].bitfield.regmmx
5981 || operand_types[i.operands - 1].bitfield.regmmx
5982 || is_any_vex_encoding(t))
5983 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5984 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5985 else
5986 found_reverse_match = Opcode_D;
5987 if (t->opcode_modifier.floatr)
5988 found_reverse_match |= Opcode_FloatR;
5989 }
5990 else
5991 {
5992 /* Found a forward 2 operand match here. */
5993 switch (t->operands)
5994 {
5995 case 5:
5996 overlap4 = operand_type_and (i.types[4],
5997 operand_types[4]);
5998 /* Fall through. */
5999 case 4:
6000 overlap3 = operand_type_and (i.types[3],
6001 operand_types[3]);
6002 /* Fall through. */
6003 case 3:
6004 overlap2 = operand_type_and (i.types[2],
6005 operand_types[2]);
6006 break;
6007 }
6008
6009 switch (t->operands)
6010 {
6011 case 5:
6012 if (!operand_type_match (overlap4, i.types[4])
6013 || !operand_type_register_match (i.types[3],
6014 operand_types[3],
6015 i.types[4],
6016 operand_types[4]))
6017 continue;
6018 /* Fall through. */
6019 case 4:
6020 if (!operand_type_match (overlap3, i.types[3])
6021 || ((check_register & 0xa) == 0xa
6022 && !operand_type_register_match (i.types[1],
6023 operand_types[1],
6024 i.types[3],
6025 operand_types[3]))
6026 || ((check_register & 0xc) == 0xc
6027 && !operand_type_register_match (i.types[2],
6028 operand_types[2],
6029 i.types[3],
6030 operand_types[3])))
6031 continue;
6032 /* Fall through. */
6033 case 3:
6034 /* Here we make use of the fact that there are no
6035 reverse match 3 operand instructions. */
6036 if (!operand_type_match (overlap2, i.types[2])
6037 || ((check_register & 5) == 5
6038 && !operand_type_register_match (i.types[0],
6039 operand_types[0],
6040 i.types[2],
6041 operand_types[2]))
6042 || ((check_register & 6) == 6
6043 && !operand_type_register_match (i.types[1],
6044 operand_types[1],
6045 i.types[2],
6046 operand_types[2])))
6047 continue;
6048 break;
6049 }
6050 }
6051 /* Found either forward/reverse 2, 3 or 4 operand match here:
6052 slip through to break. */
6053 }
6054 if (!found_cpu_match)
6055 continue;
6056
6057 /* Check if vector and VEX operands are valid. */
6058 if (check_VecOperands (t) || VEX_check_operands (t))
6059 {
6060 specific_error = i.error;
6061 continue;
6062 }
6063
6064 /* We've found a match; break out of loop. */
6065 break;
6066 }
6067
6068 if (t == current_templates->end)
6069 {
6070 /* We found no match. */
6071 const char *err_msg;
6072 switch (specific_error ? specific_error : i.error)
6073 {
6074 default:
6075 abort ();
6076 case operand_size_mismatch:
6077 err_msg = _("operand size mismatch");
6078 break;
6079 case operand_type_mismatch:
6080 err_msg = _("operand type mismatch");
6081 break;
6082 case register_type_mismatch:
6083 err_msg = _("register type mismatch");
6084 break;
6085 case number_of_operands_mismatch:
6086 err_msg = _("number of operands mismatch");
6087 break;
6088 case invalid_instruction_suffix:
6089 err_msg = _("invalid instruction suffix");
6090 break;
6091 case bad_imm4:
6092 err_msg = _("constant doesn't fit in 4 bits");
6093 break;
6094 case unsupported_with_intel_mnemonic:
6095 err_msg = _("unsupported with Intel mnemonic");
6096 break;
6097 case unsupported_syntax:
6098 err_msg = _("unsupported syntax");
6099 break;
6100 case unsupported:
6101 as_bad (_("unsupported instruction `%s'"),
6102 current_templates->start->name);
6103 return NULL;
6104 case invalid_vsib_address:
6105 err_msg = _("invalid VSIB address");
6106 break;
6107 case invalid_vector_register_set:
6108 err_msg = _("mask, index, and destination registers must be distinct");
6109 break;
6110 case unsupported_vector_index_register:
6111 err_msg = _("unsupported vector index register");
6112 break;
6113 case unsupported_broadcast:
6114 err_msg = _("unsupported broadcast");
6115 break;
6116 case broadcast_needed:
6117 err_msg = _("broadcast is needed for operand of such type");
6118 break;
6119 case unsupported_masking:
6120 err_msg = _("unsupported masking");
6121 break;
6122 case mask_not_on_destination:
6123 err_msg = _("mask not on destination operand");
6124 break;
6125 case no_default_mask:
6126 err_msg = _("default mask isn't allowed");
6127 break;
6128 case unsupported_rc_sae:
6129 err_msg = _("unsupported static rounding/sae");
6130 break;
6131 case rc_sae_operand_not_last_imm:
6132 if (intel_syntax)
6133 err_msg = _("RC/SAE operand must precede immediate operands");
6134 else
6135 err_msg = _("RC/SAE operand must follow immediate operands");
6136 break;
6137 case invalid_register_operand:
6138 err_msg = _("invalid register operand");
6139 break;
6140 }
6141 as_bad (_("%s for `%s'"), err_msg,
6142 current_templates->start->name);
6143 return NULL;
6144 }
6145
6146 if (!quiet_warnings)
6147 {
6148 if (!intel_syntax
6149 && (i.types[0].bitfield.jumpabsolute
6150 != operand_types[0].bitfield.jumpabsolute))
6151 {
6152 as_warn (_("indirect %s without `*'"), t->name);
6153 }
6154
6155 if (t->opcode_modifier.isprefix
6156 && t->opcode_modifier.ignoresize)
6157 {
6158 /* Warn them that a data or address size prefix doesn't
6159 affect assembly of the next line of code. */
6160 as_warn (_("stand-alone `%s' prefix"), t->name);
6161 }
6162 }
6163
6164 /* Copy the template we found. */
6165 i.tm = *t;
6166
6167 if (addr_prefix_disp != -1)
6168 i.tm.operand_types[addr_prefix_disp]
6169 = operand_types[addr_prefix_disp];
6170
6171 if (found_reverse_match)
6172 {
6173 /* If we found a reverse match we must alter the opcode
6174 direction bit. found_reverse_match holds bits to change
6175 (different for int & float insns). */
6176
6177 i.tm.base_opcode ^= found_reverse_match;
6178
6179 i.tm.operand_types[0] = operand_types[i.operands - 1];
6180 i.tm.operand_types[i.operands - 1] = operand_types[0];
6181 }
6182
6183 return t;
6184 }
6185
6186 static int
6187 check_string (void)
6188 {
6189 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6190 if (i.tm.operand_types[mem_op].bitfield.esseg)
6191 {
6192 if (i.seg[0] != NULL && i.seg[0] != &es)
6193 {
6194 as_bad (_("`%s' operand %d must use `%ses' segment"),
6195 i.tm.name,
6196 mem_op + 1,
6197 register_prefix);
6198 return 0;
6199 }
6200 /* There's only ever one segment override allowed per instruction.
6201 This instruction possibly has a legal segment override on the
6202 second operand, so copy the segment to where non-string
6203 instructions store it, allowing common code. */
6204 i.seg[0] = i.seg[1];
6205 }
6206 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6207 {
6208 if (i.seg[1] != NULL && i.seg[1] != &es)
6209 {
6210 as_bad (_("`%s' operand %d must use `%ses' segment"),
6211 i.tm.name,
6212 mem_op + 2,
6213 register_prefix);
6214 return 0;
6215 }
6216 }
6217 return 1;
6218 }
6219
6220 static int
6221 process_suffix (void)
6222 {
6223 /* If matched instruction specifies an explicit instruction mnemonic
6224 suffix, use it. */
6225 if (i.tm.opcode_modifier.size == SIZE16)
6226 i.suffix = WORD_MNEM_SUFFIX;
6227 else if (i.tm.opcode_modifier.size == SIZE32)
6228 i.suffix = LONG_MNEM_SUFFIX;
6229 else if (i.tm.opcode_modifier.size == SIZE64)
6230 i.suffix = QWORD_MNEM_SUFFIX;
6231 else if (i.reg_operands)
6232 {
6233 /* If there's no instruction mnemonic suffix we try to invent one
6234 based on register operands. */
6235 if (!i.suffix)
6236 {
6237 /* We take i.suffix from the last register operand specified,
6238 Destination register type is more significant than source
6239 register type. crc32 in SSE4.2 prefers source register
6240 type. */
6241 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6242 {
6243 if (i.types[0].bitfield.byte)
6244 i.suffix = BYTE_MNEM_SUFFIX;
6245 else if (i.types[0].bitfield.word)
6246 i.suffix = WORD_MNEM_SUFFIX;
6247 else if (i.types[0].bitfield.dword)
6248 i.suffix = LONG_MNEM_SUFFIX;
6249 else if (i.types[0].bitfield.qword)
6250 i.suffix = QWORD_MNEM_SUFFIX;
6251 }
6252
6253 if (!i.suffix)
6254 {
6255 int op;
6256
6257 if (i.tm.base_opcode == 0xf20f38f0)
6258 {
6259 /* We have to know the operand size for crc32. */
6260 as_bad (_("ambiguous memory operand size for `%s`"),
6261 i.tm.name);
6262 return 0;
6263 }
6264
6265 for (op = i.operands; --op >= 0;)
6266 if (!i.tm.operand_types[op].bitfield.inoutportreg
6267 && !i.tm.operand_types[op].bitfield.shiftcount)
6268 {
6269 if (!i.types[op].bitfield.reg)
6270 continue;
6271 if (i.types[op].bitfield.byte)
6272 i.suffix = BYTE_MNEM_SUFFIX;
6273 else if (i.types[op].bitfield.word)
6274 i.suffix = WORD_MNEM_SUFFIX;
6275 else if (i.types[op].bitfield.dword)
6276 i.suffix = LONG_MNEM_SUFFIX;
6277 else if (i.types[op].bitfield.qword)
6278 i.suffix = QWORD_MNEM_SUFFIX;
6279 else
6280 continue;
6281 break;
6282 }
6283 }
6284 }
6285 else if (i.suffix == BYTE_MNEM_SUFFIX)
6286 {
6287 if (intel_syntax
6288 && i.tm.opcode_modifier.ignoresize
6289 && i.tm.opcode_modifier.no_bsuf)
6290 i.suffix = 0;
6291 else if (!check_byte_reg ())
6292 return 0;
6293 }
6294 else if (i.suffix == LONG_MNEM_SUFFIX)
6295 {
6296 if (intel_syntax
6297 && i.tm.opcode_modifier.ignoresize
6298 && i.tm.opcode_modifier.no_lsuf
6299 && !i.tm.opcode_modifier.todword
6300 && !i.tm.opcode_modifier.toqword)
6301 i.suffix = 0;
6302 else if (!check_long_reg ())
6303 return 0;
6304 }
6305 else if (i.suffix == QWORD_MNEM_SUFFIX)
6306 {
6307 if (intel_syntax
6308 && i.tm.opcode_modifier.ignoresize
6309 && i.tm.opcode_modifier.no_qsuf
6310 && !i.tm.opcode_modifier.todword
6311 && !i.tm.opcode_modifier.toqword)
6312 i.suffix = 0;
6313 else if (!check_qword_reg ())
6314 return 0;
6315 }
6316 else if (i.suffix == WORD_MNEM_SUFFIX)
6317 {
6318 if (intel_syntax
6319 && i.tm.opcode_modifier.ignoresize
6320 && i.tm.opcode_modifier.no_wsuf)
6321 i.suffix = 0;
6322 else if (!check_word_reg ())
6323 return 0;
6324 }
6325 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6326 /* Do nothing if the instruction is going to ignore the prefix. */
6327 ;
6328 else
6329 abort ();
6330 }
6331 else if (i.tm.opcode_modifier.defaultsize
6332 && !i.suffix
6333 /* exclude fldenv/frstor/fsave/fstenv */
6334 && i.tm.opcode_modifier.no_ssuf)
6335 {
6336 if (stackop_size == LONG_MNEM_SUFFIX
6337 && i.tm.base_opcode == 0xcf)
6338 {
6339 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6340 .code16gcc directive to support 16-bit mode with
6341 32-bit address. For IRET without a suffix, generate
6342 16-bit IRET (opcode 0xcf) to return from an interrupt
6343 handler. */
6344 i.suffix = WORD_MNEM_SUFFIX;
6345 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6346 }
6347 else
6348 i.suffix = stackop_size;
6349 }
6350 else if (intel_syntax
6351 && !i.suffix
6352 && (i.tm.operand_types[0].bitfield.jumpabsolute
6353 || i.tm.opcode_modifier.jumpbyte
6354 || i.tm.opcode_modifier.jumpintersegment
6355 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6356 && i.tm.extension_opcode <= 3)))
6357 {
6358 switch (flag_code)
6359 {
6360 case CODE_64BIT:
6361 if (!i.tm.opcode_modifier.no_qsuf)
6362 {
6363 i.suffix = QWORD_MNEM_SUFFIX;
6364 break;
6365 }
6366 /* Fall through. */
6367 case CODE_32BIT:
6368 if (!i.tm.opcode_modifier.no_lsuf)
6369 i.suffix = LONG_MNEM_SUFFIX;
6370 break;
6371 case CODE_16BIT:
6372 if (!i.tm.opcode_modifier.no_wsuf)
6373 i.suffix = WORD_MNEM_SUFFIX;
6374 break;
6375 }
6376 }
6377
6378 if (!i.suffix)
6379 {
6380 if (!intel_syntax)
6381 {
6382 if (i.tm.opcode_modifier.w)
6383 {
6384 as_bad (_("no instruction mnemonic suffix given and "
6385 "no register operands; can't size instruction"));
6386 return 0;
6387 }
6388 }
6389 else
6390 {
6391 unsigned int suffixes;
6392
6393 suffixes = !i.tm.opcode_modifier.no_bsuf;
6394 if (!i.tm.opcode_modifier.no_wsuf)
6395 suffixes |= 1 << 1;
6396 if (!i.tm.opcode_modifier.no_lsuf)
6397 suffixes |= 1 << 2;
6398 if (!i.tm.opcode_modifier.no_ldsuf)
6399 suffixes |= 1 << 3;
6400 if (!i.tm.opcode_modifier.no_ssuf)
6401 suffixes |= 1 << 4;
6402 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6403 suffixes |= 1 << 5;
6404
6405 /* There are more than suffix matches. */
6406 if (i.tm.opcode_modifier.w
6407 || ((suffixes & (suffixes - 1))
6408 && !i.tm.opcode_modifier.defaultsize
6409 && !i.tm.opcode_modifier.ignoresize))
6410 {
6411 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6412 return 0;
6413 }
6414 }
6415 }
6416
6417 /* Change the opcode based on the operand size given by i.suffix. */
6418 switch (i.suffix)
6419 {
6420 /* Size floating point instruction. */
6421 case LONG_MNEM_SUFFIX:
6422 if (i.tm.opcode_modifier.floatmf)
6423 {
6424 i.tm.base_opcode ^= 4;
6425 break;
6426 }
6427 /* fall through */
6428 case WORD_MNEM_SUFFIX:
6429 case QWORD_MNEM_SUFFIX:
6430 /* It's not a byte, select word/dword operation. */
6431 if (i.tm.opcode_modifier.w)
6432 {
6433 if (i.tm.opcode_modifier.shortform)
6434 i.tm.base_opcode |= 8;
6435 else
6436 i.tm.base_opcode |= 1;
6437 }
6438 /* fall through */
6439 case SHORT_MNEM_SUFFIX:
6440 /* Now select between word & dword operations via the operand
6441 size prefix, except for instructions that will ignore this
6442 prefix anyway. */
6443 if (i.reg_operands > 0
6444 && i.types[0].bitfield.reg
6445 && i.tm.opcode_modifier.addrprefixopreg
6446 && (i.tm.opcode_modifier.immext
6447 || i.operands == 1))
6448 {
6449 /* The address size override prefix changes the size of the
6450 first operand. */
6451 if ((flag_code == CODE_32BIT
6452 && i.op[0].regs->reg_type.bitfield.word)
6453 || (flag_code != CODE_32BIT
6454 && i.op[0].regs->reg_type.bitfield.dword))
6455 if (!add_prefix (ADDR_PREFIX_OPCODE))
6456 return 0;
6457 }
6458 else if (i.suffix != QWORD_MNEM_SUFFIX
6459 && !i.tm.opcode_modifier.ignoresize
6460 && !i.tm.opcode_modifier.floatmf
6461 && !is_any_vex_encoding (&i.tm)
6462 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6463 || (flag_code == CODE_64BIT
6464 && i.tm.opcode_modifier.jumpbyte)))
6465 {
6466 unsigned int prefix = DATA_PREFIX_OPCODE;
6467
6468 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6469 prefix = ADDR_PREFIX_OPCODE;
6470
6471 if (!add_prefix (prefix))
6472 return 0;
6473 }
6474
6475 /* Set mode64 for an operand. */
6476 if (i.suffix == QWORD_MNEM_SUFFIX
6477 && flag_code == CODE_64BIT
6478 && !i.tm.opcode_modifier.norex64
6479 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6480 need rex64. */
6481 && ! (i.operands == 2
6482 && i.tm.base_opcode == 0x90
6483 && i.tm.extension_opcode == None
6484 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6485 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
6486 i.rex |= REX_W;
6487
6488 break;
6489 }
6490
6491 if (i.reg_operands != 0
6492 && i.operands > 1
6493 && i.tm.opcode_modifier.addrprefixopreg
6494 && !i.tm.opcode_modifier.immext)
6495 {
6496 /* Check invalid register operand when the address size override
6497 prefix changes the size of register operands. */
6498 unsigned int op;
6499 enum { need_word, need_dword, need_qword } need;
6500
6501 if (flag_code == CODE_32BIT)
6502 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6503 else
6504 {
6505 if (i.prefix[ADDR_PREFIX])
6506 need = need_dword;
6507 else
6508 need = flag_code == CODE_64BIT ? need_qword : need_word;
6509 }
6510
6511 for (op = 0; op < i.operands; op++)
6512 if (i.types[op].bitfield.reg
6513 && ((need == need_word
6514 && !i.op[op].regs->reg_type.bitfield.word)
6515 || (need == need_dword
6516 && !i.op[op].regs->reg_type.bitfield.dword)
6517 || (need == need_qword
6518 && !i.op[op].regs->reg_type.bitfield.qword)))
6519 {
6520 as_bad (_("invalid register operand size for `%s'"),
6521 i.tm.name);
6522 return 0;
6523 }
6524 }
6525
6526 return 1;
6527 }
6528
6529 static int
6530 check_byte_reg (void)
6531 {
6532 int op;
6533
6534 for (op = i.operands; --op >= 0;)
6535 {
6536 /* Skip non-register operands. */
6537 if (!i.types[op].bitfield.reg)
6538 continue;
6539
6540 /* If this is an eight bit register, it's OK. If it's the 16 or
6541 32 bit version of an eight bit register, we will just use the
6542 low portion, and that's OK too. */
6543 if (i.types[op].bitfield.byte)
6544 continue;
6545
6546 /* I/O port address operands are OK too. */
6547 if (i.tm.operand_types[op].bitfield.inoutportreg)
6548 continue;
6549
6550 /* crc32 doesn't generate this warning. */
6551 if (i.tm.base_opcode == 0xf20f38f0)
6552 continue;
6553
6554 if ((i.types[op].bitfield.word
6555 || i.types[op].bitfield.dword
6556 || i.types[op].bitfield.qword)
6557 && i.op[op].regs->reg_num < 4
6558 /* Prohibit these changes in 64bit mode, since the lowering
6559 would be more complicated. */
6560 && flag_code != CODE_64BIT)
6561 {
6562 #if REGISTER_WARNINGS
6563 if (!quiet_warnings)
6564 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6565 register_prefix,
6566 (i.op[op].regs + (i.types[op].bitfield.word
6567 ? REGNAM_AL - REGNAM_AX
6568 : REGNAM_AL - REGNAM_EAX))->reg_name,
6569 register_prefix,
6570 i.op[op].regs->reg_name,
6571 i.suffix);
6572 #endif
6573 continue;
6574 }
6575 /* Any other register is bad. */
6576 if (i.types[op].bitfield.reg
6577 || i.types[op].bitfield.regmmx
6578 || i.types[op].bitfield.regsimd
6579 || i.types[op].bitfield.sreg2
6580 || i.types[op].bitfield.sreg3
6581 || i.types[op].bitfield.control
6582 || i.types[op].bitfield.debug
6583 || i.types[op].bitfield.test)
6584 {
6585 as_bad (_("`%s%s' not allowed with `%s%c'"),
6586 register_prefix,
6587 i.op[op].regs->reg_name,
6588 i.tm.name,
6589 i.suffix);
6590 return 0;
6591 }
6592 }
6593 return 1;
6594 }
6595
6596 static int
6597 check_long_reg (void)
6598 {
6599 int op;
6600
6601 for (op = i.operands; --op >= 0;)
6602 /* Skip non-register operands. */
6603 if (!i.types[op].bitfield.reg)
6604 continue;
6605 /* Reject eight bit registers, except where the template requires
6606 them. (eg. movzb) */
6607 else if (i.types[op].bitfield.byte
6608 && (i.tm.operand_types[op].bitfield.reg
6609 || i.tm.operand_types[op].bitfield.acc)
6610 && (i.tm.operand_types[op].bitfield.word
6611 || i.tm.operand_types[op].bitfield.dword))
6612 {
6613 as_bad (_("`%s%s' not allowed with `%s%c'"),
6614 register_prefix,
6615 i.op[op].regs->reg_name,
6616 i.tm.name,
6617 i.suffix);
6618 return 0;
6619 }
6620 /* Warn if the e prefix on a general reg is missing. */
6621 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6622 && i.types[op].bitfield.word
6623 && (i.tm.operand_types[op].bitfield.reg
6624 || i.tm.operand_types[op].bitfield.acc)
6625 && i.tm.operand_types[op].bitfield.dword)
6626 {
6627 /* Prohibit these changes in the 64bit mode, since the
6628 lowering is more complicated. */
6629 if (flag_code == CODE_64BIT)
6630 {
6631 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6632 register_prefix, i.op[op].regs->reg_name,
6633 i.suffix);
6634 return 0;
6635 }
6636 #if REGISTER_WARNINGS
6637 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6638 register_prefix,
6639 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6640 register_prefix, i.op[op].regs->reg_name, i.suffix);
6641 #endif
6642 }
6643 /* Warn if the r prefix on a general reg is present. */
6644 else if (i.types[op].bitfield.qword
6645 && (i.tm.operand_types[op].bitfield.reg
6646 || i.tm.operand_types[op].bitfield.acc)
6647 && i.tm.operand_types[op].bitfield.dword)
6648 {
6649 if (intel_syntax
6650 && i.tm.opcode_modifier.toqword
6651 && !i.types[0].bitfield.regsimd)
6652 {
6653 /* Convert to QWORD. We want REX byte. */
6654 i.suffix = QWORD_MNEM_SUFFIX;
6655 }
6656 else
6657 {
6658 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6659 register_prefix, i.op[op].regs->reg_name,
6660 i.suffix);
6661 return 0;
6662 }
6663 }
6664 return 1;
6665 }
6666
6667 static int
6668 check_qword_reg (void)
6669 {
6670 int op;
6671
6672 for (op = i.operands; --op >= 0; )
6673 /* Skip non-register operands. */
6674 if (!i.types[op].bitfield.reg)
6675 continue;
6676 /* Reject eight bit registers, except where the template requires
6677 them. (eg. movzb) */
6678 else if (i.types[op].bitfield.byte
6679 && (i.tm.operand_types[op].bitfield.reg
6680 || i.tm.operand_types[op].bitfield.acc)
6681 && (i.tm.operand_types[op].bitfield.word
6682 || i.tm.operand_types[op].bitfield.dword))
6683 {
6684 as_bad (_("`%s%s' not allowed with `%s%c'"),
6685 register_prefix,
6686 i.op[op].regs->reg_name,
6687 i.tm.name,
6688 i.suffix);
6689 return 0;
6690 }
6691 /* Warn if the r prefix on a general reg is missing. */
6692 else if ((i.types[op].bitfield.word
6693 || i.types[op].bitfield.dword)
6694 && (i.tm.operand_types[op].bitfield.reg
6695 || i.tm.operand_types[op].bitfield.acc)
6696 && i.tm.operand_types[op].bitfield.qword)
6697 {
6698 /* Prohibit these changes in the 64bit mode, since the
6699 lowering is more complicated. */
6700 if (intel_syntax
6701 && i.tm.opcode_modifier.todword
6702 && !i.types[0].bitfield.regsimd)
6703 {
6704 /* Convert to DWORD. We don't want REX byte. */
6705 i.suffix = LONG_MNEM_SUFFIX;
6706 }
6707 else
6708 {
6709 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6710 register_prefix, i.op[op].regs->reg_name,
6711 i.suffix);
6712 return 0;
6713 }
6714 }
6715 return 1;
6716 }
6717
6718 static int
6719 check_word_reg (void)
6720 {
6721 int op;
6722 for (op = i.operands; --op >= 0;)
6723 /* Skip non-register operands. */
6724 if (!i.types[op].bitfield.reg)
6725 continue;
6726 /* Reject eight bit registers, except where the template requires
6727 them. (eg. movzb) */
6728 else if (i.types[op].bitfield.byte
6729 && (i.tm.operand_types[op].bitfield.reg
6730 || i.tm.operand_types[op].bitfield.acc)
6731 && (i.tm.operand_types[op].bitfield.word
6732 || i.tm.operand_types[op].bitfield.dword))
6733 {
6734 as_bad (_("`%s%s' not allowed with `%s%c'"),
6735 register_prefix,
6736 i.op[op].regs->reg_name,
6737 i.tm.name,
6738 i.suffix);
6739 return 0;
6740 }
6741 /* Warn if the e or r prefix on a general reg is present. */
6742 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6743 && (i.types[op].bitfield.dword
6744 || i.types[op].bitfield.qword)
6745 && (i.tm.operand_types[op].bitfield.reg
6746 || i.tm.operand_types[op].bitfield.acc)
6747 && i.tm.operand_types[op].bitfield.word)
6748 {
6749 /* Prohibit these changes in the 64bit mode, since the
6750 lowering is more complicated. */
6751 if (flag_code == CODE_64BIT)
6752 {
6753 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6754 register_prefix, i.op[op].regs->reg_name,
6755 i.suffix);
6756 return 0;
6757 }
6758 #if REGISTER_WARNINGS
6759 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6760 register_prefix,
6761 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6762 register_prefix, i.op[op].regs->reg_name, i.suffix);
6763 #endif
6764 }
6765 return 1;
6766 }
6767
6768 static int
6769 update_imm (unsigned int j)
6770 {
6771 i386_operand_type overlap = i.types[j];
6772 if ((overlap.bitfield.imm8
6773 || overlap.bitfield.imm8s
6774 || overlap.bitfield.imm16
6775 || overlap.bitfield.imm32
6776 || overlap.bitfield.imm32s
6777 || overlap.bitfield.imm64)
