gas/
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
49
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
57
58 static void set_code_flag (int);
59 static void set_16bit_gcc_code_flag (int);
60 static void set_intel_syntax (int);
61 static void set_allow_index_reg (int);
62 static void set_cpu_arch (int);
63 #ifdef TE_PE
64 static void pe_directive_secrel (int);
65 #endif
66 static void signed_cons (int);
67 static char *output_invalid (int c);
68 static int i386_operand (char *);
69 static int i386_intel_operand (char *, int);
70 static const reg_entry *parse_register (char *, char **);
71 static char *parse_insn (char *, char *);
72 static char *parse_operands (char *, const char *);
73 static void swap_operands (void);
74 static void swap_2_operands (int, int);
75 static void optimize_imm (void);
76 static void optimize_disp (void);
77 static int match_template (void);
78 static int check_string (void);
79 static int process_suffix (void);
80 static int check_byte_reg (void);
81 static int check_long_reg (void);
82 static int check_qword_reg (void);
83 static int check_word_reg (void);
84 static int finalize_imm (void);
85 static void process_drex (void);
86 static int process_operands (void);
87 static const seg_entry *build_modrm_byte (void);
88 static void output_insn (void);
89 static void output_imm (fragS *, offsetT);
90 static void output_disp (fragS *, offsetT);
91 #ifndef I386COFF
92 static void s_bss (int);
93 #endif
94 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
95 static void handle_large_common (int small ATTRIBUTE_UNUSED);
96 #endif
97
98 static const char *default_arch = DEFAULT_ARCH;
99
100 /* 'md_assemble ()' gathers together information and puts it into a
101 i386_insn. */
102
103 union i386_op
104 {
105 expressionS *disps;
106 expressionS *imms;
107 const reg_entry *regs;
108 };
109
110 struct _i386_insn
111 {
112 /* TM holds the template for the insn were currently assembling. */
113 template tm;
114
115 /* SUFFIX holds the instruction mnemonic suffix if given.
116 (e.g. 'l' for 'movl') */
117 char suffix;
118
119 /* OPERANDS gives the number of given operands. */
120 unsigned int operands;
121
122 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
123 of given register, displacement, memory operands and immediate
124 operands. */
125 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
126
127 /* TYPES [i] is the type (see above #defines) which tells us how to
128 use OP[i] for the corresponding operand. */
129 i386_operand_type types[MAX_OPERANDS];
130
131 /* Displacement expression, immediate expression, or register for each
132 operand. */
133 union i386_op op[MAX_OPERANDS];
134
135 /* Flags for operands. */
136 unsigned int flags[MAX_OPERANDS];
137 #define Operand_PCrel 1
138
139 /* Relocation type for operand */
140 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
141
142 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
143 the base index byte below. */
144 const reg_entry *base_reg;
145 const reg_entry *index_reg;
146 unsigned int log2_scale_factor;
147
148 /* SEG gives the seg_entries of this insn. They are zero unless
149 explicit segment overrides are given. */
150 const seg_entry *seg[2];
151
152 /* PREFIX holds all the given prefix opcodes (usually null).
153 PREFIXES is the number of prefix opcodes. */
154 unsigned int prefixes;
155 unsigned char prefix[MAX_PREFIXES];
156
157 /* RM and SIB are the modrm byte and the sib byte where the
158 addressing modes of this insn are encoded. DREX is the byte
159 added by the SSE5 instructions. */
160
161 modrm_byte rm;
162 rex_byte rex;
163 sib_byte sib;
164 drex_byte drex;
165 };
166
167 typedef struct _i386_insn i386_insn;
168
169 /* List of chars besides those in app.c:symbol_chars that can start an
170 operand. Used to prevent the scrubber eating vital white-space. */
171 const char extra_symbol_chars[] = "*%-(["
172 #ifdef LEX_AT
173 "@"
174 #endif
175 #ifdef LEX_QM
176 "?"
177 #endif
178 ;
179
180 #if (defined (TE_I386AIX) \
181 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
182 && !defined (TE_GNU) \
183 && !defined (TE_LINUX) \
184 && !defined (TE_NETWARE) \
185 && !defined (TE_FreeBSD) \
186 && !defined (TE_NetBSD)))
187 /* This array holds the chars that always start a comment. If the
188 pre-processor is disabled, these aren't very useful. The option
189 --divide will remove '/' from this list. */
190 const char *i386_comment_chars = "#/";
191 #define SVR4_COMMENT_CHARS 1
192 #define PREFIX_SEPARATOR '\\'
193
194 #else
195 const char *i386_comment_chars = "#";
196 #define PREFIX_SEPARATOR '/'
197 #endif
198
199 /* This array holds the chars that only start a comment at the beginning of
200 a line. If the line seems to have the form '# 123 filename'
201 .line and .file directives will appear in the pre-processed output.
202 Note that input_file.c hand checks for '#' at the beginning of the
203 first line of the input file. This is because the compiler outputs
204 #NO_APP at the beginning of its output.
205 Also note that comments started like this one will always work if
206 '/' isn't otherwise defined. */
207 const char line_comment_chars[] = "#/";
208
209 const char line_separator_chars[] = ";";
210
211 /* Chars that can be used to separate mant from exp in floating point
212 nums. */
213 const char EXP_CHARS[] = "eE";
214
215 /* Chars that mean this number is a floating point constant
216 As in 0f12.456
217 or 0d1.2345e12. */
218 const char FLT_CHARS[] = "fFdDxX";
219
220 /* Tables for lexical analysis. */
221 static char mnemonic_chars[256];
222 static char register_chars[256];
223 static char operand_chars[256];
224 static char identifier_chars[256];
225 static char digit_chars[256];
226
227 /* Lexical macros. */
228 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
229 #define is_operand_char(x) (operand_chars[(unsigned char) x])
230 #define is_register_char(x) (register_chars[(unsigned char) x])
231 #define is_space_char(x) ((x) == ' ')
232 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
233 #define is_digit_char(x) (digit_chars[(unsigned char) x])
234
235 /* All non-digit non-letter characters that may occur in an operand. */
236 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
237
238 /* md_assemble() always leaves the strings it's passed unaltered. To
239 effect this we maintain a stack of saved characters that we've smashed
240 with '\0's (indicating end of strings for various sub-fields of the
241 assembler instruction). */
242 static char save_stack[32];
243 static char *save_stack_p;
244 #define END_STRING_AND_SAVE(s) \
245 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
246 #define RESTORE_END_STRING(s) \
247 do { *(s) = *--save_stack_p; } while (0)
248
249 /* The instruction we're assembling. */
250 static i386_insn i;
251
252 /* Possible templates for current insn. */
253 static const templates *current_templates;
254
255 /* Per instruction expressionS buffers: max displacements & immediates. */
256 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
257 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
258
259 /* Current operand we are working on. */
260 static int this_operand;
261
262 /* We support four different modes. FLAG_CODE variable is used to distinguish
263 these. */
264
265 enum flag_code {
266 CODE_32BIT,
267 CODE_16BIT,
268 CODE_64BIT };
269
270 static enum flag_code flag_code;
271 static unsigned int object_64bit;
272 static int use_rela_relocations = 0;
273
274 /* The names used to print error messages. */
275 static const char *flag_code_names[] =
276 {
277 "32",
278 "16",
279 "64"
280 };
281
282 /* 1 for intel syntax,
283 0 if att syntax. */
284 static int intel_syntax = 0;
285
286 /* 1 if register prefix % not required. */
287 static int allow_naked_reg = 0;
288
289 /* 1 if fake index register, eiz/riz, is allowed . */
290 static int allow_index_reg = 0;
291
292 /* Register prefix used for error message. */
293 static const char *register_prefix = "%";
294
295 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
296 leave, push, and pop instructions so that gcc has the same stack
297 frame as in 32 bit mode. */
298 static char stackop_size = '\0';
299
300 /* Non-zero to optimize code alignment. */
301 int optimize_align_code = 1;
302
303 /* Non-zero to quieten some warnings. */
304 static int quiet_warnings = 0;
305
306 /* CPU name. */
307 static const char *cpu_arch_name = NULL;
308 static const char *cpu_sub_arch_name = NULL;
309
310 /* CPU feature flags. */
311 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
312
313 /* Bitwise NOT of cpu_arch_flags. */
314 static i386_cpu_flags cpu_arch_flags_not;
315
316 /* If we have selected a cpu we are generating instructions for. */
317 static int cpu_arch_tune_set = 0;
318
319 /* Cpu we are generating instructions for. */
320 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
321
322 /* CPU feature flags of cpu we are generating instructions for. */
323 static i386_cpu_flags cpu_arch_tune_flags;
324
325 /* CPU instruction set architecture used. */
326 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
327
328 /* CPU feature flags of instruction set architecture used. */
329 static i386_cpu_flags cpu_arch_isa_flags;
330
331 /* If set, conditional jumps are not automatically promoted to handle
332 larger than a byte offset. */
333 static unsigned int no_cond_jump_promotion = 0;
334
335 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
336 static symbolS *GOT_symbol;
337
338 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
339 unsigned int x86_dwarf2_return_column;
340
341 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
342 int x86_cie_data_alignment;
343
344 /* Interface to relax_segment.
345 There are 3 major relax states for 386 jump insns because the
346 different types of jumps add different sizes to frags when we're
347 figuring out what sort of jump to choose to reach a given label. */
348
349 /* Types. */
350 #define UNCOND_JUMP 0
351 #define COND_JUMP 1
352 #define COND_JUMP86 2
353
354 /* Sizes. */
355 #define CODE16 1
356 #define SMALL 0
357 #define SMALL16 (SMALL | CODE16)
358 #define BIG 2
359 #define BIG16 (BIG | CODE16)
360
361 #ifndef INLINE
362 #ifdef __GNUC__
363 #define INLINE __inline__
364 #else
365 #define INLINE
366 #endif
367 #endif
368
369 #define ENCODE_RELAX_STATE(type, size) \
370 ((relax_substateT) (((type) << 2) | (size)))
371 #define TYPE_FROM_RELAX_STATE(s) \
372 ((s) >> 2)
373 #define DISP_SIZE_FROM_RELAX_STATE(s) \
374 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
375
376 /* This table is used by relax_frag to promote short jumps to long
377 ones where necessary. SMALL (short) jumps may be promoted to BIG
378 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
379 don't allow a short jump in a 32 bit code segment to be promoted to
380 a 16 bit offset jump because it's slower (requires data size
381 prefix), and doesn't work, unless the destination is in the bottom
382 64k of the code segment (The top 16 bits of eip are zeroed). */
383
384 const relax_typeS md_relax_table[] =
385 {
386 /* The fields are:
387 1) most positive reach of this state,
388 2) most negative reach of this state,
389 3) how many bytes this mode will have in the variable part of the frag
390 4) which index into the table to try if we can't fit into this one. */
391
392 /* UNCOND_JUMP states. */
393 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
395 /* dword jmp adds 4 bytes to frag:
396 0 extra opcode bytes, 4 displacement bytes. */
397 {0, 0, 4, 0},
398 /* word jmp adds 2 byte2 to frag:
399 0 extra opcode bytes, 2 displacement bytes. */
400 {0, 0, 2, 0},
401
402 /* COND_JUMP states. */
403 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
405 /* dword conditionals adds 5 bytes to frag:
406 1 extra opcode byte, 4 displacement bytes. */
407 {0, 0, 5, 0},
408 /* word conditionals add 3 bytes to frag:
409 1 extra opcode byte, 2 displacement bytes. */
410 {0, 0, 3, 0},
411
412 /* COND_JUMP86 states. */
413 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
414 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
415 /* dword conditionals adds 5 bytes to frag:
416 1 extra opcode byte, 4 displacement bytes. */
417 {0, 0, 5, 0},
418 /* word conditionals add 4 bytes to frag:
419 1 displacement byte and a 3 byte long branch insn. */
420 {0, 0, 4, 0}
421 };
422
423 static const arch_entry cpu_arch[] =
424 {
425 {"generic32", PROCESSOR_GENERIC32,
426 CPU_GENERIC32_FLAGS },
427 {"generic64", PROCESSOR_GENERIC64,
428 CPU_GENERIC64_FLAGS },
429 {"i8086", PROCESSOR_UNKNOWN,
430 CPU_NONE_FLAGS },
431 {"i186", PROCESSOR_UNKNOWN,
432 CPU_I186_FLAGS },
433 {"i286", PROCESSOR_UNKNOWN,
434 CPU_I286_FLAGS },
435 {"i386", PROCESSOR_I386,
436 CPU_I386_FLAGS },
437 {"i486", PROCESSOR_I486,
438 CPU_I486_FLAGS },
439 {"i586", PROCESSOR_PENTIUM,
440 CPU_I586_FLAGS },
441 {"i686", PROCESSOR_PENTIUMPRO,
442 CPU_I686_FLAGS },
443 {"pentium", PROCESSOR_PENTIUM,
444 CPU_I586_FLAGS },
445 {"pentiumpro",PROCESSOR_PENTIUMPRO,
446 CPU_I686_FLAGS },
447 {"pentiumii", PROCESSOR_PENTIUMPRO,
448 CPU_P2_FLAGS },
449 {"pentiumiii",PROCESSOR_PENTIUMPRO,
450 CPU_P3_FLAGS },
451 {"pentium4", PROCESSOR_PENTIUM4,
452 CPU_P4_FLAGS },
453 {"prescott", PROCESSOR_NOCONA,
454 CPU_CORE_FLAGS },
455 {"nocona", PROCESSOR_NOCONA,
456 CPU_NOCONA_FLAGS },
457 {"yonah", PROCESSOR_CORE,
458 CPU_CORE_FLAGS },
459 {"core", PROCESSOR_CORE,
460 CPU_CORE_FLAGS },
461 {"merom", PROCESSOR_CORE2,
462 CPU_CORE2_FLAGS },
463 {"core2", PROCESSOR_CORE2,
464 CPU_CORE2_FLAGS },
465 {"k6", PROCESSOR_K6,
466 CPU_K6_FLAGS },
467 {"k6_2", PROCESSOR_K6,
468 CPU_K6_2_FLAGS },
469 {"athlon", PROCESSOR_ATHLON,
470 CPU_ATHLON_FLAGS },
471 {"sledgehammer", PROCESSOR_K8,
472 CPU_K8_FLAGS },
473 {"opteron", PROCESSOR_K8,
474 CPU_K8_FLAGS },
475 {"k8", PROCESSOR_K8,
476 CPU_K8_FLAGS },
477 {"amdfam10", PROCESSOR_AMDFAM10,
478 CPU_AMDFAM10_FLAGS },
479 {".mmx", PROCESSOR_UNKNOWN,
480 CPU_MMX_FLAGS },
481 {".sse", PROCESSOR_UNKNOWN,
482 CPU_SSE_FLAGS },
483 {".sse2", PROCESSOR_UNKNOWN,
484 CPU_SSE2_FLAGS },
485 {".sse3", PROCESSOR_UNKNOWN,
486 CPU_SSE3_FLAGS },
487 {".ssse3", PROCESSOR_UNKNOWN,
488 CPU_SSSE3_FLAGS },
489 {".sse4.1", PROCESSOR_UNKNOWN,
490 CPU_SSE4_1_FLAGS },
491 {".sse4.2", PROCESSOR_UNKNOWN,
492 CPU_SSE4_2_FLAGS },
493 {".sse4", PROCESSOR_UNKNOWN,
494 CPU_SSE4_2_FLAGS },
495 {".3dnow", PROCESSOR_UNKNOWN,
496 CPU_3DNOW_FLAGS },
497 {".3dnowa", PROCESSOR_UNKNOWN,
498 CPU_3DNOWA_FLAGS },
499 {".padlock", PROCESSOR_UNKNOWN,
500 CPU_PADLOCK_FLAGS },
501 {".pacifica", PROCESSOR_UNKNOWN,
502 CPU_SVME_FLAGS },
503 {".svme", PROCESSOR_UNKNOWN,
504 CPU_SVME_FLAGS },
505 {".sse4a", PROCESSOR_UNKNOWN,
506 CPU_SSE4A_FLAGS },
507 {".abm", PROCESSOR_UNKNOWN,
508 CPU_ABM_FLAGS },
509 {".sse5", PROCESSOR_UNKNOWN,
510 CPU_SSE5_FLAGS },
511 };
512
513 const pseudo_typeS md_pseudo_table[] =
514 {
515 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
516 {"align", s_align_bytes, 0},
517 #else
518 {"align", s_align_ptwo, 0},
519 #endif
520 {"arch", set_cpu_arch, 0},
521 #ifndef I386COFF
522 {"bss", s_bss, 0},
523 #endif
524 {"ffloat", float_cons, 'f'},
525 {"dfloat", float_cons, 'd'},
526 {"tfloat", float_cons, 'x'},
527 {"value", cons, 2},
528 {"slong", signed_cons, 4},
529 {"noopt", s_ignore, 0},
530 {"optim", s_ignore, 0},
531 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
532 {"code16", set_code_flag, CODE_16BIT},
533 {"code32", set_code_flag, CODE_32BIT},
534 {"code64", set_code_flag, CODE_64BIT},
535 {"intel_syntax", set_intel_syntax, 1},
536 {"att_syntax", set_intel_syntax, 0},
537 {"allow_index_reg", set_allow_index_reg, 1},
538 {"disallow_index_reg", set_allow_index_reg, 0},
539 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
540 {"largecomm", handle_large_common, 0},
541 #else
542 {"file", (void (*) (int)) dwarf2_directive_file, 0},
543 {"loc", dwarf2_directive_loc, 0},
544 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
545 #endif
546 #ifdef TE_PE
547 {"secrel32", pe_directive_secrel, 0},
548 #endif
549 {0, 0, 0}
550 };
551
552 /* For interface with expression (). */
553 extern char *input_line_pointer;
554
555 /* Hash table for instruction mnemonic lookup. */
556 static struct hash_control *op_hash;
557
558 /* Hash table for register lookup. */
559 static struct hash_control *reg_hash;
560 \f
561 void
562 i386_align_code (fragS *fragP, int count)
563 {
564 /* Various efficient no-op patterns for aligning code labels.
565 Note: Don't try to assemble the instructions in the comments.
566 0L and 0w are not legal. */
567 static const char f32_1[] =
568 {0x90}; /* nop */
569 static const char f32_2[] =
570 {0x66,0x90}; /* xchg %ax,%ax */
571 static const char f32_3[] =
572 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
573 static const char f32_4[] =
574 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
575 static const char f32_5[] =
576 {0x90, /* nop */
577 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
578 static const char f32_6[] =
579 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
580 static const char f32_7[] =
581 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
582 static const char f32_8[] =
583 {0x90, /* nop */
584 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
585 static const char f32_9[] =
586 {0x89,0xf6, /* movl %esi,%esi */
587 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
588 static const char f32_10[] =
589 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
590 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
591 static const char f32_11[] =
592 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
593 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
594 static const char f32_12[] =
595 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
596 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
597 static const char f32_13[] =
598 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
599 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
600 static const char f32_14[] =
601 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
602 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
603 static const char f16_3[] =
604 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
605 static const char f16_4[] =
606 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
607 static const char f16_5[] =
608 {0x90, /* nop */
609 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
610 static const char f16_6[] =
611 {0x89,0xf6, /* mov %si,%si */
612 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
613 static const char f16_7[] =
614 {0x8d,0x74,0x00, /* lea 0(%si),%si */
615 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
616 static const char f16_8[] =
617 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
618 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
619 static const char jump_31[] =
620 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
621 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
622 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
623 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
624 static const char *const f32_patt[] = {
625 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
626 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
627 };
628 static const char *const f16_patt[] = {
629 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
630 };
631 /* nopl (%[re]ax) */
632 static const char alt_3[] =
633 {0x0f,0x1f,0x00};
634 /* nopl 0(%[re]ax) */
635 static const char alt_4[] =
636 {0x0f,0x1f,0x40,0x00};
637 /* nopl 0(%[re]ax,%[re]ax,1) */
638 static const char alt_5[] =
639 {0x0f,0x1f,0x44,0x00,0x00};
640 /* nopw 0(%[re]ax,%[re]ax,1) */
641 static const char alt_6[] =
642 {0x66,0x0f,0x1f,0x44,0x00,0x00};
643 /* nopl 0L(%[re]ax) */
644 static const char alt_7[] =
645 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
646 /* nopl 0L(%[re]ax,%[re]ax,1) */
647 static const char alt_8[] =
648 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
649 /* nopw 0L(%[re]ax,%[re]ax,1) */
650 static const char alt_9[] =
651 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
652 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
653 static const char alt_10[] =
654 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
655 /* data16
656 nopw %cs:0L(%[re]ax,%[re]ax,1) */
657 static const char alt_long_11[] =
658 {0x66,
659 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
660 /* data16
661 data16
662 nopw %cs:0L(%[re]ax,%[re]ax,1) */
663 static const char alt_long_12[] =
664 {0x66,
665 0x66,
666 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
667 /* data16
668 data16
669 data16
670 nopw %cs:0L(%[re]ax,%[re]ax,1) */
671 static const char alt_long_13[] =
672 {0x66,
673 0x66,
674 0x66,
675 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
676 /* data16
677 data16
678 data16
679 data16
680 nopw %cs:0L(%[re]ax,%[re]ax,1) */
681 static const char alt_long_14[] =
682 {0x66,
683 0x66,
684 0x66,
685 0x66,
686 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
687 /* data16
688 data16
689 data16
690 data16
691 data16
692 nopw %cs:0L(%[re]ax,%[re]ax,1) */
693 static const char alt_long_15[] =
694 {0x66,
695 0x66,
696 0x66,
697 0x66,
698 0x66,
699 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
700 /* nopl 0(%[re]ax,%[re]ax,1)
701 nopw 0(%[re]ax,%[re]ax,1) */
702 static const char alt_short_11[] =
703 {0x0f,0x1f,0x44,0x00,0x00,
704 0x66,0x0f,0x1f,0x44,0x00,0x00};
705 /* nopw 0(%[re]ax,%[re]ax,1)
706 nopw 0(%[re]ax,%[re]ax,1) */
707 static const char alt_short_12[] =
708 {0x66,0x0f,0x1f,0x44,0x00,0x00,
709 0x66,0x0f,0x1f,0x44,0x00,0x00};
710 /* nopw 0(%[re]ax,%[re]ax,1)
711 nopl 0L(%[re]ax) */
712 static const char alt_short_13[] =
713 {0x66,0x0f,0x1f,0x44,0x00,0x00,
714 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
715 /* nopl 0L(%[re]ax)
716 nopl 0L(%[re]ax) */
717 static const char alt_short_14[] =
718 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
719 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
720 /* nopl 0L(%[re]ax)
721 nopl 0L(%[re]ax,%[re]ax,1) */
722 static const char alt_short_15[] =
723 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
724 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
725 static const char *const alt_short_patt[] = {
726 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
727 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
728 alt_short_14, alt_short_15
729 };
730 static const char *const alt_long_patt[] = {
731 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
732 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
733 alt_long_14, alt_long_15
734 };
735
736 /* Only align for at least a positive non-zero boundary. */
737 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
738 return;
739
740 /* We need to decide which NOP sequence to use for 32bit and
741 64bit. When -mtune= is used:
742
743 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
744 PROCESSOR_GENERIC32, f32_patt will be used.
745 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
746 PROCESSOR_CORE, PROCESSOR_CORE2, and PROCESSOR_GENERIC64,
747 alt_long_patt will be used.
748 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
749 PROCESSOR_AMDFAM10, alt_short_patt will be used.
750
751 When -mtune= isn't used, alt_long_patt will be used if
752 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
753 be used.
754
755 When -march= or .arch is used, we can't use anything beyond
756 cpu_arch_isa_flags. */
757
758 if (flag_code == CODE_16BIT)
759 {
760 if (count > 8)
761 {
762 memcpy (fragP->fr_literal + fragP->fr_fix,
763 jump_31, count);
764 /* Adjust jump offset. */
765 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
766 }
767 else
768 memcpy (fragP->fr_literal + fragP->fr_fix,
769 f16_patt[count - 1], count);
770 }
771 else
772 {
773 const char *const *patt = NULL;
774
775 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
776 {
777 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
778 switch (cpu_arch_tune)
779 {
780 case PROCESSOR_UNKNOWN:
781 /* We use cpu_arch_isa_flags to check if we SHOULD
782 optimize for Cpu686. */
783 if (cpu_arch_isa_flags.bitfield.cpui686)
784 patt = alt_long_patt;
785 else
786 patt = f32_patt;
787 break;
788 case PROCESSOR_PENTIUMPRO:
789 case PROCESSOR_PENTIUM4:
790 case PROCESSOR_NOCONA:
791 case PROCESSOR_CORE:
792 case PROCESSOR_CORE2:
793 case PROCESSOR_GENERIC64:
794 patt = alt_long_patt;
795 break;
796 case PROCESSOR_K6:
797 case PROCESSOR_ATHLON:
798 case PROCESSOR_K8:
799 case PROCESSOR_AMDFAM10:
800 patt = alt_short_patt;
801 break;
802 case PROCESSOR_I386:
803 case PROCESSOR_I486:
804 case PROCESSOR_PENTIUM:
805 case PROCESSOR_GENERIC32:
806 patt = f32_patt;
807 break;
808 }
809 }
810 else
811 {
812 switch (cpu_arch_tune)
813 {
814 case PROCESSOR_UNKNOWN:
815 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
816 PROCESSOR_UNKNOWN. */
817 abort ();
818 break;
819
820 case PROCESSOR_I386:
821 case PROCESSOR_I486:
822 case PROCESSOR_PENTIUM:
823 case PROCESSOR_K6:
824 case PROCESSOR_ATHLON:
825 case PROCESSOR_K8:
826 case PROCESSOR_AMDFAM10:
827 case PROCESSOR_GENERIC32:
828 /* We use cpu_arch_isa_flags to check if we CAN optimize
829 for Cpu686. */
830 if (cpu_arch_isa_flags.bitfield.cpui686)
831 patt = alt_short_patt;
832 else
833 patt = f32_patt;
834 break;
835 case PROCESSOR_PENTIUMPRO:
836 case PROCESSOR_PENTIUM4:
837 case PROCESSOR_NOCONA:
838 case PROCESSOR_CORE:
839 case PROCESSOR_CORE2:
840 if (cpu_arch_isa_flags.bitfield.cpui686)
841 patt = alt_long_patt;
842 else
843 patt = f32_patt;
844 break;
845 case PROCESSOR_GENERIC64:
846 patt = alt_long_patt;
847 break;
848 }
849 }
850
851 if (patt == f32_patt)
852 {
853 /* If the padding is less than 15 bytes, we use the normal
854 ones. Otherwise, we use a jump instruction and adjust
855 its offset. */
856 if (count < 15)
857 memcpy (fragP->fr_literal + fragP->fr_fix,
858 patt[count - 1], count);
859 else
860 {
861 memcpy (fragP->fr_literal + fragP->fr_fix,
862 jump_31, count);
863 /* Adjust jump offset. */
864 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
865 }
866 }
867 else
868 {
869 /* Maximum length of an instruction is 15 byte. If the
870 padding is greater than 15 bytes and we don't use jump,
871 we have to break it into smaller pieces. */
872 int padding = count;
873 while (padding > 15)
874 {
875 padding -= 15;
876 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
877 patt [14], 15);
878 }
879
880 if (padding)
881 memcpy (fragP->fr_literal + fragP->fr_fix,
882 patt [padding - 1], padding);
883 }
884 }
885 fragP->fr_var = count;
886 }
887
888 static INLINE int
889 uints_all_zero (const unsigned int *x, unsigned int size)
890 {
891 switch (size)
892 {
893 case 3:
894 if (x[2])
895 return 0;
896 case 2:
897 if (x[1])
898 return 0;
899 case 1:
900 return !x[0];
901 default:
902 abort ();
903 }
904 }
905
906 static INLINE void
907 uints_set (unsigned int *x, unsigned int v, unsigned int size)
908 {
909 switch (size)
910 {
911 case 3:
912 x[2] = v;
913 case 2:
914 x[1] = v;
915 case 1:
916 x[0] = v;
917 break;
918 default:
919 abort ();
920 }
921 }
922
923 static INLINE int
924 uints_equal (const unsigned int *x, const unsigned int *y,
925 unsigned int size)
926 {
927 switch (size)
928 {
929 case 3:
930 if (x[2] != y [2])
931 return 0;
932 case 2:
933 if (x[1] != y [1])
934 return 0;
935 case 1:
936 return x[0] == y [0];
937 break;
938 default:
939 abort ();
940 }
941 }
942
943 #define UINTS_ALL_ZERO(x) \
944 uints_all_zero ((x).array, ARRAY_SIZE ((x).array))
945 #define UINTS_SET(x, v) \
946 uints_set ((x).array, v, ARRAY_SIZE ((x).array))
947 #define UINTS_CLEAR(x) \
948 uints_set ((x).array, 0, ARRAY_SIZE ((x).array))
949 #define UINTS_EQUAL(x, y) \
950 uints_equal ((x).array, (y).array, ARRAY_SIZE ((x).array))
951
952 static INLINE int
953 cpu_flags_check_cpu64 (i386_cpu_flags f)
954 {
955 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
956 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
957 }
958
959 static INLINE i386_cpu_flags
960 cpu_flags_not (i386_cpu_flags x)
961 {
962 switch (ARRAY_SIZE (x.array))
963 {
964 case 3:
965 x.array [2] = ~x.array [2];
966 case 2:
967 x.array [1] = ~x.array [1];
968 case 1:
969 x.array [0] = ~x.array [0];
970 break;
971 default:
972 abort ();
973 }
974
975 #ifdef CpuUnused
976 x.bitfield.unused = 0;
977 #endif
978
979 return x;
980 }
981
982 static INLINE i386_cpu_flags
983 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
984 {
985 switch (ARRAY_SIZE (x.array))
986 {
987 case 3:
988 x.array [2] &= y.array [2];
989 case 2:
990 x.array [1] &= y.array [1];
991 case 1:
992 x.array [0] &= y.array [0];
993 break;
994 default:
995 abort ();
996 }
997 return x;
998 }
999
1000 static INLINE i386_cpu_flags
1001 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1002 {
1003 switch (ARRAY_SIZE (x.array))
1004 {
1005 case 3:
1006 x.array [2] |= y.array [2];
1007 case 2:
1008 x.array [1] |= y.array [1];
1009 case 1:
1010 x.array [0] |= y.array [0];
1011 break;
1012 default:
1013 abort ();
1014 }
1015 return x;
1016 }
1017
1018 static int
1019 cpu_flags_match (i386_cpu_flags x)
1020 {
1021 i386_cpu_flags not = cpu_arch_flags_not;
1022
1023 not.bitfield.cpu64 = 1;
1024 not.bitfield.cpuno64 = 1;
1025
1026 x.bitfield.cpu64 = 0;
1027 x.bitfield.cpuno64 = 0;
1028
1029 not = cpu_flags_and (x, not);
1030 return UINTS_ALL_ZERO (not);
1031 }
1032
1033 static INLINE i386_operand_type
1034 operand_type_and (i386_operand_type x, i386_operand_type y)
1035 {
1036 switch (ARRAY_SIZE (x.array))
1037 {
1038 case 3:
1039 x.array [2] &= y.array [2];
1040 case 2:
1041 x.array [1] &= y.array [1];
1042 case 1:
1043 x.array [0] &= y.array [0];
1044 break;
1045 default:
1046 abort ();
1047 }
1048 return x;
1049 }
1050
1051 static INLINE i386_operand_type
1052 operand_type_or (i386_operand_type x, i386_operand_type y)
1053 {
1054 switch (ARRAY_SIZE (x.array))
1055 {
1056 case 3:
1057 x.array [2] |= y.array [2];
1058 case 2:
1059 x.array [1] |= y.array [1];
1060 case 1:
1061 x.array [0] |= y.array [0];
1062 break;
1063 default:
1064 abort ();
1065 }
1066 return x;
1067 }
1068
1069 static INLINE i386_operand_type
1070 operand_type_xor (i386_operand_type x, i386_operand_type y)
1071 {
1072 switch (ARRAY_SIZE (x.array))
1073 {
1074 case 3:
1075 x.array [2] ^= y.array [2];
1076 case 2:
1077 x.array [1] ^= y.array [1];
1078 case 1:
1079 x.array [0] ^= y.array [0];
1080 break;
1081 default:
1082 abort ();
1083 }
1084 return x;
1085 }
1086
1087 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1088 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1089 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1090 static const i386_operand_type reg16_inoutportreg
1091 = OPERAND_TYPE_REG16_INOUTPORTREG;
1092 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1093 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1094 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1095 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1096 static const i386_operand_type anydisp
1097 = OPERAND_TYPE_ANYDISP;
1098 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1099 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1100 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1101 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1102 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1103 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1104 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1105 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1106 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1107 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1108
1109 enum operand_type
1110 {
1111 reg,
1112 imm,
1113 disp,
1114 anymem
1115 };
1116
1117 static INLINE int
1118 operand_type_check (i386_operand_type t, enum operand_type c)
1119 {
1120 switch (c)
1121 {
1122 case reg:
1123 return (t.bitfield.reg8
1124 || t.bitfield.reg16
1125 || t.bitfield.reg32
1126 || t.bitfield.reg64);
1127
1128 case imm:
1129 return (t.bitfield.imm8
1130 || t.bitfield.imm8s
1131 || t.bitfield.imm16
1132 || t.bitfield.imm32
1133 || t.bitfield.imm32s
1134 || t.bitfield.imm64);
1135
1136 case disp:
1137 return (t.bitfield.disp8
1138 || t.bitfield.disp16
1139 || t.bitfield.disp32
1140 || t.bitfield.disp32s
1141 || t.bitfield.disp64);
1142
1143 case anymem:
1144 return (t.bitfield.disp8
1145 || t.bitfield.disp16
1146 || t.bitfield.disp32
1147 || t.bitfield.disp32s
1148 || t.bitfield.disp64
1149 || t.bitfield.baseindex);
1150
1151 default:
1152 abort ();
1153 }
1154 }
1155
1156 static INLINE int
1157 operand_type_match (i386_operand_type overlap,
1158 i386_operand_type given)
1159 {
1160 i386_operand_type temp = overlap;
1161
1162 temp.bitfield.jumpabsolute = 0;
1163 if (UINTS_ALL_ZERO (temp))
1164 return 0;
1165
1166 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1167 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1168 }
1169
1170 /* If given types r0 and r1 are registers they must be of the same type
1171 unless the expected operand type register overlap is null.
