gas: sparc: fix relaxation of CALL instruction into branches in a.out targets
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Prefer load or store in encoding. */
358 enum
359 {
360 dir_encoding_default = 0,
361 dir_encoding_load,
362 dir_encoding_store
363 } dir_encoding;
364
365 /* Prefer 8bit or 32bit displacement in encoding. */
366 enum
367 {
368 disp_encoding_default = 0,
369 disp_encoding_8bit,
370 disp_encoding_32bit
371 } disp_encoding;
372
373 /* How to encode vector instructions. */
374 enum
375 {
376 vex_encoding_default = 0,
377 vex_encoding_vex2,
378 vex_encoding_vex3,
379 vex_encoding_evex
380 } vec_encoding;
381
382 /* REP prefix. */
383 const char *rep_prefix;
384
385 /* HLE prefix. */
386 const char *hle_prefix;
387
388 /* Have BND prefix. */
389 const char *bnd_prefix;
390
391 /* Error message. */
392 enum i386_error error;
393 };
394
395 typedef struct _i386_insn i386_insn;
396
397 /* Link RC type with corresponding string, that'll be looked for in
398 asm. */
399 struct RC_name
400 {
401 enum rc_type type;
402 const char *name;
403 unsigned int len;
404 };
405
406 static const struct RC_name RC_NamesTable[] =
407 {
408 { rne, STRING_COMMA_LEN ("rn-sae") },
409 { rd, STRING_COMMA_LEN ("rd-sae") },
410 { ru, STRING_COMMA_LEN ("ru-sae") },
411 { rz, STRING_COMMA_LEN ("rz-sae") },
412 { saeonly, STRING_COMMA_LEN ("sae") },
413 };
414
415 /* List of chars besides those in app.c:symbol_chars that can start an
416 operand. Used to prevent the scrubber eating vital white-space. */
417 const char extra_symbol_chars[] = "*%-([{}"
418 #ifdef LEX_AT
419 "@"
420 #endif
421 #ifdef LEX_QM
422 "?"
423 #endif
424 ;
425
426 #if (defined (TE_I386AIX) \
427 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
428 && !defined (TE_GNU) \
429 && !defined (TE_LINUX) \
430 && !defined (TE_NACL) \
431 && !defined (TE_NETWARE) \
432 && !defined (TE_FreeBSD) \
433 && !defined (TE_DragonFly) \
434 && !defined (TE_NetBSD)))
435 /* This array holds the chars that always start a comment. If the
436 pre-processor is disabled, these aren't very useful. The option
437 --divide will remove '/' from this list. */
438 const char *i386_comment_chars = "#/";
439 #define SVR4_COMMENT_CHARS 1
440 #define PREFIX_SEPARATOR '\\'
441
442 #else
443 const char *i386_comment_chars = "#";
444 #define PREFIX_SEPARATOR '/'
445 #endif
446
447 /* This array holds the chars that only start a comment at the beginning of
448 a line. If the line seems to have the form '# 123 filename'
449 .line and .file directives will appear in the pre-processed output.
450 Note that input_file.c hand checks for '#' at the beginning of the
451 first line of the input file. This is because the compiler outputs
452 #NO_APP at the beginning of its output.
453 Also note that comments started like this one will always work if
454 '/' isn't otherwise defined. */
455 const char line_comment_chars[] = "#/";
456
457 const char line_separator_chars[] = ";";
458
459 /* Chars that can be used to separate mant from exp in floating point
460 nums. */
461 const char EXP_CHARS[] = "eE";
462
463 /* Chars that mean this number is a floating point constant
464 As in 0f12.456
465 or 0d1.2345e12. */
466 const char FLT_CHARS[] = "fFdDxX";
467
468 /* Tables for lexical analysis. */
469 static char mnemonic_chars[256];
470 static char register_chars[256];
471 static char operand_chars[256];
472 static char identifier_chars[256];
473 static char digit_chars[256];
474
475 /* Lexical macros. */
476 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
477 #define is_operand_char(x) (operand_chars[(unsigned char) x])
478 #define is_register_char(x) (register_chars[(unsigned char) x])
479 #define is_space_char(x) ((x) == ' ')
480 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
481 #define is_digit_char(x) (digit_chars[(unsigned char) x])
482
483 /* All non-digit non-letter characters that may occur in an operand. */
484 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
485
486 /* md_assemble() always leaves the strings it's passed unaltered. To
487 effect this we maintain a stack of saved characters that we've smashed
488 with '\0's (indicating end of strings for various sub-fields of the
489 assembler instruction). */
490 static char save_stack[32];
491 static char *save_stack_p;
492 #define END_STRING_AND_SAVE(s) \
493 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
494 #define RESTORE_END_STRING(s) \
495 do { *(s) = *--save_stack_p; } while (0)
496
497 /* The instruction we're assembling. */
498 static i386_insn i;
499
500 /* Possible templates for current insn. */
501 static const templates *current_templates;
502
503 /* Per instruction expressionS buffers: max displacements & immediates. */
504 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
505 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
506
507 /* Current operand we are working on. */
508 static int this_operand = -1;
509
510 /* We support four different modes. FLAG_CODE variable is used to distinguish
511 these. */
512
513 enum flag_code {
514 CODE_32BIT,
515 CODE_16BIT,
516 CODE_64BIT };
517
518 static enum flag_code flag_code;
519 static unsigned int object_64bit;
520 static unsigned int disallow_64bit_reloc;
521 static int use_rela_relocations = 0;
522
523 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
524 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
525 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
526
527 /* The ELF ABI to use. */
528 enum x86_elf_abi
529 {
530 I386_ABI,
531 X86_64_ABI,
532 X86_64_X32_ABI
533 };
534
535 static enum x86_elf_abi x86_elf_abi = I386_ABI;
536 #endif
537
538 #if defined (TE_PE) || defined (TE_PEP)
539 /* Use big object file format. */
540 static int use_big_obj = 0;
541 #endif
542
543 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
544 /* 1 if generating code for a shared library. */
545 static int shared = 0;
546 #endif
547
548 /* 1 for intel syntax,
549 0 if att syntax. */
550 static int intel_syntax = 0;
551
552 /* 1 for Intel64 ISA,
553 0 if AMD64 ISA. */
554 static int intel64;
555
556 /* 1 for intel mnemonic,
557 0 if att mnemonic. */
558 static int intel_mnemonic = !SYSV386_COMPAT;
559
560 /* 1 if support old (<= 2.8.1) versions of gcc. */
561 static int old_gcc = OLDGCC_COMPAT;
562
563 /* 1 if pseudo registers are permitted. */
564 static int allow_pseudo_reg = 0;
565
566 /* 1 if register prefix % not required. */
567 static int allow_naked_reg = 0;
568
569 /* 1 if the assembler should add BND prefix for all control-transferring
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572 static int add_bnd_prefix = 0;
573
574 /* 1 if pseudo index register, eiz/riz, is allowed . */
575 static int allow_index_reg = 0;
576
577 /* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579 static int omit_lock_prefix = 0;
580
581 /* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583 static int avoid_fence = 0;
584
585 /* 1 if the assembler should generate relax relocations. */
586
587 static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
590 static enum check_kind
591 {
592 check_none = 0,
593 check_warning,
594 check_error
595 }
596 sse_check, operand_check = check_warning;
597
598 /* Register prefix used for error message. */
599 static const char *register_prefix = "%";
600
601 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
602 leave, push, and pop instructions so that gcc has the same stack
603 frame as in 32 bit mode. */
604 static char stackop_size = '\0';
605
606 /* Non-zero to optimize code alignment. */
607 int optimize_align_code = 1;
608
609 /* Non-zero to quieten some warnings. */
610 static int quiet_warnings = 0;
611
612 /* CPU name. */
613 static const char *cpu_arch_name = NULL;
614 static char *cpu_sub_arch_name = NULL;
615
616 /* CPU feature flags. */
617 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
618
619 /* If we have selected a cpu we are generating instructions for. */
620 static int cpu_arch_tune_set = 0;
621
622 /* Cpu we are generating instructions for. */
623 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
624
625 /* CPU feature flags of cpu we are generating instructions for. */
626 static i386_cpu_flags cpu_arch_tune_flags;
627
628 /* CPU instruction set architecture used. */
629 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
630
631 /* CPU feature flags of instruction set architecture used. */
632 i386_cpu_flags cpu_arch_isa_flags;
633
634 /* If set, conditional jumps are not automatically promoted to handle
635 larger than a byte offset. */
636 static unsigned int no_cond_jump_promotion = 0;
637
638 /* Encode SSE instructions with VEX prefix. */
639 static unsigned int sse2avx;
640
641 /* Encode scalar AVX instructions with specific vector length. */
642 static enum
643 {
644 vex128 = 0,
645 vex256
646 } avxscalar;
647
648 /* Encode scalar EVEX LIG instructions with specific vector length. */
649 static enum
650 {
651 evexl128 = 0,
652 evexl256,
653 evexl512
654 } evexlig;
655
656 /* Encode EVEX WIG instructions with specific evex.w. */
657 static enum
658 {
659 evexw0 = 0,
660 evexw1
661 } evexwig;
662
663 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
664 static enum rc_type evexrcig = rne;
665
666 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
667 static symbolS *GOT_symbol;
668
669 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
670 unsigned int x86_dwarf2_return_column;
671
672 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
673 int x86_cie_data_alignment;
674
675 /* Interface to relax_segment.
676 There are 3 major relax states for 386 jump insns because the
677 different types of jumps add different sizes to frags when we're
678 figuring out what sort of jump to choose to reach a given label. */
679
680 /* Types. */
681 #define UNCOND_JUMP 0
682 #define COND_JUMP 1
683 #define COND_JUMP86 2
684
685 /* Sizes. */
686 #define CODE16 1
687 #define SMALL 0
688 #define SMALL16 (SMALL | CODE16)
689 #define BIG 2
690 #define BIG16 (BIG | CODE16)
691
692 #ifndef INLINE
693 #ifdef __GNUC__
694 #define INLINE __inline__
695 #else
696 #define INLINE
697 #endif
698 #endif
699
700 #define ENCODE_RELAX_STATE(type, size) \
701 ((relax_substateT) (((type) << 2) | (size)))
702 #define TYPE_FROM_RELAX_STATE(s) \
703 ((s) >> 2)
704 #define DISP_SIZE_FROM_RELAX_STATE(s) \
705 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
706
707 /* This table is used by relax_frag to promote short jumps to long
708 ones where necessary. SMALL (short) jumps may be promoted to BIG
709 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
710 don't allow a short jump in a 32 bit code segment to be promoted to
711 a 16 bit offset jump because it's slower (requires data size
712 prefix), and doesn't work, unless the destination is in the bottom
713 64k of the code segment (The top 16 bits of eip are zeroed). */
714
715 const relax_typeS md_relax_table[] =
716 {
717 /* The fields are:
718 1) most positive reach of this state,
719 2) most negative reach of this state,
720 3) how many bytes this mode will have in the variable part of the frag
721 4) which index into the table to try if we can't fit into this one. */
722
723 /* UNCOND_JUMP states. */
724 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
725 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
726 /* dword jmp adds 4 bytes to frag:
727 0 extra opcode bytes, 4 displacement bytes. */
728 {0, 0, 4, 0},
729 /* word jmp adds 2 byte2 to frag:
730 0 extra opcode bytes, 2 displacement bytes. */
731 {0, 0, 2, 0},
732
733 /* COND_JUMP states. */
734 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
735 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
736 /* dword conditionals adds 5 bytes to frag:
737 1 extra opcode byte, 4 displacement bytes. */
738 {0, 0, 5, 0},
739 /* word conditionals add 3 bytes to frag:
740 1 extra opcode byte, 2 displacement bytes. */
741 {0, 0, 3, 0},
742
743 /* COND_JUMP86 states. */
744 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
745 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
746 /* dword conditionals adds 5 bytes to frag:
747 1 extra opcode byte, 4 displacement bytes. */
748 {0, 0, 5, 0},
749 /* word conditionals add 4 bytes to frag:
750 1 displacement byte and a 3 byte long branch insn. */
751 {0, 0, 4, 0}
752 };
753
754 static const arch_entry cpu_arch[] =
755 {
756 /* Do not replace the first two entries - i386_target_format()
757 relies on them being there in this order. */
758 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
759 CPU_GENERIC32_FLAGS, 0 },
760 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
761 CPU_GENERIC64_FLAGS, 0 },
762 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
763 CPU_NONE_FLAGS, 0 },
764 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
765 CPU_I186_FLAGS, 0 },
766 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
767 CPU_I286_FLAGS, 0 },
768 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
769 CPU_I386_FLAGS, 0 },
770 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
771 CPU_I486_FLAGS, 0 },
772 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
773 CPU_I586_FLAGS, 0 },
774 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
775 CPU_I686_FLAGS, 0 },
776 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
777 CPU_I586_FLAGS, 0 },
778 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
779 CPU_PENTIUMPRO_FLAGS, 0 },
780 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
781 CPU_P2_FLAGS, 0 },
782 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
783 CPU_P3_FLAGS, 0 },
784 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
785 CPU_P4_FLAGS, 0 },
786 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
787 CPU_CORE_FLAGS, 0 },
788 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
789 CPU_NOCONA_FLAGS, 0 },
790 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
791 CPU_CORE_FLAGS, 1 },
792 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
793 CPU_CORE_FLAGS, 0 },
794 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
795 CPU_CORE2_FLAGS, 1 },
796 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
797 CPU_CORE2_FLAGS, 0 },
798 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
799 CPU_COREI7_FLAGS, 0 },
800 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
801 CPU_L1OM_FLAGS, 0 },
802 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
803 CPU_K1OM_FLAGS, 0 },
804 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
805 CPU_IAMCU_FLAGS, 0 },
806 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
807 CPU_K6_FLAGS, 0 },
808 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
809 CPU_K6_2_FLAGS, 0 },
810 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
811 CPU_ATHLON_FLAGS, 0 },
812 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
813 CPU_K8_FLAGS, 1 },
814 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
815 CPU_K8_FLAGS, 0 },
816 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
817 CPU_K8_FLAGS, 0 },
818 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
819 CPU_AMDFAM10_FLAGS, 0 },
820 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
821 CPU_BDVER1_FLAGS, 0 },
822 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
823 CPU_BDVER2_FLAGS, 0 },
824 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
825 CPU_BDVER3_FLAGS, 0 },
826 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
827 CPU_BDVER4_FLAGS, 0 },
828 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
829 CPU_ZNVER1_FLAGS, 0 },
830 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
831 CPU_BTVER1_FLAGS, 0 },
832 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
833 CPU_BTVER2_FLAGS, 0 },
834 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
835 CPU_8087_FLAGS, 0 },
836 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
837 CPU_287_FLAGS, 0 },
838 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
839 CPU_387_FLAGS, 0 },
840 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
841 CPU_687_FLAGS, 0 },
842 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
843 CPU_MMX_FLAGS, 0 },
844 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
845 CPU_SSE_FLAGS, 0 },
846 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
847 CPU_SSE2_FLAGS, 0 },
848 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
849 CPU_SSE3_FLAGS, 0 },
850 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
851 CPU_SSSE3_FLAGS, 0 },
852 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
853 CPU_SSE4_1_FLAGS, 0 },
854 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
855 CPU_SSE4_2_FLAGS, 0 },
856 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
857 CPU_SSE4_2_FLAGS, 0 },
858 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
859 CPU_AVX_FLAGS, 0 },
860 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
861 CPU_AVX2_FLAGS, 0 },
862 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
863 CPU_AVX512F_FLAGS, 0 },
864 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
865 CPU_AVX512CD_FLAGS, 0 },
866 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
867 CPU_AVX512ER_FLAGS, 0 },
868 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
869 CPU_AVX512PF_FLAGS, 0 },
870 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
871 CPU_AVX512DQ_FLAGS, 0 },
872 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
873 CPU_AVX512BW_FLAGS, 0 },
874 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
875 CPU_AVX512VL_FLAGS, 0 },
876 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
877 CPU_VMX_FLAGS, 0 },
878 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
879 CPU_VMFUNC_FLAGS, 0 },
880 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
881 CPU_SMX_FLAGS, 0 },
882 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
883 CPU_XSAVE_FLAGS, 0 },
884 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
885 CPU_XSAVEOPT_FLAGS, 0 },
886 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
887 CPU_XSAVEC_FLAGS, 0 },
888 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
889 CPU_XSAVES_FLAGS, 0 },
890 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
891 CPU_AES_FLAGS, 0 },
892 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
893 CPU_PCLMUL_FLAGS, 0 },
894 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
895 CPU_PCLMUL_FLAGS, 1 },
896 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
897 CPU_FSGSBASE_FLAGS, 0 },
898 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
899 CPU_RDRND_FLAGS, 0 },
900 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
901 CPU_F16C_FLAGS, 0 },
902 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
903 CPU_BMI2_FLAGS, 0 },
904 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
905 CPU_FMA_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
907 CPU_FMA4_FLAGS, 0 },
908 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
909 CPU_XOP_FLAGS, 0 },
910 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
911 CPU_LWP_FLAGS, 0 },
912 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
913 CPU_MOVBE_FLAGS, 0 },
914 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
915 CPU_CX16_FLAGS, 0 },
916 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
917 CPU_EPT_FLAGS, 0 },
918 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
919 CPU_LZCNT_FLAGS, 0 },
920 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
921 CPU_HLE_FLAGS, 0 },
922 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
923 CPU_RTM_FLAGS, 0 },
924 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
925 CPU_INVPCID_FLAGS, 0 },
926 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
927 CPU_CLFLUSH_FLAGS, 0 },
928 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
929 CPU_NOP_FLAGS, 0 },
930 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
931 CPU_SYSCALL_FLAGS, 0 },
932 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
933 CPU_RDTSCP_FLAGS, 0 },
934 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
935 CPU_3DNOW_FLAGS, 0 },
936 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
937 CPU_3DNOWA_FLAGS, 0 },
938 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
939 CPU_PADLOCK_FLAGS, 0 },
940 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
941 CPU_SVME_FLAGS, 1 },
942 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
943 CPU_SVME_FLAGS, 0 },
944 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
945 CPU_SSE4A_FLAGS, 0 },
946 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
947 CPU_ABM_FLAGS, 0 },
948 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
949 CPU_BMI_FLAGS, 0 },
950 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
951 CPU_TBM_FLAGS, 0 },
952 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
953 CPU_ADX_FLAGS, 0 },
954 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
955 CPU_RDSEED_FLAGS, 0 },
956 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
957 CPU_PRFCHW_FLAGS, 0 },
958 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
959 CPU_SMAP_FLAGS, 0 },
960 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
961 CPU_MPX_FLAGS, 0 },
962 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
963 CPU_SHA_FLAGS, 0 },
964 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
965 CPU_CLFLUSHOPT_FLAGS, 0 },
966 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
967 CPU_PREFETCHWT1_FLAGS, 0 },
968 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
969 CPU_SE1_FLAGS, 0 },
970 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
971 CPU_CLWB_FLAGS, 0 },
972 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
973 CPU_AVX512IFMA_FLAGS, 0 },
974 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
975 CPU_AVX512VBMI_FLAGS, 0 },
976 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
977 CPU_AVX512_4FMAPS_FLAGS, 0 },
978 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
979 CPU_AVX512_4VNNIW_FLAGS, 0 },
980 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
981 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
982 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
983 CPU_CLZERO_FLAGS, 0 },
984 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
985 CPU_MWAITX_FLAGS, 0 },
986 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
987 CPU_OSPKE_FLAGS, 0 },
988 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
989 CPU_RDPID_FLAGS, 0 },
990 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
991 CPU_PTWRITE_FLAGS, 0 },
992 { STRING_COMMA_LEN (".cet"), PROCESSOR_UNKNOWN,
993 CPU_CET_FLAGS, 0 },
994 };
995
996 static const noarch_entry cpu_noarch[] =
997 {
998 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
999 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1000 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1001 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1002 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1003 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1004 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1005 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1006 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1007 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1008 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1009 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1010 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1011 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1012 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1013 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1014 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1015 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1016 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1017 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1018 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1019 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1020 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1021 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1022 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1023 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1024 };
1025
1026 #ifdef I386COFF
1027 /* Like s_lcomm_internal in gas/read.c but the alignment string
1028 is allowed to be optional. */
1029
1030 static symbolS *
1031 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1032 {
1033 addressT align = 0;
1034
1035 SKIP_WHITESPACE ();
1036
1037 if (needs_align
1038 && *input_line_pointer == ',')
1039 {
1040 align = parse_align (needs_align - 1);
1041
1042 if (align == (addressT) -1)
1043 return NULL;
1044 }
1045 else
1046 {
1047 if (size >= 8)
1048 align = 3;
1049 else if (size >= 4)
1050 align = 2;
1051 else if (size >= 2)
1052 align = 1;
1053 else
1054 align = 0;
1055 }
1056
1057 bss_alloc (symbolP, size, align);
1058 return symbolP;
1059 }
1060
1061 static void
1062 pe_lcomm (int needs_align)
1063 {
1064 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1065 }
1066 #endif
1067
1068 const pseudo_typeS md_pseudo_table[] =
1069 {
1070 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1071 {"align", s_align_bytes, 0},
1072 #else
1073 {"align", s_align_ptwo, 0},
1074 #endif
1075 {"arch", set_cpu_arch, 0},
1076 #ifndef I386COFF
1077 {"bss", s_bss, 0},
1078 #else
1079 {"lcomm", pe_lcomm, 1},
1080 #endif
1081 {"ffloat", float_cons, 'f'},
1082 {"dfloat", float_cons, 'd'},
1083 {"tfloat", float_cons, 'x'},
1084 {"value", cons, 2},
1085 {"slong", signed_cons, 4},
1086 {"noopt", s_ignore, 0},
1087 {"optim", s_ignore, 0},
1088 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1089 {"code16", set_code_flag, CODE_16BIT},
1090 {"code32", set_code_flag, CODE_32BIT},
1091 {"code64", set_code_flag, CODE_64BIT},
1092 {"intel_syntax", set_intel_syntax, 1},
1093 {"att_syntax", set_intel_syntax, 0},
1094 {"intel_mnemonic", set_intel_mnemonic, 1},
1095 {"att_mnemonic", set_intel_mnemonic, 0},
1096 {"allow_index_reg", set_allow_index_reg, 1},
1097 {"disallow_index_reg", set_allow_index_reg, 0},
1098 {"sse_check", set_check, 0},
1099 {"operand_check", set_check, 1},
1100 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1101 {"largecomm", handle_large_common, 0},
1102 #else
1103 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1104 {"loc", dwarf2_directive_loc, 0},
1105 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1106 #endif
1107 #ifdef TE_PE
1108 {"secrel32", pe_directive_secrel, 0},
1109 #endif
1110 {0, 0, 0}
1111 };
1112
1113 /* For interface with expression (). */
1114 extern char *input_line_pointer;
1115
1116 /* Hash table for instruction mnemonic lookup. */
1117 static struct hash_control *op_hash;
1118
1119 /* Hash table for register lookup. */
1120 static struct hash_control *reg_hash;
1121 \f
1122 void
1123 i386_align_code (fragS *fragP, int count)
1124 {
1125 /* Various efficient no-op patterns for aligning code labels.
1126 Note: Don't try to assemble the instructions in the comments.
1127 0L and 0w are not legal. */
1128 static const unsigned char f32_1[] =
1129 {0x90}; /* nop */
1130 static const unsigned char f32_2[] =
1131 {0x66,0x90}; /* xchg %ax,%ax */
1132 static const unsigned char f32_3[] =
1133 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1134 static const unsigned char f32_4[] =
1135 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1136 static const unsigned char f32_5[] =
1137 {0x90, /* nop */
1138 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1139 static const unsigned char f32_6[] =
1140 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1141 static const unsigned char f32_7[] =
1142 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1143 static const unsigned char f32_8[] =
1144 {0x90, /* nop */
1145 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1146 static const unsigned char f32_9[] =
1147 {0x89,0xf6, /* movl %esi,%esi */
1148 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1149 static const unsigned char f32_10[] =
1150 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1151 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1152 static const unsigned char f32_11[] =
1153 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1154 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1155 static const unsigned char f32_12[] =
1156 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1157 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1158 static const unsigned char f32_13[] =
1159 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1160 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1161 static const unsigned char f32_14[] =
1162 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1163 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1164 static const unsigned char f16_3[] =
1165 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1166 static const unsigned char f16_4[] =
1167 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1168 static const unsigned char f16_5[] =
1169 {0x90, /* nop */
1170 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1171 static const unsigned char f16_6[] =
1172 {0x89,0xf6, /* mov %si,%si */
1173 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1174 static const unsigned char f16_7[] =
1175 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1176 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1177 static const unsigned char f16_8[] =
1178 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1179 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1180 static const unsigned char jump_31[] =
1181 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1182 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1183 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1184 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1185 static const unsigned char *const f32_patt[] = {
1186 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1187 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1188 };
1189 static const unsigned char *const f16_patt[] = {
1190 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1191 };
1192 /* nopl (%[re]ax) */
1193 static const unsigned char alt_3[] =
1194 {0x0f,0x1f,0x00};
1195 /* nopl 0(%[re]ax) */
1196 static const unsigned char alt_4[] =
1197 {0x0f,0x1f,0x40,0x00};
1198 /* nopl 0(%[re]ax,%[re]ax,1) */
1199 static const unsigned char alt_5[] =
1200 {0x0f,0x1f,0x44,0x00,0x00};
1201 /* nopw 0(%[re]ax,%[re]ax,1) */
1202 static const unsigned char alt_6[] =
1203 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1204 /* nopl 0L(%[re]ax) */
1205 static const unsigned char alt_7[] =
1206 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1207 /* nopl 0L(%[re]ax,%[re]ax,1) */
1208 static const unsigned char alt_8[] =
1209 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1210 /* nopw 0L(%[re]ax,%[re]ax,1) */
1211 static const unsigned char alt_9[] =
1212 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1213 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1214 static const unsigned char alt_10[] =
1215 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1216 static const unsigned char *const alt_patt[] = {
1217 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1218 alt_9, alt_10
1219 };
1220
1221 /* Only align for at least a positive non-zero boundary. */
1222 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1223 return;
1224
1225 /* We need to decide which NOP sequence to use for 32bit and
1226 64bit. When -mtune= is used:
1227
1228 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1229 PROCESSOR_GENERIC32, f32_patt will be used.
1230 2. For the rest, alt_patt will be used.
1231
1232 When -mtune= isn't used, alt_patt will be used if
1233 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1234 be used.
1235
1236 When -march= or .arch is used, we can't use anything beyond
1237 cpu_arch_isa_flags. */
1238
1239 if (flag_code == CODE_16BIT)
1240 {
1241 if (count > 8)
1242 {
1243 memcpy (fragP->fr_literal + fragP->fr_fix,
1244 jump_31, count);
1245 /* Adjust jump offset. */
1246 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1247 }
1248 else
1249 memcpy (fragP->fr_literal + fragP->fr_fix,
1250 f16_patt[count - 1], count);
1251 }
1252 else
1253 {
1254 const unsigned char *const *patt = NULL;
1255
1256 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1257 {
1258 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1259 switch (cpu_arch_tune)
1260 {
1261 case PROCESSOR_UNKNOWN:
1262 /* We use cpu_arch_isa_flags to check if we SHOULD
1263 optimize with nops. */
1264 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1265 patt = alt_patt;
1266 else
1267 patt = f32_patt;
1268 break;
1269 case PROCESSOR_PENTIUM4:
1270 case PROCESSOR_NOCONA:
1271 case PROCESSOR_CORE:
1272 case PROCESSOR_CORE2:
1273 case PROCESSOR_COREI7:
1274 case PROCESSOR_L1OM:
1275 case PROCESSOR_K1OM:
1276 case PROCESSOR_GENERIC64:
1277 case PROCESSOR_K6:
1278 case PROCESSOR_ATHLON:
1279 case PROCESSOR_K8:
1280 case PROCESSOR_AMDFAM10:
1281 case PROCESSOR_BD:
1282 case PROCESSOR_ZNVER:
1283 case PROCESSOR_BT:
1284 patt = alt_patt;
1285 break;
1286 case PROCESSOR_I386:
1287 case PROCESSOR_I486:
1288 case PROCESSOR_PENTIUM:
1289 case PROCESSOR_PENTIUMPRO:
1290 case PROCESSOR_IAMCU:
1291 case PROCESSOR_GENERIC32:
1292 patt = f32_patt;
1293 break;
1294 }
1295 }
1296 else
1297 {
1298 switch (fragP->tc_frag_data.tune)
1299 {
1300 case PROCESSOR_UNKNOWN:
1301 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1302 PROCESSOR_UNKNOWN. */
1303 abort ();
1304 break;
1305
1306 case PROCESSOR_I386:
1307 case PROCESSOR_I486:
1308 case PROCESSOR_PENTIUM:
1309 case PROCESSOR_IAMCU:
1310 case PROCESSOR_K6:
1311 case PROCESSOR_ATHLON:
1312 case PROCESSOR_K8:
1313 case PROCESSOR_AMDFAM10:
1314 case PROCESSOR_BD:
1315 case PROCESSOR_ZNVER:
1316 case PROCESSOR_BT:
1317 case PROCESSOR_GENERIC32:
1318 /* We use cpu_arch_isa_flags to check if we CAN optimize
1319 with nops. */
1320 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1321 patt = alt_patt;
1322 else
1323 patt = f32_patt;
1324 break;
1325 case PROCESSOR_PENTIUMPRO:
1326 case PROCESSOR_PENTIUM4:
1327 case PROCESSOR_NOCONA:
1328 case PROCESSOR_CORE:
1329 case PROCESSOR_CORE2:
1330 case PROCESSOR_COREI7:
1331 case PROCESSOR_L1OM:
1332 case PROCESSOR_K1OM:
1333 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1334 patt = alt_patt;
1335 else
1336 patt = f32_patt;
1337 break;
1338 case PROCESSOR_GENERIC64:
1339 patt = alt_patt;
1340 break;
1341 }
1342 }
1343
1344 if (patt == f32_patt)
1345 {
1346 /* If the padding is less than 15 bytes, we use the normal
1347 ones. Otherwise, we use a jump instruction and adjust
1348 its offset. */
1349 int limit;
1350
1351 /* For 64bit, the limit is 3 bytes. */
1352 if (flag_code == CODE_64BIT
1353 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1354 limit = 3;
1355 else
1356 limit = 15;
1357 if (count < limit)
1358 memcpy (fragP->fr_literal + fragP->fr_fix,
1359 patt[count - 1], count);
1360 else
1361 {
1362 memcpy (fragP->fr_literal + fragP->fr_fix,
1363 jump_31, count);
1364 /* Adjust jump offset. */
1365 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1366 }
1367 }
1368 else
1369 {
1370 /* Maximum length of an instruction is 10 byte. If the
1371 padding is greater than 10 bytes and we don't use jump,
1372 we have to break it into smaller pieces. */
1373 int padding = count;
1374 while (padding > 10)
1375 {
1376 padding -= 10;
1377 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1378 patt [9], 10);
1379 }
1380
1381 if (padding)
1382 memcpy (fragP->fr_literal + fragP->fr_fix,
1383 patt [padding - 1], padding);
1384 }
1385 }
1386 fragP->fr_var = count;
1387 }
1388
1389 static INLINE int
1390 operand_type_all_zero (const union i386_operand_type *x)
1391 {
1392 switch (ARRAY_SIZE(x->array))
1393 {
1394 case 3:
1395 if (x->array[2])
1396 return 0;
1397 /* Fall through. */
1398 case 2:
1399 if (x->array[1])
1400 return 0;
1401 /* Fall through. */
1402 case 1:
1403 return !x->array[0];
1404 default:
1405 abort ();
1406 }
1407 }
1408
1409 static INLINE void
1410 operand_type_set (union i386_operand_type *x, unsigned int v)
1411 {
1412 switch (ARRAY_SIZE(x->array))
1413 {
1414 case 3:
1415 x->array[2] = v;
1416 /* Fall through. */
1417 case 2:
1418 x->array[1] = v;
1419 /* Fall through. */
1420 case 1:
1421 x->array[0] = v;
1422 /* Fall through. */
1423 break;
1424 default:
1425 abort ();
1426 }
1427 }
1428
1429 static INLINE int
1430 operand_type_equal (const union i386_operand_type *x,
1431 const union i386_operand_type *y)
1432 {
1433 switch (ARRAY_SIZE(x->array))
1434 {
1435 case 3:
1436 if (x->array[2] != y->array[2])
1437 return 0;
1438 /* Fall through. */
1439 case 2:
1440 if (x->array[1] != y->array[1])
1441 return 0;
1442 /* Fall through. */
1443 case 1:
1444 return x->array[0] == y->array[0];
1445 break;
1446 default:
1447 abort ();
1448 }
1449 }
1450
1451 static INLINE int
1452 cpu_flags_all_zero (const union i386_cpu_flags *x)
1453 {
1454 switch (ARRAY_SIZE(x->array))
1455 {
1456 case 3:
1457 if (x->array[2])
1458 return 0;
1459 /* Fall through. */
1460 case 2:
1461 if (x->array[1])
1462 return 0;
1463 /* Fall through. */
1464 case 1:
1465 return !x->array[0];
1466 default:
1467 abort ();
1468 }
1469 }
1470
1471 static INLINE int
1472 cpu_flags_equal (const union i386_cpu_flags *x,
1473 const union i386_cpu_flags *y)
1474 {
1475 switch (ARRAY_SIZE(x->array))
1476 {
1477 case 3:
1478 if (x->array[2] != y->array[2])
1479 return 0;
1480 /* Fall through. */
1481 case 2:
1482 if (x->array[1] != y->array[1])
1483 return 0;
1484 /* Fall through. */
1485 case 1:
1486 return x->array[0] == y->array[0];
1487 break;
1488 default:
1489 abort ();
1490 }
1491 }
1492
1493 static INLINE int
1494 cpu_flags_check_cpu64 (i386_cpu_flags f)
1495 {
1496 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1497 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1498 }
1499
1500 static INLINE i386_cpu_flags
1501 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1502 {
1503 switch (ARRAY_SIZE (x.array))
1504 {
1505 case 3:
1506 x.array [2] &= y.array [2];
1507 /* Fall through. */
1508 case 2:
1509 x.array [1] &= y.array [1];
1510 /* Fall through. */
1511 case 1:
1512 x.array [0] &= y.array [0];
1513 break;
1514 default:
1515 abort ();
1516 }
1517 return x;
1518 }
1519
1520 static INLINE i386_cpu_flags
1521 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1522 {
1523 switch (ARRAY_SIZE (x.array))
1524 {
1525 case 3:
1526 x.array [2] |= y.array [2];
1527 /* Fall through. */
1528 case 2:
1529 x.array [1] |= y.array [1];
1530 /* Fall through. */
1531 case 1:
1532 x.array [0] |= y.array [0];
1533 break;
1534 default:
1535 abort ();
1536 }
1537 return x;
1538 }
1539
1540 static INLINE i386_cpu_flags
1541 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1542 {
1543 switch (ARRAY_SIZE (x.array))
1544 {
1545 case 3:
1546 x.array [2] &= ~y.array [2];
1547 /* Fall through. */
1548 case 2:
1549 x.array [1] &= ~y.array [1];
1550 /* Fall through. */
1551 case 1:
1552 x.array [0] &= ~y.array [0];
1553 break;
1554 default:
1555 abort ();
1556 }
1557 return x;
1558 }
1559
1560 #define CPU_FLAGS_ARCH_MATCH 0x1
1561 #define CPU_FLAGS_64BIT_MATCH 0x2
1562 #define CPU_FLAGS_AES_MATCH 0x4
1563 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1564 #define CPU_FLAGS_AVX_MATCH 0x10
1565
1566 #define CPU_FLAGS_32BIT_MATCH \
1567 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1568 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1569 #define CPU_FLAGS_PERFECT_MATCH \
1570 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1571
1572 /* Return CPU flags match bits. */
1573
1574 static int
1575 cpu_flags_match (const insn_template *t)
1576 {
1577 i386_cpu_flags x = t->cpu_flags;
1578 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1579
1580 x.bitfield.cpu64 = 0;
1581 x.bitfield.cpuno64 = 0;
1582
1583 if (cpu_flags_all_zero (&x))
1584 {
1585 /* This instruction is available on all archs. */
1586 match |= CPU_FLAGS_32BIT_MATCH;
1587 }
1588 else
1589 {
1590 /* This instruction is available only on some archs. */
1591 i386_cpu_flags cpu = cpu_arch_flags;
1592
1593 cpu = cpu_flags_and (x, cpu);
1594 if (!cpu_flags_all_zero (&cpu))
1595 {
1596 if (x.bitfield.cpuavx)
1597 {
1598 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1599 if (cpu.bitfield.cpuavx)
1600 {
1601 /* Check SSE2AVX. */
1602 if (!t->opcode_modifier.sse2avx|| sse2avx)
1603 {
1604 match |= (CPU_FLAGS_ARCH_MATCH
1605 | CPU_FLAGS_AVX_MATCH);
1606 /* Check AES. */
1607 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1608 match |= CPU_FLAGS_AES_MATCH;
1609 /* Check PCLMUL. */
1610 if (!x.bitfield.cpupclmul
1611 || cpu.bitfield.cpupclmul)
1612 match |= CPU_FLAGS_PCLMUL_MATCH;
1613 }
1614 }
1615 else
1616 match |= CPU_FLAGS_ARCH_MATCH;
1617 }
1618 else if (x.bitfield.cpuavx512vl)
1619 {
1620 /* Match AVX512VL. */
1621 if (cpu.bitfield.cpuavx512vl)
1622 {
1623 /* Need another match. */
1624 cpu.bitfield.cpuavx512vl = 0;
1625 if (!cpu_flags_all_zero (&cpu))
1626 match |= CPU_FLAGS_32BIT_MATCH;
1627 else
1628 match |= CPU_FLAGS_ARCH_MATCH;
1629 }
1630 else
1631 match |= CPU_FLAGS_ARCH_MATCH;
1632 }
1633 else
1634 match |= CPU_FLAGS_32BIT_MATCH;
1635 }
1636 }
1637 return match;
1638 }
1639
1640 static INLINE i386_operand_type
1641 operand_type_and (i386_operand_type x, i386_operand_type y)
1642 {
1643 switch (ARRAY_SIZE (x.array))
1644 {
1645 case 3:
1646 x.array [2] &= y.array [2];
1647 /* Fall through. */
1648 case 2:
1649 x.array [1] &= y.array [1];
1650 /* Fall through. */
1651 case 1:
1652 x.array [0] &= y.array [0];
1653 break;
1654 default:
1655 abort ();
1656 }
1657 return x;
1658 }
1659
1660 static INLINE i386_operand_type
1661 operand_type_or (i386_operand_type x, i386_operand_type y)
1662 {
1663 switch (ARRAY_SIZE (x.array))
1664 {
1665 case 3:
1666 x.array [2] |= y.array [2];
1667 /* Fall through. */
1668 case 2:
1669 x.array [1] |= y.array [1];
1670 /* Fall through. */
1671 case 1:
1672 x.array [0] |= y.array [0];
1673 break;
1674 default:
1675 abort ();
1676 }
1677 return x;
1678 }
1679
1680 static INLINE i386_operand_type
1681 operand_type_xor (i386_operand_type x, i386_operand_type y)
1682 {
1683 switch (ARRAY_SIZE (x.array))
1684 {
1685 case 3:
1686 x.array [2] ^= y.array [2];
1687 /* Fall through. */
1688 case 2:
1689 x.array [1] ^= y.array [1];
1690 /* Fall through. */
1691 case 1:
1692 x.array [0] ^= y.array [0];
1693 break;
1694 default:
1695 abort ();
1696 }
1697 return x;
1698 }
1699
1700 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1701 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1702 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1703 static const i386_operand_type inoutportreg
1704 = OPERAND_TYPE_INOUTPORTREG;
1705 static const i386_operand_type reg16_inoutportreg
1706 = OPERAND_TYPE_REG16_INOUTPORTREG;
1707 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1708 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1709 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1710 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1711 static const i386_operand_type anydisp
1712 = OPERAND_TYPE_ANYDISP;
1713 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1714 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1715 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1716 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1717 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1718 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1719 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1720 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1721 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1722 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1723 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1724 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1725 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1726 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1727
1728 enum operand_type
1729 {
1730 reg,
1731 imm,
1732 disp,
1733 anymem
1734 };
1735
1736 static INLINE int
1737 operand_type_check (i386_operand_type t, enum operand_type c)
1738 {
1739 switch (c)
1740 {
1741 case reg:
1742 return (t.bitfield.reg8
1743 || t.bitfield.reg16
1744 || t.bitfield.reg32
1745 || t.bitfield.reg64);
1746
1747 case imm:
1748 return (t.bitfield.imm8
1749 || t.bitfield.imm8s
1750 || t.bitfield.imm16
1751 || t.bitfield.imm32
1752 || t.bitfield.imm32s
1753 || t.bitfield.imm64);
1754
1755 case disp:
1756 return (t.bitfield.disp8
1757 || t.bitfield.disp16
1758 || t.bitfield.disp32
1759 || t.bitfield.disp32s
1760 || t.bitfield.disp64);
1761
1762 case anymem:
1763 return (t.bitfield.disp8
1764 || t.bitfield.disp16
1765 || t.bitfield.disp32
1766 || t.bitfield.disp32s
1767 || t.bitfield.disp64
1768 || t.bitfield.baseindex);
1769
1770 default:
1771 abort ();
1772 }
1773
1774 return 0;
1775 }
1776
1777 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1778 operand J for instruction template T. */
1779
1780 static INLINE int
1781 match_reg_size (const insn_template *t, unsigned int j)
1782 {
1783 return !((i.types[j].bitfield.byte
1784 && !t->operand_types[j].bitfield.byte)
1785 || (i.types[j].bitfield.word
1786 && !t->operand_types[j].bitfield.word)
1787 || (i.types[j].bitfield.dword
1788 && !t->operand_types[j].bitfield.dword)
1789 || (i.types[j].bitfield.qword
1790 && !t->operand_types[j].bitfield.qword));
1791 }
1792
1793 /* Return 1 if there is no conflict in any size on operand J for
1794 instruction template T. */
1795
1796 static INLINE int
1797 match_mem_size (const insn_template *t, unsigned int j)
1798 {
1799 return (match_reg_size (t, j)
1800 && !((i.types[j].bitfield.unspecified
1801 && !i.broadcast
1802 && !t->operand_types[j].bitfield.unspecified)
1803 || (i.types[j].bitfield.fword
1804 && !t->operand_types[j].bitfield.fword)
1805 || (i.types[j].bitfield.tbyte
1806 && !t->operand_types[j].bitfield.tbyte)
1807 || (i.types[j].bitfield.xmmword
1808 && !t->operand_types[j].bitfield.xmmword)
1809 || (i.types[j].bitfield.ymmword
1810 && !t->operand_types[j].bitfield.ymmword)
1811 || (i.types[j].bitfield.zmmword
1812 && !t->operand_types[j].bitfield.zmmword)));
1813 }
1814
1815 /* Return 1 if there is no size conflict on any operands for
1816 instruction template T. */
1817
1818 static INLINE int
1819 operand_size_match (const insn_template *t)
1820 {
1821 unsigned int j;
1822 int match = 1;
1823
1824 /* Don't check jump instructions. */
1825 if (t->opcode_modifier.jump
1826 || t->opcode_modifier.jumpbyte
1827 || t->opcode_modifier.jumpdword
1828 || t->opcode_modifier.jumpintersegment)
1829 return match;
1830
1831 /* Check memory and accumulator operand size. */
1832 for (j = 0; j < i.operands; j++)
1833 {
1834 if (t->operand_types[j].bitfield.anysize)
1835 continue;
1836
1837 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1838 {
1839 match = 0;
1840 break;
1841 }
1842
1843 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1844 {
1845 match = 0;
1846 break;
1847 }
1848 }
1849
1850 if (match)
1851 return match;
1852 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1853 {
1854 mismatch:
1855 i.error = operand_size_mismatch;
1856 return 0;
1857 }
1858
1859 /* Check reverse. */
1860 gas_assert (i.operands == 2);
1861
1862 match = 1;
1863 for (j = 0; j < 2; j++)
1864 {
1865 if (t->operand_types[j].bitfield.acc
1866 && !match_reg_size (t, j ? 0 : 1))
1867 goto mismatch;
1868
1869 if (i.types[j].bitfield.mem
1870 && !match_mem_size (t, j ? 0 : 1))
1871 goto mismatch;
1872 }
1873
1874 return match;
1875 }
1876
1877 static INLINE int
1878 operand_type_match (i386_operand_type overlap,
1879 i386_operand_type given)
1880 {
1881 i386_operand_type temp = overlap;
1882
1883 temp.bitfield.jumpabsolute = 0;
1884 temp.bitfield.unspecified = 0;
1885 temp.bitfield.byte = 0;
1886 temp.bitfield.word = 0;
1887 temp.bitfield.dword = 0;
1888 temp.bitfield.fword = 0;
1889 temp.bitfield.qword = 0;
1890 temp.bitfield.tbyte = 0;
1891 temp.bitfield.xmmword = 0;
1892 temp.bitfield.ymmword = 0;
1893 temp.bitfield.zmmword = 0;
1894 if (operand_type_all_zero (&temp))
1895 goto mismatch;
1896
1897 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1898 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1899 return 1;
1900
1901 mismatch:
1902 i.error = operand_type_mismatch;
1903 return 0;
1904 }
1905
1906 /* If given types g0 and g1 are registers they must be of the same type
1907 unless the expected operand type register overlap is null.