6778 && !operand_type_equal (&overlap, &imm8)
6779 && !operand_type_equal (&overlap, &imm8s)
6780 && !operand_type_equal (&overlap, &imm16)
6781 && !operand_type_equal (&overlap, &imm32)
6782 && !operand_type_equal (&overlap, &imm32s)
6783 && !operand_type_equal (&overlap, &imm64))
6784 {
6785 if (i.suffix)
6786 {
6787 i386_operand_type temp;
6788
6789 operand_type_set (&temp, 0);
6790 if (i.suffix == BYTE_MNEM_SUFFIX)
6791 {
6792 temp.bitfield.imm8 = overlap.bitfield.imm8;
6793 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6794 }
6795 else if (i.suffix == WORD_MNEM_SUFFIX)
6796 temp.bitfield.imm16 = overlap.bitfield.imm16;
6797 else if (i.suffix == QWORD_MNEM_SUFFIX)
6798 {
6799 temp.bitfield.imm64 = overlap.bitfield.imm64;
6800 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6801 }
6802 else
6803 temp.bitfield.imm32 = overlap.bitfield.imm32;
6804 overlap = temp;
6805 }
6806 else if (operand_type_equal (&overlap, &imm16_32_32s)
6807 || operand_type_equal (&overlap, &imm16_32)
6808 || operand_type_equal (&overlap, &imm16_32s))
6809 {
6810 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6811 overlap = imm16;
6812 else
6813 overlap = imm32s;
6814 }
6815 if (!operand_type_equal (&overlap, &imm8)
6816 && !operand_type_equal (&overlap, &imm8s)
6817 && !operand_type_equal (&overlap, &imm16)
6818 && !operand_type_equal (&overlap, &imm32)
6819 && !operand_type_equal (&overlap, &imm32s)
6820 && !operand_type_equal (&overlap, &imm64))
6821 {
6822 as_bad (_("no instruction mnemonic suffix given; "
6823 "can't determine immediate size"));
6824 return 0;
6825 }
6826 }
6827 i.types[j] = overlap;
6828
6829 return 1;
6830 }
6831
6832 static int
6833 finalize_imm (void)
6834 {
6835 unsigned int j, n;
6836
6837 /* Update the first 2 immediate operands. */
6838 n = i.operands > 2 ? 2 : i.operands;
6839 if (n)
6840 {
6841 for (j = 0; j < n; j++)
6842 if (update_imm (j) == 0)
6843 return 0;
6844
6845 /* The 3rd operand can't be immediate operand. */
6846 gas_assert (operand_type_check (i.types[2], imm) == 0);
6847 }
6848
6849 return 1;
6850 }
6851
6852 static int
6853 process_operands (void)
6854 {
6855 /* Default segment register this instruction will use for memory
6856 accesses. 0 means unknown. This is only for optimizing out
6857 unnecessary segment overrides. */
6858 const seg_entry *default_seg = 0;
6859
6860 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6861 {
6862 unsigned int dupl = i.operands;
6863 unsigned int dest = dupl - 1;
6864 unsigned int j;
6865
6866 /* The destination must be an xmm register. */
6867 gas_assert (i.reg_operands
6868 && MAX_OPERANDS > dupl
6869 && operand_type_equal (&i.types[dest], &regxmm));
6870
6871 if (i.tm.operand_types[0].bitfield.acc
6872 && i.tm.operand_types[0].bitfield.xmmword)
6873 {
6874 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6875 {
6876 /* Keep xmm0 for instructions with VEX prefix and 3
6877 sources. */
6878 i.tm.operand_types[0].bitfield.acc = 0;
6879 i.tm.operand_types[0].bitfield.regsimd = 1;
6880 goto duplicate;
6881 }
6882 else
6883 {
6884 /* We remove the first xmm0 and keep the number of
6885 operands unchanged, which in fact duplicates the
6886 destination. */
6887 for (j = 1; j < i.operands; j++)
6888 {
6889 i.op[j - 1] = i.op[j];
6890 i.types[j - 1] = i.types[j];
6891 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6892 }
6893 }
6894 }
6895 else if (i.tm.opcode_modifier.implicit1stxmm0)
6896 {
6897 gas_assert ((MAX_OPERANDS - 1) > dupl
6898 && (i.tm.opcode_modifier.vexsources
6899 == VEX3SOURCES));
6900
6901 /* Add the implicit xmm0 for instructions with VEX prefix
6902 and 3 sources. */
6903 for (j = i.operands; j > 0; j--)
6904 {
6905 i.op[j] = i.op[j - 1];
6906 i.types[j] = i.types[j - 1];
6907 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6908 }
6909 i.op[0].regs
6910 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6911 i.types[0] = regxmm;
6912 i.tm.operand_types[0] = regxmm;
6913
6914 i.operands += 2;
6915 i.reg_operands += 2;
6916 i.tm.operands += 2;
6917
6918 dupl++;
6919 dest++;
6920 i.op[dupl] = i.op[dest];
6921 i.types[dupl] = i.types[dest];
6922 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6923 }
6924 else
6925 {
6926 duplicate:
6927 i.operands++;
6928 i.reg_operands++;
6929 i.tm.operands++;
6930
6931 i.op[dupl] = i.op[dest];
6932 i.types[dupl] = i.types[dest];
6933 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6934 }
6935
6936 if (i.tm.opcode_modifier.immext)
6937 process_immext ();
6938 }
6939 else if (i.tm.operand_types[0].bitfield.acc
6940 && i.tm.operand_types[0].bitfield.xmmword)
6941 {
6942 unsigned int j;
6943
6944 for (j = 1; j < i.operands; j++)
6945 {
6946 i.op[j - 1] = i.op[j];
6947 i.types[j - 1] = i.types[j];
6948
6949 /* We need to adjust fields in i.tm since they are used by
6950 build_modrm_byte. */
6951 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6952 }
6953
6954 i.operands--;
6955 i.reg_operands--;
6956 i.tm.operands--;
6957 }
6958 else if (i.tm.opcode_modifier.implicitquadgroup)
6959 {
6960 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6961
6962 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6963 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6964 regnum = register_number (i.op[1].regs);
6965 first_reg_in_group = regnum & ~3;
6966 last_reg_in_group = first_reg_in_group + 3;
6967 if (regnum != first_reg_in_group)
6968 as_warn (_("source register `%s%s' implicitly denotes"
6969 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6970 register_prefix, i.op[1].regs->reg_name,
6971 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6972 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6973 i.tm.name);
6974 }
6975 else if (i.tm.opcode_modifier.regkludge)
6976 {
6977 /* The imul $imm, %reg instruction is converted into
6978 imul $imm, %reg, %reg, and the clr %reg instruction
6979 is converted into xor %reg, %reg. */
6980
6981 unsigned int first_reg_op;
6982
6983 if (operand_type_check (i.types[0], reg))
6984 first_reg_op = 0;
6985 else
6986 first_reg_op = 1;
6987 /* Pretend we saw the extra register operand. */
6988 gas_assert (i.reg_operands == 1
6989 && i.op[first_reg_op + 1].regs == 0);
6990 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6991 i.types[first_reg_op + 1] = i.types[first_reg_op];
6992 i.operands++;
6993 i.reg_operands++;
6994 }
6995
6996 if (i.tm.opcode_modifier.shortform)
6997 {
6998 if (i.types[0].bitfield.sreg2
6999 || i.types[0].bitfield.sreg3)
7000 {
7001 if (i.tm.base_opcode == POP_SEG_SHORT
7002 && i.op[0].regs->reg_num == 1)
7003 {
7004 as_bad (_("you can't `pop %scs'"), register_prefix);
7005 return 0;
7006 }
7007 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7008 if ((i.op[0].regs->reg_flags & RegRex) != 0)
7009 i.rex |= REX_B;
7010 }
7011 else
7012 {
7013 /* The register or float register operand is in operand
7014 0 or 1. */
7015 unsigned int op;
7016
7017 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7018 || operand_type_check (i.types[0], reg))
7019 op = 0;
7020 else
7021 op = 1;
7022 /* Register goes in low 3 bits of opcode. */
7023 i.tm.base_opcode |= i.op[op].regs->reg_num;
7024 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7025 i.rex |= REX_B;
7026 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7027 {
7028 /* Warn about some common errors, but press on regardless.
7029 The first case can be generated by gcc (<= 2.8.1). */
7030 if (i.operands == 2)
7031 {
7032 /* Reversed arguments on faddp, fsubp, etc. */
7033 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7034 register_prefix, i.op[!intel_syntax].regs->reg_name,
7035 register_prefix, i.op[intel_syntax].regs->reg_name);
7036 }
7037 else
7038 {
7039 /* Extraneous `l' suffix on fp insn. */
7040 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7041 register_prefix, i.op[0].regs->reg_name);
7042 }
7043 }
7044 }
7045 }
7046 else if (i.tm.opcode_modifier.modrm)
7047 {
7048 /* The opcode is completed (modulo i.tm.extension_opcode which
7049 must be put into the modrm byte). Now, we make the modrm and
7050 index base bytes based on all the info we've collected. */
7051
7052 default_seg = build_modrm_byte ();
7053 }
7054 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7055 {
7056 default_seg = &ds;
7057 }
7058 else if (i.tm.opcode_modifier.isstring)
7059 {
7060 /* For the string instructions that allow a segment override
7061 on one of their operands, the default segment is ds. */
7062 default_seg = &ds;
7063 }
7064
7065 if (i.tm.base_opcode == 0x8d /* lea */
7066 && i.seg[0]
7067 && !quiet_warnings)
7068 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7069
7070 /* If a segment was explicitly specified, and the specified segment
7071 is not the default, use an opcode prefix to select it. If we
7072 never figured out what the default segment is, then default_seg
7073 will be zero at this point, and the specified segment prefix will
7074 always be used. */
7075 if ((i.seg[0]) && (i.seg[0] != default_seg))
7076 {
7077 if (!add_prefix (i.seg[0]->seg_prefix))
7078 return 0;
7079 }
7080 return 1;
7081 }
7082
7083 static const seg_entry *
7084 build_modrm_byte (void)
7085 {
7086 const seg_entry *default_seg = 0;
7087 unsigned int source, dest;
7088 int vex_3_sources;
7089
7090 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7091 if (vex_3_sources)
7092 {
7093 unsigned int nds, reg_slot;
7094 expressionS *exp;
7095
7096 dest = i.operands - 1;
7097 nds = dest - 1;
7098
7099 /* There are 2 kinds of instructions:
7100 1. 5 operands: 4 register operands or 3 register operands
7101 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7102 VexW0 or VexW1. The destination must be either XMM, YMM or
7103 ZMM register.
7104 2. 4 operands: 4 register operands or 3 register operands
7105 plus 1 memory operand, with VexXDS. */
7106 gas_assert ((i.reg_operands == 4
7107 || (i.reg_operands == 3 && i.mem_operands == 1))
7108 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7109 && i.tm.opcode_modifier.vexw
7110 && i.tm.operand_types[dest].bitfield.regsimd);
7111
7112 /* If VexW1 is set, the first non-immediate operand is the source and
7113 the second non-immediate one is encoded in the immediate operand. */
7114 if (i.tm.opcode_modifier.vexw == VEXW1)
7115 {
7116 source = i.imm_operands;
7117 reg_slot = i.imm_operands + 1;
7118 }
7119 else
7120 {
7121 source = i.imm_operands + 1;
7122 reg_slot = i.imm_operands;
7123 }
7124
7125 if (i.imm_operands == 0)
7126 {
7127 /* When there is no immediate operand, generate an 8bit
7128 immediate operand to encode the first operand. */
7129 exp = &im_expressions[i.imm_operands++];
7130 i.op[i.operands].imms = exp;
7131 i.types[i.operands] = imm8;
7132 i.operands++;
7133
7134 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7135 exp->X_op = O_constant;
7136 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7137 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7138 }
7139 else
7140 {
7141 unsigned int imm_slot;
7142
7143 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7144
7145 if (i.tm.opcode_modifier.immext)
7146 {
7147 /* When ImmExt is set, the immediate byte is the last
7148 operand. */
7149 imm_slot = i.operands - 1;
7150 source--;
7151 reg_slot--;
7152 }
7153 else
7154 {
7155 imm_slot = 0;
7156
7157 /* Turn on Imm8 so that output_imm will generate it. */
7158 i.types[imm_slot].bitfield.imm8 = 1;
7159 }
7160
7161 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7162 i.op[imm_slot].imms->X_add_number
7163 |= register_number (i.op[reg_slot].regs) << 4;
7164 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7165 }
7166
7167 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7168 i.vex.register_specifier = i.op[nds].regs;
7169 }
7170 else
7171 source = dest = 0;
7172
7173 /* i.reg_operands MUST be the number of real register operands;
7174 implicit registers do not count. If there are 3 register
7175 operands, it must be a instruction with VexNDS. For a
7176 instruction with VexNDD, the destination register is encoded
7177 in VEX prefix. If there are 4 register operands, it must be
7178 a instruction with VEX prefix and 3 sources. */
7179 if (i.mem_operands == 0
7180 && ((i.reg_operands == 2
7181 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7182 || (i.reg_operands == 3
7183 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7184 || (i.reg_operands == 4 && vex_3_sources)))
7185 {
7186 switch (i.operands)
7187 {
7188 case 2:
7189 source = 0;
7190 break;
7191 case 3:
7192 /* When there are 3 operands, one of them may be immediate,
7193 which may be the first or the last operand. Otherwise,
7194 the first operand must be shift count register (cl) or it
7195 is an instruction with VexNDS. */
7196 gas_assert (i.imm_operands == 1
7197 || (i.imm_operands == 0
7198 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7199 || i.types[0].bitfield.shiftcount)));
7200 if (operand_type_check (i.types[0], imm)
7201 || i.types[0].bitfield.shiftcount)
7202 source = 1;
7203 else
7204 source = 0;
7205 break;
7206 case 4:
7207 /* When there are 4 operands, the first two must be 8bit
7208 immediate operands. The source operand will be the 3rd
7209 one.
7210
7211 For instructions with VexNDS, if the first operand
7212 an imm8, the source operand is the 2nd one. If the last
7213 operand is imm8, the source operand is the first one. */
7214 gas_assert ((i.imm_operands == 2
7215 && i.types[0].bitfield.imm8
7216 && i.types[1].bitfield.imm8)
7217 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7218 && i.imm_operands == 1
7219 && (i.types[0].bitfield.imm8
7220 || i.types[i.operands - 1].bitfield.imm8
7221 || i.rounding)));
7222 if (i.imm_operands == 2)
7223 source = 2;
7224 else
7225 {
7226 if (i.types[0].bitfield.imm8)
7227 source = 1;
7228 else
7229 source = 0;
7230 }
7231 break;
7232 case 5:
7233 if (is_evex_encoding (&i.tm))
7234 {
7235 /* For EVEX instructions, when there are 5 operands, the
7236 first one must be immediate operand. If the second one
7237 is immediate operand, the source operand is the 3th
7238 one. If the last one is immediate operand, the source
7239 operand is the 2nd one. */
7240 gas_assert (i.imm_operands == 2
7241 && i.tm.opcode_modifier.sae
7242 && operand_type_check (i.types[0], imm));
7243 if (operand_type_check (i.types[1], imm))
7244 source = 2;
7245 else if (operand_type_check (i.types[4], imm))
7246 source = 1;
7247 else
7248 abort ();
7249 }
7250 break;
7251 default:
7252 abort ();
7253 }
7254
7255 if (!vex_3_sources)
7256 {
7257 dest = source + 1;
7258
7259 /* RC/SAE operand could be between DEST and SRC. That happens
7260 when one operand is GPR and the other one is XMM/YMM/ZMM
7261 register. */
7262 if (i.rounding && i.rounding->operand == (int) dest)
7263 dest++;
7264
7265 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7266 {
7267 /* For instructions with VexNDS, the register-only source
7268 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7269 register. It is encoded in VEX prefix. We need to
7270 clear RegMem bit before calling operand_type_equal. */
7271
7272 i386_operand_type op;
7273 unsigned int vvvv;
7274
7275 /* Check register-only source operand when two source
7276 operands are swapped. */
7277 if (!i.tm.operand_types[source].bitfield.baseindex
7278 && i.tm.operand_types[dest].bitfield.baseindex)
7279 {
7280 vvvv = source;
7281 source = dest;
7282 }
7283 else
7284 vvvv = dest;
7285
7286 op = i.tm.operand_types[vvvv];
7287 op.bitfield.regmem = 0;
7288 if ((dest + 1) >= i.operands
7289 || ((!op.bitfield.reg
7290 || (!op.bitfield.dword && !op.bitfield.qword))
7291 && !op.bitfield.regsimd
7292 && !operand_type_equal (&op, &regmask)))
7293 abort ();
7294 i.vex.register_specifier = i.op[vvvv].regs;
7295 dest++;
7296 }
7297 }
7298
7299 i.rm.mode = 3;
7300 /* One of the register operands will be encoded in the i.tm.reg
7301 field, the other in the combined i.tm.mode and i.tm.regmem
7302 fields. If no form of this instruction supports a memory
7303 destination operand, then we assume the source operand may
7304 sometimes be a memory operand and so we need to store the
7305 destination in the i.rm.reg field. */
7306 if (!i.tm.operand_types[dest].bitfield.regmem
7307 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7308 {
7309 i.rm.reg = i.op[dest].regs->reg_num;
7310 i.rm.regmem = i.op[source].regs->reg_num;
7311 if (i.op[dest].regs->reg_type.bitfield.regmmx
7312 || i.op[source].regs->reg_type.bitfield.regmmx)
7313 i.has_regmmx = TRUE;
7314 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7315 || i.op[source].regs->reg_type.bitfield.regsimd)
7316 {
7317 if (i.types[dest].bitfield.zmmword
7318 || i.types[source].bitfield.zmmword)
7319 i.has_regzmm = TRUE;
7320 else if (i.types[dest].bitfield.ymmword
7321 || i.types[source].bitfield.ymmword)
7322 i.has_regymm = TRUE;
7323 else
7324 i.has_regxmm = TRUE;
7325 }
7326 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7327 i.rex |= REX_R;
7328 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7329 i.vrex |= REX_R;
7330 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7331 i.rex |= REX_B;
7332 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7333 i.vrex |= REX_B;
7334 }
7335 else
7336 {
7337 i.rm.reg = i.op[source].regs->reg_num;
7338 i.rm.regmem = i.op[dest].regs->reg_num;
7339 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7340 i.rex |= REX_B;
7341 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7342 i.vrex |= REX_B;
7343 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7344 i.rex |= REX_R;
7345 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7346 i.vrex |= REX_R;
7347 }
7348 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7349 {
7350 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7351 abort ();
7352 i.rex &= ~REX_R;
7353 add_prefix (LOCK_PREFIX_OPCODE);
7354 }
7355 }
7356 else
7357 { /* If it's not 2 reg operands... */
7358 unsigned int mem;
7359
7360 if (i.mem_operands)
7361 {
7362 unsigned int fake_zero_displacement = 0;
7363 unsigned int op;
7364
7365 for (op = 0; op < i.operands; op++)
7366 if (operand_type_check (i.types[op], anymem))
7367 break;
7368 gas_assert (op < i.operands);
7369
7370 if (i.tm.opcode_modifier.vecsib)
7371 {
7372 if (i.index_reg->reg_num == RegIZ)
7373 abort ();
7374
7375 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7376 if (!i.base_reg)
7377 {
7378 i.sib.base = NO_BASE_REGISTER;
7379 i.sib.scale = i.log2_scale_factor;
7380 i.types[op].bitfield.disp8 = 0;
7381 i.types[op].bitfield.disp16 = 0;
7382 i.types[op].bitfield.disp64 = 0;
7383 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7384 {
7385 /* Must be 32 bit */
7386 i.types[op].bitfield.disp32 = 1;
7387 i.types[op].bitfield.disp32s = 0;
7388 }
7389 else
7390 {
7391 i.types[op].bitfield.disp32 = 0;
7392 i.types[op].bitfield.disp32s = 1;
7393 }
7394 }
7395 i.sib.index = i.index_reg->reg_num;
7396 if ((i.index_reg->reg_flags & RegRex) != 0)
7397 i.rex |= REX_X;
7398 if ((i.index_reg->reg_flags & RegVRex) != 0)
7399 i.vrex |= REX_X;
7400 }
7401
7402 default_seg = &ds;
7403
7404 if (i.base_reg == 0)
7405 {
7406 i.rm.mode = 0;
7407 if (!i.disp_operands)
7408 fake_zero_displacement = 1;
7409 if (i.index_reg == 0)
7410 {
7411 i386_operand_type newdisp;
7412
7413 gas_assert (!i.tm.opcode_modifier.vecsib);
7414 /* Operand is just <disp> */
7415 if (flag_code == CODE_64BIT)
7416 {
7417 /* 64bit mode overwrites the 32bit absolute
7418 addressing by RIP relative addressing and
7419 absolute addressing is encoded by one of the
7420 redundant SIB forms. */
7421 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7422 i.sib.base = NO_BASE_REGISTER;
7423 i.sib.index = NO_INDEX_REGISTER;
7424 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7425 }
7426 else if ((flag_code == CODE_16BIT)
7427 ^ (i.prefix[ADDR_PREFIX] != 0))
7428 {
7429 i.rm.regmem = NO_BASE_REGISTER_16;
7430 newdisp = disp16;
7431 }
7432 else
7433 {
7434 i.rm.regmem = NO_BASE_REGISTER;
7435 newdisp = disp32;
7436 }
7437 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7438 i.types[op] = operand_type_or (i.types[op], newdisp);
7439 }
7440 else if (!i.tm.opcode_modifier.vecsib)
7441 {
7442 /* !i.base_reg && i.index_reg */
7443 if (i.index_reg->reg_num == RegIZ)
7444 i.sib.index = NO_INDEX_REGISTER;
7445 else
7446 i.sib.index = i.index_reg->reg_num;
7447 i.sib.base = NO_BASE_REGISTER;
7448 i.sib.scale = i.log2_scale_factor;
7449 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7450 i.types[op].bitfield.disp8 = 0;
7451 i.types[op].bitfield.disp16 = 0;
7452 i.types[op].bitfield.disp64 = 0;
7453 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7454 {
7455 /* Must be 32 bit */
7456 i.types[op].bitfield.disp32 = 1;
7457 i.types[op].bitfield.disp32s = 0;
7458 }
7459 else
7460 {
7461 i.types[op].bitfield.disp32 = 0;
7462 i.types[op].bitfield.disp32s = 1;
7463 }
7464 if ((i.index_reg->reg_flags & RegRex) != 0)
7465 i.rex |= REX_X;
7466 }
7467 }
7468 /* RIP addressing for 64bit mode. */
7469 else if (i.base_reg->reg_num == RegIP)
7470 {
7471 gas_assert (!i.tm.opcode_modifier.vecsib);
7472 i.rm.regmem = NO_BASE_REGISTER;
7473 i.types[op].bitfield.disp8 = 0;
7474 i.types[op].bitfield.disp16 = 0;
7475 i.types[op].bitfield.disp32 = 0;
7476 i.types[op].bitfield.disp32s = 1;
7477 i.types[op].bitfield.disp64 = 0;
7478 i.flags[op] |= Operand_PCrel;
7479 if (! i.disp_operands)
7480 fake_zero_displacement = 1;
7481 }
7482 else if (i.base_reg->reg_type.bitfield.word)
7483 {
7484 gas_assert (!i.tm.opcode_modifier.vecsib);
7485 switch (i.base_reg->reg_num)
7486 {
7487 case 3: /* (%bx) */
7488 if (i.index_reg == 0)
7489 i.rm.regmem = 7;
7490 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7491 i.rm.regmem = i.index_reg->reg_num - 6;
7492 break;
7493 case 5: /* (%bp) */
7494 default_seg = &ss;
7495 if (i.index_reg == 0)
7496 {
7497 i.rm.regmem = 6;
7498 if (operand_type_check (i.types[op], disp) == 0)
7499 {
7500 /* fake (%bp) into 0(%bp) */
7501 i.types[op].bitfield.disp8 = 1;
7502 fake_zero_displacement = 1;
7503 }
7504 }
7505 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7506 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7507 break;
7508 default: /* (%si) -> 4 or (%di) -> 5 */
7509 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7510 }
7511 i.rm.mode = mode_from_disp_size (i.types[op]);
7512 }
7513 else /* i.base_reg and 32/64 bit mode */
7514 {
7515 if (flag_code == CODE_64BIT
7516 && operand_type_check (i.types[op], disp))
7517 {
7518 i.types[op].bitfield.disp16 = 0;
7519 i.types[op].bitfield.disp64 = 0;
7520 if (i.prefix[ADDR_PREFIX] == 0)
7521 {
7522 i.types[op].bitfield.disp32 = 0;
7523 i.types[op].bitfield.disp32s = 1;
7524 }
7525 else
7526 {
7527 i.types[op].bitfield.disp32 = 1;
7528 i.types[op].bitfield.disp32s = 0;
7529 }
7530 }
7531
7532 if (!i.tm.opcode_modifier.vecsib)
7533 i.rm.regmem = i.base_reg->reg_num;