1172 Note that Acc in a template matches every size of reg. */
1173
1174 static INLINE int
1175 operand_type_register_match (i386_operand_type m0,
1176 i386_operand_type g0,
1177 i386_operand_type t0,
1178 i386_operand_type m1,
1179 i386_operand_type g1,
1180 i386_operand_type t1)
1181 {
1182 if (!operand_type_check (g0, reg))
1183 return 1;
1184
1185 if (!operand_type_check (g1, reg))
1186 return 1;
1187
1188 if (g0.bitfield.reg8 == g1.bitfield.reg8
1189 && g0.bitfield.reg16 == g1.bitfield.reg16
1190 && g0.bitfield.reg32 == g1.bitfield.reg32
1191 && g0.bitfield.reg64 == g1.bitfield.reg64)
1192 return 1;
1193
1194 if (m0.bitfield.acc)
1195 {
1196 t0.bitfield.reg8 = 1;
1197 t0.bitfield.reg16 = 1;
1198 t0.bitfield.reg32 = 1;
1199 t0.bitfield.reg64 = 1;
1200 }
1201
1202 if (m1.bitfield.acc)
1203 {
1204 t1.bitfield.reg8 = 1;
1205 t1.bitfield.reg16 = 1;
1206 t1.bitfield.reg32 = 1;
1207 t1.bitfield.reg64 = 1;
1208 }
1209
1210 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1211 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1212 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1213 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1214 }
1215
1216 static INLINE unsigned int
1217 mode_from_disp_size (i386_operand_type t)
1218 {
1219 if (t.bitfield.disp8)
1220 return 1;
1221 else if (t.bitfield.disp16
1222 || t.bitfield.disp32
1223 || t.bitfield.disp32s)
1224 return 2;
1225 else
1226 return 0;
1227 }
1228
1229 static INLINE int
1230 fits_in_signed_byte (offsetT num)
1231 {
1232 return (num >= -128) && (num <= 127);
1233 }
1234
1235 static INLINE int
1236 fits_in_unsigned_byte (offsetT num)
1237 {
1238 return (num & 0xff) == num;
1239 }
1240
1241 static INLINE int
1242 fits_in_unsigned_word (offsetT num)
1243 {
1244 return (num & 0xffff) == num;
1245 }
1246
1247 static INLINE int
1248 fits_in_signed_word (offsetT num)
1249 {
1250 return (-32768 <= num) && (num <= 32767);
1251 }
1252
1253 static INLINE int
1254 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1255 {
1256 #ifndef BFD64
1257 return 1;
1258 #else
1259 return (!(((offsetT) -1 << 31) & num)
1260 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1261 #endif
1262 } /* fits_in_signed_long() */
1263
1264 static INLINE int
1265 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1266 {
1267 #ifndef BFD64
1268 return 1;
1269 #else
1270 return (num & (((offsetT) 2 << 31) - 1)) == num;
1271 #endif
1272 } /* fits_in_unsigned_long() */
1273
1274 static i386_operand_type
1275 smallest_imm_type (offsetT num)
1276 {
1277 i386_operand_type t;
1278
1279 UINTS_CLEAR (t);
1280 t.bitfield.imm64 = 1;
1281
1282 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1283 {
1284 /* This code is disabled on the 486 because all the Imm1 forms
1285 in the opcode table are slower on the i486. They're the
1286 versions with the implicitly specified single-position
1287 displacement, which has another syntax if you really want to
1288 use that form. */
1289 t.bitfield.imm1 = 1;
1290 t.bitfield.imm8 = 1;
1291 t.bitfield.imm8s = 1;
1292 t.bitfield.imm16 = 1;
1293 t.bitfield.imm32 = 1;
1294 t.bitfield.imm32s = 1;
1295 }
1296 else if (fits_in_signed_byte (num))
1297 {
1298 t.bitfield.imm8 = 1;
1299 t.bitfield.imm8s = 1;
1300 t.bitfield.imm16 = 1;
1301 t.bitfield.imm32 = 1;
1302 t.bitfield.imm32s = 1;
1303 }
1304 else if (fits_in_unsigned_byte (num))
1305 {
1306 t.bitfield.imm8 = 1;
1307 t.bitfield.imm16 = 1;
1308 t.bitfield.imm32 = 1;
1309 t.bitfield.imm32s = 1;
1310 }
1311 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1312 {
1313 t.bitfield.imm16 = 1;
1314 t.bitfield.imm32 = 1;
1315 t.bitfield.imm32s = 1;
1316 }
1317 else if (fits_in_signed_long (num))
1318 {
1319 t.bitfield.imm32 = 1;
1320 t.bitfield.imm32s = 1;
1321 }
1322 else if (fits_in_unsigned_long (num))
1323 t.bitfield.imm32 = 1;
1324
1325 return t;
1326 }
1327
1328 static offsetT
1329 offset_in_range (offsetT val, int size)
1330 {
1331 addressT mask;
1332
1333 switch (size)
1334 {
1335 case 1: mask = ((addressT) 1 << 8) - 1; break;
1336 case 2: mask = ((addressT) 1 << 16) - 1; break;
1337 case 4: mask = ((addressT) 2 << 31) - 1; break;
1338 #ifdef BFD64
1339 case 8: mask = ((addressT) 2 << 63) - 1; break;
1340 #endif
1341 default: abort ();
1342 }
1343
1344 /* If BFD64, sign extend val. */
1345 if (!use_rela_relocations)
1346 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1347 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1348
1349 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1350 {
1351 char buf1[40], buf2[40];
1352
1353 sprint_value (buf1, val);
1354 sprint_value (buf2, val & mask);
1355 as_warn (_("%s shortened to %s"), buf1, buf2);
1356 }
1357 return val & mask;
1358 }
1359
1360 /* Returns 0 if attempting to add a prefix where one from the same
1361 class already exists, 1 if non rep/repne added, 2 if rep/repne
1362 added. */
1363 static int
1364 add_prefix (unsigned int prefix)
1365 {
1366 int ret = 1;
1367 unsigned int q;
1368
1369 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1370 && flag_code == CODE_64BIT)
1371 {
1372 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1373 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1374 && (prefix & (REX_R | REX_X | REX_B))))
1375 ret = 0;
1376 q = REX_PREFIX;
1377 }
1378 else
1379 {
1380 switch (prefix)
1381 {
1382 default:
1383 abort ();
1384
1385 case CS_PREFIX_OPCODE:
1386 case DS_PREFIX_OPCODE:
1387 case ES_PREFIX_OPCODE:
1388 case FS_PREFIX_OPCODE:
1389 case GS_PREFIX_OPCODE:
1390 case SS_PREFIX_OPCODE:
1391 q = SEG_PREFIX;
1392 break;
1393
1394 case REPNE_PREFIX_OPCODE:
1395 case REPE_PREFIX_OPCODE:
1396 ret = 2;
1397 /* fall thru */
1398 case LOCK_PREFIX_OPCODE:
1399 q = LOCKREP_PREFIX;
1400 break;
1401
1402 case FWAIT_OPCODE:
1403 q = WAIT_PREFIX;
1404 break;
1405
1406 case ADDR_PREFIX_OPCODE:
1407 q = ADDR_PREFIX;
1408 break;
1409
1410 case DATA_PREFIX_OPCODE:
1411 q = DATA_PREFIX;
1412 break;
1413 }
1414 if (i.prefix[q] != 0)
1415 ret = 0;
1416 }
1417
1418 if (ret)
1419 {
1420 if (!i.prefix[q])
1421 ++i.prefixes;
1422 i.prefix[q] |= prefix;
1423 }
1424 else
1425 as_bad (_("same type of prefix used twice"));
1426
1427 return ret;
1428 }
1429
1430 static void
1431 set_code_flag (int value)
1432 {
1433 flag_code = value;
1434 if (flag_code == CODE_64BIT)
1435 {
1436 cpu_arch_flags.bitfield.cpu64 = 1;
1437 cpu_arch_flags.bitfield.cpuno64 = 0;
1438 cpu_arch_flags_not.bitfield.cpu64 = 0;
1439 cpu_arch_flags_not.bitfield.cpuno64 = 1;
1440 }
1441 else
1442 {
1443 cpu_arch_flags.bitfield.cpu64 = 0;
1444 cpu_arch_flags.bitfield.cpuno64 = 1;
1445 cpu_arch_flags_not.bitfield.cpu64 = 1;
1446 cpu_arch_flags_not.bitfield.cpuno64 = 0;
1447 }
1448 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1449 {
1450 as_bad (_("64bit mode not supported on this CPU."));
1451 }
1452 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1453 {
1454 as_bad (_("32bit mode not supported on this CPU."));
1455 }
1456 stackop_size = '\0';
1457 }
1458
1459 static void
1460 set_16bit_gcc_code_flag (int new_code_flag)
1461 {
1462 flag_code = new_code_flag;
1463 if (flag_code != CODE_16BIT)
1464 abort ();
1465 cpu_arch_flags.bitfield.cpu64 = 0;
1466 cpu_arch_flags.bitfield.cpuno64 = 1;
1467 cpu_arch_flags_not.bitfield.cpu64 = 1;
1468 cpu_arch_flags_not.bitfield.cpuno64 = 0;
1469 stackop_size = LONG_MNEM_SUFFIX;
1470 }
1471
1472 static void
1473 set_intel_syntax (int syntax_flag)
1474 {
1475 /* Find out if register prefixing is specified. */
1476 int ask_naked_reg = 0;
1477
1478 SKIP_WHITESPACE ();
1479 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1480 {
1481 char *string = input_line_pointer;
1482 int e = get_symbol_end ();
1483
1484 if (strcmp (string, "prefix") == 0)
1485 ask_naked_reg = 1;
1486 else if (strcmp (string, "noprefix") == 0)
1487 ask_naked_reg = -1;
1488 else
1489 as_bad (_("bad argument to syntax directive."));
1490 *input_line_pointer = e;
1491 }
1492 demand_empty_rest_of_line ();
1493
1494 intel_syntax = syntax_flag;
1495
1496 if (ask_naked_reg == 0)
1497 allow_naked_reg = (intel_syntax
1498 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1499 else
1500 allow_naked_reg = (ask_naked_reg < 0);
1501
1502 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1503 identifier_chars['$'] = intel_syntax ? '$' : 0;
1504 register_prefix = allow_naked_reg ? "" : "%";
1505 }
1506
1507 static void
1508 set_allow_index_reg (int flag)
1509 {
1510 allow_index_reg = flag;
1511 }
1512
1513 static void
1514 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1515 {
1516 SKIP_WHITESPACE ();
1517
1518 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1519 {
1520 char *string = input_line_pointer;
1521 int e = get_symbol_end ();
1522 unsigned int i;
1523 i386_cpu_flags flags;
1524
1525 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1526 {
1527 if (strcmp (string, cpu_arch[i].name) == 0)
1528 {
1529 if (*string != '.')
1530 {
1531 cpu_arch_name = cpu_arch[i].name;
1532 cpu_sub_arch_name = NULL;
1533 cpu_arch_flags = cpu_arch[i].flags;
1534 if (flag_code == CODE_64BIT)
1535 {
1536 cpu_arch_flags.bitfield.cpu64 = 1;
1537 cpu_arch_flags.bitfield.cpuno64 = 0;
1538 }
1539 else
1540 {
1541 cpu_arch_flags.bitfield.cpu64 = 0;
1542 cpu_arch_flags.bitfield.cpuno64 = 1;
1543 }
1544 cpu_arch_flags_not = cpu_flags_not (cpu_arch_flags);
1545 cpu_arch_isa = cpu_arch[i].type;
1546 cpu_arch_isa_flags = cpu_arch[i].flags;
1547 if (!cpu_arch_tune_set)
1548 {
1549 cpu_arch_tune = cpu_arch_isa;
1550 cpu_arch_tune_flags = cpu_arch_isa_flags;
1551 }
1552 break;
1553 }
1554
1555 flags = cpu_flags_or (cpu_arch_flags,
1556 cpu_arch[i].flags);
1557 if (!UINTS_EQUAL (flags, cpu_arch_flags))
1558 {
1559 cpu_sub_arch_name = cpu_arch[i].name;
1560 cpu_arch_flags = flags;
1561 cpu_arch_flags_not = cpu_flags_not (cpu_arch_flags);
1562 }
1563 *input_line_pointer = e;
1564 demand_empty_rest_of_line ();
1565 return;
1566 }
1567 }
1568 if (i >= ARRAY_SIZE (cpu_arch))
1569 as_bad (_("no such architecture: `%s'"), string);
1570
1571 *input_line_pointer = e;
1572 }
1573 else
1574 as_bad (_("missing cpu architecture"));
1575
1576 no_cond_jump_promotion = 0;
1577 if (*input_line_pointer == ','
1578 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1579 {
1580 char *string = ++input_line_pointer;
1581 int e = get_symbol_end ();
1582
1583 if (strcmp (string, "nojumps") == 0)
1584 no_cond_jump_promotion = 1;
1585 else if (strcmp (string, "jumps") == 0)
1586 ;
1587 else
1588 as_bad (_("no such architecture modifier: `%s'"), string);
1589
1590 *input_line_pointer = e;
1591 }
1592
1593 demand_empty_rest_of_line ();
1594 }
1595
1596 unsigned long
1597 i386_mach ()
1598 {
1599 if (!strcmp (default_arch, "x86_64"))
1600 return bfd_mach_x86_64;
1601 else if (!strcmp (default_arch, "i386"))
1602 return bfd_mach_i386_i386;
1603 else
1604 as_fatal (_("Unknown architecture"));
1605 }
1606 \f
1607 void
1608 md_begin ()
1609 {
1610 const char *hash_err;
1611
1612 cpu_arch_flags_not = cpu_flags_not (cpu_arch_flags);
1613
1614 /* Initialize op_hash hash table. */
1615 op_hash = hash_new ();
1616
1617 {
1618 const template *optab;
1619 templates *core_optab;
1620
1621 /* Setup for loop. */
1622 optab = i386_optab;
1623 core_optab = (templates *) xmalloc (sizeof (templates));
1624 core_optab->start = optab;
1625
1626 while (1)
1627 {
1628 ++optab;
1629 if (optab->name == NULL
1630 || strcmp (optab->name, (optab - 1)->name) != 0)
1631 {
1632 /* different name --> ship out current template list;
1633 add to hash table; & begin anew. */
1634 core_optab->end = optab;
1635 hash_err = hash_insert (op_hash,
1636 (optab - 1)->name,
1637 (PTR) core_optab);
1638 if (hash_err)
1639 {
1640 as_fatal (_("Internal Error: Can't hash %s: %s"),
1641 (optab - 1)->name,
1642 hash_err);
1643 }
1644 if (optab->name == NULL)
1645 break;
1646 core_optab = (templates *) xmalloc (sizeof (templates));
1647 core_optab->start = optab;
1648 }
1649 }
1650 }
1651
1652 /* Initialize reg_hash hash table. */
1653 reg_hash = hash_new ();
1654 {
1655 const reg_entry *regtab;
1656 unsigned int regtab_size = i386_regtab_size;
1657
1658 for (regtab = i386_regtab; regtab_size--; regtab++)
1659 {
1660 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1661 if (hash_err)
1662 as_fatal (_("Internal Error: Can't hash %s: %s"),
1663 regtab->reg_name,
1664 hash_err);
1665 }
1666 }
1667
1668 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1669 {
1670 int c;
1671 char *p;
1672
1673 for (c = 0; c < 256; c++)
1674 {
1675 if (ISDIGIT (c))
1676 {
1677 digit_chars[c] = c;
1678 mnemonic_chars[c] = c;
1679 register_chars[c] = c;
1680 operand_chars[c] = c;
1681 }
1682 else if (ISLOWER (c))
1683 {
1684 mnemonic_chars[c] = c;
1685 register_chars[c] = c;
1686 operand_chars[c] = c;
1687 }
1688 else if (ISUPPER (c))
1689 {
1690 mnemonic_chars[c] = TOLOWER (c);
1691 register_chars[c] = mnemonic_chars[c];
1692 operand_chars[c] = c;
1693 }
1694
1695 if (ISALPHA (c) || ISDIGIT (c))
1696 identifier_chars[c] = c;
1697 else if (c >= 128)
1698 {
1699 identifier_chars[c] = c;
1700 operand_chars[c] = c;
1701 }
1702 }
1703
1704 #ifdef LEX_AT
1705 identifier_chars['@'] = '@';
1706 #endif
1707 #ifdef LEX_QM
1708 identifier_chars['?'] = '?';
1709 operand_chars['?'] = '?';
1710 #endif
1711 digit_chars['-'] = '-';
1712 mnemonic_chars['-'] = '-';
1713 mnemonic_chars['.'] = '.';
1714 identifier_chars['_'] = '_';
1715 identifier_chars['.'] = '.';
1716
1717 for (p = operand_special_chars; *p != '\0'; p++)
1718 operand_chars[(unsigned char) *p] = *p;
1719 }
1720
1721 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1722 if (IS_ELF)
1723 {
1724 record_alignment (text_section, 2);
1725 record_alignment (data_section, 2);
1726 record_alignment (bss_section, 2);
1727 }
1728 #endif
1729
1730 if (flag_code == CODE_64BIT)
1731 {
1732 x86_dwarf2_return_column = 16;
1733 x86_cie_data_alignment = -8;
1734 }
1735 else
1736 {
1737 x86_dwarf2_return_column = 8;
1738 x86_cie_data_alignment = -4;
1739 }
1740 }
1741
1742 void
1743 i386_print_statistics (FILE *file)
1744 {
1745 hash_print_statistics (file, "i386 opcode", op_hash);
1746 hash_print_statistics (file, "i386 register", reg_hash);
1747 }
1748 \f
1749 #ifdef DEBUG386
1750
1751 /* Debugging routines for md_assemble. */
1752 static void pte (template *);
1753 static void pt (i386_operand_type);
1754 static void pe (expressionS *);
1755 static void ps (symbolS *);
1756
1757 static void
1758 pi (char *line, i386_insn *x)
1759 {
1760 unsigned int i;
1761
1762 fprintf (stdout, "%s: template ", line);
1763 pte (&x->tm);
1764 fprintf (stdout, " address: base %s index %s scale %x\n",
1765 x->base_reg ? x->base_reg->reg_name : "none",
1766 x->index_reg ? x->index_reg->reg_name : "none",
1767 x->log2_scale_factor);
1768 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1769 x->rm.mode, x->rm.reg, x->rm.regmem);
1770 fprintf (stdout, " sib: base %x index %x scale %x\n",
1771 x->sib.base, x->sib.index, x->sib.scale);
1772 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1773 (x->rex & REX_W) != 0,
1774 (x->rex & REX_R) != 0,
1775 (x->rex & REX_X) != 0,
1776 (x->rex & REX_B) != 0);
1777 fprintf (stdout, " drex: reg %d rex 0x%x\n",
1778 x->drex.reg, x->drex.rex);
1779 for (i = 0; i < x->operands; i++)
1780 {
1781 fprintf (stdout, " #%d: ", i + 1);
1782 pt (x->types[i]);
1783 fprintf (stdout, "\n");
1784 if (x->types[i].bitfield.reg8
1785 || x->types[i].bitfield.reg16
1786 || x->types[i].bitfield.reg32
1787 || x->types[i].bitfield.reg64
1788 || x->types[i].bitfield.regmmx
1789 || x->types[i].bitfield.regxmm
1790 || x->types[i].bitfield.sreg2
1791 || x->types[i].bitfield.sreg3
1792 || x->types[i].bitfield.control
1793 || x->types[i].bitfield.debug
1794 || x->types[i].bitfield.test)
1795 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1796 if (operand_type_check (x->types[i], imm))
1797 pe (x->op[i].imms);
1798 if (operand_type_check (x->types[i], disp))
1799 pe (x->op[i].disps);
1800 }
1801 }
1802
1803 static void
1804 pte (template *t)
1805 {
1806 unsigned int i;
1807 fprintf (stdout, " %d operands ", t->operands);
1808 fprintf (stdout, "opcode %x ", t->base_opcode);
1809 if (t->extension_opcode != None)
1810 fprintf (stdout, "ext %x ", t->extension_opcode);
1811 if (t->opcode_modifier.d)
1812 fprintf (stdout, "D");
1813 if (t->opcode_modifier.w)
1814 fprintf (stdout, "W");
1815 fprintf (stdout, "\n");
1816 for (i = 0; i < t->operands; i++)
1817 {
1818 fprintf (stdout, " #%d type ", i + 1);
1819 pt (t->operand_types[i]);
1820 fprintf (stdout, "\n");
1821 }
1822 }
1823
1824 static void
1825 pe (expressionS *e)
1826 {
1827 fprintf (stdout, " operation %d\n", e->X_op);
1828 fprintf (stdout, " add_number %ld (%lx)\n",
1829 (long) e->X_add_number, (long) e->X_add_number);
1830 if (e->X_add_symbol)
1831 {
1832 fprintf (stdout, " add_symbol ");
1833 ps (e->X_add_symbol);
1834 fprintf (stdout, "\n");
1835 }
1836 if (e->X_op_symbol)
1837 {
1838 fprintf (stdout, " op_symbol ");
1839 ps (e->X_op_symbol);
1840 fprintf (stdout, "\n");
1841 }
1842 }
1843
1844 static void
1845 ps (symbolS *s)
1846 {
1847 fprintf (stdout, "%s type %s%s",
1848 S_GET_NAME (s),
1849 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1850 segment_name (S_GET_SEGMENT (s)));
1851 }
1852
1853 static struct type_name
1854 {
1855 i386_operand_type mask;
1856 const char *name;
1857 }
1858 const type_names[] =
1859 {
1860 { OPERAND_TYPE_REG8, "r8" },
1861 { OPERAND_TYPE_REG16, "r16" },
1862 { OPERAND_TYPE_REG32, "r32" },
1863 { OPERAND_TYPE_REG64, "r64" },
1864 { OPERAND_TYPE_IMM8, "i8" },
1865 { OPERAND_TYPE_IMM8, "i8s" },
1866 { OPERAND_TYPE_IMM16, "i16" },
1867 { OPERAND_TYPE_IMM32, "i32" },
1868 { OPERAND_TYPE_IMM32S, "i32s" },
1869 { OPERAND_TYPE_IMM64, "i64" },
1870 { OPERAND_TYPE_IMM1, "i1" },
1871 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
1872 { OPERAND_TYPE_DISP8, "d8" },
1873 { OPERAND_TYPE_DISP16, "d16" },
1874 { OPERAND_TYPE_DISP32, "d32" },
1875 { OPERAND_TYPE_DISP32S, "d32s" },
1876 { OPERAND_TYPE_DISP64, "d64" },
1877 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
1878 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
1879 { OPERAND_TYPE_CONTROL, "control reg" },
1880 { OPERAND_TYPE_TEST, "test reg" },
1881 { OPERAND_TYPE_DEBUG, "debug reg" },
1882 { OPERAND_TYPE_FLOATREG, "FReg" },
1883 { OPERAND_TYPE_FLOATACC, "FAcc" },
1884 { OPERAND_TYPE_SREG2, "SReg2" },
1885 { OPERAND_TYPE_SREG3, "SReg3" },
1886 { OPERAND_TYPE_ACC, "Acc" },
1887 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
1888 { OPERAND_TYPE_REGMMX, "rMMX" },
1889 { OPERAND_TYPE_REGXMM, "rXMM" },
1890 { OPERAND_TYPE_ESSEG, "es" },
1891 };
1892
1893 static void
1894 pt (i386_operand_type t)
1895 {
1896 unsigned int j;
1897 i386_operand_type a;
1898
1899 for (j = 0; j < ARRAY_SIZE (type_names); j++)
1900 {
1901 a = operand_type_and (t, type_names[j].mask);
1902 if (!UINTS_ALL_ZERO (a))
1903 fprintf (stdout, "%s, ", type_names[j].name);
1904 }
1905 fflush (stdout);
1906 }
1907
1908 #endif /* DEBUG386 */
1909 \f
1910 static bfd_reloc_code_real_type
1911 reloc (unsigned int size,
1912 int pcrel,
1913 int sign,
1914 bfd_reloc_code_real_type other)
1915 {
1916 if (other != NO_RELOC)
1917 {
1918 reloc_howto_type *reloc;
1919
1920 if (size == 8)
1921 switch (other)
1922 {
1923 case BFD_RELOC_X86_64_GOT32:
1924 return BFD_RELOC_X86_64_GOT64;
1925 break;
1926 case BFD_RELOC_X86_64_PLTOFF64:
1927 return BFD_RELOC_X86_64_PLTOFF64;
1928 break;
1929 case BFD_RELOC_X86_64_GOTPC32:
1930 other = BFD_RELOC_X86_64_GOTPC64;
1931 break;
1932 case BFD_RELOC_X86_64_GOTPCREL:
1933 other = BFD_RELOC_X86_64_GOTPCREL64;
1934 break;
1935 case BFD_RELOC_X86_64_TPOFF32:
1936 other = BFD_RELOC_X86_64_TPOFF64;
1937 break;
1938 case BFD_RELOC_X86_64_DTPOFF32:
1939 other = BFD_RELOC_X86_64_DTPOFF64;
1940 break;
1941 default:
1942 break;
1943 }
1944
1945 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1946 if (size == 4 && flag_code != CODE_64BIT)
1947 sign = -1;
1948
1949 reloc = bfd_reloc_type_lookup (stdoutput, other);
1950 if (!reloc)
1951 as_bad (_("unknown relocation (%u)"), other);
1952 else if (size != bfd_get_reloc_size (reloc))
1953 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1954 bfd_get_reloc_size (reloc),
1955 size);
1956 else if (pcrel && !reloc->pc_relative)
1957 as_bad (_("non-pc-relative relocation for pc-relative field"));
1958 else if ((reloc->complain_on_overflow == complain_overflow_signed
1959 && !sign)
1960 || (reloc->complain_on_overflow == complain_overflow_unsigned
1961 && sign > 0))
1962 as_bad (_("relocated field and relocation type differ in signedness"));
1963 else
1964 return other;
1965 return NO_RELOC;
1966 }
1967
1968 if (pcrel)
1969 {
1970 if (!sign)
1971 as_bad (_("there are no unsigned pc-relative relocations"));
1972 switch (size)
1973 {
1974 case 1: return BFD_RELOC_8_PCREL;
1975 case 2: return BFD_RELOC_16_PCREL;
1976 case 4: return BFD_RELOC_32_PCREL;
1977 case 8: return BFD_RELOC_64_PCREL;
1978 }
1979 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1980 }
1981 else
1982 {
1983 if (sign > 0)
1984 switch (size)
1985 {
1986 case 4: return BFD_RELOC_X86_64_32S;
1987 }
1988 else
1989 switch (size)
1990 {
1991 case 1: return BFD_RELOC_8;
1992 case 2: return BFD_RELOC_16;
1993 case 4: return BFD_RELOC_32;
1994 case 8: return BFD_RELOC_64;
1995 }
1996 as_bad (_("cannot do %s %u byte relocation"),
1997 sign > 0 ? "signed" : "unsigned", size);
1998 }
1999
2000 abort ();
2001 return BFD_RELOC_NONE;
2002 }
2003
2004 /* Here we decide which fixups can be adjusted to make them relative to
2005 the beginning of the section instead of the symbol. Basically we need
2006 to make sure that the dynamic relocations are done correctly, so in
2007 some cases we force the original symbol to be used. */
2008
2009 int
2010 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2011 {
2012 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2013 if (!IS_ELF)
2014 return 1;
2015
2016 /* Don't adjust pc-relative references to merge sections in 64-bit
2017 mode. */
2018 if (use_rela_relocations
2019 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2020 && fixP->fx_pcrel)
2021 return 0;
2022
2023 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2024 and changed later by validate_fix. */
2025 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2026 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2027 return 0;
2028
2029 /* adjust_reloc_syms doesn't know about the GOT. */
2030 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2031 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2032 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2033 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2034 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2035 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2036 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2037 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2038 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2039 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2040 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2041 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2042 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2043 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2044 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2045 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2046 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2047 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2048 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2049 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2050 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2051 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2052 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2053 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2054 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2055 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2056 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2057 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2058 return 0;
2059 #endif
2060 return 1;
2061 }
2062
2063 static int
2064 intel_float_operand (const char *mnemonic)
2065 {
2066 /* Note that the value returned is meaningful only for opcodes with (memory)
2067 operands, hence the code here is free to improperly handle opcodes that
2068 have no operands (for better performance and smaller code). */
2069
2070 if (mnemonic[0] != 'f')
2071 return 0; /* non-math */
2072
2073 switch (mnemonic[1])
2074 {
2075 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2076 the fs segment override prefix not currently handled because no
2077 call path can make opcodes without operands get here */
2078 case 'i':
2079 return 2 /* integer op */;
2080 case 'l':
2081 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2082 return 3; /* fldcw/fldenv */
2083 break;
2084 case 'n':
2085 if (mnemonic[2] != 'o' /* fnop */)
2086 return 3; /* non-waiting control op */
2087 break;
2088 case 'r':
2089 if (mnemonic[2] == 's')
2090 return 3; /* frstor/frstpm */
2091 break;
2092 case 's':
2093 if (mnemonic[2] == 'a')
2094 return 3; /* fsave */
2095 if (mnemonic[2] == 't')
2096 {
2097 switch (mnemonic[3])
2098 {
2099 case 'c': /* fstcw */
2100 case 'd': /* fstdw */
2101 case 'e': /* fstenv */
2102 case 's': /* fsts[gw] */
2103 return 3;
2104 }
2105 }
2106 break;
2107 case 'x':
2108 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2109 return 0; /* fxsave/fxrstor are not really math ops */
2110 break;
2111 }
2112
2113 return 1;
2114 }
2115
2116 /* This is the guts of the machine-dependent assembler. LINE points to a
2117 machine dependent instruction. This function is supposed to emit
2118 the frags/bytes it assembles to. */
2119
2120 void
2121 md_assemble (line)
2122 char *line;
2123 {
2124 unsigned int j;
2125 char mnemonic[MAX_MNEM_SIZE];
2126
2127 /* Initialize globals. */
2128 memset (&i, '\0', sizeof (i));
2129 for (j = 0; j < MAX_OPERANDS; j++)
2130 i.reloc[j] = NO_RELOC;
2131 memset (disp_expressions, '\0', sizeof (disp_expressions));
2132 memset (im_expressions, '\0', sizeof (im_expressions));
2133 save_stack_p = save_stack;
2134
2135 /* First parse an instruction mnemonic & call i386_operand for the operands.
2136 We assume that the scrubber has arranged it so that line[0] is the valid
2137 start of a (possibly prefixed) mnemonic. */
2138
2139 line = parse_insn (line, mnemonic);
2140 if (line == NULL)
2141 return;
2142
2143 line = parse_operands (line, mnemonic);
2144 if (line == NULL)
2145 return;
2146
2147 /* Now we've parsed the mnemonic into a set of templates, and have the
2148 operands at hand. */
2149
2150 /* All intel opcodes have reversed operands except for "bound" and
2151 "enter". We also don't reverse intersegment "jmp" and "call"
2152 instructions with 2 immediate operands so that the immediate segment
2153 precedes the offset, as it does when in AT&T mode. */
2154 if (intel_syntax
2155 && i.operands > 1
2156 && (strcmp (mnemonic, "bound") != 0)
2157 && (strcmp (mnemonic, "invlpga") != 0)
2158 && !(operand_type_check (i.types[0], imm)
2159 && operand_type_check (i.types[1], imm)))
2160 swap_operands ();
2161
2162 /* The order of the immediates should be reversed
2163 for 2 immediates extrq and insertq instructions */
2164 if (i.imm_operands == 2
2165 && (strcmp (mnemonic, "extrq") == 0
2166 || strcmp (mnemonic, "insertq") == 0))
2167 swap_2_operands (0, 1);
2168
2169 if (i.imm_operands)
2170 optimize_imm ();
2171
2172 /* Don't optimize displacement for movabs since it only takes 64bit
2173 displacement. */
2174 if (i.disp_operands
2175 && (flag_code != CODE_64BIT
2176 || strcmp (mnemonic, "movabs") != 0))
2177 optimize_disp ();
2178
2179 /* Next, we find a template that matches the given insn,
2180 making sure the overlap of the given operands types is consistent
2181 with the template operand types. */
2182
2183 if (!match_template ())
2184 return;
2185
2186 if (intel_syntax)
2187 {
2188 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
2189 if (SYSV386_COMPAT
2190 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
2191 i.tm.base_opcode ^= Opcode_FloatR;
2192
2193 /* Zap movzx and movsx suffix. The suffix may have been set from
2194 "word ptr" or "byte ptr" on the source operand, but we'll use
2195 the suffix later to choose the destination register. */
2196 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2197 {
2198 if (i.reg_operands < 2
2199 && !i.suffix
2200 && (!i.tm.opcode_modifier.no_bsuf
2201 || !i.tm.opcode_modifier.no_wsuf
2202 || !i.tm.opcode_modifier.no_lsuf
2203 || !i.tm.opcode_modifier.no_ssuf
2204 || !i.tm.opcode_modifier.no_xsuf
2205 || !i.tm.opcode_modifier.no_qsuf))
2206 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2207
2208 i.suffix = 0;
2209 }
2210 }
2211
2212 if (i.tm.opcode_modifier.fwait)
2213 if (!add_prefix (FWAIT_OPCODE))
2214 return;
2215
2216 /* Check string instruction segment overrides. */
2217 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
2218 {
2219 if (!check_string ())
2220 return;
2221 }
2222
2223 if (!process_suffix ())
2224 return;
2225
2226 /* Make still unresolved immediate matches conform to size of immediate
2227 given in i.suffix. */
2228 if (!finalize_imm ())
2229 return;
2230
2231 if (i.types[0].bitfield.imm1)
2232 i.imm_operands = 0; /* kludge for shift insns. */
2233
2234 for (j = 0; j < 3; j++)
2235 if (i.types[j].bitfield.inoutportreg
2236 || i.types[j].bitfield.shiftcount
2237 || i.types[j].bitfield.acc
2238 || i.types[j].bitfield.floatacc)
2239 i.reg_operands--;
2240
2241 if (i.tm.opcode_modifier.immext)
2242 {
2243 expressionS *exp;
2244
2245 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2246 {
2247 /* Streaming SIMD extensions 3 Instructions have the fixed
2248 operands with an opcode suffix which is coded in the same
2249 place as an 8-bit immediate field would be. Here we check
2250 those operands and remove them afterwards. */
2251 unsigned int x;
2252
2253 for (x = 0; x < i.operands; x++)
2254 if (i.op[x].regs->reg_num != x)
2255 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2256 register_prefix,
2257 i.op[x].regs->reg_name,
2258 x + 1,
2259 i.tm.name);
2260 i.operands = 0;
2261 }
2262
2263 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2264 opcode suffix which is coded in the same place as an 8-bit
2265 immediate field would be. Here we fake an 8-bit immediate
2266 operand from the opcode suffix stored in tm.extension_opcode.
2267 SSE5 also uses this encoding, for some of its 3 argument
2268 instructions. */
2269
2270 assert (i.imm_operands == 0
2271 && (i.operands <= 2
2272 || (i.tm.cpu_flags.bitfield.cpusse5
2273 && i.operands <= 3)));
2274
2275 exp = &im_expressions[i.imm_operands++];
2276 i.op[i.operands].imms = exp;
2277 UINTS_CLEAR (i.types[i.operands]);
2278 i.types[i.operands].bitfield.imm8 = 1;
2279 i.operands++;
2280 exp->X_op = O_constant;
2281 exp->X_add_number = i.tm.extension_opcode;
2282 i.tm.extension_opcode = None;
2283 }
2284
2285 /* For insns with operands there are more diddles to do to the opcode. */
2286 if (i.operands)
2287 {
2288 if (!process_operands ())
2289 return;
2290 }
2291 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
2292 {
2293 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2294 as_warn (_("translating to `%sp'"), i.tm.name);
2295 }
2296
2297 /* Handle conversion of 'int $3' --> special int3 insn. */
2298 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2299 {
2300 i.tm.base_opcode = INT3_OPCODE;
2301 i.imm_operands = 0;
2302 }
2303
2304 if ((i.tm.opcode_modifier.jump
2305 || i.tm.opcode_modifier.jumpbyte
2306 || i.tm.opcode_modifier.jumpdword)
2307 && i.op[0].disps->X_op == O_constant)
2308 {
2309 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2310 the absolute address given by the constant. Since ix86 jumps and
2311 calls are pc relative, we need to generate a reloc. */
2312 i.op[0].disps->X_add_symbol = &abs_symbol;
2313 i.op[0].disps->X_op = O_symbol;
2314 }
2315
2316 if (i.tm.opcode_modifier.rex64)
2317 i.rex |= REX_W;
2318
2319 /* For 8 bit registers we need an empty rex prefix. Also if the
2320 instruction already has a prefix, we need to convert old
2321 registers to new ones. */
2322
2323 if ((i.types[0].bitfield.reg8
2324 && (i.op[0].regs->reg_flags & RegRex64) != 0)
2325 || (i.types[1].bitfield.reg8
2326 && (i.op[1].regs->reg_flags & RegRex64) != 0)
2327 || ((i.types[0].bitfield.reg8
2328 || i.types[1].bitfield.reg8)
2329 && i.rex != 0))
2330 {
2331 int x;
2332
2333 i.rex |= REX_OPCODE;
2334 for (x = 0; x < 2; x++)
2335 {
2336 /* Look for 8 bit operand that uses old registers. */
2337 if (i.types[x].bitfield.reg8
2338 && (i.op[x].regs->reg_flags & RegRex64) == 0)
2339 {
2340 /* In case it is "hi" register, give up. */
2341 if (i.op[x].regs->reg_num > 3)
2342 as_bad (_("can't encode register '%s%s' in an "
2343 "instruction requiring REX prefix."),
2344 register_prefix, i.op[x].regs->reg_name);
2345
2346 /* Otherwise it is equivalent to the extended register.
