7159432f1330512b5a8f839e6fc05ed35ae89bf3
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108 typedef struct
109 {
110 const insn_template *start;
111 const insn_template *end;
112 }
113 templates;
114
115 /* 386 operand encoding bytes: see 386 book for details of this. */
116 typedef struct
117 {
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121 }
122 modrm_byte;
123
124 /* x86-64 extension prefix. */
125 typedef int rex_byte;
126
127 /* 386 opcode byte to code indirect addressing. */
128 typedef struct
129 {
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133 }
134 sib_byte;
135
136 /* x86 arch names, types and features */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
143 unsigned int skip; /* show_arch should skip this. */
144 }
145 arch_entry;
146
147 /* Used to turn off indicated flags. */
148 typedef struct
149 {
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153 }
154 noarch_entry;
155
156 static void update_code_flag (int, int);
157 static void set_code_flag (int);
158 static void set_16bit_gcc_code_flag (int);
159 static void set_intel_syntax (int);
160 static void set_intel_mnemonic (int);
161 static void set_allow_index_reg (int);
162 static void set_check (int);
163 static void set_cpu_arch (int);
164 #ifdef TE_PE
165 static void pe_directive_secrel (int);
166 #endif
167 static void signed_cons (int);
168 static char *output_invalid (int c);
169 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
173 static int i386_att_operand (char *);
174 static int i386_intel_operand (char *, int);
175 static int i386_intel_simplify (expressionS *);
176 static int i386_intel_parse_name (const char *, expressionS *);
177 static const reg_entry *parse_register (char *, char **);
178 static char *parse_insn (char *, char *);
179 static char *parse_operands (char *, const char *);
180 static void swap_operands (void);
181 static void swap_2_operands (int, int);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
365 /* RM and SIB are the modrm byte and the sib byte where the
366 addressing modes of this insn are encoded. */
367 modrm_byte rm;
368 rex_byte rex;
369 rex_byte vrex;
370 sib_byte sib;
371 vex_prefix vex;
372
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
390 dir_encoding_store,
391 dir_encoding_swap
392 } dir_encoding;
393
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
401
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
417 /* REP prefix. */
418 const char *rep_prefix;
419
420 /* HLE prefix. */
421 const char *hle_prefix;
422
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
429 /* Error message. */
430 enum i386_error error;
431 };
432
433 typedef struct _i386_insn i386_insn;
434
435 /* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437 struct RC_name
438 {
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442 };
443
444 static const struct RC_name RC_NamesTable[] =
445 {
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451 };
452
453 /* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
455 const char extra_symbol_chars[] = "*%-([{}"
456 #ifdef LEX_AT
457 "@"
458 #endif
459 #ifdef LEX_QM
460 "?"
461 #endif
462 ;
463
464 #if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
466 && !defined (TE_GNU) \
467 && !defined (TE_LINUX) \
468 && !defined (TE_NACL) \
469 && !defined (TE_FreeBSD) \
470 && !defined (TE_DragonFly) \
471 && !defined (TE_NetBSD)))
472 /* This array holds the chars that always start a comment. If the
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475 const char *i386_comment_chars = "#/";
476 #define SVR4_COMMENT_CHARS 1
477 #define PREFIX_SEPARATOR '\\'
478
479 #else
480 const char *i386_comment_chars = "#";
481 #define PREFIX_SEPARATOR '/'
482 #endif
483
484 /* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
488 first line of the input file. This is because the compiler outputs
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
491 '/' isn't otherwise defined. */
492 const char line_comment_chars[] = "#/";
493
494 const char line_separator_chars[] = ";";
495
496 /* Chars that can be used to separate mant from exp in floating point
497 nums. */
498 const char EXP_CHARS[] = "eE";
499
500 /* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
503 const char FLT_CHARS[] = "fFdDxX";
504
505 /* Tables for lexical analysis. */
506 static char mnemonic_chars[256];
507 static char register_chars[256];
508 static char operand_chars[256];
509 static char identifier_chars[256];
510 static char digit_chars[256];
511
512 /* Lexical macros. */
513 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514 #define is_operand_char(x) (operand_chars[(unsigned char) x])
515 #define is_register_char(x) (register_chars[(unsigned char) x])
516 #define is_space_char(x) ((x) == ' ')
517 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518 #define is_digit_char(x) (digit_chars[(unsigned char) x])
519
520 /* All non-digit non-letter characters that may occur in an operand. */
521 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523 /* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
526 assembler instruction). */
527 static char save_stack[32];
528 static char *save_stack_p;
529 #define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531 #define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
534 /* The instruction we're assembling. */
535 static i386_insn i;
536
537 /* Possible templates for current insn. */
538 static const templates *current_templates;
539
540 /* Per instruction expressionS buffers: max displacements & immediates. */
541 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
543
544 /* Current operand we are working on. */
545 static int this_operand = -1;
546
547 /* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550 enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555 static enum flag_code flag_code;
556 static unsigned int object_64bit;
557 static unsigned int disallow_64bit_reloc;
558 static int use_rela_relocations = 0;
559
560 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
564 /* The ELF ABI to use. */
565 enum x86_elf_abi
566 {
567 I386_ABI,
568 X86_64_ABI,
569 X86_64_X32_ABI
570 };
571
572 static enum x86_elf_abi x86_elf_abi = I386_ABI;
573 #endif
574
575 #if defined (TE_PE) || defined (TE_PEP)
576 /* Use big object file format. */
577 static int use_big_obj = 0;
578 #endif
579
580 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581 /* 1 if generating code for a shared library. */
582 static int shared = 0;
583 #endif
584
585 /* 1 for intel syntax,
586 0 if att syntax. */
587 static int intel_syntax = 0;
588
589 /* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591 static int intel64;
592
593 /* 1 for intel mnemonic,
594 0 if att mnemonic. */
595 static int intel_mnemonic = !SYSV386_COMPAT;
596
597 /* 1 if pseudo registers are permitted. */
598 static int allow_pseudo_reg = 0;
599
600 /* 1 if register prefix % not required. */
601 static int allow_naked_reg = 0;
602
603 /* 1 if the assembler should add BND prefix for all control-transferring
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606 static int add_bnd_prefix = 0;
607
608 /* 1 if pseudo index register, eiz/riz, is allowed . */
609 static int allow_index_reg = 0;
610
611 /* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613 static int omit_lock_prefix = 0;
614
615 /* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617 static int avoid_fence = 0;
618
619 /* 1 if the assembler should generate relax relocations. */
620
621 static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
624 static enum check_kind
625 {
626 check_none = 0,
627 check_warning,
628 check_error
629 }
630 sse_check, operand_check = check_warning;
631
632 /* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637 static int optimize = 0;
638
639 /* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646 static int optimize_for_space = 0;
647
648 /* Register prefix used for error message. */
649 static const char *register_prefix = "%";
650
651 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654 static char stackop_size = '\0';
655
656 /* Non-zero to optimize code alignment. */
657 int optimize_align_code = 1;
658
659 /* Non-zero to quieten some warnings. */
660 static int quiet_warnings = 0;
661
662 /* CPU name. */
663 static const char *cpu_arch_name = NULL;
664 static char *cpu_sub_arch_name = NULL;
665
666 /* CPU feature flags. */
667 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
669 /* If we have selected a cpu we are generating instructions for. */
670 static int cpu_arch_tune_set = 0;
671
672 /* Cpu we are generating instructions for. */
673 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
674
675 /* CPU feature flags of cpu we are generating instructions for. */
676 static i386_cpu_flags cpu_arch_tune_flags;
677
678 /* CPU instruction set architecture used. */
679 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
680
681 /* CPU feature flags of instruction set architecture used. */
682 i386_cpu_flags cpu_arch_isa_flags;
683
684 /* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686 static unsigned int no_cond_jump_promotion = 0;
687
688 /* Encode SSE instructions with VEX prefix. */
689 static unsigned int sse2avx;
690
691 /* Encode scalar AVX instructions with specific vector length. */
692 static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
698 /* Encode VEX WIG instructions with specific vex.w. */
699 static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
705 /* Encode scalar EVEX LIG instructions with specific vector length. */
706 static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713 /* Encode EVEX WIG instructions with specific evex.w. */
714 static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
720 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
721 static enum rc_type evexrcig = rne;
722
723 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
724 static symbolS *GOT_symbol;
725
726 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
727 unsigned int x86_dwarf2_return_column;
728
729 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730 int x86_cie_data_alignment;
731
732 /* Interface to relax_segment.
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
736
737 /* Types. */
738 #define UNCOND_JUMP 0
739 #define COND_JUMP 1
740 #define COND_JUMP86 2
741
742 /* Sizes. */
743 #define CODE16 1
744 #define SMALL 0
745 #define SMALL16 (SMALL | CODE16)
746 #define BIG 2
747 #define BIG16 (BIG | CODE16)
748
749 #ifndef INLINE
750 #ifdef __GNUC__
751 #define INLINE __inline__
752 #else
753 #define INLINE
754 #endif
755 #endif
756
757 #define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759 #define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761 #define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
763
764 /* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772 const relax_typeS md_relax_table[] =
773 {
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
777 3) how many bytes this mode will have in the variable part of the frag
778 4) which index into the table to try if we can't fit into this one. */
779
780 /* UNCOND_JUMP states. */
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
785 {0, 0, 4, 0},
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
788 {0, 0, 2, 0},
789
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
796 /* word conditionals add 3 bytes to frag:
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
809 };
810
811 static const arch_entry cpu_arch[] =
812 {
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
816 CPU_GENERIC32_FLAGS, 0 },
817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
818 CPU_GENERIC64_FLAGS, 0 },
819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
820 CPU_NONE_FLAGS, 0 },
821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
822 CPU_I186_FLAGS, 0 },
823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
824 CPU_I286_FLAGS, 0 },
825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
826 CPU_I386_FLAGS, 0 },
827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
828 CPU_I486_FLAGS, 0 },
829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
830 CPU_I586_FLAGS, 0 },
831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
832 CPU_I686_FLAGS, 0 },
833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
834 CPU_I586_FLAGS, 0 },
835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
836 CPU_PENTIUMPRO_FLAGS, 0 },
837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
838 CPU_P2_FLAGS, 0 },
839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
840 CPU_P3_FLAGS, 0 },
841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
842 CPU_P4_FLAGS, 0 },
843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
844 CPU_CORE_FLAGS, 0 },
845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
846 CPU_NOCONA_FLAGS, 0 },
847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
848 CPU_CORE_FLAGS, 1 },
849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
850 CPU_CORE_FLAGS, 0 },
851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
852 CPU_CORE2_FLAGS, 1 },
853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
854 CPU_CORE2_FLAGS, 0 },
855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
856 CPU_COREI7_FLAGS, 0 },
857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
858 CPU_L1OM_FLAGS, 0 },
859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
860 CPU_K1OM_FLAGS, 0 },
861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
862 CPU_IAMCU_FLAGS, 0 },
863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
864 CPU_K6_FLAGS, 0 },
865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
866 CPU_K6_2_FLAGS, 0 },
867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
868 CPU_ATHLON_FLAGS, 0 },
869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
870 CPU_K8_FLAGS, 1 },
871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
872 CPU_K8_FLAGS, 0 },
873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
874 CPU_K8_FLAGS, 0 },
875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
876 CPU_AMDFAM10_FLAGS, 0 },
877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
878 CPU_BDVER1_FLAGS, 0 },
879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
880 CPU_BDVER2_FLAGS, 0 },
881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
882 CPU_BDVER3_FLAGS, 0 },
883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
884 CPU_BDVER4_FLAGS, 0 },
885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
886 CPU_ZNVER1_FLAGS, 0 },
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
890 CPU_BTVER1_FLAGS, 0 },
891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
892 CPU_BTVER2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
894 CPU_8087_FLAGS, 0 },
895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
896 CPU_287_FLAGS, 0 },
897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
898 CPU_387_FLAGS, 0 },
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
906 CPU_MMX_FLAGS, 0 },
907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
908 CPU_SSE_FLAGS, 0 },
909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
910 CPU_SSE2_FLAGS, 0 },
911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
912 CPU_SSE3_FLAGS, 0 },
913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
914 CPU_SSSE3_FLAGS, 0 },
915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
916 CPU_SSE4_1_FLAGS, 0 },
917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
918 CPU_SSE4_2_FLAGS, 0 },
919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
920 CPU_SSE4_2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
922 CPU_AVX_FLAGS, 0 },
923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
924 CPU_AVX2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
926 CPU_AVX512F_FLAGS, 0 },
927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
928 CPU_AVX512CD_FLAGS, 0 },
929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
930 CPU_AVX512ER_FLAGS, 0 },
931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
932 CPU_AVX512PF_FLAGS, 0 },
933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
934 CPU_AVX512DQ_FLAGS, 0 },
935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
936 CPU_AVX512BW_FLAGS, 0 },
937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
938 CPU_AVX512VL_FLAGS, 0 },
939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
940 CPU_VMX_FLAGS, 0 },
941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
942 CPU_VMFUNC_FLAGS, 0 },
943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
944 CPU_SMX_FLAGS, 0 },
945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
946 CPU_XSAVE_FLAGS, 0 },
947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
948 CPU_XSAVEOPT_FLAGS, 0 },
949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
950 CPU_XSAVEC_FLAGS, 0 },
951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
952 CPU_XSAVES_FLAGS, 0 },
953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
954 CPU_AES_FLAGS, 0 },
955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
956 CPU_PCLMUL_FLAGS, 0 },
957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
958 CPU_PCLMUL_FLAGS, 1 },
959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
960 CPU_FSGSBASE_FLAGS, 0 },
961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
962 CPU_RDRND_FLAGS, 0 },
963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
964 CPU_F16C_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
966 CPU_BMI2_FLAGS, 0 },
967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
968 CPU_FMA_FLAGS, 0 },
969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
970 CPU_FMA4_FLAGS, 0 },
971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
972 CPU_XOP_FLAGS, 0 },
973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
974 CPU_LWP_FLAGS, 0 },
975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
976 CPU_MOVBE_FLAGS, 0 },
977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
978 CPU_CX16_FLAGS, 0 },
979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
980 CPU_EPT_FLAGS, 0 },
981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
982 CPU_LZCNT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
984 CPU_HLE_FLAGS, 0 },
985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
986 CPU_RTM_FLAGS, 0 },
987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
988 CPU_INVPCID_FLAGS, 0 },
989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
990 CPU_CLFLUSH_FLAGS, 0 },
991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
992 CPU_NOP_FLAGS, 0 },
993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
994 CPU_SYSCALL_FLAGS, 0 },
995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
996 CPU_RDTSCP_FLAGS, 0 },
997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
998 CPU_3DNOW_FLAGS, 0 },
999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1000 CPU_3DNOWA_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1002 CPU_PADLOCK_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1004 CPU_SVME_FLAGS, 1 },
1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1006 CPU_SVME_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1010 CPU_ABM_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1012 CPU_BMI_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1014 CPU_TBM_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1016 CPU_ADX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1018 CPU_RDSEED_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1020 CPU_PRFCHW_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1022 CPU_SMAP_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1024 CPU_MPX_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1026 CPU_SHA_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1028 CPU_CLFLUSHOPT_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1030 CPU_PREFETCHWT1_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1032 CPU_SE1_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1034 CPU_CLWB_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1036 CPU_AVX512IFMA_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1038 CPU_AVX512VBMI_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1052 CPU_CLZERO_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1054 CPU_MWAITX_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1056 CPU_OSPKE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1058 CPU_RDPID_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
1085 };
1086
1087 static const noarch_entry cpu_noarch[] =
1088 {
1089 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1090 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1091 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1092 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1093 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1094 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1095 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1096 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1097 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1098 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1099 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1100 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1101 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1103 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1104 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1105 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1106 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1107 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1108 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1109 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1120 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1121 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1122 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1123 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1125 };
1126
1127 #ifdef I386COFF
1128 /* Like s_lcomm_internal in gas/read.c but the alignment string
1129 is allowed to be optional. */
1130
1131 static symbolS *
1132 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1133 {
1134 addressT align = 0;
1135
1136 SKIP_WHITESPACE ();
1137
1138 if (needs_align
1139 && *input_line_pointer == ',')
1140 {
1141 align = parse_align (needs_align - 1);
1142
1143 if (align == (addressT) -1)
1144 return NULL;
1145 }
1146 else
1147 {
1148 if (size >= 8)
1149 align = 3;
1150 else if (size >= 4)
1151 align = 2;
1152 else if (size >= 2)
1153 align = 1;
1154 else
1155 align = 0;
1156 }
1157
1158 bss_alloc (symbolP, size, align);
1159 return symbolP;
1160 }
1161
1162 static void
1163 pe_lcomm (int needs_align)
1164 {
1165 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1166 }
1167 #endif
1168
1169 const pseudo_typeS md_pseudo_table[] =
1170 {
1171 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1172 {"align", s_align_bytes, 0},
1173 #else
1174 {"align", s_align_ptwo, 0},
1175 #endif
1176 {"arch", set_cpu_arch, 0},
1177 #ifndef I386COFF
1178 {"bss", s_bss, 0},
1179 #else
1180 {"lcomm", pe_lcomm, 1},
1181 #endif
1182 {"ffloat", float_cons, 'f'},
1183 {"dfloat", float_cons, 'd'},
1184 {"tfloat", float_cons, 'x'},
1185 {"value", cons, 2},
1186 {"slong", signed_cons, 4},
1187 {"noopt", s_ignore, 0},
1188 {"optim", s_ignore, 0},
1189 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1190 {"code16", set_code_flag, CODE_16BIT},
1191 {"code32", set_code_flag, CODE_32BIT},
1192 #ifdef BFD64
1193 {"code64", set_code_flag, CODE_64BIT},
1194 #endif
1195 {"intel_syntax", set_intel_syntax, 1},
1196 {"att_syntax", set_intel_syntax, 0},
1197 {"intel_mnemonic", set_intel_mnemonic, 1},
1198 {"att_mnemonic", set_intel_mnemonic, 0},
1199 {"allow_index_reg", set_allow_index_reg, 1},
1200 {"disallow_index_reg", set_allow_index_reg, 0},
1201 {"sse_check", set_check, 0},
1202 {"operand_check", set_check, 1},
1203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1204 {"largecomm", handle_large_common, 0},
1205 #else
1206 {"file", dwarf2_directive_file, 0},
1207 {"loc", dwarf2_directive_loc, 0},
1208 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1209 #endif
1210 #ifdef TE_PE
1211 {"secrel32", pe_directive_secrel, 0},
1212 #endif
1213 {0, 0, 0}
1214 };
1215
1216 /* For interface with expression (). */
1217 extern char *input_line_pointer;
1218
1219 /* Hash table for instruction mnemonic lookup. */
1220 static struct hash_control *op_hash;
1221
1222 /* Hash table for register lookup. */
1223 static struct hash_control *reg_hash;
1224 \f
1225 /* Various efficient no-op patterns for aligning code labels.
1226 Note: Don't try to assemble the instructions in the comments.
1227 0L and 0w are not legal. */
1228 static const unsigned char f32_1[] =
1229 {0x90}; /* nop */
1230 static const unsigned char f32_2[] =
1231 {0x66,0x90}; /* xchg %ax,%ax */
1232 static const unsigned char f32_3[] =
1233 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1234 static const unsigned char f32_4[] =
1235 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1236 static const unsigned char f32_6[] =
1237 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1238 static const unsigned char f32_7[] =
1239 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1240 static const unsigned char f16_3[] =
1241 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1242 static const unsigned char f16_4[] =
1243 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1244 static const unsigned char jump_disp8[] =
1245 {0xeb}; /* jmp disp8 */
1246 static const unsigned char jump32_disp32[] =
1247 {0xe9}; /* jmp disp32 */
1248 static const unsigned char jump16_disp32[] =
1249 {0x66,0xe9}; /* jmp disp32 */
1250 /* 32-bit NOPs patterns. */
1251 static const unsigned char *const f32_patt[] = {
1252 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1253 };
1254 /* 16-bit NOPs patterns. */
1255 static const unsigned char *const f16_patt[] = {
1256 f32_1, f32_2, f16_3, f16_4
1257 };
1258 /* nopl (%[re]ax) */
1259 static const unsigned char alt_3[] =
1260 {0x0f,0x1f,0x00};
1261 /* nopl 0(%[re]ax) */
1262 static const unsigned char alt_4[] =
1263 {0x0f,0x1f,0x40,0x00};
1264 /* nopl 0(%[re]ax,%[re]ax,1) */
1265 static const unsigned char alt_5[] =
1266 {0x0f,0x1f,0x44,0x00,0x00};
1267 /* nopw 0(%[re]ax,%[re]ax,1) */
1268 static const unsigned char alt_6[] =
1269 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1270 /* nopl 0L(%[re]ax) */
1271 static const unsigned char alt_7[] =
1272 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1273 /* nopl 0L(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_8[] =
1275 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1276 /* nopw 0L(%[re]ax,%[re]ax,1) */
1277 static const unsigned char alt_9[] =
1278 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1279 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1280 static const unsigned char alt_10[] =
1281 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1282 /* data16 nopw %cs:0L(%eax,%eax,1) */
1283 static const unsigned char alt_11[] =
1284 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* 32-bit and 64-bit NOPs patterns. */
1286 static const unsigned char *const alt_patt[] = {
1287 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1288 alt_9, alt_10, alt_11
1289 };
1290
1291 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1292 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1293
1294 static void
1295 i386_output_nops (char *where, const unsigned char *const *patt,
1296 int count, int max_single_nop_size)
1297
1298 {
1299 /* Place the longer NOP first. */
1300 int last;
1301 int offset;
1302 const unsigned char *nops = patt[max_single_nop_size - 1];
1303
1304 /* Use the smaller one if the requsted one isn't available. */
1305 if (nops == NULL)
1306 {
1307 max_single_nop_size--;
1308 nops = patt[max_single_nop_size - 1];
1309 }
1310
1311 last = count % max_single_nop_size;
1312
1313 count -= last;
1314 for (offset = 0; offset < count; offset += max_single_nop_size)
1315 memcpy (where + offset, nops, max_single_nop_size);
1316
1317 if (last)
1318 {
1319 nops = patt[last - 1];
1320 if (nops == NULL)
1321 {
1322 /* Use the smaller one plus one-byte NOP if the needed one
1323 isn't available. */
1324 last--;
1325 nops = patt[last - 1];
1326 memcpy (where + offset, nops, last);
1327 where[offset + last] = *patt[0];
1328 }
1329 else
1330 memcpy (where + offset, nops, last);
1331 }
1332 }
1333
1334 static INLINE int
1335 fits_in_imm7 (offsetT num)
1336 {
1337 return (num & 0x7f) == num;
1338 }
1339
1340 static INLINE int
1341 fits_in_imm31 (offsetT num)
1342 {
1343 return (num & 0x7fffffff) == num;
1344 }
1345
1346 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1347 single NOP instruction LIMIT. */
1348
1349 void
1350 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1351 {
1352 const unsigned char *const *patt = NULL;
1353 int max_single_nop_size;
1354 /* Maximum number of NOPs before switching to jump over NOPs. */
1355 int max_number_of_nops;
1356
1357 switch (fragP->fr_type)
1358 {
1359 case rs_fill_nop:
1360 case rs_align_code:
1361 break;
1362 default:
1363 return;
1364 }
1365
1366 /* We need to decide which NOP sequence to use for 32bit and
1367 64bit. When -mtune= is used:
1368
1369 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1370 PROCESSOR_GENERIC32, f32_patt will be used.
1371 2. For the rest, alt_patt will be used.
1372
1373 When -mtune= isn't used, alt_patt will be used if
1374 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1375 be used.
1376
1377 When -march= or .arch is used, we can't use anything beyond
1378 cpu_arch_isa_flags. */
1379
1380 if (flag_code == CODE_16BIT)
1381 {
1382 patt = f16_patt;
1383 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1384 /* Limit number of NOPs to 2 in 16-bit mode. */
1385 max_number_of_nops = 2;
1386 }
1387 else
1388 {
1389 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1390 {
1391 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1392 switch (cpu_arch_tune)
1393 {
1394 case PROCESSOR_UNKNOWN:
1395 /* We use cpu_arch_isa_flags to check if we SHOULD
1396 optimize with nops. */
1397 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1398 patt = alt_patt;
1399 else
1400 patt = f32_patt;
1401 break;
1402 case PROCESSOR_PENTIUM4:
1403 case PROCESSOR_NOCONA:
1404 case PROCESSOR_CORE:
1405 case PROCESSOR_CORE2:
1406 case PROCESSOR_COREI7:
1407 case PROCESSOR_L1OM:
1408 case PROCESSOR_K1OM:
1409 case PROCESSOR_GENERIC64:
1410 case PROCESSOR_K6:
1411 case PROCESSOR_ATHLON:
1412 case PROCESSOR_K8:
1413 case PROCESSOR_AMDFAM10:
1414 case PROCESSOR_BD:
1415 case PROCESSOR_ZNVER:
1416 case PROCESSOR_BT:
1417 patt = alt_patt;
1418 break;
1419 case PROCESSOR_I386:
1420 case PROCESSOR_I486:
1421 case PROCESSOR_PENTIUM:
1422 case PROCESSOR_PENTIUMPRO:
1423 case PROCESSOR_IAMCU:
1424 case PROCESSOR_GENERIC32:
1425 patt = f32_patt;
1426 break;
1427 }
1428 }
1429 else
1430 {
1431 switch (fragP->tc_frag_data.tune)
1432 {
1433 case PROCESSOR_UNKNOWN:
1434 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1435 PROCESSOR_UNKNOWN. */
1436 abort ();
1437 break;
1438
1439 case PROCESSOR_I386:
1440 case PROCESSOR_I486:
1441 case PROCESSOR_PENTIUM:
1442 case PROCESSOR_IAMCU:
1443 case PROCESSOR_K6:
1444 case PROCESSOR_ATHLON:
1445 case PROCESSOR_K8:
1446 case PROCESSOR_AMDFAM10:
1447 case PROCESSOR_BD:
1448 case PROCESSOR_ZNVER:
1449 case PROCESSOR_BT:
1450 case PROCESSOR_GENERIC32:
1451 /* We use cpu_arch_isa_flags to check if we CAN optimize
1452 with nops. */
1453 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1454 patt = alt_patt;
1455 else
1456 patt = f32_patt;
1457 break;
1458 case PROCESSOR_PENTIUMPRO:
1459 case PROCESSOR_PENTIUM4:
1460 case PROCESSOR_NOCONA:
1461 case PROCESSOR_CORE:
1462 case PROCESSOR_CORE2:
1463 case PROCESSOR_COREI7:
1464 case PROCESSOR_L1OM:
1465 case PROCESSOR_K1OM:
1466 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1467 patt = alt_patt;
1468 else
1469 patt = f32_patt;
1470 break;
1471 case PROCESSOR_GENERIC64:
1472 patt = alt_patt;
1473 break;
1474 }
1475 }
1476
1477 if (patt == f32_patt)
1478 {
1479 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1480 /* Limit number of NOPs to 2 for older processors. */
1481 max_number_of_nops = 2;
1482 }
1483 else
1484 {
1485 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1486 /* Limit number of NOPs to 7 for newer processors. */
1487 max_number_of_nops = 7;
1488 }
1489 }
1490
1491 if (limit == 0)
1492 limit = max_single_nop_size;
1493
1494 if (fragP->fr_type == rs_fill_nop)
1495 {
1496 /* Output NOPs for .nop directive. */
1497 if (limit > max_single_nop_size)
1498 {
1499 as_bad_where (fragP->fr_file, fragP->fr_line,
1500 _("invalid single nop size: %d "
1501 "(expect within [0, %d])"),
1502 limit, max_single_nop_size);
1503 return;
1504 }
1505 }
1506 else
1507 fragP->fr_var = count;
1508
1509 if ((count / max_single_nop_size) > max_number_of_nops)
1510 {
1511 /* Generate jump over NOPs. */
1512 offsetT disp = count - 2;
1513 if (fits_in_imm7 (disp))
1514 {
1515 /* Use "jmp disp8" if possible. */
1516 count = disp;
1517 where[0] = jump_disp8[0];
1518 where[1] = count;
1519 where += 2;
1520 }
1521 else
1522 {
1523 unsigned int size_of_jump;
1524
1525 if (flag_code == CODE_16BIT)
1526 {
1527 where[0] = jump16_disp32[0];
1528 where[1] = jump16_disp32[1];
1529 size_of_jump = 2;
1530 }
1531 else
1532 {
1533 where[0] = jump32_disp32[0];
1534 size_of_jump = 1;
1535 }
1536
1537 count -= size_of_jump + 4;
1538 if (!fits_in_imm31 (count))
1539 {
1540 as_bad_where (fragP->fr_file, fragP->fr_line,
1541 _("jump over nop padding out of range"));
1542 return;
1543 }
1544
1545 md_number_to_chars (where + size_of_jump, count, 4);
1546 where += size_of_jump + 4;
1547 }
1548 }
1549
1550 /* Generate multiple NOPs. */
1551 i386_output_nops (where, patt, count, limit);
1552 }
1553
1554 static INLINE int
1555 operand_type_all_zero (const union i386_operand_type *x)
1556 {
1557 switch (ARRAY_SIZE(x->array))
1558 {
1559 case 3:
1560 if (x->array[2])
1561 return 0;
1562 /* Fall through. */
1563 case 2:
1564 if (x->array[1])
1565 return 0;
1566 /* Fall through. */
1567 case 1:
1568 return !x->array[0];
1569 default:
1570 abort ();
1571 }
1572 }
1573
1574 static INLINE void
1575 operand_type_set (union i386_operand_type *x, unsigned int v)
1576 {
1577 switch (ARRAY_SIZE(x->array))
1578 {
1579 case 3:
1580 x->array[2] = v;
1581 /* Fall through. */
1582 case 2:
1583 x->array[1] = v;
1584 /* Fall through. */
1585 case 1:
1586 x->array[0] = v;
1587 /* Fall through. */
1588 break;
1589 default:
1590 abort ();
1591 }
1592 }
1593
1594 static INLINE int
1595 operand_type_equal (const union i386_operand_type *x,
1596 const union i386_operand_type *y)
1597 {
1598 switch (ARRAY_SIZE(x->array))
1599 {
1600 case 3:
1601 if (x->array[2] != y->array[2])
1602 return 0;
1603 /* Fall through. */
1604 case 2:
1605 if (x->array[1] != y->array[1])
1606 return 0;
1607 /* Fall through. */
1608 case 1:
1609 return x->array[0] == y->array[0];
1610 break;
1611 default:
1612 abort ();
1613 }
1614 }
1615
1616 static INLINE int
1617 cpu_flags_all_zero (const union i386_cpu_flags *x)
1618 {
1619 switch (ARRAY_SIZE(x->array))
1620 {
1621 case 4:
1622 if (x->array[3])
1623 return 0;
1624 /* Fall through. */
1625 case 3:
1626 if (x->array[2])
1627 return 0;
1628 /* Fall through. */
1629 case 2:
1630 if (x->array[1])
1631 return 0;
1632 /* Fall through. */
1633 case 1:
1634 return !x->array[0];
1635 default:
1636 abort ();
1637 }
1638 }
1639
1640 static INLINE int
1641 cpu_flags_equal (const union i386_cpu_flags *x,
1642 const union i386_cpu_flags *y)
1643 {
1644 switch (ARRAY_SIZE(x->array))
1645 {
1646 case 4:
1647 if (x->array[3] != y->array[3])
1648 return 0;
1649 /* Fall through. */
1650 case 3:
1651 if (x->array[2] != y->array[2])
1652 return 0;
1653 /* Fall through. */
1654 case 2:
1655 if (x->array[1] != y->array[1])
1656 return 0;
1657 /* Fall through. */
1658 case 1:
1659 return x->array[0] == y->array[0];
1660 break;
1661 default:
1662 abort ();
1663 }
1664 }
1665
1666 static INLINE int
1667 cpu_flags_check_cpu64 (i386_cpu_flags f)
1668 {
1669 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1670 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1671 }
1672
1673 static INLINE i386_cpu_flags
1674 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1675 {
1676 switch (ARRAY_SIZE (x.array))
1677 {
1678 case 4:
1679 x.array [3] &= y.array [3];
1680 /* Fall through. */
1681 case 3:
1682 x.array [2] &= y.array [2];
1683 /* Fall through. */
1684 case 2:
1685 x.array [1] &= y.array [1];
1686 /* Fall through. */
1687 case 1:
1688 x.array [0] &= y.array [0];
1689 break;
1690 default:
1691 abort ();
1692 }
1693 return x;
1694 }
1695
1696 static INLINE i386_cpu_flags
1697 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1698 {
1699 switch (ARRAY_SIZE (x.array))
1700 {
1701 case 4:
1702 x.array [3] |= y.array [3];
1703 /* Fall through. */
1704 case 3:
1705 x.array [2] |= y.array [2];
1706 /* Fall through. */
1707 case 2:
1708 x.array [1] |= y.array [1];
1709 /* Fall through. */
1710 case 1:
1711 x.array [0] |= y.array [0];
1712 break;
1713 default:
1714 abort ();
1715 }
1716 return x;
1717 }
1718
1719 static INLINE i386_cpu_flags
1720 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1721 {
1722 switch (ARRAY_SIZE (x.array))
1723 {
1724 case 4:
1725 x.array [3] &= ~y.array [3];
1726 /* Fall through. */
1727 case 3:
1728 x.array [2] &= ~y.array [2];
1729 /* Fall through. */
1730 case 2:
1731 x.array [1] &= ~y.array [1];
1732 /* Fall through. */
1733 case 1:
1734 x.array [0] &= ~y.array [0];
1735 break;
1736 default:
1737 abort ();
1738 }
1739 return x;
1740 }
1741
1742 #define CPU_FLAGS_ARCH_MATCH 0x1
1743 #define CPU_FLAGS_64BIT_MATCH 0x2
1744
1745 #define CPU_FLAGS_PERFECT_MATCH \
1746 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1747
1748 /* Return CPU flags match bits. */
1749
1750 static int
1751 cpu_flags_match (const insn_template *t)
1752 {
1753 i386_cpu_flags x = t->cpu_flags;
1754 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1755
1756 x.bitfield.cpu64 = 0;
1757 x.bitfield.cpuno64 = 0;
1758
1759 if (cpu_flags_all_zero (&x))
1760 {
1761 /* This instruction is available on all archs. */
1762 match |= CPU_FLAGS_ARCH_MATCH;
1763 }
1764 else
1765 {
1766 /* This instruction is available only on some archs. */
1767 i386_cpu_flags cpu = cpu_arch_flags;
1768
1769 /* AVX512VL is no standalone feature - match it and then strip it. */
1770 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1771 return match;
1772 x.bitfield.cpuavx512vl = 0;
1773
1774 cpu = cpu_flags_and (x, cpu);
1775 if (!cpu_flags_all_zero (&cpu))
1776 {
1777 if (x.bitfield.cpuavx)
1778 {
1779 /* We need to check a few extra flags with AVX. */
1780 if (cpu.bitfield.cpuavx
1781 && (!t->opcode_modifier.sse2avx || sse2avx)
1782 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1783 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1784 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1785 match |= CPU_FLAGS_ARCH_MATCH;
1786 }
1787 else if (x.bitfield.cpuavx512f)
1788 {
1789 /* We need to check a few extra flags with AVX512F. */
1790 if (cpu.bitfield.cpuavx512f
1791 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1792 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1793 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1794 match |= CPU_FLAGS_ARCH_MATCH;
1795 }
1796 else
1797 match |= CPU_FLAGS_ARCH_MATCH;
1798 }
1799 }
1800 return match;
1801 }
1802
1803 static INLINE i386_operand_type
1804 operand_type_and (i386_operand_type x, i386_operand_type y)
1805 {
1806 switch (ARRAY_SIZE (x.array))
1807 {
1808 case 3:
1809 x.array [2] &= y.array [2];
1810 /* Fall through. */
1811 case 2:
1812 x.array [1] &= y.array [1];
1813 /* Fall through. */
1814 case 1:
1815 x.array [0] &= y.array [0];
1816 break;
1817 default:
1818 abort ();
1819 }
1820 return x;
1821 }
1822
1823 static INLINE i386_operand_type
1824 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1825 {
1826 switch (ARRAY_SIZE (x.array))
1827 {
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1830 /* Fall through. */
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1833 /* Fall through. */
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841 }
1842
1843 static INLINE i386_operand_type
1844 operand_type_or (i386_operand_type x, i386_operand_type y)
1845 {
1846 switch (ARRAY_SIZE (x.array))
1847 {
1848 case 3:
1849 x.array [2] |= y.array [2];
1850 /* Fall through. */
1851 case 2:
1852 x.array [1] |= y.array [1];
1853 /* Fall through. */
1854 case 1:
1855 x.array [0] |= y.array [0];
1856 break;
1857 default:
1858 abort ();
1859 }
1860 return x;
1861 }
1862
1863 static INLINE i386_operand_type
1864 operand_type_xor (i386_operand_type x, i386_operand_type y)
1865 {
1866 switch (ARRAY_SIZE (x.array))
1867 {
1868 case 3:
1869 x.array [2] ^= y.array [2];
1870 /* Fall through. */
1871 case 2:
1872 x.array [1] ^= y.array [1];
1873 /* Fall through. */
1874 case 1:
1875 x.array [0] ^= y.array [0];
1876 break;
1877 default:
1878 abort ();
1879 }
1880 return x;
1881 }
1882
1883 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1884 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1885 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1886 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1887 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1888 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1889 static const i386_operand_type anydisp
1890 = OPERAND_TYPE_ANYDISP;
1891 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1892 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1893 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1894 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1895 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1896 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1897 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1898 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1899 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1900 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1901 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1902 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1903
1904 enum operand_type
1905 {
1906 reg,
1907 imm,
1908 disp,
1909 anymem
1910 };
1911
1912 static INLINE int
1913 operand_type_check (i386_operand_type t, enum operand_type c)
1914 {
1915 switch (c)
1916 {
1917 case reg:
1918 return t.bitfield.reg;
1919
1920 case imm:
1921 return (t.bitfield.imm8
1922 || t.bitfield.imm8s
1923 || t.bitfield.imm16
1924 || t.bitfield.imm32
1925 || t.bitfield.imm32s
1926 || t.bitfield.imm64);
1927
1928 case disp:
1929 return (t.bitfield.disp8
1930 || t.bitfield.disp16
1931 || t.bitfield.disp32
1932 || t.bitfield.disp32s
1933 || t.bitfield.disp64);
1934
1935 case anymem:
1936 return (t.bitfield.disp8
1937 || t.bitfield.disp16
1938 || t.bitfield.disp32
1939 || t.bitfield.disp32s
1940 || t.bitfield.disp64
1941 || t.bitfield.baseindex);
1942
1943 default:
1944 abort ();
1945 }
1946
1947 return 0;
1948 }
1949
1950 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1951 between operand GIVEN and opeand WANTED for instruction template T. */
1952
1953 static INLINE int
1954 match_operand_size (const insn_template *t, unsigned int wanted,
1955 unsigned int given)
1956 {
1957 return !((i.types[given].bitfield.byte
1958 && !t->operand_types[wanted].bitfield.byte)
1959 || (i.types[given].bitfield.word
1960 && !t->operand_types[wanted].bitfield.word)
1961 || (i.types[given].bitfield.dword
1962 && !t->operand_types[wanted].bitfield.dword)
1963 || (i.types[given].bitfield.qword
1964 && !t->operand_types[wanted].bitfield.qword)
1965 || (i.types[given].bitfield.tbyte
1966 && !t->operand_types[wanted].bitfield.tbyte));
1967 }
1968
1969 /* Return 1 if there is no conflict in SIMD register between operand
1970 GIVEN and opeand WANTED for instruction template T. */
1971
1972 static INLINE int
1973 match_simd_size (const insn_template *t, unsigned int wanted,
1974 unsigned int given)
1975 {
1976 return !((i.types[given].bitfield.xmmword
1977 && !t->operand_types[wanted].bitfield.xmmword)
1978 || (i.types[given].bitfield.ymmword
1979 && !t->operand_types[wanted].bitfield.ymmword)
1980 || (i.types[given].bitfield.zmmword
1981 && !t->operand_types[wanted].bitfield.zmmword));
1982 }
1983
1984 /* Return 1 if there is no conflict in any size between operand GIVEN
1985 and opeand WANTED for instruction template T. */
1986
1987 static INLINE int
1988 match_mem_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1990 {
1991 return (match_operand_size (t, wanted, given)
1992 && !((i.types[given].bitfield.unspecified
1993 && !i.broadcast
1994 && !t->operand_types[wanted].bitfield.unspecified)
1995 || (i.types[given].bitfield.fword
1996 && !t->operand_types[wanted].bitfield.fword)
1997 /* For scalar opcode templates to allow register and memory
1998 operands at the same time, some special casing is needed
1999 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2000 down-conversion vpmov*. */
2001 || ((t->operand_types[wanted].bitfield.regsimd
2002 && !t->opcode_modifier.broadcast
2003 && (t->operand_types[wanted].bitfield.byte
2004 || t->operand_types[wanted].bitfield.word
2005 || t->operand_types[wanted].bitfield.dword
2006 || t->operand_types[wanted].bitfield.qword))
2007 ? (i.types[given].bitfield.xmmword
2008 || i.types[given].bitfield.ymmword
2009 || i.types[given].bitfield.zmmword)
2010 : !match_simd_size(t, wanted, given))));
2011 }
2012
2013 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2014 operands for instruction template T, and it has MATCH_REVERSE set if there
2015 is no size conflict on any operands for the template with operands reversed
2016 (and the template allows for reversing in the first place). */
2017
2018 #define MATCH_STRAIGHT 1
2019 #define MATCH_REVERSE 2
2020
2021 static INLINE unsigned int
2022 operand_size_match (const insn_template *t)
2023 {
2024 unsigned int j, match = MATCH_STRAIGHT;
2025
2026 /* Don't check jump instructions. */
2027 if (t->opcode_modifier.jump
2028 || t->opcode_modifier.jumpbyte
2029 || t->opcode_modifier.jumpdword
2030 || t->opcode_modifier.jumpintersegment)
2031 return match;
2032
2033 /* Check memory and accumulator operand size. */
2034 for (j = 0; j < i.operands; j++)
2035 {
2036 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2037 && t->operand_types[j].bitfield.anysize)
2038 continue;
2039
2040 if (t->operand_types[j].bitfield.reg
2041 && !match_operand_size (t, j, j))
2042 {
2043 match = 0;
2044 break;
2045 }
2046
2047 if (t->operand_types[j].bitfield.regsimd
2048 && !match_simd_size (t, j, j))
2049 {
2050 match = 0;
2051 break;
2052 }
2053
2054 if (t->operand_types[j].bitfield.acc
2055 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2056 {
2057 match = 0;
2058 break;
2059 }
2060
2061 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2062 {
2063 match = 0;
2064 break;
2065 }
2066 }
2067
2068 if (!t->opcode_modifier.d)
2069 {
2070 mismatch:
2071 if (!match)
2072 i.error = operand_size_mismatch;
2073 return match;
2074 }
2075
2076 /* Check reverse. */
2077 gas_assert (i.operands >= 2 && i.operands <= 3);
2078
2079 for (j = 0; j < i.operands; j++)
2080 {
2081 unsigned int given = i.operands - j - 1;
2082
2083 if (t->operand_types[j].bitfield.reg
2084 && !match_operand_size (t, j, given))
2085 goto mismatch;
2086
2087 if (t->operand_types[j].bitfield.regsimd
2088 && !match_simd_size (t, j, given))
2089 goto mismatch;
2090
2091 if (t->operand_types[j].bitfield.acc
2092 && (!match_operand_size (t, j, given)
2093 || !match_simd_size (t, j, given)))
2094 goto mismatch;
2095
2096 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2097 goto mismatch;
2098 }
2099
2100 return match | MATCH_REVERSE;
2101 }
2102
2103 static INLINE int
2104 operand_type_match (i386_operand_type overlap,
2105 i386_operand_type given)
2106 {
2107 i386_operand_type temp = overlap;
2108
2109 temp.bitfield.jumpabsolute = 0;
2110 temp.bitfield.unspecified = 0;
2111 temp.bitfield.byte = 0;
2112 temp.bitfield.word = 0;
2113 temp.bitfield.dword = 0;
2114 temp.bitfield.fword = 0;
2115 temp.bitfield.qword = 0;
2116 temp.bitfield.tbyte = 0;
2117 temp.bitfield.xmmword = 0;
2118 temp.bitfield.ymmword = 0;
2119 temp.bitfield.zmmword = 0;
2120 if (operand_type_all_zero (&temp))
2121 goto mismatch;
2122
2123 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2124 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2125 return 1;
2126
2127 mismatch:
2128 i.error = operand_type_mismatch;
2129 return 0;
2130 }
2131
2132 /* If given types g0 and g1 are registers they must be of the same type
2133 unless the expected operand type register overlap is null.