7534 if ((i.base_reg->reg_flags & RegRex) != 0)
7535 i.rex |= REX_B;
7536 i.sib.base = i.base_reg->reg_num;
7537 /* x86-64 ignores REX prefix bit here to avoid decoder
7538 complications. */
7539 if (!(i.base_reg->reg_flags & RegRex)
7540 && (i.base_reg->reg_num == EBP_REG_NUM
7541 || i.base_reg->reg_num == ESP_REG_NUM))
7542 default_seg = &ss;
7543 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7544 {
7545 fake_zero_displacement = 1;
7546 i.types[op].bitfield.disp8 = 1;
7547 }
7548 i.sib.scale = i.log2_scale_factor;
7549 if (i.index_reg == 0)
7550 {
7551 gas_assert (!i.tm.opcode_modifier.vecsib);
7552 /* <disp>(%esp) becomes two byte modrm with no index
7553 register. We've already stored the code for esp
7554 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7555 Any base register besides %esp will not use the
7556 extra modrm byte. */
7557 i.sib.index = NO_INDEX_REGISTER;
7558 }
7559 else if (!i.tm.opcode_modifier.vecsib)
7560 {
7561 if (i.index_reg->reg_num == RegIZ)
7562 i.sib.index = NO_INDEX_REGISTER;
7563 else
7564 i.sib.index = i.index_reg->reg_num;
7565 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7566 if ((i.index_reg->reg_flags & RegRex) != 0)
7567 i.rex |= REX_X;
7568 }
7569
7570 if (i.disp_operands
7571 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7572 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7573 i.rm.mode = 0;
7574 else
7575 {
7576 if (!fake_zero_displacement
7577 && !i.disp_operands
7578 && i.disp_encoding)
7579 {
7580 fake_zero_displacement = 1;
7581 if (i.disp_encoding == disp_encoding_8bit)
7582 i.types[op].bitfield.disp8 = 1;
7583 else
7584 i.types[op].bitfield.disp32 = 1;
7585 }
7586 i.rm.mode = mode_from_disp_size (i.types[op]);
7587 }
7588 }
7589
7590 if (fake_zero_displacement)
7591 {
7592 /* Fakes a zero displacement assuming that i.types[op]
7593 holds the correct displacement size. */
7594 expressionS *exp;
7595
7596 gas_assert (i.op[op].disps == 0);
7597 exp = &disp_expressions[i.disp_operands++];
7598 i.op[op].disps = exp;
7599 exp->X_op = O_constant;
7600 exp->X_add_number = 0;
7601 exp->X_add_symbol = (symbolS *) 0;
7602 exp->X_op_symbol = (symbolS *) 0;
7603 }
7604
7605 mem = op;
7606 }
7607 else
7608 mem = ~0;
7609
7610 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7611 {
7612 if (operand_type_check (i.types[0], imm))
7613 i.vex.register_specifier = NULL;
7614 else
7615 {
7616 /* VEX.vvvv encodes one of the sources when the first
7617 operand is not an immediate. */
7618 if (i.tm.opcode_modifier.vexw == VEXW0)
7619 i.vex.register_specifier = i.op[0].regs;
7620 else
7621 i.vex.register_specifier = i.op[1].regs;
7622 }
7623
7624 /* Destination is a XMM register encoded in the ModRM.reg
7625 and VEX.R bit. */
7626 i.rm.reg = i.op[2].regs->reg_num;
7627 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7628 i.rex |= REX_R;
7629
7630 /* ModRM.rm and VEX.B encodes the other source. */
7631 if (!i.mem_operands)
7632 {
7633 i.rm.mode = 3;
7634
7635 if (i.tm.opcode_modifier.vexw == VEXW0)
7636 i.rm.regmem = i.op[1].regs->reg_num;
7637 else
7638 i.rm.regmem = i.op[0].regs->reg_num;
7639
7640 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7641 i.rex |= REX_B;
7642 }
7643 }
7644 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7645 {
7646 i.vex.register_specifier = i.op[2].regs;
7647 if (!i.mem_operands)
7648 {
7649 i.rm.mode = 3;
7650 i.rm.regmem = i.op[1].regs->reg_num;
7651 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7652 i.rex |= REX_B;
7653 }
7654 }
7655 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7656 (if any) based on i.tm.extension_opcode. Again, we must be
7657 careful to make sure that segment/control/debug/test/MMX
7658 registers are coded into the i.rm.reg field. */
7659 else if (i.reg_operands)
7660 {
7661 unsigned int op;
7662 unsigned int vex_reg = ~0;
7663
7664 for (op = 0; op < i.operands; op++)
7665 {
7666 if (i.types[op].bitfield.reg
7667 || i.types[op].bitfield.regbnd
7668 || i.types[op].bitfield.regmask
7669 || i.types[op].bitfield.sreg2
7670 || i.types[op].bitfield.sreg3
7671 || i.types[op].bitfield.control
7672 || i.types[op].bitfield.debug
7673 || i.types[op].bitfield.test)
7674 break;
7675 if (i.types[op].bitfield.regsimd)
7676 {
7677 if (i.types[op].bitfield.zmmword)
7678 i.has_regzmm = TRUE;
7679 else if (i.types[op].bitfield.ymmword)
7680 i.has_regymm = TRUE;
7681 else
7682 i.has_regxmm = TRUE;
7683 break;
7684 }
7685 if (i.types[op].bitfield.regmmx)
7686 {
7687 i.has_regmmx = TRUE;
7688 break;
7689 }
7690 }
7691
7692 if (vex_3_sources)
7693 op = dest;
7694 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7695 {
7696 /* For instructions with VexNDS, the register-only
7697 source operand is encoded in VEX prefix. */
7698 gas_assert (mem != (unsigned int) ~0);
7699
7700 if (op > mem)
7701 {
7702 vex_reg = op++;
7703 gas_assert (op < i.operands);
7704 }
7705 else
7706 {
7707 /* Check register-only source operand when two source
7708 operands are swapped. */
7709 if (!i.tm.operand_types[op].bitfield.baseindex
7710 && i.tm.operand_types[op + 1].bitfield.baseindex)
7711 {
7712 vex_reg = op;
7713 op += 2;
7714 gas_assert (mem == (vex_reg + 1)
7715 && op < i.operands);
7716 }
7717 else
7718 {
7719 vex_reg = op + 1;
7720 gas_assert (vex_reg < i.operands);
7721 }
7722 }
7723 }
7724 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7725 {
7726 /* For instructions with VexNDD, the register destination
7727 is encoded in VEX prefix. */
7728 if (i.mem_operands == 0)
7729 {
7730 /* There is no memory operand. */
7731 gas_assert ((op + 2) == i.operands);
7732 vex_reg = op + 1;
7733 }
7734 else
7735 {
7736 /* There are only 2 non-immediate operands. */
7737 gas_assert (op < i.imm_operands + 2
7738 && i.operands == i.imm_operands + 2);
7739 vex_reg = i.imm_operands + 1;
7740 }
7741 }
7742 else
7743 gas_assert (op < i.operands);
7744
7745 if (vex_reg != (unsigned int) ~0)
7746 {
7747 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7748
7749 if ((!type->bitfield.reg
7750 || (!type->bitfield.dword && !type->bitfield.qword))
7751 && !type->bitfield.regsimd
7752 && !operand_type_equal (type, &regmask))
7753 abort ();
7754
7755 i.vex.register_specifier = i.op[vex_reg].regs;
7756 }
7757
7758 /* Don't set OP operand twice. */
7759 if (vex_reg != op)
7760 {
7761 /* If there is an extension opcode to put here, the
7762 register number must be put into the regmem field. */
7763 if (i.tm.extension_opcode != None)
7764 {
7765 i.rm.regmem = i.op[op].regs->reg_num;
7766 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7767 i.rex |= REX_B;
7768 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7769 i.vrex |= REX_B;
7770 }
7771 else
7772 {
7773 i.rm.reg = i.op[op].regs->reg_num;
7774 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7775 i.rex |= REX_R;
7776 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7777 i.vrex |= REX_R;
7778 }
7779 }
7780
7781 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7782 must set it to 3 to indicate this is a register operand
7783 in the regmem field. */
7784 if (!i.mem_operands)
7785 i.rm.mode = 3;
7786 }
7787
7788 /* Fill in i.rm.reg field with extension opcode (if any). */
7789 if (i.tm.extension_opcode != None)
7790 i.rm.reg = i.tm.extension_opcode;
7791 }
7792 return default_seg;
7793 }
7794
7795 static void
7796 output_branch (void)
7797 {
7798 char *p;
7799 int size;
7800 int code16;
7801 int prefix;
7802 relax_substateT subtype;
7803 symbolS *sym;
7804 offsetT off;
7805
7806 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7807 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7808
7809 prefix = 0;
7810 if (i.prefix[DATA_PREFIX] != 0)
7811 {
7812 prefix = 1;
7813 i.prefixes -= 1;
7814 code16 ^= CODE16;
7815 }
7816 /* Pentium4 branch hints. */
7817 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7818 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7819 {
7820 prefix++;
7821 i.prefixes--;
7822 }
7823 if (i.prefix[REX_PREFIX] != 0)
7824 {
7825 prefix++;
7826 i.prefixes--;
7827 }
7828
7829 /* BND prefixed jump. */
7830 if (i.prefix[BND_PREFIX] != 0)
7831 {
7832 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7833 i.prefixes -= 1;
7834 }
7835
7836 if (i.prefixes != 0 && !intel_syntax)
7837 as_warn (_("skipping prefixes on this instruction"));
7838
7839 /* It's always a symbol; End frag & setup for relax.
7840 Make sure there is enough room in this frag for the largest
7841 instruction we may generate in md_convert_frag. This is 2
7842 bytes for the opcode and room for the prefix and largest
7843 displacement. */
7844 frag_grow (prefix + 2 + 4);
7845 /* Prefix and 1 opcode byte go in fr_fix. */
7846 p = frag_more (prefix + 1);
7847 if (i.prefix[DATA_PREFIX] != 0)
7848 *p++ = DATA_PREFIX_OPCODE;
7849 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7850 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7851 *p++ = i.prefix[SEG_PREFIX];
7852 if (i.prefix[REX_PREFIX] != 0)
7853 *p++ = i.prefix[REX_PREFIX];
7854 *p = i.tm.base_opcode;
7855
7856 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7857 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7858 else if (cpu_arch_flags.bitfield.cpui386)
7859 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7860 else
7861 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7862 subtype |= code16;
7863
7864 sym = i.op[0].disps->X_add_symbol;
7865 off = i.op[0].disps->X_add_number;
7866
7867 if (i.op[0].disps->X_op != O_constant
7868 && i.op[0].disps->X_op != O_symbol)
7869 {
7870 /* Handle complex expressions. */
7871 sym = make_expr_symbol (i.op[0].disps);
7872 off = 0;
7873 }
7874
7875 /* 1 possible extra opcode + 4 byte displacement go in var part.
7876 Pass reloc in fr_var. */
7877 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7878 }
7879
7880 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7881 /* Return TRUE iff PLT32 relocation should be used for branching to
7882 symbol S. */
7883
7884 static bfd_boolean
7885 need_plt32_p (symbolS *s)
7886 {
7887 /* PLT32 relocation is ELF only. */
7888 if (!IS_ELF)
7889 return FALSE;
7890
7891 #ifdef TE_SOLARIS
7892 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7893 krtld support it. */
7894 return FALSE;
7895 #endif
7896
7897 /* Since there is no need to prepare for PLT branch on x86-64, we
7898 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7899 be used as a marker for 32-bit PC-relative branches. */
7900 if (!object_64bit)
7901 return FALSE;
7902
7903 /* Weak or undefined symbol need PLT32 relocation. */
7904 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7905 return TRUE;
7906
7907 /* Non-global symbol doesn't need PLT32 relocation. */
7908 if (! S_IS_EXTERNAL (s))
7909 return FALSE;
7910
7911 /* Other global symbols need PLT32 relocation. NB: Symbol with
7912 non-default visibilities are treated as normal global symbol
7913 so that PLT32 relocation can be used as a marker for 32-bit
7914 PC-relative branches. It is useful for linker relaxation. */
7915 return TRUE;
7916 }
7917 #endif
7918
7919 static void
7920 output_jump (void)
7921 {
7922 char *p;
7923 int size;
7924 fixS *fixP;
7925 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7926
7927 if (i.tm.opcode_modifier.jumpbyte)
7928 {
7929 /* This is a loop or jecxz type instruction. */
7930 size = 1;
7931 if (i.prefix[ADDR_PREFIX] != 0)
7932 {
7933 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7934 i.prefixes -= 1;
7935 }
7936 /* Pentium4 branch hints. */
7937 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7938 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7939 {
7940 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7941 i.prefixes--;
7942 }
7943 }
7944 else
7945 {
7946 int code16;
7947
7948 code16 = 0;
7949 if (flag_code == CODE_16BIT)
7950 code16 = CODE16;
7951
7952 if (i.prefix[DATA_PREFIX] != 0)
7953 {
7954 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7955 i.prefixes -= 1;
7956 code16 ^= CODE16;
7957 }
7958
7959 size = 4;
7960 if (code16)
7961 size = 2;
7962 }
7963
7964 if (i.prefix[REX_PREFIX] != 0)
7965 {
7966 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7967 i.prefixes -= 1;
7968 }
7969
7970 /* BND prefixed jump. */
7971 if (i.prefix[BND_PREFIX] != 0)
7972 {
7973 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7974 i.prefixes -= 1;
7975 }
7976
7977 if (i.prefixes != 0 && !intel_syntax)
7978 as_warn (_("skipping prefixes on this instruction"));
7979
7980 p = frag_more (i.tm.opcode_length + size);
7981 switch (i.tm.opcode_length)
7982 {
7983 case 2:
7984 *p++ = i.tm.base_opcode >> 8;
7985 /* Fall through. */
7986 case 1:
7987 *p++ = i.tm.base_opcode;
7988 break;
7989 default:
7990 abort ();
7991 }
7992
7993 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7994 if (size == 4
7995 && jump_reloc == NO_RELOC
7996 && need_plt32_p (i.op[0].disps->X_add_symbol))
7997 jump_reloc = BFD_RELOC_X86_64_PLT32;
7998 #endif
7999
8000 jump_reloc = reloc (size, 1, 1, jump_reloc);
8001
8002 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8003 i.op[0].disps, 1, jump_reloc);
8004
8005 /* All jumps handled here are signed, but don't use a signed limit
8006 check for 32 and 16 bit jumps as we want to allow wrap around at
8007 4G and 64k respectively. */
8008 if (size == 1)
8009 fixP->fx_signed = 1;
8010 }
8011
8012 static void
8013 output_interseg_jump (void)
8014 {
8015 char *p;
8016 int size;
8017 int prefix;
8018 int code16;
8019
8020 code16 = 0;
8021 if (flag_code == CODE_16BIT)
8022 code16 = CODE16;
8023
8024 prefix = 0;
8025 if (i.prefix[DATA_PREFIX] != 0)
8026 {
8027 prefix = 1;
8028 i.prefixes -= 1;
8029 code16 ^= CODE16;
8030 }
8031 if (i.prefix[REX_PREFIX] != 0)
8032 {
8033 prefix++;
8034 i.prefixes -= 1;
8035 }
8036
8037 size = 4;
8038 if (code16)
8039 size = 2;
8040
8041 if (i.prefixes != 0 && !intel_syntax)
8042 as_warn (_("skipping prefixes on this instruction"));
8043
8044 /* 1 opcode; 2 segment; offset */
8045 p = frag_more (prefix + 1 + 2 + size);
8046
8047 if (i.prefix[DATA_PREFIX] != 0)
8048 *p++ = DATA_PREFIX_OPCODE;
8049
8050 if (i.prefix[REX_PREFIX] != 0)
8051 *p++ = i.prefix[REX_PREFIX];
8052
8053 *p++ = i.tm.base_opcode;
8054 if (i.op[1].imms->X_op == O_constant)
8055 {
8056 offsetT n = i.op[1].imms->X_add_number;
8057
8058 if (size == 2
8059 && !fits_in_unsigned_word (n)
8060 && !fits_in_signed_word (n))
8061 {
8062 as_bad (_("16-bit jump out of range"));
8063 return;
8064 }
8065 md_number_to_chars (p, n, size);
8066 }
8067 else
8068 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8069 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8070 if (i.op[0].imms->X_op != O_constant)
8071 as_bad (_("can't handle non absolute segment in `%s'"),
8072 i.tm.name);
8073 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8074 }
8075
8076 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8077 void
8078 x86_cleanup (void)
8079 {
8080 char *p;
8081 asection *seg = now_seg;
8082 subsegT subseg = now_subseg;
8083 asection *sec;
8084 unsigned int alignment, align_size_1;
8085 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8086 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8087 unsigned int padding;
8088
8089 if (!IS_ELF || !x86_used_note)
8090 return;
8091
8092 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8093
8094 /* The .note.gnu.property section layout:
8095
8096 Field Length Contents
8097 ---- ---- ----
8098 n_namsz 4 4
8099 n_descsz 4 The note descriptor size
8100 n_type 4 NT_GNU_PROPERTY_TYPE_0
8101 n_name 4 "GNU"
8102 n_desc n_descsz The program property array
8103 .... .... ....
8104 */
8105
8106 /* Create the .note.gnu.property section. */
8107 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8108 bfd_set_section_flags (stdoutput, sec,
8109 (SEC_ALLOC
8110 | SEC_LOAD
8111 | SEC_DATA
8112 | SEC_HAS_CONTENTS
8113 | SEC_READONLY));
8114
8115 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8116 {
8117 align_size_1 = 7;
8118 alignment = 3;
8119 }
8120 else
8121 {
8122 align_size_1 = 3;
8123 alignment = 2;
8124 }
8125
8126 bfd_set_section_alignment (stdoutput, sec, alignment);
8127 elf_section_type (sec) = SHT_NOTE;
8128
8129 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8130 + 4-byte data */
8131 isa_1_descsz_raw = 4 + 4 + 4;
8132 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8133 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8134
8135 feature_2_descsz_raw = isa_1_descsz;
8136 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8137 + 4-byte data */
8138 feature_2_descsz_raw += 4 + 4 + 4;
8139 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8140 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8141 & ~align_size_1);
8142
8143 descsz = feature_2_descsz;
8144 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8145 p = frag_more (4 + 4 + 4 + 4 + descsz);
8146
8147 /* Write n_namsz. */
8148 md_number_to_chars (p, (valueT) 4, 4);
8149
8150 /* Write n_descsz. */
8151 md_number_to_chars (p + 4, (valueT) descsz, 4);
8152
8153 /* Write n_type. */
8154 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8155
8156 /* Write n_name. */
8157 memcpy (p + 4 * 3, "GNU", 4);
8158
8159 /* Write 4-byte type. */
8160 md_number_to_chars (p + 4 * 4,
8161 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8162
8163 /* Write 4-byte data size. */
8164 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8165
8166 /* Write 4-byte data. */
8167 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8168
8169 /* Zero out paddings. */
8170 padding = isa_1_descsz - isa_1_descsz_raw;
8171 if (padding)
8172 memset (p + 4 * 7, 0, padding);
8173
8174 /* Write 4-byte type. */
8175 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8176 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8177
8178 /* Write 4-byte data size. */
8179 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8180
8181 /* Write 4-byte data. */
8182 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8183 (valueT) x86_feature_2_used, 4);
8184
8185 /* Zero out paddings. */
8186 padding = feature_2_descsz - feature_2_descsz_raw;
8187 if (padding)
8188 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8189
8190 /* We probably can't restore the current segment, for there likely
8191 isn't one yet... */
8192 if (seg && subseg)
8193 subseg_set (seg, subseg);
8194 }
8195 #endif
8196
8197 static unsigned int
8198 encoding_length (const fragS *start_frag, offsetT start_off,
8199 const char *frag_now_ptr)
8200 {
8201 unsigned int len = 0;
8202
8203 if (start_frag != frag_now)
8204 {
8205 const fragS *fr = start_frag;
8206
8207 do {
8208 len += fr->fr_fix;
8209 fr = fr->fr_next;
8210 } while (fr && fr != frag_now);
8211 }
8212
8213 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8214 }
8215
8216 static void
8217 output_insn (void)
8218 {
8219 fragS *insn_start_frag;
8220 offsetT insn_start_off;
8221
8222 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8223 if (IS_ELF && x86_used_note)
8224 {
8225 if (i.tm.cpu_flags.bitfield.cpucmov)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8227 if (i.tm.cpu_flags.bitfield.cpusse)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8229 if (i.tm.cpu_flags.bitfield.cpusse2)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8231 if (i.tm.cpu_flags.bitfield.cpusse3)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8233 if (i.tm.cpu_flags.bitfield.cpussse3)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8235 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8237 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8239 if (i.tm.cpu_flags.bitfield.cpuavx)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8241 if (i.tm.cpu_flags.bitfield.cpuavx2)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8243 if (i.tm.cpu_flags.bitfield.cpufma)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8247 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8248 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8249 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8250 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8251 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8252 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8253 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8254 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8255 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8256 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8257 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8258 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8259 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8260 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8261 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8262 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8263 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8264 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8265 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8266 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8267 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8268 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8269 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8270 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8271 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8272 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8273 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8274 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8275
8276 if (i.tm.cpu_flags.bitfield.cpu8087
8277 || i.tm.cpu_flags.bitfield.cpu287
8278 || i.tm.cpu_flags.bitfield.cpu387
8279 || i.tm.cpu_flags.bitfield.cpu687
8280 || i.tm.cpu_flags.bitfield.cpufisttp)
8281 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8282 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8283 Xfence instructions. */
8284 if (i.tm.base_opcode != 0xf18
8285 && i.tm.base_opcode != 0xf0d
8286 && i.tm.base_opcode != 0xfae
8287 && (i.has_regmmx
8288 || i.tm.cpu_flags.bitfield.cpummx
8289 || i.tm.cpu_flags.bitfield.cpua3dnow
8290 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8291 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8292 if (i.has_regxmm)
8293 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8294 if (i.has_regymm)
8295 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8296 if (i.has_regzmm)
8297 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8298 if (i.tm.cpu_flags.bitfield.cpufxsr)
8299 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8300 if (i.tm.cpu_flags.bitfield.cpuxsave)
8301 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8302 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8303 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8304 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8305 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8306 }
8307 #endif
8308
8309 /* Tie dwarf2 debug info to the address at the start of the insn.