2347 Since the encoding doesn't change this is merely
2348 cosmetic cleanup for debug output. */
2349
2350 i.op[x].regs = i.op[x].regs + 8;
2351 }
2352 }
2353 }
2354
2355 /* If the instruction has the DREX attribute (aka SSE5), don't emit a
2356 REX prefix. */
2357 if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
2358 {
2359 i.drex.rex = i.rex;
2360 i.rex = 0;
2361 }
2362 else if (i.rex != 0)
2363 add_prefix (REX_OPCODE | i.rex);
2364
2365 /* We are ready to output the insn. */
2366 output_insn ();
2367 }
2368
2369 static char *
2370 parse_insn (char *line, char *mnemonic)
2371 {
2372 char *l = line;
2373 char *token_start = l;
2374 char *mnem_p;
2375 int supported;
2376 const template *t;
2377
2378 /* Non-zero if we found a prefix only acceptable with string insns. */
2379 const char *expecting_string_instruction = NULL;
2380
2381 while (1)
2382 {
2383 mnem_p = mnemonic;
2384 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
2385 {
2386 mnem_p++;
2387 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
2388 {
2389 as_bad (_("no such instruction: `%s'"), token_start);
2390 return NULL;
2391 }
2392 l++;
2393 }
2394 if (!is_space_char (*l)
2395 && *l != END_OF_INSN
2396 && (intel_syntax
2397 || (*l != PREFIX_SEPARATOR
2398 && *l != ',')))
2399 {
2400 as_bad (_("invalid character %s in mnemonic"),
2401 output_invalid (*l));
2402 return NULL;
2403 }
2404 if (token_start == l)
2405 {
2406 if (!intel_syntax && *l == PREFIX_SEPARATOR)
2407 as_bad (_("expecting prefix; got nothing"));
2408 else
2409 as_bad (_("expecting mnemonic; got nothing"));
2410 return NULL;
2411 }
2412
2413 /* Look up instruction (or prefix) via hash table. */
2414 current_templates = hash_find (op_hash, mnemonic);
2415
2416 if (*l != END_OF_INSN
2417 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2418 && current_templates
2419 && current_templates->start->opcode_modifier.isprefix)
2420 {
2421 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2422 {
2423 as_bad ((flag_code != CODE_64BIT
2424 ? _("`%s' is only supported in 64-bit mode")
2425 : _("`%s' is not supported in 64-bit mode")),
2426 current_templates->start->name);
2427 return NULL;
2428 }
2429 /* If we are in 16-bit mode, do not allow addr16 or data16.
2430 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2431 if ((current_templates->start->opcode_modifier.size16
2432 || current_templates->start->opcode_modifier.size32)
2433 && flag_code != CODE_64BIT
2434 && (current_templates->start->opcode_modifier.size32
2435 ^ (flag_code == CODE_16BIT)))
2436 {
2437 as_bad (_("redundant %s prefix"),
2438 current_templates->start->name);
2439 return NULL;
2440 }
2441 /* Add prefix, checking for repeated prefixes. */
2442 switch (add_prefix (current_templates->start->base_opcode))
2443 {
2444 case 0:
2445 return NULL;
2446 case 2:
2447 expecting_string_instruction = current_templates->start->name;
2448 break;
2449 }
2450 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2451 token_start = ++l;
2452 }
2453 else
2454 break;
2455 }
2456
2457 if (!current_templates)
2458 {
2459 /* See if we can get a match by trimming off a suffix. */
2460 switch (mnem_p[-1])
2461 {
2462 case WORD_MNEM_SUFFIX:
2463 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2464 i.suffix = SHORT_MNEM_SUFFIX;
2465 else
2466 case BYTE_MNEM_SUFFIX:
2467 case QWORD_MNEM_SUFFIX:
2468 i.suffix = mnem_p[-1];
2469 mnem_p[-1] = '\0';
2470 current_templates = hash_find (op_hash, mnemonic);
2471 break;
2472 case SHORT_MNEM_SUFFIX:
2473 case LONG_MNEM_SUFFIX:
2474 if (!intel_syntax)
2475 {
2476 i.suffix = mnem_p[-1];
2477 mnem_p[-1] = '\0';
2478 current_templates = hash_find (op_hash, mnemonic);
2479 }
2480 break;
2481
2482 /* Intel Syntax. */
2483 case 'd':
2484 if (intel_syntax)
2485 {
2486 if (intel_float_operand (mnemonic) == 1)
2487 i.suffix = SHORT_MNEM_SUFFIX;
2488 else
2489 i.suffix = LONG_MNEM_SUFFIX;
2490 mnem_p[-1] = '\0';
2491 current_templates = hash_find (op_hash, mnemonic);
2492 }
2493 break;
2494 }
2495 if (!current_templates)
2496 {
2497 as_bad (_("no such instruction: `%s'"), token_start);
2498 return NULL;
2499 }
2500 }
2501
2502 if (current_templates->start->opcode_modifier.jump
2503 || current_templates->start->opcode_modifier.jumpbyte)
2504 {
2505 /* Check for a branch hint. We allow ",pt" and ",pn" for
2506 predict taken and predict not taken respectively.
2507 I'm not sure that branch hints actually do anything on loop
2508 and jcxz insns (JumpByte) for current Pentium4 chips. They
2509 may work in the future and it doesn't hurt to accept them
2510 now. */
2511 if (l[0] == ',' && l[1] == 'p')
2512 {
2513 if (l[2] == 't')
2514 {
2515 if (!add_prefix (DS_PREFIX_OPCODE))
2516 return NULL;
2517 l += 3;
2518 }
2519 else if (l[2] == 'n')
2520 {
2521 if (!add_prefix (CS_PREFIX_OPCODE))
2522 return NULL;
2523 l += 3;
2524 }
2525 }
2526 }
2527 /* Any other comma loses. */
2528 if (*l == ',')
2529 {
2530 as_bad (_("invalid character %s in mnemonic"),
2531 output_invalid (*l));
2532 return NULL;
2533 }
2534
2535 /* Check if instruction is supported on specified architecture. */
2536 supported = 0;
2537 for (t = current_templates->start; t < current_templates->end; ++t)
2538 {
2539 if (cpu_flags_match (t->cpu_flags))
2540 supported |= 1;
2541 if (cpu_flags_check_cpu64 (t->cpu_flags))
2542 supported |= 2;
2543 }
2544 if (!(supported & 2))
2545 {
2546 as_bad (flag_code == CODE_64BIT
2547 ? _("`%s' is not supported in 64-bit mode")
2548 : _("`%s' is only supported in 64-bit mode"),
2549 current_templates->start->name);
2550 return NULL;
2551 }
2552 if (!(supported & 1))
2553 {
2554 as_warn (_("`%s' is not supported on `%s%s'"),
2555 current_templates->start->name,
2556 cpu_arch_name,
2557 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2558 }
2559 else if (!cpu_arch_flags.bitfield.cpui386
2560 && (flag_code != CODE_16BIT))
2561 {
2562 as_warn (_("use .code16 to ensure correct addressing mode"));
2563 }
2564
2565 /* Check for rep/repne without a string instruction. */
2566 if (expecting_string_instruction)
2567 {
2568 static templates override;
2569
2570 for (t = current_templates->start; t < current_templates->end; ++t)
2571 if (t->opcode_modifier.isstring)
2572 break;
2573 if (t >= current_templates->end)
2574 {
2575 as_bad (_("expecting string instruction after `%s'"),
2576 expecting_string_instruction);
2577 return NULL;
2578 }
2579 for (override.start = t; t < current_templates->end; ++t)
2580 if (!t->opcode_modifier.isstring)
2581 break;
2582 override.end = t;
2583 current_templates = &override;
2584 }
2585
2586 return l;
2587 }
2588
2589 static char *
2590 parse_operands (char *l, const char *mnemonic)
2591 {
2592 char *token_start;
2593
2594 /* 1 if operand is pending after ','. */
2595 unsigned int expecting_operand = 0;
2596
2597 /* Non-zero if operand parens not balanced. */
2598 unsigned int paren_not_balanced;
2599
2600 while (*l != END_OF_INSN)
2601 {
2602 /* Skip optional white space before operand. */
2603 if (is_space_char (*l))
2604 ++l;
2605 if (!is_operand_char (*l) && *l != END_OF_INSN)
2606 {
2607 as_bad (_("invalid character %s before operand %d"),
2608 output_invalid (*l),
2609 i.operands + 1);
2610 return NULL;
2611 }
2612 token_start = l; /* after white space */
2613 paren_not_balanced = 0;
2614 while (paren_not_balanced || *l != ',')
2615 {
2616 if (*l == END_OF_INSN)
2617 {
2618 if (paren_not_balanced)
2619 {
2620 if (!intel_syntax)
2621 as_bad (_("unbalanced parenthesis in operand %d."),
2622 i.operands + 1);
2623 else
2624 as_bad (_("unbalanced brackets in operand %d."),
2625 i.operands + 1);
2626 return NULL;
2627 }
2628 else
2629 break; /* we are done */
2630 }
2631 else if (!is_operand_char (*l) && !is_space_char (*l))
2632 {
2633 as_bad (_("invalid character %s in operand %d"),
2634 output_invalid (*l),
2635 i.operands + 1);
2636 return NULL;
2637 }
2638 if (!intel_syntax)
2639 {
2640 if (*l == '(')
2641 ++paren_not_balanced;
2642 if (*l == ')')
2643 --paren_not_balanced;
2644 }
2645 else
2646 {
2647 if (*l == '[')
2648 ++paren_not_balanced;
2649 if (*l == ']')
2650 --paren_not_balanced;
2651 }
2652 l++;
2653 }
2654 if (l != token_start)
2655 { /* Yes, we've read in another operand. */
2656 unsigned int operand_ok;
2657 this_operand = i.operands++;
2658 if (i.operands > MAX_OPERANDS)
2659 {
2660 as_bad (_("spurious operands; (%d operands/instruction max)"),
2661 MAX_OPERANDS);
2662 return NULL;
2663 }
2664 /* Now parse operand adding info to 'i' as we go along. */
2665 END_STRING_AND_SAVE (l);
2666
2667 if (intel_syntax)
2668 operand_ok =
2669 i386_intel_operand (token_start,
2670 intel_float_operand (mnemonic));
2671 else
2672 operand_ok = i386_operand (token_start);
2673
2674 RESTORE_END_STRING (l);
2675 if (!operand_ok)
2676 return NULL;
2677 }
2678 else
2679 {
2680 if (expecting_operand)
2681 {
2682 expecting_operand_after_comma:
2683 as_bad (_("expecting operand after ','; got nothing"));
2684 return NULL;
2685 }
2686 if (*l == ',')
2687 {
2688 as_bad (_("expecting operand before ','; got nothing"));
2689 return NULL;
2690 }
2691 }
2692
2693 /* Now *l must be either ',' or END_OF_INSN. */
2694 if (*l == ',')
2695 {
2696 if (*++l == END_OF_INSN)
2697 {
2698 /* Just skip it, if it's \n complain. */
2699 goto expecting_operand_after_comma;
2700 }
2701 expecting_operand = 1;
2702 }
2703 }
2704 return l;
2705 }
2706
2707 static void
2708 swap_2_operands (int xchg1, int xchg2)
2709 {
2710 union i386_op temp_op;
2711 i386_operand_type temp_type;
2712 enum bfd_reloc_code_real temp_reloc;
2713
2714 temp_type = i.types[xchg2];
2715 i.types[xchg2] = i.types[xchg1];
2716 i.types[xchg1] = temp_type;
2717 temp_op = i.op[xchg2];
2718 i.op[xchg2] = i.op[xchg1];
2719 i.op[xchg1] = temp_op;
2720 temp_reloc = i.reloc[xchg2];
2721 i.reloc[xchg2] = i.reloc[xchg1];
2722 i.reloc[xchg1] = temp_reloc;
2723 }
2724
2725 static void
2726 swap_operands (void)
2727 {
2728 switch (i.operands)
2729 {
2730 case 4:
2731 swap_2_operands (1, i.operands - 2);
2732 case 3:
2733 case 2:
2734 swap_2_operands (0, i.operands - 1);
2735 break;
2736 default:
2737 abort ();
2738 }
2739
2740 if (i.mem_operands == 2)
2741 {
2742 const seg_entry *temp_seg;
2743 temp_seg = i.seg[0];
2744 i.seg[0] = i.seg[1];
2745 i.seg[1] = temp_seg;
2746 }
2747 }
2748
2749 /* Try to ensure constant immediates are represented in the smallest
2750 opcode possible. */
2751 static void
2752 optimize_imm (void)
2753 {
2754 char guess_suffix = 0;
2755 int op;
2756
2757 if (i.suffix)
2758 guess_suffix = i.suffix;
2759 else if (i.reg_operands)
2760 {
2761 /* Figure out a suffix from the last register operand specified.
2762 We can't do this properly yet, ie. excluding InOutPortReg,
2763 but the following works for instructions with immediates.
2764 In any case, we can't set i.suffix yet. */
2765 for (op = i.operands; --op >= 0;)
2766 if (i.types[op].bitfield.reg8)
2767 {
2768 guess_suffix = BYTE_MNEM_SUFFIX;
2769 break;
2770 }
2771 else if (i.types[op].bitfield.reg16)
2772 {
2773 guess_suffix = WORD_MNEM_SUFFIX;
2774 break;
2775 }
2776 else if (i.types[op].bitfield.reg32)
2777 {
2778 guess_suffix = LONG_MNEM_SUFFIX;
2779 break;
2780 }
2781 else if (i.types[op].bitfield.reg64)
2782 {
2783 guess_suffix = QWORD_MNEM_SUFFIX;
2784 break;
2785 }
2786 }
2787 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2788 guess_suffix = WORD_MNEM_SUFFIX;
2789
2790 for (op = i.operands; --op >= 0;)
2791 if (operand_type_check (i.types[op], imm))
2792 {
2793 switch (i.op[op].imms->X_op)
2794 {
2795 case O_constant:
2796 /* If a suffix is given, this operand may be shortened. */
2797 switch (guess_suffix)
2798 {
2799 case LONG_MNEM_SUFFIX:
2800 i.types[op].bitfield.imm32 = 1;
2801 i.types[op].bitfield.imm64 = 1;
2802 break;
2803 case WORD_MNEM_SUFFIX:
2804 i.types[op].bitfield.imm16 = 1;
2805 i.types[op].bitfield.imm32 = 1;
2806 i.types[op].bitfield.imm32s = 1;
2807 i.types[op].bitfield.imm64 = 1;
2808 break;
2809 case BYTE_MNEM_SUFFIX:
2810 i.types[op].bitfield.imm8 = 1;
2811 i.types[op].bitfield.imm8s = 1;
2812 i.types[op].bitfield.imm16 = 1;
2813 i.types[op].bitfield.imm32 = 1;
2814 i.types[op].bitfield.imm32s = 1;
2815 i.types[op].bitfield.imm64 = 1;
2816 break;
2817 }
2818
2819 /* If this operand is at most 16 bits, convert it
2820 to a signed 16 bit number before trying to see
2821 whether it will fit in an even smaller size.
2822 This allows a 16-bit operand such as $0xffe0 to
2823 be recognised as within Imm8S range. */
2824 if ((i.types[op].bitfield.imm16)
2825 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2826 {
2827 i.op[op].imms->X_add_number =
2828 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2829 }
2830 if ((i.types[op].bitfield.imm32)
2831 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2832 == 0))
2833 {
2834 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2835 ^ ((offsetT) 1 << 31))
2836 - ((offsetT) 1 << 31));
2837 }
2838 i.types[op]
2839 = operand_type_or (i.types[op],
2840 smallest_imm_type (i.op[op].imms->X_add_number));
2841
2842 /* We must avoid matching of Imm32 templates when 64bit
2843 only immediate is available. */
2844 if (guess_suffix == QWORD_MNEM_SUFFIX)
2845 i.types[op].bitfield.imm32 = 0;
2846 break;
2847
2848 case O_absent:
2849 case O_register:
2850 abort ();
2851
2852 /* Symbols and expressions. */
2853 default:
2854 /* Convert symbolic operand to proper sizes for matching, but don't
2855 prevent matching a set of insns that only supports sizes other
2856 than those matching the insn suffix. */
2857 {
2858 i386_operand_type mask, allowed;
2859 const template *t;
2860
2861 UINTS_CLEAR (mask);
2862 UINTS_CLEAR (allowed);
2863
2864 for (t = current_templates->start;
2865 t < current_templates->end;
2866 ++t)
2867 allowed = operand_type_or (allowed,
2868 t->operand_types[op]);
2869 switch (guess_suffix)
2870 {
2871 case QWORD_MNEM_SUFFIX:
2872 mask.bitfield.imm64 = 1;
2873 mask.bitfield.imm32s = 1;
2874 break;
2875 case LONG_MNEM_SUFFIX:
2876 mask.bitfield.imm32 = 1;
2877 break;
2878 case WORD_MNEM_SUFFIX:
2879 mask.bitfield.imm16 = 1;
2880 break;
2881 case BYTE_MNEM_SUFFIX:
2882 mask.bitfield.imm8 = 1;
2883 break;
2884 default:
2885 break;
2886 }
2887 allowed = operand_type_and (mask, allowed);
2888 if (!UINTS_ALL_ZERO (allowed))
2889 i.types[op] = operand_type_and (i.types[op], mask);
2890 }
2891 break;
2892 }
2893 }
2894 }
2895
2896 /* Try to use the smallest displacement type too. */
2897 static void
2898 optimize_disp (void)
2899 {
2900 int op;
2901
2902 for (op = i.operands; --op >= 0;)
2903 if (operand_type_check (i.types[op], disp))
2904 {
2905 if (i.op[op].disps->X_op == O_constant)
2906 {
2907 offsetT disp = i.op[op].disps->X_add_number;
2908
2909 if (i.types[op].bitfield.disp16
2910 && (disp & ~(offsetT) 0xffff) == 0)
2911 {
2912 /* If this operand is at most 16 bits, convert
2913 to a signed 16 bit number and don't use 64bit
2914 displacement. */
2915 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2916 i.types[op].bitfield.disp64 = 0;
2917 }
2918 if (i.types[op].bitfield.disp32
2919 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2920 {
2921 /* If this operand is at most 32 bits, convert
2922 to a signed 32 bit number and don't use 64bit
2923 displacement. */
2924 disp &= (((offsetT) 2 << 31) - 1);
2925 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2926 i.types[op].bitfield.disp64 = 0;
2927 }
2928 if (!disp && i.types[op].bitfield.baseindex)
2929 {
2930 i.types[op].bitfield.disp8 = 0;
2931 i.types[op].bitfield.disp16 = 0;
2932 i.types[op].bitfield.disp32 = 0;
2933 i.types[op].bitfield.disp32s = 0;
2934 i.types[op].bitfield.disp64 = 0;
2935 i.op[op].disps = 0;
2936 i.disp_operands--;
2937 }
2938 else if (flag_code == CODE_64BIT)
2939 {
2940 if (fits_in_signed_long (disp))
2941 {
2942 i.types[op].bitfield.disp64 = 0;
2943 i.types[op].bitfield.disp32s = 1;
2944 }
2945 if (fits_in_unsigned_long (disp))
2946 i.types[op].bitfield.disp32 = 1;
2947 }
2948 if ((i.types[op].bitfield.disp32
2949 || i.types[op].bitfield.disp32s
2950 || i.types[op].bitfield.disp16)
2951 && fits_in_signed_byte (disp))
2952 i.types[op].bitfield.disp8 = 1;
2953 }
2954 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2955 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2956 {
2957 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2958 i.op[op].disps, 0, i.reloc[op]);
2959 i.types[op].bitfield.disp8 = 0;
2960 i.types[op].bitfield.disp16 = 0;
2961 i.types[op].bitfield.disp32 = 0;
2962 i.types[op].bitfield.disp32s = 0;
2963 i.types[op].bitfield.disp64 = 0;
2964 }
2965 else
2966 /* We only support 64bit displacement on constants. */
2967 i.types[op].bitfield.disp64 = 0;
2968 }
2969 }
2970
2971 static int
2972 match_template (void)
2973 {
2974 /* Points to template once we've found it. */
2975 const template *t;
2976 i386_operand_type overlap0, overlap1, overlap2, overlap3;
2977 unsigned int found_reverse_match;
2978 i386_opcode_modifier suffix_check;
2979 i386_operand_type operand_types [MAX_OPERANDS];
2980 int addr_prefix_disp;
2981 unsigned int j;
2982 i386_cpu_flags overlap;
2983
2984 #if MAX_OPERANDS != 4
2985 # error "MAX_OPERANDS must be 4."
2986 #endif
2987
2988 found_reverse_match = 0;
2989 addr_prefix_disp = -1;
2990
2991 memset (&suffix_check, 0, sizeof (suffix_check));
2992 if (i.suffix == BYTE_MNEM_SUFFIX)
2993 suffix_check.no_bsuf = 1;
2994 else if (i.suffix == WORD_MNEM_SUFFIX)
2995 suffix_check.no_wsuf = 1;
2996 else if (i.suffix == SHORT_MNEM_SUFFIX)
2997 suffix_check.no_ssuf = 1;
2998 else if (i.suffix == LONG_MNEM_SUFFIX)
2999 suffix_check.no_lsuf = 1;
3000 else if (i.suffix == QWORD_MNEM_SUFFIX)
3001 suffix_check.no_qsuf = 1;
3002 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3003 suffix_check.no_xsuf = 1;
3004
3005 for (t = current_templates->start; t < current_templates->end; t++)
3006 {
3007 addr_prefix_disp = -1;
3008
3009 /* Must have right number of operands. */
3010 if (i.operands != t->operands)
3011 continue;
3012
3013 /* Check the suffix, except for some instructions in intel mode. */
3014 if (((t->opcode_modifier.no_bsuf & suffix_check.no_bsuf)
3015 || (t->opcode_modifier.no_wsuf & suffix_check.no_wsuf)
3016 || (t->opcode_modifier.no_lsuf & suffix_check.no_lsuf)
3017 || (t->opcode_modifier.no_ssuf & suffix_check.no_ssuf)
3018 || (t->opcode_modifier.no_qsuf & suffix_check.no_qsuf)
3019 || (t->opcode_modifier.no_xsuf & suffix_check.no_xsuf))
3020 && !(intel_syntax && t->opcode_modifier.ignoresize))
3021 continue;
3022
3023 for (j = 0; j < MAX_OPERANDS; j++)
3024 operand_types [j] = t->operand_types [j];
3025
3026 /* In general, don't allow 64-bit operands in 32-bit mode. */
3027 if (i.suffix == QWORD_MNEM_SUFFIX
3028 && flag_code != CODE_64BIT
3029 && (intel_syntax
3030 ? (!t->opcode_modifier.ignoresize
3031 && !intel_float_operand (t->name))
3032 : intel_float_operand (t->name) != 2)
3033 && ((!operand_types[0].bitfield.regmmx
3034 && !operand_types[0].bitfield.regxmm)
3035 || (!operand_types[t->operands > 1].bitfield.regmmx
3036 && !!operand_types[t->operands > 1].bitfield.regxmm))
3037 && (t->base_opcode != 0x0fc7
3038 || t->extension_opcode != 1 /* cmpxchg8b */))
3039 continue;
3040
3041 /* Do not verify operands when there are none. */
3042 else
3043 {
3044 overlap = cpu_flags_and (t->cpu_flags, cpu_arch_flags_not);
3045 if (!t->operands)
3046 {
3047 if (!UINTS_ALL_ZERO (overlap))
3048 continue;
3049 /* We've found a match; break out of loop. */
3050 break;
3051 }
3052 }
3053
3054 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3055 into Disp32/Disp16/Disp32 operand. */
3056 if (i.prefix[ADDR_PREFIX] != 0)
3057 {
3058 /* There should be only one Disp operand. */
3059 switch (flag_code)
3060 {
3061 case CODE_16BIT:
3062 for (j = 0; j < MAX_OPERANDS; j++)
3063 {
3064 if (operand_types[j].bitfield.disp16)
3065 {
3066 addr_prefix_disp = j;
3067 operand_types[j].bitfield.disp32 = 1;
3068 operand_types[j].bitfield.disp16 = 0;
3069 break;
3070 }
3071 }
3072 break;
3073 case CODE_32BIT:
3074 for (j = 0; j < MAX_OPERANDS; j++)
3075 {
3076 if (operand_types[j].bitfield.disp32)
3077 {
3078 addr_prefix_disp = j;
3079 operand_types[j].bitfield.disp32 = 0;
3080 operand_types[j].bitfield.disp16 = 1;
3081 break;
3082 }
3083 }
3084 break;
3085 case CODE_64BIT:
3086 for (j = 0; j < MAX_OPERANDS; j++)
3087 {
3088 if (operand_types[j].bitfield.disp64)
3089 {
3090 addr_prefix_disp = j;
3091 operand_types[j].bitfield.disp64 = 0;
3092 operand_types[j].bitfield.disp32 = 1;
3093 break;
3094 }
3095 }
3096 break;
3097 }
3098 }
3099
3100 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3101 switch (t->operands)
3102 {
3103 case 1:
3104 if (!operand_type_match (overlap0, i.types[0]))
3105 continue;
3106 break;
3107 case 2:
3108 /* xchg %eax, %eax is a special case. It is an aliase for nop
3109 only in 32bit mode and we can use opcode 0x90. In 64bit
3110 mode, we can't use 0x90 for xchg %eax, %eax since it should
3111 zero-extend %eax to %rax. */
3112 if (flag_code == CODE_64BIT
3113 && t->base_opcode == 0x90
3114 && UINTS_EQUAL (i.types [0], acc32)
3115 && UINTS_EQUAL (i.types [1], acc32))
3116 continue;
3117 case 3:
3118 case 4:
3119 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3120 if (!operand_type_match (overlap0, i.types[0])
3121 || !operand_type_match (overlap1, i.types[1])
3122 /* monitor in SSE3 is a very special case. The first
3123 register and the second register may have different
3124 sizes. The same applies to crc32 in SSE4.2. It is
3125 also true for invlpga, vmload, vmrun and vmsave in
3126 SVME. */
3127 || !((t->base_opcode == 0x0f01
3128 && (t->extension_opcode == 0xc8
3129 || t->extension_opcode == 0xd8
3130 || t->extension_opcode == 0xda
3131 || t->extension_opcode == 0xdb
3132 || t->extension_opcode == 0xdf))
3133 || t->base_opcode == 0xf20f38f1
3134 || operand_type_register_match (overlap0, i.types[0],
3135 operand_types[0],
3136 overlap1, i.types[1],
3137 operand_types[1])))
3138 {
3139 /* Check if other direction is valid ... */
3140 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
3141 continue;
3142
3143 /* Try reversing direction of operands. */
3144 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3145 overlap1 = operand_type_and (i.types[1], operand_types[0]);
3146 if (!operand_type_match (overlap0, i.types[0])
3147 || !operand_type_match (overlap1, i.types[1])
3148 || !operand_type_register_match (overlap0, i.types[0],
3149 operand_types[1],
3150 overlap1, i.types[1],
3151 operand_types[0]))
3152 {
3153 /* Does not match either direction. */
3154 continue;
3155 }
3156 /* found_reverse_match holds which of D or FloatDR
3157 we've found. */
3158 if (t->opcode_modifier.d)
3159 found_reverse_match = Opcode_D;
3160 else if (t->opcode_modifier.floatd)
3161 found_reverse_match = Opcode_FloatD;
3162 else
3163 found_reverse_match = 0;
3164 if (t->opcode_modifier.floatr)
3165 found_reverse_match |= Opcode_FloatR;
3166 }
3167 else
3168 {
3169 /* Found a forward 2 operand match here. */
3170 switch (t->operands)
3171 {
3172 case 4:
3173 overlap3 = operand_type_and (i.types[3],
3174 operand_types[3]);
3175 case 3:
3176 overlap2 = operand_type_and (i.types[2],
3177 operand_types[2]);
3178 break;
3179 }
3180
3181 switch (t->operands)
3182 {
3183 case 4:
3184 if (!operand_type_match (overlap3, i.types[3])
3185 || !operand_type_register_match (overlap2,
3186 i.types[2],
3187 operand_types[2],
3188 overlap3,
3189 i.types[3],
3190 operand_types[3]))
3191 continue;
3192 case 3:
3193 /* Here we make use of the fact that there are no
3194 reverse match 3 operand instructions, and all 3
3195 operand instructions only need to be checked for
3196 register consistency between operands 2 and 3. */
3197 if (!operand_type_match (overlap2, i.types[2])
3198 || !operand_type_register_match (overlap1,
3199 i.types[1],
3200 operand_types[1],
3201 overlap2,
3202 i.types[2],
3203 operand_types[2]))
3204 continue;
3205 break;
3206 }
3207 }
3208 /* Found either forward/reverse 2, 3 or 4 operand match here:
3209 slip through to break. */
3210 }
3211 if (!UINTS_ALL_ZERO (overlap))
3212 {
3213 found_reverse_match = 0;
3214 continue;
3215 }
3216 /* We've found a match; break out of loop. */
3217 break;
3218 }
3219
3220 if (t == current_templates->end)
3221 {
3222 /* We found no match. */
3223 as_bad (_("suffix or operands invalid for `%s'"),
3224 current_templates->start->name);
3225 return 0;
3226 }
3227
3228 if (!quiet_warnings)
3229 {
3230 if (!intel_syntax
3231 && (i.types[0].bitfield.jumpabsolute
3232 != operand_types[0].bitfield.jumpabsolute))
3233 {
3234 as_warn (_("indirect %s without `*'"), t->name);
3235 }
3236
3237 if (t->opcode_modifier.isprefix
3238 && t->opcode_modifier.ignoresize)
3239 {
3240 /* Warn them that a data or address size prefix doesn't
3241 affect assembly of the next line of code. */
3242 as_warn (_("stand-alone `%s' prefix"), t->name);
3243 }
3244 }
3245
3246 /* Copy the template we found. */
3247 i.tm = *t;
3248
3249 if (addr_prefix_disp != -1)
3250 i.tm.operand_types[addr_prefix_disp]
3251 = operand_types[addr_prefix_disp];
3252
3253 if (found_reverse_match)
3254 {
3255 /* If we found a reverse match we must alter the opcode
3256 direction bit. found_reverse_match holds bits to change
3257 (different for int & float insns). */
3258
3259 i.tm.base_opcode ^= found_reverse_match;
3260
3261 i.tm.operand_types[0] = operand_types[1];
3262 i.tm.operand_types[1] = operand_types[0];
3263 }
3264
3265 return 1;
3266 }
3267
3268 static int
3269 check_string (void)
3270 {
3271 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
3272 if (i.tm.operand_types[mem_op].bitfield.esseg)
3273 {
3274 if (i.seg[0] != NULL && i.seg[0] != &es)
3275 {
3276 as_bad (_("`%s' operand %d must use `%%es' segment"),
3277 i.tm.name,
3278 mem_op + 1);
3279 return 0;
3280 }
3281 /* There's only ever one segment override allowed per instruction.
