X86: Add ptwrite instruction
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Swap operand in encoding. */
358 unsigned int swap_operand;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* REP prefix. */
369 const char *rep_prefix;
370
371 /* HLE prefix. */
372 const char *hle_prefix;
373
374 /* Have BND prefix. */
375 const char *bnd_prefix;
376
377 /* Need VREX to support upper 16 registers. */
378 int need_vrex;
379
380 /* Error message. */
381 enum i386_error error;
382 };
383
384 typedef struct _i386_insn i386_insn;
385
386 /* Link RC type with corresponding string, that'll be looked for in
387 asm. */
388 struct RC_name
389 {
390 enum rc_type type;
391 const char *name;
392 unsigned int len;
393 };
394
395 static const struct RC_name RC_NamesTable[] =
396 {
397 { rne, STRING_COMMA_LEN ("rn-sae") },
398 { rd, STRING_COMMA_LEN ("rd-sae") },
399 { ru, STRING_COMMA_LEN ("ru-sae") },
400 { rz, STRING_COMMA_LEN ("rz-sae") },
401 { saeonly, STRING_COMMA_LEN ("sae") },
402 };
403
404 /* List of chars besides those in app.c:symbol_chars that can start an
405 operand. Used to prevent the scrubber eating vital white-space. */
406 const char extra_symbol_chars[] = "*%-([{"
407 #ifdef LEX_AT
408 "@"
409 #endif
410 #ifdef LEX_QM
411 "?"
412 #endif
413 ;
414
415 #if (defined (TE_I386AIX) \
416 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
417 && !defined (TE_GNU) \
418 && !defined (TE_LINUX) \
419 && !defined (TE_NACL) \
420 && !defined (TE_NETWARE) \
421 && !defined (TE_FreeBSD) \
422 && !defined (TE_DragonFly) \
423 && !defined (TE_NetBSD)))
424 /* This array holds the chars that always start a comment. If the
425 pre-processor is disabled, these aren't very useful. The option
426 --divide will remove '/' from this list. */
427 const char *i386_comment_chars = "#/";
428 #define SVR4_COMMENT_CHARS 1
429 #define PREFIX_SEPARATOR '\\'
430
431 #else
432 const char *i386_comment_chars = "#";
433 #define PREFIX_SEPARATOR '/'
434 #endif
435
436 /* This array holds the chars that only start a comment at the beginning of
437 a line. If the line seems to have the form '# 123 filename'
438 .line and .file directives will appear in the pre-processed output.
439 Note that input_file.c hand checks for '#' at the beginning of the
440 first line of the input file. This is because the compiler outputs
441 #NO_APP at the beginning of its output.
442 Also note that comments started like this one will always work if
443 '/' isn't otherwise defined. */
444 const char line_comment_chars[] = "#/";
445
446 const char line_separator_chars[] = ";";
447
448 /* Chars that can be used to separate mant from exp in floating point
449 nums. */
450 const char EXP_CHARS[] = "eE";
451
452 /* Chars that mean this number is a floating point constant
453 As in 0f12.456
454 or 0d1.2345e12. */
455 const char FLT_CHARS[] = "fFdDxX";
456
457 /* Tables for lexical analysis. */
458 static char mnemonic_chars[256];
459 static char register_chars[256];
460 static char operand_chars[256];
461 static char identifier_chars[256];
462 static char digit_chars[256];
463
464 /* Lexical macros. */
465 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
466 #define is_operand_char(x) (operand_chars[(unsigned char) x])
467 #define is_register_char(x) (register_chars[(unsigned char) x])
468 #define is_space_char(x) ((x) == ' ')
469 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
470 #define is_digit_char(x) (digit_chars[(unsigned char) x])
471
472 /* All non-digit non-letter characters that may occur in an operand. */
473 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
474
475 /* md_assemble() always leaves the strings it's passed unaltered. To
476 effect this we maintain a stack of saved characters that we've smashed
477 with '\0's (indicating end of strings for various sub-fields of the
478 assembler instruction). */
479 static char save_stack[32];
480 static char *save_stack_p;
481 #define END_STRING_AND_SAVE(s) \
482 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
483 #define RESTORE_END_STRING(s) \
484 do { *(s) = *--save_stack_p; } while (0)
485
486 /* The instruction we're assembling. */
487 static i386_insn i;
488
489 /* Possible templates for current insn. */
490 static const templates *current_templates;
491
492 /* Per instruction expressionS buffers: max displacements & immediates. */
493 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
494 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
495
496 /* Current operand we are working on. */
497 static int this_operand = -1;
498
499 /* We support four different modes. FLAG_CODE variable is used to distinguish
500 these. */
501
502 enum flag_code {
503 CODE_32BIT,
504 CODE_16BIT,
505 CODE_64BIT };
506
507 static enum flag_code flag_code;
508 static unsigned int object_64bit;
509 static unsigned int disallow_64bit_reloc;
510 static int use_rela_relocations = 0;
511
512 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
513 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
514 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
515
516 /* The ELF ABI to use. */
517 enum x86_elf_abi
518 {
519 I386_ABI,
520 X86_64_ABI,
521 X86_64_X32_ABI
522 };
523
524 static enum x86_elf_abi x86_elf_abi = I386_ABI;
525 #endif
526
527 #if defined (TE_PE) || defined (TE_PEP)
528 /* Use big object file format. */
529 static int use_big_obj = 0;
530 #endif
531
532 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
533 /* 1 if generating code for a shared library. */
534 static int shared = 0;
535 #endif
536
537 /* 1 for intel syntax,
538 0 if att syntax. */
539 static int intel_syntax = 0;
540
541 /* 1 for Intel64 ISA,
542 0 if AMD64 ISA. */
543 static int intel64;
544
545 /* 1 for intel mnemonic,
546 0 if att mnemonic. */
547 static int intel_mnemonic = !SYSV386_COMPAT;
548
549 /* 1 if support old (<= 2.8.1) versions of gcc. */
550 static int old_gcc = OLDGCC_COMPAT;
551
552 /* 1 if pseudo registers are permitted. */
553 static int allow_pseudo_reg = 0;
554
555 /* 1 if register prefix % not required. */
556 static int allow_naked_reg = 0;
557
558 /* 1 if the assembler should add BND prefix for all control-tranferring
559 instructions supporting it, even if this prefix wasn't specified
560 explicitly. */
561 static int add_bnd_prefix = 0;
562
563 /* 1 if pseudo index register, eiz/riz, is allowed . */
564 static int allow_index_reg = 0;
565
566 /* 1 if the assembler should ignore LOCK prefix, even if it was
567 specified explicitly. */
568 static int omit_lock_prefix = 0;
569
570 /* 1 if the assembler should encode lfence, mfence, and sfence as
571 "lock addl $0, (%{re}sp)". */
572 static int avoid_fence = 0;
573
574 /* 1 if the assembler should generate relax relocations. */
575
576 static int generate_relax_relocations
577 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
578
579 static enum check_kind
580 {
581 check_none = 0,
582 check_warning,
583 check_error
584 }
585 sse_check, operand_check = check_warning;
586
587 /* Register prefix used for error message. */
588 static const char *register_prefix = "%";
589
590 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
591 leave, push, and pop instructions so that gcc has the same stack
592 frame as in 32 bit mode. */
593 static char stackop_size = '\0';
594
595 /* Non-zero to optimize code alignment. */
596 int optimize_align_code = 1;
597
598 /* Non-zero to quieten some warnings. */
599 static int quiet_warnings = 0;
600
601 /* CPU name. */
602 static const char *cpu_arch_name = NULL;
603 static char *cpu_sub_arch_name = NULL;
604
605 /* CPU feature flags. */
606 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
607
608 /* If we have selected a cpu we are generating instructions for. */
609 static int cpu_arch_tune_set = 0;
610
611 /* Cpu we are generating instructions for. */
612 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
613
614 /* CPU feature flags of cpu we are generating instructions for. */
615 static i386_cpu_flags cpu_arch_tune_flags;
616
617 /* CPU instruction set architecture used. */
618 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
619
620 /* CPU feature flags of instruction set architecture used. */
621 i386_cpu_flags cpu_arch_isa_flags;
622
623 /* If set, conditional jumps are not automatically promoted to handle
624 larger than a byte offset. */
625 static unsigned int no_cond_jump_promotion = 0;
626
627 /* Encode SSE instructions with VEX prefix. */
628 static unsigned int sse2avx;
629
630 /* Encode scalar AVX instructions with specific vector length. */
631 static enum
632 {
633 vex128 = 0,
634 vex256
635 } avxscalar;
636
637 /* Encode scalar EVEX LIG instructions with specific vector length. */
638 static enum
639 {
640 evexl128 = 0,
641 evexl256,
642 evexl512
643 } evexlig;
644
645 /* Encode EVEX WIG instructions with specific evex.w. */
646 static enum
647 {
648 evexw0 = 0,
649 evexw1
650 } evexwig;
651
652 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
653 static enum rc_type evexrcig = rne;
654
655 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
656 static symbolS *GOT_symbol;
657
658 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
659 unsigned int x86_dwarf2_return_column;
660
661 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
662 int x86_cie_data_alignment;
663
664 /* Interface to relax_segment.
665 There are 3 major relax states for 386 jump insns because the
666 different types of jumps add different sizes to frags when we're
667 figuring out what sort of jump to choose to reach a given label. */
668
669 /* Types. */
670 #define UNCOND_JUMP 0
671 #define COND_JUMP 1
672 #define COND_JUMP86 2
673
674 /* Sizes. */
675 #define CODE16 1
676 #define SMALL 0
677 #define SMALL16 (SMALL | CODE16)
678 #define BIG 2
679 #define BIG16 (BIG | CODE16)
680
681 #ifndef INLINE
682 #ifdef __GNUC__
683 #define INLINE __inline__
684 #else
685 #define INLINE
686 #endif
687 #endif
688
689 #define ENCODE_RELAX_STATE(type, size) \
690 ((relax_substateT) (((type) << 2) | (size)))
691 #define TYPE_FROM_RELAX_STATE(s) \
692 ((s) >> 2)
693 #define DISP_SIZE_FROM_RELAX_STATE(s) \
694 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
695
696 /* This table is used by relax_frag to promote short jumps to long
697 ones where necessary. SMALL (short) jumps may be promoted to BIG
698 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
699 don't allow a short jump in a 32 bit code segment to be promoted to
700 a 16 bit offset jump because it's slower (requires data size
701 prefix), and doesn't work, unless the destination is in the bottom
702 64k of the code segment (The top 16 bits of eip are zeroed). */
703
704 const relax_typeS md_relax_table[] =
705 {
706 /* The fields are:
707 1) most positive reach of this state,
708 2) most negative reach of this state,
709 3) how many bytes this mode will have in the variable part of the frag
710 4) which index into the table to try if we can't fit into this one. */
711
712 /* UNCOND_JUMP states. */
713 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
714 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
715 /* dword jmp adds 4 bytes to frag:
716 0 extra opcode bytes, 4 displacement bytes. */
717 {0, 0, 4, 0},
718 /* word jmp adds 2 byte2 to frag:
719 0 extra opcode bytes, 2 displacement bytes. */
720 {0, 0, 2, 0},
721
722 /* COND_JUMP states. */
723 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
724 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
725 /* dword conditionals adds 5 bytes to frag:
726 1 extra opcode byte, 4 displacement bytes. */
727 {0, 0, 5, 0},
728 /* word conditionals add 3 bytes to frag:
729 1 extra opcode byte, 2 displacement bytes. */
730 {0, 0, 3, 0},
731
732 /* COND_JUMP86 states. */
733 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
734 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
735 /* dword conditionals adds 5 bytes to frag:
736 1 extra opcode byte, 4 displacement bytes. */
737 {0, 0, 5, 0},
738 /* word conditionals add 4 bytes to frag:
739 1 displacement byte and a 3 byte long branch insn. */
740 {0, 0, 4, 0}
741 };
742
743 static const arch_entry cpu_arch[] =
744 {
745 /* Do not replace the first two entries - i386_target_format()
746 relies on them being there in this order. */
747 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
748 CPU_GENERIC32_FLAGS, 0 },
749 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
750 CPU_GENERIC64_FLAGS, 0 },
751 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
752 CPU_NONE_FLAGS, 0 },
753 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
754 CPU_I186_FLAGS, 0 },
755 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
756 CPU_I286_FLAGS, 0 },
757 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
758 CPU_I386_FLAGS, 0 },
759 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
760 CPU_I486_FLAGS, 0 },
761 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
762 CPU_I586_FLAGS, 0 },
763 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
764 CPU_I686_FLAGS, 0 },
765 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
766 CPU_I586_FLAGS, 0 },
767 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
768 CPU_PENTIUMPRO_FLAGS, 0 },
769 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
770 CPU_P2_FLAGS, 0 },
771 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
772 CPU_P3_FLAGS, 0 },
773 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
774 CPU_P4_FLAGS, 0 },
775 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
776 CPU_CORE_FLAGS, 0 },
777 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
778 CPU_NOCONA_FLAGS, 0 },
779 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
780 CPU_CORE_FLAGS, 1 },
781 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
782 CPU_CORE_FLAGS, 0 },
783 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
784 CPU_CORE2_FLAGS, 1 },
785 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
786 CPU_CORE2_FLAGS, 0 },
787 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
788 CPU_COREI7_FLAGS, 0 },
789 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
790 CPU_L1OM_FLAGS, 0 },
791 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
792 CPU_K1OM_FLAGS, 0 },
793 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
794 CPU_IAMCU_FLAGS, 0 },
795 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
796 CPU_K6_FLAGS, 0 },
797 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
798 CPU_K6_2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
800 CPU_ATHLON_FLAGS, 0 },
801 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
802 CPU_K8_FLAGS, 1 },
803 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
804 CPU_K8_FLAGS, 0 },
805 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
806 CPU_K8_FLAGS, 0 },
807 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
808 CPU_AMDFAM10_FLAGS, 0 },
809 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
810 CPU_BDVER1_FLAGS, 0 },
811 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
812 CPU_BDVER2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
814 CPU_BDVER3_FLAGS, 0 },
815 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
816 CPU_BDVER4_FLAGS, 0 },
817 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
818 CPU_ZNVER1_FLAGS, 0 },
819 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
820 CPU_BTVER1_FLAGS, 0 },
821 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
822 CPU_BTVER2_FLAGS, 0 },
823 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
824 CPU_8087_FLAGS, 0 },
825 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
826 CPU_287_FLAGS, 0 },
827 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
828 CPU_387_FLAGS, 0 },
829 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
830 CPU_687_FLAGS, 0 },
831 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
832 CPU_MMX_FLAGS, 0 },
833 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
834 CPU_SSE_FLAGS, 0 },
835 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
836 CPU_SSE2_FLAGS, 0 },
837 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
838 CPU_SSE3_FLAGS, 0 },
839 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
840 CPU_SSSE3_FLAGS, 0 },
841 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
842 CPU_SSE4_1_FLAGS, 0 },
843 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
844 CPU_SSE4_2_FLAGS, 0 },
845 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
846 CPU_SSE4_2_FLAGS, 0 },
847 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
848 CPU_AVX_FLAGS, 0 },
849 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
850 CPU_AVX2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
852 CPU_AVX512F_FLAGS, 0 },
853 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
854 CPU_AVX512CD_FLAGS, 0 },
855 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
856 CPU_AVX512ER_FLAGS, 0 },
857 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
858 CPU_AVX512PF_FLAGS, 0 },
859 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
860 CPU_AVX512DQ_FLAGS, 0 },
861 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
862 CPU_AVX512BW_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
864 CPU_AVX512VL_FLAGS, 0 },
865 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
866 CPU_VMX_FLAGS, 0 },
867 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
868 CPU_VMFUNC_FLAGS, 0 },
869 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
870 CPU_SMX_FLAGS, 0 },
871 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
872 CPU_XSAVE_FLAGS, 0 },
873 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
874 CPU_XSAVEOPT_FLAGS, 0 },
875 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
876 CPU_XSAVEC_FLAGS, 0 },
877 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
878 CPU_XSAVES_FLAGS, 0 },
879 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
880 CPU_AES_FLAGS, 0 },
881 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
882 CPU_PCLMUL_FLAGS, 0 },
883 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
884 CPU_PCLMUL_FLAGS, 1 },
885 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
886 CPU_FSGSBASE_FLAGS, 0 },
887 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
888 CPU_RDRND_FLAGS, 0 },
889 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
890 CPU_F16C_FLAGS, 0 },
891 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
892 CPU_BMI2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
894 CPU_FMA_FLAGS, 0 },
895 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
896 CPU_FMA4_FLAGS, 0 },
897 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
898 CPU_XOP_FLAGS, 0 },
899 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
900 CPU_LWP_FLAGS, 0 },
901 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
902 CPU_MOVBE_FLAGS, 0 },
903 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
904 CPU_CX16_FLAGS, 0 },
905 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
906 CPU_EPT_FLAGS, 0 },
907 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
908 CPU_LZCNT_FLAGS, 0 },
909 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
910 CPU_HLE_FLAGS, 0 },
911 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
912 CPU_RTM_FLAGS, 0 },
913 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
914 CPU_INVPCID_FLAGS, 0 },
915 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
916 CPU_CLFLUSH_FLAGS, 0 },
917 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
918 CPU_NOP_FLAGS, 0 },
919 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
920 CPU_SYSCALL_FLAGS, 0 },
921 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
922 CPU_RDTSCP_FLAGS, 0 },
923 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
924 CPU_3DNOW_FLAGS, 0 },
925 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
926 CPU_3DNOWA_FLAGS, 0 },
927 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
928 CPU_PADLOCK_FLAGS, 0 },
929 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
930 CPU_SVME_FLAGS, 1 },
931 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
932 CPU_SVME_FLAGS, 0 },
933 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
934 CPU_SSE4A_FLAGS, 0 },
935 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
936 CPU_ABM_FLAGS, 0 },
937 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
938 CPU_BMI_FLAGS, 0 },
939 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
940 CPU_TBM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
942 CPU_ADX_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
944 CPU_RDSEED_FLAGS, 0 },
945 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
946 CPU_PRFCHW_FLAGS, 0 },
947 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
948 CPU_SMAP_FLAGS, 0 },
949 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
950 CPU_MPX_FLAGS, 0 },
951 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
952 CPU_SHA_FLAGS, 0 },
953 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
954 CPU_CLFLUSHOPT_FLAGS, 0 },
955 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
956 CPU_PREFETCHWT1_FLAGS, 0 },
957 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
958 CPU_SE1_FLAGS, 0 },
959 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
960 CPU_CLWB_FLAGS, 0 },
961 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
962 CPU_PCOMMIT_FLAGS, 0 },
963 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
964 CPU_AVX512IFMA_FLAGS, 0 },
965 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
966 CPU_AVX512VBMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
968 CPU_CLZERO_FLAGS, 0 },
969 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
970 CPU_MWAITX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
972 CPU_OSPKE_FLAGS, 0 },
973 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
974 CPU_RDPID_FLAGS, 0 },
975 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
976 CPU_PTWRITE_FLAGS, 0 },
977 };
978
979 static const noarch_entry cpu_noarch[] =
980 {
981 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
982 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
983 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
984 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
985 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
986 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
987 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
988 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
989 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
990 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
991 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
992 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
993 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
994 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
995 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
996 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
997 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
998 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
999 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1000 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1001 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1002 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1003 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1004 };
1005
1006 #ifdef I386COFF
1007 /* Like s_lcomm_internal in gas/read.c but the alignment string
1008 is allowed to be optional. */
1009
1010 static symbolS *
1011 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1012 {
1013 addressT align = 0;
1014
1015 SKIP_WHITESPACE ();
1016
1017 if (needs_align
1018 && *input_line_pointer == ',')
1019 {
1020 align = parse_align (needs_align - 1);
1021
1022 if (align == (addressT) -1)
1023 return NULL;
1024 }
1025 else
1026 {
1027 if (size >= 8)
1028 align = 3;
1029 else if (size >= 4)
1030 align = 2;
1031 else if (size >= 2)
1032 align = 1;
1033 else
1034 align = 0;
1035 }
1036
1037 bss_alloc (symbolP, size, align);
1038 return symbolP;
1039 }
1040
1041 static void
1042 pe_lcomm (int needs_align)
1043 {
1044 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1045 }
1046 #endif
1047
1048 const pseudo_typeS md_pseudo_table[] =
1049 {
1050 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1051 {"align", s_align_bytes, 0},
1052 #else
1053 {"align", s_align_ptwo, 0},
1054 #endif
1055 {"arch", set_cpu_arch, 0},
1056 #ifndef I386COFF
1057 {"bss", s_bss, 0},
1058 #else
1059 {"lcomm", pe_lcomm, 1},
1060 #endif
1061 {"ffloat", float_cons, 'f'},
1062 {"dfloat", float_cons, 'd'},
1063 {"tfloat", float_cons, 'x'},
1064 {"value", cons, 2},
1065 {"slong", signed_cons, 4},
1066 {"noopt", s_ignore, 0},
1067 {"optim", s_ignore, 0},
1068 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1069 {"code16", set_code_flag, CODE_16BIT},
1070 {"code32", set_code_flag, CODE_32BIT},
1071 {"code64", set_code_flag, CODE_64BIT},
1072 {"intel_syntax", set_intel_syntax, 1},
1073 {"att_syntax", set_intel_syntax, 0},
1074 {"intel_mnemonic", set_intel_mnemonic, 1},
1075 {"att_mnemonic", set_intel_mnemonic, 0},
1076 {"allow_index_reg", set_allow_index_reg, 1},
1077 {"disallow_index_reg", set_allow_index_reg, 0},
1078 {"sse_check", set_check, 0},
1079 {"operand_check", set_check, 1},
1080 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1081 {"largecomm", handle_large_common, 0},
1082 #else
1083 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1084 {"loc", dwarf2_directive_loc, 0},
1085 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1086 #endif
1087 #ifdef TE_PE
1088 {"secrel32", pe_directive_secrel, 0},
1089 #endif
1090 {0, 0, 0}
1091 };
1092
1093 /* For interface with expression (). */
1094 extern char *input_line_pointer;
1095
1096 /* Hash table for instruction mnemonic lookup. */
1097 static struct hash_control *op_hash;
1098
1099 /* Hash table for register lookup. */
1100 static struct hash_control *reg_hash;
1101 \f
1102 void
1103 i386_align_code (fragS *fragP, int count)
1104 {
1105 /* Various efficient no-op patterns for aligning code labels.
1106 Note: Don't try to assemble the instructions in the comments.
1107 0L and 0w are not legal. */
1108 static const unsigned char f32_1[] =
1109 {0x90}; /* nop */
1110 static const unsigned char f32_2[] =
1111 {0x66,0x90}; /* xchg %ax,%ax */
1112 static const unsigned char f32_3[] =
1113 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1114 static const unsigned char f32_4[] =
1115 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1116 static const unsigned char f32_5[] =
1117 {0x90, /* nop */
1118 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1119 static const unsigned char f32_6[] =
1120 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1121 static const unsigned char f32_7[] =
1122 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1123 static const unsigned char f32_8[] =
1124 {0x90, /* nop */
1125 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1126 static const unsigned char f32_9[] =
1127 {0x89,0xf6, /* movl %esi,%esi */
1128 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1129 static const unsigned char f32_10[] =
1130 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1131 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1132 static const unsigned char f32_11[] =
1133 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1134 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1135 static const unsigned char f32_12[] =
1136 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1137 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1138 static const unsigned char f32_13[] =
1139 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1140 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1141 static const unsigned char f32_14[] =
1142 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1143 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1144 static const unsigned char f16_3[] =
1145 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1146 static const unsigned char f16_4[] =
1147 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1148 static const unsigned char f16_5[] =
1149 {0x90, /* nop */
1150 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1151 static const unsigned char f16_6[] =
1152 {0x89,0xf6, /* mov %si,%si */
1153 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1154 static const unsigned char f16_7[] =
1155 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1156 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1157 static const unsigned char f16_8[] =
1158 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1159 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1160 static const unsigned char jump_31[] =
1161 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1162 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1163 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1164 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1165 static const unsigned char *const f32_patt[] = {
1166 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1167 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1168 };
1169 static const unsigned char *const f16_patt[] = {
1170 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1171 };
1172 /* nopl (%[re]ax) */
1173 static const unsigned char alt_3[] =
1174 {0x0f,0x1f,0x00};
1175 /* nopl 0(%[re]ax) */
1176 static const unsigned char alt_4[] =
1177 {0x0f,0x1f,0x40,0x00};
1178 /* nopl 0(%[re]ax,%[re]ax,1) */
1179 static const unsigned char alt_5[] =
1180 {0x0f,0x1f,0x44,0x00,0x00};
1181 /* nopw 0(%[re]ax,%[re]ax,1) */
1182 static const unsigned char alt_6[] =
1183 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1184 /* nopl 0L(%[re]ax) */
1185 static const unsigned char alt_7[] =
1186 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1187 /* nopl 0L(%[re]ax,%[re]ax,1) */
1188 static const unsigned char alt_8[] =
1189 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1190 /* nopw 0L(%[re]ax,%[re]ax,1) */
1191 static const unsigned char alt_9[] =
1192 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1193 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1194 static const unsigned char alt_10[] =
1195 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1196 static const unsigned char *const alt_patt[] = {
1197 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1198 alt_9, alt_10
1199 };
1200
1201 /* Only align for at least a positive non-zero boundary. */
1202 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1203 return;
1204
1205 /* We need to decide which NOP sequence to use for 32bit and
1206 64bit. When -mtune= is used:
1207
1208 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1209 PROCESSOR_GENERIC32, f32_patt will be used.
1210 2. For the rest, alt_patt will be used.
1211
1212 When -mtune= isn't used, alt_patt will be used if
1213 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1214 be used.
1215
1216 When -march= or .arch is used, we can't use anything beyond
1217 cpu_arch_isa_flags. */
1218
1219 if (flag_code == CODE_16BIT)
1220 {
1221 if (count > 8)
1222 {
1223 memcpy (fragP->fr_literal + fragP->fr_fix,
1224 jump_31, count);
1225 /* Adjust jump offset. */
1226 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1227 }
1228 else
1229 memcpy (fragP->fr_literal + fragP->fr_fix,
1230 f16_patt[count - 1], count);
1231 }
1232 else
1233 {
1234 const unsigned char *const *patt = NULL;
1235
1236 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1237 {
1238 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1239 switch (cpu_arch_tune)
1240 {
1241 case PROCESSOR_UNKNOWN:
1242 /* We use cpu_arch_isa_flags to check if we SHOULD
1243 optimize with nops. */
1244 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1245 patt = alt_patt;
1246 else
1247 patt = f32_patt;
1248 break;
1249 case PROCESSOR_PENTIUM4:
1250 case PROCESSOR_NOCONA:
1251 case PROCESSOR_CORE:
1252 case PROCESSOR_CORE2:
1253 case PROCESSOR_COREI7:
1254 case PROCESSOR_L1OM:
1255 case PROCESSOR_K1OM:
1256 case PROCESSOR_GENERIC64:
1257 case PROCESSOR_K6:
1258 case PROCESSOR_ATHLON:
1259 case PROCESSOR_K8:
1260 case PROCESSOR_AMDFAM10:
1261 case PROCESSOR_BD:
1262 case PROCESSOR_ZNVER:
1263 case PROCESSOR_BT:
1264 patt = alt_patt;
1265 break;
1266 case PROCESSOR_I386:
1267 case PROCESSOR_I486:
1268 case PROCESSOR_PENTIUM:
1269 case PROCESSOR_PENTIUMPRO:
1270 case PROCESSOR_IAMCU:
1271 case PROCESSOR_GENERIC32:
1272 patt = f32_patt;
1273 break;
1274 }
1275 }
1276 else
1277 {
1278 switch (fragP->tc_frag_data.tune)
1279 {
1280 case PROCESSOR_UNKNOWN:
1281 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1282 PROCESSOR_UNKNOWN. */
1283 abort ();
1284 break;
1285
1286 case PROCESSOR_I386:
1287 case PROCESSOR_I486:
1288 case PROCESSOR_PENTIUM:
1289 case PROCESSOR_IAMCU:
1290 case PROCESSOR_K6:
1291 case PROCESSOR_ATHLON:
1292 case PROCESSOR_K8:
1293 case PROCESSOR_AMDFAM10:
1294 case PROCESSOR_BD:
1295 case PROCESSOR_ZNVER:
1296 case PROCESSOR_BT:
1297 case PROCESSOR_GENERIC32:
1298 /* We use cpu_arch_isa_flags to check if we CAN optimize
1299 with nops. */
1300 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1301 patt = alt_patt;
1302 else
1303 patt = f32_patt;
1304 break;
1305 case PROCESSOR_PENTIUMPRO:
1306 case PROCESSOR_PENTIUM4:
1307 case PROCESSOR_NOCONA:
1308 case PROCESSOR_CORE:
1309 case PROCESSOR_CORE2:
1310 case PROCESSOR_COREI7:
1311 case PROCESSOR_L1OM:
1312 case PROCESSOR_K1OM:
1313 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1314 patt = alt_patt;
1315 else
1316 patt = f32_patt;
1317 break;
1318 case PROCESSOR_GENERIC64:
1319 patt = alt_patt;
1320 break;
1321 }
1322 }
1323
1324 if (patt == f32_patt)
1325 {
1326 /* If the padding is less than 15 bytes, we use the normal
1327 ones. Otherwise, we use a jump instruction and adjust
1328 its offset. */
1329 int limit;
1330
1331 /* For 64bit, the limit is 3 bytes. */
1332 if (flag_code == CODE_64BIT
1333 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1334 limit = 3;
1335 else
1336 limit = 15;
1337 if (count < limit)
1338 memcpy (fragP->fr_literal + fragP->fr_fix,
1339 patt[count - 1], count);
1340 else
1341 {
1342 memcpy (fragP->fr_literal + fragP->fr_fix,
1343 jump_31, count);
1344 /* Adjust jump offset. */
1345 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1346 }
1347 }
1348 else
1349 {
1350 /* Maximum length of an instruction is 10 byte. If the
1351 padding is greater than 10 bytes and we don't use jump,
1352 we have to break it into smaller pieces. */
1353 int padding = count;
1354 while (padding > 10)
1355 {
1356 padding -= 10;
1357 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1358 patt [9], 10);
1359 }
1360
1361 if (padding)
1362 memcpy (fragP->fr_literal + fragP->fr_fix,
1363 patt [padding - 1], padding);
1364 }
1365 }
1366 fragP->fr_var = count;
1367 }
1368
1369 static INLINE int
1370 operand_type_all_zero (const union i386_operand_type *x)
1371 {
1372 switch (ARRAY_SIZE(x->array))
1373 {
1374 case 3:
1375 if (x->array[2])
1376 return 0;
1377 case 2:
1378 if (x->array[1])
1379 return 0;
1380 case 1:
1381 return !x->array[0];
1382 default:
1383 abort ();
1384 }
1385 }
1386
1387 static INLINE void
1388 operand_type_set (union i386_operand_type *x, unsigned int v)
1389 {
1390 switch (ARRAY_SIZE(x->array))
1391 {
1392 case 3:
1393 x->array[2] = v;
1394 case 2:
1395 x->array[1] = v;
1396 case 1:
1397 x->array[0] = v;
1398 break;
1399 default:
1400 abort ();
1401 }
1402 }
1403
1404 static INLINE int
1405 operand_type_equal (const union i386_operand_type *x,
1406 const union i386_operand_type *y)
1407 {
1408 switch (ARRAY_SIZE(x->array))
1409 {
1410 case 3:
1411 if (x->array[2] != y->array[2])
1412 return 0;
1413 case 2:
1414 if (x->array[1] != y->array[1])
1415 return 0;
1416 case 1:
1417 return x->array[0] == y->array[0];
1418 break;
1419 default:
1420 abort ();
1421 }
1422 }
1423
1424 static INLINE int
1425 cpu_flags_all_zero (const union i386_cpu_flags *x)
1426 {
1427 switch (ARRAY_SIZE(x->array))
1428 {
1429 case 3:
1430 if (x->array[2])
1431 return 0;
1432 case 2:
1433 if (x->array[1])
1434 return 0;
1435 case 1:
1436 return !x->array[0];
1437 default:
1438 abort ();
1439 }
1440 }
1441
1442 static INLINE int
1443 cpu_flags_equal (const union i386_cpu_flags *x,
1444 const union i386_cpu_flags *y)
1445 {
1446 switch (ARRAY_SIZE(x->array))
1447 {
1448 case 3:
1449 if (x->array[2] != y->array[2])
1450 return 0;
1451 case 2:
1452 if (x->array[1] != y->array[1])
1453 return 0;
1454 case 1:
1455 return x->array[0] == y->array[0];
1456 break;
1457 default:
1458 abort ();
1459 }
1460 }
1461
1462 static INLINE int
1463 cpu_flags_check_cpu64 (i386_cpu_flags f)
1464 {
1465 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1466 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1467 }
1468
1469 static INLINE i386_cpu_flags
1470 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1471 {
1472 switch (ARRAY_SIZE (x.array))
1473 {
1474 case 3:
1475 x.array [2] &= y.array [2];
1476 case 2:
1477 x.array [1] &= y.array [1];
1478 case 1:
1479 x.array [0] &= y.array [0];
1480 break;
1481 default:
1482 abort ();
1483 }
1484 return x;
1485 }
1486
1487 static INLINE i386_cpu_flags
1488 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1489 {
1490 switch (ARRAY_SIZE (x.array))
1491 {
1492 case 3:
1493 x.array [2] |= y.array [2];
1494 case 2:
1495 x.array [1] |= y.array [1];
1496 case 1:
1497 x.array [0] |= y.array [0];
1498 break;
1499 default:
1500 abort ();
1501 }
1502 return x;
1503 }
1504
1505 static INLINE i386_cpu_flags
1506 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1507 {
1508 switch (ARRAY_SIZE (x.array))
1509 {
1510 case 3:
1511 x.array [2] &= ~y.array [2];
1512 case 2:
1513 x.array [1] &= ~y.array [1];
1514 case 1:
1515 x.array [0] &= ~y.array [0];
1516 break;
1517 default:
1518 abort ();
1519 }
1520 return x;
1521 }
1522
1523 static int
1524 valid_iamcu_cpu_flags (const i386_cpu_flags *flags)
1525 {
1526 if (cpu_arch_isa == PROCESSOR_IAMCU)
1527 {
1528 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_COMPAT_FLAGS;
1529 i386_cpu_flags compat_flags;
1530 compat_flags = cpu_flags_and_not (*flags, iamcu_flags);
1531 return cpu_flags_all_zero (&compat_flags);
1532 }
1533 else
1534 return 1;
1535 }
1536
1537 #define CPU_FLAGS_ARCH_MATCH 0x1
1538 #define CPU_FLAGS_64BIT_MATCH 0x2
1539 #define CPU_FLAGS_AES_MATCH 0x4
1540 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1541 #define CPU_FLAGS_AVX_MATCH 0x10
1542
1543 #define CPU_FLAGS_32BIT_MATCH \
1544 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1545 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1546 #define CPU_FLAGS_PERFECT_MATCH \
1547 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1548
1549 /* Return CPU flags match bits. */
1550
1551 static int
1552 cpu_flags_match (const insn_template *t)
1553 {
1554 i386_cpu_flags x = t->cpu_flags;
1555 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1556
1557 x.bitfield.cpu64 = 0;
1558 x.bitfield.cpuno64 = 0;
1559
1560 if (cpu_flags_all_zero (&x))
1561 {
1562 /* This instruction is available on all archs. */
1563 match |= CPU_FLAGS_32BIT_MATCH;
1564 }
1565 else
1566 {
1567 /* This instruction is available only on some archs. */
1568 i386_cpu_flags cpu = cpu_arch_flags;
1569
1570 cpu = cpu_flags_and (x, cpu);
1571 if (!cpu_flags_all_zero (&cpu))
1572 {
1573 if (x.bitfield.cpuavx)
1574 {
1575 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1576 if (cpu.bitfield.cpuavx)
1577 {
1578 /* Check SSE2AVX. */
1579 if (!t->opcode_modifier.sse2avx|| sse2avx)
1580 {
1581 match |= (CPU_FLAGS_ARCH_MATCH
1582 | CPU_FLAGS_AVX_MATCH);
1583 /* Check AES. */
1584 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1585 match |= CPU_FLAGS_AES_MATCH;
1586 /* Check PCLMUL. */
1587 if (!x.bitfield.cpupclmul
1588 || cpu.bitfield.cpupclmul)
1589 match |= CPU_FLAGS_PCLMUL_MATCH;
1590 }
1591 }
1592 else
1593 match |= CPU_FLAGS_ARCH_MATCH;
1594 }
1595 else if (x.bitfield.cpuavx512vl)
1596 {
1597 /* Match AVX512VL. */
1598 if (cpu.bitfield.cpuavx512vl)
1599 {
1600 /* Need another match. */
1601 cpu.bitfield.cpuavx512vl = 0;
1602 if (!cpu_flags_all_zero (&cpu))
1603 match |= CPU_FLAGS_32BIT_MATCH;
1604 else
1605 match |= CPU_FLAGS_ARCH_MATCH;
1606 }
1607 else
1608 match |= CPU_FLAGS_ARCH_MATCH;
1609 }
1610 else
1611 match |= CPU_FLAGS_32BIT_MATCH;
1612 }
1613 }
1614 return match;
1615 }
1616
1617 static INLINE i386_operand_type
1618 operand_type_and (i386_operand_type x, i386_operand_type y)
1619 {
1620 switch (ARRAY_SIZE (x.array))
1621 {
1622 case 3:
1623 x.array [2] &= y.array [2];
1624 case 2:
1625 x.array [1] &= y.array [1];
1626 case 1:
1627 x.array [0] &= y.array [0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 return x;
1633 }
1634
1635 static INLINE i386_operand_type
1636 operand_type_or (i386_operand_type x, i386_operand_type y)
1637 {
1638 switch (ARRAY_SIZE (x.array))
1639 {
1640 case 3:
1641 x.array [2] |= y.array [2];
1642 case 2:
1643 x.array [1] |= y.array [1];
1644 case 1:
1645 x.array [0] |= y.array [0];
1646 break;
1647 default:
1648 abort ();
1649 }
1650 return x;
1651 }
1652
1653 static INLINE i386_operand_type
1654 operand_type_xor (i386_operand_type x, i386_operand_type y)
1655 {
1656 switch (ARRAY_SIZE (x.array))
1657 {
1658 case 3:
1659 x.array [2] ^= y.array [2];
1660 case 2:
1661 x.array [1] ^= y.array [1];
1662 case 1:
1663 x.array [0] ^= y.array [0];
1664 break;
1665 default:
1666 abort ();
1667 }
1668 return x;
1669 }
1670
1671 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1672 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1673 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1674 static const i386_operand_type inoutportreg
1675 = OPERAND_TYPE_INOUTPORTREG;
1676 static const i386_operand_type reg16_inoutportreg
1677 = OPERAND_TYPE_REG16_INOUTPORTREG;
1678 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1679 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1680 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1681 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1682 static const i386_operand_type anydisp
1683 = OPERAND_TYPE_ANYDISP;
1684 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1685 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1686 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1687 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1688 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1689 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1690 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1691 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1692 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1693 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1694 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1695 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1696 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1697 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1698
1699 enum operand_type
1700 {
1701 reg,
1702 imm,
1703 disp,
1704 anymem
1705 };
1706
1707 static INLINE int
1708 operand_type_check (i386_operand_type t, enum operand_type c)
1709 {
1710 switch (c)
1711 {
1712 case reg:
1713 return (t.bitfield.reg8
1714 || t.bitfield.reg16
1715 || t.bitfield.reg32
1716 || t.bitfield.reg64);
1717
1718 case imm:
1719 return (t.bitfield.imm8
1720 || t.bitfield.imm8s
1721 || t.bitfield.imm16
1722 || t.bitfield.imm32
1723 || t.bitfield.imm32s
1724 || t.bitfield.imm64);
1725
1726 case disp:
1727 return (t.bitfield.disp8
1728 || t.bitfield.disp16
1729 || t.bitfield.disp32
1730 || t.bitfield.disp32s
1731 || t.bitfield.disp64);
1732
1733 case anymem:
1734 return (t.bitfield.disp8
1735 || t.bitfield.disp16
1736 || t.bitfield.disp32
1737 || t.bitfield.disp32s
1738 || t.bitfield.disp64
1739 || t.bitfield.baseindex);
1740
1741 default:
1742 abort ();
1743 }
1744
1745 return 0;
1746 }
1747
1748 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1749 operand J for instruction template T. */
1750
1751 static INLINE int
1752 match_reg_size (const insn_template *t, unsigned int j)
1753 {
1754 return !((i.types[j].bitfield.byte
1755 && !t->operand_types[j].bitfield.byte)
1756 || (i.types[j].bitfield.word
1757 && !t->operand_types[j].bitfield.word)
1758 || (i.types[j].bitfield.dword
1759 && !t->operand_types[j].bitfield.dword)
1760 || (i.types[j].bitfield.qword
1761 && !t->operand_types[j].bitfield.qword));
1762 }
1763
1764 /* Return 1 if there is no conflict in any size on operand J for
1765 instruction template T. */
1766
1767 static INLINE int
1768 match_mem_size (const insn_template *t, unsigned int j)
1769 {
1770 return (match_reg_size (t, j)
1771 && !((i.types[j].bitfield.unspecified
1772 && !i.broadcast
1773 && !t->operand_types[j].bitfield.unspecified)
1774 || (i.types[j].bitfield.fword
1775 && !t->operand_types[j].bitfield.fword)
1776 || (i.types[j].bitfield.tbyte
1777 && !t->operand_types[j].bitfield.tbyte)
1778 || (i.types[j].bitfield.xmmword
1779 && !t->operand_types[j].bitfield.xmmword)
1780 || (i.types[j].bitfield.ymmword
1781 && !t->operand_types[j].bitfield.ymmword)
1782 || (i.types[j].bitfield.zmmword
1783 && !t->operand_types[j].bitfield.zmmword)));
1784 }
1785
1786 /* Return 1 if there is no size conflict on any operands for
1787 instruction template T. */
1788
1789 static INLINE int
1790 operand_size_match (const insn_template *t)
1791 {
1792 unsigned int j;
1793 int match = 1;
1794
1795 /* Don't check jump instructions. */
1796 if (t->opcode_modifier.jump
1797 || t->opcode_modifier.jumpbyte
1798 || t->opcode_modifier.jumpdword
1799 || t->opcode_modifier.jumpintersegment)
1800 return match;
1801
1802 /* Check memory and accumulator operand size. */
1803 for (j = 0; j < i.operands; j++)
1804 {
1805 if (t->operand_types[j].bitfield.anysize)
1806 continue;
1807
1808 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1809 {
1810 match = 0;
1811 break;
1812 }
1813
1814 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1815 {
1816 match = 0;
1817 break;
1818 }
1819 }
1820
1821 if (match)
1822 return match;
1823 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1824 {
1825 mismatch:
1826 i.error = operand_size_mismatch;
1827 return 0;
1828 }
1829
1830 /* Check reverse. */
1831 gas_assert (i.operands == 2);
1832
1833 match = 1;
1834 for (j = 0; j < 2; j++)
1835 {
1836 if (t->operand_types[j].bitfield.acc
1837 && !match_reg_size (t, j ? 0 : 1))
1838 goto mismatch;
1839
1840 if (i.types[j].bitfield.mem
1841 && !match_mem_size (t, j ? 0 : 1))
1842 goto mismatch;
1843 }
1844
1845 return match;
1846 }
1847
1848 static INLINE int
1849 operand_type_match (i386_operand_type overlap,
1850 i386_operand_type given)
1851 {
1852 i386_operand_type temp = overlap;
1853
1854 temp.bitfield.jumpabsolute = 0;
1855 temp.bitfield.unspecified = 0;
1856 temp.bitfield.byte = 0;
1857 temp.bitfield.word = 0;
1858 temp.bitfield.dword = 0;
1859 temp.bitfield.fword = 0;
1860 temp.bitfield.qword = 0;
1861 temp.bitfield.tbyte = 0;
1862 temp.bitfield.xmmword = 0;
1863 temp.bitfield.ymmword = 0;
1864 temp.bitfield.zmmword = 0;
1865 if (operand_type_all_zero (&temp))
1866 goto mismatch;
1867
1868 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1869 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1870 return 1;
1871
1872 mismatch:
1873 i.error = operand_type_mismatch;
1874 return 0;
1875 }
1876
1877 /* If given types g0 and g1 are registers they must be of the same type
1878 unless the expected operand type register overlap is null.