8310 We can't do this after the insn has been output as the current
8311 frag may have been closed off. eg. by frag_var. */
8312 dwarf2_emit_insn (0);
8313
8314 insn_start_frag = frag_now;
8315 insn_start_off = frag_now_fix ();
8316
8317 /* Output jumps. */
8318 if (i.tm.opcode_modifier.jump)
8319 output_branch ();
8320 else if (i.tm.opcode_modifier.jumpbyte
8321 || i.tm.opcode_modifier.jumpdword)
8322 output_jump ();
8323 else if (i.tm.opcode_modifier.jumpintersegment)
8324 output_interseg_jump ();
8325 else
8326 {
8327 /* Output normal instructions here. */
8328 char *p;
8329 unsigned char *q;
8330 unsigned int j;
8331 unsigned int prefix;
8332
8333 if (avoid_fence
8334 && i.tm.base_opcode == 0xfae
8335 && i.operands == 1
8336 && i.imm_operands == 1
8337 && (i.op[0].imms->X_add_number == 0xe8
8338 || i.op[0].imms->X_add_number == 0xf0
8339 || i.op[0].imms->X_add_number == 0xf8))
8340 {
8341 /* Encode lfence, mfence, and sfence as
8342 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8343 offsetT val = 0x240483f0ULL;
8344 p = frag_more (5);
8345 md_number_to_chars (p, val, 5);
8346 return;
8347 }
8348
8349 /* Some processors fail on LOCK prefix. This options makes
8350 assembler ignore LOCK prefix and serves as a workaround. */
8351 if (omit_lock_prefix)
8352 {
8353 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8354 return;
8355 i.prefix[LOCK_PREFIX] = 0;
8356 }
8357
8358 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8359 don't need the explicit prefix. */
8360 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8361 {
8362 switch (i.tm.opcode_length)
8363 {
8364 case 3:
8365 if (i.tm.base_opcode & 0xff000000)
8366 {
8367 prefix = (i.tm.base_opcode >> 24) & 0xff;
8368 add_prefix (prefix);
8369 }
8370 break;
8371 case 2:
8372 if ((i.tm.base_opcode & 0xff0000) != 0)
8373 {
8374 prefix = (i.tm.base_opcode >> 16) & 0xff;
8375 if (!i.tm.cpu_flags.bitfield.cpupadlock
8376 || prefix != REPE_PREFIX_OPCODE
8377 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8378 add_prefix (prefix);
8379 }
8380 break;
8381 case 1:
8382 break;
8383 case 0:
8384 /* Check for pseudo prefixes. */
8385 as_bad_where (insn_start_frag->fr_file,
8386 insn_start_frag->fr_line,
8387 _("pseudo prefix without instruction"));
8388 return;
8389 default:
8390 abort ();
8391 }
8392
8393 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8394 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8395 R_X86_64_GOTTPOFF relocation so that linker can safely
8396 perform IE->LE optimization. */
8397 if (x86_elf_abi == X86_64_X32_ABI
8398 && i.operands == 2
8399 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8400 && i.prefix[REX_PREFIX] == 0)
8401 add_prefix (REX_OPCODE);
8402 #endif
8403
8404 /* The prefix bytes. */
8405 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8406 if (*q)
8407 FRAG_APPEND_1_CHAR (*q);
8408 }
8409 else
8410 {
8411 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8412 if (*q)
8413 switch (j)
8414 {
8415 case REX_PREFIX:
8416 /* REX byte is encoded in VEX prefix. */
8417 break;
8418 case SEG_PREFIX:
8419 case ADDR_PREFIX:
8420 FRAG_APPEND_1_CHAR (*q);
8421 break;
8422 default:
8423 /* There should be no other prefixes for instructions
8424 with VEX prefix. */
8425 abort ();
8426 }
8427
8428 /* For EVEX instructions i.vrex should become 0 after
8429 build_evex_prefix. For VEX instructions upper 16 registers
8430 aren't available, so VREX should be 0. */
8431 if (i.vrex)
8432 abort ();
8433 /* Now the VEX prefix. */
8434 p = frag_more (i.vex.length);
8435 for (j = 0; j < i.vex.length; j++)
8436 p[j] = i.vex.bytes[j];
8437 }
8438
8439 /* Now the opcode; be careful about word order here! */
8440 if (i.tm.opcode_length == 1)
8441 {
8442 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8443 }
8444 else
8445 {
8446 switch (i.tm.opcode_length)
8447 {
8448 case 4:
8449 p = frag_more (4);
8450 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8451 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8452 break;
8453 case 3:
8454 p = frag_more (3);
8455 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8456 break;
8457 case 2:
8458 p = frag_more (2);
8459 break;
8460 default:
8461 abort ();
8462 break;
8463 }
8464
8465 /* Put out high byte first: can't use md_number_to_chars! */
8466 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8467 *p = i.tm.base_opcode & 0xff;
8468 }
8469
8470 /* Now the modrm byte and sib byte (if present). */
8471 if (i.tm.opcode_modifier.modrm)
8472 {
8473 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8474 | i.rm.reg << 3
8475 | i.rm.mode << 6));
8476 /* If i.rm.regmem == ESP (4)
8477 && i.rm.mode != (Register mode)
8478 && not 16 bit
8479 ==> need second modrm byte. */
8480 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8481 && i.rm.mode != 3
8482 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8483 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8484 | i.sib.index << 3
8485 | i.sib.scale << 6));
8486 }
8487
8488 if (i.disp_operands)
8489 output_disp (insn_start_frag, insn_start_off);
8490
8491 if (i.imm_operands)
8492 output_imm (insn_start_frag, insn_start_off);
8493
8494 /*
8495 * frag_now_fix () returning plain abs_section_offset when we're in the
8496 * absolute section, and abs_section_offset not getting updated as data
8497 * gets added to the frag breaks the logic below.
8498 */
8499 if (now_seg != absolute_section)
8500 {
8501 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8502 if (j > 15)
8503 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8504 j);
8505 }
8506 }
8507
8508 #ifdef DEBUG386
8509 if (flag_debug)
8510 {
8511 pi ("" /*line*/, &i);
8512 }
8513 #endif /* DEBUG386 */
8514 }
8515
8516 /* Return the size of the displacement operand N. */
8517
8518 static int
8519 disp_size (unsigned int n)
8520 {
8521 int size = 4;
8522
8523 if (i.types[n].bitfield.disp64)
8524 size = 8;
8525 else if (i.types[n].bitfield.disp8)
8526 size = 1;
8527 else if (i.types[n].bitfield.disp16)
8528 size = 2;
8529 return size;
8530 }
8531
8532 /* Return the size of the immediate operand N. */
8533
8534 static int
8535 imm_size (unsigned int n)
8536 {
8537 int size = 4;
8538 if (i.types[n].bitfield.imm64)
8539 size = 8;
8540 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8541 size = 1;
8542 else if (i.types[n].bitfield.imm16)
8543 size = 2;
8544 return size;
8545 }
8546
8547 static void
8548 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8549 {
8550 char *p;
8551 unsigned int n;
8552
8553 for (n = 0; n < i.operands; n++)
8554 {
8555 if (operand_type_check (i.types[n], disp))
8556 {
8557 if (i.op[n].disps->X_op == O_constant)
8558 {
8559 int size = disp_size (n);
8560 offsetT val = i.op[n].disps->X_add_number;
8561
8562 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8563 size);
8564 p = frag_more (size);
8565 md_number_to_chars (p, val, size);
8566 }
8567 else
8568 {
8569 enum bfd_reloc_code_real reloc_type;
8570 int size = disp_size (n);
8571 int sign = i.types[n].bitfield.disp32s;
8572 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8573 fixS *fixP;
8574
8575 /* We can't have 8 bit displacement here. */
8576 gas_assert (!i.types[n].bitfield.disp8);
8577
8578 /* The PC relative address is computed relative
8579 to the instruction boundary, so in case immediate
8580 fields follows, we need to adjust the value. */
8581 if (pcrel && i.imm_operands)
8582 {
8583 unsigned int n1;
8584 int sz = 0;
8585
8586 for (n1 = 0; n1 < i.operands; n1++)
8587 if (operand_type_check (i.types[n1], imm))
8588 {
8589 /* Only one immediate is allowed for PC
8590 relative address. */
8591 gas_assert (sz == 0);
8592 sz = imm_size (n1);
8593 i.op[n].disps->X_add_number -= sz;
8594 }
8595 /* We should find the immediate. */
8596 gas_assert (sz != 0);
8597 }
8598
8599 p = frag_more (size);
8600 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8601 if (GOT_symbol
8602 && GOT_symbol == i.op[n].disps->X_add_symbol
8603 && (((reloc_type == BFD_RELOC_32
8604 || reloc_type == BFD_RELOC_X86_64_32S
8605 || (reloc_type == BFD_RELOC_64
8606 && object_64bit))
8607 && (i.op[n].disps->X_op == O_symbol
8608 || (i.op[n].disps->X_op == O_add
8609 && ((symbol_get_value_expression
8610 (i.op[n].disps->X_op_symbol)->X_op)
8611 == O_subtract))))
8612 || reloc_type == BFD_RELOC_32_PCREL))
8613 {
8614 if (!object_64bit)
8615 {
8616 reloc_type = BFD_RELOC_386_GOTPC;
8617 i.op[n].imms->X_add_number +=
8618 encoding_length (insn_start_frag, insn_start_off, p);
8619 }
8620 else if (reloc_type == BFD_RELOC_64)
8621 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8622 else
8623 /* Don't do the adjustment for x86-64, as there
8624 the pcrel addressing is relative to the _next_
8625 insn, and that is taken care of in other code. */
8626 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8627 }
8628 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8629 size, i.op[n].disps, pcrel,
8630 reloc_type);
8631 /* Check for "call/jmp *mem", "mov mem, %reg",
8632 "test %reg, mem" and "binop mem, %reg" where binop
8633 is one of adc, add, and, cmp, or, sbb, sub, xor
8634 instructions without data prefix. Always generate
8635 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8636 if (i.prefix[DATA_PREFIX] == 0
8637 && (generate_relax_relocations
8638 || (!object_64bit
8639 && i.rm.mode == 0
8640 && i.rm.regmem == 5))
8641 && (i.rm.mode == 2
8642 || (i.rm.mode == 0 && i.rm.regmem == 5))
8643 && ((i.operands == 1
8644 && i.tm.base_opcode == 0xff
8645 && (i.rm.reg == 2 || i.rm.reg == 4))
8646 || (i.operands == 2
8647 && (i.tm.base_opcode == 0x8b
8648 || i.tm.base_opcode == 0x85
8649 || (i.tm.base_opcode & 0xc7) == 0x03))))
8650 {
8651 if (object_64bit)
8652 {
8653 fixP->fx_tcbit = i.rex != 0;
8654 if (i.base_reg
8655 && (i.base_reg->reg_num == RegIP))
8656 fixP->fx_tcbit2 = 1;
8657 }
8658 else
8659 fixP->fx_tcbit2 = 1;
8660 }
8661 }
8662 }
8663 }
8664 }
8665
8666 static void
8667 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8668 {
8669 char *p;
8670 unsigned int n;
8671
8672 for (n = 0; n < i.operands; n++)
8673 {
8674 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8675 if (i.rounding && (int) n == i.rounding->operand)
8676 continue;
8677
8678 if (operand_type_check (i.types[n], imm))
8679 {
8680 if (i.op[n].imms->X_op == O_constant)
8681 {
8682 int size = imm_size (n);
8683 offsetT val;
8684
8685 val = offset_in_range (i.op[n].imms->X_add_number,
8686 size);
8687 p = frag_more (size);
8688 md_number_to_chars (p, val, size);
8689 }
8690 else
8691 {
8692 /* Not absolute_section.
8693 Need a 32-bit fixup (don't support 8bit
8694 non-absolute imms). Try to support other
8695 sizes ... */
8696 enum bfd_reloc_code_real reloc_type;
8697 int size = imm_size (n);
8698 int sign;
8699
8700 if (i.types[n].bitfield.imm32s
8701 && (i.suffix == QWORD_MNEM_SUFFIX
8702 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8703 sign = 1;
8704 else
8705 sign = 0;
8706
8707 p = frag_more (size);
8708 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8709
8710 /* This is tough to explain. We end up with this one if we
8711 * have operands that look like
8712 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8713 * obtain the absolute address of the GOT, and it is strongly
8714 * preferable from a performance point of view to avoid using
8715 * a runtime relocation for this. The actual sequence of
8716 * instructions often look something like:
8717 *
8718 * call .L66
8719 * .L66:
8720 * popl %ebx
8721 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8722 *
8723 * The call and pop essentially return the absolute address
8724 * of the label .L66 and store it in %ebx. The linker itself
8725 * will ultimately change the first operand of the addl so
8726 * that %ebx points to the GOT, but to keep things simple, the
8727 * .o file must have this operand set so that it generates not
8728 * the absolute address of .L66, but the absolute address of
8729 * itself. This allows the linker itself simply treat a GOTPC
8730 * relocation as asking for a pcrel offset to the GOT to be
8731 * added in, and the addend of the relocation is stored in the
8732 * operand field for the instruction itself.
8733 *
8734 * Our job here is to fix the operand so that it would add
8735 * the correct offset so that %ebx would point to itself. The
8736 * thing that is tricky is that .-.L66 will point to the
8737 * beginning of the instruction, so we need to further modify
8738 * the operand so that it will point to itself. There are
8739 * other cases where you have something like:
8740 *
8741 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8742 *
8743 * and here no correction would be required. Internally in
8744 * the assembler we treat operands of this form as not being
8745 * pcrel since the '.' is explicitly mentioned, and I wonder
8746 * whether it would simplify matters to do it this way. Who
8747 * knows. In earlier versions of the PIC patches, the
8748 * pcrel_adjust field was used to store the correction, but
8749 * since the expression is not pcrel, I felt it would be
8750 * confusing to do it this way. */
8751
8752 if ((reloc_type == BFD_RELOC_32
8753 || reloc_type == BFD_RELOC_X86_64_32S
8754 || reloc_type == BFD_RELOC_64)
8755 && GOT_symbol
8756 && GOT_symbol == i.op[n].imms->X_add_symbol
8757 && (i.op[n].imms->X_op == O_symbol
8758 || (i.op[n].imms->X_op == O_add
8759 && ((symbol_get_value_expression
8760 (i.op[n].imms->X_op_symbol)->X_op)
8761 == O_subtract))))
8762 {
8763 if (!object_64bit)
8764 reloc_type = BFD_RELOC_386_GOTPC;
8765 else if (size == 4)
8766 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8767 else if (size == 8)
8768 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8769 i.op[n].imms->X_add_number +=
8770 encoding_length (insn_start_frag, insn_start_off, p);
8771 }
8772 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8773 i.op[n].imms, 0, reloc_type);
8774 }
8775 }
8776 }
8777 }
8778 \f
8779 /* x86_cons_fix_new is called via the expression parsing code when a
8780 reloc is needed. We use this hook to get the correct .got reloc. */
8781 static int cons_sign = -1;
8782
8783 void
8784 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8785 expressionS *exp, bfd_reloc_code_real_type r)
8786 {
8787 r = reloc (len, 0, cons_sign, r);
8788
8789 #ifdef TE_PE
8790 if (exp->X_op == O_secrel)
8791 {
8792 exp->X_op = O_symbol;
8793 r = BFD_RELOC_32_SECREL;
8794 }
8795 #endif
8796
8797 fix_new_exp (frag, off, len, exp, 0, r);
8798 }
8799
8800 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8801 purpose of the `.dc.a' internal pseudo-op. */
8802
8803 int
8804 x86_address_bytes (void)
8805 {
8806 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8807 return 4;
8808 return stdoutput->arch_info->bits_per_address / 8;
8809 }
8810
8811 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8812 || defined (LEX_AT)
8813 # define lex_got(reloc, adjust, types) NULL
8814 #else
8815 /* Parse operands of the form
8816 <symbol>@GOTOFF+<nnn>
8817 and similar .plt or .got references.
8818
8819 If we find one, set up the correct relocation in RELOC and copy the
8820 input string, minus the `@GOTOFF' into a malloc'd buffer for
8821 parsing by the calling routine. Return this buffer, and if ADJUST
8822 is non-null set it to the length of the string we removed from the
8823 input line. Otherwise return NULL. */
8824 static char *
8825 lex_got (enum bfd_reloc_code_real *rel,
8826 int *adjust,
8827 i386_operand_type *types)
8828 {
8829 /* Some of the relocations depend on the size of what field is to
8830 be relocated. But in our callers i386_immediate and i386_displacement
8831 we don't yet know the operand size (this will be set by insn
8832 matching). Hence we record the word32 relocation here,
8833 and adjust the reloc according to the real size in reloc(). */
8834 static const struct {
8835 const char *str;
8836 int len;
8837 const enum bfd_reloc_code_real rel[2];
8838 const i386_operand_type types64;
8839 } gotrel[] = {
8840 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8841 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8842 BFD_RELOC_SIZE32 },
8843 OPERAND_TYPE_IMM32_64 },
8844 #endif
8845 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8846 BFD_RELOC_X86_64_PLTOFF64 },
8847 OPERAND_TYPE_IMM64 },
8848 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8849 BFD_RELOC_X86_64_PLT32 },
8850 OPERAND_TYPE_IMM32_32S_DISP32 },
8851 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8852 BFD_RELOC_X86_64_GOTPLT64 },
8853 OPERAND_TYPE_IMM64_DISP64 },
8854 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8855 BFD_RELOC_X86_64_GOTOFF64 },
8856 OPERAND_TYPE_IMM64_DISP64 },
8857 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8858 BFD_RELOC_X86_64_GOTPCREL },
8859 OPERAND_TYPE_IMM32_32S_DISP32 },
8860 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8861 BFD_RELOC_X86_64_TLSGD },
8862 OPERAND_TYPE_IMM32_32S_DISP32 },
8863 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8864 _dummy_first_bfd_reloc_code_real },
8865 OPERAND_TYPE_NONE },
8866 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8867 BFD_RELOC_X86_64_TLSLD },
8868 OPERAND_TYPE_IMM32_32S_DISP32 },
8869 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8870 BFD_RELOC_X86_64_GOTTPOFF },
8871 OPERAND_TYPE_IMM32_32S_DISP32 },
8872 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8873 BFD_RELOC_X86_64_TPOFF32 },
8874 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8875 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8876 _dummy_first_bfd_reloc_code_real },
8877 OPERAND_TYPE_NONE },
8878 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8879 BFD_RELOC_X86_64_DTPOFF32 },
8880 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8881 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8882 _dummy_first_bfd_reloc_code_real },
8883 OPERAND_TYPE_NONE },
8884 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8885 _dummy_first_bfd_reloc_code_real },
8886 OPERAND_TYPE_NONE },
8887 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8888 BFD_RELOC_X86_64_GOT32 },
8889 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8890 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8891 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8892 OPERAND_TYPE_IMM32_32S_DISP32 },
8893 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8894 BFD_RELOC_X86_64_TLSDESC_CALL },
8895 OPERAND_TYPE_IMM32_32S_DISP32 },
8896 };
8897 char *cp;
8898 unsigned int j;
8899
8900 #if defined (OBJ_MAYBE_ELF)
8901 if (!IS_ELF)
8902 return NULL;
8903 #endif
8904
8905 for (cp = input_line_pointer; *cp != '@'; cp++)
8906 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8907 return NULL;
8908
8909 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8910 {
8911 int len = gotrel[j].len;
8912 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8913 {
8914 if (gotrel[j].rel[object_64bit] != 0)
8915 {
8916 int first, second;
8917 char *tmpbuf, *past_reloc;
8918
8919 *rel = gotrel[j].rel[object_64bit];
8920
8921 if (types)
8922 {
8923 if (flag_code != CODE_64BIT)
8924 {
8925 types->bitfield.imm32 = 1;
8926 types->bitfield.disp32 = 1;
8927 }
8928 else
8929 *types = gotrel[j].types64;
8930 }
8931
8932 if (j != 0 && GOT_symbol == NULL)
8933 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8934
8935 /* The length of the first part of our input line. */
8936 first = cp - input_line_pointer;
8937
8938 /* The second part goes from after the reloc token until
8939 (and including) an end_of_line char or comma. */
8940 past_reloc = cp + 1 + len;
8941 cp = past_reloc;
8942 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8943 ++cp;
8944 second = cp + 1 - past_reloc;
8945
8946 /* Allocate and copy string. The trailing NUL shouldn't
8947 be necessary, but be safe. */
8948 tmpbuf = XNEWVEC (char, first + second + 2);
8949 memcpy (tmpbuf, input_line_pointer, first);
8950 if (second != 0 && *past_reloc != ' ')
8951 /* Replace the relocation token with ' ', so that
8952 errors like foo@GOTOFF1 will be detected. */
8953 tmpbuf[first++] = ' ';
8954 else
8955 /* Increment length by 1 if the relocation token is
8956 removed. */
8957 len++;
8958 if (adjust)
8959 *adjust = len;
8960 memcpy (tmpbuf + first, past_reloc, second);
8961 tmpbuf[first + second] = '\0';
8962 return tmpbuf;
8963 }
8964
8965 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8966 gotrel[j].str, 1 << (5 + object_64bit));
8967 return NULL;
8968 }
8969 }
8970
8971 /* Might be a symbol version string. Don't as_bad here. */
8972 return NULL;
8973 }
8974 #endif
8975
8976 #ifdef TE_PE
8977 #ifdef lex_got
8978 #undef lex_got
8979 #endif
8980 /* Parse operands of the form
8981 <symbol>@SECREL32+<nnn>
8982
8983 If we find one, set up the correct relocation in RELOC and copy the
8984 input string, minus the `@SECREL32' into a malloc'd buffer for
8985 parsing by the calling routine. Return this buffer, and if ADJUST
8986 is non-null set it to the length of the string we removed from the
8987 input line. Otherwise return NULL.