3282 This instruction possibly has a legal segment override on the
3283 second operand, so copy the segment to where non-string
3284 instructions store it, allowing common code. */
3285 i.seg[0] = i.seg[1];
3286 }
3287 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
3288 {
3289 if (i.seg[1] != NULL && i.seg[1] != &es)
3290 {
3291 as_bad (_("`%s' operand %d must use `%%es' segment"),
3292 i.tm.name,
3293 mem_op + 2);
3294 return 0;
3295 }
3296 }
3297 return 1;
3298 }
3299
3300 static int
3301 process_suffix (void)
3302 {
3303 /* If matched instruction specifies an explicit instruction mnemonic
3304 suffix, use it. */
3305 if (i.tm.opcode_modifier.size16)
3306 i.suffix = WORD_MNEM_SUFFIX;
3307 else if (i.tm.opcode_modifier.size32)
3308 i.suffix = LONG_MNEM_SUFFIX;
3309 else if (i.tm.opcode_modifier.size64)
3310 i.suffix = QWORD_MNEM_SUFFIX;
3311 else if (i.reg_operands)
3312 {
3313 /* If there's no instruction mnemonic suffix we try to invent one
3314 based on register operands. */
3315 if (!i.suffix)
3316 {
3317 /* We take i.suffix from the last register operand specified,
3318 Destination register type is more significant than source
3319 register type. crc32 in SSE4.2 prefers source register
3320 type. */
3321 if (i.tm.base_opcode == 0xf20f38f1)
3322 {
3323 if (i.types[0].bitfield.reg16)
3324 i.suffix = WORD_MNEM_SUFFIX;
3325 else if (i.types[0].bitfield.reg32)
3326 i.suffix = LONG_MNEM_SUFFIX;
3327 else if (i.types[0].bitfield.reg64)
3328 i.suffix = QWORD_MNEM_SUFFIX;
3329 }
3330 else if (i.tm.base_opcode == 0xf20f38f0)
3331 {
3332 if (i.types[0].bitfield.reg8)
3333 i.suffix = BYTE_MNEM_SUFFIX;
3334 }
3335
3336 if (!i.suffix)
3337 {
3338 int op;
3339
3340 if (i.tm.base_opcode == 0xf20f38f1
3341 || i.tm.base_opcode == 0xf20f38f0)
3342 {
3343 /* We have to know the operand size for crc32. */
3344 as_bad (_("ambiguous memory operand size for `%s`"),
3345 i.tm.name);
3346 return 0;
3347 }
3348
3349 for (op = i.operands; --op >= 0;)
3350 if (!i.tm.operand_types[op].bitfield.inoutportreg)
3351 {
3352 if (i.types[op].bitfield.reg8)
3353 {
3354 i.suffix = BYTE_MNEM_SUFFIX;
3355 break;
3356 }
3357 else if (i.types[op].bitfield.reg16)
3358 {
3359 i.suffix = WORD_MNEM_SUFFIX;
3360 break;
3361 }
3362 else if (i.types[op].bitfield.reg32)
3363 {
3364 i.suffix = LONG_MNEM_SUFFIX;
3365 break;
3366 }
3367 else if (i.types[op].bitfield.reg64)
3368 {
3369 i.suffix = QWORD_MNEM_SUFFIX;
3370 break;
3371 }
3372 }
3373 }
3374 }
3375 else if (i.suffix == BYTE_MNEM_SUFFIX)
3376 {
3377 if (!check_byte_reg ())
3378 return 0;
3379 }
3380 else if (i.suffix == LONG_MNEM_SUFFIX)
3381 {
3382 if (!check_long_reg ())
3383 return 0;
3384 }
3385 else if (i.suffix == QWORD_MNEM_SUFFIX)
3386 {
3387 if (intel_syntax
3388 && i.tm.opcode_modifier.ignoresize
3389 && i.tm.opcode_modifier.no_qsuf)
3390 i.suffix = 0;
3391 else if (!check_qword_reg ())
3392 return 0;
3393 }
3394 else if (i.suffix == WORD_MNEM_SUFFIX)
3395 {
3396 if (!check_word_reg ())
3397 return 0;
3398 }
3399 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
3400 /* Do nothing if the instruction is going to ignore the prefix. */
3401 ;
3402 else
3403 abort ();
3404 }
3405 else if (i.tm.opcode_modifier.defaultsize
3406 && !i.suffix
3407 /* exclude fldenv/frstor/fsave/fstenv */
3408 && i.tm.opcode_modifier.no_ssuf)
3409 {
3410 i.suffix = stackop_size;
3411 }
3412 else if (intel_syntax
3413 && !i.suffix
3414 && (i.tm.operand_types[0].bitfield.jumpabsolute
3415 || i.tm.opcode_modifier.jumpbyte
3416 || i.tm.opcode_modifier.jumpintersegment
3417 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
3418 && i.tm.extension_opcode <= 3)))
3419 {
3420 switch (flag_code)
3421 {
3422 case CODE_64BIT:
3423 if (!i.tm.opcode_modifier.no_qsuf)
3424 {
3425 i.suffix = QWORD_MNEM_SUFFIX;
3426 break;
3427 }
3428 case CODE_32BIT:
3429 if (!i.tm.opcode_modifier.no_lsuf)
3430 i.suffix = LONG_MNEM_SUFFIX;
3431 break;
3432 case CODE_16BIT:
3433 if (!i.tm.opcode_modifier.no_wsuf)
3434 i.suffix = WORD_MNEM_SUFFIX;
3435 break;
3436 }
3437 }
3438
3439 if (!i.suffix)
3440 {
3441 if (!intel_syntax)
3442 {
3443 if (i.tm.opcode_modifier.w)
3444 {
3445 as_bad (_("no instruction mnemonic suffix given and "
3446 "no register operands; can't size instruction"));
3447 return 0;
3448 }
3449 }
3450 else
3451 {
3452 unsigned int suffixes;
3453
3454 suffixes = !i.tm.opcode_modifier.no_bsuf;
3455 if (!i.tm.opcode_modifier.no_wsuf)
3456 suffixes |= 1 << 1;
3457 if (!i.tm.opcode_modifier.no_lsuf)
3458 suffixes |= 1 << 2;
3459 if (!i.tm.opcode_modifier.no_lsuf)
3460 suffixes |= 1 << 3;
3461 if (!i.tm.opcode_modifier.no_ssuf)
3462 suffixes |= 1 << 4;
3463 if (!i.tm.opcode_modifier.no_qsuf)
3464 suffixes |= 1 << 5;
3465
3466 /* There are more than suffix matches. */
3467 if (i.tm.opcode_modifier.w
3468 || ((suffixes & (suffixes - 1))
3469 && !i.tm.opcode_modifier.defaultsize
3470 && !i.tm.opcode_modifier.ignoresize))
3471 {
3472 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3473 return 0;
3474 }
3475 }
3476 }
3477
3478 /* Change the opcode based on the operand size given by i.suffix;
3479 We don't need to change things for byte insns. */
3480
3481 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
3482 {
3483 /* It's not a byte, select word/dword operation. */
3484 if (i.tm.opcode_modifier.w)
3485 {
3486 if (i.tm.opcode_modifier.shortform)
3487 i.tm.base_opcode |= 8;
3488 else
3489 i.tm.base_opcode |= 1;
3490 }
3491
3492 /* Now select between word & dword operations via the operand
3493 size prefix, except for instructions that will ignore this
3494 prefix anyway. */
3495 if (i.tm.opcode_modifier.addrprefixop0)
3496 {
3497 /* The address size override prefix changes the size of the
3498 first operand. */
3499 if ((flag_code == CODE_32BIT
3500 && i.op->regs[0].reg_type.bitfield.reg16)
3501 || (flag_code != CODE_32BIT
3502 && i.op->regs[0].reg_type.bitfield.reg32))
3503 if (!add_prefix (ADDR_PREFIX_OPCODE))
3504 return 0;
3505 }
3506 else if (i.suffix != QWORD_MNEM_SUFFIX
3507 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
3508 && !i.tm.opcode_modifier.ignoresize
3509 && !i.tm.opcode_modifier.floatmf
3510 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
3511 || (flag_code == CODE_64BIT
3512 && i.tm.opcode_modifier.jumpbyte)))
3513 {
3514 unsigned int prefix = DATA_PREFIX_OPCODE;
3515
3516 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
3517 prefix = ADDR_PREFIX_OPCODE;
3518
3519 if (!add_prefix (prefix))
3520 return 0;
3521 }
3522
3523 /* Set mode64 for an operand. */
3524 if (i.suffix == QWORD_MNEM_SUFFIX
3525 && flag_code == CODE_64BIT
3526 && !i.tm.opcode_modifier.norex64)
3527 {
3528 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3529 need rex64. cmpxchg8b is also a special case. */
3530 if (! (i.operands == 2
3531 && i.tm.base_opcode == 0x90
3532 && i.tm.extension_opcode == None
3533 && UINTS_EQUAL (i.types [0], acc64)
3534 && UINTS_EQUAL (i.types [1], acc64))
3535 && ! (i.operands == 1
3536 && i.tm.base_opcode == 0xfc7
3537 && i.tm.extension_opcode == 1
3538 && !operand_type_check (i.types [0], reg)
3539 && operand_type_check (i.types [0], anymem)))
3540 i.rex |= REX_W;
3541 }
3542
3543 /* Size floating point instruction. */
3544 if (i.suffix == LONG_MNEM_SUFFIX)
3545 if (i.tm.opcode_modifier.floatmf)
3546 i.tm.base_opcode ^= 4;
3547 }
3548
3549 return 1;
3550 }
3551
3552 static int
3553 check_byte_reg (void)
3554 {
3555 int op;
3556
3557 for (op = i.operands; --op >= 0;)
3558 {
3559 /* If this is an eight bit register, it's OK. If it's the 16 or
3560 32 bit version of an eight bit register, we will just use the
3561 low portion, and that's OK too. */
3562 if (i.types[op].bitfield.reg8)
3563 continue;
3564
3565 /* Don't generate this warning if not needed. */
3566 if (intel_syntax && i.tm.opcode_modifier.byteokintel)
3567 continue;
3568
3569 /* crc32 doesn't generate this warning. */
3570 if (i.tm.base_opcode == 0xf20f38f0)
3571 continue;
3572
3573 if ((i.types[op].bitfield.reg16
3574 || i.types[op].bitfield.reg32
3575 || i.types[op].bitfield.reg64)
3576 && i.op[op].regs->reg_num < 4)
3577 {
3578 /* Prohibit these changes in the 64bit mode, since the
3579 lowering is more complicated. */
3580 if (flag_code == CODE_64BIT
3581 && !i.tm.operand_types[op].bitfield.inoutportreg)
3582 {
3583 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3584 register_prefix, i.op[op].regs->reg_name,
3585 i.suffix);
3586 return 0;
3587 }
3588 #if REGISTER_WARNINGS
3589 if (!quiet_warnings
3590 && !i.tm.operand_types[op].bitfield.inoutportreg)
3591 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3592 register_prefix,
3593 (i.op[op].regs + (i.types[op].bitfield.reg16
3594 ? REGNAM_AL - REGNAM_AX
3595 : REGNAM_AL - REGNAM_EAX))->reg_name,
3596 register_prefix,
3597 i.op[op].regs->reg_name,
3598 i.suffix);
3599 #endif
3600 continue;
3601 }
3602 /* Any other register is bad. */
3603 if (i.types[op].bitfield.reg16
3604 || i.types[op].bitfield.reg32
3605 || i.types[op].bitfield.reg64
3606 || i.types[op].bitfield.regmmx
3607 || i.types[op].bitfield.regxmm
3608 || i.types[op].bitfield.sreg2
3609 || i.types[op].bitfield.sreg3
3610 || i.types[op].bitfield.control
3611 || i.types[op].bitfield.debug
3612 || i.types[op].bitfield.test
3613 || i.types[op].bitfield.floatreg
3614 || i.types[op].bitfield.floatacc)
3615 {
3616 as_bad (_("`%s%s' not allowed with `%s%c'"),
3617 register_prefix,
3618 i.op[op].regs->reg_name,
3619 i.tm.name,
3620 i.suffix);
3621 return 0;
3622 }
3623 }
3624 return 1;
3625 }
3626
3627 static int
3628 check_long_reg (void)
3629 {
3630 int op;
3631
3632 for (op = i.operands; --op >= 0;)
3633 /* Reject eight bit registers, except where the template requires
3634 them. (eg. movzb) */
3635 if (i.types[op].bitfield.reg8
3636 && (i.tm.operand_types[op].bitfield.reg16
3637 || i.tm.operand_types[op].bitfield.reg32
3638 || i.tm.operand_types[op].bitfield.acc))
3639 {
3640 as_bad (_("`%s%s' not allowed with `%s%c'"),
3641 register_prefix,
3642 i.op[op].regs->reg_name,
3643 i.tm.name,
3644 i.suffix);
3645 return 0;
3646 }
3647 /* Warn if the e prefix on a general reg is missing. */
3648 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3649 && i.types[op].bitfield.reg16
3650 && (i.tm.operand_types[op].bitfield.reg32
3651 || i.tm.operand_types[op].bitfield.acc))
3652 {
3653 /* Prohibit these changes in the 64bit mode, since the
3654 lowering is more complicated. */
3655 if (flag_code == CODE_64BIT)
3656 {
3657 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3658 register_prefix, i.op[op].regs->reg_name,
3659 i.suffix);
3660 return 0;
3661 }
3662 #if REGISTER_WARNINGS
3663 else
3664 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3665 register_prefix,
3666 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3667 register_prefix,
3668 i.op[op].regs->reg_name,
3669 i.suffix);
3670 #endif
3671 }
3672 /* Warn if the r prefix on a general reg is missing. */
3673 else if (i.types[op].bitfield.reg64
3674 && (i.tm.operand_types[op].bitfield.reg32
3675 || i.tm.operand_types[op].bitfield.acc))
3676 {
3677 if (intel_syntax
3678 && i.tm.opcode_modifier.toqword
3679 && !i.types[0].bitfield.regxmm)
3680 {
3681 /* Convert to QWORD. We want REX byte. */
3682 i.suffix = QWORD_MNEM_SUFFIX;
3683 }
3684 else
3685 {
3686 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3687 register_prefix, i.op[op].regs->reg_name,
3688 i.suffix);
3689 return 0;
3690 }
3691 }
3692 return 1;
3693 }
3694
3695 static int
3696 check_qword_reg (void)
3697 {
3698 int op;
3699
3700 for (op = i.operands; --op >= 0; )
3701 /* Reject eight bit registers, except where the template requires
3702 them. (eg. movzb) */
3703 if (i.types[op].bitfield.reg8
3704 && (i.tm.operand_types[op].bitfield.reg16
3705 || i.tm.operand_types[op].bitfield.reg32
3706 || i.tm.operand_types[op].bitfield.acc))
3707 {
3708 as_bad (_("`%s%s' not allowed with `%s%c'"),
3709 register_prefix,
3710 i.op[op].regs->reg_name,
3711 i.tm.name,
3712 i.suffix);
3713 return 0;
3714 }
3715 /* Warn if the e prefix on a general reg is missing. */
3716 else if ((i.types[op].bitfield.reg16
3717 || i.types[op].bitfield.reg32)
3718 && (i.tm.operand_types[op].bitfield.reg32
3719 || i.tm.operand_types[op].bitfield.acc))
3720 {
3721 /* Prohibit these changes in the 64bit mode, since the
3722 lowering is more complicated. */
3723 if (intel_syntax
3724 && i.tm.opcode_modifier.todword
3725 && !i.types[0].bitfield.regxmm)
3726 {
3727 /* Convert to DWORD. We don't want REX byte. */
3728 i.suffix = LONG_MNEM_SUFFIX;
3729 }
3730 else
3731 {
3732 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3733 register_prefix, i.op[op].regs->reg_name,
3734 i.suffix);
3735 return 0;
3736 }
3737 }
3738 return 1;
3739 }
3740
3741 static int
3742 check_word_reg (void)
3743 {
3744 int op;
3745 for (op = i.operands; --op >= 0;)
3746 /* Reject eight bit registers, except where the template requires
3747 them. (eg. movzb) */
3748 if (i.types[op].bitfield.reg8
3749 && (i.tm.operand_types[op].bitfield.reg16
3750 || i.tm.operand_types[op].bitfield.reg32
3751 || i.tm.operand_types[op].bitfield.acc))
3752 {
3753 as_bad (_("`%s%s' not allowed with `%s%c'"),
3754 register_prefix,
3755 i.op[op].regs->reg_name,
3756 i.tm.name,
3757 i.suffix);
3758 return 0;
3759 }
3760 /* Warn if the e prefix on a general reg is present. */
3761 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3762 && i.types[op].bitfield.reg32
3763 && (i.tm.operand_types[op].bitfield.reg16
3764 || i.tm.operand_types[op].bitfield.acc))
3765 {
3766 /* Prohibit these changes in the 64bit mode, since the
3767 lowering is more complicated. */
3768 if (flag_code == CODE_64BIT)
3769 {
3770 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3771 register_prefix, i.op[op].regs->reg_name,
3772 i.suffix);
3773 return 0;
3774 }
3775 else
3776 #if REGISTER_WARNINGS
3777 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3778 register_prefix,
3779 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3780 register_prefix,
3781 i.op[op].regs->reg_name,
3782 i.suffix);
3783 #endif
3784 }
3785 return 1;
3786 }
3787
3788 static int
3789 update_imm (unsigned int j)
3790 {
3791 i386_operand_type overlap;
3792
3793 overlap = operand_type_and (i.types[j], i.tm.operand_types[j]);
3794 if ((overlap.bitfield.imm8
3795 || overlap.bitfield.imm8s
3796 || overlap.bitfield.imm16
3797 || overlap.bitfield.imm32
3798 || overlap.bitfield.imm32s
3799 || overlap.bitfield.imm64)
3800 && !UINTS_EQUAL (overlap, imm8)
3801 && !UINTS_EQUAL (overlap, imm8s)
3802 && !UINTS_EQUAL (overlap, imm16)
3803 && !UINTS_EQUAL (overlap, imm32)
3804 && !UINTS_EQUAL (overlap, imm32s)
3805 && !UINTS_EQUAL (overlap, imm64))
3806 {
3807 if (i.suffix)
3808 {
3809 i386_operand_type temp;
3810
3811 UINTS_CLEAR (temp);
3812 if (i.suffix == BYTE_MNEM_SUFFIX)
3813 {
3814 temp.bitfield.imm8 = overlap.bitfield.imm8;
3815 temp.bitfield.imm8s = overlap.bitfield.imm8s;
3816 }
3817 else if (i.suffix == WORD_MNEM_SUFFIX)
3818 temp.bitfield.imm16 = overlap.bitfield.imm16;
3819 else if (i.suffix == QWORD_MNEM_SUFFIX)
3820 {
3821 temp.bitfield.imm64 = overlap.bitfield.imm64;
3822 temp.bitfield.imm32s = overlap.bitfield.imm32s;
3823 }
3824 else
3825 temp.bitfield.imm32 = overlap.bitfield.imm32;
3826 overlap = temp;
3827 }
3828 else if (UINTS_EQUAL (overlap, imm16_32_32s)
3829 || UINTS_EQUAL (overlap, imm16_32)
3830 || UINTS_EQUAL (overlap, imm16_32s))
3831 {
3832 UINTS_CLEAR (overlap);
3833 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3834 overlap.bitfield.imm16 = 1;
3835 else
3836 overlap.bitfield.imm32s = 1;
3837 }
3838 if (!UINTS_EQUAL (overlap, imm8)
3839 && !UINTS_EQUAL (overlap, imm8s)
3840 && !UINTS_EQUAL (overlap, imm16)
3841 && !UINTS_EQUAL (overlap, imm32)
3842 && !UINTS_EQUAL (overlap, imm32s)
3843 && !UINTS_EQUAL (overlap, imm64))
3844 {
3845 as_bad (_("no instruction mnemonic suffix given; "
3846 "can't determine immediate size"));
3847 return 0;
3848 }
3849 }
3850 i.types[j] = overlap;
3851
3852 return 1;
3853 }
3854
3855 static int
3856 finalize_imm (void)
3857 {
3858 unsigned int j;
3859
3860 for (j = 0; j < 2; j++)
3861 if (update_imm (j) == 0)
3862 return 0;
3863
3864 i.types[2] = operand_type_and (i.types[2], i.tm.operand_types[2]);
3865 assert (operand_type_check (i.types[2], imm) == 0);
3866
3867 return 1;
3868 }
3869
3870 static void
3871 process_drex (void)
3872 {
3873 i.drex.modrm_reg = None;
3874 i.drex.modrm_regmem = None;
3875
3876 /* SSE5 4 operand instructions must have the destination the same as
3877 one of the inputs. Figure out the destination register and cache
3878 it away in the drex field, and remember which fields to use for
3879 the modrm byte. */
3880 if (i.tm.opcode_modifier.drex
3881 && i.tm.opcode_modifier.drexv
3882 && i.operands == 4)
3883 {
3884 i.tm.extension_opcode = None;
3885
3886 /* Case 1: 4 operand insn, dest = src1, src3 = register. */
3887 if (i.types[0].bitfield.regxmm != 0
3888 && i.types[1].bitfield.regxmm != 0
3889 && i.types[2].bitfield.regxmm != 0
3890 && i.types[3].bitfield.regxmm != 0
3891 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
3892 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
3893 {
3894 /* Clear the arguments that are stored in drex. */
3895 UINTS_CLEAR (i.types[0]);
3896 UINTS_CLEAR (i.types[3]);
3897 i.reg_operands -= 2;
3898
3899 /* There are two different ways to encode a 4 operand
3900 instruction with all registers that uses OC1 set to
3901 0 or 1. Favor setting OC1 to 0 since this mimics the
3902 actions of other SSE5 assemblers. Use modrm encoding 2
3903 for register/register. Include the high order bit that
3904 is normally stored in the REX byte in the register
3905 field. */
3906 i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
3907 i.drex.modrm_reg = 2;
3908 i.drex.modrm_regmem = 1;
3909 i.drex.reg = (i.op[3].regs->reg_num
3910 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
3911 }
3912
3913 /* Case 2: 4 operand insn, dest = src1, src3 = memory. */
3914 else if (i.types[0].bitfield.regxmm != 0
3915 && i.types[1].bitfield.regxmm != 0
3916 && (i.types[2].bitfield.regxmm
3917 || operand_type_check (i.types[2], anymem))
3918 && i.types[3].bitfield.regxmm != 0
3919 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
3920 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
3921 {
3922 /* clear the arguments that are stored in drex */
3923 UINTS_CLEAR (i.types[0]);
3924 UINTS_CLEAR (i.types[3]);
3925 i.reg_operands -= 2;
3926
3927 /* Specify the modrm encoding for memory addressing. Include
3928 the high order bit that is normally stored in the REX byte
3929 in the register field. */
3930 i.tm.extension_opcode = DREX_X1_X2_XMEM_X1;
3931 i.drex.modrm_reg = 1;
3932 i.drex.modrm_regmem = 2;
3933 i.drex.reg = (i.op[3].regs->reg_num
3934 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
3935 }
3936
3937 /* Case 3: 4 operand insn, dest = src1, src2 = memory. */
3938 else if (i.types[0].bitfield.regxmm != 0
3939 && operand_type_check (i.types[1], anymem) != 0
3940 && i.types[2].bitfield.regxmm != 0
3941 && i.types[3].bitfield.regxmm != 0
3942 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
3943 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
3944 {
3945 /* Clear the arguments that are stored in drex. */
3946 UINTS_CLEAR (i.types[0]);
3947 UINTS_CLEAR (i.types[3]);
3948 i.reg_operands -= 2;
3949
3950 /* Specify the modrm encoding for memory addressing. Include
3951 the high order bit that is normally stored in the REX byte
3952 in the register field. */
3953 i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
3954 i.drex.modrm_reg = 2;
3955 i.drex.modrm_regmem = 1;
3956 i.drex.reg = (i.op[3].regs->reg_num
3957 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
3958 }
3959
3960 /* Case 4: 4 operand insn, dest = src3, src2 = register. */
3961 else if (i.types[0].bitfield.regxmm != 0
3962 && i.types[1].bitfield.regxmm != 0
3963 && i.types[2].bitfield.regxmm != 0
3964 && i.types[3].bitfield.regxmm != 0
3965 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
3966 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
3967 {
3968 /* clear the arguments that are stored in drex */
3969 UINTS_CLEAR (i.types[2]);
3970 UINTS_CLEAR (i.types[3]);
3971 i.reg_operands -= 2;
3972
3973 /* There are two different ways to encode a 4 operand
3974 instruction with all registers that uses OC1 set to
3975 0 or 1. Favor setting OC1 to 0 since this mimics the
3976 actions of other SSE5 assemblers. Use modrm encoding
3977 2 for register/register. Include the high order bit that
3978 is normally stored in the REX byte in the register
3979 field. */
3980 i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
3981 i.drex.modrm_reg = 1;
3982 i.drex.modrm_regmem = 0;
3983
3984 /* Remember the register, including the upper bits */
3985 i.drex.reg = (i.op[3].regs->reg_num
3986 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
3987 }
3988
3989 /* Case 5: 4 operand insn, dest = src3, src2 = memory. */
3990 else if (i.types[0].bitfield.regxmm != 0
3991 && (i.types[1].bitfield.regxmm
3992 || operand_type_check (i.types[1], anymem))
3993 && i.types[2].bitfield.regxmm != 0
3994 && i.types[3].bitfield.regxmm != 0
3995 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
3996 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
3997 {
3998 /* Clear the arguments that are stored in drex. */
3999 UINTS_CLEAR (i.types[2]);
4000 UINTS_CLEAR (i.types[3]);
4001 i.reg_operands -= 2;
4002
4003 /* Specify the modrm encoding and remember the register
4004 including the bits normally stored in the REX byte. */
4005 i.tm.extension_opcode = DREX_X1_XMEM_X2_X2;
4006 i.drex.modrm_reg = 0;
4007 i.drex.modrm_regmem = 1;
4008 i.drex.reg = (i.op[3].regs->reg_num
4009 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4010 }
4011
4012 /* Case 6: 4 operand insn, dest = src3, src1 = memory. */
4013 else if (operand_type_check (i.types[0], anymem) != 0
4014 && i.types[1].bitfield.regxmm != 0
4015 && i.types[2].bitfield.regxmm != 0
4016 && i.types[3].bitfield.regxmm != 0
4017 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
4018 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
4019 {
4020 /* clear the arguments that are stored in drex */
4021 UINTS_CLEAR (i.types[2]);
4022 UINTS_CLEAR (i.types[3]);
4023 i.reg_operands -= 2;
4024
4025 /* Specify the modrm encoding and remember the register
4026 including the bits normally stored in the REX byte. */
4027 i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
4028 i.drex.modrm_reg = 1;
4029 i.drex.modrm_regmem = 0;
4030 i.drex.reg = (i.op[3].regs->reg_num
4031 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4032 }
4033
4034 else
4035 as_bad (_("Incorrect operands for the '%s' instruction"),
4036 i.tm.name);
4037 }
4038
4039 /* SSE5 instructions with the DREX byte where the only memory operand
4040 is in the 2nd argument, and the first and last xmm register must
4041 match, and is encoded in the DREX byte. */
4042 else if (i.tm.opcode_modifier.drex
4043 && !i.tm.opcode_modifier.drexv
4044 && i.operands == 4)
4045 {
4046 /* Case 1: 4 operand insn, dest = src1, src3 = reg/mem. */
4047 if (i.types[0].bitfield.regxmm != 0
4048 && (i.types[1].bitfield.regxmm
4049 || operand_type_check(i.types[1], anymem))
4050 && i.types[2].bitfield.regxmm != 0
4051 && i.types[3].bitfield.regxmm != 0
4052 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
4053 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
4054 {
4055 /* clear the arguments that are stored in drex */
4056 UINTS_CLEAR (i.types[0]);
4057 UINTS_CLEAR (i.types[3]);
4058 i.reg_operands -= 2;
4059
4060 /* Specify the modrm encoding and remember the register
4061 including the high bit normally stored in the REX
4062 byte. */
4063 i.drex.modrm_reg = 2;
4064 i.drex.modrm_regmem = 1;
4065 i.drex.reg = (i.op[3].regs->reg_num
4066 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4067 }
4068
4069 else
4070 as_bad (_("Incorrect operands for the '%s' instruction"),
4071 i.tm.name);
4072 }
4073
4074 /* SSE5 3 operand instructions that the result is a register, being
4075 either operand can be a memory operand, using OC0 to note which
4076 one is the memory. */
4077 else if (i.tm.opcode_modifier.drex
4078 && i.tm.opcode_modifier.drexv
4079 && i.operands == 3)
4080 {
4081 i.tm.extension_opcode = None;
4082
4083 /* Case 1: 3 operand insn, src1 = register. */
4084 if (i.types[0].bitfield.regxmm != 0
4085 && i.types[1].bitfield.regxmm != 0
4086 && i.types[2].bitfield.regxmm != 0)
4087 {
4088 /* Clear the arguments that are stored in drex. */
4089 UINTS_CLEAR (i.types[2]);
4090 i.reg_operands--;
4091
4092 /* Specify the modrm encoding and remember the register
4093 including the high bit normally stored in the REX byte. */
4094 i.tm.extension_opcode = DREX_XMEM_X1_X2;
4095 i.drex.modrm_reg = 1;
4096 i.drex.modrm_regmem = 0;
4097 i.drex.reg = (i.op[2].regs->reg_num
4098 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4099 }
4100
4101 /* Case 2: 3 operand insn, src1 = memory. */
4102 else if (operand_type_check (i.types[0], anymem) != 0
4103 && i.types[1].bitfield.regxmm != 0
4104 && i.types[2].bitfield.regxmm != 0)
4105 {
4106 /* Clear the arguments that are stored in drex. */
4107 UINTS_CLEAR (i.types[2]);
4108 i.reg_operands--;
4109
4110 /* Specify the modrm encoding and remember the register
4111 including the high bit normally stored in the REX
4112 byte. */
4113 i.tm.extension_opcode = DREX_XMEM_X1_X2;
4114 i.drex.modrm_reg = 1;
4115 i.drex.modrm_regmem = 0;
4116 i.drex.reg = (i.op[2].regs->reg_num
4117 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4118 }
4119
4120 /* Case 3: 3 operand insn, src2 = memory. */
4121 else if (i.types[0].bitfield.regxmm != 0
4122 && operand_type_check (i.types[1], anymem) != 0
4123 && i.types[2].bitfield.regxmm != 0)
4124 {
4125 /* Clear the arguments that are stored in drex. */
4126 UINTS_CLEAR (i.types[2]);
4127 i.reg_operands--;
4128
4129 /* Specify the modrm encoding and remember the register
4130 including the high bit normally stored in the REX byte. */
4131 i.tm.extension_opcode = DREX_X1_XMEM_X2;
4132 i.drex.modrm_reg = 0;
4133 i.drex.modrm_regmem = 1;
4134 i.drex.reg = (i.op[2].regs->reg_num
4135 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4136 }
4137
4138 else
4139 as_bad (_("Incorrect operands for the '%s' instruction"),
4140 i.tm.name);
4141 }
4142
4143 /* SSE5 4 operand instructions that are the comparison instructions
4144 where the first operand is the immediate value of the comparison
4145 to be done. */
4146 else if (i.tm.opcode_modifier.drexc != 0 && i.operands == 4)
4147 {
4148 /* Case 1: 4 operand insn, src1 = reg/memory. */
4149 if (operand_type_check (i.types[0], imm) != 0
4150 && (i.types[1].bitfield.regxmm
4151 || operand_type_check (i.types[1], anymem))
4152 && i.types[2].bitfield.regxmm != 0
4153 && i.types[3].bitfield.regxmm != 0)
4154 {
4155 /* clear the arguments that are stored in drex */
4156 UINTS_CLEAR (i.types[3]);
4157 i.reg_operands--;
4158
4159 /* Specify the modrm encoding and remember the register
4160 including the high bit normally stored in the REX byte. */
4161 i.drex.modrm_reg = 2;
4162 i.drex.modrm_regmem = 1;
4163 i.drex.reg = (i.op[3].regs->reg_num
4164 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4165 }
4166
4167 /* Case 2: 3 operand insn with ImmExt that places the
4168 opcode_extension as an immediate argument. This is used for
4169 all of the varients of comparison that supplies the appropriate
4170 value as part of the instruction. */
4171 else if ((i.types[0].bitfield.regxmm
4172 || operand_type_check (i.types[0], anymem))
4173 && i.types[1].bitfield.regxmm != 0
4174 && i.types[2].bitfield.regxmm != 0
4175 && operand_type_check (i.types[3], imm) != 0)
4176 {
4177 /* clear the arguments that are stored in drex */
4178 UINTS_CLEAR (i.types[2]);
4179 i.reg_operands--;
4180
4181 /* Specify the modrm encoding and remember the register
4182 including the high bit normally stored in the REX byte. */
4183 i.drex.modrm_reg = 1;
4184 i.drex.modrm_regmem = 0;
4185 i.drex.reg = (i.op[2].regs->reg_num
4186 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4187 }
4188
4189 else
4190 as_bad (_("Incorrect operands for the '%s' instruction"),
4191 i.tm.name);
4192 }
4193
4194 else if (i.tm.opcode_modifier.drex
4195 || i.tm.opcode_modifier.drexv
4196 || i.tm.opcode_modifier.drexc)
4197 as_bad (_("Internal error for the '%s' instruction"), i.tm.name);
4198 }
4199
4200 static int
4201 process_operands (void)
4202 {
4203 /* Default segment register this instruction will use for memory
4204 accesses. 0 means unknown. This is only for optimizing out
4205 unnecessary segment overrides. */
4206 const seg_entry *default_seg = 0;
4207
4208 /* Handle all of the DREX munging that SSE5 needs. */
4209 if (i.tm.opcode_modifier.drex
4210 || i.tm.opcode_modifier.drexv
4211 || i.tm.opcode_modifier.drexc)
4212 process_drex ();
4213
4214 if (i.tm.opcode_modifier.firstxmm0)
4215 {
4216 unsigned int j;
4217
4218 /* The first operand is implicit and must be xmm0. */
4219 assert (i.reg_operands && UINTS_EQUAL (i.types[0], regxmm));
4220 if (i.op[0].regs->reg_num != 0)
4221 {
4222 if (intel_syntax)
4223 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
4224 i.tm.name, register_prefix);
4225 else
4226 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
4227 i.tm.name, register_prefix);
4228 return 0;
4229 }
4230
4231 for (j = 1; j < i.operands; j++)
4232 {
4233 i.op[j - 1] = i.op[j];
4234 i.types[j - 1] = i.types[j];
4235
4236 /* We need to adjust fields in i.tm since they are used by
4237 build_modrm_byte. */
4238 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4239 }
4240
4241 i.operands--;
4242 i.reg_operands--;
4243 i.tm.operands--;
4244 }
4245 else if (i.tm.opcode_modifier.regkludge)
4246 {
4247 /* The imul $imm, %reg instruction is converted into
4248 imul $imm, %reg, %reg, and the clr %reg instruction
4249 is converted into xor %reg, %reg. */
4250
4251 unsigned int first_reg_op;
4252
4253 if (operand_type_check (i.types[0], reg))
4254 first_reg_op = 0;
4255 else
4256 first_reg_op = 1;
4257 /* Pretend we saw the extra register operand. */
4258 assert (i.reg_operands == 1
4259 && i.op[first_reg_op + 1].regs == 0);
4260 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4261 i.types[first_reg_op + 1] = i.types[first_reg_op];
4262 i.operands++;
4263 i.reg_operands++;
4264 }
4265
4266 if (i.tm.opcode_modifier.shortform)
4267 {
4268 if (i.types[0].bitfield.sreg2
4269 || i.types[0].bitfield.sreg3)
4270 {
4271 if (i.tm.base_opcode == POP_SEG_SHORT
4272 && i.op[0].regs->reg_num == 1)
4273 {
4274 as_bad (_("you can't `pop %%cs'"));
4275 return 0;
4276 }
4277 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4278 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4279 i.rex |= REX_B;
4280 }
4281 else
4282 {
4283 /* The register or float register operand is in operand
4284 0 or 1. */
4285 unsigned int op;
4286
4287 if (i.types[0].bitfield.floatreg
4288 || operand_type_check (i.types[0], reg))
4289 op = 0;
4290 else
4291 op = 1;
4292 /* Register goes in low 3 bits of opcode. */
4293 i.tm.base_opcode |= i.op[op].regs->reg_num;
4294 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4295 i.rex |= REX_B;
4296 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4297 {
4298 /* Warn about some common errors, but press on regardless.