1879 Note that Acc in a template matches every size of reg. */
1880
1881 static INLINE int
1882 operand_type_register_match (i386_operand_type m0,
1883 i386_operand_type g0,
1884 i386_operand_type t0,
1885 i386_operand_type m1,
1886 i386_operand_type g1,
1887 i386_operand_type t1)
1888 {
1889 if (!operand_type_check (g0, reg))
1890 return 1;
1891
1892 if (!operand_type_check (g1, reg))
1893 return 1;
1894
1895 if (g0.bitfield.reg8 == g1.bitfield.reg8
1896 && g0.bitfield.reg16 == g1.bitfield.reg16
1897 && g0.bitfield.reg32 == g1.bitfield.reg32
1898 && g0.bitfield.reg64 == g1.bitfield.reg64)
1899 return 1;
1900
1901 if (m0.bitfield.acc)
1902 {
1903 t0.bitfield.reg8 = 1;
1904 t0.bitfield.reg16 = 1;
1905 t0.bitfield.reg32 = 1;
1906 t0.bitfield.reg64 = 1;
1907 }
1908
1909 if (m1.bitfield.acc)
1910 {
1911 t1.bitfield.reg8 = 1;
1912 t1.bitfield.reg16 = 1;
1913 t1.bitfield.reg32 = 1;
1914 t1.bitfield.reg64 = 1;
1915 }
1916
1917 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1918 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1919 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1920 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1921 return 1;
1922
1923 i.error = register_type_mismatch;
1924
1925 return 0;
1926 }
1927
1928 static INLINE unsigned int
1929 register_number (const reg_entry *r)
1930 {
1931 unsigned int nr = r->reg_num;
1932
1933 if (r->reg_flags & RegRex)
1934 nr += 8;
1935
1936 if (r->reg_flags & RegVRex)
1937 nr += 16;
1938
1939 return nr;
1940 }
1941
1942 static INLINE unsigned int
1943 mode_from_disp_size (i386_operand_type t)
1944 {
1945 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1946 return 1;
1947 else if (t.bitfield.disp16
1948 || t.bitfield.disp32
1949 || t.bitfield.disp32s)
1950 return 2;
1951 else
1952 return 0;
1953 }
1954
1955 static INLINE int
1956 fits_in_signed_byte (addressT num)
1957 {
1958 return num + 0x80 <= 0xff;
1959 }
1960
1961 static INLINE int
1962 fits_in_unsigned_byte (addressT num)
1963 {
1964 return num <= 0xff;
1965 }
1966
1967 static INLINE int
1968 fits_in_unsigned_word (addressT num)
1969 {
1970 return num <= 0xffff;
1971 }
1972
1973 static INLINE int
1974 fits_in_signed_word (addressT num)
1975 {
1976 return num + 0x8000 <= 0xffff;
1977 }
1978
1979 static INLINE int
1980 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1981 {
1982 #ifndef BFD64
1983 return 1;
1984 #else
1985 return num + 0x80000000 <= 0xffffffff;
1986 #endif
1987 } /* fits_in_signed_long() */
1988
1989 static INLINE int
1990 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1991 {
1992 #ifndef BFD64
1993 return 1;
1994 #else
1995 return num <= 0xffffffff;
1996 #endif
1997 } /* fits_in_unsigned_long() */
1998
1999 static INLINE int
2000 fits_in_vec_disp8 (offsetT num)
2001 {
2002 int shift = i.memshift;
2003 unsigned int mask;
2004
2005 if (shift == -1)
2006 abort ();
2007
2008 mask = (1 << shift) - 1;
2009
2010 /* Return 0 if NUM isn't properly aligned. */
2011 if ((num & mask))
2012 return 0;
2013
2014 /* Check if NUM will fit in 8bit after shift. */
2015 return fits_in_signed_byte (num >> shift);
2016 }
2017
2018 static INLINE int
2019 fits_in_imm4 (offsetT num)
2020 {
2021 return (num & 0xf) == num;
2022 }
2023
2024 static i386_operand_type
2025 smallest_imm_type (offsetT num)
2026 {
2027 i386_operand_type t;
2028
2029 operand_type_set (&t, 0);
2030 t.bitfield.imm64 = 1;
2031
2032 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2033 {
2034 /* This code is disabled on the 486 because all the Imm1 forms
2035 in the opcode table are slower on the i486. They're the
2036 versions with the implicitly specified single-position
2037 displacement, which has another syntax if you really want to
2038 use that form. */
2039 t.bitfield.imm1 = 1;
2040 t.bitfield.imm8 = 1;
2041 t.bitfield.imm8s = 1;
2042 t.bitfield.imm16 = 1;
2043 t.bitfield.imm32 = 1;
2044 t.bitfield.imm32s = 1;
2045 }
2046 else if (fits_in_signed_byte (num))
2047 {
2048 t.bitfield.imm8 = 1;
2049 t.bitfield.imm8s = 1;
2050 t.bitfield.imm16 = 1;
2051 t.bitfield.imm32 = 1;
2052 t.bitfield.imm32s = 1;
2053 }
2054 else if (fits_in_unsigned_byte (num))
2055 {
2056 t.bitfield.imm8 = 1;
2057 t.bitfield.imm16 = 1;
2058 t.bitfield.imm32 = 1;
2059 t.bitfield.imm32s = 1;
2060 }
2061 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2062 {
2063 t.bitfield.imm16 = 1;
2064 t.bitfield.imm32 = 1;
2065 t.bitfield.imm32s = 1;
2066 }
2067 else if (fits_in_signed_long (num))
2068 {
2069 t.bitfield.imm32 = 1;
2070 t.bitfield.imm32s = 1;
2071 }
2072 else if (fits_in_unsigned_long (num))
2073 t.bitfield.imm32 = 1;
2074
2075 return t;
2076 }
2077
2078 static offsetT
2079 offset_in_range (offsetT val, int size)
2080 {
2081 addressT mask;
2082
2083 switch (size)
2084 {
2085 case 1: mask = ((addressT) 1 << 8) - 1; break;
2086 case 2: mask = ((addressT) 1 << 16) - 1; break;
2087 case 4: mask = ((addressT) 2 << 31) - 1; break;
2088 #ifdef BFD64
2089 case 8: mask = ((addressT) 2 << 63) - 1; break;
2090 #endif
2091 default: abort ();
2092 }
2093
2094 #ifdef BFD64
2095 /* If BFD64, sign extend val for 32bit address mode. */
2096 if (flag_code != CODE_64BIT
2097 || i.prefix[ADDR_PREFIX])
2098 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2099 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2100 #endif
2101
2102 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2103 {
2104 char buf1[40], buf2[40];
2105
2106 sprint_value (buf1, val);
2107 sprint_value (buf2, val & mask);
2108 as_warn (_("%s shortened to %s"), buf1, buf2);
2109 }
2110 return val & mask;
2111 }
2112
2113 enum PREFIX_GROUP
2114 {
2115 PREFIX_EXIST = 0,
2116 PREFIX_LOCK,
2117 PREFIX_REP,
2118 PREFIX_OTHER
2119 };
2120
2121 /* Returns
2122 a. PREFIX_EXIST if attempting to add a prefix where one from the
2123 same class already exists.
2124 b. PREFIX_LOCK if lock prefix is added.
2125 c. PREFIX_REP if rep/repne prefix is added.
2126 d. PREFIX_OTHER if other prefix is added.
2127 */
2128
2129 static enum PREFIX_GROUP
2130 add_prefix (unsigned int prefix)
2131 {
2132 enum PREFIX_GROUP ret = PREFIX_OTHER;
2133 unsigned int q;
2134
2135 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2136 && flag_code == CODE_64BIT)
2137 {
2138 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2139 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2140 && (prefix & (REX_R | REX_X | REX_B))))
2141 ret = PREFIX_EXIST;
2142 q = REX_PREFIX;
2143 }
2144 else
2145 {
2146 switch (prefix)
2147 {
2148 default:
2149 abort ();
2150
2151 case CS_PREFIX_OPCODE:
2152 case DS_PREFIX_OPCODE:
2153 case ES_PREFIX_OPCODE:
2154 case FS_PREFIX_OPCODE:
2155 case GS_PREFIX_OPCODE:
2156 case SS_PREFIX_OPCODE:
2157 q = SEG_PREFIX;
2158 break;
2159
2160 case REPNE_PREFIX_OPCODE:
2161 case REPE_PREFIX_OPCODE:
2162 q = REP_PREFIX;
2163 ret = PREFIX_REP;
2164 break;
2165
2166 case LOCK_PREFIX_OPCODE:
2167 q = LOCK_PREFIX;
2168 ret = PREFIX_LOCK;
2169 break;
2170
2171 case FWAIT_OPCODE:
2172 q = WAIT_PREFIX;
2173 break;
2174
2175 case ADDR_PREFIX_OPCODE:
2176 q = ADDR_PREFIX;
2177 break;
2178
2179 case DATA_PREFIX_OPCODE:
2180 q = DATA_PREFIX;
2181 break;
2182 }
2183 if (i.prefix[q] != 0)
2184 ret = PREFIX_EXIST;
2185 }
2186
2187 if (ret)
2188 {
2189 if (!i.prefix[q])
2190 ++i.prefixes;
2191 i.prefix[q] |= prefix;
2192 }
2193 else
2194 as_bad (_("same type of prefix used twice"));
2195
2196 return ret;
2197 }
2198
2199 static void
2200 update_code_flag (int value, int check)
2201 {
2202 PRINTF_LIKE ((*as_error));
2203
2204 flag_code = (enum flag_code) value;
2205 if (flag_code == CODE_64BIT)
2206 {
2207 cpu_arch_flags.bitfield.cpu64 = 1;
2208 cpu_arch_flags.bitfield.cpuno64 = 0;
2209 }
2210 else
2211 {
2212 cpu_arch_flags.bitfield.cpu64 = 0;
2213 cpu_arch_flags.bitfield.cpuno64 = 1;
2214 }
2215 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2216 {
2217 if (check)
2218 as_error = as_fatal;
2219 else
2220 as_error = as_bad;
2221 (*as_error) (_("64bit mode not supported on `%s'."),
2222 cpu_arch_name ? cpu_arch_name : default_arch);
2223 }
2224 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2225 {
2226 if (check)
2227 as_error = as_fatal;
2228 else
2229 as_error = as_bad;
2230 (*as_error) (_("32bit mode not supported on `%s'."),
2231 cpu_arch_name ? cpu_arch_name : default_arch);
2232 }
2233 stackop_size = '\0';
2234 }
2235
2236 static void
2237 set_code_flag (int value)
2238 {
2239 update_code_flag (value, 0);
2240 }
2241
2242 static void
2243 set_16bit_gcc_code_flag (int new_code_flag)
2244 {
2245 flag_code = (enum flag_code) new_code_flag;
2246 if (flag_code != CODE_16BIT)
2247 abort ();
2248 cpu_arch_flags.bitfield.cpu64 = 0;
2249 cpu_arch_flags.bitfield.cpuno64 = 1;
2250 stackop_size = LONG_MNEM_SUFFIX;
2251 }
2252
2253 static void
2254 set_intel_syntax (int syntax_flag)
2255 {
2256 /* Find out if register prefixing is specified. */
2257 int ask_naked_reg = 0;
2258
2259 SKIP_WHITESPACE ();
2260 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2261 {
2262 char *string;
2263 int e = get_symbol_name (&string);
2264
2265 if (strcmp (string, "prefix") == 0)
2266 ask_naked_reg = 1;
2267 else if (strcmp (string, "noprefix") == 0)
2268 ask_naked_reg = -1;
2269 else
2270 as_bad (_("bad argument to syntax directive."));
2271 (void) restore_line_pointer (e);
2272 }
2273 demand_empty_rest_of_line ();
2274
2275 intel_syntax = syntax_flag;
2276
2277 if (ask_naked_reg == 0)
2278 allow_naked_reg = (intel_syntax
2279 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2280 else
2281 allow_naked_reg = (ask_naked_reg < 0);
2282
2283 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2284
2285 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2286 identifier_chars['$'] = intel_syntax ? '$' : 0;
2287 register_prefix = allow_naked_reg ? "" : "%";
2288 }
2289
2290 static void
2291 set_intel_mnemonic (int mnemonic_flag)
2292 {
2293 intel_mnemonic = mnemonic_flag;
2294 }
2295
2296 static void
2297 set_allow_index_reg (int flag)
2298 {
2299 allow_index_reg = flag;
2300 }
2301
2302 static void
2303 set_check (int what)
2304 {
2305 enum check_kind *kind;
2306 const char *str;
2307
2308 if (what)
2309 {
2310 kind = &operand_check;
2311 str = "operand";
2312 }
2313 else
2314 {
2315 kind = &sse_check;
2316 str = "sse";
2317 }
2318
2319 SKIP_WHITESPACE ();
2320
2321 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2322 {
2323 char *string;
2324 int e = get_symbol_name (&string);
2325
2326 if (strcmp (string, "none") == 0)
2327 *kind = check_none;
2328 else if (strcmp (string, "warning") == 0)
2329 *kind = check_warning;
2330 else if (strcmp (string, "error") == 0)
2331 *kind = check_error;
2332 else
2333 as_bad (_("bad argument to %s_check directive."), str);
2334 (void) restore_line_pointer (e);
2335 }
2336 else
2337 as_bad (_("missing argument for %s_check directive"), str);
2338
2339 demand_empty_rest_of_line ();
2340 }
2341
2342 static void
2343 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2344 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2345 {
2346 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2347 static const char *arch;
2348
2349 /* Intel LIOM is only supported on ELF. */
2350 if (!IS_ELF)
2351 return;
2352
2353 if (!arch)
2354 {
2355 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2356 use default_arch. */
2357 arch = cpu_arch_name;
2358 if (!arch)
2359 arch = default_arch;
2360 }
2361
2362 /* If we are targeting Intel MCU, we must enable it. */
2363 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2364 || new_flag.bitfield.cpuiamcu)
2365 return;
2366
2367 /* If we are targeting Intel L1OM, we must enable it. */
2368 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2369 || new_flag.bitfield.cpul1om)
2370 return;
2371
2372 /* If we are targeting Intel K1OM, we must enable it. */
2373 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2374 || new_flag.bitfield.cpuk1om)
2375 return;
2376
2377 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2378 #endif
2379 }
2380
2381 static void
2382 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2383 {
2384 SKIP_WHITESPACE ();
2385
2386 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2387 {
2388 char *string;
2389 int e = get_symbol_name (&string);
2390 unsigned int j;
2391 i386_cpu_flags flags;
2392
2393 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2394 {
2395 if (strcmp (string, cpu_arch[j].name) == 0)
2396 {
2397 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2398
2399 if (*string != '.')
2400 {
2401 cpu_arch_name = cpu_arch[j].name;
2402 cpu_sub_arch_name = NULL;
2403 cpu_arch_flags = cpu_arch[j].flags;
2404 if (flag_code == CODE_64BIT)
2405 {
2406 cpu_arch_flags.bitfield.cpu64 = 1;
2407 cpu_arch_flags.bitfield.cpuno64 = 0;
2408 }
2409 else
2410 {
2411 cpu_arch_flags.bitfield.cpu64 = 0;
2412 cpu_arch_flags.bitfield.cpuno64 = 1;
2413 }
2414 cpu_arch_isa = cpu_arch[j].type;
2415 cpu_arch_isa_flags = cpu_arch[j].flags;
2416 if (!cpu_arch_tune_set)
2417 {
2418 cpu_arch_tune = cpu_arch_isa;
2419 cpu_arch_tune_flags = cpu_arch_isa_flags;
2420 }
2421 break;
2422 }
2423
2424 flags = cpu_flags_or (cpu_arch_flags,
2425 cpu_arch[j].flags);
2426
2427 if (!valid_iamcu_cpu_flags (&flags))
2428 as_fatal (_("`%s' isn't valid for Intel MCU"),
2429 cpu_arch[j].name);
2430 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2431 {
2432 if (cpu_sub_arch_name)
2433 {
2434 char *name = cpu_sub_arch_name;
2435 cpu_sub_arch_name = concat (name,
2436 cpu_arch[j].name,
2437 (const char *) NULL);
2438 free (name);
2439 }
2440 else
2441 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2442 cpu_arch_flags = flags;
2443 cpu_arch_isa_flags = flags;
2444 }
2445 (void) restore_line_pointer (e);
2446 demand_empty_rest_of_line ();
2447 return;
2448 }
2449 }
2450
2451 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2452 {
2453 /* Disable an ISA entension. */
2454 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2455 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2456 {
2457 flags = cpu_flags_and_not (cpu_arch_flags,
2458 cpu_noarch[j].flags);
2459 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2460 {
2461 if (cpu_sub_arch_name)
2462 {
2463 char *name = cpu_sub_arch_name;
2464 cpu_sub_arch_name = concat (name, string,
2465 (const char *) NULL);
2466 free (name);
2467 }
2468 else
2469 cpu_sub_arch_name = xstrdup (string);
2470 cpu_arch_flags = flags;
2471 cpu_arch_isa_flags = flags;
2472 }
2473 (void) restore_line_pointer (e);
2474 demand_empty_rest_of_line ();
2475 return;
2476 }
2477
2478 j = ARRAY_SIZE (cpu_arch);
2479 }
2480
2481 if (j >= ARRAY_SIZE (cpu_arch))
2482 as_bad (_("no such architecture: `%s'"), string);
2483
2484 *input_line_pointer = e;
2485 }
2486 else
2487 as_bad (_("missing cpu architecture"));
2488
2489 no_cond_jump_promotion = 0;
2490 if (*input_line_pointer == ','
2491 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2492 {
2493 char *string;
2494 char e;
2495
2496 ++input_line_pointer;
2497 e = get_symbol_name (&string);
2498
2499 if (strcmp (string, "nojumps") == 0)
2500 no_cond_jump_promotion = 1;
2501 else if (strcmp (string, "jumps") == 0)
2502 ;
2503 else
2504 as_bad (_("no such architecture modifier: `%s'"), string);
2505
2506 (void) restore_line_pointer (e);
2507 }
2508
2509 demand_empty_rest_of_line ();
2510 }
2511
2512 enum bfd_architecture
2513 i386_arch (void)
2514 {
2515 if (cpu_arch_isa == PROCESSOR_L1OM)
2516 {
2517 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2518 || flag_code != CODE_64BIT)
2519 as_fatal (_("Intel L1OM is 64bit ELF only"));
2520 return bfd_arch_l1om;
2521 }
2522 else if (cpu_arch_isa == PROCESSOR_K1OM)
2523 {
2524 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2525 || flag_code != CODE_64BIT)
2526 as_fatal (_("Intel K1OM is 64bit ELF only"));
2527 return bfd_arch_k1om;
2528 }
2529 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2530 {
2531 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2532 || flag_code == CODE_64BIT)
2533 as_fatal (_("Intel MCU is 32bit ELF only"));
2534 return bfd_arch_iamcu;
2535 }
2536 else
2537 return bfd_arch_i386;
2538 }
2539
2540 unsigned long
2541 i386_mach (void)
2542 {
2543 if (!strncmp (default_arch, "x86_64", 6))
2544 {
2545 if (cpu_arch_isa == PROCESSOR_L1OM)
2546 {
2547 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2548 || default_arch[6] != '\0')
2549 as_fatal (_("Intel L1OM is 64bit ELF only"));
2550 return bfd_mach_l1om;
2551 }
2552 else if (cpu_arch_isa == PROCESSOR_K1OM)
2553 {
2554 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2555 || default_arch[6] != '\0')
2556 as_fatal (_("Intel K1OM is 64bit ELF only"));
2557 return bfd_mach_k1om;
2558 }
2559 else if (default_arch[6] == '\0')
2560 return bfd_mach_x86_64;
2561 else
2562 return bfd_mach_x64_32;
2563 }
2564 else if (!strcmp (default_arch, "i386")
2565 || !strcmp (default_arch, "iamcu"))
2566 {
2567 if (cpu_arch_isa == PROCESSOR_IAMCU)
2568 {
2569 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2570 as_fatal (_("Intel MCU is 32bit ELF only"));
2571 return bfd_mach_i386_iamcu;
2572 }
2573 else
2574 return bfd_mach_i386_i386;
2575 }
2576 else
2577 as_fatal (_("unknown architecture"));
2578 }
2579 \f
2580 void
2581 md_begin (void)
2582 {
2583 const char *hash_err;
2584
2585 /* Initialize op_hash hash table. */
2586 op_hash = hash_new ();
2587
2588 {
2589 const insn_template *optab;
2590 templates *core_optab;
2591
2592 /* Setup for loop. */
2593 optab = i386_optab;
2594 core_optab = XNEW (templates);
2595 core_optab->start = optab;
2596
2597 while (1)
2598 {
2599 ++optab;
2600 if (optab->name == NULL
2601 || strcmp (optab->name, (optab - 1)->name) != 0)
2602 {
2603 /* different name --> ship out current template list;
2604 add to hash table; & begin anew. */
2605 core_optab->end = optab;
2606 hash_err = hash_insert (op_hash,
2607 (optab - 1)->name,
2608 (void *) core_optab);
2609 if (hash_err)
2610 {
2611 as_fatal (_("can't hash %s: %s"),
2612 (optab - 1)->name,
2613 hash_err);
2614 }
2615 if (optab->name == NULL)
2616 break;
2617 core_optab = XNEW (templates);
2618 core_optab->start = optab;
2619 }
2620 }
2621 }
2622
2623 /* Initialize reg_hash hash table. */
2624 reg_hash = hash_new ();
2625 {
2626 const reg_entry *regtab;
2627 unsigned int regtab_size = i386_regtab_size;
2628
2629 for (regtab = i386_regtab; regtab_size--; regtab++)
2630 {
2631 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2632 if (hash_err)
2633 as_fatal (_("can't hash %s: %s"),
2634 regtab->reg_name,
2635 hash_err);
2636 }
2637 }
2638
2639 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2640 {
2641 int c;
2642 char *p;
2643
2644 for (c = 0; c < 256; c++)
2645 {
2646 if (ISDIGIT (c))
2647 {
2648 digit_chars[c] = c;
2649 mnemonic_chars[c] = c;
2650 register_chars[c] = c;
2651 operand_chars[c] = c;
2652 }
2653 else if (ISLOWER (c))
2654 {
2655 mnemonic_chars[c] = c;
2656 register_chars[c] = c;
2657 operand_chars[c] = c;
2658 }
2659 else if (ISUPPER (c))
2660 {
2661 mnemonic_chars[c] = TOLOWER (c);
2662 register_chars[c] = mnemonic_chars[c];
2663 operand_chars[c] = c;
2664 }
2665 else if (c == '{' || c == '}')
2666 operand_chars[c] = c;
2667
2668 if (ISALPHA (c) || ISDIGIT (c))
2669 identifier_chars[c] = c;
2670 else if (c >= 128)
2671 {
2672 identifier_chars[c] = c;
2673 operand_chars[c] = c;
2674 }
2675 }
2676
2677 #ifdef LEX_AT
2678 identifier_chars['@'] = '@';
2679 #endif
2680 #ifdef LEX_QM
2681 identifier_chars['?'] = '?';
2682 operand_chars['?'] = '?';
2683 #endif
2684 digit_chars['-'] = '-';
2685 mnemonic_chars['_'] = '_';
2686 mnemonic_chars['-'] = '-';
2687 mnemonic_chars['.'] = '.';
2688 identifier_chars['_'] = '_';
2689 identifier_chars['.'] = '.';
2690
2691 for (p = operand_special_chars; *p != '\0'; p++)
2692 operand_chars[(unsigned char) *p] = *p;
2693 }
2694
2695 if (flag_code == CODE_64BIT)
2696 {
2697 #if defined (OBJ_COFF) && defined (TE_PE)
2698 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2699 ? 32 : 16);
2700 #else
2701 x86_dwarf2_return_column = 16;
2702 #endif
2703 x86_cie_data_alignment = -8;
2704 }
2705 else
2706 {
2707 x86_dwarf2_return_column = 8;
2708 x86_cie_data_alignment = -4;
2709 }
2710 }
2711
2712 void
2713 i386_print_statistics (FILE *file)
2714 {
2715 hash_print_statistics (file, "i386 opcode", op_hash);
2716 hash_print_statistics (file, "i386 register", reg_hash);
2717 }
2718 \f
2719 #ifdef DEBUG386
2720
2721 /* Debugging routines for md_assemble. */
2722 static void pte (insn_template *);
2723 static void pt (i386_operand_type);
2724 static void pe (expressionS *);
2725 static void ps (symbolS *);
2726
2727 static void
2728 pi (char *line, i386_insn *x)
2729 {
2730 unsigned int j;
2731
2732 fprintf (stdout, "%s: template ", line);
2733 pte (&x->tm);
2734 fprintf (stdout, " address: base %s index %s scale %x\n",
2735 x->base_reg ? x->base_reg->reg_name : "none",
2736 x->index_reg ? x->index_reg->reg_name : "none",
2737 x->log2_scale_factor);
2738 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2739 x->rm.mode, x->rm.reg, x->rm.regmem);
2740 fprintf (stdout, " sib: base %x index %x scale %x\n",
2741 x->sib.base, x->sib.index, x->sib.scale);
2742 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2743 (x->rex & REX_W) != 0,
2744 (x->rex & REX_R) != 0,
2745 (x->rex & REX_X) != 0,
2746 (x->rex & REX_B) != 0);
2747 for (j = 0; j < x->operands; j++)
2748 {
2749 fprintf (stdout, " #%d: ", j + 1);
2750 pt (x->types[j]);
2751 fprintf (stdout, "\n");
2752 if (x->types[j].bitfield.reg8
2753 || x->types[j].bitfield.reg16
2754 || x->types[j].bitfield.reg32
2755 || x->types[j].bitfield.reg64
2756 || x->types[j].bitfield.regmmx
2757 || x->types[j].bitfield.regxmm
2758 || x->types[j].bitfield.regymm
2759 || x->types[j].bitfield.regzmm
2760 || x->types[j].bitfield.sreg2
2761 || x->types[j].bitfield.sreg3
2762 || x->types[j].bitfield.control
2763 || x->types[j].bitfield.debug
2764 || x->types[j].bitfield.test)
2765 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2766 if (operand_type_check (x->types[j], imm))
2767 pe (x->op[j].imms);
2768 if (operand_type_check (x->types[j], disp))
2769 pe (x->op[j].disps);
2770 }
2771 }
2772
2773 static void
2774 pte (insn_template *t)
2775 {
2776 unsigned int j;
2777 fprintf (stdout, " %d operands ", t->operands);
2778 fprintf (stdout, "opcode %x ", t->base_opcode);
2779 if (t->extension_opcode != None)
2780 fprintf (stdout, "ext %x ", t->extension_opcode);
2781 if (t->opcode_modifier.d)
2782 fprintf (stdout, "D");
2783 if (t->opcode_modifier.w)
2784 fprintf (stdout, "W");
2785 fprintf (stdout, "\n");
2786 for (j = 0; j < t->operands; j++)
2787 {
2788 fprintf (stdout, " #%d type ", j + 1);
2789 pt (t->operand_types[j]);
2790 fprintf (stdout, "\n");
2791 }
2792 }
2793
2794 static void
2795 pe (expressionS *e)
2796 {
2797 fprintf (stdout, " operation %d\n", e->X_op);
2798 fprintf (stdout, " add_number %ld (%lx)\n",
2799 (long) e->X_add_number, (long) e->X_add_number);
2800 if (e->X_add_symbol)
2801 {
2802 fprintf (stdout, " add_symbol ");
2803 ps (e->X_add_symbol);
2804 fprintf (stdout, "\n");
2805 }
2806 if (e->X_op_symbol)
2807 {
2808 fprintf (stdout, " op_symbol ");
2809 ps (e->X_op_symbol);
2810 fprintf (stdout, "\n");
2811 }
2812 }
2813
2814 static void
2815 ps (symbolS *s)
2816 {
2817 fprintf (stdout, "%s type %s%s",
2818 S_GET_NAME (s),
2819 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2820 segment_name (S_GET_SEGMENT (s)));
2821 }
2822
2823 static struct type_name
2824 {
2825 i386_operand_type mask;
2826 const char *name;
2827 }
2828 const type_names[] =
2829 {
2830 { OPERAND_TYPE_REG8, "r8" },
2831 { OPERAND_TYPE_REG16, "r16" },
2832 { OPERAND_TYPE_REG32, "r32" },
2833 { OPERAND_TYPE_REG64, "r64" },
2834 { OPERAND_TYPE_IMM8, "i8" },
2835 { OPERAND_TYPE_IMM8, "i8s" },
2836 { OPERAND_TYPE_IMM16, "i16" },
2837 { OPERAND_TYPE_IMM32, "i32" },
2838 { OPERAND_TYPE_IMM32S, "i32s" },
2839 { OPERAND_TYPE_IMM64, "i64" },
2840 { OPERAND_TYPE_IMM1, "i1" },
2841 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2842 { OPERAND_TYPE_DISP8, "d8" },
2843 { OPERAND_TYPE_DISP16, "d16" },
2844 { OPERAND_TYPE_DISP32, "d32" },
2845 { OPERAND_TYPE_DISP32S, "d32s" },
2846 { OPERAND_TYPE_DISP64, "d64" },
2847 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2848 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2849 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2850 { OPERAND_TYPE_CONTROL, "control reg" },
2851 { OPERAND_TYPE_TEST, "test reg" },
2852 { OPERAND_TYPE_DEBUG, "debug reg" },
2853 { OPERAND_TYPE_FLOATREG, "FReg" },
2854 { OPERAND_TYPE_FLOATACC, "FAcc" },
2855 { OPERAND_TYPE_SREG2, "SReg2" },
2856 { OPERAND_TYPE_SREG3, "SReg3" },
2857 { OPERAND_TYPE_ACC, "Acc" },
2858 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2859 { OPERAND_TYPE_REGMMX, "rMMX" },
2860 { OPERAND_TYPE_REGXMM, "rXMM" },
2861 { OPERAND_TYPE_REGYMM, "rYMM" },
2862 { OPERAND_TYPE_REGZMM, "rZMM" },
2863 { OPERAND_TYPE_REGMASK, "Mask reg" },
2864 { OPERAND_TYPE_ESSEG, "es" },
2865 };
2866
2867 static void
2868 pt (i386_operand_type t)
2869 {
2870 unsigned int j;
2871 i386_operand_type a;
2872
2873 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2874 {
2875 a = operand_type_and (t, type_names[j].mask);
2876 if (!operand_type_all_zero (&a))
2877 fprintf (stdout, "%s, ", type_names[j].name);
2878 }
2879 fflush (stdout);
2880 }
2881
2882 #endif /* DEBUG386 */
2883 \f
2884 static bfd_reloc_code_real_type
2885 reloc (unsigned int size,
2886 int pcrel,
2887 int sign,
2888 bfd_reloc_code_real_type other)
2889 {
2890 if (other != NO_RELOC)
2891 {
2892 reloc_howto_type *rel;
2893
2894 if (size == 8)
2895 switch (other)
2896 {
2897 case BFD_RELOC_X86_64_GOT32:
2898 return BFD_RELOC_X86_64_GOT64;
2899 break;
2900 case BFD_RELOC_X86_64_GOTPLT64:
2901 return BFD_RELOC_X86_64_GOTPLT64;
2902 break;
2903 case BFD_RELOC_X86_64_PLTOFF64:
2904 return BFD_RELOC_X86_64_PLTOFF64;
2905 break;
2906 case BFD_RELOC_X86_64_GOTPC32:
2907 other = BFD_RELOC_X86_64_GOTPC64;
2908 break;
2909 case BFD_RELOC_X86_64_GOTPCREL:
2910 other = BFD_RELOC_X86_64_GOTPCREL64;
2911 break;
2912 case BFD_RELOC_X86_64_TPOFF32:
2913 other = BFD_RELOC_X86_64_TPOFF64;
2914 break;
2915 case BFD_RELOC_X86_64_DTPOFF32:
2916 other = BFD_RELOC_X86_64_DTPOFF64;
2917 break;
2918 default:
2919 break;
2920 }
2921
2922 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2923 if (other == BFD_RELOC_SIZE32)
2924 {
2925 if (size == 8)
2926 other = BFD_RELOC_SIZE64;
2927 if (pcrel)
2928 {
2929 as_bad (_("there are no pc-relative size relocations"));
2930 return NO_RELOC;
2931 }
2932 }
2933 #endif
2934
2935 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2936 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2937 sign = -1;
2938
2939 rel = bfd_reloc_type_lookup (stdoutput, other);
2940 if (!rel)
2941 as_bad (_("unknown relocation (%u)"), other);
2942 else if (size != bfd_get_reloc_size (rel))
2943 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2944 bfd_get_reloc_size (rel),
2945 size);
2946 else if (pcrel && !rel->pc_relative)
2947 as_bad (_("non-pc-relative relocation for pc-relative field"));
2948 else if ((rel->complain_on_overflow == complain_overflow_signed
2949 && !sign)
2950 || (rel->complain_on_overflow == complain_overflow_unsigned
2951 && sign > 0))
2952 as_bad (_("relocated field and relocation type differ in signedness"));
2953 else
2954 return other;
2955 return NO_RELOC;
2956 }
2957
2958 if (pcrel)
2959 {
2960 if (!sign)
2961 as_bad (_("there are no unsigned pc-relative relocations"));
2962 switch (size)
2963 {
2964 case 1: return BFD_RELOC_8_PCREL;
2965 case 2: return BFD_RELOC_16_PCREL;
2966 case 4: return BFD_RELOC_32_PCREL;
2967 case 8: return BFD_RELOC_64_PCREL;
2968 }
2969 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2970 }
2971 else
2972 {
2973 if (sign > 0)
2974 switch (size)
2975 {
2976 case 4: return BFD_RELOC_X86_64_32S;
2977 }
2978 else
2979 switch (size)
2980 {
2981 case 1: return BFD_RELOC_8;
2982 case 2: return BFD_RELOC_16;
2983 case 4: return BFD_RELOC_32;
2984 case 8: return BFD_RELOC_64;
2985 }
2986 as_bad (_("cannot do %s %u byte relocation"),
2987 sign > 0 ? "signed" : "unsigned", size);
2988 }
2989
2990 return NO_RELOC;
2991 }
2992
2993 /* Here we decide which fixups can be adjusted to make them relative to
2994 the beginning of the section instead of the symbol. Basically we need
2995 to make sure that the dynamic relocations are done correctly, so in
2996 some cases we force the original symbol to be used. */
2997
2998 int
2999 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3000 {
3001 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3002 if (!IS_ELF)
3003 return 1;
3004
3005 /* Don't adjust pc-relative references to merge sections in 64-bit
3006 mode. */
3007 if (use_rela_relocations
3008 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3009 && fixP->fx_pcrel)
3010 return 0;
3011
3012 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3013 and changed later by validate_fix. */
3014 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3015 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3016 return 0;
3017
3018 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3019 for size relocations. */
3020 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3021 || fixP->fx_r_type == BFD_RELOC_SIZE64
3022 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3023 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3024 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3025 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3026 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3027 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3028 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3029 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3030 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3031 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3032 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3033 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3034 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3035 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3036 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3037 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3038 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3039 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3040 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3041 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3042 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3043 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3044 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3045 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3046 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3047 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3048 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3049 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3050 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3051 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3052 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3053 return 0;
3054 #endif
3055 return 1;
3056 }
3057
3058 static int
3059 intel_float_operand (const char *mnemonic)
3060 {
3061 /* Note that the value returned is meaningful only for opcodes with (memory)
3062 operands, hence the code here is free to improperly handle opcodes that
3063 have no operands (for better performance and smaller code). */
3064
3065 if (mnemonic[0] != 'f')
3066 return 0; /* non-math */
3067
3068 switch (mnemonic[1])
3069 {
3070 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3071 the fs segment override prefix not currently handled because no
3072 call path can make opcodes without operands get here */
3073 case 'i':
3074 return 2 /* integer op */;
3075 case 'l':
3076 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3077 return 3; /* fldcw/fldenv */
3078 break;
3079 case 'n':
3080 if (mnemonic[2] != 'o' /* fnop */)
3081 return 3; /* non-waiting control op */
3082 break;
3083 case 'r':
3084 if (mnemonic[2] == 's')
3085 return 3; /* frstor/frstpm */
3086 break;
3087 case 's':
3088 if (mnemonic[2] == 'a')
3089 return 3; /* fsave */
3090 if (mnemonic[2] == 't')
3091 {
3092 switch (mnemonic[3])
3093 {
3094 case 'c': /* fstcw */
3095 case 'd': /* fstdw */
3096 case 'e': /* fstenv */
3097 case 's': /* fsts[gw] */
3098 return 3;
3099 }
3100 }
3101 break;
3102 case 'x':
3103 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3104 return 0; /* fxsave/fxrstor are not really math ops */
3105 break;
3106 }
3107
3108 return 1;
3109 }
3110
3111 /* Build the VEX prefix. */
3112
3113 static void
3114 build_vex_prefix (const insn_template *t)
3115 {
3116 unsigned int register_specifier;
3117 unsigned int implied_prefix;
3118 unsigned int vector_length;
3119
3120 /* Check register specifier. */
3121 if (i.vex.register_specifier)
3122 {
3123 register_specifier =
3124 ~register_number (i.vex.register_specifier) & 0xf;
3125 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3126 }
3127 else
3128 register_specifier = 0xf;
3129
3130 /* Use 2-byte VEX prefix by swappping destination and source
3131 operand. */
3132 if (!i.swap_operand
3133 && i.operands == i.reg_operands
3134 && i.tm.opcode_modifier.vexopcode == VEX0F
3135 && i.tm.opcode_modifier.s
3136 && i.rex == REX_B)
3137 {
3138 unsigned int xchg = i.operands - 1;
3139 union i386_op temp_op;
3140 i386_operand_type temp_type;
3141
3142 temp_type = i.types[xchg];
3143 i.types[xchg] = i.types[0];
3144 i.types[0] = temp_type;
3145 temp_op = i.op[xchg];
3146 i.op[xchg] = i.op[0];
3147 i.op[0] = temp_op;
3148
3149 gas_assert (i.rm.mode == 3);
3150
3151 i.rex = REX_R;
3152 xchg = i.rm.regmem;
3153 i.rm.regmem = i.rm.reg;
3154 i.rm.reg = xchg;
3155
3156 /* Use the next insn. */
3157 i.tm = t[1];
3158 }
3159
3160 if (i.tm.opcode_modifier.vex == VEXScalar)
3161 vector_length = avxscalar;
3162 else
3163 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3164
3165 switch ((i.tm.base_opcode >> 8) & 0xff)
3166 {
3167 case 0:
3168 implied_prefix = 0;
3169 break;
3170 case DATA_PREFIX_OPCODE:
3171 implied_prefix = 1;
3172 break;
3173 case REPE_PREFIX_OPCODE:
3174 implied_prefix = 2;
3175 break;
3176 case REPNE_PREFIX_OPCODE:
3177 implied_prefix = 3;
3178 break;
3179 default:
3180 abort ();
3181 }
3182
3183 /* Use 2-byte VEX prefix if possible. */
3184 if (i.tm.opcode_modifier.vexopcode == VEX0F
3185 && i.tm.opcode_modifier.vexw != VEXW1
3186 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3187 {
3188 /* 2-byte VEX prefix. */
3189 unsigned int r;
3190
3191 i.vex.length = 2;
3192 i.vex.bytes[0] = 0xc5;
3193
3194 /* Check the REX.R bit. */
3195 r = (i.rex & REX_R) ? 0 : 1;
3196 i.vex.bytes[1] = (r << 7
3197 | register_specifier << 3
3198 | vector_length << 2
3199 | implied_prefix);
3200 }
3201 else
3202 {
3203 /* 3-byte VEX prefix. */
3204 unsigned int m, w;
3205
3206 i.vex.length = 3;
3207
3208 switch (i.tm.opcode_modifier.vexopcode)
3209 {
3210 case VEX0F:
3211 m = 0x1;
3212 i.vex.bytes[0] = 0xc4;
3213 break;
3214 case VEX0F38:
3215 m = 0x2;
3216 i.vex.bytes[0] = 0xc4;
3217 break;
3218 case VEX0F3A:
3219 m = 0x3;
3220 i.vex.bytes[0] = 0xc4;
3221 break;
3222 case XOP08:
3223 m = 0x8;
3224 i.vex.bytes[0] = 0x8f;
3225 break;
3226 case XOP09:
3227 m = 0x9;
3228 i.vex.bytes[0] = 0x8f;
3229 break;
3230 case XOP0A:
3231 m = 0xa;
3232 i.vex.bytes[0] = 0x8f;
3233 break;
3234 default:
3235 abort ();
3236 }
3237
3238 /* The high 3 bits of the second VEX byte are 1's compliment
3239 of RXB bits from REX. */
3240 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3241
3242 /* Check the REX.W bit. */
3243 w = (i.rex & REX_W) ? 1 : 0;
3244 if (i.tm.opcode_modifier.vexw == VEXW1)
3245 w = 1;
3246
3247 i.vex.bytes[2] = (w << 7
3248 | register_specifier << 3
3249 | vector_length << 2
3250 | implied_prefix);
3251 }
3252 }
3253
3254 /* Build the EVEX prefix. */
3255
3256 static void
3257 build_evex_prefix (void)
3258 {
3259 unsigned int register_specifier;
3260 unsigned int implied_prefix;
3261 unsigned int m, w;
3262 rex_byte vrex_used = 0;
3263
3264 /* Check register specifier. */
3265 if (i.vex.register_specifier)
3266 {
3267 gas_assert ((i.vrex & REX_X) == 0);
3268
3269 register_specifier = i.vex.register_specifier->reg_num;
3270 if ((i.vex.register_specifier->reg_flags & RegRex))
3271 register_specifier += 8;
3272 /* The upper 16 registers are encoded in the fourth byte of the
3273 EVEX prefix. */
3274 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3275 i.vex.bytes[3] = 0x8;
3276 register_specifier = ~register_specifier & 0xf;
3277 }
3278 else
3279 {
3280 register_specifier = 0xf;
3281
3282 /* Encode upper 16 vector index register in the fourth byte of
3283 the EVEX prefix. */
3284 if (!(i.vrex & REX_X))
3285 i.vex.bytes[3] = 0x8;
3286 else
3287 vrex_used |= REX_X;
3288 }
3289
3290 switch ((i.tm.base_opcode >> 8) & 0xff)
3291 {
3292 case 0:
3293 implied_prefix = 0;
3294 break;
3295 case DATA_PREFIX_OPCODE:
3296 implied_prefix = 1;
3297 break;
3298 case REPE_PREFIX_OPCODE:
3299 implied_prefix = 2;
3300 break;
3301 case REPNE_PREFIX_OPCODE:
3302 implied_prefix = 3;
3303 break;
3304 default:
3305 abort ();
3306 }
3307
3308 /* 4 byte EVEX prefix. */
3309 i.vex.length = 4;
3310 i.vex.bytes[0] = 0x62;
3311
3312 /* mmmm bits. */
3313 switch (i.tm.opcode_modifier.vexopcode)
3314 {
3315 case VEX0F:
3316 m = 1;
3317 break;
3318 case VEX0F38:
3319 m = 2;
3320 break;
3321 case VEX0F3A:
3322 m = 3;
3323 break;
3324 default:
3325 abort ();
3326 break;
3327 }
3328
3329 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3330 bits from REX. */
3331 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3332
3333 /* The fifth bit of the second EVEX byte is 1's compliment of the
3334 REX_R bit in VREX. */
3335 if (!(i.vrex & REX_R))
3336 i.vex.bytes[1] |= 0x10;
3337 else
3338 vrex_used |= REX_R;
3339
3340 if ((i.reg_operands + i.imm_operands) == i.operands)
3341 {
3342 /* When all operands are registers, the REX_X bit in REX is not
3343 used. We reuse it to encode the upper 16 registers, which is
3344 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3345 as 1's compliment. */
3346 if ((i.vrex & REX_B))
3347 {
3348 vrex_used |= REX_B;
3349 i.vex.bytes[1] &= ~0x40;
3350 }
3351 }
3352
3353 /* EVEX instructions shouldn't need the REX prefix. */
3354 i.vrex &= ~vrex_used;
3355 gas_assert (i.vrex == 0);
3356
3357 /* Check the REX.W bit. */
3358 w = (i.rex & REX_W) ? 1 : 0;
3359 if (i.tm.opcode_modifier.vexw)
3360 {
3361 if (i.tm.opcode_modifier.vexw == VEXW1)
3362 w = 1;
3363 }
3364 /* If w is not set it means we are dealing with WIG instruction. */
3365 else if (!w)
3366 {
3367 if (evexwig == evexw1)
3368 w = 1;
3369 }
3370
3371 /* Encode the U bit. */
3372 implied_prefix |= 0x4;
3373
3374 /* The third byte of the EVEX prefix. */
3375 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3376
3377 /* The fourth byte of the EVEX prefix. */
3378 /* The zeroing-masking bit. */
3379 if (i.mask && i.mask->zeroing)
3380 i.vex.bytes[3] |= 0x80;
3381
3382 /* Don't always set the broadcast bit if there is no RC. */
3383 if (!i.rounding)
3384 {
3385 /* Encode the vector length. */
3386 unsigned int vec_length;
3387
3388 switch (i.tm.opcode_modifier.evex)
3389 {
3390 case EVEXLIG: /* LL' is ignored */
3391 vec_length = evexlig << 5;
3392 break;
3393 case EVEX128:
3394 vec_length = 0 << 5;
3395 break;
3396 case EVEX256:
3397 vec_length = 1 << 5;
3398 break;
3399 case EVEX512:
3400 vec_length = 2 << 5;
3401 break;
3402 default:
3403 abort ();
3404 break;
3405 }
3406 i.vex.bytes[3] |= vec_length;
3407 /* Encode the broadcast bit. */
3408 if (i.broadcast)
3409 i.vex.bytes[3] |= 0x10;
3410 }
3411 else
3412 {
3413 if (i.rounding->type != saeonly)
3414 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3415 else
3416 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3417 }
3418
3419 if (i.mask && i.mask->mask)
3420 i.vex.bytes[3] |= i.mask->mask->reg_num;
3421 }
3422
3423 static void
3424 process_immext (void)
3425 {
3426 expressionS *exp;
3427
3428 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3429 && i.operands > 0)
3430 {
3431 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3432 with an opcode suffix which is coded in the same place as an
3433 8-bit immediate field would be.