8988
8989 This function is copied from the ELF version above adjusted for PE targets. */
8990
8991 static char *
8992 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8993 int *adjust ATTRIBUTE_UNUSED,
8994 i386_operand_type *types)
8995 {
8996 static const struct
8997 {
8998 const char *str;
8999 int len;
9000 const enum bfd_reloc_code_real rel[2];
9001 const i386_operand_type types64;
9002 }
9003 gotrel[] =
9004 {
9005 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9006 BFD_RELOC_32_SECREL },
9007 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9008 };
9009
9010 char *cp;
9011 unsigned j;
9012
9013 for (cp = input_line_pointer; *cp != '@'; cp++)
9014 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9015 return NULL;
9016
9017 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9018 {
9019 int len = gotrel[j].len;
9020
9021 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9022 {
9023 if (gotrel[j].rel[object_64bit] != 0)
9024 {
9025 int first, second;
9026 char *tmpbuf, *past_reloc;
9027
9028 *rel = gotrel[j].rel[object_64bit];
9029 if (adjust)
9030 *adjust = len;
9031
9032 if (types)
9033 {
9034 if (flag_code != CODE_64BIT)
9035 {
9036 types->bitfield.imm32 = 1;
9037 types->bitfield.disp32 = 1;
9038 }
9039 else
9040 *types = gotrel[j].types64;
9041 }
9042
9043 /* The length of the first part of our input line. */
9044 first = cp - input_line_pointer;
9045
9046 /* The second part goes from after the reloc token until
9047 (and including) an end_of_line char or comma. */
9048 past_reloc = cp + 1 + len;
9049 cp = past_reloc;
9050 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9051 ++cp;
9052 second = cp + 1 - past_reloc;
9053
9054 /* Allocate and copy string. The trailing NUL shouldn't
9055 be necessary, but be safe. */
9056 tmpbuf = XNEWVEC (char, first + second + 2);
9057 memcpy (tmpbuf, input_line_pointer, first);
9058 if (second != 0 && *past_reloc != ' ')
9059 /* Replace the relocation token with ' ', so that
9060 errors like foo@SECLREL321 will be detected. */
9061 tmpbuf[first++] = ' ';
9062 memcpy (tmpbuf + first, past_reloc, second);
9063 tmpbuf[first + second] = '\0';
9064 return tmpbuf;
9065 }
9066
9067 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9068 gotrel[j].str, 1 << (5 + object_64bit));
9069 return NULL;
9070 }
9071 }
9072
9073 /* Might be a symbol version string. Don't as_bad here. */
9074 return NULL;
9075 }
9076
9077 #endif /* TE_PE */
9078
9079 bfd_reloc_code_real_type
9080 x86_cons (expressionS *exp, int size)
9081 {
9082 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9083
9084 intel_syntax = -intel_syntax;
9085
9086 exp->X_md = 0;
9087 if (size == 4 || (object_64bit && size == 8))
9088 {
9089 /* Handle @GOTOFF and the like in an expression. */
9090 char *save;
9091 char *gotfree_input_line;
9092 int adjust = 0;
9093
9094 save = input_line_pointer;
9095 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9096 if (gotfree_input_line)
9097 input_line_pointer = gotfree_input_line;
9098
9099 expression (exp);
9100
9101 if (gotfree_input_line)
9102 {
9103 /* expression () has merrily parsed up to the end of line,
9104 or a comma - in the wrong buffer. Transfer how far
9105 input_line_pointer has moved to the right buffer. */
9106 input_line_pointer = (save
9107 + (input_line_pointer - gotfree_input_line)
9108 + adjust);
9109 free (gotfree_input_line);
9110 if (exp->X_op == O_constant
9111 || exp->X_op == O_absent
9112 || exp->X_op == O_illegal
9113 || exp->X_op == O_register
9114 || exp->X_op == O_big)
9115 {
9116 char c = *input_line_pointer;
9117 *input_line_pointer = 0;
9118 as_bad (_("missing or invalid expression `%s'"), save);
9119 *input_line_pointer = c;
9120 }
9121 else if ((got_reloc == BFD_RELOC_386_PLT32
9122 || got_reloc == BFD_RELOC_X86_64_PLT32)
9123 && exp->X_op != O_symbol)
9124 {
9125 char c = *input_line_pointer;
9126 *input_line_pointer = 0;
9127 as_bad (_("invalid PLT expression `%s'"), save);
9128 *input_line_pointer = c;
9129 }
9130 }
9131 }
9132 else
9133 expression (exp);
9134
9135 intel_syntax = -intel_syntax;
9136
9137 if (intel_syntax)
9138 i386_intel_simplify (exp);
9139
9140 return got_reloc;
9141 }
9142
9143 static void
9144 signed_cons (int size)
9145 {
9146 if (flag_code == CODE_64BIT)
9147 cons_sign = 1;
9148 cons (size);
9149 cons_sign = -1;
9150 }
9151
9152 #ifdef TE_PE
9153 static void
9154 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9155 {
9156 expressionS exp;
9157
9158 do
9159 {
9160 expression (&exp);
9161 if (exp.X_op == O_symbol)
9162 exp.X_op = O_secrel;
9163
9164 emit_expr (&exp, 4);
9165 }
9166 while (*input_line_pointer++ == ',');
9167
9168 input_line_pointer--;
9169 demand_empty_rest_of_line ();
9170 }
9171 #endif
9172
9173 /* Handle Vector operations. */
9174
9175 static char *
9176 check_VecOperations (char *op_string, char *op_end)
9177 {
9178 const reg_entry *mask;
9179 const char *saved;
9180 char *end_op;
9181
9182 while (*op_string
9183 && (op_end == NULL || op_string < op_end))
9184 {
9185 saved = op_string;
9186 if (*op_string == '{')
9187 {
9188 op_string++;
9189
9190 /* Check broadcasts. */
9191 if (strncmp (op_string, "1to", 3) == 0)
9192 {
9193 int bcst_type;
9194
9195 if (i.broadcast)
9196 goto duplicated_vec_op;
9197
9198 op_string += 3;
9199 if (*op_string == '8')
9200 bcst_type = 8;
9201 else if (*op_string == '4')
9202 bcst_type = 4;
9203 else if (*op_string == '2')
9204 bcst_type = 2;
9205 else if (*op_string == '1'
9206 && *(op_string+1) == '6')
9207 {
9208 bcst_type = 16;
9209 op_string++;
9210 }
9211 else
9212 {
9213 as_bad (_("Unsupported broadcast: `%s'"), saved);
9214 return NULL;
9215 }
9216 op_string++;
9217
9218 broadcast_op.type = bcst_type;
9219 broadcast_op.operand = this_operand;
9220 broadcast_op.bytes = 0;
9221 i.broadcast = &broadcast_op;
9222 }
9223 /* Check masking operation. */
9224 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9225 {
9226 /* k0 can't be used for write mask. */
9227 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9228 {
9229 as_bad (_("`%s%s' can't be used for write mask"),
9230 register_prefix, mask->reg_name);
9231 return NULL;
9232 }
9233
9234 if (!i.mask)
9235 {
9236 mask_op.mask = mask;
9237 mask_op.zeroing = 0;
9238 mask_op.operand = this_operand;
9239 i.mask = &mask_op;
9240 }
9241 else
9242 {
9243 if (i.mask->mask)
9244 goto duplicated_vec_op;
9245
9246 i.mask->mask = mask;
9247
9248 /* Only "{z}" is allowed here. No need to check
9249 zeroing mask explicitly. */
9250 if (i.mask->operand != this_operand)
9251 {
9252 as_bad (_("invalid write mask `%s'"), saved);
9253 return NULL;
9254 }
9255 }
9256
9257 op_string = end_op;
9258 }
9259 /* Check zeroing-flag for masking operation. */
9260 else if (*op_string == 'z')
9261 {
9262 if (!i.mask)
9263 {
9264 mask_op.mask = NULL;
9265 mask_op.zeroing = 1;
9266 mask_op.operand = this_operand;
9267 i.mask = &mask_op;
9268 }
9269 else
9270 {
9271 if (i.mask->zeroing)
9272 {
9273 duplicated_vec_op:
9274 as_bad (_("duplicated `%s'"), saved);
9275 return NULL;
9276 }
9277
9278 i.mask->zeroing = 1;
9279
9280 /* Only "{%k}" is allowed here. No need to check mask
9281 register explicitly. */
9282 if (i.mask->operand != this_operand)
9283 {
9284 as_bad (_("invalid zeroing-masking `%s'"),
9285 saved);
9286 return NULL;
9287 }
9288 }
9289
9290 op_string++;
9291 }
9292 else
9293 goto unknown_vec_op;
9294
9295 if (*op_string != '}')
9296 {
9297 as_bad (_("missing `}' in `%s'"), saved);
9298 return NULL;
9299 }
9300 op_string++;
9301
9302 /* Strip whitespace since the addition of pseudo prefixes
9303 changed how the scrubber treats '{'. */
9304 if (is_space_char (*op_string))
9305 ++op_string;
9306
9307 continue;
9308 }
9309 unknown_vec_op:
9310 /* We don't know this one. */
9311 as_bad (_("unknown vector operation: `%s'"), saved);
9312 return NULL;
9313 }
9314
9315 if (i.mask && i.mask->zeroing && !i.mask->mask)
9316 {
9317 as_bad (_("zeroing-masking only allowed with write mask"));
9318 return NULL;
9319 }
9320
9321 return op_string;
9322 }
9323
9324 static int
9325 i386_immediate (char *imm_start)
9326 {
9327 char *save_input_line_pointer;
9328 char *gotfree_input_line;
9329 segT exp_seg = 0;
9330 expressionS *exp;
9331 i386_operand_type types;
9332
9333 operand_type_set (&types, ~0);
9334
9335 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9336 {
9337 as_bad (_("at most %d immediate operands are allowed"),
9338 MAX_IMMEDIATE_OPERANDS);
9339 return 0;
9340 }
9341
9342 exp = &im_expressions[i.imm_operands++];
9343 i.op[this_operand].imms = exp;
9344
9345 if (is_space_char (*imm_start))
9346 ++imm_start;
9347
9348 save_input_line_pointer = input_line_pointer;
9349 input_line_pointer = imm_start;
9350
9351 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9352 if (gotfree_input_line)
9353 input_line_pointer = gotfree_input_line;
9354
9355 exp_seg = expression (exp);
9356
9357 SKIP_WHITESPACE ();
9358
9359 /* Handle vector operations. */
9360 if (*input_line_pointer == '{')
9361 {
9362 input_line_pointer = check_VecOperations (input_line_pointer,
9363 NULL);
9364 if (input_line_pointer == NULL)
9365 return 0;
9366 }
9367
9368 if (*input_line_pointer)
9369 as_bad (_("junk `%s' after expression"), input_line_pointer);
9370
9371 input_line_pointer = save_input_line_pointer;
9372 if (gotfree_input_line)
9373 {
9374 free (gotfree_input_line);
9375
9376 if (exp->X_op == O_constant || exp->X_op == O_register)
9377 exp->X_op = O_illegal;
9378 }
9379
9380 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9381 }
9382
9383 static int
9384 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9385 i386_operand_type types, const char *imm_start)
9386 {
9387 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9388 {
9389 if (imm_start)
9390 as_bad (_("missing or invalid immediate expression `%s'"),
9391 imm_start);
9392 return 0;
9393 }
9394 else if (exp->X_op == O_constant)
9395 {
9396 /* Size it properly later. */
9397 i.types[this_operand].bitfield.imm64 = 1;
9398 /* If not 64bit, sign extend val. */
9399 if (flag_code != CODE_64BIT
9400 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9401 exp->X_add_number
9402 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9403 }
9404 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9405 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9406 && exp_seg != absolute_section
9407 && exp_seg != text_section
9408 && exp_seg != data_section
9409 && exp_seg != bss_section
9410 && exp_seg != undefined_section
9411 && !bfd_is_com_section (exp_seg))
9412 {
9413 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9414 return 0;
9415 }
9416 #endif
9417 else if (!intel_syntax && exp_seg == reg_section)
9418 {
9419 if (imm_start)
9420 as_bad (_("illegal immediate register operand %s"), imm_start);
9421 return 0;
9422 }
9423 else
9424 {
9425 /* This is an address. The size of the address will be
9426 determined later, depending on destination register,
9427 suffix, or the default for the section. */
9428 i.types[this_operand].bitfield.imm8 = 1;
9429 i.types[this_operand].bitfield.imm16 = 1;
9430 i.types[this_operand].bitfield.imm32 = 1;
9431 i.types[this_operand].bitfield.imm32s = 1;
9432 i.types[this_operand].bitfield.imm64 = 1;
9433 i.types[this_operand] = operand_type_and (i.types[this_operand],
9434 types);
9435 }
9436
9437 return 1;
9438 }
9439
9440 static char *
9441 i386_scale (char *scale)
9442 {
9443 offsetT val;
9444 char *save = input_line_pointer;
9445
9446 input_line_pointer = scale;
9447 val = get_absolute_expression ();
9448
9449 switch (val)
9450 {
9451 case 1:
9452 i.log2_scale_factor = 0;
9453 break;
9454 case 2:
9455 i.log2_scale_factor = 1;
9456 break;
9457 case 4:
9458 i.log2_scale_factor = 2;
9459 break;
9460 case 8:
9461 i.log2_scale_factor = 3;
9462 break;
9463 default:
9464 {
9465 char sep = *input_line_pointer;
9466
9467 *input_line_pointer = '\0';
9468 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9469 scale);
9470 *input_line_pointer = sep;
9471 input_line_pointer = save;
9472 return NULL;
9473 }
9474 }
9475 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9476 {
9477 as_warn (_("scale factor of %d without an index register"),
9478 1 << i.log2_scale_factor);
9479 i.log2_scale_factor = 0;
9480 }
9481 scale = input_line_pointer;
9482 input_line_pointer = save;
9483 return scale;
9484 }
9485
9486 static int
9487 i386_displacement (char *disp_start, char *disp_end)
9488 {
9489 expressionS *exp;
9490 segT exp_seg = 0;
9491 char *save_input_line_pointer;
9492 char *gotfree_input_line;
9493 int override;
9494 i386_operand_type bigdisp, types = anydisp;
9495 int ret;
9496
9497 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9498 {
9499 as_bad (_("at most %d displacement operands are allowed"),
9500 MAX_MEMORY_OPERANDS);
9501 return 0;
9502 }
9503
9504 operand_type_set (&bigdisp, 0);
9505 if ((i.types[this_operand].bitfield.jumpabsolute)
9506 || (!current_templates->start->opcode_modifier.jump
9507 && !current_templates->start->opcode_modifier.jumpdword))
9508 {
9509 bigdisp.bitfield.disp32 = 1;
9510 override = (i.prefix[ADDR_PREFIX] != 0);
9511 if (flag_code == CODE_64BIT)
9512 {
9513 if (!override)
9514 {
9515 bigdisp.bitfield.disp32s = 1;
9516 bigdisp.bitfield.disp64 = 1;
9517 }
9518 }
9519 else if ((flag_code == CODE_16BIT) ^ override)
9520 {
9521 bigdisp.bitfield.disp32 = 0;
9522 bigdisp.bitfield.disp16 = 1;
9523 }
9524 }
9525 else
9526 {
9527 /* For PC-relative branches, the width of the displacement
9528 is dependent upon data size, not address size. */
9529 override = (i.prefix[DATA_PREFIX] != 0);
9530 if (flag_code == CODE_64BIT)
9531 {
9532 if (override || i.suffix == WORD_MNEM_SUFFIX)
9533 bigdisp.bitfield.disp16 = 1;
9534 else
9535 {
9536 bigdisp.bitfield.disp32 = 1;
9537 bigdisp.bitfield.disp32s = 1;
9538 }
9539 }
9540 else
9541 {
9542 if (!override)
9543 override = (i.suffix == (flag_code != CODE_16BIT
9544 ? WORD_MNEM_SUFFIX
9545 : LONG_MNEM_SUFFIX));
9546 bigdisp.bitfield.disp32 = 1;
9547 if ((flag_code == CODE_16BIT) ^ override)
9548 {
9549 bigdisp.bitfield.disp32 = 0;
9550 bigdisp.bitfield.disp16 = 1;
9551 }
9552 }
9553 }
9554 i.types[this_operand] = operand_type_or (i.types[this_operand],
9555 bigdisp);
9556
9557 exp = &disp_expressions[i.disp_operands];
9558 i.op[this_operand].disps = exp;
9559 i.disp_operands++;
9560 save_input_line_pointer = input_line_pointer;
9561 input_line_pointer = disp_start;
9562 END_STRING_AND_SAVE (disp_end);
9563
9564 #ifndef GCC_ASM_O_HACK
9565 #define GCC_ASM_O_HACK 0
9566 #endif
9567 #if GCC_ASM_O_HACK
9568 END_STRING_AND_SAVE (disp_end + 1);
9569 if (i.types[this_operand].bitfield.baseIndex
9570 && displacement_string_end[-1] == '+')
9571 {
9572 /* This hack is to avoid a warning when using the "o"
9573 constraint within gcc asm statements.
9574 For instance:
9575
9576 #define _set_tssldt_desc(n,addr,limit,type) \
9577 __asm__ __volatile__ ( \
9578 "movw %w2,%0\n\t" \
9579 "movw %w1,2+%0\n\t" \
9580 "rorl $16,%1\n\t" \
9581 "movb %b1,4+%0\n\t" \
9582 "movb %4,5+%0\n\t" \
9583 "movb $0,6+%0\n\t" \
9584 "movb %h1,7+%0\n\t" \
9585 "rorl $16,%1" \
9586 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9587
9588 This works great except that the output assembler ends
9589 up looking a bit weird if it turns out that there is
9590 no offset. You end up producing code that looks like:
9591
9592 #APP
9593 movw $235,(%eax)
9594 movw %dx,2+(%eax)
9595 rorl $16,%edx
9596 movb %dl,4+(%eax)
9597 movb $137,5+(%eax)
9598 movb $0,6+(%eax)
9599 movb %dh,7+(%eax)
9600 rorl $16,%edx
9601 #NO_APP
9602
9603 So here we provide the missing zero. */
9604
9605 *displacement_string_end = '0';
9606 }
9607 #endif
9608 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9609 if (gotfree_input_line)
9610 input_line_pointer = gotfree_input_line;
9611
9612 exp_seg = expression (exp);
9613
9614 SKIP_WHITESPACE ();
9615 if (*input_line_pointer)
9616 as_bad (_("junk `%s' after expression"), input_line_pointer);
9617 #if GCC_ASM_O_HACK
9618 RESTORE_END_STRING (disp_end + 1);
9619 #endif
9620 input_line_pointer = save_input_line_pointer;
9621 if (gotfree_input_line)
9622 {
9623 free (gotfree_input_line);
9624
9625 if (exp->X_op == O_constant || exp->X_op == O_register)
9626 exp->X_op = O_illegal;
9627 }
9628
9629 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9630
9631 RESTORE_END_STRING (disp_end);
9632
9633 return ret;
9634 }
9635
9636 static int
9637 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9638 i386_operand_type types, const char *disp_start)
9639 {
9640 i386_operand_type bigdisp;
9641 int ret = 1;
9642
9643 /* We do this to make sure that the section symbol is in
9644 the symbol table. We will ultimately change the relocation
9645 to be relative to the beginning of the section. */
9646 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9647 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9648 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9649 {
9650 if (exp->X_op != O_symbol)
9651 goto inv_disp;
9652
9653 if (S_IS_LOCAL (exp->X_add_symbol)
9654 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9655 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9656 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9657 exp->X_op = O_subtract;
9658 exp->X_op_symbol = GOT_symbol;
9659 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9660 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9661 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9662 i.reloc[this_operand] = BFD_RELOC_64;
9663 else
9664 i.reloc[this_operand] = BFD_RELOC_32;
9665 }
9666
9667 else if (exp->X_op == O_absent
9668 || exp->X_op == O_illegal
9669 || exp->X_op == O_big)
9670 {
9671 inv_disp:
9672 as_bad (_("missing or invalid displacement expression `%s'"),
9673 disp_start);
9674 ret = 0;
9675 }
9676
9677 else if (flag_code == CODE_64BIT
9678 && !i.prefix[ADDR_PREFIX]
9679 && exp->X_op == O_constant)
9680 {
9681 /* Since displacement is signed extended to 64bit, don't allow
9682 disp32 and turn off disp32s if they are out of range. */
9683 i.types[this_operand].bitfield.disp32 = 0;
9684 if (!fits_in_signed_long (exp->X_add_number))
9685 {
9686 i.types[this_operand].bitfield.disp32s = 0;
9687 if (i.types[this_operand].bitfield.baseindex)
9688 {
9689 as_bad (_("0x%lx out range of signed 32bit displacement"),
9690 (long) exp->X_add_number);
9691 ret = 0;
9692 }
9693 }
9694 }
9695
9696 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9697 else if (exp->X_op != O_constant
9698 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9699 && exp_seg != absolute_section
9700 && exp_seg != text_section
9701 && exp_seg != data_section
9702 && exp_seg != bss_section
9703 && exp_seg != undefined_section
9704 && !bfd_is_com_section (exp_seg))
9705 {
9706 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9707 ret = 0;
9708 }
9709 #endif
9710
9711 /* Check if this is a displacement only operand. */
9712 bigdisp = i.types[this_operand];
9713 bigdisp.bitfield.disp8 = 0;
9714 bigdisp.bitfield.disp16 = 0;
9715 bigdisp.bitfield.disp32 = 0;
9716 bigdisp.bitfield.disp32s = 0;
9717 bigdisp.bitfield.disp64 = 0;
9718 if (operand_type_all_zero (&bigdisp))
9719 i.types[this_operand] = operand_type_and (i.types[this_operand],
9720 types);
9721
9722 return ret;
9723 }
9724
9725 /* Return the active addressing mode, taking address override and
9726 registers forming the address into consideration. Update the
9727 address override prefix if necessary. */
9728
9729 static enum flag_code
9730 i386_addressing_mode (void)
9731 {
9732 enum flag_code addr_mode;
9733
9734 if (i.prefix[ADDR_PREFIX])
9735 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9736 else
9737 {
9738 addr_mode = flag_code;
9739
9740 #if INFER_ADDR_PREFIX
9741 if (i.mem_operands == 0)
9742 {
9743 /* Infer address prefix from the first memory operand. */
9744 const reg_entry *addr_reg = i.base_reg;
9745
9746 if (addr_reg == NULL)
9747 addr_reg = i.index_reg;
9748
9749 if (addr_reg)
9750 {
9751 if (addr_reg->reg_type.bitfield.dword)
9752 addr_mode = CODE_32BIT;
9753 else if (flag_code != CODE_64BIT
9754 && addr_reg->reg_type.bitfield.word)
9755 addr_mode = CODE_16BIT;
9756
9757 if (addr_mode != flag_code)
9758 {
9759 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9760 i.prefixes += 1;
9761 /* Change the size of any displacement too. At most one
9762 of Disp16 or Disp32 is set.
9763 FIXME. There doesn't seem to be any real need for
9764 separate Disp16 and Disp32 flags. The same goes for
9765 Imm16 and Imm32. Removing them would probably clean
9766 up the code quite a lot. */
9767 if (flag_code != CODE_64BIT
9768 && (i.types[this_operand].bitfield.disp16
9769 || i.types[this_operand].bitfield.disp32))
9770 i.types[this_operand]
9771 = operand_type_xor (i.types[this_operand], disp16_32);
9772 }
9773 }
9774 }
9775 #endif
9776 }
9777
9778 return addr_mode;
9779 }
9780
9781 /* Make sure the memory operand we've been dealt is valid.