2134 Memory operand size of certain SIMD instructions is also being checked
2135 here. */
2136
2137 static INLINE int
2138 operand_type_register_match (i386_operand_type g0,
2139 i386_operand_type t0,
2140 i386_operand_type g1,
2141 i386_operand_type t1)
2142 {
2143 if (!g0.bitfield.reg
2144 && !g0.bitfield.regsimd
2145 && (!operand_type_check (g0, anymem)
2146 || g0.bitfield.unspecified
2147 || !t0.bitfield.regsimd))
2148 return 1;
2149
2150 if (!g1.bitfield.reg
2151 && !g1.bitfield.regsimd
2152 && (!operand_type_check (g1, anymem)
2153 || g1.bitfield.unspecified
2154 || !t1.bitfield.regsimd))
2155 return 1;
2156
2157 if (g0.bitfield.byte == g1.bitfield.byte
2158 && g0.bitfield.word == g1.bitfield.word
2159 && g0.bitfield.dword == g1.bitfield.dword
2160 && g0.bitfield.qword == g1.bitfield.qword
2161 && g0.bitfield.xmmword == g1.bitfield.xmmword
2162 && g0.bitfield.ymmword == g1.bitfield.ymmword
2163 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2164 return 1;
2165
2166 if (!(t0.bitfield.byte & t1.bitfield.byte)
2167 && !(t0.bitfield.word & t1.bitfield.word)
2168 && !(t0.bitfield.dword & t1.bitfield.dword)
2169 && !(t0.bitfield.qword & t1.bitfield.qword)
2170 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2171 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2172 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2173 return 1;
2174
2175 i.error = register_type_mismatch;
2176
2177 return 0;
2178 }
2179
2180 static INLINE unsigned int
2181 register_number (const reg_entry *r)
2182 {
2183 unsigned int nr = r->reg_num;
2184
2185 if (r->reg_flags & RegRex)
2186 nr += 8;
2187
2188 if (r->reg_flags & RegVRex)
2189 nr += 16;
2190
2191 return nr;
2192 }
2193
2194 static INLINE unsigned int
2195 mode_from_disp_size (i386_operand_type t)
2196 {
2197 if (t.bitfield.disp8)
2198 return 1;
2199 else if (t.bitfield.disp16
2200 || t.bitfield.disp32
2201 || t.bitfield.disp32s)
2202 return 2;
2203 else
2204 return 0;
2205 }
2206
2207 static INLINE int
2208 fits_in_signed_byte (addressT num)
2209 {
2210 return num + 0x80 <= 0xff;
2211 }
2212
2213 static INLINE int
2214 fits_in_unsigned_byte (addressT num)
2215 {
2216 return num <= 0xff;
2217 }
2218
2219 static INLINE int
2220 fits_in_unsigned_word (addressT num)
2221 {
2222 return num <= 0xffff;
2223 }
2224
2225 static INLINE int
2226 fits_in_signed_word (addressT num)
2227 {
2228 return num + 0x8000 <= 0xffff;
2229 }
2230
2231 static INLINE int
2232 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2233 {
2234 #ifndef BFD64
2235 return 1;
2236 #else
2237 return num + 0x80000000 <= 0xffffffff;
2238 #endif
2239 } /* fits_in_signed_long() */
2240
2241 static INLINE int
2242 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2243 {
2244 #ifndef BFD64
2245 return 1;
2246 #else
2247 return num <= 0xffffffff;
2248 #endif
2249 } /* fits_in_unsigned_long() */
2250
2251 static INLINE int
2252 fits_in_disp8 (offsetT num)
2253 {
2254 int shift = i.memshift;
2255 unsigned int mask;
2256
2257 if (shift == -1)
2258 abort ();
2259
2260 mask = (1 << shift) - 1;
2261
2262 /* Return 0 if NUM isn't properly aligned. */
2263 if ((num & mask))
2264 return 0;
2265
2266 /* Check if NUM will fit in 8bit after shift. */
2267 return fits_in_signed_byte (num >> shift);
2268 }
2269
2270 static INLINE int
2271 fits_in_imm4 (offsetT num)
2272 {
2273 return (num & 0xf) == num;
2274 }
2275
2276 static i386_operand_type
2277 smallest_imm_type (offsetT num)
2278 {
2279 i386_operand_type t;
2280
2281 operand_type_set (&t, 0);
2282 t.bitfield.imm64 = 1;
2283
2284 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2285 {
2286 /* This code is disabled on the 486 because all the Imm1 forms
2287 in the opcode table are slower on the i486. They're the
2288 versions with the implicitly specified single-position
2289 displacement, which has another syntax if you really want to
2290 use that form. */
2291 t.bitfield.imm1 = 1;
2292 t.bitfield.imm8 = 1;
2293 t.bitfield.imm8s = 1;
2294 t.bitfield.imm16 = 1;
2295 t.bitfield.imm32 = 1;
2296 t.bitfield.imm32s = 1;
2297 }
2298 else if (fits_in_signed_byte (num))
2299 {
2300 t.bitfield.imm8 = 1;
2301 t.bitfield.imm8s = 1;
2302 t.bitfield.imm16 = 1;
2303 t.bitfield.imm32 = 1;
2304 t.bitfield.imm32s = 1;
2305 }
2306 else if (fits_in_unsigned_byte (num))
2307 {
2308 t.bitfield.imm8 = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2314 {
2315 t.bitfield.imm16 = 1;
2316 t.bitfield.imm32 = 1;
2317 t.bitfield.imm32s = 1;
2318 }
2319 else if (fits_in_signed_long (num))
2320 {
2321 t.bitfield.imm32 = 1;
2322 t.bitfield.imm32s = 1;
2323 }
2324 else if (fits_in_unsigned_long (num))
2325 t.bitfield.imm32 = 1;
2326
2327 return t;
2328 }
2329
2330 static offsetT
2331 offset_in_range (offsetT val, int size)
2332 {
2333 addressT mask;
2334
2335 switch (size)
2336 {
2337 case 1: mask = ((addressT) 1 << 8) - 1; break;
2338 case 2: mask = ((addressT) 1 << 16) - 1; break;
2339 case 4: mask = ((addressT) 2 << 31) - 1; break;
2340 #ifdef BFD64
2341 case 8: mask = ((addressT) 2 << 63) - 1; break;
2342 #endif
2343 default: abort ();
2344 }
2345
2346 #ifdef BFD64
2347 /* If BFD64, sign extend val for 32bit address mode. */
2348 if (flag_code != CODE_64BIT
2349 || i.prefix[ADDR_PREFIX])
2350 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2351 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2352 #endif
2353
2354 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2355 {
2356 char buf1[40], buf2[40];
2357
2358 sprint_value (buf1, val);
2359 sprint_value (buf2, val & mask);
2360 as_warn (_("%s shortened to %s"), buf1, buf2);
2361 }
2362 return val & mask;
2363 }
2364
2365 enum PREFIX_GROUP
2366 {
2367 PREFIX_EXIST = 0,
2368 PREFIX_LOCK,
2369 PREFIX_REP,
2370 PREFIX_DS,
2371 PREFIX_OTHER
2372 };
2373
2374 /* Returns
2375 a. PREFIX_EXIST if attempting to add a prefix where one from the
2376 same class already exists.
2377 b. PREFIX_LOCK if lock prefix is added.
2378 c. PREFIX_REP if rep/repne prefix is added.
2379 d. PREFIX_DS if ds prefix is added.
2380 e. PREFIX_OTHER if other prefix is added.
2381 */
2382
2383 static enum PREFIX_GROUP
2384 add_prefix (unsigned int prefix)
2385 {
2386 enum PREFIX_GROUP ret = PREFIX_OTHER;
2387 unsigned int q;
2388
2389 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2390 && flag_code == CODE_64BIT)
2391 {
2392 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2393 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2394 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2395 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2396 ret = PREFIX_EXIST;
2397 q = REX_PREFIX;
2398 }
2399 else
2400 {
2401 switch (prefix)
2402 {
2403 default:
2404 abort ();
2405
2406 case DS_PREFIX_OPCODE:
2407 ret = PREFIX_DS;
2408 /* Fall through. */
2409 case CS_PREFIX_OPCODE:
2410 case ES_PREFIX_OPCODE:
2411 case FS_PREFIX_OPCODE:
2412 case GS_PREFIX_OPCODE:
2413 case SS_PREFIX_OPCODE:
2414 q = SEG_PREFIX;
2415 break;
2416
2417 case REPNE_PREFIX_OPCODE:
2418 case REPE_PREFIX_OPCODE:
2419 q = REP_PREFIX;
2420 ret = PREFIX_REP;
2421 break;
2422
2423 case LOCK_PREFIX_OPCODE:
2424 q = LOCK_PREFIX;
2425 ret = PREFIX_LOCK;
2426 break;
2427
2428 case FWAIT_OPCODE:
2429 q = WAIT_PREFIX;
2430 break;
2431
2432 case ADDR_PREFIX_OPCODE:
2433 q = ADDR_PREFIX;
2434 break;
2435
2436 case DATA_PREFIX_OPCODE:
2437 q = DATA_PREFIX;
2438 break;
2439 }
2440 if (i.prefix[q] != 0)
2441 ret = PREFIX_EXIST;
2442 }
2443
2444 if (ret)
2445 {
2446 if (!i.prefix[q])
2447 ++i.prefixes;
2448 i.prefix[q] |= prefix;
2449 }
2450 else
2451 as_bad (_("same type of prefix used twice"));
2452
2453 return ret;
2454 }
2455
2456 static void
2457 update_code_flag (int value, int check)
2458 {
2459 PRINTF_LIKE ((*as_error));
2460
2461 flag_code = (enum flag_code) value;
2462 if (flag_code == CODE_64BIT)
2463 {
2464 cpu_arch_flags.bitfield.cpu64 = 1;
2465 cpu_arch_flags.bitfield.cpuno64 = 0;
2466 }
2467 else
2468 {
2469 cpu_arch_flags.bitfield.cpu64 = 0;
2470 cpu_arch_flags.bitfield.cpuno64 = 1;
2471 }
2472 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2473 {
2474 if (check)
2475 as_error = as_fatal;
2476 else
2477 as_error = as_bad;
2478 (*as_error) (_("64bit mode not supported on `%s'."),
2479 cpu_arch_name ? cpu_arch_name : default_arch);
2480 }
2481 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2482 {
2483 if (check)
2484 as_error = as_fatal;
2485 else
2486 as_error = as_bad;
2487 (*as_error) (_("32bit mode not supported on `%s'."),
2488 cpu_arch_name ? cpu_arch_name : default_arch);
2489 }
2490 stackop_size = '\0';
2491 }
2492
2493 static void
2494 set_code_flag (int value)
2495 {
2496 update_code_flag (value, 0);
2497 }
2498
2499 static void
2500 set_16bit_gcc_code_flag (int new_code_flag)
2501 {
2502 flag_code = (enum flag_code) new_code_flag;
2503 if (flag_code != CODE_16BIT)
2504 abort ();
2505 cpu_arch_flags.bitfield.cpu64 = 0;
2506 cpu_arch_flags.bitfield.cpuno64 = 1;
2507 stackop_size = LONG_MNEM_SUFFIX;
2508 }
2509
2510 static void
2511 set_intel_syntax (int syntax_flag)
2512 {
2513 /* Find out if register prefixing is specified. */
2514 int ask_naked_reg = 0;
2515
2516 SKIP_WHITESPACE ();
2517 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2518 {
2519 char *string;
2520 int e = get_symbol_name (&string);
2521
2522 if (strcmp (string, "prefix") == 0)
2523 ask_naked_reg = 1;
2524 else if (strcmp (string, "noprefix") == 0)
2525 ask_naked_reg = -1;
2526 else
2527 as_bad (_("bad argument to syntax directive."));
2528 (void) restore_line_pointer (e);
2529 }
2530 demand_empty_rest_of_line ();
2531
2532 intel_syntax = syntax_flag;
2533
2534 if (ask_naked_reg == 0)
2535 allow_naked_reg = (intel_syntax
2536 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2537 else
2538 allow_naked_reg = (ask_naked_reg < 0);
2539
2540 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2541
2542 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2543 identifier_chars['$'] = intel_syntax ? '$' : 0;
2544 register_prefix = allow_naked_reg ? "" : "%";
2545 }
2546
2547 static void
2548 set_intel_mnemonic (int mnemonic_flag)
2549 {
2550 intel_mnemonic = mnemonic_flag;
2551 }
2552
2553 static void
2554 set_allow_index_reg (int flag)
2555 {
2556 allow_index_reg = flag;
2557 }
2558
2559 static void
2560 set_check (int what)
2561 {
2562 enum check_kind *kind;
2563 const char *str;
2564
2565 if (what)
2566 {
2567 kind = &operand_check;
2568 str = "operand";
2569 }
2570 else
2571 {
2572 kind = &sse_check;
2573 str = "sse";
2574 }
2575
2576 SKIP_WHITESPACE ();
2577
2578 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2579 {
2580 char *string;
2581 int e = get_symbol_name (&string);
2582
2583 if (strcmp (string, "none") == 0)
2584 *kind = check_none;
2585 else if (strcmp (string, "warning") == 0)
2586 *kind = check_warning;
2587 else if (strcmp (string, "error") == 0)
2588 *kind = check_error;
2589 else
2590 as_bad (_("bad argument to %s_check directive."), str);
2591 (void) restore_line_pointer (e);
2592 }
2593 else
2594 as_bad (_("missing argument for %s_check directive"), str);
2595
2596 demand_empty_rest_of_line ();
2597 }
2598
2599 static void
2600 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2601 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2602 {
2603 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2604 static const char *arch;
2605
2606 /* Intel LIOM is only supported on ELF. */
2607 if (!IS_ELF)
2608 return;
2609
2610 if (!arch)
2611 {
2612 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2613 use default_arch. */
2614 arch = cpu_arch_name;
2615 if (!arch)
2616 arch = default_arch;
2617 }
2618
2619 /* If we are targeting Intel MCU, we must enable it. */
2620 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2621 || new_flag.bitfield.cpuiamcu)
2622 return;
2623
2624 /* If we are targeting Intel L1OM, we must enable it. */
2625 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2626 || new_flag.bitfield.cpul1om)
2627 return;
2628
2629 /* If we are targeting Intel K1OM, we must enable it. */
2630 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2631 || new_flag.bitfield.cpuk1om)
2632 return;
2633
2634 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2635 #endif
2636 }
2637
2638 static void
2639 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2640 {
2641 SKIP_WHITESPACE ();
2642
2643 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2644 {
2645 char *string;
2646 int e = get_symbol_name (&string);
2647 unsigned int j;
2648 i386_cpu_flags flags;
2649
2650 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2651 {
2652 if (strcmp (string, cpu_arch[j].name) == 0)
2653 {
2654 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2655
2656 if (*string != '.')
2657 {
2658 cpu_arch_name = cpu_arch[j].name;
2659 cpu_sub_arch_name = NULL;
2660 cpu_arch_flags = cpu_arch[j].flags;
2661 if (flag_code == CODE_64BIT)
2662 {
2663 cpu_arch_flags.bitfield.cpu64 = 1;
2664 cpu_arch_flags.bitfield.cpuno64 = 0;
2665 }
2666 else
2667 {
2668 cpu_arch_flags.bitfield.cpu64 = 0;
2669 cpu_arch_flags.bitfield.cpuno64 = 1;
2670 }
2671 cpu_arch_isa = cpu_arch[j].type;
2672 cpu_arch_isa_flags = cpu_arch[j].flags;
2673 if (!cpu_arch_tune_set)
2674 {
2675 cpu_arch_tune = cpu_arch_isa;
2676 cpu_arch_tune_flags = cpu_arch_isa_flags;
2677 }
2678 break;
2679 }
2680
2681 flags = cpu_flags_or (cpu_arch_flags,
2682 cpu_arch[j].flags);
2683
2684 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2685 {
2686 if (cpu_sub_arch_name)
2687 {
2688 char *name = cpu_sub_arch_name;
2689 cpu_sub_arch_name = concat (name,
2690 cpu_arch[j].name,
2691 (const char *) NULL);
2692 free (name);
2693 }
2694 else
2695 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2696 cpu_arch_flags = flags;
2697 cpu_arch_isa_flags = flags;
2698 }
2699 else
2700 cpu_arch_isa_flags
2701 = cpu_flags_or (cpu_arch_isa_flags,
2702 cpu_arch[j].flags);
2703 (void) restore_line_pointer (e);
2704 demand_empty_rest_of_line ();
2705 return;
2706 }
2707 }
2708
2709 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2710 {
2711 /* Disable an ISA extension. */
2712 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2713 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2714 {
2715 flags = cpu_flags_and_not (cpu_arch_flags,
2716 cpu_noarch[j].flags);
2717 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2718 {
2719 if (cpu_sub_arch_name)
2720 {
2721 char *name = cpu_sub_arch_name;
2722 cpu_sub_arch_name = concat (name, string,
2723 (const char *) NULL);
2724 free (name);
2725 }
2726 else
2727 cpu_sub_arch_name = xstrdup (string);
2728 cpu_arch_flags = flags;
2729 cpu_arch_isa_flags = flags;
2730 }
2731 (void) restore_line_pointer (e);
2732 demand_empty_rest_of_line ();
2733 return;
2734 }
2735
2736 j = ARRAY_SIZE (cpu_arch);
2737 }
2738
2739 if (j >= ARRAY_SIZE (cpu_arch))
2740 as_bad (_("no such architecture: `%s'"), string);
2741
2742 *input_line_pointer = e;
2743 }
2744 else
2745 as_bad (_("missing cpu architecture"));
2746
2747 no_cond_jump_promotion = 0;
2748 if (*input_line_pointer == ','
2749 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2750 {
2751 char *string;
2752 char e;
2753
2754 ++input_line_pointer;
2755 e = get_symbol_name (&string);
2756
2757 if (strcmp (string, "nojumps") == 0)
2758 no_cond_jump_promotion = 1;
2759 else if (strcmp (string, "jumps") == 0)
2760 ;
2761 else
2762 as_bad (_("no such architecture modifier: `%s'"), string);
2763
2764 (void) restore_line_pointer (e);
2765 }
2766
2767 demand_empty_rest_of_line ();
2768 }
2769
2770 enum bfd_architecture
2771 i386_arch (void)
2772 {
2773 if (cpu_arch_isa == PROCESSOR_L1OM)
2774 {
2775 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2776 || flag_code != CODE_64BIT)
2777 as_fatal (_("Intel L1OM is 64bit ELF only"));
2778 return bfd_arch_l1om;
2779 }
2780 else if (cpu_arch_isa == PROCESSOR_K1OM)
2781 {
2782 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2783 || flag_code != CODE_64BIT)
2784 as_fatal (_("Intel K1OM is 64bit ELF only"));
2785 return bfd_arch_k1om;
2786 }
2787 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2788 {
2789 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2790 || flag_code == CODE_64BIT)
2791 as_fatal (_("Intel MCU is 32bit ELF only"));
2792 return bfd_arch_iamcu;
2793 }
2794 else
2795 return bfd_arch_i386;
2796 }
2797
2798 unsigned long
2799 i386_mach (void)
2800 {
2801 if (!strncmp (default_arch, "x86_64", 6))
2802 {
2803 if (cpu_arch_isa == PROCESSOR_L1OM)
2804 {
2805 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2806 || default_arch[6] != '\0')
2807 as_fatal (_("Intel L1OM is 64bit ELF only"));
2808 return bfd_mach_l1om;
2809 }
2810 else if (cpu_arch_isa == PROCESSOR_K1OM)
2811 {
2812 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2813 || default_arch[6] != '\0')
2814 as_fatal (_("Intel K1OM is 64bit ELF only"));
2815 return bfd_mach_k1om;
2816 }
2817 else if (default_arch[6] == '\0')
2818 return bfd_mach_x86_64;
2819 else
2820 return bfd_mach_x64_32;
2821 }
2822 else if (!strcmp (default_arch, "i386")
2823 || !strcmp (default_arch, "iamcu"))
2824 {
2825 if (cpu_arch_isa == PROCESSOR_IAMCU)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2828 as_fatal (_("Intel MCU is 32bit ELF only"));
2829 return bfd_mach_i386_iamcu;
2830 }
2831 else
2832 return bfd_mach_i386_i386;
2833 }
2834 else
2835 as_fatal (_("unknown architecture"));
2836 }
2837 \f
2838 void
2839 md_begin (void)
2840 {
2841 const char *hash_err;
2842
2843 /* Support pseudo prefixes like {disp32}. */
2844 lex_type ['{'] = LEX_BEGIN_NAME;
2845
2846 /* Initialize op_hash hash table. */
2847 op_hash = hash_new ();
2848
2849 {
2850 const insn_template *optab;
2851 templates *core_optab;
2852
2853 /* Setup for loop. */
2854 optab = i386_optab;
2855 core_optab = XNEW (templates);
2856 core_optab->start = optab;
2857
2858 while (1)
2859 {
2860 ++optab;
2861 if (optab->name == NULL
2862 || strcmp (optab->name, (optab - 1)->name) != 0)
2863 {
2864 /* different name --> ship out current template list;
2865 add to hash table; & begin anew. */
2866 core_optab->end = optab;
2867 hash_err = hash_insert (op_hash,
2868 (optab - 1)->name,
2869 (void *) core_optab);
2870 if (hash_err)
2871 {
2872 as_fatal (_("can't hash %s: %s"),
2873 (optab - 1)->name,
2874 hash_err);
2875 }
2876 if (optab->name == NULL)
2877 break;
2878 core_optab = XNEW (templates);
2879 core_optab->start = optab;
2880 }
2881 }
2882 }
2883
2884 /* Initialize reg_hash hash table. */
2885 reg_hash = hash_new ();
2886 {
2887 const reg_entry *regtab;
2888 unsigned int regtab_size = i386_regtab_size;
2889
2890 for (regtab = i386_regtab; regtab_size--; regtab++)
2891 {
2892 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2893 if (hash_err)
2894 as_fatal (_("can't hash %s: %s"),
2895 regtab->reg_name,
2896 hash_err);
2897 }
2898 }
2899
2900 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2901 {
2902 int c;
2903 char *p;
2904
2905 for (c = 0; c < 256; c++)
2906 {
2907 if (ISDIGIT (c))
2908 {
2909 digit_chars[c] = c;
2910 mnemonic_chars[c] = c;
2911 register_chars[c] = c;
2912 operand_chars[c] = c;
2913 }
2914 else if (ISLOWER (c))
2915 {
2916 mnemonic_chars[c] = c;
2917 register_chars[c] = c;
2918 operand_chars[c] = c;
2919 }
2920 else if (ISUPPER (c))
2921 {
2922 mnemonic_chars[c] = TOLOWER (c);
2923 register_chars[c] = mnemonic_chars[c];
2924 operand_chars[c] = c;
2925 }
2926 else if (c == '{' || c == '}')
2927 {
2928 mnemonic_chars[c] = c;
2929 operand_chars[c] = c;
2930 }
2931
2932 if (ISALPHA (c) || ISDIGIT (c))
2933 identifier_chars[c] = c;
2934 else if (c >= 128)
2935 {
2936 identifier_chars[c] = c;
2937 operand_chars[c] = c;
2938 }
2939 }
2940
2941 #ifdef LEX_AT
2942 identifier_chars['@'] = '@';
2943 #endif
2944 #ifdef LEX_QM
2945 identifier_chars['?'] = '?';
2946 operand_chars['?'] = '?';
2947 #endif
2948 digit_chars['-'] = '-';
2949 mnemonic_chars['_'] = '_';
2950 mnemonic_chars['-'] = '-';
2951 mnemonic_chars['.'] = '.';
2952 identifier_chars['_'] = '_';
2953 identifier_chars['.'] = '.';
2954
2955 for (p = operand_special_chars; *p != '\0'; p++)
2956 operand_chars[(unsigned char) *p] = *p;
2957 }
2958
2959 if (flag_code == CODE_64BIT)
2960 {
2961 #if defined (OBJ_COFF) && defined (TE_PE)
2962 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2963 ? 32 : 16);
2964 #else
2965 x86_dwarf2_return_column = 16;
2966 #endif
2967 x86_cie_data_alignment = -8;
2968 }
2969 else
2970 {
2971 x86_dwarf2_return_column = 8;
2972 x86_cie_data_alignment = -4;
2973 }
2974 }
2975
2976 void
2977 i386_print_statistics (FILE *file)
2978 {
2979 hash_print_statistics (file, "i386 opcode", op_hash);
2980 hash_print_statistics (file, "i386 register", reg_hash);
2981 }
2982 \f
2983 #ifdef DEBUG386
2984
2985 /* Debugging routines for md_assemble. */
2986 static void pte (insn_template *);
2987 static void pt (i386_operand_type);
2988 static void pe (expressionS *);
2989 static void ps (symbolS *);
2990
2991 static void
2992 pi (char *line, i386_insn *x)
2993 {
2994 unsigned int j;
2995
2996 fprintf (stdout, "%s: template ", line);
2997 pte (&x->tm);
2998 fprintf (stdout, " address: base %s index %s scale %x\n",
2999 x->base_reg ? x->base_reg->reg_name : "none",
3000 x->index_reg ? x->index_reg->reg_name : "none",
3001 x->log2_scale_factor);
3002 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3003 x->rm.mode, x->rm.reg, x->rm.regmem);
3004 fprintf (stdout, " sib: base %x index %x scale %x\n",
3005 x->sib.base, x->sib.index, x->sib.scale);
3006 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3007 (x->rex & REX_W) != 0,
3008 (x->rex & REX_R) != 0,
3009 (x->rex & REX_X) != 0,
3010 (x->rex & REX_B) != 0);
3011 for (j = 0; j < x->operands; j++)
3012 {
3013 fprintf (stdout, " #%d: ", j + 1);
3014 pt (x->types[j]);
3015 fprintf (stdout, "\n");
3016 if (x->types[j].bitfield.reg
3017 || x->types[j].bitfield.regmmx
3018 || x->types[j].bitfield.regsimd
3019 || x->types[j].bitfield.sreg2
3020 || x->types[j].bitfield.sreg3
3021 || x->types[j].bitfield.control
3022 || x->types[j].bitfield.debug
3023 || x->types[j].bitfield.test)
3024 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3025 if (operand_type_check (x->types[j], imm))
3026 pe (x->op[j].imms);
3027 if (operand_type_check (x->types[j], disp))
3028 pe (x->op[j].disps);
3029 }
3030 }
3031
3032 static void
3033 pte (insn_template *t)
3034 {
3035 unsigned int j;
3036 fprintf (stdout, " %d operands ", t->operands);
3037 fprintf (stdout, "opcode %x ", t->base_opcode);
3038 if (t->extension_opcode != None)
3039 fprintf (stdout, "ext %x ", t->extension_opcode);
3040 if (t->opcode_modifier.d)
3041 fprintf (stdout, "D");
3042 if (t->opcode_modifier.w)
3043 fprintf (stdout, "W");
3044 fprintf (stdout, "\n");
3045 for (j = 0; j < t->operands; j++)
3046 {
3047 fprintf (stdout, " #%d type ", j + 1);
3048 pt (t->operand_types[j]);
3049 fprintf (stdout, "\n");
3050 }
3051 }
3052
3053 static void
3054 pe (expressionS *e)
3055 {
3056 fprintf (stdout, " operation %d\n", e->X_op);
3057 fprintf (stdout, " add_number %ld (%lx)\n",
3058 (long) e->X_add_number, (long) e->X_add_number);
3059 if (e->X_add_symbol)
3060 {
3061 fprintf (stdout, " add_symbol ");
3062 ps (e->X_add_symbol);
3063 fprintf (stdout, "\n");
3064 }
3065 if (e->X_op_symbol)
3066 {
3067 fprintf (stdout, " op_symbol ");
3068 ps (e->X_op_symbol);
3069 fprintf (stdout, "\n");
3070 }
3071 }
3072
3073 static void
3074 ps (symbolS *s)
3075 {
3076 fprintf (stdout, "%s type %s%s",
3077 S_GET_NAME (s),
3078 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3079 segment_name (S_GET_SEGMENT (s)));
3080 }
3081
3082 static struct type_name
3083 {
3084 i386_operand_type mask;
3085 const char *name;
3086 }
3087 const type_names[] =
3088 {
3089 { OPERAND_TYPE_REG8, "r8" },
3090 { OPERAND_TYPE_REG16, "r16" },
3091 { OPERAND_TYPE_REG32, "r32" },
3092 { OPERAND_TYPE_REG64, "r64" },
3093 { OPERAND_TYPE_IMM8, "i8" },
3094 { OPERAND_TYPE_IMM8, "i8s" },
3095 { OPERAND_TYPE_IMM16, "i16" },
3096 { OPERAND_TYPE_IMM32, "i32" },
3097 { OPERAND_TYPE_IMM32S, "i32s" },
3098 { OPERAND_TYPE_IMM64, "i64" },
3099 { OPERAND_TYPE_IMM1, "i1" },
3100 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3101 { OPERAND_TYPE_DISP8, "d8" },
3102 { OPERAND_TYPE_DISP16, "d16" },
3103 { OPERAND_TYPE_DISP32, "d32" },
3104 { OPERAND_TYPE_DISP32S, "d32s" },
3105 { OPERAND_TYPE_DISP64, "d64" },
3106 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3107 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3108 { OPERAND_TYPE_CONTROL, "control reg" },
3109 { OPERAND_TYPE_TEST, "test reg" },
3110 { OPERAND_TYPE_DEBUG, "debug reg" },
3111 { OPERAND_TYPE_FLOATREG, "FReg" },
3112 { OPERAND_TYPE_FLOATACC, "FAcc" },
3113 { OPERAND_TYPE_SREG2, "SReg2" },
3114 { OPERAND_TYPE_SREG3, "SReg3" },
3115 { OPERAND_TYPE_ACC, "Acc" },
3116 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3117 { OPERAND_TYPE_REGMMX, "rMMX" },
3118 { OPERAND_TYPE_REGXMM, "rXMM" },
3119 { OPERAND_TYPE_REGYMM, "rYMM" },
3120 { OPERAND_TYPE_REGZMM, "rZMM" },
3121 { OPERAND_TYPE_REGMASK, "Mask reg" },
3122 { OPERAND_TYPE_ESSEG, "es" },
3123 };
3124
3125 static void
3126 pt (i386_operand_type t)
3127 {
3128 unsigned int j;
3129 i386_operand_type a;
3130
3131 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3132 {
3133 a = operand_type_and (t, type_names[j].mask);
3134 if (!operand_type_all_zero (&a))
3135 fprintf (stdout, "%s, ", type_names[j].name);
3136 }
3137 fflush (stdout);
3138 }
3139
3140 #endif /* DEBUG386 */
3141 \f
3142 static bfd_reloc_code_real_type
3143 reloc (unsigned int size,
3144 int pcrel,
3145 int sign,
3146 bfd_reloc_code_real_type other)
3147 {
3148 if (other != NO_RELOC)
3149 {
3150 reloc_howto_type *rel;
3151
3152 if (size == 8)
3153 switch (other)
3154 {
3155 case BFD_RELOC_X86_64_GOT32:
3156 return BFD_RELOC_X86_64_GOT64;
3157 break;
3158 case BFD_RELOC_X86_64_GOTPLT64:
3159 return BFD_RELOC_X86_64_GOTPLT64;
3160 break;
3161 case BFD_RELOC_X86_64_PLTOFF64:
3162 return BFD_RELOC_X86_64_PLTOFF64;
3163 break;
3164 case BFD_RELOC_X86_64_GOTPC32:
3165 other = BFD_RELOC_X86_64_GOTPC64;
3166 break;
3167 case BFD_RELOC_X86_64_GOTPCREL:
3168 other = BFD_RELOC_X86_64_GOTPCREL64;
3169 break;
3170 case BFD_RELOC_X86_64_TPOFF32:
3171 other = BFD_RELOC_X86_64_TPOFF64;
3172 break;
3173 case BFD_RELOC_X86_64_DTPOFF32:
3174 other = BFD_RELOC_X86_64_DTPOFF64;
3175 break;
3176 default:
3177 break;
3178 }
3179
3180 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3181 if (other == BFD_RELOC_SIZE32)
3182 {
3183 if (size == 8)
3184 other = BFD_RELOC_SIZE64;
3185 if (pcrel)
3186 {
3187 as_bad (_("there are no pc-relative size relocations"));
3188 return NO_RELOC;
3189 }
3190 }
3191 #endif
3192
3193 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3194 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3195 sign = -1;
3196
3197 rel = bfd_reloc_type_lookup (stdoutput, other);
3198 if (!rel)
3199 as_bad (_("unknown relocation (%u)"), other);
3200 else if (size != bfd_get_reloc_size (rel))
3201 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3202 bfd_get_reloc_size (rel),
3203 size);
3204 else if (pcrel && !rel->pc_relative)
3205 as_bad (_("non-pc-relative relocation for pc-relative field"));
3206 else if ((rel->complain_on_overflow == complain_overflow_signed
3207 && !sign)
3208 || (rel->complain_on_overflow == complain_overflow_unsigned
3209 && sign > 0))
3210 as_bad (_("relocated field and relocation type differ in signedness"));
3211 else
3212 return other;
3213 return NO_RELOC;
3214 }
3215
3216 if (pcrel)
3217 {
3218 if (!sign)
3219 as_bad (_("there are no unsigned pc-relative relocations"));
3220 switch (size)
3221 {
3222 case 1: return BFD_RELOC_8_PCREL;
3223 case 2: return BFD_RELOC_16_PCREL;
3224 case 4: return BFD_RELOC_32_PCREL;
3225 case 8: return BFD_RELOC_64_PCREL;
3226 }
3227 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3228 }
3229 else
3230 {
3231 if (sign > 0)
3232 switch (size)
3233 {
3234 case 4: return BFD_RELOC_X86_64_32S;
3235 }
3236 else
3237 switch (size)
3238 {
3239 case 1: return BFD_RELOC_8;
3240 case 2: return BFD_RELOC_16;
3241 case 4: return BFD_RELOC_32;
3242 case 8: return BFD_RELOC_64;
3243 }
3244 as_bad (_("cannot do %s %u byte relocation"),
3245 sign > 0 ? "signed" : "unsigned", size);
3246 }
3247
3248 return NO_RELOC;
3249 }
3250
3251 /* Here we decide which fixups can be adjusted to make them relative to
3252 the beginning of the section instead of the symbol. Basically we need
3253 to make sure that the dynamic relocations are done correctly, so in
3254 some cases we force the original symbol to be used. */
3255
3256 int
3257 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3258 {
3259 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3260 if (!IS_ELF)
3261 return 1;
3262
3263 /* Don't adjust pc-relative references to merge sections in 64-bit
3264 mode. */
3265 if (use_rela_relocations
3266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3267 && fixP->fx_pcrel)
3268 return 0;
3269
3270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3271 and changed later by validate_fix. */
3272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3274 return 0;
3275
3276 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3277 for size relocations. */
3278 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3279 || fixP->fx_r_type == BFD_RELOC_SIZE64
3280 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3281 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3282 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3283 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3284 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3285 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3287 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3288 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3289 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3290 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3291 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3292 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3293 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3294 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3295 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3296 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3297 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3298 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3299 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3300 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3301 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3302 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3303 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3304 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3305 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3306 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3307 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3308 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3309 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3310 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3311 return 0;
3312 #endif
3313 return 1;
3314 }
3315
3316 static int
3317 intel_float_operand (const char *mnemonic)
3318 {
3319 /* Note that the value returned is meaningful only for opcodes with (memory)
3320 operands, hence the code here is free to improperly handle opcodes that
3321 have no operands (for better performance and smaller code). */
3322
3323 if (mnemonic[0] != 'f')
3324 return 0; /* non-math */
3325
3326 switch (mnemonic[1])
3327 {
3328 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3329 the fs segment override prefix not currently handled because no
3330 call path can make opcodes without operands get here */
3331 case 'i':
3332 return 2 /* integer op */;
3333 case 'l':
3334 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3335 return 3; /* fldcw/fldenv */
3336 break;
3337 case 'n':
3338 if (mnemonic[2] != 'o' /* fnop */)
3339 return 3; /* non-waiting control op */
3340 break;
3341 case 'r':
3342 if (mnemonic[2] == 's')
3343 return 3; /* frstor/frstpm */
3344 break;
3345 case 's':
3346 if (mnemonic[2] == 'a')
3347 return 3; /* fsave */
3348 if (mnemonic[2] == 't')
3349 {
3350 switch (mnemonic[3])
3351 {
3352 case 'c': /* fstcw */
3353 case 'd': /* fstdw */
3354 case 'e': /* fstenv */
3355 case 's': /* fsts[gw] */
3356 return 3;
3357 }
3358 }
3359 break;
3360 case 'x':
3361 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3362 return 0; /* fxsave/fxrstor are not really math ops */
3363 break;
3364 }
3365
3366 return 1;
3367 }
3368
3369 /* Build the VEX prefix. */
3370
3371 static void
3372 build_vex_prefix (const insn_template *t)
3373 {
3374 unsigned int register_specifier;
3375 unsigned int implied_prefix;
3376 unsigned int vector_length;
3377 unsigned int w;
3378
3379 /* Check register specifier. */
3380 if (i.vex.register_specifier)
3381 {
3382 register_specifier =
3383 ~register_number (i.vex.register_specifier) & 0xf;
3384 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3385 }
3386 else
3387 register_specifier = 0xf;
3388
3389 /* Use 2-byte VEX prefix by swapping destination and source operand
3390 if there are more than 1 register operand. */
3391 if (i.reg_operands > 1
3392 && i.vec_encoding != vex_encoding_vex3
3393 && i.dir_encoding == dir_encoding_default
3394 && i.operands == i.reg_operands
3395 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3396 && i.tm.opcode_modifier.vexopcode == VEX0F
3397 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3398 && i.rex == REX_B)
3399 {
3400 unsigned int xchg = i.operands - 1;
3401 union i386_op temp_op;
3402 i386_operand_type temp_type;
3403
3404 temp_type = i.types[xchg];
3405 i.types[xchg] = i.types[0];
3406 i.types[0] = temp_type;
3407 temp_op = i.op[xchg];
3408 i.op[xchg] = i.op[0];
3409 i.op[0] = temp_op;
3410
3411 gas_assert (i.rm.mode == 3);
3412
3413 i.rex = REX_R;
3414 xchg = i.rm.regmem;
3415 i.rm.regmem = i.rm.reg;
3416 i.rm.reg = xchg;
3417
3418 if (i.tm.opcode_modifier.d)
3419 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3420 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3421 else /* Use the next insn. */
3422 i.tm = t[1];
3423 }
3424
3425 if (i.tm.opcode_modifier.vex == VEXScalar)
3426 vector_length = avxscalar;
3427 else if (i.tm.opcode_modifier.vex == VEX256)
3428 vector_length = 1;
3429 else
3430 {
3431 unsigned int op;
3432
3433 /* Determine vector length from the last multi-length vector
3434 operand. */
3435 vector_length = 0;
3436 for (op = t->operands; op--;)
3437 if (t->operand_types[op].bitfield.xmmword
3438 && t->operand_types[op].bitfield.ymmword
3439 && i.types[op].bitfield.ymmword)
3440 {
3441 vector_length = 1;
3442 break;
3443 }
3444 }
3445
3446 switch ((i.tm.base_opcode >> 8) & 0xff)
3447 {
3448 case 0:
3449 implied_prefix = 0;
3450 break;
3451 case DATA_PREFIX_OPCODE:
3452 implied_prefix = 1;
3453 break;
3454 case REPE_PREFIX_OPCODE:
3455 implied_prefix = 2;
3456 break;
3457 case REPNE_PREFIX_OPCODE:
3458 implied_prefix = 3;
3459 break;
3460 default:
3461 abort ();
3462 }
3463
3464 /* Check the REX.W bit and VEXW. */
3465 if (i.tm.opcode_modifier.vexw == VEXWIG)
3466 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3467 else if (i.tm.opcode_modifier.vexw)
3468 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3469 else
3470 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3471
3472 /* Use 2-byte VEX prefix if possible. */
3473 if (w == 0
3474 && i.vec_encoding != vex_encoding_vex3
3475 && i.tm.opcode_modifier.vexopcode == VEX0F
3476 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3477 {
3478 /* 2-byte VEX prefix. */
3479 unsigned int r;
3480
3481 i.vex.length = 2;
3482 i.vex.bytes[0] = 0xc5;
3483
3484 /* Check the REX.R bit. */
3485 r = (i.rex & REX_R) ? 0 : 1;
3486 i.vex.bytes[1] = (r << 7
3487 | register_specifier << 3
3488 | vector_length << 2
3489 | implied_prefix);
3490 }
3491 else
3492 {
3493 /* 3-byte VEX prefix. */
3494 unsigned int m;
3495
3496 i.vex.length = 3;
3497
3498 switch (i.tm.opcode_modifier.vexopcode)
3499 {
3500 case VEX0F:
3501 m = 0x1;
3502 i.vex.bytes[0] = 0xc4;
3503 break;
3504 case VEX0F38:
3505 m = 0x2;
3506 i.vex.bytes[0] = 0xc4;
3507 break;
3508 case VEX0F3A:
3509 m = 0x3;
3510 i.vex.bytes[0] = 0xc4;
3511 break;
3512 case XOP08:
3513 m = 0x8;
3514 i.vex.bytes[0] = 0x8f;
3515 break;
3516 case XOP09:
3517 m = 0x9;
3518 i.vex.bytes[0] = 0x8f;
3519 break;
3520 case XOP0A:
3521 m = 0xa;
3522 i.vex.bytes[0] = 0x8f;
3523 break;
3524 default:
3525 abort ();
3526 }
3527
3528 /* The high 3 bits of the second VEX byte are 1's compliment
3529 of RXB bits from REX. */
3530 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3531
3532 i.vex.bytes[2] = (w << 7
3533 | register_specifier << 3
3534 | vector_length << 2
3535 | implied_prefix);
3536 }
3537 }
3538
3539 static INLINE bfd_boolean
3540 is_evex_encoding (const insn_template *t)
3541 {
3542 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3543 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3544 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3545 }
3546
3547 static INLINE bfd_boolean
3548 is_any_vex_encoding (const insn_template *t)
3549 {
3550 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3551 || is_evex_encoding (t);
3552 }
3553
3554 /* Build the EVEX prefix. */
3555
3556 static void
3557 build_evex_prefix (void)
3558 {
3559 unsigned int register_specifier;
3560 unsigned int implied_prefix;
3561 unsigned int m, w;
3562 rex_byte vrex_used = 0;
3563
3564 /* Check register specifier. */
3565 if (i.vex.register_specifier)
3566 {
3567 gas_assert ((i.vrex & REX_X) == 0);
3568
3569 register_specifier = i.vex.register_specifier->reg_num;
3570 if ((i.vex.register_specifier->reg_flags & RegRex))
3571 register_specifier += 8;
3572 /* The upper 16 registers are encoded in the fourth byte of the
3573 EVEX prefix. */
3574 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3575 i.vex.bytes[3] = 0x8;
3576 register_specifier = ~register_specifier & 0xf;
3577 }
3578 else
3579 {
3580 register_specifier = 0xf;
3581
3582 /* Encode upper 16 vector index register in the fourth byte of
3583 the EVEX prefix. */
3584 if (!(i.vrex & REX_X))
3585 i.vex.bytes[3] = 0x8;
3586 else
3587 vrex_used |= REX_X;
3588 }
3589
3590 switch ((i.tm.base_opcode >> 8) & 0xff)
3591 {
3592 case 0:
3593 implied_prefix = 0;
3594 break;
3595 case DATA_PREFIX_OPCODE:
3596 implied_prefix = 1;
3597 break;
3598 case REPE_PREFIX_OPCODE:
3599 implied_prefix = 2;
3600 break;
3601 case REPNE_PREFIX_OPCODE:
3602 implied_prefix = 3;
3603 break;
3604 default:
3605 abort ();
3606 }
3607
3608 /* 4 byte EVEX prefix. */
3609 i.vex.length = 4;
3610 i.vex.bytes[0] = 0x62;
3611
3612 /* mmmm bits. */
3613 switch (i.tm.opcode_modifier.vexopcode)
3614 {
3615 case VEX0F:
3616 m = 1;
3617 break;
3618 case VEX0F38:
3619 m = 2;
3620 break;
3621 case VEX0F3A:
3622 m = 3;
3623 break;
3624 default:
3625 abort ();
3626 break;
3627 }
3628
3629 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3630 bits from REX. */
3631 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3632
3633 /* The fifth bit of the second EVEX byte is 1's compliment of the
3634 REX_R bit in VREX. */
3635 if (!(i.vrex & REX_R))
3636 i.vex.bytes[1] |= 0x10;
3637 else
3638 vrex_used |= REX_R;
3639
3640 if ((i.reg_operands + i.imm_operands) == i.operands)
3641 {
3642 /* When all operands are registers, the REX_X bit in REX is not
3643 used. We reuse it to encode the upper 16 registers, which is
3644 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3645 as 1's compliment. */
3646 if ((i.vrex & REX_B))
3647 {
3648 vrex_used |= REX_B;
3649 i.vex.bytes[1] &= ~0x40;
3650 }
3651 }
3652
3653 /* EVEX instructions shouldn't need the REX prefix. */
3654 i.vrex &= ~vrex_used;
3655 gas_assert (i.vrex == 0);
3656
3657 /* Check the REX.W bit and VEXW. */
3658 if (i.tm.opcode_modifier.vexw == VEXWIG)
3659 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3660 else if (i.tm.opcode_modifier.vexw)
3661 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3662 else
3663 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3664
3665 /* Encode the U bit. */
3666 implied_prefix |= 0x4;
3667
3668 /* The third byte of the EVEX prefix. */
3669 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3670
3671 /* The fourth byte of the EVEX prefix. */
3672 /* The zeroing-masking bit. */
3673 if (i.mask && i.mask->zeroing)
3674 i.vex.bytes[3] |= 0x80;
3675
3676 /* Don't always set the broadcast bit if there is no RC. */
3677 if (!i.rounding)
3678 {
3679 /* Encode the vector length. */
3680 unsigned int vec_length;
3681
3682 if (!i.tm.opcode_modifier.evex
3683 || i.tm.opcode_modifier.evex == EVEXDYN)
3684 {
3685 unsigned int op;
3686
3687 /* Determine vector length from the last multi-length vector
3688 operand. */
3689 vec_length = 0;
3690 for (op = i.operands; op--;)
3691 if (i.tm.operand_types[op].bitfield.xmmword
3692 + i.tm.operand_types[op].bitfield.ymmword
3693 + i.tm.operand_types[op].bitfield.zmmword > 1)
3694 {
3695 if (i.types[op].bitfield.zmmword)
3696 {
3697 i.tm.opcode_modifier.evex = EVEX512;
3698 break;
3699 }
3700 else if (i.types[op].bitfield.ymmword)
3701 {
3702 i.tm.opcode_modifier.evex = EVEX256;
3703 break;
3704 }
3705 else if (i.types[op].bitfield.xmmword)
3706 {
3707 i.tm.opcode_modifier.evex = EVEX128;
3708 break;
3709 }
3710 else if (i.broadcast && (int) op == i.broadcast->operand)
3711 {
3712 switch (i.broadcast->bytes)
3713 {
3714 case 64:
3715 i.tm.opcode_modifier.evex = EVEX512;
3716 break;
3717 case 32:
3718 i.tm.opcode_modifier.evex = EVEX256;
3719 break;
3720 case 16:
3721 i.tm.opcode_modifier.evex = EVEX128;
3722 break;
3723 default:
3724 abort ();
3725 }
3726 break;
3727 }
3728 }
3729
3730 if (op >= MAX_OPERANDS)
3731 abort ();
3732 }
3733
3734 switch (i.tm.opcode_modifier.evex)
3735 {
3736 case EVEXLIG: /* LL' is ignored */
3737 vec_length = evexlig << 5;
3738 break;
3739 case EVEX128:
3740 vec_length = 0 << 5;
3741 break;
3742 case EVEX256:
3743 vec_length = 1 << 5;
3744 break;
3745 case EVEX512:
3746 vec_length = 2 << 5;
3747 break;
3748 default:
3749 abort ();
3750 break;
3751 }
3752 i.vex.bytes[3] |= vec_length;
3753 /* Encode the broadcast bit. */
3754 if (i.broadcast)
3755 i.vex.bytes[3] |= 0x10;
3756 }
3757 else
3758 {
3759 if (i.rounding->type != saeonly)
3760 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3761 else
3762 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3763 }
3764
3765 if (i.mask && i.mask->mask)
3766 i.vex.bytes[3] |= i.mask->mask->reg_num;
3767 }
3768
3769 static void
3770 process_immext (void)
3771 {
3772 expressionS *exp;
3773
3774 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3775 && i.operands > 0)
3776 {
3777 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3778 with an opcode suffix which is coded in the same place as an
3779 8-bit immediate field would be.