1908 Note that Acc in a template matches every size of reg. */
1909
1910 static INLINE int
1911 operand_type_register_match (i386_operand_type m0,
1912 i386_operand_type g0,
1913 i386_operand_type t0,
1914 i386_operand_type m1,
1915 i386_operand_type g1,
1916 i386_operand_type t1)
1917 {
1918 if (!operand_type_check (g0, reg))
1919 return 1;
1920
1921 if (!operand_type_check (g1, reg))
1922 return 1;
1923
1924 if (g0.bitfield.reg8 == g1.bitfield.reg8
1925 && g0.bitfield.reg16 == g1.bitfield.reg16
1926 && g0.bitfield.reg32 == g1.bitfield.reg32
1927 && g0.bitfield.reg64 == g1.bitfield.reg64)
1928 return 1;
1929
1930 if (m0.bitfield.acc)
1931 {
1932 t0.bitfield.reg8 = 1;
1933 t0.bitfield.reg16 = 1;
1934 t0.bitfield.reg32 = 1;
1935 t0.bitfield.reg64 = 1;
1936 }
1937
1938 if (m1.bitfield.acc)
1939 {
1940 t1.bitfield.reg8 = 1;
1941 t1.bitfield.reg16 = 1;
1942 t1.bitfield.reg32 = 1;
1943 t1.bitfield.reg64 = 1;
1944 }
1945
1946 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1947 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1948 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1949 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1950 return 1;
1951
1952 i.error = register_type_mismatch;
1953
1954 return 0;
1955 }
1956
1957 static INLINE unsigned int
1958 register_number (const reg_entry *r)
1959 {
1960 unsigned int nr = r->reg_num;
1961
1962 if (r->reg_flags & RegRex)
1963 nr += 8;
1964
1965 if (r->reg_flags & RegVRex)
1966 nr += 16;
1967
1968 return nr;
1969 }
1970
1971 static INLINE unsigned int
1972 mode_from_disp_size (i386_operand_type t)
1973 {
1974 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1975 return 1;
1976 else if (t.bitfield.disp16
1977 || t.bitfield.disp32
1978 || t.bitfield.disp32s)
1979 return 2;
1980 else
1981 return 0;
1982 }
1983
1984 static INLINE int
1985 fits_in_signed_byte (addressT num)
1986 {
1987 return num + 0x80 <= 0xff;
1988 }
1989
1990 static INLINE int
1991 fits_in_unsigned_byte (addressT num)
1992 {
1993 return num <= 0xff;
1994 }
1995
1996 static INLINE int
1997 fits_in_unsigned_word (addressT num)
1998 {
1999 return num <= 0xffff;
2000 }
2001
2002 static INLINE int
2003 fits_in_signed_word (addressT num)
2004 {
2005 return num + 0x8000 <= 0xffff;
2006 }
2007
2008 static INLINE int
2009 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2010 {
2011 #ifndef BFD64
2012 return 1;
2013 #else
2014 return num + 0x80000000 <= 0xffffffff;
2015 #endif
2016 } /* fits_in_signed_long() */
2017
2018 static INLINE int
2019 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2020 {
2021 #ifndef BFD64
2022 return 1;
2023 #else
2024 return num <= 0xffffffff;
2025 #endif
2026 } /* fits_in_unsigned_long() */
2027
2028 static INLINE int
2029 fits_in_vec_disp8 (offsetT num)
2030 {
2031 int shift = i.memshift;
2032 unsigned int mask;
2033
2034 if (shift == -1)
2035 abort ();
2036
2037 mask = (1 << shift) - 1;
2038
2039 /* Return 0 if NUM isn't properly aligned. */
2040 if ((num & mask))
2041 return 0;
2042
2043 /* Check if NUM will fit in 8bit after shift. */
2044 return fits_in_signed_byte (num >> shift);
2045 }
2046
2047 static INLINE int
2048 fits_in_imm4 (offsetT num)
2049 {
2050 return (num & 0xf) == num;
2051 }
2052
2053 static i386_operand_type
2054 smallest_imm_type (offsetT num)
2055 {
2056 i386_operand_type t;
2057
2058 operand_type_set (&t, 0);
2059 t.bitfield.imm64 = 1;
2060
2061 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2062 {
2063 /* This code is disabled on the 486 because all the Imm1 forms
2064 in the opcode table are slower on the i486. They're the
2065 versions with the implicitly specified single-position
2066 displacement, which has another syntax if you really want to
2067 use that form. */
2068 t.bitfield.imm1 = 1;
2069 t.bitfield.imm8 = 1;
2070 t.bitfield.imm8s = 1;
2071 t.bitfield.imm16 = 1;
2072 t.bitfield.imm32 = 1;
2073 t.bitfield.imm32s = 1;
2074 }
2075 else if (fits_in_signed_byte (num))
2076 {
2077 t.bitfield.imm8 = 1;
2078 t.bitfield.imm8s = 1;
2079 t.bitfield.imm16 = 1;
2080 t.bitfield.imm32 = 1;
2081 t.bitfield.imm32s = 1;
2082 }
2083 else if (fits_in_unsigned_byte (num))
2084 {
2085 t.bitfield.imm8 = 1;
2086 t.bitfield.imm16 = 1;
2087 t.bitfield.imm32 = 1;
2088 t.bitfield.imm32s = 1;
2089 }
2090 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2091 {
2092 t.bitfield.imm16 = 1;
2093 t.bitfield.imm32 = 1;
2094 t.bitfield.imm32s = 1;
2095 }
2096 else if (fits_in_signed_long (num))
2097 {
2098 t.bitfield.imm32 = 1;
2099 t.bitfield.imm32s = 1;
2100 }
2101 else if (fits_in_unsigned_long (num))
2102 t.bitfield.imm32 = 1;
2103
2104 return t;
2105 }
2106
2107 static offsetT
2108 offset_in_range (offsetT val, int size)
2109 {
2110 addressT mask;
2111
2112 switch (size)
2113 {
2114 case 1: mask = ((addressT) 1 << 8) - 1; break;
2115 case 2: mask = ((addressT) 1 << 16) - 1; break;
2116 case 4: mask = ((addressT) 2 << 31) - 1; break;
2117 #ifdef BFD64
2118 case 8: mask = ((addressT) 2 << 63) - 1; break;
2119 #endif
2120 default: abort ();
2121 }
2122
2123 #ifdef BFD64
2124 /* If BFD64, sign extend val for 32bit address mode. */
2125 if (flag_code != CODE_64BIT
2126 || i.prefix[ADDR_PREFIX])
2127 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2128 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2129 #endif
2130
2131 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2132 {
2133 char buf1[40], buf2[40];
2134
2135 sprint_value (buf1, val);
2136 sprint_value (buf2, val & mask);
2137 as_warn (_("%s shortened to %s"), buf1, buf2);
2138 }
2139 return val & mask;
2140 }
2141
2142 enum PREFIX_GROUP
2143 {
2144 PREFIX_EXIST = 0,
2145 PREFIX_LOCK,
2146 PREFIX_REP,
2147 PREFIX_OTHER
2148 };
2149
2150 /* Returns
2151 a. PREFIX_EXIST if attempting to add a prefix where one from the
2152 same class already exists.
2153 b. PREFIX_LOCK if lock prefix is added.
2154 c. PREFIX_REP if rep/repne prefix is added.
2155 d. PREFIX_OTHER if other prefix is added.
2156 */
2157
2158 static enum PREFIX_GROUP
2159 add_prefix (unsigned int prefix)
2160 {
2161 enum PREFIX_GROUP ret = PREFIX_OTHER;
2162 unsigned int q;
2163
2164 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2165 && flag_code == CODE_64BIT)
2166 {
2167 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2168 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2169 && (prefix & (REX_R | REX_X | REX_B))))
2170 ret = PREFIX_EXIST;
2171 q = REX_PREFIX;
2172 }
2173 else
2174 {
2175 switch (prefix)
2176 {
2177 default:
2178 abort ();
2179
2180 case CS_PREFIX_OPCODE:
2181 case DS_PREFIX_OPCODE:
2182 case ES_PREFIX_OPCODE:
2183 case FS_PREFIX_OPCODE:
2184 case GS_PREFIX_OPCODE:
2185 case SS_PREFIX_OPCODE:
2186 q = SEG_PREFIX;
2187 break;
2188
2189 case REPNE_PREFIX_OPCODE:
2190 case REPE_PREFIX_OPCODE:
2191 q = REP_PREFIX;
2192 ret = PREFIX_REP;
2193 break;
2194
2195 case LOCK_PREFIX_OPCODE:
2196 q = LOCK_PREFIX;
2197 ret = PREFIX_LOCK;
2198 break;
2199
2200 case FWAIT_OPCODE:
2201 q = WAIT_PREFIX;
2202 break;
2203
2204 case ADDR_PREFIX_OPCODE:
2205 q = ADDR_PREFIX;
2206 break;
2207
2208 case DATA_PREFIX_OPCODE:
2209 q = DATA_PREFIX;
2210 break;
2211 }
2212 if (i.prefix[q] != 0)
2213 ret = PREFIX_EXIST;
2214 }
2215
2216 if (ret)
2217 {
2218 if (!i.prefix[q])
2219 ++i.prefixes;
2220 i.prefix[q] |= prefix;
2221 }
2222 else
2223 as_bad (_("same type of prefix used twice"));
2224
2225 return ret;
2226 }
2227
2228 static void
2229 update_code_flag (int value, int check)
2230 {
2231 PRINTF_LIKE ((*as_error));
2232
2233 flag_code = (enum flag_code) value;
2234 if (flag_code == CODE_64BIT)
2235 {
2236 cpu_arch_flags.bitfield.cpu64 = 1;
2237 cpu_arch_flags.bitfield.cpuno64 = 0;
2238 }
2239 else
2240 {
2241 cpu_arch_flags.bitfield.cpu64 = 0;
2242 cpu_arch_flags.bitfield.cpuno64 = 1;
2243 }
2244 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2245 {
2246 if (check)
2247 as_error = as_fatal;
2248 else
2249 as_error = as_bad;
2250 (*as_error) (_("64bit mode not supported on `%s'."),
2251 cpu_arch_name ? cpu_arch_name : default_arch);
2252 }
2253 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2254 {
2255 if (check)
2256 as_error = as_fatal;
2257 else
2258 as_error = as_bad;
2259 (*as_error) (_("32bit mode not supported on `%s'."),
2260 cpu_arch_name ? cpu_arch_name : default_arch);
2261 }
2262 stackop_size = '\0';
2263 }
2264
2265 static void
2266 set_code_flag (int value)
2267 {
2268 update_code_flag (value, 0);
2269 }
2270
2271 static void
2272 set_16bit_gcc_code_flag (int new_code_flag)
2273 {
2274 flag_code = (enum flag_code) new_code_flag;
2275 if (flag_code != CODE_16BIT)
2276 abort ();
2277 cpu_arch_flags.bitfield.cpu64 = 0;
2278 cpu_arch_flags.bitfield.cpuno64 = 1;
2279 stackop_size = LONG_MNEM_SUFFIX;
2280 }
2281
2282 static void
2283 set_intel_syntax (int syntax_flag)
2284 {
2285 /* Find out if register prefixing is specified. */
2286 int ask_naked_reg = 0;
2287
2288 SKIP_WHITESPACE ();
2289 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2290 {
2291 char *string;
2292 int e = get_symbol_name (&string);
2293
2294 if (strcmp (string, "prefix") == 0)
2295 ask_naked_reg = 1;
2296 else if (strcmp (string, "noprefix") == 0)
2297 ask_naked_reg = -1;
2298 else
2299 as_bad (_("bad argument to syntax directive."));
2300 (void) restore_line_pointer (e);
2301 }
2302 demand_empty_rest_of_line ();
2303
2304 intel_syntax = syntax_flag;
2305
2306 if (ask_naked_reg == 0)
2307 allow_naked_reg = (intel_syntax
2308 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2309 else
2310 allow_naked_reg = (ask_naked_reg < 0);
2311
2312 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2313
2314 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2315 identifier_chars['$'] = intel_syntax ? '$' : 0;
2316 register_prefix = allow_naked_reg ? "" : "%";
2317 }
2318
2319 static void
2320 set_intel_mnemonic (int mnemonic_flag)
2321 {
2322 intel_mnemonic = mnemonic_flag;
2323 }
2324
2325 static void
2326 set_allow_index_reg (int flag)
2327 {
2328 allow_index_reg = flag;
2329 }
2330
2331 static void
2332 set_check (int what)
2333 {
2334 enum check_kind *kind;
2335 const char *str;
2336
2337 if (what)
2338 {
2339 kind = &operand_check;
2340 str = "operand";
2341 }
2342 else
2343 {
2344 kind = &sse_check;
2345 str = "sse";
2346 }
2347
2348 SKIP_WHITESPACE ();
2349
2350 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2351 {
2352 char *string;
2353 int e = get_symbol_name (&string);
2354
2355 if (strcmp (string, "none") == 0)
2356 *kind = check_none;
2357 else if (strcmp (string, "warning") == 0)
2358 *kind = check_warning;
2359 else if (strcmp (string, "error") == 0)
2360 *kind = check_error;
2361 else
2362 as_bad (_("bad argument to %s_check directive."), str);
2363 (void) restore_line_pointer (e);
2364 }
2365 else
2366 as_bad (_("missing argument for %s_check directive"), str);
2367
2368 demand_empty_rest_of_line ();
2369 }
2370
2371 static void
2372 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2373 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2374 {
2375 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2376 static const char *arch;
2377
2378 /* Intel LIOM is only supported on ELF. */
2379 if (!IS_ELF)
2380 return;
2381
2382 if (!arch)
2383 {
2384 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2385 use default_arch. */
2386 arch = cpu_arch_name;
2387 if (!arch)
2388 arch = default_arch;
2389 }
2390
2391 /* If we are targeting Intel MCU, we must enable it. */
2392 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2393 || new_flag.bitfield.cpuiamcu)
2394 return;
2395
2396 /* If we are targeting Intel L1OM, we must enable it. */
2397 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2398 || new_flag.bitfield.cpul1om)
2399 return;
2400
2401 /* If we are targeting Intel K1OM, we must enable it. */
2402 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2403 || new_flag.bitfield.cpuk1om)
2404 return;
2405
2406 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2407 #endif
2408 }
2409
2410 static void
2411 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2412 {
2413 SKIP_WHITESPACE ();
2414
2415 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2416 {
2417 char *string;
2418 int e = get_symbol_name (&string);
2419 unsigned int j;
2420 i386_cpu_flags flags;
2421
2422 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2423 {
2424 if (strcmp (string, cpu_arch[j].name) == 0)
2425 {
2426 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2427
2428 if (*string != '.')
2429 {
2430 cpu_arch_name = cpu_arch[j].name;
2431 cpu_sub_arch_name = NULL;
2432 cpu_arch_flags = cpu_arch[j].flags;
2433 if (flag_code == CODE_64BIT)
2434 {
2435 cpu_arch_flags.bitfield.cpu64 = 1;
2436 cpu_arch_flags.bitfield.cpuno64 = 0;
2437 }
2438 else
2439 {
2440 cpu_arch_flags.bitfield.cpu64 = 0;
2441 cpu_arch_flags.bitfield.cpuno64 = 1;
2442 }
2443 cpu_arch_isa = cpu_arch[j].type;
2444 cpu_arch_isa_flags = cpu_arch[j].flags;
2445 if (!cpu_arch_tune_set)
2446 {
2447 cpu_arch_tune = cpu_arch_isa;
2448 cpu_arch_tune_flags = cpu_arch_isa_flags;
2449 }
2450 break;
2451 }
2452
2453 flags = cpu_flags_or (cpu_arch_flags,
2454 cpu_arch[j].flags);
2455
2456 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2457 {
2458 if (cpu_sub_arch_name)
2459 {
2460 char *name = cpu_sub_arch_name;
2461 cpu_sub_arch_name = concat (name,
2462 cpu_arch[j].name,
2463 (const char *) NULL);
2464 free (name);
2465 }
2466 else
2467 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2468 cpu_arch_flags = flags;
2469 cpu_arch_isa_flags = flags;
2470 }
2471 (void) restore_line_pointer (e);
2472 demand_empty_rest_of_line ();
2473 return;
2474 }
2475 }
2476
2477 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2478 {
2479 /* Disable an ISA extension. */
2480 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2481 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2482 {
2483 flags = cpu_flags_and_not (cpu_arch_flags,
2484 cpu_noarch[j].flags);
2485 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2486 {
2487 if (cpu_sub_arch_name)
2488 {
2489 char *name = cpu_sub_arch_name;
2490 cpu_sub_arch_name = concat (name, string,
2491 (const char *) NULL);
2492 free (name);
2493 }
2494 else
2495 cpu_sub_arch_name = xstrdup (string);
2496 cpu_arch_flags = flags;
2497 cpu_arch_isa_flags = flags;
2498 }
2499 (void) restore_line_pointer (e);
2500 demand_empty_rest_of_line ();
2501 return;
2502 }
2503
2504 j = ARRAY_SIZE (cpu_arch);
2505 }
2506
2507 if (j >= ARRAY_SIZE (cpu_arch))
2508 as_bad (_("no such architecture: `%s'"), string);
2509
2510 *input_line_pointer = e;
2511 }
2512 else
2513 as_bad (_("missing cpu architecture"));
2514
2515 no_cond_jump_promotion = 0;
2516 if (*input_line_pointer == ','
2517 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2518 {
2519 char *string;
2520 char e;
2521
2522 ++input_line_pointer;
2523 e = get_symbol_name (&string);
2524
2525 if (strcmp (string, "nojumps") == 0)
2526 no_cond_jump_promotion = 1;
2527 else if (strcmp (string, "jumps") == 0)
2528 ;
2529 else
2530 as_bad (_("no such architecture modifier: `%s'"), string);
2531
2532 (void) restore_line_pointer (e);
2533 }
2534
2535 demand_empty_rest_of_line ();
2536 }
2537
2538 enum bfd_architecture
2539 i386_arch (void)
2540 {
2541 if (cpu_arch_isa == PROCESSOR_L1OM)
2542 {
2543 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2544 || flag_code != CODE_64BIT)
2545 as_fatal (_("Intel L1OM is 64bit ELF only"));
2546 return bfd_arch_l1om;
2547 }
2548 else if (cpu_arch_isa == PROCESSOR_K1OM)
2549 {
2550 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2551 || flag_code != CODE_64BIT)
2552 as_fatal (_("Intel K1OM is 64bit ELF only"));
2553 return bfd_arch_k1om;
2554 }
2555 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2556 {
2557 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2558 || flag_code == CODE_64BIT)
2559 as_fatal (_("Intel MCU is 32bit ELF only"));
2560 return bfd_arch_iamcu;
2561 }
2562 else
2563 return bfd_arch_i386;
2564 }
2565
2566 unsigned long
2567 i386_mach (void)
2568 {
2569 if (!strncmp (default_arch, "x86_64", 6))
2570 {
2571 if (cpu_arch_isa == PROCESSOR_L1OM)
2572 {
2573 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2574 || default_arch[6] != '\0')
2575 as_fatal (_("Intel L1OM is 64bit ELF only"));
2576 return bfd_mach_l1om;
2577 }
2578 else if (cpu_arch_isa == PROCESSOR_K1OM)
2579 {
2580 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2581 || default_arch[6] != '\0')
2582 as_fatal (_("Intel K1OM is 64bit ELF only"));
2583 return bfd_mach_k1om;
2584 }
2585 else if (default_arch[6] == '\0')
2586 return bfd_mach_x86_64;
2587 else
2588 return bfd_mach_x64_32;
2589 }
2590 else if (!strcmp (default_arch, "i386")
2591 || !strcmp (default_arch, "iamcu"))
2592 {
2593 if (cpu_arch_isa == PROCESSOR_IAMCU)
2594 {
2595 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2596 as_fatal (_("Intel MCU is 32bit ELF only"));
2597 return bfd_mach_i386_iamcu;
2598 }
2599 else
2600 return bfd_mach_i386_i386;
2601 }
2602 else
2603 as_fatal (_("unknown architecture"));
2604 }
2605 \f
2606 void
2607 md_begin (void)
2608 {
2609 const char *hash_err;
2610
2611 /* Support pseudo prefixes like {disp32}. */
2612 lex_type ['{'] = LEX_BEGIN_NAME;
2613
2614 /* Initialize op_hash hash table. */
2615 op_hash = hash_new ();
2616
2617 {
2618 const insn_template *optab;
2619 templates *core_optab;
2620
2621 /* Setup for loop. */
2622 optab = i386_optab;
2623 core_optab = XNEW (templates);
2624 core_optab->start = optab;
2625
2626 while (1)
2627 {
2628 ++optab;
2629 if (optab->name == NULL
2630 || strcmp (optab->name, (optab - 1)->name) != 0)
2631 {
2632 /* different name --> ship out current template list;
2633 add to hash table; & begin anew. */
2634 core_optab->end = optab;
2635 hash_err = hash_insert (op_hash,
2636 (optab - 1)->name,
2637 (void *) core_optab);
2638 if (hash_err)
2639 {
2640 as_fatal (_("can't hash %s: %s"),
2641 (optab - 1)->name,
2642 hash_err);
2643 }
2644 if (optab->name == NULL)
2645 break;
2646 core_optab = XNEW (templates);
2647 core_optab->start = optab;
2648 }
2649 }
2650 }
2651
2652 /* Initialize reg_hash hash table. */
2653 reg_hash = hash_new ();
2654 {
2655 const reg_entry *regtab;
2656 unsigned int regtab_size = i386_regtab_size;
2657
2658 for (regtab = i386_regtab; regtab_size--; regtab++)
2659 {
2660 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2661 if (hash_err)
2662 as_fatal (_("can't hash %s: %s"),
2663 regtab->reg_name,
2664 hash_err);
2665 }
2666 }
2667
2668 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2669 {
2670 int c;
2671 char *p;
2672
2673 for (c = 0; c < 256; c++)
2674 {
2675 if (ISDIGIT (c))
2676 {
2677 digit_chars[c] = c;
2678 mnemonic_chars[c] = c;
2679 register_chars[c] = c;
2680 operand_chars[c] = c;
2681 }
2682 else if (ISLOWER (c))
2683 {
2684 mnemonic_chars[c] = c;
2685 register_chars[c] = c;
2686 operand_chars[c] = c;
2687 }
2688 else if (ISUPPER (c))
2689 {
2690 mnemonic_chars[c] = TOLOWER (c);
2691 register_chars[c] = mnemonic_chars[c];
2692 operand_chars[c] = c;
2693 }
2694 else if (c == '{' || c == '}')
2695 {
2696 mnemonic_chars[c] = c;
2697 operand_chars[c] = c;
2698 }
2699
2700 if (ISALPHA (c) || ISDIGIT (c))
2701 identifier_chars[c] = c;
2702 else if (c >= 128)
2703 {
2704 identifier_chars[c] = c;
2705 operand_chars[c] = c;
2706 }
2707 }
2708
2709 #ifdef LEX_AT
2710 identifier_chars['@'] = '@';
2711 #endif
2712 #ifdef LEX_QM
2713 identifier_chars['?'] = '?';
2714 operand_chars['?'] = '?';
2715 #endif
2716 digit_chars['-'] = '-';
2717 mnemonic_chars['_'] = '_';
2718 mnemonic_chars['-'] = '-';
2719 mnemonic_chars['.'] = '.';
2720 identifier_chars['_'] = '_';
2721 identifier_chars['.'] = '.';
2722
2723 for (p = operand_special_chars; *p != '\0'; p++)
2724 operand_chars[(unsigned char) *p] = *p;
2725 }
2726
2727 if (flag_code == CODE_64BIT)
2728 {
2729 #if defined (OBJ_COFF) && defined (TE_PE)
2730 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2731 ? 32 : 16);
2732 #else
2733 x86_dwarf2_return_column = 16;
2734 #endif
2735 x86_cie_data_alignment = -8;
2736 }
2737 else
2738 {
2739 x86_dwarf2_return_column = 8;
2740 x86_cie_data_alignment = -4;
2741 }
2742 }
2743
2744 void
2745 i386_print_statistics (FILE *file)
2746 {
2747 hash_print_statistics (file, "i386 opcode", op_hash);
2748 hash_print_statistics (file, "i386 register", reg_hash);
2749 }
2750 \f
2751 #ifdef DEBUG386
2752
2753 /* Debugging routines for md_assemble. */
2754 static void pte (insn_template *);
2755 static void pt (i386_operand_type);
2756 static void pe (expressionS *);
2757 static void ps (symbolS *);
2758
2759 static void
2760 pi (char *line, i386_insn *x)
2761 {
2762 unsigned int j;
2763
2764 fprintf (stdout, "%s: template ", line);
2765 pte (&x->tm);
2766 fprintf (stdout, " address: base %s index %s scale %x\n",
2767 x->base_reg ? x->base_reg->reg_name : "none",
2768 x->index_reg ? x->index_reg->reg_name : "none",
2769 x->log2_scale_factor);
2770 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2771 x->rm.mode, x->rm.reg, x->rm.regmem);
2772 fprintf (stdout, " sib: base %x index %x scale %x\n",
2773 x->sib.base, x->sib.index, x->sib.scale);
2774 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2775 (x->rex & REX_W) != 0,
2776 (x->rex & REX_R) != 0,
2777 (x->rex & REX_X) != 0,
2778 (x->rex & REX_B) != 0);
2779 for (j = 0; j < x->operands; j++)
2780 {
2781 fprintf (stdout, " #%d: ", j + 1);
2782 pt (x->types[j]);
2783 fprintf (stdout, "\n");
2784 if (x->types[j].bitfield.reg8
2785 || x->types[j].bitfield.reg16
2786 || x->types[j].bitfield.reg32
2787 || x->types[j].bitfield.reg64
2788 || x->types[j].bitfield.regmmx
2789 || x->types[j].bitfield.regxmm
2790 || x->types[j].bitfield.regymm
2791 || x->types[j].bitfield.regzmm
2792 || x->types[j].bitfield.sreg2
2793 || x->types[j].bitfield.sreg3
2794 || x->types[j].bitfield.control
2795 || x->types[j].bitfield.debug
2796 || x->types[j].bitfield.test)
2797 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2798 if (operand_type_check (x->types[j], imm))
2799 pe (x->op[j].imms);
2800 if (operand_type_check (x->types[j], disp))
2801 pe (x->op[j].disps);
2802 }
2803 }
2804
2805 static void
2806 pte (insn_template *t)
2807 {
2808 unsigned int j;
2809 fprintf (stdout, " %d operands ", t->operands);
2810 fprintf (stdout, "opcode %x ", t->base_opcode);
2811 if (t->extension_opcode != None)
2812 fprintf (stdout, "ext %x ", t->extension_opcode);
2813 if (t->opcode_modifier.d)
2814 fprintf (stdout, "D");
2815 if (t->opcode_modifier.w)
2816 fprintf (stdout, "W");
2817 fprintf (stdout, "\n");
2818 for (j = 0; j < t->operands; j++)
2819 {
2820 fprintf (stdout, " #%d type ", j + 1);
2821 pt (t->operand_types[j]);
2822 fprintf (stdout, "\n");
2823 }
2824 }
2825
2826 static void
2827 pe (expressionS *e)
2828 {
2829 fprintf (stdout, " operation %d\n", e->X_op);
2830 fprintf (stdout, " add_number %ld (%lx)\n",
2831 (long) e->X_add_number, (long) e->X_add_number);
2832 if (e->X_add_symbol)
2833 {
2834 fprintf (stdout, " add_symbol ");
2835 ps (e->X_add_symbol);
2836 fprintf (stdout, "\n");
2837 }
2838 if (e->X_op_symbol)
2839 {
2840 fprintf (stdout, " op_symbol ");
2841 ps (e->X_op_symbol);
2842 fprintf (stdout, "\n");
2843 }
2844 }
2845
2846 static void
2847 ps (symbolS *s)
2848 {
2849 fprintf (stdout, "%s type %s%s",
2850 S_GET_NAME (s),
2851 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2852 segment_name (S_GET_SEGMENT (s)));
2853 }
2854
2855 static struct type_name
2856 {
2857 i386_operand_type mask;
2858 const char *name;
2859 }
2860 const type_names[] =
2861 {
2862 { OPERAND_TYPE_REG8, "r8" },
2863 { OPERAND_TYPE_REG16, "r16" },
2864 { OPERAND_TYPE_REG32, "r32" },
2865 { OPERAND_TYPE_REG64, "r64" },
2866 { OPERAND_TYPE_IMM8, "i8" },
2867 { OPERAND_TYPE_IMM8, "i8s" },
2868 { OPERAND_TYPE_IMM16, "i16" },
2869 { OPERAND_TYPE_IMM32, "i32" },
2870 { OPERAND_TYPE_IMM32S, "i32s" },
2871 { OPERAND_TYPE_IMM64, "i64" },
2872 { OPERAND_TYPE_IMM1, "i1" },
2873 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2874 { OPERAND_TYPE_DISP8, "d8" },
2875 { OPERAND_TYPE_DISP16, "d16" },
2876 { OPERAND_TYPE_DISP32, "d32" },
2877 { OPERAND_TYPE_DISP32S, "d32s" },
2878 { OPERAND_TYPE_DISP64, "d64" },
2879 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2880 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2881 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2882 { OPERAND_TYPE_CONTROL, "control reg" },
2883 { OPERAND_TYPE_TEST, "test reg" },
2884 { OPERAND_TYPE_DEBUG, "debug reg" },
2885 { OPERAND_TYPE_FLOATREG, "FReg" },
2886 { OPERAND_TYPE_FLOATACC, "FAcc" },
2887 { OPERAND_TYPE_SREG2, "SReg2" },
2888 { OPERAND_TYPE_SREG3, "SReg3" },
2889 { OPERAND_TYPE_ACC, "Acc" },
2890 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2891 { OPERAND_TYPE_REGMMX, "rMMX" },
2892 { OPERAND_TYPE_REGXMM, "rXMM" },
2893 { OPERAND_TYPE_REGYMM, "rYMM" },
2894 { OPERAND_TYPE_REGZMM, "rZMM" },
2895 { OPERAND_TYPE_REGMASK, "Mask reg" },
2896 { OPERAND_TYPE_ESSEG, "es" },
2897 };
2898
2899 static void
2900 pt (i386_operand_type t)
2901 {
2902 unsigned int j;
2903 i386_operand_type a;
2904
2905 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2906 {
2907 a = operand_type_and (t, type_names[j].mask);
2908 if (!operand_type_all_zero (&a))
2909 fprintf (stdout, "%s, ", type_names[j].name);
2910 }
2911 fflush (stdout);
2912 }
2913
2914 #endif /* DEBUG386 */
2915 \f
2916 static bfd_reloc_code_real_type
2917 reloc (unsigned int size,
2918 int pcrel,
2919 int sign,
2920 bfd_reloc_code_real_type other)
2921 {
2922 if (other != NO_RELOC)
2923 {
2924 reloc_howto_type *rel;
2925
2926 if (size == 8)
2927 switch (other)
2928 {
2929 case BFD_RELOC_X86_64_GOT32:
2930 return BFD_RELOC_X86_64_GOT64;
2931 break;
2932 case BFD_RELOC_X86_64_GOTPLT64:
2933 return BFD_RELOC_X86_64_GOTPLT64;
2934 break;
2935 case BFD_RELOC_X86_64_PLTOFF64:
2936 return BFD_RELOC_X86_64_PLTOFF64;
2937 break;
2938 case BFD_RELOC_X86_64_GOTPC32:
2939 other = BFD_RELOC_X86_64_GOTPC64;
2940 break;
2941 case BFD_RELOC_X86_64_GOTPCREL:
2942 other = BFD_RELOC_X86_64_GOTPCREL64;
2943 break;
2944 case BFD_RELOC_X86_64_TPOFF32:
2945 other = BFD_RELOC_X86_64_TPOFF64;
2946 break;
2947 case BFD_RELOC_X86_64_DTPOFF32:
2948 other = BFD_RELOC_X86_64_DTPOFF64;
2949 break;
2950 default:
2951 break;
2952 }
2953
2954 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2955 if (other == BFD_RELOC_SIZE32)
2956 {
2957 if (size == 8)
2958 other = BFD_RELOC_SIZE64;
2959 if (pcrel)
2960 {
2961 as_bad (_("there are no pc-relative size relocations"));
2962 return NO_RELOC;
2963 }
2964 }
2965 #endif
2966
2967 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2968 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2969 sign = -1;
2970
2971 rel = bfd_reloc_type_lookup (stdoutput, other);
2972 if (!rel)
2973 as_bad (_("unknown relocation (%u)"), other);
2974 else if (size != bfd_get_reloc_size (rel))
2975 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2976 bfd_get_reloc_size (rel),
2977 size);
2978 else if (pcrel && !rel->pc_relative)
2979 as_bad (_("non-pc-relative relocation for pc-relative field"));
2980 else if ((rel->complain_on_overflow == complain_overflow_signed
2981 && !sign)
2982 || (rel->complain_on_overflow == complain_overflow_unsigned
2983 && sign > 0))
2984 as_bad (_("relocated field and relocation type differ in signedness"));
2985 else
2986 return other;
2987 return NO_RELOC;
2988 }
2989
2990 if (pcrel)
2991 {
2992 if (!sign)
2993 as_bad (_("there are no unsigned pc-relative relocations"));
2994 switch (size)
2995 {
2996 case 1: return BFD_RELOC_8_PCREL;
2997 case 2: return BFD_RELOC_16_PCREL;
2998 case 4: return BFD_RELOC_32_PCREL;
2999 case 8: return BFD_RELOC_64_PCREL;
3000 }
3001 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3002 }
3003 else
3004 {
3005 if (sign > 0)
3006 switch (size)
3007 {
3008 case 4: return BFD_RELOC_X86_64_32S;
3009 }
3010 else
3011 switch (size)
3012 {
3013 case 1: return BFD_RELOC_8;
3014 case 2: return BFD_RELOC_16;
3015 case 4: return BFD_RELOC_32;
3016 case 8: return BFD_RELOC_64;
3017 }
3018 as_bad (_("cannot do %s %u byte relocation"),
3019 sign > 0 ? "signed" : "unsigned", size);
3020 }
3021
3022 return NO_RELOC;
3023 }
3024
3025 /* Here we decide which fixups can be adjusted to make them relative to
3026 the beginning of the section instead of the symbol. Basically we need
3027 to make sure that the dynamic relocations are done correctly, so in
3028 some cases we force the original symbol to be used. */
3029
3030 int
3031 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3032 {
3033 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3034 if (!IS_ELF)
3035 return 1;
3036
3037 /* Don't adjust pc-relative references to merge sections in 64-bit
3038 mode. */
3039 if (use_rela_relocations
3040 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3041 && fixP->fx_pcrel)
3042 return 0;
3043
3044 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3045 and changed later by validate_fix. */
3046 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3047 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3048 return 0;
3049
3050 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3051 for size relocations. */
3052 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3053 || fixP->fx_r_type == BFD_RELOC_SIZE64
3054 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3055 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3056 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3057 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3058 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3059 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3060 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3061 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3062 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3063 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3064 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3065 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3066 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3067 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3068 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3069 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3070 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3071 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3072 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3073 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3074 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3075 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3076 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3077 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3078 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3079 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3080 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3081 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3082 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3083 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3084 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3085 return 0;
3086 #endif
3087 return 1;
3088 }
3089
3090 static int
3091 intel_float_operand (const char *mnemonic)
3092 {
3093 /* Note that the value returned is meaningful only for opcodes with (memory)
3094 operands, hence the code here is free to improperly handle opcodes that
3095 have no operands (for better performance and smaller code). */
3096
3097 if (mnemonic[0] != 'f')
3098 return 0; /* non-math */
3099
3100 switch (mnemonic[1])
3101 {
3102 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3103 the fs segment override prefix not currently handled because no
3104 call path can make opcodes without operands get here */
3105 case 'i':
3106 return 2 /* integer op */;
3107 case 'l':
3108 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3109 return 3; /* fldcw/fldenv */
3110 break;
3111 case 'n':
3112 if (mnemonic[2] != 'o' /* fnop */)
3113 return 3; /* non-waiting control op */
3114 break;
3115 case 'r':
3116 if (mnemonic[2] == 's')
3117 return 3; /* frstor/frstpm */
3118 break;
3119 case 's':
3120 if (mnemonic[2] == 'a')
3121 return 3; /* fsave */
3122 if (mnemonic[2] == 't')
3123 {
3124 switch (mnemonic[3])
3125 {
3126 case 'c': /* fstcw */
3127 case 'd': /* fstdw */
3128 case 'e': /* fstenv */
3129 case 's': /* fsts[gw] */
3130 return 3;
3131 }
3132 }
3133 break;
3134 case 'x':
3135 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3136 return 0; /* fxsave/fxrstor are not really math ops */
3137 break;
3138 }
3139
3140 return 1;
3141 }
3142
3143 /* Build the VEX prefix. */
3144
3145 static void
3146 build_vex_prefix (const insn_template *t)
3147 {
3148 unsigned int register_specifier;
3149 unsigned int implied_prefix;
3150 unsigned int vector_length;
3151
3152 /* Check register specifier. */
3153 if (i.vex.register_specifier)
3154 {
3155 register_specifier =
3156 ~register_number (i.vex.register_specifier) & 0xf;
3157 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3158 }
3159 else
3160 register_specifier = 0xf;
3161
3162 /* Use 2-byte VEX prefix by swapping destination and source
3163 operand. */
3164 if (i.vec_encoding != vex_encoding_vex3
3165 && i.dir_encoding == dir_encoding_default
3166 && i.operands == i.reg_operands
3167 && i.tm.opcode_modifier.vexopcode == VEX0F
3168 && i.tm.opcode_modifier.load
3169 && i.rex == REX_B)
3170 {
3171 unsigned int xchg = i.operands - 1;
3172 union i386_op temp_op;
3173 i386_operand_type temp_type;
3174
3175 temp_type = i.types[xchg];
3176 i.types[xchg] = i.types[0];
3177 i.types[0] = temp_type;
3178 temp_op = i.op[xchg];
3179 i.op[xchg] = i.op[0];
3180 i.op[0] = temp_op;
3181
3182 gas_assert (i.rm.mode == 3);
3183
3184 i.rex = REX_R;
3185 xchg = i.rm.regmem;
3186 i.rm.regmem = i.rm.reg;
3187 i.rm.reg = xchg;
3188
3189 /* Use the next insn. */
3190 i.tm = t[1];
3191 }
3192
3193 if (i.tm.opcode_modifier.vex == VEXScalar)
3194 vector_length = avxscalar;
3195 else
3196 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3197
3198 switch ((i.tm.base_opcode >> 8) & 0xff)
3199 {
3200 case 0:
3201 implied_prefix = 0;
3202 break;
3203 case DATA_PREFIX_OPCODE:
3204 implied_prefix = 1;
3205 break;
3206 case REPE_PREFIX_OPCODE:
3207 implied_prefix = 2;
3208 break;
3209 case REPNE_PREFIX_OPCODE:
3210 implied_prefix = 3;
3211 break;
3212 default:
3213 abort ();
3214 }
3215
3216 /* Use 2-byte VEX prefix if possible. */
3217 if (i.vec_encoding != vex_encoding_vex3
3218 && i.tm.opcode_modifier.vexopcode == VEX0F
3219 && i.tm.opcode_modifier.vexw != VEXW1
3220 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3221 {
3222 /* 2-byte VEX prefix. */
3223 unsigned int r;
3224
3225 i.vex.length = 2;
3226 i.vex.bytes[0] = 0xc5;
3227
3228 /* Check the REX.R bit. */
3229 r = (i.rex & REX_R) ? 0 : 1;
3230 i.vex.bytes[1] = (r << 7
3231 | register_specifier << 3
3232 | vector_length << 2
3233 | implied_prefix);
3234 }
3235 else
3236 {
3237 /* 3-byte VEX prefix. */
3238 unsigned int m, w;
3239
3240 i.vex.length = 3;
3241
3242 switch (i.tm.opcode_modifier.vexopcode)
3243 {
3244 case VEX0F:
3245 m = 0x1;
3246 i.vex.bytes[0] = 0xc4;
3247 break;
3248 case VEX0F38:
3249 m = 0x2;
3250 i.vex.bytes[0] = 0xc4;
3251 break;
3252 case VEX0F3A:
3253 m = 0x3;
3254 i.vex.bytes[0] = 0xc4;
3255 break;
3256 case XOP08:
3257 m = 0x8;
3258 i.vex.bytes[0] = 0x8f;
3259 break;
3260 case XOP09:
3261 m = 0x9;
3262 i.vex.bytes[0] = 0x8f;
3263 break;
3264 case XOP0A:
3265 m = 0xa;
3266 i.vex.bytes[0] = 0x8f;
3267 break;
3268 default:
3269 abort ();
3270 }
3271
3272 /* The high 3 bits of the second VEX byte are 1's compliment
3273 of RXB bits from REX. */
3274 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3275
3276 /* Check the REX.W bit. */
3277 w = (i.rex & REX_W) ? 1 : 0;
3278 if (i.tm.opcode_modifier.vexw == VEXW1)
3279 w = 1;
3280
3281 i.vex.bytes[2] = (w << 7
3282 | register_specifier << 3
3283 | vector_length << 2
3284 | implied_prefix);
3285 }
3286 }
3287
3288 /* Build the EVEX prefix. */
3289
3290 static void
3291 build_evex_prefix (void)
3292 {
3293 unsigned int register_specifier;
3294 unsigned int implied_prefix;
3295 unsigned int m, w;
3296 rex_byte vrex_used = 0;
3297
3298 /* Check register specifier. */
3299 if (i.vex.register_specifier)
3300 {
3301 gas_assert ((i.vrex & REX_X) == 0);
3302
3303 register_specifier = i.vex.register_specifier->reg_num;
3304 if ((i.vex.register_specifier->reg_flags & RegRex))
3305 register_specifier += 8;
3306 /* The upper 16 registers are encoded in the fourth byte of the
3307 EVEX prefix. */
3308 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3309 i.vex.bytes[3] = 0x8;
3310 register_specifier = ~register_specifier & 0xf;
3311 }
3312 else
3313 {
3314 register_specifier = 0xf;
3315
3316 /* Encode upper 16 vector index register in the fourth byte of
3317 the EVEX prefix. */
3318 if (!(i.vrex & REX_X))
3319 i.vex.bytes[3] = 0x8;
3320 else
3321 vrex_used |= REX_X;
3322 }
3323
3324 switch ((i.tm.base_opcode >> 8) & 0xff)
3325 {
3326 case 0:
3327 implied_prefix = 0;
3328 break;
3329 case DATA_PREFIX_OPCODE:
3330 implied_prefix = 1;
3331 break;
3332 case REPE_PREFIX_OPCODE:
3333 implied_prefix = 2;
3334 break;
3335 case REPNE_PREFIX_OPCODE:
3336 implied_prefix = 3;
3337 break;
3338 default:
3339 abort ();
3340 }
3341
3342 /* 4 byte EVEX prefix. */
3343 i.vex.length = 4;
3344 i.vex.bytes[0] = 0x62;
3345
3346 /* mmmm bits. */
3347 switch (i.tm.opcode_modifier.vexopcode)
3348 {
3349 case VEX0F:
3350 m = 1;
3351 break;
3352 case VEX0F38:
3353 m = 2;
3354 break;
3355 case VEX0F3A:
3356 m = 3;
3357 break;
3358 default:
3359 abort ();
3360 break;
3361 }
3362
3363 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3364 bits from REX. */
3365 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3366
3367 /* The fifth bit of the second EVEX byte is 1's compliment of the
3368 REX_R bit in VREX. */
3369 if (!(i.vrex & REX_R))
3370 i.vex.bytes[1] |= 0x10;
3371 else
3372 vrex_used |= REX_R;
3373
3374 if ((i.reg_operands + i.imm_operands) == i.operands)
3375 {
3376 /* When all operands are registers, the REX_X bit in REX is not
3377 used. We reuse it to encode the upper 16 registers, which is
3378 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3379 as 1's compliment. */
3380 if ((i.vrex & REX_B))
3381 {
3382 vrex_used |= REX_B;
3383 i.vex.bytes[1] &= ~0x40;
3384 }
3385 }
3386
3387 /* EVEX instructions shouldn't need the REX prefix. */
3388 i.vrex &= ~vrex_used;
3389 gas_assert (i.vrex == 0);
3390
3391 /* Check the REX.W bit. */
3392 w = (i.rex & REX_W) ? 1 : 0;
3393 if (i.tm.opcode_modifier.vexw)
3394 {
3395 if (i.tm.opcode_modifier.vexw == VEXW1)
3396 w = 1;
3397 }
3398 /* If w is not set it means we are dealing with WIG instruction. */
3399 else if (!w)
3400 {
3401 if (evexwig == evexw1)
3402 w = 1;
3403 }
3404
3405 /* Encode the U bit. */
3406 implied_prefix |= 0x4;
3407
3408 /* The third byte of the EVEX prefix. */
3409 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3410
3411 /* The fourth byte of the EVEX prefix. */
3412 /* The zeroing-masking bit. */
3413 if (i.mask && i.mask->zeroing)
3414 i.vex.bytes[3] |= 0x80;
3415
3416 /* Don't always set the broadcast bit if there is no RC. */
3417 if (!i.rounding)
3418 {
3419 /* Encode the vector length. */
3420 unsigned int vec_length;
3421
3422 switch (i.tm.opcode_modifier.evex)
3423 {
3424 case EVEXLIG: /* LL' is ignored */
3425 vec_length = evexlig << 5;
3426 break;
3427 case EVEX128:
3428 vec_length = 0 << 5;
3429 break;
3430 case EVEX256:
3431 vec_length = 1 << 5;
3432 break;
3433 case EVEX512:
3434 vec_length = 2 << 5;
3435 break;
3436 default:
3437 abort ();
3438 break;
3439 }
3440 i.vex.bytes[3] |= vec_length;
3441 /* Encode the broadcast bit. */
3442 if (i.broadcast)
3443 i.vex.bytes[3] |= 0x10;
3444 }
3445 else
3446 {
3447 if (i.rounding->type != saeonly)
3448 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3449 else
3450 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3451 }
3452
3453 if (i.mask && i.mask->mask)
3454 i.vex.bytes[3] |= i.mask->mask->reg_num;
3455 }
3456
3457 static void
3458 process_immext (void)
3459 {
3460 expressionS *exp;
3461
3462 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3463 && i.operands > 0)
3464 {
3465 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3466 with an opcode suffix which is coded in the same place as an
3467 8-bit immediate field would be.