4299 The first case can be generated by gcc (<= 2.8.1). */
4300 if (i.operands == 2)
4301 {
4302 /* Reversed arguments on faddp, fsubp, etc. */
4303 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4304 register_prefix, i.op[1].regs->reg_name,
4305 register_prefix, i.op[0].regs->reg_name);
4306 }
4307 else
4308 {
4309 /* Extraneous `l' suffix on fp insn. */
4310 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4311 register_prefix, i.op[0].regs->reg_name);
4312 }
4313 }
4314 }
4315 }
4316 else if (i.tm.opcode_modifier.modrm)
4317 {
4318 /* The opcode is completed (modulo i.tm.extension_opcode which
4319 must be put into the modrm byte). Now, we make the modrm and
4320 index base bytes based on all the info we've collected. */
4321
4322 default_seg = build_modrm_byte ();
4323 }
4324 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
4325 {
4326 default_seg = &ds;
4327 }
4328 else if (i.tm.opcode_modifier.isstring)
4329 {
4330 /* For the string instructions that allow a segment override
4331 on one of their operands, the default segment is ds. */
4332 default_seg = &ds;
4333 }
4334
4335 if (i.tm.base_opcode == 0x8d /* lea */
4336 && i.seg[0]
4337 && !quiet_warnings)
4338 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
4339
4340 /* If a segment was explicitly specified, and the specified segment
4341 is not the default, use an opcode prefix to select it. If we
4342 never figured out what the default segment is, then default_seg
4343 will be zero at this point, and the specified segment prefix will
4344 always be used. */
4345 if ((i.seg[0]) && (i.seg[0] != default_seg))
4346 {
4347 if (!add_prefix (i.seg[0]->seg_prefix))
4348 return 0;
4349 }
4350 return 1;
4351 }
4352
4353 static const seg_entry *
4354 build_modrm_byte (void)
4355 {
4356 const seg_entry *default_seg = 0;
4357
4358 /* SSE5 4 operand instructions are encoded in such a way that one of
4359 the inputs must match the destination register. Process_drex hides
4360 the 3rd argument in the drex field, so that by the time we get
4361 here, it looks to GAS as if this is a 2 operand instruction. */
4362 if ((i.tm.opcode_modifier.drex
4363 || i.tm.opcode_modifier.drexv
4364 || i.tm.opcode_modifier.drexc)
4365 && i.reg_operands == 2)
4366 {
4367 const reg_entry *reg = i.op[i.drex.modrm_reg].regs;
4368 const reg_entry *regmem = i.op[i.drex.modrm_regmem].regs;
4369
4370 i.rm.reg = reg->reg_num;
4371 i.rm.regmem = regmem->reg_num;
4372 i.rm.mode = 3;
4373 if ((reg->reg_flags & RegRex) != 0)
4374 i.rex |= REX_R;
4375 if ((regmem->reg_flags & RegRex) != 0)
4376 i.rex |= REX_B;
4377 }
4378
4379 /* i.reg_operands MUST be the number of real register operands;
4380 implicit registers do not count. */
4381 else if (i.reg_operands == 2)
4382 {
4383 unsigned int source, dest;
4384
4385 switch (i.operands)
4386 {
4387 case 2:
4388 source = 0;
4389 break;
4390 case 3:
4391 /* When there are 3 operands, one of them may be immediate,
4392 which may be the first or the last operand. Otherwise,
4393 the first operand must be shift count register (cl). */
4394 assert (i.imm_operands == 1
4395 || (i.imm_operands == 0
4396 && i.types[0].bitfield.shiftcount));
4397 if (operand_type_check (i.types[0], imm)
4398 || i.types[0].bitfield.shiftcount)
4399 source = 1;
4400 else
4401 source = 0;
4402 break;
4403 case 4:
4404 /* When there are 4 operands, the first two must be 8bit
4405 immediate operands. The source operand will be the 3rd
4406 one. */
4407 assert (i.imm_operands == 2
4408 && i.types[0].bitfield.imm8
4409 && i.types[1].bitfield.imm8);
4410 source = 2;
4411 break;
4412 default:
4413 abort ();
4414 }
4415
4416 dest = source + 1;
4417
4418 i.rm.mode = 3;
4419 /* One of the register operands will be encoded in the i.tm.reg
4420 field, the other in the combined i.tm.mode and i.tm.regmem
4421 fields. If no form of this instruction supports a memory
4422 destination operand, then we assume the source operand may
4423 sometimes be a memory operand and so we need to store the
4424 destination in the i.rm.reg field. */
4425 if (!i.tm.operand_types[dest].bitfield.regmem
4426 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
4427 {
4428 i.rm.reg = i.op[dest].regs->reg_num;
4429 i.rm.regmem = i.op[source].regs->reg_num;
4430 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4431 i.rex |= REX_R;
4432 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4433 i.rex |= REX_B;
4434 }
4435 else
4436 {
4437 i.rm.reg = i.op[source].regs->reg_num;
4438 i.rm.regmem = i.op[dest].regs->reg_num;
4439 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4440 i.rex |= REX_B;
4441 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4442 i.rex |= REX_R;
4443 }
4444 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
4445 {
4446 if (!i.types[0].bitfield.control
4447 && !i.types[1].bitfield.control)
4448 abort ();
4449 i.rex &= ~(REX_R | REX_B);
4450 add_prefix (LOCK_PREFIX_OPCODE);
4451 }
4452 }
4453 else
4454 { /* If it's not 2 reg operands... */
4455 if (i.mem_operands)
4456 {
4457 unsigned int fake_zero_displacement = 0;
4458 unsigned int op;
4459
4460 /* This has been precalculated for SSE5 instructions
4461 that have a DREX field earlier in process_drex. */
4462 if (i.tm.opcode_modifier.drex
4463 || i.tm.opcode_modifier.drexv
4464 || i.tm.opcode_modifier.drexc)
4465 op = i.drex.modrm_regmem;
4466 else
4467 {
4468 for (op = 0; op < i.operands; op++)
4469 if (operand_type_check (i.types[op], anymem))
4470 break;
4471 assert (op < i.operands);
4472 }
4473
4474 default_seg = &ds;
4475
4476 if (i.base_reg == 0)
4477 {
4478 i.rm.mode = 0;
4479 if (!i.disp_operands)
4480 fake_zero_displacement = 1;
4481 if (i.index_reg == 0)
4482 {
4483 /* Operand is just <disp> */
4484 if (flag_code == CODE_64BIT)
4485 {
4486 /* 64bit mode overwrites the 32bit absolute
4487 addressing by RIP relative addressing and
4488 absolute addressing is encoded by one of the
4489 redundant SIB forms. */
4490 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4491 i.sib.base = NO_BASE_REGISTER;
4492 i.sib.index = NO_INDEX_REGISTER;
4493 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
4494 ? disp32s : disp32);
4495 }
4496 else if ((flag_code == CODE_16BIT)
4497 ^ (i.prefix[ADDR_PREFIX] != 0))
4498 {
4499 i.rm.regmem = NO_BASE_REGISTER_16;
4500 i.types[op] = disp16;
4501 }
4502 else
4503 {
4504 i.rm.regmem = NO_BASE_REGISTER;
4505 i.types[op] = disp32;
4506 }
4507 }
4508 else /* !i.base_reg && i.index_reg */
4509 {
4510 if (i.index_reg->reg_num == RegEiz
4511 || i.index_reg->reg_num == RegRiz)
4512 i.sib.index = NO_INDEX_REGISTER;
4513 else
4514 i.sib.index = i.index_reg->reg_num;
4515 i.sib.base = NO_BASE_REGISTER;
4516 i.sib.scale = i.log2_scale_factor;
4517 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4518 i.types[op].bitfield.disp8 = 0;
4519 i.types[op].bitfield.disp16 = 0;
4520 i.types[op].bitfield.disp64 = 0;
4521 if (flag_code != CODE_64BIT)
4522 {
4523 /* Must be 32 bit */
4524 i.types[op].bitfield.disp32 = 1;
4525 i.types[op].bitfield.disp32s = 0;
4526 }
4527 else
4528 {
4529 i.types[op].bitfield.disp32 = 0;
4530 i.types[op].bitfield.disp32s = 1;
4531 }
4532 if ((i.index_reg->reg_flags & RegRex) != 0)
4533 i.rex |= REX_X;
4534 }
4535 }
4536 /* RIP addressing for 64bit mode. */
4537 else if (i.base_reg->reg_num == RegRip ||
4538 i.base_reg->reg_num == RegEip)
4539 {
4540 i.rm.regmem = NO_BASE_REGISTER;
4541 i.types[op].bitfield.disp8 = 0;
4542 i.types[op].bitfield.disp16 = 0;
4543 i.types[op].bitfield.disp32 = 0;
4544 i.types[op].bitfield.disp32s = 1;
4545 i.types[op].bitfield.disp64 = 0;
4546 i.flags[op] |= Operand_PCrel;
4547 if (! i.disp_operands)
4548 fake_zero_displacement = 1;
4549 }
4550 else if (i.base_reg->reg_type.bitfield.reg16)
4551 {
4552 switch (i.base_reg->reg_num)
4553 {
4554 case 3: /* (%bx) */
4555 if (i.index_reg == 0)
4556 i.rm.regmem = 7;
4557 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
4558 i.rm.regmem = i.index_reg->reg_num - 6;
4559 break;
4560 case 5: /* (%bp) */
4561 default_seg = &ss;
4562 if (i.index_reg == 0)
4563 {
4564 i.rm.regmem = 6;
4565 if (operand_type_check (i.types[op], disp) == 0)
4566 {
4567 /* fake (%bp) into 0(%bp) */
4568 i.types[op].bitfield.disp8 = 1;
4569 fake_zero_displacement = 1;
4570 }
4571 }
4572 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
4573 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
4574 break;
4575 default: /* (%si) -> 4 or (%di) -> 5 */
4576 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
4577 }
4578 i.rm.mode = mode_from_disp_size (i.types[op]);
4579 }
4580 else /* i.base_reg and 32/64 bit mode */
4581 {
4582 if (flag_code == CODE_64BIT
4583 && operand_type_check (i.types[op], disp))
4584 {
4585 i386_operand_type temp;
4586 UINTS_CLEAR (temp);
4587 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
4588 i.types[op] = temp;
4589 if (i.prefix[ADDR_PREFIX] == 0)
4590 i.types[op].bitfield.disp32s = 1;
4591 else
4592 i.types[op].bitfield.disp32 = 1;
4593 }
4594
4595 i.rm.regmem = i.base_reg->reg_num;
4596 if ((i.base_reg->reg_flags & RegRex) != 0)
4597 i.rex |= REX_B;
4598 i.sib.base = i.base_reg->reg_num;
4599 /* x86-64 ignores REX prefix bit here to avoid decoder
4600 complications. */
4601 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
4602 {
4603 default_seg = &ss;
4604 if (i.disp_operands == 0)
4605 {
4606 fake_zero_displacement = 1;
4607 i.types[op].bitfield.disp8 = 1;
4608 }
4609 }
4610 else if (i.base_reg->reg_num == ESP_REG_NUM)
4611 {
4612 default_seg = &ss;
4613 }
4614 i.sib.scale = i.log2_scale_factor;
4615 if (i.index_reg == 0)
4616 {
4617 /* <disp>(%esp) becomes two byte modrm with no index
4618 register. We've already stored the code for esp
4619 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
4620 Any base register besides %esp will not use the
4621 extra modrm byte. */
4622 i.sib.index = NO_INDEX_REGISTER;
4623 }
4624 else
4625 {
4626 if (i.index_reg->reg_num == RegEiz
4627 || i.index_reg->reg_num == RegRiz)
4628 i.sib.index = NO_INDEX_REGISTER;
4629 else
4630 i.sib.index = i.index_reg->reg_num;
4631 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4632 if ((i.index_reg->reg_flags & RegRex) != 0)
4633 i.rex |= REX_X;
4634 }
4635
4636 if (i.disp_operands
4637 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4638 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
4639 i.rm.mode = 0;
4640 else
4641 i.rm.mode = mode_from_disp_size (i.types[op]);
4642 }
4643
4644 if (fake_zero_displacement)
4645 {
4646 /* Fakes a zero displacement assuming that i.types[op]
4647 holds the correct displacement size. */
4648 expressionS *exp;
4649
4650 assert (i.op[op].disps == 0);
4651 exp = &disp_expressions[i.disp_operands++];
4652 i.op[op].disps = exp;
4653 exp->X_op = O_constant;
4654 exp->X_add_number = 0;
4655 exp->X_add_symbol = (symbolS *) 0;
4656 exp->X_op_symbol = (symbolS *) 0;
4657 }
4658 }
4659
4660 /* Fill in i.rm.reg or i.rm.regmem field with register operand
4661 (if any) based on i.tm.extension_opcode. Again, we must be
4662 careful to make sure that segment/control/debug/test/MMX
4663 registers are coded into the i.rm.reg field. */
4664 if (i.reg_operands)
4665 {
4666 unsigned int op;
4667
4668 /* This has been precalculated for SSE5 instructions
4669 that have a DREX field earlier in process_drex. */
4670 if (i.tm.opcode_modifier.drex
4671 || i.tm.opcode_modifier.drexv
4672 || i.tm.opcode_modifier.drexc)
4673 {
4674 op = i.drex.modrm_reg;
4675 i.rm.reg = i.op[op].regs->reg_num;
4676 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4677 i.rex |= REX_R;
4678 }
4679 else
4680 {
4681 for (op = 0; op < i.operands; op++)
4682 if (i.types[op].bitfield.reg8
4683 || i.types[op].bitfield.reg16
4684 || i.types[op].bitfield.reg32
4685 || i.types[op].bitfield.reg64
4686 || i.types[op].bitfield.regmmx
4687 || i.types[op].bitfield.regxmm
4688 || i.types[op].bitfield.sreg2
4689 || i.types[op].bitfield.sreg3
4690 || i.types[op].bitfield.control
4691 || i.types[op].bitfield.debug
4692 || i.types[op].bitfield.test)
4693 break;
4694
4695 assert (op < i.operands);
4696
4697 /* If there is an extension opcode to put here, the
4698 register number must be put into the regmem field. */
4699 if (i.tm.extension_opcode != None)
4700 {
4701 i.rm.regmem = i.op[op].regs->reg_num;
4702 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4703 i.rex |= REX_B;
4704 }
4705 else
4706 {
4707 i.rm.reg = i.op[op].regs->reg_num;
4708 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4709 i.rex |= REX_R;
4710 }
4711 }
4712
4713 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
4714 must set it to 3 to indicate this is a register operand
4715 in the regmem field. */
4716 if (!i.mem_operands)
4717 i.rm.mode = 3;
4718 }
4719
4720 /* Fill in i.rm.reg field with extension opcode (if any). */
4721 if (i.tm.extension_opcode != None
4722 && !(i.tm.opcode_modifier.drex
4723 || i.tm.opcode_modifier.drexv
4724 || i.tm.opcode_modifier.drexc))
4725 i.rm.reg = i.tm.extension_opcode;
4726 }
4727 return default_seg;
4728 }
4729
4730 static void
4731 output_branch (void)
4732 {
4733 char *p;
4734 int code16;
4735 int prefix;
4736 relax_substateT subtype;
4737 symbolS *sym;
4738 offsetT off;
4739
4740 code16 = 0;
4741 if (flag_code == CODE_16BIT)
4742 code16 = CODE16;
4743
4744 prefix = 0;
4745 if (i.prefix[DATA_PREFIX] != 0)
4746 {
4747 prefix = 1;
4748 i.prefixes -= 1;
4749 code16 ^= CODE16;
4750 }
4751 /* Pentium4 branch hints. */
4752 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
4753 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
4754 {
4755 prefix++;
4756 i.prefixes--;
4757 }
4758 if (i.prefix[REX_PREFIX] != 0)
4759 {
4760 prefix++;
4761 i.prefixes--;
4762 }
4763
4764 if (i.prefixes != 0 && !intel_syntax)
4765 as_warn (_("skipping prefixes on this instruction"));
4766
4767 /* It's always a symbol; End frag & setup for relax.
4768 Make sure there is enough room in this frag for the largest
4769 instruction we may generate in md_convert_frag. This is 2
4770 bytes for the opcode and room for the prefix and largest
4771 displacement. */
4772 frag_grow (prefix + 2 + 4);
4773 /* Prefix and 1 opcode byte go in fr_fix. */
4774 p = frag_more (prefix + 1);
4775 if (i.prefix[DATA_PREFIX] != 0)
4776 *p++ = DATA_PREFIX_OPCODE;
4777 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
4778 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
4779 *p++ = i.prefix[SEG_PREFIX];
4780 if (i.prefix[REX_PREFIX] != 0)
4781 *p++ = i.prefix[REX_PREFIX];
4782 *p = i.tm.base_opcode;
4783
4784 if ((unsigned char) *p == JUMP_PC_RELATIVE)
4785 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
4786 else if (cpu_arch_flags.bitfield.cpui386)
4787 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
4788 else
4789 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
4790 subtype |= code16;
4791
4792 sym = i.op[0].disps->X_add_symbol;
4793 off = i.op[0].disps->X_add_number;
4794
4795 if (i.op[0].disps->X_op != O_constant
4796 && i.op[0].disps->X_op != O_symbol)
4797 {
4798 /* Handle complex expressions. */
4799 sym = make_expr_symbol (i.op[0].disps);
4800 off = 0;
4801 }
4802
4803 /* 1 possible extra opcode + 4 byte displacement go in var part.
4804 Pass reloc in fr_var. */
4805 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
4806 }
4807
4808 static void
4809 output_jump (void)
4810 {
4811 char *p;
4812 int size;
4813 fixS *fixP;
4814
4815 if (i.tm.opcode_modifier.jumpbyte)
4816 {
4817 /* This is a loop or jecxz type instruction. */
4818 size = 1;
4819 if (i.prefix[ADDR_PREFIX] != 0)
4820 {
4821 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
4822 i.prefixes -= 1;
4823 }
4824 /* Pentium4 branch hints. */
4825 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
4826 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
4827 {
4828 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
4829 i.prefixes--;
4830 }
4831 }
4832 else
4833 {
4834 int code16;
4835
4836 code16 = 0;
4837 if (flag_code == CODE_16BIT)
4838 code16 = CODE16;
4839
4840 if (i.prefix[DATA_PREFIX] != 0)
4841 {
4842 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
4843 i.prefixes -= 1;
4844 code16 ^= CODE16;
4845 }
4846
4847 size = 4;
4848 if (code16)
4849 size = 2;
4850 }
4851
4852 if (i.prefix[REX_PREFIX] != 0)
4853 {
4854 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
4855 i.prefixes -= 1;
4856 }
4857
4858 if (i.prefixes != 0 && !intel_syntax)
4859 as_warn (_("skipping prefixes on this instruction"));
4860
4861 p = frag_more (1 + size);
4862 *p++ = i.tm.base_opcode;
4863
4864 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4865 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
4866
4867 /* All jumps handled here are signed, but don't use a signed limit
4868 check for 32 and 16 bit jumps as we want to allow wrap around at
4869 4G and 64k respectively. */
4870 if (size == 1)
4871 fixP->fx_signed = 1;
4872 }
4873
4874 static void
4875 output_interseg_jump (void)
4876 {
4877 char *p;
4878 int size;
4879 int prefix;
4880 int code16;
4881
4882 code16 = 0;
4883 if (flag_code == CODE_16BIT)
4884 code16 = CODE16;
4885
4886 prefix = 0;
4887 if (i.prefix[DATA_PREFIX] != 0)
4888 {
4889 prefix = 1;
4890 i.prefixes -= 1;
4891 code16 ^= CODE16;
4892 }
4893 if (i.prefix[REX_PREFIX] != 0)
4894 {
4895 prefix++;
4896 i.prefixes -= 1;
4897 }
4898
4899 size = 4;
4900 if (code16)
4901 size = 2;
4902
4903 if (i.prefixes != 0 && !intel_syntax)
4904 as_warn (_("skipping prefixes on this instruction"));
4905
4906 /* 1 opcode; 2 segment; offset */
4907 p = frag_more (prefix + 1 + 2 + size);
4908
4909 if (i.prefix[DATA_PREFIX] != 0)
4910 *p++ = DATA_PREFIX_OPCODE;
4911
4912 if (i.prefix[REX_PREFIX] != 0)
4913 *p++ = i.prefix[REX_PREFIX];
4914
4915 *p++ = i.tm.base_opcode;
4916 if (i.op[1].imms->X_op == O_constant)
4917 {
4918 offsetT n = i.op[1].imms->X_add_number;
4919
4920 if (size == 2
4921 && !fits_in_unsigned_word (n)
4922 && !fits_in_signed_word (n))
4923 {
4924 as_bad (_("16-bit jump out of range"));
4925 return;
4926 }
4927 md_number_to_chars (p, n, size);
4928 }
4929 else
4930 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4931 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
4932 if (i.op[0].imms->X_op != O_constant)
4933 as_bad (_("can't handle non absolute segment in `%s'"),
4934 i.tm.name);
4935 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
4936 }
4937
4938 static void
4939 output_insn (void)
4940 {
4941 fragS *insn_start_frag;
4942 offsetT insn_start_off;
4943
4944 /* Tie dwarf2 debug info to the address at the start of the insn.
4945 We can't do this after the insn has been output as the current
4946 frag may have been closed off. eg. by frag_var. */
4947 dwarf2_emit_insn (0);
4948
4949 insn_start_frag = frag_now;
4950 insn_start_off = frag_now_fix ();
4951
4952 /* Output jumps. */
4953 if (i.tm.opcode_modifier.jump)
4954 output_branch ();
4955 else if (i.tm.opcode_modifier.jumpbyte
4956 || i.tm.opcode_modifier.jumpdword)
4957 output_jump ();
4958 else if (i.tm.opcode_modifier.jumpintersegment)
4959 output_interseg_jump ();
4960 else
4961 {
4962 /* Output normal instructions here. */
4963 char *p;
4964 unsigned char *q;
4965 unsigned int prefix;
4966
4967 switch (i.tm.opcode_length)
4968 {
4969 case 3:
4970 if (i.tm.base_opcode & 0xff000000)
4971 {
4972 prefix = (i.tm.base_opcode >> 24) & 0xff;
4973 goto check_prefix;
4974 }
4975 break;
4976 case 2:
4977 if ((i.tm.base_opcode & 0xff0000) != 0)
4978 {
4979 prefix = (i.tm.base_opcode >> 16) & 0xff;
4980 if (i.tm.cpu_flags.bitfield.cpupadlock)
4981 {
4982 check_prefix:
4983 if (prefix != REPE_PREFIX_OPCODE
4984 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
4985 add_prefix (prefix);
4986 }
4987 else
4988 add_prefix (prefix);
4989 }
4990 break;
4991 case 1:
4992 break;
4993 default:
4994 abort ();
4995 }
4996
4997 /* The prefix bytes. */
4998 for (q = i.prefix;
4999 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
5000 q++)
5001 {
5002 if (*q)
5003 {
5004 p = frag_more (1);
5005 md_number_to_chars (p, (valueT) *q, 1);
5006 }
5007 }
5008
5009 /* Now the opcode; be careful about word order here! */
5010 if (i.tm.opcode_length == 1)
5011 {
5012 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5013 }
5014 else
5015 {
5016 switch (i.tm.opcode_length)
5017 {
5018 case 3:
5019 p = frag_more (3);
5020 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5021 break;
5022 case 2:
5023 p = frag_more (2);
5024 break;
5025 default:
5026 abort ();
5027 break;
5028 }
5029
5030 /* Put out high byte first: can't use md_number_to_chars! */
5031 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5032 *p = i.tm.base_opcode & 0xff;
5033
5034 /* On SSE5, encode the OC1 bit in the DREX field if this
5035 encoding has multiple formats. */
5036 if (i.tm.opcode_modifier.drex
5037 && i.tm.opcode_modifier.drexv
5038 && DREX_OC1 (i.tm.extension_opcode))
5039 *p |= DREX_OC1_MASK;
5040 }
5041
5042 /* Now the modrm byte and sib byte (if present). */
5043 if (i.tm.opcode_modifier.modrm)
5044 {
5045 p = frag_more (1);
5046 md_number_to_chars (p,
5047 (valueT) (i.rm.regmem << 0
5048 | i.rm.reg << 3
5049 | i.rm.mode << 6),
5050 1);
5051 /* If i.rm.regmem == ESP (4)
5052 && i.rm.mode != (Register mode)
5053 && not 16 bit
5054 ==> need second modrm byte. */
5055 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5056 && i.rm.mode != 3
5057 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5058 {
5059 p = frag_more (1);
5060 md_number_to_chars (p,
5061 (valueT) (i.sib.base << 0
5062 | i.sib.index << 3
5063 | i.sib.scale << 6),
5064 1);
5065 }
5066 }
5067
5068 /* Write the DREX byte if needed. */
5069 if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
5070 {
5071 p = frag_more (1);
5072 *p = (((i.drex.reg & 0xf) << 4) | (i.drex.rex & 0x7));
5073
5074 /* Encode the OC0 bit if this encoding has multiple
5075 formats. */
5076 if ((i.tm.opcode_modifier.drex
5077 || i.tm.opcode_modifier.drexv)
5078 && DREX_OC0 (i.tm.extension_opcode))
5079 *p |= DREX_OC0_MASK;
5080 }
5081
5082 if (i.disp_operands)
5083 output_disp (insn_start_frag, insn_start_off);
5084
5085 if (i.imm_operands)
5086 output_imm (insn_start_frag, insn_start_off);
5087 }
5088
5089 #ifdef DEBUG386
5090 if (flag_debug)
5091 {
5092 pi ("" /*line*/, &i);
5093 }
5094 #endif /* DEBUG386 */
5095 }
5096
5097 /* Return the size of the displacement operand N. */
5098
5099 static int
5100 disp_size (unsigned int n)
5101 {
5102 int size = 4;
5103 if (i.types[n].bitfield.disp64)
5104 size = 8;
5105 else if (i.types[n].bitfield.disp8)
5106 size = 1;
5107 else if (i.types[n].bitfield.disp16)
5108 size = 2;
5109 return size;
5110 }
5111
5112 /* Return the size of the immediate operand N. */
5113
5114 static int
5115 imm_size (unsigned int n)
5116 {
5117 int size = 4;
5118 if (i.types[n].bitfield.imm64)
5119 size = 8;
5120 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5121 size = 1;
5122 else if (i.types[n].bitfield.imm16)
5123 size = 2;
5124 return size;
5125 }
5126
5127 static void
5128 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
5129 {
5130 char *p;
5131 unsigned int n;
5132
5133 for (n = 0; n < i.operands; n++)
5134 {
5135 if (operand_type_check (i.types[n], disp))
5136 {
5137 if (i.op[n].disps->X_op == O_constant)
5138 {
5139 int size = disp_size (n);
5140 offsetT val;
5141
5142 val = offset_in_range (i.op[n].disps->X_add_number,
5143 size);
5144 p = frag_more (size);
5145 md_number_to_chars (p, val, size);
5146 }
5147 else
5148 {
5149 enum bfd_reloc_code_real reloc_type;
5150 int size = disp_size (n);
5151 int sign = i.types[n].bitfield.disp32s;
5152 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
5153
5154 /* We can't have 8 bit displacement here. */
5155 assert (!i.types[n].bitfield.disp8);
5156
5157 /* The PC relative address is computed relative
5158 to the instruction boundary, so in case immediate
5159 fields follows, we need to adjust the value. */
5160 if (pcrel && i.imm_operands)
5161 {
5162 unsigned int n1;
5163 int sz = 0;
5164
5165 for (n1 = 0; n1 < i.operands; n1++)
5166 if (operand_type_check (i.types[n1], imm))
5167 {
5168 /* Only one immediate is allowed for PC
5169 relative address. */
5170 assert (sz == 0);
5171 sz = imm_size (n1);
5172 i.op[n].disps->X_add_number -= sz;
5173 }
5174 /* We should find the immediate. */
5175 assert (sz != 0);
5176 }
5177
5178 p = frag_more (size);
5179 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
5180 if (GOT_symbol
5181 && GOT_symbol == i.op[n].disps->X_add_symbol
5182 && (((reloc_type == BFD_RELOC_32
5183 || reloc_type == BFD_RELOC_X86_64_32S
5184 || (reloc_type == BFD_RELOC_64
5185 && object_64bit))
5186 && (i.op[n].disps->X_op == O_symbol
5187 || (i.op[n].disps->X_op == O_add
5188 && ((symbol_get_value_expression
5189 (i.op[n].disps->X_op_symbol)->X_op)
5190 == O_subtract))))
5191 || reloc_type == BFD_RELOC_32_PCREL))
5192 {
5193 offsetT add;
5194
5195 if (insn_start_frag == frag_now)
5196 add = (p - frag_now->fr_literal) - insn_start_off;
5197 else
5198 {
5199 fragS *fr;
5200
5201 add = insn_start_frag->fr_fix - insn_start_off;
5202 for (fr = insn_start_frag->fr_next;
5203 fr && fr != frag_now; fr = fr->fr_next)
5204 add += fr->fr_fix;
5205 add += p - frag_now->fr_literal;
5206 }
5207
5208 if (!object_64bit)
5209 {
5210 reloc_type = BFD_RELOC_386_GOTPC;
5211 i.op[n].imms->X_add_number += add;
5212 }
5213 else if (reloc_type == BFD_RELOC_64)
5214 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5215 else
5216 /* Don't do the adjustment for x86-64, as there
5217 the pcrel addressing is relative to the _next_
5218 insn, and that is taken care of in other code. */
5219 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5220 }
5221 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5222 i.op[n].disps, pcrel, reloc_type);
5223 }
5224 }
5225 }
5226 }
5227
5228 static void
5229 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
5230 {
5231 char *p;
5232 unsigned int n;
5233
5234 for (n = 0; n < i.operands; n++)
5235 {
5236 if (operand_type_check (i.types[n], imm))
5237 {
5238 if (i.op[n].imms->X_op == O_constant)
5239 {
5240 int size = imm_size (n);
5241 offsetT val;
5242
5243 val = offset_in_range (i.op[n].imms->X_add_number,
5244 size);
5245 p = frag_more (size);
5246 md_number_to_chars (p, val, size);
5247 }
5248 else
5249 {
5250 /* Not absolute_section.
5251 Need a 32-bit fixup (don't support 8bit
5252 non-absolute imms). Try to support other
5253 sizes ... */
5254 enum bfd_reloc_code_real reloc_type;
5255 int size = imm_size (n);
5256 int sign;
5257
5258 if (i.types[n].bitfield.imm32s
5259 && (i.suffix == QWORD_MNEM_SUFFIX
5260 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
5261 sign = 1;
5262 else
5263 sign = 0;
5264
5265 p = frag_more (size);
5266 reloc_type = reloc (size, 0, sign, i.reloc[n]);
5267
5268 /* This is tough to explain. We end up with this one if we
5269 * have operands that look like
5270 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
5271 * obtain the absolute address of the GOT, and it is strongly
5272 * preferable from a performance point of view to avoid using
5273 * a runtime relocation for this. The actual sequence of
5274 * instructions often look something like:
5275 *
5276 * call .L66
5277 * .L66:
5278 * popl %ebx
5279 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
5280 *
5281 * The call and pop essentially return the absolute address
5282 * of the label .L66 and store it in %ebx. The linker itself
5283 * will ultimately change the first operand of the addl so
5284 * that %ebx points to the GOT, but to keep things simple, the
5285 * .o file must have this operand set so that it generates not
5286 * the absolute address of .L66, but the absolute address of
5287 * itself. This allows the linker itself simply treat a GOTPC
5288 * relocation as asking for a pcrel offset to the GOT to be
5289 * added in, and the addend of the relocation is stored in the
5290 * operand field for the instruction itself.
5291 *
5292 * Our job here is to fix the operand so that it would add
5293 * the correct offset so that %ebx would point to itself. The
5294 * thing that is tricky is that .-.L66 will point to the
5295 * beginning of the instruction, so we need to further modify
5296 * the operand so that it will point to itself. There are
5297 * other cases where you have something like:
5298 *
5299 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
5300 *
5301 * and here no correction would be required. Internally in
5302 * the assembler we treat operands of this form as not being
5303 * pcrel since the '.' is explicitly mentioned, and I wonder
5304 * whether it would simplify matters to do it this way. Who
5305 * knows. In earlier versions of the PIC patches, the
5306 * pcrel_adjust field was used to store the correction, but
5307 * since the expression is not pcrel, I felt it would be
5308 * confusing to do it this way. */
5309
5310 if ((reloc_type == BFD_RELOC_32
5311 || reloc_type == BFD_RELOC_X86_64_32S
5312 || reloc_type == BFD_RELOC_64)
5313 && GOT_symbol
5314 && GOT_symbol == i.op[n].imms->X_add_symbol
5315 && (i.op[n].imms->X_op == O_symbol
5316 || (i.op[n].imms->X_op == O_add
5317 && ((symbol_get_value_expression
5318 (i.op[n].imms->X_op_symbol)->X_op)
5319 == O_subtract))))
5320 {
5321 offsetT add;
5322
5323 if (insn_start_frag == frag_now)
5324 add = (p - frag_now->fr_literal) - insn_start_off;
5325 else
5326 {
5327 fragS *fr;
5328
5329 add = insn_start_frag->fr_fix - insn_start_off;
5330 for (fr = insn_start_frag->fr_next;
5331 fr && fr != frag_now; fr = fr->fr_next)
5332 add += fr->fr_fix;
5333 add += p - frag_now->fr_literal;
5334 }
5335
5336 if (!object_64bit)
5337 reloc_type = BFD_RELOC_386_GOTPC;
5338 else if (size == 4)
5339 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5340 else if (size == 8)
5341 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5342 i.op[n].imms->X_add_number += add;
5343 }
5344 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5345 i.op[n].imms, 0, reloc_type);
5346 }
5347 }
5348 }
5349 }
5350 \f
5351 /* x86_cons_fix_new is called via the expression parsing code when a
5352 reloc is needed. We use this hook to get the correct .got reloc. */
5353 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
5354 static int cons_sign = -1;
5355
5356 void
5357 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
5358 expressionS *exp)
5359 {
5360 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
5361
5362 got_reloc = NO_RELOC;
5363
5364 #ifdef TE_PE
5365 if (exp->X_op == O_secrel)
5366 {
5367 exp->X_op = O_symbol;
5368 r = BFD_RELOC_32_SECREL;
5369 }
5370 #endif
5371
5372 fix_new_exp (frag, off, len, exp, 0, r);
5373 }
5374
5375 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
5376 # define lex_got(reloc, adjust, types) NULL
5377 #else
5378 /* Parse operands of the form
5379 <symbol>@GOTOFF+<nnn>
5380 and similar .plt or .got references.