3434 Here we check those operands and remove them afterwards. */
3435 unsigned int x;
3436
3437 for (x = 0; x < i.operands; x++)
3438 if (register_number (i.op[x].regs) != x)
3439 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3440 register_prefix, i.op[x].regs->reg_name, x + 1,
3441 i.tm.name);
3442
3443 i.operands = 0;
3444 }
3445
3446 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3447 {
3448 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3449 suffix which is coded in the same place as an 8-bit immediate
3450 field would be.
3451 Here we check those operands and remove them afterwards. */
3452 unsigned int x;
3453
3454 if (i.operands != 3)
3455 abort();
3456
3457 for (x = 0; x < 2; x++)
3458 if (register_number (i.op[x].regs) != x)
3459 goto bad_register_operand;
3460
3461 /* Check for third operand for mwaitx/monitorx insn. */
3462 if (register_number (i.op[x].regs)
3463 != (x + (i.tm.extension_opcode == 0xfb)))
3464 {
3465 bad_register_operand:
3466 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3467 register_prefix, i.op[x].regs->reg_name, x+1,
3468 i.tm.name);
3469 }
3470
3471 i.operands = 0;
3472 }
3473
3474 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3475 which is coded in the same place as an 8-bit immediate field
3476 would be. Here we fake an 8-bit immediate operand from the
3477 opcode suffix stored in tm.extension_opcode.
3478
3479 AVX instructions also use this encoding, for some of
3480 3 argument instructions. */
3481
3482 gas_assert (i.imm_operands <= 1
3483 && (i.operands <= 2
3484 || ((i.tm.opcode_modifier.vex
3485 || i.tm.opcode_modifier.evex)
3486 && i.operands <= 4)));
3487
3488 exp = &im_expressions[i.imm_operands++];
3489 i.op[i.operands].imms = exp;
3490 i.types[i.operands] = imm8;
3491 i.operands++;
3492 exp->X_op = O_constant;
3493 exp->X_add_number = i.tm.extension_opcode;
3494 i.tm.extension_opcode = None;
3495 }
3496
3497
3498 static int
3499 check_hle (void)
3500 {
3501 switch (i.tm.opcode_modifier.hleprefixok)
3502 {
3503 default:
3504 abort ();
3505 case HLEPrefixNone:
3506 as_bad (_("invalid instruction `%s' after `%s'"),
3507 i.tm.name, i.hle_prefix);
3508 return 0;
3509 case HLEPrefixLock:
3510 if (i.prefix[LOCK_PREFIX])
3511 return 1;
3512 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3513 return 0;
3514 case HLEPrefixAny:
3515 return 1;
3516 case HLEPrefixRelease:
3517 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3518 {
3519 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3520 i.tm.name);
3521 return 0;
3522 }
3523 if (i.mem_operands == 0
3524 || !operand_type_check (i.types[i.operands - 1], anymem))
3525 {
3526 as_bad (_("memory destination needed for instruction `%s'"
3527 " after `xrelease'"), i.tm.name);
3528 return 0;
3529 }
3530 return 1;
3531 }
3532 }
3533
3534 /* This is the guts of the machine-dependent assembler. LINE points to a
3535 machine dependent instruction. This function is supposed to emit
3536 the frags/bytes it assembles to. */
3537
3538 void
3539 md_assemble (char *line)
3540 {
3541 unsigned int j;
3542 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3543 const insn_template *t;
3544
3545 /* Initialize globals. */
3546 memset (&i, '\0', sizeof (i));
3547 for (j = 0; j < MAX_OPERANDS; j++)
3548 i.reloc[j] = NO_RELOC;
3549 memset (disp_expressions, '\0', sizeof (disp_expressions));
3550 memset (im_expressions, '\0', sizeof (im_expressions));
3551 save_stack_p = save_stack;
3552
3553 /* First parse an instruction mnemonic & call i386_operand for the operands.
3554 We assume that the scrubber has arranged it so that line[0] is the valid
3555 start of a (possibly prefixed) mnemonic. */
3556
3557 line = parse_insn (line, mnemonic);
3558 if (line == NULL)
3559 return;
3560 mnem_suffix = i.suffix;
3561
3562 line = parse_operands (line, mnemonic);
3563 this_operand = -1;
3564 xfree (i.memop1_string);
3565 i.memop1_string = NULL;
3566 if (line == NULL)
3567 return;
3568
3569 /* Now we've parsed the mnemonic into a set of templates, and have the
3570 operands at hand. */
3571
3572 /* All intel opcodes have reversed operands except for "bound" and
3573 "enter". We also don't reverse intersegment "jmp" and "call"
3574 instructions with 2 immediate operands so that the immediate segment
3575 precedes the offset, as it does when in AT&T mode. */
3576 if (intel_syntax
3577 && i.operands > 1
3578 && (strcmp (mnemonic, "bound") != 0)
3579 && (strcmp (mnemonic, "invlpga") != 0)
3580 && !(operand_type_check (i.types[0], imm)
3581 && operand_type_check (i.types[1], imm)))
3582 swap_operands ();
3583
3584 /* The order of the immediates should be reversed
3585 for 2 immediates extrq and insertq instructions */
3586 if (i.imm_operands == 2
3587 && (strcmp (mnemonic, "extrq") == 0
3588 || strcmp (mnemonic, "insertq") == 0))
3589 swap_2_operands (0, 1);
3590
3591 if (i.imm_operands)
3592 optimize_imm ();
3593
3594 /* Don't optimize displacement for movabs since it only takes 64bit
3595 displacement. */
3596 if (i.disp_operands
3597 && i.disp_encoding != disp_encoding_32bit
3598 && (flag_code != CODE_64BIT
3599 || strcmp (mnemonic, "movabs") != 0))
3600 optimize_disp ();
3601
3602 /* Next, we find a template that matches the given insn,
3603 making sure the overlap of the given operands types is consistent
3604 with the template operand types. */
3605
3606 if (!(t = match_template (mnem_suffix)))
3607 return;
3608
3609 if (sse_check != check_none
3610 && !i.tm.opcode_modifier.noavx
3611 && (i.tm.cpu_flags.bitfield.cpusse
3612 || i.tm.cpu_flags.bitfield.cpusse2
3613 || i.tm.cpu_flags.bitfield.cpusse3
3614 || i.tm.cpu_flags.bitfield.cpussse3
3615 || i.tm.cpu_flags.bitfield.cpusse4_1
3616 || i.tm.cpu_flags.bitfield.cpusse4_2))
3617 {
3618 (sse_check == check_warning
3619 ? as_warn
3620 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3621 }
3622
3623 /* Zap movzx and movsx suffix. The suffix has been set from
3624 "word ptr" or "byte ptr" on the source operand in Intel syntax
3625 or extracted from mnemonic in AT&T syntax. But we'll use
3626 the destination register to choose the suffix for encoding. */
3627 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3628 {
3629 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3630 there is no suffix, the default will be byte extension. */
3631 if (i.reg_operands != 2
3632 && !i.suffix
3633 && intel_syntax)
3634 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3635
3636 i.suffix = 0;
3637 }
3638
3639 if (i.tm.opcode_modifier.fwait)
3640 if (!add_prefix (FWAIT_OPCODE))
3641 return;
3642
3643 /* Check if REP prefix is OK. */
3644 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3645 {
3646 as_bad (_("invalid instruction `%s' after `%s'"),
3647 i.tm.name, i.rep_prefix);
3648 return;
3649 }
3650
3651 /* Check for lock without a lockable instruction. Destination operand
3652 must be memory unless it is xchg (0x86). */
3653 if (i.prefix[LOCK_PREFIX]
3654 && (!i.tm.opcode_modifier.islockable
3655 || i.mem_operands == 0
3656 || (i.tm.base_opcode != 0x86
3657 && !operand_type_check (i.types[i.operands - 1], anymem))))
3658 {
3659 as_bad (_("expecting lockable instruction after `lock'"));
3660 return;
3661 }
3662
3663 /* Check if HLE prefix is OK. */
3664 if (i.hle_prefix && !check_hle ())
3665 return;
3666
3667 /* Check BND prefix. */
3668 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3669 as_bad (_("expecting valid branch instruction after `bnd'"));
3670
3671 if (i.tm.cpu_flags.bitfield.cpumpx)
3672 {
3673 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3674 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3675 else if (flag_code != CODE_16BIT
3676 ? i.prefix[ADDR_PREFIX]
3677 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3678 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3679 }
3680
3681 /* Insert BND prefix. */
3682 if (add_bnd_prefix
3683 && i.tm.opcode_modifier.bndprefixok
3684 && !i.prefix[BND_PREFIX])
3685 add_prefix (BND_PREFIX_OPCODE);
3686
3687 /* Check string instruction segment overrides. */
3688 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3689 {
3690 if (!check_string ())
3691 return;
3692 i.disp_operands = 0;
3693 }
3694
3695 if (!process_suffix ())
3696 return;
3697
3698 /* Update operand types. */
3699 for (j = 0; j < i.operands; j++)
3700 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3701
3702 /* Make still unresolved immediate matches conform to size of immediate
3703 given in i.suffix. */
3704 if (!finalize_imm ())
3705 return;
3706
3707 if (i.types[0].bitfield.imm1)
3708 i.imm_operands = 0; /* kludge for shift insns. */
3709
3710 /* We only need to check those implicit registers for instructions
3711 with 3 operands or less. */
3712 if (i.operands <= 3)
3713 for (j = 0; j < i.operands; j++)
3714 if (i.types[j].bitfield.inoutportreg
3715 || i.types[j].bitfield.shiftcount
3716 || i.types[j].bitfield.acc
3717 || i.types[j].bitfield.floatacc)
3718 i.reg_operands--;
3719
3720 /* ImmExt should be processed after SSE2AVX. */
3721 if (!i.tm.opcode_modifier.sse2avx
3722 && i.tm.opcode_modifier.immext)
3723 process_immext ();
3724
3725 /* For insns with operands there are more diddles to do to the opcode. */
3726 if (i.operands)
3727 {
3728 if (!process_operands ())
3729 return;
3730 }
3731 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3732 {
3733 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3734 as_warn (_("translating to `%sp'"), i.tm.name);
3735 }
3736
3737 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3738 {
3739 if (flag_code == CODE_16BIT)
3740 {
3741 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3742 i.tm.name);
3743 return;
3744 }
3745
3746 if (i.tm.opcode_modifier.vex)
3747 build_vex_prefix (t);
3748 else
3749 build_evex_prefix ();
3750 }
3751
3752 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3753 instructions may define INT_OPCODE as well, so avoid this corner
3754 case for those instructions that use MODRM. */
3755 if (i.tm.base_opcode == INT_OPCODE
3756 && !i.tm.opcode_modifier.modrm
3757 && i.op[0].imms->X_add_number == 3)
3758 {
3759 i.tm.base_opcode = INT3_OPCODE;
3760 i.imm_operands = 0;
3761 }
3762
3763 if ((i.tm.opcode_modifier.jump
3764 || i.tm.opcode_modifier.jumpbyte
3765 || i.tm.opcode_modifier.jumpdword)
3766 && i.op[0].disps->X_op == O_constant)
3767 {
3768 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3769 the absolute address given by the constant. Since ix86 jumps and
3770 calls are pc relative, we need to generate a reloc. */
3771 i.op[0].disps->X_add_symbol = &abs_symbol;
3772 i.op[0].disps->X_op = O_symbol;
3773 }
3774
3775 if (i.tm.opcode_modifier.rex64)
3776 i.rex |= REX_W;
3777
3778 /* For 8 bit registers we need an empty rex prefix. Also if the
3779 instruction already has a prefix, we need to convert old
3780 registers to new ones. */
3781
3782 if ((i.types[0].bitfield.reg8
3783 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3784 || (i.types[1].bitfield.reg8
3785 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3786 || ((i.types[0].bitfield.reg8
3787 || i.types[1].bitfield.reg8)
3788 && i.rex != 0))
3789 {
3790 int x;
3791
3792 i.rex |= REX_OPCODE;
3793 for (x = 0; x < 2; x++)
3794 {
3795 /* Look for 8 bit operand that uses old registers. */
3796 if (i.types[x].bitfield.reg8
3797 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3798 {
3799 /* In case it is "hi" register, give up. */
3800 if (i.op[x].regs->reg_num > 3)
3801 as_bad (_("can't encode register '%s%s' in an "
3802 "instruction requiring REX prefix."),
3803 register_prefix, i.op[x].regs->reg_name);
3804
3805 /* Otherwise it is equivalent to the extended register.
3806 Since the encoding doesn't change this is merely
3807 cosmetic cleanup for debug output. */
3808
3809 i.op[x].regs = i.op[x].regs + 8;
3810 }
3811 }
3812 }
3813
3814 if (i.rex != 0)
3815 add_prefix (REX_OPCODE | i.rex);
3816
3817 /* We are ready to output the insn. */
3818 output_insn ();
3819 }
3820
3821 static char *
3822 parse_insn (char *line, char *mnemonic)
3823 {
3824 char *l = line;
3825 char *token_start = l;
3826 char *mnem_p;
3827 int supported;
3828 const insn_template *t;
3829 char *dot_p = NULL;
3830
3831 while (1)
3832 {
3833 mnem_p = mnemonic;
3834 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3835 {
3836 if (*mnem_p == '.')
3837 dot_p = mnem_p;
3838 mnem_p++;
3839 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3840 {
3841 as_bad (_("no such instruction: `%s'"), token_start);
3842 return NULL;
3843 }
3844 l++;
3845 }
3846 if (!is_space_char (*l)
3847 && *l != END_OF_INSN
3848 && (intel_syntax
3849 || (*l != PREFIX_SEPARATOR
3850 && *l != ',')))
3851 {
3852 as_bad (_("invalid character %s in mnemonic"),
3853 output_invalid (*l));
3854 return NULL;
3855 }
3856 if (token_start == l)
3857 {
3858 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3859 as_bad (_("expecting prefix; got nothing"));
3860 else
3861 as_bad (_("expecting mnemonic; got nothing"));
3862 return NULL;
3863 }
3864
3865 /* Look up instruction (or prefix) via hash table. */
3866 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3867
3868 if (*l != END_OF_INSN
3869 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3870 && current_templates
3871 && current_templates->start->opcode_modifier.isprefix)
3872 {
3873 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3874 {
3875 as_bad ((flag_code != CODE_64BIT
3876 ? _("`%s' is only supported in 64-bit mode")
3877 : _("`%s' is not supported in 64-bit mode")),
3878 current_templates->start->name);
3879 return NULL;
3880 }
3881 /* If we are in 16-bit mode, do not allow addr16 or data16.
3882 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3883 if ((current_templates->start->opcode_modifier.size16
3884 || current_templates->start->opcode_modifier.size32)
3885 && flag_code != CODE_64BIT
3886 && (current_templates->start->opcode_modifier.size32
3887 ^ (flag_code == CODE_16BIT)))
3888 {
3889 as_bad (_("redundant %s prefix"),
3890 current_templates->start->name);
3891 return NULL;
3892 }
3893 /* Add prefix, checking for repeated prefixes. */
3894 switch (add_prefix (current_templates->start->base_opcode))
3895 {
3896 case PREFIX_EXIST:
3897 return NULL;
3898 case PREFIX_REP:
3899 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3900 i.hle_prefix = current_templates->start->name;
3901 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3902 i.bnd_prefix = current_templates->start->name;
3903 else
3904 i.rep_prefix = current_templates->start->name;
3905 break;
3906 default:
3907 break;
3908 }
3909 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3910 token_start = ++l;
3911 }
3912 else
3913 break;
3914 }
3915
3916 if (!current_templates)
3917 {
3918 /* Check if we should swap operand or force 32bit displacement in
3919 encoding. */
3920 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3921 i.swap_operand = 1;
3922 else if (mnem_p - 3 == dot_p
3923 && dot_p[1] == 'd'
3924 && dot_p[2] == '8')
3925 i.disp_encoding = disp_encoding_8bit;
3926 else if (mnem_p - 4 == dot_p
3927 && dot_p[1] == 'd'
3928 && dot_p[2] == '3'
3929 && dot_p[3] == '2')
3930 i.disp_encoding = disp_encoding_32bit;
3931 else
3932 goto check_suffix;
3933 mnem_p = dot_p;
3934 *dot_p = '\0';
3935 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3936 }
3937
3938 if (!current_templates)
3939 {
3940 check_suffix:
3941 /* See if we can get a match by trimming off a suffix. */
3942 switch (mnem_p[-1])
3943 {
3944 case WORD_MNEM_SUFFIX:
3945 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3946 i.suffix = SHORT_MNEM_SUFFIX;
3947 else
3948 case BYTE_MNEM_SUFFIX:
3949 case QWORD_MNEM_SUFFIX:
3950 i.suffix = mnem_p[-1];
3951 mnem_p[-1] = '\0';
3952 current_templates = (const templates *) hash_find (op_hash,
3953 mnemonic);
3954 break;
3955 case SHORT_MNEM_SUFFIX:
3956 case LONG_MNEM_SUFFIX:
3957 if (!intel_syntax)
3958 {
3959 i.suffix = mnem_p[-1];
3960 mnem_p[-1] = '\0';
3961 current_templates = (const templates *) hash_find (op_hash,
3962 mnemonic);
3963 }
3964 break;
3965
3966 /* Intel Syntax. */
3967 case 'd':
3968 if (intel_syntax)
3969 {
3970 if (intel_float_operand (mnemonic) == 1)
3971 i.suffix = SHORT_MNEM_SUFFIX;
3972 else
3973 i.suffix = LONG_MNEM_SUFFIX;
3974 mnem_p[-1] = '\0';
3975 current_templates = (const templates *) hash_find (op_hash,
3976 mnemonic);
3977 }
3978 break;
3979 }
3980 if (!current_templates)
3981 {
3982 as_bad (_("no such instruction: `%s'"), token_start);
3983 return NULL;
3984 }
3985 }
3986
3987 if (current_templates->start->opcode_modifier.jump
3988 || current_templates->start->opcode_modifier.jumpbyte)
3989 {
3990 /* Check for a branch hint. We allow ",pt" and ",pn" for
3991 predict taken and predict not taken respectively.
3992 I'm not sure that branch hints actually do anything on loop
3993 and jcxz insns (JumpByte) for current Pentium4 chips. They
3994 may work in the future and it doesn't hurt to accept them
3995 now. */
3996 if (l[0] == ',' && l[1] == 'p')
3997 {
3998 if (l[2] == 't')
3999 {
4000 if (!add_prefix (DS_PREFIX_OPCODE))
4001 return NULL;
4002 l += 3;
4003 }
4004 else if (l[2] == 'n')
4005 {
4006 if (!add_prefix (CS_PREFIX_OPCODE))
4007 return NULL;
4008 l += 3;
4009 }
4010 }
4011 }
4012 /* Any other comma loses. */
4013 if (*l == ',')
4014 {
4015 as_bad (_("invalid character %s in mnemonic"),
4016 output_invalid (*l));
4017 return NULL;
4018 }
4019
4020 /* Check if instruction is supported on specified architecture. */
4021 supported = 0;
4022 for (t = current_templates->start; t < current_templates->end; ++t)
4023 {
4024 supported |= cpu_flags_match (t);
4025 if (supported == CPU_FLAGS_PERFECT_MATCH)
4026 goto skip;
4027 }
4028
4029 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4030 {
4031 as_bad (flag_code == CODE_64BIT
4032 ? _("`%s' is not supported in 64-bit mode")
4033 : _("`%s' is only supported in 64-bit mode"),
4034 current_templates->start->name);
4035 return NULL;
4036 }
4037 if (supported != CPU_FLAGS_PERFECT_MATCH)
4038 {
4039 as_bad (_("`%s' is not supported on `%s%s'"),
4040 current_templates->start->name,
4041 cpu_arch_name ? cpu_arch_name : default_arch,
4042 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4043 return NULL;
4044 }
4045
4046 skip:
4047 if (!cpu_arch_flags.bitfield.cpui386
4048 && (flag_code != CODE_16BIT))
4049 {
4050 as_warn (_("use .code16 to ensure correct addressing mode"));
4051 }
4052
4053 return l;
4054 }
4055
4056 static char *
4057 parse_operands (char *l, const char *mnemonic)
4058 {
4059 char *token_start;
4060
4061 /* 1 if operand is pending after ','. */
4062 unsigned int expecting_operand = 0;
4063
4064 /* Non-zero if operand parens not balanced. */
4065 unsigned int paren_not_balanced;
4066
4067 while (*l != END_OF_INSN)
4068 {
4069 /* Skip optional white space before operand. */
4070 if (is_space_char (*l))
4071 ++l;
4072 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4073 {
4074 as_bad (_("invalid character %s before operand %d"),
4075 output_invalid (*l),
4076 i.operands + 1);
4077 return NULL;
4078 }
4079 token_start = l; /* After white space. */
4080 paren_not_balanced = 0;
4081 while (paren_not_balanced || *l != ',')
4082 {
4083 if (*l == END_OF_INSN)
4084 {
4085 if (paren_not_balanced)
4086 {
4087 if (!intel_syntax)
4088 as_bad (_("unbalanced parenthesis in operand %d."),
4089 i.operands + 1);
4090 else
4091 as_bad (_("unbalanced brackets in operand %d."),
4092 i.operands + 1);
4093 return NULL;
4094 }
4095 else
4096 break; /* we are done */
4097 }
4098 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4099 {
4100 as_bad (_("invalid character %s in operand %d"),
4101 output_invalid (*l),
4102 i.operands + 1);
4103 return NULL;
4104 }
4105 if (!intel_syntax)
4106 {
4107 if (*l == '(')
4108 ++paren_not_balanced;
4109 if (*l == ')')
4110 --paren_not_balanced;
4111 }
4112 else
4113 {
4114 if (*l == '[')
4115 ++paren_not_balanced;
4116 if (*l == ']')
4117 --paren_not_balanced;
4118 }
4119 l++;
4120 }
4121 if (l != token_start)
4122 { /* Yes, we've read in another operand. */
4123 unsigned int operand_ok;
4124 this_operand = i.operands++;
4125 i.types[this_operand].bitfield.unspecified = 1;
4126 if (i.operands > MAX_OPERANDS)
4127 {
4128 as_bad (_("spurious operands; (%d operands/instruction max)"),
4129 MAX_OPERANDS);
4130 return NULL;
4131 }
4132 /* Now parse operand adding info to 'i' as we go along. */
4133 END_STRING_AND_SAVE (l);
4134
4135 if (intel_syntax)
4136 operand_ok =
4137 i386_intel_operand (token_start,
4138 intel_float_operand (mnemonic));
4139 else
4140 operand_ok = i386_att_operand (token_start);
4141
4142 RESTORE_END_STRING (l);
4143 if (!operand_ok)
4144 return NULL;
4145 }
4146 else
4147 {
4148 if (expecting_operand)
4149 {
4150 expecting_operand_after_comma:
4151 as_bad (_("expecting operand after ','; got nothing"));
4152 return NULL;
4153 }
4154 if (*l == ',')
4155 {
4156 as_bad (_("expecting operand before ','; got nothing"));
4157 return NULL;
4158 }
4159 }
4160
4161 /* Now *l must be either ',' or END_OF_INSN. */
4162 if (*l == ',')
4163 {
4164 if (*++l == END_OF_INSN)
4165 {
4166 /* Just skip it, if it's \n complain. */
4167 goto expecting_operand_after_comma;
4168 }
4169 expecting_operand = 1;
4170 }
4171 }
4172 return l;
4173 }
4174
4175 static void
4176 swap_2_operands (int xchg1, int xchg2)
4177 {
4178 union i386_op temp_op;
4179 i386_operand_type temp_type;
4180 enum bfd_reloc_code_real temp_reloc;
4181
4182 temp_type = i.types[xchg2];
4183 i.types[xchg2] = i.types[xchg1];
4184 i.types[xchg1] = temp_type;
4185 temp_op = i.op[xchg2];
4186 i.op[xchg2] = i.op[xchg1];
4187 i.op[xchg1] = temp_op;
4188 temp_reloc = i.reloc[xchg2];
4189 i.reloc[xchg2] = i.reloc[xchg1];
4190 i.reloc[xchg1] = temp_reloc;
4191
4192 if (i.mask)
4193 {
4194 if (i.mask->operand == xchg1)
4195 i.mask->operand = xchg2;
4196 else if (i.mask->operand == xchg2)
4197 i.mask->operand = xchg1;
4198 }
4199 if (i.broadcast)
4200 {
4201 if (i.broadcast->operand == xchg1)
4202 i.broadcast->operand = xchg2;
4203 else if (i.broadcast->operand == xchg2)
4204 i.broadcast->operand = xchg1;
4205 }
4206 if (i.rounding)
4207 {
4208 if (i.rounding->operand == xchg1)
4209 i.rounding->operand = xchg2;
4210 else if (i.rounding->operand == xchg2)
4211 i.rounding->operand = xchg1;
4212 }
4213 }
4214
4215 static void
4216 swap_operands (void)
4217 {
4218 switch (i.operands)
4219 {
4220 case 5:
4221 case 4:
4222 swap_2_operands (1, i.operands - 2);
4223 case 3:
4224 case 2:
4225 swap_2_operands (0, i.operands - 1);
4226 break;
4227 default:
4228 abort ();
4229 }
4230
4231 if (i.mem_operands == 2)
4232 {
4233 const seg_entry *temp_seg;
4234 temp_seg = i.seg[0];
4235 i.seg[0] = i.seg[1];
4236 i.seg[1] = temp_seg;
4237 }
4238 }
4239
4240 /* Try to ensure constant immediates are represented in the smallest
4241 opcode possible. */
4242 static void
4243 optimize_imm (void)
4244 {
4245 char guess_suffix = 0;
4246 int op;
4247
4248 if (i.suffix)
4249 guess_suffix = i.suffix;
4250 else if (i.reg_operands)
4251 {
4252 /* Figure out a suffix from the last register operand specified.
4253 We can't do this properly yet, ie. excluding InOutPortReg,
4254 but the following works for instructions with immediates.
4255 In any case, we can't set i.suffix yet. */
4256 for (op = i.operands; --op >= 0;)
4257 if (i.types[op].bitfield.reg8)
4258 {
4259 guess_suffix = BYTE_MNEM_SUFFIX;
4260 break;
4261 }
4262 else if (i.types[op].bitfield.reg16)
4263 {
4264 guess_suffix = WORD_MNEM_SUFFIX;
4265 break;
4266 }
4267 else if (i.types[op].bitfield.reg32)
4268 {
4269 guess_suffix = LONG_MNEM_SUFFIX;
4270 break;
4271 }
4272 else if (i.types[op].bitfield.reg64)
4273 {
4274 guess_suffix = QWORD_MNEM_SUFFIX;
4275 break;
4276 }
4277 }
4278 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4279 guess_suffix = WORD_MNEM_SUFFIX;
4280
4281 for (op = i.operands; --op >= 0;)
4282 if (operand_type_check (i.types[op], imm))
4283 {
4284 switch (i.op[op].imms->X_op)
4285 {
4286 case O_constant:
4287 /* If a suffix is given, this operand may be shortened. */
4288 switch (guess_suffix)
4289 {
4290 case LONG_MNEM_SUFFIX:
4291 i.types[op].bitfield.imm32 = 1;
4292 i.types[op].bitfield.imm64 = 1;
4293 break;
4294 case WORD_MNEM_SUFFIX:
4295 i.types[op].bitfield.imm16 = 1;
4296 i.types[op].bitfield.imm32 = 1;
4297 i.types[op].bitfield.imm32s = 1;
4298 i.types[op].bitfield.imm64 = 1;
4299 break;
4300 case BYTE_MNEM_SUFFIX:
4301 i.types[op].bitfield.imm8 = 1;
4302 i.types[op].bitfield.imm8s = 1;
4303 i.types[op].bitfield.imm16 = 1;
4304 i.types[op].bitfield.imm32 = 1;
4305 i.types[op].bitfield.imm32s = 1;
4306 i.types[op].bitfield.imm64 = 1;
4307 break;
4308 }
4309
4310 /* If this operand is at most 16 bits, convert it
4311 to a signed 16 bit number before trying to see
4312 whether it will fit in an even smaller size.