3468 Here we check those operands and remove them afterwards. */
3469 unsigned int x;
3470
3471 for (x = 0; x < i.operands; x++)
3472 if (register_number (i.op[x].regs) != x)
3473 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3474 register_prefix, i.op[x].regs->reg_name, x + 1,
3475 i.tm.name);
3476
3477 i.operands = 0;
3478 }
3479
3480 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3481 {
3482 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3483 suffix which is coded in the same place as an 8-bit immediate
3484 field would be.
3485 Here we check those operands and remove them afterwards. */
3486 unsigned int x;
3487
3488 if (i.operands != 3)
3489 abort();
3490
3491 for (x = 0; x < 2; x++)
3492 if (register_number (i.op[x].regs) != x)
3493 goto bad_register_operand;
3494
3495 /* Check for third operand for mwaitx/monitorx insn. */
3496 if (register_number (i.op[x].regs)
3497 != (x + (i.tm.extension_opcode == 0xfb)))
3498 {
3499 bad_register_operand:
3500 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3501 register_prefix, i.op[x].regs->reg_name, x+1,
3502 i.tm.name);
3503 }
3504
3505 i.operands = 0;
3506 }
3507
3508 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3509 which is coded in the same place as an 8-bit immediate field
3510 would be. Here we fake an 8-bit immediate operand from the
3511 opcode suffix stored in tm.extension_opcode.
3512
3513 AVX instructions also use this encoding, for some of
3514 3 argument instructions. */
3515
3516 gas_assert (i.imm_operands <= 1
3517 && (i.operands <= 2
3518 || ((i.tm.opcode_modifier.vex
3519 || i.tm.opcode_modifier.evex)
3520 && i.operands <= 4)));
3521
3522 exp = &im_expressions[i.imm_operands++];
3523 i.op[i.operands].imms = exp;
3524 i.types[i.operands] = imm8;
3525 i.operands++;
3526 exp->X_op = O_constant;
3527 exp->X_add_number = i.tm.extension_opcode;
3528 i.tm.extension_opcode = None;
3529 }
3530
3531
3532 static int
3533 check_hle (void)
3534 {
3535 switch (i.tm.opcode_modifier.hleprefixok)
3536 {
3537 default:
3538 abort ();
3539 case HLEPrefixNone:
3540 as_bad (_("invalid instruction `%s' after `%s'"),
3541 i.tm.name, i.hle_prefix);
3542 return 0;
3543 case HLEPrefixLock:
3544 if (i.prefix[LOCK_PREFIX])
3545 return 1;
3546 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3547 return 0;
3548 case HLEPrefixAny:
3549 return 1;
3550 case HLEPrefixRelease:
3551 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3552 {
3553 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3554 i.tm.name);
3555 return 0;
3556 }
3557 if (i.mem_operands == 0
3558 || !operand_type_check (i.types[i.operands - 1], anymem))
3559 {
3560 as_bad (_("memory destination needed for instruction `%s'"
3561 " after `xrelease'"), i.tm.name);
3562 return 0;
3563 }
3564 return 1;
3565 }
3566 }
3567
3568 /* This is the guts of the machine-dependent assembler. LINE points to a
3569 machine dependent instruction. This function is supposed to emit
3570 the frags/bytes it assembles to. */
3571
3572 void
3573 md_assemble (char *line)
3574 {
3575 unsigned int j;
3576 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3577 const insn_template *t;
3578
3579 /* Initialize globals. */
3580 memset (&i, '\0', sizeof (i));
3581 for (j = 0; j < MAX_OPERANDS; j++)
3582 i.reloc[j] = NO_RELOC;
3583 memset (disp_expressions, '\0', sizeof (disp_expressions));
3584 memset (im_expressions, '\0', sizeof (im_expressions));
3585 save_stack_p = save_stack;
3586
3587 /* First parse an instruction mnemonic & call i386_operand for the operands.
3588 We assume that the scrubber has arranged it so that line[0] is the valid
3589 start of a (possibly prefixed) mnemonic. */
3590
3591 line = parse_insn (line, mnemonic);
3592 if (line == NULL)
3593 return;
3594 mnem_suffix = i.suffix;
3595
3596 line = parse_operands (line, mnemonic);
3597 this_operand = -1;
3598 xfree (i.memop1_string);
3599 i.memop1_string = NULL;
3600 if (line == NULL)
3601 return;
3602
3603 /* Now we've parsed the mnemonic into a set of templates, and have the
3604 operands at hand. */
3605
3606 /* All intel opcodes have reversed operands except for "bound" and
3607 "enter". We also don't reverse intersegment "jmp" and "call"
3608 instructions with 2 immediate operands so that the immediate segment
3609 precedes the offset, as it does when in AT&T mode. */
3610 if (intel_syntax
3611 && i.operands > 1
3612 && (strcmp (mnemonic, "bound") != 0)
3613 && (strcmp (mnemonic, "invlpga") != 0)
3614 && !(operand_type_check (i.types[0], imm)
3615 && operand_type_check (i.types[1], imm)))
3616 swap_operands ();
3617
3618 /* The order of the immediates should be reversed
3619 for 2 immediates extrq and insertq instructions */
3620 if (i.imm_operands == 2
3621 && (strcmp (mnemonic, "extrq") == 0
3622 || strcmp (mnemonic, "insertq") == 0))
3623 swap_2_operands (0, 1);
3624
3625 if (i.imm_operands)
3626 optimize_imm ();
3627
3628 /* Don't optimize displacement for movabs since it only takes 64bit
3629 displacement. */
3630 if (i.disp_operands
3631 && i.disp_encoding != disp_encoding_32bit
3632 && (flag_code != CODE_64BIT
3633 || strcmp (mnemonic, "movabs") != 0))
3634 optimize_disp ();
3635
3636 /* Next, we find a template that matches the given insn,
3637 making sure the overlap of the given operands types is consistent
3638 with the template operand types. */
3639
3640 if (!(t = match_template (mnem_suffix)))
3641 return;
3642
3643 if (sse_check != check_none
3644 && !i.tm.opcode_modifier.noavx
3645 && (i.tm.cpu_flags.bitfield.cpusse
3646 || i.tm.cpu_flags.bitfield.cpusse2
3647 || i.tm.cpu_flags.bitfield.cpusse3
3648 || i.tm.cpu_flags.bitfield.cpussse3
3649 || i.tm.cpu_flags.bitfield.cpusse4_1
3650 || i.tm.cpu_flags.bitfield.cpusse4_2))
3651 {
3652 (sse_check == check_warning
3653 ? as_warn
3654 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3655 }
3656
3657 /* Zap movzx and movsx suffix. The suffix has been set from
3658 "word ptr" or "byte ptr" on the source operand in Intel syntax
3659 or extracted from mnemonic in AT&T syntax. But we'll use
3660 the destination register to choose the suffix for encoding. */
3661 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3662 {
3663 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3664 there is no suffix, the default will be byte extension. */
3665 if (i.reg_operands != 2
3666 && !i.suffix
3667 && intel_syntax)
3668 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3669
3670 i.suffix = 0;
3671 }
3672
3673 if (i.tm.opcode_modifier.fwait)
3674 if (!add_prefix (FWAIT_OPCODE))
3675 return;
3676
3677 /* Check if REP prefix is OK. */
3678 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3679 {
3680 as_bad (_("invalid instruction `%s' after `%s'"),
3681 i.tm.name, i.rep_prefix);
3682 return;
3683 }
3684
3685 /* Check for lock without a lockable instruction. Destination operand
3686 must be memory unless it is xchg (0x86). */
3687 if (i.prefix[LOCK_PREFIX]
3688 && (!i.tm.opcode_modifier.islockable
3689 || i.mem_operands == 0
3690 || (i.tm.base_opcode != 0x86
3691 && !operand_type_check (i.types[i.operands - 1], anymem))))
3692 {
3693 as_bad (_("expecting lockable instruction after `lock'"));
3694 return;
3695 }
3696
3697 /* Check if HLE prefix is OK. */
3698 if (i.hle_prefix && !check_hle ())
3699 return;
3700
3701 /* Check BND prefix. */
3702 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3703 as_bad (_("expecting valid branch instruction after `bnd'"));
3704
3705 if (i.tm.cpu_flags.bitfield.cpumpx)
3706 {
3707 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3708 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3709 else if (flag_code != CODE_16BIT
3710 ? i.prefix[ADDR_PREFIX]
3711 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3712 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3713 }
3714
3715 /* Insert BND prefix. */
3716 if (add_bnd_prefix
3717 && i.tm.opcode_modifier.bndprefixok
3718 && !i.prefix[BND_PREFIX])
3719 add_prefix (BND_PREFIX_OPCODE);
3720
3721 /* Check string instruction segment overrides. */
3722 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3723 {
3724 if (!check_string ())
3725 return;
3726 i.disp_operands = 0;
3727 }
3728
3729 if (!process_suffix ())
3730 return;
3731
3732 /* Update operand types. */
3733 for (j = 0; j < i.operands; j++)
3734 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3735
3736 /* Make still unresolved immediate matches conform to size of immediate
3737 given in i.suffix. */
3738 if (!finalize_imm ())
3739 return;
3740
3741 if (i.types[0].bitfield.imm1)
3742 i.imm_operands = 0; /* kludge for shift insns. */
3743
3744 /* We only need to check those implicit registers for instructions
3745 with 3 operands or less. */
3746 if (i.operands <= 3)
3747 for (j = 0; j < i.operands; j++)
3748 if (i.types[j].bitfield.inoutportreg
3749 || i.types[j].bitfield.shiftcount
3750 || i.types[j].bitfield.acc
3751 || i.types[j].bitfield.floatacc)
3752 i.reg_operands--;
3753
3754 /* ImmExt should be processed after SSE2AVX. */
3755 if (!i.tm.opcode_modifier.sse2avx
3756 && i.tm.opcode_modifier.immext)
3757 process_immext ();
3758
3759 /* For insns with operands there are more diddles to do to the opcode. */
3760 if (i.operands)
3761 {
3762 if (!process_operands ())
3763 return;
3764 }
3765 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3766 {
3767 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3768 as_warn (_("translating to `%sp'"), i.tm.name);
3769 }
3770
3771 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3772 {
3773 if (flag_code == CODE_16BIT)
3774 {
3775 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3776 i.tm.name);
3777 return;
3778 }
3779
3780 if (i.tm.opcode_modifier.vex)
3781 build_vex_prefix (t);
3782 else
3783 build_evex_prefix ();
3784 }
3785
3786 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3787 instructions may define INT_OPCODE as well, so avoid this corner
3788 case for those instructions that use MODRM. */
3789 if (i.tm.base_opcode == INT_OPCODE
3790 && !i.tm.opcode_modifier.modrm
3791 && i.op[0].imms->X_add_number == 3)
3792 {
3793 i.tm.base_opcode = INT3_OPCODE;
3794 i.imm_operands = 0;
3795 }
3796
3797 if ((i.tm.opcode_modifier.jump
3798 || i.tm.opcode_modifier.jumpbyte
3799 || i.tm.opcode_modifier.jumpdword)
3800 && i.op[0].disps->X_op == O_constant)
3801 {
3802 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3803 the absolute address given by the constant. Since ix86 jumps and
3804 calls are pc relative, we need to generate a reloc. */
3805 i.op[0].disps->X_add_symbol = &abs_symbol;
3806 i.op[0].disps->X_op = O_symbol;
3807 }
3808
3809 if (i.tm.opcode_modifier.rex64)
3810 i.rex |= REX_W;
3811
3812 /* For 8 bit registers we need an empty rex prefix. Also if the
3813 instruction already has a prefix, we need to convert old
3814 registers to new ones. */
3815
3816 if ((i.types[0].bitfield.reg8
3817 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3818 || (i.types[1].bitfield.reg8
3819 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3820 || ((i.types[0].bitfield.reg8
3821 || i.types[1].bitfield.reg8)
3822 && i.rex != 0))
3823 {
3824 int x;
3825
3826 i.rex |= REX_OPCODE;
3827 for (x = 0; x < 2; x++)
3828 {
3829 /* Look for 8 bit operand that uses old registers. */
3830 if (i.types[x].bitfield.reg8
3831 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3832 {
3833 /* In case it is "hi" register, give up. */
3834 if (i.op[x].regs->reg_num > 3)
3835 as_bad (_("can't encode register '%s%s' in an "
3836 "instruction requiring REX prefix."),
3837 register_prefix, i.op[x].regs->reg_name);
3838
3839 /* Otherwise it is equivalent to the extended register.
3840 Since the encoding doesn't change this is merely
3841 cosmetic cleanup for debug output. */
3842
3843 i.op[x].regs = i.op[x].regs + 8;
3844 }
3845 }
3846 }
3847
3848 if (i.rex != 0)
3849 add_prefix (REX_OPCODE | i.rex);
3850
3851 /* We are ready to output the insn. */
3852 output_insn ();
3853 }
3854
3855 static char *
3856 parse_insn (char *line, char *mnemonic)
3857 {
3858 char *l = line;
3859 char *token_start = l;
3860 char *mnem_p;
3861 int supported;
3862 const insn_template *t;
3863 char *dot_p = NULL;
3864
3865 while (1)
3866 {
3867 mnem_p = mnemonic;
3868 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3869 {
3870 if (*mnem_p == '.')
3871 dot_p = mnem_p;
3872 mnem_p++;
3873 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3874 {
3875 as_bad (_("no such instruction: `%s'"), token_start);
3876 return NULL;
3877 }
3878 l++;
3879 }
3880 if (!is_space_char (*l)
3881 && *l != END_OF_INSN
3882 && (intel_syntax
3883 || (*l != PREFIX_SEPARATOR
3884 && *l != ',')))
3885 {
3886 as_bad (_("invalid character %s in mnemonic"),
3887 output_invalid (*l));
3888 return NULL;
3889 }
3890 if (token_start == l)
3891 {
3892 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3893 as_bad (_("expecting prefix; got nothing"));
3894 else
3895 as_bad (_("expecting mnemonic; got nothing"));
3896 return NULL;
3897 }
3898
3899 /* Look up instruction (or prefix) via hash table. */
3900 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3901
3902 if (*l != END_OF_INSN
3903 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3904 && current_templates
3905 && current_templates->start->opcode_modifier.isprefix)
3906 {
3907 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3908 {
3909 as_bad ((flag_code != CODE_64BIT
3910 ? _("`%s' is only supported in 64-bit mode")
3911 : _("`%s' is not supported in 64-bit mode")),
3912 current_templates->start->name);
3913 return NULL;
3914 }
3915 /* If we are in 16-bit mode, do not allow addr16 or data16.
3916 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3917 if ((current_templates->start->opcode_modifier.size16
3918 || current_templates->start->opcode_modifier.size32)
3919 && flag_code != CODE_64BIT
3920 && (current_templates->start->opcode_modifier.size32
3921 ^ (flag_code == CODE_16BIT)))
3922 {
3923 as_bad (_("redundant %s prefix"),
3924 current_templates->start->name);
3925 return NULL;
3926 }
3927 if (current_templates->start->opcode_length == 0)
3928 {
3929 /* Handle pseudo prefixes. */
3930 switch (current_templates->start->base_opcode)
3931 {
3932 case 0x0:
3933 /* {disp8} */
3934 i.disp_encoding = disp_encoding_8bit;
3935 break;
3936 case 0x1:
3937 /* {disp32} */
3938 i.disp_encoding = disp_encoding_32bit;
3939 break;
3940 case 0x2:
3941 /* {load} */
3942 i.dir_encoding = dir_encoding_load;
3943 break;
3944 case 0x3:
3945 /* {store} */
3946 i.dir_encoding = dir_encoding_store;
3947 break;
3948 case 0x4:
3949 /* {vex2} */
3950 i.vec_encoding = vex_encoding_vex2;
3951 break;
3952 case 0x5:
3953 /* {vex3} */
3954 i.vec_encoding = vex_encoding_vex3;
3955 break;
3956 case 0x6:
3957 /* {evex} */
3958 i.vec_encoding = vex_encoding_evex;
3959 break;
3960 default:
3961 abort ();
3962 }
3963 }
3964 else
3965 {
3966 /* Add prefix, checking for repeated prefixes. */
3967 switch (add_prefix (current_templates->start->base_opcode))
3968 {
3969 case PREFIX_EXIST:
3970 return NULL;
3971 case PREFIX_REP:
3972 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3973 i.hle_prefix = current_templates->start->name;
3974 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3975 i.bnd_prefix = current_templates->start->name;
3976 else
3977 i.rep_prefix = current_templates->start->name;
3978 break;
3979 default:
3980 break;
3981 }
3982 }
3983 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3984 token_start = ++l;
3985 }
3986 else
3987 break;
3988 }
3989
3990 if (!current_templates)
3991 {
3992 /* Check if we should swap operand or force 32bit displacement in
3993 encoding. */
3994 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3995 i.dir_encoding = dir_encoding_store;
3996 else if (mnem_p - 3 == dot_p
3997 && dot_p[1] == 'd'
3998 && dot_p[2] == '8')
3999 i.disp_encoding = disp_encoding_8bit;
4000 else if (mnem_p - 4 == dot_p
4001 && dot_p[1] == 'd'
4002 && dot_p[2] == '3'
4003 && dot_p[3] == '2')
4004 i.disp_encoding = disp_encoding_32bit;
4005 else
4006 goto check_suffix;
4007 mnem_p = dot_p;
4008 *dot_p = '\0';
4009 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4010 }
4011
4012 if (!current_templates)
4013 {
4014 check_suffix:
4015 /* See if we can get a match by trimming off a suffix. */
4016 switch (mnem_p[-1])
4017 {
4018 case WORD_MNEM_SUFFIX:
4019 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4020 i.suffix = SHORT_MNEM_SUFFIX;
4021 else
4022 /* Fall through. */
4023 case BYTE_MNEM_SUFFIX:
4024 case QWORD_MNEM_SUFFIX:
4025 i.suffix = mnem_p[-1];
4026 mnem_p[-1] = '\0';
4027 current_templates = (const templates *) hash_find (op_hash,
4028 mnemonic);
4029 break;
4030 case SHORT_MNEM_SUFFIX:
4031 case LONG_MNEM_SUFFIX:
4032 if (!intel_syntax)
4033 {
4034 i.suffix = mnem_p[-1];
4035 mnem_p[-1] = '\0';
4036 current_templates = (const templates *) hash_find (op_hash,
4037 mnemonic);
4038 }
4039 break;
4040
4041 /* Intel Syntax. */
4042 case 'd':
4043 if (intel_syntax)
4044 {
4045 if (intel_float_operand (mnemonic) == 1)
4046 i.suffix = SHORT_MNEM_SUFFIX;
4047 else
4048 i.suffix = LONG_MNEM_SUFFIX;
4049 mnem_p[-1] = '\0';
4050 current_templates = (const templates *) hash_find (op_hash,
4051 mnemonic);
4052 }
4053 break;
4054 }
4055 if (!current_templates)
4056 {
4057 as_bad (_("no such instruction: `%s'"), token_start);
4058 return NULL;
4059 }
4060 }
4061
4062 if (current_templates->start->opcode_modifier.jump
4063 || current_templates->start->opcode_modifier.jumpbyte)
4064 {
4065 /* Check for a branch hint. We allow ",pt" and ",pn" for
4066 predict taken and predict not taken respectively.
4067 I'm not sure that branch hints actually do anything on loop
4068 and jcxz insns (JumpByte) for current Pentium4 chips. They
4069 may work in the future and it doesn't hurt to accept them
4070 now. */
4071 if (l[0] == ',' && l[1] == 'p')
4072 {
4073 if (l[2] == 't')
4074 {
4075 if (!add_prefix (DS_PREFIX_OPCODE))
4076 return NULL;
4077 l += 3;
4078 }
4079 else if (l[2] == 'n')
4080 {
4081 if (!add_prefix (CS_PREFIX_OPCODE))
4082 return NULL;
4083 l += 3;
4084 }
4085 }
4086 }
4087 /* Any other comma loses. */
4088 if (*l == ',')
4089 {
4090 as_bad (_("invalid character %s in mnemonic"),
4091 output_invalid (*l));
4092 return NULL;
4093 }
4094
4095 /* Check if instruction is supported on specified architecture. */
4096 supported = 0;
4097 for (t = current_templates->start; t < current_templates->end; ++t)
4098 {
4099 supported |= cpu_flags_match (t);
4100 if (supported == CPU_FLAGS_PERFECT_MATCH)
4101 goto skip;
4102 }
4103
4104 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4105 {
4106 as_bad (flag_code == CODE_64BIT
4107 ? _("`%s' is not supported in 64-bit mode")
4108 : _("`%s' is only supported in 64-bit mode"),
4109 current_templates->start->name);
4110 return NULL;
4111 }
4112 if (supported != CPU_FLAGS_PERFECT_MATCH)
4113 {
4114 as_bad (_("`%s' is not supported on `%s%s'"),
4115 current_templates->start->name,
4116 cpu_arch_name ? cpu_arch_name : default_arch,
4117 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4118 return NULL;
4119 }
4120
4121 skip:
4122 if (!cpu_arch_flags.bitfield.cpui386
4123 && (flag_code != CODE_16BIT))
4124 {
4125 as_warn (_("use .code16 to ensure correct addressing mode"));
4126 }
4127
4128 return l;
4129 }
4130
4131 static char *
4132 parse_operands (char *l, const char *mnemonic)
4133 {
4134 char *token_start;
4135
4136 /* 1 if operand is pending after ','. */
4137 unsigned int expecting_operand = 0;
4138
4139 /* Non-zero if operand parens not balanced. */
4140 unsigned int paren_not_balanced;
4141
4142 while (*l != END_OF_INSN)
4143 {
4144 /* Skip optional white space before operand. */
4145 if (is_space_char (*l))
4146 ++l;
4147 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4148 {
4149 as_bad (_("invalid character %s before operand %d"),
4150 output_invalid (*l),
4151 i.operands + 1);
4152 return NULL;
4153 }
4154 token_start = l; /* After white space. */
4155 paren_not_balanced = 0;
4156 while (paren_not_balanced || *l != ',')
4157 {
4158 if (*l == END_OF_INSN)
4159 {
4160 if (paren_not_balanced)
4161 {
4162 if (!intel_syntax)
4163 as_bad (_("unbalanced parenthesis in operand %d."),
4164 i.operands + 1);
4165 else
4166 as_bad (_("unbalanced brackets in operand %d."),
4167 i.operands + 1);
4168 return NULL;
4169 }
4170 else
4171 break; /* we are done */
4172 }
4173 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4174 {
4175 as_bad (_("invalid character %s in operand %d"),
4176 output_invalid (*l),
4177 i.operands + 1);
4178 return NULL;
4179 }
4180 if (!intel_syntax)
4181 {
4182 if (*l == '(')
4183 ++paren_not_balanced;
4184 if (*l == ')')
4185 --paren_not_balanced;
4186 }
4187 else
4188 {
4189 if (*l == '[')
4190 ++paren_not_balanced;
4191 if (*l == ']')
4192 --paren_not_balanced;
4193 }
4194 l++;
4195 }
4196 if (l != token_start)
4197 { /* Yes, we've read in another operand. */
4198 unsigned int operand_ok;
4199 this_operand = i.operands++;
4200 if (i.operands > MAX_OPERANDS)
4201 {
4202 as_bad (_("spurious operands; (%d operands/instruction max)"),
4203 MAX_OPERANDS);
4204 return NULL;
4205 }
4206 i.types[this_operand].bitfield.unspecified = 1;
4207 /* Now parse operand adding info to 'i' as we go along. */
4208 END_STRING_AND_SAVE (l);
4209
4210 if (intel_syntax)
4211 operand_ok =
4212 i386_intel_operand (token_start,
4213 intel_float_operand (mnemonic));
4214 else
4215 operand_ok = i386_att_operand (token_start);
4216
4217 RESTORE_END_STRING (l);
4218 if (!operand_ok)
4219 return NULL;
4220 }
4221 else
4222 {
4223 if (expecting_operand)
4224 {
4225 expecting_operand_after_comma:
4226 as_bad (_("expecting operand after ','; got nothing"));
4227 return NULL;
4228 }
4229 if (*l == ',')
4230 {
4231 as_bad (_("expecting operand before ','; got nothing"));
4232 return NULL;
4233 }
4234 }
4235
4236 /* Now *l must be either ',' or END_OF_INSN. */
4237 if (*l == ',')
4238 {
4239 if (*++l == END_OF_INSN)
4240 {
4241 /* Just skip it, if it's \n complain. */
4242 goto expecting_operand_after_comma;
4243 }
4244 expecting_operand = 1;
4245 }
4246 }
4247 return l;
4248 }
4249
4250 static void
4251 swap_2_operands (int xchg1, int xchg2)
4252 {
4253 union i386_op temp_op;
4254 i386_operand_type temp_type;
4255 enum bfd_reloc_code_real temp_reloc;
4256
4257 temp_type = i.types[xchg2];
4258 i.types[xchg2] = i.types[xchg1];
4259 i.types[xchg1] = temp_type;
4260 temp_op = i.op[xchg2];
4261 i.op[xchg2] = i.op[xchg1];
4262 i.op[xchg1] = temp_op;
4263 temp_reloc = i.reloc[xchg2];
4264 i.reloc[xchg2] = i.reloc[xchg1];
4265 i.reloc[xchg1] = temp_reloc;
4266
4267 if (i.mask)
4268 {
4269 if (i.mask->operand == xchg1)
4270 i.mask->operand = xchg2;
4271 else if (i.mask->operand == xchg2)
4272 i.mask->operand = xchg1;
4273 }
4274 if (i.broadcast)
4275 {
4276 if (i.broadcast->operand == xchg1)
4277 i.broadcast->operand = xchg2;
4278 else if (i.broadcast->operand == xchg2)
4279 i.broadcast->operand = xchg1;
4280 }
4281 if (i.rounding)
4282 {
4283 if (i.rounding->operand == xchg1)
4284 i.rounding->operand = xchg2;
4285 else if (i.rounding->operand == xchg2)
4286 i.rounding->operand = xchg1;
4287 }
4288 }
4289
4290 static void
4291 swap_operands (void)
4292 {
4293 switch (i.operands)
4294 {
4295 case 5:
4296 case 4:
4297 swap_2_operands (1, i.operands - 2);
4298 /* Fall through. */
4299 case 3:
4300 case 2:
4301 swap_2_operands (0, i.operands - 1);
4302 break;
4303 default:
4304 abort ();
4305 }
4306
4307 if (i.mem_operands == 2)
4308 {
4309 const seg_entry *temp_seg;
4310 temp_seg = i.seg[0];
4311 i.seg[0] = i.seg[1];
4312 i.seg[1] = temp_seg;
4313 }
4314 }
4315
4316 /* Try to ensure constant immediates are represented in the smallest
4317 opcode possible. */
4318 static void
4319 optimize_imm (void)
4320 {
4321 char guess_suffix = 0;
4322 int op;
4323
4324 if (i.suffix)
4325 guess_suffix = i.suffix;
4326 else if (i.reg_operands)
4327 {
4328 /* Figure out a suffix from the last register operand specified.
4329 We can't do this properly yet, ie. excluding InOutPortReg,
4330 but the following works for instructions with immediates.
4331 In any case, we can't set i.suffix yet. */
4332 for (op = i.operands; --op >= 0;)
4333 if (i.types[op].bitfield.reg8)
4334 {
4335 guess_suffix = BYTE_MNEM_SUFFIX;
4336 break;
4337 }
4338 else if (i.types[op].bitfield.reg16)
4339 {
4340 guess_suffix = WORD_MNEM_SUFFIX;
4341 break;
4342 }
4343 else if (i.types[op].bitfield.reg32)
4344 {
4345 guess_suffix = LONG_MNEM_SUFFIX;
4346 break;
4347 }
4348 else if (i.types[op].bitfield.reg64)
4349 {
4350 guess_suffix = QWORD_MNEM_SUFFIX;
4351 break;
4352 }
4353 }
4354 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4355 guess_suffix = WORD_MNEM_SUFFIX;
4356
4357 for (op = i.operands; --op >= 0;)
4358 if (operand_type_check (i.types[op], imm))
4359 {
4360 switch (i.op[op].imms->X_op)
4361 {
4362 case O_constant:
4363 /* If a suffix is given, this operand may be shortened. */
4364 switch (guess_suffix)
4365 {
4366 case LONG_MNEM_SUFFIX:
4367 i.types[op].bitfield.imm32 = 1;
4368 i.types[op].bitfield.imm64 = 1;
4369 break;
4370 case WORD_MNEM_SUFFIX:
4371 i.types[op].bitfield.imm16 = 1;
4372 i.types[op].bitfield.imm32 = 1;
4373 i.types[op].bitfield.imm32s = 1;
4374 i.types[op].bitfield.imm64 = 1;
4375 break;
4376 case BYTE_MNEM_SUFFIX:
4377 i.types[op].bitfield.imm8 = 1;
4378 i.types[op].bitfield.imm8s = 1;
4379 i.types[op].bitfield.imm16 = 1;
4380 i.types[op].bitfield.imm32 = 1;
4381 i.types[op].bitfield.imm32s = 1;
4382 i.types[op].bitfield.imm64 = 1;
4383 break;
4384 }
4385
4386 /* If this operand is at most 16 bits, convert it
4387 to a signed 16 bit number before trying to see
4388 whether it will fit in an even smaller size.