9782 Return 1 on success, 0 on a failure. */
9783
9784 static int
9785 i386_index_check (const char *operand_string)
9786 {
9787 const char *kind = "base/index";
9788 enum flag_code addr_mode = i386_addressing_mode ();
9789
9790 if (current_templates->start->opcode_modifier.isstring
9791 && !current_templates->start->opcode_modifier.immext
9792 && (current_templates->end[-1].opcode_modifier.isstring
9793 || i.mem_operands))
9794 {
9795 /* Memory operands of string insns are special in that they only allow
9796 a single register (rDI, rSI, or rBX) as their memory address. */
9797 const reg_entry *expected_reg;
9798 static const char *di_si[][2] =
9799 {
9800 { "esi", "edi" },
9801 { "si", "di" },
9802 { "rsi", "rdi" }
9803 };
9804 static const char *bx[] = { "ebx", "bx", "rbx" };
9805
9806 kind = "string address";
9807
9808 if (current_templates->start->opcode_modifier.repprefixok)
9809 {
9810 i386_operand_type type = current_templates->end[-1].operand_types[0];
9811
9812 if (!type.bitfield.baseindex
9813 || ((!i.mem_operands != !intel_syntax)
9814 && current_templates->end[-1].operand_types[1]
9815 .bitfield.baseindex))
9816 type = current_templates->end[-1].operand_types[1];
9817 expected_reg = hash_find (reg_hash,
9818 di_si[addr_mode][type.bitfield.esseg]);
9819
9820 }
9821 else
9822 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9823
9824 if (i.base_reg != expected_reg
9825 || i.index_reg
9826 || operand_type_check (i.types[this_operand], disp))
9827 {
9828 /* The second memory operand must have the same size as
9829 the first one. */
9830 if (i.mem_operands
9831 && i.base_reg
9832 && !((addr_mode == CODE_64BIT
9833 && i.base_reg->reg_type.bitfield.qword)
9834 || (addr_mode == CODE_32BIT
9835 ? i.base_reg->reg_type.bitfield.dword
9836 : i.base_reg->reg_type.bitfield.word)))
9837 goto bad_address;
9838
9839 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9840 operand_string,
9841 intel_syntax ? '[' : '(',
9842 register_prefix,
9843 expected_reg->reg_name,
9844 intel_syntax ? ']' : ')');
9845 return 1;
9846 }
9847 else
9848 return 1;
9849
9850 bad_address:
9851 as_bad (_("`%s' is not a valid %s expression"),
9852 operand_string, kind);
9853 return 0;
9854 }
9855 else
9856 {
9857 if (addr_mode != CODE_16BIT)
9858 {
9859 /* 32-bit/64-bit checks. */
9860 if ((i.base_reg
9861 && ((addr_mode == CODE_64BIT
9862 ? !i.base_reg->reg_type.bitfield.qword
9863 : !i.base_reg->reg_type.bitfield.dword)
9864 || (i.index_reg && i.base_reg->reg_num == RegIP)
9865 || i.base_reg->reg_num == RegIZ))
9866 || (i.index_reg
9867 && !i.index_reg->reg_type.bitfield.xmmword
9868 && !i.index_reg->reg_type.bitfield.ymmword
9869 && !i.index_reg->reg_type.bitfield.zmmword
9870 && ((addr_mode == CODE_64BIT
9871 ? !i.index_reg->reg_type.bitfield.qword
9872 : !i.index_reg->reg_type.bitfield.dword)
9873 || !i.index_reg->reg_type.bitfield.baseindex)))
9874 goto bad_address;
9875
9876 /* bndmk, bndldx, and bndstx have special restrictions. */
9877 if (current_templates->start->base_opcode == 0xf30f1b
9878 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9879 {
9880 /* They cannot use RIP-relative addressing. */
9881 if (i.base_reg && i.base_reg->reg_num == RegIP)
9882 {
9883 as_bad (_("`%s' cannot be used here"), operand_string);
9884 return 0;
9885 }
9886
9887 /* bndldx and bndstx ignore their scale factor. */
9888 if (current_templates->start->base_opcode != 0xf30f1b
9889 && i.log2_scale_factor)
9890 as_warn (_("register scaling is being ignored here"));
9891 }
9892 }
9893 else
9894 {
9895 /* 16-bit checks. */
9896 if ((i.base_reg
9897 && (!i.base_reg->reg_type.bitfield.word
9898 || !i.base_reg->reg_type.bitfield.baseindex))
9899 || (i.index_reg
9900 && (!i.index_reg->reg_type.bitfield.word
9901 || !i.index_reg->reg_type.bitfield.baseindex
9902 || !(i.base_reg
9903 && i.base_reg->reg_num < 6
9904 && i.index_reg->reg_num >= 6
9905 && i.log2_scale_factor == 0))))
9906 goto bad_address;
9907 }
9908 }
9909 return 1;
9910 }
9911
9912 /* Handle vector immediates. */
9913
9914 static int
9915 RC_SAE_immediate (const char *imm_start)
9916 {
9917 unsigned int match_found, j;
9918 const char *pstr = imm_start;
9919 expressionS *exp;
9920
9921 if (*pstr != '{')
9922 return 0;
9923
9924 pstr++;
9925 match_found = 0;
9926 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9927 {
9928 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9929 {
9930 if (!i.rounding)
9931 {
9932 rc_op.type = RC_NamesTable[j].type;
9933 rc_op.operand = this_operand;
9934 i.rounding = &rc_op;
9935 }
9936 else
9937 {
9938 as_bad (_("duplicated `%s'"), imm_start);
9939 return 0;
9940 }
9941 pstr += RC_NamesTable[j].len;
9942 match_found = 1;
9943 break;
9944 }
9945 }
9946 if (!match_found)
9947 return 0;
9948
9949 if (*pstr++ != '}')
9950 {
9951 as_bad (_("Missing '}': '%s'"), imm_start);
9952 return 0;
9953 }
9954 /* RC/SAE immediate string should contain nothing more. */;
9955 if (*pstr != 0)
9956 {
9957 as_bad (_("Junk after '}': '%s'"), imm_start);
9958 return 0;
9959 }
9960
9961 exp = &im_expressions[i.imm_operands++];
9962 i.op[this_operand].imms = exp;
9963
9964 exp->X_op = O_constant;
9965 exp->X_add_number = 0;
9966 exp->X_add_symbol = (symbolS *) 0;
9967 exp->X_op_symbol = (symbolS *) 0;
9968
9969 i.types[this_operand].bitfield.imm8 = 1;
9970 return 1;
9971 }
9972
9973 /* Only string instructions can have a second memory operand, so
9974 reduce current_templates to just those if it contains any. */
9975 static int
9976 maybe_adjust_templates (void)
9977 {
9978 const insn_template *t;
9979
9980 gas_assert (i.mem_operands == 1);
9981
9982 for (t = current_templates->start; t < current_templates->end; ++t)
9983 if (t->opcode_modifier.isstring)
9984 break;
9985
9986 if (t < current_templates->end)
9987 {
9988 static templates aux_templates;
9989 bfd_boolean recheck;
9990
9991 aux_templates.start = t;
9992 for (; t < current_templates->end; ++t)
9993 if (!t->opcode_modifier.isstring)
9994 break;
9995 aux_templates.end = t;
9996
9997 /* Determine whether to re-check the first memory operand. */
9998 recheck = (aux_templates.start != current_templates->start
9999 || t != current_templates->end);
10000
10001 current_templates = &aux_templates;
10002
10003 if (recheck)
10004 {
10005 i.mem_operands = 0;
10006 if (i.memop1_string != NULL
10007 && i386_index_check (i.memop1_string) == 0)
10008 return 0;
10009 i.mem_operands = 1;
10010 }
10011 }
10012
10013 return 1;
10014 }
10015
10016 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10017 on error. */
10018
10019 static int
10020 i386_att_operand (char *operand_string)
10021 {
10022 const reg_entry *r;
10023 char *end_op;
10024 char *op_string = operand_string;
10025
10026 if (is_space_char (*op_string))
10027 ++op_string;
10028
10029 /* We check for an absolute prefix (differentiating,
10030 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10031 if (*op_string == ABSOLUTE_PREFIX)
10032 {
10033 ++op_string;
10034 if (is_space_char (*op_string))
10035 ++op_string;
10036 i.types[this_operand].bitfield.jumpabsolute = 1;
10037 }
10038
10039 /* Check if operand is a register. */
10040 if ((r = parse_register (op_string, &end_op)) != NULL)
10041 {
10042 i386_operand_type temp;
10043
10044 /* Check for a segment override by searching for ':' after a
10045 segment register. */
10046 op_string = end_op;
10047 if (is_space_char (*op_string))
10048 ++op_string;
10049 if (*op_string == ':'
10050 && (r->reg_type.bitfield.sreg2
10051 || r->reg_type.bitfield.sreg3))
10052 {
10053 switch (r->reg_num)
10054 {
10055 case 0:
10056 i.seg[i.mem_operands] = &es;
10057 break;
10058 case 1:
10059 i.seg[i.mem_operands] = &cs;
10060 break;
10061 case 2:
10062 i.seg[i.mem_operands] = &ss;
10063 break;
10064 case 3:
10065 i.seg[i.mem_operands] = &ds;
10066 break;
10067 case 4:
10068 i.seg[i.mem_operands] = &fs;
10069 break;
10070 case 5:
10071 i.seg[i.mem_operands] = &gs;
10072 break;
10073 }
10074
10075 /* Skip the ':' and whitespace. */
10076 ++op_string;
10077 if (is_space_char (*op_string))
10078 ++op_string;
10079
10080 if (!is_digit_char (*op_string)
10081 && !is_identifier_char (*op_string)
10082 && *op_string != '('
10083 && *op_string != ABSOLUTE_PREFIX)
10084 {
10085 as_bad (_("bad memory operand `%s'"), op_string);
10086 return 0;
10087 }
10088 /* Handle case of %es:*foo. */
10089 if (*op_string == ABSOLUTE_PREFIX)
10090 {
10091 ++op_string;
10092 if (is_space_char (*op_string))
10093 ++op_string;
10094 i.types[this_operand].bitfield.jumpabsolute = 1;
10095 }
10096 goto do_memory_reference;
10097 }
10098
10099 /* Handle vector operations. */
10100 if (*op_string == '{')
10101 {
10102 op_string = check_VecOperations (op_string, NULL);
10103 if (op_string == NULL)
10104 return 0;
10105 }
10106
10107 if (*op_string)
10108 {
10109 as_bad (_("junk `%s' after register"), op_string);
10110 return 0;
10111 }
10112 temp = r->reg_type;
10113 temp.bitfield.baseindex = 0;
10114 i.types[this_operand] = operand_type_or (i.types[this_operand],
10115 temp);
10116 i.types[this_operand].bitfield.unspecified = 0;
10117 i.op[this_operand].regs = r;
10118 i.reg_operands++;
10119 }
10120 else if (*op_string == REGISTER_PREFIX)
10121 {
10122 as_bad (_("bad register name `%s'"), op_string);
10123 return 0;
10124 }
10125 else if (*op_string == IMMEDIATE_PREFIX)
10126 {
10127 ++op_string;
10128 if (i.types[this_operand].bitfield.jumpabsolute)
10129 {
10130 as_bad (_("immediate operand illegal with absolute jump"));
10131 return 0;
10132 }
10133 if (!i386_immediate (op_string))
10134 return 0;
10135 }
10136 else if (RC_SAE_immediate (operand_string))
10137 {
10138 /* If it is a RC or SAE immediate, do nothing. */
10139 ;
10140 }
10141 else if (is_digit_char (*op_string)
10142 || is_identifier_char (*op_string)
10143 || *op_string == '"'
10144 || *op_string == '(')
10145 {
10146 /* This is a memory reference of some sort. */
10147 char *base_string;
10148
10149 /* Start and end of displacement string expression (if found). */
10150 char *displacement_string_start;
10151 char *displacement_string_end;
10152 char *vop_start;
10153
10154 do_memory_reference:
10155 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10156 return 0;
10157 if ((i.mem_operands == 1
10158 && !current_templates->start->opcode_modifier.isstring)
10159 || i.mem_operands == 2)
10160 {
10161 as_bad (_("too many memory references for `%s'"),
10162 current_templates->start->name);
10163 return 0;
10164 }
10165
10166 /* Check for base index form. We detect the base index form by
10167 looking for an ')' at the end of the operand, searching
10168 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10169 after the '('. */
10170 base_string = op_string + strlen (op_string);
10171
10172 /* Handle vector operations. */
10173 vop_start = strchr (op_string, '{');
10174 if (vop_start && vop_start < base_string)
10175 {
10176 if (check_VecOperations (vop_start, base_string) == NULL)
10177 return 0;
10178 base_string = vop_start;
10179 }
10180
10181 --base_string;
10182 if (is_space_char (*base_string))
10183 --base_string;
10184
10185 /* If we only have a displacement, set-up for it to be parsed later. */
10186 displacement_string_start = op_string;
10187 displacement_string_end = base_string + 1;
10188
10189 if (*base_string == ')')
10190 {
10191 char *temp_string;
10192 unsigned int parens_balanced = 1;
10193 /* We've already checked that the number of left & right ()'s are
10194 equal, so this loop will not be infinite. */
10195 do
10196 {
10197 base_string--;
10198 if (*base_string == ')')
10199 parens_balanced++;
10200 if (*base_string == '(')
10201 parens_balanced--;
10202 }
10203 while (parens_balanced);
10204
10205 temp_string = base_string;
10206
10207 /* Skip past '(' and whitespace. */
10208 ++base_string;
10209 if (is_space_char (*base_string))
10210 ++base_string;
10211
10212 if (*base_string == ','
10213 || ((i.base_reg = parse_register (base_string, &end_op))
10214 != NULL))
10215 {
10216 displacement_string_end = temp_string;
10217
10218 i.types[this_operand].bitfield.baseindex = 1;
10219
10220 if (i.base_reg)
10221 {
10222 base_string = end_op;
10223 if (is_space_char (*base_string))
10224 ++base_string;
10225 }
10226
10227 /* There may be an index reg or scale factor here. */
10228 if (*base_string == ',')
10229 {
10230 ++base_string;
10231 if (is_space_char (*base_string))
10232 ++base_string;
10233
10234 if ((i.index_reg = parse_register (base_string, &end_op))
10235 != NULL)
10236 {
10237 base_string = end_op;
10238 if (is_space_char (*base_string))
10239 ++base_string;
10240 if (*base_string == ',')
10241 {
10242 ++base_string;
10243 if (is_space_char (*base_string))
10244 ++base_string;
10245 }
10246 else if (*base_string != ')')
10247 {
10248 as_bad (_("expecting `,' or `)' "
10249 "after index register in `%s'"),
10250 operand_string);
10251 return 0;
10252 }
10253 }
10254 else if (*base_string == REGISTER_PREFIX)
10255 {
10256 end_op = strchr (base_string, ',');
10257 if (end_op)
10258 *end_op = '\0';
10259 as_bad (_("bad register name `%s'"), base_string);
10260 return 0;
10261 }
10262
10263 /* Check for scale factor. */
10264 if (*base_string != ')')
10265 {
10266 char *end_scale = i386_scale (base_string);
10267
10268 if (!end_scale)
10269 return 0;
10270
10271 base_string = end_scale;
10272 if (is_space_char (*base_string))
10273 ++base_string;
10274 if (*base_string != ')')
10275 {
10276 as_bad (_("expecting `)' "
10277 "after scale factor in `%s'"),
10278 operand_string);
10279 return 0;
10280 }
10281 }
10282 else if (!i.index_reg)
10283 {
10284 as_bad (_("expecting index register or scale factor "
10285 "after `,'; got '%c'"),
10286 *base_string);
10287 return 0;
10288 }
10289 }
10290 else if (*base_string != ')')
10291 {
10292 as_bad (_("expecting `,' or `)' "
10293 "after base register in `%s'"),
10294 operand_string);
10295 return 0;
10296 }
10297 }
10298 else if (*base_string == REGISTER_PREFIX)
10299 {
10300 end_op = strchr (base_string, ',');
10301 if (end_op)
10302 *end_op = '\0';
10303 as_bad (_("bad register name `%s'"), base_string);
10304 return 0;
10305 }
10306 }
10307
10308 /* If there's an expression beginning the operand, parse it,
10309 assuming displacement_string_start and
10310 displacement_string_end are meaningful. */
10311 if (displacement_string_start != displacement_string_end)
10312 {
10313 if (!i386_displacement (displacement_string_start,
10314 displacement_string_end))
10315 return 0;
10316 }
10317
10318 /* Special case for (%dx) while doing input/output op. */
10319 if (i.base_reg
10320 && i.base_reg->reg_type.bitfield.inoutportreg
10321 && i.index_reg == 0
10322 && i.log2_scale_factor == 0
10323 && i.seg[i.mem_operands] == 0
10324 && !operand_type_check (i.types[this_operand], disp))
10325 {
10326 i.types[this_operand] = i.base_reg->reg_type;
10327 return 1;
10328 }
10329
10330 if (i386_index_check (operand_string) == 0)
10331 return 0;
10332 i.flags[this_operand] |= Operand_Mem;
10333 if (i.mem_operands == 0)
10334 i.memop1_string = xstrdup (operand_string);
10335 i.mem_operands++;
10336 }
10337 else
10338 {
10339 /* It's not a memory operand; argh! */
10340 as_bad (_("invalid char %s beginning operand %d `%s'"),
10341 output_invalid (*op_string),
10342 this_operand + 1,
10343 op_string);
10344 return 0;
10345 }
10346 return 1; /* Normal return. */
10347 }
10348 \f
10349 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10350 that an rs_machine_dependent frag may reach. */
10351
10352 unsigned int
10353 i386_frag_max_var (fragS *frag)
10354 {
10355 /* The only relaxable frags are for jumps.
10356 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10357 gas_assert (frag->fr_type == rs_machine_dependent);
10358 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10359 }
10360
10361 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10362 static int
10363 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10364 {
10365 /* STT_GNU_IFUNC symbol must go through PLT. */
10366 if ((symbol_get_bfdsym (fr_symbol)->flags
10367 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10368 return 0;
10369
10370 if (!S_IS_EXTERNAL (fr_symbol))
10371 /* Symbol may be weak or local. */
10372 return !S_IS_WEAK (fr_symbol);
10373
10374 /* Global symbols with non-default visibility can't be preempted. */
10375 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10376 return 1;
10377
10378 if (fr_var != NO_RELOC)
10379 switch ((enum bfd_reloc_code_real) fr_var)
10380 {
10381 case BFD_RELOC_386_PLT32:
10382 case BFD_RELOC_X86_64_PLT32:
10383 /* Symbol with PLT relocation may be preempted. */
10384 return 0;
10385 default:
10386 abort ();
10387 }
10388
10389 /* Global symbols with default visibility in a shared library may be
10390 preempted by another definition. */
10391 return !shared;
10392 }
10393 #endif
10394
10395 /* md_estimate_size_before_relax()
10396
10397 Called just before relax() for rs_machine_dependent frags. The x86
10398 assembler uses these frags to handle variable size jump
10399 instructions.
10400
10401 Any symbol that is now undefined will not become defined.
10402 Return the correct fr_subtype in the frag.
10403 Return the initial "guess for variable size of frag" to caller.
10404 The guess is actually the growth beyond the fixed part. Whatever
10405 we do to grow the fixed or variable part contributes to our
10406 returned value. */
10407
10408 int
10409 md_estimate_size_before_relax (fragS *fragP, segT segment)
10410 {
10411 /* We've already got fragP->fr_subtype right; all we have to do is
10412 check for un-relaxable symbols. On an ELF system, we can't relax
10413 an externally visible symbol, because it may be overridden by a
10414 shared library. */
10415 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10416 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10417 || (IS_ELF
10418 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10419 fragP->fr_var))
10420 #endif
10421 #if defined (OBJ_COFF) && defined (TE_PE)
10422 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10423 && S_IS_WEAK (fragP->fr_symbol))
10424 #endif
10425 )
10426 {
10427 /* Symbol is undefined in this segment, or we need to keep a
10428 reloc so that weak symbols can be overridden. */
10429 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10430 enum bfd_reloc_code_real reloc_type;
10431 unsigned char *opcode;
10432 int old_fr_fix;
10433
10434 if (fragP->fr_var != NO_RELOC)
10435 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10436 else if (size == 2)
10437 reloc_type = BFD_RELOC_16_PCREL;
10438 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10439 else if (need_plt32_p (fragP->fr_symbol))
10440 reloc_type = BFD_RELOC_X86_64_PLT32;
10441 #endif
10442 else
10443 reloc_type = BFD_RELOC_32_PCREL;
10444
10445 old_fr_fix = fragP->fr_fix;
10446 opcode = (unsigned char *) fragP->fr_opcode;
10447
10448 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10449 {
10450 case UNCOND_JUMP:
10451 /* Make jmp (0xeb) a (d)word displacement jump. */
10452 opcode[0] = 0xe9;
10453 fragP->fr_fix += size;
10454 fix_new (fragP, old_fr_fix, size,
10455 fragP->fr_symbol,
10456 fragP->fr_offset, 1,
10457 reloc_type);
10458 break;
10459
10460 case COND_JUMP86:
10461 if (size == 2
10462 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10463 {
10464 /* Negate the condition, and branch past an
10465 unconditional jump. */
10466 opcode[0] ^= 1;
10467 opcode[1] = 3;
10468 /* Insert an unconditional jump. */
10469 opcode[2] = 0xe9;
10470 /* We added two extra opcode bytes, and have a two byte
10471 offset. */
10472 fragP->fr_fix += 2 + 2;
10473 fix_new (fragP, old_fr_fix + 2, 2,
10474 fragP->fr_symbol,
10475 fragP->fr_offset, 1,
10476 reloc_type);
10477 break;
10478 }
10479 /* Fall through. */
10480
10481 case COND_JUMP:
10482 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10483 {
10484 fixS *fixP;
10485
10486 fragP->fr_fix += 1;
10487 fixP = fix_new (fragP, old_fr_fix, 1,
10488 fragP->fr_symbol,
10489 fragP->fr_offset, 1,
10490 BFD_RELOC_8_PCREL);
10491 fixP->fx_signed = 1;
10492 break;
10493 }
10494
10495 /* This changes the byte-displacement jump 0x7N
10496 to the (d)word-displacement jump 0x0f,0x8N. */
10497 opcode[1] = opcode[0] + 0x10;
10498 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10499 /* We've added an opcode byte. */
10500 fragP->fr_fix += 1 + size;
10501 fix_new (fragP, old_fr_fix + 1, size,
10502 fragP->fr_symbol,
10503 fragP->fr_offset, 1,
10504 reloc_type);
10505 break;
10506
10507 default:
10508 BAD_CASE (fragP->fr_subtype);
10509 break;
10510 }
10511 frag_wane (fragP);
10512 return fragP->fr_fix - old_fr_fix;
10513 }
10514
10515 /* Guess size depending on current relax state. Initially the relax
10516 state will correspond to a short jump and we return 1, because
10517 the variable part of the frag (the branch offset) is one byte
10518 long. However, we can relax a section more than once and in that
10519 case we must either set fr_subtype back to the unrelaxed state,
10520 or return the value for the appropriate branch. */
10521 return md_relax_table[fragP->fr_subtype].rlx_length;
10522 }
10523
10524 /* Called after relax() is finished.
10525
10526 In: Address of frag.
10527 fr_type == rs_machine_dependent.
10528 fr_subtype is what the address relaxed to.
10529
10530 Out: Any fixSs and constants are set up.
10531 Caller will turn frag into a ".space 0". */
10532
10533 void
10534 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10535 fragS *fragP)
10536 {
10537 unsigned char *opcode;
10538 unsigned char *where_to_put_displacement = NULL;
10539 offsetT target_address;
10540 offsetT opcode_address;
10541 unsigned int extension = 0;
10542 offsetT displacement_from_opcode_start;
10543
10544 opcode = (unsigned char *) fragP->fr_opcode;
10545
10546 /* Address we want to reach in file space. */
10547 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10548
10549 /* Address opcode resides at in file space. */
10550 opcode_address = fragP->fr_address + fragP->fr_fix;
10551
10552 /* Displacement from opcode start to fill into instruction. */
10553 displacement_from_opcode_start = target_address - opcode_address;
10554
10555 if ((fragP->fr_subtype & BIG) == 0)
10556 {
10557 /* Don't have to change opcode. */
10558 extension = 1; /* 1 opcode + 1 displacement */
10559 where_to_put_displacement = &opcode[1];
10560 }
10561 else
10562 {
10563 if (no_cond_jump_promotion
10564 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10565 as_warn_where (fragP->fr_file, fragP->fr_line,
10566 _("long jump required"));
10567
10568 switch (fragP->fr_subtype)
10569 {
10570 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10571 extension = 4; /* 1 opcode + 4 displacement */
10572 opcode[0] = 0xe9;
10573 where_to_put_displacement = &opcode[1];
10574 break;
10575
10576 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10577 extension = 2; /* 1 opcode + 2 displacement */
10578 opcode[0] = 0xe9;
10579 where_to_put_displacement = &opcode[1];
10580 break;
10581
10582 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10583 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10584 extension = 5; /* 2 opcode + 4 displacement */
10585 opcode[1] = opcode[0] + 0x10;
10586 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10587 where_to_put_displacement = &opcode[2];
10588 break;
10589
10590 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10591 extension = 3; /* 2 opcode + 2 displacement */
10592 opcode[1] = opcode[0] + 0x10;
10593 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10594 where_to_put_displacement = &opcode[2];
10595 break;
10596
10597 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10598 extension = 4;
10599 opcode[0] ^= 1;
10600 opcode[1] = 3;
10601 opcode[2] = 0xe9;
10602 where_to_put_displacement = &opcode[3];
10603 break;
10604
10605 default:
10606 BAD_CASE (fragP->fr_subtype);
10607 break;
10608 }
10609 }
10610
10611 /* If size if less then four we are sure that the operand fits,
10612 but if it's 4, then it could be that the displacement is larger
10613 then -/+ 2GB. */
10614 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10615 && object_64bit
10616 && ((addressT) (displacement_from_opcode_start - extension
10617 + ((addressT) 1 << 31))
10618 > (((addressT) 2 << 31) - 1)))
10619 {
10620 as_bad_where (fragP->fr_file, fragP->fr_line,
10621 _("jump target out of range"));
10622 /* Make us emit 0. */
10623 displacement_from_opcode_start = extension;
10624 }
10625 /* Now put displacement after opcode. */
10626 md_number_to_chars ((char *) where_to_put_displacement,
10627 (valueT) (displacement_from_opcode_start - extension),
10628 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10629 fragP->fr_fix += extension;
10630 }
10631 \f
10632 /* Apply a fixup (fixP) to segment data, once it has been determined
10633 by our caller that we have all the info we need to fix it up.
10634
10635 Parameter valP is the pointer to the value of the bits.
10636
10637 On the 386, immediates, displacements, and data pointers are all in
10638 the same (little-endian) format, so we don't need to care about which
10639 we are handling. */
10640
10641 void
10642 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10643 {
10644 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10645 valueT value = *valP;
10646
10647 #if !defined (TE_Mach)
10648 if (fixP->fx_pcrel)
10649 {
10650 switch (fixP->fx_r_type)
10651 {
10652 default:
10653 break;
10654
10655 case BFD_RELOC_64:
10656 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10657 break;
10658 case BFD_RELOC_32:
10659 case BFD_RELOC_X86_64_32S:
10660 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10661 break;
10662 case BFD_RELOC_16:
10663 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10664 break;
10665 case BFD_RELOC_8:
10666 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10667 break;
10668 }
10669 }
10670
10671 if (fixP->fx_addsy != NULL
10672 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10673 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10674 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10675 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10676 && !use_rela_relocations)
10677 {
10678 /* This is a hack. There should be a better way to handle this.
10679 This covers for the fact that bfd_install_relocation will
10680 subtract the current location (for partial_inplace, PC relative
10681 relocations); see more below. */
10682 #ifndef OBJ_AOUT
10683 if (IS_ELF
10684 #ifdef TE_PE
10685 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10686 #endif
10687 )
10688 value += fixP->fx_where + fixP->fx_frag->fr_address;
10689 #endif
10690 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10691 if (IS_ELF)
10692 {
10693 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10694
10695 if ((sym_seg == seg
10696 || (symbol_section_p (fixP->fx_addsy)
10697 && sym_seg != absolute_section))
10698 && !generic_force_reloc (fixP))
10699 {
10700 /* Yes, we add the values in twice. This is because
10701 bfd_install_relocation subtracts them out again. I think
10702 bfd_install_relocation is broken, but I don't dare change
10703 it. FIXME. */
10704 value += fixP->fx_where + fixP->fx_frag->fr_address;
10705 }
10706 }
10707 #endif
10708 #if defined (OBJ_COFF) && defined (TE_PE)
10709 /* For some reason, the PE format does not store a
10710 section address offset for a PC relative symbol. */
10711 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10712 || S_IS_WEAK (fixP->fx_addsy))
10713 value += md_pcrel_from (fixP);
10714 #endif
10715 }
10716 #if defined (OBJ_COFF) && defined (TE_PE)
10717 if (fixP->fx_addsy != NULL
10718 && S_IS_WEAK (fixP->fx_addsy)
10719 /* PR 16858: Do not modify weak function references. */
10720 && ! fixP->fx_pcrel)
10721 {
10722 #if !defined (TE_PEP)
10723 /* For x86 PE weak function symbols are neither PC-relative
10724 nor do they set S_IS_FUNCTION. So the only reliable way
10725 to detect them is to check the flags of their containing
10726 section. */
10727 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10728 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10729 ;
10730 else
10731 #endif
10732 value -= S_GET_VALUE (fixP->fx_addsy);
10733 }
10734 #endif
10735
10736 /* Fix a few things - the dynamic linker expects certain values here,
10737 and we must not disappoint it. */
10738 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10739 if (IS_ELF && fixP->fx_addsy)
10740 switch (fixP->fx_r_type)
10741 {
10742 case BFD_RELOC_386_PLT32:
10743 case BFD_RELOC_X86_64_PLT32:
10744 /* Make the jump instruction point to the address of the operand.