4313 This allows a 16-bit operand such as $0xffe0 to
4314 be recognised as within Imm8S range. */
4315 if ((i.types[op].bitfield.imm16)
4316 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4317 {
4318 i.op[op].imms->X_add_number =
4319 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4320 }
4321 #ifdef BFD64
4322 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4323 if ((i.types[op].bitfield.imm32)
4324 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4325 == 0))
4326 {
4327 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4328 ^ ((offsetT) 1 << 31))
4329 - ((offsetT) 1 << 31));
4330 }
4331 #endif
4332 i.types[op]
4333 = operand_type_or (i.types[op],
4334 smallest_imm_type (i.op[op].imms->X_add_number));
4335
4336 /* We must avoid matching of Imm32 templates when 64bit
4337 only immediate is available. */
4338 if (guess_suffix == QWORD_MNEM_SUFFIX)
4339 i.types[op].bitfield.imm32 = 0;
4340 break;
4341
4342 case O_absent:
4343 case O_register:
4344 abort ();
4345
4346 /* Symbols and expressions. */
4347 default:
4348 /* Convert symbolic operand to proper sizes for matching, but don't
4349 prevent matching a set of insns that only supports sizes other
4350 than those matching the insn suffix. */
4351 {
4352 i386_operand_type mask, allowed;
4353 const insn_template *t;
4354
4355 operand_type_set (&mask, 0);
4356 operand_type_set (&allowed, 0);
4357
4358 for (t = current_templates->start;
4359 t < current_templates->end;
4360 ++t)
4361 allowed = operand_type_or (allowed,
4362 t->operand_types[op]);
4363 switch (guess_suffix)
4364 {
4365 case QWORD_MNEM_SUFFIX:
4366 mask.bitfield.imm64 = 1;
4367 mask.bitfield.imm32s = 1;
4368 break;
4369 case LONG_MNEM_SUFFIX:
4370 mask.bitfield.imm32 = 1;
4371 break;
4372 case WORD_MNEM_SUFFIX:
4373 mask.bitfield.imm16 = 1;
4374 break;
4375 case BYTE_MNEM_SUFFIX:
4376 mask.bitfield.imm8 = 1;
4377 break;
4378 default:
4379 break;
4380 }
4381 allowed = operand_type_and (mask, allowed);
4382 if (!operand_type_all_zero (&allowed))
4383 i.types[op] = operand_type_and (i.types[op], mask);
4384 }
4385 break;
4386 }
4387 }
4388 }
4389
4390 /* Try to use the smallest displacement type too. */
4391 static void
4392 optimize_disp (void)
4393 {
4394 int op;
4395
4396 for (op = i.operands; --op >= 0;)
4397 if (operand_type_check (i.types[op], disp))
4398 {
4399 if (i.op[op].disps->X_op == O_constant)
4400 {
4401 offsetT op_disp = i.op[op].disps->X_add_number;
4402
4403 if (i.types[op].bitfield.disp16
4404 && (op_disp & ~(offsetT) 0xffff) == 0)
4405 {
4406 /* If this operand is at most 16 bits, convert
4407 to a signed 16 bit number and don't use 64bit
4408 displacement. */
4409 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4410 i.types[op].bitfield.disp64 = 0;
4411 }
4412 #ifdef BFD64
4413 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4414 if (i.types[op].bitfield.disp32
4415 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4416 {
4417 /* If this operand is at most 32 bits, convert
4418 to a signed 32 bit number and don't use 64bit
4419 displacement. */
4420 op_disp &= (((offsetT) 2 << 31) - 1);
4421 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4422 i.types[op].bitfield.disp64 = 0;
4423 }
4424 #endif
4425 if (!op_disp && i.types[op].bitfield.baseindex)
4426 {
4427 i.types[op].bitfield.disp8 = 0;
4428 i.types[op].bitfield.disp16 = 0;
4429 i.types[op].bitfield.disp32 = 0;
4430 i.types[op].bitfield.disp32s = 0;
4431 i.types[op].bitfield.disp64 = 0;
4432 i.op[op].disps = 0;
4433 i.disp_operands--;
4434 }
4435 else if (flag_code == CODE_64BIT)
4436 {
4437 if (fits_in_signed_long (op_disp))
4438 {
4439 i.types[op].bitfield.disp64 = 0;
4440 i.types[op].bitfield.disp32s = 1;
4441 }
4442 if (i.prefix[ADDR_PREFIX]
4443 && fits_in_unsigned_long (op_disp))
4444 i.types[op].bitfield.disp32 = 1;
4445 }
4446 if ((i.types[op].bitfield.disp32
4447 || i.types[op].bitfield.disp32s
4448 || i.types[op].bitfield.disp16)
4449 && fits_in_signed_byte (op_disp))
4450 i.types[op].bitfield.disp8 = 1;
4451 }
4452 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4453 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4454 {
4455 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4456 i.op[op].disps, 0, i.reloc[op]);
4457 i.types[op].bitfield.disp8 = 0;
4458 i.types[op].bitfield.disp16 = 0;
4459 i.types[op].bitfield.disp32 = 0;
4460 i.types[op].bitfield.disp32s = 0;
4461 i.types[op].bitfield.disp64 = 0;
4462 }
4463 else
4464 /* We only support 64bit displacement on constants. */
4465 i.types[op].bitfield.disp64 = 0;
4466 }
4467 }
4468
4469 /* Check if operands are valid for the instruction. */
4470
4471 static int
4472 check_VecOperands (const insn_template *t)
4473 {
4474 unsigned int op;
4475
4476 /* Without VSIB byte, we can't have a vector register for index. */
4477 if (!t->opcode_modifier.vecsib
4478 && i.index_reg
4479 && (i.index_reg->reg_type.bitfield.regxmm
4480 || i.index_reg->reg_type.bitfield.regymm
4481 || i.index_reg->reg_type.bitfield.regzmm))
4482 {
4483 i.error = unsupported_vector_index_register;
4484 return 1;
4485 }
4486
4487 /* Check if default mask is allowed. */
4488 if (t->opcode_modifier.nodefmask
4489 && (!i.mask || i.mask->mask->reg_num == 0))
4490 {
4491 i.error = no_default_mask;
4492 return 1;
4493 }
4494
4495 /* For VSIB byte, we need a vector register for index, and all vector
4496 registers must be distinct. */
4497 if (t->opcode_modifier.vecsib)
4498 {
4499 if (!i.index_reg
4500 || !((t->opcode_modifier.vecsib == VecSIB128
4501 && i.index_reg->reg_type.bitfield.regxmm)
4502 || (t->opcode_modifier.vecsib == VecSIB256
4503 && i.index_reg->reg_type.bitfield.regymm)
4504 || (t->opcode_modifier.vecsib == VecSIB512
4505 && i.index_reg->reg_type.bitfield.regzmm)))
4506 {
4507 i.error = invalid_vsib_address;
4508 return 1;
4509 }
4510
4511 gas_assert (i.reg_operands == 2 || i.mask);
4512 if (i.reg_operands == 2 && !i.mask)
4513 {
4514 gas_assert (i.types[0].bitfield.regxmm
4515 || i.types[0].bitfield.regymm);
4516 gas_assert (i.types[2].bitfield.regxmm
4517 || i.types[2].bitfield.regymm);
4518 if (operand_check == check_none)
4519 return 0;
4520 if (register_number (i.op[0].regs)
4521 != register_number (i.index_reg)
4522 && register_number (i.op[2].regs)
4523 != register_number (i.index_reg)
4524 && register_number (i.op[0].regs)
4525 != register_number (i.op[2].regs))
4526 return 0;
4527 if (operand_check == check_error)
4528 {
4529 i.error = invalid_vector_register_set;
4530 return 1;
4531 }
4532 as_warn (_("mask, index, and destination registers should be distinct"));
4533 }
4534 else if (i.reg_operands == 1 && i.mask)
4535 {
4536 if ((i.types[1].bitfield.regymm
4537 || i.types[1].bitfield.regzmm)
4538 && (register_number (i.op[1].regs)
4539 == register_number (i.index_reg)))
4540 {
4541 if (operand_check == check_error)
4542 {
4543 i.error = invalid_vector_register_set;
4544 return 1;
4545 }
4546 if (operand_check != check_none)
4547 as_warn (_("index and destination registers should be distinct"));
4548 }
4549 }
4550 }
4551
4552 /* Check if broadcast is supported by the instruction and is applied
4553 to the memory operand. */
4554 if (i.broadcast)
4555 {
4556 int broadcasted_opnd_size;
4557
4558 /* Check if specified broadcast is supported in this instruction,
4559 and it's applied to memory operand of DWORD or QWORD type,
4560 depending on VecESize. */
4561 if (i.broadcast->type != t->opcode_modifier.broadcast
4562 || !i.types[i.broadcast->operand].bitfield.mem
4563 || (t->opcode_modifier.vecesize == 0
4564 && !i.types[i.broadcast->operand].bitfield.dword
4565 && !i.types[i.broadcast->operand].bitfield.unspecified)
4566 || (t->opcode_modifier.vecesize == 1
4567 && !i.types[i.broadcast->operand].bitfield.qword
4568 && !i.types[i.broadcast->operand].bitfield.unspecified))
4569 goto bad_broadcast;
4570
4571 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4572 if (i.broadcast->type == BROADCAST_1TO16)
4573 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4574 else if (i.broadcast->type == BROADCAST_1TO8)
4575 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4576 else if (i.broadcast->type == BROADCAST_1TO4)
4577 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4578 else if (i.broadcast->type == BROADCAST_1TO2)
4579 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4580 else
4581 goto bad_broadcast;
4582
4583 if ((broadcasted_opnd_size == 256
4584 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4585 || (broadcasted_opnd_size == 512
4586 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4587 {
4588 bad_broadcast:
4589 i.error = unsupported_broadcast;
4590 return 1;
4591 }
4592 }
4593 /* If broadcast is supported in this instruction, we need to check if
4594 operand of one-element size isn't specified without broadcast. */
4595 else if (t->opcode_modifier.broadcast && i.mem_operands)
4596 {
4597 /* Find memory operand. */
4598 for (op = 0; op < i.operands; op++)
4599 if (operand_type_check (i.types[op], anymem))
4600 break;
4601 gas_assert (op < i.operands);
4602 /* Check size of the memory operand. */
4603 if ((t->opcode_modifier.vecesize == 0
4604 && i.types[op].bitfield.dword)
4605 || (t->opcode_modifier.vecesize == 1
4606 && i.types[op].bitfield.qword))
4607 {
4608 i.error = broadcast_needed;
4609 return 1;
4610 }
4611 }
4612
4613 /* Check if requested masking is supported. */
4614 if (i.mask
4615 && (!t->opcode_modifier.masking
4616 || (i.mask->zeroing
4617 && t->opcode_modifier.masking == MERGING_MASKING)))
4618 {
4619 i.error = unsupported_masking;
4620 return 1;
4621 }
4622
4623 /* Check if masking is applied to dest operand. */
4624 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4625 {
4626 i.error = mask_not_on_destination;
4627 return 1;
4628 }
4629
4630 /* Check RC/SAE. */
4631 if (i.rounding)
4632 {
4633 if ((i.rounding->type != saeonly
4634 && !t->opcode_modifier.staticrounding)
4635 || (i.rounding->type == saeonly
4636 && (t->opcode_modifier.staticrounding
4637 || !t->opcode_modifier.sae)))
4638 {
4639 i.error = unsupported_rc_sae;
4640 return 1;
4641 }
4642 /* If the instruction has several immediate operands and one of
4643 them is rounding, the rounding operand should be the last
4644 immediate operand. */
4645 if (i.imm_operands > 1
4646 && i.rounding->operand != (int) (i.imm_operands - 1))
4647 {
4648 i.error = rc_sae_operand_not_last_imm;
4649 return 1;
4650 }
4651 }
4652
4653 /* Check vector Disp8 operand. */
4654 if (t->opcode_modifier.disp8memshift)
4655 {
4656 if (i.broadcast)
4657 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4658 else
4659 i.memshift = t->opcode_modifier.disp8memshift;
4660
4661 for (op = 0; op < i.operands; op++)
4662 if (operand_type_check (i.types[op], disp)
4663 && i.op[op].disps->X_op == O_constant)
4664 {
4665 offsetT value = i.op[op].disps->X_add_number;
4666 int vec_disp8_ok
4667 = (i.disp_encoding != disp_encoding_32bit
4668 && fits_in_vec_disp8 (value));
4669 if (t->operand_types [op].bitfield.vec_disp8)
4670 {
4671 if (vec_disp8_ok)
4672 i.types[op].bitfield.vec_disp8 = 1;
4673 else
4674 {
4675 /* Vector insn can only have Vec_Disp8/Disp32 in
4676 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4677 mode. */
4678 i.types[op].bitfield.disp8 = 0;
4679 if (flag_code != CODE_16BIT)
4680 i.types[op].bitfield.disp16 = 0;
4681 }
4682 }
4683 else if (flag_code != CODE_16BIT)
4684 {
4685 /* One form of this instruction supports vector Disp8.
4686 Try vector Disp8 if we need to use Disp32. */
4687 if (vec_disp8_ok && !fits_in_signed_byte (value))
4688 {
4689 i.error = try_vector_disp8;
4690 return 1;
4691 }
4692 }
4693 }
4694 }
4695 else
4696 i.memshift = -1;
4697
4698 return 0;
4699 }
4700
4701 /* Check if operands are valid for the instruction. Update VEX
4702 operand types. */
4703
4704 static int
4705 VEX_check_operands (const insn_template *t)
4706 {
4707 /* VREX is only valid with EVEX prefix. */
4708 if (i.need_vrex && !t->opcode_modifier.evex)
4709 {
4710 i.error = invalid_register_operand;
4711 return 1;
4712 }
4713
4714 if (!t->opcode_modifier.vex)
4715 return 0;
4716
4717 /* Only check VEX_Imm4, which must be the first operand. */
4718 if (t->operand_types[0].bitfield.vec_imm4)
4719 {
4720 if (i.op[0].imms->X_op != O_constant
4721 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4722 {
4723 i.error = bad_imm4;
4724 return 1;
4725 }
4726
4727 /* Turn off Imm8 so that update_imm won't complain. */
4728 i.types[0] = vec_imm4;
4729 }
4730
4731 return 0;
4732 }
4733
4734 static const insn_template *
4735 match_template (char mnem_suffix)
4736 {
4737 /* Points to template once we've found it. */
4738 const insn_template *t;
4739 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4740 i386_operand_type overlap4;
4741 unsigned int found_reverse_match;
4742 i386_opcode_modifier suffix_check, mnemsuf_check;
4743 i386_operand_type operand_types [MAX_OPERANDS];
4744 int addr_prefix_disp;
4745 unsigned int j;
4746 unsigned int found_cpu_match;
4747 unsigned int check_register;
4748 enum i386_error specific_error = 0;
4749
4750 #if MAX_OPERANDS != 5
4751 # error "MAX_OPERANDS must be 5."
4752 #endif
4753
4754 found_reverse_match = 0;
4755 addr_prefix_disp = -1;
4756
4757 memset (&suffix_check, 0, sizeof (suffix_check));
4758 if (i.suffix == BYTE_MNEM_SUFFIX)
4759 suffix_check.no_bsuf = 1;
4760 else if (i.suffix == WORD_MNEM_SUFFIX)
4761 suffix_check.no_wsuf = 1;
4762 else if (i.suffix == SHORT_MNEM_SUFFIX)
4763 suffix_check.no_ssuf = 1;
4764 else if (i.suffix == LONG_MNEM_SUFFIX)
4765 suffix_check.no_lsuf = 1;
4766 else if (i.suffix == QWORD_MNEM_SUFFIX)
4767 suffix_check.no_qsuf = 1;
4768 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4769 suffix_check.no_ldsuf = 1;
4770
4771 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4772 if (intel_syntax)
4773 {
4774 switch (mnem_suffix)
4775 {
4776 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4777 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4778 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4779 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4780 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4781 }
4782 }
4783
4784 /* Must have right number of operands. */
4785 i.error = number_of_operands_mismatch;
4786
4787 for (t = current_templates->start; t < current_templates->end; t++)
4788 {
4789 addr_prefix_disp = -1;
4790
4791 if (i.operands != t->operands)
4792 continue;
4793
4794 /* Check processor support. */
4795 i.error = unsupported;
4796 found_cpu_match = (cpu_flags_match (t)
4797 == CPU_FLAGS_PERFECT_MATCH);
4798 if (!found_cpu_match)
4799 continue;
4800
4801 /* Check old gcc support. */
4802 i.error = old_gcc_only;
4803 if (!old_gcc && t->opcode_modifier.oldgcc)
4804 continue;
4805
4806 /* Check AT&T mnemonic. */
4807 i.error = unsupported_with_intel_mnemonic;
4808 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4809 continue;
4810
4811 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4812 i.error = unsupported_syntax;
4813 if ((intel_syntax && t->opcode_modifier.attsyntax)
4814 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4815 || (intel64 && t->opcode_modifier.amd64)
4816 || (!intel64 && t->opcode_modifier.intel64))
4817 continue;
4818
4819 /* Check the suffix, except for some instructions in intel mode. */
4820 i.error = invalid_instruction_suffix;
4821 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4822 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4823 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4824 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4825 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4826 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4827 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4828 continue;
4829 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4830 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4831 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4832 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4833 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4834 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4835 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4836 continue;
4837
4838 if (!operand_size_match (t))
4839 continue;
4840
4841 for (j = 0; j < MAX_OPERANDS; j++)
4842 operand_types[j] = t->operand_types[j];
4843
4844 /* In general, don't allow 64-bit operands in 32-bit mode. */
4845 if (i.suffix == QWORD_MNEM_SUFFIX
4846 && flag_code != CODE_64BIT
4847 && (intel_syntax
4848 ? (!t->opcode_modifier.ignoresize
4849 && !intel_float_operand (t->name))
4850 : intel_float_operand (t->name) != 2)
4851 && ((!operand_types[0].bitfield.regmmx
4852 && !operand_types[0].bitfield.regxmm
4853 && !operand_types[0].bitfield.regymm
4854 && !operand_types[0].bitfield.regzmm)
4855 || (!operand_types[t->operands > 1].bitfield.regmmx
4856 && operand_types[t->operands > 1].bitfield.regxmm
4857 && operand_types[t->operands > 1].bitfield.regymm
4858 && operand_types[t->operands > 1].bitfield.regzmm))
4859 && (t->base_opcode != 0x0fc7
4860 || t->extension_opcode != 1 /* cmpxchg8b */))
4861 continue;
4862
4863 /* In general, don't allow 32-bit operands on pre-386. */
4864 else if (i.suffix == LONG_MNEM_SUFFIX
4865 && !cpu_arch_flags.bitfield.cpui386
4866 && (intel_syntax
4867 ? (!t->opcode_modifier.ignoresize
4868 && !intel_float_operand (t->name))
4869 : intel_float_operand (t->name) != 2)
4870 && ((!operand_types[0].bitfield.regmmx
4871 && !operand_types[0].bitfield.regxmm)
4872 || (!operand_types[t->operands > 1].bitfield.regmmx
4873 && operand_types[t->operands > 1].bitfield.regxmm)))
4874 continue;
4875
4876 /* Do not verify operands when there are none. */
4877 else
4878 {
4879 if (!t->operands)
4880 /* We've found a match; break out of loop. */
4881 break;
4882 }
4883
4884 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4885 into Disp32/Disp16/Disp32 operand. */
4886 if (i.prefix[ADDR_PREFIX] != 0)
4887 {
4888 /* There should be only one Disp operand. */
4889 switch (flag_code)
4890 {
4891 case CODE_16BIT:
4892 for (j = 0; j < MAX_OPERANDS; j++)
4893 {
4894 if (operand_types[j].bitfield.disp16)
4895 {
4896 addr_prefix_disp = j;
4897 operand_types[j].bitfield.disp32 = 1;
4898 operand_types[j].bitfield.disp16 = 0;
4899 break;
4900 }
4901 }
4902 break;
4903 case CODE_32BIT:
4904 for (j = 0; j < MAX_OPERANDS; j++)
4905 {
4906 if (operand_types[j].bitfield.disp32)
4907 {
4908 addr_prefix_disp = j;
4909 operand_types[j].bitfield.disp32 = 0;
4910 operand_types[j].bitfield.disp16 = 1;
4911 break;
4912 }
4913 }
4914 break;
4915 case CODE_64BIT:
4916 for (j = 0; j < MAX_OPERANDS; j++)
4917 {
4918 if (operand_types[j].bitfield.disp64)
4919 {
4920 addr_prefix_disp = j;
4921 operand_types[j].bitfield.disp64 = 0;
4922 operand_types[j].bitfield.disp32 = 1;
4923 break;
4924 }
4925 }
4926 break;
4927 }
4928 }
4929
4930 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4931 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4932 continue;
4933
4934 /* We check register size if needed. */
4935 check_register = t->opcode_modifier.checkregsize;
4936 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4937 switch (t->operands)
4938 {
4939 case 1:
4940 if (!operand_type_match (overlap0, i.types[0]))
4941 continue;
4942 break;
4943 case 2:
4944 /* xchg %eax, %eax is a special case. It is an aliase for nop
4945 only in 32bit mode and we can use opcode 0x90. In 64bit
4946 mode, we can't use 0x90 for xchg %eax, %eax since it should
4947 zero-extend %eax to %rax. */
4948 if (flag_code == CODE_64BIT
4949 && t->base_opcode == 0x90
4950 && operand_type_equal (&i.types [0], &acc32)
4951 && operand_type_equal (&i.types [1], &acc32))
4952 continue;
4953 if (i.swap_operand)
4954 {
4955 /* If we swap operand in encoding, we either match
4956 the next one or reverse direction of operands. */
4957 if (t->opcode_modifier.s)
4958 continue;
4959 else if (t->opcode_modifier.d)
4960 goto check_reverse;
4961 }
4962
4963 case 3:
4964 /* If we swap operand in encoding, we match the next one. */
4965 if (i.swap_operand && t->opcode_modifier.s)
4966 continue;
4967 case 4:
4968 case 5:
4969 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4970 if (!operand_type_match (overlap0, i.types[0])
4971 || !operand_type_match (overlap1, i.types[1])
4972 || (check_register
4973 && !operand_type_register_match (overlap0, i.types[0],
4974 operand_types[0],
4975 overlap1, i.types[1],
4976 operand_types[1])))
4977 {
4978 /* Check if other direction is valid ... */
4979 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4980 continue;
4981
4982 check_reverse:
4983 /* Try reversing direction of operands. */
4984 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4985 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4986 if (!operand_type_match (overlap0, i.types[0])
4987 || !operand_type_match (overlap1, i.types[1])
4988 || (check_register
4989 && !operand_type_register_match (overlap0,
4990 i.types[0],
4991 operand_types[1],
4992 overlap1,
4993 i.types[1],
4994 operand_types[0])))
4995 {
4996 /* Does not match either direction. */
4997 continue;
4998 }
4999 /* found_reverse_match holds which of D or FloatDR
5000 we've found. */
5001 if (t->opcode_modifier.d)
5002 found_reverse_match = Opcode_D;
5003 else if (t->opcode_modifier.floatd)
5004 found_reverse_match = Opcode_FloatD;
5005 else
5006 found_reverse_match = 0;
5007 if (t->opcode_modifier.floatr)
5008 found_reverse_match |= Opcode_FloatR;
5009 }
5010 else
5011 {
5012 /* Found a forward 2 operand match here. */
5013 switch (t->operands)
5014 {
5015 case 5:
5016 overlap4 = operand_type_and (i.types[4],
5017 operand_types[4]);
5018 case 4:
5019 overlap3 = operand_type_and (i.types[3],
5020 operand_types[3]);
5021 case 3:
5022 overlap2 = operand_type_and (i.types[2],
5023 operand_types[2]);
5024 break;
5025 }
5026
5027 switch (t->operands)
5028 {
5029 case 5:
5030 if (!operand_type_match (overlap4, i.types[4])
5031 || !operand_type_register_match (overlap3,
5032 i.types[3],
5033 operand_types[3],
5034 overlap4,
5035 i.types[4],
5036 operand_types[4]))
5037 continue;
5038 case 4:
5039 if (!operand_type_match (overlap3, i.types[3])
5040 || (check_register
5041 && !operand_type_register_match (overlap2,
5042 i.types[2],
5043 operand_types[2],
5044 overlap3,
5045 i.types[3],
5046 operand_types[3])))
5047 continue;
5048 case 3:
5049 /* Here we make use of the fact that there are no
5050 reverse match 3 operand instructions, and all 3
5051 operand instructions only need to be checked for
5052 register consistency between operands 2 and 3. */
5053 if (!operand_type_match (overlap2, i.types[2])
5054 || (check_register
5055 && !operand_type_register_match (overlap1,
5056 i.types[1],
5057 operand_types[1],
5058 overlap2,
5059 i.types[2],
5060 operand_types[2])))
5061 continue;
5062 break;
5063 }
5064 }
5065 /* Found either forward/reverse 2, 3 or 4 operand match here:
5066 slip through to break. */
5067 }
5068 if (!found_cpu_match)
5069 {
5070 found_reverse_match = 0;
5071 continue;
5072 }
5073
5074 /* Check if vector and VEX operands are valid. */
5075 if (check_VecOperands (t) || VEX_check_operands (t))
5076 {
5077 specific_error = i.error;
5078 continue;
5079 }
5080
5081 /* We've found a match; break out of loop. */
5082 break;
5083 }
5084
5085 if (t == current_templates->end)
5086 {
5087 /* We found no match. */
5088 const char *err_msg;
5089 switch (specific_error ? specific_error : i.error)
5090 {
5091 default:
5092 abort ();
5093 case operand_size_mismatch:
5094 err_msg = _("operand size mismatch");
5095 break;
5096 case operand_type_mismatch:
5097 err_msg = _("operand type mismatch");
5098 break;
5099 case register_type_mismatch:
5100 err_msg = _("register type mismatch");
5101 break;
5102 case number_of_operands_mismatch:
5103 err_msg = _("number of operands mismatch");
5104 break;
5105 case invalid_instruction_suffix:
5106 err_msg = _("invalid instruction suffix");
5107 break;
5108 case bad_imm4:
5109 err_msg = _("constant doesn't fit in 4 bits");
5110 break;
5111 case old_gcc_only:
5112 err_msg = _("only supported with old gcc");
5113 break;
5114 case unsupported_with_intel_mnemonic:
5115 err_msg = _("unsupported with Intel mnemonic");
5116 break;
5117 case unsupported_syntax:
5118 err_msg = _("unsupported syntax");
5119 break;
5120 case unsupported:
5121 as_bad (_("unsupported instruction `%s'"),
5122 current_templates->start->name);
5123 return NULL;
5124 case invalid_vsib_address:
5125 err_msg = _("invalid VSIB address");
5126 break;
5127 case invalid_vector_register_set:
5128 err_msg = _("mask, index, and destination registers must be distinct");
5129 break;
5130 case unsupported_vector_index_register:
5131 err_msg = _("unsupported vector index register");
5132 break;
5133 case unsupported_broadcast:
5134 err_msg = _("unsupported broadcast");
5135 break;
5136 case broadcast_not_on_src_operand:
5137 err_msg = _("broadcast not on source memory operand");
5138 break;
5139 case broadcast_needed:
5140 err_msg = _("broadcast is needed for operand of such type");
5141 break;
5142 case unsupported_masking:
5143 err_msg = _("unsupported masking");
5144 break;
5145 case mask_not_on_destination:
5146 err_msg = _("mask not on destination operand");
5147 break;
5148 case no_default_mask:
5149 err_msg = _("default mask isn't allowed");
5150 break;
5151 case unsupported_rc_sae:
5152 err_msg = _("unsupported static rounding/sae");
5153 break;
5154 case rc_sae_operand_not_last_imm:
5155 if (intel_syntax)
5156 err_msg = _("RC/SAE operand must precede immediate operands");
5157 else
5158 err_msg = _("RC/SAE operand must follow immediate operands");
5159 break;
5160 case invalid_register_operand:
5161 err_msg = _("invalid register operand");
5162 break;
5163 }
5164 as_bad (_("%s for `%s'"), err_msg,
5165 current_templates->start->name);
5166 return NULL;
5167 }
5168
5169 if (!quiet_warnings)
5170 {
5171 if (!intel_syntax
5172 && (i.types[0].bitfield.jumpabsolute
5173 != operand_types[0].bitfield.jumpabsolute))
5174 {
5175 as_warn (_("indirect %s without `*'"), t->name);
5176 }
5177
5178 if (t->opcode_modifier.isprefix
5179 && t->opcode_modifier.ignoresize)
5180 {
5181 /* Warn them that a data or address size prefix doesn't
5182 affect assembly of the next line of code. */
5183 as_warn (_("stand-alone `%s' prefix"), t->name);
5184 }
5185 }
5186
5187 /* Copy the template we found. */
5188 i.tm = *t;
5189
5190 if (addr_prefix_disp != -1)
5191 i.tm.operand_types[addr_prefix_disp]
5192 = operand_types[addr_prefix_disp];
5193
5194 if (found_reverse_match)
5195 {
5196 /* If we found a reverse match we must alter the opcode
5197 direction bit. found_reverse_match holds bits to change
5198 (different for int & float insns). */
5199
5200 i.tm.base_opcode ^= found_reverse_match;
5201
5202 i.tm.operand_types[0] = operand_types[1];
5203 i.tm.operand_types[1] = operand_types[0];
5204 }
5205
5206 return t;
5207 }
5208
5209 static int
5210 check_string (void)
5211 {
5212 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5213 if (i.tm.operand_types[mem_op].bitfield.esseg)
5214 {
5215 if (i.seg[0] != NULL && i.seg[0] != &es)
5216 {
5217 as_bad (_("`%s' operand %d must use `%ses' segment"),
5218 i.tm.name,
5219 mem_op + 1,
5220 register_prefix);
5221 return 0;
5222 }
5223 /* There's only ever one segment override allowed per instruction.
5224 This instruction possibly has a legal segment override on the
5225 second operand, so copy the segment to where non-string
5226 instructions store it, allowing common code. */
5227 i.seg[0] = i.seg[1];
5228 }
5229 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5230 {
5231 if (i.seg[1] != NULL && i.seg[1] != &es)
5232 {
5233 as_bad (_("`%s' operand %d must use `%ses' segment"),
5234 i.tm.name,
5235 mem_op + 2,
5236 register_prefix);
5237 return 0;
5238 }
5239 }
5240 return 1;
5241 }
5242
5243 static int
5244 process_suffix (void)
5245 {
5246 /* If matched instruction specifies an explicit instruction mnemonic
5247 suffix, use it. */
5248 if (i.tm.opcode_modifier.size16)
5249 i.suffix = WORD_MNEM_SUFFIX;
5250 else if (i.tm.opcode_modifier.size32)
5251 i.suffix = LONG_MNEM_SUFFIX;
5252 else if (i.tm.opcode_modifier.size64)
5253 i.suffix = QWORD_MNEM_SUFFIX;
5254 else if (i.reg_operands)
5255 {
5256 /* If there's no instruction mnemonic suffix we try to invent one
5257 based on register operands. */
5258 if (!i.suffix)
5259 {
5260 /* We take i.suffix from the last register operand specified,
5261 Destination register type is more significant than source
5262 register type. crc32 in SSE4.2 prefers source register
5263 type. */
5264 if (i.tm.base_opcode == 0xf20f38f1)
5265 {
5266 if (i.types[0].bitfield.reg16)
5267 i.suffix = WORD_MNEM_SUFFIX;
5268 else if (i.types[0].bitfield.reg32)
5269 i.suffix = LONG_MNEM_SUFFIX;
5270 else if (i.types[0].bitfield.reg64)
5271 i.suffix = QWORD_MNEM_SUFFIX;
5272 }
5273 else if (i.tm.base_opcode == 0xf20f38f0)
5274 {
5275 if (i.types[0].bitfield.reg8)
5276 i.suffix = BYTE_MNEM_SUFFIX;
5277 }
5278
5279 if (!i.suffix)
5280 {
5281 int op;
5282
5283 if (i.tm.base_opcode == 0xf20f38f1
5284 || i.tm.base_opcode == 0xf20f38f0)
5285 {
5286 /* We have to know the operand size for crc32. */
5287 as_bad (_("ambiguous memory operand size for `%s`"),
5288 i.tm.name);
5289 return 0;
5290 }
5291
5292 for (op = i.operands; --op >= 0;)
5293 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5294 {
5295 if (i.types[op].bitfield.reg8)
5296 {
5297 i.suffix = BYTE_MNEM_SUFFIX;
5298 break;
5299 }
5300 else if (i.types[op].bitfield.reg16)
5301 {
5302 i.suffix = WORD_MNEM_SUFFIX;
5303 break;
5304 }
5305 else if (i.types[op].bitfield.reg32)
5306 {
5307 i.suffix = LONG_MNEM_SUFFIX;
5308 break;
5309 }
5310 else if (i.types[op].bitfield.reg64)
5311 {
5312 i.suffix = QWORD_MNEM_SUFFIX;
5313 break;
5314 }
5315 }
5316 }
5317 }
5318 else if (i.suffix == BYTE_MNEM_SUFFIX)
5319 {
5320 if (intel_syntax
5321 && i.tm.opcode_modifier.ignoresize
5322 && i.tm.opcode_modifier.no_bsuf)
5323 i.suffix = 0;
5324 else if (!check_byte_reg ())
5325 return 0;
5326 }
5327 else if (i.suffix == LONG_MNEM_SUFFIX)
5328 {
5329 if (intel_syntax
5330 && i.tm.opcode_modifier.ignoresize
5331 && i.tm.opcode_modifier.no_lsuf)
5332 i.suffix = 0;
5333 else if (!check_long_reg ())
5334 return 0;
5335 }
5336 else if (i.suffix == QWORD_MNEM_SUFFIX)
5337 {
5338 if (intel_syntax
5339 && i.tm.opcode_modifier.ignoresize
5340 && i.tm.opcode_modifier.no_qsuf)
5341 i.suffix = 0;
5342 else if (!check_qword_reg ())
5343 return 0;
5344 }
5345 else if (i.suffix == WORD_MNEM_SUFFIX)
5346 {
5347 if (intel_syntax
5348 && i.tm.opcode_modifier.ignoresize
5349 && i.tm.opcode_modifier.no_wsuf)
5350 i.suffix = 0;
5351 else if (!check_word_reg ())
5352 return 0;
5353 }
5354 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5355 || i.suffix == YMMWORD_MNEM_SUFFIX
5356 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5357 {
5358 /* Skip if the instruction has x/y/z suffix. match_template
5359 should check if it is a valid suffix. */
5360 }
5361 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5362 /* Do nothing if the instruction is going to ignore the prefix. */
5363 ;
5364 else
5365 abort ();
5366 }
5367 else if (i.tm.opcode_modifier.defaultsize
5368 && !i.suffix
5369 /* exclude fldenv/frstor/fsave/fstenv */
5370 && i.tm.opcode_modifier.no_ssuf)
5371 {
5372 i.suffix = stackop_size;
5373 }
5374 else if (intel_syntax
5375 && !i.suffix
5376 && (i.tm.operand_types[0].bitfield.jumpabsolute
5377 || i.tm.opcode_modifier.jumpbyte
5378 || i.tm.opcode_modifier.jumpintersegment
5379 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5380 && i.tm.extension_opcode <= 3)))
5381 {
5382 switch (flag_code)
5383 {
5384 case CODE_64BIT:
5385 if (!i.tm.opcode_modifier.no_qsuf)
5386 {
5387 i.suffix = QWORD_MNEM_SUFFIX;
5388 break;
5389 }
5390 case CODE_32BIT:
5391 if (!i.tm.opcode_modifier.no_lsuf)
5392 i.suffix = LONG_MNEM_SUFFIX;
5393 break;
5394 case CODE_16BIT:
5395 if (!i.tm.opcode_modifier.no_wsuf)
5396 i.suffix = WORD_MNEM_SUFFIX;
5397 break;
5398 }
5399 }
5400
5401 if (!i.suffix)
5402 {
5403 if (!intel_syntax)
5404 {
5405 if (i.tm.opcode_modifier.w)
5406 {
5407 as_bad (_("no instruction mnemonic suffix given and "
5408 "no register operands; can't size instruction"));
5409 return 0;
5410 }
5411 }
5412 else
5413 {
5414 unsigned int suffixes;
5415
5416 suffixes = !i.tm.opcode_modifier.no_bsuf;
5417 if (!i.tm.opcode_modifier.no_wsuf)
5418 suffixes |= 1 << 1;
5419 if (!i.tm.opcode_modifier.no_lsuf)
5420 suffixes |= 1 << 2;
5421 if (!i.tm.opcode_modifier.no_ldsuf)
5422 suffixes |= 1 << 3;
5423 if (!i.tm.opcode_modifier.no_ssuf)
5424 suffixes |= 1 << 4;
5425 if (!i.tm.opcode_modifier.no_qsuf)
5426 suffixes |= 1 << 5;
5427
5428 /* There are more than suffix matches. */
5429 if (i.tm.opcode_modifier.w
5430 || ((suffixes & (suffixes - 1))
5431 && !i.tm.opcode_modifier.defaultsize
5432 && !i.tm.opcode_modifier.ignoresize))
5433 {
5434 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5435 return 0;
5436 }
5437 }
5438 }
5439
5440 /* Change the opcode based on the operand size given by i.suffix;
5441 We don't need to change things for byte insns. */
5442
5443 if (i.suffix
5444 && i.suffix != BYTE_MNEM_SUFFIX
5445 && i.suffix != XMMWORD_MNEM_SUFFIX
5446 && i.suffix != YMMWORD_MNEM_SUFFIX
5447 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5448 {
5449 /* It's not a byte, select word/dword operation. */
5450 if (i.tm.opcode_modifier.w)
5451 {
5452 if (i.tm.opcode_modifier.shortform)
5453 i.tm.base_opcode |= 8;
5454 else
5455 i.tm.base_opcode |= 1;
5456 }
5457
5458 /* Now select between word & dword operations via the operand
5459 size prefix, except for instructions that will ignore this
5460 prefix anyway. */
5461 if (i.tm.opcode_modifier.addrprefixop0)
5462 {
5463 /* The address size override prefix changes the size of the
5464 first operand. */
5465 if ((flag_code == CODE_32BIT
5466 && i.op->regs[0].reg_type.bitfield.reg16)
5467 || (flag_code != CODE_32BIT
5468 && i.op->regs[0].reg_type.bitfield.reg32))
5469 if (!add_prefix (ADDR_PREFIX_OPCODE))
5470 return 0;
5471 }
5472 else if (i.suffix != QWORD_MNEM_SUFFIX
5473 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5474 && !i.tm.opcode_modifier.ignoresize
5475 && !i.tm.opcode_modifier.floatmf
5476 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5477 || (flag_code == CODE_64BIT
5478 && i.tm.opcode_modifier.jumpbyte)))
5479 {
5480 unsigned int prefix = DATA_PREFIX_OPCODE;
5481
5482 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5483 prefix = ADDR_PREFIX_OPCODE;
5484
5485 if (!add_prefix (prefix))
5486 return 0;
5487 }
5488
5489 /* Set mode64 for an operand. */
5490 if (i.suffix == QWORD_MNEM_SUFFIX
5491 && flag_code == CODE_64BIT
5492 && !i.tm.opcode_modifier.norex64)
5493 {
5494 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5495 need rex64. cmpxchg8b is also a special case. */
5496 if (! (i.operands == 2
5497 && i.tm.base_opcode == 0x90
5498 && i.tm.extension_opcode == None
5499 && operand_type_equal (&i.types [0], &acc64)
5500 && operand_type_equal (&i.types [1], &acc64))
5501 && ! (i.operands == 1
5502 && i.tm.base_opcode == 0xfc7
5503 && i.tm.extension_opcode == 1
5504 && !operand_type_check (i.types [0], reg)
5505 && operand_type_check (i.types [0], anymem)))
5506 i.rex |= REX_W;
5507 }
5508
5509 /* Size floating point instruction. */
5510 if (i.suffix == LONG_MNEM_SUFFIX)
5511 if (i.tm.opcode_modifier.floatmf)
5512 i.tm.base_opcode ^= 4;
5513 }
5514
5515 return 1;
5516 }
5517
5518 static int
5519 check_byte_reg (void)
5520 {
5521 int op;
5522
5523 for (op = i.operands; --op >= 0;)
5524 {
5525 /* If this is an eight bit register, it's OK. If it's the 16 or
5526 32 bit version of an eight bit register, we will just use the
5527 low portion, and that's OK too. */
5528 if (i.types[op].bitfield.reg8)
5529 continue;
5530
5531 /* I/O port address operands are OK too. */
5532 if (i.tm.operand_types[op].bitfield.inoutportreg)
5533 continue;
5534
5535 /* crc32 doesn't generate this warning. */
5536 if (i.tm.base_opcode == 0xf20f38f0)
5537 continue;
5538
5539 if ((i.types[op].bitfield.reg16
5540 || i.types[op].bitfield.reg32
5541 || i.types[op].bitfield.reg64)
5542 && i.op[op].regs->reg_num < 4
5543 /* Prohibit these changes in 64bit mode, since the lowering
5544 would be more complicated. */
5545 && flag_code != CODE_64BIT)
5546 {
5547 #if REGISTER_WARNINGS
5548 if (!quiet_warnings)
5549 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5550 register_prefix,
5551 (i.op[op].regs + (i.types[op].bitfield.reg16
5552 ? REGNAM_AL - REGNAM_AX
5553 : REGNAM_AL - REGNAM_EAX))->reg_name,
5554 register_prefix,
5555 i.op[op].regs->reg_name,
5556 i.suffix);
5557 #endif
5558 continue;
5559 }
5560 /* Any other register is bad. */
5561 if (i.types[op].bitfield.reg16
5562 || i.types[op].bitfield.reg32
5563 || i.types[op].bitfield.reg64
5564 || i.types[op].bitfield.regmmx
5565 || i.types[op].bitfield.regxmm
5566 || i.types[op].bitfield.regymm
5567 || i.types[op].bitfield.regzmm
5568 || i.types[op].bitfield.sreg2
5569 || i.types[op].bitfield.sreg3
5570 || i.types[op].bitfield.control
5571 || i.types[op].bitfield.debug
5572 || i.types[op].bitfield.test
5573 || i.types[op].bitfield.floatreg
5574 || i.types[op].bitfield.floatacc)
5575 {
5576 as_bad (_("`%s%s' not allowed with `%s%c'"),
5577 register_prefix,
5578 i.op[op].regs->reg_name,
5579 i.tm.name,
5580 i.suffix);
5581 return 0;
5582 }
5583 }
5584 return 1;
5585 }
5586
5587 static int
5588 check_long_reg (void)
5589 {
5590 int op;
5591
5592 for (op = i.operands; --op >= 0;)
5593 /* Reject eight bit registers, except where the template requires
5594 them. (eg. movzb) */
5595 if (i.types[op].bitfield.reg8
5596 && (i.tm.operand_types[op].bitfield.reg16
5597 || i.tm.operand_types[op].bitfield.reg32
5598 || i.tm.operand_types[op].bitfield.acc))
5599 {
5600 as_bad (_("`%s%s' not allowed with `%s%c'"),
5601 register_prefix,
5602 i.op[op].regs->reg_name,
5603 i.tm.name,
5604 i.suffix);
5605 return 0;
5606 }
5607 /* Warn if the e prefix on a general reg is missing. */
5608 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5609 && i.types[op].bitfield.reg16
5610 && (i.tm.operand_types[op].bitfield.reg32
5611 || i.tm.operand_types[op].bitfield.acc))
5612 {
5613 /* Prohibit these changes in the 64bit mode, since the
5614 lowering is more complicated. */
5615 if (flag_code == CODE_64BIT)
5616 {
5617 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5618 register_prefix, i.op[op].regs->reg_name,
5619 i.suffix);
5620 return 0;
5621 }
5622 #if REGISTER_WARNINGS
5623 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5624 register_prefix,
5625 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5626 register_prefix, i.op[op].regs->reg_name, i.suffix);
5627 #endif
5628 }
5629 /* Warn if the r prefix on a general reg is present. */
5630 else if (i.types[op].bitfield.reg64
5631 && (i.tm.operand_types[op].bitfield.reg32
5632 || i.tm.operand_types[op].bitfield.acc))
5633 {
5634 if (intel_syntax
5635 && i.tm.opcode_modifier.toqword
5636 && !i.types[0].bitfield.regxmm)
5637 {
5638 /* Convert to QWORD. We want REX byte. */
5639 i.suffix = QWORD_MNEM_SUFFIX;
5640 }
5641 else
5642 {
5643 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5644 register_prefix, i.op[op].regs->reg_name,
5645 i.suffix);
5646 return 0;
5647 }
5648 }
5649 return 1;
5650 }
5651
5652 static int
5653 check_qword_reg (void)
5654 {
5655 int op;
5656
5657 for (op = i.operands; --op >= 0; )
5658 /* Reject eight bit registers, except where the template requires
5659 them. (eg. movzb) */
5660 if (i.types[op].bitfield.reg8
5661 && (i.tm.operand_types[op].bitfield.reg16
5662 || i.tm.operand_types[op].bitfield.reg32
5663 || i.tm.operand_types[op].bitfield.acc))
5664 {
5665 as_bad (_("`%s%s' not allowed with `%s%c'"),
5666 register_prefix,
5667 i.op[op].regs->reg_name,
5668 i.tm.name,
5669 i.suffix);
5670 return 0;
5671 }
5672 /* Warn if the r prefix on a general reg is missing. */
5673 else if ((i.types[op].bitfield.reg16
5674 || i.types[op].bitfield.reg32)
5675 && (i.tm.operand_types[op].bitfield.reg64
5676 || i.tm.operand_types[op].bitfield.acc))
5677 {
5678 /* Prohibit these changes in the 64bit mode, since the
5679 lowering is more complicated. */
5680 if (intel_syntax
5681 && i.tm.opcode_modifier.todword
5682 && !i.types[0].bitfield.regxmm)
5683 {
5684 /* Convert to DWORD. We don't want REX byte. */
5685 i.suffix = LONG_MNEM_SUFFIX;
5686 }
5687 else
5688 {
5689 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5690 register_prefix, i.op[op].regs->reg_name,
5691 i.suffix);
5692 return 0;
5693 }
5694 }
5695 return 1;
5696 }
5697
5698 static int
5699 check_word_reg (void)
5700 {
5701 int op;
5702 for (op = i.operands; --op >= 0;)
5703 /* Reject eight bit registers, except where the template requires
5704 them. (eg. movzb) */
5705 if (i.types[op].bitfield.reg8
5706 && (i.tm.operand_types[op].bitfield.reg16
5707 || i.tm.operand_types[op].bitfield.reg32
5708 || i.tm.operand_types[op].bitfield.acc))
5709 {
5710 as_bad (_("`%s%s' not allowed with `%s%c'"),
5711 register_prefix,
5712 i.op[op].regs->reg_name,
5713 i.tm.name,
5714 i.suffix);
5715 return 0;
5716 }
5717 /* Warn if the e or r prefix on a general reg is present. */
5718 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5719 && (i.types[op].bitfield.reg32
5720 || i.types[op].bitfield.reg64)
5721 && (i.tm.operand_types[op].bitfield.reg16
5722 || i.tm.operand_types[op].bitfield.acc))
5723 {
5724 /* Prohibit these changes in the 64bit mode, since the
5725 lowering is more complicated. */
5726 if (flag_code == CODE_64BIT)
5727 {
5728 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5729 register_prefix, i.op[op].regs->reg_name,
5730 i.suffix);
5731 return 0;
5732 }
5733 #if REGISTER_WARNINGS
5734 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5735 register_prefix,
5736 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5737 register_prefix, i.op[op].regs->reg_name, i.suffix);
5738 #endif
5739 }
5740 return 1;
5741 }
5742
5743 static int
5744 update_imm (unsigned int j)
5745 {
5746 i386_operand_type overlap = i.types[j];
5747 if ((overlap.bitfield.imm8
5748 || overlap.bitfield.imm8s
5749 || overlap.bitfield.imm16
5750 || overlap.bitfield.imm32
5751 || overlap.bitfield.imm32s
5752 || overlap.bitfield.imm64)
5753 && !operand_type_equal (&overlap, &imm8)
5754 && !operand_type_equal (&overlap, &imm8s)
5755 && !operand_type_equal (&overlap, &imm16)
5756 && !operand_type_equal (&overlap, &imm32)
5757 && !operand_type_equal (&overlap, &imm32s)
5758 && !operand_type_equal (&overlap, &imm64))
5759 {
5760 if (i.suffix)
5761 {
5762 i386_operand_type temp;
5763
5764 operand_type_set (&temp, 0);
5765 if (i.suffix == BYTE_MNEM_SUFFIX)
5766 {
5767 temp.bitfield.imm8 = overlap.bitfield.imm8;
5768 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5769 }
5770 else if (i.suffix == WORD_MNEM_SUFFIX)
5771 temp.bitfield.imm16 = overlap.bitfield.imm16;
5772 else if (i.suffix == QWORD_MNEM_SUFFIX)
5773 {
5774 temp.bitfield.imm64 = overlap.bitfield.imm64;
5775 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5776 }
5777 else
5778 temp.bitfield.imm32 = overlap.bitfield.imm32;
5779 overlap = temp;
5780 }
5781 else if (operand_type_equal (&overlap, &imm16_32_32s)
5782 || operand_type_equal (&overlap, &imm16_32)
5783 || operand_type_equal (&overlap, &imm16_32s))
5784 {
5785 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5786 overlap = imm16;
5787 else
5788 overlap = imm32s;
5789 }
5790 if (!operand_type_equal (&overlap, &imm8)
5791 && !operand_type_equal (&overlap, &imm8s)
5792 && !operand_type_equal (&overlap, &imm16)
5793 && !operand_type_equal (&overlap, &imm32)
5794 && !operand_type_equal (&overlap, &imm32s)
5795 && !operand_type_equal (&overlap, &imm64))
5796 {
5797 as_bad (_("no instruction mnemonic suffix given; "
5798 "can't determine immediate size"));
5799 return 0;
5800 }
5801 }
5802 i.types[j] = overlap;
5803
5804 return 1;
5805 }
5806
5807 static int
5808 finalize_imm (void)
5809 {
5810 unsigned int j, n;
5811
5812 /* Update the first 2 immediate operands. */
5813 n = i.operands > 2 ? 2 : i.operands;
5814 if (n)
5815 {
5816 for (j = 0; j < n; j++)
5817 if (update_imm (j) == 0)
5818 return 0;
5819
5820 /* The 3rd operand can't be immediate operand. */
5821 gas_assert (operand_type_check (i.types[2], imm) == 0);
5822 }
5823
5824 return 1;
5825 }
5826
5827 static int
5828 bad_implicit_operand (int xmm)
5829 {
5830 const char *ireg = xmm ? "xmm0" : "ymm0";
5831
5832 if (intel_syntax)
5833 as_bad (_("the last operand of `%s' must be `%s%s'"),
5834 i.tm.name, register_prefix, ireg);
5835 else
5836 as_bad (_("the first operand of `%s' must be `%s%s'"),
5837 i.tm.name, register_prefix, ireg);
5838 return 0;
5839 }
5840
5841 static int
5842 process_operands (void)
5843 {
5844 /* Default segment register this instruction will use for memory
5845 accesses. 0 means unknown. This is only for optimizing out
5846 unnecessary segment overrides. */
5847 const seg_entry *default_seg = 0;
5848
5849 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5850 {
5851 unsigned int dupl = i.operands;
5852 unsigned int dest = dupl - 1;
5853 unsigned int j;
5854
5855 /* The destination must be an xmm register. */
5856 gas_assert (i.reg_operands
5857 && MAX_OPERANDS > dupl
5858 && operand_type_equal (&i.types[dest], &regxmm));
5859
5860 if (i.tm.opcode_modifier.firstxmm0)
5861 {
5862 /* The first operand is implicit and must be xmm0. */
5863 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5864 if (register_number (i.op[0].regs) != 0)
5865 return bad_implicit_operand (1);
5866
5867 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5868 {
5869 /* Keep xmm0 for instructions with VEX prefix and 3
5870 sources. */
5871 goto duplicate;
5872 }
5873 else
5874 {
5875 /* We remove the first xmm0 and keep the number of
5876 operands unchanged, which in fact duplicates the
5877 destination. */
5878 for (j = 1; j < i.operands; j++)
5879 {
5880 i.op[j - 1] = i.op[j];
5881 i.types[j - 1] = i.types[j];
5882 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5883 }
5884 }
5885 }
5886 else if (i.tm.opcode_modifier.implicit1stxmm0)
5887 {
5888 gas_assert ((MAX_OPERANDS - 1) > dupl
5889 && (i.tm.opcode_modifier.vexsources
5890 == VEX3SOURCES));
5891
5892 /* Add the implicit xmm0 for instructions with VEX prefix
5893 and 3 sources. */
5894 for (j = i.operands; j > 0; j--)
5895 {
5896 i.op[j] = i.op[j - 1];
5897 i.types[j] = i.types[j - 1];
5898 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5899 }
5900 i.op[0].regs
5901 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5902 i.types[0] = regxmm;
5903 i.tm.operand_types[0] = regxmm;
5904
5905 i.operands += 2;
5906 i.reg_operands += 2;
5907 i.tm.operands += 2;
5908
5909 dupl++;
5910 dest++;
5911 i.op[dupl] = i.op[dest];
5912 i.types[dupl] = i.types[dest];
5913 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5914 }
5915 else
5916 {
5917 duplicate:
5918 i.operands++;
5919 i.reg_operands++;
5920 i.tm.operands++;
5921
5922 i.op[dupl] = i.op[dest];
5923 i.types[dupl] = i.types[dest];
5924 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5925 }
5926
5927 if (i.tm.opcode_modifier.immext)
5928 process_immext ();
5929 }
5930 else if (i.tm.opcode_modifier.firstxmm0)
5931 {
5932 unsigned int j;
5933
5934 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5935 gas_assert (i.reg_operands
5936 && (operand_type_equal (&i.types[0], &regxmm)
5937 || operand_type_equal (&i.types[0], &regymm)
5938 || operand_type_equal (&i.types[0], &regzmm)));
5939 if (register_number (i.op[0].regs) != 0)
5940 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5941
5942 for (j = 1; j < i.operands; j++)
5943 {
5944 i.op[j - 1] = i.op[j];
5945 i.types[j - 1] = i.types[j];
5946
5947 /* We need to adjust fields in i.tm since they are used by
5948 build_modrm_byte. */
5949 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5950 }
5951
5952 i.operands--;
5953 i.reg_operands--;
5954 i.tm.operands--;
5955 }
5956 else if (i.tm.opcode_modifier.regkludge)
5957 {
5958 /* The imul $imm, %reg instruction is converted into
5959 imul $imm, %reg, %reg, and the clr %reg instruction
5960 is converted into xor %reg, %reg. */
5961
5962 unsigned int first_reg_op;
5963
5964 if (operand_type_check (i.types[0], reg))
5965 first_reg_op = 0;
5966 else
5967 first_reg_op = 1;
5968 /* Pretend we saw the extra register operand. */
5969 gas_assert (i.reg_operands == 1
5970 && i.op[first_reg_op + 1].regs == 0);
5971 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5972 i.types[first_reg_op + 1] = i.types[first_reg_op];
5973 i.operands++;
5974 i.reg_operands++;
5975 }
5976
5977 if (i.tm.opcode_modifier.shortform)
5978 {
5979 if (i.types[0].bitfield.sreg2
5980 || i.types[0].bitfield.sreg3)
5981 {
5982 if (i.tm.base_opcode == POP_SEG_SHORT
5983 && i.op[0].regs->reg_num == 1)
5984 {
5985 as_bad (_("you can't `pop %scs'"), register_prefix);
5986 return 0;
5987 }
5988 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5989 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5990 i.rex |= REX_B;
5991 }
5992 else
5993 {
5994 /* The register or float register operand is in operand
5995 0 or 1. */
5996 unsigned int op;
5997
5998 if (i.types[0].bitfield.floatreg
5999 || operand_type_check (i.types[0], reg))
6000 op = 0;
6001 else
6002 op = 1;
6003 /* Register goes in low 3 bits of opcode. */
6004 i.tm.base_opcode |= i.op[op].regs->reg_num;
6005 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6006 i.rex |= REX_B;
6007 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6008 {
6009 /* Warn about some common errors, but press on regardless.