3780 Here we check those operands and remove them afterwards. */
3781 unsigned int x;
3782
3783 for (x = 0; x < i.operands; x++)
3784 if (register_number (i.op[x].regs) != x)
3785 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3786 register_prefix, i.op[x].regs->reg_name, x + 1,
3787 i.tm.name);
3788
3789 i.operands = 0;
3790 }
3791
3792 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3793 {
3794 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3795 suffix which is coded in the same place as an 8-bit immediate
3796 field would be.
3797 Here we check those operands and remove them afterwards. */
3798 unsigned int x;
3799
3800 if (i.operands != 3)
3801 abort();
3802
3803 for (x = 0; x < 2; x++)
3804 if (register_number (i.op[x].regs) != x)
3805 goto bad_register_operand;
3806
3807 /* Check for third operand for mwaitx/monitorx insn. */
3808 if (register_number (i.op[x].regs)
3809 != (x + (i.tm.extension_opcode == 0xfb)))
3810 {
3811 bad_register_operand:
3812 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3813 register_prefix, i.op[x].regs->reg_name, x+1,
3814 i.tm.name);
3815 }
3816
3817 i.operands = 0;
3818 }
3819
3820 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3821 which is coded in the same place as an 8-bit immediate field
3822 would be. Here we fake an 8-bit immediate operand from the
3823 opcode suffix stored in tm.extension_opcode.
3824
3825 AVX instructions also use this encoding, for some of
3826 3 argument instructions. */
3827
3828 gas_assert (i.imm_operands <= 1
3829 && (i.operands <= 2
3830 || (is_any_vex_encoding (&i.tm)
3831 && i.operands <= 4)));
3832
3833 exp = &im_expressions[i.imm_operands++];
3834 i.op[i.operands].imms = exp;
3835 i.types[i.operands] = imm8;
3836 i.operands++;
3837 exp->X_op = O_constant;
3838 exp->X_add_number = i.tm.extension_opcode;
3839 i.tm.extension_opcode = None;
3840 }
3841
3842
3843 static int
3844 check_hle (void)
3845 {
3846 switch (i.tm.opcode_modifier.hleprefixok)
3847 {
3848 default:
3849 abort ();
3850 case HLEPrefixNone:
3851 as_bad (_("invalid instruction `%s' after `%s'"),
3852 i.tm.name, i.hle_prefix);
3853 return 0;
3854 case HLEPrefixLock:
3855 if (i.prefix[LOCK_PREFIX])
3856 return 1;
3857 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3858 return 0;
3859 case HLEPrefixAny:
3860 return 1;
3861 case HLEPrefixRelease:
3862 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3863 {
3864 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3865 i.tm.name);
3866 return 0;
3867 }
3868 if (i.mem_operands == 0
3869 || !operand_type_check (i.types[i.operands - 1], anymem))
3870 {
3871 as_bad (_("memory destination needed for instruction `%s'"
3872 " after `xrelease'"), i.tm.name);
3873 return 0;
3874 }
3875 return 1;
3876 }
3877 }
3878
3879 /* Try the shortest encoding by shortening operand size. */
3880
3881 static void
3882 optimize_encoding (void)
3883 {
3884 int j;
3885
3886 if (optimize_for_space
3887 && i.reg_operands == 1
3888 && i.imm_operands == 1
3889 && !i.types[1].bitfield.byte
3890 && i.op[0].imms->X_op == O_constant
3891 && fits_in_imm7 (i.op[0].imms->X_add_number)
3892 && ((i.tm.base_opcode == 0xa8
3893 && i.tm.extension_opcode == None)
3894 || (i.tm.base_opcode == 0xf6
3895 && i.tm.extension_opcode == 0x0)))
3896 {
3897 /* Optimize: -Os:
3898 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3899 */
3900 unsigned int base_regnum = i.op[1].regs->reg_num;
3901 if (flag_code == CODE_64BIT || base_regnum < 4)
3902 {
3903 i.types[1].bitfield.byte = 1;
3904 /* Ignore the suffix. */
3905 i.suffix = 0;
3906 if (base_regnum >= 4
3907 && !(i.op[1].regs->reg_flags & RegRex))
3908 {
3909 /* Handle SP, BP, SI and DI registers. */
3910 if (i.types[1].bitfield.word)
3911 j = 16;
3912 else if (i.types[1].bitfield.dword)
3913 j = 32;
3914 else
3915 j = 48;
3916 i.op[1].regs -= j;
3917 }
3918 }
3919 }
3920 else if (flag_code == CODE_64BIT
3921 && ((i.types[1].bitfield.qword
3922 && i.reg_operands == 1
3923 && i.imm_operands == 1
3924 && i.op[0].imms->X_op == O_constant
3925 && ((i.tm.base_opcode == 0xb0
3926 && i.tm.extension_opcode == None
3927 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3928 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3929 && (((i.tm.base_opcode == 0x24
3930 || i.tm.base_opcode == 0xa8)
3931 && i.tm.extension_opcode == None)
3932 || (i.tm.base_opcode == 0x80
3933 && i.tm.extension_opcode == 0x4)
3934 || ((i.tm.base_opcode == 0xf6
3935 || i.tm.base_opcode == 0xc6)
3936 && i.tm.extension_opcode == 0x0)))))
3937 || (i.types[0].bitfield.qword
3938 && ((i.reg_operands == 2
3939 && i.op[0].regs == i.op[1].regs
3940 && ((i.tm.base_opcode == 0x30
3941 || i.tm.base_opcode == 0x28)
3942 && i.tm.extension_opcode == None))
3943 || (i.reg_operands == 1
3944 && i.operands == 1
3945 && i.tm.base_opcode == 0x30
3946 && i.tm.extension_opcode == None)))))
3947 {
3948 /* Optimize: -O:
3949 andq $imm31, %r64 -> andl $imm31, %r32
3950 testq $imm31, %r64 -> testl $imm31, %r32
3951 xorq %r64, %r64 -> xorl %r32, %r32
3952 subq %r64, %r64 -> subl %r32, %r32
3953 movq $imm31, %r64 -> movl $imm31, %r32
3954 movq $imm32, %r64 -> movl $imm32, %r32
3955 */
3956 i.tm.opcode_modifier.norex64 = 1;
3957 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3958 {
3959 /* Handle
3960 movq $imm31, %r64 -> movl $imm31, %r32
3961 movq $imm32, %r64 -> movl $imm32, %r32
3962 */
3963 i.tm.operand_types[0].bitfield.imm32 = 1;
3964 i.tm.operand_types[0].bitfield.imm32s = 0;
3965 i.tm.operand_types[0].bitfield.imm64 = 0;
3966 i.types[0].bitfield.imm32 = 1;
3967 i.types[0].bitfield.imm32s = 0;
3968 i.types[0].bitfield.imm64 = 0;
3969 i.types[1].bitfield.dword = 1;
3970 i.types[1].bitfield.qword = 0;
3971 if (i.tm.base_opcode == 0xc6)
3972 {
3973 /* Handle
3974 movq $imm31, %r64 -> movl $imm31, %r32
3975 */
3976 i.tm.base_opcode = 0xb0;
3977 i.tm.extension_opcode = None;
3978 i.tm.opcode_modifier.shortform = 1;
3979 i.tm.opcode_modifier.modrm = 0;
3980 }
3981 }
3982 }
3983 else if (i.reg_operands == 3
3984 && i.op[0].regs == i.op[1].regs
3985 && !i.types[2].bitfield.xmmword
3986 && (i.tm.opcode_modifier.vex
3987 || ((!i.mask || i.mask->zeroing)
3988 && !i.rounding
3989 && is_evex_encoding (&i.tm)
3990 && (i.vec_encoding != vex_encoding_evex
3991 || cpu_arch_isa_flags.bitfield.cpuavx512vl
3992 || i.tm.cpu_flags.bitfield.cpuavx512vl
3993 || (i.tm.operand_types[2].bitfield.zmmword
3994 && i.types[2].bitfield.ymmword))))
3995 && ((i.tm.base_opcode == 0x55
3996 || i.tm.base_opcode == 0x6655
3997 || i.tm.base_opcode == 0x66df
3998 || i.tm.base_opcode == 0x57
3999 || i.tm.base_opcode == 0x6657
4000 || i.tm.base_opcode == 0x66ef
4001 || i.tm.base_opcode == 0x66f8
4002 || i.tm.base_opcode == 0x66f9
4003 || i.tm.base_opcode == 0x66fa
4004 || i.tm.base_opcode == 0x66fb
4005 || i.tm.base_opcode == 0x42
4006 || i.tm.base_opcode == 0x6642
4007 || i.tm.base_opcode == 0x47
4008 || i.tm.base_opcode == 0x6647)
4009 && i.tm.extension_opcode == None))
4010 {
4011 /* Optimize: -O1:
4012 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4013 vpsubq and vpsubw:
4014 EVEX VOP %zmmM, %zmmM, %zmmN
4015 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4016 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4017 EVEX VOP %ymmM, %ymmM, %ymmN
4018 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4019 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4020 VEX VOP %ymmM, %ymmM, %ymmN
4021 -> VEX VOP %xmmM, %xmmM, %xmmN
4022 VOP, one of vpandn and vpxor:
4023 VEX VOP %ymmM, %ymmM, %ymmN
4024 -> VEX VOP %xmmM, %xmmM, %xmmN
4025 VOP, one of vpandnd and vpandnq:
4026 EVEX VOP %zmmM, %zmmM, %zmmN
4027 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4028 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4029 EVEX VOP %ymmM, %ymmM, %ymmN
4030 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4031 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4032 VOP, one of vpxord and vpxorq:
4033 EVEX VOP %zmmM, %zmmM, %zmmN
4034 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4035 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4036 EVEX VOP %ymmM, %ymmM, %ymmN
4037 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4038 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4039 VOP, one of kxord and kxorq:
4040 VEX VOP %kM, %kM, %kN
4041 -> VEX kxorw %kM, %kM, %kN
4042 VOP, one of kandnd and kandnq:
4043 VEX VOP %kM, %kM, %kN
4044 -> VEX kandnw %kM, %kM, %kN
4045 */
4046 if (is_evex_encoding (&i.tm))
4047 {
4048 if (i.vec_encoding != vex_encoding_evex)
4049 {
4050 i.tm.opcode_modifier.vex = VEX128;
4051 i.tm.opcode_modifier.vexw = VEXW0;
4052 i.tm.opcode_modifier.evex = 0;
4053 }
4054 else if (optimize > 1)
4055 i.tm.opcode_modifier.evex = EVEX128;
4056 else
4057 return;
4058 }
4059 else if (i.tm.operand_types[0].bitfield.regmask)
4060 {
4061 i.tm.base_opcode &= 0xff;
4062 i.tm.opcode_modifier.vexw = VEXW0;
4063 }
4064 else
4065 i.tm.opcode_modifier.vex = VEX128;
4066
4067 if (i.tm.opcode_modifier.vex)
4068 for (j = 0; j < 3; j++)
4069 {
4070 i.types[j].bitfield.xmmword = 1;
4071 i.types[j].bitfield.ymmword = 0;
4072 }
4073 }
4074 else if (i.vec_encoding != vex_encoding_evex
4075 && !i.types[0].bitfield.zmmword
4076 && !i.types[1].bitfield.zmmword
4077 && !i.mask
4078 && is_evex_encoding (&i.tm)
4079 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4080 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4081 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4082 && i.tm.extension_opcode == None)
4083 {
4084 /* Optimize: -O1:
4085 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4086 vmovdqu32 and vmovdqu64:
4087 EVEX VOP %xmmM, %xmmN
4088 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4089 EVEX VOP %ymmM, %ymmN
4090 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4091 EVEX VOP %xmmM, mem
4092 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4093 EVEX VOP %ymmM, mem
4094 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4095 EVEX VOP mem, %xmmN
4096 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4097 EVEX VOP mem, %ymmN
4098 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4099 */
4100 for (j = 0; j < 2; j++)
4101 if (operand_type_check (i.types[j], disp)
4102 && i.op[j].disps->X_op == O_constant)
4103 {
4104 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4105 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4106 bytes, we choose EVEX Disp8 over VEX Disp32. */
4107 int evex_disp8, vex_disp8;
4108 unsigned int memshift = i.memshift;
4109 offsetT n = i.op[j].disps->X_add_number;
4110
4111 evex_disp8 = fits_in_disp8 (n);
4112 i.memshift = 0;
4113 vex_disp8 = fits_in_disp8 (n);
4114 if (evex_disp8 != vex_disp8)
4115 {
4116 i.memshift = memshift;
4117 return;
4118 }
4119
4120 i.types[j].bitfield.disp8 = vex_disp8;
4121 break;
4122 }
4123 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4124 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4125 i.tm.opcode_modifier.vex
4126 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4127 i.tm.opcode_modifier.vexw = VEXW0;
4128 i.tm.opcode_modifier.evex = 0;
4129 i.tm.opcode_modifier.masking = 0;
4130 i.tm.opcode_modifier.disp8memshift = 0;
4131 i.memshift = 0;
4132 for (j = 0; j < 2; j++)
4133 if (operand_type_check (i.types[j], disp)
4134 && i.op[j].disps->X_op == O_constant)
4135 {
4136 i.types[j].bitfield.disp8
4137 = fits_in_disp8 (i.op[j].disps->X_add_number);
4138 break;
4139 }
4140 }
4141 }
4142
4143 /* This is the guts of the machine-dependent assembler. LINE points to a
4144 machine dependent instruction. This function is supposed to emit
4145 the frags/bytes it assembles to. */
4146
4147 void
4148 md_assemble (char *line)
4149 {
4150 unsigned int j;
4151 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4152 const insn_template *t;
4153
4154 /* Initialize globals. */
4155 memset (&i, '\0', sizeof (i));
4156 for (j = 0; j < MAX_OPERANDS; j++)
4157 i.reloc[j] = NO_RELOC;
4158 memset (disp_expressions, '\0', sizeof (disp_expressions));
4159 memset (im_expressions, '\0', sizeof (im_expressions));
4160 save_stack_p = save_stack;
4161
4162 /* First parse an instruction mnemonic & call i386_operand for the operands.
4163 We assume that the scrubber has arranged it so that line[0] is the valid
4164 start of a (possibly prefixed) mnemonic. */
4165
4166 line = parse_insn (line, mnemonic);
4167 if (line == NULL)
4168 return;
4169 mnem_suffix = i.suffix;
4170
4171 line = parse_operands (line, mnemonic);
4172 this_operand = -1;
4173 xfree (i.memop1_string);
4174 i.memop1_string = NULL;
4175 if (line == NULL)
4176 return;
4177
4178 /* Now we've parsed the mnemonic into a set of templates, and have the
4179 operands at hand. */
4180
4181 /* All intel opcodes have reversed operands except for "bound" and
4182 "enter". We also don't reverse intersegment "jmp" and "call"
4183 instructions with 2 immediate operands so that the immediate segment
4184 precedes the offset, as it does when in AT&T mode. */
4185 if (intel_syntax
4186 && i.operands > 1
4187 && (strcmp (mnemonic, "bound") != 0)
4188 && (strcmp (mnemonic, "invlpga") != 0)
4189 && !(operand_type_check (i.types[0], imm)
4190 && operand_type_check (i.types[1], imm)))
4191 swap_operands ();
4192
4193 /* The order of the immediates should be reversed
4194 for 2 immediates extrq and insertq instructions */
4195 if (i.imm_operands == 2
4196 && (strcmp (mnemonic, "extrq") == 0
4197 || strcmp (mnemonic, "insertq") == 0))
4198 swap_2_operands (0, 1);
4199
4200 if (i.imm_operands)
4201 optimize_imm ();
4202
4203 /* Don't optimize displacement for movabs since it only takes 64bit
4204 displacement. */
4205 if (i.disp_operands
4206 && i.disp_encoding != disp_encoding_32bit
4207 && (flag_code != CODE_64BIT
4208 || strcmp (mnemonic, "movabs") != 0))
4209 optimize_disp ();
4210
4211 /* Next, we find a template that matches the given insn,
4212 making sure the overlap of the given operands types is consistent
4213 with the template operand types. */
4214
4215 if (!(t = match_template (mnem_suffix)))
4216 return;
4217
4218 if (sse_check != check_none
4219 && !i.tm.opcode_modifier.noavx
4220 && !i.tm.cpu_flags.bitfield.cpuavx
4221 && (i.tm.cpu_flags.bitfield.cpusse
4222 || i.tm.cpu_flags.bitfield.cpusse2
4223 || i.tm.cpu_flags.bitfield.cpusse3
4224 || i.tm.cpu_flags.bitfield.cpussse3
4225 || i.tm.cpu_flags.bitfield.cpusse4_1
4226 || i.tm.cpu_flags.bitfield.cpusse4_2
4227 || i.tm.cpu_flags.bitfield.cpupclmul
4228 || i.tm.cpu_flags.bitfield.cpuaes
4229 || i.tm.cpu_flags.bitfield.cpugfni))
4230 {
4231 (sse_check == check_warning
4232 ? as_warn
4233 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4234 }
4235
4236 /* Zap movzx and movsx suffix. The suffix has been set from
4237 "word ptr" or "byte ptr" on the source operand in Intel syntax
4238 or extracted from mnemonic in AT&T syntax. But we'll use
4239 the destination register to choose the suffix for encoding. */
4240 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4241 {
4242 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4243 there is no suffix, the default will be byte extension. */
4244 if (i.reg_operands != 2
4245 && !i.suffix
4246 && intel_syntax)
4247 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4248
4249 i.suffix = 0;
4250 }
4251
4252 if (i.tm.opcode_modifier.fwait)
4253 if (!add_prefix (FWAIT_OPCODE))
4254 return;
4255
4256 /* Check if REP prefix is OK. */
4257 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4258 {
4259 as_bad (_("invalid instruction `%s' after `%s'"),
4260 i.tm.name, i.rep_prefix);
4261 return;
4262 }
4263
4264 /* Check for lock without a lockable instruction. Destination operand
4265 must be memory unless it is xchg (0x86). */
4266 if (i.prefix[LOCK_PREFIX]
4267 && (!i.tm.opcode_modifier.islockable
4268 || i.mem_operands == 0
4269 || (i.tm.base_opcode != 0x86
4270 && !operand_type_check (i.types[i.operands - 1], anymem))))
4271 {
4272 as_bad (_("expecting lockable instruction after `lock'"));
4273 return;
4274 }
4275
4276 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4277 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4278 {
4279 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4280 return;
4281 }
4282
4283 /* Check if HLE prefix is OK. */
4284 if (i.hle_prefix && !check_hle ())
4285 return;
4286
4287 /* Check BND prefix. */
4288 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4289 as_bad (_("expecting valid branch instruction after `bnd'"));
4290
4291 /* Check NOTRACK prefix. */
4292 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4293 as_bad (_("expecting indirect branch instruction after `notrack'"));
4294
4295 if (i.tm.cpu_flags.bitfield.cpumpx)
4296 {
4297 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4298 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4299 else if (flag_code != CODE_16BIT
4300 ? i.prefix[ADDR_PREFIX]
4301 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4302 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4303 }
4304
4305 /* Insert BND prefix. */
4306 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4307 {
4308 if (!i.prefix[BND_PREFIX])
4309 add_prefix (BND_PREFIX_OPCODE);
4310 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4311 {
4312 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4313 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4314 }
4315 }
4316
4317 /* Check string instruction segment overrides. */
4318 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4319 {
4320 if (!check_string ())
4321 return;
4322 i.disp_operands = 0;
4323 }
4324
4325 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4326 optimize_encoding ();
4327
4328 if (!process_suffix ())
4329 return;
4330
4331 /* Update operand types. */
4332 for (j = 0; j < i.operands; j++)
4333 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4334
4335 /* Make still unresolved immediate matches conform to size of immediate
4336 given in i.suffix. */
4337 if (!finalize_imm ())
4338 return;
4339
4340 if (i.types[0].bitfield.imm1)
4341 i.imm_operands = 0; /* kludge for shift insns. */
4342
4343 /* We only need to check those implicit registers for instructions
4344 with 3 operands or less. */
4345 if (i.operands <= 3)
4346 for (j = 0; j < i.operands; j++)
4347 if (i.types[j].bitfield.inoutportreg
4348 || i.types[j].bitfield.shiftcount
4349 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4350 i.reg_operands--;
4351
4352 /* ImmExt should be processed after SSE2AVX. */
4353 if (!i.tm.opcode_modifier.sse2avx
4354 && i.tm.opcode_modifier.immext)
4355 process_immext ();
4356
4357 /* For insns with operands there are more diddles to do to the opcode. */
4358 if (i.operands)
4359 {
4360 if (!process_operands ())
4361 return;
4362 }
4363 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4364 {
4365 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4366 as_warn (_("translating to `%sp'"), i.tm.name);
4367 }
4368
4369 if (is_any_vex_encoding (&i.tm))
4370 {
4371 if (flag_code == CODE_16BIT)
4372 {
4373 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4374 i.tm.name);
4375 return;
4376 }
4377
4378 if (i.tm.opcode_modifier.vex)
4379 build_vex_prefix (t);
4380 else
4381 build_evex_prefix ();
4382 }
4383
4384 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4385 instructions may define INT_OPCODE as well, so avoid this corner
4386 case for those instructions that use MODRM. */
4387 if (i.tm.base_opcode == INT_OPCODE
4388 && !i.tm.opcode_modifier.modrm
4389 && i.op[0].imms->X_add_number == 3)
4390 {
4391 i.tm.base_opcode = INT3_OPCODE;
4392 i.imm_operands = 0;
4393 }
4394
4395 if ((i.tm.opcode_modifier.jump
4396 || i.tm.opcode_modifier.jumpbyte
4397 || i.tm.opcode_modifier.jumpdword)
4398 && i.op[0].disps->X_op == O_constant)
4399 {
4400 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4401 the absolute address given by the constant. Since ix86 jumps and
4402 calls are pc relative, we need to generate a reloc. */
4403 i.op[0].disps->X_add_symbol = &abs_symbol;
4404 i.op[0].disps->X_op = O_symbol;
4405 }
4406
4407 if (i.tm.opcode_modifier.rex64)
4408 i.rex |= REX_W;
4409
4410 /* For 8 bit registers we need an empty rex prefix. Also if the
4411 instruction already has a prefix, we need to convert old
4412 registers to new ones. */
4413
4414 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4415 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4416 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4417 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4418 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4419 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4420 && i.rex != 0))
4421 {
4422 int x;
4423
4424 i.rex |= REX_OPCODE;
4425 for (x = 0; x < 2; x++)
4426 {
4427 /* Look for 8 bit operand that uses old registers. */
4428 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4429 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4430 {
4431 /* In case it is "hi" register, give up. */
4432 if (i.op[x].regs->reg_num > 3)
4433 as_bad (_("can't encode register '%s%s' in an "
4434 "instruction requiring REX prefix."),
4435 register_prefix, i.op[x].regs->reg_name);
4436
4437 /* Otherwise it is equivalent to the extended register.
4438 Since the encoding doesn't change this is merely
4439 cosmetic cleanup for debug output. */
4440
4441 i.op[x].regs = i.op[x].regs + 8;
4442 }
4443 }
4444 }
4445
4446 if (i.rex == 0 && i.rex_encoding)
4447 {
4448 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4449 that uses legacy register. If it is "hi" register, don't add
4450 the REX_OPCODE byte. */
4451 int x;
4452 for (x = 0; x < 2; x++)
4453 if (i.types[x].bitfield.reg
4454 && i.types[x].bitfield.byte
4455 && (i.op[x].regs->reg_flags & RegRex64) == 0
4456 && i.op[x].regs->reg_num > 3)
4457 {
4458 i.rex_encoding = FALSE;
4459 break;
4460 }
4461
4462 if (i.rex_encoding)
4463 i.rex = REX_OPCODE;
4464 }
4465
4466 if (i.rex != 0)
4467 add_prefix (REX_OPCODE | i.rex);
4468
4469 /* We are ready to output the insn. */
4470 output_insn ();
4471 }
4472
4473 static char *
4474 parse_insn (char *line, char *mnemonic)
4475 {
4476 char *l = line;
4477 char *token_start = l;
4478 char *mnem_p;
4479 int supported;
4480 const insn_template *t;
4481 char *dot_p = NULL;
4482
4483 while (1)
4484 {
4485 mnem_p = mnemonic;
4486 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4487 {
4488 if (*mnem_p == '.')
4489 dot_p = mnem_p;
4490 mnem_p++;
4491 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4492 {
4493 as_bad (_("no such instruction: `%s'"), token_start);
4494 return NULL;
4495 }
4496 l++;
4497 }
4498 if (!is_space_char (*l)
4499 && *l != END_OF_INSN
4500 && (intel_syntax
4501 || (*l != PREFIX_SEPARATOR
4502 && *l != ',')))
4503 {
4504 as_bad (_("invalid character %s in mnemonic"),
4505 output_invalid (*l));
4506 return NULL;
4507 }
4508 if (token_start == l)
4509 {
4510 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4511 as_bad (_("expecting prefix; got nothing"));
4512 else
4513 as_bad (_("expecting mnemonic; got nothing"));
4514 return NULL;
4515 }
4516
4517 /* Look up instruction (or prefix) via hash table. */
4518 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4519
4520 if (*l != END_OF_INSN
4521 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4522 && current_templates
4523 && current_templates->start->opcode_modifier.isprefix)
4524 {
4525 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4526 {
4527 as_bad ((flag_code != CODE_64BIT
4528 ? _("`%s' is only supported in 64-bit mode")
4529 : _("`%s' is not supported in 64-bit mode")),
4530 current_templates->start->name);
4531 return NULL;
4532 }
4533 /* If we are in 16-bit mode, do not allow addr16 or data16.
4534 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4535 if ((current_templates->start->opcode_modifier.size == SIZE16
4536 || current_templates->start->opcode_modifier.size == SIZE32)
4537 && flag_code != CODE_64BIT
4538 && ((current_templates->start->opcode_modifier.size == SIZE32)
4539 ^ (flag_code == CODE_16BIT)))
4540 {
4541 as_bad (_("redundant %s prefix"),
4542 current_templates->start->name);
4543 return NULL;
4544 }
4545 if (current_templates->start->opcode_length == 0)
4546 {
4547 /* Handle pseudo prefixes. */
4548 switch (current_templates->start->base_opcode)
4549 {
4550 case 0x0:
4551 /* {disp8} */
4552 i.disp_encoding = disp_encoding_8bit;
4553 break;
4554 case 0x1:
4555 /* {disp32} */
4556 i.disp_encoding = disp_encoding_32bit;
4557 break;
4558 case 0x2:
4559 /* {load} */
4560 i.dir_encoding = dir_encoding_load;
4561 break;
4562 case 0x3:
4563 /* {store} */
4564 i.dir_encoding = dir_encoding_store;
4565 break;
4566 case 0x4:
4567 /* {vex2} */
4568 i.vec_encoding = vex_encoding_vex2;
4569 break;
4570 case 0x5:
4571 /* {vex3} */
4572 i.vec_encoding = vex_encoding_vex3;
4573 break;
4574 case 0x6:
4575 /* {evex} */
4576 i.vec_encoding = vex_encoding_evex;
4577 break;
4578 case 0x7:
4579 /* {rex} */
4580 i.rex_encoding = TRUE;
4581 break;
4582 case 0x8:
4583 /* {nooptimize} */
4584 i.no_optimize = TRUE;
4585 break;
4586 default:
4587 abort ();
4588 }
4589 }
4590 else
4591 {
4592 /* Add prefix, checking for repeated prefixes. */
4593 switch (add_prefix (current_templates->start->base_opcode))
4594 {
4595 case PREFIX_EXIST:
4596 return NULL;
4597 case PREFIX_DS:
4598 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4599 i.notrack_prefix = current_templates->start->name;
4600 break;
4601 case PREFIX_REP:
4602 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4603 i.hle_prefix = current_templates->start->name;
4604 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4605 i.bnd_prefix = current_templates->start->name;
4606 else
4607 i.rep_prefix = current_templates->start->name;
4608 break;
4609 default:
4610 break;
4611 }
4612 }
4613 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4614 token_start = ++l;
4615 }
4616 else
4617 break;
4618 }
4619
4620 if (!current_templates)
4621 {
4622 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4623 Check if we should swap operand or force 32bit displacement in
4624 encoding. */
4625 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4626 i.dir_encoding = dir_encoding_swap;
4627 else if (mnem_p - 3 == dot_p
4628 && dot_p[1] == 'd'
4629 && dot_p[2] == '8')
4630 i.disp_encoding = disp_encoding_8bit;
4631 else if (mnem_p - 4 == dot_p
4632 && dot_p[1] == 'd'
4633 && dot_p[2] == '3'
4634 && dot_p[3] == '2')
4635 i.disp_encoding = disp_encoding_32bit;
4636 else
4637 goto check_suffix;
4638 mnem_p = dot_p;
4639 *dot_p = '\0';
4640 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4641 }
4642
4643 if (!current_templates)
4644 {
4645 check_suffix:
4646 if (mnem_p > mnemonic)
4647 {
4648 /* See if we can get a match by trimming off a suffix. */
4649 switch (mnem_p[-1])
4650 {
4651 case WORD_MNEM_SUFFIX:
4652 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4653 i.suffix = SHORT_MNEM_SUFFIX;
4654 else
4655 /* Fall through. */
4656 case BYTE_MNEM_SUFFIX:
4657 case QWORD_MNEM_SUFFIX:
4658 i.suffix = mnem_p[-1];
4659 mnem_p[-1] = '\0';
4660 current_templates = (const templates *) hash_find (op_hash,
4661 mnemonic);
4662 break;
4663 case SHORT_MNEM_SUFFIX:
4664 case LONG_MNEM_SUFFIX:
4665 if (!intel_syntax)
4666 {
4667 i.suffix = mnem_p[-1];
4668 mnem_p[-1] = '\0';
4669 current_templates = (const templates *) hash_find (op_hash,
4670 mnemonic);
4671 }
4672 break;
4673
4674 /* Intel Syntax. */
4675 case 'd':
4676 if (intel_syntax)
4677 {
4678 if (intel_float_operand (mnemonic) == 1)
4679 i.suffix = SHORT_MNEM_SUFFIX;
4680 else
4681 i.suffix = LONG_MNEM_SUFFIX;
4682 mnem_p[-1] = '\0';
4683 current_templates = (const templates *) hash_find (op_hash,
4684 mnemonic);
4685 }
4686 break;
4687 }
4688 }
4689
4690 if (!current_templates)
4691 {
4692 as_bad (_("no such instruction: `%s'"), token_start);
4693 return NULL;
4694 }
4695 }
4696
4697 if (current_templates->start->opcode_modifier.jump
4698 || current_templates->start->opcode_modifier.jumpbyte)
4699 {
4700 /* Check for a branch hint. We allow ",pt" and ",pn" for
4701 predict taken and predict not taken respectively.
4702 I'm not sure that branch hints actually do anything on loop
4703 and jcxz insns (JumpByte) for current Pentium4 chips. They
4704 may work in the future and it doesn't hurt to accept them
4705 now. */
4706 if (l[0] == ',' && l[1] == 'p')
4707 {
4708 if (l[2] == 't')
4709 {
4710 if (!add_prefix (DS_PREFIX_OPCODE))
4711 return NULL;
4712 l += 3;
4713 }
4714 else if (l[2] == 'n')
4715 {
4716 if (!add_prefix (CS_PREFIX_OPCODE))
4717 return NULL;
4718 l += 3;
4719 }
4720 }
4721 }
4722 /* Any other comma loses. */
4723 if (*l == ',')
4724 {
4725 as_bad (_("invalid character %s in mnemonic"),
4726 output_invalid (*l));
4727 return NULL;
4728 }
4729
4730 /* Check if instruction is supported on specified architecture. */
4731 supported = 0;
4732 for (t = current_templates->start; t < current_templates->end; ++t)
4733 {
4734 supported |= cpu_flags_match (t);
4735 if (supported == CPU_FLAGS_PERFECT_MATCH)
4736 {
4737 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4738 as_warn (_("use .code16 to ensure correct addressing mode"));
4739
4740 return l;
4741 }
4742 }
4743
4744 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4745 as_bad (flag_code == CODE_64BIT
4746 ? _("`%s' is not supported in 64-bit mode")
4747 : _("`%s' is only supported in 64-bit mode"),
4748 current_templates->start->name);
4749 else
4750 as_bad (_("`%s' is not supported on `%s%s'"),
4751 current_templates->start->name,
4752 cpu_arch_name ? cpu_arch_name : default_arch,
4753 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4754
4755 return NULL;
4756 }
4757
4758 static char *
4759 parse_operands (char *l, const char *mnemonic)
4760 {
4761 char *token_start;
4762
4763 /* 1 if operand is pending after ','. */
4764 unsigned int expecting_operand = 0;
4765
4766 /* Non-zero if operand parens not balanced. */
4767 unsigned int paren_not_balanced;
4768
4769 while (*l != END_OF_INSN)
4770 {
4771 /* Skip optional white space before operand. */
4772 if (is_space_char (*l))
4773 ++l;
4774 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4775 {
4776 as_bad (_("invalid character %s before operand %d"),
4777 output_invalid (*l),
4778 i.operands + 1);
4779 return NULL;
4780 }
4781 token_start = l; /* After white space. */
4782 paren_not_balanced = 0;
4783 while (paren_not_balanced || *l != ',')
4784 {
4785 if (*l == END_OF_INSN)
4786 {
4787 if (paren_not_balanced)
4788 {
4789 if (!intel_syntax)
4790 as_bad (_("unbalanced parenthesis in operand %d."),
4791 i.operands + 1);
4792 else
4793 as_bad (_("unbalanced brackets in operand %d."),
4794 i.operands + 1);
4795 return NULL;
4796 }
4797 else
4798 break; /* we are done */
4799 }
4800 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4801 {
4802 as_bad (_("invalid character %s in operand %d"),
4803 output_invalid (*l),
4804 i.operands + 1);
4805 return NULL;
4806 }
4807 if (!intel_syntax)
4808 {
4809 if (*l == '(')
4810 ++paren_not_balanced;
4811 if (*l == ')')
4812 --paren_not_balanced;
4813 }
4814 else
4815 {
4816 if (*l == '[')
4817 ++paren_not_balanced;
4818 if (*l == ']')
4819 --paren_not_balanced;
4820 }
4821 l++;
4822 }
4823 if (l != token_start)
4824 { /* Yes, we've read in another operand. */
4825 unsigned int operand_ok;
4826 this_operand = i.operands++;
4827 if (i.operands > MAX_OPERANDS)
4828 {
4829 as_bad (_("spurious operands; (%d operands/instruction max)"),
4830 MAX_OPERANDS);
4831 return NULL;
4832 }
4833 i.types[this_operand].bitfield.unspecified = 1;
4834 /* Now parse operand adding info to 'i' as we go along. */
4835 END_STRING_AND_SAVE (l);
4836
4837 if (i.mem_operands > 1)
4838 {
4839 as_bad (_("too many memory references for `%s'"),
4840 mnemonic);
4841 return 0;
4842 }
4843
4844 if (intel_syntax)
4845 operand_ok =
4846 i386_intel_operand (token_start,
4847 intel_float_operand (mnemonic));
4848 else
4849 operand_ok = i386_att_operand (token_start);
4850
4851 RESTORE_END_STRING (l);
4852 if (!operand_ok)
4853 return NULL;
4854 }
4855 else
4856 {
4857 if (expecting_operand)
4858 {
4859 expecting_operand_after_comma:
4860 as_bad (_("expecting operand after ','; got nothing"));
4861 return NULL;
4862 }
4863 if (*l == ',')
4864 {
4865 as_bad (_("expecting operand before ','; got nothing"));
4866 return NULL;
4867 }
4868 }
4869
4870 /* Now *l must be either ',' or END_OF_INSN. */
4871 if (*l == ',')
4872 {
4873 if (*++l == END_OF_INSN)
4874 {
4875 /* Just skip it, if it's \n complain. */
4876 goto expecting_operand_after_comma;
4877 }
4878 expecting_operand = 1;
4879 }
4880 }
4881 return l;
4882 }
4883
4884 static void
4885 swap_2_operands (int xchg1, int xchg2)
4886 {
4887 union i386_op temp_op;
4888 i386_operand_type temp_type;
4889 unsigned int temp_flags;
4890 enum bfd_reloc_code_real temp_reloc;
4891
4892 temp_type = i.types[xchg2];
4893 i.types[xchg2] = i.types[xchg1];
4894 i.types[xchg1] = temp_type;
4895
4896 temp_flags = i.flags[xchg2];
4897 i.flags[xchg2] = i.flags[xchg1];
4898 i.flags[xchg1] = temp_flags;
4899
4900 temp_op = i.op[xchg2];
4901 i.op[xchg2] = i.op[xchg1];
4902 i.op[xchg1] = temp_op;
4903
4904 temp_reloc = i.reloc[xchg2];
4905 i.reloc[xchg2] = i.reloc[xchg1];
4906 i.reloc[xchg1] = temp_reloc;
4907
4908 if (i.mask)
4909 {
4910 if (i.mask->operand == xchg1)
4911 i.mask->operand = xchg2;
4912 else if (i.mask->operand == xchg2)
4913 i.mask->operand = xchg1;
4914 }
4915 if (i.broadcast)
4916 {
4917 if (i.broadcast->operand == xchg1)
4918 i.broadcast->operand = xchg2;
4919 else if (i.broadcast->operand == xchg2)
4920 i.broadcast->operand = xchg1;
4921 }
4922 if (i.rounding)
4923 {
4924 if (i.rounding->operand == xchg1)
4925 i.rounding->operand = xchg2;
4926 else if (i.rounding->operand == xchg2)
4927 i.rounding->operand = xchg1;
4928 }
4929 }
4930
4931 static void
4932 swap_operands (void)
4933 {
4934 switch (i.operands)
4935 {
4936 case 5:
4937 case 4:
4938 swap_2_operands (1, i.operands - 2);
4939 /* Fall through. */
4940 case 3:
4941 case 2:
4942 swap_2_operands (0, i.operands - 1);
4943 break;
4944 default:
4945 abort ();
4946 }
4947
4948 if (i.mem_operands == 2)
4949 {
4950 const seg_entry *temp_seg;
4951 temp_seg = i.seg[0];
4952 i.seg[0] = i.seg[1];
4953 i.seg[1] = temp_seg;
4954 }
4955 }
4956
4957 /* Try to ensure constant immediates are represented in the smallest
4958 opcode possible. */
4959 static void
4960 optimize_imm (void)
4961 {
4962 char guess_suffix = 0;
4963 int op;
4964
4965 if (i.suffix)
4966 guess_suffix = i.suffix;
4967 else if (i.reg_operands)
4968 {
4969 /* Figure out a suffix from the last register operand specified.
4970 We can't do this properly yet, ie. excluding InOutPortReg,
4971 but the following works for instructions with immediates.
4972 In any case, we can't set i.suffix yet. */
4973 for (op = i.operands; --op >= 0;)
4974 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4975 {
4976 guess_suffix = BYTE_MNEM_SUFFIX;
4977 break;
4978 }
4979 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4980 {
4981 guess_suffix = WORD_MNEM_SUFFIX;
4982 break;
4983 }
4984 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4985 {
4986 guess_suffix = LONG_MNEM_SUFFIX;
4987 break;
4988 }
4989 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4990 {
4991 guess_suffix = QWORD_MNEM_SUFFIX;
4992 break;
4993 }
4994 }
4995 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4996 guess_suffix = WORD_MNEM_SUFFIX;
4997
4998 for (op = i.operands; --op >= 0;)
4999 if (operand_type_check (i.types[op], imm))
5000 {
5001 switch (i.op[op].imms->X_op)
5002 {
5003 case O_constant:
5004 /* If a suffix is given, this operand may be shortened. */
5005 switch (guess_suffix)
5006 {
5007 case LONG_MNEM_SUFFIX:
5008 i.types[op].bitfield.imm32 = 1;
5009 i.types[op].bitfield.imm64 = 1;
5010 break;
5011 case WORD_MNEM_SUFFIX:
5012 i.types[op].bitfield.imm16 = 1;
5013 i.types[op].bitfield.imm32 = 1;
5014 i.types[op].bitfield.imm32s = 1;
5015 i.types[op].bitfield.imm64 = 1;
5016 break;
5017 case BYTE_MNEM_SUFFIX:
5018 i.types[op].bitfield.imm8 = 1;
5019 i.types[op].bitfield.imm8s = 1;
5020 i.types[op].bitfield.imm16 = 1;
5021 i.types[op].bitfield.imm32 = 1;
5022 i.types[op].bitfield.imm32s = 1;
5023 i.types[op].bitfield.imm64 = 1;
5024 break;
5025 }
5026
5027 /* If this operand is at most 16 bits, convert it
5028 to a signed 16 bit number before trying to see
5029 whether it will fit in an even smaller size.