4389 This allows a 16-bit operand such as $0xffe0 to
4390 be recognised as within Imm8S range. */
4391 if ((i.types[op].bitfield.imm16)
4392 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4393 {
4394 i.op[op].imms->X_add_number =
4395 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4396 }
4397 #ifdef BFD64
4398 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4399 if ((i.types[op].bitfield.imm32)
4400 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4401 == 0))
4402 {
4403 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4404 ^ ((offsetT) 1 << 31))
4405 - ((offsetT) 1 << 31));
4406 }
4407 #endif
4408 i.types[op]
4409 = operand_type_or (i.types[op],
4410 smallest_imm_type (i.op[op].imms->X_add_number));
4411
4412 /* We must avoid matching of Imm32 templates when 64bit
4413 only immediate is available. */
4414 if (guess_suffix == QWORD_MNEM_SUFFIX)
4415 i.types[op].bitfield.imm32 = 0;
4416 break;
4417
4418 case O_absent:
4419 case O_register:
4420 abort ();
4421
4422 /* Symbols and expressions. */
4423 default:
4424 /* Convert symbolic operand to proper sizes for matching, but don't
4425 prevent matching a set of insns that only supports sizes other
4426 than those matching the insn suffix. */
4427 {
4428 i386_operand_type mask, allowed;
4429 const insn_template *t;
4430
4431 operand_type_set (&mask, 0);
4432 operand_type_set (&allowed, 0);
4433
4434 for (t = current_templates->start;
4435 t < current_templates->end;
4436 ++t)
4437 allowed = operand_type_or (allowed,
4438 t->operand_types[op]);
4439 switch (guess_suffix)
4440 {
4441 case QWORD_MNEM_SUFFIX:
4442 mask.bitfield.imm64 = 1;
4443 mask.bitfield.imm32s = 1;
4444 break;
4445 case LONG_MNEM_SUFFIX:
4446 mask.bitfield.imm32 = 1;
4447 break;
4448 case WORD_MNEM_SUFFIX:
4449 mask.bitfield.imm16 = 1;
4450 break;
4451 case BYTE_MNEM_SUFFIX:
4452 mask.bitfield.imm8 = 1;
4453 break;
4454 default:
4455 break;
4456 }
4457 allowed = operand_type_and (mask, allowed);
4458 if (!operand_type_all_zero (&allowed))
4459 i.types[op] = operand_type_and (i.types[op], mask);
4460 }
4461 break;
4462 }
4463 }
4464 }
4465
4466 /* Try to use the smallest displacement type too. */
4467 static void
4468 optimize_disp (void)
4469 {
4470 int op;
4471
4472 for (op = i.operands; --op >= 0;)
4473 if (operand_type_check (i.types[op], disp))
4474 {
4475 if (i.op[op].disps->X_op == O_constant)
4476 {
4477 offsetT op_disp = i.op[op].disps->X_add_number;
4478
4479 if (i.types[op].bitfield.disp16
4480 && (op_disp & ~(offsetT) 0xffff) == 0)
4481 {
4482 /* If this operand is at most 16 bits, convert
4483 to a signed 16 bit number and don't use 64bit
4484 displacement. */
4485 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4486 i.types[op].bitfield.disp64 = 0;
4487 }
4488 #ifdef BFD64
4489 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4490 if (i.types[op].bitfield.disp32
4491 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4492 {
4493 /* If this operand is at most 32 bits, convert
4494 to a signed 32 bit number and don't use 64bit
4495 displacement. */
4496 op_disp &= (((offsetT) 2 << 31) - 1);
4497 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4498 i.types[op].bitfield.disp64 = 0;
4499 }
4500 #endif
4501 if (!op_disp && i.types[op].bitfield.baseindex)
4502 {
4503 i.types[op].bitfield.disp8 = 0;
4504 i.types[op].bitfield.disp16 = 0;
4505 i.types[op].bitfield.disp32 = 0;
4506 i.types[op].bitfield.disp32s = 0;
4507 i.types[op].bitfield.disp64 = 0;
4508 i.op[op].disps = 0;
4509 i.disp_operands--;
4510 }
4511 else if (flag_code == CODE_64BIT)
4512 {
4513 if (fits_in_signed_long (op_disp))
4514 {
4515 i.types[op].bitfield.disp64 = 0;
4516 i.types[op].bitfield.disp32s = 1;
4517 }
4518 if (i.prefix[ADDR_PREFIX]
4519 && fits_in_unsigned_long (op_disp))
4520 i.types[op].bitfield.disp32 = 1;
4521 }
4522 if ((i.types[op].bitfield.disp32
4523 || i.types[op].bitfield.disp32s
4524 || i.types[op].bitfield.disp16)
4525 && fits_in_signed_byte (op_disp))
4526 i.types[op].bitfield.disp8 = 1;
4527 }
4528 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4529 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4530 {
4531 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4532 i.op[op].disps, 0, i.reloc[op]);
4533 i.types[op].bitfield.disp8 = 0;
4534 i.types[op].bitfield.disp16 = 0;
4535 i.types[op].bitfield.disp32 = 0;
4536 i.types[op].bitfield.disp32s = 0;
4537 i.types[op].bitfield.disp64 = 0;
4538 }
4539 else
4540 /* We only support 64bit displacement on constants. */
4541 i.types[op].bitfield.disp64 = 0;
4542 }
4543 }
4544
4545 /* Check if operands are valid for the instruction. */
4546
4547 static int
4548 check_VecOperands (const insn_template *t)
4549 {
4550 unsigned int op;
4551
4552 /* Without VSIB byte, we can't have a vector register for index. */
4553 if (!t->opcode_modifier.vecsib
4554 && i.index_reg
4555 && (i.index_reg->reg_type.bitfield.regxmm
4556 || i.index_reg->reg_type.bitfield.regymm
4557 || i.index_reg->reg_type.bitfield.regzmm))
4558 {
4559 i.error = unsupported_vector_index_register;
4560 return 1;
4561 }
4562
4563 /* Check if default mask is allowed. */
4564 if (t->opcode_modifier.nodefmask
4565 && (!i.mask || i.mask->mask->reg_num == 0))
4566 {
4567 i.error = no_default_mask;
4568 return 1;
4569 }
4570
4571 /* For VSIB byte, we need a vector register for index, and all vector
4572 registers must be distinct. */
4573 if (t->opcode_modifier.vecsib)
4574 {
4575 if (!i.index_reg
4576 || !((t->opcode_modifier.vecsib == VecSIB128
4577 && i.index_reg->reg_type.bitfield.regxmm)
4578 || (t->opcode_modifier.vecsib == VecSIB256
4579 && i.index_reg->reg_type.bitfield.regymm)
4580 || (t->opcode_modifier.vecsib == VecSIB512
4581 && i.index_reg->reg_type.bitfield.regzmm)))
4582 {
4583 i.error = invalid_vsib_address;
4584 return 1;
4585 }
4586
4587 gas_assert (i.reg_operands == 2 || i.mask);
4588 if (i.reg_operands == 2 && !i.mask)
4589 {
4590 gas_assert (i.types[0].bitfield.regxmm
4591 || i.types[0].bitfield.regymm);
4592 gas_assert (i.types[2].bitfield.regxmm
4593 || i.types[2].bitfield.regymm);
4594 if (operand_check == check_none)
4595 return 0;
4596 if (register_number (i.op[0].regs)
4597 != register_number (i.index_reg)
4598 && register_number (i.op[2].regs)
4599 != register_number (i.index_reg)
4600 && register_number (i.op[0].regs)
4601 != register_number (i.op[2].regs))
4602 return 0;
4603 if (operand_check == check_error)
4604 {
4605 i.error = invalid_vector_register_set;
4606 return 1;
4607 }
4608 as_warn (_("mask, index, and destination registers should be distinct"));
4609 }
4610 else if (i.reg_operands == 1 && i.mask)
4611 {
4612 if ((i.types[1].bitfield.regymm
4613 || i.types[1].bitfield.regzmm)
4614 && (register_number (i.op[1].regs)
4615 == register_number (i.index_reg)))
4616 {
4617 if (operand_check == check_error)
4618 {
4619 i.error = invalid_vector_register_set;
4620 return 1;
4621 }
4622 if (operand_check != check_none)
4623 as_warn (_("index and destination registers should be distinct"));
4624 }
4625 }
4626 }
4627
4628 /* Check if broadcast is supported by the instruction and is applied
4629 to the memory operand. */
4630 if (i.broadcast)
4631 {
4632 int broadcasted_opnd_size;
4633
4634 /* Check if specified broadcast is supported in this instruction,
4635 and it's applied to memory operand of DWORD or QWORD type,
4636 depending on VecESize. */
4637 if (i.broadcast->type != t->opcode_modifier.broadcast
4638 || !i.types[i.broadcast->operand].bitfield.mem
4639 || (t->opcode_modifier.vecesize == 0
4640 && !i.types[i.broadcast->operand].bitfield.dword
4641 && !i.types[i.broadcast->operand].bitfield.unspecified)
4642 || (t->opcode_modifier.vecesize == 1
4643 && !i.types[i.broadcast->operand].bitfield.qword
4644 && !i.types[i.broadcast->operand].bitfield.unspecified))
4645 goto bad_broadcast;
4646
4647 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4648 if (i.broadcast->type == BROADCAST_1TO16)
4649 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4650 else if (i.broadcast->type == BROADCAST_1TO8)
4651 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4652 else if (i.broadcast->type == BROADCAST_1TO4)
4653 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4654 else if (i.broadcast->type == BROADCAST_1TO2)
4655 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4656 else
4657 goto bad_broadcast;
4658
4659 if ((broadcasted_opnd_size == 256
4660 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4661 || (broadcasted_opnd_size == 512
4662 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4663 {
4664 bad_broadcast:
4665 i.error = unsupported_broadcast;
4666 return 1;
4667 }
4668 }
4669 /* If broadcast is supported in this instruction, we need to check if
4670 operand of one-element size isn't specified without broadcast. */
4671 else if (t->opcode_modifier.broadcast && i.mem_operands)
4672 {
4673 /* Find memory operand. */
4674 for (op = 0; op < i.operands; op++)
4675 if (operand_type_check (i.types[op], anymem))
4676 break;
4677 gas_assert (op < i.operands);
4678 /* Check size of the memory operand. */
4679 if ((t->opcode_modifier.vecesize == 0
4680 && i.types[op].bitfield.dword)
4681 || (t->opcode_modifier.vecesize == 1
4682 && i.types[op].bitfield.qword))
4683 {
4684 i.error = broadcast_needed;
4685 return 1;
4686 }
4687 }
4688
4689 /* Check if requested masking is supported. */
4690 if (i.mask
4691 && (!t->opcode_modifier.masking
4692 || (i.mask->zeroing
4693 && t->opcode_modifier.masking == MERGING_MASKING)))
4694 {
4695 i.error = unsupported_masking;
4696 return 1;
4697 }
4698
4699 /* Check if masking is applied to dest operand. */
4700 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4701 {
4702 i.error = mask_not_on_destination;
4703 return 1;
4704 }
4705
4706 /* Check RC/SAE. */
4707 if (i.rounding)
4708 {
4709 if ((i.rounding->type != saeonly
4710 && !t->opcode_modifier.staticrounding)
4711 || (i.rounding->type == saeonly
4712 && (t->opcode_modifier.staticrounding
4713 || !t->opcode_modifier.sae)))
4714 {
4715 i.error = unsupported_rc_sae;
4716 return 1;
4717 }
4718 /* If the instruction has several immediate operands and one of
4719 them is rounding, the rounding operand should be the last
4720 immediate operand. */
4721 if (i.imm_operands > 1
4722 && i.rounding->operand != (int) (i.imm_operands - 1))
4723 {
4724 i.error = rc_sae_operand_not_last_imm;
4725 return 1;
4726 }
4727 }
4728
4729 /* Check vector Disp8 operand. */
4730 if (t->opcode_modifier.disp8memshift)
4731 {
4732 if (i.broadcast)
4733 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4734 else
4735 i.memshift = t->opcode_modifier.disp8memshift;
4736
4737 for (op = 0; op < i.operands; op++)
4738 if (operand_type_check (i.types[op], disp)
4739 && i.op[op].disps->X_op == O_constant)
4740 {
4741 offsetT value = i.op[op].disps->X_add_number;
4742 int vec_disp8_ok
4743 = (i.disp_encoding != disp_encoding_32bit
4744 && fits_in_vec_disp8 (value));
4745 if (t->operand_types [op].bitfield.vec_disp8)
4746 {
4747 if (vec_disp8_ok)
4748 i.types[op].bitfield.vec_disp8 = 1;
4749 else
4750 {
4751 /* Vector insn can only have Vec_Disp8/Disp32 in
4752 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4753 mode. */
4754 i.types[op].bitfield.disp8 = 0;
4755 if (flag_code != CODE_16BIT)
4756 i.types[op].bitfield.disp16 = 0;
4757 }
4758 }
4759 else if (flag_code != CODE_16BIT)
4760 {
4761 /* One form of this instruction supports vector Disp8.
4762 Try vector Disp8 if we need to use Disp32. */
4763 if (vec_disp8_ok && !fits_in_signed_byte (value))
4764 {
4765 i.error = try_vector_disp8;
4766 return 1;
4767 }
4768 }
4769 }
4770 }
4771 else
4772 i.memshift = -1;
4773
4774 return 0;
4775 }
4776
4777 /* Check if operands are valid for the instruction. Update VEX
4778 operand types. */
4779
4780 static int
4781 VEX_check_operands (const insn_template *t)
4782 {
4783 if (i.vec_encoding == vex_encoding_evex)
4784 {
4785 /* This instruction must be encoded with EVEX prefix. */
4786 if (!t->opcode_modifier.evex)
4787 {
4788 i.error = unsupported;
4789 return 1;
4790 }
4791 return 0;
4792 }
4793
4794 if (!t->opcode_modifier.vex)
4795 {
4796 /* This instruction template doesn't have VEX prefix. */
4797 if (i.vec_encoding != vex_encoding_default)
4798 {
4799 i.error = unsupported;
4800 return 1;
4801 }
4802 return 0;
4803 }
4804
4805 /* Only check VEX_Imm4, which must be the first operand. */
4806 if (t->operand_types[0].bitfield.vec_imm4)
4807 {
4808 if (i.op[0].imms->X_op != O_constant
4809 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4810 {
4811 i.error = bad_imm4;
4812 return 1;
4813 }
4814
4815 /* Turn off Imm8 so that update_imm won't complain. */
4816 i.types[0] = vec_imm4;
4817 }
4818
4819 return 0;
4820 }
4821
4822 static const insn_template *
4823 match_template (char mnem_suffix)
4824 {
4825 /* Points to template once we've found it. */
4826 const insn_template *t;
4827 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4828 i386_operand_type overlap4;
4829 unsigned int found_reverse_match;
4830 i386_opcode_modifier suffix_check, mnemsuf_check;
4831 i386_operand_type operand_types [MAX_OPERANDS];
4832 int addr_prefix_disp;
4833 unsigned int j;
4834 unsigned int found_cpu_match;
4835 unsigned int check_register;
4836 enum i386_error specific_error = 0;
4837
4838 #if MAX_OPERANDS != 5
4839 # error "MAX_OPERANDS must be 5."
4840 #endif
4841
4842 found_reverse_match = 0;
4843 addr_prefix_disp = -1;
4844
4845 memset (&suffix_check, 0, sizeof (suffix_check));
4846 if (i.suffix == BYTE_MNEM_SUFFIX)
4847 suffix_check.no_bsuf = 1;
4848 else if (i.suffix == WORD_MNEM_SUFFIX)
4849 suffix_check.no_wsuf = 1;
4850 else if (i.suffix == SHORT_MNEM_SUFFIX)
4851 suffix_check.no_ssuf = 1;
4852 else if (i.suffix == LONG_MNEM_SUFFIX)
4853 suffix_check.no_lsuf = 1;
4854 else if (i.suffix == QWORD_MNEM_SUFFIX)
4855 suffix_check.no_qsuf = 1;
4856 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4857 suffix_check.no_ldsuf = 1;
4858
4859 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4860 if (intel_syntax)
4861 {
4862 switch (mnem_suffix)
4863 {
4864 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4865 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4866 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4867 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4868 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4869 }
4870 }
4871
4872 /* Must have right number of operands. */
4873 i.error = number_of_operands_mismatch;
4874
4875 for (t = current_templates->start; t < current_templates->end; t++)
4876 {
4877 addr_prefix_disp = -1;
4878
4879 if (i.operands != t->operands)
4880 continue;
4881
4882 /* Check processor support. */
4883 i.error = unsupported;
4884 found_cpu_match = (cpu_flags_match (t)
4885 == CPU_FLAGS_PERFECT_MATCH);
4886 if (!found_cpu_match)
4887 continue;
4888
4889 /* Check old gcc support. */
4890 i.error = old_gcc_only;
4891 if (!old_gcc && t->opcode_modifier.oldgcc)
4892 continue;
4893
4894 /* Check AT&T mnemonic. */
4895 i.error = unsupported_with_intel_mnemonic;
4896 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4897 continue;
4898
4899 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4900 i.error = unsupported_syntax;
4901 if ((intel_syntax && t->opcode_modifier.attsyntax)
4902 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4903 || (intel64 && t->opcode_modifier.amd64)
4904 || (!intel64 && t->opcode_modifier.intel64))
4905 continue;
4906
4907 /* Check the suffix, except for some instructions in intel mode. */
4908 i.error = invalid_instruction_suffix;
4909 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4910 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4911 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4912 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4913 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4914 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4915 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4916 continue;
4917 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4918 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4919 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4920 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4921 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4922 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4923 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4924 continue;
4925
4926 if (!operand_size_match (t))
4927 continue;
4928
4929 for (j = 0; j < MAX_OPERANDS; j++)
4930 operand_types[j] = t->operand_types[j];
4931
4932 /* In general, don't allow 64-bit operands in 32-bit mode. */
4933 if (i.suffix == QWORD_MNEM_SUFFIX
4934 && flag_code != CODE_64BIT
4935 && (intel_syntax
4936 ? (!t->opcode_modifier.ignoresize
4937 && !intel_float_operand (t->name))
4938 : intel_float_operand (t->name) != 2)
4939 && ((!operand_types[0].bitfield.regmmx
4940 && !operand_types[0].bitfield.regxmm
4941 && !operand_types[0].bitfield.regymm
4942 && !operand_types[0].bitfield.regzmm)
4943 || (!operand_types[t->operands > 1].bitfield.regmmx
4944 && operand_types[t->operands > 1].bitfield.regxmm
4945 && operand_types[t->operands > 1].bitfield.regymm
4946 && operand_types[t->operands > 1].bitfield.regzmm))
4947 && (t->base_opcode != 0x0fc7
4948 || t->extension_opcode != 1 /* cmpxchg8b */))
4949 continue;
4950
4951 /* In general, don't allow 32-bit operands on pre-386. */
4952 else if (i.suffix == LONG_MNEM_SUFFIX
4953 && !cpu_arch_flags.bitfield.cpui386
4954 && (intel_syntax
4955 ? (!t->opcode_modifier.ignoresize
4956 && !intel_float_operand (t->name))
4957 : intel_float_operand (t->name) != 2)
4958 && ((!operand_types[0].bitfield.regmmx
4959 && !operand_types[0].bitfield.regxmm)
4960 || (!operand_types[t->operands > 1].bitfield.regmmx
4961 && operand_types[t->operands > 1].bitfield.regxmm)))
4962 continue;
4963
4964 /* Do not verify operands when there are none. */
4965 else
4966 {
4967 if (!t->operands)
4968 /* We've found a match; break out of loop. */
4969 break;
4970 }
4971
4972 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4973 into Disp32/Disp16/Disp32 operand. */
4974 if (i.prefix[ADDR_PREFIX] != 0)
4975 {
4976 /* There should be only one Disp operand. */
4977 switch (flag_code)
4978 {
4979 case CODE_16BIT:
4980 for (j = 0; j < MAX_OPERANDS; j++)
4981 {
4982 if (operand_types[j].bitfield.disp16)
4983 {
4984 addr_prefix_disp = j;
4985 operand_types[j].bitfield.disp32 = 1;
4986 operand_types[j].bitfield.disp16 = 0;
4987 break;
4988 }
4989 }
4990 break;
4991 case CODE_32BIT:
4992 for (j = 0; j < MAX_OPERANDS; j++)
4993 {
4994 if (operand_types[j].bitfield.disp32)
4995 {
4996 addr_prefix_disp = j;
4997 operand_types[j].bitfield.disp32 = 0;
4998 operand_types[j].bitfield.disp16 = 1;
4999 break;
5000 }
5001 }
5002 break;
5003 case CODE_64BIT:
5004 for (j = 0; j < MAX_OPERANDS; j++)
5005 {
5006 if (operand_types[j].bitfield.disp64)
5007 {
5008 addr_prefix_disp = j;
5009 operand_types[j].bitfield.disp64 = 0;
5010 operand_types[j].bitfield.disp32 = 1;
5011 break;
5012 }
5013 }
5014 break;
5015 }
5016 }
5017
5018 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5019 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5020 continue;
5021
5022 /* We check register size if needed. */
5023 check_register = t->opcode_modifier.checkregsize;
5024 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5025 switch (t->operands)
5026 {
5027 case 1:
5028 if (!operand_type_match (overlap0, i.types[0]))
5029 continue;
5030 break;
5031 case 2:
5032 /* xchg %eax, %eax is a special case. It is an alias for nop
5033 only in 32bit mode and we can use opcode 0x90. In 64bit
5034 mode, we can't use 0x90 for xchg %eax, %eax since it should
5035 zero-extend %eax to %rax. */
5036 if (flag_code == CODE_64BIT
5037 && t->base_opcode == 0x90
5038 && operand_type_equal (&i.types [0], &acc32)
5039 && operand_type_equal (&i.types [1], &acc32))
5040 continue;
5041 /* If we want store form, we reverse direction of operands. */
5042 if (i.dir_encoding == dir_encoding_store
5043 && t->opcode_modifier.d)
5044 goto check_reverse;
5045 /* Fall through. */
5046
5047 case 3:
5048 /* If we want store form, we skip the current load. */
5049 if (i.dir_encoding == dir_encoding_store
5050 && i.mem_operands == 0
5051 && t->opcode_modifier.load)
5052 continue;
5053 /* Fall through. */
5054 case 4:
5055 case 5:
5056 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5057 if (!operand_type_match (overlap0, i.types[0])
5058 || !operand_type_match (overlap1, i.types[1])
5059 || (check_register
5060 && !operand_type_register_match (overlap0, i.types[0],
5061 operand_types[0],
5062 overlap1, i.types[1],
5063 operand_types[1])))
5064 {
5065 /* Check if other direction is valid ... */
5066 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
5067 continue;
5068
5069 check_reverse:
5070 /* Try reversing direction of operands. */
5071 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5072 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5073 if (!operand_type_match (overlap0, i.types[0])
5074 || !operand_type_match (overlap1, i.types[1])
5075 || (check_register
5076 && !operand_type_register_match (overlap0,
5077 i.types[0],
5078 operand_types[1],
5079 overlap1,
5080 i.types[1],
5081 operand_types[0])))
5082 {
5083 /* Does not match either direction. */
5084 continue;
5085 }
5086 /* found_reverse_match holds which of D or FloatDR
5087 we've found. */
5088 if (t->opcode_modifier.d)
5089 found_reverse_match = Opcode_D;
5090 else if (t->opcode_modifier.floatd)
5091 found_reverse_match = Opcode_FloatD;
5092 else
5093 found_reverse_match = 0;
5094 if (t->opcode_modifier.floatr)
5095 found_reverse_match |= Opcode_FloatR;
5096 }
5097 else
5098 {
5099 /* Found a forward 2 operand match here. */
5100 switch (t->operands)
5101 {
5102 case 5:
5103 overlap4 = operand_type_and (i.types[4],
5104 operand_types[4]);
5105 /* Fall through. */
5106 case 4:
5107 overlap3 = operand_type_and (i.types[3],
5108 operand_types[3]);
5109 /* Fall through. */
5110 case 3:
5111 overlap2 = operand_type_and (i.types[2],
5112 operand_types[2]);
5113 break;
5114 }
5115
5116 switch (t->operands)
5117 {
5118 case 5:
5119 if (!operand_type_match (overlap4, i.types[4])
5120 || !operand_type_register_match (overlap3,
5121 i.types[3],
5122 operand_types[3],
5123 overlap4,
5124 i.types[4],
5125 operand_types[4]))
5126 continue;
5127 /* Fall through. */
5128 case 4:
5129 if (!operand_type_match (overlap3, i.types[3])
5130 || (check_register
5131 && !operand_type_register_match (overlap2,
5132 i.types[2],
5133 operand_types[2],
5134 overlap3,
5135 i.types[3],
5136 operand_types[3])))
5137 continue;
5138 /* Fall through. */
5139 case 3:
5140 /* Here we make use of the fact that there are no
5141 reverse match 3 operand instructions, and all 3
5142 operand instructions only need to be checked for
5143 register consistency between operands 2 and 3. */
5144 if (!operand_type_match (overlap2, i.types[2])
5145 || (check_register
5146 && !operand_type_register_match (overlap1,
5147 i.types[1],
5148 operand_types[1],
5149 overlap2,
5150 i.types[2],
5151 operand_types[2])))
5152 continue;
5153 break;
5154 }
5155 }
5156 /* Found either forward/reverse 2, 3 or 4 operand match here:
5157 slip through to break. */
5158 }
5159 if (!found_cpu_match)
5160 {
5161 found_reverse_match = 0;
5162 continue;
5163 }
5164
5165 /* Check if vector and VEX operands are valid. */
5166 if (check_VecOperands (t) || VEX_check_operands (t))
5167 {
5168 specific_error = i.error;
5169 continue;
5170 }
5171
5172 /* We've found a match; break out of loop. */
5173 break;
5174 }
5175
5176 if (t == current_templates->end)
5177 {
5178 /* We found no match. */
5179 const char *err_msg;
5180 switch (specific_error ? specific_error : i.error)
5181 {
5182 default:
5183 abort ();
5184 case operand_size_mismatch:
5185 err_msg = _("operand size mismatch");
5186 break;
5187 case operand_type_mismatch:
5188 err_msg = _("operand type mismatch");
5189 break;
5190 case register_type_mismatch:
5191 err_msg = _("register type mismatch");
5192 break;
5193 case number_of_operands_mismatch:
5194 err_msg = _("number of operands mismatch");
5195 break;
5196 case invalid_instruction_suffix:
5197 err_msg = _("invalid instruction suffix");
5198 break;
5199 case bad_imm4:
5200 err_msg = _("constant doesn't fit in 4 bits");
5201 break;
5202 case old_gcc_only:
5203 err_msg = _("only supported with old gcc");
5204 break;
5205 case unsupported_with_intel_mnemonic:
5206 err_msg = _("unsupported with Intel mnemonic");
5207 break;
5208 case unsupported_syntax:
5209 err_msg = _("unsupported syntax");
5210 break;
5211 case unsupported:
5212 as_bad (_("unsupported instruction `%s'"),
5213 current_templates->start->name);
5214 return NULL;
5215 case invalid_vsib_address:
5216 err_msg = _("invalid VSIB address");
5217 break;
5218 case invalid_vector_register_set:
5219 err_msg = _("mask, index, and destination registers must be distinct");
5220 break;
5221 case unsupported_vector_index_register:
5222 err_msg = _("unsupported vector index register");
5223 break;
5224 case unsupported_broadcast:
5225 err_msg = _("unsupported broadcast");
5226 break;
5227 case broadcast_not_on_src_operand:
5228 err_msg = _("broadcast not on source memory operand");
5229 break;
5230 case broadcast_needed:
5231 err_msg = _("broadcast is needed for operand of such type");
5232 break;
5233 case unsupported_masking:
5234 err_msg = _("unsupported masking");
5235 break;
5236 case mask_not_on_destination:
5237 err_msg = _("mask not on destination operand");
5238 break;
5239 case no_default_mask:
5240 err_msg = _("default mask isn't allowed");
5241 break;
5242 case unsupported_rc_sae:
5243 err_msg = _("unsupported static rounding/sae");
5244 break;
5245 case rc_sae_operand_not_last_imm:
5246 if (intel_syntax)
5247 err_msg = _("RC/SAE operand must precede immediate operands");
5248 else
5249 err_msg = _("RC/SAE operand must follow immediate operands");
5250 break;
5251 case invalid_register_operand:
5252 err_msg = _("invalid register operand");
5253 break;
5254 }
5255 as_bad (_("%s for `%s'"), err_msg,
5256 current_templates->start->name);
5257 return NULL;
5258 }
5259
5260 if (!quiet_warnings)
5261 {
5262 if (!intel_syntax
5263 && (i.types[0].bitfield.jumpabsolute
5264 != operand_types[0].bitfield.jumpabsolute))
5265 {
5266 as_warn (_("indirect %s without `*'"), t->name);
5267 }
5268
5269 if (t->opcode_modifier.isprefix
5270 && t->opcode_modifier.ignoresize)
5271 {
5272 /* Warn them that a data or address size prefix doesn't
5273 affect assembly of the next line of code. */
5274 as_warn (_("stand-alone `%s' prefix"), t->name);
5275 }
5276 }
5277
5278 /* Copy the template we found. */
5279 i.tm = *t;
5280
5281 if (addr_prefix_disp != -1)
5282 i.tm.operand_types[addr_prefix_disp]
5283 = operand_types[addr_prefix_disp];
5284
5285 if (found_reverse_match)
5286 {
5287 /* If we found a reverse match we must alter the opcode
5288 direction bit. found_reverse_match holds bits to change
5289 (different for int & float insns). */
5290
5291 i.tm.base_opcode ^= found_reverse_match;
5292
5293 i.tm.operand_types[0] = operand_types[1];
5294 i.tm.operand_types[1] = operand_types[0];
5295 }
5296
5297 return t;
5298 }
5299
5300 static int
5301 check_string (void)
5302 {
5303 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5304 if (i.tm.operand_types[mem_op].bitfield.esseg)
5305 {
5306 if (i.seg[0] != NULL && i.seg[0] != &es)
5307 {
5308 as_bad (_("`%s' operand %d must use `%ses' segment"),
5309 i.tm.name,
5310 mem_op + 1,
5311 register_prefix);
5312 return 0;
5313 }
5314 /* There's only ever one segment override allowed per instruction.
5315 This instruction possibly has a legal segment override on the
5316 second operand, so copy the segment to where non-string
5317 instructions store it, allowing common code. */
5318 i.seg[0] = i.seg[1];
5319 }
5320 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5321 {
5322 if (i.seg[1] != NULL && i.seg[1] != &es)
5323 {
5324 as_bad (_("`%s' operand %d must use `%ses' segment"),
5325 i.tm.name,
5326 mem_op + 2,
5327 register_prefix);
5328 return 0;
5329 }
5330 }
5331 return 1;
5332 }
5333
5334 static int
5335 process_suffix (void)
5336 {
5337 /* If matched instruction specifies an explicit instruction mnemonic
5338 suffix, use it. */
5339 if (i.tm.opcode_modifier.size16)
5340 i.suffix = WORD_MNEM_SUFFIX;
5341 else if (i.tm.opcode_modifier.size32)
5342 i.suffix = LONG_MNEM_SUFFIX;
5343 else if (i.tm.opcode_modifier.size64)
5344 i.suffix = QWORD_MNEM_SUFFIX;
5345 else if (i.reg_operands)
5346 {
5347 /* If there's no instruction mnemonic suffix we try to invent one
5348 based on register operands. */
5349 if (!i.suffix)
5350 {
5351 /* We take i.suffix from the last register operand specified,
5352 Destination register type is more significant than source
5353 register type. crc32 in SSE4.2 prefers source register
5354 type. */
5355 if (i.tm.base_opcode == 0xf20f38f1)
5356 {
5357 if (i.types[0].bitfield.reg16)
5358 i.suffix = WORD_MNEM_SUFFIX;
5359 else if (i.types[0].bitfield.reg32)
5360 i.suffix = LONG_MNEM_SUFFIX;
5361 else if (i.types[0].bitfield.reg64)
5362 i.suffix = QWORD_MNEM_SUFFIX;
5363 }
5364 else if (i.tm.base_opcode == 0xf20f38f0)
5365 {
5366 if (i.types[0].bitfield.reg8)
5367 i.suffix = BYTE_MNEM_SUFFIX;
5368 }
5369
5370 if (!i.suffix)
5371 {
5372 int op;
5373
5374 if (i.tm.base_opcode == 0xf20f38f1
5375 || i.tm.base_opcode == 0xf20f38f0)
5376 {
5377 /* We have to know the operand size for crc32. */
5378 as_bad (_("ambiguous memory operand size for `%s`"),
5379 i.tm.name);
5380 return 0;
5381 }
5382
5383 for (op = i.operands; --op >= 0;)
5384 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5385 {
5386 if (i.types[op].bitfield.reg8)
5387 {
5388 i.suffix = BYTE_MNEM_SUFFIX;
5389 break;
5390 }
5391 else if (i.types[op].bitfield.reg16)
5392 {
5393 i.suffix = WORD_MNEM_SUFFIX;
5394 break;
5395 }
5396 else if (i.types[op].bitfield.reg32)
5397 {
5398 i.suffix = LONG_MNEM_SUFFIX;
5399 break;
5400 }
5401 else if (i.types[op].bitfield.reg64)
5402 {
5403 i.suffix = QWORD_MNEM_SUFFIX;
5404 break;
5405 }
5406 }
5407 }
5408 }
5409 else if (i.suffix == BYTE_MNEM_SUFFIX)
5410 {
5411 if (intel_syntax
5412 && i.tm.opcode_modifier.ignoresize
5413 && i.tm.opcode_modifier.no_bsuf)
5414 i.suffix = 0;
5415 else if (!check_byte_reg ())
5416 return 0;
5417 }
5418 else if (i.suffix == LONG_MNEM_SUFFIX)
5419 {
5420 if (intel_syntax
5421 && i.tm.opcode_modifier.ignoresize
5422 && i.tm.opcode_modifier.no_lsuf)
5423 i.suffix = 0;
5424 else if (!check_long_reg ())
5425 return 0;
5426 }
5427 else if (i.suffix == QWORD_MNEM_SUFFIX)
5428 {
5429 if (intel_syntax
5430 && i.tm.opcode_modifier.ignoresize
5431 && i.tm.opcode_modifier.no_qsuf)
5432 i.suffix = 0;
5433 else if (!check_qword_reg ())
5434 return 0;
5435 }
5436 else if (i.suffix == WORD_MNEM_SUFFIX)
5437 {
5438 if (intel_syntax
5439 && i.tm.opcode_modifier.ignoresize
5440 && i.tm.opcode_modifier.no_wsuf)
5441 i.suffix = 0;
5442 else if (!check_word_reg ())
5443 return 0;
5444 }
5445 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5446 || i.suffix == YMMWORD_MNEM_SUFFIX
5447 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5448 {
5449 /* Skip if the instruction has x/y/z suffix. match_template
5450 should check if it is a valid suffix. */
5451 }
5452 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5453 /* Do nothing if the instruction is going to ignore the prefix. */
5454 ;
5455 else
5456 abort ();
5457 }
5458 else if (i.tm.opcode_modifier.defaultsize
5459 && !i.suffix
5460 /* exclude fldenv/frstor/fsave/fstenv */
5461 && i.tm.opcode_modifier.no_ssuf)
5462 {
5463 i.suffix = stackop_size;
5464 }
5465 else if (intel_syntax
5466 && !i.suffix
5467 && (i.tm.operand_types[0].bitfield.jumpabsolute
5468 || i.tm.opcode_modifier.jumpbyte
5469 || i.tm.opcode_modifier.jumpintersegment
5470 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5471 && i.tm.extension_opcode <= 3)))
5472 {
5473 switch (flag_code)
5474 {
5475 case CODE_64BIT:
5476 if (!i.tm.opcode_modifier.no_qsuf)
5477 {
5478 i.suffix = QWORD_MNEM_SUFFIX;
5479 break;
5480 }
5481 /* Fall through. */
5482 case CODE_32BIT:
5483 if (!i.tm.opcode_modifier.no_lsuf)
5484 i.suffix = LONG_MNEM_SUFFIX;
5485 break;
5486 case CODE_16BIT:
5487 if (!i.tm.opcode_modifier.no_wsuf)
5488 i.suffix = WORD_MNEM_SUFFIX;
5489 break;
5490 }
5491 }
5492
5493 if (!i.suffix)
5494 {
5495 if (!intel_syntax)
5496 {
5497 if (i.tm.opcode_modifier.w)
5498 {
5499 as_bad (_("no instruction mnemonic suffix given and "
5500 "no register operands; can't size instruction"));
5501 return 0;
5502 }
5503 }
5504 else
5505 {
5506 unsigned int suffixes;
5507
5508 suffixes = !i.tm.opcode_modifier.no_bsuf;
5509 if (!i.tm.opcode_modifier.no_wsuf)
5510 suffixes |= 1 << 1;
5511 if (!i.tm.opcode_modifier.no_lsuf)
5512 suffixes |= 1 << 2;
5513 if (!i.tm.opcode_modifier.no_ldsuf)
5514 suffixes |= 1 << 3;
5515 if (!i.tm.opcode_modifier.no_ssuf)
5516 suffixes |= 1 << 4;
5517 if (!i.tm.opcode_modifier.no_qsuf)
5518 suffixes |= 1 << 5;
5519
5520 /* There are more than suffix matches. */
5521 if (i.tm.opcode_modifier.w
5522 || ((suffixes & (suffixes - 1))
5523 && !i.tm.opcode_modifier.defaultsize
5524 && !i.tm.opcode_modifier.ignoresize))
5525 {
5526 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5527 return 0;
5528 }
5529 }
5530 }
5531
5532 /* Change the opcode based on the operand size given by i.suffix;
5533 We don't need to change things for byte insns. */
5534
5535 if (i.suffix
5536 && i.suffix != BYTE_MNEM_SUFFIX
5537 && i.suffix != XMMWORD_MNEM_SUFFIX
5538 && i.suffix != YMMWORD_MNEM_SUFFIX
5539 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5540 {
5541 /* It's not a byte, select word/dword operation. */
5542 if (i.tm.opcode_modifier.w)
5543 {
5544 if (i.tm.opcode_modifier.shortform)
5545 i.tm.base_opcode |= 8;
5546 else
5547 i.tm.base_opcode |= 1;
5548 }
5549
5550 /* Now select between word & dword operations via the operand
5551 size prefix, except for instructions that will ignore this
5552 prefix anyway. */
5553 if (i.tm.opcode_modifier.addrprefixop0)
5554 {
5555 /* The address size override prefix changes the size of the
5556 first operand. */
5557 if ((flag_code == CODE_32BIT
5558 && i.op->regs[0].reg_type.bitfield.reg16)
5559 || (flag_code != CODE_32BIT
5560 && i.op->regs[0].reg_type.bitfield.reg32))
5561 if (!add_prefix (ADDR_PREFIX_OPCODE))
5562 return 0;
5563 }
5564 else if (i.suffix != QWORD_MNEM_SUFFIX
5565 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5566 && !i.tm.opcode_modifier.ignoresize
5567 && !i.tm.opcode_modifier.floatmf
5568 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5569 || (flag_code == CODE_64BIT
5570 && i.tm.opcode_modifier.jumpbyte)))
5571 {
5572 unsigned int prefix = DATA_PREFIX_OPCODE;
5573
5574 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5575 prefix = ADDR_PREFIX_OPCODE;
5576
5577 if (!add_prefix (prefix))
5578 return 0;
5579 }
5580
5581 /* Set mode64 for an operand. */
5582 if (i.suffix == QWORD_MNEM_SUFFIX
5583 && flag_code == CODE_64BIT
5584 && !i.tm.opcode_modifier.norex64)
5585 {
5586 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5587 need rex64. cmpxchg8b is also a special case. */
5588 if (! (i.operands == 2
5589 && i.tm.base_opcode == 0x90
5590 && i.tm.extension_opcode == None
5591 && operand_type_equal (&i.types [0], &acc64)
5592 && operand_type_equal (&i.types [1], &acc64))
5593 && ! (i.operands == 1
5594 && i.tm.base_opcode == 0xfc7
5595 && i.tm.extension_opcode == 1
5596 && !operand_type_check (i.types [0], reg)
5597 && operand_type_check (i.types [0], anymem)))
5598 i.rex |= REX_W;
5599 }
5600
5601 /* Size floating point instruction. */
5602 if (i.suffix == LONG_MNEM_SUFFIX)
5603 if (i.tm.opcode_modifier.floatmf)
5604 i.tm.base_opcode ^= 4;
5605 }
5606
5607 return 1;
5608 }
5609
5610 static int
5611 check_byte_reg (void)
5612 {
5613 int op;
5614
5615 for (op = i.operands; --op >= 0;)
5616 {
5617 /* If this is an eight bit register, it's OK. If it's the 16 or
5618 32 bit version of an eight bit register, we will just use the
5619 low portion, and that's OK too. */
5620 if (i.types[op].bitfield.reg8)
5621 continue;
5622
5623 /* I/O port address operands are OK too. */
5624 if (i.tm.operand_types[op].bitfield.inoutportreg)
5625 continue;
5626
5627 /* crc32 doesn't generate this warning. */
5628 if (i.tm.base_opcode == 0xf20f38f0)
5629 continue;
5630
5631 if ((i.types[op].bitfield.reg16
5632 || i.types[op].bitfield.reg32
5633 || i.types[op].bitfield.reg64)
5634 && i.op[op].regs->reg_num < 4
5635 /* Prohibit these changes in 64bit mode, since the lowering
5636 would be more complicated. */
5637 && flag_code != CODE_64BIT)
5638 {
5639 #if REGISTER_WARNINGS
5640 if (!quiet_warnings)
5641 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5642 register_prefix,
5643 (i.op[op].regs + (i.types[op].bitfield.reg16
5644 ? REGNAM_AL - REGNAM_AX
5645 : REGNAM_AL - REGNAM_EAX))->reg_name,
5646 register_prefix,
5647 i.op[op].regs->reg_name,
5648 i.suffix);
5649 #endif
5650 continue;
5651 }
5652 /* Any other register is bad. */
5653 if (i.types[op].bitfield.reg16
5654 || i.types[op].bitfield.reg32
5655 || i.types[op].bitfield.reg64
5656 || i.types[op].bitfield.regmmx
5657 || i.types[op].bitfield.regxmm
5658 || i.types[op].bitfield.regymm
5659 || i.types[op].bitfield.regzmm
5660 || i.types[op].bitfield.sreg2
5661 || i.types[op].bitfield.sreg3
5662 || i.types[op].bitfield.control
5663 || i.types[op].bitfield.debug
5664 || i.types[op].bitfield.test
5665 || i.types[op].bitfield.floatreg
5666 || i.types[op].bitfield.floatacc)
5667 {
5668 as_bad (_("`%s%s' not allowed with `%s%c'"),
5669 register_prefix,
5670 i.op[op].regs->reg_name,
5671 i.tm.name,
5672 i.suffix);
5673 return 0;
5674 }
5675 }
5676 return 1;
5677 }
5678
5679 static int
5680 check_long_reg (void)
5681 {
5682 int op;
5683
5684 for (op = i.operands; --op >= 0;)
5685 /* Reject eight bit registers, except where the template requires
5686 them. (eg. movzb) */
5687 if (i.types[op].bitfield.reg8
5688 && (i.tm.operand_types[op].bitfield.reg16
5689 || i.tm.operand_types[op].bitfield.reg32
5690 || i.tm.operand_types[op].bitfield.acc))
5691 {
5692 as_bad (_("`%s%s' not allowed with `%s%c'"),
5693 register_prefix,
5694 i.op[op].regs->reg_name,
5695 i.tm.name,
5696 i.suffix);
5697 return 0;
5698 }
5699 /* Warn if the e prefix on a general reg is missing. */
5700 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5701 && i.types[op].bitfield.reg16
5702 && (i.tm.operand_types[op].bitfield.reg32
5703 || i.tm.operand_types[op].bitfield.acc))
5704 {
5705 /* Prohibit these changes in the 64bit mode, since the
5706 lowering is more complicated. */
5707 if (flag_code == CODE_64BIT)
5708 {
5709 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5710 register_prefix, i.op[op].regs->reg_name,
5711 i.suffix);
5712 return 0;
5713 }
5714 #if REGISTER_WARNINGS
5715 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5716 register_prefix,
5717 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5718 register_prefix, i.op[op].regs->reg_name, i.suffix);
5719 #endif
5720 }
5721 /* Warn if the r prefix on a general reg is present. */
5722 else if (i.types[op].bitfield.reg64
5723 && (i.tm.operand_types[op].bitfield.reg32
5724 || i.tm.operand_types[op].bitfield.acc))
5725 {
5726 if (intel_syntax
5727 && i.tm.opcode_modifier.toqword
5728 && !i.types[0].bitfield.regxmm)
5729 {
5730 /* Convert to QWORD. We want REX byte. */
5731 i.suffix = QWORD_MNEM_SUFFIX;
5732 }
5733 else
5734 {
5735 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5736 register_prefix, i.op[op].regs->reg_name,
5737 i.suffix);
5738 return 0;
5739 }
5740 }
5741 return 1;
5742 }
5743
5744 static int
5745 check_qword_reg (void)
5746 {
5747 int op;
5748
5749 for (op = i.operands; --op >= 0; )
5750 /* Reject eight bit registers, except where the template requires
5751 them. (eg. movzb) */
5752 if (i.types[op].bitfield.reg8
5753 && (i.tm.operand_types[op].bitfield.reg16
5754 || i.tm.operand_types[op].bitfield.reg32
5755 || i.tm.operand_types[op].bitfield.acc))
5756 {
5757 as_bad (_("`%s%s' not allowed with `%s%c'"),
5758 register_prefix,
5759 i.op[op].regs->reg_name,
5760 i.tm.name,
5761 i.suffix);
5762 return 0;
5763 }
5764 /* Warn if the r prefix on a general reg is missing. */
5765 else if ((i.types[op].bitfield.reg16
5766 || i.types[op].bitfield.reg32)
5767 && (i.tm.operand_types[op].bitfield.reg64
5768 || i.tm.operand_types[op].bitfield.acc))
5769 {
5770 /* Prohibit these changes in the 64bit mode, since the
5771 lowering is more complicated. */
5772 if (intel_syntax
5773 && i.tm.opcode_modifier.todword
5774 && !i.types[0].bitfield.regxmm)
5775 {
5776 /* Convert to DWORD. We don't want REX byte. */
5777 i.suffix = LONG_MNEM_SUFFIX;
5778 }
5779 else
5780 {
5781 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5782 register_prefix, i.op[op].regs->reg_name,
5783 i.suffix);
5784 return 0;
5785 }
5786 }
5787 return 1;
5788 }
5789
5790 static int
5791 check_word_reg (void)
5792 {
5793 int op;
5794 for (op = i.operands; --op >= 0;)
5795 /* Reject eight bit registers, except where the template requires
5796 them. (eg. movzb) */
5797 if (i.types[op].bitfield.reg8
5798 && (i.tm.operand_types[op].bitfield.reg16
5799 || i.tm.operand_types[op].bitfield.reg32
5800 || i.tm.operand_types[op].bitfield.acc))
5801 {
5802 as_bad (_("`%s%s' not allowed with `%s%c'"),
5803 register_prefix,
5804 i.op[op].regs->reg_name,
5805 i.tm.name,
5806 i.suffix);
5807 return 0;
5808 }
5809 /* Warn if the e or r prefix on a general reg is present. */
5810 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5811 && (i.types[op].bitfield.reg32
5812 || i.types[op].bitfield.reg64)
5813 && (i.tm.operand_types[op].bitfield.reg16
5814 || i.tm.operand_types[op].bitfield.acc))
5815 {
5816 /* Prohibit these changes in the 64bit mode, since the
5817 lowering is more complicated. */
5818 if (flag_code == CODE_64BIT)
5819 {
5820 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5821 register_prefix, i.op[op].regs->reg_name,
5822 i.suffix);
5823 return 0;
5824 }
5825 #if REGISTER_WARNINGS
5826 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5827 register_prefix,
5828 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5829 register_prefix, i.op[op].regs->reg_name, i.suffix);
5830 #endif
5831 }
5832 return 1;
5833 }
5834
5835 static int
5836 update_imm (unsigned int j)
5837 {
5838 i386_operand_type overlap = i.types[j];
5839 if ((overlap.bitfield.imm8
5840 || overlap.bitfield.imm8s
5841 || overlap.bitfield.imm16
5842 || overlap.bitfield.imm32
5843 || overlap.bitfield.imm32s
5844 || overlap.bitfield.imm64)
5845 && !operand_type_equal (&overlap, &imm8)
5846 && !operand_type_equal (&overlap, &imm8s)
5847 && !operand_type_equal (&overlap, &imm16)
5848 && !operand_type_equal (&overlap, &imm32)
5849 && !operand_type_equal (&overlap, &imm32s)
5850 && !operand_type_equal (&overlap, &imm64))
5851 {
5852 if (i.suffix)
5853 {
5854 i386_operand_type temp;
5855
5856 operand_type_set (&temp, 0);
5857 if (i.suffix == BYTE_MNEM_SUFFIX)
5858 {
5859 temp.bitfield.imm8 = overlap.bitfield.imm8;
5860 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5861 }
5862 else if (i.suffix == WORD_MNEM_SUFFIX)
5863 temp.bitfield.imm16 = overlap.bitfield.imm16;
5864 else if (i.suffix == QWORD_MNEM_SUFFIX)
5865 {
5866 temp.bitfield.imm64 = overlap.bitfield.imm64;
5867 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5868 }
5869 else
5870 temp.bitfield.imm32 = overlap.bitfield.imm32;
5871 overlap = temp;
5872 }
5873 else if (operand_type_equal (&overlap, &imm16_32_32s)
5874 || operand_type_equal (&overlap, &imm16_32)
5875 || operand_type_equal (&overlap, &imm16_32s))
5876 {
5877 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5878 overlap = imm16;
5879 else
5880 overlap = imm32s;
5881 }
5882 if (!operand_type_equal (&overlap, &imm8)
5883 && !operand_type_equal (&overlap, &imm8s)
5884 && !operand_type_equal (&overlap, &imm16)
5885 && !operand_type_equal (&overlap, &imm32)
5886 && !operand_type_equal (&overlap, &imm32s)
5887 && !operand_type_equal (&overlap, &imm64))
5888 {
5889 as_bad (_("no instruction mnemonic suffix given; "
5890 "can't determine immediate size"));
5891 return 0;
5892 }
5893 }
5894 i.types[j] = overlap;
5895
5896 return 1;
5897 }
5898
5899 static int
5900 finalize_imm (void)
5901 {
5902 unsigned int j, n;
5903
5904 /* Update the first 2 immediate operands. */
5905 n = i.operands > 2 ? 2 : i.operands;
5906 if (n)
5907 {
5908 for (j = 0; j < n; j++)
5909 if (update_imm (j) == 0)
5910 return 0;
5911
5912 /* The 3rd operand can't be immediate operand. */
5913 gas_assert (operand_type_check (i.types[2], imm) == 0);
5914 }
5915
5916 return 1;
5917 }
5918
5919 static int
5920 bad_implicit_operand (int xmm)
5921 {
5922 const char *ireg = xmm ? "xmm0" : "ymm0";
5923
5924 if (intel_syntax)
5925 as_bad (_("the last operand of `%s' must be `%s%s'"),
5926 i.tm.name, register_prefix, ireg);
5927 else
5928 as_bad (_("the first operand of `%s' must be `%s%s'"),
5929 i.tm.name, register_prefix, ireg);
5930 return 0;
5931 }
5932
5933 static int
5934 process_operands (void)
5935 {
5936 /* Default segment register this instruction will use for memory
5937 accesses. 0 means unknown. This is only for optimizing out
5938 unnecessary segment overrides. */
5939 const seg_entry *default_seg = 0;
5940
5941 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5942 {
5943 unsigned int dupl = i.operands;
5944 unsigned int dest = dupl - 1;
5945 unsigned int j;
5946
5947 /* The destination must be an xmm register. */
5948 gas_assert (i.reg_operands
5949 && MAX_OPERANDS > dupl
5950 && operand_type_equal (&i.types[dest], &regxmm));
5951
5952 if (i.tm.opcode_modifier.firstxmm0)
5953 {
5954 /* The first operand is implicit and must be xmm0. */
5955 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5956 if (register_number (i.op[0].regs) != 0)
5957 return bad_implicit_operand (1);
5958
5959 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5960 {
5961 /* Keep xmm0 for instructions with VEX prefix and 3
5962 sources. */
5963 goto duplicate;
5964 }
5965 else
5966 {
5967 /* We remove the first xmm0 and keep the number of
5968 operands unchanged, which in fact duplicates the
5969 destination. */
5970 for (j = 1; j < i.operands; j++)
5971 {
5972 i.op[j - 1] = i.op[j];
5973 i.types[j - 1] = i.types[j];
5974 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5975 }
5976 }
5977 }
5978 else if (i.tm.opcode_modifier.implicit1stxmm0)
5979 {
5980 gas_assert ((MAX_OPERANDS - 1) > dupl
5981 && (i.tm.opcode_modifier.vexsources
5982 == VEX3SOURCES));
5983
5984 /* Add the implicit xmm0 for instructions with VEX prefix
5985 and 3 sources. */
5986 for (j = i.operands; j > 0; j--)
5987 {
5988 i.op[j] = i.op[j - 1];
5989 i.types[j] = i.types[j - 1];
5990 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5991 }
5992 i.op[0].regs
5993 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5994 i.types[0] = regxmm;
5995 i.tm.operand_types[0] = regxmm;
5996
5997 i.operands += 2;
5998 i.reg_operands += 2;
5999 i.tm.operands += 2;
6000
6001 dupl++;
6002 dest++;
6003 i.op[dupl] = i.op[dest];
6004 i.types[dupl] = i.types[dest];
6005 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6006 }
6007 else
6008 {
6009 duplicate:
6010 i.operands++;
6011 i.reg_operands++;
6012 i.tm.operands++;
6013
6014 i.op[dupl] = i.op[dest];
6015 i.types[dupl] = i.types[dest];
6016 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6017 }
6018
6019 if (i.tm.opcode_modifier.immext)
6020 process_immext ();
6021 }
6022 else if (i.tm.opcode_modifier.firstxmm0)
6023 {
6024 unsigned int j;
6025
6026 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
6027 gas_assert (i.reg_operands
6028 && (operand_type_equal (&i.types[0], &regxmm)
6029 || operand_type_equal (&i.types[0], &regymm)
6030 || operand_type_equal (&i.types[0], &regzmm)));
6031 if (register_number (i.op[0].regs) != 0)
6032 return bad_implicit_operand (i.types[0].bitfield.regxmm);
6033
6034 for (j = 1; j < i.operands; j++)
6035 {
6036 i.op[j - 1] = i.op[j];
6037 i.types[j - 1] = i.types[j];
6038
6039 /* We need to adjust fields in i.tm since they are used by
6040 build_modrm_byte. */
6041 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6042 }
6043
6044 i.operands--;
6045 i.reg_operands--;
6046 i.tm.operands--;
6047 }
6048 else if (i.tm.opcode_modifier.implicitquadgroup)
6049 {
6050 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6051 gas_assert (i.operands >= 2
6052 && (operand_type_equal (&i.types[1], &regxmm)
6053 || operand_type_equal (&i.types[1], &regymm)
6054 || operand_type_equal (&i.types[1], &regzmm)));
6055 unsigned int regnum = register_number (i.op[1].regs);
6056 unsigned int first_reg_in_group = regnum & ~3;
6057 unsigned int last_reg_in_group = first_reg_in_group + 3;
6058 if (regnum != first_reg_in_group) {
6059 as_warn (_("the second source register `%s%s' implicitly denotes"
6060 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6061 register_prefix, i.op[1].regs->reg_name,
6062 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6063 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6064 i.tm.name);
6065 }
6066 }
6067 else if (i.tm.opcode_modifier.regkludge)
6068 {
6069 /* The imul $imm, %reg instruction is converted into
6070 imul $imm, %reg, %reg, and the clr %reg instruction
6071 is converted into xor %reg, %reg. */
6072
6073 unsigned int first_reg_op;
6074
6075 if (operand_type_check (i.types[0], reg))
6076 first_reg_op = 0;
6077 else
6078 first_reg_op = 1;
6079 /* Pretend we saw the extra register operand. */
6080 gas_assert (i.reg_operands == 1
6081 && i.op[first_reg_op + 1].regs == 0);
6082 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6083 i.types[first_reg_op + 1] = i.types[first_reg_op];
6084 i.operands++;
6085 i.reg_operands++;
6086 }
6087
6088 if (i.tm.opcode_modifier.shortform)
6089 {
6090 if (i.types[0].bitfield.sreg2
6091 || i.types[0].bitfield.sreg3)
6092 {
6093 if (i.tm.base_opcode == POP_SEG_SHORT
6094 && i.op[0].regs->reg_num == 1)
6095 {
6096 as_bad (_("you can't `pop %scs'"), register_prefix);
6097 return 0;
6098 }
6099 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6100 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6101 i.rex |= REX_B;
6102 }
6103 else
6104 {
6105 /* The register or float register operand is in operand
6106 0 or 1. */
6107 unsigned int op;
6108
6109 if (i.types[0].bitfield.floatreg
6110 || operand_type_check (i.types[0], reg))
6111 op = 0;
6112 else
6113 op = 1;
6114 /* Register goes in low 3 bits of opcode. */
6115 i.tm.base_opcode |= i.op[op].regs->reg_num;
6116 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6117 i.rex |= REX_B;
6118 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6119 {
6120 /* Warn about some common errors, but press on regardless.