6010 The first case can be generated by gcc (<= 2.8.1). */
6011 if (i.operands == 2)
6012 {
6013 /* Reversed arguments on faddp, fsubp, etc. */
6014 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6015 register_prefix, i.op[!intel_syntax].regs->reg_name,
6016 register_prefix, i.op[intel_syntax].regs->reg_name);
6017 }
6018 else
6019 {
6020 /* Extraneous `l' suffix on fp insn. */
6021 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6022 register_prefix, i.op[0].regs->reg_name);
6023 }
6024 }
6025 }
6026 }
6027 else if (i.tm.opcode_modifier.modrm)
6028 {
6029 /* The opcode is completed (modulo i.tm.extension_opcode which
6030 must be put into the modrm byte). Now, we make the modrm and
6031 index base bytes based on all the info we've collected. */
6032
6033 default_seg = build_modrm_byte ();
6034 }
6035 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6036 {
6037 default_seg = &ds;
6038 }
6039 else if (i.tm.opcode_modifier.isstring)
6040 {
6041 /* For the string instructions that allow a segment override
6042 on one of their operands, the default segment is ds. */
6043 default_seg = &ds;
6044 }
6045
6046 if (i.tm.base_opcode == 0x8d /* lea */
6047 && i.seg[0]
6048 && !quiet_warnings)
6049 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6050
6051 /* If a segment was explicitly specified, and the specified segment
6052 is not the default, use an opcode prefix to select it. If we
6053 never figured out what the default segment is, then default_seg
6054 will be zero at this point, and the specified segment prefix will
6055 always be used. */
6056 if ((i.seg[0]) && (i.seg[0] != default_seg))
6057 {
6058 if (!add_prefix (i.seg[0]->seg_prefix))
6059 return 0;
6060 }
6061 return 1;
6062 }
6063
6064 static const seg_entry *
6065 build_modrm_byte (void)
6066 {
6067 const seg_entry *default_seg = 0;
6068 unsigned int source, dest;
6069 int vex_3_sources;
6070
6071 /* The first operand of instructions with VEX prefix and 3 sources
6072 must be VEX_Imm4. */
6073 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6074 if (vex_3_sources)
6075 {
6076 unsigned int nds, reg_slot;
6077 expressionS *exp;
6078
6079 if (i.tm.opcode_modifier.veximmext
6080 && i.tm.opcode_modifier.immext)
6081 {
6082 dest = i.operands - 2;
6083 gas_assert (dest == 3);
6084 }
6085 else
6086 dest = i.operands - 1;
6087 nds = dest - 1;
6088
6089 /* There are 2 kinds of instructions:
6090 1. 5 operands: 4 register operands or 3 register operands
6091 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6092 VexW0 or VexW1. The destination must be either XMM, YMM or
6093 ZMM register.
6094 2. 4 operands: 4 register operands or 3 register operands
6095 plus 1 memory operand, VexXDS, and VexImmExt */
6096 gas_assert ((i.reg_operands == 4
6097 || (i.reg_operands == 3 && i.mem_operands == 1))
6098 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6099 && (i.tm.opcode_modifier.veximmext
6100 || (i.imm_operands == 1
6101 && i.types[0].bitfield.vec_imm4
6102 && (i.tm.opcode_modifier.vexw == VEXW0
6103 || i.tm.opcode_modifier.vexw == VEXW1)
6104 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6105 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6106 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6107
6108 if (i.imm_operands == 0)
6109 {
6110 /* When there is no immediate operand, generate an 8bit
6111 immediate operand to encode the first operand. */
6112 exp = &im_expressions[i.imm_operands++];
6113 i.op[i.operands].imms = exp;
6114 i.types[i.operands] = imm8;
6115 i.operands++;
6116 /* If VexW1 is set, the first operand is the source and
6117 the second operand is encoded in the immediate operand. */
6118 if (i.tm.opcode_modifier.vexw == VEXW1)
6119 {
6120 source = 0;
6121 reg_slot = 1;
6122 }
6123 else
6124 {
6125 source = 1;
6126 reg_slot = 0;
6127 }
6128
6129 /* FMA swaps REG and NDS. */
6130 if (i.tm.cpu_flags.bitfield.cpufma)
6131 {
6132 unsigned int tmp;
6133 tmp = reg_slot;
6134 reg_slot = nds;
6135 nds = tmp;
6136 }
6137
6138 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6139 &regxmm)
6140 || operand_type_equal (&i.tm.operand_types[reg_slot],
6141 &regymm)
6142 || operand_type_equal (&i.tm.operand_types[reg_slot],
6143 &regzmm));
6144 exp->X_op = O_constant;
6145 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6146 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6147 }
6148 else
6149 {
6150 unsigned int imm_slot;
6151
6152 if (i.tm.opcode_modifier.vexw == VEXW0)
6153 {
6154 /* If VexW0 is set, the third operand is the source and
6155 the second operand is encoded in the immediate
6156 operand. */
6157 source = 2;
6158 reg_slot = 1;
6159 }
6160 else
6161 {
6162 /* VexW1 is set, the second operand is the source and
6163 the third operand is encoded in the immediate
6164 operand. */
6165 source = 1;
6166 reg_slot = 2;
6167 }
6168
6169 if (i.tm.opcode_modifier.immext)
6170 {
6171 /* When ImmExt is set, the immdiate byte is the last
6172 operand. */
6173 imm_slot = i.operands - 1;
6174 source--;
6175 reg_slot--;
6176 }
6177 else
6178 {
6179 imm_slot = 0;
6180
6181 /* Turn on Imm8 so that output_imm will generate it. */
6182 i.types[imm_slot].bitfield.imm8 = 1;
6183 }
6184
6185 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6186 &regxmm)
6187 || operand_type_equal (&i.tm.operand_types[reg_slot],
6188 &regymm)
6189 || operand_type_equal (&i.tm.operand_types[reg_slot],
6190 &regzmm));
6191 i.op[imm_slot].imms->X_add_number
6192 |= register_number (i.op[reg_slot].regs) << 4;
6193 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6194 }
6195
6196 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6197 || operand_type_equal (&i.tm.operand_types[nds],
6198 &regymm)
6199 || operand_type_equal (&i.tm.operand_types[nds],
6200 &regzmm));
6201 i.vex.register_specifier = i.op[nds].regs;
6202 }
6203 else
6204 source = dest = 0;
6205
6206 /* i.reg_operands MUST be the number of real register operands;
6207 implicit registers do not count. If there are 3 register
6208 operands, it must be a instruction with VexNDS. For a
6209 instruction with VexNDD, the destination register is encoded
6210 in VEX prefix. If there are 4 register operands, it must be
6211 a instruction with VEX prefix and 3 sources. */
6212 if (i.mem_operands == 0
6213 && ((i.reg_operands == 2
6214 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6215 || (i.reg_operands == 3
6216 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6217 || (i.reg_operands == 4 && vex_3_sources)))
6218 {
6219 switch (i.operands)
6220 {
6221 case 2:
6222 source = 0;
6223 break;
6224 case 3:
6225 /* When there are 3 operands, one of them may be immediate,
6226 which may be the first or the last operand. Otherwise,
6227 the first operand must be shift count register (cl) or it
6228 is an instruction with VexNDS. */
6229 gas_assert (i.imm_operands == 1
6230 || (i.imm_operands == 0
6231 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6232 || i.types[0].bitfield.shiftcount)));
6233 if (operand_type_check (i.types[0], imm)
6234 || i.types[0].bitfield.shiftcount)
6235 source = 1;
6236 else
6237 source = 0;
6238 break;
6239 case 4:
6240 /* When there are 4 operands, the first two must be 8bit
6241 immediate operands. The source operand will be the 3rd
6242 one.
6243
6244 For instructions with VexNDS, if the first operand
6245 an imm8, the source operand is the 2nd one. If the last
6246 operand is imm8, the source operand is the first one. */
6247 gas_assert ((i.imm_operands == 2
6248 && i.types[0].bitfield.imm8
6249 && i.types[1].bitfield.imm8)
6250 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6251 && i.imm_operands == 1
6252 && (i.types[0].bitfield.imm8
6253 || i.types[i.operands - 1].bitfield.imm8
6254 || i.rounding)));
6255 if (i.imm_operands == 2)
6256 source = 2;
6257 else
6258 {
6259 if (i.types[0].bitfield.imm8)
6260 source = 1;
6261 else
6262 source = 0;
6263 }
6264 break;
6265 case 5:
6266 if (i.tm.opcode_modifier.evex)
6267 {
6268 /* For EVEX instructions, when there are 5 operands, the
6269 first one must be immediate operand. If the second one
6270 is immediate operand, the source operand is the 3th
6271 one. If the last one is immediate operand, the source
6272 operand is the 2nd one. */
6273 gas_assert (i.imm_operands == 2
6274 && i.tm.opcode_modifier.sae
6275 && operand_type_check (i.types[0], imm));
6276 if (operand_type_check (i.types[1], imm))
6277 source = 2;
6278 else if (operand_type_check (i.types[4], imm))
6279 source = 1;
6280 else
6281 abort ();
6282 }
6283 break;
6284 default:
6285 abort ();
6286 }
6287
6288 if (!vex_3_sources)
6289 {
6290 dest = source + 1;
6291
6292 /* RC/SAE operand could be between DEST and SRC. That happens
6293 when one operand is GPR and the other one is XMM/YMM/ZMM
6294 register. */
6295 if (i.rounding && i.rounding->operand == (int) dest)
6296 dest++;
6297
6298 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6299 {
6300 /* For instructions with VexNDS, the register-only source
6301 operand must be 32/64bit integer, XMM, YMM or ZMM
6302 register. It is encoded in VEX prefix. We need to
6303 clear RegMem bit before calling operand_type_equal. */
6304
6305 i386_operand_type op;
6306 unsigned int vvvv;
6307
6308 /* Check register-only source operand when two source
6309 operands are swapped. */
6310 if (!i.tm.operand_types[source].bitfield.baseindex
6311 && i.tm.operand_types[dest].bitfield.baseindex)
6312 {
6313 vvvv = source;
6314 source = dest;
6315 }
6316 else
6317 vvvv = dest;
6318
6319 op = i.tm.operand_types[vvvv];
6320 op.bitfield.regmem = 0;
6321 if ((dest + 1) >= i.operands
6322 || (!op.bitfield.reg32
6323 && op.bitfield.reg64
6324 && !operand_type_equal (&op, &regxmm)
6325 && !operand_type_equal (&op, &regymm)
6326 && !operand_type_equal (&op, &regzmm)
6327 && !operand_type_equal (&op, &regmask)))
6328 abort ();
6329 i.vex.register_specifier = i.op[vvvv].regs;
6330 dest++;
6331 }
6332 }
6333
6334 i.rm.mode = 3;
6335 /* One of the register operands will be encoded in the i.tm.reg
6336 field, the other in the combined i.tm.mode and i.tm.regmem
6337 fields. If no form of this instruction supports a memory
6338 destination operand, then we assume the source operand may
6339 sometimes be a memory operand and so we need to store the
6340 destination in the i.rm.reg field. */
6341 if (!i.tm.operand_types[dest].bitfield.regmem
6342 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6343 {
6344 i.rm.reg = i.op[dest].regs->reg_num;
6345 i.rm.regmem = i.op[source].regs->reg_num;
6346 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6347 i.rex |= REX_R;
6348 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6349 i.vrex |= REX_R;
6350 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6351 i.rex |= REX_B;
6352 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6353 i.vrex |= REX_B;
6354 }
6355 else
6356 {
6357 i.rm.reg = i.op[source].regs->reg_num;
6358 i.rm.regmem = i.op[dest].regs->reg_num;
6359 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6360 i.rex |= REX_B;
6361 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6362 i.vrex |= REX_B;
6363 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6364 i.rex |= REX_R;
6365 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6366 i.vrex |= REX_R;
6367 }
6368 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6369 {
6370 if (!i.types[0].bitfield.control
6371 && !i.types[1].bitfield.control)
6372 abort ();
6373 i.rex &= ~(REX_R | REX_B);
6374 add_prefix (LOCK_PREFIX_OPCODE);
6375 }
6376 }
6377 else
6378 { /* If it's not 2 reg operands... */
6379 unsigned int mem;
6380
6381 if (i.mem_operands)
6382 {
6383 unsigned int fake_zero_displacement = 0;
6384 unsigned int op;
6385
6386 for (op = 0; op < i.operands; op++)
6387 if (operand_type_check (i.types[op], anymem))
6388 break;
6389 gas_assert (op < i.operands);
6390
6391 if (i.tm.opcode_modifier.vecsib)
6392 {
6393 if (i.index_reg->reg_num == RegEiz
6394 || i.index_reg->reg_num == RegRiz)
6395 abort ();
6396
6397 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6398 if (!i.base_reg)
6399 {
6400 i.sib.base = NO_BASE_REGISTER;
6401 i.sib.scale = i.log2_scale_factor;
6402 /* No Vec_Disp8 if there is no base. */
6403 i.types[op].bitfield.vec_disp8 = 0;
6404 i.types[op].bitfield.disp8 = 0;
6405 i.types[op].bitfield.disp16 = 0;
6406 i.types[op].bitfield.disp64 = 0;
6407 if (flag_code != CODE_64BIT)
6408 {
6409 /* Must be 32 bit */
6410 i.types[op].bitfield.disp32 = 1;
6411 i.types[op].bitfield.disp32s = 0;
6412 }
6413 else
6414 {
6415 i.types[op].bitfield.disp32 = 0;
6416 i.types[op].bitfield.disp32s = 1;
6417 }
6418 }
6419 i.sib.index = i.index_reg->reg_num;
6420 if ((i.index_reg->reg_flags & RegRex) != 0)
6421 i.rex |= REX_X;
6422 if ((i.index_reg->reg_flags & RegVRex) != 0)
6423 i.vrex |= REX_X;
6424 }
6425
6426 default_seg = &ds;
6427
6428 if (i.base_reg == 0)
6429 {
6430 i.rm.mode = 0;
6431 if (!i.disp_operands)
6432 {
6433 fake_zero_displacement = 1;
6434 /* Instructions with VSIB byte need 32bit displacement
6435 if there is no base register. */
6436 if (i.tm.opcode_modifier.vecsib)
6437 i.types[op].bitfield.disp32 = 1;
6438 }
6439 if (i.index_reg == 0)
6440 {
6441 gas_assert (!i.tm.opcode_modifier.vecsib);
6442 /* Operand is just <disp> */
6443 if (flag_code == CODE_64BIT)
6444 {
6445 /* 64bit mode overwrites the 32bit absolute
6446 addressing by RIP relative addressing and
6447 absolute addressing is encoded by one of the
6448 redundant SIB forms. */
6449 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6450 i.sib.base = NO_BASE_REGISTER;
6451 i.sib.index = NO_INDEX_REGISTER;
6452 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6453 ? disp32s : disp32);
6454 }
6455 else if ((flag_code == CODE_16BIT)
6456 ^ (i.prefix[ADDR_PREFIX] != 0))
6457 {
6458 i.rm.regmem = NO_BASE_REGISTER_16;
6459 i.types[op] = disp16;
6460 }
6461 else
6462 {
6463 i.rm.regmem = NO_BASE_REGISTER;
6464 i.types[op] = disp32;
6465 }
6466 }
6467 else if (!i.tm.opcode_modifier.vecsib)
6468 {
6469 /* !i.base_reg && i.index_reg */
6470 if (i.index_reg->reg_num == RegEiz
6471 || i.index_reg->reg_num == RegRiz)
6472 i.sib.index = NO_INDEX_REGISTER;
6473 else
6474 i.sib.index = i.index_reg->reg_num;
6475 i.sib.base = NO_BASE_REGISTER;
6476 i.sib.scale = i.log2_scale_factor;
6477 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6478 /* No Vec_Disp8 if there is no base. */
6479 i.types[op].bitfield.vec_disp8 = 0;
6480 i.types[op].bitfield.disp8 = 0;
6481 i.types[op].bitfield.disp16 = 0;
6482 i.types[op].bitfield.disp64 = 0;
6483 if (flag_code != CODE_64BIT)
6484 {
6485 /* Must be 32 bit */
6486 i.types[op].bitfield.disp32 = 1;
6487 i.types[op].bitfield.disp32s = 0;
6488 }
6489 else
6490 {
6491 i.types[op].bitfield.disp32 = 0;
6492 i.types[op].bitfield.disp32s = 1;
6493 }
6494 if ((i.index_reg->reg_flags & RegRex) != 0)
6495 i.rex |= REX_X;
6496 }
6497 }
6498 /* RIP addressing for 64bit mode. */
6499 else if (i.base_reg->reg_num == RegRip ||
6500 i.base_reg->reg_num == RegEip)
6501 {
6502 gas_assert (!i.tm.opcode_modifier.vecsib);
6503 i.rm.regmem = NO_BASE_REGISTER;
6504 i.types[op].bitfield.disp8 = 0;
6505 i.types[op].bitfield.disp16 = 0;
6506 i.types[op].bitfield.disp32 = 0;
6507 i.types[op].bitfield.disp32s = 1;
6508 i.types[op].bitfield.disp64 = 0;
6509 i.types[op].bitfield.vec_disp8 = 0;
6510 i.flags[op] |= Operand_PCrel;
6511 if (! i.disp_operands)
6512 fake_zero_displacement = 1;
6513 }
6514 else if (i.base_reg->reg_type.bitfield.reg16)
6515 {
6516 gas_assert (!i.tm.opcode_modifier.vecsib);
6517 switch (i.base_reg->reg_num)
6518 {
6519 case 3: /* (%bx) */
6520 if (i.index_reg == 0)
6521 i.rm.regmem = 7;
6522 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6523 i.rm.regmem = i.index_reg->reg_num - 6;
6524 break;
6525 case 5: /* (%bp) */
6526 default_seg = &ss;
6527 if (i.index_reg == 0)
6528 {
6529 i.rm.regmem = 6;
6530 if (operand_type_check (i.types[op], disp) == 0)
6531 {
6532 /* fake (%bp) into 0(%bp) */
6533 if (i.tm.operand_types[op].bitfield.vec_disp8)
6534 i.types[op].bitfield.vec_disp8 = 1;
6535 else
6536 i.types[op].bitfield.disp8 = 1;
6537 fake_zero_displacement = 1;
6538 }
6539 }
6540 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6541 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6542 break;
6543 default: /* (%si) -> 4 or (%di) -> 5 */
6544 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6545 }
6546 i.rm.mode = mode_from_disp_size (i.types[op]);
6547 }
6548 else /* i.base_reg and 32/64 bit mode */
6549 {
6550 if (flag_code == CODE_64BIT
6551 && operand_type_check (i.types[op], disp))
6552 {
6553 i386_operand_type temp;
6554 operand_type_set (&temp, 0);
6555 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6556 temp.bitfield.vec_disp8
6557 = i.types[op].bitfield.vec_disp8;
6558 i.types[op] = temp;
6559 if (i.prefix[ADDR_PREFIX] == 0)
6560 i.types[op].bitfield.disp32s = 1;
6561 else
6562 i.types[op].bitfield.disp32 = 1;
6563 }
6564
6565 if (!i.tm.opcode_modifier.vecsib)
6566 i.rm.regmem = i.base_reg->reg_num;
6567 if ((i.base_reg->reg_flags & RegRex) != 0)
6568 i.rex |= REX_B;
6569 i.sib.base = i.base_reg->reg_num;
6570 /* x86-64 ignores REX prefix bit here to avoid decoder
6571 complications. */
6572 if (!(i.base_reg->reg_flags & RegRex)
6573 && (i.base_reg->reg_num == EBP_REG_NUM
6574 || i.base_reg->reg_num == ESP_REG_NUM))
6575 default_seg = &ss;
6576 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6577 {
6578 fake_zero_displacement = 1;
6579 if (i.tm.operand_types [op].bitfield.vec_disp8)
6580 i.types[op].bitfield.vec_disp8 = 1;
6581 else
6582 i.types[op].bitfield.disp8 = 1;
6583 }
6584 i.sib.scale = i.log2_scale_factor;
6585 if (i.index_reg == 0)
6586 {
6587 gas_assert (!i.tm.opcode_modifier.vecsib);
6588 /* <disp>(%esp) becomes two byte modrm with no index
6589 register. We've already stored the code for esp
6590 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6591 Any base register besides %esp will not use the
6592 extra modrm byte. */
6593 i.sib.index = NO_INDEX_REGISTER;
6594 }
6595 else if (!i.tm.opcode_modifier.vecsib)
6596 {
6597 if (i.index_reg->reg_num == RegEiz
6598 || i.index_reg->reg_num == RegRiz)
6599 i.sib.index = NO_INDEX_REGISTER;
6600 else
6601 i.sib.index = i.index_reg->reg_num;
6602 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6603 if ((i.index_reg->reg_flags & RegRex) != 0)
6604 i.rex |= REX_X;
6605 }
6606
6607 if (i.disp_operands
6608 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6609 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6610 i.rm.mode = 0;
6611 else
6612 {
6613 if (!fake_zero_displacement
6614 && !i.disp_operands
6615 && i.disp_encoding)
6616 {
6617 fake_zero_displacement = 1;
6618 if (i.disp_encoding == disp_encoding_8bit)
6619 i.types[op].bitfield.disp8 = 1;
6620 else
6621 i.types[op].bitfield.disp32 = 1;
6622 }
6623 i.rm.mode = mode_from_disp_size (i.types[op]);
6624 }
6625 }
6626
6627 if (fake_zero_displacement)
6628 {
6629 /* Fakes a zero displacement assuming that i.types[op]
6630 holds the correct displacement size. */
6631 expressionS *exp;
6632
6633 gas_assert (i.op[op].disps == 0);
6634 exp = &disp_expressions[i.disp_operands++];
6635 i.op[op].disps = exp;
6636 exp->X_op = O_constant;
6637 exp->X_add_number = 0;
6638 exp->X_add_symbol = (symbolS *) 0;
6639 exp->X_op_symbol = (symbolS *) 0;
6640 }
6641
6642 mem = op;
6643 }
6644 else
6645 mem = ~0;
6646
6647 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6648 {
6649 if (operand_type_check (i.types[0], imm))
6650 i.vex.register_specifier = NULL;
6651 else
6652 {
6653 /* VEX.vvvv encodes one of the sources when the first
6654 operand is not an immediate. */
6655 if (i.tm.opcode_modifier.vexw == VEXW0)
6656 i.vex.register_specifier = i.op[0].regs;
6657 else
6658 i.vex.register_specifier = i.op[1].regs;
6659 }
6660
6661 /* Destination is a XMM register encoded in the ModRM.reg
6662 and VEX.R bit. */
6663 i.rm.reg = i.op[2].regs->reg_num;
6664 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6665 i.rex |= REX_R;
6666
6667 /* ModRM.rm and VEX.B encodes the other source. */
6668 if (!i.mem_operands)
6669 {
6670 i.rm.mode = 3;
6671
6672 if (i.tm.opcode_modifier.vexw == VEXW0)
6673 i.rm.regmem = i.op[1].regs->reg_num;
6674 else
6675 i.rm.regmem = i.op[0].regs->reg_num;
6676
6677 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6678 i.rex |= REX_B;
6679 }
6680 }
6681 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6682 {
6683 i.vex.register_specifier = i.op[2].regs;
6684 if (!i.mem_operands)
6685 {
6686 i.rm.mode = 3;
6687 i.rm.regmem = i.op[1].regs->reg_num;
6688 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6689 i.rex |= REX_B;
6690 }
6691 }
6692 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6693 (if any) based on i.tm.extension_opcode. Again, we must be
6694 careful to make sure that segment/control/debug/test/MMX
6695 registers are coded into the i.rm.reg field. */
6696 else if (i.reg_operands)
6697 {
6698 unsigned int op;
6699 unsigned int vex_reg = ~0;
6700
6701 for (op = 0; op < i.operands; op++)
6702 if (i.types[op].bitfield.reg8
6703 || i.types[op].bitfield.reg16
6704 || i.types[op].bitfield.reg32
6705 || i.types[op].bitfield.reg64
6706 || i.types[op].bitfield.regmmx
6707 || i.types[op].bitfield.regxmm
6708 || i.types[op].bitfield.regymm
6709 || i.types[op].bitfield.regbnd
6710 || i.types[op].bitfield.regzmm
6711 || i.types[op].bitfield.regmask
6712 || i.types[op].bitfield.sreg2
6713 || i.types[op].bitfield.sreg3
6714 || i.types[op].bitfield.control
6715 || i.types[op].bitfield.debug
6716 || i.types[op].bitfield.test)
6717 break;
6718
6719 if (vex_3_sources)
6720 op = dest;
6721 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6722 {
6723 /* For instructions with VexNDS, the register-only
6724 source operand is encoded in VEX prefix. */
6725 gas_assert (mem != (unsigned int) ~0);
6726
6727 if (op > mem)
6728 {
6729 vex_reg = op++;
6730 gas_assert (op < i.operands);
6731 }
6732 else
6733 {
6734 /* Check register-only source operand when two source
6735 operands are swapped. */
6736 if (!i.tm.operand_types[op].bitfield.baseindex
6737 && i.tm.operand_types[op + 1].bitfield.baseindex)
6738 {
6739 vex_reg = op;
6740 op += 2;
6741 gas_assert (mem == (vex_reg + 1)
6742 && op < i.operands);
6743 }
6744 else
6745 {
6746 vex_reg = op + 1;
6747 gas_assert (vex_reg < i.operands);
6748 }
6749 }
6750 }
6751 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6752 {
6753 /* For instructions with VexNDD, the register destination
6754 is encoded in VEX prefix. */
6755 if (i.mem_operands == 0)
6756 {
6757 /* There is no memory operand. */
6758 gas_assert ((op + 2) == i.operands);
6759 vex_reg = op + 1;
6760 }
6761 else
6762 {
6763 /* There are only 2 operands. */
6764 gas_assert (op < 2 && i.operands == 2);
6765 vex_reg = 1;
6766 }
6767 }
6768 else
6769 gas_assert (op < i.operands);
6770
6771 if (vex_reg != (unsigned int) ~0)
6772 {
6773 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6774
6775 if (type->bitfield.reg32 != 1
6776 && type->bitfield.reg64 != 1
6777 && !operand_type_equal (type, &regxmm)
6778 && !operand_type_equal (type, &regymm)
6779 && !operand_type_equal (type, &regzmm)
6780 && !operand_type_equal (type, &regmask))
6781 abort ();
6782
6783 i.vex.register_specifier = i.op[vex_reg].regs;
6784 }
6785
6786 /* Don't set OP operand twice. */
6787 if (vex_reg != op)
6788 {
6789 /* If there is an extension opcode to put here, the
6790 register number must be put into the regmem field. */
6791 if (i.tm.extension_opcode != None)
6792 {
6793 i.rm.regmem = i.op[op].regs->reg_num;
6794 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6795 i.rex |= REX_B;
6796 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6797 i.vrex |= REX_B;
6798 }
6799 else
6800 {
6801 i.rm.reg = i.op[op].regs->reg_num;
6802 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6803 i.rex |= REX_R;
6804 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6805 i.vrex |= REX_R;
6806 }
6807 }
6808
6809 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6810 must set it to 3 to indicate this is a register operand
6811 in the regmem field. */
6812 if (!i.mem_operands)
6813 i.rm.mode = 3;
6814 }
6815
6816 /* Fill in i.rm.reg field with extension opcode (if any). */
6817 if (i.tm.extension_opcode != None)
6818 i.rm.reg = i.tm.extension_opcode;
6819 }
6820 return default_seg;
6821 }
6822
6823 static void
6824 output_branch (void)
6825 {
6826 char *p;
6827 int size;
6828 int code16;
6829 int prefix;
6830 relax_substateT subtype;
6831 symbolS *sym;
6832 offsetT off;
6833
6834 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6835 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6836
6837 prefix = 0;
6838 if (i.prefix[DATA_PREFIX] != 0)
6839 {
6840 prefix = 1;
6841 i.prefixes -= 1;
6842 code16 ^= CODE16;
6843 }
6844 /* Pentium4 branch hints. */
6845 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6846 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6847 {
6848 prefix++;
6849 i.prefixes--;
6850 }
6851 if (i.prefix[REX_PREFIX] != 0)
6852 {
6853 prefix++;
6854 i.prefixes--;
6855 }
6856
6857 /* BND prefixed jump. */
6858 if (i.prefix[BND_PREFIX] != 0)
6859 {
6860 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6861 i.prefixes -= 1;
6862 }
6863
6864 if (i.prefixes != 0 && !intel_syntax)
6865 as_warn (_("skipping prefixes on this instruction"));
6866
6867 /* It's always a symbol; End frag & setup for relax.
6868 Make sure there is enough room in this frag for the largest
6869 instruction we may generate in md_convert_frag. This is 2
6870 bytes for the opcode and room for the prefix and largest
6871 displacement. */
6872 frag_grow (prefix + 2 + 4);
6873 /* Prefix and 1 opcode byte go in fr_fix. */
6874 p = frag_more (prefix + 1);
6875 if (i.prefix[DATA_PREFIX] != 0)
6876 *p++ = DATA_PREFIX_OPCODE;
6877 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6878 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6879 *p++ = i.prefix[SEG_PREFIX];
6880 if (i.prefix[REX_PREFIX] != 0)
6881 *p++ = i.prefix[REX_PREFIX];
6882 *p = i.tm.base_opcode;
6883
6884 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6885 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6886 else if (cpu_arch_flags.bitfield.cpui386)
6887 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6888 else
6889 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6890 subtype |= code16;
6891
6892 sym = i.op[0].disps->X_add_symbol;
6893 off = i.op[0].disps->X_add_number;
6894
6895 if (i.op[0].disps->X_op != O_constant
6896 && i.op[0].disps->X_op != O_symbol)
6897 {
6898 /* Handle complex expressions. */
6899 sym = make_expr_symbol (i.op[0].disps);
6900 off = 0;
6901 }
6902
6903 /* 1 possible extra opcode + 4 byte displacement go in var part.
6904 Pass reloc in fr_var. */
6905 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6906 }
6907
6908 static void
6909 output_jump (void)
6910 {
6911 char *p;
6912 int size;
6913 fixS *fixP;
6914
6915 if (i.tm.opcode_modifier.jumpbyte)
6916 {
6917 /* This is a loop or jecxz type instruction. */
6918 size = 1;
6919 if (i.prefix[ADDR_PREFIX] != 0)
6920 {
6921 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6922 i.prefixes -= 1;
6923 }
6924 /* Pentium4 branch hints. */
6925 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6926 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6927 {
6928 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6929 i.prefixes--;
6930 }
6931 }
6932 else
6933 {
6934 int code16;
6935
6936 code16 = 0;
6937 if (flag_code == CODE_16BIT)
6938 code16 = CODE16;
6939
6940 if (i.prefix[DATA_PREFIX] != 0)
6941 {
6942 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6943 i.prefixes -= 1;
6944 code16 ^= CODE16;
6945 }
6946
6947 size = 4;
6948 if (code16)
6949 size = 2;
6950 }
6951
6952 if (i.prefix[REX_PREFIX] != 0)
6953 {
6954 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6955 i.prefixes -= 1;
6956 }
6957
6958 /* BND prefixed jump. */
6959 if (i.prefix[BND_PREFIX] != 0)
6960 {
6961 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6962 i.prefixes -= 1;
6963 }
6964
6965 if (i.prefixes != 0 && !intel_syntax)
6966 as_warn (_("skipping prefixes on this instruction"));
6967
6968 p = frag_more (i.tm.opcode_length + size);
6969 switch (i.tm.opcode_length)
6970 {
6971 case 2:
6972 *p++ = i.tm.base_opcode >> 8;
6973 case 1:
6974 *p++ = i.tm.base_opcode;
6975 break;
6976 default:
6977 abort ();
6978 }
6979
6980 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6981 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6982
6983 /* All jumps handled here are signed, but don't use a signed limit
6984 check for 32 and 16 bit jumps as we want to allow wrap around at
6985 4G and 64k respectively. */
6986 if (size == 1)
6987 fixP->fx_signed = 1;
6988 }
6989
6990 static void
6991 output_interseg_jump (void)
6992 {
6993 char *p;
6994 int size;
6995 int prefix;
6996 int code16;
6997
6998 code16 = 0;
6999 if (flag_code == CODE_16BIT)
7000 code16 = CODE16;
7001
7002 prefix = 0;
7003 if (i.prefix[DATA_PREFIX] != 0)
7004 {
7005 prefix = 1;
7006 i.prefixes -= 1;
7007 code16 ^= CODE16;
7008 }
7009 if (i.prefix[REX_PREFIX] != 0)
7010 {
7011 prefix++;
7012 i.prefixes -= 1;
7013 }
7014
7015 size = 4;
7016 if (code16)
7017 size = 2;
7018
7019 if (i.prefixes != 0 && !intel_syntax)
7020 as_warn (_("skipping prefixes on this instruction"));
7021
7022 /* 1 opcode; 2 segment; offset */
7023 p = frag_more (prefix + 1 + 2 + size);
7024
7025 if (i.prefix[DATA_PREFIX] != 0)
7026 *p++ = DATA_PREFIX_OPCODE;
7027
7028 if (i.prefix[REX_PREFIX] != 0)
7029 *p++ = i.prefix[REX_PREFIX];
7030
7031 *p++ = i.tm.base_opcode;
7032 if (i.op[1].imms->X_op == O_constant)
7033 {
7034 offsetT n = i.op[1].imms->X_add_number;
7035
7036 if (size == 2
7037 && !fits_in_unsigned_word (n)
7038 && !fits_in_signed_word (n))
7039 {
7040 as_bad (_("16-bit jump out of range"));
7041 return;
7042 }
7043 md_number_to_chars (p, n, size);
7044 }
7045 else
7046 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7047 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7048 if (i.op[0].imms->X_op != O_constant)
7049 as_bad (_("can't handle non absolute segment in `%s'"),
7050 i.tm.name);
7051 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7052 }
7053
7054 static void
7055 output_insn (void)
7056 {
7057 fragS *insn_start_frag;
7058 offsetT insn_start_off;
7059
7060 /* Tie dwarf2 debug info to the address at the start of the insn.