10745 At runtime we merely add the offset to the actual PLT entry.
10746 NB: Subtract the offset size only for jump instructions. */
10747 if (fixP->fx_pcrel)
10748 value = -4;
10749 break;
10750
10751 case BFD_RELOC_386_TLS_GD:
10752 case BFD_RELOC_386_TLS_LDM:
10753 case BFD_RELOC_386_TLS_IE_32:
10754 case BFD_RELOC_386_TLS_IE:
10755 case BFD_RELOC_386_TLS_GOTIE:
10756 case BFD_RELOC_386_TLS_GOTDESC:
10757 case BFD_RELOC_X86_64_TLSGD:
10758 case BFD_RELOC_X86_64_TLSLD:
10759 case BFD_RELOC_X86_64_GOTTPOFF:
10760 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10761 value = 0; /* Fully resolved at runtime. No addend. */
10762 /* Fallthrough */
10763 case BFD_RELOC_386_TLS_LE:
10764 case BFD_RELOC_386_TLS_LDO_32:
10765 case BFD_RELOC_386_TLS_LE_32:
10766 case BFD_RELOC_X86_64_DTPOFF32:
10767 case BFD_RELOC_X86_64_DTPOFF64:
10768 case BFD_RELOC_X86_64_TPOFF32:
10769 case BFD_RELOC_X86_64_TPOFF64:
10770 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10771 break;
10772
10773 case BFD_RELOC_386_TLS_DESC_CALL:
10774 case BFD_RELOC_X86_64_TLSDESC_CALL:
10775 value = 0; /* Fully resolved at runtime. No addend. */
10776 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10777 fixP->fx_done = 0;
10778 return;
10779
10780 case BFD_RELOC_VTABLE_INHERIT:
10781 case BFD_RELOC_VTABLE_ENTRY:
10782 fixP->fx_done = 0;
10783 return;
10784
10785 default:
10786 break;
10787 }
10788 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10789 *valP = value;
10790 #endif /* !defined (TE_Mach) */
10791
10792 /* Are we finished with this relocation now? */
10793 if (fixP->fx_addsy == NULL)
10794 fixP->fx_done = 1;
10795 #if defined (OBJ_COFF) && defined (TE_PE)
10796 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10797 {
10798 fixP->fx_done = 0;
10799 /* Remember value for tc_gen_reloc. */
10800 fixP->fx_addnumber = value;
10801 /* Clear out the frag for now. */
10802 value = 0;
10803 }
10804 #endif
10805 else if (use_rela_relocations)
10806 {
10807 fixP->fx_no_overflow = 1;
10808 /* Remember value for tc_gen_reloc. */
10809 fixP->fx_addnumber = value;
10810 value = 0;
10811 }
10812
10813 md_number_to_chars (p, value, fixP->fx_size);
10814 }
10815 \f
10816 const char *
10817 md_atof (int type, char *litP, int *sizeP)
10818 {
10819 /* This outputs the LITTLENUMs in REVERSE order;
10820 in accord with the bigendian 386. */
10821 return ieee_md_atof (type, litP, sizeP, FALSE);
10822 }
10823 \f
10824 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10825
10826 static char *
10827 output_invalid (int c)
10828 {
10829 if (ISPRINT (c))
10830 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10831 "'%c'", c);
10832 else
10833 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10834 "(0x%x)", (unsigned char) c);
10835 return output_invalid_buf;
10836 }
10837
10838 /* REG_STRING starts *before* REGISTER_PREFIX. */
10839
10840 static const reg_entry *
10841 parse_real_register (char *reg_string, char **end_op)
10842 {
10843 char *s = reg_string;
10844 char *p;
10845 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10846 const reg_entry *r;
10847
10848 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10849 if (*s == REGISTER_PREFIX)
10850 ++s;
10851
10852 if (is_space_char (*s))
10853 ++s;
10854
10855 p = reg_name_given;
10856 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10857 {
10858 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10859 return (const reg_entry *) NULL;
10860 s++;
10861 }
10862
10863 /* For naked regs, make sure that we are not dealing with an identifier.
10864 This prevents confusing an identifier like `eax_var' with register
10865 `eax'. */
10866 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10867 return (const reg_entry *) NULL;
10868
10869 *end_op = s;
10870
10871 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10872
10873 /* Handle floating point regs, allowing spaces in the (i) part. */
10874 if (r == i386_regtab /* %st is first entry of table */)
10875 {
10876 if (!cpu_arch_flags.bitfield.cpu8087
10877 && !cpu_arch_flags.bitfield.cpu287
10878 && !cpu_arch_flags.bitfield.cpu387)
10879 return (const reg_entry *) NULL;
10880
10881 if (is_space_char (*s))
10882 ++s;
10883 if (*s == '(')
10884 {
10885 ++s;
10886 if (is_space_char (*s))
10887 ++s;
10888 if (*s >= '0' && *s <= '7')
10889 {
10890 int fpr = *s - '0';
10891 ++s;
10892 if (is_space_char (*s))
10893 ++s;
10894 if (*s == ')')
10895 {
10896 *end_op = s + 1;
10897 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10898 know (r);
10899 return r + fpr;
10900 }
10901 }
10902 /* We have "%st(" then garbage. */
10903 return (const reg_entry *) NULL;
10904 }
10905 }
10906
10907 if (r == NULL || allow_pseudo_reg)
10908 return r;
10909
10910 if (operand_type_all_zero (&r->reg_type))
10911 return (const reg_entry *) NULL;
10912
10913 if ((r->reg_type.bitfield.dword
10914 || r->reg_type.bitfield.sreg3
10915 || r->reg_type.bitfield.control
10916 || r->reg_type.bitfield.debug
10917 || r->reg_type.bitfield.test)
10918 && !cpu_arch_flags.bitfield.cpui386)
10919 return (const reg_entry *) NULL;
10920
10921 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10922 return (const reg_entry *) NULL;
10923
10924 if (!cpu_arch_flags.bitfield.cpuavx512f)
10925 {
10926 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10927 return (const reg_entry *) NULL;
10928
10929 if (!cpu_arch_flags.bitfield.cpuavx)
10930 {
10931 if (r->reg_type.bitfield.ymmword)
10932 return (const reg_entry *) NULL;
10933
10934 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10935 return (const reg_entry *) NULL;
10936 }
10937 }
10938
10939 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10940 return (const reg_entry *) NULL;
10941
10942 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10943 if (!allow_index_reg && r->reg_num == RegIZ)
10944 return (const reg_entry *) NULL;
10945
10946 /* Upper 16 vector registers are only available with VREX in 64bit
10947 mode, and require EVEX encoding. */
10948 if (r->reg_flags & RegVRex)
10949 {
10950 if (!cpu_arch_flags.bitfield.cpuavx512f
10951 || flag_code != CODE_64BIT)
10952 return (const reg_entry *) NULL;
10953
10954 i.vec_encoding = vex_encoding_evex;
10955 }
10956
10957 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10958 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10959 && flag_code != CODE_64BIT)
10960 return (const reg_entry *) NULL;
10961
10962 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10963 return (const reg_entry *) NULL;
10964
10965 return r;
10966 }
10967
10968 /* REG_STRING starts *before* REGISTER_PREFIX. */
10969
10970 static const reg_entry *
10971 parse_register (char *reg_string, char **end_op)
10972 {
10973 const reg_entry *r;
10974
10975 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10976 r = parse_real_register (reg_string, end_op);
10977 else
10978 r = NULL;
10979 if (!r)
10980 {
10981 char *save = input_line_pointer;
10982 char c;
10983 symbolS *symbolP;
10984
10985 input_line_pointer = reg_string;
10986 c = get_symbol_name (&reg_string);
10987 symbolP = symbol_find (reg_string);
10988 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10989 {
10990 const expressionS *e = symbol_get_value_expression (symbolP);
10991
10992 know (e->X_op == O_register);
10993 know (e->X_add_number >= 0
10994 && (valueT) e->X_add_number < i386_regtab_size);
10995 r = i386_regtab + e->X_add_number;
10996 if ((r->reg_flags & RegVRex))
10997 i.vec_encoding = vex_encoding_evex;
10998 *end_op = input_line_pointer;
10999 }
11000 *input_line_pointer = c;
11001 input_line_pointer = save;
11002 }
11003 return r;
11004 }
11005
11006 int
11007 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11008 {
11009 const reg_entry *r;
11010 char *end = input_line_pointer;
11011
11012 *end = *nextcharP;
11013 r = parse_register (name, &input_line_pointer);
11014 if (r && end <= input_line_pointer)
11015 {
11016 *nextcharP = *input_line_pointer;
11017 *input_line_pointer = 0;
11018 e->X_op = O_register;
11019 e->X_add_number = r - i386_regtab;
11020 return 1;
11021 }
11022 input_line_pointer = end;
11023 *end = 0;
11024 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11025 }
11026
11027 void
11028 md_operand (expressionS *e)
11029 {
11030 char *end;
11031 const reg_entry *r;
11032
11033 switch (*input_line_pointer)
11034 {
11035 case REGISTER_PREFIX:
11036 r = parse_real_register (input_line_pointer, &end);
11037 if (r)
11038 {
11039 e->X_op = O_register;
11040 e->X_add_number = r - i386_regtab;
11041 input_line_pointer = end;
11042 }
11043 break;
11044
11045 case '[':
11046 gas_assert (intel_syntax);
11047 end = input_line_pointer++;
11048 expression (e);
11049 if (*input_line_pointer == ']')
11050 {
11051 ++input_line_pointer;
11052 e->X_op_symbol = make_expr_symbol (e);
11053 e->X_add_symbol = NULL;
11054 e->X_add_number = 0;
11055 e->X_op = O_index;
11056 }
11057 else
11058 {
11059 e->X_op = O_absent;
11060 input_line_pointer = end;
11061 }
11062 break;
11063 }
11064 }
11065
11066 \f
11067 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11068 const char *md_shortopts = "kVQ:sqnO::";
11069 #else
11070 const char *md_shortopts = "qnO::";
11071 #endif
11072
11073 #define OPTION_32 (OPTION_MD_BASE + 0)
11074 #define OPTION_64 (OPTION_MD_BASE + 1)
11075 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11076 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11077 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11078 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11079 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11080 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11081 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11082 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11083 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11084 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11085 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11086 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11087 #define OPTION_X32 (OPTION_MD_BASE + 14)
11088 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11089 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11090 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11091 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11092 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11093 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11094 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11095 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11096 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11097 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11098 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11099 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11100
11101 struct option md_longopts[] =
11102 {
11103 {"32", no_argument, NULL, OPTION_32},
11104 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11105 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11106 {"64", no_argument, NULL, OPTION_64},
11107 #endif
11108 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11109 {"x32", no_argument, NULL, OPTION_X32},
11110 {"mshared", no_argument, NULL, OPTION_MSHARED},
11111 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11112 #endif
11113 {"divide", no_argument, NULL, OPTION_DIVIDE},
11114 {"march", required_argument, NULL, OPTION_MARCH},
11115 {"mtune", required_argument, NULL, OPTION_MTUNE},
11116 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11117 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11118 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11119 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11120 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11121 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11122 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11123 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11124 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11125 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11126 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11127 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11128 # if defined (TE_PE) || defined (TE_PEP)
11129 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11130 #endif
11131 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11132 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11133 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11134 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11135 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11136 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11137 {NULL, no_argument, NULL, 0}
11138 };
11139 size_t md_longopts_size = sizeof (md_longopts);
11140
11141 int
11142 md_parse_option (int c, const char *arg)
11143 {
11144 unsigned int j;
11145 char *arch, *next, *saved;
11146
11147 switch (c)
11148 {
11149 case 'n':
11150 optimize_align_code = 0;
11151 break;
11152
11153 case 'q':
11154 quiet_warnings = 1;
11155 break;
11156
11157 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11158 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11159 should be emitted or not. FIXME: Not implemented. */
11160 case 'Q':
11161 break;
11162
11163 /* -V: SVR4 argument to print version ID. */
11164 case 'V':
11165 print_version_id ();
11166 break;
11167
11168 /* -k: Ignore for FreeBSD compatibility. */
11169 case 'k':
11170 break;
11171
11172 case 's':
11173 /* -s: On i386 Solaris, this tells the native assembler to use
11174 .stab instead of .stab.excl. We always use .stab anyhow. */
11175 break;
11176
11177 case OPTION_MSHARED:
11178 shared = 1;
11179 break;
11180
11181 case OPTION_X86_USED_NOTE:
11182 if (strcasecmp (arg, "yes") == 0)
11183 x86_used_note = 1;
11184 else if (strcasecmp (arg, "no") == 0)
11185 x86_used_note = 0;
11186 else
11187 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11188 break;
11189
11190
11191 #endif
11192 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11193 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11194 case OPTION_64:
11195 {
11196 const char **list, **l;
11197
11198 list = bfd_target_list ();
11199 for (l = list; *l != NULL; l++)
11200 if (CONST_STRNEQ (*l, "elf64-x86-64")
11201 || strcmp (*l, "coff-x86-64") == 0
11202 || strcmp (*l, "pe-x86-64") == 0
11203 || strcmp (*l, "pei-x86-64") == 0
11204 || strcmp (*l, "mach-o-x86-64") == 0)
11205 {
11206 default_arch = "x86_64";
11207 break;
11208 }
11209 if (*l == NULL)
11210 as_fatal (_("no compiled in support for x86_64"));
11211 free (list);
11212 }
11213 break;
11214 #endif
11215
11216 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11217 case OPTION_X32:
11218 if (IS_ELF)
11219 {
11220 const char **list, **l;
11221
11222 list = bfd_target_list ();
11223 for (l = list; *l != NULL; l++)
11224 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11225 {
11226 default_arch = "x86_64:32";
11227 break;
11228 }
11229 if (*l == NULL)
11230 as_fatal (_("no compiled in support for 32bit x86_64"));
11231 free (list);
11232 }
11233 else
11234 as_fatal (_("32bit x86_64 is only supported for ELF"));
11235 break;
11236 #endif
11237
11238 case OPTION_32:
11239 default_arch = "i386";
11240 break;
11241
11242 case OPTION_DIVIDE:
11243 #ifdef SVR4_COMMENT_CHARS
11244 {
11245 char *n, *t;
11246 const char *s;
11247
11248 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11249 t = n;
11250 for (s = i386_comment_chars; *s != '\0'; s++)
11251 if (*s != '/')
11252 *t++ = *s;
11253 *t = '\0';
11254 i386_comment_chars = n;
11255 }
11256 #endif
11257 break;
11258
11259 case OPTION_MARCH:
11260 saved = xstrdup (arg);
11261 arch = saved;
11262 /* Allow -march=+nosse. */
11263 if (*arch == '+')
11264 arch++;
11265 do
11266 {
11267 if (*arch == '.')
11268 as_fatal (_("invalid -march= option: `%s'"), arg);
11269 next = strchr (arch, '+');
11270 if (next)
11271 *next++ = '\0';
11272 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11273 {
11274 if (strcmp (arch, cpu_arch [j].name) == 0)
11275 {
11276 /* Processor. */
11277 if (! cpu_arch[j].flags.bitfield.cpui386)
11278 continue;
11279
11280 cpu_arch_name = cpu_arch[j].name;
11281 cpu_sub_arch_name = NULL;
11282 cpu_arch_flags = cpu_arch[j].flags;
11283 cpu_arch_isa = cpu_arch[j].type;
11284 cpu_arch_isa_flags = cpu_arch[j].flags;
11285 if (!cpu_arch_tune_set)
11286 {
11287 cpu_arch_tune = cpu_arch_isa;
11288 cpu_arch_tune_flags = cpu_arch_isa_flags;
11289 }
11290 break;
11291 }
11292 else if (*cpu_arch [j].name == '.'
11293 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11294 {
11295 /* ISA extension. */
11296 i386_cpu_flags flags;
11297
11298 flags = cpu_flags_or (cpu_arch_flags,
11299 cpu_arch[j].flags);
11300
11301 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11302 {
11303 if (cpu_sub_arch_name)
11304 {
11305 char *name = cpu_sub_arch_name;
11306 cpu_sub_arch_name = concat (name,
11307 cpu_arch[j].name,
11308 (const char *) NULL);
11309 free (name);
11310 }
11311 else
11312 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11313 cpu_arch_flags = flags;
11314 cpu_arch_isa_flags = flags;
11315 }
11316 else
11317 cpu_arch_isa_flags
11318 = cpu_flags_or (cpu_arch_isa_flags,
11319 cpu_arch[j].flags);
11320 break;
11321 }
11322 }
11323
11324 if (j >= ARRAY_SIZE (cpu_arch))
11325 {
11326 /* Disable an ISA extension. */
11327 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11328 if (strcmp (arch, cpu_noarch [j].name) == 0)
11329 {
11330 i386_cpu_flags flags;
11331
11332 flags = cpu_flags_and_not (cpu_arch_flags,
11333 cpu_noarch[j].flags);
11334 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11335 {
11336 if (cpu_sub_arch_name)
11337 {
11338 char *name = cpu_sub_arch_name;
11339 cpu_sub_arch_name = concat (arch,
11340 (const char *) NULL);
11341 free (name);
11342 }
11343 else
11344 cpu_sub_arch_name = xstrdup (arch);
11345 cpu_arch_flags = flags;
11346 cpu_arch_isa_flags = flags;
11347 }
11348 break;
11349 }
11350
11351 if (j >= ARRAY_SIZE (cpu_noarch))
11352 j = ARRAY_SIZE (cpu_arch);
11353 }
11354
11355 if (j >= ARRAY_SIZE (cpu_arch))
11356 as_fatal (_("invalid -march= option: `%s'"), arg);
11357
11358 arch = next;
11359 }
11360 while (next != NULL);
11361 free (saved);
11362 break;
11363
11364 case OPTION_MTUNE:
11365 if (*arg == '.')
11366 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11367 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11368 {
11369 if (strcmp (arg, cpu_arch [j].name) == 0)
11370 {
11371 cpu_arch_tune_set = 1;
11372 cpu_arch_tune = cpu_arch [j].type;
11373 cpu_arch_tune_flags = cpu_arch[j].flags;
11374 break;
11375 }
11376 }
11377 if (j >= ARRAY_SIZE (cpu_arch))
11378 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11379 break;
11380
11381 case OPTION_MMNEMONIC:
11382 if (strcasecmp (arg, "att") == 0)
11383 intel_mnemonic = 0;
11384 else if (strcasecmp (arg, "intel") == 0)
11385 intel_mnemonic = 1;
11386 else
11387 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11388 break;
11389
11390 case OPTION_MSYNTAX:
11391 if (strcasecmp (arg, "att") == 0)
11392 intel_syntax = 0;
11393 else if (strcasecmp (arg, "intel") == 0)
11394 intel_syntax = 1;
11395 else
11396 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11397 break;
11398
11399 case OPTION_MINDEX_REG:
11400 allow_index_reg = 1;
11401 break;
11402
11403 case OPTION_MNAKED_REG:
11404 allow_naked_reg = 1;
11405 break;
11406
11407 case OPTION_MSSE2AVX:
11408 sse2avx = 1;
11409 break;
11410
11411 case OPTION_MSSE_CHECK:
11412 if (strcasecmp (arg, "error") == 0)
11413 sse_check = check_error;
11414 else if (strcasecmp (arg, "warning") == 0)
11415 sse_check = check_warning;
11416 else if (strcasecmp (arg, "none") == 0)
11417 sse_check = check_none;
11418 else
11419 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11420 break;
11421
11422 case OPTION_MOPERAND_CHECK:
11423 if (strcasecmp (arg, "error") == 0)
11424 operand_check = check_error;
11425 else if (strcasecmp (arg, "warning") == 0)
11426 operand_check = check_warning;
11427 else if (strcasecmp (arg, "none") == 0)
11428 operand_check = check_none;
11429 else
11430 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11431 break;
11432
11433 case OPTION_MAVXSCALAR:
11434 if (strcasecmp (arg, "128") == 0)
11435 avxscalar = vex128;
11436 else if (strcasecmp (arg, "256") == 0)
11437 avxscalar = vex256;
11438 else
11439 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11440 break;
11441
11442 case OPTION_MVEXWIG:
11443 if (strcmp (arg, "0") == 0)
11444 vexwig = evexw0;
11445 else if (strcmp (arg, "1") == 0)
11446 vexwig = evexw1;
11447 else
11448 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11449 break;
11450
11451 case OPTION_MADD_BND_PREFIX:
11452 add_bnd_prefix = 1;
11453 break;
11454
11455 case OPTION_MEVEXLIG:
11456 if (strcmp (arg, "128") == 0)
11457 evexlig = evexl128;
11458 else if (strcmp (arg, "256") == 0)
11459 evexlig = evexl256;
11460 else if (strcmp (arg, "512") == 0)
11461 evexlig = evexl512;
11462 else
11463 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11464 break;
11465
11466 case OPTION_MEVEXRCIG:
11467 if (strcmp (arg, "rne") == 0)
11468 evexrcig = rne;
11469 else if (strcmp (arg, "rd") == 0)
11470 evexrcig = rd;
11471 else if (strcmp (arg, "ru") == 0)
11472 evexrcig = ru;
11473 else if (strcmp (arg, "rz") == 0)
11474 evexrcig = rz;
11475 else
11476 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11477 break;
11478
11479 case OPTION_MEVEXWIG:
11480 if (strcmp (arg, "0") == 0)
11481 evexwig = evexw0;
11482 else if (strcmp (arg, "1") == 0)
11483 evexwig = evexw1;
11484 else
11485 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11486 break;
11487
11488 # if defined (TE_PE) || defined (TE_PEP)
11489 case OPTION_MBIG_OBJ:
11490 use_big_obj = 1;
11491 break;
11492 #endif
11493
11494 case OPTION_MOMIT_LOCK_PREFIX:
11495 if (strcasecmp (arg, "yes") == 0)
11496 omit_lock_prefix = 1;
11497 else if (strcasecmp (arg, "no") == 0)
11498 omit_lock_prefix = 0;
11499 else
11500 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11501 break;
11502
11503 case OPTION_MFENCE_AS_LOCK_ADD:
11504 if (strcasecmp (arg, "yes") == 0)
11505 avoid_fence = 1;
11506 else if (strcasecmp (arg, "no") == 0)
11507 avoid_fence = 0;
11508 else
11509 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11510 break;
11511
11512 case OPTION_MRELAX_RELOCATIONS:
11513 if (strcasecmp (arg, "yes") == 0)
11514 generate_relax_relocations = 1;
11515 else if (strcasecmp (arg, "no") == 0)
11516 generate_relax_relocations = 0;
11517 else
11518 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11519 break;
11520
11521 case OPTION_MAMD64:
11522 intel64 = 0;
11523 break;
11524
11525 case OPTION_MINTEL64:
11526 intel64 = 1;
11527 break;
11528
11529 case 'O':
11530 if (arg == NULL)
11531 {
11532 optimize = 1;
11533 /* Turn off -Os. */
11534 optimize_for_space = 0;
11535 }
11536 else if (*arg == 's')
11537 {
11538 optimize_for_space = 1;
11539 /* Turn on all encoding optimizations. */
11540 optimize = INT_MAX;
11541 }
11542 else
11543 {
11544 optimize = atoi (arg);
11545 /* Turn off -Os. */
11546 optimize_for_space = 0;
11547 }
11548 break;
11549
11550 default:
11551 return 0;
11552 }
11553 return 1;
11554 }
11555
11556 #define MESSAGE_TEMPLATE \
11557 " "
11558
11559 static char *
11560 output_message (FILE *stream, char *p, char *message, char *start,
11561 int *left_p, const char *name, int len)
11562 {
11563 int size = sizeof (MESSAGE_TEMPLATE);
11564 int left = *left_p;
11565
11566 /* Reserve 2 spaces for ", " or ",\0" */
11567 left -= len + 2;
11568
11569 /* Check if there is any room. */
11570 if (left >= 0)
11571 {
11572 if (p != start)
11573 {
11574 *p++ = ',';
11575 *p++ = ' ';
11576 }
11577 p = mempcpy (p, name, len);
11578 }
11579 else
11580 {
11581 /* Output the current message now and start a new one. */
11582 *p++ = ',';
11583 *p = '\0';
11584 fprintf (stream, "%s\n", message);
11585 p = start;
11586 left = size - (start - message) - len - 2;
11587
11588 gas_assert (left >= 0);
11589
11590 p = mempcpy (p, name, len);
11591 }
11592
11593 *left_p = left;
11594 return p;
11595 }
11596
11597 static void
11598 show_arch (FILE *stream, int ext, int check)
11599 {
11600 static char message[] = MESSAGE_TEMPLATE;
11601 char *start = message + 27;
11602 char *p;
11603 int size = sizeof (MESSAGE_TEMPLATE);
11604 int left;
11605 const char *name;
11606 int len;
11607 unsigned int j;
11608
11609 p = start;
11610 left = size - (start - message);
11611 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11612 {
11613 /* Should it be skipped? */
11614 if (cpu_arch [j].skip)
11615 continue;
11616
11617 name = cpu_arch [j].name;
11618 len = cpu_arch [j].len;
11619 if (*name == '.')