5030 This allows a 16-bit operand such as $0xffe0 to
5031 be recognised as within Imm8S range. */
5032 if ((i.types[op].bitfield.imm16)
5033 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5034 {
5035 i.op[op].imms->X_add_number =
5036 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5037 }
5038 #ifdef BFD64
5039 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5040 if ((i.types[op].bitfield.imm32)
5041 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5042 == 0))
5043 {
5044 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5045 ^ ((offsetT) 1 << 31))
5046 - ((offsetT) 1 << 31));
5047 }
5048 #endif
5049 i.types[op]
5050 = operand_type_or (i.types[op],
5051 smallest_imm_type (i.op[op].imms->X_add_number));
5052
5053 /* We must avoid matching of Imm32 templates when 64bit
5054 only immediate is available. */
5055 if (guess_suffix == QWORD_MNEM_SUFFIX)
5056 i.types[op].bitfield.imm32 = 0;
5057 break;
5058
5059 case O_absent:
5060 case O_register:
5061 abort ();
5062
5063 /* Symbols and expressions. */
5064 default:
5065 /* Convert symbolic operand to proper sizes for matching, but don't
5066 prevent matching a set of insns that only supports sizes other
5067 than those matching the insn suffix. */
5068 {
5069 i386_operand_type mask, allowed;
5070 const insn_template *t;
5071
5072 operand_type_set (&mask, 0);
5073 operand_type_set (&allowed, 0);
5074
5075 for (t = current_templates->start;
5076 t < current_templates->end;
5077 ++t)
5078 allowed = operand_type_or (allowed,
5079 t->operand_types[op]);
5080 switch (guess_suffix)
5081 {
5082 case QWORD_MNEM_SUFFIX:
5083 mask.bitfield.imm64 = 1;
5084 mask.bitfield.imm32s = 1;
5085 break;
5086 case LONG_MNEM_SUFFIX:
5087 mask.bitfield.imm32 = 1;
5088 break;
5089 case WORD_MNEM_SUFFIX:
5090 mask.bitfield.imm16 = 1;
5091 break;
5092 case BYTE_MNEM_SUFFIX:
5093 mask.bitfield.imm8 = 1;
5094 break;
5095 default:
5096 break;
5097 }
5098 allowed = operand_type_and (mask, allowed);
5099 if (!operand_type_all_zero (&allowed))
5100 i.types[op] = operand_type_and (i.types[op], mask);
5101 }
5102 break;
5103 }
5104 }
5105 }
5106
5107 /* Try to use the smallest displacement type too. */
5108 static void
5109 optimize_disp (void)
5110 {
5111 int op;
5112
5113 for (op = i.operands; --op >= 0;)
5114 if (operand_type_check (i.types[op], disp))
5115 {
5116 if (i.op[op].disps->X_op == O_constant)
5117 {
5118 offsetT op_disp = i.op[op].disps->X_add_number;
5119
5120 if (i.types[op].bitfield.disp16
5121 && (op_disp & ~(offsetT) 0xffff) == 0)
5122 {
5123 /* If this operand is at most 16 bits, convert
5124 to a signed 16 bit number and don't use 64bit
5125 displacement. */
5126 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5127 i.types[op].bitfield.disp64 = 0;
5128 }
5129 #ifdef BFD64
5130 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5131 if (i.types[op].bitfield.disp32
5132 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5133 {
5134 /* If this operand is at most 32 bits, convert
5135 to a signed 32 bit number and don't use 64bit
5136 displacement. */
5137 op_disp &= (((offsetT) 2 << 31) - 1);
5138 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5139 i.types[op].bitfield.disp64 = 0;
5140 }
5141 #endif
5142 if (!op_disp && i.types[op].bitfield.baseindex)
5143 {
5144 i.types[op].bitfield.disp8 = 0;
5145 i.types[op].bitfield.disp16 = 0;
5146 i.types[op].bitfield.disp32 = 0;
5147 i.types[op].bitfield.disp32s = 0;
5148 i.types[op].bitfield.disp64 = 0;
5149 i.op[op].disps = 0;
5150 i.disp_operands--;
5151 }
5152 else if (flag_code == CODE_64BIT)
5153 {
5154 if (fits_in_signed_long (op_disp))
5155 {
5156 i.types[op].bitfield.disp64 = 0;
5157 i.types[op].bitfield.disp32s = 1;
5158 }
5159 if (i.prefix[ADDR_PREFIX]
5160 && fits_in_unsigned_long (op_disp))
5161 i.types[op].bitfield.disp32 = 1;
5162 }
5163 if ((i.types[op].bitfield.disp32
5164 || i.types[op].bitfield.disp32s
5165 || i.types[op].bitfield.disp16)
5166 && fits_in_disp8 (op_disp))
5167 i.types[op].bitfield.disp8 = 1;
5168 }
5169 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5170 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5171 {
5172 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5173 i.op[op].disps, 0, i.reloc[op]);
5174 i.types[op].bitfield.disp8 = 0;
5175 i.types[op].bitfield.disp16 = 0;
5176 i.types[op].bitfield.disp32 = 0;
5177 i.types[op].bitfield.disp32s = 0;
5178 i.types[op].bitfield.disp64 = 0;
5179 }
5180 else
5181 /* We only support 64bit displacement on constants. */
5182 i.types[op].bitfield.disp64 = 0;
5183 }
5184 }
5185
5186 /* Return 1 if there is a match in broadcast bytes between operand
5187 GIVEN and instruction template T. */
5188
5189 static INLINE int
5190 match_broadcast_size (const insn_template *t, unsigned int given)
5191 {
5192 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5193 && i.types[given].bitfield.byte)
5194 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5195 && i.types[given].bitfield.word)
5196 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5197 && i.types[given].bitfield.dword)
5198 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5199 && i.types[given].bitfield.qword));
5200 }
5201
5202 /* Check if operands are valid for the instruction. */
5203
5204 static int
5205 check_VecOperands (const insn_template *t)
5206 {
5207 unsigned int op;
5208 i386_cpu_flags cpu;
5209 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5210
5211 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5212 any one operand are implicity requiring AVX512VL support if the actual
5213 operand size is YMMword or XMMword. Since this function runs after
5214 template matching, there's no need to check for YMMword/XMMword in
5215 the template. */
5216 cpu = cpu_flags_and (t->cpu_flags, avx512);
5217 if (!cpu_flags_all_zero (&cpu)
5218 && !t->cpu_flags.bitfield.cpuavx512vl
5219 && !cpu_arch_flags.bitfield.cpuavx512vl)
5220 {
5221 for (op = 0; op < t->operands; ++op)
5222 {
5223 if (t->operand_types[op].bitfield.zmmword
5224 && (i.types[op].bitfield.ymmword
5225 || i.types[op].bitfield.xmmword))
5226 {
5227 i.error = unsupported;
5228 return 1;
5229 }
5230 }
5231 }
5232
5233 /* Without VSIB byte, we can't have a vector register for index. */
5234 if (!t->opcode_modifier.vecsib
5235 && i.index_reg
5236 && (i.index_reg->reg_type.bitfield.xmmword
5237 || i.index_reg->reg_type.bitfield.ymmword
5238 || i.index_reg->reg_type.bitfield.zmmword))
5239 {
5240 i.error = unsupported_vector_index_register;
5241 return 1;
5242 }
5243
5244 /* Check if default mask is allowed. */
5245 if (t->opcode_modifier.nodefmask
5246 && (!i.mask || i.mask->mask->reg_num == 0))
5247 {
5248 i.error = no_default_mask;
5249 return 1;
5250 }
5251
5252 /* For VSIB byte, we need a vector register for index, and all vector
5253 registers must be distinct. */
5254 if (t->opcode_modifier.vecsib)
5255 {
5256 if (!i.index_reg
5257 || !((t->opcode_modifier.vecsib == VecSIB128
5258 && i.index_reg->reg_type.bitfield.xmmword)
5259 || (t->opcode_modifier.vecsib == VecSIB256
5260 && i.index_reg->reg_type.bitfield.ymmword)
5261 || (t->opcode_modifier.vecsib == VecSIB512
5262 && i.index_reg->reg_type.bitfield.zmmword)))
5263 {
5264 i.error = invalid_vsib_address;
5265 return 1;
5266 }
5267
5268 gas_assert (i.reg_operands == 2 || i.mask);
5269 if (i.reg_operands == 2 && !i.mask)
5270 {
5271 gas_assert (i.types[0].bitfield.regsimd);
5272 gas_assert (i.types[0].bitfield.xmmword
5273 || i.types[0].bitfield.ymmword);
5274 gas_assert (i.types[2].bitfield.regsimd);
5275 gas_assert (i.types[2].bitfield.xmmword
5276 || i.types[2].bitfield.ymmword);
5277 if (operand_check == check_none)
5278 return 0;
5279 if (register_number (i.op[0].regs)
5280 != register_number (i.index_reg)
5281 && register_number (i.op[2].regs)
5282 != register_number (i.index_reg)
5283 && register_number (i.op[0].regs)
5284 != register_number (i.op[2].regs))
5285 return 0;
5286 if (operand_check == check_error)
5287 {
5288 i.error = invalid_vector_register_set;
5289 return 1;
5290 }
5291 as_warn (_("mask, index, and destination registers should be distinct"));
5292 }
5293 else if (i.reg_operands == 1 && i.mask)
5294 {
5295 if (i.types[1].bitfield.regsimd
5296 && (i.types[1].bitfield.xmmword
5297 || i.types[1].bitfield.ymmword
5298 || i.types[1].bitfield.zmmword)
5299 && (register_number (i.op[1].regs)
5300 == register_number (i.index_reg)))
5301 {
5302 if (operand_check == check_error)
5303 {
5304 i.error = invalid_vector_register_set;
5305 return 1;
5306 }
5307 if (operand_check != check_none)
5308 as_warn (_("index and destination registers should be distinct"));
5309 }
5310 }
5311 }
5312
5313 /* Check if broadcast is supported by the instruction and is applied
5314 to the memory operand. */
5315 if (i.broadcast)
5316 {
5317 i386_operand_type type, overlap;
5318
5319 /* Check if specified broadcast is supported in this instruction,
5320 and its broadcast bytes match the memory operand. */
5321 op = i.broadcast->operand;
5322 if (!t->opcode_modifier.broadcast
5323 || !(i.flags[op] & Operand_Mem)
5324 || (!i.types[op].bitfield.unspecified
5325 && !match_broadcast_size (t, op)))
5326 {
5327 bad_broadcast:
5328 i.error = unsupported_broadcast;
5329 return 1;
5330 }
5331
5332 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5333 * i.broadcast->type);
5334 operand_type_set (&type, 0);
5335 switch (i.broadcast->bytes)
5336 {
5337 case 2:
5338 type.bitfield.word = 1;
5339 break;
5340 case 4:
5341 type.bitfield.dword = 1;
5342 break;
5343 case 8:
5344 type.bitfield.qword = 1;
5345 break;
5346 case 16:
5347 type.bitfield.xmmword = 1;
5348 break;
5349 case 32:
5350 type.bitfield.ymmword = 1;
5351 break;
5352 case 64:
5353 type.bitfield.zmmword = 1;
5354 break;
5355 default:
5356 goto bad_broadcast;
5357 }
5358
5359 overlap = operand_type_and (type, t->operand_types[op]);
5360 if (operand_type_all_zero (&overlap))
5361 goto bad_broadcast;
5362
5363 if (t->opcode_modifier.checkregsize)
5364 {
5365 unsigned int j;
5366
5367 type.bitfield.baseindex = 1;
5368 for (j = 0; j < i.operands; ++j)
5369 {
5370 if (j != op
5371 && !operand_type_register_match(i.types[j],
5372 t->operand_types[j],
5373 type,
5374 t->operand_types[op]))
5375 goto bad_broadcast;
5376 }
5377 }
5378 }
5379 /* If broadcast is supported in this instruction, we need to check if
5380 operand of one-element size isn't specified without broadcast. */
5381 else if (t->opcode_modifier.broadcast && i.mem_operands)
5382 {
5383 /* Find memory operand. */
5384 for (op = 0; op < i.operands; op++)
5385 if (operand_type_check (i.types[op], anymem))
5386 break;
5387 gas_assert (op < i.operands);
5388 /* Check size of the memory operand. */
5389 if (match_broadcast_size (t, op))
5390 {
5391 i.error = broadcast_needed;
5392 return 1;
5393 }
5394 }
5395 else
5396 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5397
5398 /* Check if requested masking is supported. */
5399 if (i.mask)
5400 {
5401 switch (t->opcode_modifier.masking)
5402 {
5403 case BOTH_MASKING:
5404 break;
5405 case MERGING_MASKING:
5406 if (i.mask->zeroing)
5407 {
5408 case 0:
5409 i.error = unsupported_masking;
5410 return 1;
5411 }
5412 break;
5413 case DYNAMIC_MASKING:
5414 /* Memory destinations allow only merging masking. */
5415 if (i.mask->zeroing && i.mem_operands)
5416 {
5417 /* Find memory operand. */
5418 for (op = 0; op < i.operands; op++)
5419 if (i.flags[op] & Operand_Mem)
5420 break;
5421 gas_assert (op < i.operands);
5422 if (op == i.operands - 1)
5423 {
5424 i.error = unsupported_masking;
5425 return 1;
5426 }
5427 }
5428 break;
5429 default:
5430 abort ();
5431 }
5432 }
5433
5434 /* Check if masking is applied to dest operand. */
5435 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5436 {
5437 i.error = mask_not_on_destination;
5438 return 1;
5439 }
5440
5441 /* Check RC/SAE. */
5442 if (i.rounding)
5443 {
5444 if ((i.rounding->type != saeonly
5445 && !t->opcode_modifier.staticrounding)
5446 || (i.rounding->type == saeonly
5447 && (t->opcode_modifier.staticrounding
5448 || !t->opcode_modifier.sae)))
5449 {
5450 i.error = unsupported_rc_sae;
5451 return 1;
5452 }
5453 /* If the instruction has several immediate operands and one of
5454 them is rounding, the rounding operand should be the last
5455 immediate operand. */
5456 if (i.imm_operands > 1
5457 && i.rounding->operand != (int) (i.imm_operands - 1))
5458 {
5459 i.error = rc_sae_operand_not_last_imm;
5460 return 1;
5461 }
5462 }
5463
5464 /* Check vector Disp8 operand. */
5465 if (t->opcode_modifier.disp8memshift
5466 && i.disp_encoding != disp_encoding_32bit)
5467 {
5468 if (i.broadcast)
5469 i.memshift = t->opcode_modifier.broadcast - 1;
5470 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5471 i.memshift = t->opcode_modifier.disp8memshift;
5472 else
5473 {
5474 const i386_operand_type *type = NULL;
5475
5476 i.memshift = 0;
5477 for (op = 0; op < i.operands; op++)
5478 if (operand_type_check (i.types[op], anymem))
5479 {
5480 if (t->opcode_modifier.evex == EVEXLIG)
5481 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5482 else if (t->operand_types[op].bitfield.xmmword
5483 + t->operand_types[op].bitfield.ymmword
5484 + t->operand_types[op].bitfield.zmmword <= 1)
5485 type = &t->operand_types[op];
5486 else if (!i.types[op].bitfield.unspecified)
5487 type = &i.types[op];
5488 }
5489 else if (i.types[op].bitfield.regsimd
5490 && t->opcode_modifier.evex != EVEXLIG)
5491 {
5492 if (i.types[op].bitfield.zmmword)
5493 i.memshift = 6;
5494 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5495 i.memshift = 5;
5496 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5497 i.memshift = 4;
5498 }
5499
5500 if (type)
5501 {
5502 if (type->bitfield.zmmword)
5503 i.memshift = 6;
5504 else if (type->bitfield.ymmword)
5505 i.memshift = 5;
5506 else if (type->bitfield.xmmword)
5507 i.memshift = 4;
5508 }
5509
5510 /* For the check in fits_in_disp8(). */
5511 if (i.memshift == 0)
5512 i.memshift = -1;
5513 }
5514
5515 for (op = 0; op < i.operands; op++)
5516 if (operand_type_check (i.types[op], disp)
5517 && i.op[op].disps->X_op == O_constant)
5518 {
5519 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5520 {
5521 i.types[op].bitfield.disp8 = 1;
5522 return 0;
5523 }
5524 i.types[op].bitfield.disp8 = 0;
5525 }
5526 }
5527
5528 i.memshift = 0;
5529
5530 return 0;
5531 }
5532
5533 /* Check if operands are valid for the instruction. Update VEX
5534 operand types. */
5535
5536 static int
5537 VEX_check_operands (const insn_template *t)
5538 {
5539 if (i.vec_encoding == vex_encoding_evex)
5540 {
5541 /* This instruction must be encoded with EVEX prefix. */
5542 if (!is_evex_encoding (t))
5543 {
5544 i.error = unsupported;
5545 return 1;
5546 }
5547 return 0;
5548 }
5549
5550 if (!t->opcode_modifier.vex)
5551 {
5552 /* This instruction template doesn't have VEX prefix. */
5553 if (i.vec_encoding != vex_encoding_default)
5554 {
5555 i.error = unsupported;
5556 return 1;
5557 }
5558 return 0;
5559 }
5560
5561 /* Only check VEX_Imm4, which must be the first operand. */
5562 if (t->operand_types[0].bitfield.vec_imm4)
5563 {
5564 if (i.op[0].imms->X_op != O_constant
5565 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5566 {
5567 i.error = bad_imm4;
5568 return 1;
5569 }
5570
5571 /* Turn off Imm8 so that update_imm won't complain. */
5572 i.types[0] = vec_imm4;
5573 }
5574
5575 return 0;
5576 }
5577
5578 static const insn_template *
5579 match_template (char mnem_suffix)
5580 {
5581 /* Points to template once we've found it. */
5582 const insn_template *t;
5583 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5584 i386_operand_type overlap4;
5585 unsigned int found_reverse_match;
5586 i386_opcode_modifier suffix_check, mnemsuf_check;
5587 i386_operand_type operand_types [MAX_OPERANDS];
5588 int addr_prefix_disp;
5589 unsigned int j;
5590 unsigned int found_cpu_match, size_match;
5591 unsigned int check_register;
5592 enum i386_error specific_error = 0;
5593
5594 #if MAX_OPERANDS != 5
5595 # error "MAX_OPERANDS must be 5."
5596 #endif
5597
5598 found_reverse_match = 0;
5599 addr_prefix_disp = -1;
5600
5601 memset (&suffix_check, 0, sizeof (suffix_check));
5602 if (intel_syntax && i.broadcast)
5603 /* nothing */;
5604 else if (i.suffix == BYTE_MNEM_SUFFIX)
5605 suffix_check.no_bsuf = 1;
5606 else if (i.suffix == WORD_MNEM_SUFFIX)
5607 suffix_check.no_wsuf = 1;
5608 else if (i.suffix == SHORT_MNEM_SUFFIX)
5609 suffix_check.no_ssuf = 1;
5610 else if (i.suffix == LONG_MNEM_SUFFIX)
5611 suffix_check.no_lsuf = 1;
5612 else if (i.suffix == QWORD_MNEM_SUFFIX)
5613 suffix_check.no_qsuf = 1;
5614 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5615 suffix_check.no_ldsuf = 1;
5616
5617 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5618 if (intel_syntax)
5619 {
5620 switch (mnem_suffix)
5621 {
5622 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5623 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5624 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5625 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5626 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5627 }
5628 }
5629
5630 /* Must have right number of operands. */
5631 i.error = number_of_operands_mismatch;
5632
5633 for (t = current_templates->start; t < current_templates->end; t++)
5634 {
5635 addr_prefix_disp = -1;
5636 found_reverse_match = 0;
5637
5638 if (i.operands != t->operands)
5639 continue;
5640
5641 /* Check processor support. */
5642 i.error = unsupported;
5643 found_cpu_match = (cpu_flags_match (t)
5644 == CPU_FLAGS_PERFECT_MATCH);
5645 if (!found_cpu_match)
5646 continue;
5647
5648 /* Check AT&T mnemonic. */
5649 i.error = unsupported_with_intel_mnemonic;
5650 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5651 continue;
5652
5653 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5654 i.error = unsupported_syntax;
5655 if ((intel_syntax && t->opcode_modifier.attsyntax)
5656 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5657 || (intel64 && t->opcode_modifier.amd64)
5658 || (!intel64 && t->opcode_modifier.intel64))
5659 continue;
5660
5661 /* Check the suffix, except for some instructions in intel mode. */
5662 i.error = invalid_instruction_suffix;
5663 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5664 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5665 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5666 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5667 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5668 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5669 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5670 continue;
5671 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5672 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5673 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5674 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5675 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5676 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5677 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5678 continue;
5679
5680 size_match = operand_size_match (t);
5681 if (!size_match)
5682 continue;
5683
5684 for (j = 0; j < MAX_OPERANDS; j++)
5685 operand_types[j] = t->operand_types[j];
5686
5687 /* In general, don't allow 64-bit operands in 32-bit mode. */
5688 if (i.suffix == QWORD_MNEM_SUFFIX
5689 && flag_code != CODE_64BIT
5690 && (intel_syntax
5691 ? (!t->opcode_modifier.ignoresize
5692 && !t->opcode_modifier.broadcast
5693 && !intel_float_operand (t->name))
5694 : intel_float_operand (t->name) != 2)
5695 && ((!operand_types[0].bitfield.regmmx
5696 && !operand_types[0].bitfield.regsimd)
5697 || (!operand_types[t->operands > 1].bitfield.regmmx
5698 && !operand_types[t->operands > 1].bitfield.regsimd))
5699 && (t->base_opcode != 0x0fc7
5700 || t->extension_opcode != 1 /* cmpxchg8b */))
5701 continue;
5702
5703 /* In general, don't allow 32-bit operands on pre-386. */
5704 else if (i.suffix == LONG_MNEM_SUFFIX
5705 && !cpu_arch_flags.bitfield.cpui386
5706 && (intel_syntax
5707 ? (!t->opcode_modifier.ignoresize
5708 && !intel_float_operand (t->name))
5709 : intel_float_operand (t->name) != 2)
5710 && ((!operand_types[0].bitfield.regmmx
5711 && !operand_types[0].bitfield.regsimd)
5712 || (!operand_types[t->operands > 1].bitfield.regmmx
5713 && !operand_types[t->operands > 1].bitfield.regsimd)))
5714 continue;
5715
5716 /* Do not verify operands when there are none. */
5717 else
5718 {
5719 if (!t->operands)
5720 /* We've found a match; break out of loop. */
5721 break;
5722 }
5723
5724 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5725 into Disp32/Disp16/Disp32 operand. */
5726 if (i.prefix[ADDR_PREFIX] != 0)
5727 {
5728 /* There should be only one Disp operand. */
5729 switch (flag_code)
5730 {
5731 case CODE_16BIT:
5732 for (j = 0; j < MAX_OPERANDS; j++)
5733 {
5734 if (operand_types[j].bitfield.disp16)
5735 {
5736 addr_prefix_disp = j;
5737 operand_types[j].bitfield.disp32 = 1;
5738 operand_types[j].bitfield.disp16 = 0;
5739 break;
5740 }
5741 }
5742 break;
5743 case CODE_32BIT:
5744 for (j = 0; j < MAX_OPERANDS; j++)
5745 {
5746 if (operand_types[j].bitfield.disp32)
5747 {
5748 addr_prefix_disp = j;
5749 operand_types[j].bitfield.disp32 = 0;
5750 operand_types[j].bitfield.disp16 = 1;
5751 break;
5752 }
5753 }
5754 break;
5755 case CODE_64BIT:
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 {
5758 if (operand_types[j].bitfield.disp64)
5759 {
5760 addr_prefix_disp = j;
5761 operand_types[j].bitfield.disp64 = 0;
5762 operand_types[j].bitfield.disp32 = 1;
5763 break;
5764 }
5765 }
5766 break;
5767 }
5768 }
5769
5770 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5771 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5772 continue;
5773
5774 /* We check register size if needed. */
5775 if (t->opcode_modifier.checkregsize)
5776 {
5777 check_register = (1 << t->operands) - 1;
5778 if (i.broadcast)
5779 check_register &= ~(1 << i.broadcast->operand);
5780 }
5781 else
5782 check_register = 0;
5783
5784 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5785 switch (t->operands)
5786 {
5787 case 1:
5788 if (!operand_type_match (overlap0, i.types[0]))
5789 continue;
5790 break;
5791 case 2:
5792 /* xchg %eax, %eax is a special case. It is an alias for nop
5793 only in 32bit mode and we can use opcode 0x90. In 64bit
5794 mode, we can't use 0x90 for xchg %eax, %eax since it should
5795 zero-extend %eax to %rax. */
5796 if (flag_code == CODE_64BIT
5797 && t->base_opcode == 0x90
5798 && operand_type_equal (&i.types [0], &acc32)
5799 && operand_type_equal (&i.types [1], &acc32))
5800 continue;
5801 /* xrelease mov %eax, <disp> is another special case. It must not
5802 match the accumulator-only encoding of mov. */
5803 if (flag_code != CODE_64BIT
5804 && i.hle_prefix
5805 && t->base_opcode == 0xa0
5806 && i.types[0].bitfield.acc
5807 && operand_type_check (i.types[1], anymem))
5808 continue;
5809 /* Fall through. */
5810
5811 case 3:
5812 if (!(size_match & MATCH_STRAIGHT))
5813 goto check_reverse;
5814 /* Reverse direction of operands if swapping is possible in the first
5815 place (operands need to be symmetric) and
5816 - the load form is requested, and the template is a store form,
5817 - the store form is requested, and the template is a load form,
5818 - the non-default (swapped) form is requested. */
5819 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5820 if (t->opcode_modifier.d && i.reg_operands == i.operands
5821 && !operand_type_all_zero (&overlap1))
5822 switch (i.dir_encoding)
5823 {
5824 case dir_encoding_load:
5825 if (operand_type_check (operand_types[i.operands - 1], anymem)
5826 || operand_types[i.operands - 1].bitfield.regmem)
5827 goto check_reverse;
5828 break;
5829
5830 case dir_encoding_store:
5831 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5832 && !operand_types[i.operands - 1].bitfield.regmem)
5833 goto check_reverse;
5834 break;
5835
5836 case dir_encoding_swap:
5837 goto check_reverse;
5838
5839 case dir_encoding_default:
5840 break;
5841 }
5842 /* If we want store form, we skip the current load. */
5843 if ((i.dir_encoding == dir_encoding_store
5844 || i.dir_encoding == dir_encoding_swap)
5845 && i.mem_operands == 0
5846 && t->opcode_modifier.load)
5847 continue;
5848 /* Fall through. */
5849 case 4:
5850 case 5:
5851 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5852 if (!operand_type_match (overlap0, i.types[0])
5853 || !operand_type_match (overlap1, i.types[1])
5854 || ((check_register & 3) == 3
5855 && !operand_type_register_match (i.types[0],
5856 operand_types[0],
5857 i.types[1],
5858 operand_types[1])))
5859 {
5860 /* Check if other direction is valid ... */
5861 if (!t->opcode_modifier.d)
5862 continue;
5863
5864 check_reverse:
5865 if (!(size_match & MATCH_REVERSE))
5866 continue;
5867 /* Try reversing direction of operands. */
5868 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5869 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5870 if (!operand_type_match (overlap0, i.types[0])
5871 || !operand_type_match (overlap1, i.types[i.operands - 1])
5872 || (check_register
5873 && !operand_type_register_match (i.types[0],
5874 operand_types[i.operands - 1],
5875 i.types[i.operands - 1],
5876 operand_types[0])))
5877 {
5878 /* Does not match either direction. */
5879 continue;
5880 }
5881 /* found_reverse_match holds which of D or FloatR
5882 we've found. */
5883 if (!t->opcode_modifier.d)
5884 found_reverse_match = 0;
5885 else if (operand_types[0].bitfield.tbyte)
5886 found_reverse_match = Opcode_FloatD;
5887 else if (operand_types[0].bitfield.xmmword
5888 || operand_types[i.operands - 1].bitfield.xmmword
5889 || operand_types[0].bitfield.regmmx
5890 || operand_types[i.operands - 1].bitfield.regmmx
5891 || is_any_vex_encoding(t))
5892 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5893 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5894 else
5895 found_reverse_match = Opcode_D;
5896 if (t->opcode_modifier.floatr)
5897 found_reverse_match |= Opcode_FloatR;
5898 }
5899 else
5900 {
5901 /* Found a forward 2 operand match here. */
5902 switch (t->operands)
5903 {
5904 case 5:
5905 overlap4 = operand_type_and (i.types[4],
5906 operand_types[4]);
5907 /* Fall through. */
5908 case 4:
5909 overlap3 = operand_type_and (i.types[3],
5910 operand_types[3]);
5911 /* Fall through. */
5912 case 3:
5913 overlap2 = operand_type_and (i.types[2],
5914 operand_types[2]);
5915 break;
5916 }
5917
5918 switch (t->operands)
5919 {
5920 case 5:
5921 if (!operand_type_match (overlap4, i.types[4])
5922 || !operand_type_register_match (i.types[3],
5923 operand_types[3],
5924 i.types[4],
5925 operand_types[4]))
5926 continue;
5927 /* Fall through. */
5928 case 4:
5929 if (!operand_type_match (overlap3, i.types[3])
5930 || ((check_register & 0xa) == 0xa
5931 && !operand_type_register_match (i.types[1],
5932 operand_types[1],
5933 i.types[3],
5934 operand_types[3]))
5935 || ((check_register & 0xc) == 0xc
5936 && !operand_type_register_match (i.types[2],
5937 operand_types[2],
5938 i.types[3],
5939 operand_types[3])))
5940 continue;
5941 /* Fall through. */
5942 case 3:
5943 /* Here we make use of the fact that there are no
5944 reverse match 3 operand instructions. */
5945 if (!operand_type_match (overlap2, i.types[2])
5946 || ((check_register & 5) == 5
5947 && !operand_type_register_match (i.types[0],
5948 operand_types[0],
5949 i.types[2],
5950 operand_types[2]))
5951 || ((check_register & 6) == 6
5952 && !operand_type_register_match (i.types[1],
5953 operand_types[1],
5954 i.types[2],
5955 operand_types[2])))
5956 continue;
5957 break;
5958 }
5959 }
5960 /* Found either forward/reverse 2, 3 or 4 operand match here:
5961 slip through to break. */
5962 }
5963 if (!found_cpu_match)
5964 continue;
5965
5966 /* Check if vector and VEX operands are valid. */
5967 if (check_VecOperands (t) || VEX_check_operands (t))
5968 {
5969 specific_error = i.error;
5970 continue;
5971 }
5972
5973 /* We've found a match; break out of loop. */
5974 break;
5975 }
5976
5977 if (t == current_templates->end)
5978 {
5979 /* We found no match. */
5980 const char *err_msg;
5981 switch (specific_error ? specific_error : i.error)
5982 {
5983 default:
5984 abort ();
5985 case operand_size_mismatch:
5986 err_msg = _("operand size mismatch");
5987 break;
5988 case operand_type_mismatch:
5989 err_msg = _("operand type mismatch");
5990 break;
5991 case register_type_mismatch:
5992 err_msg = _("register type mismatch");
5993 break;
5994 case number_of_operands_mismatch:
5995 err_msg = _("number of operands mismatch");
5996 break;
5997 case invalid_instruction_suffix:
5998 err_msg = _("invalid instruction suffix");
5999 break;
6000 case bad_imm4:
6001 err_msg = _("constant doesn't fit in 4 bits");
6002 break;
6003 case unsupported_with_intel_mnemonic:
6004 err_msg = _("unsupported with Intel mnemonic");
6005 break;
6006 case unsupported_syntax:
6007 err_msg = _("unsupported syntax");
6008 break;
6009 case unsupported:
6010 as_bad (_("unsupported instruction `%s'"),
6011 current_templates->start->name);
6012 return NULL;
6013 case invalid_vsib_address:
6014 err_msg = _("invalid VSIB address");
6015 break;
6016 case invalid_vector_register_set:
6017 err_msg = _("mask, index, and destination registers must be distinct");
6018 break;
6019 case unsupported_vector_index_register:
6020 err_msg = _("unsupported vector index register");
6021 break;
6022 case unsupported_broadcast:
6023 err_msg = _("unsupported broadcast");
6024 break;
6025 case broadcast_needed:
6026 err_msg = _("broadcast is needed for operand of such type");
6027 break;
6028 case unsupported_masking:
6029 err_msg = _("unsupported masking");
6030 break;
6031 case mask_not_on_destination:
6032 err_msg = _("mask not on destination operand");
6033 break;
6034 case no_default_mask:
6035 err_msg = _("default mask isn't allowed");
6036 break;
6037 case unsupported_rc_sae:
6038 err_msg = _("unsupported static rounding/sae");
6039 break;
6040 case rc_sae_operand_not_last_imm:
6041 if (intel_syntax)
6042 err_msg = _("RC/SAE operand must precede immediate operands");
6043 else
6044 err_msg = _("RC/SAE operand must follow immediate operands");
6045 break;
6046 case invalid_register_operand:
6047 err_msg = _("invalid register operand");
6048 break;
6049 }
6050 as_bad (_("%s for `%s'"), err_msg,
6051 current_templates->start->name);
6052 return NULL;
6053 }
6054
6055 if (!quiet_warnings)
6056 {
6057 if (!intel_syntax
6058 && (i.types[0].bitfield.jumpabsolute
6059 != operand_types[0].bitfield.jumpabsolute))
6060 {
6061 as_warn (_("indirect %s without `*'"), t->name);
6062 }
6063
6064 if (t->opcode_modifier.isprefix
6065 && t->opcode_modifier.ignoresize)
6066 {
6067 /* Warn them that a data or address size prefix doesn't
6068 affect assembly of the next line of code. */
6069 as_warn (_("stand-alone `%s' prefix"), t->name);
6070 }
6071 }
6072
6073 /* Copy the template we found. */
6074 i.tm = *t;
6075
6076 if (addr_prefix_disp != -1)
6077 i.tm.operand_types[addr_prefix_disp]
6078 = operand_types[addr_prefix_disp];
6079
6080 if (found_reverse_match)
6081 {
6082 /* If we found a reverse match we must alter the opcode
6083 direction bit. found_reverse_match holds bits to change
6084 (different for int & float insns). */
6085
6086 i.tm.base_opcode ^= found_reverse_match;
6087
6088 i.tm.operand_types[0] = operand_types[i.operands - 1];
6089 i.tm.operand_types[i.operands - 1] = operand_types[0];
6090 }
6091
6092 return t;
6093 }
6094
6095 static int
6096 check_string (void)
6097 {
6098 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6099 if (i.tm.operand_types[mem_op].bitfield.esseg)
6100 {
6101 if (i.seg[0] != NULL && i.seg[0] != &es)
6102 {
6103 as_bad (_("`%s' operand %d must use `%ses' segment"),
6104 i.tm.name,
6105 mem_op + 1,
6106 register_prefix);
6107 return 0;
6108 }
6109 /* There's only ever one segment override allowed per instruction.