6121 The first case can be generated by gcc (<= 2.8.1). */
6122 if (i.operands == 2)
6123 {
6124 /* Reversed arguments on faddp, fsubp, etc. */
6125 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6126 register_prefix, i.op[!intel_syntax].regs->reg_name,
6127 register_prefix, i.op[intel_syntax].regs->reg_name);
6128 }
6129 else
6130 {
6131 /* Extraneous `l' suffix on fp insn. */
6132 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6133 register_prefix, i.op[0].regs->reg_name);
6134 }
6135 }
6136 }
6137 }
6138 else if (i.tm.opcode_modifier.modrm)
6139 {
6140 /* The opcode is completed (modulo i.tm.extension_opcode which
6141 must be put into the modrm byte). Now, we make the modrm and
6142 index base bytes based on all the info we've collected. */
6143
6144 default_seg = build_modrm_byte ();
6145 }
6146 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6147 {
6148 default_seg = &ds;
6149 }
6150 else if (i.tm.opcode_modifier.isstring)
6151 {
6152 /* For the string instructions that allow a segment override
6153 on one of their operands, the default segment is ds. */
6154 default_seg = &ds;
6155 }
6156
6157 if (i.tm.base_opcode == 0x8d /* lea */
6158 && i.seg[0]
6159 && !quiet_warnings)
6160 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6161
6162 /* If a segment was explicitly specified, and the specified segment
6163 is not the default, use an opcode prefix to select it. If we
6164 never figured out what the default segment is, then default_seg
6165 will be zero at this point, and the specified segment prefix will
6166 always be used. */
6167 if ((i.seg[0]) && (i.seg[0] != default_seg))
6168 {
6169 if (!add_prefix (i.seg[0]->seg_prefix))
6170 return 0;
6171 }
6172 return 1;
6173 }
6174
6175 static const seg_entry *
6176 build_modrm_byte (void)
6177 {
6178 const seg_entry *default_seg = 0;
6179 unsigned int source, dest;
6180 int vex_3_sources;
6181
6182 /* The first operand of instructions with VEX prefix and 3 sources
6183 must be VEX_Imm4. */
6184 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6185 if (vex_3_sources)
6186 {
6187 unsigned int nds, reg_slot;
6188 expressionS *exp;
6189
6190 if (i.tm.opcode_modifier.veximmext
6191 && i.tm.opcode_modifier.immext)
6192 {
6193 dest = i.operands - 2;
6194 gas_assert (dest == 3);
6195 }
6196 else
6197 dest = i.operands - 1;
6198 nds = dest - 1;
6199
6200 /* There are 2 kinds of instructions:
6201 1. 5 operands: 4 register operands or 3 register operands
6202 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6203 VexW0 or VexW1. The destination must be either XMM, YMM or
6204 ZMM register.
6205 2. 4 operands: 4 register operands or 3 register operands
6206 plus 1 memory operand, VexXDS, and VexImmExt */
6207 gas_assert ((i.reg_operands == 4
6208 || (i.reg_operands == 3 && i.mem_operands == 1))
6209 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6210 && (i.tm.opcode_modifier.veximmext
6211 || (i.imm_operands == 1
6212 && i.types[0].bitfield.vec_imm4
6213 && (i.tm.opcode_modifier.vexw == VEXW0
6214 || i.tm.opcode_modifier.vexw == VEXW1)
6215 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6216 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6217 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6218
6219 if (i.imm_operands == 0)
6220 {
6221 /* When there is no immediate operand, generate an 8bit
6222 immediate operand to encode the first operand. */
6223 exp = &im_expressions[i.imm_operands++];
6224 i.op[i.operands].imms = exp;
6225 i.types[i.operands] = imm8;
6226 i.operands++;
6227 /* If VexW1 is set, the first operand is the source and
6228 the second operand is encoded in the immediate operand. */
6229 if (i.tm.opcode_modifier.vexw == VEXW1)
6230 {
6231 source = 0;
6232 reg_slot = 1;
6233 }
6234 else
6235 {
6236 source = 1;
6237 reg_slot = 0;
6238 }
6239
6240 /* FMA swaps REG and NDS. */
6241 if (i.tm.cpu_flags.bitfield.cpufma)
6242 {
6243 unsigned int tmp;
6244 tmp = reg_slot;
6245 reg_slot = nds;
6246 nds = tmp;
6247 }
6248
6249 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6250 &regxmm)
6251 || operand_type_equal (&i.tm.operand_types[reg_slot],
6252 &regymm)
6253 || operand_type_equal (&i.tm.operand_types[reg_slot],
6254 &regzmm));
6255 exp->X_op = O_constant;
6256 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6257 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6258 }
6259 else
6260 {
6261 unsigned int imm_slot;
6262
6263 if (i.tm.opcode_modifier.vexw == VEXW0)
6264 {
6265 /* If VexW0 is set, the third operand is the source and
6266 the second operand is encoded in the immediate
6267 operand. */
6268 source = 2;
6269 reg_slot = 1;
6270 }
6271 else
6272 {
6273 /* VexW1 is set, the second operand is the source and
6274 the third operand is encoded in the immediate
6275 operand. */
6276 source = 1;
6277 reg_slot = 2;
6278 }
6279
6280 if (i.tm.opcode_modifier.immext)
6281 {
6282 /* When ImmExt is set, the immediate byte is the last
6283 operand. */
6284 imm_slot = i.operands - 1;
6285 source--;
6286 reg_slot--;
6287 }
6288 else
6289 {
6290 imm_slot = 0;
6291
6292 /* Turn on Imm8 so that output_imm will generate it. */
6293 i.types[imm_slot].bitfield.imm8 = 1;
6294 }
6295
6296 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6297 &regxmm)
6298 || operand_type_equal (&i.tm.operand_types[reg_slot],
6299 &regymm)
6300 || operand_type_equal (&i.tm.operand_types[reg_slot],
6301 &regzmm));
6302 i.op[imm_slot].imms->X_add_number
6303 |= register_number (i.op[reg_slot].regs) << 4;
6304 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6305 }
6306
6307 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6308 || operand_type_equal (&i.tm.operand_types[nds],
6309 &regymm)
6310 || operand_type_equal (&i.tm.operand_types[nds],
6311 &regzmm));
6312 i.vex.register_specifier = i.op[nds].regs;
6313 }
6314 else
6315 source = dest = 0;
6316
6317 /* i.reg_operands MUST be the number of real register operands;
6318 implicit registers do not count. If there are 3 register
6319 operands, it must be a instruction with VexNDS. For a
6320 instruction with VexNDD, the destination register is encoded
6321 in VEX prefix. If there are 4 register operands, it must be
6322 a instruction with VEX prefix and 3 sources. */
6323 if (i.mem_operands == 0
6324 && ((i.reg_operands == 2
6325 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6326 || (i.reg_operands == 3
6327 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6328 || (i.reg_operands == 4 && vex_3_sources)))
6329 {
6330 switch (i.operands)
6331 {
6332 case 2:
6333 source = 0;
6334 break;
6335 case 3:
6336 /* When there are 3 operands, one of them may be immediate,
6337 which may be the first or the last operand. Otherwise,
6338 the first operand must be shift count register (cl) or it
6339 is an instruction with VexNDS. */
6340 gas_assert (i.imm_operands == 1
6341 || (i.imm_operands == 0
6342 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6343 || i.types[0].bitfield.shiftcount)));
6344 if (operand_type_check (i.types[0], imm)
6345 || i.types[0].bitfield.shiftcount)
6346 source = 1;
6347 else
6348 source = 0;
6349 break;
6350 case 4:
6351 /* When there are 4 operands, the first two must be 8bit
6352 immediate operands. The source operand will be the 3rd
6353 one.
6354
6355 For instructions with VexNDS, if the first operand
6356 an imm8, the source operand is the 2nd one. If the last
6357 operand is imm8, the source operand is the first one. */
6358 gas_assert ((i.imm_operands == 2
6359 && i.types[0].bitfield.imm8
6360 && i.types[1].bitfield.imm8)
6361 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6362 && i.imm_operands == 1
6363 && (i.types[0].bitfield.imm8
6364 || i.types[i.operands - 1].bitfield.imm8
6365 || i.rounding)));
6366 if (i.imm_operands == 2)
6367 source = 2;
6368 else
6369 {
6370 if (i.types[0].bitfield.imm8)
6371 source = 1;
6372 else
6373 source = 0;
6374 }
6375 break;
6376 case 5:
6377 if (i.tm.opcode_modifier.evex)
6378 {
6379 /* For EVEX instructions, when there are 5 operands, the
6380 first one must be immediate operand. If the second one
6381 is immediate operand, the source operand is the 3th
6382 one. If the last one is immediate operand, the source
6383 operand is the 2nd one. */
6384 gas_assert (i.imm_operands == 2
6385 && i.tm.opcode_modifier.sae
6386 && operand_type_check (i.types[0], imm));
6387 if (operand_type_check (i.types[1], imm))
6388 source = 2;
6389 else if (operand_type_check (i.types[4], imm))
6390 source = 1;
6391 else
6392 abort ();
6393 }
6394 break;
6395 default:
6396 abort ();
6397 }
6398
6399 if (!vex_3_sources)
6400 {
6401 dest = source + 1;
6402
6403 /* RC/SAE operand could be between DEST and SRC. That happens
6404 when one operand is GPR and the other one is XMM/YMM/ZMM
6405 register. */
6406 if (i.rounding && i.rounding->operand == (int) dest)
6407 dest++;
6408
6409 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6410 {
6411 /* For instructions with VexNDS, the register-only source
6412 operand must be 32/64bit integer, XMM, YMM or ZMM
6413 register. It is encoded in VEX prefix. We need to
6414 clear RegMem bit before calling operand_type_equal. */
6415
6416 i386_operand_type op;
6417 unsigned int vvvv;
6418
6419 /* Check register-only source operand when two source
6420 operands are swapped. */
6421 if (!i.tm.operand_types[source].bitfield.baseindex
6422 && i.tm.operand_types[dest].bitfield.baseindex)
6423 {
6424 vvvv = source;
6425 source = dest;
6426 }
6427 else
6428 vvvv = dest;
6429
6430 op = i.tm.operand_types[vvvv];
6431 op.bitfield.regmem = 0;
6432 if ((dest + 1) >= i.operands
6433 || (!op.bitfield.reg32
6434 && op.bitfield.reg64
6435 && !operand_type_equal (&op, &regxmm)
6436 && !operand_type_equal (&op, &regymm)
6437 && !operand_type_equal (&op, &regzmm)
6438 && !operand_type_equal (&op, &regmask)))
6439 abort ();
6440 i.vex.register_specifier = i.op[vvvv].regs;
6441 dest++;
6442 }
6443 }
6444
6445 i.rm.mode = 3;
6446 /* One of the register operands will be encoded in the i.tm.reg
6447 field, the other in the combined i.tm.mode and i.tm.regmem
6448 fields. If no form of this instruction supports a memory
6449 destination operand, then we assume the source operand may
6450 sometimes be a memory operand and so we need to store the
6451 destination in the i.rm.reg field. */
6452 if (!i.tm.operand_types[dest].bitfield.regmem
6453 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6454 {
6455 i.rm.reg = i.op[dest].regs->reg_num;
6456 i.rm.regmem = i.op[source].regs->reg_num;
6457 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6458 i.rex |= REX_R;
6459 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6460 i.vrex |= REX_R;
6461 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6462 i.rex |= REX_B;
6463 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6464 i.vrex |= REX_B;
6465 }
6466 else
6467 {
6468 i.rm.reg = i.op[source].regs->reg_num;
6469 i.rm.regmem = i.op[dest].regs->reg_num;
6470 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6471 i.rex |= REX_B;
6472 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6473 i.vrex |= REX_B;
6474 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6475 i.rex |= REX_R;
6476 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6477 i.vrex |= REX_R;
6478 }
6479 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6480 {
6481 if (!i.types[0].bitfield.control
6482 && !i.types[1].bitfield.control)
6483 abort ();
6484 i.rex &= ~(REX_R | REX_B);
6485 add_prefix (LOCK_PREFIX_OPCODE);
6486 }
6487 }
6488 else
6489 { /* If it's not 2 reg operands... */
6490 unsigned int mem;
6491
6492 if (i.mem_operands)
6493 {
6494 unsigned int fake_zero_displacement = 0;
6495 unsigned int op;
6496
6497 for (op = 0; op < i.operands; op++)
6498 if (operand_type_check (i.types[op], anymem))
6499 break;
6500 gas_assert (op < i.operands);
6501
6502 if (i.tm.opcode_modifier.vecsib)
6503 {
6504 if (i.index_reg->reg_num == RegEiz
6505 || i.index_reg->reg_num == RegRiz)
6506 abort ();
6507
6508 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6509 if (!i.base_reg)
6510 {
6511 i.sib.base = NO_BASE_REGISTER;
6512 i.sib.scale = i.log2_scale_factor;
6513 /* No Vec_Disp8 if there is no base. */
6514 i.types[op].bitfield.vec_disp8 = 0;
6515 i.types[op].bitfield.disp8 = 0;
6516 i.types[op].bitfield.disp16 = 0;
6517 i.types[op].bitfield.disp64 = 0;
6518 if (flag_code != CODE_64BIT)
6519 {
6520 /* Must be 32 bit */
6521 i.types[op].bitfield.disp32 = 1;
6522 i.types[op].bitfield.disp32s = 0;
6523 }
6524 else
6525 {
6526 i.types[op].bitfield.disp32 = 0;
6527 i.types[op].bitfield.disp32s = 1;
6528 }
6529 }
6530 i.sib.index = i.index_reg->reg_num;
6531 if ((i.index_reg->reg_flags & RegRex) != 0)
6532 i.rex |= REX_X;
6533 if ((i.index_reg->reg_flags & RegVRex) != 0)
6534 i.vrex |= REX_X;
6535 }
6536
6537 default_seg = &ds;
6538
6539 if (i.base_reg == 0)
6540 {
6541 i.rm.mode = 0;
6542 if (!i.disp_operands)
6543 {
6544 fake_zero_displacement = 1;
6545 /* Instructions with VSIB byte need 32bit displacement
6546 if there is no base register. */
6547 if (i.tm.opcode_modifier.vecsib)
6548 i.types[op].bitfield.disp32 = 1;
6549 }
6550 if (i.index_reg == 0)
6551 {
6552 gas_assert (!i.tm.opcode_modifier.vecsib);
6553 /* Operand is just <disp> */
6554 if (flag_code == CODE_64BIT)
6555 {
6556 /* 64bit mode overwrites the 32bit absolute
6557 addressing by RIP relative addressing and
6558 absolute addressing is encoded by one of the
6559 redundant SIB forms. */
6560 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6561 i.sib.base = NO_BASE_REGISTER;
6562 i.sib.index = NO_INDEX_REGISTER;
6563 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6564 ? disp32s : disp32);
6565 }
6566 else if ((flag_code == CODE_16BIT)
6567 ^ (i.prefix[ADDR_PREFIX] != 0))
6568 {
6569 i.rm.regmem = NO_BASE_REGISTER_16;
6570 i.types[op] = disp16;
6571 }
6572 else
6573 {
6574 i.rm.regmem = NO_BASE_REGISTER;
6575 i.types[op] = disp32;
6576 }
6577 }
6578 else if (!i.tm.opcode_modifier.vecsib)
6579 {
6580 /* !i.base_reg && i.index_reg */
6581 if (i.index_reg->reg_num == RegEiz
6582 || i.index_reg->reg_num == RegRiz)
6583 i.sib.index = NO_INDEX_REGISTER;
6584 else
6585 i.sib.index = i.index_reg->reg_num;
6586 i.sib.base = NO_BASE_REGISTER;
6587 i.sib.scale = i.log2_scale_factor;
6588 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6589 /* No Vec_Disp8 if there is no base. */
6590 i.types[op].bitfield.vec_disp8 = 0;
6591 i.types[op].bitfield.disp8 = 0;
6592 i.types[op].bitfield.disp16 = 0;
6593 i.types[op].bitfield.disp64 = 0;
6594 if (flag_code != CODE_64BIT)
6595 {
6596 /* Must be 32 bit */
6597 i.types[op].bitfield.disp32 = 1;
6598 i.types[op].bitfield.disp32s = 0;
6599 }
6600 else
6601 {
6602 i.types[op].bitfield.disp32 = 0;
6603 i.types[op].bitfield.disp32s = 1;
6604 }
6605 if ((i.index_reg->reg_flags & RegRex) != 0)
6606 i.rex |= REX_X;
6607 }
6608 }
6609 /* RIP addressing for 64bit mode. */
6610 else if (i.base_reg->reg_num == RegRip ||
6611 i.base_reg->reg_num == RegEip)
6612 {
6613 gas_assert (!i.tm.opcode_modifier.vecsib);
6614 i.rm.regmem = NO_BASE_REGISTER;
6615 i.types[op].bitfield.disp8 = 0;
6616 i.types[op].bitfield.disp16 = 0;
6617 i.types[op].bitfield.disp32 = 0;
6618 i.types[op].bitfield.disp32s = 1;
6619 i.types[op].bitfield.disp64 = 0;
6620 i.types[op].bitfield.vec_disp8 = 0;
6621 i.flags[op] |= Operand_PCrel;
6622 if (! i.disp_operands)
6623 fake_zero_displacement = 1;
6624 }
6625 else if (i.base_reg->reg_type.bitfield.reg16)
6626 {
6627 gas_assert (!i.tm.opcode_modifier.vecsib);
6628 switch (i.base_reg->reg_num)
6629 {
6630 case 3: /* (%bx) */
6631 if (i.index_reg == 0)
6632 i.rm.regmem = 7;
6633 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6634 i.rm.regmem = i.index_reg->reg_num - 6;
6635 break;
6636 case 5: /* (%bp) */
6637 default_seg = &ss;
6638 if (i.index_reg == 0)
6639 {
6640 i.rm.regmem = 6;
6641 if (operand_type_check (i.types[op], disp) == 0)
6642 {
6643 /* fake (%bp) into 0(%bp) */
6644 if (i.tm.operand_types[op].bitfield.vec_disp8)
6645 i.types[op].bitfield.vec_disp8 = 1;
6646 else
6647 i.types[op].bitfield.disp8 = 1;
6648 fake_zero_displacement = 1;
6649 }
6650 }
6651 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6652 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6653 break;
6654 default: /* (%si) -> 4 or (%di) -> 5 */
6655 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6656 }
6657 i.rm.mode = mode_from_disp_size (i.types[op]);
6658 }
6659 else /* i.base_reg and 32/64 bit mode */
6660 {
6661 if (flag_code == CODE_64BIT
6662 && operand_type_check (i.types[op], disp))
6663 {
6664 i386_operand_type temp;
6665 operand_type_set (&temp, 0);
6666 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6667 temp.bitfield.vec_disp8
6668 = i.types[op].bitfield.vec_disp8;
6669 i.types[op] = temp;
6670 if (i.prefix[ADDR_PREFIX] == 0)
6671 i.types[op].bitfield.disp32s = 1;
6672 else
6673 i.types[op].bitfield.disp32 = 1;
6674 }
6675
6676 if (!i.tm.opcode_modifier.vecsib)
6677 i.rm.regmem = i.base_reg->reg_num;
6678 if ((i.base_reg->reg_flags & RegRex) != 0)
6679 i.rex |= REX_B;
6680 i.sib.base = i.base_reg->reg_num;
6681 /* x86-64 ignores REX prefix bit here to avoid decoder
6682 complications. */
6683 if (!(i.base_reg->reg_flags & RegRex)
6684 && (i.base_reg->reg_num == EBP_REG_NUM
6685 || i.base_reg->reg_num == ESP_REG_NUM))
6686 default_seg = &ss;
6687 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6688 {
6689 fake_zero_displacement = 1;
6690 if (i.tm.operand_types [op].bitfield.vec_disp8)
6691 i.types[op].bitfield.vec_disp8 = 1;
6692 else
6693 i.types[op].bitfield.disp8 = 1;
6694 }
6695 i.sib.scale = i.log2_scale_factor;
6696 if (i.index_reg == 0)
6697 {
6698 gas_assert (!i.tm.opcode_modifier.vecsib);
6699 /* <disp>(%esp) becomes two byte modrm with no index
6700 register. We've already stored the code for esp
6701 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6702 Any base register besides %esp will not use the
6703 extra modrm byte. */
6704 i.sib.index = NO_INDEX_REGISTER;
6705 }
6706 else if (!i.tm.opcode_modifier.vecsib)
6707 {
6708 if (i.index_reg->reg_num == RegEiz
6709 || i.index_reg->reg_num == RegRiz)
6710 i.sib.index = NO_INDEX_REGISTER;
6711 else
6712 i.sib.index = i.index_reg->reg_num;
6713 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6714 if ((i.index_reg->reg_flags & RegRex) != 0)
6715 i.rex |= REX_X;
6716 }
6717
6718 if (i.disp_operands
6719 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6720 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6721 i.rm.mode = 0;
6722 else
6723 {
6724 if (!fake_zero_displacement
6725 && !i.disp_operands
6726 && i.disp_encoding)
6727 {
6728 fake_zero_displacement = 1;
6729 if (i.disp_encoding == disp_encoding_8bit)
6730 i.types[op].bitfield.disp8 = 1;
6731 else
6732 i.types[op].bitfield.disp32 = 1;
6733 }
6734 i.rm.mode = mode_from_disp_size (i.types[op]);
6735 }
6736 }
6737
6738 if (fake_zero_displacement)
6739 {
6740 /* Fakes a zero displacement assuming that i.types[op]
6741 holds the correct displacement size. */
6742 expressionS *exp;
6743
6744 gas_assert (i.op[op].disps == 0);
6745 exp = &disp_expressions[i.disp_operands++];
6746 i.op[op].disps = exp;
6747 exp->X_op = O_constant;
6748 exp->X_add_number = 0;
6749 exp->X_add_symbol = (symbolS *) 0;
6750 exp->X_op_symbol = (symbolS *) 0;
6751 }
6752
6753 mem = op;
6754 }
6755 else
6756 mem = ~0;
6757
6758 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6759 {
6760 if (operand_type_check (i.types[0], imm))
6761 i.vex.register_specifier = NULL;
6762 else
6763 {
6764 /* VEX.vvvv encodes one of the sources when the first
6765 operand is not an immediate. */
6766 if (i.tm.opcode_modifier.vexw == VEXW0)
6767 i.vex.register_specifier = i.op[0].regs;
6768 else
6769 i.vex.register_specifier = i.op[1].regs;
6770 }
6771
6772 /* Destination is a XMM register encoded in the ModRM.reg
6773 and VEX.R bit. */
6774 i.rm.reg = i.op[2].regs->reg_num;
6775 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6776 i.rex |= REX_R;
6777
6778 /* ModRM.rm and VEX.B encodes the other source. */
6779 if (!i.mem_operands)
6780 {
6781 i.rm.mode = 3;
6782
6783 if (i.tm.opcode_modifier.vexw == VEXW0)
6784 i.rm.regmem = i.op[1].regs->reg_num;
6785 else
6786 i.rm.regmem = i.op[0].regs->reg_num;
6787
6788 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6789 i.rex |= REX_B;
6790 }
6791 }
6792 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6793 {
6794 i.vex.register_specifier = i.op[2].regs;
6795 if (!i.mem_operands)
6796 {
6797 i.rm.mode = 3;
6798 i.rm.regmem = i.op[1].regs->reg_num;
6799 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6800 i.rex |= REX_B;
6801 }
6802 }
6803 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6804 (if any) based on i.tm.extension_opcode. Again, we must be
6805 careful to make sure that segment/control/debug/test/MMX
6806 registers are coded into the i.rm.reg field. */
6807 else if (i.reg_operands)
6808 {
6809 unsigned int op;
6810 unsigned int vex_reg = ~0;
6811
6812 for (op = 0; op < i.operands; op++)
6813 if (i.types[op].bitfield.reg8
6814 || i.types[op].bitfield.reg16
6815 || i.types[op].bitfield.reg32
6816 || i.types[op].bitfield.reg64
6817 || i.types[op].bitfield.regmmx
6818 || i.types[op].bitfield.regxmm
6819 || i.types[op].bitfield.regymm
6820 || i.types[op].bitfield.regbnd
6821 || i.types[op].bitfield.regzmm
6822 || i.types[op].bitfield.regmask
6823 || i.types[op].bitfield.sreg2
6824 || i.types[op].bitfield.sreg3
6825 || i.types[op].bitfield.control
6826 || i.types[op].bitfield.debug
6827 || i.types[op].bitfield.test)
6828 break;
6829
6830 if (vex_3_sources)
6831 op = dest;
6832 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6833 {
6834 /* For instructions with VexNDS, the register-only
6835 source operand is encoded in VEX prefix. */
6836 gas_assert (mem != (unsigned int) ~0);
6837
6838 if (op > mem)
6839 {
6840 vex_reg = op++;
6841 gas_assert (op < i.operands);
6842 }
6843 else
6844 {
6845 /* Check register-only source operand when two source
6846 operands are swapped. */
6847 if (!i.tm.operand_types[op].bitfield.baseindex
6848 && i.tm.operand_types[op + 1].bitfield.baseindex)
6849 {
6850 vex_reg = op;
6851 op += 2;
6852 gas_assert (mem == (vex_reg + 1)
6853 && op < i.operands);
6854 }
6855 else
6856 {
6857 vex_reg = op + 1;
6858 gas_assert (vex_reg < i.operands);
6859 }
6860 }
6861 }
6862 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6863 {
6864 /* For instructions with VexNDD, the register destination
6865 is encoded in VEX prefix. */
6866 if (i.mem_operands == 0)
6867 {
6868 /* There is no memory operand. */
6869 gas_assert ((op + 2) == i.operands);
6870 vex_reg = op + 1;
6871 }
6872 else
6873 {
6874 /* There are only 2 operands. */
6875 gas_assert (op < 2 && i.operands == 2);
6876 vex_reg = 1;
6877 }
6878 }
6879 else
6880 gas_assert (op < i.operands);
6881
6882 if (vex_reg != (unsigned int) ~0)
6883 {
6884 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6885
6886 if (type->bitfield.reg32 != 1
6887 && type->bitfield.reg64 != 1
6888 && !operand_type_equal (type, &regxmm)
6889 && !operand_type_equal (type, &regymm)
6890 && !operand_type_equal (type, &regzmm)
6891 && !operand_type_equal (type, &regmask))
6892 abort ();
6893
6894 i.vex.register_specifier = i.op[vex_reg].regs;
6895 }
6896
6897 /* Don't set OP operand twice. */
6898 if (vex_reg != op)
6899 {
6900 /* If there is an extension opcode to put here, the
6901 register number must be put into the regmem field. */
6902 if (i.tm.extension_opcode != None)
6903 {
6904 i.rm.regmem = i.op[op].regs->reg_num;
6905 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6906 i.rex |= REX_B;
6907 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6908 i.vrex |= REX_B;
6909 }
6910 else
6911 {
6912 i.rm.reg = i.op[op].regs->reg_num;
6913 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6914 i.rex |= REX_R;
6915 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6916 i.vrex |= REX_R;
6917 }
6918 }
6919
6920 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6921 must set it to 3 to indicate this is a register operand
6922 in the regmem field. */
6923 if (!i.mem_operands)
6924 i.rm.mode = 3;
6925 }
6926
6927 /* Fill in i.rm.reg field with extension opcode (if any). */
6928 if (i.tm.extension_opcode != None)
6929 i.rm.reg = i.tm.extension_opcode;
6930 }
6931 return default_seg;
6932 }
6933
6934 static void
6935 output_branch (void)
6936 {
6937 char *p;
6938 int size;
6939 int code16;
6940 int prefix;
6941 relax_substateT subtype;
6942 symbolS *sym;
6943 offsetT off;
6944
6945 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6946 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6947
6948 prefix = 0;
6949 if (i.prefix[DATA_PREFIX] != 0)
6950 {
6951 prefix = 1;
6952 i.prefixes -= 1;
6953 code16 ^= CODE16;
6954 }
6955 /* Pentium4 branch hints. */
6956 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6957 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6958 {
6959 prefix++;
6960 i.prefixes--;
6961 }
6962 if (i.prefix[REX_PREFIX] != 0)
6963 {
6964 prefix++;
6965 i.prefixes--;
6966 }
6967
6968 /* BND prefixed jump. */
6969 if (i.prefix[BND_PREFIX] != 0)
6970 {
6971 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6972 i.prefixes -= 1;
6973 }
6974
6975 if (i.prefixes != 0 && !intel_syntax)
6976 as_warn (_("skipping prefixes on this instruction"));
6977
6978 /* It's always a symbol; End frag & setup for relax.
6979 Make sure there is enough room in this frag for the largest
6980 instruction we may generate in md_convert_frag. This is 2
6981 bytes for the opcode and room for the prefix and largest
6982 displacement. */
6983 frag_grow (prefix + 2 + 4);
6984 /* Prefix and 1 opcode byte go in fr_fix. */
6985 p = frag_more (prefix + 1);
6986 if (i.prefix[DATA_PREFIX] != 0)
6987 *p++ = DATA_PREFIX_OPCODE;
6988 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6989 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6990 *p++ = i.prefix[SEG_PREFIX];
6991 if (i.prefix[REX_PREFIX] != 0)
6992 *p++ = i.prefix[REX_PREFIX];
6993 *p = i.tm.base_opcode;
6994
6995 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6996 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6997 else if (cpu_arch_flags.bitfield.cpui386)
6998 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6999 else
7000 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7001 subtype |= code16;
7002
7003 sym = i.op[0].disps->X_add_symbol;
7004 off = i.op[0].disps->X_add_number;
7005
7006 if (i.op[0].disps->X_op != O_constant
7007 && i.op[0].disps->X_op != O_symbol)
7008 {
7009 /* Handle complex expressions. */
7010 sym = make_expr_symbol (i.op[0].disps);
7011 off = 0;
7012 }
7013
7014 /* 1 possible extra opcode + 4 byte displacement go in var part.