11620 {
11621 /* It is an extension. Skip if we aren't asked to show it. */
11622 if (ext)
11623 {
11624 name++;
11625 len--;
11626 }
11627 else
11628 continue;
11629 }
11630 else if (ext)
11631 {
11632 /* It is an processor. Skip if we show only extension. */
11633 continue;
11634 }
11635 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11636 {
11637 /* It is an impossible processor - skip. */
11638 continue;
11639 }
11640
11641 p = output_message (stream, p, message, start, &left, name, len);
11642 }
11643
11644 /* Display disabled extensions. */
11645 if (ext)
11646 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11647 {
11648 name = cpu_noarch [j].name;
11649 len = cpu_noarch [j].len;
11650 p = output_message (stream, p, message, start, &left, name,
11651 len);
11652 }
11653
11654 *p = '\0';
11655 fprintf (stream, "%s\n", message);
11656 }
11657
11658 void
11659 md_show_usage (FILE *stream)
11660 {
11661 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11662 fprintf (stream, _("\
11663 -Q ignored\n\
11664 -V print assembler version number\n\
11665 -k ignored\n"));
11666 #endif
11667 fprintf (stream, _("\
11668 -n Do not optimize code alignment\n\
11669 -q quieten some warnings\n"));
11670 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11671 fprintf (stream, _("\
11672 -s ignored\n"));
11673 #endif
11674 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11675 || defined (TE_PE) || defined (TE_PEP))
11676 fprintf (stream, _("\
11677 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11678 #endif
11679 #ifdef SVR4_COMMENT_CHARS
11680 fprintf (stream, _("\
11681 --divide do not treat `/' as a comment character\n"));
11682 #else
11683 fprintf (stream, _("\
11684 --divide ignored\n"));
11685 #endif
11686 fprintf (stream, _("\
11687 -march=CPU[,+EXTENSION...]\n\
11688 generate code for CPU and EXTENSION, CPU is one of:\n"));
11689 show_arch (stream, 0, 1);
11690 fprintf (stream, _("\
11691 EXTENSION is combination of:\n"));
11692 show_arch (stream, 1, 0);
11693 fprintf (stream, _("\
11694 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11695 show_arch (stream, 0, 0);
11696 fprintf (stream, _("\
11697 -msse2avx encode SSE instructions with VEX prefix\n"));
11698 fprintf (stream, _("\
11699 -msse-check=[none|error|warning] (default: warning)\n\
11700 check SSE instructions\n"));
11701 fprintf (stream, _("\
11702 -moperand-check=[none|error|warning] (default: warning)\n\
11703 check operand combinations for validity\n"));
11704 fprintf (stream, _("\
11705 -mavxscalar=[128|256] (default: 128)\n\
11706 encode scalar AVX instructions with specific vector\n\
11707 length\n"));
11708 fprintf (stream, _("\
11709 -mvexwig=[0|1] (default: 0)\n\
11710 encode VEX instructions with specific VEX.W value\n\
11711 for VEX.W bit ignored instructions\n"));
11712 fprintf (stream, _("\
11713 -mevexlig=[128|256|512] (default: 128)\n\
11714 encode scalar EVEX instructions with specific vector\n\
11715 length\n"));
11716 fprintf (stream, _("\
11717 -mevexwig=[0|1] (default: 0)\n\
11718 encode EVEX instructions with specific EVEX.W value\n\
11719 for EVEX.W bit ignored instructions\n"));
11720 fprintf (stream, _("\
11721 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11722 encode EVEX instructions with specific EVEX.RC value\n\
11723 for SAE-only ignored instructions\n"));
11724 fprintf (stream, _("\
11725 -mmnemonic=[att|intel] "));
11726 if (SYSV386_COMPAT)
11727 fprintf (stream, _("(default: att)\n"));
11728 else
11729 fprintf (stream, _("(default: intel)\n"));
11730 fprintf (stream, _("\
11731 use AT&T/Intel mnemonic\n"));
11732 fprintf (stream, _("\
11733 -msyntax=[att|intel] (default: att)\n\
11734 use AT&T/Intel syntax\n"));
11735 fprintf (stream, _("\
11736 -mindex-reg support pseudo index registers\n"));
11737 fprintf (stream, _("\
11738 -mnaked-reg don't require `%%' prefix for registers\n"));
11739 fprintf (stream, _("\
11740 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11741 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11742 fprintf (stream, _("\
11743 -mshared disable branch optimization for shared code\n"));
11744 fprintf (stream, _("\
11745 -mx86-used-note=[no|yes] "));
11746 if (DEFAULT_X86_USED_NOTE)
11747 fprintf (stream, _("(default: yes)\n"));
11748 else
11749 fprintf (stream, _("(default: no)\n"));
11750 fprintf (stream, _("\
11751 generate x86 used ISA and feature properties\n"));
11752 #endif
11753 #if defined (TE_PE) || defined (TE_PEP)
11754 fprintf (stream, _("\
11755 -mbig-obj generate big object files\n"));
11756 #endif
11757 fprintf (stream, _("\
11758 -momit-lock-prefix=[no|yes] (default: no)\n\
11759 strip all lock prefixes\n"));
11760 fprintf (stream, _("\
11761 -mfence-as-lock-add=[no|yes] (default: no)\n\
11762 encode lfence, mfence and sfence as\n\
11763 lock addl $0x0, (%%{re}sp)\n"));
11764 fprintf (stream, _("\
11765 -mrelax-relocations=[no|yes] "));
11766 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11767 fprintf (stream, _("(default: yes)\n"));
11768 else
11769 fprintf (stream, _("(default: no)\n"));
11770 fprintf (stream, _("\
11771 generate relax relocations\n"));
11772 fprintf (stream, _("\
11773 -mamd64 accept only AMD64 ISA [default]\n"));
11774 fprintf (stream, _("\
11775 -mintel64 accept only Intel64 ISA\n"));
11776 }
11777
11778 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11779 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11780 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11781
11782 /* Pick the target format to use. */
11783
11784 const char *
11785 i386_target_format (void)
11786 {
11787 if (!strncmp (default_arch, "x86_64", 6))
11788 {
11789 update_code_flag (CODE_64BIT, 1);
11790 if (default_arch[6] == '\0')
11791 x86_elf_abi = X86_64_ABI;
11792 else
11793 x86_elf_abi = X86_64_X32_ABI;
11794 }
11795 else if (!strcmp (default_arch, "i386"))
11796 update_code_flag (CODE_32BIT, 1);
11797 else if (!strcmp (default_arch, "iamcu"))
11798 {
11799 update_code_flag (CODE_32BIT, 1);
11800 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11801 {
11802 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11803 cpu_arch_name = "iamcu";
11804 cpu_sub_arch_name = NULL;
11805 cpu_arch_flags = iamcu_flags;
11806 cpu_arch_isa = PROCESSOR_IAMCU;
11807 cpu_arch_isa_flags = iamcu_flags;
11808 if (!cpu_arch_tune_set)
11809 {
11810 cpu_arch_tune = cpu_arch_isa;
11811 cpu_arch_tune_flags = cpu_arch_isa_flags;
11812 }
11813 }
11814 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11815 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11816 cpu_arch_name);
11817 }
11818 else
11819 as_fatal (_("unknown architecture"));
11820
11821 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11822 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11823 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11824 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11825
11826 switch (OUTPUT_FLAVOR)
11827 {
11828 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11829 case bfd_target_aout_flavour:
11830 return AOUT_TARGET_FORMAT;
11831 #endif
11832 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11833 # if defined (TE_PE) || defined (TE_PEP)
11834 case bfd_target_coff_flavour:
11835 if (flag_code == CODE_64BIT)
11836 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11837 else
11838 return "pe-i386";
11839 # elif defined (TE_GO32)
11840 case bfd_target_coff_flavour:
11841 return "coff-go32";
11842 # else
11843 case bfd_target_coff_flavour:
11844 return "coff-i386";
11845 # endif
11846 #endif
11847 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11848 case bfd_target_elf_flavour:
11849 {
11850 const char *format;
11851
11852 switch (x86_elf_abi)
11853 {
11854 default:
11855 format = ELF_TARGET_FORMAT;
11856 break;
11857 case X86_64_ABI:
11858 use_rela_relocations = 1;
11859 object_64bit = 1;
11860 format = ELF_TARGET_FORMAT64;
11861 break;
11862 case X86_64_X32_ABI:
11863 use_rela_relocations = 1;
11864 object_64bit = 1;
11865 disallow_64bit_reloc = 1;
11866 format = ELF_TARGET_FORMAT32;
11867 break;
11868 }
11869 if (cpu_arch_isa == PROCESSOR_L1OM)
11870 {
11871 if (x86_elf_abi != X86_64_ABI)
11872 as_fatal (_("Intel L1OM is 64bit only"));
11873 return ELF_TARGET_L1OM_FORMAT;
11874 }
11875 else if (cpu_arch_isa == PROCESSOR_K1OM)
11876 {
11877 if (x86_elf_abi != X86_64_ABI)
11878 as_fatal (_("Intel K1OM is 64bit only"));
11879 return ELF_TARGET_K1OM_FORMAT;
11880 }
11881 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11882 {
11883 if (x86_elf_abi != I386_ABI)
11884 as_fatal (_("Intel MCU is 32bit only"));
11885 return ELF_TARGET_IAMCU_FORMAT;
11886 }
11887 else
11888 return format;
11889 }
11890 #endif
11891 #if defined (OBJ_MACH_O)
11892 case bfd_target_mach_o_flavour:
11893 if (flag_code == CODE_64BIT)
11894 {
11895 use_rela_relocations = 1;
11896 object_64bit = 1;
11897 return "mach-o-x86-64";
11898 }
11899 else
11900 return "mach-o-i386";
11901 #endif
11902 default:
11903 abort ();
11904 return NULL;
11905 }
11906 }
11907
11908 #endif /* OBJ_MAYBE_ more than one */
11909 \f
11910 symbolS *
11911 md_undefined_symbol (char *name)
11912 {
11913 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11914 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11915 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11916 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11917 {
11918 if (!GOT_symbol)
11919 {
11920 if (symbol_find (name))
11921 as_bad (_("GOT already in symbol table"));
11922 GOT_symbol = symbol_new (name, undefined_section,
11923 (valueT) 0, &zero_address_frag);
11924 };
11925 return GOT_symbol;
11926 }
11927 return 0;
11928 }
11929
11930 /* Round up a section size to the appropriate boundary. */
11931
11932 valueT
11933 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11934 {
11935 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11936 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11937 {
11938 /* For a.out, force the section size to be aligned. If we don't do
11939 this, BFD will align it for us, but it will not write out the
11940 final bytes of the section. This may be a bug in BFD, but it is
11941 easier to fix it here since that is how the other a.out targets
11942 work. */
11943 int align;
11944
11945 align = bfd_get_section_alignment (stdoutput, segment);
11946 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11947 }
11948 #endif
11949
11950 return size;
11951 }
11952
11953 /* On the i386, PC-relative offsets are relative to the start of the
11954 next instruction. That is, the address of the offset, plus its
11955 size, since the offset is always the last part of the insn. */
11956
11957 long
11958 md_pcrel_from (fixS *fixP)
11959 {
11960 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11961 }
11962
11963 #ifndef I386COFF
11964
11965 static void
11966 s_bss (int ignore ATTRIBUTE_UNUSED)
11967 {
11968 int temp;
11969
11970 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11971 if (IS_ELF)
11972 obj_elf_section_change_hook ();
11973 #endif
11974 temp = get_absolute_expression ();
11975 subseg_set (bss_section, (subsegT) temp);
11976 demand_empty_rest_of_line ();
11977 }
11978
11979 #endif
11980
11981 void
11982 i386_validate_fix (fixS *fixp)
11983 {
11984 if (fixp->fx_subsy)
11985 {
11986 if (fixp->fx_subsy == GOT_symbol)
11987 {
11988 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11989 {
11990 if (!object_64bit)
11991 abort ();
11992 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11993 if (fixp->fx_tcbit2)
11994 fixp->fx_r_type = (fixp->fx_tcbit
11995 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11996 : BFD_RELOC_X86_64_GOTPCRELX);
11997 else
11998 #endif
11999 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
12000 }
12001 else
12002 {
12003 if (!object_64bit)
12004 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
12005 else
12006 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
12007 }
12008 fixp->fx_subsy = 0;
12009 }
12010 }
12011 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12012 else if (!object_64bit)
12013 {
12014 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12015 && fixp->fx_tcbit2)
12016 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12017 }
12018 #endif
12019 }
12020
12021 arelent *
12022 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
12023 {
12024 arelent *rel;
12025 bfd_reloc_code_real_type code;
12026
12027 switch (fixp->fx_r_type)
12028 {
12029 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12030 case BFD_RELOC_SIZE32:
12031 case BFD_RELOC_SIZE64:
12032 if (S_IS_DEFINED (fixp->fx_addsy)
12033 && !S_IS_EXTERNAL (fixp->fx_addsy))
12034 {
12035 /* Resolve size relocation against local symbol to size of
12036 the symbol plus addend. */
12037 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12038 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12039 && !fits_in_unsigned_long (value))
12040 as_bad_where (fixp->fx_file, fixp->fx_line,
12041 _("symbol size computation overflow"));
12042 fixp->fx_addsy = NULL;
12043 fixp->fx_subsy = NULL;
12044 md_apply_fix (fixp, (valueT *) &value, NULL);
12045 return NULL;
12046 }
12047 #endif
12048 /* Fall through. */
12049
12050 case BFD_RELOC_X86_64_PLT32:
12051 case BFD_RELOC_X86_64_GOT32:
12052 case BFD_RELOC_X86_64_GOTPCREL:
12053 case BFD_RELOC_X86_64_GOTPCRELX:
12054 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12055 case BFD_RELOC_386_PLT32:
12056 case BFD_RELOC_386_GOT32:
12057 case BFD_RELOC_386_GOT32X:
12058 case BFD_RELOC_386_GOTOFF:
12059 case BFD_RELOC_386_GOTPC:
12060 case BFD_RELOC_386_TLS_GD:
12061 case BFD_RELOC_386_TLS_LDM:
12062 case BFD_RELOC_386_TLS_LDO_32:
12063 case BFD_RELOC_386_TLS_IE_32:
12064 case BFD_RELOC_386_TLS_IE:
12065 case BFD_RELOC_386_TLS_GOTIE:
12066 case BFD_RELOC_386_TLS_LE_32:
12067 case BFD_RELOC_386_TLS_LE:
12068 case BFD_RELOC_386_TLS_GOTDESC:
12069 case BFD_RELOC_386_TLS_DESC_CALL:
12070 case BFD_RELOC_X86_64_TLSGD:
12071 case BFD_RELOC_X86_64_TLSLD:
12072 case BFD_RELOC_X86_64_DTPOFF32:
12073 case BFD_RELOC_X86_64_DTPOFF64:
12074 case BFD_RELOC_X86_64_GOTTPOFF:
12075 case BFD_RELOC_X86_64_TPOFF32:
12076 case BFD_RELOC_X86_64_TPOFF64:
12077 case BFD_RELOC_X86_64_GOTOFF64:
12078 case BFD_RELOC_X86_64_GOTPC32:
12079 case BFD_RELOC_X86_64_GOT64:
12080 case BFD_RELOC_X86_64_GOTPCREL64:
12081 case BFD_RELOC_X86_64_GOTPC64:
12082 case BFD_RELOC_X86_64_GOTPLT64:
12083 case BFD_RELOC_X86_64_PLTOFF64:
12084 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12085 case BFD_RELOC_X86_64_TLSDESC_CALL:
12086 case BFD_RELOC_RVA:
12087 case BFD_RELOC_VTABLE_ENTRY:
12088 case BFD_RELOC_VTABLE_INHERIT:
12089 #ifdef TE_PE
12090 case BFD_RELOC_32_SECREL:
12091 #endif
12092 code = fixp->fx_r_type;
12093 break;
12094 case BFD_RELOC_X86_64_32S:
12095 if (!fixp->fx_pcrel)
12096 {
12097 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12098 code = fixp->fx_r_type;
12099 break;
12100 }
12101 /* Fall through. */
12102 default:
12103 if (fixp->fx_pcrel)
12104 {
12105 switch (fixp->fx_size)
12106 {
12107 default:
12108 as_bad_where (fixp->fx_file, fixp->fx_line,
12109 _("can not do %d byte pc-relative relocation"),
12110 fixp->fx_size);
12111 code = BFD_RELOC_32_PCREL;
12112 break;
12113 case 1: code = BFD_RELOC_8_PCREL; break;
12114 case 2: code = BFD_RELOC_16_PCREL; break;
12115 case 4: code = BFD_RELOC_32_PCREL; break;
12116 #ifdef BFD64
12117 case 8: code = BFD_RELOC_64_PCREL; break;
12118 #endif
12119 }
12120 }
12121 else
12122 {
12123 switch (fixp->fx_size)
12124 {
12125 default:
12126 as_bad_where (fixp->fx_file, fixp->fx_line,
12127 _("can not do %d byte relocation"),
12128 fixp->fx_size);
12129 code = BFD_RELOC_32;
12130 break;
12131 case 1: code = BFD_RELOC_8; break;
12132 case 2: code = BFD_RELOC_16; break;
12133 case 4: code = BFD_RELOC_32; break;
12134 #ifdef BFD64
12135 case 8: code = BFD_RELOC_64; break;
12136 #endif
12137 }
12138 }
12139 break;
12140 }
12141
12142 if ((code == BFD_RELOC_32
12143 || code == BFD_RELOC_32_PCREL
12144 || code == BFD_RELOC_X86_64_32S)
12145 && GOT_symbol
12146 && fixp->fx_addsy == GOT_symbol)
12147 {
12148 if (!object_64bit)
12149 code = BFD_RELOC_386_GOTPC;
12150 else
12151 code = BFD_RELOC_X86_64_GOTPC32;
12152 }
12153 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12154 && GOT_symbol
12155 && fixp->fx_addsy == GOT_symbol)
12156 {
12157 code = BFD_RELOC_X86_64_GOTPC64;
12158 }
12159
12160 rel = XNEW (arelent);
12161 rel->sym_ptr_ptr = XNEW (asymbol *);
12162 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12163
12164 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12165
12166 if (!use_rela_relocations)
12167 {
12168 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12169 vtable entry to be used in the relocation's section offset. */
12170 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12171 rel->address = fixp->fx_offset;
12172 #if defined (OBJ_COFF) && defined (TE_PE)
12173 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12174 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12175 else
12176 #endif
12177 rel->addend = 0;
12178 }
12179 /* Use the rela in 64bit mode. */
12180 else
12181 {
12182 if (disallow_64bit_reloc)
12183 switch (code)
12184 {
12185 case BFD_RELOC_X86_64_DTPOFF64:
12186 case BFD_RELOC_X86_64_TPOFF64:
12187 case BFD_RELOC_64_PCREL:
12188 case BFD_RELOC_X86_64_GOTOFF64:
12189 case BFD_RELOC_X86_64_GOT64:
12190 case BFD_RELOC_X86_64_GOTPCREL64:
12191 case BFD_RELOC_X86_64_GOTPC64:
12192 case BFD_RELOC_X86_64_GOTPLT64:
12193 case BFD_RELOC_X86_64_PLTOFF64:
12194 as_bad_where (fixp->fx_file, fixp->fx_line,
12195 _("cannot represent relocation type %s in x32 mode"),
12196 bfd_get_reloc_code_name (code));
12197 break;
12198 default:
12199 break;
12200 }
12201
12202 if (!fixp->fx_pcrel)
12203 rel->addend = fixp->fx_offset;
12204 else
12205 switch (code)
12206 {
12207 case BFD_RELOC_X86_64_PLT32:
12208 case BFD_RELOC_X86_64_GOT32:
12209 case BFD_RELOC_X86_64_GOTPCREL:
12210 case BFD_RELOC_X86_64_GOTPCRELX:
12211 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12212 case BFD_RELOC_X86_64_TLSGD:
12213 case BFD_RELOC_X86_64_TLSLD:
12214 case BFD_RELOC_X86_64_GOTTPOFF:
12215 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12216 case BFD_RELOC_X86_64_TLSDESC_CALL:
12217 rel->addend = fixp->fx_offset - fixp->fx_size;
12218 break;
12219 default:
12220 rel->addend = (section->vma
12221 - fixp->fx_size
12222 + fixp->fx_addnumber
12223 + md_pcrel_from (fixp));
12224 break;
12225 }
12226 }
12227
12228 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12229 if (rel->howto == NULL)
12230 {
12231 as_bad_where (fixp->fx_file, fixp->fx_line,
12232 _("cannot represent relocation type %s"),
12233 bfd_get_reloc_code_name (code));
12234 /* Set howto to a garbage value so that we can keep going. */
12235 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12236 gas_assert (rel->howto != NULL);
12237 }
12238
12239 return rel;
12240 }
12241
12242 #include "tc-i386-intel.c"
12243
12244 void
12245 tc_x86_parse_to_dw2regnum (expressionS *exp)
12246 {
12247 int saved_naked_reg;
12248 char saved_register_dot;
12249
12250 saved_naked_reg = allow_naked_reg;
12251 allow_naked_reg = 1;
12252 saved_register_dot = register_chars['.'];
12253 register_chars['.'] = '.';
12254 allow_pseudo_reg = 1;
12255 expression_and_evaluate (exp);
12256 allow_pseudo_reg = 0;
12257 register_chars['.'] = saved_register_dot;
12258 allow_naked_reg = saved_naked_reg;
12259
12260 if (exp->X_op == O_register && exp->X_add_number >= 0)
12261 {
12262 if ((addressT) exp->X_add_number < i386_regtab_size)
12263 {
12264 exp->X_op = O_constant;
12265 exp->X_add_number = i386_regtab[exp->X_add_number]
12266 .dw2_regnum[flag_code >> 1];
12267 }
12268 else
12269 exp->X_op = O_illegal;
12270 }
12271 }
12272
12273 void
12274 tc_x86_frame_initial_instructions (void)
12275 {
12276 static unsigned int sp_regno[2];
12277
12278 if (!sp_regno[flag_code >> 1])
12279 {
12280 char *saved_input = input_line_pointer;
12281 char sp[][4] = {"esp", "rsp"};
12282 expressionS exp;
12283
12284 input_line_pointer = sp[flag_code >> 1];
12285 tc_x86_parse_to_dw2regnum (&exp);
12286 gas_assert (exp.X_op == O_constant);
12287 sp_regno[flag_code >> 1] = exp.X_add_number;
12288 input_line_pointer = saved_input;
12289 }
12290
12291 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12292 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12293 }
12294
12295 int
12296 x86_dwarf2_addr_size (void)
12297 {
12298 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12299 if (x86_elf_abi == X86_64_X32_ABI)
12300 return 4;
12301 #endif
12302 return bfd_arch_bits_per_address (stdoutput) / 8;
12303 }
12304
12305 int
12306 i386_elf_section_type (const char *str, size_t len)
12307 {
12308 if (flag_code == CODE_64BIT
12309 && len == sizeof ("unwind") - 1
12310 && strncmp (str, "unwind", 6) == 0)
12311 return SHT_X86_64_UNWIND;
12312
12313 return -1;
12314 }
12315
12316 #ifdef TE_SOLARIS
12317 void
12318 i386_solaris_fix_up_eh_frame (segT sec)
12319 {
12320 if (flag_code == CODE_64BIT)
12321 elf_section_type (sec) = SHT_X86_64_UNWIND;
12322 }
12323 #endif
12324
12325 #ifdef TE_PE
12326 void
12327 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12328 {
12329 expressionS exp;
12330
12331 exp.X_op = O_secrel;
12332 exp.X_add_symbol = symbol;
12333 exp.X_add_number = 0;
12334 emit_expr (&exp, size);
12335 }
12336 #endif
12337
12338 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12339 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12340
12341 bfd_vma
12342 x86_64_section_letter (int letter, const char **ptr_msg)
12343 {
12344 if (flag_code == CODE_64BIT)
12345 {
12346 if (letter == 'l')
12347 return SHF_X86_64_LARGE;
12348
12349 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12350 }
12351 else
12352 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12353 return -1;
12354 }
12355
12356 bfd_vma
12357 x86_64_section_word (char *str, size_t len)
12358 {
12359 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12360 return SHF_X86_64_LARGE;
12361
12362 return -1;
12363 }
12364
12365 static void
12366 handle_large_common (int small ATTRIBUTE_UNUSED)
12367 {
12368 if (flag_code != CODE_64BIT)
12369 {
12370 s_comm_internal (0, elf_common_parse);
12371 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12372 }
12373 else
12374 {
12375 static segT lbss_section;
12376 asection *saved_com_section_ptr = elf_com_section_ptr;
12377 asection *saved_bss_section = bss_section;
12378
12379 if (lbss_section == NULL)
12380 {
12381 flagword applicable;
12382 segT seg = now_seg;
12383 subsegT subseg = now_subseg;
12384
12385 /* The .lbss section is for local .largecomm symbols. */
12386 lbss_section = subseg_new (".lbss", 0);
12387 applicable = bfd_applicable_section_flags (stdoutput);
12388 bfd_set_section_flags (stdoutput, lbss_section,
12389 applicable & SEC_ALLOC);
12390 seg_info (lbss_section)->bss = 1;
12391
12392 subseg_set (seg, subseg);
12393 }
12394
12395 elf_com_section_ptr = &_bfd_elf_large_com_section;
12396 bss_section = lbss_section;
12397
12398 s_comm_internal (0, elf_common_parse);
12399
12400 elf_com_section_ptr = saved_com_section_ptr;
12401 bss_section = saved_bss_section;
12402 }
12403 }
12404 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.288697 seconds and 4 git commands to generate.