5381
5382 If we find one, set up the correct relocation in RELOC and copy the
5383 input string, minus the `@GOTOFF' into a malloc'd buffer for
5384 parsing by the calling routine. Return this buffer, and if ADJUST
5385 is non-null set it to the length of the string we removed from the
5386 input line. Otherwise return NULL. */
5387 static char *
5388 lex_got (enum bfd_reloc_code_real *reloc,
5389 int *adjust,
5390 i386_operand_type *types)
5391 {
5392 /* Some of the relocations depend on the size of what field is to
5393 be relocated. But in our callers i386_immediate and i386_displacement
5394 we don't yet know the operand size (this will be set by insn
5395 matching). Hence we record the word32 relocation here,
5396 and adjust the reloc according to the real size in reloc(). */
5397 static const struct {
5398 const char *str;
5399 const enum bfd_reloc_code_real rel[2];
5400 const i386_operand_type types64;
5401 } gotrel[] = {
5402 { "PLTOFF", { 0,
5403 BFD_RELOC_X86_64_PLTOFF64 },
5404 OPERAND_TYPE_IMM64 },
5405 { "PLT", { BFD_RELOC_386_PLT32,
5406 BFD_RELOC_X86_64_PLT32 },
5407 OPERAND_TYPE_IMM32_32S_DISP32 },
5408 { "GOTPLT", { 0,
5409 BFD_RELOC_X86_64_GOTPLT64 },
5410 OPERAND_TYPE_IMM64_DISP64 },
5411 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
5412 BFD_RELOC_X86_64_GOTOFF64 },
5413 OPERAND_TYPE_IMM64_DISP64 },
5414 { "GOTPCREL", { 0,
5415 BFD_RELOC_X86_64_GOTPCREL },
5416 OPERAND_TYPE_IMM32_32S_DISP32 },
5417 { "TLSGD", { BFD_RELOC_386_TLS_GD,
5418 BFD_RELOC_X86_64_TLSGD },
5419 OPERAND_TYPE_IMM32_32S_DISP32 },
5420 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
5421 0 },
5422 OPERAND_TYPE_NONE },
5423 { "TLSLD", { 0,
5424 BFD_RELOC_X86_64_TLSLD },
5425 OPERAND_TYPE_IMM32_32S_DISP32 },
5426 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
5427 BFD_RELOC_X86_64_GOTTPOFF },
5428 OPERAND_TYPE_IMM32_32S_DISP32 },
5429 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
5430 BFD_RELOC_X86_64_TPOFF32 },
5431 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5432 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
5433 0 },
5434 OPERAND_TYPE_NONE },
5435 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
5436 BFD_RELOC_X86_64_DTPOFF32 },
5437
5438 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5439 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
5440 0 },
5441 OPERAND_TYPE_NONE },
5442 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
5443 0 },
5444 OPERAND_TYPE_NONE },
5445 { "GOT", { BFD_RELOC_386_GOT32,
5446 BFD_RELOC_X86_64_GOT32 },
5447 OPERAND_TYPE_IMM32_32S_64_DISP32 },
5448 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
5449 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
5450 OPERAND_TYPE_IMM32_32S_DISP32 },
5451 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
5452 BFD_RELOC_X86_64_TLSDESC_CALL },
5453 OPERAND_TYPE_IMM32_32S_DISP32 },
5454 };
5455 char *cp;
5456 unsigned int j;
5457
5458 if (!IS_ELF)
5459 return NULL;
5460
5461 for (cp = input_line_pointer; *cp != '@'; cp++)
5462 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
5463 return NULL;
5464
5465 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
5466 {
5467 int len;
5468
5469 len = strlen (gotrel[j].str);
5470 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
5471 {
5472 if (gotrel[j].rel[object_64bit] != 0)
5473 {
5474 int first, second;
5475 char *tmpbuf, *past_reloc;
5476
5477 *reloc = gotrel[j].rel[object_64bit];
5478 if (adjust)
5479 *adjust = len;
5480
5481 if (types)
5482 {
5483 if (flag_code != CODE_64BIT)
5484 {
5485 types->bitfield.imm32 = 1;
5486 types->bitfield.disp32 = 1;
5487 }
5488 else
5489 *types = gotrel[j].types64;
5490 }
5491
5492 if (GOT_symbol == NULL)
5493 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
5494
5495 /* The length of the first part of our input line. */
5496 first = cp - input_line_pointer;
5497
5498 /* The second part goes from after the reloc token until
5499 (and including) an end_of_line char or comma. */
5500 past_reloc = cp + 1 + len;
5501 cp = past_reloc;
5502 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
5503 ++cp;
5504 second = cp + 1 - past_reloc;
5505
5506 /* Allocate and copy string. The trailing NUL shouldn't
5507 be necessary, but be safe. */
5508 tmpbuf = xmalloc (first + second + 2);
5509 memcpy (tmpbuf, input_line_pointer, first);
5510 if (second != 0 && *past_reloc != ' ')
5511 /* Replace the relocation token with ' ', so that
5512 errors like foo@GOTOFF1 will be detected. */
5513 tmpbuf[first++] = ' ';
5514 memcpy (tmpbuf + first, past_reloc, second);
5515 tmpbuf[first + second] = '\0';
5516 return tmpbuf;
5517 }
5518
5519 as_bad (_("@%s reloc is not supported with %d-bit output format"),
5520 gotrel[j].str, 1 << (5 + object_64bit));
5521 return NULL;
5522 }
5523 }
5524
5525 /* Might be a symbol version string. Don't as_bad here. */
5526 return NULL;
5527 }
5528
5529 void
5530 x86_cons (expressionS *exp, int size)
5531 {
5532 if (size == 4 || (object_64bit && size == 8))
5533 {
5534 /* Handle @GOTOFF and the like in an expression. */
5535 char *save;
5536 char *gotfree_input_line;
5537 int adjust;
5538
5539 save = input_line_pointer;
5540 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
5541 if (gotfree_input_line)
5542 input_line_pointer = gotfree_input_line;
5543
5544 expression (exp);
5545
5546 if (gotfree_input_line)
5547 {
5548 /* expression () has merrily parsed up to the end of line,
5549 or a comma - in the wrong buffer. Transfer how far
5550 input_line_pointer has moved to the right buffer. */
5551 input_line_pointer = (save
5552 + (input_line_pointer - gotfree_input_line)
5553 + adjust);
5554 free (gotfree_input_line);
5555 if (exp->X_op == O_constant
5556 || exp->X_op == O_absent
5557 || exp->X_op == O_illegal
5558 || exp->X_op == O_register
5559 || exp->X_op == O_big)
5560 {
5561 char c = *input_line_pointer;
5562 *input_line_pointer = 0;
5563 as_bad (_("missing or invalid expression `%s'"), save);
5564 *input_line_pointer = c;
5565 }
5566 }
5567 }
5568 else
5569 expression (exp);
5570 }
5571 #endif
5572
5573 static void signed_cons (int size)
5574 {
5575 if (flag_code == CODE_64BIT)
5576 cons_sign = 1;
5577 cons (size);
5578 cons_sign = -1;
5579 }
5580
5581 #ifdef TE_PE
5582 static void
5583 pe_directive_secrel (dummy)
5584 int dummy ATTRIBUTE_UNUSED;
5585 {
5586 expressionS exp;
5587
5588 do
5589 {
5590 expression (&exp);
5591 if (exp.X_op == O_symbol)
5592 exp.X_op = O_secrel;
5593
5594 emit_expr (&exp, 4);
5595 }
5596 while (*input_line_pointer++ == ',');
5597
5598 input_line_pointer--;
5599 demand_empty_rest_of_line ();
5600 }
5601 #endif
5602
5603 static int
5604 i386_immediate (char *imm_start)
5605 {
5606 char *save_input_line_pointer;
5607 char *gotfree_input_line;
5608 segT exp_seg = 0;
5609 expressionS *exp;
5610 i386_operand_type types;
5611
5612 UINTS_SET (types, ~0);
5613
5614 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
5615 {
5616 as_bad (_("at most %d immediate operands are allowed"),
5617 MAX_IMMEDIATE_OPERANDS);
5618 return 0;
5619 }
5620
5621 exp = &im_expressions[i.imm_operands++];
5622 i.op[this_operand].imms = exp;
5623
5624 if (is_space_char (*imm_start))
5625 ++imm_start;
5626
5627 save_input_line_pointer = input_line_pointer;
5628 input_line_pointer = imm_start;
5629
5630 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
5631 if (gotfree_input_line)
5632 input_line_pointer = gotfree_input_line;
5633
5634 exp_seg = expression (exp);
5635
5636 SKIP_WHITESPACE ();
5637 if (*input_line_pointer)
5638 as_bad (_("junk `%s' after expression"), input_line_pointer);
5639
5640 input_line_pointer = save_input_line_pointer;
5641 if (gotfree_input_line)
5642 free (gotfree_input_line);
5643
5644 if (exp->X_op == O_absent
5645 || exp->X_op == O_illegal
5646 || exp->X_op == O_big
5647 || (gotfree_input_line
5648 && (exp->X_op == O_constant
5649 || exp->X_op == O_register)))
5650 {
5651 as_bad (_("missing or invalid immediate expression `%s'"),
5652 imm_start);
5653 return 0;
5654 }
5655 else if (exp->X_op == O_constant)
5656 {
5657 /* Size it properly later. */
5658 i.types[this_operand].bitfield.imm64 = 1;
5659 /* If BFD64, sign extend val. */
5660 if (!use_rela_relocations
5661 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
5662 exp->X_add_number
5663 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
5664 }
5665 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5666 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
5667 && exp_seg != absolute_section
5668 && exp_seg != text_section
5669 && exp_seg != data_section
5670 && exp_seg != bss_section
5671 && exp_seg != undefined_section
5672 && !bfd_is_com_section (exp_seg))
5673 {
5674 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
5675 return 0;
5676 }
5677 #endif
5678 else if (!intel_syntax && exp->X_op == O_register)
5679 {
5680 as_bad (_("illegal immediate register operand %s"), imm_start);
5681 return 0;
5682 }
5683 else
5684 {
5685 /* This is an address. The size of the address will be
5686 determined later, depending on destination register,
5687 suffix, or the default for the section. */
5688 i.types[this_operand].bitfield.imm8 = 1;
5689 i.types[this_operand].bitfield.imm16 = 1;
5690 i.types[this_operand].bitfield.imm32 = 1;
5691 i.types[this_operand].bitfield.imm32s = 1;
5692 i.types[this_operand].bitfield.imm64 = 1;
5693 i.types[this_operand] = operand_type_and (i.types[this_operand],
5694 types);
5695 }
5696
5697 return 1;
5698 }
5699
5700 static char *
5701 i386_scale (char *scale)
5702 {
5703 offsetT val;
5704 char *save = input_line_pointer;
5705
5706 input_line_pointer = scale;
5707 val = get_absolute_expression ();
5708
5709 switch (val)
5710 {
5711 case 1:
5712 i.log2_scale_factor = 0;
5713 break;
5714 case 2:
5715 i.log2_scale_factor = 1;
5716 break;
5717 case 4:
5718 i.log2_scale_factor = 2;
5719 break;
5720 case 8:
5721 i.log2_scale_factor = 3;
5722 break;
5723 default:
5724 {
5725 char sep = *input_line_pointer;
5726
5727 *input_line_pointer = '\0';
5728 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5729 scale);
5730 *input_line_pointer = sep;
5731 input_line_pointer = save;
5732 return NULL;
5733 }
5734 }
5735 if (i.log2_scale_factor != 0 && i.index_reg == 0)
5736 {
5737 as_warn (_("scale factor of %d without an index register"),
5738 1 << i.log2_scale_factor);
5739 i.log2_scale_factor = 0;
5740 }
5741 scale = input_line_pointer;
5742 input_line_pointer = save;
5743 return scale;
5744 }
5745
5746 static int
5747 i386_displacement (char *disp_start, char *disp_end)
5748 {
5749 expressionS *exp;
5750 segT exp_seg = 0;
5751 char *save_input_line_pointer;
5752 char *gotfree_input_line;
5753 int override;
5754 i386_operand_type bigdisp, types = anydisp;
5755 int ret;
5756
5757 if (i.disp_operands == MAX_MEMORY_OPERANDS)
5758 {
5759 as_bad (_("at most %d displacement operands are allowed"),
5760 MAX_MEMORY_OPERANDS);
5761 return 0;
5762 }
5763
5764 UINTS_CLEAR (bigdisp);
5765 if ((i.types[this_operand].bitfield.jumpabsolute)
5766 || (!current_templates->start->opcode_modifier.jump
5767 && !current_templates->start->opcode_modifier.jumpdword))
5768 {
5769 bigdisp.bitfield.disp32 = 1;
5770 override = (i.prefix[ADDR_PREFIX] != 0);
5771 if (flag_code == CODE_64BIT)
5772 {
5773 if (!override)
5774 {
5775 bigdisp.bitfield.disp32s = 1;
5776 bigdisp.bitfield.disp64 = 1;
5777 }
5778 }
5779 else if ((flag_code == CODE_16BIT) ^ override)
5780 {
5781 bigdisp.bitfield.disp32 = 0;
5782 bigdisp.bitfield.disp16 = 1;
5783 }
5784 }
5785 else
5786 {
5787 /* For PC-relative branches, the width of the displacement
5788 is dependent upon data size, not address size. */
5789 override = (i.prefix[DATA_PREFIX] != 0);
5790 if (flag_code == CODE_64BIT)
5791 {
5792 if (override || i.suffix == WORD_MNEM_SUFFIX)
5793 bigdisp.bitfield.disp16 = 1;
5794 else
5795 {
5796 bigdisp.bitfield.disp32 = 1;
5797 bigdisp.bitfield.disp32s = 1;
5798 }
5799 }
5800 else
5801 {
5802 if (!override)
5803 override = (i.suffix == (flag_code != CODE_16BIT
5804 ? WORD_MNEM_SUFFIX
5805 : LONG_MNEM_SUFFIX));
5806 bigdisp.bitfield.disp32 = 1;
5807 if ((flag_code == CODE_16BIT) ^ override)
5808 {
5809 bigdisp.bitfield.disp32 = 0;
5810 bigdisp.bitfield.disp16 = 1;
5811 }
5812 }
5813 }
5814 i.types[this_operand] = operand_type_or (i.types[this_operand],
5815 bigdisp);
5816
5817 exp = &disp_expressions[i.disp_operands];
5818 i.op[this_operand].disps = exp;
5819 i.disp_operands++;
5820 save_input_line_pointer = input_line_pointer;
5821 input_line_pointer = disp_start;
5822 END_STRING_AND_SAVE (disp_end);
5823
5824 #ifndef GCC_ASM_O_HACK
5825 #define GCC_ASM_O_HACK 0
5826 #endif
5827 #if GCC_ASM_O_HACK
5828 END_STRING_AND_SAVE (disp_end + 1);
5829 if (i.types[this_operand].bitfield.baseIndex
5830 && displacement_string_end[-1] == '+')
5831 {
5832 /* This hack is to avoid a warning when using the "o"
5833 constraint within gcc asm statements.
5834 For instance:
5835
5836 #define _set_tssldt_desc(n,addr,limit,type) \
5837 __asm__ __volatile__ ( \
5838 "movw %w2,%0\n\t" \
5839 "movw %w1,2+%0\n\t" \
5840 "rorl $16,%1\n\t" \
5841 "movb %b1,4+%0\n\t" \
5842 "movb %4,5+%0\n\t" \
5843 "movb $0,6+%0\n\t" \
5844 "movb %h1,7+%0\n\t" \
5845 "rorl $16,%1" \
5846 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
5847
5848 This works great except that the output assembler ends
5849 up looking a bit weird if it turns out that there is
5850 no offset. You end up producing code that looks like:
5851
5852 #APP
5853 movw $235,(%eax)
5854 movw %dx,2+(%eax)
5855 rorl $16,%edx
5856 movb %dl,4+(%eax)
5857 movb $137,5+(%eax)
5858 movb $0,6+(%eax)
5859 movb %dh,7+(%eax)
5860 rorl $16,%edx
5861 #NO_APP
5862
5863 So here we provide the missing zero. */
5864
5865 *displacement_string_end = '0';
5866 }
5867 #endif
5868 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
5869 if (gotfree_input_line)
5870 input_line_pointer = gotfree_input_line;
5871
5872 exp_seg = expression (exp);
5873
5874 SKIP_WHITESPACE ();
5875 if (*input_line_pointer)
5876 as_bad (_("junk `%s' after expression"), input_line_pointer);
5877 #if GCC_ASM_O_HACK
5878 RESTORE_END_STRING (disp_end + 1);
5879 #endif
5880 input_line_pointer = save_input_line_pointer;
5881 if (gotfree_input_line)
5882 free (gotfree_input_line);
5883 ret = 1;
5884
5885 /* We do this to make sure that the section symbol is in
5886 the symbol table. We will ultimately change the relocation
5887 to be relative to the beginning of the section. */
5888 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
5889 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
5890 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
5891 {
5892 if (exp->X_op != O_symbol)
5893 goto inv_disp;
5894
5895 if (S_IS_LOCAL (exp->X_add_symbol)
5896 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
5897 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
5898 exp->X_op = O_subtract;
5899 exp->X_op_symbol = GOT_symbol;
5900 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
5901 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
5902 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
5903 i.reloc[this_operand] = BFD_RELOC_64;
5904 else
5905 i.reloc[this_operand] = BFD_RELOC_32;
5906 }
5907
5908 else if (exp->X_op == O_absent
5909 || exp->X_op == O_illegal
5910 || exp->X_op == O_big
5911 || (gotfree_input_line
5912 && (exp->X_op == O_constant
5913 || exp->X_op == O_register)))
5914 {
5915 inv_disp:
5916 as_bad (_("missing or invalid displacement expression `%s'"),
5917 disp_start);
5918 ret = 0;
5919 }
5920
5921 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5922 else if (exp->X_op != O_constant
5923 && OUTPUT_FLAVOR == bfd_target_aout_flavour
5924 && exp_seg != absolute_section
5925 && exp_seg != text_section
5926 && exp_seg != data_section
5927 && exp_seg != bss_section
5928 && exp_seg != undefined_section
5929 && !bfd_is_com_section (exp_seg))
5930 {
5931 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
5932 ret = 0;
5933 }
5934 #endif
5935
5936 RESTORE_END_STRING (disp_end);
5937
5938 /* Check if this is a displacement only operand. */
5939 bigdisp = i.types[this_operand];
5940 bigdisp.bitfield.disp8 = 0;
5941 bigdisp.bitfield.disp16 = 0;
5942 bigdisp.bitfield.disp32 = 0;
5943 bigdisp.bitfield.disp32s = 0;
5944 bigdisp.bitfield.disp64 = 0;
5945 if (UINTS_ALL_ZERO (bigdisp))
5946 i.types[this_operand] = operand_type_and (i.types[this_operand],
5947 types);
5948
5949 return ret;
5950 }
5951
5952 /* Make sure the memory operand we've been dealt is valid.
5953 Return 1 on success, 0 on a failure. */
5954
5955 static int
5956 i386_index_check (const char *operand_string)
5957 {
5958 int ok;
5959 #if INFER_ADDR_PREFIX
5960 int fudged = 0;
5961
5962 tryprefix:
5963 #endif
5964 ok = 1;
5965 if (flag_code == CODE_64BIT)
5966 {
5967 if ((i.base_reg
5968 && ((i.prefix[ADDR_PREFIX] == 0
5969 && !i.base_reg->reg_type.bitfield.reg64)
5970 || (i.prefix[ADDR_PREFIX]
5971 && !i.base_reg->reg_type.bitfield.reg32))
5972 && (i.index_reg
5973 || i.base_reg->reg_num !=
5974 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
5975 || (i.index_reg
5976 && (!i.index_reg->reg_type.bitfield.baseindex
5977 || (i.prefix[ADDR_PREFIX] == 0
5978 && i.index_reg->reg_num != RegRiz
5979 && !i.index_reg->reg_type.bitfield.reg64
5980 )
5981 || (i.prefix[ADDR_PREFIX]
5982 && i.index_reg->reg_num != RegEiz
5983 && !i.index_reg->reg_type.bitfield.reg32))))
5984 ok = 0;
5985 }
5986 else
5987 {
5988 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
5989 {
5990 /* 16bit checks. */
5991 if ((i.base_reg
5992 && (!i.base_reg->reg_type.bitfield.reg16
5993 || !i.base_reg->reg_type.bitfield.baseindex))
5994 || (i.index_reg
5995 && (!i.index_reg->reg_type.bitfield.reg16
5996 || !i.index_reg->reg_type.bitfield.baseindex
5997 || !(i.base_reg
5998 && i.base_reg->reg_num < 6
5999 && i.index_reg->reg_num >= 6
6000 && i.log2_scale_factor == 0))))
6001 ok = 0;
6002 }
6003 else
6004 {
6005 /* 32bit checks. */
6006 if ((i.base_reg
6007 && !i.base_reg->reg_type.bitfield.reg32)
6008 || (i.index_reg
6009 && ((!i.index_reg->reg_type.bitfield.reg32
6010 && i.index_reg->reg_num != RegEiz)
6011 || !i.index_reg->reg_type.bitfield.baseindex)))
6012 ok = 0;
6013 }
6014 }
6015 if (!ok)
6016 {
6017 #if INFER_ADDR_PREFIX
6018 if (i.prefix[ADDR_PREFIX] == 0)
6019 {
6020 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6021 i.prefixes += 1;
6022 /* Change the size of any displacement too. At most one of
6023 Disp16 or Disp32 is set.
6024 FIXME. There doesn't seem to be any real need for separate
6025 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
6026 Removing them would probably clean up the code quite a lot. */
6027 if (flag_code != CODE_64BIT
6028 && (i.types[this_operand].bitfield.disp16
6029 || i.types[this_operand].bitfield.disp32))
6030 i.types[this_operand]
6031 = operand_type_xor (i.types[this_operand], disp16_32);
6032 fudged = 1;
6033 goto tryprefix;
6034 }
6035 if (fudged)
6036 as_bad (_("`%s' is not a valid base/index expression"),
6037 operand_string);
6038 else
6039 #endif
6040 as_bad (_("`%s' is not a valid %s bit base/index expression"),
6041 operand_string,
6042 flag_code_names[flag_code]);
6043 }
6044 return ok;
6045 }
6046
6047 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
6048 on error. */
6049
6050 static int
6051 i386_operand (char *operand_string)
6052 {
6053 const reg_entry *r;
6054 char *end_op;
6055 char *op_string = operand_string;
6056
6057 if (is_space_char (*op_string))
6058 ++op_string;
6059
6060 /* We check for an absolute prefix (differentiating,
6061 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
6062 if (*op_string == ABSOLUTE_PREFIX)
6063 {
6064 ++op_string;
6065 if (is_space_char (*op_string))
6066 ++op_string;
6067 i.types[this_operand].bitfield.jumpabsolute = 1;
6068 }
6069
6070 /* Check if operand is a register. */
6071 if ((r = parse_register (op_string, &end_op)) != NULL)
6072 {
6073 i386_operand_type temp;
6074
6075 /* Check for a segment override by searching for ':' after a
6076 segment register. */
6077 op_string = end_op;
6078 if (is_space_char (*op_string))
6079 ++op_string;
6080 if (*op_string == ':'
6081 && (r->reg_type.bitfield.sreg2
6082 || r->reg_type.bitfield.sreg3))
6083 {
6084 switch (r->reg_num)
6085 {
6086 case 0:
6087 i.seg[i.mem_operands] = &es;
6088 break;
6089 case 1:
6090 i.seg[i.mem_operands] = &cs;
6091 break;
6092 case 2:
6093 i.seg[i.mem_operands] = &ss;
6094 break;
6095 case 3:
6096 i.seg[i.mem_operands] = &ds;
6097 break;
6098 case 4:
6099 i.seg[i.mem_operands] = &fs;
6100 break;
6101 case 5:
6102 i.seg[i.mem_operands] = &gs;
6103 break;
6104 }
6105
6106 /* Skip the ':' and whitespace. */
6107 ++op_string;
6108 if (is_space_char (*op_string))
6109 ++op_string;
6110
6111 if (!is_digit_char (*op_string)
6112 && !is_identifier_char (*op_string)
6113 && *op_string != '('
6114 && *op_string != ABSOLUTE_PREFIX)
6115 {
6116 as_bad (_("bad memory operand `%s'"), op_string);
6117 return 0;
6118 }
6119 /* Handle case of %es:*foo. */
6120 if (*op_string == ABSOLUTE_PREFIX)
6121 {
6122 ++op_string;
6123 if (is_space_char (*op_string))
6124 ++op_string;
6125 i.types[this_operand].bitfield.jumpabsolute = 1;
6126 }
6127 goto do_memory_reference;
6128 }
6129 if (*op_string)
6130 {
6131 as_bad (_("junk `%s' after register"), op_string);
6132 return 0;
6133 }
6134 temp = r->reg_type;
6135 temp.bitfield.baseindex = 0;
6136 i.types[this_operand] = operand_type_or (i.types[this_operand],
6137 temp);
6138 i.op[this_operand].regs = r;
6139 i.reg_operands++;
6140 }
6141 else if (*op_string == REGISTER_PREFIX)
6142 {
6143 as_bad (_("bad register name `%s'"), op_string);
6144 return 0;
6145 }
6146 else if (*op_string == IMMEDIATE_PREFIX)
6147 {
6148 ++op_string;
6149 if (i.types[this_operand].bitfield.jumpabsolute)
6150 {
6151 as_bad (_("immediate operand illegal with absolute jump"));
6152 return 0;
6153 }
6154 if (!i386_immediate (op_string))
6155 return 0;
6156 }
6157 else if (is_digit_char (*op_string)
6158 || is_identifier_char (*op_string)
6159 || *op_string == '(')
6160 {
6161 /* This is a memory reference of some sort. */
6162 char *base_string;
6163
6164 /* Start and end of displacement string expression (if found). */
6165 char *displacement_string_start;
6166 char *displacement_string_end;
6167
6168 do_memory_reference:
6169 if ((i.mem_operands == 1
6170 && !current_templates->start->opcode_modifier.isstring)
6171 || i.mem_operands == 2)
6172 {
6173 as_bad (_("too many memory references for `%s'"),
6174 current_templates->start->name);
6175 return 0;
6176 }
6177
6178 /* Check for base index form. We detect the base index form by
6179 looking for an ')' at the end of the operand, searching
6180 for the '(' matching it, and finding a REGISTER_PREFIX or ','
6181 after the '('. */
6182 base_string = op_string + strlen (op_string);
6183
6184 --base_string;
6185 if (is_space_char (*base_string))
6186 --base_string;
6187
6188 /* If we only have a displacement, set-up for it to be parsed later. */
6189 displacement_string_start = op_string;
6190 displacement_string_end = base_string + 1;
6191
6192 if (*base_string == ')')
6193 {
6194 char *temp_string;
6195 unsigned int parens_balanced = 1;
6196 /* We've already checked that the number of left & right ()'s are
6197 equal, so this loop will not be infinite. */
6198 do
6199 {
6200 base_string--;
6201 if (*base_string == ')')
6202 parens_balanced++;
6203 if (*base_string == '(')
6204 parens_balanced--;
6205 }
6206 while (parens_balanced);
6207
6208 temp_string = base_string;
6209
6210 /* Skip past '(' and whitespace. */
6211 ++base_string;
6212 if (is_space_char (*base_string))
6213 ++base_string;
6214
6215 if (*base_string == ','
6216 || ((i.base_reg = parse_register (base_string, &end_op))
6217 != NULL))
6218 {
6219 displacement_string_end = temp_string;
6220
6221 i.types[this_operand].bitfield.baseindex = 1;
6222
6223 if (i.base_reg)
6224 {
6225 base_string = end_op;
6226 if (is_space_char (*base_string))
6227 ++base_string;
6228 }
6229
6230 /* There may be an index reg or scale factor here. */
6231 if (*base_string == ',')
6232 {
6233 ++base_string;
6234 if (is_space_char (*base_string))
6235 ++base_string;
6236
6237 if ((i.index_reg = parse_register (base_string, &end_op))
6238 != NULL)
6239 {
6240 base_string = end_op;
6241 if (is_space_char (*base_string))
6242 ++base_string;
6243 if (*base_string == ',')
6244 {
6245 ++base_string;
6246 if (is_space_char (*base_string))
6247 ++base_string;
6248 }
6249 else if (*base_string != ')')
6250 {
6251 as_bad (_("expecting `,' or `)' "
6252 "after index register in `%s'"),
6253 operand_string);
6254 return 0;
6255 }
6256 }
6257 else if (*base_string == REGISTER_PREFIX)
6258 {
6259 as_bad (_("bad register name `%s'"), base_string);
6260 return 0;
6261 }
6262
6263 /* Check for scale factor. */
6264 if (*base_string != ')')
6265 {
6266 char *end_scale = i386_scale (base_string);
6267
6268 if (!end_scale)
6269 return 0;
6270
6271 base_string = end_scale;
6272 if (is_space_char (*base_string))
6273 ++base_string;
6274 if (*base_string != ')')
6275 {
6276 as_bad (_("expecting `)' "
6277 "after scale factor in `%s'"),
6278 operand_string);
6279 return 0;
6280 }
6281 }
6282 else if (!i.index_reg)
6283 {
6284 as_bad (_("expecting index register or scale factor "
6285 "after `,'; got '%c'"),
6286 *base_string);
6287 return 0;
6288 }
6289 }
6290 else if (*base_string != ')')
6291 {
6292 as_bad (_("expecting `,' or `)' "
6293 "after base register in `%s'"),
6294 operand_string);
6295 return 0;
6296 }
6297 }
6298 else if (*base_string == REGISTER_PREFIX)
6299 {
6300 as_bad (_("bad register name `%s'"), base_string);
6301 return 0;
6302 }
6303 }
6304
6305 /* If there's an expression beginning the operand, parse it,
6306 assuming displacement_string_start and
6307 displacement_string_end are meaningful. */
6308 if (displacement_string_start != displacement_string_end)
6309 {
6310 if (!i386_displacement (displacement_string_start,
6311 displacement_string_end))
6312 return 0;
6313 }
6314
6315 /* Special case for (%dx) while doing input/output op. */
6316 if (i.base_reg
6317 && UINTS_EQUAL (i.base_reg->reg_type, reg16_inoutportreg)
6318 && i.index_reg == 0
6319 && i.log2_scale_factor == 0
6320 && i.seg[i.mem_operands] == 0
6321 && !operand_type_check (i.types[this_operand], disp))
6322 {
6323 UINTS_CLEAR (i.types[this_operand]);
6324 i.types[this_operand].bitfield.inoutportreg = 1;
6325 return 1;
6326 }
6327
6328 if (i386_index_check (operand_string) == 0)
6329 return 0;
6330 i.mem_operands++;
6331 }
6332 else
6333 {
6334 /* It's not a memory operand; argh! */
6335 as_bad (_("invalid char %s beginning operand %d `%s'"),
6336 output_invalid (*op_string),
6337 this_operand + 1,
6338 op_string);
6339 return 0;
6340 }
6341 return 1; /* Normal return. */
6342 }
6343 \f
6344 /* md_estimate_size_before_relax()
6345
6346 Called just before relax() for rs_machine_dependent frags. The x86
6347 assembler uses these frags to handle variable size jump
6348 instructions.
6349
6350 Any symbol that is now undefined will not become defined.
6351 Return the correct fr_subtype in the frag.
6352 Return the initial "guess for variable size of frag" to caller.
6353 The guess is actually the growth beyond the fixed part. Whatever
6354 we do to grow the fixed or variable part contributes to our
6355 returned value. */
6356
6357 int
6358 md_estimate_size_before_relax (fragP, segment)
6359 fragS *fragP;
6360 segT segment;
6361 {
6362 /* We've already got fragP->fr_subtype right; all we have to do is
6363 check for un-relaxable symbols. On an ELF system, we can't relax
6364 an externally visible symbol, because it may be overridden by a
6365 shared library. */
6366 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6367 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6368 || (IS_ELF
6369 && (S_IS_EXTERNAL (fragP->fr_symbol)
6370 || S_IS_WEAK (fragP->fr_symbol)))
6371 #endif
6372 )
6373 {
6374 /* Symbol is undefined in this segment, or we need to keep a
6375 reloc so that weak symbols can be overridden. */
6376 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
6377 enum bfd_reloc_code_real reloc_type;
6378 unsigned char *opcode;
6379 int old_fr_fix;
6380
6381 if (fragP->fr_var != NO_RELOC)
6382 reloc_type = fragP->fr_var;
6383 else if (size == 2)
6384 reloc_type = BFD_RELOC_16_PCREL;
6385 else
6386 reloc_type = BFD_RELOC_32_PCREL;
6387
6388 old_fr_fix = fragP->fr_fix;
6389 opcode = (unsigned char *) fragP->fr_opcode;
6390
6391 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
6392 {
6393 case UNCOND_JUMP:
6394 /* Make jmp (0xeb) a (d)word displacement jump. */
6395 opcode[0] = 0xe9;
6396 fragP->fr_fix += size;
6397 fix_new (fragP, old_fr_fix, size,
6398 fragP->fr_symbol,
6399 fragP->fr_offset, 1,
6400 reloc_type);
6401 break;
6402
6403 case COND_JUMP86:
6404 if (size == 2
6405 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
6406 {
6407 /* Negate the condition, and branch past an
6408 unconditional jump. */
6409 opcode[0] ^= 1;
6410 opcode[1] = 3;
6411 /* Insert an unconditional jump. */
6412 opcode[2] = 0xe9;
6413 /* We added two extra opcode bytes, and have a two byte
6414 offset. */
6415 fragP->fr_fix += 2 + 2;
6416 fix_new (fragP, old_fr_fix + 2, 2,
6417 fragP->fr_symbol,
6418 fragP->fr_offset, 1,
6419 reloc_type);
6420 break;
6421 }
6422 /* Fall through. */
6423
6424 case COND_JUMP:
6425 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
6426 {
6427 fixS *fixP;
6428
6429 fragP->fr_fix += 1;
6430 fixP = fix_new (fragP, old_fr_fix, 1,
6431 fragP->fr_symbol,
6432 fragP->fr_offset, 1,
6433 BFD_RELOC_8_PCREL);
6434 fixP->fx_signed = 1;
6435 break;
6436 }
6437
6438 /* This changes the byte-displacement jump 0x7N
6439 to the (d)word-displacement jump 0x0f,0x8N. */
6440 opcode[1] = opcode[0] + 0x10;
6441 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6442 /* We've added an opcode byte. */
6443 fragP->fr_fix += 1 + size;
6444 fix_new (fragP, old_fr_fix + 1, size,
6445 fragP->fr_symbol,
6446 fragP->fr_offset, 1,
6447 reloc_type);
6448 break;
6449
6450 default:
6451 BAD_CASE (fragP->fr_subtype);
6452 break;
6453 }
6454 frag_wane (fragP);
6455 return fragP->fr_fix - old_fr_fix;
6456 }
6457
6458 /* Guess size depending on current relax state. Initially the relax
6459 state will correspond to a short jump and we return 1, because
6460 the variable part of the frag (the branch offset) is one byte
6461 long. However, we can relax a section more than once and in that
6462 case we must either set fr_subtype back to the unrelaxed state,
6463 or return the value for the appropriate branch. */
6464 return md_relax_table[fragP->fr_subtype].rlx_length;
6465 }
6466
6467 /* Called after relax() is finished.
6468
6469 In: Address of frag.
6470 fr_type == rs_machine_dependent.
6471 fr_subtype is what the address relaxed to.
6472
6473 Out: Any fixSs and constants are set up.
6474 Caller will turn frag into a ".space 0". */
6475
6476 void
6477 md_convert_frag (abfd, sec, fragP)
6478 bfd *abfd ATTRIBUTE_UNUSED;
6479 segT sec ATTRIBUTE_UNUSED;
6480 fragS *fragP;
6481 {
6482 unsigned char *opcode;
6483 unsigned char *where_to_put_displacement = NULL;
6484 offsetT target_address;
6485 offsetT opcode_address;
6486 unsigned int extension = 0;
6487 offsetT displacement_from_opcode_start;
6488
6489 opcode = (unsigned char *) fragP->fr_opcode;
6490
6491 /* Address we want to reach in file space. */
6492 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
6493
6494 /* Address opcode resides at in file space. */
6495 opcode_address = fragP->fr_address + fragP->fr_fix;
6496
6497 /* Displacement from opcode start to fill into instruction. */
6498 displacement_from_opcode_start = target_address - opcode_address;
6499
6500 if ((fragP->fr_subtype & BIG) == 0)
6501 {
6502 /* Don't have to change opcode. */
6503 extension = 1; /* 1 opcode + 1 displacement */
6504 where_to_put_displacement = &opcode[1];
6505 }
6506 else
6507 {
6508 if (no_cond_jump_promotion
6509 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
6510 as_warn_where (fragP->fr_file, fragP->fr_line,
6511 _("long jump required"));
6512
6513 switch (fragP->fr_subtype)
6514 {
6515 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
6516 extension = 4; /* 1 opcode + 4 displacement */
6517 opcode[0] = 0xe9;
6518 where_to_put_displacement = &opcode[1];
6519 break;
6520
6521 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
6522 extension = 2; /* 1 opcode + 2 displacement */
6523 opcode[0] = 0xe9;
6524 where_to_put_displacement = &opcode[1];
6525 break;
6526
6527 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
6528 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
6529 extension = 5; /* 2 opcode + 4 displacement */
6530 opcode[1] = opcode[0] + 0x10;
6531 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6532 where_to_put_displacement = &opcode[2];
6533 break;
6534
6535 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
6536 extension = 3; /* 2 opcode + 2 displacement */
6537 opcode[1] = opcode[0] + 0x10;
6538 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6539 where_to_put_displacement = &opcode[2];
6540 break;
6541
6542 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
6543 extension = 4;
6544 opcode[0] ^= 1;
6545 opcode[1] = 3;
6546 opcode[2] = 0xe9;
6547 where_to_put_displacement = &opcode[3];
6548 break;
6549
6550 default:
6551 BAD_CASE (fragP->fr_subtype);
6552 break;
6553 }
6554 }
6555
6556 /* If size if less then four we are sure that the operand fits,
6557 but if it's 4, then it could be that the displacement is larger
6558 then -/+ 2GB. */
6559 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
6560 && object_64bit
6561 && ((addressT) (displacement_from_opcode_start - extension
6562 + ((addressT) 1 << 31))
6563 > (((addressT) 2 << 31) - 1)))
6564 {
6565 as_bad_where (fragP->fr_file, fragP->fr_line,
6566 _("jump target out of range"));
6567 /* Make us emit 0. */
6568 displacement_from_opcode_start = extension;
6569 }
6570 /* Now put displacement after opcode. */
6571 md_number_to_chars ((char *) where_to_put_displacement,
6572 (valueT) (displacement_from_opcode_start - extension),
6573 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
6574 fragP->fr_fix += extension;
6575 }
6576 \f
6577 /* Size of byte displacement jmp. */
6578 int md_short_jump_size = 2;
6579
6580 /* Size of dword displacement jmp. */
6581 int md_long_jump_size = 5;
6582
6583 void
6584 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
6585 char *ptr;
6586 addressT from_addr, to_addr;
6587 fragS *frag ATTRIBUTE_UNUSED;
6588 symbolS *to_symbol ATTRIBUTE_UNUSED;
6589 {
6590 offsetT offset;
6591
6592 offset = to_addr - (from_addr + 2);
6593 /* Opcode for byte-disp jump. */
6594 md_number_to_chars (ptr, (valueT) 0xeb, 1);
6595 md_number_to_chars (ptr + 1, (valueT) offset, 1);
6596 }
6597
6598 void
6599 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
6600 char *ptr;
6601 addressT from_addr, to_addr;
6602 fragS *frag ATTRIBUTE_UNUSED;
6603 symbolS *to_symbol ATTRIBUTE_UNUSED;
6604 {
6605 offsetT offset;
6606
6607 offset = to_addr - (from_addr + 5);
6608 md_number_to_chars (ptr, (valueT) 0xe9, 1);
6609 md_number_to_chars (ptr + 1, (valueT) offset, 4);
6610 }
6611 \f
6612 /* Apply a fixup (fixS) to segment data, once it has been determined
6613 by our caller that we have all the info we need to fix it up.