7015 Pass reloc in fr_var. */
7016 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7017 }
7018
7019 static void
7020 output_jump (void)
7021 {
7022 char *p;
7023 int size;
7024 fixS *fixP;
7025
7026 if (i.tm.opcode_modifier.jumpbyte)
7027 {
7028 /* This is a loop or jecxz type instruction. */
7029 size = 1;
7030 if (i.prefix[ADDR_PREFIX] != 0)
7031 {
7032 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7033 i.prefixes -= 1;
7034 }
7035 /* Pentium4 branch hints. */
7036 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7037 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7038 {
7039 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7040 i.prefixes--;
7041 }
7042 }
7043 else
7044 {
7045 int code16;
7046
7047 code16 = 0;
7048 if (flag_code == CODE_16BIT)
7049 code16 = CODE16;
7050
7051 if (i.prefix[DATA_PREFIX] != 0)
7052 {
7053 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7054 i.prefixes -= 1;
7055 code16 ^= CODE16;
7056 }
7057
7058 size = 4;
7059 if (code16)
7060 size = 2;
7061 }
7062
7063 if (i.prefix[REX_PREFIX] != 0)
7064 {
7065 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7066 i.prefixes -= 1;
7067 }
7068
7069 /* BND prefixed jump. */
7070 if (i.prefix[BND_PREFIX] != 0)
7071 {
7072 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7073 i.prefixes -= 1;
7074 }
7075
7076 if (i.prefixes != 0 && !intel_syntax)
7077 as_warn (_("skipping prefixes on this instruction"));
7078
7079 p = frag_more (i.tm.opcode_length + size);
7080 switch (i.tm.opcode_length)
7081 {
7082 case 2:
7083 *p++ = i.tm.base_opcode >> 8;
7084 /* Fall through. */
7085 case 1:
7086 *p++ = i.tm.base_opcode;
7087 break;
7088 default:
7089 abort ();
7090 }
7091
7092 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7093 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
7094
7095 /* All jumps handled here are signed, but don't use a signed limit
7096 check for 32 and 16 bit jumps as we want to allow wrap around at
7097 4G and 64k respectively. */
7098 if (size == 1)
7099 fixP->fx_signed = 1;
7100 }
7101
7102 static void
7103 output_interseg_jump (void)
7104 {
7105 char *p;
7106 int size;
7107 int prefix;
7108 int code16;
7109
7110 code16 = 0;
7111 if (flag_code == CODE_16BIT)
7112 code16 = CODE16;
7113
7114 prefix = 0;
7115 if (i.prefix[DATA_PREFIX] != 0)
7116 {
7117 prefix = 1;
7118 i.prefixes -= 1;
7119 code16 ^= CODE16;
7120 }
7121 if (i.prefix[REX_PREFIX] != 0)
7122 {
7123 prefix++;
7124 i.prefixes -= 1;
7125 }
7126
7127 size = 4;
7128 if (code16)
7129 size = 2;
7130
7131 if (i.prefixes != 0 && !intel_syntax)
7132 as_warn (_("skipping prefixes on this instruction"));
7133
7134 /* 1 opcode; 2 segment; offset */
7135 p = frag_more (prefix + 1 + 2 + size);
7136
7137 if (i.prefix[DATA_PREFIX] != 0)
7138 *p++ = DATA_PREFIX_OPCODE;
7139
7140 if (i.prefix[REX_PREFIX] != 0)
7141 *p++ = i.prefix[REX_PREFIX];
7142
7143 *p++ = i.tm.base_opcode;
7144 if (i.op[1].imms->X_op == O_constant)
7145 {
7146 offsetT n = i.op[1].imms->X_add_number;
7147
7148 if (size == 2
7149 && !fits_in_unsigned_word (n)
7150 && !fits_in_signed_word (n))
7151 {
7152 as_bad (_("16-bit jump out of range"));
7153 return;
7154 }
7155 md_number_to_chars (p, n, size);
7156 }
7157 else
7158 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7159 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7160 if (i.op[0].imms->X_op != O_constant)
7161 as_bad (_("can't handle non absolute segment in `%s'"),
7162 i.tm.name);
7163 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7164 }
7165
7166 static void
7167 output_insn (void)
7168 {
7169 fragS *insn_start_frag;
7170 offsetT insn_start_off;
7171
7172 /* Tie dwarf2 debug info to the address at the start of the insn.
7173 We can't do this after the insn has been output as the current
7174 frag may have been closed off. eg. by frag_var. */
7175 dwarf2_emit_insn (0);
7176
7177 insn_start_frag = frag_now;
7178 insn_start_off = frag_now_fix ();
7179
7180 /* Output jumps. */
7181 if (i.tm.opcode_modifier.jump)
7182 output_branch ();
7183 else if (i.tm.opcode_modifier.jumpbyte
7184 || i.tm.opcode_modifier.jumpdword)
7185 output_jump ();
7186 else if (i.tm.opcode_modifier.jumpintersegment)
7187 output_interseg_jump ();
7188 else
7189 {
7190 /* Output normal instructions here. */
7191 char *p;
7192 unsigned char *q;
7193 unsigned int j;
7194 unsigned int prefix;
7195
7196 if (avoid_fence
7197 && i.tm.base_opcode == 0xfae
7198 && i.operands == 1
7199 && i.imm_operands == 1
7200 && (i.op[0].imms->X_add_number == 0xe8
7201 || i.op[0].imms->X_add_number == 0xf0
7202 || i.op[0].imms->X_add_number == 0xf8))
7203 {
7204 /* Encode lfence, mfence, and sfence as
7205 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7206 offsetT val = 0x240483f0ULL;
7207 p = frag_more (5);
7208 md_number_to_chars (p, val, 5);
7209 return;
7210 }
7211
7212 /* Some processors fail on LOCK prefix. This options makes
7213 assembler ignore LOCK prefix and serves as a workaround. */
7214 if (omit_lock_prefix)
7215 {
7216 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7217 return;
7218 i.prefix[LOCK_PREFIX] = 0;
7219 }
7220
7221 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7222 don't need the explicit prefix. */
7223 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7224 {
7225 switch (i.tm.opcode_length)
7226 {
7227 case 3:
7228 if (i.tm.base_opcode & 0xff000000)
7229 {
7230 prefix = (i.tm.base_opcode >> 24) & 0xff;
7231 goto check_prefix;
7232 }
7233 break;
7234 case 2:
7235 if ((i.tm.base_opcode & 0xff0000) != 0)
7236 {
7237 prefix = (i.tm.base_opcode >> 16) & 0xff;
7238 if (i.tm.cpu_flags.bitfield.cpupadlock)
7239 {
7240 check_prefix:
7241 if (prefix != REPE_PREFIX_OPCODE
7242 || (i.prefix[REP_PREFIX]
7243 != REPE_PREFIX_OPCODE))
7244 add_prefix (prefix);
7245 }
7246 else
7247 add_prefix (prefix);
7248 }
7249 break;
7250 case 1:
7251 break;
7252 default:
7253 abort ();
7254 }
7255
7256 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7257 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7258 R_X86_64_GOTTPOFF relocation so that linker can safely
7259 perform IE->LE optimization. */
7260 if (x86_elf_abi == X86_64_X32_ABI
7261 && i.operands == 2
7262 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7263 && i.prefix[REX_PREFIX] == 0)
7264 add_prefix (REX_OPCODE);
7265 #endif
7266
7267 /* The prefix bytes. */
7268 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7269 if (*q)
7270 FRAG_APPEND_1_CHAR (*q);
7271 }
7272 else
7273 {
7274 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7275 if (*q)
7276 switch (j)
7277 {
7278 case REX_PREFIX:
7279 /* REX byte is encoded in VEX prefix. */
7280 break;
7281 case SEG_PREFIX:
7282 case ADDR_PREFIX:
7283 FRAG_APPEND_1_CHAR (*q);
7284 break;
7285 default:
7286 /* There should be no other prefixes for instructions
7287 with VEX prefix. */
7288 abort ();
7289 }
7290
7291 /* For EVEX instructions i.vrex should become 0 after
7292 build_evex_prefix. For VEX instructions upper 16 registers
7293 aren't available, so VREX should be 0. */
7294 if (i.vrex)
7295 abort ();
7296 /* Now the VEX prefix. */
7297 p = frag_more (i.vex.length);
7298 for (j = 0; j < i.vex.length; j++)
7299 p[j] = i.vex.bytes[j];
7300 }
7301
7302 /* Now the opcode; be careful about word order here! */
7303 if (i.tm.opcode_length == 1)
7304 {
7305 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7306 }
7307 else
7308 {
7309 switch (i.tm.opcode_length)
7310 {
7311 case 4:
7312 p = frag_more (4);
7313 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7314 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7315 break;
7316 case 3:
7317 p = frag_more (3);
7318 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7319 break;
7320 case 2:
7321 p = frag_more (2);
7322 break;
7323 default:
7324 abort ();
7325 break;
7326 }
7327
7328 /* Put out high byte first: can't use md_number_to_chars! */
7329 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7330 *p = i.tm.base_opcode & 0xff;
7331 }
7332
7333 /* Now the modrm byte and sib byte (if present). */
7334 if (i.tm.opcode_modifier.modrm)
7335 {
7336 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7337 | i.rm.reg << 3
7338 | i.rm.mode << 6));
7339 /* If i.rm.regmem == ESP (4)
7340 && i.rm.mode != (Register mode)
7341 && not 16 bit
7342 ==> need second modrm byte. */
7343 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7344 && i.rm.mode != 3
7345 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7346 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7347 | i.sib.index << 3
7348 | i.sib.scale << 6));
7349 }
7350
7351 if (i.disp_operands)
7352 output_disp (insn_start_frag, insn_start_off);
7353
7354 if (i.imm_operands)
7355 output_imm (insn_start_frag, insn_start_off);
7356 }
7357
7358 #ifdef DEBUG386
7359 if (flag_debug)
7360 {
7361 pi ("" /*line*/, &i);
7362 }
7363 #endif /* DEBUG386 */
7364 }
7365
7366 /* Return the size of the displacement operand N. */
7367
7368 static int
7369 disp_size (unsigned int n)
7370 {
7371 int size = 4;
7372
7373 /* Vec_Disp8 has to be 8bit. */
7374 if (i.types[n].bitfield.vec_disp8)
7375 size = 1;
7376 else if (i.types[n].bitfield.disp64)
7377 size = 8;
7378 else if (i.types[n].bitfield.disp8)
7379 size = 1;
7380 else if (i.types[n].bitfield.disp16)
7381 size = 2;
7382 return size;
7383 }
7384
7385 /* Return the size of the immediate operand N. */
7386
7387 static int
7388 imm_size (unsigned int n)
7389 {
7390 int size = 4;
7391 if (i.types[n].bitfield.imm64)
7392 size = 8;
7393 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7394 size = 1;
7395 else if (i.types[n].bitfield.imm16)
7396 size = 2;
7397 return size;
7398 }
7399
7400 static void
7401 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7402 {
7403 char *p;
7404 unsigned int n;
7405
7406 for (n = 0; n < i.operands; n++)
7407 {
7408 if (i.types[n].bitfield.vec_disp8
7409 || operand_type_check (i.types[n], disp))
7410 {
7411 if (i.op[n].disps->X_op == O_constant)
7412 {
7413 int size = disp_size (n);
7414 offsetT val = i.op[n].disps->X_add_number;
7415
7416 if (i.types[n].bitfield.vec_disp8)
7417 val >>= i.memshift;
7418 val = offset_in_range (val, size);
7419 p = frag_more (size);
7420 md_number_to_chars (p, val, size);
7421 }
7422 else
7423 {
7424 enum bfd_reloc_code_real reloc_type;
7425 int size = disp_size (n);
7426 int sign = i.types[n].bitfield.disp32s;
7427 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7428 fixS *fixP;
7429
7430 /* We can't have 8 bit displacement here. */
7431 gas_assert (!i.types[n].bitfield.disp8);
7432
7433 /* The PC relative address is computed relative
7434 to the instruction boundary, so in case immediate
7435 fields follows, we need to adjust the value. */
7436 if (pcrel && i.imm_operands)
7437 {
7438 unsigned int n1;
7439 int sz = 0;
7440
7441 for (n1 = 0; n1 < i.operands; n1++)
7442 if (operand_type_check (i.types[n1], imm))
7443 {
7444 /* Only one immediate is allowed for PC
7445 relative address. */
7446 gas_assert (sz == 0);
7447 sz = imm_size (n1);
7448 i.op[n].disps->X_add_number -= sz;
7449 }
7450 /* We should find the immediate. */
7451 gas_assert (sz != 0);
7452 }
7453
7454 p = frag_more (size);
7455 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7456 if (GOT_symbol
7457 && GOT_symbol == i.op[n].disps->X_add_symbol
7458 && (((reloc_type == BFD_RELOC_32
7459 || reloc_type == BFD_RELOC_X86_64_32S
7460 || (reloc_type == BFD_RELOC_64
7461 && object_64bit))
7462 && (i.op[n].disps->X_op == O_symbol
7463 || (i.op[n].disps->X_op == O_add
7464 && ((symbol_get_value_expression
7465 (i.op[n].disps->X_op_symbol)->X_op)
7466 == O_subtract))))
7467 || reloc_type == BFD_RELOC_32_PCREL))
7468 {
7469 offsetT add;
7470
7471 if (insn_start_frag == frag_now)
7472 add = (p - frag_now->fr_literal) - insn_start_off;
7473 else
7474 {
7475 fragS *fr;
7476
7477 add = insn_start_frag->fr_fix - insn_start_off;
7478 for (fr = insn_start_frag->fr_next;
7479 fr && fr != frag_now; fr = fr->fr_next)
7480 add += fr->fr_fix;
7481 add += p - frag_now->fr_literal;
7482 }
7483
7484 if (!object_64bit)
7485 {
7486 reloc_type = BFD_RELOC_386_GOTPC;
7487 i.op[n].imms->X_add_number += add;
7488 }
7489 else if (reloc_type == BFD_RELOC_64)
7490 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7491 else
7492 /* Don't do the adjustment for x86-64, as there
7493 the pcrel addressing is relative to the _next_
7494 insn, and that is taken care of in other code. */
7495 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7496 }
7497 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7498 size, i.op[n].disps, pcrel,
7499 reloc_type);
7500 /* Check for "call/jmp *mem", "mov mem, %reg",
7501 "test %reg, mem" and "binop mem, %reg" where binop
7502 is one of adc, add, and, cmp, or, sbb, sub, xor
7503 instructions. Always generate R_386_GOT32X for
7504 "sym*GOT" operand in 32-bit mode. */
7505 if ((generate_relax_relocations
7506 || (!object_64bit
7507 && i.rm.mode == 0
7508 && i.rm.regmem == 5))
7509 && (i.rm.mode == 2
7510 || (i.rm.mode == 0 && i.rm.regmem == 5))
7511 && ((i.operands == 1
7512 && i.tm.base_opcode == 0xff
7513 && (i.rm.reg == 2 || i.rm.reg == 4))
7514 || (i.operands == 2
7515 && (i.tm.base_opcode == 0x8b
7516 || i.tm.base_opcode == 0x85
7517 || (i.tm.base_opcode & 0xc7) == 0x03))))
7518 {
7519 if (object_64bit)
7520 {
7521 fixP->fx_tcbit = i.rex != 0;
7522 if (i.base_reg
7523 && (i.base_reg->reg_num == RegRip
7524 || i.base_reg->reg_num == RegEip))
7525 fixP->fx_tcbit2 = 1;
7526 }
7527 else
7528 fixP->fx_tcbit2 = 1;
7529 }
7530 }
7531 }
7532 }
7533 }
7534
7535 static void
7536 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7537 {
7538 char *p;
7539 unsigned int n;
7540
7541 for (n = 0; n < i.operands; n++)
7542 {
7543 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7544 if (i.rounding && (int) n == i.rounding->operand)
7545 continue;
7546
7547 if (operand_type_check (i.types[n], imm))
7548 {
7549 if (i.op[n].imms->X_op == O_constant)
7550 {
7551 int size = imm_size (n);
7552 offsetT val;
7553
7554 val = offset_in_range (i.op[n].imms->X_add_number,
7555 size);
7556 p = frag_more (size);
7557 md_number_to_chars (p, val, size);
7558 }
7559 else
7560 {
7561 /* Not absolute_section.
7562 Need a 32-bit fixup (don't support 8bit
7563 non-absolute imms). Try to support other
7564 sizes ... */
7565 enum bfd_reloc_code_real reloc_type;
7566 int size = imm_size (n);
7567 int sign;
7568
7569 if (i.types[n].bitfield.imm32s
7570 && (i.suffix == QWORD_MNEM_SUFFIX
7571 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7572 sign = 1;
7573 else
7574 sign = 0;
7575
7576 p = frag_more (size);
7577 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7578
7579 /* This is tough to explain. We end up with this one if we
7580 * have operands that look like
7581 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7582 * obtain the absolute address of the GOT, and it is strongly
7583 * preferable from a performance point of view to avoid using
7584 * a runtime relocation for this. The actual sequence of
7585 * instructions often look something like:
7586 *
7587 * call .L66
7588 * .L66:
7589 * popl %ebx
7590 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7591 *
7592 * The call and pop essentially return the absolute address
7593 * of the label .L66 and store it in %ebx. The linker itself
7594 * will ultimately change the first operand of the addl so
7595 * that %ebx points to the GOT, but to keep things simple, the
7596 * .o file must have this operand set so that it generates not
7597 * the absolute address of .L66, but the absolute address of
7598 * itself. This allows the linker itself simply treat a GOTPC
7599 * relocation as asking for a pcrel offset to the GOT to be
7600 * added in, and the addend of the relocation is stored in the
7601 * operand field for the instruction itself.
7602 *
7603 * Our job here is to fix the operand so that it would add
7604 * the correct offset so that %ebx would point to itself. The
7605 * thing that is tricky is that .-.L66 will point to the
7606 * beginning of the instruction, so we need to further modify
7607 * the operand so that it will point to itself. There are
7608 * other cases where you have something like:
7609 *
7610 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7611 *
7612 * and here no correction would be required. Internally in
7613 * the assembler we treat operands of this form as not being
7614 * pcrel since the '.' is explicitly mentioned, and I wonder
7615 * whether it would simplify matters to do it this way. Who
7616 * knows. In earlier versions of the PIC patches, the
7617 * pcrel_adjust field was used to store the correction, but
7618 * since the expression is not pcrel, I felt it would be
7619 * confusing to do it this way. */
7620
7621 if ((reloc_type == BFD_RELOC_32
7622 || reloc_type == BFD_RELOC_X86_64_32S
7623 || reloc_type == BFD_RELOC_64)
7624 && GOT_symbol
7625 && GOT_symbol == i.op[n].imms->X_add_symbol
7626 && (i.op[n].imms->X_op == O_symbol
7627 || (i.op[n].imms->X_op == O_add
7628 && ((symbol_get_value_expression
7629 (i.op[n].imms->X_op_symbol)->X_op)
7630 == O_subtract))))
7631 {
7632 offsetT add;
7633
7634 if (insn_start_frag == frag_now)
7635 add = (p - frag_now->fr_literal) - insn_start_off;
7636 else
7637 {
7638 fragS *fr;
7639
7640 add = insn_start_frag->fr_fix - insn_start_off;
7641 for (fr = insn_start_frag->fr_next;
7642 fr && fr != frag_now; fr = fr->fr_next)
7643 add += fr->fr_fix;
7644 add += p - frag_now->fr_literal;
7645 }
7646
7647 if (!object_64bit)
7648 reloc_type = BFD_RELOC_386_GOTPC;
7649 else if (size == 4)
7650 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7651 else if (size == 8)
7652 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7653 i.op[n].imms->X_add_number += add;
7654 }
7655 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7656 i.op[n].imms, 0, reloc_type);
7657 }
7658 }
7659 }
7660 }
7661 \f
7662 /* x86_cons_fix_new is called via the expression parsing code when a
7663 reloc is needed. We use this hook to get the correct .got reloc. */
7664 static int cons_sign = -1;
7665
7666 void
7667 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7668 expressionS *exp, bfd_reloc_code_real_type r)
7669 {
7670 r = reloc (len, 0, cons_sign, r);
7671
7672 #ifdef TE_PE
7673 if (exp->X_op == O_secrel)
7674 {
7675 exp->X_op = O_symbol;
7676 r = BFD_RELOC_32_SECREL;
7677 }
7678 #endif
7679
7680 fix_new_exp (frag, off, len, exp, 0, r);
7681 }
7682
7683 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7684 purpose of the `.dc.a' internal pseudo-op. */
7685
7686 int
7687 x86_address_bytes (void)
7688 {
7689 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7690 return 4;
7691 return stdoutput->arch_info->bits_per_address / 8;
7692 }
7693
7694 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7695 || defined (LEX_AT)
7696 # define lex_got(reloc, adjust, types) NULL
7697 #else
7698 /* Parse operands of the form
7699 <symbol>@GOTOFF+<nnn>
7700 and similar .plt or .got references.
7701
7702 If we find one, set up the correct relocation in RELOC and copy the
7703 input string, minus the `@GOTOFF' into a malloc'd buffer for
7704 parsing by the calling routine. Return this buffer, and if ADJUST
7705 is non-null set it to the length of the string we removed from the
7706 input line. Otherwise return NULL. */
7707 static char *
7708 lex_got (enum bfd_reloc_code_real *rel,
7709 int *adjust,
7710 i386_operand_type *types)
7711 {
7712 /* Some of the relocations depend on the size of what field is to
7713 be relocated. But in our callers i386_immediate and i386_displacement
7714 we don't yet know the operand size (this will be set by insn
7715 matching). Hence we record the word32 relocation here,
7716 and adjust the reloc according to the real size in reloc(). */
7717 static const struct {
7718 const char *str;
7719 int len;
7720 const enum bfd_reloc_code_real rel[2];
7721 const i386_operand_type types64;
7722 } gotrel[] = {
7723 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7724 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7725 BFD_RELOC_SIZE32 },
7726 OPERAND_TYPE_IMM32_64 },
7727 #endif
7728 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7729 BFD_RELOC_X86_64_PLTOFF64 },
7730 OPERAND_TYPE_IMM64 },
7731 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7732 BFD_RELOC_X86_64_PLT32 },
7733 OPERAND_TYPE_IMM32_32S_DISP32 },
7734 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7735 BFD_RELOC_X86_64_GOTPLT64 },
7736 OPERAND_TYPE_IMM64_DISP64 },
7737 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7738 BFD_RELOC_X86_64_GOTOFF64 },
7739 OPERAND_TYPE_IMM64_DISP64 },
7740 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7741 BFD_RELOC_X86_64_GOTPCREL },
7742 OPERAND_TYPE_IMM32_32S_DISP32 },
7743 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7744 BFD_RELOC_X86_64_TLSGD },
7745 OPERAND_TYPE_IMM32_32S_DISP32 },
7746 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7747 _dummy_first_bfd_reloc_code_real },
7748 OPERAND_TYPE_NONE },
7749 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7750 BFD_RELOC_X86_64_TLSLD },
7751 OPERAND_TYPE_IMM32_32S_DISP32 },
7752 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7753 BFD_RELOC_X86_64_GOTTPOFF },
7754 OPERAND_TYPE_IMM32_32S_DISP32 },
7755 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7756 BFD_RELOC_X86_64_TPOFF32 },
7757 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7758 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7759 _dummy_first_bfd_reloc_code_real },
7760 OPERAND_TYPE_NONE },
7761 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7762 BFD_RELOC_X86_64_DTPOFF32 },
7763 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7764 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7765 _dummy_first_bfd_reloc_code_real },
7766 OPERAND_TYPE_NONE },
7767 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7768 _dummy_first_bfd_reloc_code_real },
7769 OPERAND_TYPE_NONE },
7770 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7771 BFD_RELOC_X86_64_GOT32 },
7772 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7773 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7774 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7775 OPERAND_TYPE_IMM32_32S_DISP32 },
7776 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7777 BFD_RELOC_X86_64_TLSDESC_CALL },
7778 OPERAND_TYPE_IMM32_32S_DISP32 },
7779 };
7780 char *cp;
7781 unsigned int j;
7782
7783 #if defined (OBJ_MAYBE_ELF)
7784 if (!IS_ELF)
7785 return NULL;
7786 #endif
7787
7788 for (cp = input_line_pointer; *cp != '@'; cp++)
7789 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7790 return NULL;
7791
7792 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7793 {
7794 int len = gotrel[j].len;
7795 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7796 {
7797 if (gotrel[j].rel[object_64bit] != 0)
7798 {
7799 int first, second;
7800 char *tmpbuf, *past_reloc;
7801
7802 *rel = gotrel[j].rel[object_64bit];
7803
7804 if (types)
7805 {
7806 if (flag_code != CODE_64BIT)
7807 {
7808 types->bitfield.imm32 = 1;
7809 types->bitfield.disp32 = 1;
7810 }
7811 else
7812 *types = gotrel[j].types64;
7813 }
7814
7815 if (j != 0 && GOT_symbol == NULL)
7816 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7817
7818 /* The length of the first part of our input line. */
7819 first = cp - input_line_pointer;
7820
7821 /* The second part goes from after the reloc token until
7822 (and including) an end_of_line char or comma. */
7823 past_reloc = cp + 1 + len;
7824 cp = past_reloc;
7825 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7826 ++cp;
7827 second = cp + 1 - past_reloc;
7828
7829 /* Allocate and copy string. The trailing NUL shouldn't
7830 be necessary, but be safe. */
7831 tmpbuf = XNEWVEC (char, first + second + 2);
7832 memcpy (tmpbuf, input_line_pointer, first);
7833 if (second != 0 && *past_reloc != ' ')
7834 /* Replace the relocation token with ' ', so that
7835 errors like foo@GOTOFF1 will be detected. */
7836 tmpbuf[first++] = ' ';
7837 else
7838 /* Increment length by 1 if the relocation token is
7839 removed. */
7840 len++;
7841 if (adjust)
7842 *adjust = len;
7843 memcpy (tmpbuf + first, past_reloc, second);
7844 tmpbuf[first + second] = '\0';
7845 return tmpbuf;
7846 }
7847
7848 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7849 gotrel[j].str, 1 << (5 + object_64bit));
7850 return NULL;
7851 }
7852 }
7853
7854 /* Might be a symbol version string. Don't as_bad here. */
7855 return NULL;
7856 }
7857 #endif
7858
7859 #ifdef TE_PE
7860 #ifdef lex_got
7861 #undef lex_got
7862 #endif
7863 /* Parse operands of the form
7864 <symbol>@SECREL32+<nnn>
7865
7866 If we find one, set up the correct relocation in RELOC and copy the
7867 input string, minus the `@SECREL32' into a malloc'd buffer for
7868 parsing by the calling routine. Return this buffer, and if ADJUST
7869 is non-null set it to the length of the string we removed from the
7870 input line. Otherwise return NULL.
7871
7872 This function is copied from the ELF version above adjusted for PE targets. */
7873
7874 static char *
7875 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7876 int *adjust ATTRIBUTE_UNUSED,
7877 i386_operand_type *types)
7878 {
7879 static const struct
7880 {
7881 const char *str;
7882 int len;
7883 const enum bfd_reloc_code_real rel[2];
7884 const i386_operand_type types64;
7885 }
7886 gotrel[] =
7887 {
7888 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7889 BFD_RELOC_32_SECREL },
7890 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7891 };
7892
7893 char *cp;
7894 unsigned j;
7895
7896 for (cp = input_line_pointer; *cp != '@'; cp++)
7897 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7898 return NULL;
7899
7900 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7901 {
7902 int len = gotrel[j].len;
7903
7904 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7905 {
7906 if (gotrel[j].rel[object_64bit] != 0)
7907 {
7908 int first, second;
7909 char *tmpbuf, *past_reloc;
7910
7911 *rel = gotrel[j].rel[object_64bit];
7912 if (adjust)
7913 *adjust = len;
7914
7915 if (types)
7916 {
7917 if (flag_code != CODE_64BIT)
7918 {
7919 types->bitfield.imm32 = 1;
7920 types->bitfield.disp32 = 1;
7921 }
7922 else
7923 *types = gotrel[j].types64;
7924 }
7925
7926 /* The length of the first part of our input line. */
7927 first = cp - input_line_pointer;
7928
7929 /* The second part goes from after the reloc token until
7930 (and including) an end_of_line char or comma. */
7931 past_reloc = cp + 1 + len;
7932 cp = past_reloc;
7933 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7934 ++cp;
7935 second = cp + 1 - past_reloc;
7936
7937 /* Allocate and copy string. The trailing NUL shouldn't
7938 be necessary, but be safe. */
7939 tmpbuf = XNEWVEC (char, first + second + 2);
7940 memcpy (tmpbuf, input_line_pointer, first);
7941 if (second != 0 && *past_reloc != ' ')
7942 /* Replace the relocation token with ' ', so that
7943 errors like foo@SECLREL321 will be detected. */
7944 tmpbuf[first++] = ' ';
7945 memcpy (tmpbuf + first, past_reloc, second);
7946 tmpbuf[first + second] = '\0';
7947 return tmpbuf;
7948 }
7949
7950 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7951 gotrel[j].str, 1 << (5 + object_64bit));
7952 return NULL;
7953 }
7954 }
7955
7956 /* Might be a symbol version string. Don't as_bad here. */
7957 return NULL;
7958 }
7959
7960 #endif /* TE_PE */
7961
7962 bfd_reloc_code_real_type
7963 x86_cons (expressionS *exp, int size)
7964 {
7965 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7966
7967 intel_syntax = -intel_syntax;
7968
7969 exp->X_md = 0;
7970 if (size == 4 || (object_64bit && size == 8))
7971 {
7972 /* Handle @GOTOFF and the like in an expression. */
7973 char *save;
7974 char *gotfree_input_line;
7975 int adjust = 0;
7976
7977 save = input_line_pointer;
7978 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7979 if (gotfree_input_line)
7980 input_line_pointer = gotfree_input_line;
7981
7982 expression (exp);
7983
7984 if (gotfree_input_line)
7985 {
7986 /* expression () has merrily parsed up to the end of line,
7987 or a comma - in the wrong buffer. Transfer how far
7988 input_line_pointer has moved to the right buffer. */
7989 input_line_pointer = (save
7990 + (input_line_pointer - gotfree_input_line)
7991 + adjust);
7992 free (gotfree_input_line);
7993 if (exp->X_op == O_constant
7994 || exp->X_op == O_absent
7995 || exp->X_op == O_illegal
7996 || exp->X_op == O_register
7997 || exp->X_op == O_big)
7998 {
7999 char c = *input_line_pointer;
8000 *input_line_pointer = 0;
8001 as_bad (_("missing or invalid expression `%s'"), save);
8002 *input_line_pointer = c;
8003 }
8004 }
8005 }
8006 else
8007 expression (exp);
8008
8009 intel_syntax = -intel_syntax;
8010
8011 if (intel_syntax)
8012 i386_intel_simplify (exp);
8013
8014 return got_reloc;
8015 }
8016
8017 static void
8018 signed_cons (int size)
8019 {
8020 if (flag_code == CODE_64BIT)
8021 cons_sign = 1;
8022 cons (size);
8023 cons_sign = -1;
8024 }
8025
8026 #ifdef TE_PE
8027 static void
8028 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8029 {
8030 expressionS exp;
8031
8032 do
8033 {
8034 expression (&exp);
8035 if (exp.X_op == O_symbol)
8036 exp.X_op = O_secrel;
8037
8038 emit_expr (&exp, 4);
8039 }
8040 while (*input_line_pointer++ == ',');
8041
8042 input_line_pointer--;
8043 demand_empty_rest_of_line ();
8044 }
8045 #endif
8046
8047 /* Handle Vector operations. */
8048
8049 static char *
8050 check_VecOperations (char *op_string, char *op_end)
8051 {
8052 const reg_entry *mask;
8053 const char *saved;
8054 char *end_op;
8055
8056 while (*op_string
8057 && (op_end == NULL || op_string < op_end))
8058 {
8059 saved = op_string;
8060 if (*op_string == '{')
8061 {
8062 op_string++;
8063
8064 /* Check broadcasts. */
8065 if (strncmp (op_string, "1to", 3) == 0)
8066 {
8067 int bcst_type;
8068
8069 if (i.broadcast)
8070 goto duplicated_vec_op;
8071
8072 op_string += 3;
8073 if (*op_string == '8')
8074 bcst_type = BROADCAST_1TO8;
8075 else if (*op_string == '4')
8076 bcst_type = BROADCAST_1TO4;
8077 else if (*op_string == '2')
8078 bcst_type = BROADCAST_1TO2;
8079 else if (*op_string == '1'
8080 && *(op_string+1) == '6')
8081 {
8082 bcst_type = BROADCAST_1TO16;
8083 op_string++;
8084 }
8085 else
8086 {
8087 as_bad (_("Unsupported broadcast: `%s'"), saved);
8088 return NULL;
8089 }
8090 op_string++;
8091
8092 broadcast_op.type = bcst_type;
8093 broadcast_op.operand = this_operand;
8094 i.broadcast = &broadcast_op;
8095 }
8096 /* Check masking operation. */
8097 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8098 {
8099 /* k0 can't be used for write mask. */
8100 if (mask->reg_num == 0)
8101 {
8102 as_bad (_("`%s' can't be used for write mask"),
8103 op_string);
8104 return NULL;
8105 }
8106
8107 if (!i.mask)
8108 {
8109 mask_op.mask = mask;
8110 mask_op.zeroing = 0;
8111 mask_op.operand = this_operand;
8112 i.mask = &mask_op;
8113 }
8114 else
8115 {
8116 if (i.mask->mask)
8117 goto duplicated_vec_op;
8118
8119 i.mask->mask = mask;
8120
8121 /* Only "{z}" is allowed here. No need to check
8122 zeroing mask explicitly. */
8123 if (i.mask->operand != this_operand)
8124 {
8125 as_bad (_("invalid write mask `%s'"), saved);
8126 return NULL;
8127 }
8128 }
8129
8130 op_string = end_op;
8131 }
8132 /* Check zeroing-flag for masking operation. */
8133 else if (*op_string == 'z')
8134 {
8135 if (!i.mask)
8136 {
8137 mask_op.mask = NULL;
8138 mask_op.zeroing = 1;
8139 mask_op.operand = this_operand;
8140 i.mask = &mask_op;
8141 }
8142 else
8143 {
8144 if (i.mask->zeroing)
8145 {
8146 duplicated_vec_op:
8147 as_bad (_("duplicated `%s'"), saved);
8148 return NULL;
8149 }
8150
8151 i.mask->zeroing = 1;
8152
8153 /* Only "{%k}" is allowed here. No need to check mask
8154 register explicitly. */
8155 if (i.mask->operand != this_operand)
8156 {
8157 as_bad (_("invalid zeroing-masking `%s'"),
8158 saved);
8159 return NULL;
8160 }
8161 }
8162
8163 op_string++;
8164 }
8165 else
8166 goto unknown_vec_op;
8167
8168 if (*op_string != '}')
8169 {
8170 as_bad (_("missing `}' in `%s'"), saved);
8171 return NULL;
8172 }
8173 op_string++;
8174 continue;
8175 }
8176 unknown_vec_op:
8177 /* We don't know this one. */
8178 as_bad (_("unknown vector operation: `%s'"), saved);
8179 return NULL;
8180 }
8181
8182 return op_string;
8183 }
8184
8185 static int
8186 i386_immediate (char *imm_start)
8187 {
8188 char *save_input_line_pointer;
8189 char *gotfree_input_line;
8190 segT exp_seg = 0;
8191 expressionS *exp;
8192 i386_operand_type types;
8193
8194 operand_type_set (&types, ~0);
8195
8196 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8197 {
8198 as_bad (_("at most %d immediate operands are allowed"),
8199 MAX_IMMEDIATE_OPERANDS);
8200 return 0;
8201 }
8202
8203 exp = &im_expressions[i.imm_operands++];
8204 i.op[this_operand].imms = exp;
8205
8206 if (is_space_char (*imm_start))
8207 ++imm_start;
8208
8209 save_input_line_pointer = input_line_pointer;
8210 input_line_pointer = imm_start;
8211
8212 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8213 if (gotfree_input_line)
8214 input_line_pointer = gotfree_input_line;
8215
8216 exp_seg = expression (exp);
8217
8218 SKIP_WHITESPACE ();
8219
8220 /* Handle vector operations. */
8221 if (*input_line_pointer == '{')
8222 {
8223 input_line_pointer = check_VecOperations (input_line_pointer,
8224 NULL);
8225 if (input_line_pointer == NULL)
8226 return 0;
8227 }
8228
8229 if (*input_line_pointer)
8230 as_bad (_("junk `%s' after expression"), input_line_pointer);
8231
8232 input_line_pointer = save_input_line_pointer;
8233 if (gotfree_input_line)
8234 {
8235 free (gotfree_input_line);
8236
8237 if (exp->X_op == O_constant || exp->X_op == O_register)
8238 exp->X_op = O_illegal;
8239 }
8240
8241 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8242 }
8243
8244 static int
8245 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8246 i386_operand_type types, const char *imm_start)
8247 {
8248 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8249 {
8250 if (imm_start)
8251 as_bad (_("missing or invalid immediate expression `%s'"),
8252 imm_start);
8253 return 0;
8254 }
8255 else if (exp->X_op == O_constant)
8256 {
8257 /* Size it properly later. */
8258 i.types[this_operand].bitfield.imm64 = 1;
8259 /* If not 64bit, sign extend val. */
8260 if (flag_code != CODE_64BIT
8261 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8262 exp->X_add_number
8263 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8264 }
8265 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8266 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8267 && exp_seg != absolute_section
8268 && exp_seg != text_section
8269 && exp_seg != data_section
8270 && exp_seg != bss_section
8271 && exp_seg != undefined_section
8272 && !bfd_is_com_section (exp_seg))
8273 {
8274 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8275 return 0;
8276 }
8277 #endif
8278 else if (!intel_syntax && exp_seg == reg_section)
8279 {
8280 if (imm_start)
8281 as_bad (_("illegal immediate register operand %s"), imm_start);
8282 return 0;
8283 }
8284 else
8285 {
8286 /* This is an address. The size of the address will be
8287 determined later, depending on destination register,
8288 suffix, or the default for the section. */
8289 i.types[this_operand].bitfield.imm8 = 1;
8290 i.types[this_operand].bitfield.imm16 = 1;
8291 i.types[this_operand].bitfield.imm32 = 1;
8292 i.types[this_operand].bitfield.imm32s = 1;
8293 i.types[this_operand].bitfield.imm64 = 1;
8294 i.types[this_operand] = operand_type_and (i.types[this_operand],
8295 types);
8296 }
8297
8298 return 1;
8299 }
8300
8301 static char *
8302 i386_scale (char *scale)
8303 {
8304 offsetT val;
8305 char *save = input_line_pointer;
8306
8307 input_line_pointer = scale;
8308 val = get_absolute_expression ();
8309
8310 switch (val)
8311 {
8312 case 1:
8313 i.log2_scale_factor = 0;
8314 break;
8315 case 2:
8316 i.log2_scale_factor = 1;
8317 break;
8318 case 4:
8319 i.log2_scale_factor = 2;
8320 break;
8321 case 8:
8322 i.log2_scale_factor = 3;
8323 break;
8324 default:
8325 {
8326 char sep = *input_line_pointer;
8327
8328 *input_line_pointer = '\0';
8329 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8330 scale);
8331 *input_line_pointer = sep;
8332 input_line_pointer = save;
8333 return NULL;
8334 }
8335 }
8336 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8337 {
8338 as_warn (_("scale factor of %d without an index register"),
8339 1 << i.log2_scale_factor);
8340 i.log2_scale_factor = 0;
8341 }
8342 scale = input_line_pointer;
8343 input_line_pointer = save;
8344 return scale;
8345 }
8346
8347 static int
8348 i386_displacement (char *disp_start, char *disp_end)
8349 {
8350 expressionS *exp;
8351 segT exp_seg = 0;
8352 char *save_input_line_pointer;
8353 char *gotfree_input_line;
8354 int override;
8355 i386_operand_type bigdisp, types = anydisp;
8356 int ret;
8357
8358 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8359 {
8360 as_bad (_("at most %d displacement operands are allowed"),
8361 MAX_MEMORY_OPERANDS);
8362 return 0;
8363 }
8364
8365 operand_type_set (&bigdisp, 0);
8366 if ((i.types[this_operand].bitfield.jumpabsolute)
8367 || (!current_templates->start->opcode_modifier.jump
8368 && !current_templates->start->opcode_modifier.jumpdword))
8369 {
8370 bigdisp.bitfield.disp32 = 1;
8371 override = (i.prefix[ADDR_PREFIX] != 0);
8372 if (flag_code == CODE_64BIT)
8373 {
8374 if (!override)
8375 {
8376 bigdisp.bitfield.disp32s = 1;
8377 bigdisp.bitfield.disp64 = 1;
8378 }
8379 }
8380 else if ((flag_code == CODE_16BIT) ^ override)
8381 {
8382 bigdisp.bitfield.disp32 = 0;
8383 bigdisp.bitfield.disp16 = 1;
8384 }
8385 }
8386 else
8387 {
8388 /* For PC-relative branches, the width of the displacement
8389 is dependent upon data size, not address size. */
8390 override = (i.prefix[DATA_PREFIX] != 0);
8391 if (flag_code == CODE_64BIT)
8392 {
8393 if (override || i.suffix == WORD_MNEM_SUFFIX)
8394 bigdisp.bitfield.disp16 = 1;
8395 else
8396 {
8397 bigdisp.bitfield.disp32 = 1;
8398 bigdisp.bitfield.disp32s = 1;
8399 }
8400 }
8401 else
8402 {
8403 if (!override)
8404 override = (i.suffix == (flag_code != CODE_16BIT
8405 ? WORD_MNEM_SUFFIX
8406 : LONG_MNEM_SUFFIX));
8407 bigdisp.bitfield.disp32 = 1;
8408 if ((flag_code == CODE_16BIT) ^ override)
8409 {
8410 bigdisp.bitfield.disp32 = 0;
8411 bigdisp.bitfield.disp16 = 1;
8412 }
8413 }
8414 }
8415 i.types[this_operand] = operand_type_or (i.types[this_operand],
8416 bigdisp);
8417
8418 exp = &disp_expressions[i.disp_operands];
8419 i.op[this_operand].disps = exp;
8420 i.disp_operands++;
8421 save_input_line_pointer = input_line_pointer;
8422 input_line_pointer = disp_start;
8423 END_STRING_AND_SAVE (disp_end);
8424
8425 #ifndef GCC_ASM_O_HACK
8426 #define GCC_ASM_O_HACK 0
8427 #endif
8428 #if GCC_ASM_O_HACK
8429 END_STRING_AND_SAVE (disp_end + 1);
8430 if (i.types[this_operand].bitfield.baseIndex
8431 && displacement_string_end[-1] == '+')
8432 {
8433 /* This hack is to avoid a warning when using the "o"
8434 constraint within gcc asm statements.