6110 This instruction possibly has a legal segment override on the
6111 second operand, so copy the segment to where non-string
6112 instructions store it, allowing common code. */
6113 i.seg[0] = i.seg[1];
6114 }
6115 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6116 {
6117 if (i.seg[1] != NULL && i.seg[1] != &es)
6118 {
6119 as_bad (_("`%s' operand %d must use `%ses' segment"),
6120 i.tm.name,
6121 mem_op + 2,
6122 register_prefix);
6123 return 0;
6124 }
6125 }
6126 return 1;
6127 }
6128
6129 static int
6130 process_suffix (void)
6131 {
6132 /* If matched instruction specifies an explicit instruction mnemonic
6133 suffix, use it. */
6134 if (i.tm.opcode_modifier.size == SIZE16)
6135 i.suffix = WORD_MNEM_SUFFIX;
6136 else if (i.tm.opcode_modifier.size == SIZE32)
6137 i.suffix = LONG_MNEM_SUFFIX;
6138 else if (i.tm.opcode_modifier.size == SIZE64)
6139 i.suffix = QWORD_MNEM_SUFFIX;
6140 else if (i.reg_operands)
6141 {
6142 /* If there's no instruction mnemonic suffix we try to invent one
6143 based on register operands. */
6144 if (!i.suffix)
6145 {
6146 /* We take i.suffix from the last register operand specified,
6147 Destination register type is more significant than source
6148 register type. crc32 in SSE4.2 prefers source register
6149 type. */
6150 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6151 {
6152 if (i.types[0].bitfield.byte)
6153 i.suffix = BYTE_MNEM_SUFFIX;
6154 else if (i.types[0].bitfield.word)
6155 i.suffix = WORD_MNEM_SUFFIX;
6156 else if (i.types[0].bitfield.dword)
6157 i.suffix = LONG_MNEM_SUFFIX;
6158 else if (i.types[0].bitfield.qword)
6159 i.suffix = QWORD_MNEM_SUFFIX;
6160 }
6161
6162 if (!i.suffix)
6163 {
6164 int op;
6165
6166 if (i.tm.base_opcode == 0xf20f38f0)
6167 {
6168 /* We have to know the operand size for crc32. */
6169 as_bad (_("ambiguous memory operand size for `%s`"),
6170 i.tm.name);
6171 return 0;
6172 }
6173
6174 for (op = i.operands; --op >= 0;)
6175 if (!i.tm.operand_types[op].bitfield.inoutportreg
6176 && !i.tm.operand_types[op].bitfield.shiftcount)
6177 {
6178 if (!i.types[op].bitfield.reg)
6179 continue;
6180 if (i.types[op].bitfield.byte)
6181 i.suffix = BYTE_MNEM_SUFFIX;
6182 else if (i.types[op].bitfield.word)
6183 i.suffix = WORD_MNEM_SUFFIX;
6184 else if (i.types[op].bitfield.dword)
6185 i.suffix = LONG_MNEM_SUFFIX;
6186 else if (i.types[op].bitfield.qword)
6187 i.suffix = QWORD_MNEM_SUFFIX;
6188 else
6189 continue;
6190 break;
6191 }
6192 }
6193 }
6194 else if (i.suffix == BYTE_MNEM_SUFFIX)
6195 {
6196 if (intel_syntax
6197 && i.tm.opcode_modifier.ignoresize
6198 && i.tm.opcode_modifier.no_bsuf)
6199 i.suffix = 0;
6200 else if (!check_byte_reg ())
6201 return 0;
6202 }
6203 else if (i.suffix == LONG_MNEM_SUFFIX)
6204 {
6205 if (intel_syntax
6206 && i.tm.opcode_modifier.ignoresize
6207 && i.tm.opcode_modifier.no_lsuf
6208 && !i.tm.opcode_modifier.todword
6209 && !i.tm.opcode_modifier.toqword)
6210 i.suffix = 0;
6211 else if (!check_long_reg ())
6212 return 0;
6213 }
6214 else if (i.suffix == QWORD_MNEM_SUFFIX)
6215 {
6216 if (intel_syntax
6217 && i.tm.opcode_modifier.ignoresize
6218 && i.tm.opcode_modifier.no_qsuf
6219 && !i.tm.opcode_modifier.todword
6220 && !i.tm.opcode_modifier.toqword)
6221 i.suffix = 0;
6222 else if (!check_qword_reg ())
6223 return 0;
6224 }
6225 else if (i.suffix == WORD_MNEM_SUFFIX)
6226 {
6227 if (intel_syntax
6228 && i.tm.opcode_modifier.ignoresize
6229 && i.tm.opcode_modifier.no_wsuf)
6230 i.suffix = 0;
6231 else if (!check_word_reg ())
6232 return 0;
6233 }
6234 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6235 /* Do nothing if the instruction is going to ignore the prefix. */
6236 ;
6237 else
6238 abort ();
6239 }
6240 else if (i.tm.opcode_modifier.defaultsize
6241 && !i.suffix
6242 /* exclude fldenv/frstor/fsave/fstenv */
6243 && i.tm.opcode_modifier.no_ssuf)
6244 {
6245 if (stackop_size == LONG_MNEM_SUFFIX
6246 && i.tm.base_opcode == 0xcf)
6247 {
6248 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6249 .code16gcc directive to support 16-bit mode with
6250 32-bit address. For IRET without a suffix, generate
6251 16-bit IRET (opcode 0xcf) to return from an interrupt
6252 handler. */
6253 i.suffix = WORD_MNEM_SUFFIX;
6254 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6255 }
6256 else
6257 i.suffix = stackop_size;
6258 }
6259 else if (intel_syntax
6260 && !i.suffix
6261 && (i.tm.operand_types[0].bitfield.jumpabsolute
6262 || i.tm.opcode_modifier.jumpbyte
6263 || i.tm.opcode_modifier.jumpintersegment
6264 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6265 && i.tm.extension_opcode <= 3)))
6266 {
6267 switch (flag_code)
6268 {
6269 case CODE_64BIT:
6270 if (!i.tm.opcode_modifier.no_qsuf)
6271 {
6272 i.suffix = QWORD_MNEM_SUFFIX;
6273 break;
6274 }
6275 /* Fall through. */
6276 case CODE_32BIT:
6277 if (!i.tm.opcode_modifier.no_lsuf)
6278 i.suffix = LONG_MNEM_SUFFIX;
6279 break;
6280 case CODE_16BIT:
6281 if (!i.tm.opcode_modifier.no_wsuf)
6282 i.suffix = WORD_MNEM_SUFFIX;
6283 break;
6284 }
6285 }
6286
6287 if (!i.suffix)
6288 {
6289 if (!intel_syntax)
6290 {
6291 if (i.tm.opcode_modifier.w)
6292 {
6293 as_bad (_("no instruction mnemonic suffix given and "
6294 "no register operands; can't size instruction"));
6295 return 0;
6296 }
6297 }
6298 else
6299 {
6300 unsigned int suffixes;
6301
6302 suffixes = !i.tm.opcode_modifier.no_bsuf;
6303 if (!i.tm.opcode_modifier.no_wsuf)
6304 suffixes |= 1 << 1;
6305 if (!i.tm.opcode_modifier.no_lsuf)
6306 suffixes |= 1 << 2;
6307 if (!i.tm.opcode_modifier.no_ldsuf)
6308 suffixes |= 1 << 3;
6309 if (!i.tm.opcode_modifier.no_ssuf)
6310 suffixes |= 1 << 4;
6311 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6312 suffixes |= 1 << 5;
6313
6314 /* There are more than suffix matches. */
6315 if (i.tm.opcode_modifier.w
6316 || ((suffixes & (suffixes - 1))
6317 && !i.tm.opcode_modifier.defaultsize
6318 && !i.tm.opcode_modifier.ignoresize))
6319 {
6320 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6321 return 0;
6322 }
6323 }
6324 }
6325
6326 /* Change the opcode based on the operand size given by i.suffix. */
6327 switch (i.suffix)
6328 {
6329 /* Size floating point instruction. */
6330 case LONG_MNEM_SUFFIX:
6331 if (i.tm.opcode_modifier.floatmf)
6332 {
6333 i.tm.base_opcode ^= 4;
6334 break;
6335 }
6336 /* fall through */
6337 case WORD_MNEM_SUFFIX:
6338 case QWORD_MNEM_SUFFIX:
6339 /* It's not a byte, select word/dword operation. */
6340 if (i.tm.opcode_modifier.w)
6341 {
6342 if (i.tm.opcode_modifier.shortform)
6343 i.tm.base_opcode |= 8;
6344 else
6345 i.tm.base_opcode |= 1;
6346 }
6347 /* fall through */
6348 case SHORT_MNEM_SUFFIX:
6349 /* Now select between word & dword operations via the operand
6350 size prefix, except for instructions that will ignore this
6351 prefix anyway. */
6352 if (i.reg_operands > 0
6353 && i.types[0].bitfield.reg
6354 && i.tm.opcode_modifier.addrprefixopreg
6355 && (i.tm.opcode_modifier.immext
6356 || i.operands == 1))
6357 {
6358 /* The address size override prefix changes the size of the
6359 first operand. */
6360 if ((flag_code == CODE_32BIT
6361 && i.op[0].regs->reg_type.bitfield.word)
6362 || (flag_code != CODE_32BIT
6363 && i.op[0].regs->reg_type.bitfield.dword))
6364 if (!add_prefix (ADDR_PREFIX_OPCODE))
6365 return 0;
6366 }
6367 else if (i.suffix != QWORD_MNEM_SUFFIX
6368 && !i.tm.opcode_modifier.ignoresize
6369 && !i.tm.opcode_modifier.floatmf
6370 && !i.tm.opcode_modifier.vex
6371 && !i.tm.opcode_modifier.vexopcode
6372 && !is_evex_encoding (&i.tm)
6373 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6374 || (flag_code == CODE_64BIT
6375 && i.tm.opcode_modifier.jumpbyte)))
6376 {
6377 unsigned int prefix = DATA_PREFIX_OPCODE;
6378
6379 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6380 prefix = ADDR_PREFIX_OPCODE;
6381
6382 if (!add_prefix (prefix))
6383 return 0;
6384 }
6385
6386 /* Set mode64 for an operand. */
6387 if (i.suffix == QWORD_MNEM_SUFFIX
6388 && flag_code == CODE_64BIT
6389 && !i.tm.opcode_modifier.norex64
6390 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6391 need rex64. */
6392 && ! (i.operands == 2
6393 && i.tm.base_opcode == 0x90
6394 && i.tm.extension_opcode == None
6395 && operand_type_equal (&i.types [0], &acc64)
6396 && operand_type_equal (&i.types [1], &acc64)))
6397 i.rex |= REX_W;
6398
6399 break;
6400 }
6401
6402 if (i.reg_operands != 0
6403 && i.operands > 1
6404 && i.tm.opcode_modifier.addrprefixopreg
6405 && !i.tm.opcode_modifier.immext)
6406 {
6407 /* Check invalid register operand when the address size override
6408 prefix changes the size of register operands. */
6409 unsigned int op;
6410 enum { need_word, need_dword, need_qword } need;
6411
6412 if (flag_code == CODE_32BIT)
6413 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6414 else
6415 {
6416 if (i.prefix[ADDR_PREFIX])
6417 need = need_dword;
6418 else
6419 need = flag_code == CODE_64BIT ? need_qword : need_word;
6420 }
6421
6422 for (op = 0; op < i.operands; op++)
6423 if (i.types[op].bitfield.reg
6424 && ((need == need_word
6425 && !i.op[op].regs->reg_type.bitfield.word)
6426 || (need == need_dword
6427 && !i.op[op].regs->reg_type.bitfield.dword)
6428 || (need == need_qword
6429 && !i.op[op].regs->reg_type.bitfield.qword)))
6430 {
6431 as_bad (_("invalid register operand size for `%s'"),
6432 i.tm.name);
6433 return 0;
6434 }
6435 }
6436
6437 return 1;
6438 }
6439
6440 static int
6441 check_byte_reg (void)
6442 {
6443 int op;
6444
6445 for (op = i.operands; --op >= 0;)
6446 {
6447 /* Skip non-register operands. */
6448 if (!i.types[op].bitfield.reg)
6449 continue;
6450
6451 /* If this is an eight bit register, it's OK. If it's the 16 or
6452 32 bit version of an eight bit register, we will just use the
6453 low portion, and that's OK too. */
6454 if (i.types[op].bitfield.byte)
6455 continue;
6456
6457 /* I/O port address operands are OK too. */
6458 if (i.tm.operand_types[op].bitfield.inoutportreg)
6459 continue;
6460
6461 /* crc32 doesn't generate this warning. */
6462 if (i.tm.base_opcode == 0xf20f38f0)
6463 continue;
6464
6465 if ((i.types[op].bitfield.word
6466 || i.types[op].bitfield.dword
6467 || i.types[op].bitfield.qword)
6468 && i.op[op].regs->reg_num < 4
6469 /* Prohibit these changes in 64bit mode, since the lowering
6470 would be more complicated. */
6471 && flag_code != CODE_64BIT)
6472 {
6473 #if REGISTER_WARNINGS
6474 if (!quiet_warnings)
6475 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6476 register_prefix,
6477 (i.op[op].regs + (i.types[op].bitfield.word
6478 ? REGNAM_AL - REGNAM_AX
6479 : REGNAM_AL - REGNAM_EAX))->reg_name,
6480 register_prefix,
6481 i.op[op].regs->reg_name,
6482 i.suffix);
6483 #endif
6484 continue;
6485 }
6486 /* Any other register is bad. */
6487 if (i.types[op].bitfield.reg
6488 || i.types[op].bitfield.regmmx
6489 || i.types[op].bitfield.regsimd
6490 || i.types[op].bitfield.sreg2
6491 || i.types[op].bitfield.sreg3
6492 || i.types[op].bitfield.control
6493 || i.types[op].bitfield.debug
6494 || i.types[op].bitfield.test)
6495 {
6496 as_bad (_("`%s%s' not allowed with `%s%c'"),
6497 register_prefix,
6498 i.op[op].regs->reg_name,
6499 i.tm.name,
6500 i.suffix);
6501 return 0;
6502 }
6503 }
6504 return 1;
6505 }
6506
6507 static int
6508 check_long_reg (void)
6509 {
6510 int op;
6511
6512 for (op = i.operands; --op >= 0;)
6513 /* Skip non-register operands. */
6514 if (!i.types[op].bitfield.reg)
6515 continue;
6516 /* Reject eight bit registers, except where the template requires
6517 them. (eg. movzb) */
6518 else if (i.types[op].bitfield.byte
6519 && (i.tm.operand_types[op].bitfield.reg
6520 || i.tm.operand_types[op].bitfield.acc)
6521 && (i.tm.operand_types[op].bitfield.word
6522 || i.tm.operand_types[op].bitfield.dword))
6523 {
6524 as_bad (_("`%s%s' not allowed with `%s%c'"),
6525 register_prefix,
6526 i.op[op].regs->reg_name,
6527 i.tm.name,
6528 i.suffix);
6529 return 0;
6530 }
6531 /* Warn if the e prefix on a general reg is missing. */
6532 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6533 && i.types[op].bitfield.word
6534 && (i.tm.operand_types[op].bitfield.reg
6535 || i.tm.operand_types[op].bitfield.acc)
6536 && i.tm.operand_types[op].bitfield.dword)
6537 {
6538 /* Prohibit these changes in the 64bit mode, since the
6539 lowering is more complicated. */
6540 if (flag_code == CODE_64BIT)
6541 {
6542 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6543 register_prefix, i.op[op].regs->reg_name,
6544 i.suffix);
6545 return 0;
6546 }
6547 #if REGISTER_WARNINGS
6548 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6549 register_prefix,
6550 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6551 register_prefix, i.op[op].regs->reg_name, i.suffix);
6552 #endif
6553 }
6554 /* Warn if the r prefix on a general reg is present. */
6555 else if (i.types[op].bitfield.qword
6556 && (i.tm.operand_types[op].bitfield.reg
6557 || i.tm.operand_types[op].bitfield.acc)
6558 && i.tm.operand_types[op].bitfield.dword)
6559 {
6560 if (intel_syntax
6561 && i.tm.opcode_modifier.toqword
6562 && !i.types[0].bitfield.regsimd)
6563 {
6564 /* Convert to QWORD. We want REX byte. */
6565 i.suffix = QWORD_MNEM_SUFFIX;
6566 }
6567 else
6568 {
6569 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6570 register_prefix, i.op[op].regs->reg_name,
6571 i.suffix);
6572 return 0;
6573 }
6574 }
6575 return 1;
6576 }
6577
6578 static int
6579 check_qword_reg (void)
6580 {
6581 int op;
6582
6583 for (op = i.operands; --op >= 0; )
6584 /* Skip non-register operands. */
6585 if (!i.types[op].bitfield.reg)
6586 continue;
6587 /* Reject eight bit registers, except where the template requires
6588 them. (eg. movzb) */
6589 else if (i.types[op].bitfield.byte
6590 && (i.tm.operand_types[op].bitfield.reg
6591 || i.tm.operand_types[op].bitfield.acc)
6592 && (i.tm.operand_types[op].bitfield.word
6593 || i.tm.operand_types[op].bitfield.dword))
6594 {
6595 as_bad (_("`%s%s' not allowed with `%s%c'"),
6596 register_prefix,
6597 i.op[op].regs->reg_name,
6598 i.tm.name,
6599 i.suffix);
6600 return 0;
6601 }
6602 /* Warn if the r prefix on a general reg is missing. */
6603 else if ((i.types[op].bitfield.word
6604 || i.types[op].bitfield.dword)
6605 && (i.tm.operand_types[op].bitfield.reg
6606 || i.tm.operand_types[op].bitfield.acc)
6607 && i.tm.operand_types[op].bitfield.qword)
6608 {
6609 /* Prohibit these changes in the 64bit mode, since the
6610 lowering is more complicated. */
6611 if (intel_syntax
6612 && i.tm.opcode_modifier.todword
6613 && !i.types[0].bitfield.regsimd)
6614 {
6615 /* Convert to DWORD. We don't want REX byte. */
6616 i.suffix = LONG_MNEM_SUFFIX;
6617 }
6618 else
6619 {
6620 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6621 register_prefix, i.op[op].regs->reg_name,
6622 i.suffix);
6623 return 0;
6624 }
6625 }
6626 return 1;
6627 }
6628
6629 static int
6630 check_word_reg (void)
6631 {
6632 int op;
6633 for (op = i.operands; --op >= 0;)
6634 /* Skip non-register operands. */
6635 if (!i.types[op].bitfield.reg)
6636 continue;
6637 /* Reject eight bit registers, except where the template requires
6638 them. (eg. movzb) */
6639 else if (i.types[op].bitfield.byte
6640 && (i.tm.operand_types[op].bitfield.reg
6641 || i.tm.operand_types[op].bitfield.acc)
6642 && (i.tm.operand_types[op].bitfield.word
6643 || i.tm.operand_types[op].bitfield.dword))
6644 {
6645 as_bad (_("`%s%s' not allowed with `%s%c'"),
6646 register_prefix,
6647 i.op[op].regs->reg_name,
6648 i.tm.name,
6649 i.suffix);
6650 return 0;
6651 }
6652 /* Warn if the e or r prefix on a general reg is present. */
6653 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6654 && (i.types[op].bitfield.dword
6655 || i.types[op].bitfield.qword)
6656 && (i.tm.operand_types[op].bitfield.reg
6657 || i.tm.operand_types[op].bitfield.acc)
6658 && i.tm.operand_types[op].bitfield.word)
6659 {
6660 /* Prohibit these changes in the 64bit mode, since the
6661 lowering is more complicated. */
6662 if (flag_code == CODE_64BIT)
6663 {
6664 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6665 register_prefix, i.op[op].regs->reg_name,
6666 i.suffix);
6667 return 0;
6668 }
6669 #if REGISTER_WARNINGS
6670 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6671 register_prefix,
6672 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6673 register_prefix, i.op[op].regs->reg_name, i.suffix);
6674 #endif
6675 }
6676 return 1;
6677 }
6678
6679 static int
6680 update_imm (unsigned int j)
6681 {
6682 i386_operand_type overlap = i.types[j];
6683 if ((overlap.bitfield.imm8
6684 || overlap.bitfield.imm8s
6685 || overlap.bitfield.imm16
6686 || overlap.bitfield.imm32
6687 || overlap.bitfield.imm32s
6688 || overlap.bitfield.imm64)
6689 && !operand_type_equal (&overlap, &imm8)
6690 && !operand_type_equal (&overlap, &imm8s)
6691 && !operand_type_equal (&overlap, &imm16)
6692 && !operand_type_equal (&overlap, &imm32)
6693 && !operand_type_equal (&overlap, &imm32s)
6694 && !operand_type_equal (&overlap, &imm64))
6695 {
6696 if (i.suffix)
6697 {
6698 i386_operand_type temp;
6699
6700 operand_type_set (&temp, 0);
6701 if (i.suffix == BYTE_MNEM_SUFFIX)
6702 {
6703 temp.bitfield.imm8 = overlap.bitfield.imm8;
6704 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6705 }
6706 else if (i.suffix == WORD_MNEM_SUFFIX)
6707 temp.bitfield.imm16 = overlap.bitfield.imm16;
6708 else if (i.suffix == QWORD_MNEM_SUFFIX)
6709 {
6710 temp.bitfield.imm64 = overlap.bitfield.imm64;
6711 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6712 }
6713 else
6714 temp.bitfield.imm32 = overlap.bitfield.imm32;
6715 overlap = temp;
6716 }
6717 else if (operand_type_equal (&overlap, &imm16_32_32s)
6718 || operand_type_equal (&overlap, &imm16_32)
6719 || operand_type_equal (&overlap, &imm16_32s))
6720 {
6721 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6722 overlap = imm16;
6723 else
6724 overlap = imm32s;
6725 }
6726 if (!operand_type_equal (&overlap, &imm8)
6727 && !operand_type_equal (&overlap, &imm8s)
6728 && !operand_type_equal (&overlap, &imm16)
6729 && !operand_type_equal (&overlap, &imm32)
6730 && !operand_type_equal (&overlap, &imm32s)
6731 && !operand_type_equal (&overlap, &imm64))
6732 {
6733 as_bad (_("no instruction mnemonic suffix given; "
6734 "can't determine immediate size"));
6735 return 0;
6736 }
6737 }
6738 i.types[j] = overlap;
6739
6740 return 1;
6741 }
6742
6743 static int
6744 finalize_imm (void)
6745 {
6746 unsigned int j, n;
6747
6748 /* Update the first 2 immediate operands. */
6749 n = i.operands > 2 ? 2 : i.operands;
6750 if (n)
6751 {
6752 for (j = 0; j < n; j++)
6753 if (update_imm (j) == 0)
6754 return 0;
6755
6756 /* The 3rd operand can't be immediate operand. */
6757 gas_assert (operand_type_check (i.types[2], imm) == 0);
6758 }
6759
6760 return 1;
6761 }
6762
6763 static int
6764 process_operands (void)
6765 {
6766 /* Default segment register this instruction will use for memory
6767 accesses. 0 means unknown. This is only for optimizing out
6768 unnecessary segment overrides. */
6769 const seg_entry *default_seg = 0;
6770
6771 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6772 {
6773 unsigned int dupl = i.operands;
6774 unsigned int dest = dupl - 1;
6775 unsigned int j;
6776
6777 /* The destination must be an xmm register. */
6778 gas_assert (i.reg_operands
6779 && MAX_OPERANDS > dupl
6780 && operand_type_equal (&i.types[dest], &regxmm));
6781
6782 if (i.tm.operand_types[0].bitfield.acc
6783 && i.tm.operand_types[0].bitfield.xmmword)
6784 {
6785 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6786 {
6787 /* Keep xmm0 for instructions with VEX prefix and 3
6788 sources. */
6789 i.tm.operand_types[0].bitfield.acc = 0;
6790 i.tm.operand_types[0].bitfield.regsimd = 1;
6791 goto duplicate;
6792 }
6793 else
6794 {
6795 /* We remove the first xmm0 and keep the number of
6796 operands unchanged, which in fact duplicates the
6797 destination. */
6798 for (j = 1; j < i.operands; j++)
6799 {
6800 i.op[j - 1] = i.op[j];
6801 i.types[j - 1] = i.types[j];
6802 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6803 }
6804 }
6805 }
6806 else if (i.tm.opcode_modifier.implicit1stxmm0)
6807 {
6808 gas_assert ((MAX_OPERANDS - 1) > dupl
6809 && (i.tm.opcode_modifier.vexsources
6810 == VEX3SOURCES));
6811
6812 /* Add the implicit xmm0 for instructions with VEX prefix
6813 and 3 sources. */
6814 for (j = i.operands; j > 0; j--)
6815 {
6816 i.op[j] = i.op[j - 1];
6817 i.types[j] = i.types[j - 1];
6818 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6819 }
6820 i.op[0].regs
6821 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6822 i.types[0] = regxmm;
6823 i.tm.operand_types[0] = regxmm;
6824
6825 i.operands += 2;
6826 i.reg_operands += 2;
6827 i.tm.operands += 2;
6828
6829 dupl++;
6830 dest++;
6831 i.op[dupl] = i.op[dest];
6832 i.types[dupl] = i.types[dest];
6833 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6834 }
6835 else
6836 {
6837 duplicate:
6838 i.operands++;
6839 i.reg_operands++;
6840 i.tm.operands++;
6841
6842 i.op[dupl] = i.op[dest];
6843 i.types[dupl] = i.types[dest];
6844 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6845 }
6846
6847 if (i.tm.opcode_modifier.immext)
6848 process_immext ();
6849 }
6850 else if (i.tm.operand_types[0].bitfield.acc
6851 && i.tm.operand_types[0].bitfield.xmmword)
6852 {
6853 unsigned int j;
6854
6855 for (j = 1; j < i.operands; j++)
6856 {
6857 i.op[j - 1] = i.op[j];
6858 i.types[j - 1] = i.types[j];
6859
6860 /* We need to adjust fields in i.tm since they are used by
6861 build_modrm_byte. */
6862 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6863 }
6864
6865 i.operands--;
6866 i.reg_operands--;
6867 i.tm.operands--;
6868 }
6869 else if (i.tm.opcode_modifier.implicitquadgroup)
6870 {
6871 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6872
6873 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6874 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6875 regnum = register_number (i.op[1].regs);
6876 first_reg_in_group = regnum & ~3;
6877 last_reg_in_group = first_reg_in_group + 3;
6878 if (regnum != first_reg_in_group)
6879 as_warn (_("source register `%s%s' implicitly denotes"
6880 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6881 register_prefix, i.op[1].regs->reg_name,
6882 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6883 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6884 i.tm.name);
6885 }
6886 else if (i.tm.opcode_modifier.regkludge)
6887 {
6888 /* The imul $imm, %reg instruction is converted into
6889 imul $imm, %reg, %reg, and the clr %reg instruction
6890 is converted into xor %reg, %reg. */
6891
6892 unsigned int first_reg_op;
6893
6894 if (operand_type_check (i.types[0], reg))
6895 first_reg_op = 0;
6896 else
6897 first_reg_op = 1;
6898 /* Pretend we saw the extra register operand. */
6899 gas_assert (i.reg_operands == 1
6900 && i.op[first_reg_op + 1].regs == 0);
6901 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6902 i.types[first_reg_op + 1] = i.types[first_reg_op];
6903 i.operands++;
6904 i.reg_operands++;
6905 }
6906
6907 if (i.tm.opcode_modifier.shortform)
6908 {
6909 if (i.types[0].bitfield.sreg2
6910 || i.types[0].bitfield.sreg3)
6911 {
6912 if (i.tm.base_opcode == POP_SEG_SHORT
6913 && i.op[0].regs->reg_num == 1)
6914 {
6915 as_bad (_("you can't `pop %scs'"), register_prefix);
6916 return 0;
6917 }
6918 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6919 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6920 i.rex |= REX_B;
6921 }
6922 else
6923 {
6924 /* The register or float register operand is in operand
6925 0 or 1. */
6926 unsigned int op;
6927
6928 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6929 || operand_type_check (i.types[0], reg))
6930 op = 0;
6931 else
6932 op = 1;
6933 /* Register goes in low 3 bits of opcode. */
6934 i.tm.base_opcode |= i.op[op].regs->reg_num;
6935 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6936 i.rex |= REX_B;
6937 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6938 {
6939 /* Warn about some common errors, but press on regardless.
6940 The first case can be generated by gcc (<= 2.8.1). */
6941 if (i.operands == 2)
6942 {
6943 /* Reversed arguments on faddp, fsubp, etc. */
6944 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6945 register_prefix, i.op[!intel_syntax].regs->reg_name,
6946 register_prefix, i.op[intel_syntax].regs->reg_name);
6947 }
6948 else
6949 {
6950 /* Extraneous `l' suffix on fp insn. */
6951 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6952 register_prefix, i.op[0].regs->reg_name);
6953 }
6954 }
6955 }
6956 }
6957 else if (i.tm.opcode_modifier.modrm)
6958 {
6959 /* The opcode is completed (modulo i.tm.extension_opcode which
6960 must be put into the modrm byte). Now, we make the modrm and
6961 index base bytes based on all the info we've collected. */
6962
6963 default_seg = build_modrm_byte ();
6964 }
6965 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6966 {
6967 default_seg = &ds;
6968 }
6969 else if (i.tm.opcode_modifier.isstring)
6970 {
6971 /* For the string instructions that allow a segment override
6972 on one of their operands, the default segment is ds. */
6973 default_seg = &ds;
6974 }
6975
6976 if (i.tm.base_opcode == 0x8d /* lea */
6977 && i.seg[0]
6978 && !quiet_warnings)
6979 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6980
6981 /* If a segment was explicitly specified, and the specified segment
6982 is not the default, use an opcode prefix to select it. If we
6983 never figured out what the default segment is, then default_seg
6984 will be zero at this point, and the specified segment prefix will
6985 always be used. */
6986 if ((i.seg[0]) && (i.seg[0] != default_seg))
6987 {
6988 if (!add_prefix (i.seg[0]->seg_prefix))
6989 return 0;
6990 }
6991 return 1;
6992 }
6993
6994 static const seg_entry *
6995 build_modrm_byte (void)
6996 {
6997 const seg_entry *default_seg = 0;
6998 unsigned int source, dest;
6999 int vex_3_sources;
7000
7001 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7002 if (vex_3_sources)
7003 {
7004 unsigned int nds, reg_slot;
7005 expressionS *exp;
7006
7007 dest = i.operands - 1;
7008 nds = dest - 1;
7009
7010 /* There are 2 kinds of instructions:
7011 1. 5 operands: 4 register operands or 3 register operands
7012 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7013 VexW0 or VexW1. The destination must be either XMM, YMM or
7014 ZMM register.
7015 2. 4 operands: 4 register operands or 3 register operands
7016 plus 1 memory operand, with VexXDS. */
7017 gas_assert ((i.reg_operands == 4
7018 || (i.reg_operands == 3 && i.mem_operands == 1))
7019 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7020 && i.tm.opcode_modifier.vexw
7021 && i.tm.operand_types[dest].bitfield.regsimd);
7022
7023 /* If VexW1 is set, the first non-immediate operand is the source and
7024 the second non-immediate one is encoded in the immediate operand. */
7025 if (i.tm.opcode_modifier.vexw == VEXW1)
7026 {
7027 source = i.imm_operands;
7028 reg_slot = i.imm_operands + 1;
7029 }
7030 else
7031 {
7032 source = i.imm_operands + 1;
7033 reg_slot = i.imm_operands;
7034 }
7035
7036 if (i.imm_operands == 0)
7037 {
7038 /* When there is no immediate operand, generate an 8bit
7039 immediate operand to encode the first operand. */
7040 exp = &im_expressions[i.imm_operands++];
7041 i.op[i.operands].imms = exp;
7042 i.types[i.operands] = imm8;
7043 i.operands++;
7044
7045 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7046 exp->X_op = O_constant;
7047 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7048 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7049 }
7050 else
7051 {
7052 unsigned int imm_slot;
7053
7054 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7055
7056 if (i.tm.opcode_modifier.immext)
7057 {
7058 /* When ImmExt is set, the immediate byte is the last
7059 operand. */
7060 imm_slot = i.operands - 1;
7061 source--;
7062 reg_slot--;
7063 }
7064 else
7065 {
7066 imm_slot = 0;
7067
7068 /* Turn on Imm8 so that output_imm will generate it. */
7069 i.types[imm_slot].bitfield.imm8 = 1;
7070 }
7071
7072 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7073 i.op[imm_slot].imms->X_add_number
7074 |= register_number (i.op[reg_slot].regs) << 4;
7075 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7076 }
7077
7078 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7079 i.vex.register_specifier = i.op[nds].regs;
7080 }
7081 else
7082 source = dest = 0;
7083
7084 /* i.reg_operands MUST be the number of real register operands;
7085 implicit registers do not count. If there are 3 register
7086 operands, it must be a instruction with VexNDS. For a
7087 instruction with VexNDD, the destination register is encoded
7088 in VEX prefix. If there are 4 register operands, it must be
7089 a instruction with VEX prefix and 3 sources. */
7090 if (i.mem_operands == 0
7091 && ((i.reg_operands == 2
7092 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7093 || (i.reg_operands == 3
7094 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7095 || (i.reg_operands == 4 && vex_3_sources)))
7096 {
7097 switch (i.operands)
7098 {
7099 case 2:
7100 source = 0;
7101 break;
7102 case 3:
7103 /* When there are 3 operands, one of them may be immediate,
7104 which may be the first or the last operand. Otherwise,
7105 the first operand must be shift count register (cl) or it
7106 is an instruction with VexNDS. */
7107 gas_assert (i.imm_operands == 1
7108 || (i.imm_operands == 0
7109 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7110 || i.types[0].bitfield.shiftcount)));
7111 if (operand_type_check (i.types[0], imm)
7112 || i.types[0].bitfield.shiftcount)
7113 source = 1;
7114 else
7115 source = 0;
7116 break;
7117 case 4:
7118 /* When there are 4 operands, the first two must be 8bit
7119 immediate operands. The source operand will be the 3rd
7120 one.
7121
7122 For instructions with VexNDS, if the first operand
7123 an imm8, the source operand is the 2nd one. If the last
7124 operand is imm8, the source operand is the first one. */
7125 gas_assert ((i.imm_operands == 2
7126 && i.types[0].bitfield.imm8
7127 && i.types[1].bitfield.imm8)
7128 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7129 && i.imm_operands == 1
7130 && (i.types[0].bitfield.imm8
7131 || i.types[i.operands - 1].bitfield.imm8
7132 || i.rounding)));
7133 if (i.imm_operands == 2)
7134 source = 2;
7135 else
7136 {
7137 if (i.types[0].bitfield.imm8)
7138 source = 1;
7139 else
7140 source = 0;
7141 }
7142 break;
7143 case 5:
7144 if (is_evex_encoding (&i.tm))
7145 {
7146 /* For EVEX instructions, when there are 5 operands, the
7147 first one must be immediate operand. If the second one
7148 is immediate operand, the source operand is the 3th
7149 one. If the last one is immediate operand, the source
7150 operand is the 2nd one. */
7151 gas_assert (i.imm_operands == 2
7152 && i.tm.opcode_modifier.sae
7153 && operand_type_check (i.types[0], imm));
7154 if (operand_type_check (i.types[1], imm))
7155 source = 2;
7156 else if (operand_type_check (i.types[4], imm))
7157 source = 1;
7158 else
7159 abort ();
7160 }
7161 break;
7162 default:
7163 abort ();
7164 }
7165
7166 if (!vex_3_sources)
7167 {
7168 dest = source + 1;
7169
7170 /* RC/SAE operand could be between DEST and SRC. That happens
7171 when one operand is GPR and the other one is XMM/YMM/ZMM
7172 register. */
7173 if (i.rounding && i.rounding->operand == (int) dest)
7174 dest++;
7175
7176 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7177 {
7178 /* For instructions with VexNDS, the register-only source
7179 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7180 register. It is encoded in VEX prefix. We need to
7181 clear RegMem bit before calling operand_type_equal. */
7182
7183 i386_operand_type op;
7184 unsigned int vvvv;
7185
7186 /* Check register-only source operand when two source
7187 operands are swapped. */
7188 if (!i.tm.operand_types[source].bitfield.baseindex
7189 && i.tm.operand_types[dest].bitfield.baseindex)
7190 {
7191 vvvv = source;
7192 source = dest;
7193 }
7194 else
7195 vvvv = dest;
7196
7197 op = i.tm.operand_types[vvvv];
7198 op.bitfield.regmem = 0;
7199 if ((dest + 1) >= i.operands
7200 || ((!op.bitfield.reg
7201 || (!op.bitfield.dword && !op.bitfield.qword))
7202 && !op.bitfield.regsimd
7203 && !operand_type_equal (&op, &regmask)))
7204 abort ();
7205 i.vex.register_specifier = i.op[vvvv].regs;
7206 dest++;
7207 }
7208 }
7209
7210 i.rm.mode = 3;
7211 /* One of the register operands will be encoded in the i.tm.reg
7212 field, the other in the combined i.tm.mode and i.tm.regmem
7213 fields. If no form of this instruction supports a memory
7214 destination operand, then we assume the source operand may
7215 sometimes be a memory operand and so we need to store the
7216 destination in the i.rm.reg field. */
7217 if (!i.tm.operand_types[dest].bitfield.regmem
7218 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7219 {
7220 i.rm.reg = i.op[dest].regs->reg_num;
7221 i.rm.regmem = i.op[source].regs->reg_num;
7222 if (i.op[dest].regs->reg_type.bitfield.regmmx
7223 || i.op[source].regs->reg_type.bitfield.regmmx)
7224 i.has_regmmx = TRUE;
7225 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7226 || i.op[source].regs->reg_type.bitfield.regsimd)
7227 {
7228 if (i.types[dest].bitfield.zmmword
7229 || i.types[source].bitfield.zmmword)
7230 i.has_regzmm = TRUE;
7231 else if (i.types[dest].bitfield.ymmword
7232 || i.types[source].bitfield.ymmword)
7233 i.has_regymm = TRUE;
7234 else
7235 i.has_regxmm = TRUE;
7236 }
7237 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7238 i.rex |= REX_R;
7239 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7240 i.vrex |= REX_R;
7241 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7242 i.rex |= REX_B;
7243 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7244 i.vrex |= REX_B;
7245 }
7246 else
7247 {
7248 i.rm.reg = i.op[source].regs->reg_num;
7249 i.rm.regmem = i.op[dest].regs->reg_num;
7250 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7251 i.rex |= REX_B;
7252 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7253 i.vrex |= REX_B;
7254 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7255 i.rex |= REX_R;
7256 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7257 i.vrex |= REX_R;
7258 }
7259 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7260 {
7261 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7262 abort ();
7263 i.rex &= ~REX_R;
7264 add_prefix (LOCK_PREFIX_OPCODE);
7265 }
7266 }
7267 else
7268 { /* If it's not 2 reg operands... */
7269 unsigned int mem;
7270
7271 if (i.mem_operands)
7272 {
7273 unsigned int fake_zero_displacement = 0;
7274 unsigned int op;
7275
7276 for (op = 0; op < i.operands; op++)
7277 if (operand_type_check (i.types[op], anymem))
7278 break;
7279 gas_assert (op < i.operands);
7280
7281 if (i.tm.opcode_modifier.vecsib)
7282 {
7283 if (i.index_reg->reg_num == RegIZ)
7284 abort ();
7285
7286 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7287 if (!i.base_reg)
7288 {
7289 i.sib.base = NO_BASE_REGISTER;
7290 i.sib.scale = i.log2_scale_factor;
7291 i.types[op].bitfield.disp8 = 0;
7292 i.types[op].bitfield.disp16 = 0;
7293 i.types[op].bitfield.disp64 = 0;
7294 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7295 {
7296 /* Must be 32 bit */
7297 i.types[op].bitfield.disp32 = 1;
7298 i.types[op].bitfield.disp32s = 0;
7299 }
7300 else
7301 {
7302 i.types[op].bitfield.disp32 = 0;
7303 i.types[op].bitfield.disp32s = 1;
7304 }
7305 }
7306 i.sib.index = i.index_reg->reg_num;
7307 if ((i.index_reg->reg_flags & RegRex) != 0)
7308 i.rex |= REX_X;
7309 if ((i.index_reg->reg_flags & RegVRex) != 0)
7310 i.vrex |= REX_X;
7311 }
7312
7313 default_seg = &ds;
7314
7315 if (i.base_reg == 0)
7316 {
7317 i.rm.mode = 0;
7318 if (!i.disp_operands)
7319 fake_zero_displacement = 1;
7320 if (i.index_reg == 0)
7321 {
7322 i386_operand_type newdisp;
7323
7324 gas_assert (!i.tm.opcode_modifier.vecsib);
7325 /* Operand is just <disp> */
7326 if (flag_code == CODE_64BIT)
7327 {
7328 /* 64bit mode overwrites the 32bit absolute
7329 addressing by RIP relative addressing and
7330 absolute addressing is encoded by one of the
7331 redundant SIB forms. */
7332 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7333 i.sib.base = NO_BASE_REGISTER;
7334 i.sib.index = NO_INDEX_REGISTER;
7335 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7336 }
7337 else if ((flag_code == CODE_16BIT)
7338 ^ (i.prefix[ADDR_PREFIX] != 0))
7339 {
7340 i.rm.regmem = NO_BASE_REGISTER_16;
7341 newdisp = disp16;
7342 }
7343 else
7344 {
7345 i.rm.regmem = NO_BASE_REGISTER;
7346 newdisp = disp32;
7347 }
7348 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7349 i.types[op] = operand_type_or (i.types[op], newdisp);
7350 }
7351 else if (!i.tm.opcode_modifier.vecsib)
7352 {
7353 /* !i.base_reg && i.index_reg */
7354 if (i.index_reg->reg_num == RegIZ)
7355 i.sib.index = NO_INDEX_REGISTER;
7356 else
7357 i.sib.index = i.index_reg->reg_num;
7358 i.sib.base = NO_BASE_REGISTER;
7359 i.sib.scale = i.log2_scale_factor;
7360 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7361 i.types[op].bitfield.disp8 = 0;
7362 i.types[op].bitfield.disp16 = 0;
7363 i.types[op].bitfield.disp64 = 0;
7364 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7365 {
7366 /* Must be 32 bit */
7367 i.types[op].bitfield.disp32 = 1;
7368 i.types[op].bitfield.disp32s = 0;
7369 }
7370 else
7371 {
7372 i.types[op].bitfield.disp32 = 0;
7373 i.types[op].bitfield.disp32s = 1;
7374 }
7375 if ((i.index_reg->reg_flags & RegRex) != 0)
7376 i.rex |= REX_X;
7377 }
7378 }
7379 /* RIP addressing for 64bit mode. */
7380 else if (i.base_reg->reg_num == RegIP)
7381 {
7382 gas_assert (!i.tm.opcode_modifier.vecsib);
7383 i.rm.regmem = NO_BASE_REGISTER;
7384 i.types[op].bitfield.disp8 = 0;
7385 i.types[op].bitfield.disp16 = 0;
7386 i.types[op].bitfield.disp32 = 0;
7387 i.types[op].bitfield.disp32s = 1;
7388 i.types[op].bitfield.disp64 = 0;
7389 i.flags[op] |= Operand_PCrel;
7390 if (! i.disp_operands)
7391 fake_zero_displacement = 1;
7392 }
7393 else if (i.base_reg->reg_type.bitfield.word)
7394 {
7395 gas_assert (!i.tm.opcode_modifier.vecsib);
7396 switch (i.base_reg->reg_num)
7397 {
7398 case 3: /* (%bx) */
7399 if (i.index_reg == 0)
7400 i.rm.regmem = 7;
7401 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7402 i.rm.regmem = i.index_reg->reg_num - 6;
7403 break;
7404 case 5: /* (%bp) */
7405 default_seg = &ss;
7406 if (i.index_reg == 0)
7407 {
7408 i.rm.regmem = 6;
7409 if (operand_type_check (i.types[op], disp) == 0)
7410 {
7411 /* fake (%bp) into 0(%bp) */
7412 i.types[op].bitfield.disp8 = 1;
7413 fake_zero_displacement = 1;
7414 }
7415 }
7416 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7417 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7418 break;
7419 default: /* (%si) -> 4 or (%di) -> 5 */
7420 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7421 }
7422 i.rm.mode = mode_from_disp_size (i.types[op]);
7423 }
7424 else /* i.base_reg and 32/64 bit mode */
7425 {
7426 if (flag_code == CODE_64BIT
7427 && operand_type_check (i.types[op], disp))
7428 {
7429 i.types[op].bitfield.disp16 = 0;
7430 i.types[op].bitfield.disp64 = 0;
7431 if (i.prefix[ADDR_PREFIX] == 0)
7432 {
7433 i.types[op].bitfield.disp32 = 0;
7434 i.types[op].bitfield.disp32s = 1;
7435 }
7436 else
7437 {
7438 i.types[op].bitfield.disp32 = 1;
7439 i.types[op].bitfield.disp32s = 0;
7440 }
7441 }
7442
7443 if (!i.tm.opcode_modifier.vecsib)
7444 i.rm.regmem = i.base_reg->reg_num;
7445 if ((i.base_reg->reg_flags & RegRex) != 0)
7446 i.rex |= REX_B;
7447 i.sib.base = i.base_reg->reg_num;
7448 /* x86-64 ignores REX prefix bit here to avoid decoder
7449 complications. */
7450 if (!(i.base_reg->reg_flags & RegRex)
7451 && (i.base_reg->reg_num == EBP_REG_NUM
7452 || i.base_reg->reg_num == ESP_REG_NUM))
7453 default_seg = &ss;
7454 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7455 {
7456 fake_zero_displacement = 1;
7457 i.types[op].bitfield.disp8 = 1;
7458 }
7459 i.sib.scale = i.log2_scale_factor;
7460 if (i.index_reg == 0)
7461 {
7462 gas_assert (!i.tm.opcode_modifier.vecsib);
7463 /* <disp>(%esp) becomes two byte modrm with no index
7464 register. We've already stored the code for esp
7465 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7466 Any base register besides %esp will not use the
7467 extra modrm byte. */
7468 i.sib.index = NO_INDEX_REGISTER;
7469 }
7470 else if (!i.tm.opcode_modifier.vecsib)
7471 {
7472 if (i.index_reg->reg_num == RegIZ)
7473 i.sib.index = NO_INDEX_REGISTER;
7474 else
7475 i.sib.index = i.index_reg->reg_num;
7476 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7477 if ((i.index_reg->reg_flags & RegRex) != 0)
7478 i.rex |= REX_X;
7479 }
7480
7481 if (i.disp_operands
7482 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7483 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7484 i.rm.mode = 0;
7485 else
7486 {
7487 if (!fake_zero_displacement
7488 && !i.disp_operands
7489 && i.disp_encoding)
7490 {
7491 fake_zero_displacement = 1;
7492 if (i.disp_encoding == disp_encoding_8bit)
7493 i.types[op].bitfield.disp8 = 1;
7494 else
7495 i.types[op].bitfield.disp32 = 1;
7496 }
7497 i.rm.mode = mode_from_disp_size (i.types[op]);
7498 }
7499 }
7500
7501 if (fake_zero_displacement)
7502 {
7503 /* Fakes a zero displacement assuming that i.types[op]
7504 holds the correct displacement size. */
7505 expressionS *exp;
7506
7507 gas_assert (i.op[op].disps == 0);
7508 exp = &disp_expressions[i.disp_operands++];
7509 i.op[op].disps = exp;
7510 exp->X_op = O_constant;
7511 exp->X_add_number = 0;
7512 exp->X_add_symbol = (symbolS *) 0;
7513 exp->X_op_symbol = (symbolS *) 0;
7514 }
7515
7516 mem = op;
7517 }
7518 else
7519 mem = ~0;
7520
7521 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7522 {
7523 if (operand_type_check (i.types[0], imm))
7524 i.vex.register_specifier = NULL;
7525 else
7526 {
7527 /* VEX.vvvv encodes one of the sources when the first
7528 operand is not an immediate. */
7529 if (i.tm.opcode_modifier.vexw == VEXW0)
7530 i.vex.register_specifier = i.op[0].regs;
7531 else
7532 i.vex.register_specifier = i.op[1].regs;
7533 }
7534
7535 /* Destination is a XMM register encoded in the ModRM.reg
7536 and VEX.R bit. */
7537 i.rm.reg = i.op[2].regs->reg_num;
7538 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7539 i.rex |= REX_R;
7540
7541 /* ModRM.rm and VEX.B encodes the other source. */
7542 if (!i.mem_operands)
7543 {
7544 i.rm.mode = 3;
7545
7546 if (i.tm.opcode_modifier.vexw == VEXW0)
7547 i.rm.regmem = i.op[1].regs->reg_num;
7548 else
7549 i.rm.regmem = i.op[0].regs->reg_num;
7550
7551 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7552 i.rex |= REX_B;
7553 }
7554 }
7555 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7556 {
7557 i.vex.register_specifier = i.op[2].regs;
7558 if (!i.mem_operands)
7559 {
7560 i.rm.mode = 3;
7561 i.rm.regmem = i.op[1].regs->reg_num;
7562 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7563 i.rex |= REX_B;
7564 }
7565 }
7566 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7567 (if any) based on i.tm.extension_opcode. Again, we must be
7568 careful to make sure that segment/control/debug/test/MMX
7569 registers are coded into the i.rm.reg field. */
7570 else if (i.reg_operands)
7571 {
7572 unsigned int op;
7573 unsigned int vex_reg = ~0;
7574
7575 for (op = 0; op < i.operands; op++)
7576 {
7577 if (i.types[op].bitfield.reg
7578 || i.types[op].bitfield.regbnd
7579 || i.types[op].bitfield.regmask
7580 || i.types[op].bitfield.sreg2
7581 || i.types[op].bitfield.sreg3
7582 || i.types[op].bitfield.control
7583 || i.types[op].bitfield.debug
7584 || i.types[op].bitfield.test)
7585 break;
7586 if (i.types[op].bitfield.regsimd)
7587 {
7588 if (i.types[op].bitfield.zmmword)
7589 i.has_regzmm = TRUE;
7590 else if (i.types[op].bitfield.ymmword)
7591 i.has_regymm = TRUE;
7592 else
7593 i.has_regxmm = TRUE;
7594 break;
7595 }
7596 if (i.types[op].bitfield.regmmx)
7597 {
7598 i.has_regmmx = TRUE;
7599 break;
7600 }
7601 }
7602
7603 if (vex_3_sources)
7604 op = dest;
7605 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7606 {
7607 /* For instructions with VexNDS, the register-only
7608 source operand is encoded in VEX prefix. */
7609 gas_assert (mem != (unsigned int) ~0);
7610
7611 if (op > mem)
7612 {
7613 vex_reg = op++;
7614 gas_assert (op < i.operands);
7615 }
7616 else
7617 {
7618 /* Check register-only source operand when two source
7619 operands are swapped. */
7620 if (!i.tm.operand_types[op].bitfield.baseindex
7621 && i.tm.operand_types[op + 1].bitfield.baseindex)
7622 {
7623 vex_reg = op;
7624 op += 2;
7625 gas_assert (mem == (vex_reg + 1)
7626 && op < i.operands);
7627 }
7628 else
7629 {
7630 vex_reg = op + 1;
7631 gas_assert (vex_reg < i.operands);
7632 }
7633 }
7634 }
7635 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7636 {
7637 /* For instructions with VexNDD, the register destination
7638 is encoded in VEX prefix. */
7639 if (i.mem_operands == 0)
7640 {
7641 /* There is no memory operand. */
7642 gas_assert ((op + 2) == i.operands);
7643 vex_reg = op + 1;
7644 }
7645 else
7646 {
7647 /* There are only 2 non-immediate operands. */
7648 gas_assert (op < i.imm_operands + 2
7649 && i.operands == i.imm_operands + 2);
7650 vex_reg = i.imm_operands + 1;
7651 }
7652 }
7653 else
7654 gas_assert (op < i.operands);
7655
7656 if (vex_reg != (unsigned int) ~0)
7657 {
7658 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7659
7660 if ((!type->bitfield.reg
7661 || (!type->bitfield.dword && !type->bitfield.qword))
7662 && !type->bitfield.regsimd
7663 && !operand_type_equal (type, &regmask))
7664 abort ();
7665
7666 i.vex.register_specifier = i.op[vex_reg].regs;
7667 }
7668
7669 /* Don't set OP operand twice. */
7670 if (vex_reg != op)
7671 {
7672 /* If there is an extension opcode to put here, the
7673 register number must be put into the regmem field. */
7674 if (i.tm.extension_opcode != None)
7675 {
7676 i.rm.regmem = i.op[op].regs->reg_num;
7677 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7678 i.rex |= REX_B;
7679 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7680 i.vrex |= REX_B;
7681 }
7682 else
7683 {
7684 i.rm.reg = i.op[op].regs->reg_num;
7685 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7686 i.rex |= REX_R;
7687 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7688 i.vrex |= REX_R;
7689 }
7690 }
7691
7692 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7693 must set it to 3 to indicate this is a register operand
7694 in the regmem field. */
7695 if (!i.mem_operands)
7696 i.rm.mode = 3;
7697 }
7698
7699 /* Fill in i.rm.reg field with extension opcode (if any). */
7700 if (i.tm.extension_opcode != None)
7701 i.rm.reg = i.tm.extension_opcode;
7702 }
7703 return default_seg;
7704 }
7705
7706 static void
7707 output_branch (void)
7708 {
7709 char *p;
7710 int size;
7711 int code16;
7712 int prefix;
7713 relax_substateT subtype;
7714 symbolS *sym;
7715 offsetT off;
7716
7717 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7718 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7719
7720 prefix = 0;
7721 if (i.prefix[DATA_PREFIX] != 0)
7722 {
7723 prefix = 1;
7724 i.prefixes -= 1;
7725 code16 ^= CODE16;
7726 }
7727 /* Pentium4 branch hints. */
7728 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7729 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7730 {
7731 prefix++;
7732 i.prefixes--;
7733 }
7734 if (i.prefix[REX_PREFIX] != 0)
7735 {
7736 prefix++;
7737 i.prefixes--;
7738 }
7739
7740 /* BND prefixed jump. */
7741 if (i.prefix[BND_PREFIX] != 0)
7742 {
7743 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7744 i.prefixes -= 1;
7745 }
7746
7747 if (i.prefixes != 0 && !intel_syntax)
7748 as_warn (_("skipping prefixes on this instruction"));
7749
7750 /* It's always a symbol; End frag & setup for relax.
7751 Make sure there is enough room in this frag for the largest
7752 instruction we may generate in md_convert_frag. This is 2
7753 bytes for the opcode and room for the prefix and largest
7754 displacement. */
7755 frag_grow (prefix + 2 + 4);
7756 /* Prefix and 1 opcode byte go in fr_fix. */
7757 p = frag_more (prefix + 1);
7758 if (i.prefix[DATA_PREFIX] != 0)
7759 *p++ = DATA_PREFIX_OPCODE;
7760 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7761 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7762 *p++ = i.prefix[SEG_PREFIX];
7763 if (i.prefix[REX_PREFIX] != 0)
7764 *p++ = i.prefix[REX_PREFIX];
7765 *p = i.tm.base_opcode;
7766
7767 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7768 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7769 else if (cpu_arch_flags.bitfield.cpui386)
7770 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7771 else
7772 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7773 subtype |= code16;
7774
7775 sym = i.op[0].disps->X_add_symbol;
7776 off = i.op[0].disps->X_add_number;
7777
7778 if (i.op[0].disps->X_op != O_constant
7779 && i.op[0].disps->X_op != O_symbol)
7780 {
7781 /* Handle complex expressions. */
7782 sym = make_expr_symbol (i.op[0].disps);
7783 off = 0;
7784 }
7785
7786 /* 1 possible extra opcode + 4 byte displacement go in var part.