7061 We can't do this after the insn has been output as the current
7062 frag may have been closed off. eg. by frag_var. */
7063 dwarf2_emit_insn (0);
7064
7065 insn_start_frag = frag_now;
7066 insn_start_off = frag_now_fix ();
7067
7068 /* Output jumps. */
7069 if (i.tm.opcode_modifier.jump)
7070 output_branch ();
7071 else if (i.tm.opcode_modifier.jumpbyte
7072 || i.tm.opcode_modifier.jumpdword)
7073 output_jump ();
7074 else if (i.tm.opcode_modifier.jumpintersegment)
7075 output_interseg_jump ();
7076 else
7077 {
7078 /* Output normal instructions here. */
7079 char *p;
7080 unsigned char *q;
7081 unsigned int j;
7082 unsigned int prefix;
7083
7084 if (avoid_fence
7085 && i.tm.base_opcode == 0xfae
7086 && i.operands == 1
7087 && i.imm_operands == 1
7088 && (i.op[0].imms->X_add_number == 0xe8
7089 || i.op[0].imms->X_add_number == 0xf0
7090 || i.op[0].imms->X_add_number == 0xf8))
7091 {
7092 /* Encode lfence, mfence, and sfence as
7093 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7094 offsetT val = 0x240483f0ULL;
7095 p = frag_more (5);
7096 md_number_to_chars (p, val, 5);
7097 return;
7098 }
7099
7100 /* Some processors fail on LOCK prefix. This options makes
7101 assembler ignore LOCK prefix and serves as a workaround. */
7102 if (omit_lock_prefix)
7103 {
7104 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7105 return;
7106 i.prefix[LOCK_PREFIX] = 0;
7107 }
7108
7109 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7110 don't need the explicit prefix. */
7111 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7112 {
7113 switch (i.tm.opcode_length)
7114 {
7115 case 3:
7116 if (i.tm.base_opcode & 0xff000000)
7117 {
7118 prefix = (i.tm.base_opcode >> 24) & 0xff;
7119 goto check_prefix;
7120 }
7121 break;
7122 case 2:
7123 if ((i.tm.base_opcode & 0xff0000) != 0)
7124 {
7125 prefix = (i.tm.base_opcode >> 16) & 0xff;
7126 if (i.tm.cpu_flags.bitfield.cpupadlock)
7127 {
7128 check_prefix:
7129 if (prefix != REPE_PREFIX_OPCODE
7130 || (i.prefix[REP_PREFIX]
7131 != REPE_PREFIX_OPCODE))
7132 add_prefix (prefix);
7133 }
7134 else
7135 add_prefix (prefix);
7136 }
7137 break;
7138 case 1:
7139 break;
7140 default:
7141 abort ();
7142 }
7143
7144 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7145 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7146 R_X86_64_GOTTPOFF relocation so that linker can safely
7147 perform IE->LE optimization. */
7148 if (x86_elf_abi == X86_64_X32_ABI
7149 && i.operands == 2
7150 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7151 && i.prefix[REX_PREFIX] == 0)
7152 add_prefix (REX_OPCODE);
7153 #endif
7154
7155 /* The prefix bytes. */
7156 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7157 if (*q)
7158 FRAG_APPEND_1_CHAR (*q);
7159 }
7160 else
7161 {
7162 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7163 if (*q)
7164 switch (j)
7165 {
7166 case REX_PREFIX:
7167 /* REX byte is encoded in VEX prefix. */
7168 break;
7169 case SEG_PREFIX:
7170 case ADDR_PREFIX:
7171 FRAG_APPEND_1_CHAR (*q);
7172 break;
7173 default:
7174 /* There should be no other prefixes for instructions
7175 with VEX prefix. */
7176 abort ();
7177 }
7178
7179 /* For EVEX instructions i.vrex should become 0 after
7180 build_evex_prefix. For VEX instructions upper 16 registers
7181 aren't available, so VREX should be 0. */
7182 if (i.vrex)
7183 abort ();
7184 /* Now the VEX prefix. */
7185 p = frag_more (i.vex.length);
7186 for (j = 0; j < i.vex.length; j++)
7187 p[j] = i.vex.bytes[j];
7188 }
7189
7190 /* Now the opcode; be careful about word order here! */
7191 if (i.tm.opcode_length == 1)
7192 {
7193 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7194 }
7195 else
7196 {
7197 switch (i.tm.opcode_length)
7198 {
7199 case 4:
7200 p = frag_more (4);
7201 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7202 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7203 break;
7204 case 3:
7205 p = frag_more (3);
7206 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7207 break;
7208 case 2:
7209 p = frag_more (2);
7210 break;
7211 default:
7212 abort ();
7213 break;
7214 }
7215
7216 /* Put out high byte first: can't use md_number_to_chars! */
7217 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7218 *p = i.tm.base_opcode & 0xff;
7219 }
7220
7221 /* Now the modrm byte and sib byte (if present). */
7222 if (i.tm.opcode_modifier.modrm)
7223 {
7224 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7225 | i.rm.reg << 3
7226 | i.rm.mode << 6));
7227 /* If i.rm.regmem == ESP (4)
7228 && i.rm.mode != (Register mode)
7229 && not 16 bit
7230 ==> need second modrm byte. */
7231 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7232 && i.rm.mode != 3
7233 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7234 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7235 | i.sib.index << 3
7236 | i.sib.scale << 6));
7237 }
7238
7239 if (i.disp_operands)
7240 output_disp (insn_start_frag, insn_start_off);
7241
7242 if (i.imm_operands)
7243 output_imm (insn_start_frag, insn_start_off);
7244 }
7245
7246 #ifdef DEBUG386
7247 if (flag_debug)
7248 {
7249 pi ("" /*line*/, &i);
7250 }
7251 #endif /* DEBUG386 */
7252 }
7253
7254 /* Return the size of the displacement operand N. */
7255
7256 static int
7257 disp_size (unsigned int n)
7258 {
7259 int size = 4;
7260
7261 /* Vec_Disp8 has to be 8bit. */
7262 if (i.types[n].bitfield.vec_disp8)
7263 size = 1;
7264 else if (i.types[n].bitfield.disp64)
7265 size = 8;
7266 else if (i.types[n].bitfield.disp8)
7267 size = 1;
7268 else if (i.types[n].bitfield.disp16)
7269 size = 2;
7270 return size;
7271 }
7272
7273 /* Return the size of the immediate operand N. */
7274
7275 static int
7276 imm_size (unsigned int n)
7277 {
7278 int size = 4;
7279 if (i.types[n].bitfield.imm64)
7280 size = 8;
7281 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7282 size = 1;
7283 else if (i.types[n].bitfield.imm16)
7284 size = 2;
7285 return size;
7286 }
7287
7288 static void
7289 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7290 {
7291 char *p;
7292 unsigned int n;
7293
7294 for (n = 0; n < i.operands; n++)
7295 {
7296 if (i.types[n].bitfield.vec_disp8
7297 || operand_type_check (i.types[n], disp))
7298 {
7299 if (i.op[n].disps->X_op == O_constant)
7300 {
7301 int size = disp_size (n);
7302 offsetT val = i.op[n].disps->X_add_number;
7303
7304 if (i.types[n].bitfield.vec_disp8)
7305 val >>= i.memshift;
7306 val = offset_in_range (val, size);
7307 p = frag_more (size);
7308 md_number_to_chars (p, val, size);
7309 }
7310 else
7311 {
7312 enum bfd_reloc_code_real reloc_type;
7313 int size = disp_size (n);
7314 int sign = i.types[n].bitfield.disp32s;
7315 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7316 fixS *fixP;
7317
7318 /* We can't have 8 bit displacement here. */
7319 gas_assert (!i.types[n].bitfield.disp8);
7320
7321 /* The PC relative address is computed relative
7322 to the instruction boundary, so in case immediate
7323 fields follows, we need to adjust the value. */
7324 if (pcrel && i.imm_operands)
7325 {
7326 unsigned int n1;
7327 int sz = 0;
7328
7329 for (n1 = 0; n1 < i.operands; n1++)
7330 if (operand_type_check (i.types[n1], imm))
7331 {
7332 /* Only one immediate is allowed for PC
7333 relative address. */
7334 gas_assert (sz == 0);
7335 sz = imm_size (n1);
7336 i.op[n].disps->X_add_number -= sz;
7337 }
7338 /* We should find the immediate. */
7339 gas_assert (sz != 0);
7340 }
7341
7342 p = frag_more (size);
7343 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7344 if (GOT_symbol
7345 && GOT_symbol == i.op[n].disps->X_add_symbol
7346 && (((reloc_type == BFD_RELOC_32
7347 || reloc_type == BFD_RELOC_X86_64_32S
7348 || (reloc_type == BFD_RELOC_64
7349 && object_64bit))
7350 && (i.op[n].disps->X_op == O_symbol
7351 || (i.op[n].disps->X_op == O_add
7352 && ((symbol_get_value_expression
7353 (i.op[n].disps->X_op_symbol)->X_op)
7354 == O_subtract))))
7355 || reloc_type == BFD_RELOC_32_PCREL))
7356 {
7357 offsetT add;
7358
7359 if (insn_start_frag == frag_now)
7360 add = (p - frag_now->fr_literal) - insn_start_off;
7361 else
7362 {
7363 fragS *fr;
7364
7365 add = insn_start_frag->fr_fix - insn_start_off;
7366 for (fr = insn_start_frag->fr_next;
7367 fr && fr != frag_now; fr = fr->fr_next)
7368 add += fr->fr_fix;
7369 add += p - frag_now->fr_literal;
7370 }
7371
7372 if (!object_64bit)
7373 {
7374 reloc_type = BFD_RELOC_386_GOTPC;
7375 i.op[n].imms->X_add_number += add;
7376 }
7377 else if (reloc_type == BFD_RELOC_64)
7378 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7379 else
7380 /* Don't do the adjustment for x86-64, as there
7381 the pcrel addressing is relative to the _next_
7382 insn, and that is taken care of in other code. */
7383 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7384 }
7385 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7386 size, i.op[n].disps, pcrel,
7387 reloc_type);
7388 /* Check for "call/jmp *mem", "mov mem, %reg",
7389 "test %reg, mem" and "binop mem, %reg" where binop
7390 is one of adc, add, and, cmp, or, sbb, sub, xor
7391 instructions. Always generate R_386_GOT32X for
7392 "sym*GOT" operand in 32-bit mode. */
7393 if ((generate_relax_relocations
7394 || (!object_64bit
7395 && i.rm.mode == 0
7396 && i.rm.regmem == 5))
7397 && (i.rm.mode == 2
7398 || (i.rm.mode == 0 && i.rm.regmem == 5))
7399 && ((i.operands == 1
7400 && i.tm.base_opcode == 0xff
7401 && (i.rm.reg == 2 || i.rm.reg == 4))
7402 || (i.operands == 2
7403 && (i.tm.base_opcode == 0x8b
7404 || i.tm.base_opcode == 0x85
7405 || (i.tm.base_opcode & 0xc7) == 0x03))))
7406 {
7407 if (object_64bit)
7408 {
7409 fixP->fx_tcbit = i.rex != 0;
7410 if (i.base_reg
7411 && (i.base_reg->reg_num == RegRip
7412 || i.base_reg->reg_num == RegEip))
7413 fixP->fx_tcbit2 = 1;
7414 }
7415 else
7416 fixP->fx_tcbit2 = 1;
7417 }
7418 }
7419 }
7420 }
7421 }
7422
7423 static void
7424 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7425 {
7426 char *p;
7427 unsigned int n;
7428
7429 for (n = 0; n < i.operands; n++)
7430 {
7431 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7432 if (i.rounding && (int) n == i.rounding->operand)
7433 continue;
7434
7435 if (operand_type_check (i.types[n], imm))
7436 {
7437 if (i.op[n].imms->X_op == O_constant)
7438 {
7439 int size = imm_size (n);
7440 offsetT val;
7441
7442 val = offset_in_range (i.op[n].imms->X_add_number,
7443 size);
7444 p = frag_more (size);
7445 md_number_to_chars (p, val, size);
7446 }
7447 else
7448 {
7449 /* Not absolute_section.
7450 Need a 32-bit fixup (don't support 8bit
7451 non-absolute imms). Try to support other
7452 sizes ... */
7453 enum bfd_reloc_code_real reloc_type;
7454 int size = imm_size (n);
7455 int sign;
7456
7457 if (i.types[n].bitfield.imm32s
7458 && (i.suffix == QWORD_MNEM_SUFFIX
7459 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7460 sign = 1;
7461 else
7462 sign = 0;
7463
7464 p = frag_more (size);
7465 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7466
7467 /* This is tough to explain. We end up with this one if we
7468 * have operands that look like
7469 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7470 * obtain the absolute address of the GOT, and it is strongly
7471 * preferable from a performance point of view to avoid using
7472 * a runtime relocation for this. The actual sequence of
7473 * instructions often look something like:
7474 *
7475 * call .L66
7476 * .L66:
7477 * popl %ebx
7478 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7479 *
7480 * The call and pop essentially return the absolute address
7481 * of the label .L66 and store it in %ebx. The linker itself
7482 * will ultimately change the first operand of the addl so
7483 * that %ebx points to the GOT, but to keep things simple, the
7484 * .o file must have this operand set so that it generates not
7485 * the absolute address of .L66, but the absolute address of
7486 * itself. This allows the linker itself simply treat a GOTPC
7487 * relocation as asking for a pcrel offset to the GOT to be
7488 * added in, and the addend of the relocation is stored in the
7489 * operand field for the instruction itself.
7490 *
7491 * Our job here is to fix the operand so that it would add
7492 * the correct offset so that %ebx would point to itself. The
7493 * thing that is tricky is that .-.L66 will point to the
7494 * beginning of the instruction, so we need to further modify
7495 * the operand so that it will point to itself. There are
7496 * other cases where you have something like:
7497 *
7498 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7499 *
7500 * and here no correction would be required. Internally in
7501 * the assembler we treat operands of this form as not being
7502 * pcrel since the '.' is explicitly mentioned, and I wonder
7503 * whether it would simplify matters to do it this way. Who
7504 * knows. In earlier versions of the PIC patches, the
7505 * pcrel_adjust field was used to store the correction, but
7506 * since the expression is not pcrel, I felt it would be
7507 * confusing to do it this way. */
7508
7509 if ((reloc_type == BFD_RELOC_32
7510 || reloc_type == BFD_RELOC_X86_64_32S
7511 || reloc_type == BFD_RELOC_64)
7512 && GOT_symbol
7513 && GOT_symbol == i.op[n].imms->X_add_symbol
7514 && (i.op[n].imms->X_op == O_symbol
7515 || (i.op[n].imms->X_op == O_add
7516 && ((symbol_get_value_expression
7517 (i.op[n].imms->X_op_symbol)->X_op)
7518 == O_subtract))))
7519 {
7520 offsetT add;
7521
7522 if (insn_start_frag == frag_now)
7523 add = (p - frag_now->fr_literal) - insn_start_off;
7524 else
7525 {
7526 fragS *fr;
7527
7528 add = insn_start_frag->fr_fix - insn_start_off;
7529 for (fr = insn_start_frag->fr_next;
7530 fr && fr != frag_now; fr = fr->fr_next)
7531 add += fr->fr_fix;
7532 add += p - frag_now->fr_literal;
7533 }
7534
7535 if (!object_64bit)
7536 reloc_type = BFD_RELOC_386_GOTPC;
7537 else if (size == 4)
7538 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7539 else if (size == 8)
7540 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7541 i.op[n].imms->X_add_number += add;
7542 }
7543 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7544 i.op[n].imms, 0, reloc_type);
7545 }
7546 }
7547 }
7548 }
7549 \f
7550 /* x86_cons_fix_new is called via the expression parsing code when a
7551 reloc is needed. We use this hook to get the correct .got reloc. */
7552 static int cons_sign = -1;
7553
7554 void
7555 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7556 expressionS *exp, bfd_reloc_code_real_type r)
7557 {
7558 r = reloc (len, 0, cons_sign, r);
7559
7560 #ifdef TE_PE
7561 if (exp->X_op == O_secrel)
7562 {
7563 exp->X_op = O_symbol;
7564 r = BFD_RELOC_32_SECREL;
7565 }
7566 #endif
7567
7568 fix_new_exp (frag, off, len, exp, 0, r);
7569 }
7570
7571 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7572 purpose of the `.dc.a' internal pseudo-op. */
7573
7574 int
7575 x86_address_bytes (void)
7576 {
7577 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7578 return 4;
7579 return stdoutput->arch_info->bits_per_address / 8;
7580 }
7581
7582 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7583 || defined (LEX_AT)
7584 # define lex_got(reloc, adjust, types) NULL
7585 #else
7586 /* Parse operands of the form
7587 <symbol>@GOTOFF+<nnn>
7588 and similar .plt or .got references.
7589
7590 If we find one, set up the correct relocation in RELOC and copy the
7591 input string, minus the `@GOTOFF' into a malloc'd buffer for
7592 parsing by the calling routine. Return this buffer, and if ADJUST
7593 is non-null set it to the length of the string we removed from the
7594 input line. Otherwise return NULL. */
7595 static char *
7596 lex_got (enum bfd_reloc_code_real *rel,
7597 int *adjust,
7598 i386_operand_type *types)
7599 {
7600 /* Some of the relocations depend on the size of what field is to
7601 be relocated. But in our callers i386_immediate and i386_displacement
7602 we don't yet know the operand size (this will be set by insn
7603 matching). Hence we record the word32 relocation here,
7604 and adjust the reloc according to the real size in reloc(). */
7605 static const struct {
7606 const char *str;
7607 int len;
7608 const enum bfd_reloc_code_real rel[2];
7609 const i386_operand_type types64;
7610 } gotrel[] = {
7611 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7612 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7613 BFD_RELOC_SIZE32 },
7614 OPERAND_TYPE_IMM32_64 },
7615 #endif
7616 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7617 BFD_RELOC_X86_64_PLTOFF64 },
7618 OPERAND_TYPE_IMM64 },
7619 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7620 BFD_RELOC_X86_64_PLT32 },
7621 OPERAND_TYPE_IMM32_32S_DISP32 },
7622 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7623 BFD_RELOC_X86_64_GOTPLT64 },
7624 OPERAND_TYPE_IMM64_DISP64 },
7625 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7626 BFD_RELOC_X86_64_GOTOFF64 },
7627 OPERAND_TYPE_IMM64_DISP64 },
7628 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7629 BFD_RELOC_X86_64_GOTPCREL },
7630 OPERAND_TYPE_IMM32_32S_DISP32 },
7631 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7632 BFD_RELOC_X86_64_TLSGD },
7633 OPERAND_TYPE_IMM32_32S_DISP32 },
7634 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7635 _dummy_first_bfd_reloc_code_real },
7636 OPERAND_TYPE_NONE },
7637 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7638 BFD_RELOC_X86_64_TLSLD },
7639 OPERAND_TYPE_IMM32_32S_DISP32 },
7640 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7641 BFD_RELOC_X86_64_GOTTPOFF },
7642 OPERAND_TYPE_IMM32_32S_DISP32 },
7643 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7644 BFD_RELOC_X86_64_TPOFF32 },
7645 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7646 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7647 _dummy_first_bfd_reloc_code_real },
7648 OPERAND_TYPE_NONE },
7649 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7650 BFD_RELOC_X86_64_DTPOFF32 },
7651 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7652 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7653 _dummy_first_bfd_reloc_code_real },
7654 OPERAND_TYPE_NONE },
7655 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7656 _dummy_first_bfd_reloc_code_real },
7657 OPERAND_TYPE_NONE },
7658 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7659 BFD_RELOC_X86_64_GOT32 },
7660 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7661 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7662 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7663 OPERAND_TYPE_IMM32_32S_DISP32 },
7664 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7665 BFD_RELOC_X86_64_TLSDESC_CALL },
7666 OPERAND_TYPE_IMM32_32S_DISP32 },
7667 };
7668 char *cp;
7669 unsigned int j;
7670
7671 #if defined (OBJ_MAYBE_ELF)
7672 if (!IS_ELF)
7673 return NULL;
7674 #endif
7675
7676 for (cp = input_line_pointer; *cp != '@'; cp++)
7677 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7678 return NULL;
7679
7680 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7681 {
7682 int len = gotrel[j].len;
7683 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7684 {
7685 if (gotrel[j].rel[object_64bit] != 0)
7686 {
7687 int first, second;
7688 char *tmpbuf, *past_reloc;
7689
7690 *rel = gotrel[j].rel[object_64bit];
7691
7692 if (types)
7693 {
7694 if (flag_code != CODE_64BIT)
7695 {
7696 types->bitfield.imm32 = 1;
7697 types->bitfield.disp32 = 1;
7698 }
7699 else
7700 *types = gotrel[j].types64;
7701 }
7702
7703 if (j != 0 && GOT_symbol == NULL)
7704 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7705
7706 /* The length of the first part of our input line. */
7707 first = cp - input_line_pointer;
7708
7709 /* The second part goes from after the reloc token until
7710 (and including) an end_of_line char or comma. */
7711 past_reloc = cp + 1 + len;
7712 cp = past_reloc;
7713 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7714 ++cp;
7715 second = cp + 1 - past_reloc;
7716
7717 /* Allocate and copy string. The trailing NUL shouldn't
7718 be necessary, but be safe. */
7719 tmpbuf = XNEWVEC (char, first + second + 2);
7720 memcpy (tmpbuf, input_line_pointer, first);
7721 if (second != 0 && *past_reloc != ' ')
7722 /* Replace the relocation token with ' ', so that
7723 errors like foo@GOTOFF1 will be detected. */
7724 tmpbuf[first++] = ' ';
7725 else
7726 /* Increment length by 1 if the relocation token is
7727 removed. */
7728 len++;
7729 if (adjust)
7730 *adjust = len;
7731 memcpy (tmpbuf + first, past_reloc, second);
7732 tmpbuf[first + second] = '\0';
7733 return tmpbuf;
7734 }
7735
7736 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7737 gotrel[j].str, 1 << (5 + object_64bit));
7738 return NULL;
7739 }
7740 }
7741
7742 /* Might be a symbol version string. Don't as_bad here. */
7743 return NULL;
7744 }
7745 #endif
7746
7747 #ifdef TE_PE
7748 #ifdef lex_got
7749 #undef lex_got
7750 #endif
7751 /* Parse operands of the form
7752 <symbol>@SECREL32+<nnn>
7753
7754 If we find one, set up the correct relocation in RELOC and copy the
7755 input string, minus the `@SECREL32' into a malloc'd buffer for
7756 parsing by the calling routine. Return this buffer, and if ADJUST
7757 is non-null set it to the length of the string we removed from the
7758 input line. Otherwise return NULL.
7759
7760 This function is copied from the ELF version above adjusted for PE targets. */
7761
7762 static char *
7763 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7764 int *adjust ATTRIBUTE_UNUSED,
7765 i386_operand_type *types)
7766 {
7767 static const struct
7768 {
7769 const char *str;
7770 int len;
7771 const enum bfd_reloc_code_real rel[2];
7772 const i386_operand_type types64;
7773 }
7774 gotrel[] =
7775 {
7776 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7777 BFD_RELOC_32_SECREL },
7778 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7779 };
7780
7781 char *cp;
7782 unsigned j;
7783
7784 for (cp = input_line_pointer; *cp != '@'; cp++)
7785 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7786 return NULL;
7787
7788 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7789 {
7790 int len = gotrel[j].len;
7791
7792 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7793 {
7794 if (gotrel[j].rel[object_64bit] != 0)
7795 {
7796 int first, second;
7797 char *tmpbuf, *past_reloc;
7798
7799 *rel = gotrel[j].rel[object_64bit];
7800 if (adjust)
7801 *adjust = len;
7802
7803 if (types)
7804 {
7805 if (flag_code != CODE_64BIT)
7806 {
7807 types->bitfield.imm32 = 1;
7808 types->bitfield.disp32 = 1;
7809 }
7810 else
7811 *types = gotrel[j].types64;
7812 }
7813
7814 /* The length of the first part of our input line. */
7815 first = cp - input_line_pointer;
7816
7817 /* The second part goes from after the reloc token until
7818 (and including) an end_of_line char or comma. */
7819 past_reloc = cp + 1 + len;
7820 cp = past_reloc;
7821 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7822 ++cp;
7823 second = cp + 1 - past_reloc;
7824
7825 /* Allocate and copy string. The trailing NUL shouldn't
7826 be necessary, but be safe. */
7827 tmpbuf = XNEWVEC (char, first + second + 2);
7828 memcpy (tmpbuf, input_line_pointer, first);
7829 if (second != 0 && *past_reloc != ' ')
7830 /* Replace the relocation token with ' ', so that
7831 errors like foo@SECLREL321 will be detected. */
7832 tmpbuf[first++] = ' ';
7833 memcpy (tmpbuf + first, past_reloc, second);
7834 tmpbuf[first + second] = '\0';
7835 return tmpbuf;
7836 }
7837
7838 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7839 gotrel[j].str, 1 << (5 + object_64bit));
7840 return NULL;
7841 }
7842 }
7843
7844 /* Might be a symbol version string. Don't as_bad here. */
7845 return NULL;
7846 }
7847
7848 #endif /* TE_PE */
7849
7850 bfd_reloc_code_real_type
7851 x86_cons (expressionS *exp, int size)
7852 {
7853 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7854
7855 intel_syntax = -intel_syntax;
7856
7857 exp->X_md = 0;
7858 if (size == 4 || (object_64bit && size == 8))
7859 {
7860 /* Handle @GOTOFF and the like in an expression. */
7861 char *save;
7862 char *gotfree_input_line;
7863 int adjust = 0;
7864
7865 save = input_line_pointer;
7866 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7867 if (gotfree_input_line)
7868 input_line_pointer = gotfree_input_line;
7869
7870 expression (exp);
7871
7872 if (gotfree_input_line)
7873 {
7874 /* expression () has merrily parsed up to the end of line,
7875 or a comma - in the wrong buffer. Transfer how far
7876 input_line_pointer has moved to the right buffer. */
7877 input_line_pointer = (save
7878 + (input_line_pointer - gotfree_input_line)
7879 + adjust);
7880 free (gotfree_input_line);
7881 if (exp->X_op == O_constant
7882 || exp->X_op == O_absent
7883 || exp->X_op == O_illegal
7884 || exp->X_op == O_register
7885 || exp->X_op == O_big)
7886 {
7887 char c = *input_line_pointer;
7888 *input_line_pointer = 0;
7889 as_bad (_("missing or invalid expression `%s'"), save);
7890 *input_line_pointer = c;
7891 }
7892 }
7893 }
7894 else
7895 expression (exp);
7896
7897 intel_syntax = -intel_syntax;
7898
7899 if (intel_syntax)
7900 i386_intel_simplify (exp);
7901
7902 return got_reloc;
7903 }
7904
7905 static void
7906 signed_cons (int size)
7907 {
7908 if (flag_code == CODE_64BIT)
7909 cons_sign = 1;
7910 cons (size);
7911 cons_sign = -1;
7912 }
7913
7914 #ifdef TE_PE
7915 static void
7916 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7917 {
7918 expressionS exp;
7919
7920 do
7921 {
7922 expression (&exp);
7923 if (exp.X_op == O_symbol)
7924 exp.X_op = O_secrel;
7925
7926 emit_expr (&exp, 4);
7927 }
7928 while (*input_line_pointer++ == ',');
7929
7930 input_line_pointer--;
7931 demand_empty_rest_of_line ();
7932 }
7933 #endif
7934
7935 /* Handle Vector operations. */
7936
7937 static char *
7938 check_VecOperations (char *op_string, char *op_end)
7939 {
7940 const reg_entry *mask;
7941 const char *saved;
7942 char *end_op;
7943
7944 while (*op_string
7945 && (op_end == NULL || op_string < op_end))
7946 {
7947 saved = op_string;
7948 if (*op_string == '{')
7949 {
7950 op_string++;
7951
7952 /* Check broadcasts. */
7953 if (strncmp (op_string, "1to", 3) == 0)
7954 {
7955 int bcst_type;
7956
7957 if (i.broadcast)
7958 goto duplicated_vec_op;
7959
7960 op_string += 3;
7961 if (*op_string == '8')
7962 bcst_type = BROADCAST_1TO8;
7963 else if (*op_string == '4')
7964 bcst_type = BROADCAST_1TO4;
7965 else if (*op_string == '2')
7966 bcst_type = BROADCAST_1TO2;
7967 else if (*op_string == '1'
7968 && *(op_string+1) == '6')
7969 {
7970 bcst_type = BROADCAST_1TO16;
7971 op_string++;
7972 }
7973 else
7974 {
7975 as_bad (_("Unsupported broadcast: `%s'"), saved);
7976 return NULL;
7977 }
7978 op_string++;
7979
7980 broadcast_op.type = bcst_type;
7981 broadcast_op.operand = this_operand;
7982 i.broadcast = &broadcast_op;
7983 }
7984 /* Check masking operation. */
7985 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7986 {
7987 /* k0 can't be used for write mask. */
7988 if (mask->reg_num == 0)
7989 {
7990 as_bad (_("`%s' can't be used for write mask"),
7991 op_string);
7992 return NULL;
7993 }
7994
7995 if (!i.mask)
7996 {
7997 mask_op.mask = mask;
7998 mask_op.zeroing = 0;
7999 mask_op.operand = this_operand;
8000 i.mask = &mask_op;
8001 }
8002 else
8003 {
8004 if (i.mask->mask)
8005 goto duplicated_vec_op;
8006
8007 i.mask->mask = mask;
8008
8009 /* Only "{z}" is allowed here. No need to check
8010 zeroing mask explicitly. */
8011 if (i.mask->operand != this_operand)
8012 {
8013 as_bad (_("invalid write mask `%s'"), saved);
8014 return NULL;
8015 }
8016 }
8017
8018 op_string = end_op;
8019 }
8020 /* Check zeroing-flag for masking operation. */
8021 else if (*op_string == 'z')
8022 {
8023 if (!i.mask)
8024 {
8025 mask_op.mask = NULL;
8026 mask_op.zeroing = 1;
8027 mask_op.operand = this_operand;
8028 i.mask = &mask_op;
8029 }
8030 else
8031 {
8032 if (i.mask->zeroing)
8033 {
8034 duplicated_vec_op:
8035 as_bad (_("duplicated `%s'"), saved);
8036 return NULL;
8037 }
8038
8039 i.mask->zeroing = 1;
8040
8041 /* Only "{%k}" is allowed here. No need to check mask
8042 register explicitly. */
8043 if (i.mask->operand != this_operand)
8044 {
8045 as_bad (_("invalid zeroing-masking `%s'"),
8046 saved);
8047 return NULL;
8048 }
8049 }
8050
8051 op_string++;
8052 }
8053 else
8054 goto unknown_vec_op;
8055
8056 if (*op_string != '}')
8057 {
8058 as_bad (_("missing `}' in `%s'"), saved);
8059 return NULL;
8060 }
8061 op_string++;
8062 continue;
8063 }
8064 unknown_vec_op:
8065 /* We don't know this one. */
8066 as_bad (_("unknown vector operation: `%s'"), saved);
8067 return NULL;
8068 }
8069
8070 return op_string;
8071 }
8072
8073 static int
8074 i386_immediate (char *imm_start)
8075 {
8076 char *save_input_line_pointer;
8077 char *gotfree_input_line;
8078 segT exp_seg = 0;
8079 expressionS *exp;
8080 i386_operand_type types;
8081
8082 operand_type_set (&types, ~0);
8083
8084 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8085 {
8086 as_bad (_("at most %d immediate operands are allowed"),
8087 MAX_IMMEDIATE_OPERANDS);
8088 return 0;
8089 }
8090
8091 exp = &im_expressions[i.imm_operands++];
8092 i.op[this_operand].imms = exp;
8093
8094 if (is_space_char (*imm_start))
8095 ++imm_start;
8096
8097 save_input_line_pointer = input_line_pointer;
8098 input_line_pointer = imm_start;
8099
8100 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8101 if (gotfree_input_line)
8102 input_line_pointer = gotfree_input_line;
8103
8104 exp_seg = expression (exp);
8105
8106 SKIP_WHITESPACE ();
8107
8108 /* Handle vector operations. */
8109 if (*input_line_pointer == '{')
8110 {
8111 input_line_pointer = check_VecOperations (input_line_pointer,
8112 NULL);
8113 if (input_line_pointer == NULL)
8114 return 0;
8115 }
8116
8117 if (*input_line_pointer)
8118 as_bad (_("junk `%s' after expression"), input_line_pointer);
8119
8120 input_line_pointer = save_input_line_pointer;
8121 if (gotfree_input_line)
8122 {
8123 free (gotfree_input_line);
8124
8125 if (exp->X_op == O_constant || exp->X_op == O_register)
8126 exp->X_op = O_illegal;
8127 }
8128
8129 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8130 }
8131
8132 static int
8133 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8134 i386_operand_type types, const char *imm_start)
8135 {
8136 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8137 {
8138 if (imm_start)
8139 as_bad (_("missing or invalid immediate expression `%s'"),
8140 imm_start);
8141 return 0;
8142 }
8143 else if (exp->X_op == O_constant)
8144 {
8145 /* Size it properly later. */
8146 i.types[this_operand].bitfield.imm64 = 1;
8147 /* If not 64bit, sign extend val. */
8148 if (flag_code != CODE_64BIT
8149 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8150 exp->X_add_number
8151 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8152 }
8153 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8154 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8155 && exp_seg != absolute_section
8156 && exp_seg != text_section
8157 && exp_seg != data_section
8158 && exp_seg != bss_section
8159 && exp_seg != undefined_section
8160 && !bfd_is_com_section (exp_seg))
8161 {
8162 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8163 return 0;
8164 }
8165 #endif
8166 else if (!intel_syntax && exp_seg == reg_section)
8167 {
8168 if (imm_start)
8169 as_bad (_("illegal immediate register operand %s"), imm_start);
8170 return 0;
8171 }
8172 else
8173 {
8174 /* This is an address. The size of the address will be
8175 determined later, depending on destination register,
8176 suffix, or the default for the section. */
8177 i.types[this_operand].bitfield.imm8 = 1;
8178 i.types[this_operand].bitfield.imm16 = 1;
8179 i.types[this_operand].bitfield.imm32 = 1;
8180 i.types[this_operand].bitfield.imm32s = 1;
8181 i.types[this_operand].bitfield.imm64 = 1;
8182 i.types[this_operand] = operand_type_and (i.types[this_operand],
8183 types);
8184 }
8185
8186 return 1;
8187 }
8188
8189 static char *
8190 i386_scale (char *scale)
8191 {
8192 offsetT val;
8193 char *save = input_line_pointer;
8194
8195 input_line_pointer = scale;
8196 val = get_absolute_expression ();
8197
8198 switch (val)
8199 {
8200 case 1:
8201 i.log2_scale_factor = 0;
8202 break;
8203 case 2:
8204 i.log2_scale_factor = 1;
8205 break;
8206 case 4:
8207 i.log2_scale_factor = 2;
8208 break;
8209 case 8:
8210 i.log2_scale_factor = 3;
8211 break;
8212 default:
8213 {
8214 char sep = *input_line_pointer;
8215
8216 *input_line_pointer = '\0';
8217 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8218 scale);
8219 *input_line_pointer = sep;
8220 input_line_pointer = save;
8221 return NULL;
8222 }
8223 }
8224 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8225 {
8226 as_warn (_("scale factor of %d without an index register"),
8227 1 << i.log2_scale_factor);
8228 i.log2_scale_factor = 0;
8229 }
8230 scale = input_line_pointer;
8231 input_line_pointer = save;
8232 return scale;
8233 }
8234
8235 static int
8236 i386_displacement (char *disp_start, char *disp_end)
8237 {
8238 expressionS *exp;
8239 segT exp_seg = 0;
8240 char *save_input_line_pointer;
8241 char *gotfree_input_line;
8242 int override;
8243 i386_operand_type bigdisp, types = anydisp;
8244 int ret;
8245
8246 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8247 {
8248 as_bad (_("at most %d displacement operands are allowed"),
8249 MAX_MEMORY_OPERANDS);
8250 return 0;
8251 }
8252
8253 operand_type_set (&bigdisp, 0);
8254 if ((i.types[this_operand].bitfield.jumpabsolute)
8255 || (!current_templates->start->opcode_modifier.jump
8256 && !current_templates->start->opcode_modifier.jumpdword))
8257 {
8258 bigdisp.bitfield.disp32 = 1;
8259 override = (i.prefix[ADDR_PREFIX] != 0);
8260 if (flag_code == CODE_64BIT)
8261 {
8262 if (!override)
8263 {
8264 bigdisp.bitfield.disp32s = 1;
8265 bigdisp.bitfield.disp64 = 1;
8266 }
8267 }
8268 else if ((flag_code == CODE_16BIT) ^ override)
8269 {
8270 bigdisp.bitfield.disp32 = 0;
8271 bigdisp.bitfield.disp16 = 1;
8272 }
8273 }
8274 else
8275 {
8276 /* For PC-relative branches, the width of the displacement
8277 is dependent upon data size, not address size. */
8278 override = (i.prefix[DATA_PREFIX] != 0);
8279 if (flag_code == CODE_64BIT)
8280 {
8281 if (override || i.suffix == WORD_MNEM_SUFFIX)
8282 bigdisp.bitfield.disp16 = 1;
8283 else
8284 {
8285 bigdisp.bitfield.disp32 = 1;
8286 bigdisp.bitfield.disp32s = 1;
8287 }
8288 }
8289 else
8290 {
8291 if (!override)
8292 override = (i.suffix == (flag_code != CODE_16BIT
8293 ? WORD_MNEM_SUFFIX
8294 : LONG_MNEM_SUFFIX));
8295 bigdisp.bitfield.disp32 = 1;
8296 if ((flag_code == CODE_16BIT) ^ override)
8297 {
8298 bigdisp.bitfield.disp32 = 0;
8299 bigdisp.bitfield.disp16 = 1;
8300 }
8301 }
8302 }
8303 i.types[this_operand] = operand_type_or (i.types[this_operand],
8304 bigdisp);
8305
8306 exp = &disp_expressions[i.disp_operands];
8307 i.op[this_operand].disps = exp;
8308 i.disp_operands++;
8309 save_input_line_pointer = input_line_pointer;
8310 input_line_pointer = disp_start;
8311 END_STRING_AND_SAVE (disp_end);
8312
8313 #ifndef GCC_ASM_O_HACK
8314 #define GCC_ASM_O_HACK 0
8315 #endif
8316 #if GCC_ASM_O_HACK
8317 END_STRING_AND_SAVE (disp_end + 1);
8318 if (i.types[this_operand].bitfield.baseIndex
8319 && displacement_string_end[-1] == '+')
8320 {
8321 /* This hack is to avoid a warning when using the "o"
8322 constraint within gcc asm statements.