8435 For instance:
8436
8437 #define _set_tssldt_desc(n,addr,limit,type) \
8438 __asm__ __volatile__ ( \
8439 "movw %w2,%0\n\t" \
8440 "movw %w1,2+%0\n\t" \
8441 "rorl $16,%1\n\t" \
8442 "movb %b1,4+%0\n\t" \
8443 "movb %4,5+%0\n\t" \
8444 "movb $0,6+%0\n\t" \
8445 "movb %h1,7+%0\n\t" \
8446 "rorl $16,%1" \
8447 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8448
8449 This works great except that the output assembler ends
8450 up looking a bit weird if it turns out that there is
8451 no offset. You end up producing code that looks like:
8452
8453 #APP
8454 movw $235,(%eax)
8455 movw %dx,2+(%eax)
8456 rorl $16,%edx
8457 movb %dl,4+(%eax)
8458 movb $137,5+(%eax)
8459 movb $0,6+(%eax)
8460 movb %dh,7+(%eax)
8461 rorl $16,%edx
8462 #NO_APP
8463
8464 So here we provide the missing zero. */
8465
8466 *displacement_string_end = '0';
8467 }
8468 #endif
8469 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8470 if (gotfree_input_line)
8471 input_line_pointer = gotfree_input_line;
8472
8473 exp_seg = expression (exp);
8474
8475 SKIP_WHITESPACE ();
8476 if (*input_line_pointer)
8477 as_bad (_("junk `%s' after expression"), input_line_pointer);
8478 #if GCC_ASM_O_HACK
8479 RESTORE_END_STRING (disp_end + 1);
8480 #endif
8481 input_line_pointer = save_input_line_pointer;
8482 if (gotfree_input_line)
8483 {
8484 free (gotfree_input_line);
8485
8486 if (exp->X_op == O_constant || exp->X_op == O_register)
8487 exp->X_op = O_illegal;
8488 }
8489
8490 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8491
8492 RESTORE_END_STRING (disp_end);
8493
8494 return ret;
8495 }
8496
8497 static int
8498 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8499 i386_operand_type types, const char *disp_start)
8500 {
8501 i386_operand_type bigdisp;
8502 int ret = 1;
8503
8504 /* We do this to make sure that the section symbol is in
8505 the symbol table. We will ultimately change the relocation
8506 to be relative to the beginning of the section. */
8507 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8508 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8509 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8510 {
8511 if (exp->X_op != O_symbol)
8512 goto inv_disp;
8513
8514 if (S_IS_LOCAL (exp->X_add_symbol)
8515 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8516 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8517 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8518 exp->X_op = O_subtract;
8519 exp->X_op_symbol = GOT_symbol;
8520 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8521 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8522 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8523 i.reloc[this_operand] = BFD_RELOC_64;
8524 else
8525 i.reloc[this_operand] = BFD_RELOC_32;
8526 }
8527
8528 else if (exp->X_op == O_absent
8529 || exp->X_op == O_illegal
8530 || exp->X_op == O_big)
8531 {
8532 inv_disp:
8533 as_bad (_("missing or invalid displacement expression `%s'"),
8534 disp_start);
8535 ret = 0;
8536 }
8537
8538 else if (flag_code == CODE_64BIT
8539 && !i.prefix[ADDR_PREFIX]
8540 && exp->X_op == O_constant)
8541 {
8542 /* Since displacement is signed extended to 64bit, don't allow
8543 disp32 and turn off disp32s if they are out of range. */
8544 i.types[this_operand].bitfield.disp32 = 0;
8545 if (!fits_in_signed_long (exp->X_add_number))
8546 {
8547 i.types[this_operand].bitfield.disp32s = 0;
8548 if (i.types[this_operand].bitfield.baseindex)
8549 {
8550 as_bad (_("0x%lx out range of signed 32bit displacement"),
8551 (long) exp->X_add_number);
8552 ret = 0;
8553 }
8554 }
8555 }
8556
8557 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8558 else if (exp->X_op != O_constant
8559 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8560 && exp_seg != absolute_section
8561 && exp_seg != text_section
8562 && exp_seg != data_section
8563 && exp_seg != bss_section
8564 && exp_seg != undefined_section
8565 && !bfd_is_com_section (exp_seg))
8566 {
8567 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8568 ret = 0;
8569 }
8570 #endif
8571
8572 /* Check if this is a displacement only operand. */
8573 bigdisp = i.types[this_operand];
8574 bigdisp.bitfield.disp8 = 0;
8575 bigdisp.bitfield.disp16 = 0;
8576 bigdisp.bitfield.disp32 = 0;
8577 bigdisp.bitfield.disp32s = 0;
8578 bigdisp.bitfield.disp64 = 0;
8579 if (operand_type_all_zero (&bigdisp))
8580 i.types[this_operand] = operand_type_and (i.types[this_operand],
8581 types);
8582
8583 return ret;
8584 }
8585
8586 /* Make sure the memory operand we've been dealt is valid.
8587 Return 1 on success, 0 on a failure. */
8588
8589 static int
8590 i386_index_check (const char *operand_string)
8591 {
8592 const char *kind = "base/index";
8593 enum flag_code addr_mode;
8594
8595 if (i.prefix[ADDR_PREFIX])
8596 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8597 else
8598 {
8599 addr_mode = flag_code;
8600
8601 #if INFER_ADDR_PREFIX
8602 if (i.mem_operands == 0)
8603 {
8604 /* Infer address prefix from the first memory operand. */
8605 const reg_entry *addr_reg = i.base_reg;
8606
8607 if (addr_reg == NULL)
8608 addr_reg = i.index_reg;
8609
8610 if (addr_reg)
8611 {
8612 if (addr_reg->reg_num == RegEip
8613 || addr_reg->reg_num == RegEiz
8614 || addr_reg->reg_type.bitfield.reg32)
8615 addr_mode = CODE_32BIT;
8616 else if (flag_code != CODE_64BIT
8617 && addr_reg->reg_type.bitfield.reg16)
8618 addr_mode = CODE_16BIT;
8619
8620 if (addr_mode != flag_code)
8621 {
8622 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8623 i.prefixes += 1;
8624 /* Change the size of any displacement too. At most one
8625 of Disp16 or Disp32 is set.
8626 FIXME. There doesn't seem to be any real need for
8627 separate Disp16 and Disp32 flags. The same goes for
8628 Imm16 and Imm32. Removing them would probably clean
8629 up the code quite a lot. */
8630 if (flag_code != CODE_64BIT
8631 && (i.types[this_operand].bitfield.disp16
8632 || i.types[this_operand].bitfield.disp32))
8633 i.types[this_operand]
8634 = operand_type_xor (i.types[this_operand], disp16_32);
8635 }
8636 }
8637 }
8638 #endif
8639 }
8640
8641 if (current_templates->start->opcode_modifier.isstring
8642 && !current_templates->start->opcode_modifier.immext
8643 && (current_templates->end[-1].opcode_modifier.isstring
8644 || i.mem_operands))
8645 {
8646 /* Memory operands of string insns are special in that they only allow
8647 a single register (rDI, rSI, or rBX) as their memory address. */
8648 const reg_entry *expected_reg;
8649 static const char *di_si[][2] =
8650 {
8651 { "esi", "edi" },
8652 { "si", "di" },
8653 { "rsi", "rdi" }
8654 };
8655 static const char *bx[] = { "ebx", "bx", "rbx" };
8656
8657 kind = "string address";
8658
8659 if (current_templates->start->opcode_modifier.repprefixok)
8660 {
8661 i386_operand_type type = current_templates->end[-1].operand_types[0];
8662
8663 if (!type.bitfield.baseindex
8664 || ((!i.mem_operands != !intel_syntax)
8665 && current_templates->end[-1].operand_types[1]
8666 .bitfield.baseindex))
8667 type = current_templates->end[-1].operand_types[1];
8668 expected_reg = hash_find (reg_hash,
8669 di_si[addr_mode][type.bitfield.esseg]);
8670
8671 }
8672 else
8673 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8674
8675 if (i.base_reg != expected_reg
8676 || i.index_reg
8677 || operand_type_check (i.types[this_operand], disp))
8678 {
8679 /* The second memory operand must have the same size as
8680 the first one. */
8681 if (i.mem_operands
8682 && i.base_reg
8683 && !((addr_mode == CODE_64BIT
8684 && i.base_reg->reg_type.bitfield.reg64)
8685 || (addr_mode == CODE_32BIT
8686 ? i.base_reg->reg_type.bitfield.reg32
8687 : i.base_reg->reg_type.bitfield.reg16)))
8688 goto bad_address;
8689
8690 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8691 operand_string,
8692 intel_syntax ? '[' : '(',
8693 register_prefix,
8694 expected_reg->reg_name,
8695 intel_syntax ? ']' : ')');
8696 return 1;
8697 }
8698 else
8699 return 1;
8700
8701 bad_address:
8702 as_bad (_("`%s' is not a valid %s expression"),
8703 operand_string, kind);
8704 return 0;
8705 }
8706 else
8707 {
8708 if (addr_mode != CODE_16BIT)
8709 {
8710 /* 32-bit/64-bit checks. */
8711 if ((i.base_reg
8712 && (addr_mode == CODE_64BIT
8713 ? !i.base_reg->reg_type.bitfield.reg64
8714 : !i.base_reg->reg_type.bitfield.reg32)
8715 && (i.index_reg
8716 || (i.base_reg->reg_num
8717 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8718 || (i.index_reg
8719 && !i.index_reg->reg_type.bitfield.regxmm
8720 && !i.index_reg->reg_type.bitfield.regymm
8721 && !i.index_reg->reg_type.bitfield.regzmm
8722 && ((addr_mode == CODE_64BIT
8723 ? !(i.index_reg->reg_type.bitfield.reg64
8724 || i.index_reg->reg_num == RegRiz)
8725 : !(i.index_reg->reg_type.bitfield.reg32
8726 || i.index_reg->reg_num == RegEiz))
8727 || !i.index_reg->reg_type.bitfield.baseindex)))
8728 goto bad_address;
8729
8730 /* bndmk, bndldx, and bndstx have special restrictions. */
8731 if (current_templates->start->base_opcode == 0xf30f1b
8732 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8733 {
8734 /* They cannot use RIP-relative addressing. */
8735 if (i.base_reg && i.base_reg->reg_num == RegRip)
8736 {
8737 as_bad (_("`%s' cannot be used here"), operand_string);
8738 return 0;
8739 }
8740
8741 /* bndldx and bndstx ignore their scale factor. */
8742 if (current_templates->start->base_opcode != 0xf30f1b
8743 && i.log2_scale_factor)
8744 as_warn (_("register scaling is being ignored here"));
8745 }
8746 }
8747 else
8748 {
8749 /* 16-bit checks. */
8750 if ((i.base_reg
8751 && (!i.base_reg->reg_type.bitfield.reg16
8752 || !i.base_reg->reg_type.bitfield.baseindex))
8753 || (i.index_reg
8754 && (!i.index_reg->reg_type.bitfield.reg16
8755 || !i.index_reg->reg_type.bitfield.baseindex
8756 || !(i.base_reg
8757 && i.base_reg->reg_num < 6
8758 && i.index_reg->reg_num >= 6
8759 && i.log2_scale_factor == 0))))
8760 goto bad_address;
8761 }
8762 }
8763 return 1;
8764 }
8765
8766 /* Handle vector immediates. */
8767
8768 static int
8769 RC_SAE_immediate (const char *imm_start)
8770 {
8771 unsigned int match_found, j;
8772 const char *pstr = imm_start;
8773 expressionS *exp;
8774
8775 if (*pstr != '{')
8776 return 0;
8777
8778 pstr++;
8779 match_found = 0;
8780 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8781 {
8782 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8783 {
8784 if (!i.rounding)
8785 {
8786 rc_op.type = RC_NamesTable[j].type;
8787 rc_op.operand = this_operand;
8788 i.rounding = &rc_op;
8789 }
8790 else
8791 {
8792 as_bad (_("duplicated `%s'"), imm_start);
8793 return 0;
8794 }
8795 pstr += RC_NamesTable[j].len;
8796 match_found = 1;
8797 break;
8798 }
8799 }
8800 if (!match_found)
8801 return 0;
8802
8803 if (*pstr++ != '}')
8804 {
8805 as_bad (_("Missing '}': '%s'"), imm_start);
8806 return 0;
8807 }
8808 /* RC/SAE immediate string should contain nothing more. */;
8809 if (*pstr != 0)
8810 {
8811 as_bad (_("Junk after '}': '%s'"), imm_start);
8812 return 0;
8813 }
8814
8815 exp = &im_expressions[i.imm_operands++];
8816 i.op[this_operand].imms = exp;
8817
8818 exp->X_op = O_constant;
8819 exp->X_add_number = 0;
8820 exp->X_add_symbol = (symbolS *) 0;
8821 exp->X_op_symbol = (symbolS *) 0;
8822
8823 i.types[this_operand].bitfield.imm8 = 1;
8824 return 1;
8825 }
8826
8827 /* Only string instructions can have a second memory operand, so
8828 reduce current_templates to just those if it contains any. */
8829 static int
8830 maybe_adjust_templates (void)
8831 {
8832 const insn_template *t;
8833
8834 gas_assert (i.mem_operands == 1);
8835
8836 for (t = current_templates->start; t < current_templates->end; ++t)
8837 if (t->opcode_modifier.isstring)
8838 break;
8839
8840 if (t < current_templates->end)
8841 {
8842 static templates aux_templates;
8843 bfd_boolean recheck;
8844
8845 aux_templates.start = t;
8846 for (; t < current_templates->end; ++t)
8847 if (!t->opcode_modifier.isstring)
8848 break;
8849 aux_templates.end = t;
8850
8851 /* Determine whether to re-check the first memory operand. */
8852 recheck = (aux_templates.start != current_templates->start
8853 || t != current_templates->end);
8854
8855 current_templates = &aux_templates;
8856
8857 if (recheck)
8858 {
8859 i.mem_operands = 0;
8860 if (i.memop1_string != NULL
8861 && i386_index_check (i.memop1_string) == 0)
8862 return 0;
8863 i.mem_operands = 1;
8864 }
8865 }
8866
8867 return 1;
8868 }
8869
8870 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8871 on error. */
8872
8873 static int
8874 i386_att_operand (char *operand_string)
8875 {
8876 const reg_entry *r;
8877 char *end_op;
8878 char *op_string = operand_string;
8879
8880 if (is_space_char (*op_string))
8881 ++op_string;
8882
8883 /* We check for an absolute prefix (differentiating,
8884 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8885 if (*op_string == ABSOLUTE_PREFIX)
8886 {
8887 ++op_string;
8888 if (is_space_char (*op_string))
8889 ++op_string;
8890 i.types[this_operand].bitfield.jumpabsolute = 1;
8891 }
8892
8893 /* Check if operand is a register. */
8894 if ((r = parse_register (op_string, &end_op)) != NULL)
8895 {
8896 i386_operand_type temp;
8897
8898 /* Check for a segment override by searching for ':' after a
8899 segment register. */
8900 op_string = end_op;
8901 if (is_space_char (*op_string))
8902 ++op_string;
8903 if (*op_string == ':'
8904 && (r->reg_type.bitfield.sreg2
8905 || r->reg_type.bitfield.sreg3))
8906 {
8907 switch (r->reg_num)
8908 {
8909 case 0:
8910 i.seg[i.mem_operands] = &es;
8911 break;
8912 case 1:
8913 i.seg[i.mem_operands] = &cs;
8914 break;
8915 case 2:
8916 i.seg[i.mem_operands] = &ss;
8917 break;
8918 case 3:
8919 i.seg[i.mem_operands] = &ds;
8920 break;
8921 case 4:
8922 i.seg[i.mem_operands] = &fs;
8923 break;
8924 case 5:
8925 i.seg[i.mem_operands] = &gs;
8926 break;
8927 }
8928
8929 /* Skip the ':' and whitespace. */
8930 ++op_string;
8931 if (is_space_char (*op_string))
8932 ++op_string;
8933
8934 if (!is_digit_char (*op_string)
8935 && !is_identifier_char (*op_string)
8936 && *op_string != '('
8937 && *op_string != ABSOLUTE_PREFIX)
8938 {
8939 as_bad (_("bad memory operand `%s'"), op_string);
8940 return 0;
8941 }
8942 /* Handle case of %es:*foo. */
8943 if (*op_string == ABSOLUTE_PREFIX)
8944 {
8945 ++op_string;
8946 if (is_space_char (*op_string))
8947 ++op_string;
8948 i.types[this_operand].bitfield.jumpabsolute = 1;
8949 }
8950 goto do_memory_reference;
8951 }
8952
8953 /* Handle vector operations. */
8954 if (*op_string == '{')
8955 {
8956 op_string = check_VecOperations (op_string, NULL);
8957 if (op_string == NULL)
8958 return 0;
8959 }
8960
8961 if (*op_string)
8962 {
8963 as_bad (_("junk `%s' after register"), op_string);
8964 return 0;
8965 }
8966 temp = r->reg_type;
8967 temp.bitfield.baseindex = 0;
8968 i.types[this_operand] = operand_type_or (i.types[this_operand],
8969 temp);
8970 i.types[this_operand].bitfield.unspecified = 0;
8971 i.op[this_operand].regs = r;
8972 i.reg_operands++;
8973 }
8974 else if (*op_string == REGISTER_PREFIX)
8975 {
8976 as_bad (_("bad register name `%s'"), op_string);
8977 return 0;
8978 }
8979 else if (*op_string == IMMEDIATE_PREFIX)
8980 {
8981 ++op_string;
8982 if (i.types[this_operand].bitfield.jumpabsolute)
8983 {
8984 as_bad (_("immediate operand illegal with absolute jump"));
8985 return 0;
8986 }
8987 if (!i386_immediate (op_string))
8988 return 0;
8989 }
8990 else if (RC_SAE_immediate (operand_string))
8991 {
8992 /* If it is a RC or SAE immediate, do nothing. */
8993 ;
8994 }
8995 else if (is_digit_char (*op_string)
8996 || is_identifier_char (*op_string)
8997 || *op_string == '"'
8998 || *op_string == '(')
8999 {
9000 /* This is a memory reference of some sort. */
9001 char *base_string;
9002
9003 /* Start and end of displacement string expression (if found). */
9004 char *displacement_string_start;
9005 char *displacement_string_end;
9006 char *vop_start;
9007
9008 do_memory_reference:
9009 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9010 return 0;
9011 if ((i.mem_operands == 1
9012 && !current_templates->start->opcode_modifier.isstring)
9013 || i.mem_operands == 2)
9014 {
9015 as_bad (_("too many memory references for `%s'"),
9016 current_templates->start->name);
9017 return 0;
9018 }
9019
9020 /* Check for base index form. We detect the base index form by
9021 looking for an ')' at the end of the operand, searching
9022 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9023 after the '('. */
9024 base_string = op_string + strlen (op_string);
9025
9026 /* Handle vector operations. */
9027 vop_start = strchr (op_string, '{');
9028 if (vop_start && vop_start < base_string)
9029 {
9030 if (check_VecOperations (vop_start, base_string) == NULL)
9031 return 0;
9032 base_string = vop_start;
9033 }
9034
9035 --base_string;
9036 if (is_space_char (*base_string))
9037 --base_string;
9038
9039 /* If we only have a displacement, set-up for it to be parsed later. */
9040 displacement_string_start = op_string;
9041 displacement_string_end = base_string + 1;
9042
9043 if (*base_string == ')')
9044 {
9045 char *temp_string;
9046 unsigned int parens_balanced = 1;
9047 /* We've already checked that the number of left & right ()'s are
9048 equal, so this loop will not be infinite. */
9049 do
9050 {
9051 base_string--;
9052 if (*base_string == ')')
9053 parens_balanced++;
9054 if (*base_string == '(')
9055 parens_balanced--;
9056 }
9057 while (parens_balanced);
9058
9059 temp_string = base_string;
9060
9061 /* Skip past '(' and whitespace. */
9062 ++base_string;
9063 if (is_space_char (*base_string))
9064 ++base_string;
9065
9066 if (*base_string == ','
9067 || ((i.base_reg = parse_register (base_string, &end_op))
9068 != NULL))
9069 {
9070 displacement_string_end = temp_string;
9071
9072 i.types[this_operand].bitfield.baseindex = 1;
9073
9074 if (i.base_reg)
9075 {
9076 base_string = end_op;
9077 if (is_space_char (*base_string))
9078 ++base_string;
9079 }
9080
9081 /* There may be an index reg or scale factor here. */
9082 if (*base_string == ',')
9083 {
9084 ++base_string;
9085 if (is_space_char (*base_string))
9086 ++base_string;
9087
9088 if ((i.index_reg = parse_register (base_string, &end_op))
9089 != NULL)
9090 {
9091 base_string = end_op;
9092 if (is_space_char (*base_string))
9093 ++base_string;
9094 if (*base_string == ',')
9095 {
9096 ++base_string;
9097 if (is_space_char (*base_string))
9098 ++base_string;
9099 }
9100 else if (*base_string != ')')
9101 {
9102 as_bad (_("expecting `,' or `)' "
9103 "after index register in `%s'"),
9104 operand_string);
9105 return 0;
9106 }
9107 }
9108 else if (*base_string == REGISTER_PREFIX)
9109 {
9110 end_op = strchr (base_string, ',');
9111 if (end_op)
9112 *end_op = '\0';
9113 as_bad (_("bad register name `%s'"), base_string);
9114 return 0;
9115 }
9116
9117 /* Check for scale factor. */
9118 if (*base_string != ')')
9119 {
9120 char *end_scale = i386_scale (base_string);
9121
9122 if (!end_scale)
9123 return 0;
9124
9125 base_string = end_scale;
9126 if (is_space_char (*base_string))
9127 ++base_string;
9128 if (*base_string != ')')
9129 {
9130 as_bad (_("expecting `)' "
9131 "after scale factor in `%s'"),
9132 operand_string);
9133 return 0;
9134 }
9135 }
9136 else if (!i.index_reg)
9137 {
9138 as_bad (_("expecting index register or scale factor "
9139 "after `,'; got '%c'"),
9140 *base_string);
9141 return 0;
9142 }
9143 }
9144 else if (*base_string != ')')
9145 {
9146 as_bad (_("expecting `,' or `)' "
9147 "after base register in `%s'"),
9148 operand_string);
9149 return 0;
9150 }
9151 }
9152 else if (*base_string == REGISTER_PREFIX)
9153 {
9154 end_op = strchr (base_string, ',');
9155 if (end_op)
9156 *end_op = '\0';
9157 as_bad (_("bad register name `%s'"), base_string);
9158 return 0;
9159 }
9160 }
9161
9162 /* If there's an expression beginning the operand, parse it,
9163 assuming displacement_string_start and
9164 displacement_string_end are meaningful. */
9165 if (displacement_string_start != displacement_string_end)
9166 {
9167 if (!i386_displacement (displacement_string_start,
9168 displacement_string_end))
9169 return 0;
9170 }
9171
9172 /* Special case for (%dx) while doing input/output op. */
9173 if (i.base_reg
9174 && operand_type_equal (&i.base_reg->reg_type,
9175 &reg16_inoutportreg)
9176 && i.index_reg == 0
9177 && i.log2_scale_factor == 0
9178 && i.seg[i.mem_operands] == 0
9179 && !operand_type_check (i.types[this_operand], disp))
9180 {
9181 i.types[this_operand] = inoutportreg;
9182 return 1;
9183 }
9184
9185 if (i386_index_check (operand_string) == 0)
9186 return 0;
9187 i.types[this_operand].bitfield.mem = 1;
9188 if (i.mem_operands == 0)
9189 i.memop1_string = xstrdup (operand_string);
9190 i.mem_operands++;
9191 }
9192 else
9193 {
9194 /* It's not a memory operand; argh! */
9195 as_bad (_("invalid char %s beginning operand %d `%s'"),
9196 output_invalid (*op_string),
9197 this_operand + 1,
9198 op_string);
9199 return 0;
9200 }
9201 return 1; /* Normal return. */
9202 }
9203 \f
9204 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9205 that an rs_machine_dependent frag may reach. */
9206
9207 unsigned int
9208 i386_frag_max_var (fragS *frag)
9209 {
9210 /* The only relaxable frags are for jumps.
9211 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9212 gas_assert (frag->fr_type == rs_machine_dependent);
9213 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9214 }
9215
9216 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9217 static int
9218 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9219 {
9220 /* STT_GNU_IFUNC symbol must go through PLT. */
9221 if ((symbol_get_bfdsym (fr_symbol)->flags
9222 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9223 return 0;
9224
9225 if (!S_IS_EXTERNAL (fr_symbol))
9226 /* Symbol may be weak or local. */
9227 return !S_IS_WEAK (fr_symbol);
9228
9229 /* Global symbols with non-default visibility can't be preempted. */
9230 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9231 return 1;
9232
9233 if (fr_var != NO_RELOC)
9234 switch ((enum bfd_reloc_code_real) fr_var)
9235 {
9236 case BFD_RELOC_386_PLT32:
9237 case BFD_RELOC_X86_64_PLT32:
9238 /* Symbol with PLT relocation may be preempted. */
9239 return 0;
9240 default:
9241 abort ();
9242 }
9243
9244 /* Global symbols with default visibility in a shared library may be
9245 preempted by another definition. */
9246 return !shared;
9247 }
9248 #endif
9249
9250 /* md_estimate_size_before_relax()
9251
9252 Called just before relax() for rs_machine_dependent frags. The x86
9253 assembler uses these frags to handle variable size jump
9254 instructions.
9255
9256 Any symbol that is now undefined will not become defined.
9257 Return the correct fr_subtype in the frag.
9258 Return the initial "guess for variable size of frag" to caller.
9259 The guess is actually the growth beyond the fixed part. Whatever
9260 we do to grow the fixed or variable part contributes to our
9261 returned value. */
9262
9263 int
9264 md_estimate_size_before_relax (fragS *fragP, segT segment)
9265 {
9266 /* We've already got fragP->fr_subtype right; all we have to do is
9267 check for un-relaxable symbols. On an ELF system, we can't relax
9268 an externally visible symbol, because it may be overridden by a
9269 shared library. */
9270 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9271 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9272 || (IS_ELF
9273 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9274 fragP->fr_var))
9275 #endif
9276 #if defined (OBJ_COFF) && defined (TE_PE)
9277 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9278 && S_IS_WEAK (fragP->fr_symbol))
9279 #endif
9280 )
9281 {
9282 /* Symbol is undefined in this segment, or we need to keep a
9283 reloc so that weak symbols can be overridden. */
9284 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9285 enum bfd_reloc_code_real reloc_type;
9286 unsigned char *opcode;
9287 int old_fr_fix;
9288
9289 if (fragP->fr_var != NO_RELOC)
9290 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9291 else if (size == 2)
9292 reloc_type = BFD_RELOC_16_PCREL;
9293 else
9294 reloc_type = BFD_RELOC_32_PCREL;
9295
9296 old_fr_fix = fragP->fr_fix;
9297 opcode = (unsigned char *) fragP->fr_opcode;
9298
9299 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9300 {
9301 case UNCOND_JUMP:
9302 /* Make jmp (0xeb) a (d)word displacement jump. */
9303 opcode[0] = 0xe9;
9304 fragP->fr_fix += size;
9305 fix_new (fragP, old_fr_fix, size,
9306 fragP->fr_symbol,
9307 fragP->fr_offset, 1,
9308 reloc_type);
9309 break;
9310
9311 case COND_JUMP86:
9312 if (size == 2
9313 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9314 {
9315 /* Negate the condition, and branch past an
9316 unconditional jump. */
9317 opcode[0] ^= 1;
9318 opcode[1] = 3;
9319 /* Insert an unconditional jump. */
9320 opcode[2] = 0xe9;
9321 /* We added two extra opcode bytes, and have a two byte
9322 offset. */
9323 fragP->fr_fix += 2 + 2;
9324 fix_new (fragP, old_fr_fix + 2, 2,
9325 fragP->fr_symbol,
9326 fragP->fr_offset, 1,
9327 reloc_type);
9328 break;
9329 }
9330 /* Fall through. */
9331
9332 case COND_JUMP:
9333 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9334 {
9335 fixS *fixP;
9336
9337 fragP->fr_fix += 1;
9338 fixP = fix_new (fragP, old_fr_fix, 1,
9339 fragP->fr_symbol,
9340 fragP->fr_offset, 1,
9341 BFD_RELOC_8_PCREL);
9342 fixP->fx_signed = 1;
9343 break;
9344 }
9345
9346 /* This changes the byte-displacement jump 0x7N
9347 to the (d)word-displacement jump 0x0f,0x8N. */
9348 opcode[1] = opcode[0] + 0x10;
9349 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9350 /* We've added an opcode byte. */
9351 fragP->fr_fix += 1 + size;
9352 fix_new (fragP, old_fr_fix + 1, size,
9353 fragP->fr_symbol,
9354 fragP->fr_offset, 1,
9355 reloc_type);
9356 break;
9357
9358 default:
9359 BAD_CASE (fragP->fr_subtype);
9360 break;
9361 }
9362 frag_wane (fragP);
9363 return fragP->fr_fix - old_fr_fix;
9364 }
9365
9366 /* Guess size depending on current relax state. Initially the relax
9367 state will correspond to a short jump and we return 1, because
9368 the variable part of the frag (the branch offset) is one byte
9369 long. However, we can relax a section more than once and in that
9370 case we must either set fr_subtype back to the unrelaxed state,
9371 or return the value for the appropriate branch. */
9372 return md_relax_table[fragP->fr_subtype].rlx_length;
9373 }
9374
9375 /* Called after relax() is finished.
9376
9377 In: Address of frag.
9378 fr_type == rs_machine_dependent.
9379 fr_subtype is what the address relaxed to.
9380
9381 Out: Any fixSs and constants are set up.
9382 Caller will turn frag into a ".space 0". */
9383
9384 void
9385 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9386 fragS *fragP)
9387 {
9388 unsigned char *opcode;
9389 unsigned char *where_to_put_displacement = NULL;
9390 offsetT target_address;
9391 offsetT opcode_address;
9392 unsigned int extension = 0;
9393 offsetT displacement_from_opcode_start;
9394
9395 opcode = (unsigned char *) fragP->fr_opcode;
9396
9397 /* Address we want to reach in file space. */
9398 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9399
9400 /* Address opcode resides at in file space. */
9401 opcode_address = fragP->fr_address + fragP->fr_fix;
9402
9403 /* Displacement from opcode start to fill into instruction. */
9404 displacement_from_opcode_start = target_address - opcode_address;
9405
9406 if ((fragP->fr_subtype & BIG) == 0)
9407 {
9408 /* Don't have to change opcode. */
9409 extension = 1; /* 1 opcode + 1 displacement */
9410 where_to_put_displacement = &opcode[1];
9411 }
9412 else
9413 {
9414 if (no_cond_jump_promotion
9415 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9416 as_warn_where (fragP->fr_file, fragP->fr_line,
9417 _("long jump required"));
9418
9419 switch (fragP->fr_subtype)
9420 {
9421 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9422 extension = 4; /* 1 opcode + 4 displacement */
9423 opcode[0] = 0xe9;
9424 where_to_put_displacement = &opcode[1];
9425 break;
9426
9427 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9428 extension = 2; /* 1 opcode + 2 displacement */
9429 opcode[0] = 0xe9;
9430 where_to_put_displacement = &opcode[1];
9431 break;
9432
9433 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9434 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9435 extension = 5; /* 2 opcode + 4 displacement */
9436 opcode[1] = opcode[0] + 0x10;
9437 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9438 where_to_put_displacement = &opcode[2];
9439 break;
9440
9441 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9442 extension = 3; /* 2 opcode + 2 displacement */
9443 opcode[1] = opcode[0] + 0x10;
9444 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9445 where_to_put_displacement = &opcode[2];
9446 break;
9447
9448 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9449 extension = 4;
9450 opcode[0] ^= 1;
9451 opcode[1] = 3;
9452 opcode[2] = 0xe9;
9453 where_to_put_displacement = &opcode[3];
9454 break;
9455
9456 default:
9457 BAD_CASE (fragP->fr_subtype);
9458 break;
9459 }
9460 }
9461
9462 /* If size if less then four we are sure that the operand fits,
9463 but if it's 4, then it could be that the displacement is larger
9464 then -/+ 2GB. */
9465 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9466 && object_64bit
9467 && ((addressT) (displacement_from_opcode_start - extension
9468 + ((addressT) 1 << 31))
9469 > (((addressT) 2 << 31) - 1)))
9470 {
9471 as_bad_where (fragP->fr_file, fragP->fr_line,
9472 _("jump target out of range"));
9473 /* Make us emit 0. */
9474 displacement_from_opcode_start = extension;
9475 }
9476 /* Now put displacement after opcode. */
9477 md_number_to_chars ((char *) where_to_put_displacement,
9478 (valueT) (displacement_from_opcode_start - extension),
9479 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9480 fragP->fr_fix += extension;
9481 }
9482 \f
9483 /* Apply a fixup (fixP) to segment data, once it has been determined
9484 by our caller that we have all the info we need to fix it up.
9485
9486 Parameter valP is the pointer to the value of the bits.
9487
9488 On the 386, immediates, displacements, and data pointers are all in
9489 the same (little-endian) format, so we don't need to care about which
9490 we are handling. */
9491
9492 void
9493 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9494 {
9495 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9496 valueT value = *valP;
9497
9498 #if !defined (TE_Mach)
9499 if (fixP->fx_pcrel)
9500 {
9501 switch (fixP->fx_r_type)
9502 {
9503 default:
9504 break;
9505
9506 case BFD_RELOC_64:
9507 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9508 break;
9509 case BFD_RELOC_32:
9510 case BFD_RELOC_X86_64_32S:
9511 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9512 break;
9513 case BFD_RELOC_16:
9514 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9515 break;
9516 case BFD_RELOC_8:
9517 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9518 break;
9519 }
9520 }
9521
9522 if (fixP->fx_addsy != NULL
9523 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9524 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9525 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9526 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9527 && !use_rela_relocations)
9528 {
9529 /* This is a hack. There should be a better way to handle this.
9530 This covers for the fact that bfd_install_relocation will
9531 subtract the current location (for partial_inplace, PC relative
9532 relocations); see more below. */
9533 #ifndef OBJ_AOUT
9534 if (IS_ELF
9535 #ifdef TE_PE
9536 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9537 #endif
9538 )
9539 value += fixP->fx_where + fixP->fx_frag->fr_address;
9540 #endif
9541 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9542 if (IS_ELF)
9543 {
9544 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9545
9546 if ((sym_seg == seg
9547 || (symbol_section_p (fixP->fx_addsy)
9548 && sym_seg != absolute_section))
9549 && !generic_force_reloc (fixP))
9550 {
9551 /* Yes, we add the values in twice. This is because
9552 bfd_install_relocation subtracts them out again. I think
9553 bfd_install_relocation is broken, but I don't dare change
9554 it. FIXME. */
9555 value += fixP->fx_where + fixP->fx_frag->fr_address;
9556 }
9557 }
9558 #endif
9559 #if defined (OBJ_COFF) && defined (TE_PE)
9560 /* For some reason, the PE format does not store a
9561 section address offset for a PC relative symbol. */
9562 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9563 || S_IS_WEAK (fixP->fx_addsy))
9564 value += md_pcrel_from (fixP);
9565 #endif
9566 }
9567 #if defined (OBJ_COFF) && defined (TE_PE)
9568 if (fixP->fx_addsy != NULL
9569 && S_IS_WEAK (fixP->fx_addsy)
9570 /* PR 16858: Do not modify weak function references. */
9571 && ! fixP->fx_pcrel)
9572 {
9573 #if !defined (TE_PEP)
9574 /* For x86 PE weak function symbols are neither PC-relative
9575 nor do they set S_IS_FUNCTION. So the only reliable way
9576 to detect them is to check the flags of their containing
9577 section. */
9578 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9579 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9580 ;
9581 else
9582 #endif
9583 value -= S_GET_VALUE (fixP->fx_addsy);
9584 }
9585 #endif
9586
9587 /* Fix a few things - the dynamic linker expects certain values here,
9588 and we must not disappoint it. */
9589 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9590 if (IS_ELF && fixP->fx_addsy)
9591 switch (fixP->fx_r_type)
9592 {
9593 case BFD_RELOC_386_PLT32:
9594 case BFD_RELOC_X86_64_PLT32:
9595 /* Make the jump instruction point to the address of the operand. At
9596 runtime we merely add the offset to the actual PLT entry. */
9597 value = -4;
9598 break;
9599
9600 case BFD_RELOC_386_TLS_GD:
9601 case BFD_RELOC_386_TLS_LDM:
9602 case BFD_RELOC_386_TLS_IE_32:
9603 case BFD_RELOC_386_TLS_IE:
9604 case BFD_RELOC_386_TLS_GOTIE:
9605 case BFD_RELOC_386_TLS_GOTDESC:
9606 case BFD_RELOC_X86_64_TLSGD:
9607 case BFD_RELOC_X86_64_TLSLD:
9608 case BFD_RELOC_X86_64_GOTTPOFF:
9609 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9610 value = 0; /* Fully resolved at runtime. No addend. */
9611 /* Fallthrough */
9612 case BFD_RELOC_386_TLS_LE:
9613 case BFD_RELOC_386_TLS_LDO_32:
9614 case BFD_RELOC_386_TLS_LE_32:
9615 case BFD_RELOC_X86_64_DTPOFF32:
9616 case BFD_RELOC_X86_64_DTPOFF64:
9617 case BFD_RELOC_X86_64_TPOFF32:
9618 case BFD_RELOC_X86_64_TPOFF64:
9619 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9620 break;
9621
9622 case BFD_RELOC_386_TLS_DESC_CALL:
9623 case BFD_RELOC_X86_64_TLSDESC_CALL:
9624 value = 0; /* Fully resolved at runtime. No addend. */
9625 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9626 fixP->fx_done = 0;
9627 return;
9628
9629 case BFD_RELOC_VTABLE_INHERIT:
9630 case BFD_RELOC_VTABLE_ENTRY:
9631 fixP->fx_done = 0;
9632 return;
9633
9634 default:
9635 break;
9636 }
9637 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9638 *valP = value;
9639 #endif /* !defined (TE_Mach) */
9640
9641 /* Are we finished with this relocation now? */
9642 if (fixP->fx_addsy == NULL)
9643 fixP->fx_done = 1;
9644 #if defined (OBJ_COFF) && defined (TE_PE)
9645 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9646 {
9647 fixP->fx_done = 0;
9648 /* Remember value for tc_gen_reloc. */
9649 fixP->fx_addnumber = value;
9650 /* Clear out the frag for now. */
9651 value = 0;
9652 }
9653 #endif
9654 else if (use_rela_relocations)
9655 {
9656 fixP->fx_no_overflow = 1;
9657 /* Remember value for tc_gen_reloc. */
9658 fixP->fx_addnumber = value;
9659 value = 0;
9660 }
9661
9662 md_number_to_chars (p, value, fixP->fx_size);
9663 }
9664 \f
9665 const char *
9666 md_atof (int type, char *litP, int *sizeP)
9667 {
9668 /* This outputs the LITTLENUMs in REVERSE order;
9669 in accord with the bigendian 386. */
9670 return ieee_md_atof (type, litP, sizeP, FALSE);
9671 }
9672 \f
9673 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9674
9675 static char *
9676 output_invalid (int c)
9677 {
9678 if (ISPRINT (c))
9679 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9680 "'%c'", c);
9681 else
9682 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9683 "(0x%x)", (unsigned char) c);
9684 return output_invalid_buf;
9685 }
9686
9687 /* REG_STRING starts *before* REGISTER_PREFIX. */
9688
9689 static const reg_entry *
9690 parse_real_register (char *reg_string, char **end_op)
9691 {
9692 char *s = reg_string;
9693 char *p;
9694 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9695 const reg_entry *r;
9696
9697 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9698 if (*s == REGISTER_PREFIX)
9699 ++s;
9700
9701 if (is_space_char (*s))
9702 ++s;
9703
9704 p = reg_name_given;
9705 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9706 {
9707 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9708 return (const reg_entry *) NULL;
9709 s++;
9710 }
9711
9712 /* For naked regs, make sure that we are not dealing with an identifier.