6614
6615 On the 386, immediates, displacements, and data pointers are all in
6616 the same (little-endian) format, so we don't need to care about which
6617 we are handling. */
6618
6619 void
6620 md_apply_fix (fixP, valP, seg)
6621 /* The fix we're to put in. */
6622 fixS *fixP;
6623 /* Pointer to the value of the bits. */
6624 valueT *valP;
6625 /* Segment fix is from. */
6626 segT seg ATTRIBUTE_UNUSED;
6627 {
6628 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
6629 valueT value = *valP;
6630
6631 #if !defined (TE_Mach)
6632 if (fixP->fx_pcrel)
6633 {
6634 switch (fixP->fx_r_type)
6635 {
6636 default:
6637 break;
6638
6639 case BFD_RELOC_64:
6640 fixP->fx_r_type = BFD_RELOC_64_PCREL;
6641 break;
6642 case BFD_RELOC_32:
6643 case BFD_RELOC_X86_64_32S:
6644 fixP->fx_r_type = BFD_RELOC_32_PCREL;
6645 break;
6646 case BFD_RELOC_16:
6647 fixP->fx_r_type = BFD_RELOC_16_PCREL;
6648 break;
6649 case BFD_RELOC_8:
6650 fixP->fx_r_type = BFD_RELOC_8_PCREL;
6651 break;
6652 }
6653 }
6654
6655 if (fixP->fx_addsy != NULL
6656 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
6657 || fixP->fx_r_type == BFD_RELOC_64_PCREL
6658 || fixP->fx_r_type == BFD_RELOC_16_PCREL
6659 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
6660 && !use_rela_relocations)
6661 {
6662 /* This is a hack. There should be a better way to handle this.
6663 This covers for the fact that bfd_install_relocation will
6664 subtract the current location (for partial_inplace, PC relative
6665 relocations); see more below. */
6666 #ifndef OBJ_AOUT
6667 if (IS_ELF
6668 #ifdef TE_PE
6669 || OUTPUT_FLAVOR == bfd_target_coff_flavour
6670 #endif
6671 )
6672 value += fixP->fx_where + fixP->fx_frag->fr_address;
6673 #endif
6674 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6675 if (IS_ELF)
6676 {
6677 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
6678
6679 if ((sym_seg == seg
6680 || (symbol_section_p (fixP->fx_addsy)
6681 && sym_seg != absolute_section))
6682 && !generic_force_reloc (fixP))
6683 {
6684 /* Yes, we add the values in twice. This is because
6685 bfd_install_relocation subtracts them out again. I think
6686 bfd_install_relocation is broken, but I don't dare change
6687 it. FIXME. */
6688 value += fixP->fx_where + fixP->fx_frag->fr_address;
6689 }
6690 }
6691 #endif
6692 #if defined (OBJ_COFF) && defined (TE_PE)
6693 /* For some reason, the PE format does not store a
6694 section address offset for a PC relative symbol. */
6695 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
6696 || S_IS_WEAK (fixP->fx_addsy))
6697 value += md_pcrel_from (fixP);
6698 #endif
6699 }
6700
6701 /* Fix a few things - the dynamic linker expects certain values here,
6702 and we must not disappoint it. */
6703 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6704 if (IS_ELF && fixP->fx_addsy)
6705 switch (fixP->fx_r_type)
6706 {
6707 case BFD_RELOC_386_PLT32:
6708 case BFD_RELOC_X86_64_PLT32:
6709 /* Make the jump instruction point to the address of the operand. At
6710 runtime we merely add the offset to the actual PLT entry. */
6711 value = -4;
6712 break;
6713
6714 case BFD_RELOC_386_TLS_GD:
6715 case BFD_RELOC_386_TLS_LDM:
6716 case BFD_RELOC_386_TLS_IE_32:
6717 case BFD_RELOC_386_TLS_IE:
6718 case BFD_RELOC_386_TLS_GOTIE:
6719 case BFD_RELOC_386_TLS_GOTDESC:
6720 case BFD_RELOC_X86_64_TLSGD:
6721 case BFD_RELOC_X86_64_TLSLD:
6722 case BFD_RELOC_X86_64_GOTTPOFF:
6723 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6724 value = 0; /* Fully resolved at runtime. No addend. */
6725 /* Fallthrough */
6726 case BFD_RELOC_386_TLS_LE:
6727 case BFD_RELOC_386_TLS_LDO_32:
6728 case BFD_RELOC_386_TLS_LE_32:
6729 case BFD_RELOC_X86_64_DTPOFF32:
6730 case BFD_RELOC_X86_64_DTPOFF64:
6731 case BFD_RELOC_X86_64_TPOFF32:
6732 case BFD_RELOC_X86_64_TPOFF64:
6733 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6734 break;
6735
6736 case BFD_RELOC_386_TLS_DESC_CALL:
6737 case BFD_RELOC_X86_64_TLSDESC_CALL:
6738 value = 0; /* Fully resolved at runtime. No addend. */
6739 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6740 fixP->fx_done = 0;
6741 return;
6742
6743 case BFD_RELOC_386_GOT32:
6744 case BFD_RELOC_X86_64_GOT32:
6745 value = 0; /* Fully resolved at runtime. No addend. */
6746 break;
6747
6748 case BFD_RELOC_VTABLE_INHERIT:
6749 case BFD_RELOC_VTABLE_ENTRY:
6750 fixP->fx_done = 0;
6751 return;
6752
6753 default:
6754 break;
6755 }
6756 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
6757 *valP = value;
6758 #endif /* !defined (TE_Mach) */
6759
6760 /* Are we finished with this relocation now? */
6761 if (fixP->fx_addsy == NULL)
6762 fixP->fx_done = 1;
6763 else if (use_rela_relocations)
6764 {
6765 fixP->fx_no_overflow = 1;
6766 /* Remember value for tc_gen_reloc. */
6767 fixP->fx_addnumber = value;
6768 value = 0;
6769 }
6770
6771 md_number_to_chars (p, value, fixP->fx_size);
6772 }
6773 \f
6774 char *
6775 md_atof (int type, char *litP, int *sizeP)
6776 {
6777 /* This outputs the LITTLENUMs in REVERSE order;
6778 in accord with the bigendian 386. */
6779 return ieee_md_atof (type, litP, sizeP, FALSE);
6780 }
6781 \f
6782 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
6783
6784 static char *
6785 output_invalid (int c)
6786 {
6787 if (ISPRINT (c))
6788 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
6789 "'%c'", c);
6790 else
6791 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
6792 "(0x%x)", (unsigned char) c);
6793 return output_invalid_buf;
6794 }
6795
6796 /* REG_STRING starts *before* REGISTER_PREFIX. */
6797
6798 static const reg_entry *
6799 parse_real_register (char *reg_string, char **end_op)
6800 {
6801 char *s = reg_string;
6802 char *p;
6803 char reg_name_given[MAX_REG_NAME_SIZE + 1];
6804 const reg_entry *r;
6805
6806 /* Skip possible REGISTER_PREFIX and possible whitespace. */
6807 if (*s == REGISTER_PREFIX)
6808 ++s;
6809
6810 if (is_space_char (*s))
6811 ++s;
6812
6813 p = reg_name_given;
6814 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
6815 {
6816 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
6817 return (const reg_entry *) NULL;
6818 s++;
6819 }
6820
6821 /* For naked regs, make sure that we are not dealing with an identifier.
6822 This prevents confusing an identifier like `eax_var' with register
6823 `eax'. */
6824 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
6825 return (const reg_entry *) NULL;
6826
6827 *end_op = s;
6828
6829 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
6830
6831 /* Handle floating point regs, allowing spaces in the (i) part. */
6832 if (r == i386_regtab /* %st is first entry of table */)
6833 {
6834 if (is_space_char (*s))
6835 ++s;
6836 if (*s == '(')
6837 {
6838 ++s;
6839 if (is_space_char (*s))
6840 ++s;
6841 if (*s >= '0' && *s <= '7')
6842 {
6843 int fpr = *s - '0';
6844 ++s;
6845 if (is_space_char (*s))
6846 ++s;
6847 if (*s == ')')
6848 {
6849 *end_op = s + 1;
6850 r = hash_find (reg_hash, "st(0)");
6851 know (r);
6852 return r + fpr;
6853 }
6854 }
6855 /* We have "%st(" then garbage. */
6856 return (const reg_entry *) NULL;
6857 }
6858 }
6859
6860 /* Don't allow fake index register unless allow_index_reg isn't 0. */
6861 if (r != NULL
6862 && !allow_index_reg
6863 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
6864 return (const reg_entry *) NULL;
6865
6866 if (r != NULL
6867 && ((r->reg_flags & (RegRex64 | RegRex))
6868 || r->reg_type.bitfield.reg64)
6869 && (!cpu_arch_flags.bitfield.cpulm
6870 || !UINTS_EQUAL (r->reg_type, control))
6871 && flag_code != CODE_64BIT)
6872 return (const reg_entry *) NULL;
6873
6874 return r;
6875 }
6876
6877 /* REG_STRING starts *before* REGISTER_PREFIX. */
6878
6879 static const reg_entry *
6880 parse_register (char *reg_string, char **end_op)
6881 {
6882 const reg_entry *r;
6883
6884 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
6885 r = parse_real_register (reg_string, end_op);
6886 else
6887 r = NULL;
6888 if (!r)
6889 {
6890 char *save = input_line_pointer;
6891 char c;
6892 symbolS *symbolP;
6893
6894 input_line_pointer = reg_string;
6895 c = get_symbol_end ();
6896 symbolP = symbol_find (reg_string);
6897 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
6898 {
6899 const expressionS *e = symbol_get_value_expression (symbolP);
6900
6901 know (e->X_op == O_register);
6902 know (e->X_add_number >= 0
6903 && (valueT) e->X_add_number < i386_regtab_size);
6904 r = i386_regtab + e->X_add_number;
6905 *end_op = input_line_pointer;
6906 }
6907 *input_line_pointer = c;
6908 input_line_pointer = save;
6909 }
6910 return r;
6911 }
6912
6913 int
6914 i386_parse_name (char *name, expressionS *e, char *nextcharP)
6915 {
6916 const reg_entry *r;
6917 char *end = input_line_pointer;
6918
6919 *end = *nextcharP;
6920 r = parse_register (name, &input_line_pointer);
6921 if (r && end <= input_line_pointer)
6922 {
6923 *nextcharP = *input_line_pointer;
6924 *input_line_pointer = 0;
6925 e->X_op = O_register;
6926 e->X_add_number = r - i386_regtab;
6927 return 1;
6928 }
6929 input_line_pointer = end;
6930 *end = 0;
6931 return 0;
6932 }
6933
6934 void
6935 md_operand (expressionS *e)
6936 {
6937 if (*input_line_pointer == REGISTER_PREFIX)
6938 {
6939 char *end;
6940 const reg_entry *r = parse_real_register (input_line_pointer, &end);
6941
6942 if (r)
6943 {
6944 e->X_op = O_register;
6945 e->X_add_number = r - i386_regtab;
6946 input_line_pointer = end;
6947 }
6948 }
6949 }
6950
6951 \f
6952 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6953 const char *md_shortopts = "kVQ:sqn";
6954 #else
6955 const char *md_shortopts = "qn";
6956 #endif
6957
6958 #define OPTION_32 (OPTION_MD_BASE + 0)
6959 #define OPTION_64 (OPTION_MD_BASE + 1)
6960 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
6961 #define OPTION_MARCH (OPTION_MD_BASE + 3)
6962 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
6963
6964 struct option md_longopts[] =
6965 {
6966 {"32", no_argument, NULL, OPTION_32},
6967 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6968 {"64", no_argument, NULL, OPTION_64},
6969 #endif
6970 {"divide", no_argument, NULL, OPTION_DIVIDE},
6971 {"march", required_argument, NULL, OPTION_MARCH},
6972 {"mtune", required_argument, NULL, OPTION_MTUNE},
6973 {NULL, no_argument, NULL, 0}
6974 };
6975 size_t md_longopts_size = sizeof (md_longopts);
6976
6977 int
6978 md_parse_option (int c, char *arg)
6979 {
6980 unsigned int i;
6981
6982 switch (c)
6983 {
6984 case 'n':
6985 optimize_align_code = 0;
6986 break;
6987
6988 case 'q':
6989 quiet_warnings = 1;
6990 break;
6991
6992 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6993 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
6994 should be emitted or not. FIXME: Not implemented. */
6995 case 'Q':
6996 break;
6997
6998 /* -V: SVR4 argument to print version ID. */
6999 case 'V':
7000 print_version_id ();
7001 break;
7002
7003 /* -k: Ignore for FreeBSD compatibility. */
7004 case 'k':
7005 break;
7006
7007 case 's':
7008 /* -s: On i386 Solaris, this tells the native assembler to use
7009 .stab instead of .stab.excl. We always use .stab anyhow. */
7010 break;
7011 #endif
7012 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
7013 case OPTION_64:
7014 {
7015 const char **list, **l;
7016
7017 list = bfd_target_list ();
7018 for (l = list; *l != NULL; l++)
7019 if (CONST_STRNEQ (*l, "elf64-x86-64")
7020 || strcmp (*l, "coff-x86-64") == 0
7021 || strcmp (*l, "pe-x86-64") == 0
7022 || strcmp (*l, "pei-x86-64") == 0)
7023 {
7024 default_arch = "x86_64";
7025 break;
7026 }
7027 if (*l == NULL)
7028 as_fatal (_("No compiled in support for x86_64"));
7029 free (list);
7030 }
7031 break;
7032 #endif
7033
7034 case OPTION_32:
7035 default_arch = "i386";
7036 break;
7037
7038 case OPTION_DIVIDE:
7039 #ifdef SVR4_COMMENT_CHARS
7040 {
7041 char *n, *t;
7042 const char *s;
7043
7044 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
7045 t = n;
7046 for (s = i386_comment_chars; *s != '\0'; s++)
7047 if (*s != '/')
7048 *t++ = *s;
7049 *t = '\0';
7050 i386_comment_chars = n;
7051 }
7052 #endif
7053 break;
7054
7055 case OPTION_MARCH:
7056 if (*arg == '.')
7057 as_fatal (_("Invalid -march= option: `%s'"), arg);
7058 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7059 {
7060 if (strcmp (arg, cpu_arch [i].name) == 0)
7061 {
7062 cpu_arch_isa = cpu_arch[i].type;
7063 cpu_arch_isa_flags = cpu_arch[i].flags;
7064 if (!cpu_arch_tune_set)
7065 {
7066 cpu_arch_tune = cpu_arch_isa;
7067 cpu_arch_tune_flags = cpu_arch_isa_flags;
7068 }
7069 break;
7070 }
7071 }
7072 if (i >= ARRAY_SIZE (cpu_arch))
7073 as_fatal (_("Invalid -march= option: `%s'"), arg);
7074 break;
7075
7076 case OPTION_MTUNE:
7077 if (*arg == '.')
7078 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7079 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7080 {
7081 if (strcmp (arg, cpu_arch [i].name) == 0)
7082 {
7083 cpu_arch_tune_set = 1;
7084 cpu_arch_tune = cpu_arch [i].type;
7085 cpu_arch_tune_flags = cpu_arch[i].flags;
7086 break;
7087 }
7088 }
7089 if (i >= ARRAY_SIZE (cpu_arch))
7090 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7091 break;
7092
7093 default:
7094 return 0;
7095 }
7096 return 1;
7097 }
7098
7099 void
7100 md_show_usage (stream)
7101 FILE *stream;
7102 {
7103 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7104 fprintf (stream, _("\
7105 -Q ignored\n\
7106 -V print assembler version number\n\
7107 -k ignored\n"));
7108 #endif
7109 fprintf (stream, _("\
7110 -n Do not optimize code alignment\n\
7111 -q quieten some warnings\n"));
7112 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7113 fprintf (stream, _("\
7114 -s ignored\n"));
7115 #endif
7116 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
7117 fprintf (stream, _("\
7118 --32/--64 generate 32bit/64bit code\n"));
7119 #endif
7120 #ifdef SVR4_COMMENT_CHARS
7121 fprintf (stream, _("\
7122 --divide do not treat `/' as a comment character\n"));
7123 #else
7124 fprintf (stream, _("\
7125 --divide ignored\n"));
7126 #endif
7127 fprintf (stream, _("\
7128 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
7129 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
7130 core, core2, k6, athlon, k8, generic32, generic64\n"));
7131
7132 }
7133
7134 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
7135 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
7136
7137 /* Pick the target format to use. */
7138
7139 const char *
7140 i386_target_format (void)
7141 {
7142 if (!strcmp (default_arch, "x86_64"))
7143 {
7144 set_code_flag (CODE_64BIT);
7145 if (UINTS_ALL_ZERO (cpu_arch_isa_flags))
7146 {
7147 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7148 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7149 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7150 cpu_arch_isa_flags.bitfield.cpui486 = 1;
7151 cpu_arch_isa_flags.bitfield.cpui586 = 1;
7152 cpu_arch_isa_flags.bitfield.cpui686 = 1;
7153 cpu_arch_isa_flags.bitfield.cpup4 = 1;
7154 cpu_arch_isa_flags.bitfield.cpummx= 1;
7155 cpu_arch_isa_flags.bitfield.cpummx2 = 1;
7156 cpu_arch_isa_flags.bitfield.cpusse = 1;
7157 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
7158 }
7159 if (UINTS_ALL_ZERO (cpu_arch_tune_flags))
7160 {
7161 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7162 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7163 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7164 cpu_arch_tune_flags.bitfield.cpui486 = 1;
7165 cpu_arch_tune_flags.bitfield.cpui586 = 1;
7166 cpu_arch_tune_flags.bitfield.cpui686 = 1;
7167 cpu_arch_tune_flags.bitfield.cpup4 = 1;
7168 cpu_arch_tune_flags.bitfield.cpummx= 1;
7169 cpu_arch_tune_flags.bitfield.cpummx2 = 1;
7170 cpu_arch_tune_flags.bitfield.cpusse = 1;
7171 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
7172 }
7173 }
7174 else if (!strcmp (default_arch, "i386"))
7175 {
7176 set_code_flag (CODE_32BIT);
7177 if (UINTS_ALL_ZERO (cpu_arch_isa_flags))
7178 {
7179 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7180 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7181 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7182 }
7183 if (UINTS_ALL_ZERO (cpu_arch_tune_flags))
7184 {
7185 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7186 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7187 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7188 }
7189 }
7190 else
7191 as_fatal (_("Unknown architecture"));
7192 switch (OUTPUT_FLAVOR)
7193 {
7194 #ifdef TE_PEP
7195 case bfd_target_coff_flavour:
7196 return flag_code == CODE_64BIT ? COFF_TARGET_FORMAT : "coff-i386";
7197 break;
7198 #endif
7199 #ifdef OBJ_MAYBE_AOUT
7200 case bfd_target_aout_flavour:
7201 return AOUT_TARGET_FORMAT;
7202 #endif
7203 #ifdef OBJ_MAYBE_COFF
7204 case bfd_target_coff_flavour:
7205 return "coff-i386";
7206 #endif
7207 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7208 case bfd_target_elf_flavour:
7209 {
7210 if (flag_code == CODE_64BIT)
7211 {
7212 object_64bit = 1;
7213 use_rela_relocations = 1;
7214 }
7215 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
7216 }
7217 #endif
7218 default:
7219 abort ();
7220 return NULL;
7221 }
7222 }
7223
7224 #endif /* OBJ_MAYBE_ more than one */
7225
7226 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
7227 void
7228 i386_elf_emit_arch_note (void)
7229 {
7230 if (IS_ELF && cpu_arch_name != NULL)
7231 {
7232 char *p;
7233 asection *seg = now_seg;
7234 subsegT subseg = now_subseg;
7235 Elf_Internal_Note i_note;
7236 Elf_External_Note e_note;
7237 asection *note_secp;
7238 int len;
7239
7240 /* Create the .note section. */
7241 note_secp = subseg_new (".note", 0);
7242 bfd_set_section_flags (stdoutput,
7243 note_secp,
7244 SEC_HAS_CONTENTS | SEC_READONLY);
7245
7246 /* Process the arch string. */
7247 len = strlen (cpu_arch_name);
7248
7249 i_note.namesz = len + 1;
7250 i_note.descsz = 0;
7251 i_note.type = NT_ARCH;
7252 p = frag_more (sizeof (e_note.namesz));
7253 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
7254 p = frag_more (sizeof (e_note.descsz));
7255 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
7256 p = frag_more (sizeof (e_note.type));
7257 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
7258 p = frag_more (len + 1);
7259 strcpy (p, cpu_arch_name);
7260
7261 frag_align (2, 0, 0);
7262
7263 subseg_set (seg, subseg);
7264 }
7265 }
7266 #endif
7267 \f
7268 symbolS *
7269 md_undefined_symbol (name)
7270 char *name;
7271 {
7272 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
7273 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
7274 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
7275 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
7276 {
7277 if (!GOT_symbol)
7278 {
7279 if (symbol_find (name))
7280 as_bad (_("GOT already in symbol table"));
7281 GOT_symbol = symbol_new (name, undefined_section,
7282 (valueT) 0, &zero_address_frag);
7283 };
7284 return GOT_symbol;
7285 }
7286 return 0;
7287 }
7288
7289 /* Round up a section size to the appropriate boundary. */
7290
7291 valueT
7292 md_section_align (segment, size)
7293 segT segment ATTRIBUTE_UNUSED;
7294 valueT size;
7295 {
7296 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7297 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
7298 {
7299 /* For a.out, force the section size to be aligned. If we don't do
7300 this, BFD will align it for us, but it will not write out the
7301 final bytes of the section. This may be a bug in BFD, but it is
7302 easier to fix it here since that is how the other a.out targets
7303 work. */
7304 int align;
7305
7306 align = bfd_get_section_alignment (stdoutput, segment);
7307 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
7308 }
7309 #endif
7310
7311 return size;
7312 }
7313
7314 /* On the i386, PC-relative offsets are relative to the start of the
7315 next instruction. That is, the address of the offset, plus its
7316 size, since the offset is always the last part of the insn. */
7317
7318 long
7319 md_pcrel_from (fixS *fixP)
7320 {
7321 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
7322 }
7323
7324 #ifndef I386COFF
7325
7326 static void
7327 s_bss (int ignore ATTRIBUTE_UNUSED)
7328 {
7329 int temp;
7330
7331 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7332 if (IS_ELF)
7333 obj_elf_section_change_hook ();
7334 #endif
7335 temp = get_absolute_expression ();
7336 subseg_set (bss_section, (subsegT) temp);
7337 demand_empty_rest_of_line ();
7338 }
7339
7340 #endif
7341
7342 void
7343 i386_validate_fix (fixS *fixp)
7344 {
7345 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
7346 {
7347 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
7348 {
7349 if (!object_64bit)
7350 abort ();
7351 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
7352 }
7353 else
7354 {
7355 if (!object_64bit)
7356 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
7357 else
7358 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
7359 }
7360 fixp->fx_subsy = 0;
7361 }
7362 }
7363
7364 arelent *
7365 tc_gen_reloc (section, fixp)
7366 asection *section ATTRIBUTE_UNUSED;
7367 fixS *fixp;
7368 {
7369 arelent *rel;
7370 bfd_reloc_code_real_type code;
7371
7372 switch (fixp->fx_r_type)
7373 {
7374 case BFD_RELOC_X86_64_PLT32:
7375 case BFD_RELOC_X86_64_GOT32:
7376 case BFD_RELOC_X86_64_GOTPCREL:
7377 case BFD_RELOC_386_PLT32:
7378 case BFD_RELOC_386_GOT32:
7379 case BFD_RELOC_386_GOTOFF:
7380 case BFD_RELOC_386_GOTPC:
7381 case BFD_RELOC_386_TLS_GD:
7382 case BFD_RELOC_386_TLS_LDM:
7383 case BFD_RELOC_386_TLS_LDO_32:
7384 case BFD_RELOC_386_TLS_IE_32:
7385 case BFD_RELOC_386_TLS_IE:
7386 case BFD_RELOC_386_TLS_GOTIE:
7387 case BFD_RELOC_386_TLS_LE_32:
7388 case BFD_RELOC_386_TLS_LE:
7389 case BFD_RELOC_386_TLS_GOTDESC:
7390 case BFD_RELOC_386_TLS_DESC_CALL:
7391 case BFD_RELOC_X86_64_TLSGD:
7392 case BFD_RELOC_X86_64_TLSLD:
7393 case BFD_RELOC_X86_64_DTPOFF32:
7394 case BFD_RELOC_X86_64_DTPOFF64:
7395 case BFD_RELOC_X86_64_GOTTPOFF:
7396 case BFD_RELOC_X86_64_TPOFF32:
7397 case BFD_RELOC_X86_64_TPOFF64:
7398 case BFD_RELOC_X86_64_GOTOFF64:
7399 case BFD_RELOC_X86_64_GOTPC32:
7400 case BFD_RELOC_X86_64_GOT64:
7401 case BFD_RELOC_X86_64_GOTPCREL64:
7402 case BFD_RELOC_X86_64_GOTPC64:
7403 case BFD_RELOC_X86_64_GOTPLT64:
7404 case BFD_RELOC_X86_64_PLTOFF64:
7405 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7406 case BFD_RELOC_X86_64_TLSDESC_CALL:
7407 case BFD_RELOC_RVA:
7408 case BFD_RELOC_VTABLE_ENTRY:
7409 case BFD_RELOC_VTABLE_INHERIT:
7410 #ifdef TE_PE
7411 case BFD_RELOC_32_SECREL:
7412 #endif
7413 code = fixp->fx_r_type;
7414 break;
7415 case BFD_RELOC_X86_64_32S:
7416 if (!fixp->fx_pcrel)
7417 {
7418 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
7419 code = fixp->fx_r_type;
7420 break;
7421 }
7422 default:
7423 if (fixp->fx_pcrel)
7424 {
7425 switch (fixp->fx_size)
7426 {
7427 default:
7428 as_bad_where (fixp->fx_file, fixp->fx_line,
7429 _("can not do %d byte pc-relative relocation"),
7430 fixp->fx_size);
7431 code = BFD_RELOC_32_PCREL;
7432 break;
7433 case 1: code = BFD_RELOC_8_PCREL; break;
7434 case 2: code = BFD_RELOC_16_PCREL; break;
7435 case 4: code = BFD_RELOC_32_PCREL; break;
7436 #ifdef BFD64
7437 case 8: code = BFD_RELOC_64_PCREL; break;
7438 #endif
7439 }
7440 }
7441 else
7442 {
7443 switch (fixp->fx_size)
7444 {
7445 default:
7446 as_bad_where (fixp->fx_file, fixp->fx_line,
7447 _("can not do %d byte relocation"),
7448 fixp->fx_size);
7449 code = BFD_RELOC_32;
7450 break;
7451 case 1: code = BFD_RELOC_8; break;
7452 case 2: code = BFD_RELOC_16; break;
7453 case 4: code = BFD_RELOC_32; break;
7454 #ifdef BFD64
7455 case 8: code = BFD_RELOC_64; break;
7456 #endif
7457 }
7458 }
7459 break;
7460 }
7461
7462 if ((code == BFD_RELOC_32
7463 || code == BFD_RELOC_32_PCREL
7464 || code == BFD_RELOC_X86_64_32S)
7465 && GOT_symbol
7466 && fixp->fx_addsy == GOT_symbol)
7467 {
7468 if (!object_64bit)
7469 code = BFD_RELOC_386_GOTPC;
7470 else
7471 code = BFD_RELOC_X86_64_GOTPC32;
7472 }
7473 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
7474 && GOT_symbol
7475 && fixp->fx_addsy == GOT_symbol)
7476 {
7477 code = BFD_RELOC_X86_64_GOTPC64;
7478 }
7479
7480 rel = (arelent *) xmalloc (sizeof (arelent));
7481 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
7482 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7483
7484 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
7485
7486 if (!use_rela_relocations)
7487 {
7488 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
7489 vtable entry to be used in the relocation's section offset. */
7490 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
7491 rel->address = fixp->fx_offset;
7492
7493 rel->addend = 0;
7494 }
7495 /* Use the rela in 64bit mode. */
7496 else
7497 {
7498 if (!fixp->fx_pcrel)
7499 rel->addend = fixp->fx_offset;
7500 else
7501 switch (code)
7502 {
7503 case BFD_RELOC_X86_64_PLT32:
7504 case BFD_RELOC_X86_64_GOT32:
7505 case BFD_RELOC_X86_64_GOTPCREL:
7506 case BFD_RELOC_X86_64_TLSGD:
7507 case BFD_RELOC_X86_64_TLSLD:
7508 case BFD_RELOC_X86_64_GOTTPOFF:
7509 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7510 case BFD_RELOC_X86_64_TLSDESC_CALL:
7511 rel->addend = fixp->fx_offset - fixp->fx_size;
7512 break;
7513 default:
7514 rel->addend = (section->vma
7515 - fixp->fx_size
7516 + fixp->fx_addnumber
7517 + md_pcrel_from (fixp));
7518 break;
7519 }
7520 }
7521
7522 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
7523 if (rel->howto == NULL)
7524 {
7525 as_bad_where (fixp->fx_file, fixp->fx_line,
7526 _("cannot represent relocation type %s"),
7527 bfd_get_reloc_code_name (code));
7528 /* Set howto to a garbage value so that we can keep going. */
7529 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
7530 assert (rel->howto != NULL);
7531 }
7532
7533 return rel;
7534 }
7535
7536 \f
7537 /* Parse operands using Intel syntax. This implements a recursive descent
7538 parser based on the BNF grammar published in Appendix B of the MASM 6.1
7539 Programmer's Guide.
7540
7541 FIXME: We do not recognize the full operand grammar defined in the MASM
7542 documentation. In particular, all the structure/union and
7543 high-level macro operands are missing.
7544
7545 Uppercase words are terminals, lower case words are non-terminals.
7546 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
7547 bars '|' denote choices. Most grammar productions are implemented in
7548 functions called 'intel_<production>'.
7549
7550 Initial production is 'expr'.
7551
7552 addOp + | -
7553
7554 alpha [a-zA-Z]
7555
7556 binOp & | AND | \| | OR | ^ | XOR
7557
7558 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
7559
7560 constant digits [[ radixOverride ]]
7561
7562 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
7563
7564 digits decdigit
7565 | digits decdigit
7566 | digits hexdigit
7567
7568 decdigit [0-9]
7569
7570 e04 e04 addOp e05
7571 | e05
7572
7573 e05 e05 binOp e06
7574 | e06
7575
7576 e06 e06 mulOp e09
7577 | e09
7578
7579 e09 OFFSET e10
7580 | SHORT e10
7581 | + e10
7582 | - e10
7583 | ~ e10
7584 | NOT e10
7585 | e09 PTR e10
7586 | e09 : e10
7587 | e10
7588
7589 e10 e10 [ expr ]
7590 | e11
7591
7592 e11 ( expr )
7593 | [ expr ]
7594 | constant
7595 | dataType
7596 | id
7597 | $
7598 | register
7599
7600 => expr expr cmpOp e04
7601 | e04
7602
7603 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
7604 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
7605
7606 hexdigit a | b | c | d | e | f
7607 | A | B | C | D | E | F
7608
7609 id alpha
7610 | id alpha
7611 | id decdigit
7612
7613 mulOp * | / | % | MOD | << | SHL | >> | SHR
7614
7615 quote " | '
7616
7617 register specialRegister
7618 | gpRegister
7619 | byteRegister
7620
7621 segmentRegister CS | DS | ES | FS | GS | SS
7622
7623 specialRegister CR0 | CR2 | CR3 | CR4
7624 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
7625 | TR3 | TR4 | TR5 | TR6 | TR7
7626
7627 We simplify the grammar in obvious places (e.g., register parsing is
7628 done by calling parse_register) and eliminate immediate left recursion
7629 to implement a recursive-descent parser.
7630
7631 expr e04 expr'
7632
7633 expr' cmpOp e04 expr'
7634 | Empty
7635
7636 e04 e05 e04'
7637
7638 e04' addOp e05 e04'
7639 | Empty
7640
7641 e05 e06 e05'
7642
7643 e05' binOp e06 e05'
7644 | Empty
7645
7646 e06 e09 e06'
7647
7648 e06' mulOp e09 e06'
7649 | Empty
7650
7651 e09 OFFSET e10 e09'
7652 | SHORT e10'
7653 | + e10'
7654 | - e10'
7655 | ~ e10'
7656 | NOT e10'
7657 | e10 e09'
7658
7659 e09' PTR e10 e09'
7660 | : e10 e09'
7661 | Empty
7662
7663 e10 e11 e10'
7664
7665 e10' [ expr ] e10'
7666 | Empty
7667
7668 e11 ( expr )
7669 | [ expr ]
7670 | BYTE
7671 | WORD
7672 | DWORD
7673 | FWORD
7674 | QWORD
7675 | TBYTE
7676 | OWORD
7677 | XMMWORD
7678 | .