7787 Pass reloc in fr_var. */
7788 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7789 }
7790
7791 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7792 /* Return TRUE iff PLT32 relocation should be used for branching to
7793 symbol S. */
7794
7795 static bfd_boolean
7796 need_plt32_p (symbolS *s)
7797 {
7798 /* PLT32 relocation is ELF only. */
7799 if (!IS_ELF)
7800 return FALSE;
7801
7802 #ifdef TE_SOLARIS
7803 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7804 krtld support it. */
7805 return FALSE;
7806 #endif
7807
7808 /* Since there is no need to prepare for PLT branch on x86-64, we
7809 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7810 be used as a marker for 32-bit PC-relative branches. */
7811 if (!object_64bit)
7812 return FALSE;
7813
7814 /* Weak or undefined symbol need PLT32 relocation. */
7815 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7816 return TRUE;
7817
7818 /* Non-global symbol doesn't need PLT32 relocation. */
7819 if (! S_IS_EXTERNAL (s))
7820 return FALSE;
7821
7822 /* Other global symbols need PLT32 relocation. NB: Symbol with
7823 non-default visibilities are treated as normal global symbol
7824 so that PLT32 relocation can be used as a marker for 32-bit
7825 PC-relative branches. It is useful for linker relaxation. */
7826 return TRUE;
7827 }
7828 #endif
7829
7830 static void
7831 output_jump (void)
7832 {
7833 char *p;
7834 int size;
7835 fixS *fixP;
7836 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7837
7838 if (i.tm.opcode_modifier.jumpbyte)
7839 {
7840 /* This is a loop or jecxz type instruction. */
7841 size = 1;
7842 if (i.prefix[ADDR_PREFIX] != 0)
7843 {
7844 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7845 i.prefixes -= 1;
7846 }
7847 /* Pentium4 branch hints. */
7848 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7849 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7850 {
7851 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7852 i.prefixes--;
7853 }
7854 }
7855 else
7856 {
7857 int code16;
7858
7859 code16 = 0;
7860 if (flag_code == CODE_16BIT)
7861 code16 = CODE16;
7862
7863 if (i.prefix[DATA_PREFIX] != 0)
7864 {
7865 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7866 i.prefixes -= 1;
7867 code16 ^= CODE16;
7868 }
7869
7870 size = 4;
7871 if (code16)
7872 size = 2;
7873 }
7874
7875 if (i.prefix[REX_PREFIX] != 0)
7876 {
7877 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7878 i.prefixes -= 1;
7879 }
7880
7881 /* BND prefixed jump. */
7882 if (i.prefix[BND_PREFIX] != 0)
7883 {
7884 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7885 i.prefixes -= 1;
7886 }
7887
7888 if (i.prefixes != 0 && !intel_syntax)
7889 as_warn (_("skipping prefixes on this instruction"));
7890
7891 p = frag_more (i.tm.opcode_length + size);
7892 switch (i.tm.opcode_length)
7893 {
7894 case 2:
7895 *p++ = i.tm.base_opcode >> 8;
7896 /* Fall through. */
7897 case 1:
7898 *p++ = i.tm.base_opcode;
7899 break;
7900 default:
7901 abort ();
7902 }
7903
7904 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7905 if (size == 4
7906 && jump_reloc == NO_RELOC
7907 && need_plt32_p (i.op[0].disps->X_add_symbol))
7908 jump_reloc = BFD_RELOC_X86_64_PLT32;
7909 #endif
7910
7911 jump_reloc = reloc (size, 1, 1, jump_reloc);
7912
7913 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7914 i.op[0].disps, 1, jump_reloc);
7915
7916 /* All jumps handled here are signed, but don't use a signed limit
7917 check for 32 and 16 bit jumps as we want to allow wrap around at
7918 4G and 64k respectively. */
7919 if (size == 1)
7920 fixP->fx_signed = 1;
7921 }
7922
7923 static void
7924 output_interseg_jump (void)
7925 {
7926 char *p;
7927 int size;
7928 int prefix;
7929 int code16;
7930
7931 code16 = 0;
7932 if (flag_code == CODE_16BIT)
7933 code16 = CODE16;
7934
7935 prefix = 0;
7936 if (i.prefix[DATA_PREFIX] != 0)
7937 {
7938 prefix = 1;
7939 i.prefixes -= 1;
7940 code16 ^= CODE16;
7941 }
7942 if (i.prefix[REX_PREFIX] != 0)
7943 {
7944 prefix++;
7945 i.prefixes -= 1;
7946 }
7947
7948 size = 4;
7949 if (code16)
7950 size = 2;
7951
7952 if (i.prefixes != 0 && !intel_syntax)
7953 as_warn (_("skipping prefixes on this instruction"));
7954
7955 /* 1 opcode; 2 segment; offset */
7956 p = frag_more (prefix + 1 + 2 + size);
7957
7958 if (i.prefix[DATA_PREFIX] != 0)
7959 *p++ = DATA_PREFIX_OPCODE;
7960
7961 if (i.prefix[REX_PREFIX] != 0)
7962 *p++ = i.prefix[REX_PREFIX];
7963
7964 *p++ = i.tm.base_opcode;
7965 if (i.op[1].imms->X_op == O_constant)
7966 {
7967 offsetT n = i.op[1].imms->X_add_number;
7968
7969 if (size == 2
7970 && !fits_in_unsigned_word (n)
7971 && !fits_in_signed_word (n))
7972 {
7973 as_bad (_("16-bit jump out of range"));
7974 return;
7975 }
7976 md_number_to_chars (p, n, size);
7977 }
7978 else
7979 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7980 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7981 if (i.op[0].imms->X_op != O_constant)
7982 as_bad (_("can't handle non absolute segment in `%s'"),
7983 i.tm.name);
7984 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7985 }
7986
7987 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7988 void
7989 x86_cleanup (void)
7990 {
7991 char *p;
7992 asection *seg = now_seg;
7993 subsegT subseg = now_subseg;
7994 asection *sec;
7995 unsigned int alignment, align_size_1;
7996 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7997 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7998 unsigned int padding;
7999
8000 if (!IS_ELF || !x86_used_note)
8001 return;
8002
8003 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8004
8005 /* The .note.gnu.property section layout:
8006
8007 Field Length Contents
8008 ---- ---- ----
8009 n_namsz 4 4
8010 n_descsz 4 The note descriptor size
8011 n_type 4 NT_GNU_PROPERTY_TYPE_0
8012 n_name 4 "GNU"
8013 n_desc n_descsz The program property array
8014 .... .... ....
8015 */
8016
8017 /* Create the .note.gnu.property section. */
8018 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8019 bfd_set_section_flags (stdoutput, sec,
8020 (SEC_ALLOC
8021 | SEC_LOAD
8022 | SEC_DATA
8023 | SEC_HAS_CONTENTS
8024 | SEC_READONLY));
8025
8026 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8027 {
8028 align_size_1 = 7;
8029 alignment = 3;
8030 }
8031 else
8032 {
8033 align_size_1 = 3;
8034 alignment = 2;
8035 }
8036
8037 bfd_set_section_alignment (stdoutput, sec, alignment);
8038 elf_section_type (sec) = SHT_NOTE;
8039
8040 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8041 + 4-byte data */
8042 isa_1_descsz_raw = 4 + 4 + 4;
8043 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8044 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8045
8046 feature_2_descsz_raw = isa_1_descsz;
8047 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8048 + 4-byte data */
8049 feature_2_descsz_raw += 4 + 4 + 4;
8050 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8051 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8052 & ~align_size_1);
8053
8054 descsz = feature_2_descsz;
8055 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8056 p = frag_more (4 + 4 + 4 + 4 + descsz);
8057
8058 /* Write n_namsz. */
8059 md_number_to_chars (p, (valueT) 4, 4);
8060
8061 /* Write n_descsz. */
8062 md_number_to_chars (p + 4, (valueT) descsz, 4);
8063
8064 /* Write n_type. */
8065 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8066
8067 /* Write n_name. */
8068 memcpy (p + 4 * 3, "GNU", 4);
8069
8070 /* Write 4-byte type. */
8071 md_number_to_chars (p + 4 * 4,
8072 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8073
8074 /* Write 4-byte data size. */
8075 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8076
8077 /* Write 4-byte data. */
8078 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8079
8080 /* Zero out paddings. */
8081 padding = isa_1_descsz - isa_1_descsz_raw;
8082 if (padding)
8083 memset (p + 4 * 7, 0, padding);
8084
8085 /* Write 4-byte type. */
8086 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8087 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8088
8089 /* Write 4-byte data size. */
8090 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8091
8092 /* Write 4-byte data. */
8093 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8094 (valueT) x86_feature_2_used, 4);
8095
8096 /* Zero out paddings. */
8097 padding = feature_2_descsz - feature_2_descsz_raw;
8098 if (padding)
8099 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8100
8101 /* We probably can't restore the current segment, for there likely
8102 isn't one yet... */
8103 if (seg && subseg)
8104 subseg_set (seg, subseg);
8105 }
8106 #endif
8107
8108 static void
8109 output_insn (void)
8110 {
8111 fragS *insn_start_frag;
8112 offsetT insn_start_off;
8113
8114 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8115 if (IS_ELF && x86_used_note)
8116 {
8117 if (i.tm.cpu_flags.bitfield.cpucmov)
8118 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8119 if (i.tm.cpu_flags.bitfield.cpusse)
8120 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8121 if (i.tm.cpu_flags.bitfield.cpusse2)
8122 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8123 if (i.tm.cpu_flags.bitfield.cpusse3)
8124 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8125 if (i.tm.cpu_flags.bitfield.cpussse3)
8126 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8127 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8128 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8129 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8130 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8131 if (i.tm.cpu_flags.bitfield.cpuavx)
8132 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8133 if (i.tm.cpu_flags.bitfield.cpuavx2)
8134 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8135 if (i.tm.cpu_flags.bitfield.cpufma)
8136 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8137 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8138 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8139 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8140 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8141 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8142 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8143 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8144 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8145 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8146 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8147 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8148 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8149 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8150 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8151 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8152 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8153 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8154 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8155 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8156 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8157 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8158 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8159 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8160 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8161 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8162 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8163 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8164 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8165 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8166 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8167
8168 if (i.tm.cpu_flags.bitfield.cpu8087
8169 || i.tm.cpu_flags.bitfield.cpu287
8170 || i.tm.cpu_flags.bitfield.cpu387
8171 || i.tm.cpu_flags.bitfield.cpu687
8172 || i.tm.cpu_flags.bitfield.cpufisttp)
8173 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8174 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8175 Xfence instructions. */
8176 if (i.tm.base_opcode != 0xf18
8177 && i.tm.base_opcode != 0xf0d
8178 && i.tm.base_opcode != 0xfae
8179 && (i.has_regmmx
8180 || i.tm.cpu_flags.bitfield.cpummx
8181 || i.tm.cpu_flags.bitfield.cpua3dnow
8182 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8183 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8184 if (i.has_regxmm)
8185 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8186 if (i.has_regymm)
8187 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8188 if (i.has_regzmm)
8189 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8190 if (i.tm.cpu_flags.bitfield.cpufxsr)
8191 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8192 if (i.tm.cpu_flags.bitfield.cpuxsave)
8193 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8194 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8195 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8196 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8197 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8198 }
8199 #endif
8200
8201 /* Tie dwarf2 debug info to the address at the start of the insn.
8202 We can't do this after the insn has been output as the current
8203 frag may have been closed off. eg. by frag_var. */
8204 dwarf2_emit_insn (0);
8205
8206 insn_start_frag = frag_now;
8207 insn_start_off = frag_now_fix ();
8208
8209 /* Output jumps. */
8210 if (i.tm.opcode_modifier.jump)
8211 output_branch ();
8212 else if (i.tm.opcode_modifier.jumpbyte
8213 || i.tm.opcode_modifier.jumpdword)
8214 output_jump ();
8215 else if (i.tm.opcode_modifier.jumpintersegment)
8216 output_interseg_jump ();
8217 else
8218 {
8219 /* Output normal instructions here. */
8220 char *p;
8221 unsigned char *q;
8222 unsigned int j;
8223 unsigned int prefix;
8224
8225 if (avoid_fence
8226 && i.tm.base_opcode == 0xfae
8227 && i.operands == 1
8228 && i.imm_operands == 1
8229 && (i.op[0].imms->X_add_number == 0xe8
8230 || i.op[0].imms->X_add_number == 0xf0
8231 || i.op[0].imms->X_add_number == 0xf8))
8232 {
8233 /* Encode lfence, mfence, and sfence as
8234 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8235 offsetT val = 0x240483f0ULL;
8236 p = frag_more (5);
8237 md_number_to_chars (p, val, 5);
8238 return;
8239 }
8240
8241 /* Some processors fail on LOCK prefix. This options makes
8242 assembler ignore LOCK prefix and serves as a workaround. */
8243 if (omit_lock_prefix)
8244 {
8245 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8246 return;
8247 i.prefix[LOCK_PREFIX] = 0;
8248 }
8249
8250 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8251 don't need the explicit prefix. */
8252 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8253 {
8254 switch (i.tm.opcode_length)
8255 {
8256 case 3:
8257 if (i.tm.base_opcode & 0xff000000)
8258 {
8259 prefix = (i.tm.base_opcode >> 24) & 0xff;
8260 add_prefix (prefix);
8261 }
8262 break;
8263 case 2:
8264 if ((i.tm.base_opcode & 0xff0000) != 0)
8265 {
8266 prefix = (i.tm.base_opcode >> 16) & 0xff;
8267 if (!i.tm.cpu_flags.bitfield.cpupadlock
8268 || prefix != REPE_PREFIX_OPCODE
8269 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8270 add_prefix (prefix);
8271 }
8272 break;
8273 case 1:
8274 break;
8275 case 0:
8276 /* Check for pseudo prefixes. */
8277 as_bad_where (insn_start_frag->fr_file,
8278 insn_start_frag->fr_line,
8279 _("pseudo prefix without instruction"));
8280 return;
8281 default:
8282 abort ();
8283 }
8284
8285 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8286 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8287 R_X86_64_GOTTPOFF relocation so that linker can safely
8288 perform IE->LE optimization. */
8289 if (x86_elf_abi == X86_64_X32_ABI
8290 && i.operands == 2
8291 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8292 && i.prefix[REX_PREFIX] == 0)
8293 add_prefix (REX_OPCODE);
8294 #endif
8295
8296 /* The prefix bytes. */
8297 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8298 if (*q)
8299 FRAG_APPEND_1_CHAR (*q);
8300 }
8301 else
8302 {
8303 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8304 if (*q)
8305 switch (j)
8306 {
8307 case REX_PREFIX:
8308 /* REX byte is encoded in VEX prefix. */
8309 break;
8310 case SEG_PREFIX:
8311 case ADDR_PREFIX:
8312 FRAG_APPEND_1_CHAR (*q);
8313 break;
8314 default:
8315 /* There should be no other prefixes for instructions
8316 with VEX prefix. */
8317 abort ();
8318 }
8319
8320 /* For EVEX instructions i.vrex should become 0 after
8321 build_evex_prefix. For VEX instructions upper 16 registers
8322 aren't available, so VREX should be 0. */
8323 if (i.vrex)
8324 abort ();
8325 /* Now the VEX prefix. */
8326 p = frag_more (i.vex.length);
8327 for (j = 0; j < i.vex.length; j++)
8328 p[j] = i.vex.bytes[j];
8329 }
8330
8331 /* Now the opcode; be careful about word order here! */
8332 if (i.tm.opcode_length == 1)
8333 {
8334 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8335 }
8336 else
8337 {
8338 switch (i.tm.opcode_length)
8339 {
8340 case 4:
8341 p = frag_more (4);
8342 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8343 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8344 break;
8345 case 3:
8346 p = frag_more (3);
8347 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8348 break;
8349 case 2:
8350 p = frag_more (2);
8351 break;
8352 default:
8353 abort ();
8354 break;
8355 }
8356
8357 /* Put out high byte first: can't use md_number_to_chars! */
8358 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8359 *p = i.tm.base_opcode & 0xff;
8360 }
8361
8362 /* Now the modrm byte and sib byte (if present). */
8363 if (i.tm.opcode_modifier.modrm)
8364 {
8365 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8366 | i.rm.reg << 3
8367 | i.rm.mode << 6));
8368 /* If i.rm.regmem == ESP (4)
8369 && i.rm.mode != (Register mode)
8370 && not 16 bit
8371 ==> need second modrm byte. */
8372 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8373 && i.rm.mode != 3
8374 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8375 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8376 | i.sib.index << 3
8377 | i.sib.scale << 6));
8378 }
8379
8380 if (i.disp_operands)
8381 output_disp (insn_start_frag, insn_start_off);
8382
8383 if (i.imm_operands)
8384 output_imm (insn_start_frag, insn_start_off);
8385 }
8386
8387 #ifdef DEBUG386
8388 if (flag_debug)
8389 {
8390 pi ("" /*line*/, &i);
8391 }
8392 #endif /* DEBUG386 */
8393 }
8394
8395 /* Return the size of the displacement operand N. */
8396
8397 static int
8398 disp_size (unsigned int n)
8399 {
8400 int size = 4;
8401
8402 if (i.types[n].bitfield.disp64)
8403 size = 8;
8404 else if (i.types[n].bitfield.disp8)
8405 size = 1;
8406 else if (i.types[n].bitfield.disp16)
8407 size = 2;
8408 return size;
8409 }
8410
8411 /* Return the size of the immediate operand N. */
8412
8413 static int
8414 imm_size (unsigned int n)
8415 {
8416 int size = 4;
8417 if (i.types[n].bitfield.imm64)
8418 size = 8;
8419 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8420 size = 1;
8421 else if (i.types[n].bitfield.imm16)
8422 size = 2;
8423 return size;
8424 }
8425
8426 static void
8427 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8428 {
8429 char *p;
8430 unsigned int n;
8431
8432 for (n = 0; n < i.operands; n++)
8433 {
8434 if (operand_type_check (i.types[n], disp))
8435 {
8436 if (i.op[n].disps->X_op == O_constant)
8437 {
8438 int size = disp_size (n);
8439 offsetT val = i.op[n].disps->X_add_number;
8440
8441 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8442 size);
8443 p = frag_more (size);
8444 md_number_to_chars (p, val, size);
8445 }
8446 else
8447 {
8448 enum bfd_reloc_code_real reloc_type;
8449 int size = disp_size (n);
8450 int sign = i.types[n].bitfield.disp32s;
8451 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8452 fixS *fixP;
8453
8454 /* We can't have 8 bit displacement here. */
8455 gas_assert (!i.types[n].bitfield.disp8);
8456
8457 /* The PC relative address is computed relative
8458 to the instruction boundary, so in case immediate
8459 fields follows, we need to adjust the value. */
8460 if (pcrel && i.imm_operands)
8461 {
8462 unsigned int n1;
8463 int sz = 0;
8464
8465 for (n1 = 0; n1 < i.operands; n1++)
8466 if (operand_type_check (i.types[n1], imm))
8467 {
8468 /* Only one immediate is allowed for PC
8469 relative address. */
8470 gas_assert (sz == 0);
8471 sz = imm_size (n1);
8472 i.op[n].disps->X_add_number -= sz;
8473 }
8474 /* We should find the immediate. */
8475 gas_assert (sz != 0);
8476 }
8477
8478 p = frag_more (size);
8479 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8480 if (GOT_symbol
8481 && GOT_symbol == i.op[n].disps->X_add_symbol
8482 && (((reloc_type == BFD_RELOC_32
8483 || reloc_type == BFD_RELOC_X86_64_32S
8484 || (reloc_type == BFD_RELOC_64
8485 && object_64bit))
8486 && (i.op[n].disps->X_op == O_symbol
8487 || (i.op[n].disps->X_op == O_add
8488 && ((symbol_get_value_expression
8489 (i.op[n].disps->X_op_symbol)->X_op)
8490 == O_subtract))))
8491 || reloc_type == BFD_RELOC_32_PCREL))
8492 {
8493 offsetT add;
8494
8495 if (insn_start_frag == frag_now)
8496 add = (p - frag_now->fr_literal) - insn_start_off;
8497 else
8498 {
8499 fragS *fr;
8500
8501 add = insn_start_frag->fr_fix - insn_start_off;
8502 for (fr = insn_start_frag->fr_next;
8503 fr && fr != frag_now; fr = fr->fr_next)
8504 add += fr->fr_fix;
8505 add += p - frag_now->fr_literal;
8506 }
8507
8508 if (!object_64bit)
8509 {
8510 reloc_type = BFD_RELOC_386_GOTPC;
8511 i.op[n].imms->X_add_number += add;
8512 }
8513 else if (reloc_type == BFD_RELOC_64)
8514 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8515 else
8516 /* Don't do the adjustment for x86-64, as there
8517 the pcrel addressing is relative to the _next_
8518 insn, and that is taken care of in other code. */
8519 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8520 }
8521 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8522 size, i.op[n].disps, pcrel,
8523 reloc_type);
8524 /* Check for "call/jmp *mem", "mov mem, %reg",
8525 "test %reg, mem" and "binop mem, %reg" where binop
8526 is one of adc, add, and, cmp, or, sbb, sub, xor
8527 instructions without data prefix. Always generate
8528 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8529 if (i.prefix[DATA_PREFIX] == 0
8530 && (generate_relax_relocations
8531 || (!object_64bit
8532 && i.rm.mode == 0
8533 && i.rm.regmem == 5))
8534 && (i.rm.mode == 2
8535 || (i.rm.mode == 0 && i.rm.regmem == 5))
8536 && ((i.operands == 1
8537 && i.tm.base_opcode == 0xff
8538 && (i.rm.reg == 2 || i.rm.reg == 4))
8539 || (i.operands == 2
8540 && (i.tm.base_opcode == 0x8b
8541 || i.tm.base_opcode == 0x85
8542 || (i.tm.base_opcode & 0xc7) == 0x03))))
8543 {
8544 if (object_64bit)
8545 {
8546 fixP->fx_tcbit = i.rex != 0;
8547 if (i.base_reg
8548 && (i.base_reg->reg_num == RegIP))
8549 fixP->fx_tcbit2 = 1;
8550 }
8551 else
8552 fixP->fx_tcbit2 = 1;
8553 }
8554 }
8555 }
8556 }
8557 }
8558
8559 static void
8560 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8561 {
8562 char *p;
8563 unsigned int n;
8564
8565 for (n = 0; n < i.operands; n++)
8566 {
8567 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8568 if (i.rounding && (int) n == i.rounding->operand)
8569 continue;
8570
8571 if (operand_type_check (i.types[n], imm))
8572 {
8573 if (i.op[n].imms->X_op == O_constant)
8574 {
8575 int size = imm_size (n);
8576 offsetT val;
8577
8578 val = offset_in_range (i.op[n].imms->X_add_number,
8579 size);
8580 p = frag_more (size);
8581 md_number_to_chars (p, val, size);
8582 }
8583 else
8584 {
8585 /* Not absolute_section.
8586 Need a 32-bit fixup (don't support 8bit
8587 non-absolute imms). Try to support other
8588 sizes ... */
8589 enum bfd_reloc_code_real reloc_type;
8590 int size = imm_size (n);
8591 int sign;
8592
8593 if (i.types[n].bitfield.imm32s
8594 && (i.suffix == QWORD_MNEM_SUFFIX
8595 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8596 sign = 1;
8597 else
8598 sign = 0;
8599
8600 p = frag_more (size);
8601 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8602
8603 /* This is tough to explain. We end up with this one if we
8604 * have operands that look like
8605 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8606 * obtain the absolute address of the GOT, and it is strongly
8607 * preferable from a performance point of view to avoid using
8608 * a runtime relocation for this. The actual sequence of
8609 * instructions often look something like:
8610 *
8611 * call .L66
8612 * .L66:
8613 * popl %ebx
8614 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8615 *
8616 * The call and pop essentially return the absolute address
8617 * of the label .L66 and store it in %ebx. The linker itself
8618 * will ultimately change the first operand of the addl so
8619 * that %ebx points to the GOT, but to keep things simple, the
8620 * .o file must have this operand set so that it generates not
8621 * the absolute address of .L66, but the absolute address of
8622 * itself. This allows the linker itself simply treat a GOTPC
8623 * relocation as asking for a pcrel offset to the GOT to be
8624 * added in, and the addend of the relocation is stored in the
8625 * operand field for the instruction itself.
8626 *
8627 * Our job here is to fix the operand so that it would add
8628 * the correct offset so that %ebx would point to itself. The
8629 * thing that is tricky is that .-.L66 will point to the
8630 * beginning of the instruction, so we need to further modify
8631 * the operand so that it will point to itself. There are
8632 * other cases where you have something like:
8633 *
8634 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8635 *
8636 * and here no correction would be required. Internally in
8637 * the assembler we treat operands of this form as not being
8638 * pcrel since the '.' is explicitly mentioned, and I wonder
8639 * whether it would simplify matters to do it this way. Who
8640 * knows. In earlier versions of the PIC patches, the
8641 * pcrel_adjust field was used to store the correction, but
8642 * since the expression is not pcrel, I felt it would be
8643 * confusing to do it this way. */
8644
8645 if ((reloc_type == BFD_RELOC_32
8646 || reloc_type == BFD_RELOC_X86_64_32S
8647 || reloc_type == BFD_RELOC_64)
8648 && GOT_symbol
8649 && GOT_symbol == i.op[n].imms->X_add_symbol
8650 && (i.op[n].imms->X_op == O_symbol
8651 || (i.op[n].imms->X_op == O_add
8652 && ((symbol_get_value_expression
8653 (i.op[n].imms->X_op_symbol)->X_op)
8654 == O_subtract))))
8655 {
8656 offsetT add;
8657
8658 if (insn_start_frag == frag_now)
8659 add = (p - frag_now->fr_literal) - insn_start_off;
8660 else
8661 {
8662 fragS *fr;
8663
8664 add = insn_start_frag->fr_fix - insn_start_off;
8665 for (fr = insn_start_frag->fr_next;
8666 fr && fr != frag_now; fr = fr->fr_next)
8667 add += fr->fr_fix;
8668 add += p - frag_now->fr_literal;
8669 }
8670
8671 if (!object_64bit)
8672 reloc_type = BFD_RELOC_386_GOTPC;
8673 else if (size == 4)
8674 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8675 else if (size == 8)
8676 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8677 i.op[n].imms->X_add_number += add;
8678 }
8679 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8680 i.op[n].imms, 0, reloc_type);
8681 }
8682 }
8683 }
8684 }
8685 \f
8686 /* x86_cons_fix_new is called via the expression parsing code when a
8687 reloc is needed. We use this hook to get the correct .got reloc. */
8688 static int cons_sign = -1;
8689
8690 void
8691 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8692 expressionS *exp, bfd_reloc_code_real_type r)
8693 {
8694 r = reloc (len, 0, cons_sign, r);
8695
8696 #ifdef TE_PE
8697 if (exp->X_op == O_secrel)
8698 {
8699 exp->X_op = O_symbol;
8700 r = BFD_RELOC_32_SECREL;
8701 }
8702 #endif
8703
8704 fix_new_exp (frag, off, len, exp, 0, r);
8705 }
8706
8707 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8708 purpose of the `.dc.a' internal pseudo-op. */
8709
8710 int
8711 x86_address_bytes (void)
8712 {
8713 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8714 return 4;
8715 return stdoutput->arch_info->bits_per_address / 8;
8716 }
8717
8718 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8719 || defined (LEX_AT)
8720 # define lex_got(reloc, adjust, types) NULL
8721 #else
8722 /* Parse operands of the form
8723 <symbol>@GOTOFF+<nnn>
8724 and similar .plt or .got references.
8725
8726 If we find one, set up the correct relocation in RELOC and copy the
8727 input string, minus the `@GOTOFF' into a malloc'd buffer for
8728 parsing by the calling routine. Return this buffer, and if ADJUST
8729 is non-null set it to the length of the string we removed from the
8730 input line. Otherwise return NULL. */
8731 static char *
8732 lex_got (enum bfd_reloc_code_real *rel,
8733 int *adjust,
8734 i386_operand_type *types)
8735 {
8736 /* Some of the relocations depend on the size of what field is to
8737 be relocated. But in our callers i386_immediate and i386_displacement
8738 we don't yet know the operand size (this will be set by insn
8739 matching). Hence we record the word32 relocation here,
8740 and adjust the reloc according to the real size in reloc(). */
8741 static const struct {
8742 const char *str;
8743 int len;
8744 const enum bfd_reloc_code_real rel[2];
8745 const i386_operand_type types64;
8746 } gotrel[] = {
8747 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8748 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8749 BFD_RELOC_SIZE32 },
8750 OPERAND_TYPE_IMM32_64 },
8751 #endif
8752 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8753 BFD_RELOC_X86_64_PLTOFF64 },
8754 OPERAND_TYPE_IMM64 },
8755 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8756 BFD_RELOC_X86_64_PLT32 },
8757 OPERAND_TYPE_IMM32_32S_DISP32 },
8758 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8759 BFD_RELOC_X86_64_GOTPLT64 },
8760 OPERAND_TYPE_IMM64_DISP64 },
8761 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8762 BFD_RELOC_X86_64_GOTOFF64 },
8763 OPERAND_TYPE_IMM64_DISP64 },
8764 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8765 BFD_RELOC_X86_64_GOTPCREL },
8766 OPERAND_TYPE_IMM32_32S_DISP32 },
8767 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8768 BFD_RELOC_X86_64_TLSGD },
8769 OPERAND_TYPE_IMM32_32S_DISP32 },
8770 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8771 _dummy_first_bfd_reloc_code_real },
8772 OPERAND_TYPE_NONE },
8773 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8774 BFD_RELOC_X86_64_TLSLD },
8775 OPERAND_TYPE_IMM32_32S_DISP32 },
8776 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8777 BFD_RELOC_X86_64_GOTTPOFF },
8778 OPERAND_TYPE_IMM32_32S_DISP32 },
8779 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8780 BFD_RELOC_X86_64_TPOFF32 },
8781 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8782 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8783 _dummy_first_bfd_reloc_code_real },
8784 OPERAND_TYPE_NONE },
8785 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8786 BFD_RELOC_X86_64_DTPOFF32 },
8787 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8788 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8789 _dummy_first_bfd_reloc_code_real },
8790 OPERAND_TYPE_NONE },
8791 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8792 _dummy_first_bfd_reloc_code_real },
8793 OPERAND_TYPE_NONE },
8794 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8795 BFD_RELOC_X86_64_GOT32 },
8796 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8797 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8798 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8799 OPERAND_TYPE_IMM32_32S_DISP32 },
8800 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8801 BFD_RELOC_X86_64_TLSDESC_CALL },
8802 OPERAND_TYPE_IMM32_32S_DISP32 },
8803 };
8804 char *cp;
8805 unsigned int j;
8806
8807 #if defined (OBJ_MAYBE_ELF)
8808 if (!IS_ELF)
8809 return NULL;
8810 #endif
8811
8812 for (cp = input_line_pointer; *cp != '@'; cp++)
8813 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8814 return NULL;
8815
8816 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8817 {
8818 int len = gotrel[j].len;
8819 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8820 {
8821 if (gotrel[j].rel[object_64bit] != 0)
8822 {
8823 int first, second;
8824 char *tmpbuf, *past_reloc;
8825
8826 *rel = gotrel[j].rel[object_64bit];
8827
8828 if (types)
8829 {
8830 if (flag_code != CODE_64BIT)
8831 {
8832 types->bitfield.imm32 = 1;
8833 types->bitfield.disp32 = 1;
8834 }
8835 else
8836 *types = gotrel[j].types64;
8837 }
8838
8839 if (j != 0 && GOT_symbol == NULL)
8840 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8841
8842 /* The length of the first part of our input line. */
8843 first = cp - input_line_pointer;
8844
8845 /* The second part goes from after the reloc token until
8846 (and including) an end_of_line char or comma. */
8847 past_reloc = cp + 1 + len;
8848 cp = past_reloc;
8849 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8850 ++cp;
8851 second = cp + 1 - past_reloc;
8852
8853 /* Allocate and copy string. The trailing NUL shouldn't
8854 be necessary, but be safe. */
8855 tmpbuf = XNEWVEC (char, first + second + 2);
8856 memcpy (tmpbuf, input_line_pointer, first);
8857 if (second != 0 && *past_reloc != ' ')
8858 /* Replace the relocation token with ' ', so that
8859 errors like foo@GOTOFF1 will be detected. */
8860 tmpbuf[first++] = ' ';
8861 else
8862 /* Increment length by 1 if the relocation token is
8863 removed. */
8864 len++;
8865 if (adjust)
8866 *adjust = len;
8867 memcpy (tmpbuf + first, past_reloc, second);
8868 tmpbuf[first + second] = '\0';
8869 return tmpbuf;
8870 }
8871
8872 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8873 gotrel[j].str, 1 << (5 + object_64bit));
8874 return NULL;
8875 }
8876 }
8877
8878 /* Might be a symbol version string. Don't as_bad here. */
8879 return NULL;
8880 }
8881 #endif
8882
8883 #ifdef TE_PE
8884 #ifdef lex_got
8885 #undef lex_got
8886 #endif
8887 /* Parse operands of the form
8888 <symbol>@SECREL32+<nnn>
8889
8890 If we find one, set up the correct relocation in RELOC and copy the
8891 input string, minus the `@SECREL32' into a malloc'd buffer for
8892 parsing by the calling routine. Return this buffer, and if ADJUST
8893 is non-null set it to the length of the string we removed from the
8894 input line. Otherwise return NULL.
8895
8896 This function is copied from the ELF version above adjusted for PE targets. */
8897
8898 static char *
8899 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8900 int *adjust ATTRIBUTE_UNUSED,
8901 i386_operand_type *types)
8902 {
8903 static const struct
8904 {
8905 const char *str;
8906 int len;
8907 const enum bfd_reloc_code_real rel[2];
8908 const i386_operand_type types64;
8909 }
8910 gotrel[] =
8911 {
8912 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8913 BFD_RELOC_32_SECREL },
8914 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8915 };
8916
8917 char *cp;
8918 unsigned j;
8919
8920 for (cp = input_line_pointer; *cp != '@'; cp++)
8921 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8922 return NULL;
8923
8924 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8925 {
8926 int len = gotrel[j].len;
8927
8928 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8929 {
8930 if (gotrel[j].rel[object_64bit] != 0)
8931 {
8932 int first, second;
8933 char *tmpbuf, *past_reloc;
8934
8935 *rel = gotrel[j].rel[object_64bit];
8936 if (adjust)
8937 *adjust = len;
8938
8939 if (types)
8940 {
8941 if (flag_code != CODE_64BIT)
8942 {
8943 types->bitfield.imm32 = 1;
8944 types->bitfield.disp32 = 1;
8945 }
8946 else
8947 *types = gotrel[j].types64;
8948 }
8949
8950 /* The length of the first part of our input line. */
8951 first = cp - input_line_pointer;
8952
8953 /* The second part goes from after the reloc token until
8954 (and including) an end_of_line char or comma. */
8955 past_reloc = cp + 1 + len;
8956 cp = past_reloc;
8957 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8958 ++cp;
8959 second = cp + 1 - past_reloc;
8960
8961 /* Allocate and copy string. The trailing NUL shouldn't
8962 be necessary, but be safe. */
8963 tmpbuf = XNEWVEC (char, first + second + 2);
8964 memcpy (tmpbuf, input_line_pointer, first);
8965 if (second != 0 && *past_reloc != ' ')
8966 /* Replace the relocation token with ' ', so that
8967 errors like foo@SECLREL321 will be detected. */
8968 tmpbuf[first++] = ' ';
8969 memcpy (tmpbuf + first, past_reloc, second);
8970 tmpbuf[first + second] = '\0';
8971 return tmpbuf;
8972 }
8973
8974 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8975 gotrel[j].str, 1 << (5 + object_64bit));
8976 return NULL;
8977 }
8978 }
8979
8980 /* Might be a symbol version string. Don't as_bad here. */
8981 return NULL;
8982 }
8983
8984 #endif /* TE_PE */
8985
8986 bfd_reloc_code_real_type
8987 x86_cons (expressionS *exp, int size)
8988 {
8989 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8990
8991 intel_syntax = -intel_syntax;
8992
8993 exp->X_md = 0;
8994 if (size == 4 || (object_64bit && size == 8))
8995 {
8996 /* Handle @GOTOFF and the like in an expression. */
8997 char *save;
8998 char *gotfree_input_line;
8999 int adjust = 0;
9000
9001 save = input_line_pointer;
9002 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9003 if (gotfree_input_line)
9004 input_line_pointer = gotfree_input_line;
9005
9006 expression (exp);
9007
9008 if (gotfree_input_line)
9009 {
9010 /* expression () has merrily parsed up to the end of line,
9011 or a comma - in the wrong buffer. Transfer how far
9012 input_line_pointer has moved to the right buffer. */
9013 input_line_pointer = (save
9014 + (input_line_pointer - gotfree_input_line)
9015 + adjust);
9016 free (gotfree_input_line);
9017 if (exp->X_op == O_constant
9018 || exp->X_op == O_absent
9019 || exp->X_op == O_illegal
9020 || exp->X_op == O_register
9021 || exp->X_op == O_big)
9022 {
9023 char c = *input_line_pointer;
9024 *input_line_pointer = 0;
9025 as_bad (_("missing or invalid expression `%s'"), save);
9026 *input_line_pointer = c;
9027 }
9028 else if ((got_reloc == BFD_RELOC_386_PLT32
9029 || got_reloc == BFD_RELOC_X86_64_PLT32)
9030 && exp->X_op != O_symbol)
9031 {
9032 char c = *input_line_pointer;
9033 *input_line_pointer = 0;
9034 as_bad (_("invalid PLT expression `%s'"), save);
9035 *input_line_pointer = c;
9036 }
9037 }
9038 }
9039 else
9040 expression (exp);
9041
9042 intel_syntax = -intel_syntax;
9043
9044 if (intel_syntax)
9045 i386_intel_simplify (exp);
9046
9047 return got_reloc;
9048 }
9049
9050 static void
9051 signed_cons (int size)
9052 {
9053 if (flag_code == CODE_64BIT)
9054 cons_sign = 1;
9055 cons (size);
9056 cons_sign = -1;
9057 }
9058
9059 #ifdef TE_PE
9060 static void
9061 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9062 {
9063 expressionS exp;
9064
9065 do
9066 {
9067 expression (&exp);
9068 if (exp.X_op == O_symbol)
9069 exp.X_op = O_secrel;
9070
9071 emit_expr (&exp, 4);
9072 }
9073 while (*input_line_pointer++ == ',');
9074
9075 input_line_pointer--;
9076 demand_empty_rest_of_line ();
9077 }
9078 #endif
9079
9080 /* Handle Vector operations. */
9081
9082 static char *
9083 check_VecOperations (char *op_string, char *op_end)
9084 {
9085 const reg_entry *mask;
9086 const char *saved;
9087 char *end_op;
9088
9089 while (*op_string
9090 && (op_end == NULL || op_string < op_end))
9091 {
9092 saved = op_string;
9093 if (*op_string == '{')
9094 {
9095 op_string++;
9096
9097 /* Check broadcasts. */
9098 if (strncmp (op_string, "1to", 3) == 0)
9099 {
9100 int bcst_type;
9101
9102 if (i.broadcast)
9103 goto duplicated_vec_op;
9104
9105 op_string += 3;
9106 if (*op_string == '8')
9107 bcst_type = 8;
9108 else if (*op_string == '4')
9109 bcst_type = 4;
9110 else if (*op_string == '2')
9111 bcst_type = 2;
9112 else if (*op_string == '1'
9113 && *(op_string+1) == '6')
9114 {
9115 bcst_type = 16;
9116 op_string++;
9117 }
9118 else
9119 {
9120 as_bad (_("Unsupported broadcast: `%s'"), saved);
9121 return NULL;
9122 }
9123 op_string++;
9124
9125 broadcast_op.type = bcst_type;
9126 broadcast_op.operand = this_operand;
9127 broadcast_op.bytes = 0;
9128 i.broadcast = &broadcast_op;
9129 }
9130 /* Check masking operation. */
9131 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9132 {
9133 /* k0 can't be used for write mask. */
9134 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9135 {
9136 as_bad (_("`%s%s' can't be used for write mask"),
9137 register_prefix, mask->reg_name);
9138 return NULL;
9139 }
9140
9141 if (!i.mask)
9142 {
9143 mask_op.mask = mask;
9144 mask_op.zeroing = 0;
9145 mask_op.operand = this_operand;
9146 i.mask = &mask_op;
9147 }
9148 else
9149 {
9150 if (i.mask->mask)
9151 goto duplicated_vec_op;
9152
9153 i.mask->mask = mask;
9154
9155 /* Only "{z}" is allowed here. No need to check
9156 zeroing mask explicitly. */
9157 if (i.mask->operand != this_operand)
9158 {
9159 as_bad (_("invalid write mask `%s'"), saved);
9160 return NULL;
9161 }
9162 }
9163
9164 op_string = end_op;
9165 }
9166 /* Check zeroing-flag for masking operation. */
9167 else if (*op_string == 'z')
9168 {
9169 if (!i.mask)
9170 {
9171 mask_op.mask = NULL;
9172 mask_op.zeroing = 1;
9173 mask_op.operand = this_operand;
9174 i.mask = &mask_op;
9175 }
9176 else
9177 {
9178 if (i.mask->zeroing)
9179 {
9180 duplicated_vec_op:
9181 as_bad (_("duplicated `%s'"), saved);
9182 return NULL;
9183 }
9184
9185 i.mask->zeroing = 1;
9186
9187 /* Only "{%k}" is allowed here. No need to check mask
9188 register explicitly. */
9189 if (i.mask->operand != this_operand)
9190 {
9191 as_bad (_("invalid zeroing-masking `%s'"),
9192 saved);
9193 return NULL;
9194 }
9195 }
9196
9197 op_string++;
9198 }
9199 else
9200 goto unknown_vec_op;
9201
9202 if (*op_string != '}')
9203 {
9204 as_bad (_("missing `}' in `%s'"), saved);
9205 return NULL;
9206 }
9207 op_string++;
9208
9209 /* Strip whitespace since the addition of pseudo prefixes
9210 changed how the scrubber treats '{'. */
9211 if (is_space_char (*op_string))
9212 ++op_string;
9213
9214 continue;
9215 }
9216 unknown_vec_op:
9217 /* We don't know this one. */
9218 as_bad (_("unknown vector operation: `%s'"), saved);
9219 return NULL;
9220 }
9221
9222 if (i.mask && i.mask->zeroing && !i.mask->mask)
9223 {
9224 as_bad (_("zeroing-masking only allowed with write mask"));
9225 return NULL;
9226 }
9227
9228 return op_string;
9229 }
9230
9231 static int
9232 i386_immediate (char *imm_start)
9233 {
9234 char *save_input_line_pointer;
9235 char *gotfree_input_line;
9236 segT exp_seg = 0;
9237 expressionS *exp;
9238 i386_operand_type types;
9239
9240 operand_type_set (&types, ~0);
9241
9242 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9243 {
9244 as_bad (_("at most %d immediate operands are allowed"),
9245 MAX_IMMEDIATE_OPERANDS);
9246 return 0;
9247 }
9248
9249 exp = &im_expressions[i.imm_operands++];
9250 i.op[this_operand].imms = exp;
9251
9252 if (is_space_char (*imm_start))
9253 ++imm_start;
9254
9255 save_input_line_pointer = input_line_pointer;
9256 input_line_pointer = imm_start;
9257
9258 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9259 if (gotfree_input_line)
9260 input_line_pointer = gotfree_input_line;
9261
9262 exp_seg = expression (exp);
9263
9264 SKIP_WHITESPACE ();
9265
9266 /* Handle vector operations. */
9267 if (*input_line_pointer == '{')
9268 {
9269 input_line_pointer = check_VecOperations (input_line_pointer,
9270 NULL);
9271 if (input_line_pointer == NULL)
9272 return 0;
9273 }
9274
9275 if (*input_line_pointer)
9276 as_bad (_("junk `%s' after expression"), input_line_pointer);
9277
9278 input_line_pointer = save_input_line_pointer;
9279 if (gotfree_input_line)
9280 {
9281 free (gotfree_input_line);
9282
9283 if (exp->X_op == O_constant || exp->X_op == O_register)
9284 exp->X_op = O_illegal;
9285 }
9286
9287 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9288 }
9289
9290 static int
9291 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9292 i386_operand_type types, const char *imm_start)
9293 {
9294 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9295 {
9296 if (imm_start)
9297 as_bad (_("missing or invalid immediate expression `%s'"),
9298 imm_start);
9299 return 0;
9300 }
9301 else if (exp->X_op == O_constant)
9302 {
9303 /* Size it properly later. */
9304 i.types[this_operand].bitfield.imm64 = 1;
9305 /* If not 64bit, sign extend val. */
9306 if (flag_code != CODE_64BIT
9307 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9308 exp->X_add_number
9309 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9310 }
9311 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9312 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9313 && exp_seg != absolute_section
9314 && exp_seg != text_section
9315 && exp_seg != data_section
9316 && exp_seg != bss_section
9317 && exp_seg != undefined_section
9318 && !bfd_is_com_section (exp_seg))
9319 {
9320 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9321 return 0;
9322 }
9323 #endif
9324 else if (!intel_syntax && exp_seg == reg_section)
9325 {
9326 if (imm_start)
9327 as_bad (_("illegal immediate register operand %s"), imm_start);
9328 return 0;
9329 }
9330 else
9331 {
9332 /* This is an address. The size of the address will be
9333 determined later, depending on destination register,
9334 suffix, or the default for the section. */
9335 i.types[this_operand].bitfield.imm8 = 1;
9336 i.types[this_operand].bitfield.imm16 = 1;
9337 i.types[this_operand].bitfield.imm32 = 1;
9338 i.types[this_operand].bitfield.imm32s = 1;
9339 i.types[this_operand].bitfield.imm64 = 1;
9340 i.types[this_operand] = operand_type_and (i.types[this_operand],
9341 types);
9342 }
9343
9344 return 1;
9345 }
9346
9347 static char *
9348 i386_scale (char *scale)
9349 {
9350 offsetT val;
9351 char *save = input_line_pointer;
9352
9353 input_line_pointer = scale;
9354 val = get_absolute_expression ();
9355
9356 switch (val)
9357 {
9358 case 1:
9359 i.log2_scale_factor = 0;
9360 break;
9361 case 2:
9362 i.log2_scale_factor = 1;
9363 break;
9364 case 4:
9365 i.log2_scale_factor = 2;
9366 break;
9367 case 8:
9368 i.log2_scale_factor = 3;
9369 break;
9370 default:
9371 {
9372 char sep = *input_line_pointer;
9373
9374 *input_line_pointer = '\0';
9375 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9376 scale);
9377 *input_line_pointer = sep;
9378 input_line_pointer = save;
9379 return NULL;
9380 }
9381 }
9382 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9383 {
9384 as_warn (_("scale factor of %d without an index register"),
9385 1 << i.log2_scale_factor);
9386 i.log2_scale_factor = 0;
9387 }
9388 scale = input_line_pointer;
9389 input_line_pointer = save;
9390 return scale;
9391 }
9392
9393 static int
9394 i386_displacement (char *disp_start, char *disp_end)
9395 {
9396 expressionS *exp;
9397 segT exp_seg = 0;
9398 char *save_input_line_pointer;
9399 char *gotfree_input_line;
9400 int override;
9401 i386_operand_type bigdisp, types = anydisp;
9402 int ret;
9403
9404 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9405 {
9406 as_bad (_("at most %d displacement operands are allowed"),
9407 MAX_MEMORY_OPERANDS);
9408 return 0;
9409 }
9410
9411 operand_type_set (&bigdisp, 0);
9412 if ((i.types[this_operand].bitfield.jumpabsolute)
9413 || (!current_templates->start->opcode_modifier.jump
9414 && !current_templates->start->opcode_modifier.jumpdword))
9415 {
9416 bigdisp.bitfield.disp32 = 1;
9417 override = (i.prefix[ADDR_PREFIX] != 0);
9418 if (flag_code == CODE_64BIT)
9419 {
9420 if (!override)
9421 {
9422 bigdisp.bitfield.disp32s = 1;
9423 bigdisp.bitfield.disp64 = 1;
9424 }
9425 }
9426 else if ((flag_code == CODE_16BIT) ^ override)
9427 {
9428 bigdisp.bitfield.disp32 = 0;
9429 bigdisp.bitfield.disp16 = 1;
9430 }
9431 }
9432 else
9433 {
9434 /* For PC-relative branches, the width of the displacement
9435 is dependent upon data size, not address size. */
9436 override = (i.prefix[DATA_PREFIX] != 0);
9437 if (flag_code == CODE_64BIT)
9438 {
9439 if (override || i.suffix == WORD_MNEM_SUFFIX)
9440 bigdisp.bitfield.disp16 = 1;
9441 else
9442 {
9443 bigdisp.bitfield.disp32 = 1;
9444 bigdisp.bitfield.disp32s = 1;
9445 }
9446 }
9447 else
9448 {
9449 if (!override)
9450 override = (i.suffix == (flag_code != CODE_16BIT
9451 ? WORD_MNEM_SUFFIX
9452 : LONG_MNEM_SUFFIX));
9453 bigdisp.bitfield.disp32 = 1;
9454 if ((flag_code == CODE_16BIT) ^ override)
9455 {
9456 bigdisp.bitfield.disp32 = 0;
9457 bigdisp.bitfield.disp16 = 1;
9458 }
9459 }
9460 }
9461 i.types[this_operand] = operand_type_or (i.types[this_operand],
9462 bigdisp);
9463
9464 exp = &disp_expressions[i.disp_operands];
9465 i.op[this_operand].disps = exp;
9466 i.disp_operands++;
9467 save_input_line_pointer = input_line_pointer;
9468 input_line_pointer = disp_start;
9469 END_STRING_AND_SAVE (disp_end);
9470
9471 #ifndef GCC_ASM_O_HACK
9472 #define GCC_ASM_O_HACK 0
9473 #endif
9474 #if GCC_ASM_O_HACK
9475 END_STRING_AND_SAVE (disp_end + 1);
9476 if (i.types[this_operand].bitfield.baseIndex
9477 && displacement_string_end[-1] == '+')
9478 {
9479 /* This hack is to avoid a warning when using the "o"
9480 constraint within gcc asm statements.