9713 This prevents confusing an identifier like `eax_var' with register
9714 `eax'. */
9715 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9716 return (const reg_entry *) NULL;
9717
9718 *end_op = s;
9719
9720 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9721
9722 /* Handle floating point regs, allowing spaces in the (i) part. */
9723 if (r == i386_regtab /* %st is first entry of table */)
9724 {
9725 if (is_space_char (*s))
9726 ++s;
9727 if (*s == '(')
9728 {
9729 ++s;
9730 if (is_space_char (*s))
9731 ++s;
9732 if (*s >= '0' && *s <= '7')
9733 {
9734 int fpr = *s - '0';
9735 ++s;
9736 if (is_space_char (*s))
9737 ++s;
9738 if (*s == ')')
9739 {
9740 *end_op = s + 1;
9741 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9742 know (r);
9743 return r + fpr;
9744 }
9745 }
9746 /* We have "%st(" then garbage. */
9747 return (const reg_entry *) NULL;
9748 }
9749 }
9750
9751 if (r == NULL || allow_pseudo_reg)
9752 return r;
9753
9754 if (operand_type_all_zero (&r->reg_type))
9755 return (const reg_entry *) NULL;
9756
9757 if ((r->reg_type.bitfield.reg32
9758 || r->reg_type.bitfield.sreg3
9759 || r->reg_type.bitfield.control
9760 || r->reg_type.bitfield.debug
9761 || r->reg_type.bitfield.test)
9762 && !cpu_arch_flags.bitfield.cpui386)
9763 return (const reg_entry *) NULL;
9764
9765 if (r->reg_type.bitfield.floatreg
9766 && !cpu_arch_flags.bitfield.cpu8087
9767 && !cpu_arch_flags.bitfield.cpu287
9768 && !cpu_arch_flags.bitfield.cpu387)
9769 return (const reg_entry *) NULL;
9770
9771 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9772 return (const reg_entry *) NULL;
9773
9774 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9775 return (const reg_entry *) NULL;
9776
9777 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9778 return (const reg_entry *) NULL;
9779
9780 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9781 return (const reg_entry *) NULL;
9782
9783 if (r->reg_type.bitfield.regmask
9784 && !cpu_arch_flags.bitfield.cpuregmask)
9785 return (const reg_entry *) NULL;
9786
9787 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9788 if (!allow_index_reg
9789 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9790 return (const reg_entry *) NULL;
9791
9792 /* Upper 16 vector register is only available with VREX in 64bit
9793 mode. */
9794 if ((r->reg_flags & RegVRex))
9795 {
9796 if (i.vec_encoding == vex_encoding_default)
9797 i.vec_encoding = vex_encoding_evex;
9798
9799 if (!cpu_arch_flags.bitfield.cpuvrex
9800 || i.vec_encoding != vex_encoding_evex
9801 || flag_code != CODE_64BIT)
9802 return (const reg_entry *) NULL;
9803 }
9804
9805 if (((r->reg_flags & (RegRex64 | RegRex))
9806 || r->reg_type.bitfield.reg64)
9807 && (!cpu_arch_flags.bitfield.cpulm
9808 || !operand_type_equal (&r->reg_type, &control))
9809 && flag_code != CODE_64BIT)
9810 return (const reg_entry *) NULL;
9811
9812 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9813 return (const reg_entry *) NULL;
9814
9815 return r;
9816 }
9817
9818 /* REG_STRING starts *before* REGISTER_PREFIX. */
9819
9820 static const reg_entry *
9821 parse_register (char *reg_string, char **end_op)
9822 {
9823 const reg_entry *r;
9824
9825 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9826 r = parse_real_register (reg_string, end_op);
9827 else
9828 r = NULL;
9829 if (!r)
9830 {
9831 char *save = input_line_pointer;
9832 char c;
9833 symbolS *symbolP;
9834
9835 input_line_pointer = reg_string;
9836 c = get_symbol_name (&reg_string);
9837 symbolP = symbol_find (reg_string);
9838 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9839 {
9840 const expressionS *e = symbol_get_value_expression (symbolP);
9841
9842 know (e->X_op == O_register);
9843 know (e->X_add_number >= 0
9844 && (valueT) e->X_add_number < i386_regtab_size);
9845 r = i386_regtab + e->X_add_number;
9846 if ((r->reg_flags & RegVRex))
9847 i.vec_encoding = vex_encoding_evex;
9848 *end_op = input_line_pointer;
9849 }
9850 *input_line_pointer = c;
9851 input_line_pointer = save;
9852 }
9853 return r;
9854 }
9855
9856 int
9857 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9858 {
9859 const reg_entry *r;
9860 char *end = input_line_pointer;
9861
9862 *end = *nextcharP;
9863 r = parse_register (name, &input_line_pointer);
9864 if (r && end <= input_line_pointer)
9865 {
9866 *nextcharP = *input_line_pointer;
9867 *input_line_pointer = 0;
9868 e->X_op = O_register;
9869 e->X_add_number = r - i386_regtab;
9870 return 1;
9871 }
9872 input_line_pointer = end;
9873 *end = 0;
9874 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9875 }
9876
9877 void
9878 md_operand (expressionS *e)
9879 {
9880 char *end;
9881 const reg_entry *r;
9882
9883 switch (*input_line_pointer)
9884 {
9885 case REGISTER_PREFIX:
9886 r = parse_real_register (input_line_pointer, &end);
9887 if (r)
9888 {
9889 e->X_op = O_register;
9890 e->X_add_number = r - i386_regtab;
9891 input_line_pointer = end;
9892 }
9893 break;
9894
9895 case '[':
9896 gas_assert (intel_syntax);
9897 end = input_line_pointer++;
9898 expression (e);
9899 if (*input_line_pointer == ']')
9900 {
9901 ++input_line_pointer;
9902 e->X_op_symbol = make_expr_symbol (e);
9903 e->X_add_symbol = NULL;
9904 e->X_add_number = 0;
9905 e->X_op = O_index;
9906 }
9907 else
9908 {
9909 e->X_op = O_absent;
9910 input_line_pointer = end;
9911 }
9912 break;
9913 }
9914 }
9915
9916 \f
9917 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9918 const char *md_shortopts = "kVQ:sqn";
9919 #else
9920 const char *md_shortopts = "qn";
9921 #endif
9922
9923 #define OPTION_32 (OPTION_MD_BASE + 0)
9924 #define OPTION_64 (OPTION_MD_BASE + 1)
9925 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9926 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9927 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9928 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9929 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9930 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9931 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9932 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9933 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9934 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9935 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9936 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9937 #define OPTION_X32 (OPTION_MD_BASE + 14)
9938 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9939 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9940 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9941 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9942 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9943 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9944 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9945 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9946 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9947 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9948 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9949
9950 struct option md_longopts[] =
9951 {
9952 {"32", no_argument, NULL, OPTION_32},
9953 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9954 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9955 {"64", no_argument, NULL, OPTION_64},
9956 #endif
9957 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9958 {"x32", no_argument, NULL, OPTION_X32},
9959 {"mshared", no_argument, NULL, OPTION_MSHARED},
9960 #endif
9961 {"divide", no_argument, NULL, OPTION_DIVIDE},
9962 {"march", required_argument, NULL, OPTION_MARCH},
9963 {"mtune", required_argument, NULL, OPTION_MTUNE},
9964 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9965 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9966 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9967 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9968 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9969 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9970 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9971 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9972 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9973 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9974 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9975 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9976 # if defined (TE_PE) || defined (TE_PEP)
9977 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9978 #endif
9979 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
9980 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
9981 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
9982 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9983 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9984 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
9985 {NULL, no_argument, NULL, 0}
9986 };
9987 size_t md_longopts_size = sizeof (md_longopts);
9988
9989 int
9990 md_parse_option (int c, const char *arg)
9991 {
9992 unsigned int j;
9993 char *arch, *next, *saved;
9994
9995 switch (c)
9996 {
9997 case 'n':
9998 optimize_align_code = 0;
9999 break;
10000
10001 case 'q':
10002 quiet_warnings = 1;
10003 break;
10004
10005 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10006 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10007 should be emitted or not. FIXME: Not implemented. */
10008 case 'Q':
10009 break;
10010
10011 /* -V: SVR4 argument to print version ID. */
10012 case 'V':
10013 print_version_id ();
10014 break;
10015
10016 /* -k: Ignore for FreeBSD compatibility. */
10017 case 'k':
10018 break;
10019
10020 case 's':
10021 /* -s: On i386 Solaris, this tells the native assembler to use
10022 .stab instead of .stab.excl. We always use .stab anyhow. */
10023 break;
10024
10025 case OPTION_MSHARED:
10026 shared = 1;
10027 break;
10028 #endif
10029 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10030 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10031 case OPTION_64:
10032 {
10033 const char **list, **l;
10034
10035 list = bfd_target_list ();
10036 for (l = list; *l != NULL; l++)
10037 if (CONST_STRNEQ (*l, "elf64-x86-64")
10038 || strcmp (*l, "coff-x86-64") == 0
10039 || strcmp (*l, "pe-x86-64") == 0
10040 || strcmp (*l, "pei-x86-64") == 0
10041 || strcmp (*l, "mach-o-x86-64") == 0)
10042 {
10043 default_arch = "x86_64";
10044 break;
10045 }
10046 if (*l == NULL)
10047 as_fatal (_("no compiled in support for x86_64"));
10048 free (list);
10049 }
10050 break;
10051 #endif
10052
10053 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10054 case OPTION_X32:
10055 if (IS_ELF)
10056 {
10057 const char **list, **l;
10058
10059 list = bfd_target_list ();
10060 for (l = list; *l != NULL; l++)
10061 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10062 {
10063 default_arch = "x86_64:32";
10064 break;
10065 }
10066 if (*l == NULL)
10067 as_fatal (_("no compiled in support for 32bit x86_64"));
10068 free (list);
10069 }
10070 else
10071 as_fatal (_("32bit x86_64 is only supported for ELF"));
10072 break;
10073 #endif
10074
10075 case OPTION_32:
10076 default_arch = "i386";
10077 break;
10078
10079 case OPTION_DIVIDE:
10080 #ifdef SVR4_COMMENT_CHARS
10081 {
10082 char *n, *t;
10083 const char *s;
10084
10085 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10086 t = n;
10087 for (s = i386_comment_chars; *s != '\0'; s++)
10088 if (*s != '/')
10089 *t++ = *s;
10090 *t = '\0';
10091 i386_comment_chars = n;
10092 }
10093 #endif
10094 break;
10095
10096 case OPTION_MARCH:
10097 saved = xstrdup (arg);
10098 arch = saved;
10099 /* Allow -march=+nosse. */
10100 if (*arch == '+')
10101 arch++;
10102 do
10103 {
10104 if (*arch == '.')
10105 as_fatal (_("invalid -march= option: `%s'"), arg);
10106 next = strchr (arch, '+');
10107 if (next)
10108 *next++ = '\0';
10109 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10110 {
10111 if (strcmp (arch, cpu_arch [j].name) == 0)
10112 {
10113 /* Processor. */
10114 if (! cpu_arch[j].flags.bitfield.cpui386)
10115 continue;
10116
10117 cpu_arch_name = cpu_arch[j].name;
10118 cpu_sub_arch_name = NULL;
10119 cpu_arch_flags = cpu_arch[j].flags;
10120 cpu_arch_isa = cpu_arch[j].type;
10121 cpu_arch_isa_flags = cpu_arch[j].flags;
10122 if (!cpu_arch_tune_set)
10123 {
10124 cpu_arch_tune = cpu_arch_isa;
10125 cpu_arch_tune_flags = cpu_arch_isa_flags;
10126 }
10127 break;
10128 }
10129 else if (*cpu_arch [j].name == '.'
10130 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10131 {
10132 /* ISA extension. */
10133 i386_cpu_flags flags;
10134
10135 flags = cpu_flags_or (cpu_arch_flags,
10136 cpu_arch[j].flags);
10137
10138 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10139 {
10140 if (cpu_sub_arch_name)
10141 {
10142 char *name = cpu_sub_arch_name;
10143 cpu_sub_arch_name = concat (name,
10144 cpu_arch[j].name,
10145 (const char *) NULL);
10146 free (name);
10147 }
10148 else
10149 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10150 cpu_arch_flags = flags;
10151 cpu_arch_isa_flags = flags;
10152 }
10153 break;
10154 }
10155 }
10156
10157 if (j >= ARRAY_SIZE (cpu_arch))
10158 {
10159 /* Disable an ISA extension. */
10160 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10161 if (strcmp (arch, cpu_noarch [j].name) == 0)
10162 {
10163 i386_cpu_flags flags;
10164
10165 flags = cpu_flags_and_not (cpu_arch_flags,
10166 cpu_noarch[j].flags);
10167 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10168 {
10169 if (cpu_sub_arch_name)
10170 {
10171 char *name = cpu_sub_arch_name;
10172 cpu_sub_arch_name = concat (arch,
10173 (const char *) NULL);
10174 free (name);
10175 }
10176 else
10177 cpu_sub_arch_name = xstrdup (arch);
10178 cpu_arch_flags = flags;
10179 cpu_arch_isa_flags = flags;
10180 }
10181 break;
10182 }
10183
10184 if (j >= ARRAY_SIZE (cpu_noarch))
10185 j = ARRAY_SIZE (cpu_arch);
10186 }
10187
10188 if (j >= ARRAY_SIZE (cpu_arch))
10189 as_fatal (_("invalid -march= option: `%s'"), arg);
10190
10191 arch = next;
10192 }
10193 while (next != NULL);
10194 free (saved);
10195 break;
10196
10197 case OPTION_MTUNE:
10198 if (*arg == '.')
10199 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10200 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10201 {
10202 if (strcmp (arg, cpu_arch [j].name) == 0)
10203 {
10204 cpu_arch_tune_set = 1;
10205 cpu_arch_tune = cpu_arch [j].type;
10206 cpu_arch_tune_flags = cpu_arch[j].flags;
10207 break;
10208 }
10209 }
10210 if (j >= ARRAY_SIZE (cpu_arch))
10211 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10212 break;
10213
10214 case OPTION_MMNEMONIC:
10215 if (strcasecmp (arg, "att") == 0)
10216 intel_mnemonic = 0;
10217 else if (strcasecmp (arg, "intel") == 0)
10218 intel_mnemonic = 1;
10219 else
10220 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10221 break;
10222
10223 case OPTION_MSYNTAX:
10224 if (strcasecmp (arg, "att") == 0)
10225 intel_syntax = 0;
10226 else if (strcasecmp (arg, "intel") == 0)
10227 intel_syntax = 1;
10228 else
10229 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10230 break;
10231
10232 case OPTION_MINDEX_REG:
10233 allow_index_reg = 1;
10234 break;
10235
10236 case OPTION_MNAKED_REG:
10237 allow_naked_reg = 1;
10238 break;
10239
10240 case OPTION_MOLD_GCC:
10241 old_gcc = 1;
10242 break;
10243
10244 case OPTION_MSSE2AVX:
10245 sse2avx = 1;
10246 break;
10247
10248 case OPTION_MSSE_CHECK:
10249 if (strcasecmp (arg, "error") == 0)
10250 sse_check = check_error;
10251 else if (strcasecmp (arg, "warning") == 0)
10252 sse_check = check_warning;
10253 else if (strcasecmp (arg, "none") == 0)
10254 sse_check = check_none;
10255 else
10256 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10257 break;
10258
10259 case OPTION_MOPERAND_CHECK:
10260 if (strcasecmp (arg, "error") == 0)
10261 operand_check = check_error;
10262 else if (strcasecmp (arg, "warning") == 0)
10263 operand_check = check_warning;
10264 else if (strcasecmp (arg, "none") == 0)
10265 operand_check = check_none;
10266 else
10267 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10268 break;
10269
10270 case OPTION_MAVXSCALAR:
10271 if (strcasecmp (arg, "128") == 0)
10272 avxscalar = vex128;
10273 else if (strcasecmp (arg, "256") == 0)
10274 avxscalar = vex256;
10275 else
10276 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10277 break;
10278
10279 case OPTION_MADD_BND_PREFIX:
10280 add_bnd_prefix = 1;
10281 break;
10282
10283 case OPTION_MEVEXLIG:
10284 if (strcmp (arg, "128") == 0)
10285 evexlig = evexl128;
10286 else if (strcmp (arg, "256") == 0)
10287 evexlig = evexl256;
10288 else if (strcmp (arg, "512") == 0)
10289 evexlig = evexl512;
10290 else
10291 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10292 break;
10293
10294 case OPTION_MEVEXRCIG:
10295 if (strcmp (arg, "rne") == 0)
10296 evexrcig = rne;
10297 else if (strcmp (arg, "rd") == 0)
10298 evexrcig = rd;
10299 else if (strcmp (arg, "ru") == 0)
10300 evexrcig = ru;
10301 else if (strcmp (arg, "rz") == 0)
10302 evexrcig = rz;
10303 else
10304 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10305 break;
10306
10307 case OPTION_MEVEXWIG:
10308 if (strcmp (arg, "0") == 0)
10309 evexwig = evexw0;
10310 else if (strcmp (arg, "1") == 0)
10311 evexwig = evexw1;
10312 else
10313 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10314 break;
10315
10316 # if defined (TE_PE) || defined (TE_PEP)
10317 case OPTION_MBIG_OBJ:
10318 use_big_obj = 1;
10319 break;
10320 #endif
10321
10322 case OPTION_MOMIT_LOCK_PREFIX:
10323 if (strcasecmp (arg, "yes") == 0)
10324 omit_lock_prefix = 1;
10325 else if (strcasecmp (arg, "no") == 0)
10326 omit_lock_prefix = 0;
10327 else
10328 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10329 break;
10330
10331 case OPTION_MFENCE_AS_LOCK_ADD:
10332 if (strcasecmp (arg, "yes") == 0)
10333 avoid_fence = 1;
10334 else if (strcasecmp (arg, "no") == 0)
10335 avoid_fence = 0;
10336 else
10337 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10338 break;
10339
10340 case OPTION_MRELAX_RELOCATIONS:
10341 if (strcasecmp (arg, "yes") == 0)
10342 generate_relax_relocations = 1;
10343 else if (strcasecmp (arg, "no") == 0)
10344 generate_relax_relocations = 0;
10345 else
10346 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10347 break;
10348
10349 case OPTION_MAMD64:
10350 intel64 = 0;
10351 break;
10352
10353 case OPTION_MINTEL64:
10354 intel64 = 1;
10355 break;
10356
10357 default:
10358 return 0;
10359 }
10360 return 1;
10361 }
10362
10363 #define MESSAGE_TEMPLATE \
10364 " "
10365
10366 static char *
10367 output_message (FILE *stream, char *p, char *message, char *start,
10368 int *left_p, const char *name, int len)
10369 {
10370 int size = sizeof (MESSAGE_TEMPLATE);
10371 int left = *left_p;
10372
10373 /* Reserve 2 spaces for ", " or ",\0" */
10374 left -= len + 2;
10375
10376 /* Check if there is any room. */
10377 if (left >= 0)
10378 {
10379 if (p != start)
10380 {
10381 *p++ = ',';
10382 *p++ = ' ';
10383 }
10384 p = mempcpy (p, name, len);
10385 }
10386 else
10387 {
10388 /* Output the current message now and start a new one. */
10389 *p++ = ',';
10390 *p = '\0';
10391 fprintf (stream, "%s\n", message);
10392 p = start;
10393 left = size - (start - message) - len - 2;
10394
10395 gas_assert (left >= 0);
10396
10397 p = mempcpy (p, name, len);
10398 }
10399
10400 *left_p = left;
10401 return p;
10402 }
10403
10404 static void
10405 show_arch (FILE *stream, int ext, int check)
10406 {
10407 static char message[] = MESSAGE_TEMPLATE;
10408 char *start = message + 27;
10409 char *p;
10410 int size = sizeof (MESSAGE_TEMPLATE);
10411 int left;
10412 const char *name;
10413 int len;
10414 unsigned int j;
10415
10416 p = start;
10417 left = size - (start - message);
10418 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10419 {
10420 /* Should it be skipped? */
10421 if (cpu_arch [j].skip)
10422 continue;
10423
10424 name = cpu_arch [j].name;
10425 len = cpu_arch [j].len;
10426 if (*name == '.')
10427 {
10428 /* It is an extension. Skip if we aren't asked to show it. */
10429 if (ext)
10430 {
10431 name++;
10432 len--;
10433 }
10434 else
10435 continue;
10436 }
10437 else if (ext)
10438 {
10439 /* It is an processor. Skip if we show only extension. */
10440 continue;
10441 }
10442 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10443 {
10444 /* It is an impossible processor - skip. */
10445 continue;
10446 }
10447
10448 p = output_message (stream, p, message, start, &left, name, len);
10449 }
10450
10451 /* Display disabled extensions. */
10452 if (ext)
10453 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10454 {
10455 name = cpu_noarch [j].name;
10456 len = cpu_noarch [j].len;
10457 p = output_message (stream, p, message, start, &left, name,
10458 len);
10459 }
10460
10461 *p = '\0';
10462 fprintf (stream, "%s\n", message);
10463 }
10464
10465 void
10466 md_show_usage (FILE *stream)
10467 {
10468 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10469 fprintf (stream, _("\
10470 -Q ignored\n\
10471 -V print assembler version number\n\
10472 -k ignored\n"));
10473 #endif
10474 fprintf (stream, _("\
10475 -n Do not optimize code alignment\n\
10476 -q quieten some warnings\n"));
10477 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10478 fprintf (stream, _("\
10479 -s ignored\n"));
10480 #endif
10481 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10482 || defined (TE_PE) || defined (TE_PEP))
10483 fprintf (stream, _("\
10484 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10485 #endif
10486 #ifdef SVR4_COMMENT_CHARS
10487 fprintf (stream, _("\
10488 --divide do not treat `/' as a comment character\n"));
10489 #else
10490 fprintf (stream, _("\
10491 --divide ignored\n"));
10492 #endif
10493 fprintf (stream, _("\
10494 -march=CPU[,+EXTENSION...]\n\
10495 generate code for CPU and EXTENSION, CPU is one of:\n"));
10496 show_arch (stream, 0, 1);
10497 fprintf (stream, _("\
10498 EXTENSION is combination of:\n"));
10499 show_arch (stream, 1, 0);
10500 fprintf (stream, _("\
10501 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10502 show_arch (stream, 0, 0);
10503 fprintf (stream, _("\
10504 -msse2avx encode SSE instructions with VEX prefix\n"));
10505 fprintf (stream, _("\
10506 -msse-check=[none|error|warning]\n\
10507 check SSE instructions\n"));
10508 fprintf (stream, _("\
10509 -moperand-check=[none|error|warning]\n\
10510 check operand combinations for validity\n"));
10511 fprintf (stream, _("\
10512 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10513 length\n"));
10514 fprintf (stream, _("\
10515 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10516 length\n"));
10517 fprintf (stream, _("\
10518 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10519 for EVEX.W bit ignored instructions\n"));
10520 fprintf (stream, _("\
10521 -mevexrcig=[rne|rd|ru|rz]\n\
10522 encode EVEX instructions with specific EVEX.RC value\n\
10523 for SAE-only ignored instructions\n"));
10524 fprintf (stream, _("\
10525 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10526 fprintf (stream, _("\
10527 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10528 fprintf (stream, _("\
10529 -mindex-reg support pseudo index registers\n"));
10530 fprintf (stream, _("\
10531 -mnaked-reg don't require `%%' prefix for registers\n"));
10532 fprintf (stream, _("\
10533 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10534 fprintf (stream, _("\
10535 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10536 fprintf (stream, _("\
10537 -mshared disable branch optimization for shared code\n"));
10538 # if defined (TE_PE) || defined (TE_PEP)
10539 fprintf (stream, _("\
10540 -mbig-obj generate big object files\n"));
10541 #endif
10542 fprintf (stream, _("\
10543 -momit-lock-prefix=[no|yes]\n\
10544 strip all lock prefixes\n"));
10545 fprintf (stream, _("\
10546 -mfence-as-lock-add=[no|yes]\n\
10547 encode lfence, mfence and sfence as\n\
10548 lock addl $0x0, (%%{re}sp)\n"));
10549 fprintf (stream, _("\
10550 -mrelax-relocations=[no|yes]\n\
10551 generate relax relocations\n"));
10552 fprintf (stream, _("\
10553 -mamd64 accept only AMD64 ISA\n"));
10554 fprintf (stream, _("\
10555 -mintel64 accept only Intel64 ISA\n"));
10556 }
10557
10558 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10559 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10560 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10561
10562 /* Pick the target format to use. */
10563
10564 const char *
10565 i386_target_format (void)
10566 {
10567 if (!strncmp (default_arch, "x86_64", 6))
10568 {
10569 update_code_flag (CODE_64BIT, 1);
10570 if (default_arch[6] == '\0')
10571 x86_elf_abi = X86_64_ABI;
10572 else
10573 x86_elf_abi = X86_64_X32_ABI;
10574 }
10575 else if (!strcmp (default_arch, "i386"))
10576 update_code_flag (CODE_32BIT, 1);
10577 else if (!strcmp (default_arch, "iamcu"))
10578 {
10579 update_code_flag (CODE_32BIT, 1);
10580 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10581 {
10582 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10583 cpu_arch_name = "iamcu";
10584 cpu_sub_arch_name = NULL;
10585 cpu_arch_flags = iamcu_flags;
10586 cpu_arch_isa = PROCESSOR_IAMCU;
10587 cpu_arch_isa_flags = iamcu_flags;
10588 if (!cpu_arch_tune_set)
10589 {
10590 cpu_arch_tune = cpu_arch_isa;
10591 cpu_arch_tune_flags = cpu_arch_isa_flags;
10592 }
10593 }
10594 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10595 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10596 cpu_arch_name);
10597 }
10598 else
10599 as_fatal (_("unknown architecture"));
10600
10601 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10602 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10603 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10604 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10605
10606 switch (OUTPUT_FLAVOR)
10607 {
10608 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10609 case bfd_target_aout_flavour:
10610 return AOUT_TARGET_FORMAT;
10611 #endif
10612 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10613 # if defined (TE_PE) || defined (TE_PEP)
10614 case bfd_target_coff_flavour:
10615 if (flag_code == CODE_64BIT)
10616 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10617 else
10618 return "pe-i386";
10619 # elif defined (TE_GO32)
10620 case bfd_target_coff_flavour:
10621 return "coff-go32";
10622 # else
10623 case bfd_target_coff_flavour:
10624 return "coff-i386";
10625 # endif
10626 #endif
10627 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10628 case bfd_target_elf_flavour:
10629 {
10630 const char *format;
10631
10632 switch (x86_elf_abi)
10633 {
10634 default:
10635 format = ELF_TARGET_FORMAT;
10636 break;
10637 case X86_64_ABI:
10638 use_rela_relocations = 1;
10639 object_64bit = 1;
10640 format = ELF_TARGET_FORMAT64;
10641 break;
10642 case X86_64_X32_ABI:
10643 use_rela_relocations = 1;
10644 object_64bit = 1;
10645 disallow_64bit_reloc = 1;
10646 format = ELF_TARGET_FORMAT32;
10647 break;
10648 }
10649 if (cpu_arch_isa == PROCESSOR_L1OM)
10650 {
10651 if (x86_elf_abi != X86_64_ABI)
10652 as_fatal (_("Intel L1OM is 64bit only"));
10653 return ELF_TARGET_L1OM_FORMAT;
10654 }
10655 else if (cpu_arch_isa == PROCESSOR_K1OM)
10656 {
10657 if (x86_elf_abi != X86_64_ABI)
10658 as_fatal (_("Intel K1OM is 64bit only"));
10659 return ELF_TARGET_K1OM_FORMAT;
10660 }
10661 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10662 {
10663 if (x86_elf_abi != I386_ABI)
10664 as_fatal (_("Intel MCU is 32bit only"));
10665 return ELF_TARGET_IAMCU_FORMAT;
10666 }
10667 else
10668 return format;
10669 }
10670 #endif
10671 #if defined (OBJ_MACH_O)
10672 case bfd_target_mach_o_flavour:
10673 if (flag_code == CODE_64BIT)
10674 {
10675 use_rela_relocations = 1;
10676 object_64bit = 1;
10677 return "mach-o-x86-64";
10678 }
10679 else
10680 return "mach-o-i386";
10681 #endif
10682 default:
10683 abort ();
10684 return NULL;
10685 }
10686 }
10687
10688 #endif /* OBJ_MAYBE_ more than one */
10689 \f
10690 symbolS *
10691 md_undefined_symbol (char *name)
10692 {
10693 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10694 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10695 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10696 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10697 {
10698 if (!GOT_symbol)
10699 {
10700 if (symbol_find (name))
10701 as_bad (_("GOT already in symbol table"));
10702 GOT_symbol = symbol_new (name, undefined_section,
10703 (valueT) 0, &zero_address_frag);
10704 };
10705 return GOT_symbol;
10706 }
10707 return 0;
10708 }
10709
10710 /* Round up a section size to the appropriate boundary. */
10711
10712 valueT
10713 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10714 {
10715 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10716 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10717 {
10718 /* For a.out, force the section size to be aligned. If we don't do
10719 this, BFD will align it for us, but it will not write out the
10720 final bytes of the section. This may be a bug in BFD, but it is
10721 easier to fix it here since that is how the other a.out targets
10722 work. */
10723 int align;
10724
10725 align = bfd_get_section_alignment (stdoutput, segment);
10726 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10727 }
10728 #endif
10729
10730 return size;
10731 }
10732
10733 /* On the i386, PC-relative offsets are relative to the start of the
10734 next instruction. That is, the address of the offset, plus its
10735 size, since the offset is always the last part of the insn. */
10736
10737 long
10738 md_pcrel_from (fixS *fixP)
10739 {
10740 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10741 }
10742
10743 #ifndef I386COFF
10744
10745 static void
10746 s_bss (int ignore ATTRIBUTE_UNUSED)
10747 {
10748 int temp;
10749
10750 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10751 if (IS_ELF)
10752 obj_elf_section_change_hook ();
10753 #endif
10754 temp = get_absolute_expression ();
10755 subseg_set (bss_section, (subsegT) temp);
10756 demand_empty_rest_of_line ();
10757 }
10758
10759 #endif
10760
10761 void
10762 i386_validate_fix (fixS *fixp)
10763 {
10764 if (fixp->fx_subsy)
10765 {
10766 if (fixp->fx_subsy == GOT_symbol)
10767 {
10768 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10769 {
10770 if (!object_64bit)
10771 abort ();
10772 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10773 if (fixp->fx_tcbit2)
10774 fixp->fx_r_type = (fixp->fx_tcbit
10775 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10776 : BFD_RELOC_X86_64_GOTPCRELX);
10777 else
10778 #endif
10779 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10780 }
10781 else
10782 {
10783 if (!object_64bit)
10784 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10785 else
10786 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10787 }
10788 fixp->fx_subsy = 0;
10789 }
10790 }
10791 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10792 else if (!object_64bit)
10793 {
10794 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10795 && fixp->fx_tcbit2)
10796 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10797 }
10798 #endif
10799 }
10800
10801 arelent *
10802 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10803 {
10804 arelent *rel;
10805 bfd_reloc_code_real_type code;
10806
10807 switch (fixp->fx_r_type)
10808 {
10809 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10810 case BFD_RELOC_SIZE32:
10811 case BFD_RELOC_SIZE64:
10812 if (S_IS_DEFINED (fixp->fx_addsy)
10813 && !S_IS_EXTERNAL (fixp->fx_addsy))
10814 {
10815 /* Resolve size relocation against local symbol to size of
10816 the symbol plus addend. */
10817 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10818 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10819 && !fits_in_unsigned_long (value))
10820 as_bad_where (fixp->fx_file, fixp->fx_line,
10821 _("symbol size computation overflow"));
10822 fixp->fx_addsy = NULL;
10823 fixp->fx_subsy = NULL;
10824 md_apply_fix (fixp, (valueT *) &value, NULL);
10825 return NULL;
10826 }
10827 #endif
10828 /* Fall through. */
10829
10830 case BFD_RELOC_X86_64_PLT32:
10831 case BFD_RELOC_X86_64_GOT32:
10832 case BFD_RELOC_X86_64_GOTPCREL:
10833 case BFD_RELOC_X86_64_GOTPCRELX:
10834 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10835 case BFD_RELOC_386_PLT32:
10836 case BFD_RELOC_386_GOT32:
10837 case BFD_RELOC_386_GOT32X:
10838 case BFD_RELOC_386_GOTOFF:
10839 case BFD_RELOC_386_GOTPC:
10840 case BFD_RELOC_386_TLS_GD:
10841 case BFD_RELOC_386_TLS_LDM:
10842 case BFD_RELOC_386_TLS_LDO_32:
10843 case BFD_RELOC_386_TLS_IE_32:
10844 case BFD_RELOC_386_TLS_IE:
10845 case BFD_RELOC_386_TLS_GOTIE:
10846 case BFD_RELOC_386_TLS_LE_32:
10847 case BFD_RELOC_386_TLS_LE:
10848 case BFD_RELOC_386_TLS_GOTDESC:
10849 case BFD_RELOC_386_TLS_DESC_CALL:
10850 case BFD_RELOC_X86_64_TLSGD:
10851 case BFD_RELOC_X86_64_TLSLD:
10852 case BFD_RELOC_X86_64_DTPOFF32:
10853 case BFD_RELOC_X86_64_DTPOFF64:
10854 case BFD_RELOC_X86_64_GOTTPOFF:
10855 case BFD_RELOC_X86_64_TPOFF32:
10856 case BFD_RELOC_X86_64_TPOFF64:
10857 case BFD_RELOC_X86_64_GOTOFF64:
10858 case BFD_RELOC_X86_64_GOTPC32:
10859 case BFD_RELOC_X86_64_GOT64:
10860 case BFD_RELOC_X86_64_GOTPCREL64:
10861 case BFD_RELOC_X86_64_GOTPC64:
10862 case BFD_RELOC_X86_64_GOTPLT64:
10863 case BFD_RELOC_X86_64_PLTOFF64:
10864 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10865 case BFD_RELOC_X86_64_TLSDESC_CALL:
10866 case BFD_RELOC_RVA:
10867 case BFD_RELOC_VTABLE_ENTRY:
10868 case BFD_RELOC_VTABLE_INHERIT:
10869 #ifdef TE_PE
10870 case BFD_RELOC_32_SECREL:
10871 #endif
10872 code = fixp->fx_r_type;
10873 break;
10874 case BFD_RELOC_X86_64_32S:
10875 if (!fixp->fx_pcrel)
10876 {
10877 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10878 code = fixp->fx_r_type;
10879 break;
10880 }
10881 /* Fall through. */
10882 default:
10883 if (fixp->fx_pcrel)
10884 {
10885 switch (fixp->fx_size)
10886 {
10887 default:
10888 as_bad_where (fixp->fx_file, fixp->fx_line,
10889 _("can not do %d byte pc-relative relocation"),
10890 fixp->fx_size);
10891 code = BFD_RELOC_32_PCREL;
10892 break;
10893 case 1: code = BFD_RELOC_8_PCREL; break;
10894 case 2: code = BFD_RELOC_16_PCREL; break;
10895 case 4: code = BFD_RELOC_32_PCREL; break;
10896 #ifdef BFD64
10897 case 8: code = BFD_RELOC_64_PCREL; break;
10898 #endif
10899 }
10900 }
10901 else
10902 {
10903 switch (fixp->fx_size)
10904 {
10905 default:
10906 as_bad_where (fixp->fx_file, fixp->fx_line,
10907 _("can not do %d byte relocation"),
10908 fixp->fx_size);
10909 code = BFD_RELOC_32;
10910 break;
10911 case 1: code = BFD_RELOC_8; break;
10912 case 2: code = BFD_RELOC_16; break;
10913 case 4: code = BFD_RELOC_32; break;
10914 #ifdef BFD64
10915 case 8: code = BFD_RELOC_64; break;
10916 #endif
10917 }
10918 }
10919 break;
10920 }
10921
10922 if ((code == BFD_RELOC_32
10923 || code == BFD_RELOC_32_PCREL
10924 || code == BFD_RELOC_X86_64_32S)
10925 && GOT_symbol
10926 && fixp->fx_addsy == GOT_symbol)
10927 {
10928 if (!object_64bit)
10929 code = BFD_RELOC_386_GOTPC;
10930 else
10931 code = BFD_RELOC_X86_64_GOTPC32;
10932 }
10933 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10934 && GOT_symbol
10935 && fixp->fx_addsy == GOT_symbol)
10936 {
10937 code = BFD_RELOC_X86_64_GOTPC64;
10938 }
10939
10940 rel = XNEW (arelent);
10941 rel->sym_ptr_ptr = XNEW (asymbol *);
10942 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10943
10944 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10945
10946 if (!use_rela_relocations)
10947 {
10948 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10949 vtable entry to be used in the relocation's section offset. */
10950 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10951 rel->address = fixp->fx_offset;
10952 #if defined (OBJ_COFF) && defined (TE_PE)
10953 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10954 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10955 else
10956 #endif
10957 rel->addend = 0;
10958 }
10959 /* Use the rela in 64bit mode. */
10960 else
10961 {
10962 if (disallow_64bit_reloc)
10963 switch (code)
10964 {
10965 case BFD_RELOC_X86_64_DTPOFF64:
10966 case BFD_RELOC_X86_64_TPOFF64:
10967 case BFD_RELOC_64_PCREL:
10968 case BFD_RELOC_X86_64_GOTOFF64:
10969 case BFD_RELOC_X86_64_GOT64:
10970 case BFD_RELOC_X86_64_GOTPCREL64:
10971 case BFD_RELOC_X86_64_GOTPC64:
10972 case BFD_RELOC_X86_64_GOTPLT64:
10973 case BFD_RELOC_X86_64_PLTOFF64:
10974 as_bad_where (fixp->fx_file, fixp->fx_line,
10975 _("cannot represent relocation type %s in x32 mode"),
10976 bfd_get_reloc_code_name (code));
10977 break;
10978 default:
10979 break;
10980 }
10981
10982 if (!fixp->fx_pcrel)
10983 rel->addend = fixp->fx_offset;
10984 else
10985 switch (code)
10986 {
10987 case BFD_RELOC_X86_64_PLT32:
10988 case BFD_RELOC_X86_64_GOT32:
10989 case BFD_RELOC_X86_64_GOTPCREL:
10990 case BFD_RELOC_X86_64_GOTPCRELX:
10991 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10992 case BFD_RELOC_X86_64_TLSGD:
10993 case BFD_RELOC_X86_64_TLSLD:
10994 case BFD_RELOC_X86_64_GOTTPOFF:
10995 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10996 case BFD_RELOC_X86_64_TLSDESC_CALL:
10997 rel->addend = fixp->fx_offset - fixp->fx_size;
10998 break;
10999 default:
11000 rel->addend = (section->vma
11001 - fixp->fx_size
11002 + fixp->fx_addnumber
11003 + md_pcrel_from (fixp));
11004 break;
11005 }
11006 }
11007
11008 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11009 if (rel->howto == NULL)
11010 {
11011 as_bad_where (fixp->fx_file, fixp->fx_line,
11012 _("cannot represent relocation type %s"),
11013 bfd_get_reloc_code_name (code));
11014 /* Set howto to a garbage value so that we can keep going. */
11015 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11016 gas_assert (rel->howto != NULL);
11017 }
11018
11019 return rel;
11020 }
11021
11022 #include "tc-i386-intel.c"
11023
11024 void
11025 tc_x86_parse_to_dw2regnum (expressionS *exp)
11026 {
11027 int saved_naked_reg;
11028 char saved_register_dot;
11029
11030 saved_naked_reg = allow_naked_reg;
11031 allow_naked_reg = 1;
11032 saved_register_dot = register_chars['.'];
11033 register_chars['.'] = '.';
11034 allow_pseudo_reg = 1;
11035 expression_and_evaluate (exp);
11036 allow_pseudo_reg = 0;
11037 register_chars['.'] = saved_register_dot;
11038 allow_naked_reg = saved_naked_reg;
11039
11040 if (exp->X_op == O_register && exp->X_add_number >= 0)
11041 {
11042 if ((addressT) exp->X_add_number < i386_regtab_size)
11043 {
11044 exp->X_op = O_constant;
11045 exp->X_add_number = i386_regtab[exp->X_add_number]
11046 .dw2_regnum[flag_code >> 1];
11047 }
11048 else
11049 exp->X_op = O_illegal;
11050 }
11051 }
11052
11053 void
11054 tc_x86_frame_initial_instructions (void)
11055 {
11056 static unsigned int sp_regno[2];
11057
11058 if (!sp_regno[flag_code >> 1])
11059 {
11060 char *saved_input = input_line_pointer;
11061 char sp[][4] = {"esp", "rsp"};
11062 expressionS exp;
11063
11064 input_line_pointer = sp[flag_code >> 1];
11065 tc_x86_parse_to_dw2regnum (&exp);
11066 gas_assert (exp.X_op == O_constant);
11067 sp_regno[flag_code >> 1] = exp.X_add_number;
11068 input_line_pointer = saved_input;
11069 }
11070
11071 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11072 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11073 }
11074
11075 int
11076 x86_dwarf2_addr_size (void)
11077 {
11078 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11079 if (x86_elf_abi == X86_64_X32_ABI)
11080 return 4;
11081 #endif
11082 return bfd_arch_bits_per_address (stdoutput) / 8;
11083 }
11084
11085 int
11086 i386_elf_section_type (const char *str, size_t len)
11087 {
11088 if (flag_code == CODE_64BIT
11089 && len == sizeof ("unwind") - 1
11090 && strncmp (str, "unwind", 6) == 0)
11091 return SHT_X86_64_UNWIND;
11092
11093 return -1;
11094 }
11095
11096 #ifdef TE_SOLARIS
11097 void
11098 i386_solaris_fix_up_eh_frame (segT sec)
11099 {
11100 if (flag_code == CODE_64BIT)
11101 elf_section_type (sec) = SHT_X86_64_UNWIND;
11102 }
11103 #endif
11104
11105 #ifdef TE_PE
11106 void
11107 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11108 {
11109 expressionS exp;
11110
11111 exp.X_op = O_secrel;
11112 exp.X_add_symbol = symbol;
11113 exp.X_add_number = 0;
11114 emit_expr (&exp, size);
11115 }
11116 #endif
11117
11118 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11119 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11120
11121 bfd_vma
11122 x86_64_section_letter (int letter, const char **ptr_msg)
11123 {
11124 if (flag_code == CODE_64BIT)
11125 {
11126 if (letter == 'l')
11127 return SHF_X86_64_LARGE;
11128
11129 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11130 }
11131 else
11132 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11133 return -1;
11134 }
11135
11136 bfd_vma
11137 x86_64_section_word (char *str, size_t len)
11138 {
11139 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11140 return SHF_X86_64_LARGE;
11141
11142 return -1;
11143 }
11144
11145 static void
11146 handle_large_common (int small ATTRIBUTE_UNUSED)
11147 {
11148 if (flag_code != CODE_64BIT)
11149 {
11150 s_comm_internal (0, elf_common_parse);
11151 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11152 }
11153 else
11154 {
11155 static segT lbss_section;
11156 asection *saved_com_section_ptr = elf_com_section_ptr;
11157 asection *saved_bss_section = bss_section;
11158
11159 if (lbss_section == NULL)
11160 {
11161 flagword applicable;
11162 segT seg = now_seg;
11163 subsegT subseg = now_subseg;
11164
11165 /* The .lbss section is for local .largecomm symbols. */
11166 lbss_section = subseg_new (".lbss", 0);
11167 applicable = bfd_applicable_section_flags (stdoutput);
11168 bfd_set_section_flags (stdoutput, lbss_section,
11169 applicable & SEC_ALLOC);
11170 seg_info (lbss_section)->bss = 1;
11171
11172 subseg_set (seg, subseg);
11173 }
11174
11175 elf_com_section_ptr = &_bfd_elf_large_com_section;
11176 bss_section = lbss_section;
11177
11178 s_comm_internal (0, elf_common_parse);
11179
11180 elf_com_section_ptr = saved_com_section_ptr;
11181 bss_section = saved_bss_section;
11182 }
11183 }
11184 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.279085 seconds and 4 git commands to generate.