7679 | $
7680 | register
7681 | id
7682 | constant */
7683
7684 /* Parsing structure for the intel syntax parser. Used to implement the
7685 semantic actions for the operand grammar. */
7686 struct intel_parser_s
7687 {
7688 char *op_string; /* The string being parsed. */
7689 int got_a_float; /* Whether the operand is a float. */
7690 int op_modifier; /* Operand modifier. */
7691 int is_mem; /* 1 if operand is memory reference. */
7692 int in_offset; /* >=1 if parsing operand of offset. */
7693 int in_bracket; /* >=1 if parsing operand in brackets. */
7694 const reg_entry *reg; /* Last register reference found. */
7695 char *disp; /* Displacement string being built. */
7696 char *next_operand; /* Resume point when splitting operands. */
7697 };
7698
7699 static struct intel_parser_s intel_parser;
7700
7701 /* Token structure for parsing intel syntax. */
7702 struct intel_token
7703 {
7704 int code; /* Token code. */
7705 const reg_entry *reg; /* Register entry for register tokens. */
7706 char *str; /* String representation. */
7707 };
7708
7709 static struct intel_token cur_token, prev_token;
7710
7711 /* Token codes for the intel parser. Since T_SHORT is already used
7712 by COFF, undefine it first to prevent a warning. */
7713 #define T_NIL -1
7714 #define T_CONST 1
7715 #define T_REG 2
7716 #define T_BYTE 3
7717 #define T_WORD 4
7718 #define T_DWORD 5
7719 #define T_FWORD 6
7720 #define T_QWORD 7
7721 #define T_TBYTE 8
7722 #define T_XMMWORD 9
7723 #undef T_SHORT
7724 #define T_SHORT 10
7725 #define T_OFFSET 11
7726 #define T_PTR 12
7727 #define T_ID 13
7728 #define T_SHL 14
7729 #define T_SHR 15
7730
7731 /* Prototypes for intel parser functions. */
7732 static int intel_match_token (int);
7733 static void intel_putback_token (void);
7734 static void intel_get_token (void);
7735 static int intel_expr (void);
7736 static int intel_e04 (void);
7737 static int intel_e05 (void);
7738 static int intel_e06 (void);
7739 static int intel_e09 (void);
7740 static int intel_e10 (void);
7741 static int intel_e11 (void);
7742
7743 static int
7744 i386_intel_operand (char *operand_string, int got_a_float)
7745 {
7746 int ret;
7747 char *p;
7748
7749 p = intel_parser.op_string = xstrdup (operand_string);
7750 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
7751
7752 for (;;)
7753 {
7754 /* Initialize token holders. */
7755 cur_token.code = prev_token.code = T_NIL;
7756 cur_token.reg = prev_token.reg = NULL;
7757 cur_token.str = prev_token.str = NULL;
7758
7759 /* Initialize parser structure. */
7760 intel_parser.got_a_float = got_a_float;
7761 intel_parser.op_modifier = 0;
7762 intel_parser.is_mem = 0;
7763 intel_parser.in_offset = 0;
7764 intel_parser.in_bracket = 0;
7765 intel_parser.reg = NULL;
7766 intel_parser.disp[0] = '\0';
7767 intel_parser.next_operand = NULL;
7768
7769 /* Read the first token and start the parser. */
7770 intel_get_token ();
7771 ret = intel_expr ();
7772
7773 if (!ret)
7774 break;
7775
7776 if (cur_token.code != T_NIL)
7777 {
7778 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
7779 current_templates->start->name, cur_token.str);
7780 ret = 0;
7781 }
7782 /* If we found a memory reference, hand it over to i386_displacement
7783 to fill in the rest of the operand fields. */
7784 else if (intel_parser.is_mem)
7785 {
7786 if ((i.mem_operands == 1
7787 && !current_templates->start->opcode_modifier.isstring)
7788 || i.mem_operands == 2)
7789 {
7790 as_bad (_("too many memory references for '%s'"),
7791 current_templates->start->name);
7792 ret = 0;
7793 }
7794 else
7795 {
7796 char *s = intel_parser.disp;
7797 i.mem_operands++;
7798
7799 if (!quiet_warnings && intel_parser.is_mem < 0)
7800 /* See the comments in intel_bracket_expr. */
7801 as_warn (_("Treating `%s' as memory reference"), operand_string);
7802
7803 /* Add the displacement expression. */
7804 if (*s != '\0')
7805 ret = i386_displacement (s, s + strlen (s));
7806 if (ret)
7807 {
7808 /* Swap base and index in 16-bit memory operands like
7809 [si+bx]. Since i386_index_check is also used in AT&T
7810 mode we have to do that here. */
7811 if (i.base_reg
7812 && i.index_reg
7813 && i.base_reg->reg_type.bitfield.reg16
7814 && i.index_reg->reg_type.bitfield.reg16
7815 && i.base_reg->reg_num >= 6
7816 && i.index_reg->reg_num < 6)
7817 {
7818 const reg_entry *base = i.index_reg;
7819
7820 i.index_reg = i.base_reg;
7821 i.base_reg = base;
7822 }
7823 ret = i386_index_check (operand_string);
7824 }
7825 }
7826 }
7827
7828 /* Constant and OFFSET expressions are handled by i386_immediate. */
7829 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
7830 || intel_parser.reg == NULL)
7831 ret = i386_immediate (intel_parser.disp);
7832
7833 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
7834 ret = 0;
7835 if (!ret || !intel_parser.next_operand)
7836 break;
7837 intel_parser.op_string = intel_parser.next_operand;
7838 this_operand = i.operands++;
7839 }
7840
7841 free (p);
7842 free (intel_parser.disp);
7843
7844 return ret;
7845 }
7846
7847 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
7848
7849 /* expr e04 expr'
7850
7851 expr' cmpOp e04 expr'
7852 | Empty */
7853 static int
7854 intel_expr (void)
7855 {
7856 /* XXX Implement the comparison operators. */
7857 return intel_e04 ();
7858 }
7859
7860 /* e04 e05 e04'
7861
7862 e04' addOp e05 e04'
7863 | Empty */
7864 static int
7865 intel_e04 (void)
7866 {
7867 int nregs = -1;
7868
7869 for (;;)
7870 {
7871 if (!intel_e05())
7872 return 0;
7873
7874 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7875 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
7876
7877 if (cur_token.code == '+')
7878 nregs = -1;
7879 else if (cur_token.code == '-')
7880 nregs = NUM_ADDRESS_REGS;
7881 else
7882 return 1;
7883
7884 strcat (intel_parser.disp, cur_token.str);
7885 intel_match_token (cur_token.code);
7886 }
7887 }
7888
7889 /* e05 e06 e05'
7890
7891 e05' binOp e06 e05'
7892 | Empty */
7893 static int
7894 intel_e05 (void)
7895 {
7896 int nregs = ~NUM_ADDRESS_REGS;
7897
7898 for (;;)
7899 {
7900 if (!intel_e06())
7901 return 0;
7902
7903 if (cur_token.code == '&'
7904 || cur_token.code == '|'
7905 || cur_token.code == '^')
7906 {
7907 char str[2];
7908
7909 str[0] = cur_token.code;
7910 str[1] = 0;
7911 strcat (intel_parser.disp, str);
7912 }
7913 else
7914 break;
7915
7916 intel_match_token (cur_token.code);
7917
7918 if (nregs < 0)
7919 nregs = ~nregs;
7920 }
7921 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7922 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
7923 return 1;
7924 }
7925
7926 /* e06 e09 e06'
7927
7928 e06' mulOp e09 e06'
7929 | Empty */
7930 static int
7931 intel_e06 (void)
7932 {
7933 int nregs = ~NUM_ADDRESS_REGS;
7934
7935 for (;;)
7936 {
7937 if (!intel_e09())
7938 return 0;
7939
7940 if (cur_token.code == '*'
7941 || cur_token.code == '/'
7942 || cur_token.code == '%')
7943 {
7944 char str[2];
7945
7946 str[0] = cur_token.code;
7947 str[1] = 0;
7948 strcat (intel_parser.disp, str);
7949 }
7950 else if (cur_token.code == T_SHL)
7951 strcat (intel_parser.disp, "<<");
7952 else if (cur_token.code == T_SHR)
7953 strcat (intel_parser.disp, ">>");
7954 else
7955 break;
7956
7957 intel_match_token (cur_token.code);
7958
7959 if (nregs < 0)
7960 nregs = ~nregs;
7961 }
7962 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7963 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
7964 return 1;
7965 }
7966
7967 /* e09 OFFSET e09
7968 | SHORT e09
7969 | + e09
7970 | - e09
7971 | ~ e09
7972 | NOT e09
7973 | e10 e09'
7974
7975 e09' PTR e10 e09'
7976 | : e10 e09'
7977 | Empty */
7978 static int
7979 intel_e09 (void)
7980 {
7981 int nregs = ~NUM_ADDRESS_REGS;
7982 int in_offset = 0;
7983
7984 for (;;)
7985 {
7986 /* Don't consume constants here. */
7987 if (cur_token.code == '+' || cur_token.code == '-')
7988 {
7989 /* Need to look one token ahead - if the next token
7990 is a constant, the current token is its sign. */
7991 int next_code;
7992
7993 intel_match_token (cur_token.code);
7994 next_code = cur_token.code;
7995 intel_putback_token ();
7996 if (next_code == T_CONST)
7997 break;
7998 }
7999
8000 /* e09 OFFSET e09 */
8001 if (cur_token.code == T_OFFSET)
8002 {
8003 if (!in_offset++)
8004 ++intel_parser.in_offset;
8005 }
8006
8007 /* e09 SHORT e09 */
8008 else if (cur_token.code == T_SHORT)
8009 intel_parser.op_modifier |= 1 << T_SHORT;
8010
8011 /* e09 + e09 */
8012 else if (cur_token.code == '+')
8013 strcat (intel_parser.disp, "+");
8014
8015 /* e09 - e09
8016 | ~ e09
8017 | NOT e09 */
8018 else if (cur_token.code == '-' || cur_token.code == '~')
8019 {
8020 char str[2];
8021
8022 if (nregs < 0)
8023 nregs = ~nregs;
8024 str[0] = cur_token.code;
8025 str[1] = 0;
8026 strcat (intel_parser.disp, str);
8027 }
8028
8029 /* e09 e10 e09' */
8030 else
8031 break;
8032
8033 intel_match_token (cur_token.code);
8034 }
8035
8036 for (;;)
8037 {
8038 if (!intel_e10 ())
8039 return 0;
8040
8041 /* e09' PTR e10 e09' */
8042 if (cur_token.code == T_PTR)
8043 {
8044 char suffix;
8045
8046 if (prev_token.code == T_BYTE)
8047 suffix = BYTE_MNEM_SUFFIX;
8048
8049 else if (prev_token.code == T_WORD)
8050 {
8051 if (current_templates->start->name[0] == 'l'
8052 && current_templates->start->name[2] == 's'
8053 && current_templates->start->name[3] == 0)
8054 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8055 else if (intel_parser.got_a_float == 2) /* "fi..." */
8056 suffix = SHORT_MNEM_SUFFIX;
8057 else
8058 suffix = WORD_MNEM_SUFFIX;
8059 }
8060
8061 else if (prev_token.code == T_DWORD)
8062 {
8063 if (current_templates->start->name[0] == 'l'
8064 && current_templates->start->name[2] == 's'
8065 && current_templates->start->name[3] == 0)
8066 suffix = WORD_MNEM_SUFFIX;
8067 else if (flag_code == CODE_16BIT
8068 && (current_templates->start->opcode_modifier.jump
8069 || current_templates->start->opcode_modifier.jumpdword))
8070 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8071 else if (intel_parser.got_a_float == 1) /* "f..." */
8072 suffix = SHORT_MNEM_SUFFIX;
8073 else
8074 suffix = LONG_MNEM_SUFFIX;
8075 }
8076
8077 else if (prev_token.code == T_FWORD)
8078 {
8079 if (current_templates->start->name[0] == 'l'
8080 && current_templates->start->name[2] == 's'
8081 && current_templates->start->name[3] == 0)
8082 suffix = LONG_MNEM_SUFFIX;
8083 else if (!intel_parser.got_a_float)
8084 {
8085 if (flag_code == CODE_16BIT)
8086 add_prefix (DATA_PREFIX_OPCODE);
8087 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8088 }
8089 else
8090 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8091 }
8092
8093 else if (prev_token.code == T_QWORD)
8094 {
8095 if (intel_parser.got_a_float == 1) /* "f..." */
8096 suffix = LONG_MNEM_SUFFIX;
8097 else
8098 suffix = QWORD_MNEM_SUFFIX;
8099 }
8100
8101 else if (prev_token.code == T_TBYTE)
8102 {
8103 if (intel_parser.got_a_float == 1)
8104 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8105 else
8106 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8107 }
8108
8109 else if (prev_token.code == T_XMMWORD)
8110 {
8111 /* XXX ignored for now, but accepted since gcc uses it */
8112 suffix = 0;
8113 }
8114
8115 else
8116 {
8117 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
8118 return 0;
8119 }
8120
8121 /* Operands for jump/call using 'ptr' notation denote absolute
8122 addresses. */
8123 if (current_templates->start->opcode_modifier.jump
8124 || current_templates->start->opcode_modifier.jumpdword)
8125 i.types[this_operand].bitfield.jumpabsolute = 1;
8126
8127 if (current_templates->start->base_opcode == 0x8d /* lea */)
8128 ;
8129 else if (!i.suffix)
8130 i.suffix = suffix;
8131 else if (i.suffix != suffix)
8132 {
8133 as_bad (_("Conflicting operand modifiers"));
8134 return 0;
8135 }
8136
8137 }
8138
8139 /* e09' : e10 e09' */
8140 else if (cur_token.code == ':')
8141 {
8142 if (prev_token.code != T_REG)
8143 {
8144 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
8145 segment/group identifier (which we don't have), using comma
8146 as the operand separator there is even less consistent, since
8147 there all branches only have a single operand. */
8148 if (this_operand != 0
8149 || intel_parser.in_offset
8150 || intel_parser.in_bracket
8151 || (!current_templates->start->opcode_modifier.jump
8152 && !current_templates->start->opcode_modifier.jumpdword
8153 && !current_templates->start->opcode_modifier.jumpintersegment
8154 && !current_templates->start->operand_types[0].bitfield.jumpabsolute))
8155 return intel_match_token (T_NIL);
8156 /* Remember the start of the 2nd operand and terminate 1st
8157 operand here.
8158 XXX This isn't right, yet (when SSSS:OOOO is right operand of
8159 another expression), but it gets at least the simplest case
8160 (a plain number or symbol on the left side) right. */
8161 intel_parser.next_operand = intel_parser.op_string;
8162 *--intel_parser.op_string = '\0';
8163 return intel_match_token (':');
8164 }
8165 }
8166
8167 /* e09' Empty */
8168 else
8169 break;
8170
8171 intel_match_token (cur_token.code);
8172
8173 }
8174
8175 if (in_offset)
8176 {
8177 --intel_parser.in_offset;
8178 if (nregs < 0)
8179 nregs = ~nregs;
8180 if (NUM_ADDRESS_REGS > nregs)
8181 {
8182 as_bad (_("Invalid operand to `OFFSET'"));
8183 return 0;
8184 }
8185 intel_parser.op_modifier |= 1 << T_OFFSET;
8186 }
8187
8188 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
8189 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
8190 return 1;
8191 }
8192
8193 static int
8194 intel_bracket_expr (void)
8195 {
8196 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
8197 const char *start = intel_parser.op_string;
8198 int len;
8199
8200 if (i.op[this_operand].regs)
8201 return intel_match_token (T_NIL);
8202
8203 intel_match_token ('[');
8204
8205 /* Mark as a memory operand only if it's not already known to be an
8206 offset expression. If it's an offset expression, we need to keep
8207 the brace in. */
8208 if (!intel_parser.in_offset)
8209 {
8210 ++intel_parser.in_bracket;
8211
8212 /* Operands for jump/call inside brackets denote absolute addresses. */
8213 if (current_templates->start->opcode_modifier.jump
8214 || current_templates->start->opcode_modifier.jumpdword)
8215 i.types[this_operand].bitfield.jumpabsolute = 1;
8216
8217 /* Unfortunately gas always diverged from MASM in a respect that can't
8218 be easily fixed without risking to break code sequences likely to be
8219 encountered (the testsuite even check for this): MASM doesn't consider
8220 an expression inside brackets unconditionally as a memory reference.
8221 When that is e.g. a constant, an offset expression, or the sum of the
8222 two, this is still taken as a constant load. gas, however, always
8223 treated these as memory references. As a compromise, we'll try to make
8224 offset expressions inside brackets work the MASM way (since that's
8225 less likely to be found in real world code), but make constants alone
8226 continue to work the traditional gas way. In either case, issue a
8227 warning. */
8228 intel_parser.op_modifier &= ~was_offset;
8229 }
8230 else
8231 strcat (intel_parser.disp, "[");
8232
8233 /* Add a '+' to the displacement string if necessary. */
8234 if (*intel_parser.disp != '\0'
8235 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
8236 strcat (intel_parser.disp, "+");
8237
8238 if (intel_expr ()
8239 && (len = intel_parser.op_string - start - 1,
8240 intel_match_token (']')))
8241 {
8242 /* Preserve brackets when the operand is an offset expression. */
8243 if (intel_parser.in_offset)
8244 strcat (intel_parser.disp, "]");
8245 else
8246 {
8247 --intel_parser.in_bracket;
8248 if (i.base_reg || i.index_reg)
8249 intel_parser.is_mem = 1;
8250 if (!intel_parser.is_mem)
8251 {
8252 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
8253 /* Defer the warning until all of the operand was parsed. */
8254 intel_parser.is_mem = -1;
8255 else if (!quiet_warnings)
8256 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
8257 len, start, len, start);
8258 }
8259 }
8260 intel_parser.op_modifier |= was_offset;
8261
8262 return 1;
8263 }
8264 return 0;
8265 }
8266
8267 /* e10 e11 e10'
8268
8269 e10' [ expr ] e10'
8270 | Empty */
8271 static int
8272 intel_e10 (void)
8273 {
8274 if (!intel_e11 ())
8275 return 0;
8276
8277 while (cur_token.code == '[')
8278 {
8279 if (!intel_bracket_expr ())
8280 return 0;
8281 }
8282
8283 return 1;
8284 }
8285
8286 /* e11 ( expr )
8287 | [ expr ]
8288 | BYTE
8289 | WORD
8290 | DWORD
8291 | FWORD
8292 | QWORD
8293 | TBYTE
8294 | OWORD
8295 | XMMWORD
8296 | $
8297 | .
8298 | register
8299 | id
8300 | constant */
8301 static int
8302 intel_e11 (void)
8303 {
8304 switch (cur_token.code)
8305 {
8306 /* e11 ( expr ) */
8307 case '(':
8308 intel_match_token ('(');
8309 strcat (intel_parser.disp, "(");
8310
8311 if (intel_expr () && intel_match_token (')'))
8312 {
8313 strcat (intel_parser.disp, ")");
8314 return 1;
8315 }
8316 return 0;
8317
8318 /* e11 [ expr ] */
8319 case '[':
8320 return intel_bracket_expr ();
8321
8322 /* e11 $
8323 | . */
8324 case '.':
8325 strcat (intel_parser.disp, cur_token.str);
8326 intel_match_token (cur_token.code);
8327
8328 /* Mark as a memory operand only if it's not already known to be an
8329 offset expression. */
8330 if (!intel_parser.in_offset)
8331 intel_parser.is_mem = 1;
8332
8333 return 1;
8334
8335 /* e11 register */
8336 case T_REG:
8337 {
8338 const reg_entry *reg = intel_parser.reg = cur_token.reg;
8339
8340 intel_match_token (T_REG);
8341
8342 /* Check for segment change. */
8343 if (cur_token.code == ':')
8344 {
8345 if (!reg->reg_type.bitfield.sreg2
8346 && !reg->reg_type.bitfield.sreg3)
8347 {
8348 as_bad (_("`%s' is not a valid segment register"),
8349 reg->reg_name);
8350 return 0;
8351 }
8352 else if (i.seg[i.mem_operands])
8353 as_warn (_("Extra segment override ignored"));
8354 else
8355 {
8356 if (!intel_parser.in_offset)
8357 intel_parser.is_mem = 1;
8358 switch (reg->reg_num)
8359 {
8360 case 0:
8361 i.seg[i.mem_operands] = &es;
8362 break;
8363 case 1:
8364 i.seg[i.mem_operands] = &cs;
8365 break;
8366 case 2:
8367 i.seg[i.mem_operands] = &ss;
8368 break;
8369 case 3:
8370 i.seg[i.mem_operands] = &ds;
8371 break;
8372 case 4:
8373 i.seg[i.mem_operands] = &fs;
8374 break;
8375 case 5:
8376 i.seg[i.mem_operands] = &gs;
8377 break;
8378 }
8379 }
8380 }
8381
8382 /* Not a segment register. Check for register scaling. */
8383 else if (cur_token.code == '*')
8384 {
8385 if (!intel_parser.in_bracket)
8386 {
8387 as_bad (_("Register scaling only allowed in memory operands"));
8388 return 0;
8389 }
8390
8391 if (reg->reg_type.bitfield.reg16) /* Disallow things like [si*1]. */
8392 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
8393 else if (i.index_reg)
8394 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
8395
8396 /* What follows must be a valid scale. */
8397 intel_match_token ('*');
8398 i.index_reg = reg;
8399 i.types[this_operand].bitfield.baseindex = 1;
8400
8401 /* Set the scale after setting the register (otherwise,
8402 i386_scale will complain) */
8403 if (cur_token.code == '+' || cur_token.code == '-')
8404 {
8405 char *str, sign = cur_token.code;
8406 intel_match_token (cur_token.code);
8407 if (cur_token.code != T_CONST)
8408 {
8409 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
8410 cur_token.str);
8411 return 0;
8412 }
8413 str = (char *) xmalloc (strlen (cur_token.str) + 2);
8414 strcpy (str + 1, cur_token.str);
8415 *str = sign;
8416 if (!i386_scale (str))
8417 return 0;
8418 free (str);
8419 }
8420 else if (!i386_scale (cur_token.str))
8421 return 0;
8422 intel_match_token (cur_token.code);
8423 }
8424
8425 /* No scaling. If this is a memory operand, the register is either a
8426 base register (first occurrence) or an index register (second
8427 occurrence). */
8428 else if (intel_parser.in_bracket)
8429 {
8430
8431 if (!i.base_reg)
8432 i.base_reg = reg;
8433 else if (!i.index_reg)
8434 i.index_reg = reg;
8435 else
8436 {
8437 as_bad (_("Too many register references in memory operand"));
8438 return 0;
8439 }
8440
8441 i.types[this_operand].bitfield.baseindex = 1;
8442 }
8443
8444 /* It's neither base nor index. */
8445 else if (!intel_parser.in_offset && !intel_parser.is_mem)
8446 {
8447 i386_operand_type temp = reg->reg_type;
8448 temp.bitfield.baseindex = 0;
8449 i.types[this_operand] = operand_type_or (i.types[this_operand],
8450 temp);
8451 i.op[this_operand].regs = reg;
8452 i.reg_operands++;
8453 }
8454 else
8455 {
8456 as_bad (_("Invalid use of register"));
8457 return 0;
8458 }
8459
8460 /* Since registers are not part of the displacement string (except
8461 when we're parsing offset operands), we may need to remove any
8462 preceding '+' from the displacement string. */
8463 if (*intel_parser.disp != '\0'
8464 && !intel_parser.in_offset)
8465 {
8466 char *s = intel_parser.disp;
8467 s += strlen (s) - 1;
8468 if (*s == '+')
8469 *s = '\0';
8470 }
8471
8472 return 1;
8473 }
8474
8475 /* e11 BYTE
8476 | WORD
8477 | DWORD
8478 | FWORD
8479 | QWORD
8480 | TBYTE
8481 | OWORD
8482 | XMMWORD */
8483 case T_BYTE:
8484 case T_WORD:
8485 case T_DWORD:
8486 case T_FWORD:
8487 case T_QWORD:
8488 case T_TBYTE:
8489 case T_XMMWORD:
8490 intel_match_token (cur_token.code);
8491
8492 if (cur_token.code == T_PTR)
8493 return 1;
8494
8495 /* It must have been an identifier. */
8496 intel_putback_token ();
8497 cur_token.code = T_ID;
8498 /* FALLTHRU */
8499
8500 /* e11 id
8501 | constant */
8502 case T_ID:
8503 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
8504 {
8505 symbolS *symbolP;
8506
8507 /* The identifier represents a memory reference only if it's not
8508 preceded by an offset modifier and if it's not an equate. */
8509 symbolP = symbol_find(cur_token.str);
8510 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
8511 intel_parser.is_mem = 1;
8512 }
8513 /* FALLTHRU */
8514
8515 case T_CONST:
8516 case '-':
8517 case '+':
8518 {
8519 char *save_str, sign = 0;
8520
8521 /* Allow constants that start with `+' or `-'. */
8522 if (cur_token.code == '-' || cur_token.code == '+')
8523 {
8524 sign = cur_token.code;
8525 intel_match_token (cur_token.code);
8526 if (cur_token.code != T_CONST)
8527 {
8528 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
8529 cur_token.str);
8530 return 0;
8531 }
8532 }
8533
8534 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
8535 strcpy (save_str + !!sign, cur_token.str);
8536 if (sign)
8537 *save_str = sign;
8538
8539 /* Get the next token to check for register scaling. */
8540 intel_match_token (cur_token.code);
8541
8542 /* Check if this constant is a scaling factor for an
8543 index register. */
8544 if (cur_token.code == '*')
8545 {
8546 if (intel_match_token ('*') && cur_token.code == T_REG)
8547 {
8548 const reg_entry *reg = cur_token.reg;
8549
8550 if (!intel_parser.in_bracket)
8551 {
8552 as_bad (_("Register scaling only allowed "
8553 "in memory operands"));
8554 return 0;
8555 }
8556
8557 /* Disallow things like [1*si].
8558 sp and esp are invalid as index. */
8559 if (reg->reg_type.bitfield.reg16)
8560 reg = i386_regtab + REGNAM_AX + 4;
8561 else if (i.index_reg)
8562 reg = i386_regtab + REGNAM_EAX + 4;
8563
8564 /* The constant is followed by `* reg', so it must be
8565 a valid scale. */
8566 i.index_reg = reg;
8567 i.types[this_operand].bitfield.baseindex = 1;
8568
8569 /* Set the scale after setting the register (otherwise,
8570 i386_scale will complain) */
8571 if (!i386_scale (save_str))
8572 return 0;
8573 intel_match_token (T_REG);
8574
8575 /* Since registers are not part of the displacement
8576 string, we may need to remove any preceding '+' from
8577 the displacement string. */
8578 if (*intel_parser.disp != '\0')
8579 {
8580 char *s = intel_parser.disp;
8581 s += strlen (s) - 1;
8582 if (*s == '+')
8583 *s = '\0';
8584 }
8585
8586 free (save_str);
8587
8588 return 1;
8589 }
8590
8591 /* The constant was not used for register scaling. Since we have
8592 already consumed the token following `*' we now need to put it
8593 back in the stream. */
8594 intel_putback_token ();
8595 }
8596
8597 /* Add the constant to the displacement string. */
8598 strcat (intel_parser.disp, save_str);
8599 free (save_str);
8600
8601 return 1;
8602 }
8603 }
8604
8605 as_bad (_("Unrecognized token '%s'"), cur_token.str);
8606 return 0;
8607 }
8608
8609 /* Match the given token against cur_token. If they match, read the next
8610 token from the operand string. */
8611 static int
8612 intel_match_token (int code)
8613 {
8614 if (cur_token.code == code)
8615 {
8616 intel_get_token ();
8617 return 1;
8618 }
8619 else
8620 {
8621 as_bad (_("Unexpected token `%s'"), cur_token.str);
8622 return 0;
8623 }
8624 }
8625
8626 /* Read a new token from intel_parser.op_string and store it in cur_token. */
8627 static void
8628 intel_get_token (void)
8629 {
8630 char *end_op;
8631 const reg_entry *reg;
8632 struct intel_token new_token;
8633
8634 new_token.code = T_NIL;
8635 new_token.reg = NULL;
8636 new_token.str = NULL;
8637
8638 /* Free the memory allocated to the previous token and move
8639 cur_token to prev_token. */
8640 if (prev_token.str)
8641 free (prev_token.str);
8642
8643 prev_token = cur_token;
8644
8645 /* Skip whitespace. */
8646 while (is_space_char (*intel_parser.op_string))
8647 intel_parser.op_string++;
8648
8649 /* Return an empty token if we find nothing else on the line. */
8650 if (*intel_parser.op_string == '\0')
8651 {
8652 cur_token = new_token;
8653 return;
8654 }
8655
8656 /* The new token cannot be larger than the remainder of the operand
8657 string. */
8658 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
8659 new_token.str[0] = '\0';
8660
8661 if (strchr ("0123456789", *intel_parser.op_string))
8662 {
8663 char *p = new_token.str;
8664 char *q = intel_parser.op_string;
8665 new_token.code = T_CONST;
8666
8667 /* Allow any kind of identifier char to encompass floating point and
8668 hexadecimal numbers. */
8669 while (is_identifier_char (*q))
8670 *p++ = *q++;
8671 *p = '\0';
8672
8673 /* Recognize special symbol names [0-9][bf]. */
8674 if (strlen (intel_parser.op_string) == 2
8675 && (intel_parser.op_string[1] == 'b'
8676 || intel_parser.op_string[1] == 'f'))
8677 new_token.code = T_ID;
8678 }
8679
8680 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
8681 {
8682 size_t len = end_op - intel_parser.op_string;
8683
8684 new_token.code = T_REG;
8685 new_token.reg = reg;
8686
8687 memcpy (new_token.str, intel_parser.op_string, len);
8688 new_token.str[len] = '\0';
8689 }
8690
8691 else if (is_identifier_char (*intel_parser.op_string))
8692 {
8693 char *p = new_token.str;
8694 char *q = intel_parser.op_string;
8695
8696 /* A '.' or '$' followed by an identifier char is an identifier.
8697 Otherwise, it's operator '.' followed by an expression. */
8698 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
8699 {
8700 new_token.code = '.';
8701 new_token.str[0] = '.';
8702 new_token.str[1] = '\0';
8703 }
8704 else
8705 {
8706 while (is_identifier_char (*q) || *q == '@')
8707 *p++ = *q++;
8708 *p = '\0';
8709
8710 if (strcasecmp (new_token.str, "NOT") == 0)
8711 new_token.code = '~';
8712
8713 else if (strcasecmp (new_token.str, "MOD") == 0)
8714 new_token.code = '%';
8715
8716 else if (strcasecmp (new_token.str, "AND") == 0)
8717 new_token.code = '&';
8718
8719 else if (strcasecmp (new_token.str, "OR") == 0)
8720 new_token.code = '|';
8721
8722 else if (strcasecmp (new_token.str, "XOR") == 0)
8723 new_token.code = '^';
8724
8725 else if (strcasecmp (new_token.str, "SHL") == 0)
8726 new_token.code = T_SHL;
8727
8728 else if (strcasecmp (new_token.str, "SHR") == 0)
8729 new_token.code = T_SHR;
8730
8731 else if (strcasecmp (new_token.str, "BYTE") == 0)
8732 new_token.code = T_BYTE;
8733
8734 else if (strcasecmp (new_token.str, "WORD") == 0)
8735 new_token.code = T_WORD;
8736
8737 else if (strcasecmp (new_token.str, "DWORD") == 0)
8738 new_token.code = T_DWORD;
8739
8740 else if (strcasecmp (new_token.str, "FWORD") == 0)
8741 new_token.code = T_FWORD;
8742
8743 else if (strcasecmp (new_token.str, "QWORD") == 0)
8744 new_token.code = T_QWORD;
8745
8746 else if (strcasecmp (new_token.str, "TBYTE") == 0
8747 /* XXX remove (gcc still uses it) */
8748 || strcasecmp (new_token.str, "XWORD") == 0)
8749 new_token.code = T_TBYTE;
8750
8751 else if (strcasecmp (new_token.str, "XMMWORD") == 0
8752 || strcasecmp (new_token.str, "OWORD") == 0)
8753 new_token.code = T_XMMWORD;
8754
8755 else if (strcasecmp (new_token.str, "PTR") == 0)
8756 new_token.code = T_PTR;
8757
8758 else if (strcasecmp (new_token.str, "SHORT") == 0)
8759 new_token.code = T_SHORT;
8760
8761 else if (strcasecmp (new_token.str, "OFFSET") == 0)
8762 {
8763 new_token.code = T_OFFSET;
8764
8765 /* ??? This is not mentioned in the MASM grammar but gcc
8766 makes use of it with -mintel-syntax. OFFSET may be
8767 followed by FLAT: */
8768 if (strncasecmp (q, " FLAT:", 6) == 0)
8769 strcat (new_token.str, " FLAT:");
8770 }
8771
8772 /* ??? This is not mentioned in the MASM grammar. */
8773 else if (strcasecmp (new_token.str, "FLAT") == 0)
8774 {
8775 new_token.code = T_OFFSET;
8776 if (*q == ':')
8777 strcat (new_token.str, ":");
8778 else
8779 as_bad (_("`:' expected"));
8780 }
8781
8782 else
8783 new_token.code = T_ID;
8784 }
8785 }
8786
8787 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
8788 {
8789 new_token.code = *intel_parser.op_string;
8790 new_token.str[0] = *intel_parser.op_string;
8791 new_token.str[1] = '\0';
8792 }
8793
8794 else if (strchr ("<>", *intel_parser.op_string)
8795 && *intel_parser.op_string == *(intel_parser.op_string + 1))
8796 {
8797 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
8798 new_token.str[0] = *intel_parser.op_string;
8799 new_token.str[1] = *intel_parser.op_string;
8800 new_token.str[2] = '\0';
8801 }
8802
8803 else
8804 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
8805
8806 intel_parser.op_string += strlen (new_token.str);
8807 cur_token = new_token;
8808 }
8809
8810 /* Put cur_token back into the token stream and make cur_token point to
8811 prev_token. */
8812 static void
8813 intel_putback_token (void)
8814 {
8815 if (cur_token.code != T_NIL)
8816 {
8817 intel_parser.op_string -= strlen (cur_token.str);
8818 free (cur_token.str);
8819 }
8820 cur_token = prev_token;
8821
8822 /* Forget prev_token. */
8823 prev_token.code = T_NIL;
8824 prev_token.reg = NULL;
8825 prev_token.str = NULL;
8826 }
8827
8828 int
8829 tc_x86_regname_to_dw2regnum (char *regname)
8830 {
8831 unsigned int regnum;
8832 unsigned int regnames_count;
8833 static const char *const regnames_32[] =
8834 {
8835 "eax", "ecx", "edx", "ebx",
8836 "esp", "ebp", "esi", "edi",
8837 "eip", "eflags", NULL,
8838 "st0", "st1", "st2", "st3",
8839 "st4", "st5", "st6", "st7",
8840 NULL, NULL,
8841 "xmm0", "xmm1", "xmm2", "xmm3",
8842 "xmm4", "xmm5", "xmm6", "xmm7",
8843 "mm0", "mm1", "mm2", "mm3",
8844 "mm4", "mm5", "mm6", "mm7",
8845 "fcw", "fsw", "mxcsr",
8846 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
8847 "tr", "ldtr"
8848 };
8849 static const char *const regnames_64[] =
8850 {
8851 "rax", "rdx", "rcx", "rbx",
8852 "rsi", "rdi", "rbp", "rsp",
8853 "r8", "r9", "r10", "r11",
8854 "r12", "r13", "r14", "r15",
8855 "rip",
8856 "xmm0", "xmm1", "xmm2", "xmm3",
8857 "xmm4", "xmm5", "xmm6", "xmm7",
8858 "xmm8", "xmm9", "xmm10", "xmm11",
8859 "xmm12", "xmm13", "xmm14", "xmm15",
8860 "st0", "st1", "st2", "st3",
8861 "st4", "st5", "st6", "st7",
8862 "mm0", "mm1", "mm2", "mm3",
8863 "mm4", "mm5", "mm6", "mm7",
8864 "rflags",
8865 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
8866 "fs.base", "gs.base", NULL, NULL,
8867 "tr", "ldtr",
8868 "mxcsr", "fcw", "fsw"
8869 };
8870 const char *const *regnames;
8871
8872 if (flag_code == CODE_64BIT)
8873 {
8874 regnames = regnames_64;
8875 regnames_count = ARRAY_SIZE (regnames_64);
8876 }
8877 else
8878 {
8879 regnames = regnames_32;
8880 regnames_count = ARRAY_SIZE (regnames_32);
8881 }
8882
8883 for (regnum = 0; regnum < regnames_count; regnum++)
8884 if (regnames[regnum] != NULL
8885 && strcmp (regname, regnames[regnum]) == 0)
8886 return regnum;
8887
8888 return -1;
8889 }
8890
8891 void
8892 tc_x86_frame_initial_instructions (void)
8893 {
8894 static unsigned int sp_regno;
8895
8896 if (!sp_regno)
8897 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
8898 ? "rsp" : "esp");
8899
8900 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
8901 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
8902 }
8903
8904 int
8905 i386_elf_section_type (const char *str, size_t len)
8906 {
8907 if (flag_code == CODE_64BIT
8908 && len == sizeof ("unwind") - 1
8909 && strncmp (str, "unwind", 6) == 0)
8910 return SHT_X86_64_UNWIND;
8911
8912 return -1;
8913 }
8914
8915 #ifdef TE_PE
8916 void
8917 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8918 {
8919 expressionS expr;
8920
8921 expr.X_op = O_secrel;
8922 expr.X_add_symbol = symbol;
8923 expr.X_add_number = 0;
8924 emit_expr (&expr, size);
8925 }
8926 #endif
8927
8928 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8929 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8930
8931 int
8932 x86_64_section_letter (int letter, char **ptr_msg)
8933 {
8934 if (flag_code == CODE_64BIT)
8935 {
8936 if (letter == 'l')
8937 return SHF_X86_64_LARGE;
8938
8939 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
8940 }
8941 else
8942 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
8943 return -1;
8944 }
8945
8946 int
8947 x86_64_section_word (char *str, size_t len)
8948 {
8949 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
8950 return SHF_X86_64_LARGE;
8951
8952 return -1;
8953 }
8954
8955 static void
8956 handle_large_common (int small ATTRIBUTE_UNUSED)
8957 {
8958 if (flag_code != CODE_64BIT)
8959 {
8960 s_comm_internal (0, elf_common_parse);
8961 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8962 }
8963 else
8964 {
8965 static segT lbss_section;
8966 asection *saved_com_section_ptr = elf_com_section_ptr;
8967 asection *saved_bss_section = bss_section;
8968
8969 if (lbss_section == NULL)
8970 {
8971 flagword applicable;
8972 segT seg = now_seg;
8973 subsegT subseg = now_subseg;
8974
8975 /* The .lbss section is for local .largecomm symbols. */
8976 lbss_section = subseg_new (".lbss", 0);
8977 applicable = bfd_applicable_section_flags (stdoutput);
8978 bfd_set_section_flags (stdoutput, lbss_section,
8979 applicable & SEC_ALLOC);
8980 seg_info (lbss_section)->bss = 1;
8981
8982 subseg_set (seg, subseg);
8983 }
8984
8985 elf_com_section_ptr = &_bfd_elf_large_com_section;
8986 bss_section = lbss_section;
8987
8988 s_comm_internal (0, elf_common_parse);
8989
8990 elf_com_section_ptr = saved_com_section_ptr;
8991 bss_section = saved_bss_section;
8992 }
8993 }
8994 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.230022 seconds and 4 git commands to generate.