9481 For instance:
9482
9483 #define _set_tssldt_desc(n,addr,limit,type) \
9484 __asm__ __volatile__ ( \
9485 "movw %w2,%0\n\t" \
9486 "movw %w1,2+%0\n\t" \
9487 "rorl $16,%1\n\t" \
9488 "movb %b1,4+%0\n\t" \
9489 "movb %4,5+%0\n\t" \
9490 "movb $0,6+%0\n\t" \
9491 "movb %h1,7+%0\n\t" \
9492 "rorl $16,%1" \
9493 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9494
9495 This works great except that the output assembler ends
9496 up looking a bit weird if it turns out that there is
9497 no offset. You end up producing code that looks like:
9498
9499 #APP
9500 movw $235,(%eax)
9501 movw %dx,2+(%eax)
9502 rorl $16,%edx
9503 movb %dl,4+(%eax)
9504 movb $137,5+(%eax)
9505 movb $0,6+(%eax)
9506 movb %dh,7+(%eax)
9507 rorl $16,%edx
9508 #NO_APP
9509
9510 So here we provide the missing zero. */
9511
9512 *displacement_string_end = '0';
9513 }
9514 #endif
9515 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9516 if (gotfree_input_line)
9517 input_line_pointer = gotfree_input_line;
9518
9519 exp_seg = expression (exp);
9520
9521 SKIP_WHITESPACE ();
9522 if (*input_line_pointer)
9523 as_bad (_("junk `%s' after expression"), input_line_pointer);
9524 #if GCC_ASM_O_HACK
9525 RESTORE_END_STRING (disp_end + 1);
9526 #endif
9527 input_line_pointer = save_input_line_pointer;
9528 if (gotfree_input_line)
9529 {
9530 free (gotfree_input_line);
9531
9532 if (exp->X_op == O_constant || exp->X_op == O_register)
9533 exp->X_op = O_illegal;
9534 }
9535
9536 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9537
9538 RESTORE_END_STRING (disp_end);
9539
9540 return ret;
9541 }
9542
9543 static int
9544 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9545 i386_operand_type types, const char *disp_start)
9546 {
9547 i386_operand_type bigdisp;
9548 int ret = 1;
9549
9550 /* We do this to make sure that the section symbol is in
9551 the symbol table. We will ultimately change the relocation
9552 to be relative to the beginning of the section. */
9553 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9554 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9555 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9556 {
9557 if (exp->X_op != O_symbol)
9558 goto inv_disp;
9559
9560 if (S_IS_LOCAL (exp->X_add_symbol)
9561 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9562 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9563 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9564 exp->X_op = O_subtract;
9565 exp->X_op_symbol = GOT_symbol;
9566 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9567 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9568 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9569 i.reloc[this_operand] = BFD_RELOC_64;
9570 else
9571 i.reloc[this_operand] = BFD_RELOC_32;
9572 }
9573
9574 else if (exp->X_op == O_absent
9575 || exp->X_op == O_illegal
9576 || exp->X_op == O_big)
9577 {
9578 inv_disp:
9579 as_bad (_("missing or invalid displacement expression `%s'"),
9580 disp_start);
9581 ret = 0;
9582 }
9583
9584 else if (flag_code == CODE_64BIT
9585 && !i.prefix[ADDR_PREFIX]
9586 && exp->X_op == O_constant)
9587 {
9588 /* Since displacement is signed extended to 64bit, don't allow
9589 disp32 and turn off disp32s if they are out of range. */
9590 i.types[this_operand].bitfield.disp32 = 0;
9591 if (!fits_in_signed_long (exp->X_add_number))
9592 {
9593 i.types[this_operand].bitfield.disp32s = 0;
9594 if (i.types[this_operand].bitfield.baseindex)
9595 {
9596 as_bad (_("0x%lx out range of signed 32bit displacement"),
9597 (long) exp->X_add_number);
9598 ret = 0;
9599 }
9600 }
9601 }
9602
9603 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9604 else if (exp->X_op != O_constant
9605 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9606 && exp_seg != absolute_section
9607 && exp_seg != text_section
9608 && exp_seg != data_section
9609 && exp_seg != bss_section
9610 && exp_seg != undefined_section
9611 && !bfd_is_com_section (exp_seg))
9612 {
9613 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9614 ret = 0;
9615 }
9616 #endif
9617
9618 /* Check if this is a displacement only operand. */
9619 bigdisp = i.types[this_operand];
9620 bigdisp.bitfield.disp8 = 0;
9621 bigdisp.bitfield.disp16 = 0;
9622 bigdisp.bitfield.disp32 = 0;
9623 bigdisp.bitfield.disp32s = 0;
9624 bigdisp.bitfield.disp64 = 0;
9625 if (operand_type_all_zero (&bigdisp))
9626 i.types[this_operand] = operand_type_and (i.types[this_operand],
9627 types);
9628
9629 return ret;
9630 }
9631
9632 /* Return the active addressing mode, taking address override and
9633 registers forming the address into consideration. Update the
9634 address override prefix if necessary. */
9635
9636 static enum flag_code
9637 i386_addressing_mode (void)
9638 {
9639 enum flag_code addr_mode;
9640
9641 if (i.prefix[ADDR_PREFIX])
9642 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9643 else
9644 {
9645 addr_mode = flag_code;
9646
9647 #if INFER_ADDR_PREFIX
9648 if (i.mem_operands == 0)
9649 {
9650 /* Infer address prefix from the first memory operand. */
9651 const reg_entry *addr_reg = i.base_reg;
9652
9653 if (addr_reg == NULL)
9654 addr_reg = i.index_reg;
9655
9656 if (addr_reg)
9657 {
9658 if (addr_reg->reg_type.bitfield.dword)
9659 addr_mode = CODE_32BIT;
9660 else if (flag_code != CODE_64BIT
9661 && addr_reg->reg_type.bitfield.word)
9662 addr_mode = CODE_16BIT;
9663
9664 if (addr_mode != flag_code)
9665 {
9666 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9667 i.prefixes += 1;
9668 /* Change the size of any displacement too. At most one
9669 of Disp16 or Disp32 is set.
9670 FIXME. There doesn't seem to be any real need for
9671 separate Disp16 and Disp32 flags. The same goes for
9672 Imm16 and Imm32. Removing them would probably clean
9673 up the code quite a lot. */
9674 if (flag_code != CODE_64BIT
9675 && (i.types[this_operand].bitfield.disp16
9676 || i.types[this_operand].bitfield.disp32))
9677 i.types[this_operand]
9678 = operand_type_xor (i.types[this_operand], disp16_32);
9679 }
9680 }
9681 }
9682 #endif
9683 }
9684
9685 return addr_mode;
9686 }
9687
9688 /* Make sure the memory operand we've been dealt is valid.
9689 Return 1 on success, 0 on a failure. */
9690
9691 static int
9692 i386_index_check (const char *operand_string)
9693 {
9694 const char *kind = "base/index";
9695 enum flag_code addr_mode = i386_addressing_mode ();
9696
9697 if (current_templates->start->opcode_modifier.isstring
9698 && !current_templates->start->opcode_modifier.immext
9699 && (current_templates->end[-1].opcode_modifier.isstring
9700 || i.mem_operands))
9701 {
9702 /* Memory operands of string insns are special in that they only allow
9703 a single register (rDI, rSI, or rBX) as their memory address. */
9704 const reg_entry *expected_reg;
9705 static const char *di_si[][2] =
9706 {
9707 { "esi", "edi" },
9708 { "si", "di" },
9709 { "rsi", "rdi" }
9710 };
9711 static const char *bx[] = { "ebx", "bx", "rbx" };
9712
9713 kind = "string address";
9714
9715 if (current_templates->start->opcode_modifier.repprefixok)
9716 {
9717 i386_operand_type type = current_templates->end[-1].operand_types[0];
9718
9719 if (!type.bitfield.baseindex
9720 || ((!i.mem_operands != !intel_syntax)
9721 && current_templates->end[-1].operand_types[1]
9722 .bitfield.baseindex))
9723 type = current_templates->end[-1].operand_types[1];
9724 expected_reg = hash_find (reg_hash,
9725 di_si[addr_mode][type.bitfield.esseg]);
9726
9727 }
9728 else
9729 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9730
9731 if (i.base_reg != expected_reg
9732 || i.index_reg
9733 || operand_type_check (i.types[this_operand], disp))
9734 {
9735 /* The second memory operand must have the same size as
9736 the first one. */
9737 if (i.mem_operands
9738 && i.base_reg
9739 && !((addr_mode == CODE_64BIT
9740 && i.base_reg->reg_type.bitfield.qword)
9741 || (addr_mode == CODE_32BIT
9742 ? i.base_reg->reg_type.bitfield.dword
9743 : i.base_reg->reg_type.bitfield.word)))
9744 goto bad_address;
9745
9746 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9747 operand_string,
9748 intel_syntax ? '[' : '(',
9749 register_prefix,
9750 expected_reg->reg_name,
9751 intel_syntax ? ']' : ')');
9752 return 1;
9753 }
9754 else
9755 return 1;
9756
9757 bad_address:
9758 as_bad (_("`%s' is not a valid %s expression"),
9759 operand_string, kind);
9760 return 0;
9761 }
9762 else
9763 {
9764 if (addr_mode != CODE_16BIT)
9765 {
9766 /* 32-bit/64-bit checks. */
9767 if ((i.base_reg
9768 && ((addr_mode == CODE_64BIT
9769 ? !i.base_reg->reg_type.bitfield.qword
9770 : !i.base_reg->reg_type.bitfield.dword)
9771 || (i.index_reg && i.base_reg->reg_num == RegIP)
9772 || i.base_reg->reg_num == RegIZ))
9773 || (i.index_reg
9774 && !i.index_reg->reg_type.bitfield.xmmword
9775 && !i.index_reg->reg_type.bitfield.ymmword
9776 && !i.index_reg->reg_type.bitfield.zmmword
9777 && ((addr_mode == CODE_64BIT
9778 ? !i.index_reg->reg_type.bitfield.qword
9779 : !i.index_reg->reg_type.bitfield.dword)
9780 || !i.index_reg->reg_type.bitfield.baseindex)))
9781 goto bad_address;
9782
9783 /* bndmk, bndldx, and bndstx have special restrictions. */
9784 if (current_templates->start->base_opcode == 0xf30f1b
9785 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9786 {
9787 /* They cannot use RIP-relative addressing. */
9788 if (i.base_reg && i.base_reg->reg_num == RegIP)
9789 {
9790 as_bad (_("`%s' cannot be used here"), operand_string);
9791 return 0;
9792 }
9793
9794 /* bndldx and bndstx ignore their scale factor. */
9795 if (current_templates->start->base_opcode != 0xf30f1b
9796 && i.log2_scale_factor)
9797 as_warn (_("register scaling is being ignored here"));
9798 }
9799 }
9800 else
9801 {
9802 /* 16-bit checks. */
9803 if ((i.base_reg
9804 && (!i.base_reg->reg_type.bitfield.word
9805 || !i.base_reg->reg_type.bitfield.baseindex))
9806 || (i.index_reg
9807 && (!i.index_reg->reg_type.bitfield.word
9808 || !i.index_reg->reg_type.bitfield.baseindex
9809 || !(i.base_reg
9810 && i.base_reg->reg_num < 6
9811 && i.index_reg->reg_num >= 6
9812 && i.log2_scale_factor == 0))))
9813 goto bad_address;
9814 }
9815 }
9816 return 1;
9817 }
9818
9819 /* Handle vector immediates. */
9820
9821 static int
9822 RC_SAE_immediate (const char *imm_start)
9823 {
9824 unsigned int match_found, j;
9825 const char *pstr = imm_start;
9826 expressionS *exp;
9827
9828 if (*pstr != '{')
9829 return 0;
9830
9831 pstr++;
9832 match_found = 0;
9833 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9834 {
9835 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9836 {
9837 if (!i.rounding)
9838 {
9839 rc_op.type = RC_NamesTable[j].type;
9840 rc_op.operand = this_operand;
9841 i.rounding = &rc_op;
9842 }
9843 else
9844 {
9845 as_bad (_("duplicated `%s'"), imm_start);
9846 return 0;
9847 }
9848 pstr += RC_NamesTable[j].len;
9849 match_found = 1;
9850 break;
9851 }
9852 }
9853 if (!match_found)
9854 return 0;
9855
9856 if (*pstr++ != '}')
9857 {
9858 as_bad (_("Missing '}': '%s'"), imm_start);
9859 return 0;
9860 }
9861 /* RC/SAE immediate string should contain nothing more. */;
9862 if (*pstr != 0)
9863 {
9864 as_bad (_("Junk after '}': '%s'"), imm_start);
9865 return 0;
9866 }
9867
9868 exp = &im_expressions[i.imm_operands++];
9869 i.op[this_operand].imms = exp;
9870
9871 exp->X_op = O_constant;
9872 exp->X_add_number = 0;
9873 exp->X_add_symbol = (symbolS *) 0;
9874 exp->X_op_symbol = (symbolS *) 0;
9875
9876 i.types[this_operand].bitfield.imm8 = 1;
9877 return 1;
9878 }
9879
9880 /* Only string instructions can have a second memory operand, so
9881 reduce current_templates to just those if it contains any. */
9882 static int
9883 maybe_adjust_templates (void)
9884 {
9885 const insn_template *t;
9886
9887 gas_assert (i.mem_operands == 1);
9888
9889 for (t = current_templates->start; t < current_templates->end; ++t)
9890 if (t->opcode_modifier.isstring)
9891 break;
9892
9893 if (t < current_templates->end)
9894 {
9895 static templates aux_templates;
9896 bfd_boolean recheck;
9897
9898 aux_templates.start = t;
9899 for (; t < current_templates->end; ++t)
9900 if (!t->opcode_modifier.isstring)
9901 break;
9902 aux_templates.end = t;
9903
9904 /* Determine whether to re-check the first memory operand. */
9905 recheck = (aux_templates.start != current_templates->start
9906 || t != current_templates->end);
9907
9908 current_templates = &aux_templates;
9909
9910 if (recheck)
9911 {
9912 i.mem_operands = 0;
9913 if (i.memop1_string != NULL
9914 && i386_index_check (i.memop1_string) == 0)
9915 return 0;
9916 i.mem_operands = 1;
9917 }
9918 }
9919
9920 return 1;
9921 }
9922
9923 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9924 on error. */
9925
9926 static int
9927 i386_att_operand (char *operand_string)
9928 {
9929 const reg_entry *r;
9930 char *end_op;
9931 char *op_string = operand_string;
9932
9933 if (is_space_char (*op_string))
9934 ++op_string;
9935
9936 /* We check for an absolute prefix (differentiating,
9937 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9938 if (*op_string == ABSOLUTE_PREFIX)
9939 {
9940 ++op_string;
9941 if (is_space_char (*op_string))
9942 ++op_string;
9943 i.types[this_operand].bitfield.jumpabsolute = 1;
9944 }
9945
9946 /* Check if operand is a register. */
9947 if ((r = parse_register (op_string, &end_op)) != NULL)
9948 {
9949 i386_operand_type temp;
9950
9951 /* Check for a segment override by searching for ':' after a
9952 segment register. */
9953 op_string = end_op;
9954 if (is_space_char (*op_string))
9955 ++op_string;
9956 if (*op_string == ':'
9957 && (r->reg_type.bitfield.sreg2
9958 || r->reg_type.bitfield.sreg3))
9959 {
9960 switch (r->reg_num)
9961 {
9962 case 0:
9963 i.seg[i.mem_operands] = &es;
9964 break;
9965 case 1:
9966 i.seg[i.mem_operands] = &cs;
9967 break;
9968 case 2:
9969 i.seg[i.mem_operands] = &ss;
9970 break;
9971 case 3:
9972 i.seg[i.mem_operands] = &ds;
9973 break;
9974 case 4:
9975 i.seg[i.mem_operands] = &fs;
9976 break;
9977 case 5:
9978 i.seg[i.mem_operands] = &gs;
9979 break;
9980 }
9981
9982 /* Skip the ':' and whitespace. */
9983 ++op_string;
9984 if (is_space_char (*op_string))
9985 ++op_string;
9986
9987 if (!is_digit_char (*op_string)
9988 && !is_identifier_char (*op_string)
9989 && *op_string != '('
9990 && *op_string != ABSOLUTE_PREFIX)
9991 {
9992 as_bad (_("bad memory operand `%s'"), op_string);
9993 return 0;
9994 }
9995 /* Handle case of %es:*foo. */
9996 if (*op_string == ABSOLUTE_PREFIX)
9997 {
9998 ++op_string;
9999 if (is_space_char (*op_string))
10000 ++op_string;
10001 i.types[this_operand].bitfield.jumpabsolute = 1;
10002 }
10003 goto do_memory_reference;
10004 }
10005
10006 /* Handle vector operations. */
10007 if (*op_string == '{')
10008 {
10009 op_string = check_VecOperations (op_string, NULL);
10010 if (op_string == NULL)
10011 return 0;
10012 }
10013
10014 if (*op_string)
10015 {
10016 as_bad (_("junk `%s' after register"), op_string);
10017 return 0;
10018 }
10019 temp = r->reg_type;
10020 temp.bitfield.baseindex = 0;
10021 i.types[this_operand] = operand_type_or (i.types[this_operand],
10022 temp);
10023 i.types[this_operand].bitfield.unspecified = 0;
10024 i.op[this_operand].regs = r;
10025 i.reg_operands++;
10026 }
10027 else if (*op_string == REGISTER_PREFIX)
10028 {
10029 as_bad (_("bad register name `%s'"), op_string);
10030 return 0;
10031 }
10032 else if (*op_string == IMMEDIATE_PREFIX)
10033 {
10034 ++op_string;
10035 if (i.types[this_operand].bitfield.jumpabsolute)
10036 {
10037 as_bad (_("immediate operand illegal with absolute jump"));
10038 return 0;
10039 }
10040 if (!i386_immediate (op_string))
10041 return 0;
10042 }
10043 else if (RC_SAE_immediate (operand_string))
10044 {
10045 /* If it is a RC or SAE immediate, do nothing. */
10046 ;
10047 }
10048 else if (is_digit_char (*op_string)
10049 || is_identifier_char (*op_string)
10050 || *op_string == '"'
10051 || *op_string == '(')
10052 {
10053 /* This is a memory reference of some sort. */
10054 char *base_string;
10055
10056 /* Start and end of displacement string expression (if found). */
10057 char *displacement_string_start;
10058 char *displacement_string_end;
10059 char *vop_start;
10060
10061 do_memory_reference:
10062 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10063 return 0;
10064 if ((i.mem_operands == 1
10065 && !current_templates->start->opcode_modifier.isstring)
10066 || i.mem_operands == 2)
10067 {
10068 as_bad (_("too many memory references for `%s'"),
10069 current_templates->start->name);
10070 return 0;
10071 }
10072
10073 /* Check for base index form. We detect the base index form by
10074 looking for an ')' at the end of the operand, searching
10075 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10076 after the '('. */
10077 base_string = op_string + strlen (op_string);
10078
10079 /* Handle vector operations. */
10080 vop_start = strchr (op_string, '{');
10081 if (vop_start && vop_start < base_string)
10082 {
10083 if (check_VecOperations (vop_start, base_string) == NULL)
10084 return 0;
10085 base_string = vop_start;
10086 }
10087
10088 --base_string;
10089 if (is_space_char (*base_string))
10090 --base_string;
10091
10092 /* If we only have a displacement, set-up for it to be parsed later. */
10093 displacement_string_start = op_string;
10094 displacement_string_end = base_string + 1;
10095
10096 if (*base_string == ')')
10097 {
10098 char *temp_string;
10099 unsigned int parens_balanced = 1;
10100 /* We've already checked that the number of left & right ()'s are
10101 equal, so this loop will not be infinite. */
10102 do
10103 {
10104 base_string--;
10105 if (*base_string == ')')
10106 parens_balanced++;
10107 if (*base_string == '(')
10108 parens_balanced--;
10109 }
10110 while (parens_balanced);
10111
10112 temp_string = base_string;
10113
10114 /* Skip past '(' and whitespace. */
10115 ++base_string;
10116 if (is_space_char (*base_string))
10117 ++base_string;
10118
10119 if (*base_string == ','
10120 || ((i.base_reg = parse_register (base_string, &end_op))
10121 != NULL))
10122 {
10123 displacement_string_end = temp_string;
10124
10125 i.types[this_operand].bitfield.baseindex = 1;
10126
10127 if (i.base_reg)
10128 {
10129 base_string = end_op;
10130 if (is_space_char (*base_string))
10131 ++base_string;
10132 }
10133
10134 /* There may be an index reg or scale factor here. */
10135 if (*base_string == ',')
10136 {
10137 ++base_string;
10138 if (is_space_char (*base_string))
10139 ++base_string;
10140
10141 if ((i.index_reg = parse_register (base_string, &end_op))
10142 != NULL)
10143 {
10144 base_string = end_op;
10145 if (is_space_char (*base_string))
10146 ++base_string;
10147 if (*base_string == ',')
10148 {
10149 ++base_string;
10150 if (is_space_char (*base_string))
10151 ++base_string;
10152 }
10153 else if (*base_string != ')')
10154 {
10155 as_bad (_("expecting `,' or `)' "
10156 "after index register in `%s'"),
10157 operand_string);
10158 return 0;
10159 }
10160 }
10161 else if (*base_string == REGISTER_PREFIX)
10162 {
10163 end_op = strchr (base_string, ',');
10164 if (end_op)
10165 *end_op = '\0';
10166 as_bad (_("bad register name `%s'"), base_string);
10167 return 0;
10168 }
10169
10170 /* Check for scale factor. */
10171 if (*base_string != ')')
10172 {
10173 char *end_scale = i386_scale (base_string);
10174
10175 if (!end_scale)
10176 return 0;
10177
10178 base_string = end_scale;
10179 if (is_space_char (*base_string))
10180 ++base_string;
10181 if (*base_string != ')')
10182 {
10183 as_bad (_("expecting `)' "
10184 "after scale factor in `%s'"),
10185 operand_string);
10186 return 0;
10187 }
10188 }
10189 else if (!i.index_reg)
10190 {
10191 as_bad (_("expecting index register or scale factor "
10192 "after `,'; got '%c'"),
10193 *base_string);
10194 return 0;
10195 }
10196 }
10197 else if (*base_string != ')')
10198 {
10199 as_bad (_("expecting `,' or `)' "
10200 "after base register in `%s'"),
10201 operand_string);
10202 return 0;
10203 }
10204 }
10205 else if (*base_string == REGISTER_PREFIX)
10206 {
10207 end_op = strchr (base_string, ',');
10208 if (end_op)
10209 *end_op = '\0';
10210 as_bad (_("bad register name `%s'"), base_string);
10211 return 0;
10212 }
10213 }
10214
10215 /* If there's an expression beginning the operand, parse it,
10216 assuming displacement_string_start and
10217 displacement_string_end are meaningful. */
10218 if (displacement_string_start != displacement_string_end)
10219 {
10220 if (!i386_displacement (displacement_string_start,
10221 displacement_string_end))
10222 return 0;
10223 }
10224
10225 /* Special case for (%dx) while doing input/output op. */
10226 if (i.base_reg
10227 && i.base_reg->reg_type.bitfield.inoutportreg
10228 && i.index_reg == 0
10229 && i.log2_scale_factor == 0
10230 && i.seg[i.mem_operands] == 0
10231 && !operand_type_check (i.types[this_operand], disp))
10232 {
10233 i.types[this_operand] = i.base_reg->reg_type;
10234 return 1;
10235 }
10236
10237 if (i386_index_check (operand_string) == 0)
10238 return 0;
10239 i.flags[this_operand] |= Operand_Mem;
10240 if (i.mem_operands == 0)
10241 i.memop1_string = xstrdup (operand_string);
10242 i.mem_operands++;
10243 }
10244 else
10245 {
10246 /* It's not a memory operand; argh! */
10247 as_bad (_("invalid char %s beginning operand %d `%s'"),
10248 output_invalid (*op_string),
10249 this_operand + 1,
10250 op_string);
10251 return 0;
10252 }
10253 return 1; /* Normal return. */
10254 }
10255 \f
10256 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10257 that an rs_machine_dependent frag may reach. */
10258
10259 unsigned int
10260 i386_frag_max_var (fragS *frag)
10261 {
10262 /* The only relaxable frags are for jumps.
10263 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10264 gas_assert (frag->fr_type == rs_machine_dependent);
10265 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10266 }
10267
10268 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10269 static int
10270 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10271 {
10272 /* STT_GNU_IFUNC symbol must go through PLT. */
10273 if ((symbol_get_bfdsym (fr_symbol)->flags
10274 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10275 return 0;
10276
10277 if (!S_IS_EXTERNAL (fr_symbol))
10278 /* Symbol may be weak or local. */
10279 return !S_IS_WEAK (fr_symbol);
10280
10281 /* Global symbols with non-default visibility can't be preempted. */
10282 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10283 return 1;
10284
10285 if (fr_var != NO_RELOC)
10286 switch ((enum bfd_reloc_code_real) fr_var)
10287 {
10288 case BFD_RELOC_386_PLT32:
10289 case BFD_RELOC_X86_64_PLT32:
10290 /* Symbol with PLT relocation may be preempted. */
10291 return 0;
10292 default:
10293 abort ();
10294 }
10295
10296 /* Global symbols with default visibility in a shared library may be
10297 preempted by another definition. */
10298 return !shared;
10299 }
10300 #endif
10301
10302 /* md_estimate_size_before_relax()
10303
10304 Called just before relax() for rs_machine_dependent frags. The x86
10305 assembler uses these frags to handle variable size jump
10306 instructions.
10307
10308 Any symbol that is now undefined will not become defined.
10309 Return the correct fr_subtype in the frag.
10310 Return the initial "guess for variable size of frag" to caller.
10311 The guess is actually the growth beyond the fixed part. Whatever
10312 we do to grow the fixed or variable part contributes to our
10313 returned value. */
10314
10315 int
10316 md_estimate_size_before_relax (fragS *fragP, segT segment)
10317 {
10318 /* We've already got fragP->fr_subtype right; all we have to do is
10319 check for un-relaxable symbols. On an ELF system, we can't relax
10320 an externally visible symbol, because it may be overridden by a
10321 shared library. */
10322 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10323 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10324 || (IS_ELF
10325 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10326 fragP->fr_var))
10327 #endif
10328 #if defined (OBJ_COFF) && defined (TE_PE)
10329 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10330 && S_IS_WEAK (fragP->fr_symbol))
10331 #endif
10332 )
10333 {
10334 /* Symbol is undefined in this segment, or we need to keep a
10335 reloc so that weak symbols can be overridden. */
10336 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10337 enum bfd_reloc_code_real reloc_type;
10338 unsigned char *opcode;
10339 int old_fr_fix;
10340
10341 if (fragP->fr_var != NO_RELOC)
10342 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10343 else if (size == 2)
10344 reloc_type = BFD_RELOC_16_PCREL;
10345 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10346 else if (need_plt32_p (fragP->fr_symbol))
10347 reloc_type = BFD_RELOC_X86_64_PLT32;
10348 #endif
10349 else
10350 reloc_type = BFD_RELOC_32_PCREL;
10351
10352 old_fr_fix = fragP->fr_fix;
10353 opcode = (unsigned char *) fragP->fr_opcode;
10354
10355 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10356 {
10357 case UNCOND_JUMP:
10358 /* Make jmp (0xeb) a (d)word displacement jump. */
10359 opcode[0] = 0xe9;
10360 fragP->fr_fix += size;
10361 fix_new (fragP, old_fr_fix, size,
10362 fragP->fr_symbol,
10363 fragP->fr_offset, 1,
10364 reloc_type);
10365 break;
10366
10367 case COND_JUMP86:
10368 if (size == 2
10369 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10370 {
10371 /* Negate the condition, and branch past an
10372 unconditional jump. */
10373 opcode[0] ^= 1;
10374 opcode[1] = 3;
10375 /* Insert an unconditional jump. */
10376 opcode[2] = 0xe9;
10377 /* We added two extra opcode bytes, and have a two byte
10378 offset. */
10379 fragP->fr_fix += 2 + 2;
10380 fix_new (fragP, old_fr_fix + 2, 2,
10381 fragP->fr_symbol,
10382 fragP->fr_offset, 1,
10383 reloc_type);
10384 break;
10385 }
10386 /* Fall through. */
10387
10388 case COND_JUMP:
10389 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10390 {
10391 fixS *fixP;
10392
10393 fragP->fr_fix += 1;
10394 fixP = fix_new (fragP, old_fr_fix, 1,
10395 fragP->fr_symbol,
10396 fragP->fr_offset, 1,
10397 BFD_RELOC_8_PCREL);
10398 fixP->fx_signed = 1;
10399 break;
10400 }
10401
10402 /* This changes the byte-displacement jump 0x7N
10403 to the (d)word-displacement jump 0x0f,0x8N. */
10404 opcode[1] = opcode[0] + 0x10;
10405 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10406 /* We've added an opcode byte. */
10407 fragP->fr_fix += 1 + size;
10408 fix_new (fragP, old_fr_fix + 1, size,
10409 fragP->fr_symbol,
10410 fragP->fr_offset, 1,
10411 reloc_type);
10412 break;
10413
10414 default:
10415 BAD_CASE (fragP->fr_subtype);
10416 break;
10417 }
10418 frag_wane (fragP);
10419 return fragP->fr_fix - old_fr_fix;
10420 }
10421
10422 /* Guess size depending on current relax state. Initially the relax
10423 state will correspond to a short jump and we return 1, because
10424 the variable part of the frag (the branch offset) is one byte
10425 long. However, we can relax a section more than once and in that
10426 case we must either set fr_subtype back to the unrelaxed state,
10427 or return the value for the appropriate branch. */
10428 return md_relax_table[fragP->fr_subtype].rlx_length;
10429 }
10430
10431 /* Called after relax() is finished.
10432
10433 In: Address of frag.
10434 fr_type == rs_machine_dependent.
10435 fr_subtype is what the address relaxed to.
10436
10437 Out: Any fixSs and constants are set up.
10438 Caller will turn frag into a ".space 0". */
10439
10440 void
10441 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10442 fragS *fragP)
10443 {
10444 unsigned char *opcode;
10445 unsigned char *where_to_put_displacement = NULL;
10446 offsetT target_address;
10447 offsetT opcode_address;
10448 unsigned int extension = 0;
10449 offsetT displacement_from_opcode_start;
10450
10451 opcode = (unsigned char *) fragP->fr_opcode;
10452
10453 /* Address we want to reach in file space. */
10454 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10455
10456 /* Address opcode resides at in file space. */
10457 opcode_address = fragP->fr_address + fragP->fr_fix;
10458
10459 /* Displacement from opcode start to fill into instruction. */
10460 displacement_from_opcode_start = target_address - opcode_address;
10461
10462 if ((fragP->fr_subtype & BIG) == 0)
10463 {
10464 /* Don't have to change opcode. */
10465 extension = 1; /* 1 opcode + 1 displacement */
10466 where_to_put_displacement = &opcode[1];
10467 }
10468 else
10469 {
10470 if (no_cond_jump_promotion
10471 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10472 as_warn_where (fragP->fr_file, fragP->fr_line,
10473 _("long jump required"));
10474
10475 switch (fragP->fr_subtype)
10476 {
10477 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10478 extension = 4; /* 1 opcode + 4 displacement */
10479 opcode[0] = 0xe9;
10480 where_to_put_displacement = &opcode[1];
10481 break;
10482
10483 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10484 extension = 2; /* 1 opcode + 2 displacement */
10485 opcode[0] = 0xe9;
10486 where_to_put_displacement = &opcode[1];
10487 break;
10488
10489 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10490 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10491 extension = 5; /* 2 opcode + 4 displacement */
10492 opcode[1] = opcode[0] + 0x10;
10493 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10494 where_to_put_displacement = &opcode[2];
10495 break;
10496
10497 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10498 extension = 3; /* 2 opcode + 2 displacement */
10499 opcode[1] = opcode[0] + 0x10;
10500 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10501 where_to_put_displacement = &opcode[2];
10502 break;
10503
10504 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10505 extension = 4;
10506 opcode[0] ^= 1;
10507 opcode[1] = 3;
10508 opcode[2] = 0xe9;
10509 where_to_put_displacement = &opcode[3];
10510 break;
10511
10512 default:
10513 BAD_CASE (fragP->fr_subtype);
10514 break;
10515 }
10516 }
10517
10518 /* If size if less then four we are sure that the operand fits,
10519 but if it's 4, then it could be that the displacement is larger
10520 then -/+ 2GB. */
10521 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10522 && object_64bit
10523 && ((addressT) (displacement_from_opcode_start - extension
10524 + ((addressT) 1 << 31))
10525 > (((addressT) 2 << 31) - 1)))
10526 {
10527 as_bad_where (fragP->fr_file, fragP->fr_line,
10528 _("jump target out of range"));
10529 /* Make us emit 0. */
10530 displacement_from_opcode_start = extension;
10531 }
10532 /* Now put displacement after opcode. */
10533 md_number_to_chars ((char *) where_to_put_displacement,
10534 (valueT) (displacement_from_opcode_start - extension),
10535 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10536 fragP->fr_fix += extension;
10537 }
10538 \f
10539 /* Apply a fixup (fixP) to segment data, once it has been determined
10540 by our caller that we have all the info we need to fix it up.
10541
10542 Parameter valP is the pointer to the value of the bits.
10543
10544 On the 386, immediates, displacements, and data pointers are all in
10545 the same (little-endian) format, so we don't need to care about which
10546 we are handling. */
10547
10548 void
10549 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10550 {
10551 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10552 valueT value = *valP;
10553
10554 #if !defined (TE_Mach)
10555 if (fixP->fx_pcrel)
10556 {
10557 switch (fixP->fx_r_type)
10558 {
10559 default:
10560 break;
10561
10562 case BFD_RELOC_64:
10563 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10564 break;
10565 case BFD_RELOC_32:
10566 case BFD_RELOC_X86_64_32S:
10567 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10568 break;
10569 case BFD_RELOC_16:
10570 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10571 break;
10572 case BFD_RELOC_8:
10573 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10574 break;
10575 }
10576 }
10577
10578 if (fixP->fx_addsy != NULL
10579 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10580 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10581 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10582 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10583 && !use_rela_relocations)
10584 {
10585 /* This is a hack. There should be a better way to handle this.
10586 This covers for the fact that bfd_install_relocation will
10587 subtract the current location (for partial_inplace, PC relative
10588 relocations); see more below. */
10589 #ifndef OBJ_AOUT
10590 if (IS_ELF
10591 #ifdef TE_PE
10592 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10593 #endif
10594 )
10595 value += fixP->fx_where + fixP->fx_frag->fr_address;
10596 #endif
10597 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10598 if (IS_ELF)
10599 {
10600 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10601
10602 if ((sym_seg == seg
10603 || (symbol_section_p (fixP->fx_addsy)
10604 && sym_seg != absolute_section))
10605 && !generic_force_reloc (fixP))
10606 {
10607 /* Yes, we add the values in twice. This is because
10608 bfd_install_relocation subtracts them out again. I think
10609 bfd_install_relocation is broken, but I don't dare change
10610 it. FIXME. */
10611 value += fixP->fx_where + fixP->fx_frag->fr_address;
10612 }
10613 }
10614 #endif
10615 #if defined (OBJ_COFF) && defined (TE_PE)
10616 /* For some reason, the PE format does not store a
10617 section address offset for a PC relative symbol. */
10618 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10619 || S_IS_WEAK (fixP->fx_addsy))
10620 value += md_pcrel_from (fixP);
10621 #endif
10622 }
10623 #if defined (OBJ_COFF) && defined (TE_PE)
10624 if (fixP->fx_addsy != NULL
10625 && S_IS_WEAK (fixP->fx_addsy)
10626 /* PR 16858: Do not modify weak function references. */
10627 && ! fixP->fx_pcrel)
10628 {
10629 #if !defined (TE_PEP)
10630 /* For x86 PE weak function symbols are neither PC-relative
10631 nor do they set S_IS_FUNCTION. So the only reliable way
10632 to detect them is to check the flags of their containing
10633 section. */
10634 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10635 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10636 ;
10637 else
10638 #endif
10639 value -= S_GET_VALUE (fixP->fx_addsy);
10640 }
10641 #endif
10642
10643 /* Fix a few things - the dynamic linker expects certain values here,
10644 and we must not disappoint it. */
10645 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10646 if (IS_ELF && fixP->fx_addsy)
10647 switch (fixP->fx_r_type)
10648 {
10649 case BFD_RELOC_386_PLT32:
10650 case BFD_RELOC_X86_64_PLT32:
10651 /* Make the jump instruction point to the address of the operand.
10652 At runtime we merely add the offset to the actual PLT entry.
10653 NB: Subtract the offset size only for jump instructions. */
10654 if (fixP->fx_pcrel)
10655 value = -4;
10656 break;
10657
10658 case BFD_RELOC_386_TLS_GD:
10659 case BFD_RELOC_386_TLS_LDM:
10660 case BFD_RELOC_386_TLS_IE_32:
10661 case BFD_RELOC_386_TLS_IE:
10662 case BFD_RELOC_386_TLS_GOTIE:
10663 case BFD_RELOC_386_TLS_GOTDESC:
10664 case BFD_RELOC_X86_64_TLSGD:
10665 case BFD_RELOC_X86_64_TLSLD:
10666 case BFD_RELOC_X86_64_GOTTPOFF:
10667 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10668 value = 0; /* Fully resolved at runtime. No addend. */
10669 /* Fallthrough */
10670 case BFD_RELOC_386_TLS_LE:
10671 case BFD_RELOC_386_TLS_LDO_32:
10672 case BFD_RELOC_386_TLS_LE_32:
10673 case BFD_RELOC_X86_64_DTPOFF32:
10674 case BFD_RELOC_X86_64_DTPOFF64:
10675 case BFD_RELOC_X86_64_TPOFF32:
10676 case BFD_RELOC_X86_64_TPOFF64:
10677 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10678 break;
10679
10680 case BFD_RELOC_386_TLS_DESC_CALL:
10681 case BFD_RELOC_X86_64_TLSDESC_CALL:
10682 value = 0; /* Fully resolved at runtime. No addend. */
10683 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10684 fixP->fx_done = 0;
10685 return;
10686
10687 case BFD_RELOC_VTABLE_INHERIT:
10688 case BFD_RELOC_VTABLE_ENTRY:
10689 fixP->fx_done = 0;
10690 return;
10691
10692 default:
10693 break;
10694 }
10695 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10696 *valP = value;
10697 #endif /* !defined (TE_Mach) */
10698
10699 /* Are we finished with this relocation now? */
10700 if (fixP->fx_addsy == NULL)
10701 fixP->fx_done = 1;
10702 #if defined (OBJ_COFF) && defined (TE_PE)
10703 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10704 {
10705 fixP->fx_done = 0;
10706 /* Remember value for tc_gen_reloc. */
10707 fixP->fx_addnumber = value;
10708 /* Clear out the frag for now. */
10709 value = 0;
10710 }
10711 #endif
10712 else if (use_rela_relocations)
10713 {
10714 fixP->fx_no_overflow = 1;
10715 /* Remember value for tc_gen_reloc. */
10716 fixP->fx_addnumber = value;
10717 value = 0;
10718 }
10719
10720 md_number_to_chars (p, value, fixP->fx_size);
10721 }
10722 \f
10723 const char *
10724 md_atof (int type, char *litP, int *sizeP)
10725 {
10726 /* This outputs the LITTLENUMs in REVERSE order;
10727 in accord with the bigendian 386. */
10728 return ieee_md_atof (type, litP, sizeP, FALSE);
10729 }
10730 \f
10731 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10732
10733 static char *
10734 output_invalid (int c)
10735 {
10736 if (ISPRINT (c))
10737 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10738 "'%c'", c);
10739 else
10740 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10741 "(0x%x)", (unsigned char) c);
10742 return output_invalid_buf;
10743 }
10744
10745 /* REG_STRING starts *before* REGISTER_PREFIX. */
10746
10747 static const reg_entry *
10748 parse_real_register (char *reg_string, char **end_op)
10749 {
10750 char *s = reg_string;
10751 char *p;
10752 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10753 const reg_entry *r;
10754
10755 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10756 if (*s == REGISTER_PREFIX)
10757 ++s;
10758
10759 if (is_space_char (*s))
10760 ++s;
10761
10762 p = reg_name_given;
10763 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10764 {
10765 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10766 return (const reg_entry *) NULL;
10767 s++;
10768 }
10769
10770 /* For naked regs, make sure that we are not dealing with an identifier.