8323 For instance:
8324
8325 #define _set_tssldt_desc(n,addr,limit,type) \
8326 __asm__ __volatile__ ( \
8327 "movw %w2,%0\n\t" \
8328 "movw %w1,2+%0\n\t" \
8329 "rorl $16,%1\n\t" \
8330 "movb %b1,4+%0\n\t" \
8331 "movb %4,5+%0\n\t" \
8332 "movb $0,6+%0\n\t" \
8333 "movb %h1,7+%0\n\t" \
8334 "rorl $16,%1" \
8335 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8336
8337 This works great except that the output assembler ends
8338 up looking a bit weird if it turns out that there is
8339 no offset. You end up producing code that looks like:
8340
8341 #APP
8342 movw $235,(%eax)
8343 movw %dx,2+(%eax)
8344 rorl $16,%edx
8345 movb %dl,4+(%eax)
8346 movb $137,5+(%eax)
8347 movb $0,6+(%eax)
8348 movb %dh,7+(%eax)
8349 rorl $16,%edx
8350 #NO_APP
8351
8352 So here we provide the missing zero. */
8353
8354 *displacement_string_end = '0';
8355 }
8356 #endif
8357 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8358 if (gotfree_input_line)
8359 input_line_pointer = gotfree_input_line;
8360
8361 exp_seg = expression (exp);
8362
8363 SKIP_WHITESPACE ();
8364 if (*input_line_pointer)
8365 as_bad (_("junk `%s' after expression"), input_line_pointer);
8366 #if GCC_ASM_O_HACK
8367 RESTORE_END_STRING (disp_end + 1);
8368 #endif
8369 input_line_pointer = save_input_line_pointer;
8370 if (gotfree_input_line)
8371 {
8372 free (gotfree_input_line);
8373
8374 if (exp->X_op == O_constant || exp->X_op == O_register)
8375 exp->X_op = O_illegal;
8376 }
8377
8378 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8379
8380 RESTORE_END_STRING (disp_end);
8381
8382 return ret;
8383 }
8384
8385 static int
8386 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8387 i386_operand_type types, const char *disp_start)
8388 {
8389 i386_operand_type bigdisp;
8390 int ret = 1;
8391
8392 /* We do this to make sure that the section symbol is in
8393 the symbol table. We will ultimately change the relocation
8394 to be relative to the beginning of the section. */
8395 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8396 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8397 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8398 {
8399 if (exp->X_op != O_symbol)
8400 goto inv_disp;
8401
8402 if (S_IS_LOCAL (exp->X_add_symbol)
8403 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8404 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8405 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8406 exp->X_op = O_subtract;
8407 exp->X_op_symbol = GOT_symbol;
8408 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8409 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8410 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8411 i.reloc[this_operand] = BFD_RELOC_64;
8412 else
8413 i.reloc[this_operand] = BFD_RELOC_32;
8414 }
8415
8416 else if (exp->X_op == O_absent
8417 || exp->X_op == O_illegal
8418 || exp->X_op == O_big)
8419 {
8420 inv_disp:
8421 as_bad (_("missing or invalid displacement expression `%s'"),
8422 disp_start);
8423 ret = 0;
8424 }
8425
8426 else if (flag_code == CODE_64BIT
8427 && !i.prefix[ADDR_PREFIX]
8428 && exp->X_op == O_constant)
8429 {
8430 /* Since displacement is signed extended to 64bit, don't allow
8431 disp32 and turn off disp32s if they are out of range. */
8432 i.types[this_operand].bitfield.disp32 = 0;
8433 if (!fits_in_signed_long (exp->X_add_number))
8434 {
8435 i.types[this_operand].bitfield.disp32s = 0;
8436 if (i.types[this_operand].bitfield.baseindex)
8437 {
8438 as_bad (_("0x%lx out range of signed 32bit displacement"),
8439 (long) exp->X_add_number);
8440 ret = 0;
8441 }
8442 }
8443 }
8444
8445 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8446 else if (exp->X_op != O_constant
8447 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8448 && exp_seg != absolute_section
8449 && exp_seg != text_section
8450 && exp_seg != data_section
8451 && exp_seg != bss_section
8452 && exp_seg != undefined_section
8453 && !bfd_is_com_section (exp_seg))
8454 {
8455 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8456 ret = 0;
8457 }
8458 #endif
8459
8460 /* Check if this is a displacement only operand. */
8461 bigdisp = i.types[this_operand];
8462 bigdisp.bitfield.disp8 = 0;
8463 bigdisp.bitfield.disp16 = 0;
8464 bigdisp.bitfield.disp32 = 0;
8465 bigdisp.bitfield.disp32s = 0;
8466 bigdisp.bitfield.disp64 = 0;
8467 if (operand_type_all_zero (&bigdisp))
8468 i.types[this_operand] = operand_type_and (i.types[this_operand],
8469 types);
8470
8471 return ret;
8472 }
8473
8474 /* Make sure the memory operand we've been dealt is valid.
8475 Return 1 on success, 0 on a failure. */
8476
8477 static int
8478 i386_index_check (const char *operand_string)
8479 {
8480 const char *kind = "base/index";
8481 enum flag_code addr_mode;
8482
8483 if (i.prefix[ADDR_PREFIX])
8484 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8485 else
8486 {
8487 addr_mode = flag_code;
8488
8489 #if INFER_ADDR_PREFIX
8490 if (i.mem_operands == 0)
8491 {
8492 /* Infer address prefix from the first memory operand. */
8493 const reg_entry *addr_reg = i.base_reg;
8494
8495 if (addr_reg == NULL)
8496 addr_reg = i.index_reg;
8497
8498 if (addr_reg)
8499 {
8500 if (addr_reg->reg_num == RegEip
8501 || addr_reg->reg_num == RegEiz
8502 || addr_reg->reg_type.bitfield.reg32)
8503 addr_mode = CODE_32BIT;
8504 else if (flag_code != CODE_64BIT
8505 && addr_reg->reg_type.bitfield.reg16)
8506 addr_mode = CODE_16BIT;
8507
8508 if (addr_mode != flag_code)
8509 {
8510 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8511 i.prefixes += 1;
8512 /* Change the size of any displacement too. At most one
8513 of Disp16 or Disp32 is set.
8514 FIXME. There doesn't seem to be any real need for
8515 separate Disp16 and Disp32 flags. The same goes for
8516 Imm16 and Imm32. Removing them would probably clean
8517 up the code quite a lot. */
8518 if (flag_code != CODE_64BIT
8519 && (i.types[this_operand].bitfield.disp16
8520 || i.types[this_operand].bitfield.disp32))
8521 i.types[this_operand]
8522 = operand_type_xor (i.types[this_operand], disp16_32);
8523 }
8524 }
8525 }
8526 #endif
8527 }
8528
8529 if (current_templates->start->opcode_modifier.isstring
8530 && !current_templates->start->opcode_modifier.immext
8531 && (current_templates->end[-1].opcode_modifier.isstring
8532 || i.mem_operands))
8533 {
8534 /* Memory operands of string insns are special in that they only allow
8535 a single register (rDI, rSI, or rBX) as their memory address. */
8536 const reg_entry *expected_reg;
8537 static const char *di_si[][2] =
8538 {
8539 { "esi", "edi" },
8540 { "si", "di" },
8541 { "rsi", "rdi" }
8542 };
8543 static const char *bx[] = { "ebx", "bx", "rbx" };
8544
8545 kind = "string address";
8546
8547 if (current_templates->start->opcode_modifier.repprefixok)
8548 {
8549 i386_operand_type type = current_templates->end[-1].operand_types[0];
8550
8551 if (!type.bitfield.baseindex
8552 || ((!i.mem_operands != !intel_syntax)
8553 && current_templates->end[-1].operand_types[1]
8554 .bitfield.baseindex))
8555 type = current_templates->end[-1].operand_types[1];
8556 expected_reg = hash_find (reg_hash,
8557 di_si[addr_mode][type.bitfield.esseg]);
8558
8559 }
8560 else
8561 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8562
8563 if (i.base_reg != expected_reg
8564 || i.index_reg
8565 || operand_type_check (i.types[this_operand], disp))
8566 {
8567 /* The second memory operand must have the same size as
8568 the first one. */
8569 if (i.mem_operands
8570 && i.base_reg
8571 && !((addr_mode == CODE_64BIT
8572 && i.base_reg->reg_type.bitfield.reg64)
8573 || (addr_mode == CODE_32BIT
8574 ? i.base_reg->reg_type.bitfield.reg32
8575 : i.base_reg->reg_type.bitfield.reg16)))
8576 goto bad_address;
8577
8578 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8579 operand_string,
8580 intel_syntax ? '[' : '(',
8581 register_prefix,
8582 expected_reg->reg_name,
8583 intel_syntax ? ']' : ')');
8584 return 1;
8585 }
8586 else
8587 return 1;
8588
8589 bad_address:
8590 as_bad (_("`%s' is not a valid %s expression"),
8591 operand_string, kind);
8592 return 0;
8593 }
8594 else
8595 {
8596 if (addr_mode != CODE_16BIT)
8597 {
8598 /* 32-bit/64-bit checks. */
8599 if ((i.base_reg
8600 && (addr_mode == CODE_64BIT
8601 ? !i.base_reg->reg_type.bitfield.reg64
8602 : !i.base_reg->reg_type.bitfield.reg32)
8603 && (i.index_reg
8604 || (i.base_reg->reg_num
8605 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8606 || (i.index_reg
8607 && !i.index_reg->reg_type.bitfield.regxmm
8608 && !i.index_reg->reg_type.bitfield.regymm
8609 && !i.index_reg->reg_type.bitfield.regzmm
8610 && ((addr_mode == CODE_64BIT
8611 ? !(i.index_reg->reg_type.bitfield.reg64
8612 || i.index_reg->reg_num == RegRiz)
8613 : !(i.index_reg->reg_type.bitfield.reg32
8614 || i.index_reg->reg_num == RegEiz))
8615 || !i.index_reg->reg_type.bitfield.baseindex)))
8616 goto bad_address;
8617
8618 /* bndmk, bndldx, and bndstx have special restrictions. */
8619 if (current_templates->start->base_opcode == 0xf30f1b
8620 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8621 {
8622 /* They cannot use RIP-relative addressing. */
8623 if (i.base_reg && i.base_reg->reg_num == RegRip)
8624 {
8625 as_bad (_("`%s' cannot be used here"), operand_string);
8626 return 0;
8627 }
8628
8629 /* bndldx and bndstx ignore their scale factor. */
8630 if (current_templates->start->base_opcode != 0xf30f1b
8631 && i.log2_scale_factor)
8632 as_warn (_("register scaling is being ignored here"));
8633 }
8634 }
8635 else
8636 {
8637 /* 16-bit checks. */
8638 if ((i.base_reg
8639 && (!i.base_reg->reg_type.bitfield.reg16
8640 || !i.base_reg->reg_type.bitfield.baseindex))
8641 || (i.index_reg
8642 && (!i.index_reg->reg_type.bitfield.reg16
8643 || !i.index_reg->reg_type.bitfield.baseindex
8644 || !(i.base_reg
8645 && i.base_reg->reg_num < 6
8646 && i.index_reg->reg_num >= 6
8647 && i.log2_scale_factor == 0))))
8648 goto bad_address;
8649 }
8650 }
8651 return 1;
8652 }
8653
8654 /* Handle vector immediates. */
8655
8656 static int
8657 RC_SAE_immediate (const char *imm_start)
8658 {
8659 unsigned int match_found, j;
8660 const char *pstr = imm_start;
8661 expressionS *exp;
8662
8663 if (*pstr != '{')
8664 return 0;
8665
8666 pstr++;
8667 match_found = 0;
8668 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8669 {
8670 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8671 {
8672 if (!i.rounding)
8673 {
8674 rc_op.type = RC_NamesTable[j].type;
8675 rc_op.operand = this_operand;
8676 i.rounding = &rc_op;
8677 }
8678 else
8679 {
8680 as_bad (_("duplicated `%s'"), imm_start);
8681 return 0;
8682 }
8683 pstr += RC_NamesTable[j].len;
8684 match_found = 1;
8685 break;
8686 }
8687 }
8688 if (!match_found)
8689 return 0;
8690
8691 if (*pstr++ != '}')
8692 {
8693 as_bad (_("Missing '}': '%s'"), imm_start);
8694 return 0;
8695 }
8696 /* RC/SAE immediate string should contain nothing more. */;
8697 if (*pstr != 0)
8698 {
8699 as_bad (_("Junk after '}': '%s'"), imm_start);
8700 return 0;
8701 }
8702
8703 exp = &im_expressions[i.imm_operands++];
8704 i.op[this_operand].imms = exp;
8705
8706 exp->X_op = O_constant;
8707 exp->X_add_number = 0;
8708 exp->X_add_symbol = (symbolS *) 0;
8709 exp->X_op_symbol = (symbolS *) 0;
8710
8711 i.types[this_operand].bitfield.imm8 = 1;
8712 return 1;
8713 }
8714
8715 /* Only string instructions can have a second memory operand, so
8716 reduce current_templates to just those if it contains any. */
8717 static int
8718 maybe_adjust_templates (void)
8719 {
8720 const insn_template *t;
8721
8722 gas_assert (i.mem_operands == 1);
8723
8724 for (t = current_templates->start; t < current_templates->end; ++t)
8725 if (t->opcode_modifier.isstring)
8726 break;
8727
8728 if (t < current_templates->end)
8729 {
8730 static templates aux_templates;
8731 bfd_boolean recheck;
8732
8733 aux_templates.start = t;
8734 for (; t < current_templates->end; ++t)
8735 if (!t->opcode_modifier.isstring)
8736 break;
8737 aux_templates.end = t;
8738
8739 /* Determine whether to re-check the first memory operand. */
8740 recheck = (aux_templates.start != current_templates->start
8741 || t != current_templates->end);
8742
8743 current_templates = &aux_templates;
8744
8745 if (recheck)
8746 {
8747 i.mem_operands = 0;
8748 if (i.memop1_string != NULL
8749 && i386_index_check (i.memop1_string) == 0)
8750 return 0;
8751 i.mem_operands = 1;
8752 }
8753 }
8754
8755 return 1;
8756 }
8757
8758 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8759 on error. */
8760
8761 static int
8762 i386_att_operand (char *operand_string)
8763 {
8764 const reg_entry *r;
8765 char *end_op;
8766 char *op_string = operand_string;
8767
8768 if (is_space_char (*op_string))
8769 ++op_string;
8770
8771 /* We check for an absolute prefix (differentiating,
8772 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8773 if (*op_string == ABSOLUTE_PREFIX)
8774 {
8775 ++op_string;
8776 if (is_space_char (*op_string))
8777 ++op_string;
8778 i.types[this_operand].bitfield.jumpabsolute = 1;
8779 }
8780
8781 /* Check if operand is a register. */
8782 if ((r = parse_register (op_string, &end_op)) != NULL)
8783 {
8784 i386_operand_type temp;
8785
8786 /* Check for a segment override by searching for ':' after a
8787 segment register. */
8788 op_string = end_op;
8789 if (is_space_char (*op_string))
8790 ++op_string;
8791 if (*op_string == ':'
8792 && (r->reg_type.bitfield.sreg2
8793 || r->reg_type.bitfield.sreg3))
8794 {
8795 switch (r->reg_num)
8796 {
8797 case 0:
8798 i.seg[i.mem_operands] = &es;
8799 break;
8800 case 1:
8801 i.seg[i.mem_operands] = &cs;
8802 break;
8803 case 2:
8804 i.seg[i.mem_operands] = &ss;
8805 break;
8806 case 3:
8807 i.seg[i.mem_operands] = &ds;
8808 break;
8809 case 4:
8810 i.seg[i.mem_operands] = &fs;
8811 break;
8812 case 5:
8813 i.seg[i.mem_operands] = &gs;
8814 break;
8815 }
8816
8817 /* Skip the ':' and whitespace. */
8818 ++op_string;
8819 if (is_space_char (*op_string))
8820 ++op_string;
8821
8822 if (!is_digit_char (*op_string)
8823 && !is_identifier_char (*op_string)
8824 && *op_string != '('
8825 && *op_string != ABSOLUTE_PREFIX)
8826 {
8827 as_bad (_("bad memory operand `%s'"), op_string);
8828 return 0;
8829 }
8830 /* Handle case of %es:*foo. */
8831 if (*op_string == ABSOLUTE_PREFIX)
8832 {
8833 ++op_string;
8834 if (is_space_char (*op_string))
8835 ++op_string;
8836 i.types[this_operand].bitfield.jumpabsolute = 1;
8837 }
8838 goto do_memory_reference;
8839 }
8840
8841 /* Handle vector operations. */
8842 if (*op_string == '{')
8843 {
8844 op_string = check_VecOperations (op_string, NULL);
8845 if (op_string == NULL)
8846 return 0;
8847 }
8848
8849 if (*op_string)
8850 {
8851 as_bad (_("junk `%s' after register"), op_string);
8852 return 0;
8853 }
8854 temp = r->reg_type;
8855 temp.bitfield.baseindex = 0;
8856 i.types[this_operand] = operand_type_or (i.types[this_operand],
8857 temp);
8858 i.types[this_operand].bitfield.unspecified = 0;
8859 i.op[this_operand].regs = r;
8860 i.reg_operands++;
8861 }
8862 else if (*op_string == REGISTER_PREFIX)
8863 {
8864 as_bad (_("bad register name `%s'"), op_string);
8865 return 0;
8866 }
8867 else if (*op_string == IMMEDIATE_PREFIX)
8868 {
8869 ++op_string;
8870 if (i.types[this_operand].bitfield.jumpabsolute)
8871 {
8872 as_bad (_("immediate operand illegal with absolute jump"));
8873 return 0;
8874 }
8875 if (!i386_immediate (op_string))
8876 return 0;
8877 }
8878 else if (RC_SAE_immediate (operand_string))
8879 {
8880 /* If it is a RC or SAE immediate, do nothing. */
8881 ;
8882 }
8883 else if (is_digit_char (*op_string)
8884 || is_identifier_char (*op_string)
8885 || *op_string == '"'
8886 || *op_string == '(')
8887 {
8888 /* This is a memory reference of some sort. */
8889 char *base_string;
8890
8891 /* Start and end of displacement string expression (if found). */
8892 char *displacement_string_start;
8893 char *displacement_string_end;
8894 char *vop_start;
8895
8896 do_memory_reference:
8897 if (i.mem_operands == 1 && !maybe_adjust_templates ())
8898 return 0;
8899 if ((i.mem_operands == 1
8900 && !current_templates->start->opcode_modifier.isstring)
8901 || i.mem_operands == 2)
8902 {
8903 as_bad (_("too many memory references for `%s'"),
8904 current_templates->start->name);
8905 return 0;
8906 }
8907
8908 /* Check for base index form. We detect the base index form by
8909 looking for an ')' at the end of the operand, searching
8910 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8911 after the '('. */
8912 base_string = op_string + strlen (op_string);
8913
8914 /* Handle vector operations. */
8915 vop_start = strchr (op_string, '{');
8916 if (vop_start && vop_start < base_string)
8917 {
8918 if (check_VecOperations (vop_start, base_string) == NULL)
8919 return 0;
8920 base_string = vop_start;
8921 }
8922
8923 --base_string;
8924 if (is_space_char (*base_string))
8925 --base_string;
8926
8927 /* If we only have a displacement, set-up for it to be parsed later. */
8928 displacement_string_start = op_string;
8929 displacement_string_end = base_string + 1;
8930
8931 if (*base_string == ')')
8932 {
8933 char *temp_string;
8934 unsigned int parens_balanced = 1;
8935 /* We've already checked that the number of left & right ()'s are
8936 equal, so this loop will not be infinite. */
8937 do
8938 {
8939 base_string--;
8940 if (*base_string == ')')
8941 parens_balanced++;
8942 if (*base_string == '(')
8943 parens_balanced--;
8944 }
8945 while (parens_balanced);
8946
8947 temp_string = base_string;
8948
8949 /* Skip past '(' and whitespace. */
8950 ++base_string;
8951 if (is_space_char (*base_string))
8952 ++base_string;
8953
8954 if (*base_string == ','
8955 || ((i.base_reg = parse_register (base_string, &end_op))
8956 != NULL))
8957 {
8958 displacement_string_end = temp_string;
8959
8960 i.types[this_operand].bitfield.baseindex = 1;
8961
8962 if (i.base_reg)
8963 {
8964 base_string = end_op;
8965 if (is_space_char (*base_string))
8966 ++base_string;
8967 }
8968
8969 /* There may be an index reg or scale factor here. */
8970 if (*base_string == ',')
8971 {
8972 ++base_string;
8973 if (is_space_char (*base_string))
8974 ++base_string;
8975
8976 if ((i.index_reg = parse_register (base_string, &end_op))
8977 != NULL)
8978 {
8979 base_string = end_op;
8980 if (is_space_char (*base_string))
8981 ++base_string;
8982 if (*base_string == ',')
8983 {
8984 ++base_string;
8985 if (is_space_char (*base_string))
8986 ++base_string;
8987 }
8988 else if (*base_string != ')')
8989 {
8990 as_bad (_("expecting `,' or `)' "
8991 "after index register in `%s'"),
8992 operand_string);
8993 return 0;
8994 }
8995 }
8996 else if (*base_string == REGISTER_PREFIX)
8997 {
8998 end_op = strchr (base_string, ',');
8999 if (end_op)
9000 *end_op = '\0';
9001 as_bad (_("bad register name `%s'"), base_string);
9002 return 0;
9003 }
9004
9005 /* Check for scale factor. */
9006 if (*base_string != ')')
9007 {
9008 char *end_scale = i386_scale (base_string);
9009
9010 if (!end_scale)
9011 return 0;
9012
9013 base_string = end_scale;
9014 if (is_space_char (*base_string))
9015 ++base_string;
9016 if (*base_string != ')')
9017 {
9018 as_bad (_("expecting `)' "
9019 "after scale factor in `%s'"),
9020 operand_string);
9021 return 0;
9022 }
9023 }
9024 else if (!i.index_reg)
9025 {
9026 as_bad (_("expecting index register or scale factor "
9027 "after `,'; got '%c'"),
9028 *base_string);
9029 return 0;
9030 }
9031 }
9032 else if (*base_string != ')')
9033 {
9034 as_bad (_("expecting `,' or `)' "
9035 "after base register in `%s'"),
9036 operand_string);
9037 return 0;
9038 }
9039 }
9040 else if (*base_string == REGISTER_PREFIX)
9041 {
9042 end_op = strchr (base_string, ',');
9043 if (end_op)
9044 *end_op = '\0';
9045 as_bad (_("bad register name `%s'"), base_string);
9046 return 0;
9047 }
9048 }
9049
9050 /* If there's an expression beginning the operand, parse it,
9051 assuming displacement_string_start and
9052 displacement_string_end are meaningful. */
9053 if (displacement_string_start != displacement_string_end)
9054 {
9055 if (!i386_displacement (displacement_string_start,
9056 displacement_string_end))
9057 return 0;
9058 }
9059
9060 /* Special case for (%dx) while doing input/output op. */
9061 if (i.base_reg
9062 && operand_type_equal (&i.base_reg->reg_type,
9063 &reg16_inoutportreg)
9064 && i.index_reg == 0
9065 && i.log2_scale_factor == 0
9066 && i.seg[i.mem_operands] == 0
9067 && !operand_type_check (i.types[this_operand], disp))
9068 {
9069 i.types[this_operand] = inoutportreg;
9070 return 1;
9071 }
9072
9073 if (i386_index_check (operand_string) == 0)
9074 return 0;
9075 i.types[this_operand].bitfield.mem = 1;
9076 if (i.mem_operands == 0)
9077 i.memop1_string = xstrdup (operand_string);
9078 i.mem_operands++;
9079 }
9080 else
9081 {
9082 /* It's not a memory operand; argh! */
9083 as_bad (_("invalid char %s beginning operand %d `%s'"),
9084 output_invalid (*op_string),
9085 this_operand + 1,
9086 op_string);
9087 return 0;
9088 }
9089 return 1; /* Normal return. */
9090 }
9091 \f
9092 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9093 that an rs_machine_dependent frag may reach. */
9094
9095 unsigned int
9096 i386_frag_max_var (fragS *frag)
9097 {
9098 /* The only relaxable frags are for jumps.
9099 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9100 gas_assert (frag->fr_type == rs_machine_dependent);
9101 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9102 }
9103
9104 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9105 static int
9106 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9107 {
9108 /* STT_GNU_IFUNC symbol must go through PLT. */
9109 if ((symbol_get_bfdsym (fr_symbol)->flags
9110 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9111 return 0;
9112
9113 if (!S_IS_EXTERNAL (fr_symbol))
9114 /* Symbol may be weak or local. */
9115 return !S_IS_WEAK (fr_symbol);
9116
9117 /* Global symbols with non-default visibility can't be preempted. */
9118 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9119 return 1;
9120
9121 if (fr_var != NO_RELOC)
9122 switch ((enum bfd_reloc_code_real) fr_var)
9123 {
9124 case BFD_RELOC_386_PLT32:
9125 case BFD_RELOC_X86_64_PLT32:
9126 /* Symbol with PLT relocatin may be preempted. */
9127 return 0;
9128 default:
9129 abort ();
9130 }
9131
9132 /* Global symbols with default visibility in a shared library may be
9133 preempted by another definition. */
9134 return !shared;
9135 }
9136 #endif
9137
9138 /* md_estimate_size_before_relax()
9139
9140 Called just before relax() for rs_machine_dependent frags. The x86
9141 assembler uses these frags to handle variable size jump
9142 instructions.
9143
9144 Any symbol that is now undefined will not become defined.
9145 Return the correct fr_subtype in the frag.
9146 Return the initial "guess for variable size of frag" to caller.
9147 The guess is actually the growth beyond the fixed part. Whatever
9148 we do to grow the fixed or variable part contributes to our
9149 returned value. */
9150
9151 int
9152 md_estimate_size_before_relax (fragS *fragP, segT segment)
9153 {
9154 /* We've already got fragP->fr_subtype right; all we have to do is
9155 check for un-relaxable symbols. On an ELF system, we can't relax
9156 an externally visible symbol, because it may be overridden by a
9157 shared library. */
9158 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9159 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9160 || (IS_ELF
9161 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9162 fragP->fr_var))
9163 #endif
9164 #if defined (OBJ_COFF) && defined (TE_PE)
9165 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9166 && S_IS_WEAK (fragP->fr_symbol))
9167 #endif
9168 )
9169 {
9170 /* Symbol is undefined in this segment, or we need to keep a
9171 reloc so that weak symbols can be overridden. */
9172 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9173 enum bfd_reloc_code_real reloc_type;
9174 unsigned char *opcode;
9175 int old_fr_fix;
9176
9177 if (fragP->fr_var != NO_RELOC)
9178 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9179 else if (size == 2)
9180 reloc_type = BFD_RELOC_16_PCREL;
9181 else
9182 reloc_type = BFD_RELOC_32_PCREL;
9183
9184 old_fr_fix = fragP->fr_fix;
9185 opcode = (unsigned char *) fragP->fr_opcode;
9186
9187 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9188 {
9189 case UNCOND_JUMP:
9190 /* Make jmp (0xeb) a (d)word displacement jump. */
9191 opcode[0] = 0xe9;
9192 fragP->fr_fix += size;
9193 fix_new (fragP, old_fr_fix, size,
9194 fragP->fr_symbol,
9195 fragP->fr_offset, 1,
9196 reloc_type);
9197 break;
9198
9199 case COND_JUMP86:
9200 if (size == 2
9201 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9202 {
9203 /* Negate the condition, and branch past an
9204 unconditional jump. */
9205 opcode[0] ^= 1;
9206 opcode[1] = 3;
9207 /* Insert an unconditional jump. */
9208 opcode[2] = 0xe9;
9209 /* We added two extra opcode bytes, and have a two byte
9210 offset. */
9211 fragP->fr_fix += 2 + 2;
9212 fix_new (fragP, old_fr_fix + 2, 2,
9213 fragP->fr_symbol,
9214 fragP->fr_offset, 1,
9215 reloc_type);
9216 break;
9217 }
9218 /* Fall through. */
9219
9220 case COND_JUMP:
9221 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9222 {
9223 fixS *fixP;
9224
9225 fragP->fr_fix += 1;
9226 fixP = fix_new (fragP, old_fr_fix, 1,
9227 fragP->fr_symbol,
9228 fragP->fr_offset, 1,
9229 BFD_RELOC_8_PCREL);
9230 fixP->fx_signed = 1;
9231 break;
9232 }
9233
9234 /* This changes the byte-displacement jump 0x7N
9235 to the (d)word-displacement jump 0x0f,0x8N. */
9236 opcode[1] = opcode[0] + 0x10;
9237 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9238 /* We've added an opcode byte. */
9239 fragP->fr_fix += 1 + size;
9240 fix_new (fragP, old_fr_fix + 1, size,
9241 fragP->fr_symbol,
9242 fragP->fr_offset, 1,
9243 reloc_type);
9244 break;
9245
9246 default:
9247 BAD_CASE (fragP->fr_subtype);
9248 break;
9249 }
9250 frag_wane (fragP);
9251 return fragP->fr_fix - old_fr_fix;
9252 }
9253
9254 /* Guess size depending on current relax state. Initially the relax
9255 state will correspond to a short jump and we return 1, because
9256 the variable part of the frag (the branch offset) is one byte
9257 long. However, we can relax a section more than once and in that
9258 case we must either set fr_subtype back to the unrelaxed state,
9259 or return the value for the appropriate branch. */
9260 return md_relax_table[fragP->fr_subtype].rlx_length;
9261 }
9262
9263 /* Called after relax() is finished.
9264
9265 In: Address of frag.
9266 fr_type == rs_machine_dependent.
9267 fr_subtype is what the address relaxed to.
9268
9269 Out: Any fixSs and constants are set up.
9270 Caller will turn frag into a ".space 0". */
9271
9272 void
9273 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9274 fragS *fragP)
9275 {
9276 unsigned char *opcode;
9277 unsigned char *where_to_put_displacement = NULL;
9278 offsetT target_address;
9279 offsetT opcode_address;
9280 unsigned int extension = 0;
9281 offsetT displacement_from_opcode_start;
9282
9283 opcode = (unsigned char *) fragP->fr_opcode;
9284
9285 /* Address we want to reach in file space. */
9286 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9287
9288 /* Address opcode resides at in file space. */
9289 opcode_address = fragP->fr_address + fragP->fr_fix;
9290
9291 /* Displacement from opcode start to fill into instruction. */
9292 displacement_from_opcode_start = target_address - opcode_address;
9293
9294 if ((fragP->fr_subtype & BIG) == 0)
9295 {
9296 /* Don't have to change opcode. */
9297 extension = 1; /* 1 opcode + 1 displacement */
9298 where_to_put_displacement = &opcode[1];
9299 }
9300 else
9301 {
9302 if (no_cond_jump_promotion
9303 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9304 as_warn_where (fragP->fr_file, fragP->fr_line,
9305 _("long jump required"));
9306
9307 switch (fragP->fr_subtype)
9308 {
9309 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9310 extension = 4; /* 1 opcode + 4 displacement */
9311 opcode[0] = 0xe9;
9312 where_to_put_displacement = &opcode[1];
9313 break;
9314
9315 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9316 extension = 2; /* 1 opcode + 2 displacement */
9317 opcode[0] = 0xe9;
9318 where_to_put_displacement = &opcode[1];
9319 break;
9320
9321 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9322 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9323 extension = 5; /* 2 opcode + 4 displacement */
9324 opcode[1] = opcode[0] + 0x10;
9325 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9326 where_to_put_displacement = &opcode[2];
9327 break;
9328
9329 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9330 extension = 3; /* 2 opcode + 2 displacement */
9331 opcode[1] = opcode[0] + 0x10;
9332 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9333 where_to_put_displacement = &opcode[2];
9334 break;
9335
9336 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9337 extension = 4;
9338 opcode[0] ^= 1;
9339 opcode[1] = 3;
9340 opcode[2] = 0xe9;
9341 where_to_put_displacement = &opcode[3];
9342 break;
9343
9344 default:
9345 BAD_CASE (fragP->fr_subtype);
9346 break;
9347 }
9348 }
9349
9350 /* If size if less then four we are sure that the operand fits,
9351 but if it's 4, then it could be that the displacement is larger
9352 then -/+ 2GB. */
9353 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9354 && object_64bit
9355 && ((addressT) (displacement_from_opcode_start - extension
9356 + ((addressT) 1 << 31))
9357 > (((addressT) 2 << 31) - 1)))
9358 {
9359 as_bad_where (fragP->fr_file, fragP->fr_line,
9360 _("jump target out of range"));
9361 /* Make us emit 0. */
9362 displacement_from_opcode_start = extension;
9363 }
9364 /* Now put displacement after opcode. */
9365 md_number_to_chars ((char *) where_to_put_displacement,
9366 (valueT) (displacement_from_opcode_start - extension),
9367 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9368 fragP->fr_fix += extension;
9369 }
9370 \f
9371 /* Apply a fixup (fixP) to segment data, once it has been determined
9372 by our caller that we have all the info we need to fix it up.
9373
9374 Parameter valP is the pointer to the value of the bits.
9375
9376 On the 386, immediates, displacements, and data pointers are all in
9377 the same (little-endian) format, so we don't need to care about which
9378 we are handling. */
9379
9380 void
9381 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9382 {
9383 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9384 valueT value = *valP;
9385
9386 #if !defined (TE_Mach)
9387 if (fixP->fx_pcrel)
9388 {
9389 switch (fixP->fx_r_type)
9390 {
9391 default:
9392 break;
9393
9394 case BFD_RELOC_64:
9395 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9396 break;
9397 case BFD_RELOC_32:
9398 case BFD_RELOC_X86_64_32S:
9399 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9400 break;
9401 case BFD_RELOC_16:
9402 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9403 break;
9404 case BFD_RELOC_8:
9405 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9406 break;
9407 }
9408 }
9409
9410 if (fixP->fx_addsy != NULL
9411 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9412 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9413 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9414 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9415 && !use_rela_relocations)
9416 {
9417 /* This is a hack. There should be a better way to handle this.
9418 This covers for the fact that bfd_install_relocation will
9419 subtract the current location (for partial_inplace, PC relative
9420 relocations); see more below. */
9421 #ifndef OBJ_AOUT
9422 if (IS_ELF
9423 #ifdef TE_PE
9424 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9425 #endif
9426 )
9427 value += fixP->fx_where + fixP->fx_frag->fr_address;
9428 #endif
9429 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9430 if (IS_ELF)
9431 {
9432 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9433
9434 if ((sym_seg == seg
9435 || (symbol_section_p (fixP->fx_addsy)
9436 && sym_seg != absolute_section))
9437 && !generic_force_reloc (fixP))
9438 {
9439 /* Yes, we add the values in twice. This is because
9440 bfd_install_relocation subtracts them out again. I think
9441 bfd_install_relocation is broken, but I don't dare change
9442 it. FIXME. */
9443 value += fixP->fx_where + fixP->fx_frag->fr_address;
9444 }
9445 }
9446 #endif
9447 #if defined (OBJ_COFF) && defined (TE_PE)
9448 /* For some reason, the PE format does not store a
9449 section address offset for a PC relative symbol. */
9450 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9451 || S_IS_WEAK (fixP->fx_addsy))
9452 value += md_pcrel_from (fixP);
9453 #endif
9454 }
9455 #if defined (OBJ_COFF) && defined (TE_PE)
9456 if (fixP->fx_addsy != NULL
9457 && S_IS_WEAK (fixP->fx_addsy)
9458 /* PR 16858: Do not modify weak function references. */
9459 && ! fixP->fx_pcrel)
9460 {
9461 #if !defined (TE_PEP)
9462 /* For x86 PE weak function symbols are neither PC-relative
9463 nor do they set S_IS_FUNCTION. So the only reliable way
9464 to detect them is to check the flags of their containing
9465 section. */
9466 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9467 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9468 ;
9469 else
9470 #endif
9471 value -= S_GET_VALUE (fixP->fx_addsy);
9472 }
9473 #endif
9474
9475 /* Fix a few things - the dynamic linker expects certain values here,
9476 and we must not disappoint it. */
9477 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9478 if (IS_ELF && fixP->fx_addsy)
9479 switch (fixP->fx_r_type)
9480 {
9481 case BFD_RELOC_386_PLT32:
9482 case BFD_RELOC_X86_64_PLT32:
9483 /* Make the jump instruction point to the address of the operand. At
9484 runtime we merely add the offset to the actual PLT entry. */
9485 value = -4;
9486 break;
9487
9488 case BFD_RELOC_386_TLS_GD:
9489 case BFD_RELOC_386_TLS_LDM:
9490 case BFD_RELOC_386_TLS_IE_32:
9491 case BFD_RELOC_386_TLS_IE:
9492 case BFD_RELOC_386_TLS_GOTIE:
9493 case BFD_RELOC_386_TLS_GOTDESC:
9494 case BFD_RELOC_X86_64_TLSGD:
9495 case BFD_RELOC_X86_64_TLSLD:
9496 case BFD_RELOC_X86_64_GOTTPOFF:
9497 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9498 value = 0; /* Fully resolved at runtime. No addend. */
9499 /* Fallthrough */
9500 case BFD_RELOC_386_TLS_LE:
9501 case BFD_RELOC_386_TLS_LDO_32:
9502 case BFD_RELOC_386_TLS_LE_32:
9503 case BFD_RELOC_X86_64_DTPOFF32:
9504 case BFD_RELOC_X86_64_DTPOFF64:
9505 case BFD_RELOC_X86_64_TPOFF32:
9506 case BFD_RELOC_X86_64_TPOFF64:
9507 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9508 break;
9509
9510 case BFD_RELOC_386_TLS_DESC_CALL:
9511 case BFD_RELOC_X86_64_TLSDESC_CALL:
9512 value = 0; /* Fully resolved at runtime. No addend. */
9513 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9514 fixP->fx_done = 0;
9515 return;
9516
9517 case BFD_RELOC_VTABLE_INHERIT:
9518 case BFD_RELOC_VTABLE_ENTRY:
9519 fixP->fx_done = 0;
9520 return;
9521
9522 default:
9523 break;
9524 }
9525 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9526 *valP = value;
9527 #endif /* !defined (TE_Mach) */
9528
9529 /* Are we finished with this relocation now? */
9530 if (fixP->fx_addsy == NULL)
9531 fixP->fx_done = 1;
9532 #if defined (OBJ_COFF) && defined (TE_PE)
9533 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9534 {
9535 fixP->fx_done = 0;
9536 /* Remember value for tc_gen_reloc. */
9537 fixP->fx_addnumber = value;
9538 /* Clear out the frag for now. */
9539 value = 0;
9540 }
9541 #endif
9542 else if (use_rela_relocations)
9543 {
9544 fixP->fx_no_overflow = 1;
9545 /* Remember value for tc_gen_reloc. */
9546 fixP->fx_addnumber = value;
9547 value = 0;
9548 }
9549
9550 md_number_to_chars (p, value, fixP->fx_size);
9551 }
9552 \f
9553 const char *
9554 md_atof (int type, char *litP, int *sizeP)
9555 {
9556 /* This outputs the LITTLENUMs in REVERSE order;
9557 in accord with the bigendian 386. */
9558 return ieee_md_atof (type, litP, sizeP, FALSE);
9559 }
9560 \f
9561 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9562
9563 static char *
9564 output_invalid (int c)
9565 {
9566 if (ISPRINT (c))
9567 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9568 "'%c'", c);
9569 else
9570 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9571 "(0x%x)", (unsigned char) c);
9572 return output_invalid_buf;
9573 }
9574
9575 /* REG_STRING starts *before* REGISTER_PREFIX. */
9576
9577 static const reg_entry *
9578 parse_real_register (char *reg_string, char **end_op)
9579 {
9580 char *s = reg_string;
9581 char *p;
9582 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9583 const reg_entry *r;
9584
9585 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9586 if (*s == REGISTER_PREFIX)
9587 ++s;
9588
9589 if (is_space_char (*s))
9590 ++s;
9591
9592 p = reg_name_given;
9593 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9594 {
9595 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9596 return (const reg_entry *) NULL;
9597 s++;
9598 }
9599
9600 /* For naked regs, make sure that we are not dealing with an identifier.