10771 This prevents confusing an identifier like `eax_var' with register
10772 `eax'. */
10773 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10774 return (const reg_entry *) NULL;
10775
10776 *end_op = s;
10777
10778 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10779
10780 /* Handle floating point regs, allowing spaces in the (i) part. */
10781 if (r == i386_regtab /* %st is first entry of table */)
10782 {
10783 if (!cpu_arch_flags.bitfield.cpu8087
10784 && !cpu_arch_flags.bitfield.cpu287
10785 && !cpu_arch_flags.bitfield.cpu387)
10786 return (const reg_entry *) NULL;
10787
10788 if (is_space_char (*s))
10789 ++s;
10790 if (*s == '(')
10791 {
10792 ++s;
10793 if (is_space_char (*s))
10794 ++s;
10795 if (*s >= '0' && *s <= '7')
10796 {
10797 int fpr = *s - '0';
10798 ++s;
10799 if (is_space_char (*s))
10800 ++s;
10801 if (*s == ')')
10802 {
10803 *end_op = s + 1;
10804 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10805 know (r);
10806 return r + fpr;
10807 }
10808 }
10809 /* We have "%st(" then garbage. */
10810 return (const reg_entry *) NULL;
10811 }
10812 }
10813
10814 if (r == NULL || allow_pseudo_reg)
10815 return r;
10816
10817 if (operand_type_all_zero (&r->reg_type))
10818 return (const reg_entry *) NULL;
10819
10820 if ((r->reg_type.bitfield.dword
10821 || r->reg_type.bitfield.sreg3
10822 || r->reg_type.bitfield.control
10823 || r->reg_type.bitfield.debug
10824 || r->reg_type.bitfield.test)
10825 && !cpu_arch_flags.bitfield.cpui386)
10826 return (const reg_entry *) NULL;
10827
10828 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10829 return (const reg_entry *) NULL;
10830
10831 if (!cpu_arch_flags.bitfield.cpuavx512f)
10832 {
10833 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10834 return (const reg_entry *) NULL;
10835
10836 if (!cpu_arch_flags.bitfield.cpuavx)
10837 {
10838 if (r->reg_type.bitfield.ymmword)
10839 return (const reg_entry *) NULL;
10840
10841 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10842 return (const reg_entry *) NULL;
10843 }
10844 }
10845
10846 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10847 return (const reg_entry *) NULL;
10848
10849 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10850 if (!allow_index_reg && r->reg_num == RegIZ)
10851 return (const reg_entry *) NULL;
10852
10853 /* Upper 16 vector registers are only available with VREX in 64bit
10854 mode, and require EVEX encoding. */
10855 if (r->reg_flags & RegVRex)
10856 {
10857 if (!cpu_arch_flags.bitfield.cpuavx512f
10858 || flag_code != CODE_64BIT)
10859 return (const reg_entry *) NULL;
10860
10861 i.vec_encoding = vex_encoding_evex;
10862 }
10863
10864 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10865 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10866 && flag_code != CODE_64BIT)
10867 return (const reg_entry *) NULL;
10868
10869 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10870 return (const reg_entry *) NULL;
10871
10872 return r;
10873 }
10874
10875 /* REG_STRING starts *before* REGISTER_PREFIX. */
10876
10877 static const reg_entry *
10878 parse_register (char *reg_string, char **end_op)
10879 {
10880 const reg_entry *r;
10881
10882 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10883 r = parse_real_register (reg_string, end_op);
10884 else
10885 r = NULL;
10886 if (!r)
10887 {
10888 char *save = input_line_pointer;
10889 char c;
10890 symbolS *symbolP;
10891
10892 input_line_pointer = reg_string;
10893 c = get_symbol_name (&reg_string);
10894 symbolP = symbol_find (reg_string);
10895 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10896 {
10897 const expressionS *e = symbol_get_value_expression (symbolP);
10898
10899 know (e->X_op == O_register);
10900 know (e->X_add_number >= 0
10901 && (valueT) e->X_add_number < i386_regtab_size);
10902 r = i386_regtab + e->X_add_number;
10903 if ((r->reg_flags & RegVRex))
10904 i.vec_encoding = vex_encoding_evex;
10905 *end_op = input_line_pointer;
10906 }
10907 *input_line_pointer = c;
10908 input_line_pointer = save;
10909 }
10910 return r;
10911 }
10912
10913 int
10914 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10915 {
10916 const reg_entry *r;
10917 char *end = input_line_pointer;
10918
10919 *end = *nextcharP;
10920 r = parse_register (name, &input_line_pointer);
10921 if (r && end <= input_line_pointer)
10922 {
10923 *nextcharP = *input_line_pointer;
10924 *input_line_pointer = 0;
10925 e->X_op = O_register;
10926 e->X_add_number = r - i386_regtab;
10927 return 1;
10928 }
10929 input_line_pointer = end;
10930 *end = 0;
10931 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10932 }
10933
10934 void
10935 md_operand (expressionS *e)
10936 {
10937 char *end;
10938 const reg_entry *r;
10939
10940 switch (*input_line_pointer)
10941 {
10942 case REGISTER_PREFIX:
10943 r = parse_real_register (input_line_pointer, &end);
10944 if (r)
10945 {
10946 e->X_op = O_register;
10947 e->X_add_number = r - i386_regtab;
10948 input_line_pointer = end;
10949 }
10950 break;
10951
10952 case '[':
10953 gas_assert (intel_syntax);
10954 end = input_line_pointer++;
10955 expression (e);
10956 if (*input_line_pointer == ']')
10957 {
10958 ++input_line_pointer;
10959 e->X_op_symbol = make_expr_symbol (e);
10960 e->X_add_symbol = NULL;
10961 e->X_add_number = 0;
10962 e->X_op = O_index;
10963 }
10964 else
10965 {
10966 e->X_op = O_absent;
10967 input_line_pointer = end;
10968 }
10969 break;
10970 }
10971 }
10972
10973 \f
10974 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10975 const char *md_shortopts = "kVQ:sqnO::";
10976 #else
10977 const char *md_shortopts = "qnO::";
10978 #endif
10979
10980 #define OPTION_32 (OPTION_MD_BASE + 0)
10981 #define OPTION_64 (OPTION_MD_BASE + 1)
10982 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10983 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10984 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10985 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10986 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10987 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10988 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10989 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10990 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10991 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10992 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10993 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10994 #define OPTION_X32 (OPTION_MD_BASE + 14)
10995 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10996 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10997 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10998 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10999 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11000 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11001 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11002 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11003 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11004 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11005 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11006 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11007
11008 struct option md_longopts[] =
11009 {
11010 {"32", no_argument, NULL, OPTION_32},
11011 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11012 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11013 {"64", no_argument, NULL, OPTION_64},
11014 #endif
11015 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11016 {"x32", no_argument, NULL, OPTION_X32},
11017 {"mshared", no_argument, NULL, OPTION_MSHARED},
11018 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11019 #endif
11020 {"divide", no_argument, NULL, OPTION_DIVIDE},
11021 {"march", required_argument, NULL, OPTION_MARCH},
11022 {"mtune", required_argument, NULL, OPTION_MTUNE},
11023 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11024 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11025 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11026 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11027 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11028 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11029 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11030 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11031 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11032 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11033 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11034 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11035 # if defined (TE_PE) || defined (TE_PEP)
11036 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11037 #endif
11038 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11039 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11040 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11041 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11042 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11043 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11044 {NULL, no_argument, NULL, 0}
11045 };
11046 size_t md_longopts_size = sizeof (md_longopts);
11047
11048 int
11049 md_parse_option (int c, const char *arg)
11050 {
11051 unsigned int j;
11052 char *arch, *next, *saved;
11053
11054 switch (c)
11055 {
11056 case 'n':
11057 optimize_align_code = 0;
11058 break;
11059
11060 case 'q':
11061 quiet_warnings = 1;
11062 break;
11063
11064 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11065 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11066 should be emitted or not. FIXME: Not implemented. */
11067 case 'Q':
11068 break;
11069
11070 /* -V: SVR4 argument to print version ID. */
11071 case 'V':
11072 print_version_id ();
11073 break;
11074
11075 /* -k: Ignore for FreeBSD compatibility. */
11076 case 'k':
11077 break;
11078
11079 case 's':
11080 /* -s: On i386 Solaris, this tells the native assembler to use
11081 .stab instead of .stab.excl. We always use .stab anyhow. */
11082 break;
11083
11084 case OPTION_MSHARED:
11085 shared = 1;
11086 break;
11087
11088 case OPTION_X86_USED_NOTE:
11089 if (strcasecmp (arg, "yes") == 0)
11090 x86_used_note = 1;
11091 else if (strcasecmp (arg, "no") == 0)
11092 x86_used_note = 0;
11093 else
11094 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11095 break;
11096
11097
11098 #endif
11099 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11100 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11101 case OPTION_64:
11102 {
11103 const char **list, **l;
11104
11105 list = bfd_target_list ();
11106 for (l = list; *l != NULL; l++)
11107 if (CONST_STRNEQ (*l, "elf64-x86-64")
11108 || strcmp (*l, "coff-x86-64") == 0
11109 || strcmp (*l, "pe-x86-64") == 0
11110 || strcmp (*l, "pei-x86-64") == 0
11111 || strcmp (*l, "mach-o-x86-64") == 0)
11112 {
11113 default_arch = "x86_64";
11114 break;
11115 }
11116 if (*l == NULL)
11117 as_fatal (_("no compiled in support for x86_64"));
11118 free (list);
11119 }
11120 break;
11121 #endif
11122
11123 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11124 case OPTION_X32:
11125 if (IS_ELF)
11126 {
11127 const char **list, **l;
11128
11129 list = bfd_target_list ();
11130 for (l = list; *l != NULL; l++)
11131 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11132 {
11133 default_arch = "x86_64:32";
11134 break;
11135 }
11136 if (*l == NULL)
11137 as_fatal (_("no compiled in support for 32bit x86_64"));
11138 free (list);
11139 }
11140 else
11141 as_fatal (_("32bit x86_64 is only supported for ELF"));
11142 break;
11143 #endif
11144
11145 case OPTION_32:
11146 default_arch = "i386";
11147 break;
11148
11149 case OPTION_DIVIDE:
11150 #ifdef SVR4_COMMENT_CHARS
11151 {
11152 char *n, *t;
11153 const char *s;
11154
11155 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11156 t = n;
11157 for (s = i386_comment_chars; *s != '\0'; s++)
11158 if (*s != '/')
11159 *t++ = *s;
11160 *t = '\0';
11161 i386_comment_chars = n;
11162 }
11163 #endif
11164 break;
11165
11166 case OPTION_MARCH:
11167 saved = xstrdup (arg);
11168 arch = saved;
11169 /* Allow -march=+nosse. */
11170 if (*arch == '+')
11171 arch++;
11172 do
11173 {
11174 if (*arch == '.')
11175 as_fatal (_("invalid -march= option: `%s'"), arg);
11176 next = strchr (arch, '+');
11177 if (next)
11178 *next++ = '\0';
11179 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11180 {
11181 if (strcmp (arch, cpu_arch [j].name) == 0)
11182 {
11183 /* Processor. */
11184 if (! cpu_arch[j].flags.bitfield.cpui386)
11185 continue;
11186
11187 cpu_arch_name = cpu_arch[j].name;
11188 cpu_sub_arch_name = NULL;
11189 cpu_arch_flags = cpu_arch[j].flags;
11190 cpu_arch_isa = cpu_arch[j].type;
11191 cpu_arch_isa_flags = cpu_arch[j].flags;
11192 if (!cpu_arch_tune_set)
11193 {
11194 cpu_arch_tune = cpu_arch_isa;
11195 cpu_arch_tune_flags = cpu_arch_isa_flags;
11196 }
11197 break;
11198 }
11199 else if (*cpu_arch [j].name == '.'
11200 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11201 {
11202 /* ISA extension. */
11203 i386_cpu_flags flags;
11204
11205 flags = cpu_flags_or (cpu_arch_flags,
11206 cpu_arch[j].flags);
11207
11208 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11209 {
11210 if (cpu_sub_arch_name)
11211 {
11212 char *name = cpu_sub_arch_name;
11213 cpu_sub_arch_name = concat (name,
11214 cpu_arch[j].name,
11215 (const char *) NULL);
11216 free (name);
11217 }
11218 else
11219 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11220 cpu_arch_flags = flags;
11221 cpu_arch_isa_flags = flags;
11222 }
11223 else
11224 cpu_arch_isa_flags
11225 = cpu_flags_or (cpu_arch_isa_flags,
11226 cpu_arch[j].flags);
11227 break;
11228 }
11229 }
11230
11231 if (j >= ARRAY_SIZE (cpu_arch))
11232 {
11233 /* Disable an ISA extension. */
11234 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11235 if (strcmp (arch, cpu_noarch [j].name) == 0)
11236 {
11237 i386_cpu_flags flags;
11238
11239 flags = cpu_flags_and_not (cpu_arch_flags,
11240 cpu_noarch[j].flags);
11241 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11242 {
11243 if (cpu_sub_arch_name)
11244 {
11245 char *name = cpu_sub_arch_name;
11246 cpu_sub_arch_name = concat (arch,
11247 (const char *) NULL);
11248 free (name);
11249 }
11250 else
11251 cpu_sub_arch_name = xstrdup (arch);
11252 cpu_arch_flags = flags;
11253 cpu_arch_isa_flags = flags;
11254 }
11255 break;
11256 }
11257
11258 if (j >= ARRAY_SIZE (cpu_noarch))
11259 j = ARRAY_SIZE (cpu_arch);
11260 }
11261
11262 if (j >= ARRAY_SIZE (cpu_arch))
11263 as_fatal (_("invalid -march= option: `%s'"), arg);
11264
11265 arch = next;
11266 }
11267 while (next != NULL);
11268 free (saved);
11269 break;
11270
11271 case OPTION_MTUNE:
11272 if (*arg == '.')
11273 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11274 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11275 {
11276 if (strcmp (arg, cpu_arch [j].name) == 0)
11277 {
11278 cpu_arch_tune_set = 1;
11279 cpu_arch_tune = cpu_arch [j].type;
11280 cpu_arch_tune_flags = cpu_arch[j].flags;
11281 break;
11282 }
11283 }
11284 if (j >= ARRAY_SIZE (cpu_arch))
11285 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11286 break;
11287
11288 case OPTION_MMNEMONIC:
11289 if (strcasecmp (arg, "att") == 0)
11290 intel_mnemonic = 0;
11291 else if (strcasecmp (arg, "intel") == 0)
11292 intel_mnemonic = 1;
11293 else
11294 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11295 break;
11296
11297 case OPTION_MSYNTAX:
11298 if (strcasecmp (arg, "att") == 0)
11299 intel_syntax = 0;
11300 else if (strcasecmp (arg, "intel") == 0)
11301 intel_syntax = 1;
11302 else
11303 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11304 break;
11305
11306 case OPTION_MINDEX_REG:
11307 allow_index_reg = 1;
11308 break;
11309
11310 case OPTION_MNAKED_REG:
11311 allow_naked_reg = 1;
11312 break;
11313
11314 case OPTION_MSSE2AVX:
11315 sse2avx = 1;
11316 break;
11317
11318 case OPTION_MSSE_CHECK:
11319 if (strcasecmp (arg, "error") == 0)
11320 sse_check = check_error;
11321 else if (strcasecmp (arg, "warning") == 0)
11322 sse_check = check_warning;
11323 else if (strcasecmp (arg, "none") == 0)
11324 sse_check = check_none;
11325 else
11326 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11327 break;
11328
11329 case OPTION_MOPERAND_CHECK:
11330 if (strcasecmp (arg, "error") == 0)
11331 operand_check = check_error;
11332 else if (strcasecmp (arg, "warning") == 0)
11333 operand_check = check_warning;
11334 else if (strcasecmp (arg, "none") == 0)
11335 operand_check = check_none;
11336 else
11337 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11338 break;
11339
11340 case OPTION_MAVXSCALAR:
11341 if (strcasecmp (arg, "128") == 0)
11342 avxscalar = vex128;
11343 else if (strcasecmp (arg, "256") == 0)
11344 avxscalar = vex256;
11345 else
11346 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11347 break;
11348
11349 case OPTION_MVEXWIG:
11350 if (strcmp (arg, "0") == 0)
11351 vexwig = evexw0;
11352 else if (strcmp (arg, "1") == 0)
11353 vexwig = evexw1;
11354 else
11355 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11356 break;
11357
11358 case OPTION_MADD_BND_PREFIX:
11359 add_bnd_prefix = 1;
11360 break;
11361
11362 case OPTION_MEVEXLIG:
11363 if (strcmp (arg, "128") == 0)
11364 evexlig = evexl128;
11365 else if (strcmp (arg, "256") == 0)
11366 evexlig = evexl256;
11367 else if (strcmp (arg, "512") == 0)
11368 evexlig = evexl512;
11369 else
11370 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11371 break;
11372
11373 case OPTION_MEVEXRCIG:
11374 if (strcmp (arg, "rne") == 0)
11375 evexrcig = rne;
11376 else if (strcmp (arg, "rd") == 0)
11377 evexrcig = rd;
11378 else if (strcmp (arg, "ru") == 0)
11379 evexrcig = ru;
11380 else if (strcmp (arg, "rz") == 0)
11381 evexrcig = rz;
11382 else
11383 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11384 break;
11385
11386 case OPTION_MEVEXWIG:
11387 if (strcmp (arg, "0") == 0)
11388 evexwig = evexw0;
11389 else if (strcmp (arg, "1") == 0)
11390 evexwig = evexw1;
11391 else
11392 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11393 break;
11394
11395 # if defined (TE_PE) || defined (TE_PEP)
11396 case OPTION_MBIG_OBJ:
11397 use_big_obj = 1;
11398 break;
11399 #endif
11400
11401 case OPTION_MOMIT_LOCK_PREFIX:
11402 if (strcasecmp (arg, "yes") == 0)
11403 omit_lock_prefix = 1;
11404 else if (strcasecmp (arg, "no") == 0)
11405 omit_lock_prefix = 0;
11406 else
11407 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11408 break;
11409
11410 case OPTION_MFENCE_AS_LOCK_ADD:
11411 if (strcasecmp (arg, "yes") == 0)
11412 avoid_fence = 1;
11413 else if (strcasecmp (arg, "no") == 0)
11414 avoid_fence = 0;
11415 else
11416 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11417 break;
11418
11419 case OPTION_MRELAX_RELOCATIONS:
11420 if (strcasecmp (arg, "yes") == 0)
11421 generate_relax_relocations = 1;
11422 else if (strcasecmp (arg, "no") == 0)
11423 generate_relax_relocations = 0;
11424 else
11425 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11426 break;
11427
11428 case OPTION_MAMD64:
11429 intel64 = 0;
11430 break;
11431
11432 case OPTION_MINTEL64:
11433 intel64 = 1;
11434 break;
11435
11436 case 'O':
11437 if (arg == NULL)
11438 {
11439 optimize = 1;
11440 /* Turn off -Os. */
11441 optimize_for_space = 0;
11442 }
11443 else if (*arg == 's')
11444 {
11445 optimize_for_space = 1;
11446 /* Turn on all encoding optimizations. */
11447 optimize = INT_MAX;
11448 }
11449 else
11450 {
11451 optimize = atoi (arg);
11452 /* Turn off -Os. */
11453 optimize_for_space = 0;
11454 }
11455 break;
11456
11457 default:
11458 return 0;
11459 }
11460 return 1;
11461 }
11462
11463 #define MESSAGE_TEMPLATE \
11464 " "
11465
11466 static char *
11467 output_message (FILE *stream, char *p, char *message, char *start,
11468 int *left_p, const char *name, int len)
11469 {
11470 int size = sizeof (MESSAGE_TEMPLATE);
11471 int left = *left_p;
11472
11473 /* Reserve 2 spaces for ", " or ",\0" */
11474 left -= len + 2;
11475
11476 /* Check if there is any room. */
11477 if (left >= 0)
11478 {
11479 if (p != start)
11480 {
11481 *p++ = ',';
11482 *p++ = ' ';
11483 }
11484 p = mempcpy (p, name, len);
11485 }
11486 else
11487 {
11488 /* Output the current message now and start a new one. */
11489 *p++ = ',';
11490 *p = '\0';
11491 fprintf (stream, "%s\n", message);
11492 p = start;
11493 left = size - (start - message) - len - 2;
11494
11495 gas_assert (left >= 0);
11496
11497 p = mempcpy (p, name, len);
11498 }
11499
11500 *left_p = left;
11501 return p;
11502 }
11503
11504 static void
11505 show_arch (FILE *stream, int ext, int check)
11506 {
11507 static char message[] = MESSAGE_TEMPLATE;
11508 char *start = message + 27;
11509 char *p;
11510 int size = sizeof (MESSAGE_TEMPLATE);
11511 int left;
11512 const char *name;
11513 int len;
11514 unsigned int j;
11515
11516 p = start;
11517 left = size - (start - message);
11518 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11519 {
11520 /* Should it be skipped? */
11521 if (cpu_arch [j].skip)
11522 continue;
11523
11524 name = cpu_arch [j].name;
11525 len = cpu_arch [j].len;
11526 if (*name == '.')
11527 {
11528 /* It is an extension. Skip if we aren't asked to show it. */
11529 if (ext)
11530 {
11531 name++;
11532 len--;
11533 }
11534 else
11535 continue;
11536 }
11537 else if (ext)
11538 {
11539 /* It is an processor. Skip if we show only extension. */
11540 continue;
11541 }
11542 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11543 {
11544 /* It is an impossible processor - skip. */
11545 continue;
11546 }
11547
11548 p = output_message (stream, p, message, start, &left, name, len);
11549 }
11550
11551 /* Display disabled extensions. */
11552 if (ext)
11553 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11554 {
11555 name = cpu_noarch [j].name;
11556 len = cpu_noarch [j].len;
11557 p = output_message (stream, p, message, start, &left, name,
11558 len);
11559 }
11560
11561 *p = '\0';
11562 fprintf (stream, "%s\n", message);
11563 }
11564
11565 void
11566 md_show_usage (FILE *stream)
11567 {
11568 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11569 fprintf (stream, _("\
11570 -Q ignored\n\
11571 -V print assembler version number\n\
11572 -k ignored\n"));
11573 #endif
11574 fprintf (stream, _("\
11575 -n Do not optimize code alignment\n\
11576 -q quieten some warnings\n"));
11577 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11578 fprintf (stream, _("\
11579 -s ignored\n"));
11580 #endif
11581 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11582 || defined (TE_PE) || defined (TE_PEP))
11583 fprintf (stream, _("\
11584 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11585 #endif
11586 #ifdef SVR4_COMMENT_CHARS
11587 fprintf (stream, _("\
11588 --divide do not treat `/' as a comment character\n"));
11589 #else
11590 fprintf (stream, _("\
11591 --divide ignored\n"));
11592 #endif
11593 fprintf (stream, _("\
11594 -march=CPU[,+EXTENSION...]\n\
11595 generate code for CPU and EXTENSION, CPU is one of:\n"));
11596 show_arch (stream, 0, 1);
11597 fprintf (stream, _("\
11598 EXTENSION is combination of:\n"));
11599 show_arch (stream, 1, 0);
11600 fprintf (stream, _("\
11601 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11602 show_arch (stream, 0, 0);
11603 fprintf (stream, _("\
11604 -msse2avx encode SSE instructions with VEX prefix\n"));
11605 fprintf (stream, _("\
11606 -msse-check=[none|error|warning] (default: warning)\n\
11607 check SSE instructions\n"));
11608 fprintf (stream, _("\
11609 -moperand-check=[none|error|warning] (default: warning)\n\
11610 check operand combinations for validity\n"));
11611 fprintf (stream, _("\
11612 -mavxscalar=[128|256] (default: 128)\n\
11613 encode scalar AVX instructions with specific vector\n\
11614 length\n"));
11615 fprintf (stream, _("\
11616 -mvexwig=[0|1] (default: 0)\n\
11617 encode VEX instructions with specific VEX.W value\n\
11618 for VEX.W bit ignored instructions\n"));
11619 fprintf (stream, _("\
11620 -mevexlig=[128|256|512] (default: 128)\n\
11621 encode scalar EVEX instructions with specific vector\n\
11622 length\n"));
11623 fprintf (stream, _("\
11624 -mevexwig=[0|1] (default: 0)\n\
11625 encode EVEX instructions with specific EVEX.W value\n\
11626 for EVEX.W bit ignored instructions\n"));
11627 fprintf (stream, _("\
11628 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11629 encode EVEX instructions with specific EVEX.RC value\n\
11630 for SAE-only ignored instructions\n"));
11631 fprintf (stream, _("\
11632 -mmnemonic=[att|intel] "));
11633 if (SYSV386_COMPAT)
11634 fprintf (stream, _("(default: att)\n"));
11635 else
11636 fprintf (stream, _("(default: intel)\n"));
11637 fprintf (stream, _("\
11638 use AT&T/Intel mnemonic\n"));
11639 fprintf (stream, _("\
11640 -msyntax=[att|intel] (default: att)\n\
11641 use AT&T/Intel syntax\n"));
11642 fprintf (stream, _("\
11643 -mindex-reg support pseudo index registers\n"));
11644 fprintf (stream, _("\
11645 -mnaked-reg don't require `%%' prefix for registers\n"));
11646 fprintf (stream, _("\
11647 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11648 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11649 fprintf (stream, _("\
11650 -mshared disable branch optimization for shared code\n"));
11651 fprintf (stream, _("\
11652 -mx86-used-note=[no|yes] "));
11653 if (DEFAULT_X86_USED_NOTE)
11654 fprintf (stream, _("(default: yes)\n"));
11655 else
11656 fprintf (stream, _("(default: no)\n"));
11657 fprintf (stream, _("\
11658 generate x86 used ISA and feature properties\n"));
11659 #endif
11660 #if defined (TE_PE) || defined (TE_PEP)
11661 fprintf (stream, _("\
11662 -mbig-obj generate big object files\n"));
11663 #endif
11664 fprintf (stream, _("\
11665 -momit-lock-prefix=[no|yes] (default: no)\n\
11666 strip all lock prefixes\n"));
11667 fprintf (stream, _("\
11668 -mfence-as-lock-add=[no|yes] (default: no)\n\
11669 encode lfence, mfence and sfence as\n\
11670 lock addl $0x0, (%%{re}sp)\n"));
11671 fprintf (stream, _("\
11672 -mrelax-relocations=[no|yes] "));
11673 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11674 fprintf (stream, _("(default: yes)\n"));
11675 else
11676 fprintf (stream, _("(default: no)\n"));
11677 fprintf (stream, _("\
11678 generate relax relocations\n"));
11679 fprintf (stream, _("\
11680 -mamd64 accept only AMD64 ISA [default]\n"));
11681 fprintf (stream, _("\
11682 -mintel64 accept only Intel64 ISA\n"));
11683 }
11684
11685 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11686 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11687 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11688
11689 /* Pick the target format to use. */
11690
11691 const char *
11692 i386_target_format (void)
11693 {
11694 if (!strncmp (default_arch, "x86_64", 6))
11695 {
11696 update_code_flag (CODE_64BIT, 1);
11697 if (default_arch[6] == '\0')
11698 x86_elf_abi = X86_64_ABI;
11699 else
11700 x86_elf_abi = X86_64_X32_ABI;
11701 }
11702 else if (!strcmp (default_arch, "i386"))
11703 update_code_flag (CODE_32BIT, 1);
11704 else if (!strcmp (default_arch, "iamcu"))
11705 {
11706 update_code_flag (CODE_32BIT, 1);
11707 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11708 {
11709 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11710 cpu_arch_name = "iamcu";
11711 cpu_sub_arch_name = NULL;
11712 cpu_arch_flags = iamcu_flags;
11713 cpu_arch_isa = PROCESSOR_IAMCU;
11714 cpu_arch_isa_flags = iamcu_flags;
11715 if (!cpu_arch_tune_set)
11716 {
11717 cpu_arch_tune = cpu_arch_isa;
11718 cpu_arch_tune_flags = cpu_arch_isa_flags;
11719 }
11720 }
11721 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11722 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11723 cpu_arch_name);
11724 }
11725 else
11726 as_fatal (_("unknown architecture"));
11727
11728 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11729 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11730 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11731 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11732
11733 switch (OUTPUT_FLAVOR)
11734 {
11735 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11736 case bfd_target_aout_flavour:
11737 return AOUT_TARGET_FORMAT;
11738 #endif
11739 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11740 # if defined (TE_PE) || defined (TE_PEP)
11741 case bfd_target_coff_flavour:
11742 if (flag_code == CODE_64BIT)
11743 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11744 else
11745 return "pe-i386";
11746 # elif defined (TE_GO32)
11747 case bfd_target_coff_flavour:
11748 return "coff-go32";
11749 # else
11750 case bfd_target_coff_flavour:
11751 return "coff-i386";
11752 # endif
11753 #endif
11754 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11755 case bfd_target_elf_flavour:
11756 {
11757 const char *format;
11758
11759 switch (x86_elf_abi)
11760 {
11761 default:
11762 format = ELF_TARGET_FORMAT;
11763 break;
11764 case X86_64_ABI:
11765 use_rela_relocations = 1;
11766 object_64bit = 1;
11767 format = ELF_TARGET_FORMAT64;
11768 break;
11769 case X86_64_X32_ABI:
11770 use_rela_relocations = 1;
11771 object_64bit = 1;
11772 disallow_64bit_reloc = 1;
11773 format = ELF_TARGET_FORMAT32;
11774 break;
11775 }
11776 if (cpu_arch_isa == PROCESSOR_L1OM)
11777 {
11778 if (x86_elf_abi != X86_64_ABI)
11779 as_fatal (_("Intel L1OM is 64bit only"));
11780 return ELF_TARGET_L1OM_FORMAT;
11781 }
11782 else if (cpu_arch_isa == PROCESSOR_K1OM)
11783 {
11784 if (x86_elf_abi != X86_64_ABI)
11785 as_fatal (_("Intel K1OM is 64bit only"));
11786 return ELF_TARGET_K1OM_FORMAT;
11787 }
11788 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11789 {
11790 if (x86_elf_abi != I386_ABI)
11791 as_fatal (_("Intel MCU is 32bit only"));
11792 return ELF_TARGET_IAMCU_FORMAT;
11793 }
11794 else
11795 return format;
11796 }
11797 #endif
11798 #if defined (OBJ_MACH_O)
11799 case bfd_target_mach_o_flavour:
11800 if (flag_code == CODE_64BIT)
11801 {
11802 use_rela_relocations = 1;
11803 object_64bit = 1;
11804 return "mach-o-x86-64";
11805 }
11806 else
11807 return "mach-o-i386";
11808 #endif
11809 default:
11810 abort ();
11811 return NULL;
11812 }
11813 }
11814
11815 #endif /* OBJ_MAYBE_ more than one */
11816 \f
11817 symbolS *
11818 md_undefined_symbol (char *name)
11819 {
11820 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11821 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11822 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11823 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11824 {
11825 if (!GOT_symbol)
11826 {
11827 if (symbol_find (name))
11828 as_bad (_("GOT already in symbol table"));
11829 GOT_symbol = symbol_new (name, undefined_section,
11830 (valueT) 0, &zero_address_frag);
11831 };
11832 return GOT_symbol;
11833 }
11834 return 0;
11835 }
11836
11837 /* Round up a section size to the appropriate boundary. */
11838
11839 valueT
11840 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11841 {
11842 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11843 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11844 {
11845 /* For a.out, force the section size to be aligned. If we don't do
11846 this, BFD will align it for us, but it will not write out the
11847 final bytes of the section. This may be a bug in BFD, but it is
11848 easier to fix it here since that is how the other a.out targets
11849 work. */
11850 int align;
11851
11852 align = bfd_get_section_alignment (stdoutput, segment);
11853 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11854 }
11855 #endif
11856
11857 return size;
11858 }
11859
11860 /* On the i386, PC-relative offsets are relative to the start of the
11861 next instruction. That is, the address of the offset, plus its
11862 size, since the offset is always the last part of the insn. */
11863
11864 long
11865 md_pcrel_from (fixS *fixP)
11866 {
11867 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11868 }
11869
11870 #ifndef I386COFF
11871
11872 static void
11873 s_bss (int ignore ATTRIBUTE_UNUSED)
11874 {
11875 int temp;
11876
11877 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11878 if (IS_ELF)
11879 obj_elf_section_change_hook ();
11880 #endif
11881 temp = get_absolute_expression ();
11882 subseg_set (bss_section, (subsegT) temp);
11883 demand_empty_rest_of_line ();
11884 }
11885
11886 #endif
11887
11888 void
11889 i386_validate_fix (fixS *fixp)
11890 {
11891 if (fixp->fx_subsy)
11892 {
11893 if (fixp->fx_subsy == GOT_symbol)
11894 {
11895 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11896 {
11897 if (!object_64bit)
11898 abort ();
11899 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11900 if (fixp->fx_tcbit2)
11901 fixp->fx_r_type = (fixp->fx_tcbit
11902 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11903 : BFD_RELOC_X86_64_GOTPCRELX);
11904 else
11905 #endif
11906 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11907 }
11908 else
11909 {
11910 if (!object_64bit)
11911 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11912 else
11913 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11914 }
11915 fixp->fx_subsy = 0;
11916 }
11917 }
11918 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11919 else if (!object_64bit)
11920 {
11921 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11922 && fixp->fx_tcbit2)
11923 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11924 }
11925 #endif
11926 }
11927
11928 arelent *
11929 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11930 {
11931 arelent *rel;
11932 bfd_reloc_code_real_type code;
11933
11934 switch (fixp->fx_r_type)
11935 {
11936 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11937 case BFD_RELOC_SIZE32:
11938 case BFD_RELOC_SIZE64:
11939 if (S_IS_DEFINED (fixp->fx_addsy)
11940 && !S_IS_EXTERNAL (fixp->fx_addsy))
11941 {
11942 /* Resolve size relocation against local symbol to size of
11943 the symbol plus addend. */
11944 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11945 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11946 && !fits_in_unsigned_long (value))
11947 as_bad_where (fixp->fx_file, fixp->fx_line,
11948 _("symbol size computation overflow"));
11949 fixp->fx_addsy = NULL;
11950 fixp->fx_subsy = NULL;
11951 md_apply_fix (fixp, (valueT *) &value, NULL);
11952 return NULL;
11953 }
11954 #endif
11955 /* Fall through. */
11956
11957 case BFD_RELOC_X86_64_PLT32:
11958 case BFD_RELOC_X86_64_GOT32:
11959 case BFD_RELOC_X86_64_GOTPCREL:
11960 case BFD_RELOC_X86_64_GOTPCRELX:
11961 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11962 case BFD_RELOC_386_PLT32:
11963 case BFD_RELOC_386_GOT32:
11964 case BFD_RELOC_386_GOT32X:
11965 case BFD_RELOC_386_GOTOFF:
11966 case BFD_RELOC_386_GOTPC:
11967 case BFD_RELOC_386_TLS_GD:
11968 case BFD_RELOC_386_TLS_LDM:
11969 case BFD_RELOC_386_TLS_LDO_32:
11970 case BFD_RELOC_386_TLS_IE_32:
11971 case BFD_RELOC_386_TLS_IE:
11972 case BFD_RELOC_386_TLS_GOTIE:
11973 case BFD_RELOC_386_TLS_LE_32:
11974 case BFD_RELOC_386_TLS_LE:
11975 case BFD_RELOC_386_TLS_GOTDESC:
11976 case BFD_RELOC_386_TLS_DESC_CALL:
11977 case BFD_RELOC_X86_64_TLSGD:
11978 case BFD_RELOC_X86_64_TLSLD:
11979 case BFD_RELOC_X86_64_DTPOFF32:
11980 case BFD_RELOC_X86_64_DTPOFF64:
11981 case BFD_RELOC_X86_64_GOTTPOFF:
11982 case BFD_RELOC_X86_64_TPOFF32:
11983 case BFD_RELOC_X86_64_TPOFF64:
11984 case BFD_RELOC_X86_64_GOTOFF64:
11985 case BFD_RELOC_X86_64_GOTPC32:
11986 case BFD_RELOC_X86_64_GOT64:
11987 case BFD_RELOC_X86_64_GOTPCREL64:
11988 case BFD_RELOC_X86_64_GOTPC64:
11989 case BFD_RELOC_X86_64_GOTPLT64:
11990 case BFD_RELOC_X86_64_PLTOFF64:
11991 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11992 case BFD_RELOC_X86_64_TLSDESC_CALL:
11993 case BFD_RELOC_RVA:
11994 case BFD_RELOC_VTABLE_ENTRY:
11995 case BFD_RELOC_VTABLE_INHERIT:
11996 #ifdef TE_PE
11997 case BFD_RELOC_32_SECREL:
11998 #endif
11999 code = fixp->fx_r_type;
12000 break;
12001 case BFD_RELOC_X86_64_32S:
12002 if (!fixp->fx_pcrel)
12003 {
12004 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12005 code = fixp->fx_r_type;
12006 break;
12007 }
12008 /* Fall through. */
12009 default:
12010 if (fixp->fx_pcrel)
12011 {
12012 switch (fixp->fx_size)
12013 {
12014 default:
12015 as_bad_where (fixp->fx_file, fixp->fx_line,
12016 _("can not do %d byte pc-relative relocation"),
12017 fixp->fx_size);
12018 code = BFD_RELOC_32_PCREL;
12019 break;
12020 case 1: code = BFD_RELOC_8_PCREL; break;
12021 case 2: code = BFD_RELOC_16_PCREL; break;
12022 case 4: code = BFD_RELOC_32_PCREL; break;
12023 #ifdef BFD64
12024 case 8: code = BFD_RELOC_64_PCREL; break;
12025 #endif
12026 }
12027 }
12028 else
12029 {
12030 switch (fixp->fx_size)
12031 {
12032 default:
12033 as_bad_where (fixp->fx_file, fixp->fx_line,
12034 _("can not do %d byte relocation"),
12035 fixp->fx_size);
12036 code = BFD_RELOC_32;
12037 break;
12038 case 1: code = BFD_RELOC_8; break;
12039 case 2: code = BFD_RELOC_16; break;
12040 case 4: code = BFD_RELOC_32; break;
12041 #ifdef BFD64
12042 case 8: code = BFD_RELOC_64; break;
12043 #endif
12044 }
12045 }
12046 break;
12047 }
12048
12049 if ((code == BFD_RELOC_32
12050 || code == BFD_RELOC_32_PCREL
12051 || code == BFD_RELOC_X86_64_32S)
12052 && GOT_symbol
12053 && fixp->fx_addsy == GOT_symbol)
12054 {
12055 if (!object_64bit)
12056 code = BFD_RELOC_386_GOTPC;
12057 else
12058 code = BFD_RELOC_X86_64_GOTPC32;
12059 }
12060 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12061 && GOT_symbol
12062 && fixp->fx_addsy == GOT_symbol)
12063 {
12064 code = BFD_RELOC_X86_64_GOTPC64;
12065 }
12066
12067 rel = XNEW (arelent);
12068 rel->sym_ptr_ptr = XNEW (asymbol *);
12069 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12070
12071 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12072
12073 if (!use_rela_relocations)
12074 {
12075 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12076 vtable entry to be used in the relocation's section offset. */
12077 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12078 rel->address = fixp->fx_offset;
12079 #if defined (OBJ_COFF) && defined (TE_PE)
12080 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12081 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12082 else
12083 #endif
12084 rel->addend = 0;
12085 }
12086 /* Use the rela in 64bit mode. */
12087 else
12088 {
12089 if (disallow_64bit_reloc)
12090 switch (code)
12091 {
12092 case BFD_RELOC_X86_64_DTPOFF64:
12093 case BFD_RELOC_X86_64_TPOFF64:
12094 case BFD_RELOC_64_PCREL:
12095 case BFD_RELOC_X86_64_GOTOFF64:
12096 case BFD_RELOC_X86_64_GOT64:
12097 case BFD_RELOC_X86_64_GOTPCREL64:
12098 case BFD_RELOC_X86_64_GOTPC64:
12099 case BFD_RELOC_X86_64_GOTPLT64:
12100 case BFD_RELOC_X86_64_PLTOFF64:
12101 as_bad_where (fixp->fx_file, fixp->fx_line,
12102 _("cannot represent relocation type %s in x32 mode"),
12103 bfd_get_reloc_code_name (code));
12104 break;
12105 default:
12106 break;
12107 }
12108
12109 if (!fixp->fx_pcrel)
12110 rel->addend = fixp->fx_offset;
12111 else
12112 switch (code)
12113 {
12114 case BFD_RELOC_X86_64_PLT32:
12115 case BFD_RELOC_X86_64_GOT32:
12116 case BFD_RELOC_X86_64_GOTPCREL:
12117 case BFD_RELOC_X86_64_GOTPCRELX:
12118 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12119 case BFD_RELOC_X86_64_TLSGD:
12120 case BFD_RELOC_X86_64_TLSLD:
12121 case BFD_RELOC_X86_64_GOTTPOFF:
12122 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12123 case BFD_RELOC_X86_64_TLSDESC_CALL:
12124 rel->addend = fixp->fx_offset - fixp->fx_size;
12125 break;
12126 default:
12127 rel->addend = (section->vma
12128 - fixp->fx_size
12129 + fixp->fx_addnumber
12130 + md_pcrel_from (fixp));
12131 break;
12132 }
12133 }
12134
12135 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12136 if (rel->howto == NULL)
12137 {
12138 as_bad_where (fixp->fx_file, fixp->fx_line,
12139 _("cannot represent relocation type %s"),
12140 bfd_get_reloc_code_name (code));
12141 /* Set howto to a garbage value so that we can keep going. */
12142 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12143 gas_assert (rel->howto != NULL);
12144 }
12145
12146 return rel;
12147 }
12148
12149 #include "tc-i386-intel.c"
12150
12151 void
12152 tc_x86_parse_to_dw2regnum (expressionS *exp)
12153 {
12154 int saved_naked_reg;
12155 char saved_register_dot;
12156
12157 saved_naked_reg = allow_naked_reg;
12158 allow_naked_reg = 1;
12159 saved_register_dot = register_chars['.'];
12160 register_chars['.'] = '.';
12161 allow_pseudo_reg = 1;
12162 expression_and_evaluate (exp);
12163 allow_pseudo_reg = 0;
12164 register_chars['.'] = saved_register_dot;
12165 allow_naked_reg = saved_naked_reg;
12166
12167 if (exp->X_op == O_register && exp->X_add_number >= 0)
12168 {
12169 if ((addressT) exp->X_add_number < i386_regtab_size)
12170 {
12171 exp->X_op = O_constant;
12172 exp->X_add_number = i386_regtab[exp->X_add_number]
12173 .dw2_regnum[flag_code >> 1];
12174 }
12175 else
12176 exp->X_op = O_illegal;
12177 }
12178 }
12179
12180 void
12181 tc_x86_frame_initial_instructions (void)
12182 {
12183 static unsigned int sp_regno[2];
12184
12185 if (!sp_regno[flag_code >> 1])
12186 {
12187 char *saved_input = input_line_pointer;
12188 char sp[][4] = {"esp", "rsp"};
12189 expressionS exp;
12190
12191 input_line_pointer = sp[flag_code >> 1];
12192 tc_x86_parse_to_dw2regnum (&exp);
12193 gas_assert (exp.X_op == O_constant);
12194 sp_regno[flag_code >> 1] = exp.X_add_number;
12195 input_line_pointer = saved_input;
12196 }
12197
12198 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12199 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12200 }
12201
12202 int
12203 x86_dwarf2_addr_size (void)
12204 {
12205 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12206 if (x86_elf_abi == X86_64_X32_ABI)
12207 return 4;
12208 #endif
12209 return bfd_arch_bits_per_address (stdoutput) / 8;
12210 }
12211
12212 int
12213 i386_elf_section_type (const char *str, size_t len)
12214 {
12215 if (flag_code == CODE_64BIT
12216 && len == sizeof ("unwind") - 1
12217 && strncmp (str, "unwind", 6) == 0)
12218 return SHT_X86_64_UNWIND;
12219
12220 return -1;
12221 }
12222
12223 #ifdef TE_SOLARIS
12224 void
12225 i386_solaris_fix_up_eh_frame (segT sec)
12226 {
12227 if (flag_code == CODE_64BIT)
12228 elf_section_type (sec) = SHT_X86_64_UNWIND;
12229 }
12230 #endif
12231
12232 #ifdef TE_PE
12233 void
12234 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12235 {
12236 expressionS exp;
12237
12238 exp.X_op = O_secrel;
12239 exp.X_add_symbol = symbol;
12240 exp.X_add_number = 0;
12241 emit_expr (&exp, size);
12242 }
12243 #endif
12244
12245 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12246 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12247
12248 bfd_vma
12249 x86_64_section_letter (int letter, const char **ptr_msg)
12250 {
12251 if (flag_code == CODE_64BIT)
12252 {
12253 if (letter == 'l')
12254 return SHF_X86_64_LARGE;
12255
12256 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12257 }
12258 else
12259 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12260 return -1;
12261 }
12262
12263 bfd_vma
12264 x86_64_section_word (char *str, size_t len)
12265 {
12266 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12267 return SHF_X86_64_LARGE;
12268
12269 return -1;
12270 }
12271
12272 static void
12273 handle_large_common (int small ATTRIBUTE_UNUSED)
12274 {
12275 if (flag_code != CODE_64BIT)
12276 {
12277 s_comm_internal (0, elf_common_parse);
12278 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12279 }
12280 else
12281 {
12282 static segT lbss_section;
12283 asection *saved_com_section_ptr = elf_com_section_ptr;
12284 asection *saved_bss_section = bss_section;
12285
12286 if (lbss_section == NULL)
12287 {
12288 flagword applicable;
12289 segT seg = now_seg;
12290 subsegT subseg = now_subseg;
12291
12292 /* The .lbss section is for local .largecomm symbols. */
12293 lbss_section = subseg_new (".lbss", 0);
12294 applicable = bfd_applicable_section_flags (stdoutput);
12295 bfd_set_section_flags (stdoutput, lbss_section,
12296 applicable & SEC_ALLOC);
12297 seg_info (lbss_section)->bss = 1;
12298
12299 subseg_set (seg, subseg);
12300 }
12301
12302 elf_com_section_ptr = &_bfd_elf_large_com_section;
12303 bss_section = lbss_section;
12304
12305 s_comm_internal (0, elf_common_parse);
12306
12307 elf_com_section_ptr = saved_com_section_ptr;
12308 bss_section = saved_bss_section;
12309 }
12310 }
12311 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.289763 seconds and 4 git commands to generate.