9601 This prevents confusing an identifier like `eax_var' with register
9602 `eax'. */
9603 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9604 return (const reg_entry *) NULL;
9605
9606 *end_op = s;
9607
9608 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9609
9610 /* Handle floating point regs, allowing spaces in the (i) part. */
9611 if (r == i386_regtab /* %st is first entry of table */)
9612 {
9613 if (is_space_char (*s))
9614 ++s;
9615 if (*s == '(')
9616 {
9617 ++s;
9618 if (is_space_char (*s))
9619 ++s;
9620 if (*s >= '0' && *s <= '7')
9621 {
9622 int fpr = *s - '0';
9623 ++s;
9624 if (is_space_char (*s))
9625 ++s;
9626 if (*s == ')')
9627 {
9628 *end_op = s + 1;
9629 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9630 know (r);
9631 return r + fpr;
9632 }
9633 }
9634 /* We have "%st(" then garbage. */
9635 return (const reg_entry *) NULL;
9636 }
9637 }
9638
9639 if (r == NULL || allow_pseudo_reg)
9640 return r;
9641
9642 if (operand_type_all_zero (&r->reg_type))
9643 return (const reg_entry *) NULL;
9644
9645 if ((r->reg_type.bitfield.reg32
9646 || r->reg_type.bitfield.sreg3
9647 || r->reg_type.bitfield.control
9648 || r->reg_type.bitfield.debug
9649 || r->reg_type.bitfield.test)
9650 && !cpu_arch_flags.bitfield.cpui386)
9651 return (const reg_entry *) NULL;
9652
9653 if (r->reg_type.bitfield.floatreg
9654 && !cpu_arch_flags.bitfield.cpu8087
9655 && !cpu_arch_flags.bitfield.cpu287
9656 && !cpu_arch_flags.bitfield.cpu387)
9657 return (const reg_entry *) NULL;
9658
9659 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9660 return (const reg_entry *) NULL;
9661
9662 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9663 return (const reg_entry *) NULL;
9664
9665 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9666 return (const reg_entry *) NULL;
9667
9668 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9669 return (const reg_entry *) NULL;
9670
9671 if (r->reg_type.bitfield.regmask
9672 && !cpu_arch_flags.bitfield.cpuregmask)
9673 return (const reg_entry *) NULL;
9674
9675 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9676 if (!allow_index_reg
9677 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9678 return (const reg_entry *) NULL;
9679
9680 /* Upper 16 vector register is only available with VREX in 64bit
9681 mode. */
9682 if ((r->reg_flags & RegVRex))
9683 {
9684 if (!cpu_arch_flags.bitfield.cpuvrex
9685 || flag_code != CODE_64BIT)
9686 return (const reg_entry *) NULL;
9687
9688 i.need_vrex = 1;
9689 }
9690
9691 if (((r->reg_flags & (RegRex64 | RegRex))
9692 || r->reg_type.bitfield.reg64)
9693 && (!cpu_arch_flags.bitfield.cpulm
9694 || !operand_type_equal (&r->reg_type, &control))
9695 && flag_code != CODE_64BIT)
9696 return (const reg_entry *) NULL;
9697
9698 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9699 return (const reg_entry *) NULL;
9700
9701 return r;
9702 }
9703
9704 /* REG_STRING starts *before* REGISTER_PREFIX. */
9705
9706 static const reg_entry *
9707 parse_register (char *reg_string, char **end_op)
9708 {
9709 const reg_entry *r;
9710
9711 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9712 r = parse_real_register (reg_string, end_op);
9713 else
9714 r = NULL;
9715 if (!r)
9716 {
9717 char *save = input_line_pointer;
9718 char c;
9719 symbolS *symbolP;
9720
9721 input_line_pointer = reg_string;
9722 c = get_symbol_name (&reg_string);
9723 symbolP = symbol_find (reg_string);
9724 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9725 {
9726 const expressionS *e = symbol_get_value_expression (symbolP);
9727
9728 know (e->X_op == O_register);
9729 know (e->X_add_number >= 0
9730 && (valueT) e->X_add_number < i386_regtab_size);
9731 r = i386_regtab + e->X_add_number;
9732 if ((r->reg_flags & RegVRex))
9733 i.need_vrex = 1;
9734 *end_op = input_line_pointer;
9735 }
9736 *input_line_pointer = c;
9737 input_line_pointer = save;
9738 }
9739 return r;
9740 }
9741
9742 int
9743 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9744 {
9745 const reg_entry *r;
9746 char *end = input_line_pointer;
9747
9748 *end = *nextcharP;
9749 r = parse_register (name, &input_line_pointer);
9750 if (r && end <= input_line_pointer)
9751 {
9752 *nextcharP = *input_line_pointer;
9753 *input_line_pointer = 0;
9754 e->X_op = O_register;
9755 e->X_add_number = r - i386_regtab;
9756 return 1;
9757 }
9758 input_line_pointer = end;
9759 *end = 0;
9760 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9761 }
9762
9763 void
9764 md_operand (expressionS *e)
9765 {
9766 char *end;
9767 const reg_entry *r;
9768
9769 switch (*input_line_pointer)
9770 {
9771 case REGISTER_PREFIX:
9772 r = parse_real_register (input_line_pointer, &end);
9773 if (r)
9774 {
9775 e->X_op = O_register;
9776 e->X_add_number = r - i386_regtab;
9777 input_line_pointer = end;
9778 }
9779 break;
9780
9781 case '[':
9782 gas_assert (intel_syntax);
9783 end = input_line_pointer++;
9784 expression (e);
9785 if (*input_line_pointer == ']')
9786 {
9787 ++input_line_pointer;
9788 e->X_op_symbol = make_expr_symbol (e);
9789 e->X_add_symbol = NULL;
9790 e->X_add_number = 0;
9791 e->X_op = O_index;
9792 }
9793 else
9794 {
9795 e->X_op = O_absent;
9796 input_line_pointer = end;
9797 }
9798 break;
9799 }
9800 }
9801
9802 \f
9803 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9804 const char *md_shortopts = "kVQ:sqn";
9805 #else
9806 const char *md_shortopts = "qn";
9807 #endif
9808
9809 #define OPTION_32 (OPTION_MD_BASE + 0)
9810 #define OPTION_64 (OPTION_MD_BASE + 1)
9811 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9812 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9813 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9814 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9815 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9816 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9817 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9818 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9819 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9820 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9821 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9822 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9823 #define OPTION_X32 (OPTION_MD_BASE + 14)
9824 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9825 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9826 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9827 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9828 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9829 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9830 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9831 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9832 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9833 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9834 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9835
9836 struct option md_longopts[] =
9837 {
9838 {"32", no_argument, NULL, OPTION_32},
9839 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9840 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9841 {"64", no_argument, NULL, OPTION_64},
9842 #endif
9843 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9844 {"x32", no_argument, NULL, OPTION_X32},
9845 {"mshared", no_argument, NULL, OPTION_MSHARED},
9846 #endif
9847 {"divide", no_argument, NULL, OPTION_DIVIDE},
9848 {"march", required_argument, NULL, OPTION_MARCH},
9849 {"mtune", required_argument, NULL, OPTION_MTUNE},
9850 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9851 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9852 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9853 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9854 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9855 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9856 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9857 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9858 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9859 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9860 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9861 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9862 # if defined (TE_PE) || defined (TE_PEP)
9863 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9864 #endif
9865 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
9866 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
9867 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
9868 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9869 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9870 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
9871 {NULL, no_argument, NULL, 0}
9872 };
9873 size_t md_longopts_size = sizeof (md_longopts);
9874
9875 int
9876 md_parse_option (int c, const char *arg)
9877 {
9878 unsigned int j;
9879 char *arch, *next, *saved;
9880
9881 switch (c)
9882 {
9883 case 'n':
9884 optimize_align_code = 0;
9885 break;
9886
9887 case 'q':
9888 quiet_warnings = 1;
9889 break;
9890
9891 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9892 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9893 should be emitted or not. FIXME: Not implemented. */
9894 case 'Q':
9895 break;
9896
9897 /* -V: SVR4 argument to print version ID. */
9898 case 'V':
9899 print_version_id ();
9900 break;
9901
9902 /* -k: Ignore for FreeBSD compatibility. */
9903 case 'k':
9904 break;
9905
9906 case 's':
9907 /* -s: On i386 Solaris, this tells the native assembler to use
9908 .stab instead of .stab.excl. We always use .stab anyhow. */
9909 break;
9910
9911 case OPTION_MSHARED:
9912 shared = 1;
9913 break;
9914 #endif
9915 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9916 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9917 case OPTION_64:
9918 {
9919 const char **list, **l;
9920
9921 list = bfd_target_list ();
9922 for (l = list; *l != NULL; l++)
9923 if (CONST_STRNEQ (*l, "elf64-x86-64")
9924 || strcmp (*l, "coff-x86-64") == 0
9925 || strcmp (*l, "pe-x86-64") == 0
9926 || strcmp (*l, "pei-x86-64") == 0
9927 || strcmp (*l, "mach-o-x86-64") == 0)
9928 {
9929 default_arch = "x86_64";
9930 break;
9931 }
9932 if (*l == NULL)
9933 as_fatal (_("no compiled in support for x86_64"));
9934 free (list);
9935 }
9936 break;
9937 #endif
9938
9939 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9940 case OPTION_X32:
9941 if (IS_ELF)
9942 {
9943 const char **list, **l;
9944
9945 list = bfd_target_list ();
9946 for (l = list; *l != NULL; l++)
9947 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9948 {
9949 default_arch = "x86_64:32";
9950 break;
9951 }
9952 if (*l == NULL)
9953 as_fatal (_("no compiled in support for 32bit x86_64"));
9954 free (list);
9955 }
9956 else
9957 as_fatal (_("32bit x86_64 is only supported for ELF"));
9958 break;
9959 #endif
9960
9961 case OPTION_32:
9962 default_arch = "i386";
9963 break;
9964
9965 case OPTION_DIVIDE:
9966 #ifdef SVR4_COMMENT_CHARS
9967 {
9968 char *n, *t;
9969 const char *s;
9970
9971 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
9972 t = n;
9973 for (s = i386_comment_chars; *s != '\0'; s++)
9974 if (*s != '/')
9975 *t++ = *s;
9976 *t = '\0';
9977 i386_comment_chars = n;
9978 }
9979 #endif
9980 break;
9981
9982 case OPTION_MARCH:
9983 saved = xstrdup (arg);
9984 arch = saved;
9985 /* Allow -march=+nosse. */
9986 if (*arch == '+')
9987 arch++;
9988 do
9989 {
9990 if (*arch == '.')
9991 as_fatal (_("invalid -march= option: `%s'"), arg);
9992 next = strchr (arch, '+');
9993 if (next)
9994 *next++ = '\0';
9995 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9996 {
9997 if (strcmp (arch, cpu_arch [j].name) == 0)
9998 {
9999 /* Processor. */
10000 if (! cpu_arch[j].flags.bitfield.cpui386)
10001 continue;
10002
10003 cpu_arch_name = cpu_arch[j].name;
10004 cpu_sub_arch_name = NULL;
10005 cpu_arch_flags = cpu_arch[j].flags;
10006 cpu_arch_isa = cpu_arch[j].type;
10007 cpu_arch_isa_flags = cpu_arch[j].flags;
10008 if (!cpu_arch_tune_set)
10009 {
10010 cpu_arch_tune = cpu_arch_isa;
10011 cpu_arch_tune_flags = cpu_arch_isa_flags;
10012 }
10013 break;
10014 }
10015 else if (*cpu_arch [j].name == '.'
10016 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10017 {
10018 /* ISA entension. */
10019 i386_cpu_flags flags;
10020
10021 flags = cpu_flags_or (cpu_arch_flags,
10022 cpu_arch[j].flags);
10023
10024 if (!valid_iamcu_cpu_flags (&flags))
10025 as_fatal (_("`%s' isn't valid for Intel MCU"), arch);
10026 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10027 {
10028 if (cpu_sub_arch_name)
10029 {
10030 char *name = cpu_sub_arch_name;
10031 cpu_sub_arch_name = concat (name,
10032 cpu_arch[j].name,
10033 (const char *) NULL);
10034 free (name);
10035 }
10036 else
10037 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10038 cpu_arch_flags = flags;
10039 cpu_arch_isa_flags = flags;
10040 }
10041 break;
10042 }
10043 }
10044
10045 if (j >= ARRAY_SIZE (cpu_arch))
10046 {
10047 /* Disable an ISA entension. */
10048 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10049 if (strcmp (arch, cpu_noarch [j].name) == 0)
10050 {
10051 i386_cpu_flags flags;
10052
10053 flags = cpu_flags_and_not (cpu_arch_flags,
10054 cpu_noarch[j].flags);
10055 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10056 {
10057 if (cpu_sub_arch_name)
10058 {
10059 char *name = cpu_sub_arch_name;
10060 cpu_sub_arch_name = concat (arch,
10061 (const char *) NULL);
10062 free (name);
10063 }
10064 else
10065 cpu_sub_arch_name = xstrdup (arch);
10066 cpu_arch_flags = flags;
10067 cpu_arch_isa_flags = flags;
10068 }
10069 break;
10070 }
10071
10072 if (j >= ARRAY_SIZE (cpu_noarch))
10073 j = ARRAY_SIZE (cpu_arch);
10074 }
10075
10076 if (j >= ARRAY_SIZE (cpu_arch))
10077 as_fatal (_("invalid -march= option: `%s'"), arg);
10078
10079 arch = next;
10080 }
10081 while (next != NULL);
10082 free (saved);
10083 break;
10084
10085 case OPTION_MTUNE:
10086 if (*arg == '.')
10087 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10088 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10089 {
10090 if (strcmp (arg, cpu_arch [j].name) == 0)
10091 {
10092 cpu_arch_tune_set = 1;
10093 cpu_arch_tune = cpu_arch [j].type;
10094 cpu_arch_tune_flags = cpu_arch[j].flags;
10095 break;
10096 }
10097 }
10098 if (j >= ARRAY_SIZE (cpu_arch))
10099 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10100 break;
10101
10102 case OPTION_MMNEMONIC:
10103 if (strcasecmp (arg, "att") == 0)
10104 intel_mnemonic = 0;
10105 else if (strcasecmp (arg, "intel") == 0)
10106 intel_mnemonic = 1;
10107 else
10108 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10109 break;
10110
10111 case OPTION_MSYNTAX:
10112 if (strcasecmp (arg, "att") == 0)
10113 intel_syntax = 0;
10114 else if (strcasecmp (arg, "intel") == 0)
10115 intel_syntax = 1;
10116 else
10117 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10118 break;
10119
10120 case OPTION_MINDEX_REG:
10121 allow_index_reg = 1;
10122 break;
10123
10124 case OPTION_MNAKED_REG:
10125 allow_naked_reg = 1;
10126 break;
10127
10128 case OPTION_MOLD_GCC:
10129 old_gcc = 1;
10130 break;
10131
10132 case OPTION_MSSE2AVX:
10133 sse2avx = 1;
10134 break;
10135
10136 case OPTION_MSSE_CHECK:
10137 if (strcasecmp (arg, "error") == 0)
10138 sse_check = check_error;
10139 else if (strcasecmp (arg, "warning") == 0)
10140 sse_check = check_warning;
10141 else if (strcasecmp (arg, "none") == 0)
10142 sse_check = check_none;
10143 else
10144 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10145 break;
10146
10147 case OPTION_MOPERAND_CHECK:
10148 if (strcasecmp (arg, "error") == 0)
10149 operand_check = check_error;
10150 else if (strcasecmp (arg, "warning") == 0)
10151 operand_check = check_warning;
10152 else if (strcasecmp (arg, "none") == 0)
10153 operand_check = check_none;
10154 else
10155 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10156 break;
10157
10158 case OPTION_MAVXSCALAR:
10159 if (strcasecmp (arg, "128") == 0)
10160 avxscalar = vex128;
10161 else if (strcasecmp (arg, "256") == 0)
10162 avxscalar = vex256;
10163 else
10164 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10165 break;
10166
10167 case OPTION_MADD_BND_PREFIX:
10168 add_bnd_prefix = 1;
10169 break;
10170
10171 case OPTION_MEVEXLIG:
10172 if (strcmp (arg, "128") == 0)
10173 evexlig = evexl128;
10174 else if (strcmp (arg, "256") == 0)
10175 evexlig = evexl256;
10176 else if (strcmp (arg, "512") == 0)
10177 evexlig = evexl512;
10178 else
10179 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10180 break;
10181
10182 case OPTION_MEVEXRCIG:
10183 if (strcmp (arg, "rne") == 0)
10184 evexrcig = rne;
10185 else if (strcmp (arg, "rd") == 0)
10186 evexrcig = rd;
10187 else if (strcmp (arg, "ru") == 0)
10188 evexrcig = ru;
10189 else if (strcmp (arg, "rz") == 0)
10190 evexrcig = rz;
10191 else
10192 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10193 break;
10194
10195 case OPTION_MEVEXWIG:
10196 if (strcmp (arg, "0") == 0)
10197 evexwig = evexw0;
10198 else if (strcmp (arg, "1") == 0)
10199 evexwig = evexw1;
10200 else
10201 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10202 break;
10203
10204 # if defined (TE_PE) || defined (TE_PEP)
10205 case OPTION_MBIG_OBJ:
10206 use_big_obj = 1;
10207 break;
10208 #endif
10209
10210 case OPTION_MOMIT_LOCK_PREFIX:
10211 if (strcasecmp (arg, "yes") == 0)
10212 omit_lock_prefix = 1;
10213 else if (strcasecmp (arg, "no") == 0)
10214 omit_lock_prefix = 0;
10215 else
10216 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10217 break;
10218
10219 case OPTION_MFENCE_AS_LOCK_ADD:
10220 if (strcasecmp (arg, "yes") == 0)
10221 avoid_fence = 1;
10222 else if (strcasecmp (arg, "no") == 0)
10223 avoid_fence = 0;
10224 else
10225 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10226 break;
10227
10228 case OPTION_MRELAX_RELOCATIONS:
10229 if (strcasecmp (arg, "yes") == 0)
10230 generate_relax_relocations = 1;
10231 else if (strcasecmp (arg, "no") == 0)
10232 generate_relax_relocations = 0;
10233 else
10234 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10235 break;
10236
10237 case OPTION_MAMD64:
10238 intel64 = 0;
10239 break;
10240
10241 case OPTION_MINTEL64:
10242 intel64 = 1;
10243 break;
10244
10245 default:
10246 return 0;
10247 }
10248 return 1;
10249 }
10250
10251 #define MESSAGE_TEMPLATE \
10252 " "
10253
10254 static char *
10255 output_message (FILE *stream, char *p, char *message, char *start,
10256 int *left_p, const char *name, int len)
10257 {
10258 int size = sizeof (MESSAGE_TEMPLATE);
10259 int left = *left_p;
10260
10261 /* Reserve 2 spaces for ", " or ",\0" */
10262 left -= len + 2;
10263
10264 /* Check if there is any room. */
10265 if (left >= 0)
10266 {
10267 if (p != start)
10268 {
10269 *p++ = ',';
10270 *p++ = ' ';
10271 }
10272 p = mempcpy (p, name, len);
10273 }
10274 else
10275 {
10276 /* Output the current message now and start a new one. */
10277 *p++ = ',';
10278 *p = '\0';
10279 fprintf (stream, "%s\n", message);
10280 p = start;
10281 left = size - (start - message) - len - 2;
10282
10283 gas_assert (left >= 0);
10284
10285 p = mempcpy (p, name, len);
10286 }
10287
10288 *left_p = left;
10289 return p;
10290 }
10291
10292 static void
10293 show_arch (FILE *stream, int ext, int check)
10294 {
10295 static char message[] = MESSAGE_TEMPLATE;
10296 char *start = message + 27;
10297 char *p;
10298 int size = sizeof (MESSAGE_TEMPLATE);
10299 int left;
10300 const char *name;
10301 int len;
10302 unsigned int j;
10303
10304 p = start;
10305 left = size - (start - message);
10306 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10307 {
10308 /* Should it be skipped? */
10309 if (cpu_arch [j].skip)
10310 continue;
10311
10312 name = cpu_arch [j].name;
10313 len = cpu_arch [j].len;
10314 if (*name == '.')
10315 {
10316 /* It is an extension. Skip if we aren't asked to show it. */
10317 if (ext)
10318 {
10319 name++;
10320 len--;
10321 }
10322 else
10323 continue;
10324 }
10325 else if (ext)
10326 {
10327 /* It is an processor. Skip if we show only extension. */
10328 continue;
10329 }
10330 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10331 {
10332 /* It is an impossible processor - skip. */
10333 continue;
10334 }
10335
10336 p = output_message (stream, p, message, start, &left, name, len);
10337 }
10338
10339 /* Display disabled extensions. */
10340 if (ext)
10341 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10342 {
10343 name = cpu_noarch [j].name;
10344 len = cpu_noarch [j].len;
10345 p = output_message (stream, p, message, start, &left, name,
10346 len);
10347 }
10348
10349 *p = '\0';
10350 fprintf (stream, "%s\n", message);
10351 }
10352
10353 void
10354 md_show_usage (FILE *stream)
10355 {
10356 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10357 fprintf (stream, _("\
10358 -Q ignored\n\
10359 -V print assembler version number\n\
10360 -k ignored\n"));
10361 #endif
10362 fprintf (stream, _("\
10363 -n Do not optimize code alignment\n\
10364 -q quieten some warnings\n"));
10365 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10366 fprintf (stream, _("\
10367 -s ignored\n"));
10368 #endif
10369 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10370 || defined (TE_PE) || defined (TE_PEP))
10371 fprintf (stream, _("\
10372 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10373 #endif
10374 #ifdef SVR4_COMMENT_CHARS
10375 fprintf (stream, _("\
10376 --divide do not treat `/' as a comment character\n"));
10377 #else
10378 fprintf (stream, _("\
10379 --divide ignored\n"));
10380 #endif
10381 fprintf (stream, _("\
10382 -march=CPU[,+EXTENSION...]\n\
10383 generate code for CPU and EXTENSION, CPU is one of:\n"));
10384 show_arch (stream, 0, 1);
10385 fprintf (stream, _("\
10386 EXTENSION is combination of:\n"));
10387 show_arch (stream, 1, 0);
10388 fprintf (stream, _("\
10389 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10390 show_arch (stream, 0, 0);
10391 fprintf (stream, _("\
10392 -msse2avx encode SSE instructions with VEX prefix\n"));
10393 fprintf (stream, _("\
10394 -msse-check=[none|error|warning]\n\
10395 check SSE instructions\n"));
10396 fprintf (stream, _("\
10397 -moperand-check=[none|error|warning]\n\
10398 check operand combinations for validity\n"));
10399 fprintf (stream, _("\
10400 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10401 length\n"));
10402 fprintf (stream, _("\
10403 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10404 length\n"));
10405 fprintf (stream, _("\
10406 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10407 for EVEX.W bit ignored instructions\n"));
10408 fprintf (stream, _("\
10409 -mevexrcig=[rne|rd|ru|rz]\n\
10410 encode EVEX instructions with specific EVEX.RC value\n\
10411 for SAE-only ignored instructions\n"));
10412 fprintf (stream, _("\
10413 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10414 fprintf (stream, _("\
10415 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10416 fprintf (stream, _("\
10417 -mindex-reg support pseudo index registers\n"));
10418 fprintf (stream, _("\
10419 -mnaked-reg don't require `%%' prefix for registers\n"));
10420 fprintf (stream, _("\
10421 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10422 fprintf (stream, _("\
10423 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10424 fprintf (stream, _("\
10425 -mshared disable branch optimization for shared code\n"));
10426 # if defined (TE_PE) || defined (TE_PEP)
10427 fprintf (stream, _("\
10428 -mbig-obj generate big object files\n"));
10429 #endif
10430 fprintf (stream, _("\
10431 -momit-lock-prefix=[no|yes]\n\
10432 strip all lock prefixes\n"));
10433 fprintf (stream, _("\
10434 -mfence-as-lock-add=[no|yes]\n\
10435 encode lfence, mfence and sfence as\n\
10436 lock addl $0x0, (%%{re}sp)\n"));
10437 fprintf (stream, _("\
10438 -mrelax-relocations=[no|yes]\n\
10439 generate relax relocations\n"));
10440 fprintf (stream, _("\
10441 -mamd64 accept only AMD64 ISA\n"));
10442 fprintf (stream, _("\
10443 -mintel64 accept only Intel64 ISA\n"));
10444 }
10445
10446 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10447 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10448 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10449
10450 /* Pick the target format to use. */
10451
10452 const char *
10453 i386_target_format (void)
10454 {
10455 if (!strncmp (default_arch, "x86_64", 6))
10456 {
10457 update_code_flag (CODE_64BIT, 1);
10458 if (default_arch[6] == '\0')
10459 x86_elf_abi = X86_64_ABI;
10460 else
10461 x86_elf_abi = X86_64_X32_ABI;
10462 }
10463 else if (!strcmp (default_arch, "i386"))
10464 update_code_flag (CODE_32BIT, 1);
10465 else if (!strcmp (default_arch, "iamcu"))
10466 {
10467 update_code_flag (CODE_32BIT, 1);
10468 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10469 {
10470 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10471 cpu_arch_name = "iamcu";
10472 cpu_sub_arch_name = NULL;
10473 cpu_arch_flags = iamcu_flags;
10474 cpu_arch_isa = PROCESSOR_IAMCU;
10475 cpu_arch_isa_flags = iamcu_flags;
10476 if (!cpu_arch_tune_set)
10477 {
10478 cpu_arch_tune = cpu_arch_isa;
10479 cpu_arch_tune_flags = cpu_arch_isa_flags;
10480 }
10481 }
10482 else
10483 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10484 cpu_arch_name);
10485 }
10486 else
10487 as_fatal (_("unknown architecture"));
10488
10489 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10490 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10491 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10492 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10493
10494 switch (OUTPUT_FLAVOR)
10495 {
10496 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10497 case bfd_target_aout_flavour:
10498 return AOUT_TARGET_FORMAT;
10499 #endif
10500 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10501 # if defined (TE_PE) || defined (TE_PEP)
10502 case bfd_target_coff_flavour:
10503 if (flag_code == CODE_64BIT)
10504 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10505 else
10506 return "pe-i386";
10507 # elif defined (TE_GO32)
10508 case bfd_target_coff_flavour:
10509 return "coff-go32";
10510 # else
10511 case bfd_target_coff_flavour:
10512 return "coff-i386";
10513 # endif
10514 #endif
10515 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10516 case bfd_target_elf_flavour:
10517 {
10518 const char *format;
10519
10520 switch (x86_elf_abi)
10521 {
10522 default:
10523 format = ELF_TARGET_FORMAT;
10524 break;
10525 case X86_64_ABI:
10526 use_rela_relocations = 1;
10527 object_64bit = 1;
10528 format = ELF_TARGET_FORMAT64;
10529 break;
10530 case X86_64_X32_ABI:
10531 use_rela_relocations = 1;
10532 object_64bit = 1;
10533 disallow_64bit_reloc = 1;
10534 format = ELF_TARGET_FORMAT32;
10535 break;
10536 }
10537 if (cpu_arch_isa == PROCESSOR_L1OM)
10538 {
10539 if (x86_elf_abi != X86_64_ABI)
10540 as_fatal (_("Intel L1OM is 64bit only"));
10541 return ELF_TARGET_L1OM_FORMAT;
10542 }
10543 else if (cpu_arch_isa == PROCESSOR_K1OM)
10544 {
10545 if (x86_elf_abi != X86_64_ABI)
10546 as_fatal (_("Intel K1OM is 64bit only"));
10547 return ELF_TARGET_K1OM_FORMAT;
10548 }
10549 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10550 {
10551 if (x86_elf_abi != I386_ABI)
10552 as_fatal (_("Intel MCU is 32bit only"));
10553 return ELF_TARGET_IAMCU_FORMAT;
10554 }
10555 else
10556 return format;
10557 }
10558 #endif
10559 #if defined (OBJ_MACH_O)
10560 case bfd_target_mach_o_flavour:
10561 if (flag_code == CODE_64BIT)
10562 {
10563 use_rela_relocations = 1;
10564 object_64bit = 1;
10565 return "mach-o-x86-64";
10566 }
10567 else
10568 return "mach-o-i386";
10569 #endif
10570 default:
10571 abort ();
10572 return NULL;
10573 }
10574 }
10575
10576 #endif /* OBJ_MAYBE_ more than one */
10577 \f
10578 symbolS *
10579 md_undefined_symbol (char *name)
10580 {
10581 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10582 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10583 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10584 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10585 {
10586 if (!GOT_symbol)
10587 {
10588 if (symbol_find (name))
10589 as_bad (_("GOT already in symbol table"));
10590 GOT_symbol = symbol_new (name, undefined_section,
10591 (valueT) 0, &zero_address_frag);
10592 };
10593 return GOT_symbol;
10594 }
10595 return 0;
10596 }
10597
10598 /* Round up a section size to the appropriate boundary. */
10599
10600 valueT
10601 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10602 {
10603 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10604 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10605 {
10606 /* For a.out, force the section size to be aligned. If we don't do
10607 this, BFD will align it for us, but it will not write out the
10608 final bytes of the section. This may be a bug in BFD, but it is
10609 easier to fix it here since that is how the other a.out targets
10610 work. */
10611 int align;
10612
10613 align = bfd_get_section_alignment (stdoutput, segment);
10614 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10615 }
10616 #endif
10617
10618 return size;
10619 }
10620
10621 /* On the i386, PC-relative offsets are relative to the start of the
10622 next instruction. That is, the address of the offset, plus its
10623 size, since the offset is always the last part of the insn. */
10624
10625 long
10626 md_pcrel_from (fixS *fixP)
10627 {
10628 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10629 }
10630
10631 #ifndef I386COFF
10632
10633 static void
10634 s_bss (int ignore ATTRIBUTE_UNUSED)
10635 {
10636 int temp;
10637
10638 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10639 if (IS_ELF)
10640 obj_elf_section_change_hook ();
10641 #endif
10642 temp = get_absolute_expression ();
10643 subseg_set (bss_section, (subsegT) temp);
10644 demand_empty_rest_of_line ();
10645 }
10646
10647 #endif
10648
10649 void
10650 i386_validate_fix (fixS *fixp)
10651 {
10652 if (fixp->fx_subsy)
10653 {
10654 if (fixp->fx_subsy == GOT_symbol)
10655 {
10656 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10657 {
10658 if (!object_64bit)
10659 abort ();
10660 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10661 if (fixp->fx_tcbit2)
10662 fixp->fx_r_type = (fixp->fx_tcbit
10663 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10664 : BFD_RELOC_X86_64_GOTPCRELX);
10665 else
10666 #endif
10667 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10668 }
10669 else
10670 {
10671 if (!object_64bit)
10672 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10673 else
10674 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10675 }
10676 fixp->fx_subsy = 0;
10677 }
10678 }
10679 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10680 else if (!object_64bit)
10681 {
10682 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10683 && fixp->fx_tcbit2)
10684 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10685 }
10686 #endif
10687 }
10688
10689 arelent *
10690 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10691 {
10692 arelent *rel;
10693 bfd_reloc_code_real_type code;
10694
10695 switch (fixp->fx_r_type)
10696 {
10697 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10698 case BFD_RELOC_SIZE32:
10699 case BFD_RELOC_SIZE64:
10700 if (S_IS_DEFINED (fixp->fx_addsy)
10701 && !S_IS_EXTERNAL (fixp->fx_addsy))
10702 {
10703 /* Resolve size relocation against local symbol to size of
10704 the symbol plus addend. */
10705 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10706 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10707 && !fits_in_unsigned_long (value))
10708 as_bad_where (fixp->fx_file, fixp->fx_line,
10709 _("symbol size computation overflow"));
10710 fixp->fx_addsy = NULL;
10711 fixp->fx_subsy = NULL;
10712 md_apply_fix (fixp, (valueT *) &value, NULL);
10713 return NULL;
10714 }
10715 #endif
10716
10717 case BFD_RELOC_X86_64_PLT32:
10718 case BFD_RELOC_X86_64_GOT32:
10719 case BFD_RELOC_X86_64_GOTPCREL:
10720 case BFD_RELOC_X86_64_GOTPCRELX:
10721 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10722 case BFD_RELOC_386_PLT32:
10723 case BFD_RELOC_386_GOT32:
10724 case BFD_RELOC_386_GOT32X:
10725 case BFD_RELOC_386_GOTOFF:
10726 case BFD_RELOC_386_GOTPC:
10727 case BFD_RELOC_386_TLS_GD:
10728 case BFD_RELOC_386_TLS_LDM:
10729 case BFD_RELOC_386_TLS_LDO_32:
10730 case BFD_RELOC_386_TLS_IE_32:
10731 case BFD_RELOC_386_TLS_IE:
10732 case BFD_RELOC_386_TLS_GOTIE:
10733 case BFD_RELOC_386_TLS_LE_32:
10734 case BFD_RELOC_386_TLS_LE:
10735 case BFD_RELOC_386_TLS_GOTDESC:
10736 case BFD_RELOC_386_TLS_DESC_CALL:
10737 case BFD_RELOC_X86_64_TLSGD:
10738 case BFD_RELOC_X86_64_TLSLD:
10739 case BFD_RELOC_X86_64_DTPOFF32:
10740 case BFD_RELOC_X86_64_DTPOFF64:
10741 case BFD_RELOC_X86_64_GOTTPOFF:
10742 case BFD_RELOC_X86_64_TPOFF32:
10743 case BFD_RELOC_X86_64_TPOFF64:
10744 case BFD_RELOC_X86_64_GOTOFF64:
10745 case BFD_RELOC_X86_64_GOTPC32:
10746 case BFD_RELOC_X86_64_GOT64:
10747 case BFD_RELOC_X86_64_GOTPCREL64:
10748 case BFD_RELOC_X86_64_GOTPC64:
10749 case BFD_RELOC_X86_64_GOTPLT64:
10750 case BFD_RELOC_X86_64_PLTOFF64:
10751 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10752 case BFD_RELOC_X86_64_TLSDESC_CALL:
10753 case BFD_RELOC_RVA:
10754 case BFD_RELOC_VTABLE_ENTRY:
10755 case BFD_RELOC_VTABLE_INHERIT:
10756 #ifdef TE_PE
10757 case BFD_RELOC_32_SECREL:
10758 #endif
10759 code = fixp->fx_r_type;
10760 break;
10761 case BFD_RELOC_X86_64_32S:
10762 if (!fixp->fx_pcrel)
10763 {
10764 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10765 code = fixp->fx_r_type;
10766 break;
10767 }
10768 default:
10769 if (fixp->fx_pcrel)
10770 {
10771 switch (fixp->fx_size)
10772 {
10773 default:
10774 as_bad_where (fixp->fx_file, fixp->fx_line,
10775 _("can not do %d byte pc-relative relocation"),
10776 fixp->fx_size);
10777 code = BFD_RELOC_32_PCREL;
10778 break;
10779 case 1: code = BFD_RELOC_8_PCREL; break;
10780 case 2: code = BFD_RELOC_16_PCREL; break;
10781 case 4: code = BFD_RELOC_32_PCREL; break;
10782 #ifdef BFD64
10783 case 8: code = BFD_RELOC_64_PCREL; break;
10784 #endif
10785 }
10786 }
10787 else
10788 {
10789 switch (fixp->fx_size)
10790 {
10791 default:
10792 as_bad_where (fixp->fx_file, fixp->fx_line,
10793 _("can not do %d byte relocation"),
10794 fixp->fx_size);
10795 code = BFD_RELOC_32;
10796 break;
10797 case 1: code = BFD_RELOC_8; break;
10798 case 2: code = BFD_RELOC_16; break;
10799 case 4: code = BFD_RELOC_32; break;
10800 #ifdef BFD64
10801 case 8: code = BFD_RELOC_64; break;
10802 #endif
10803 }
10804 }
10805 break;
10806 }
10807
10808 if ((code == BFD_RELOC_32
10809 || code == BFD_RELOC_32_PCREL
10810 || code == BFD_RELOC_X86_64_32S)
10811 && GOT_symbol
10812 && fixp->fx_addsy == GOT_symbol)
10813 {
10814 if (!object_64bit)
10815 code = BFD_RELOC_386_GOTPC;
10816 else
10817 code = BFD_RELOC_X86_64_GOTPC32;
10818 }
10819 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10820 && GOT_symbol
10821 && fixp->fx_addsy == GOT_symbol)
10822 {
10823 code = BFD_RELOC_X86_64_GOTPC64;
10824 }
10825
10826 rel = XNEW (arelent);
10827 rel->sym_ptr_ptr = XNEW (asymbol *);
10828 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10829
10830 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10831
10832 if (!use_rela_relocations)
10833 {
10834 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10835 vtable entry to be used in the relocation's section offset. */
10836 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10837 rel->address = fixp->fx_offset;
10838 #if defined (OBJ_COFF) && defined (TE_PE)
10839 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10840 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10841 else
10842 #endif
10843 rel->addend = 0;
10844 }
10845 /* Use the rela in 64bit mode. */
10846 else
10847 {
10848 if (disallow_64bit_reloc)
10849 switch (code)
10850 {
10851 case BFD_RELOC_X86_64_DTPOFF64:
10852 case BFD_RELOC_X86_64_TPOFF64:
10853 case BFD_RELOC_64_PCREL:
10854 case BFD_RELOC_X86_64_GOTOFF64:
10855 case BFD_RELOC_X86_64_GOT64:
10856 case BFD_RELOC_X86_64_GOTPCREL64:
10857 case BFD_RELOC_X86_64_GOTPC64:
10858 case BFD_RELOC_X86_64_GOTPLT64:
10859 case BFD_RELOC_X86_64_PLTOFF64:
10860 as_bad_where (fixp->fx_file, fixp->fx_line,
10861 _("cannot represent relocation type %s in x32 mode"),
10862 bfd_get_reloc_code_name (code));
10863 break;
10864 default:
10865 break;
10866 }
10867
10868 if (!fixp->fx_pcrel)
10869 rel->addend = fixp->fx_offset;
10870 else
10871 switch (code)
10872 {
10873 case BFD_RELOC_X86_64_PLT32:
10874 case BFD_RELOC_X86_64_GOT32:
10875 case BFD_RELOC_X86_64_GOTPCREL:
10876 case BFD_RELOC_X86_64_GOTPCRELX:
10877 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10878 case BFD_RELOC_X86_64_TLSGD:
10879 case BFD_RELOC_X86_64_TLSLD:
10880 case BFD_RELOC_X86_64_GOTTPOFF:
10881 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10882 case BFD_RELOC_X86_64_TLSDESC_CALL:
10883 rel->addend = fixp->fx_offset - fixp->fx_size;
10884 break;
10885 default:
10886 rel->addend = (section->vma
10887 - fixp->fx_size
10888 + fixp->fx_addnumber
10889 + md_pcrel_from (fixp));
10890 break;
10891 }
10892 }
10893
10894 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10895 if (rel->howto == NULL)
10896 {
10897 as_bad_where (fixp->fx_file, fixp->fx_line,
10898 _("cannot represent relocation type %s"),
10899 bfd_get_reloc_code_name (code));
10900 /* Set howto to a garbage value so that we can keep going. */
10901 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10902 gas_assert (rel->howto != NULL);
10903 }
10904
10905 return rel;
10906 }
10907
10908 #include "tc-i386-intel.c"
10909
10910 void
10911 tc_x86_parse_to_dw2regnum (expressionS *exp)
10912 {
10913 int saved_naked_reg;
10914 char saved_register_dot;
10915
10916 saved_naked_reg = allow_naked_reg;
10917 allow_naked_reg = 1;
10918 saved_register_dot = register_chars['.'];
10919 register_chars['.'] = '.';
10920 allow_pseudo_reg = 1;
10921 expression_and_evaluate (exp);
10922 allow_pseudo_reg = 0;
10923 register_chars['.'] = saved_register_dot;
10924 allow_naked_reg = saved_naked_reg;
10925
10926 if (exp->X_op == O_register && exp->X_add_number >= 0)
10927 {
10928 if ((addressT) exp->X_add_number < i386_regtab_size)
10929 {
10930 exp->X_op = O_constant;
10931 exp->X_add_number = i386_regtab[exp->X_add_number]
10932 .dw2_regnum[flag_code >> 1];
10933 }
10934 else
10935 exp->X_op = O_illegal;
10936 }
10937 }
10938
10939 void
10940 tc_x86_frame_initial_instructions (void)
10941 {
10942 static unsigned int sp_regno[2];
10943
10944 if (!sp_regno[flag_code >> 1])
10945 {
10946 char *saved_input = input_line_pointer;
10947 char sp[][4] = {"esp", "rsp"};
10948 expressionS exp;
10949
10950 input_line_pointer = sp[flag_code >> 1];
10951 tc_x86_parse_to_dw2regnum (&exp);
10952 gas_assert (exp.X_op == O_constant);
10953 sp_regno[flag_code >> 1] = exp.X_add_number;
10954 input_line_pointer = saved_input;
10955 }
10956
10957 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10958 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10959 }
10960
10961 int
10962 x86_dwarf2_addr_size (void)
10963 {
10964 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10965 if (x86_elf_abi == X86_64_X32_ABI)
10966 return 4;
10967 #endif
10968 return bfd_arch_bits_per_address (stdoutput) / 8;
10969 }
10970
10971 int
10972 i386_elf_section_type (const char *str, size_t len)
10973 {
10974 if (flag_code == CODE_64BIT
10975 && len == sizeof ("unwind") - 1
10976 && strncmp (str, "unwind", 6) == 0)
10977 return SHT_X86_64_UNWIND;
10978
10979 return -1;
10980 }
10981
10982 #ifdef TE_SOLARIS
10983 void
10984 i386_solaris_fix_up_eh_frame (segT sec)
10985 {
10986 if (flag_code == CODE_64BIT)
10987 elf_section_type (sec) = SHT_X86_64_UNWIND;
10988 }
10989 #endif
10990
10991 #ifdef TE_PE
10992 void
10993 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10994 {
10995 expressionS exp;
10996
10997 exp.X_op = O_secrel;
10998 exp.X_add_symbol = symbol;
10999 exp.X_add_number = 0;
11000 emit_expr (&exp, size);
11001 }
11002 #endif
11003
11004 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11005 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11006
11007 bfd_vma
11008 x86_64_section_letter (int letter, const char **ptr_msg)
11009 {
11010 if (flag_code == CODE_64BIT)
11011 {
11012 if (letter == 'l')
11013 return SHF_X86_64_LARGE;
11014
11015 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11016 }
11017 else
11018 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11019 return -1;
11020 }
11021
11022 bfd_vma
11023 x86_64_section_word (char *str, size_t len)
11024 {
11025 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11026 return SHF_X86_64_LARGE;
11027
11028 return -1;
11029 }
11030
11031 static void
11032 handle_large_common (int small ATTRIBUTE_UNUSED)
11033 {
11034 if (flag_code != CODE_64BIT)
11035 {
11036 s_comm_internal (0, elf_common_parse);
11037 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11038 }
11039 else
11040 {
11041 static segT lbss_section;
11042 asection *saved_com_section_ptr = elf_com_section_ptr;
11043 asection *saved_bss_section = bss_section;
11044
11045 if (lbss_section == NULL)
11046 {
11047 flagword applicable;
11048 segT seg = now_seg;
11049 subsegT subseg = now_subseg;
11050
11051 /* The .lbss section is for local .largecomm symbols. */
11052 lbss_section = subseg_new (".lbss", 0);
11053 applicable = bfd_applicable_section_flags (stdoutput);
11054 bfd_set_section_flags (stdoutput, lbss_section,
11055 applicable & SEC_ALLOC);
11056 seg_info (lbss_section)->bss = 1;
11057
11058 subseg_set (seg, subseg);
11059 }
11060
11061 elf_com_section_ptr = &_bfd_elf_large_com_section;
11062 bss_section = lbss_section;
11063
11064 s_comm_internal (0, elf_common_parse);
11065
11066 elf_com_section_ptr = saved_com_section_ptr;
11067 bss_section = saved_bss_section;
11068 }
11069 }
11070 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.280652 seconds and 4 git commands to generate.